Science.gov

Sample records for microscope phase plate

  1. Ponderomotive phase plate for transmission electron microscopes

    DOEpatents

    Reed, Bryan W [Livermore, CA

    2012-07-10

    A ponderomotive phase plate system and method for controllably producing highly tunable phase contrast transfer functions in a transmission electron microscope (TEM) for high resolution and biological phase contrast imaging. The system and method includes a laser source and a beam transport system to produce a focused laser crossover as a phase plate, so that a ponderomotive potential of the focused laser crossover produces a scattering-angle-dependent phase shift in the electrons of the post-sample electron beam corresponding to a desired phase contrast transfer function.

  2. Fabrication of optical multilayer for two-color phase plate in super-resolution microscope.

    PubMed

    Iketaki, Yoshinori; Kitagawa, Katsuichi; Hidaka, Kohjiro; Kato, Naoki; Hirabayashi, Akira; Bokor, Nandor

    2014-07-01

    In super-resolution microscopy based on fluorescence depletion, the two-color phase plate (TPP) is an indispensable optical element, which can independently control the phase shifts for two beams of different color, i.e., the pump and erase beams. By controlling a phase shift of the erase beam through the TPP, the erase beam can be modulated into a doughnut shape, while the pump beam maintains the initial Gaussian shape. To obtain a reliable optical multiplayer (ML) for the TPP, we designed a ML with only two optical layers by performing numerical optimization. The measured phase shifts generated by the fabricated ML using interferometry correspond to the design values. The beam profiles in the focal plane are also consistent with theoretical results. Although the fabricated ML consists of only two optical layers, the ML can provide a suitable phase modulation function for the TPP in a practical super-resolution microscope.

  3. Fabrication of optical multilayer for two-color phase plate in super-resolution microscope

    SciTech Connect

    Iketaki, Yoshinori; Kitagawa, Katsuichi; Hidaka, Kohjiro; Kato, Naoki; Hirabayashi, Akira; Bokor, Nandor

    2014-07-15

    In super-resolution microscopy based on fluorescence depletion, the two-color phase plate (TPP) is an indispensable optical element, which can independently control the phase shifts for two beams of different color, i.e., the pump and erase beams. By controlling a phase shift of the erase beam through the TPP, the erase beam can be modulated into a doughnut shape, while the pump beam maintains the initial Gaussian shape. To obtain a reliable optical multiplayer (ML) for the TPP, we designed a ML with only two optical layers by performing numerical optimization. The measured phase shifts generated by the fabricated ML using interferometry correspond to the design values. The beam profiles in the focal plane are also consistent with theoretical results. Although the fabricated ML consists of only two optical layers, the ML can provide a suitable phase modulation function for the TPP in a practical super-resolution microscope.

  4. Enhanced phase contrast transfer using ptychography combined with a pre-specimen phase plate in a scanning transmission electron microscope.

    PubMed

    Yang, Hao; Ercius, Peter; Nellist, Peter D; Ophus, Colin

    2016-12-01

    The ability to image light elements in both crystalline and noncrystalline materials at near atomic resolution with an enhanced contrast is highly advantageous to understand the structure and properties of a wide range of beam sensitive materials including biological specimens and molecular hetero-structures. This requires the imaging system to have an efficient phase contrast transfer at both low and high spatial frequencies. In this work we introduce a new phase contrast imaging method in a scanning transmission electron microscope (STEM) using a pre-specimen phase plate in the probe forming aperture, combined with a fast pixelated detector to record diffraction patterns at every probe position, and phase reconstruction using ptychography. The phase plate significantly enhances the contrast transfer of low spatial frequency information, and ptychography maximizes the extraction of the phase information at all spatial frequencies. In addition, the STEM probe with the presence of the phase plate retains its atomic resolution, allowing simultaneous incoherent Z-contrast imaging to be obtained along with the ptychographic phase image. An experimental image of Au nanoparticles on a carbon support shows high contrast for both materials. Multislice image simulations of a DNA molecule shows the capability of imaging soft matter at low dose conditions, which implies potential applications of low dose imaging of a wide range of beam sensitive materials. Published by Elsevier B.V.

  5. Effect of a physical phase plate on contrast transfer in an aberration-corrected transmission electron microscope.

    PubMed

    Gamm, B; Schultheiss, K; Gerthsen, D; Schröder, R R

    2008-08-01

    In this theoretical study we analyze contrast transfer of weak-phase objects in a transmission electron microscope, which is equipped with an aberration corrector (C(s)-corrector) in the imaging lens system and a physical phase plate in the back focal plane of the objective lens. For a phase shift of pi/2 between scattered and unscattered electrons induced by a physical phase plate, the sine-type phase contrast transfer function is converted into a cosine-type function. Optimal imaging conditions could theoretically be achieved if the phase shifts caused by the objective lens defocus and lens aberrations would be equal to zero. In reality this situation is difficult to realize because of residual aberrations and varying, non-zero local defocus values, which in general result from an uneven sample surface topography. We explore the conditions--i.e. range of C(s)-values and defocus--for most favourable contrast transfer as a function of the information limit, which is only limited by the effect of partial coherence of the electron wave in C(s)-corrected transmission electron microscopes. Under high-resolution operation conditions we find that a physical phase plate improves strongly low- and medium-resolution object contrast, while improving tolerance to defocus and C(s)-variations, compared to a microscope without a phase plate.

  6. Design of an electron microscope phase plate using a focused continuous-wave laser

    SciTech Connect

    Spence, J.; Muller, H; Jin, Jian; Danev, R; Padmore, H; Glaeser, R.M

    2010-07-01

    We propose a Zernike phase contrast electron microscope that uses an intense laser focus to convert a phase image into a visible image. We present the relativistic quantum theory of the phase shift caused by the laser–electron interaction, study resonant cavities for enhancing the laser intensity and discuss applications in biology, soft-materials science and atomic and molecular physics.

  7. Design of an electron microscope phase plate using a focused continuous-wave laser

    PubMed Central

    Müller, H; Jin, Jian; Danev, R; Spence, J; Padmore, H; Glaeser, R M

    2010-01-01

    We propose a Zernike phase contrast electron microscope that uses an intense laser focus to convert a phase image into a visible image. We present the relativistic quantum theory of the phase shift caused by the laser–electron interaction, study resonant cavities for enhancing the laser intensity and discuss applications in biology, soft-materials science and atomic and molecular physics. PMID:20808709

  8. Electron microscope phase enhancement

    DOEpatents

    Jin, Jian; Glaeser, Robert M.

    2010-06-15

    A microfabricated electron phase shift element is used for modifying the phase characteristics of an electron beam passing though its center aperture, while not affecting the more divergent portion of an incident beam to selectively provide a ninety-degree phase shift to the unscattered beam in the back focal plan of the objective lens, in order to realize Zernike-type, in-focus phase contrast in an electron microscope. One application of the element is to increase the contrast of an electron microscope for viewing weakly scattering samples while in focus. Typical weakly scattering samples include biological samples such as macromolecules, or perhaps cells. Preliminary experimental images demonstrate that these devices do apply a ninety degree phase shift as expected. Electrostatic calculations have been used to determine that fringing fields in the region of the scattered electron beams will cause a negligible phase shift as long as the ratio of electrode length to the transverse feature-size aperture is about 5:1. Calculations are underway to determine the feasibility of aspect smaller aspect ratios of about 3:1 and about 2:1.

  9. Theoretical model of the helium zone plate microscope

    NASA Astrophysics Data System (ADS)

    Salvador Palau, Adrià; Bracco, Gianangelo; Holst, Bodil

    2017-01-01

    Neutral helium microscopy is a new technique currently under development. Its advantages are the low energy, charge neutrality, and inertness of the helium atoms, a potential large depth of field, and the fact that at thermal energies the helium atoms do not penetrate into any solid material. This opens the possibility, among others, for the creation of an instrument that can measure surface topology on the nanoscale, even on surfaces with high aspect ratios. One of the most promising designs for helium microscopy is the zone plate microscope. It consists of a supersonic expansion helium beam collimated by an aperture (skimmer) focused by a Fresnel zone plate onto a sample. The resolution is determined by the focal spot size, which depends on the size of the skimmer, the optics of the system, and the velocity spread of the beam through the chromatic aberrations of the zone plate. An important factor for the optics of the zone plate is the width of the outermost zone, corresponding to the smallest opening in the zone plate. The width of the outermost zone is fabrication limited to around 10 nm with present-day state-of-the-art technology. Due to the high ionization potential of neutral helium atoms, it is difficult to build efficient helium detectors. Therefore, it is crucial to optimize the microscope design to maximize the intensity for a given resolution and width of the outermost zone. Here we present an optimization model for the helium zone plate microscope. Assuming constant resolution and width of the outermost zone, we are able to reduce the problem to a two-variable problem (zone plate radius and object distance) and we show that for a given beam temperature and pressure, there is always a single intensity maximum. We compare our model with the highest-resolution zone plate focusing images published and show that the intensity can be increased seven times. Reducing the width of the outermost zone to 10 nm leads to an increase in intensity of more than 8000

  10. Microscopic Description of Nuclear Quantum Phase Transitions

    SciTech Connect

    Niksic, T.; Vretenar, D.; Lalazissis, G. A.; Ring, P.

    2007-08-31

    The relativistic mean-field framework, extended to include correlations related to restoration of broken symmetries and to fluctuations of the quadrupole deformation, is applied to a study of shape transitions in Nd isotopes. It is demonstrated that the microscopic self-consistent approach, based on global effective interactions, can describe not only general features of transitions between spherical and deformed nuclei, but also the singular properties of excitation spectra and transition rates at the critical point of quantum shape phase transition.

  11. Quantitative phase-contrast confocal microscope

    PubMed Central

    Liu, Changgeng; Marchesini, Stefano; Kim, Myung K.

    2014-01-01

    We present a quantitative phase-contrast confocal microscope (QPCCM) by combining a line-scanning confocal system with digital holography (DH). This combination can merge the merits of these two different imaging modalities. High-contrast intensity images with low coherent noise, and the optical sectioning capability are made available due to the confocality. Phase profiles of the samples become accessible thanks to DH. QPCCM is able to quantitatively measure the phase variations of optical sections of the opaque samples and has the potential to take high-quality intensity and phase images of non-opaque samples such as many biological samples. Because each line scan is recorded by a hologram that may contain the optical aberrations of the system, it opens avenues for a variety of numerical aberration compensation methods and development of full digital adaptive optics confocal system to emulate current hardware-based adaptive optics system for biomedical imaging, especially ophthalmic imaging. Preliminary experiments with a microscope objective of NA 0.65 and 40 × on opaque samples are presented to demonstrate this idea. The measured lateral and axial resolutions of the intensity images from the current system are ~0.64μm and ~2.70μm respectively. The noise level of the phase profile by QPCCM is ~2.4nm which is better than the result by DH. PMID:25089404

  12. Quantitative phase-contrast confocal microscope.

    PubMed

    Liu, Changgeng; Marchesini, Stefano; Kim, Myung K

    2014-07-28

    We present a quantitative phase-contrast confocal microscope (QPCCM) by combining a line-scanning confocal system with digital holography (DH). This combination can merge the merits of these two different imaging modalities. High-contrast intensity images with low coherent noise, and the optical sectioning capability are made available due to the confocality. Phase profiles of the samples become accessible thanks to DH. QPCCM is able to quantitatively measure the phase variations of optical sections of the opaque samples and has the potential to take high-quality intensity and phase images of non-opaque samples such as many biological samples. Because each line scan is recorded by a hologram that may contain the optical aberrations of the system, it opens avenues for a variety of numerical aberration compensation methods and development of full digital adaptive optics confocal system to emulate current hardware-based adaptive optics system for biomedical imaging, especially ophthalmic imaging. Preliminary experiments with a microscope objective of NA 0.65 and 40 × on opaque samples are presented to demonstrate this idea. The measured lateral and axial resolutions of the intensity images from the current system are ~0.64μm and ~2.70μm respectively. The noise level of the phase profile by QPCCM is ~2.4nm which is better than the result by DH.

  13. Scanning Photoelectron Microscope (SPEM) with a zone plate generated microprobe

    SciTech Connect

    Ade, H.; Kirz, J.; Hulbert, S.; Johnson, E.; Anderson, E.; Kern, D. . Dept. of Physics; Brookhaven National Lab., Upton, NY; Lawrence Berkeley Lab., CA . Center for X-Ray Optics; International Business Machines Corp., Yorktown Heights, NY . Thomas J. Watson Research Center)

    1989-01-01

    We describe instrumentation of a scanning photoelectron microscope (SPEM), which we are presently developing and commissioning at the X1A beamline of the National Synchrotron Light Source (NSLS). This instrument is designed to use the Soft X-ray Undulator (SXU) at the NSLS as a high brightness source to illuminate a Fresnel zone plate, thus forming a finely focused probe, {le} 0.2{mu}m in size, on the specimen surface. A grating monochromator selects the photon energy in the 400-800 eV range with an energy resolution better than 1 eV. The expected flux in the focus is in the 5 {times} 10{sup 7} {minus} 10{sup 9} photons/s range. A single pass Cylindrical Mirror Analyzer (CMA) is used to record photoemission spectra, or to form an image within a fixed electron energy bandwidth as the specimen is mechanically scanned. As a first test, a 1000 mesh Au grid was successfully imaged with Au 4 f primary photoelectrons, achieving a resolution of about 1{mu}m. 10 refs., 5 figs., 1 tab.

  14. Active limited-angle tomographic phase microscope

    NASA Astrophysics Data System (ADS)

    Kuś, Arkadiusz; Krauze, Wojciech; Kujawińska, Małgorzata

    2015-11-01

    We demonstrate an active, holographic tomography system, working with limited angle of projections, realized by optical-only, diffraction-based beam steering. The system created for this purpose is a Mach-Zehnder interferometer modified to serve as a digital holographic microscope with a high numerical aperture illumination module and a spatial light modulator (SLM). Such a solution is fast and robust. Apart from providing an elegant solution to viewing angle shifting, it also adds new capabilities of the holographic microscope system. SLM, being an active optical element, allows wavefront correction in order to improve measurement accuracy. Integrated phase data captured with different illumination scenarios within a highly limited angular range are processed by a new tomographic reconstruction algorithm based on the compressed sensing technique: total variation minimization, which is applied here to reconstruct nonpiecewise constant samples. Finally, the accuracy of full measurement and the proposed processing path is tested for a calibrated three-dimensional micro-object as well as a biological object-C2C12 myoblast cell.

  15. Active limited-angle tomographic phase microscope.

    PubMed

    Kus, Arkadiusz; Krauze, Wojciech; Kujawinska, Malgorzata

    2015-01-01

    We demonstrate an active, holographic tomography system, working with limited angle of projections, realized by optical-only, diffraction-based beam steering. The system created for this purpose is a Mach–Zehnder interferometer modified to serve as a digital holographic microscope with a high numerical aperture illumination module and a spatial light modulator (SLM). Such a solution is fast and robust. Apart from providing an elegant solution to viewing angle shifting, it also adds new capabilities of the holographic microscope system. SLM, being an active optical element, allows wavefront correction in order to improve measurement accuracy. Integrated phase data captured with different illumination scenarios within a highly limited angular range are processed by a new tomographic reconstruction algorithm based on the compressed sensing technique: total variation minimization, which is applied here to reconstruct nonpiecewise constant samples. Finally, the accuracy of full measurement and the proposed processing path is tested for a calibrated three-dimensional micro-object as well as a biological object--C2C12 myoblast cell.

  16. Microscopic organization of the smectic C phase

    NASA Astrophysics Data System (ADS)

    Glaser, Matthew A.; Lansac, Yves; Weider, Titus; Clark, Noel A.

    1998-03-01

    We have investigated the microstructure of a non-chiral smectic C liquid crystal, 4,n-hexyloxyphenyl-4,n^'-decyloxybenzoate, via large-scale atomistic simulation, and have compared the results with those obtained from modular mean-field models of molecular organization in the smectic C phase. We find that simple mean-field models successfully capture the main features of molecular organization observed in many-molecule simulations. Our large-scale simulations support the ``zig-zag'' model of smectic C ordering(R. Bartolino, J. Doucet, and G. Durand, Ann. Phys. 3), 389 (1978)., an observation that has a direct bearing on the microscopic origins of ferroelectric polarization in chiral smectic C materials. The use of large-scale simulation for the development of improved predictive models of ferroelectric polarization in chiral smectic C liquid crystals is discussed.

  17. Variable Phase for Fresnel Zone Plates

    NASA Astrophysics Data System (ADS)

    Webb, George W.

    2004-03-01

    It is not widely known that there is a free parameter in the usual design of zone plates. An earlier work treated the radius of the central Fresnel zone as the free parameter and investigated the effects of its variation numerically [1]. It is possible instead to treat the choice of reference phase in the design of a zone plate as the free parameter [2]. The standard zone plate construction assumes a specific choice for this phase which, however, can be chosen to have any value between 0^o and 360^o. Here we present analysis and measurements on zone plates for 39 GHz radiation with reference phase varied from 0^o to 360^o. When the reference phase is varied, measurements show that the phase of the focused beam is varied in a nearly linear fashion through 360^o with only small changes in beam amplitude. It is concluded that reference phase is an inherent and useful property of zone plates. 1) I.V. Minin and O.V. Minin, Sov. J. Quantum Electron. derline 20, 198 (1990). I thank I.V. Minin for calling this work to my attention. 2) G.W. Webb, Proc. 2003 Antenna Applications Symposium, Allerton Park, Monticello, IL, September 15-17, 2003 and arXiv:physics/0303002 28 Feb 2003.

  18. Phase imaging results of phase defect using micro-coherent extreme ultraviolet scatterometry microscope

    NASA Astrophysics Data System (ADS)

    Harada, Tetsuo; Hashimoto, Hiraku; Amano, Tsuyoshi; Kinoshita, Hiroo; Watanabe, Takeo

    2016-04-01

    To evaluate defects on extreme ultraviolet (EUV) masks at the blank state of manufacturing, we developed a micro-coherent EUV scatterometry microscope (micro-CSM). The illumination source is coherent EUV light with a 140 nm focus diameter on the defect using a Fresnel zone plate. This system directly observes the reflection and diffraction signals from a phase defect. The phase and the intensity image of the defect are reconstructed with the diffraction images using ptychography, which is an algorithm of the coherent diffraction imaging. We observed programmed phase defect on a blank EUV mask. Phase distributions of these programmed defects were well reconstructed quantitatively. The micro-CSM is a very powerful tool to review an EUV phase defect.

  19. Observation of a Soft Tissue by a Zernike Phase Contrast Hard X-ray Microscope

    SciTech Connect

    Aoki, Sadao; Namikawa, Tadahiro; Hoshino, Masato; Watanabe, Norio

    2007-01-19

    A Zernike-type phase contrast hard X-ray microscope was constructed at the Photon Factory BL3C2 (KEK). A white beam from a bending magnet was monochromatized by a silicon double crystal monochromator. Monochromatic parallel X-ray beam illuminated a sample, and transmitted and diffracted X-ray beams were imaged by a Fresnel zone plate (FZP) which had the outer zone width of 100 nm. A phase plate made of a thin aluminum foil with a pinhole was set at the back focal plane of the FZP. The phase plate modulated the diffraction beam from the FZP, whereas a direct beam passed through the pinhole. The resolution of the microscope was measured by observing a tantalum test pattern at an X-ray energy of 9 keV. A 100nm line-and-space pattern could be resolved. X-ray montage pictures of growing eggs of artemia (plankton) were obtained.

  20. Observation of a Soft Tissue by a Zernike Phase Contrast Hard X-ray Microscope

    NASA Astrophysics Data System (ADS)

    Aoki, Sadao; Namikawa, Tadahiro; Hoshino, Masato; Watanabe, Norio

    2007-01-01

    A Zernike-type phase contrast hard X-ray microscope was constructed at the Photon Factory BL3C2 (KEK). A white beam from a bending magnet was monochromatized by a silicon double crystal monochromator. Monochromatic parallel X-ray beam illuminated a sample, and transmitted and diffracted X-ray beams were imaged by a Fresnel zone plate (FZP) which had the outer zone width of 100 nm. A phase plate made of a thin aluminum foil with a pinhole was set at the back focal plane of the FZP. The phase plate modulated the diffraction beam from the FZP, whereas a direct beam passed through the pinhole. The resolution of the microscope was measured by observing a tantalum test pattern at an X-ray energy of 9 keV. A 100nm line-and-space pattern could be resolved. X-ray montage pictures of growing eggs of artemia (plankton) were obtained.

  1. Volta potential phase plate for in-focus phase contrast transmission electron microscopy

    PubMed Central

    Danev, Radostin; Buijsse, Bart; Khoshouei, Maryam; Plitzko, Jürgen M.; Baumeister, Wolfgang

    2014-01-01

    We describe a phase plate for transmission electron microscopy taking advantage of a hitherto-unknown phenomenon, namely a beam-induced Volta potential on the surface of a continuous thin film. The Volta potential is negative, indicating that it is not caused by beam-induced electrostatic charging. The film must be heated to ∼200 °C to prevent contamination and enable the Volta potential effect. The phase shift is created “on the fly” by the central diffraction beam eliminating the need for precise phase plate alignment. Images acquired with the Volta phase plate (VPP) show higher contrast and unlike Zernike phase plate images no fringing artifacts. Following installation into the microscope, the VPP has an initial settling time of about a week after which the phase shift behavior becomes stable. The VPP has a long service life and has been used for more than 6 mo without noticeable degradation in performance. The mechanism underlying the VPP is the same as the one responsible for the degradation over time of the performance of thin-film Zernike phase plates, but in the VPP it is used in a constructive way. The exact physics and/or chemistry behind the process causing the Volta potential are not fully understood, but experimental evidence suggests that radiation-induced surface modification combined with a chemical equilibrium between the surface and residual gases in the vacuum play an important role. PMID:25331897

  2. Phase-Scrambler Plate Spreads Point Image

    NASA Technical Reports Server (NTRS)

    Edwards, Oliver J.; Arild, Tor

    1992-01-01

    Array of small prisms retrofit to imaging lens. Phase-scrambler plate essentially planar array of small prisms partitioning aperture of lens into many subapertures, and prism at each subaperture designed to divert relatively large diffraction spot formed by that subaperture to different, specific point on focal plane.

  3. Phase-Scrambler Plate Spreads Point Image

    NASA Technical Reports Server (NTRS)

    Edwards, Oliver J.; Arild, Tor

    1992-01-01

    Array of small prisms retrofit to imaging lens. Phase-scrambler plate essentially planar array of small prisms partitioning aperture of lens into many subapertures, and prism at each subaperture designed to divert relatively large diffraction spot formed by that subaperture to different, specific point on focal plane.

  4. Phase contrast without phase plates and phase rings--optical solutions for improved imaging of phase structures.

    PubMed

    Piper, Timm; Piper, Jörg

    2013-10-01

    Using the optical methods described, phase specimens can be observed with a modified light microscope in enhanced clarity, purified from typical artifacts which are apparent in standard phase contrast illumination. In particular, haloing and shade-off are absent, lateral and vertical resolution are maximized and the image quality remains constant even in problematic preparations which cannot be well examined in normal phase contrast, such as specimens beyond a critical thickness or covered by obliquely situated cover slips. The background brightness and thus the range of contrast can be continuously modulated and specimens can be illuminated in concentric-peripheral, axial or paraxial light. Additional contrast effects can be achieved by spectral color separation. Normal glass or mirror lenses can be used; they do not need to be fitted with a phase plate or a phase ring. The methods described should be of general interest for all disciplines using phase microscopy.

  5. In-focus electron microscopy of frozen-hydrated biological samples with a Boersch phase plate.

    PubMed

    Barton, B; Rhinow, D; Walter, A; Schröder, R; Benner, G; Majorovits, E; Matijevic, M; Niebel, H; Müller, H; Haider, M; Lacher, M; Schmitz, S; Holik, P; Kühlbrandt, W

    2011-12-01

    We report the implementation of an electrostatic Einzel lens (Boersch) phase plate in a prototype transmission electron microscope dedicated to aberration-corrected cryo-EM. The combination of phase plate, C(s) corrector and Diffraction Magnification Unit (DMU) as a new electron-optical element ensures minimal information loss due to obstruction by the phase plate and enables in-focus phase contrast imaging of large macromolecular assemblies. As no defocussing is necessary and the spherical aberration is corrected, maximal, non-oscillating phase contrast transfer can be achieved up to the information limit of the instrument. A microchip produced by a scalable micro-fabrication process has 10 phase plates, which are positioned in a conjugate, magnified diffraction plane generated by the DMU. Phase plates remained fully functional for weeks or months. The large distance between phase plate and the cryo sample permits the use of an effective anti-contaminator, resulting in ice contamination rates of <0.6 nm/h at the specimen. Maximal in-focus phase contrast was obtained by applying voltages between 80 and 700 mV to the phase plate electrode. The phase plate allows for in-focus imaging of biological objects with a signal-to-noise of 5-10 at a resolution of 2-3 nm, as demonstrated for frozen-hydrated virus particles and purple membrane at liquid-nitrogen temperature.

  6. Interference Confocal Microscope Integrated with Spatial Phase Shifter.

    PubMed

    Wang, Weibo; Gu, Kang; You, Xiaoyu; Tan, Jiubin; Liu, Jian

    2016-08-24

    We present an interference confocal microscope (ICM) with a new single-body four-step simultaneous phase-shifter device designed to obtain high immunity to vibration. The proposed ICM combines the respective advantages of simultaneous phase shifting interferometry and bipolar differential confocal microscopy to obtain high axis resolution, large dynamic range, and reduce the sensitivity to vibration and reflectance disturbance seamlessly. A compact single body spatial phase shifter is added to capture four phase-shifted interference signals simultaneously without time delay and construct a stable and space-saving simplified interference confocal microscope system. The test result can be obtained by combining the interference phase response and the bipolar property of differential confocal microscopy without phase unwrapping. Experiments prove that the proposed microscope is capable of providing stable measurements with 1 nm of axial depth resolution for either low- or high-numerical aperture objective lenses.

  7. Interference Confocal Microscope Integrated with Spatial Phase Shifter

    PubMed Central

    Wang, Weibo; Gu, Kang; You, Xiaoyu; Tan, Jiubin; Liu, Jian

    2016-01-01

    We present an interference confocal microscope (ICM) with a new single-body four-step simultaneous phase-shifter device designed to obtain high immunity to vibration. The proposed ICM combines the respective advantages of simultaneous phase shifting interferometry and bipolar differential confocal microscopy to obtain high axis resolution, large dynamic range, and reduce the sensitivity to vibration and reflectance disturbance seamlessly. A compact single body spatial phase shifter is added to capture four phase-shifted interference signals simultaneously without time delay and construct a stable and space-saving simplified interference confocal microscope system. The test result can be obtained by combining the interference phase response and the bipolar property of differential confocal microscopy without phase unwrapping. Experiments prove that the proposed microscope is capable of providing stable measurements with 1 nm of axial depth resolution for either low- or high-numerical aperture objective lenses. PMID:27563909

  8. Observation of Phase Objects by Using an X-ray Microscope with a Foucault Knife-Edge

    NASA Astrophysics Data System (ADS)

    Watanabe, N.; Sasaya, T.; Imai, Y.; Iwata, S.; Zama, K.; Aoki, S.

    2011-09-01

    An x-ray microscope with a zone plate was assembled at the synchrotron radiation source of BL3C, Photon Factory. A Foucault knife-edge was set at the back focal plate of the objective zone plate and phase retrieval was tested by scanning the knife-edge. A preliminary result shows that scanning the knife-edge during exposure was effective for phase retrieval. Phase-contrast tomography was investigated using differential projection images calculated from two Schlieren images with the oppositely oriented knife-edges. Fairly good reconstruction images of polystyrene beads and spores could be obtained.

  9. Observation of Phase Objects by Using an X-ray Microscope with a Foucault Knife-Edge

    SciTech Connect

    Watanabe, N.; Sasaya, T.; Imai, Y.; Iwata, S.; Zama, K.; Aoki, S.

    2011-09-09

    An x-ray microscope with a zone plate was assembled at the synchrotron radiation source of BL3C, Photon Factory. A Foucault knife-edge was set at the back focal plate of the objective zone plate and phase retrieval was tested by scanning the knife-edge. A preliminary result shows that scanning the knife-edge during exposure was effective for phase retrieval. Phase-contrast tomography was investigated using differential projection images calculated from two Schlieren images with the oppositely oriented knife-edges. Fairly good reconstruction images of polystyrene beads and spores could be obtained.

  10. Intracellular dynamics with the phase microscope Airyscan

    NASA Astrophysics Data System (ADS)

    Tychinsky, Vladimir P.; Perevedentseva, Elena V.; Vyshenskaia, Tatiana V.; Kufal, Georgy E.

    1997-12-01

    Investigation of intracellular dynamics of Allium cepa inner epidermal cells are described. The applicability of the method for quantitative estimation of spatio-temporal phase fluctuations and the effect due to external factors is discussed. The analysis of time-sampled series allows one to detect the regions of various motility in cytoplasm. The intense Fourier-spectra harmonics in 0.2 - 8 Hz interval were observed inside a cell wall and cytoplasm. Regularly spaced 2- to 4-s long batches of 100-ms pulses at cell-wall sites are recorded. The phase-fluctuation intensity decreased and the frequencies of certain harmonics were shifted with lowering temperature. The advantages and specific features of the method are discussed.

  11. Smartphone based hand-held quantitative phase microscope using the transport of intensity equation method.

    PubMed

    Meng, Xin; Huang, Huachuan; Yan, Keding; Tian, Xiaolin; Yu, Wei; Cui, Haoyang; Kong, Yan; Xue, Liang; Liu, Cheng; Wang, Shouyu

    2016-12-20

    In order to realize high contrast imaging with portable devices for potential mobile healthcare, we demonstrate a hand-held smartphone based quantitative phase microscope using the transport of intensity equation method. With a cost-effective illumination source and compact microscope system, multi-focal images of samples can be captured by the smartphone's camera via manual focusing. Phase retrieval is performed using a self-developed Android application, which calculates sample phases from multi-plane intensities via solving the Poisson equation. We test the portable microscope using a random phase plate with known phases, and to further demonstrate its performance, a red blood cell smear, a Pap smear and monocot root and broad bean epidermis sections are also successfully imaged. Considering its advantages as an accurate, high-contrast, cost-effective and field-portable device, the smartphone based hand-held quantitative phase microscope is a promising tool which can be adopted in the future in remote healthcare and medical diagnosis.

  12. Astigmatism correction in x-ray scanning photoemission microscope with use of elliptical zone plate

    SciTech Connect

    Ade, H.; Ko, C. ); Anderson, E. )

    1992-03-02

    We report the impact of an elliptical, high resolution zone plate on the performance of an initially astigmatic soft x-ray scanning photoemission microscope. A zone plate with carefully calibrated eccentricity has been used to eliminate astigmatism arising from transport optics, and an improvement of about a factor of 3 in spatial resolution was achieved. The resolution is still dominated by the source size and chromatic aberrations rather than by diffraction and coma, and a further gain of about a factor of 2 in resolution is possible. Sub 100 nm photoemission microscopy with primary photoelectrons is now within reach.

  13. Acoustic microscope based on magneto-elastic wave phase conjugator

    NASA Astrophysics Data System (ADS)

    Brysev, A.; Krutyansky, L.; Pernod, P.; Preobrazhensky, V.

    2000-05-01

    Acoustic C-scan imaging (acoustic microscopy) by means of supercritical parametric wave phase conjugation (WPC) is studied experimentally. A phase conjugator based on a magneto-acoustic active material is used for compensating phase distortions introduced by solid and polymer aberration layers covering objects (electronic integrated circuits as examples). Improvement of images is demonstrated on an acoustic microscope, operating at a frequency of 10 MHz.

  14. Imaging by Zernike phase plates in the TEM.

    PubMed

    Edgcombe, C J

    2016-08-01

    The images produced from simple phase objects, lenses and Zernike phase plates when all have rotational symmetry can be calculated by 1D Fourier-Bessel transforms. For a simple disc object producing a uniform phase shift over its diameter, the resulting image can be defined for any size of object phase change. The monotonic range of intensity variation with object phase is found to depend strongly on the phase change introduced by the phase plate; this property of the system is not well predicted by the weak phase approximation. The effect of spreading the phase transition at the plate over a range of radius is beneficial if the plate phase change is sufficiently small. Weak-phase calculations for a phase distribution more typical of a spherical object are also shown.

  15. Plate-to-plate fluorous solid-phase extraction for solution-phase parallel synthesis.

    PubMed

    Zhang, Wei; Lu, Yimin; Nagashima, Tadamichi

    2005-01-01

    A commercially available Argonaut VacMaster-96 plate-to-plate solid-phase extraction (SPE) station equipped with 24 FluoroFlash cartridges is employed for parallel purification of fluorous reaction mixtures. Each cartridge charged with 3 g of fluorous silica gel has the capability to produce up to 100 mg of purified small molecules. The 24-well receiving plate has a standard footprint that can be directly concentrated in a Genevac vacuum centrifuge. Important issues such as sample loading, product cross-contamination, cartridge reuse, and reproducibility are investigated. The SPE system has been demonstrated in the purification of three small libraries that were produced involving amine scavenging reactions with fluorous isatoic anhydride, amide coupling reactions with 2-chloro-4,6-bis[(perfluorohexyl)propyloxy]-1,3,5-triazine (fluorous CDMT), and amide coupling reactions with a newly developed fluorous Mukaiyama condensation reagent.

  16. Differential phase acoustic microscope for micro-NDE

    NASA Technical Reports Server (NTRS)

    Waters, David D.; Pusateri, T. L.; Huang, S. R.

    1992-01-01

    A differential phase scanning acoustic microscope (DP-SAM) was developed, fabricated, and tested in this project. This includes the acoustic lens and transducers, driving and receiving electronics, scanning stage, scanning software, and display software. This DP-SAM can produce mechanically raster-scanned acoustic microscopic images of differential phase, differential amplitude, or amplitude of the time gated returned echoes of the samples. The differential phase and differential amplitude images provide better image contrast over the conventional amplitude images. A specially designed miniature dual beam lens was used to form two foci to obtain the differential phase and amplitude information of the echoes. High image resolution (1 micron) was achieved by applying high frequency (around 1 GHz) acoustic signals to the samples and placing two foci close to each other (1 micron). Tone burst was used in this system to obtain a good estimation of the phase differences between echoes from the two adjacent foci. The system can also be used to extract the V(z) acoustic signature. Since two acoustic beams and four receiving modes are available, there are 12 possible combinations to produce an image or a V(z) scan. This provides a unique feature of this system that none of the existing acoustic microscopic systems can provide for the micro-nondestructive evaluation applications. The entire system, including the lens, electronics, and scanning control software, has made a competitive industrial product for nondestructive material inspection and evaluation and has attracted interest from existing acoustic microscope manufacturers.

  17. Differential phase contrast x-ray microimaging with scanning-imaging x-ray microscope optics.

    PubMed

    Takeuchi, Akihisa; Suzuki, Yoshio; Uesugi, Kentaro

    2012-08-01

    A novel x-ray microimaging system that consists of a scanning microscope optics with a one-dimensional focusing (line-focusing) device and an imaging microscope optics with a one-dimensional objective is developed. These two optical systems are set normal to each other regarding the optical axis. A two-dimensional image is obtained with one-dimensional translation scan of the line probe. During scans, positional data in the normal to the scanning direction are obtained simultaneously with the imaging microscope optics. Differential phase contrast (DPC) image and absorption contrast (AC) image can be arbitrarily obtained by image processing after data acquisition. Preliminary experiment has been carried out by using a couple of one-dimensional Fresnel zone plate as the linear-focusing device and the one-dimensional objective. Two-dimensional DPC and AC images of test sample have been successfully obtained with 8 keV x-rays.

  18. Comparative study viruses with computer-aided phase microscope AIRYSCAN

    NASA Astrophysics Data System (ADS)

    Tychinsky, Vladimir P.; Koufal, Georgy E.; Perevedentseva, Elena V.; Vyshenskaia, Tatiana V.

    1996-12-01

    Traditionally viruses are studied with scanning electron microscopy (SEM) after complicated procedure of sample preparation without the possibility to study it under natural conditions. We obtained images of viruses (Vaccinia virus, Rotavirus) and rickettsias (Rickettsia provazekii, Coxiella burnetti) in native state with computer-aided phase microscope airyscan -- the interference microscope of Linnik layout with phase modulation of the reference wave with dissector image tube as coordinate-sensitive photodetector and computer processing of phase image. A light source was the He-Ne laser. The main result is coincidence of dimensions and shape of phase images with available information concerning their morphology obtained with SEM and other methods. The fine structure of surface and nuclei is observed. This method may be applied for virus recognition and express identification, investigation of virus structure and the analysis of cell-virus interaction.

  19. Observation results of actual phase defects using micro coherent EUV scatterometry microscope

    NASA Astrophysics Data System (ADS)

    Hashimoto, Hiraku; Harada, Tetsuo; Watanabe, Takeo

    2016-10-01

    One of the critical issue of EUV lithography is fabrication of defect-free mask. The origin of the defect is a particle inside the multilayer and bump or pit on glass substrate. This type of defect is called a phase defect. If there is a phase defect, the reflection phase is disordered. As a result, the phase structure is printed as a defect on a wafer. Thus, we have developed micro coherent EUV scatterometry microscope (we called micro-CSM) for phase defect characterization. Micro-CSM records scattering signal from a defect directly exposed by focused coherent EUV having a spot size of φ140-nm in diameter. An off-axis-type Fresnel zone plate was employed as a focusing optics. Phase distribution of the defect is reconstructed with the scattering image by the coherent-diffraction-imaging method. We observed actual phase defects in this work. Actual phase defects were on a mask blanks which was the same grade of the pre-production mask of the semiconductor devices. The positions of actual phase defects have been already inspected by the actinic blank inspection tool. And, the actual phase defects have been already observed using an atomic force microscope. A purpose of this work is observation of these actual defects using micro-CSM and comparison of the results.

  20. Carbon contamination in scanning transmission electron microscopy and its impact on phase-plate applications.

    PubMed

    Hettler, Simon; Dries, Manuel; Hermann, Peter; Obermair, Martin; Gerthsen, Dagmar; Malac, Marek

    2017-05-01

    We analyze electron-beam induced carbon contamination in a transmission electron microscope. The study is performed on thin films potentially suitable as phase plates for phase-contrast transmission electron microscopy. Electron energy-loss spectroscopy and phase-plate imaging is utilized to analyze the contamination. The deposited contamination layer is identified as a graphitic carbon layer which is not prone to electrostatic charging whereas a non-conductive underlying substrate charges. Several methods that inhibit contamination are evaluated and the impact of carbon contamination on phase-plate imaging is discussed. The findings are in general interesting for scanning transmission electron microscopy applications. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  1. Quantitative phase imaging by wide field lensless digital holographic microscope

    NASA Astrophysics Data System (ADS)

    Adinda-Ougba, A.; Koukourakis, N.; Essaidi, A.; Ger­hardt, N. C.; Hofmann, M. R.

    2015-05-01

    Wide field, lensless microscopes have been developed for telemedicine and for resource limited setting [1]. They are based on in-line digital holography which is capable to provide amplitude and phase information resulting from numerical reconstruction. The phase information enables achieving axial resolution in the nanometer range. Hence, such microscopes provide a powerful tool to determine three-dimensional topologies of microstructures. In this contribution, a compact, low-cost, wide field, lensless microscope is presented, which is capable of providing topological profiles of microstructures in transparent material. Our setup consist only of two main components: a CMOSsensor chip and a laser diode without any need of a pinhole. We use this very simple setup to record holograms of microobjects. A wide field of view of ~24 mm², and a lateral resolution of ~2 μm are achieved. Moreover, amplitude and phase information are obtained from the numerical reconstruction of the holograms using a phase retrieval algorithm together with the angular spectrum propagation method. Topographic information of highly transparent micro-objects is obtained from the phase data. We evaluate our system by recording holograms of lines with different depths written by a focused laser beam. A reliable characterization of laser written microstructures is crucial for their functionality. Our results show that this system is valuable for determination of topological profiles of microstructures in transparent material.

  2. Fluorescence microscopy imaging with a Fresnel zone plate array based optofluidic microscope

    PubMed Central

    Han, Chao; Lee, Lap Man; Yang, Changhuei

    2013-01-01

    We report the implementation of an on-chip microscope system, termed fluorescence optofluidic microscope (FOFM), which is capable of fluorescence microscopy imaging of samples in fluid media. The FOFM employs an array of Fresnel zone plates (FZP) to generate an array of focused light spots within a microfluidic channel. As a sample flows through the channel and across the array of focused light spots, the fluorescence emissions are collected by a filter-coated CMOS sensor, which serves as the channel's floor. The collected data can then be processed to render fluorescence microscopy images at a resolution determined by the focused light spot size (experimentally measured as 0.65 μm FWHM). In our experiments, our established resolution was 1.0 μm due to Nyquist criterion consideration. As a demonstration, we show that such a system can be used to image the cell nuclei stained by Acridine Orange and cytoplasm labeled by Qtracker®. PMID:21935556

  3. Microscopic imaging of residual stress using a scanning phase-measuring acoustic microscope

    NASA Astrophysics Data System (ADS)

    Meeks, Steven W.; Peter, D.; Horne, D.; Young, K.; Novotny, V.

    1989-10-01

    A high-resolution scanning phase-measuring acoustic microscope (SPAM) has been developed and used to image the near-surface residual stress field around features etched in sputtered alumina via the acoustoelastic effect. This microscope operates at 670 MHz and has a resolution of 5-10 microns, depending upon the amount of defocus. Relative velocity changes of sample surface waves as small as 50 ppm are resolved. Images of the stress field at the tip of a 400-micron-wide slot etched in alumina are presented and compared with a finite element simulation. The SPAM uses an unconventional acoustic lens with an anisotropic illumination pattern which can measure anisotropic effects and map residual stress fields with several-micron resolution and a stress sensitivity of 1/3 MPa in an alumina film.

  4. Phases and phase transitions in the algebraic microscopic shell model

    NASA Astrophysics Data System (ADS)

    Georgieva, A. I.; Drumev, K. P.

    2016-01-01

    We explore the dynamical symmetries of the shell model number conserving algebra, which define three types of pairing and quadrupole phases, with the aim to obtain the prevailing phase or phase transition for the real nuclear systems in a single shell. This is achieved by establishing a correspondence between each of the pairing bases with the Elliott's SU(3) basis that describes collective rotation of nuclear systems. This allows for a complete classification of the basis states of different number of particles in all the limiting cases. The probability distribution of the SU(3) basis states within theirs corresponding pairing states is also obtained. The relative strengths of dynamically symmetric quadrupole-quadrupole interaction in respect to the isoscalar, isovector and total pairing interactions define a control parameter, which estimates the importance of each term of the Hamiltonian in the correct reproduction of the experimental data for the considered nuclei.

  5. The North American Astronomical Photographic Plate Center: Phase I.

    NASA Astrophysics Data System (ADS)

    Cline, J. D.; Castelaz, M. W.; Crowley, T.; Griffin, E.; Osborn, W.

    2004-05-01

    Astronomical photographic plates constitute an important and, for the large part, unrepeatable resource for research. International pressure is mounting to preserve and catalog scientifically valuable plate collections and capture their information through digitization. At the same time, many institutions holding plates now lack the space, funds and expertise to adequately preserve this important material. In response, the Pisgah Astronomical Research Institute has established the North American Photographic Plate Center (NAPPC). NAPPC is intended as a long-term repository for direct and objective prism plate collections currently stored in North America. PARI is a natural location for such a center. It offers physically secure and abundant environmentally controlled space for plate storage as well as Internet 2 infrastructure and instrument space necessary for the eventual digitization and Internet distribution of images. Phase I of this initiative is to collect unwanted plate collections, store them in an appropriate manner, prepare catalogues of their relevant information and establish a laboratory for on-site examination or measurement of the plates. This is currently underway. Phase II will be the eventual digitization and development of a public web accessible database of images. We will describe the procedures for placing plate collections in NAPPC, the infrastructure in place for plate storage and measurement, and our preliminary plans for making the plate archive a public image library with Internet access.

  6. Microscopic analysis of order parameters in nuclear quantum phase transitions

    SciTech Connect

    Li, Z. P.; Niksic, T.; Vretenar, D.; Meng, J.

    2009-12-15

    Microscopic signatures of nuclear ground-state shape phase transitions in Nd isotopes are studied using excitation spectra and collective wave functions obtained by diagonalization of a five-dimensional Hamiltonian for quadrupole vibrational and rotational degrees of freedom, with parameters determined by constrained self-consistent relativistic mean-field calculations for triaxial shapes. As a function of the physical control parameter, the number of nucleons, energy gaps between the ground state and the excited vibrational states with zero angular momentum, isomer shifts, and monopole transition strengths exhibit sharp discontinuities at neutron number N=90, which is characteristic of a first-order quantum phase transition.

  7. Fresnel zone plate telescope for condenser alignment in water-window microscope

    NASA Astrophysics Data System (ADS)

    Wachulak, Przemyslaw W.; Torrisi, Alfio; Bartnik, Andrzej; Węgrzyński, Łukasz; Fok, Tomasz; Jarocki, Roman; Kostecki, Jerzy; Szczurek, Miroslaw; Fiedorowicz, Henryk

    2015-05-01

    Microscopes operating at short wavelengths, in the extreme ultraviolet and soft x-ray spectral region, require careful condenser positioning to avoid possible artifacts related to enhancing or diminishing certain spatial frequencies in the image plane. Various methods are often used to visualize the condenser illumination pattern, including direct visualization on a CCD camera; however, these are not always straightforward to use. We present and discuss a novel and convenient method to image a condenser illumination pattern upstream the sample plane, using two zone plates with matched numerical apertures. This imaging system, operating herein in the water-window spectral range in telescope configuration, allows us to change the distance between the conjugated planes, thus overcoming limitations related to the geometry of the vacuum system. This geometry, which is optimized for the highest possible spatial resolution allowed by the zone-plate objective, is not necessarily particularly good for visualization of the condenser illumination pattern. The presented method was demonstrated with a compact, gas puff target source based soft x-ray microscope, which is capable of resolving 60 nm features (half-pitch resolution), requires a few seconds exposure time, and is debris-free due to the gaseous nature of the target for soft x-ray generation. The method, presented herein, may solve mentioned vacuum system geometry limitations. Also, it can easily be extended to other systems and other wavelengths, provided a proper optic is used. Modes of operation and the results are presented and discussed.

  8. High precision refractometry based on Fresnel diffraction from phase plates.

    PubMed

    Tavassoly, M Taghi; Naraghi, Roxana Rezvani; Nahal, Arashmid; Hassani, Khosrow

    2012-05-01

    When a transparent plane-parallel plate is illuminated at a boundary region by a monochromatic parallel beam of light, Fresnel diffraction occurs because of the abrupt change in phase imposed by the finite change in refractive index at the plate boundary. The visibility of the diffraction fringes varies periodically with changes in incident angle. The visibility period depends on the plate thickness and the refractive indices of the plate and the surrounding medium. Plotting the phase change versus incident angle or counting the visibility repetition in an incident-angle interval provides, for a given plate thickness, the refractive index of the plate very accurately. It is shown here that the refractive index of a plate can be determined without knowing the plate thickness. Therefore, the technique can be utilized for measuring plate thickness with high precision. In addition, by installing a plate with known refractive index in a rectangular cell filled with a liquid and following the described procedures, the refractive index of the liquid is obtained. The technique is applied to measure the refractive indices of a glass slide, distilled water, and ethanol. The potential and merits of the technique are also discussed.

  9. Microscopic Studies of Quantum Phase Transitions in Optical Lattices

    NASA Astrophysics Data System (ADS)

    Bakr, Waseem S.

    2011-12-01

    In this thesis, I report on experiments that microscopically probe quantum phase transitions of ultracold atoms in optical lattices. We have developed a "quantum gas microscope" that allowed, for the first time, optical imaging and manipulation of single atoms in a quantum-degenerate gas on individual sites of an optical lattice. This system acts as a quantum simulator of strongly correlated materials, which are currently the subject of intense research because of the technological potential of high--T c superconductors and spintronic materials. We have used our microscope to study the superfluid to Mott insulator transition in bosons and a magnetic quantum phase transition in a spin system. In our microscopic study of the superfluid-insulator transition, we have characterized the on-site number statistics in a space- and time-resolved manner. We observed Mott insulators with fidelities as high as 99%, corresponding to entropies of 0.06kB per particle. We also measured local quantum dynamics and directly imaged the shell structure of the Mott insulator. I report on the first quantum magnetism experiments in optical lattices. We have realized a quantum Ising chain in a magnetic field, and observed a quantum phase transition between a paramagnet and antiferromagnet. We achieved strong spin interactions by encoding spins in excitations of a Mott insulator in a tilted lattice. We detected the transition by measuring the total magnetization of the system across the transition using in-situ measurements as well as the Neel ordering in the antiferromagnetic state using noise-correlation techniques. We characterized the dynamics of domain formation in the system. The spin mapping introduced opens up a new path to realizing more exotic states in optical lattices including spin liquids and quantum valence bond solids. As our system sizes become larger, simulating their physics on classical computers will require exponentially larger resources because of entanglement build

  10. Testing and Calibration of Phase Plates for JWST Optical Simulator

    NASA Technical Reports Server (NTRS)

    Gong, Qian; Chu, Jenny; Tournois, Severine; Eichhorn, William; Kubalak, David

    2011-01-01

    Three phase plates were designed to simulate the JWST segmented primary mirror wavefront at three on-orbit alignment stages: coarse phasing, intermediate phasing, and fine phasing. The purpose is to verify JWST's on-orbit wavefront sensing capability. Amongst the three stages, coarse alignment is defined to have piston error between adjacent segments being 30 m to 300 m, intermediate being 0.4 m to 10 m, and fine is below 0.4 m. The phase plates were made of fused silica, and were assembled in JWST Optical Simulator (OSIM). The piston difference was realized by the thickness difference of two adjacent segments. The two important parameters to phase plates are piston and wavefront errors. Dispersed Fringe Sensor (DFS) method was used for initial coarse piston evaluation, which is the emphasis of this paper. Point Diffraction Interferometer (PDI) is used for fine piston and wavefront error. In order to remove piston's 2 pi uncertainty with PDI, three laser wavelengths, 640nm, 660nm, and 780nm, are used for the measurement. The DHS test setup, analysis algorithm and results are presented. The phase plate design concept and its application (i.e. verifying the JWST on-orbit alignment algorithm) are described. The layout of JWST OSIM and the function of phase plates in OSIM are also addressed briefly.

  11. Multi-pore carbon phase plate for phase-contrast transmission electron microscopy.

    PubMed

    Sannomiya, Takumi; Junesch, Juliane; Hosokawa, Fumio; Nagayama, Kuniaki; Arai, Yoshihiro; Kayama, Yoko

    2014-11-01

    A new fabrication method of carbon based phase plates for phase-contrast transmission electron microscopy is presented. This method utilizes colloidal masks to produce pores as well as disks on thin carbon membranes for phase modulation. Since no serial process is involved, carbon phase plate membranes containing hundreds of pores can be mass-produced on a large scale, which allows "disposal" of contaminated or degraded phase modulating objects after use. Due to the spherical shape of the mask colloid particles, the produced pores are perfectly circular. The pore size and distribution can be easily tuned by the mask colloid size and deposition condition. By using the stencil method, disk type phase plates can also be fabricated on a pore type phase plate. Both pore and disk type phase plates were tested by measuring amorphous samples and confirmed to convert the sinus phase contrast transfer function to the cosine shape.

  12. Dynamic phase imaging utilizing a 4-dimensional microscope system

    NASA Astrophysics Data System (ADS)

    Creath, Katherine

    2011-03-01

    This paper describes a new, novel interference Linnik microscope system and presents images and data of live biological samples. The specially designed optical system enables instantaneous 4-dimensional video measurements of dynamic motions within and among live cells without the need for contrast agents. This "label-free", vibration insensitive imaging system enables measurement of biological objects in reflection using harmless light levels with a variety of magnifications and wavelengths with fields of view from several hundred microns up to a millimeter. At the core of the instrument is a phase measurement camera (PMC) enabling simultaneous measurement of multiple interference patterns utilizing a pixelated phase mask taking advantage of the polarization properties of light. Utilizing this technology enables the creation of phase image movies in real time at video rates so that dynamic motions and volumetric changes can be tracked. Objects are placed on a reflective surface in liquid under a coverslip. Phase values are converted to optical thickness data enabling volumetric, motion and morphological studies. Data from a number of different organisms such as flagellates and rotifers will be presented, as will measurements of human breast cancer cells with the addition of various agents that break down the cells. These data highlight examples of monitoring different biological processes and motions.

  13. Dynamic phase imaging utilizing a 4-dimensional microscope system

    PubMed Central

    Creath, Katherine

    2011-01-01

    This paper describes a new, novel interference Linnik microscope system and presents images and data of live biological samples. The specially designed optical system enables instantaneous 4-dimensional video measurements of dynamic motions within and among live cells without the need for contrast agents. This "label-free", vibration insensitive imaging system enables measurement of biological objects in reflection using harmless light levels with a variety of magnifications and wavelengths with fields of view from several hundred microns up to a millimeter. At the core of the instrument is a phase measurement camera (PMC) enabling simultaneous measurement of multiple interference patterns utilizing a pixelated phase mask taking advantage of the polarization properties of light. Utilizing this technology enables the creation of phase image movies in real time at video rates so that dynamic motions and volumetric changes can be tracked. Objects are placed on a reflective surface in liquid under a coverslip. Phase values are converted to optical thickness data enabling volumetric, motion and morphological studies. Data from a number of different organisms such as flagellates and rotifers will be presented, as will measurements of human breast cancer cells with the addition of various agents that break down the cells. These data highlight examples of monitoring different biological processes and motions. PMID:24357901

  14. Understanding oxide interfaces: From microscopic imaging to electronic phases

    NASA Astrophysics Data System (ADS)

    Ilani, Shahal

    2014-03-01

    In the last decade, the advent of complex oxide interfaces has unleashed a wealth of new possibilities to create materials with unexpected functionalities. A notable example is the two-dimensional electron system formed at the interface between LaAlO3 and SrTiO3 (LAO/STO), which exhibits ferromagnetism, superconductivity, and a wide range of unique magneto-transport properties. A key challenge is to find the microscopic mechanisms that underlie these emergent phenomena. While there is a growing understanding that these phenomena might reflect rich structures at the micro-scale, experimental progress toward microscopic imaging of this system has been so far rather limited due to the buried nature of its interface. In this talk I will discuss our experiments that study this system on microscopic and macroscopic scales. Using a newly-developed nanotube-based scanning electrometer we image on the nanoscale the electrostatics and mechanics of this buried interface. We reveal the dynamics of structural domains in STO, their role in generating the contested anomalous piezoelectricity of this substrate, and their direct effects on the physics of the interface electrons. Using macroscopic magneto-transport experiments we demonstrate that a universal Lifshitz transition between the population of d-orbitals with different symmetries underlies many of the transport phenomena observed to date. We further show that the interactions between the itinerant electrons and localized spins leads to an unusual, gate-tunable magnetic phase diagram. These measurements highlight the unique physical settings that can be realized within this new class of low dimensional systems.

  15. Virus structure using the computer-aided phase microscope Airyscan

    NASA Astrophysics Data System (ADS)

    Tychinsky, Vladimir P.; Kaverin, Nikolai V.; Perevedentseva, Elena V.; Vyshenskaia, Tatiana V.; Kufal, Georgy E.

    1997-04-01

    Investigation of features and functions of some small biological objects (smaller than 500 nm), in particular, viruses, with conventional optical microscopy is practically impossible. Usually their images are obtained with methods of scanning electron microscopy (SEM), which precludes work with samples in a native state. We obtained images of different viruses including influenza A virus in native state with computer-aided phase microscope (CPM) Airyscan, in which an He-Ne laser is used as a light source. The main purpose of this work was to show the possibility to obtain adequate structure images of influenza viruses with diameter about 100 nm in conditions quite close to native and to investigate different stages of influenza virus budding. We suppose that these results may be considered as a basis for further studies of cell-virus interaction.

  16. Guided wave phased array beamforming and imaging in composite plates.

    PubMed

    Yu, Lingyu; Tian, Zhenhua

    2016-05-01

    This paper describes phased array beamforming using guided waves in anisotropic composite plates. A generic phased array algorithm is presented, in which direction dependent guided wave parameters and the energy skew effect are considered. This beamforming at an angular direction is achieved based on the classic delay-and-sum principle by applying phase delays to signals received at array elements and adding up the delayed signals. The phase delays are determined with the goal to maximize the array output at the desired direction and minimize it otherwise. For array characterization, the beam pattern of rectangular grid arrays in composite plates is derived. In addition to the beam pattern, the beamforming factor in terms of wavenumber distribution is defined to provide intrinsic explanations for phased array beamforming. The beamforming and damage detection in a composite plate are demonstrated using rectangular grid arrays made by a non-contact scanning laser Doppler vibrometer. Detection images of the composite plate with multiple surface defects at various directions are obtained. The results show that the guided wave phased array method is a potential effective method for rapid inspection of large composite structures.

  17. Methods for testing Zernike phase plates and a report on silicon-based phase plates with reduced charging and improved ageing characteristics.

    PubMed

    Marko, Michael; Meng, Xing; Hsieh, Chyongere; Roussie, James; Striemer, Christopher

    2013-11-01

    Imaging with Zernike phase plates is increasingly being used in cryo-TEM tomography and cryo-EM single-particle applications. However, rapid ageing of the phase plates, together with the cost and effort in producing them, present serious obstacles to widespread adoption. We are experimenting with phase plates based on silicon chips that have thin windows; such phase plates could be mass-produced and made available at moderate cost. The windows are coated with conductive layers to reduce charging, and this considerably extends the useful life of the phase plates compared to traditional pure-carbon phase plates. However, a compromise must be reached between robustness and transmission through the phase-plate film. Details are given on testing phase-plate performance by means of imaging an amorphous thin film and evaluating the power spectra of the images.

  18. Methods for testing Zernike phase plates and a report on silicon-based phase plates with reduced charging and improved ageing characteristics

    PubMed Central

    Marko, Michael; Meng, Xing; Hsieh, Chyongere; Roussie, James; Striemer, Christopher

    2013-01-01

    Imaging with Zernike phase plates is increasingly being used in cryo-TEM tomography and cryo-EM single-particle applications. However, rapid ageing of the phase plates, together with the cost and effort in producing them, present serious obstacles to widespread adoption. We are experimenting with phase plates based on silicon chips that have thin windows; such phase plates could be mass-produced and made available at moderate cost. The windows are coated with conductive layers to reduce charging, and this considerably extends the useful life of the phase plates compared to traditional pure-carbon phase plates. However, a compromise must be reached between robustness and transmission through the phase-plate film. Details are given on testing phase-plate performance by means of imaging an amorphous thin film and evaluating the power spectra of the images. PMID:23994351

  19. Application of optical diffraction method in designing phase plates

    NASA Astrophysics Data System (ADS)

    Lei, Ze-Min; Sun, Xiao-Yan; Lv, Feng-Nian; Zhang, Zhen; Lu, Xing-Qiang

    2016-11-01

    Continuous phase plate (CPP), which has a function of beam shaping in laser systems, is one kind of important diffractive optics. Based on the Fourier transform of the Gerchberg-Saxton (G-S) algorithm for designing CPP, we proposed an optical diffraction method according to the real system conditions. A thin lens can complete the Fourier transform of the input signal and the inverse propagation of light can be implemented in a program. Using both of the two functions can realize the iteration process to calculate the near-field distribution of light and the far-field repeatedly, which is similar to the G-S algorithm. The results show that using the optical diffraction method can design a CPP for a complicated laser system, and make the CPP have abilities of beam shaping and phase compensation for the phase aberration of the system. The method can improve the adaptation of the phase plate in systems with phase aberrations.

  20. Fraunhofer diffraction of a partially blocked spiral phase plate.

    PubMed

    Cottrell, Don M; Davis, Jeffrey A; Hernandez, Travis J

    2011-07-04

    The Fraunhofer diffraction pattern from a partially blocked spiral phase plate (SPP) produces a partial vortex output pattern that is rotated by 90 degrees compared with the input. The rotation direction depends on whether the angular phase pattern increases in the clockwise or counterclockwise direction. In this work, we present an explanation of this effect based on careful examination of classical diffraction theory and show new experimental results. This approach is very convenient for easily determining the sign of the vortex charge.

  1. Brewster Angle Microscope Investigations of Two Dimensional Phase Transitions

    NASA Astrophysics Data System (ADS)

    Schuman, Adam William

    The liquid-liquid interface is investigated by microscopic and thermodynamic means to image and measure interfacial properties when the system undergoes a two-dimensional (2D) phase transition of a Gibbs monolayer by varying the sample temperature. An in-house Brewster angle microscope (BAM) is constructed to visualize the interface during this transition while a quasi-elastic light scattering technique is used to determine the interfacial tension. These results complement x-ray investigations of the same systems. Evidence of interfacial micro-separated structure, microphases, comes from observations across a hexane-water interface with the inclusion of a long-chain fluorinated alcohol surfactant into the bulk hexane. Microphases take the form of spatially modulated structure to the density of the surfactant as it spans laterally across the interface. The surfactant monolayer exhibits microphase morphology over a range of a couple degrees as the temperature of the system is scanned through the 2D gas-solid phase transition. Microphase structure was observed for heating and cooling the hexane-water system and structural comparisons are given when the temperature step and quench depth of the cooling process is varied. A complete sequence of morphological structure was observed from 2D gas to cluster to labyrinthine stripe to a 2D solid mosaic pattern. Two characteristic length scales emerge giving rise to speculation of an elastic contribution to the standard repulsive and attractive competitive forces stabilizing the microphase. The benefit of BAM to laterally image very thin films across the surface of an interface on the micrometer length scale nicely complements x-ray reflectivity methods that average structural data transverse to the liquid interface on a molecular scale. To properly analyze x-ray reflectivity data, the interface is required to be laterally homogeneous. BAM can sufficiently characterize the interface for this purpose as is done for a Langmuir

  2. Phase plate technology for laser marking of magnetic discs

    DOEpatents

    Neuman, B.; Honig, J.; Hackel, L.; Dane, C.B.; Dixit, S.

    1998-10-27

    An advanced design for a phase plate enables the distribution of spots in arbitrarily shaped patterns with very high uniformity and with a continuously or near-continuously varying phase pattern. A continuous phase pattern eliminates large phase jumps typically expected in a grating that provides arbitrary shapes. Large phase jumps increase scattered light outside of the desired pattern, reduce efficiency and can make the grating difficult to manufacture. When manufacturing capabilities preclude producing a fully continuous grating, the present design can be easily adapted to minimize manufacturing errors and maintain high efficiencies. This continuous grating is significantly more efficient than previously described Dammann gratings, offers much more flexibility in generating spot patterns and is easier to manufacture and replicate than a multi-level phase grating. 3 figs.

  3. Phase plate technology for laser marking of magnetic discs

    DOEpatents

    Neuman, Bill; Honig, John; Hackel, Lloyd; Dane, C. Brent; Dixit, Shamasundar

    1998-01-01

    An advanced design for a phase plate enables the distribution of spots in arbitrarily shaped patterns with very high uniformity and with a continuously or near-continuously varying phase pattern. A continuous phase pattern eliminates large phase jumps typically expected in a grating that provides arbitrary shapes. Large phase jumps increase scattered light outside of the desired pattern, reduce efficiency and can make the grating difficult to manufacture. When manufacturing capabilities preclude producing a fully continuous grating, the present design can be easily adapted to minimize manufacturing errors and maintain high efficiencies. This continuous grating is significantly more efficient than previously described Dammann gratings, offers much more flexibility in generating spot patterns and is easier to manufacture and replicate than a multi-level phase grating.

  4. Microscopic evaluation of aqueous two-phase system emulsion characteristics enables rapid determination of critical polymer concentrations for solution micropatterning.

    PubMed

    Ruthven, Mackenzie; Ko, Kristin Robin; Agarwal, Rishima; Frampton, John P

    2017-05-30

    Aqueous two-phase systems have emerged as valuable tools for microscale analysis of cell growth and many other biotechnology applications. The most critical step in developing an aqueous two-phase system for a specific application is identifying the critical concentrations at which the polymer solutions phase-separate. Current techniques for determining these critical concentrations rely on laborious methods, highly specialized assays or computational methods that make this step difficult for non-specialists. To overcome these limitations, we present a simplified assay that uses only readily accessible laboratory instruments and consumables (e.g., multichannel micropipettes, 96-well plates and a simple compound microscope) to determine the critical concentrations of aqueous two-phase system-forming polymers. We demonstrate that formulations selected from phase diagrams that describe these critical concentrations can be applied for solution micropatterning of cells.

  5. Kinoform phase plates for focal plane irradiance profile control

    SciTech Connect

    Dixit, S.N.; Lawson, J.K.; Manes, K.R.; Powell, H.T. ); Nugent, K.A. )

    1994-03-15

    A versatile, rapidly convergent, iterative algorithm is presented for the construction of kinoform phase plates for tailoring the far-field intensity distribution of laser beams. The method consists of repeated Fourier transforming between the near-field and the far-field planes with constraints imposed in each plane. For application to inertial confinement fusion, the converged far-field pattern contains more than 95% of the incident energy inside a desired region and is relatively insensitive to beam aberrations.

  6. Conversion of tribasic lead sulfate to lead dioxide in lead/acid battery plates. 1: Relationship between the phase compositions of plates in the cured and formed states

    NASA Astrophysics Data System (ADS)

    Zerroual, L.; Chelali, N.; Tedjar, F.; Guitton, J.

    1994-10-01

    The influence of the initial amount of H2SO4 added to lead powder on the phase compositions of plates in the cured and formed states has been studied. IR spectra, x-ray diffraction, scanning electron microscope observations, and wet-chemical analysis are used as techniques of investigation. It was found that the phase composition of the paste depends on the H2SO4:oxidized lead powder ratio. In addition, it is found that alpha- and beta-PbO2 are formed in the lead/acid battery positive plate from 3PbO center-dot PbSO4 center-dot H2O. The amounts of these two compounds were strongly affected when varying the quantity of H2SO4 with respect to the lead powder.

  7. Microstructure and Phase Constitution Near the Interface of Explosively Welded Aluminum/Copper Plates

    NASA Astrophysics Data System (ADS)

    Paul, Henryk; Lityńska-Dobrzyńska, Lidia; Prażmowski, Mariusz

    2013-08-01

    The microstructure changes and the phase constitution within the layers close to the bonding interface strongly influence the properties of bimetallic strips. In this work, the layers near the interface of explosively welded aluminum and copper plates were investigated by means of microscopic observations, mostly with the use of transmission electron microscopy (TEM) equipped with energy dispersive spectrometry (EDX). The study was focused on the identification of the intermetallic phases, the possible interdiffusion between the copper and the aluminum, and the changes in the dislocation structure of the parent plates. In macro-/mesoscale, the interfaces were outlined by a characteristic sharp transition indicating that there was no mechanical mixing between the welded metals in the solid state. In micro-/nanoscale, the layers adhering to the interface show typical deformed microstructure features, i.e., structure refinement, elongated dislocation cells, slip bands, and microtwins (in copper plate). The internal microstructure of the intermetallic inclusion is composed mostly of dendrites. The electron diffractions and TEM/EDX chemical composition measurements revealed three crystalline equilibrium phases of the γ-Al4Cu9, η-AlCu, and Θ-Al2Cu type (the last one was dominant). However, most of the observed phases of the general Cu m Al n type (also crystalline) do not appear in the equilibrium Al-Cu phase diagram. Inside the intermetallic inclusions, no significant regularity in the phase distribution with respect to the parent sheets was observed. Therefore, it was concluded that the processes occurring in the melt determined their local chemical composition.

  8. Electron energy dependence of characteristics of fluorescent plates for ultrahigh-voltage electron microscopes.

    PubMed

    Nishi, R; Yoshida, K; Takaoka, A; Katsuta, T

    1996-03-01

    The characteristics of fluorescent plates for high energy electron beams (0.5-2.0 MeV) are examined. The thickness and the optical transparency of plates strongly affect the luminous broadening and intensity. The spatial luminous broadening in fluorescent plates is measured and is simply represented by the rise width of a knife edge image. When the thickness is much smaller than the range of incident electrons, the rise width is 1/4-1/5 of the thickness in the case of YAG single crystal plates that are transparent for light, while the rise width is nearly equal to the thickness for the packed P22 powder plates that are opaque for light. To suppress the luminous broadening under 50 microm, the thickness of YAG plates has to be thinner than 250 microm in the energy region around 2 MeV. Under the same condition of the rise width, the luminous intensity of YAG plates is twice as high as that of the P22 plates.

  9. Magnetostructural phase transition in electroless-plated Ni nanoarrays

    SciTech Connect

    Huang, Chun-Chao; Lo, Chih-Chieh; Tseng, Yuan-Chieh; Liu, Chien-Min; Chen, Chih

    2011-06-01

    Ni nanoarrays were synthesized by electroless-plating and shaped by an anodic aluminum oxide template. The as-plated arrays exhibited superparamagnetic (SM) ordering resulting from nanocrystalline microstructure. Ferromagnetic (FM) ordering was found to be restored as the arrays' crystallinity was enhanced upon post-annealing. The microstructure (crystallinity) and the FM ordering are strongly coupled, revealing a magneto-structural correlation for the arrays. The magnetostructural properties of the arrays can be controlled by post-annealing, where the magnetization is proportional to the annealing temperature. The electroless-plated arrays synthesized in this work display magnetic anisotropy not found in electroplated ones. This is likely attributed to the nature of the clusterlike microstructure, whose cluster-boundaries may confine the FM rotation within the cluster. The spin-polarization was probed by x-ray magnetic circular dichroism while the arrays underwent the SM{yields}FM phase transition. The sum-rules results reveal that the total magnetization of the arrays is dominated by spin moment (m{sub spin}). The change in m{sub spin} is responsible for the SM{yields}FM phase transition upon annealing, as well as for the loss of magnetization upon temperature increase that we observed macroscopically.

  10. Azimuthal phase retardation microscope for visualizing actin filaments of biological cells

    NASA Astrophysics Data System (ADS)

    Shin, In Hee; Shin, Sang-Mo

    2011-09-01

    We developed a new theory-based azimuthal phase retardation microscope to visualize distributions of actin filaments in biological cells without having them with exogenous dyes, fluorescence labels, or stains. The azimuthal phase retardation microscope visualizes distributions of actin filaments by measuring the intensity variations of each pixel of a charge coupled device camera while rotating a single linear polarizer. Azimuthal phase retardation δ between two fixed principal axes was obtained by calculating the rotation angles of the polarizer at the intensity minima from the acquired intensity data. We have acquired azimuthal phase retardation distributions of human breast cancer cell, MDA MB 231 by our microscope and compared the azimuthal phase retardation distributions with the fluorescence image of actin filaments by the commercial fluorescence microscope. Also, we have observed movement of human umbilical cord blood derived mesenchymal stem cells by measuring azimuthal phase retardation distributions.

  11. Improvement of reconstructed phase distribution of fast moving phase object in digital holographic microscope

    NASA Astrophysics Data System (ADS)

    Xia, Peng; Nagahama, Naoya; Quan, Xiangyu; Nitta, Kouichi; Matoba, Osamu; Awatsuji, Yasuhiro

    2016-03-01

    For defect detection or undesired object in commercial products, it is required to develop a fast measurement system that can obtain three-dimensional distribution of surface of the opaque medium such as metal or inside of the transparent medium. For this purpose, we fabricated a digital holographic microscope using a fast image sensor when the phase object is put on a fast movable stage. In the fabricated system, an image sensor operated at maximum frame rate of 2000 fps and a movable stage operated at maximum speed of 300 mm/s are introduced. Under the continuous wave illumination, motion-blurred phase object is reconstructed. By using numerical processing such as deconvolution filter, the reconstructed phase distribution is much improved. Numerical results are presented.

  12. Coherent x-ray diffraction imaging of paint pigmentparticles by scanning a phase plate modulator

    SciTech Connect

    Chu Y. S.; Chen B.; Zhang F.; Berenguer F.; Bean R.; Kewish C.; Vila-Comamala J.; Rodenburg J.; Robinson I.

    2011-10-19

    We have implemented a coherent x-ray diffraction imaging technique that scans a phase plate to modulate wave-fronts of the x-ray beam transmitted by samples. The method was applied to measure a decorative alkyd paint containing iron oxide red pigment particles. By employing an iterative algorithm for wave-front modulation phase retrieval, we obtained an image of the paint sample that shows the distribution of the pigment particles and is consistent with the result obtained from a transmission x-ray microscope. The technique has been experimentally proven to be a feasible coherent x-ray imaging method with about 120 nm spatial resolution and was shown to work well with industrially relevant specimens.

  13. Quantum friction imprints on the geometric phase of a moving atom in front of a dielectric plate

    NASA Astrophysics Data System (ADS)

    Lombardo, Fernando C.; Villar, Paula I.

    2017-08-01

    We compute the non-unitary geometric phase for the moving atom under the presence of the vacuum field and a dielectric mirror, analytically and numerically. We consider the atom (represented by a two-level system) moving in front of a dielectric plate, and study how decoherence of the particle’s internal degrees of freedom can be found in the corrections to the geometric phase accumulated by the atom. We consider the particle to follow a classical, macroscopically-fixed trajectory and by integrating over the vacuum field and the microscopic degrees of freedom of the plate we may calculate friction effects. We find a velocity dependance in the correction to the unitary geometric phase due to quantum frictional effects. We also show in which cases decoherence effects could, in principle, be controlled in order to perform a measurement of the geometric phase using standard interferometry procedures.

  14. Grain damage, phase mixing and plate-boundary formation

    NASA Astrophysics Data System (ADS)

    Bercovici, David; Skemer, Philip

    2017-07-01

    The generation of plate tectonics on Earth relies on complex mechanisms for shear localization, as well as for the retention and reactivation of weak zones in the cold ductile lithosphere. Pervasive mylonitization, wherein zones of high deformation coincide with extensive mineral grain size reduction, is an important clue to this process. In that regard, the grain-damage model of lithospheric weakening provides a physical framework for both mylonitization and plate generation, and accounts for the competition between grain size reduction by deformation and damage, and healing by grain growth. Zener pinning at the evolving interface between mineral components, such as olivine and pyroxene, plays a key role in helping drive grains to small mylonitic sizes during deformation, and then retards their growth once deformation ceases. The combined effects of damage and pinning, however, rely on the efficiency of inter-grain mixing between phases (e.g., olivine and pyroxene) and grain dispersal, which likely depends on grain size itself. Here we present a new model for inter-grain mixing and damage and the onset of rapid mixing. The model considers the competition between the formation of new grains behind a receding interphase triple junction (e.g., olivine growing into a boundary between two pyroxene grains) and their severance or spalling during progressive deformation and damage. The newly formed grains of one phase are then transported along the opposing phase's grain-boundaries and the two phases become dispersed at the grain-scale in a growing mixed layer. The small intermixed grains also affect the grain evolution of the surrounding host grains by Zener pinning, and hence influence the rheology and growth of the mixed layer. As the grains in the mixed layer shrink, subsequently spalled new grains are also smaller, causing a feedback that leads to more rapid mixing and shear localization in the mixed layer. The early stages of mixing can be compared to laboratory

  15. Ptychographic phase microscope based on high-speed modulation on the illumination beam.

    PubMed

    Yao, Yudong; Veetil, Suhas P; Liu, Cheng; Zhu, JianQiang

    2017-03-01

    A type of ptychography-based phase microscope was developed by integrating a spatial light modulator (SLM) into a commercial wide-field light microscope. By displaying a moving pattern on the SLM to change the sample illumination and record the diffraction intensities formed, both the modulus and phase of the transmission function of the sample could be accurately reconstructed with formulas similar to those of common ptychography. Compared with other kinds of phase microscopes, the developed microscope has several advantages, including its simple structure, high immunity to coherent noise, and low requirement for quality optics. In addition, defects in the illumination beam are also removed from the reconstructed image. Further, this microscope’s fast data acquisition ability makes it highly suitable for many applications where highly accurate quantitative phase imaging is important, such as in living cells or other fragile biological samples that cannot sustain continuous imaging over a long period of time.

  16. Quantitative phase tomography by using x-ray microscope with Foucault knife-edge scanning filter

    SciTech Connect

    Watanabe, Norio; Tsuburaya, Yuji; Shimada, Akihiro; Aoki, Sadao

    2016-01-28

    Quantitative phase tomography was evaluated by using a differential phase microscope with a Foucault knife-edge scanning filter. A 3D x-ray phase image of polystyrene beads was obtained at 5.4 keV. The reconstructed refractive index was fairly good agreement with the Henke’s tabulated data.

  17. Quantitative phase tomography by using x-ray microscope with Foucault knife-edge scanning filter

    NASA Astrophysics Data System (ADS)

    Watanabe, Norio; Tsuburaya, Yuji; Shimada, Akihiro; Aoki, Sadao

    2016-01-01

    Quantitative phase tomography was evaluated by using a differential phase microscope with a Foucault knife-edge scanning filter. A 3D x-ray phase image of polystyrene beads was obtained at 5.4 keV. The reconstructed refractive index was fairly good agreement with the Henke's tabulated data.

  18. Tomographic imaging of transparent biological samples using the pyramid phase microscope

    PubMed Central

    Iglesias, Ignacio

    2016-01-01

    We show how a pyramid phase microscope can be used to obtain tomographic information of the spatial variation of refractive index in biological samples using the Radon transform. A method that uses the information provided by the phase microscope for axial and lateral repositioning of the sample when it rotates is also described. Its application to the reconstruction of mouse embryos in the blastocyst stage is demonstrated. PMID:27570696

  19. Tomographic imaging of transparent biological samples using the pyramid phase microscope.

    PubMed

    Iglesias, Ignacio

    2016-08-01

    We show how a pyramid phase microscope can be used to obtain tomographic information of the spatial variation of refractive index in biological samples using the Radon transform. A method that uses the information provided by the phase microscope for axial and lateral repositioning of the sample when it rotates is also described. Its application to the reconstruction of mouse embryos in the blastocyst stage is demonstrated.

  20. Performance characterization of a broadband vector Apodizing Phase Plate coronagraph.

    PubMed

    Otten, Gilles P P L; Snik, Frans; Kenworthy, Matthew A; Miskiewicz, Matthew N; Escuti, Michael J

    2014-12-01

    One of the main challenges for the direct imaging of planets around nearby stars is the suppression of the diffracted halo from the primary star. Coronagraphs are angular filters that suppress this diffracted halo. The Apodizing Phase Plate coronagraph modifies the pupil-plane phase with an anti-symmetric pattern to suppress diffraction over a 180 degree region from 2 to 7 λ/D and achieves a mean raw contrast of 10(-4) in this area, independent of the tip-tilt stability of the system. Current APP coronagraphs implemented using classical phase techniques are limited in bandwidth and suppression region geometry (i.e. only on one side of the star). In this paper, we introduce the vector-APP (vAPP) whose phase pattern is implemented through the vector phase imposed by the orientation of patterned liquid crystals. Beam-splitting according to circular polarization states produces two, complementary PSFs with dark holes on either side. We have developed a prototype vAPP that consists of a stack of three twisting liquid crystal layers to yield a bandwidth of 500 to 900 nm. We characterize the properties of this device using reconstructions of the pupil-plane pattern, and of the ensuing PSF structures. By imaging the pupil between crossed and parallel polarizers we reconstruct the fast axis pattern, transmission, and retardance of the vAPP, and use this as input for a PSF model. This model includes aberrations of the laboratory set-up, and matches the measured PSF, which shows a raw contrast of 10(-3.8) between 2 and 7 λ/D in a 135 degree wedge. The vAPP coronagraph is relatively easy to manufacture and can be implemented together with a broadband quarter-wave plate and Wollaston prism in a pupil wheel in high-contrast imaging instruments. The liquid crystal patterning technique permits the application of extreme phase patterns with deeper contrasts inside the dark holes, and the multilayer liquid crystal achromatization technique enables unprecedented spectral bandwidths

  1. Histomorphometric and electron microscopic analyses of tibial epiphyseal plates from Cosmos 1887 rats

    NASA Technical Reports Server (NTRS)

    Duke, P. J.; Durnova, G.; Montufar-Solis, D.

    1990-01-01

    Previous studies have shown that the changes seen in the bones of growing rats exposed to microgravity are due in part to changes that occur in the growth plate during spaceflight. In this study, growth plates of rats flown aboard Cosmos 1887 (12.5-day flight plus 53.5-h recovery at 1 g) were analyzed using light and electron microscopy and computerized planimetry. The proliferative zone of flight animals was found to be significantly (P less than or equal to 0.01) larger than that of controls, while the reserve and hypertrophic/calcification zones were significantly reduced. Flight animals also had more cells per column in the proliferative zone than did controls and less in the hypertrophic/calcification region. The total number of cells, however, was significantly greater in flight animals. No difference was found in perimeter or in shape factor, but area was significantly less in flight animals. Electron microscopy showed that collagen fibrils in flight animals were wider than in controls. Since the time required for a cell to cycle through the growth plate is 2-3 days at 1 g, the results reported here represent both the effects of exposure to microgravity and the initial stages of recovery from that exposure.

  2. Histomorphometric and electron microscopic analyses of tibial epiphyseal plates from Cosmos 1887 rats

    NASA Technical Reports Server (NTRS)

    Duke, P. J.; Durnova, G.; Montufar-Solis, D.

    1990-01-01

    Previous studies have shown that the changes seen in the bones of growing rats exposed to microgravity are due in part to changes that occur in the growth plate during spaceflight. In this study, growth plates of rats flown aboard Cosmos 1887 (12.5-day flight plus 53.5-h recovery at 1 g) were analyzed using light and electron microscopy and computerized planimetry. The proliferative zone of flight animals was found to be significantly (P less than or equal to 0.01) larger than that of controls, while the reserve and hypertrophic/calcification zones were significantly reduced. Flight animals also had more cells per column in the proliferative zone than did controls and less in the hypertrophic/calcification region. The total number of cells, however, was significantly greater in flight animals. No difference was found in perimeter or in shape factor, but area was significantly less in flight animals. Electron microscopy showed that collagen fibrils in flight animals were wider than in controls. Since the time required for a cell to cycle through the growth plate is 2-3 days at 1 g, the results reported here represent both the effects of exposure to microgravity and the initial stages of recovery from that exposure.

  3. Differential phase microscope and micro-tomography with a Foucault knife-edge scanning filter

    NASA Astrophysics Data System (ADS)

    Watanabe, N.; Hashizume, J.; Goto, M.; Yamaguchi, M.; Tsujimura, T.; Aoki, S.

    2013-10-01

    An x-ray differential phase microscope with a Foucault knife-edge scanning filter was set up at the bending magnet source BL3C, Photon Factory. A reconstructed phase profile from the differential phase image of an aluminium wire at 5.36 keV was fairly good agreement with the numerical simulation. Phase tomography of a biological specimen, such as an Artemia cyst, could be successfully demonstrated.

  4. Development of background reduced Fresnel phase zone plate

    SciTech Connect

    Tamari, Yohei; Azechi, Hiroshi

    2004-10-01

    In study of hot and dense plasma, a high spatial resolution (a few microns) x-ray imaging is very important to observe these plasmas. The Fresnel phase zone plate (FPZP) consists of alternately material and transparent circular annuli placed concentrically, which image x rays using diffraction x rays from all annuli. FPZP have imaged 4.7-4.77 keV x rays with 2.2 {mu}m spatial resolution. However FPZP has a problem that background level is comparable to signal level. In subtraction of background, the error of 10% is caused. For the accurate background subtraction, we designed new FPZP, which consist of three {beta} layers of a transparent zone and two material zones. The new design FPZP parameters (thickness of material zones, each zone width) have been optimized, and in that optimum design signal-to-background ratio is 4 times better than conventional two layers FPZP.

  5. Design of an advanced two-phase capillary cold plate

    NASA Technical Reports Server (NTRS)

    Chalmers, D. R.; Kroliczek, E. J.; Ku, J.

    1986-01-01

    The functional principles and implementation of capillary pumped loop (CPL) two phase heat transport system for various elements of the Space Station program are described. Circulation of the working fluid by the surface-tension forces in a fine-pore capillary wick is the core principle of CPL systems. The liquid, usually NH3 at the moment, is changed into a vapor by heat absorption at one end of the loop, and the vapor is carrried back along the wick by the surface tension within the wick. NASA specifications and the results of mechanical and thermal tests for prototype cold plate and the capillary pump designs are outlined. The CPL is targeted for installation on free-flying platforms, attached payloads, and power subsystem thermal control systems.

  6. Quantitative Phase Imaging with a Scanning Transmission X-Ray Microscope

    PubMed Central

    de Jonge, M. D.; Hornberger, B.; Holzner, C.; Legnini, D.; Paterson, D.; McNulty, I.; Jacobsen, C.; Vogt, S.

    2010-01-01

    We obtain quantitative phase reconstructions from differential phase contrast images obtained with a scanning transmission x-ray microscope and 2.5 keV x rays. The theoretical basis of the technique is presented along with measurements and their interpretation. PMID:18518198

  7. Effects of low-spatial-frequency response of phase plates on TEM imaging

    NASA Astrophysics Data System (ADS)

    Edgcombe, C. J.

    2015-10-01

    Images of simple objects produced by a perfect lens and a phase plate have been calculated by use of Abbe theory for Foucault, Hilbert and Zernike phase plates. The results show that with a Zernike plate, white outlines and ringing like those observed previously can be caused by the beam hole, which limits the low-spatial-frequency response of the system even when the lens behaves perfectly. When the change of phase added by the phase plate is distributed over a range of radius rather than a simple step, the unwanted effects are substantially reduced.

  8. Retrofit implementation of Zernike phase plate imaging for cryo-TEM

    PubMed Central

    Marko, Michael; Leith, ArDean; Hsieh, Chyongere; Danev, Radostin

    2011-01-01

    In-focus phase-plate imaging is particularly beneficial for cryo-TEM because it offers a substantial overall increase in image contrast, without an electron dose penalty, and it simplifies image interpretation. We show how phase-plate cryo-TEM can be implemented with an appropriate existing TEM, and provide a basic practical introduction to use of thin-film (carbon) phase plates. We point out potential pitfalls of phase-plate operation, and discuss solutions. We provide information on evaluating a particular TEM for its suitability. PMID:21272647

  9. Calculation of confocal microscope images of cholesteric blue phases

    NASA Astrophysics Data System (ADS)

    Fukuda, Jun-ichi; Okumura, Yasushi; Kikuchi, Hirotsugu

    2016-03-01

    Real-space images of bulk cholesteric blue phases (BPs) have been successfully obtained by confocal microscopy observations using structural color without doping fluorescent dye. However, theoretical interpretation of these images (for example, the understanding of the relation between intensity distribution and the ordering of BPs) remains challenging because typical lattice spacing of BPs is of the order of the wavelength of visible light, and therefore geometrical optics is entirely useless. In this work, we present a numerical approach to calculate the confocal images of BPs by solving the Maxwell equations. Calculated confocal images are consistent with experimental observations in terms of in-plane symmetry.

  10. Phase Identification in a Scanning Electron Microscope Using Backscattered Electron Kikuchi Patterns

    PubMed Central

    Goehner, R. P.; Michael, J. R.

    1996-01-01

    Backscattered electron Kikuchi patterns (BEKP) suitable for crystallographic phase analysis can be collected in the scanning electron microscope (SEM) with a newly developed charge coupled device (CCD) based detector. Crystallographic phase identification using BEKP in the SEM is unique in that it permits high magnification images and BEKPs to be collected from a bulk specimen. The combination of scanning electron microscope (SEM) imaging, BEKP, and energy dispersive x-ray spectrometry holds the promise of a powerful new tool for materials science. PMID:27805167

  11. High-frequency Pn,Sn phases recorded by ocean bottom seismometers on the Cocos plate

    SciTech Connect

    McCreery, C.S.

    1981-05-01

    Data from ocean bottom seismometers located on the Cocos plate indicate that high-frequency Pn,Sn phases are generated by earthquakes along the subducting margin of that plate and are propagated across the plate. The Sn phase appears to be severely attenuated as it approaches the ridge crest. Estimates of Pn velocity are lower than previous extimates for western Pacific paths, which may indicate a relationship between Pn,Sn velocity and lithospheric age. High frequencies found in these phases suggest that Q for Pn,Sn propagation across the Cocos plate is similar to that for the western Pacific.

  12. Direct Imaging Searches with the Apodizing Phase Plate Coronagraph

    NASA Astrophysics Data System (ADS)

    Kenworthy, M.; Meshkat, T.; Otten, , G.; Codona, J.

    2014-03-01

    The sensitivity of direct imaging searches for extrasolar planets is limited by the presence of diffraction rings from the primary star. Coronagraphs are angular filters that minimise these diffraction structures whilst allowing light from faint companions to shine through. The Apodizing Phase Plate (APP; Kenworthy 2007) coronagraph is a simple pupil plane optic that suppresses diffraction over a 180 degree region around each star simultaneously, providing easy beam switching observations and requiring no time consuming optical alignment at the telescope. We will present our results on using the APP at the Very Large Telescope in surveys for extrasolar planets around A/F and debris disk hosting stars in the L' band (3.8 microns) in the Southern Hemisphere, where we reach a contrast of 12 magnitudes at 0.5 arcseconds (Meshkat 2013). In Leiden, we are also developing the next generation of broadband achromatic coronagraphs that can simultaneously image both sides of the star using Vector APPs (Snik 2012, Otten 2012). Recent laboratory results showing the potential of this technology for future ELTs will also be presented.

  13. Identification of malaria infected red blood samples by digital holographic quantitative phase microscope

    NASA Astrophysics Data System (ADS)

    Patel, Nimit R.; Chhaniwal, Vani K.; Javidi, Bahram; Anand, Arun

    2015-07-01

    Development of devices for automatic identification of diseases is desired especially in developing countries. In the case of malaria, even today the gold standard is the inspection of chemically treated blood smears through a microscope. This requires a trained technician/microscopist to identify the cells in the field of view, with which the labeling chemicals gets attached. Bright field microscopes provide only low contrast 2D images of red blood cells and cell thickness distribution cannot be obtained. Quantitative phase contrast microscopes can provide both intensity and phase profiles of the cells under study. The phase information can be used to determine thickness profile of the cell. Since cell morphology is available, many parameters pertaining to the 3D shape of the cell can be computed. These parameters in turn could be used to decide about the state of health of the cell leading to disease diagnosis. Here the investigations done on digital holographic microscope, which provides quantitative phase images, for comparison of parameters obtained from the 3D shape profile of objects leading to identification of diseased samples is described.

  14. Spectro-refractometry of individual microscopic objects using swept-source quantitative phase imaging.

    PubMed

    Jung, Jae-Hwang; Jang, Jaeduck; Park, Yongkeun

    2013-11-05

    We present a novel spectroscopic quantitative phase imaging technique with a wavelength swept-source, referred to as swept-source diffraction phase microscopy (ssDPM), for quantifying the optical dispersion of microscopic individual samples. Employing the swept-source and the principle of common-path interferometry, ssDPM measures the multispectral full-field quantitative phase imaging and spectroscopic microrefractometry of transparent microscopic samples in the visible spectrum with a wavelength range of 450-750 nm and a spectral resolution of less than 8 nm. With unprecedented precision and sensitivity, we demonstrate the quantitative spectroscopic microrefractometry of individual polystyrene beads, 30% bovine serum albumin solution, and healthy human red blood cells.

  15. Nondiffracting wave properties in radially and azimuthally symmetric optical axis phase plates.

    PubMed

    Vaveliuk, Pablo

    2009-12-01

    A wave propagation analysis carried out in two kinds of q-plates having topological unit charge (1-plates), one plate with a radial orientation of the optical axis and the other with an azimuthal one, reveals that these devices admit nondiffracting Bessel beams as exact solutions of the vector Helmholtz's equation. The phase shifts between the ordinary and the extraordinary waves in both structures were found to be different. The polarization-scrambling term in the Helmholtz equation is responsible for such differences, emphasizing that this term cannot be dropped in radial plates, contrary to the azimuthal case. A phase shift analysis suggests that these plates are relevant for the control of nonconventional polarization states of light. In this way, a novel redistribution of the spin-orbital angular momentum of these nondiffracting beams passing by the 1-plate is demonstrated, which could be useful for applications in classic and quantum regimes.

  16. Light and electron microscopic features of early and late phase radiation-induced proctitis

    SciTech Connect

    Haboubi, N.Y.; Schofield, P.F.; Rowland, P.L.

    1988-10-01

    The light and electron microscopic features of rectal biopsies from 10 symptomatic patients treated with irradiation for pelvic malignancies are detailed. They are divided into two groups. Group I: biopsies taken during or shortly after the course of irradiation (six patients). Group II: biopsies taken 4 months or more after course completion (four patients). The distinguishing light microscopic features in the first group are epithelial meganucleosis, lack of mitotic activity, and patchy fibroblastic proliferation in the lamina propria. The blood vessels appear normal. In the second group, there are severe vascular changes characterized by narrowing of the arterioles by subintimal fibrosis, telangiectasia of capillaries and post-capillary venules, endothelial degeneration, and platelet thrombi formation. These vascular changes are always associated with severe fibrosis of the lamina propria and crypt distortion. The ultrastructural and light microscopic findings indicate that the cellular epithelial reaction and fibroblastic proliferation antedate the vascular injury, and the latter has no role in the acute phase reaction.

  17. Microscopic phase-shifting profilometry based on digital micromirror device technology.

    PubMed

    Zhang, Chengping; Huang, Peisen S; Chiang, Fu-Pen

    2002-10-01

    A microscopic three-dimensional (3-D) shape measurement system based on digital fringe projection has been developed and experimentally investigated. A Digital Micromirror Device along with its illumination optics is integrated into a stereomicroscope, which projects computer-generated fringe patterns with a sinusoidal intensity profile through the microscope objective onto the object surface being measured. The fringe patterns deformed by the object surface are recorded by a CCD camera. The microscopic 3-D shape of the object surface is measured and reconstructed by use of a phase-shifting technique. We discuss design considerations and error analysis of the system. Experimental results successfully demonstrate the capability of this technique for surface profile measurement of rough surfaces at the micrometer level.

  18. Quantitative photothermal phase imaging of red blood cells using digital holographic photothermal microscope.

    PubMed

    Vasudevan, Srivathsan; Chen, George C K; Lin, Zhiping; Ng, Beng Koon

    2015-05-10

    Photothermal microscopy (PTM), a noninvasive pump-probe high-resolution microscopy, has been applied as a bioimaging tool in many biomedical studies. PTM utilizes a conventional phase contrast microscope to obtain highly resolved photothermal images. However, phase information cannot be extracted from these photothermal images, as they are not quantitative. Moreover, the problem of halos inherent in conventional phase contrast microscopy needs to be tackled. Hence, a digital holographic photothermal microscopy technique is proposed as a solution to obtain quantitative phase images. The proposed technique is demonstrated by extracting phase values of red blood cells from their photothermal images. These phase values can potentially be used to determine the temperature distribution of the photothermal images, which is an important study in live cell monitoring applications.

  19. Measurement of relative phase distribution of onion epidermal cells by using the polarization microscope

    NASA Astrophysics Data System (ADS)

    Shin, In Hee; Lee, Ji Yong; Lee, Seungrag; Lee, Dong Ju; Kim, Dug Young

    2007-02-01

    Bio-cells and tissues have intrinsic polarization characteristics, which are changed by external stimulus and internal metamorphosis in cells and tissues and some of the bio-cells and tissues have intrinsic birefringence characteristics, which are also changed by external stimulus and internal metamorphosis in cells and tissues. In this paper, we have developed the polarization microscope for measurement of relative phase which results from birefringence characteristics of materials with improved linear polarizing method and have measured relative phase distribution of onion epidermal cells. From the measurement of the relative phase distribution of onion epidermal cells, decrease of relative phase distribution of onion epidermal cells was investigated as the elapse of time. In decrease of relative phase distribution, relative phase of cell membrane in onion epidermal cells decreased radically as compared with that of cytoplasm because decline of function in cell membrane that takes charge of matter transfer in onion epidermal cells has occurred.

  20. Pressure and temperature induced high spin-low spin phase transition: Macroscopic and microscopic consideration

    NASA Astrophysics Data System (ADS)

    Levchenko, G.; Khristov, A.; Kuznetsova, V.; Shelest, V.

    2014-08-01

    The behavior under pressure of the high spin-low spin phase transition in the coordination compounds containing 3d ions is analyzed using thermodynamic and microscopic approaches. For thermodynamic approach the mean field model with interactions between spin-crossover molecules is considered. Microscopic model takes into account the interaction of d electrons of the transition metal ions with full symmetric distortions of the ligands. The relationship of the thermodynamic interaction parameters with microscopic ones is installed and shown how the quantum-mechanical interactions form the cooperativity of the system. Within the microscopic model the temperature and pressure dependences of the high spin fraction in 2-D compounds {Fe(3-Fpy)2[M(CN)4]} (M=Pd, Pt) are simulated and microscopic parameters are evaluated. It is concluded that different experimental behaviors of the temperature and pressure induced spin transitions are determined by different variations of the inelastic and elastic energies under pressure, and vibrational component of the free energy drives the ST equally with electronic part.

  1. X-ray Phase Imaging Microscopy using a Fresnel Zone Plate and a Transmission Grating

    SciTech Connect

    Yashiro, Wataru; Momose, Atsushi; Takeuchi, Akihisa; Suzuki, Yoshio

    2010-06-23

    We report on a hard X-ray phase imaging microscopy (a phase-difference microscopy) that consists of an objective and a transmission grating. The simple optical system provides a quantitative phase image, and does not need a wave field mostly coherent on the objective. Our method has a spatial resolution almost same as that of the absorption contrast microscope image obtained by removing the grating. We demonstrate how our approach provides a phase image from experimentally obtained images. Our approach is attractive for easily appending a quantitative phase-sensitive mode to normal X-ray microscopes, and has potentially broad applications in biology and material sciences.

  2. Collective behavior of active Brownian particles: From microscopic clustering to macroscopic phase separation

    NASA Astrophysics Data System (ADS)

    Speck, Thomas

    2016-11-01

    A pedagogical introduction to the analytical treatment of the collective behavior of active (self-propelled) Brownian particles with short-ranged interactions is presented. The treatment is based on established concepts from the theories of simple liquids and pattern formation. It is shown how microscopic clustering due to self-blocking of directed particle motion leads to macroscopic phase separation described by effective equilibrium concepts holding on length scales larger than the persistence length of the direction motion.

  3. Change dynamics of RBC morphology after injection glucose for diabetes by diffraction phase microscope

    NASA Astrophysics Data System (ADS)

    Talaykova, N. A.; Kalyanov, A. L.; Lychagov, V. V.; Ryabukho, V. P.; Malinova, L. I.

    2013-11-01

    Experimental setup of diffraction phase microscope (DPM) with double low-coherence lighting system is presented in the paper. Algorithm of interference picture processing and optical thickness, height, volume and mean cells volume (MCV) of RBC calculating is shown. We demonstrate results of experiments with blood smears and ability of the method to calculate 3D model of the biological cells shape. Investigation change dynamics of RBC morphology after injection glucose for diabetes by DPM is shown in the paper.

  4. Simple phase-shifting method in a wedge-plate lateral-shearing interferometer.

    PubMed

    Song, Jae Bong; Lee, Yun Woo; Lee, In Won; Lee, Yong-Hee

    2004-07-10

    A simple phase-shifting method in a wedge-plate lateral shearing interferometer is described. Simply moving the wedge plate in an in-plane parallel direction gives the amount of phase shift required for phase-shifting interferometry because the thickness of a wedge plate is not constant and varies along the wedge direction. This method requires only one additional linear translator to move the wedge plate. The required moving distance for a phase shift of the wave front with this method is of the order of a millimeter, whereas the typical moving distance for another method that uses a piezoelectric transducer is of the order of a wavelength. This method yields better precision in controlling the moving distance than do the other methods.

  5. Cryo-EM single particle analysis with the Volta phase plate

    PubMed Central

    Danev, Radostin; Baumeister, Wolfgang

    2016-01-01

    We present a method for in-focus data acquisition with a phase plate that enables near-atomic resolution single particle reconstructions. Accurate focusing is the determining factor for obtaining high quality data. A double-area focusing strategy was implemented in order to achieve the required precision. With this approach we obtained a 3.2 Å resolution reconstruction of the Thermoplasma acidophilum 20S proteasome. The phase plate matches or slightly exceeds the performance of the conventional defocus approach. Spherical aberration becomes a limiting factor for achieving resolutions below 3 Å with in-focus phase plate images. The phase plate could enable single particle analysis of challenging samples in terms of small size, heterogeneity and flexibility that are difficult to solve by the conventional defocus approach. DOI: http://dx.doi.org/10.7554/eLife.13046.001 PMID:26949259

  6. Light-Weight, Single-Phase, Liquid-Cooled Cold Plate (Presentation)

    SciTech Connect

    Narumanchi, S.

    2013-07-01

    This presentation, 'Light-Weight, Low-Cost, Single-Phase Liquid-Cooled Cold Plate,' directly addresses program goals of increased power density, specific power, and lower cost of power electronics components through improved thermal management.

  7. Light-Weight, Low-Cost, Single-Phase, Liquid-Cooled Cold Plate (Presentation)

    SciTech Connect

    Narumanchi, S.

    2013-07-01

    This presentation, 'Light-Weight, Low-Cost, Single-Phase Liquid-Cooled Cold Plate,' directly addresses program goals of increased power density, specific power, and lower cost of power electronics components through improved thermal management.

  8. Ion-exchanged glass binary phase plates for mode-division multiplexing.

    PubMed

    Montero-Orille, Carlos; Moreno, Vicente; Prieto-Blanco, Xesús; Mateo, Eduardo F; Ip, Ezra; Crespo, José; Liñares, Jesús

    2013-04-10

    Significant efforts are being made to increase optical network capacity in response to ever-growing data traffic. One promising candidate is mode-division multiplexing (MDM) in few-mode fibers. A fundamental element for MDM is a modal transformer. Modal transformation can be implemented in a free-space basis by using multiregion phase plates. In this work, we show that efficient monolithic binary phase plates can be fabricated by ion exchange in glass and used for MDM tasks. We present an optical characterization method of such plates, which is based on a combination of the inverse Wentzel-Kramers-Brillouin (IWKB) method and Mach-Zehnder interferometric techniques. The IWKB method allows us to design and characterize the phase plates in an easy and fast way, whereas interferometry gives us a precise measurement of the phase step. Far-field optical intensities are measured, and a high-quality mode transformation is confirmed.

  9. Digital holographic phase imaging of particles embedded in microscopic structures in three dimensions

    NASA Astrophysics Data System (ADS)

    Park, Jun Yong; Desta, Habben; Maloney, Maxwell C.; Sharikova, Anna; Khmaladze, Alexander

    2016-05-01

    We present a three-dimensional microscopic technique based on digital holographic imaging, which allows highly accurate axial localization of features inside of a three dimensional sample. When a light wave is propagating through, or reflecting from, a microscopic object, the phase changes can be converted into intensity variations using the existing digital microscopic techniques. The phase change indicates the change in the optical path length, which can be then converted to physical thickness, providing the sample height information. This property of holograms is used in phasecontrast techniques, and can also be used for quantitative 3D imaging. However, if the sample contains features with different indices of refraction, this method can only provide the overall optical thickness, and cannot determine where in the axial direction the particular feature is located. As a result, the application of Digital Holographic Microscopy to imaging of organelles within live cells, or defects within semiconductor substrates, is limited to overall morphology of the sample. To determine the axial location of features inside of a three dimensional sample, we developed a phase image processing method based on analyzing images taken from non-zero incident angles. When compared, these images can discriminate between various axial depths of features, while still retaining the information about the overall thickness profile of the sample.

  10. Characterisation of ferromagnetic rings for Zernike phase plates using the Aharonov-Bohm effect.

    PubMed

    Edgcombe, C J; Ionescu, A; Loudon, J C; Blackburn, A M; Kurebayashi, H; Barnes, C H W

    2012-09-01

    Holographic measurements on magnetised thin-film cobalt rings have demonstrated both onion and vortex states of magnetisation. For a ring in the vortex state, the difference between phases of electron paths that pass through the ring and those that travel outside it was found to agree very well with Aharonov-Bohm theory within measurement error. Thus the magnetic flux in thin-film rings of ferromagnetic material can provide the phase shift required for phase plates in transmission electron microscopy. When a ring of this type is used as a phase plate, scattered electrons will be intercepted over a radial range similar to the ring width. A cobalt ring of thickness 20 nm can produce a phase difference of π/2 from a width of just under 30 nm, suggesting that the range of radial interception for this type of phase plate can be correspondingly small.

  11. Two-phase flow patterns in adiabatic and diabatic corrugated plate gaps

    NASA Astrophysics Data System (ADS)

    Polzin, A.-E.; Kabelac, S.; de Vries, B.

    2016-09-01

    Correlations for two-phase heat transfer and pressure drop can be improved considerably, when they are adapted to specific flow patterns. As plate heat exchangers find increasing application as evaporators and condensers, there is a need for flow pattern maps for corrugated plate gaps. This contribution presents experimental results on flow pattern investigations for such a plate heat exchanger background, using an adiabatic visualisation setup as well as a diabatic setup. Three characteristic flow patterns were observed in the considered range of two-phase flow: bubbly flow, film flow and slug flow. The occurrence of these flow patterns is a function of mass flux, void fraction, fluid properties and plate geometry. Two different plate geometries having a corrugation angle of 27° and 63°, respectively and two different fluids (water/air and R365mfc liquid/vapor) have been analysed. A flow pattern map using the momentum flux is presented.

  12. Chromatic characterization of ion-exchanged glass binary phase plates for mode-division multiplexing.

    PubMed

    Prieto-Blanco, Xesús; Montero-Orille, Carlos; Moreno, Vicente; Mateo, Eduardo F; Liñares, Jesús

    2015-04-10

    Mode-division multiplexing (MDM) in few-mode fibers is regarded as a promising candidate to increase optical network capacity. A fundamental element for MDM is a modal transformer to LP modes which can be implemented in a free-space basis by using multiregion phase plates, that is, LP plates. Likewise, several wavelengths have to be used due to wavelength multiplexing purposes, optical amplification tasks, and so on. In this work we show that efficient monolithic binary phase plates for different wavelengths can be fabricated by ion-exchange in glass and used for MDM tasks. We introduce an optical characterization method of the chromatic properties of such phase plates which combines the inverse Wentzel-Kramers-Brillouin (IWKB) together with Mach-Zehnder and Michelson-based interferometric techniques. The interferometric method provides a measurement of the phase step for several wavelengths, which characterizes the chromatic properties of the phase plate. Consequently, it is shown that the IWKB method allows us to design and characterize the phase plates in an easy and fast way.

  13. Laser scanning confocal microscope with programmable amplitude, phase, and polarization of the illumination beam.

    PubMed

    Boruah, B R; Neil, M A A

    2009-01-01

    We describe the design and construction of a laser scanning confocal microscope with programmable beam forming optics. The amplitude, phase, and polarization of the laser beam used in the microscope can be controlled in real time with the help of a liquid crystal spatial light modulator, acting as a computer generated hologram, in conjunction with a polarizing beam splitter and two right angled prisms assembly. Two scan mirrors, comprising an on-axis fast moving scan mirror for line scanning and an off-axis slow moving scan mirror for frame scanning, configured in a way to minimize the movement of the scanned beam over the pupil plane of the microscope objective, form the XY scan unit. The confocal system, that incorporates the programmable beam forming unit and the scan unit, has been implemented to image in both reflected and fluorescence light from the specimen. Efficiency of the system to programmably generate custom defined vector beams has been demonstrated by generating a bottle structured focal volume, which in fact is the overlap of two cross polarized beams, that can simultaneously improve both the lateral and axial resolutions if used as the de-excitation beam in a stimulated emission depletion confocal microscope.

  14. Phase-gradient contrast in thick tissue with a scanning microscope.

    PubMed

    Mertz, J; Gasecka, A; Daradich, A; Davison, I; Coté, D

    2014-02-01

    It is well known that the principle of reciprocity is valid for light traveling even through scattering or absorptive media. This principle has been used to establish an equivalence between conventional widefield microscopes and scanning microscopes. We make use of this principle to introduce a scanning version of oblique back-illumination microscopy, or sOBM. This technique provides sub-surface phase-gradient and amplitude images from unlabeled tissue, in an epi-detection geometry. That is, it may be applied to arbitrarily thick tissue. sOBM may be implemented as a simple, cost-effective add-on with any scanning microscope, requiring only the availability of an extra input channel in the microscope electronics. We demonstrate here its implementation in combination with two-photon excited fluorescence (TPEF) microscopy and with coherent anti-Stokes Raman scattering (CARS) microscopy, applied to brain or spinal cord tissue imaging. In both cases, sOBM provides information on tissue morphology complementary to TPEF or CARS contrast. This information is obtained simultaneously and is automatically co-registered. Finally, we show that sOBM can be operated at video rate.

  15. Phase-gradient contrast in thick tissue with a scanning microscope

    PubMed Central

    Mertz, J.; Gasecka, A.; Daradich, A.; Davison, I.; Coté, D.

    2014-01-01

    It is well known that the principle of reciprocity is valid for light traveling even through scattering or absorptive media. This principle has been used to establish an equivalence between conventional widefield microscopes and scanning microscopes. We make use of this principle to introduce a scanning version of oblique back-illumination microscopy, or sOBM. This technique provides sub-surface phase-gradient and amplitude images from unlabeled tissue, in an epi-detection geometry. That is, it may be applied to arbitrarily thick tissue. sOBM may be implemented as a simple, cost-effective add-on with any scanning microscope, requiring only the availability of an extra input channel in the microscope electronics. We demonstrate here its implementation in combination with two-photon excited fluorescence (TPEF) microscopy and with coherent anti-Stokes Raman scattering (CARS) microscopy, applied to brain or spinal cord tissue imaging. In both cases, sOBM provides information on tissue morphology complementary to TPEF or CARS contrast. This information is obtained simultaneously and is automatically co-registered. Finally, we show that sOBM can be operated at video rate. PMID:24575336

  16. Laser scanning confocal microscope with programmable amplitude, phase, and polarization of the illumination beam

    NASA Astrophysics Data System (ADS)

    Boruah, B. R.; Neil, M. A. A.

    2009-01-01

    We describe the design and construction of a laser scanning confocal microscope with programmable beam forming optics. The amplitude, phase, and polarization of the laser beam used in the microscope can be controlled in real time with the help of a liquid crystal spatial light modulator, acting as a computer generated hologram, in conjunction with a polarizing beam splitter and two right angled prisms assembly. Two scan mirrors, comprising an on-axis fast moving scan mirror for line scanning and an off-axis slow moving scan mirror for frame scanning, configured in a way to minimize the movement of the scanned beam over the pupil plane of the microscope objective, form the XY scan unit. The confocal system, that incorporates the programmable beam forming unit and the scan unit, has been implemented to image in both reflected and fluorescence light from the specimen. Efficiency of the system to programmably generate custom defined vector beams has been demonstrated by generating a bottle structured focal volume, which in fact is the overlap of two cross polarized beams, that can simultaneously improve both the lateral and axial resolutions if used as the de-excitation beam in a stimulated emission depletion confocal microscope.

  17. An Acoustic Plate Mode Sensor for Biowarfare Toxins, Phase II

    DTIC Science & Technology

    1997-10-01

    Biological agents -- such as bacteria , bacterial toxins and viruses -- must be detected rapidly to allow their neutralization or the quick treatment of...Mode Sensor for Biowarfare Toxins PRINCIPAL INVESTIGATOR: Douglas J. McAllister, Ph.D. CONTRACTING ORGANIZATION: Biode, Incorporated Bangor, Maine...OF PAGES Acoustic Plate Mode, Biowarfare Toxins 54 16. PRICE CODE 17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION

  18. Digital phase-shifting atomic force microscope Moiré method

    NASA Astrophysics Data System (ADS)

    Liu, Chia-Ming; Chen, Lien-Wen

    2005-04-01

    In this study, the digital atomic force microscope (AFM) Moiré method with phase-shifting technology is established to measure the in-plane displacement and strain fields. The Moiré pattern is generated by the interference between the specimen grating and the virtual reference grating formed by digital image processes. The overlapped image is filtered by two-dimensional wavelet transformation to obtain the clear interference Moiré patterns. The four-step phase-shifting method is realized by translating the phase of the virtual reference grating from 0 to 2π. The principle of the digital AFM Moiré method and the phase-shifting technology are described in detail. Experimental results show that this method is convenient to use and efficient in realizing the microscale measurement.

  19. 96-well plate-to-plate gravity fluorous solid-phase extraction (F-SPE) for solution-phase library purification.

    PubMed

    Zhang, Wei; Lu, Yimin

    2007-01-01

    Large particle size (125_210 microm) fluorous silica gel bonded with a -SiCH2CH2C8F17 stationary phase has been employed for gravity-driven fluorous solid-phase extraction (F-SPE) on two types of 96-well plates. A 1 or 0.75 g portion of fluorous silica is packed to each well of the 3.5-mL Ex-Blok and the 2.2-mL deep-well filtration plates, respectively. Up to 50 mg of reaction mixture is loaded and then eluted with a fluorophobic solvent (DMSO, DMF, or 85:15 DMF-H2O). Products collected in 96-well receiving plates are directly concentrated on a GeneVac vacuum centrifuge. This simple and highly efficient plate-to-plate F-SPE technique has been demonstrated in the purification of four 96-compound libraries produced by scavenging reactions with 1-(perfluoroctyl)propyl isatoic anhydride (F-IA), amide coupling reactions with 2-chloro-4,6-bis[(perfluorooctyl)propyloxy]-1,3,5-triazine (F-CDMT) or 2,4-dichloro-6-(perfluorooctyl)propyloxy-1,3,5-triazine (F-DCT), and Mitsunobu reactions with fluorous diethyl azodicarboxylate (F-DEAD) and triphenylphosphine (F-TPP). Approximately 80% of products in each library have greater than 85% purity after F-SPE without conducting chromatography.

  20. Computational investigation of porous media phase field formulations: Microscopic, effective macroscopic, and Langevin equations

    NASA Astrophysics Data System (ADS)

    Ververis, Antonios; Schmuck, Markus

    2017-09-01

    We consider upscaled/homogenized Cahn-Hilliard/Ginzburg-Landau phase field equations as mesoscopic formulations for interfacial dynamics in strongly heterogeneous domains such as porous media. A recently derived effective macroscopic formulation, which takes systematically the pore geometry into account, is computationally validated. To this end, we compare numerical solutions obtained by fully resolving the microscopic pore-scale with solutions of the upscaled/homogenized porous media formulation. The theoretically derived convergence rate O (ɛ 1 / 4) is confirmed for circular pore-walls. An even better convergence of O (ɛ1) holds for square shaped pore-walls. We also compute the homogenization error over time for different pore geometries. We find that the quality of the time evolution shows a complex interplay between pore geometry and heterogeneity. Finally, we study the coarsening of interfaces in porous media with computations of the homogenized equation and the microscopic formulation fully resolving the pore space. We recover the experimentally validated and theoretically rigorously derived coarsening rate of O (t 1 / 3) in the periodic porous media setting. In the case of critical quenching and after adding thermal noise to the microscopic porous media formulation, we observe that the influence of thermal fluctuations on the coarsening rate shows after a short, expected phase of universal coarsening, a sharp transition towards a different regime.

  1. Confocal reflectance quantitative phase microscope system for cellular membranes dynamics study (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Singh, Vijay Raj; Yaqoob, Zahid; So, Peter T. C.

    2017-02-01

    Quantitative phase microscopy (QPM) techniques developed so far primarily belongs to high speed transmitted light based systems that has enough sensitivity to resolve membrane fluctuations and dynamics, but has no depth resolution. Therefore, most biomechanics studies using QPM today is confined to simple cells, such as RBCs, without internal organelles. An important instrument that will greatly extend the biomedical applications of QPM is to develop next generation microscope with 3D capability and sufficient temporal resolution to study biomechanics of complex eukaryotic cells including the mechanics of their internal compartments. For eukaryotic cells, the depth sectioning capability is critical and should be sufficient to distinguish nucleic membrane fluctuations from plasma membrane fluctuations. Further, this microscope must provide high temporal resolution since typical eukaryotes membranes are substantially stiffer than RBCs. A confocal reflectance quantitative phase microscope is presented based on multi-pinhole scanning, with the capabilities of higher temporal resolution and sensitivity for nucleic and plasma membranes of eukaryotic cells. System hardware is developed based on an array of confocal pinhole generated by using the `ON' state of subset of micro-mirrors of digital micro-mirror device (DMD, from Texas Instruments) and high-speed raster scanning provides 14ms imaging speed in wide-field mode. A common path interferometer is integrated at the imaging arm for detection of specimens' quantitative phase information. Theoretical investigation of quantitative phase reconstructed from system is investigated and application of system is presented for dimensional fluctuations measurements of both cellular plasma and nucleic membranes of embryonic stem cells.

  2. Two-phase gas-liquid flow characteristics inside a plate heat exchanger

    SciTech Connect

    Nilpueng, Kitti; Wongwises, Somchai

    2010-11-15

    In the present study, the air-water two-phase flow characteristics including flow pattern and pressure drop inside a plate heat exchanger are experimentally investigated. A plate heat exchanger with single pass under the condition of counter flow is operated for the experiment. Three stainless steel commercial plates with a corrugated sinusoidal shape of unsymmetrical chevron angles of 55 and 10 are utilized for the pressure drop measurement. A transparent plate having the same configuration as the stainless steel plates is cast and used as a cover plate in order to observe the flow pattern inside the plate heat exchanger. The air-water mixture flow which is used as a cold stream is tested in vertical downward and upward flow. The results from the present experiment show that the annular-liquid bridge flow pattern appeared in both upward and downward flows. However, the bubbly flow pattern and the slug flow pattern are only found in upward flow and downward flow, respectively. The variation of the water and air velocity has a significant effect on the two-phase pressure drop. Based on the present data, a two-phase multiplier correlation is proposed for practical application. (author)

  3. Programmable phase plate for tool modification in laser machining applications

    DOEpatents

    Thompson Jr., Charles A.; Kartz, Michael W.; Brase, James M.; Pennington, Deanna; Perry, Michael D.

    2004-04-06

    A system for laser machining includes a laser source for propagating a laser beam toward a target location, and a spatial light modulator having individual controllable elements capable of modifying a phase profile of the laser beam to produce a corresponding irradiance pattern on the target location. The system also includes a controller operably connected to the spatial light modulator for controlling the individual controllable elements. By controlling the individual controllable elements, the phase profile of the laser beam may be modified into a desired phase profile so as to produce a corresponding desired irradiance pattern on the target location capable of performing a machining operation on the target location.

  4. Optical vortex microscope with the simple phase object: theoretical model and its experimental verification

    NASA Astrophysics Data System (ADS)

    Popiołek-Masajada, Agnieszka; Masajada, Jan; Kurzynowski, Piotr

    2017-06-01

    In this work we consider a microscopic optical system in which the beam with an optical vortex illuminates the sample. The sample modifies the geometry of the vortex beam wavefront and the information about it is transferred into the detection plane. It is shown that the beam at the detection plane can be represented by two parts: non-disturbed vortex part and sample part. We propose and test a scheme for recovering the phase changes caused by sample inserted into the vortex beam. The numerical simulations are supported by the experimental work.

  5. Simultaneous microscopic measurements of thermal and spectroscopic fields of a phase change material

    NASA Astrophysics Data System (ADS)

    Romano, M.; Ryu, M.; Morikawa, J.; Batsale, J. C.; Pradere, C.

    2016-05-01

    In this paper, simultaneous microscopic measurements of thermal and spectroscopic fields of a paraffin wax n-alkane phase change material are reported. Measurements collected using an original set-up are presented and discussed with emphasis on the ability to perform simultaneous characterization of the system when the proposed imaging process is used. Finally, this work reveals that the infrared wavelength contains two sets of important information. Furthermore, this versatile and flexible technique is well adapted to characterize many systems in which the mass and heat transfers effects are coupled.

  6. Testing results of tubeless flat-plate phase-change solar collectors

    SciTech Connect

    Tamimi, A. ); Rawajfeh, K. )

    1991-01-01

    This paper reports on a tubeless solar collector charged with Refrigerant-113 (R-113) that was installed and tested. Steady-state performance of this system showed high efficiency values; this was due to phase-change heat transfer characteristics of a boiling process that is accompanied by low plate temperature as well as low thermal resistance to heat flow from the absorber plate to the working fluid. The only resistance to heat flow toward the working fluid is the conduction resistance through the upper plate, which is negligible.

  7. Inhibition of atomic phase decays by squeezed light in a microscopic Fabry-Perot cavity

    NASA Astrophysics Data System (ADS)

    Parkins, A. S.; Gardiner, C. W.

    1989-10-01

    The inhibition of atomic phase decays by squeezed light, as first predicted by Gardiner (1986), has yet to be confirmed experimentally. A major obstacle to such an experiment is the production of an effective squeezed-vacuum-atom coupling, so that the atom interacts only with squeezed modes of the radiation field. In this paper, the use of a microscopic plane-mirror Fabry-Perot cavity is proposed to effect a strong selection of modes coupling to the atom. It is shown that a significant reduction in fluctuations experienced by the atom can be achieved in one quadrature, with an input squeezed beam of modest angular dimensions, provided that the phase (and to lesser extent the amplitude) characteristics of the input beam are suitably matched to the cavity.

  8. Scattering properties of normal and cancerous tissues from human stomach based on phase-contrast microscope

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Li, Zhifang; Li, Hui

    2012-12-01

    In order to study scattering properties of normal and cancerous tissues from human stomach, we collect images for human gastric specimens by using phase-contrast microscope. The images were processed by the way of mathematics morphology. The equivalent particle size distribution of tissues can be obtained. Combining with Mie scattering theory, the scattering properties of tissues can be calculated. Assume scattering of light in biological tissue can be seen as separate scattering events by different particles, total scattering properties can be equivalent to as scattering sum of particles with different diameters. The results suggest that scattering coefficient of the cancerous tissue is significantly higher than that of normal tissue. The scattering phase function is different especially in the backscattering area. Those are significant clinical benefits to diagnosis cancerous tissue

  9. Measurement of displacement using phase shifted wedge plate lateral shearing interferometry

    NASA Astrophysics Data System (ADS)

    Disawal, Reena; Prakash, Shashi

    2016-03-01

    In present communication, a simple technique for measurement of displacement using phase shifted wedge plate lateral shearing interferometry is described. The light beam from laser is expanded and illuminates a wedge plate of relatively large angle. Light transmitted through the wedge plate is converged onto a reflecting specimen using a focusing lens. Back-reflected wavefront from the specimen is incident on the wedge plate. Because of the tilt and shear of the wavefront reflected from the wedge plate, typical straight line fringes appear. These fringes are superimposed onto a sinusoidal grating forming a moiré pattern. The orientation of the moiré fringes is a function of specimen displacement. Four step phase shifting test procedure has been incorporated by translating the grating in phase steps of π/2. Necessary mathematical formulation to establish correlation between the 'difference phase' and the displacement of the specimen surface is undertaken. The technique is automatic and provides resolution and expanded uncertainty of 1 μm and 0.246 μm, respectively. Detailed uncertainty analysis is also reported.

  10. Structure of the colcemid-treated PtK1 kinetochore outer plate as determined by high voltage electron microscopic tomography

    PubMed Central

    1993-01-01

    High voltage electron microscopic tomography was used to determine the organization of the kinetochore plate and its attachment to the underlying chromosome. Six reconstructions were computed from thick sections of Colcemid-treated PtK1 cells and analyzed by a number of computer graphics methods including extensive thin slicing, three- dimensional masking, and volume rendering. When viewed en-face the kinetochore plate appeared to be constructed from a scaffold of numerous 10-20-nm thick fibers or rods. Although the fibers exhibited regions of parallel alignment and hints of a lattice, they were highly variable in length, orientation and spacing. When viewed in stereo, groups of these fibers were often seen oriented in different directions at different depths to give an overall matted appearance to the structure. When viewed "on edge," the plate was 35-40 nm thick, and in thin slices many regions were tripartite with electron-opaque domains, separated by a more translucent middle layer, forming the inner and outer plate boundaries. These domains were joined at irregular intervals. In some slices, each domain appeared as a linear array of 10- 20-nm dots or rods embedded in a less electron-opaque matrix, and adjacent dots within or between domains often appeared fused to form larger blocks. The plate was connected to the underlying chromosome by less densely arrayed 10-20-nm thick fibers that contacted the chromosome-facing (i.e., inner) surface of the plate in numerous patches. These patches tended to be arrayed in parallel rows perpendicular to the long axis of the chromosome. In contrast to connecting fibers, corona fibers were more uniformly distributed over the cytoplasmic-facing (i.e., outer) surface of the plate. When large portions of the reconstructions were viewed, either en-face or in successive slices parallel to the long axis of the chromosome, the edges of the plate appeared splayed into multiple "fingers" that partly encircled the primary constriction

  11. Structure of the colcemid-treated PtK1 kinetochore outer plate as determined by high voltage electron microscopic tomography.

    PubMed

    McEwen, B F; Arena, J T; Frank, J; Rieder, C L

    1993-01-01

    High voltage electron microscopic tomography was used to determine the organization of the kinetochore plate and its attachment to the underlying chromosome. Six reconstructions were computed from thick sections of Colcemid-treated PtK1 cells and analyzed by a number of computer graphics methods including extensive thin slicing, three-dimensional masking, and volume rendering. When viewed en-face the kinetochore plate appeared to be constructed from a scaffold of numerous 10-20-nm thick fibers or rods. Although the fibers exhibited regions of parallel alignment and hints of a lattice, they were highly variable in length, orientation and spacing. When viewed in stereo, groups of these fibers were often seen oriented in different directions at different depths to give an overall matted appearance to the structure. When viewed "on edge," the plate was 35-40 nm thick, and in thin slices many regions were tripartite with electron-opaque domains, separated by a more translucent middle layer, forming the inner and outer plate boundaries. These domains were joined at irregular intervals. In some slices, each domain appeared as a linear array of 10-20-nm dots or rods embedded in a less electron-opaque matrix, and adjacent dots within or between domains often appeared fused to form larger blocks. The plate was connected to the underlying chromosome by less densely arrayed 10-20-nm thick fibers that contacted the chromosome-facing (i.e., inner) surface of the plate in numerous patches. These patches tended to be arrayed in parallel rows perpendicular to the long axis of the chromosome. In contrast to connecting fibers, corona fibers were more uniformly distributed over the cytoplasmic-facing (i.e., outer) surface of the plate. When large portions of the reconstructions were viewed, either en-face or in successive slices parallel to the long axis of the chromosome, the edges of the plate appeared splayed into multiple "fingers" that partly encircled the primary constriction

  12. Fabrication of a new substrate for atomic force microscopic observation of DNA molecules from an ultrasmooth sapphire plate.

    PubMed

    Yoshida, K; Yoshimoto, M; Sasaki, K; Ohnishi, T; Ushiki, T; Hitomi, J; Yamamoto, S; Sigeno, M

    1998-04-01

    A new stable substrate applicable to the observation of DNA molecules by atomic force microscopy (AFM) was fabricated from a ultrasmooth sapphire (alpha-Al2O3 single crystal) plate. The atomically ultrasmooth sapphire as obtained by high-temperature annealing has hydrophobic surfaces and could not be used for the AFM observation of DNA. However, sapphire treated with Na3PO4 aqueous solution exhibited a hydrophilic character while maintaining a smooth surface structure. The surface of the wet-treated sapphire was found by x-ray photoelectron spectroscopy and AFM to be approximately 0.3 nm. The hydrophilic surface character of the ultrasmooth sapphire plate made it easy for DNA molecules to adhere to the plate. Circular molecules of the plasmid DNA could be imaged by AFM on the hydrophilic ultrasmooth sapphire plate.

  13. Fabrication of a new substrate for atomic force microscopic observation of DNA molecules from an ultrasmooth sapphire plate.

    PubMed Central

    Yoshida, K; Yoshimoto, M; Sasaki, K; Ohnishi, T; Ushiki, T; Hitomi, J; Yamamoto, S; Sigeno, M

    1998-01-01

    A new stable substrate applicable to the observation of DNA molecules by atomic force microscopy (AFM) was fabricated from a ultrasmooth sapphire (alpha-Al2O3 single crystal) plate. The atomically ultrasmooth sapphire as obtained by high-temperature annealing has hydrophobic surfaces and could not be used for the AFM observation of DNA. However, sapphire treated with Na3PO4 aqueous solution exhibited a hydrophilic character while maintaining a smooth surface structure. The surface of the wet-treated sapphire was found by x-ray photoelectron spectroscopy and AFM to be approximately 0.3 nm. The hydrophilic surface character of the ultrasmooth sapphire plate made it easy for DNA molecules to adhere to the plate. Circular molecules of the plasmid DNA could be imaged by AFM on the hydrophilic ultrasmooth sapphire plate. PMID:9545030

  14. The Biological Sensor for Detection of Bacterial Cells in Liquid Phase Based on Plate Acoustic Wave

    NASA Astrophysics Data System (ADS)

    Borodina, Irina; Zaitsev, Boris; Shikhabudinov, Alexander; Guliy, Olga; Ignatov, Oleg; Teplykh, Andrey

    The interactions "bacterial cells - bacteriophages", "bacterial cells - antibodies" and "bacterial cells - mini- antibodies" directly in liquid phase were experimentally investigated with a help of acoustic sensor. The acoustic sensor under study represents two-channel delay line based on the plate of Y-X lithium niobate. One channel of delay line was electrically shorted, the second channel was electrically open. The liquid container was glued on plate surface between transducers of delay line. The dependencies of the change in phase and insertion loss on concentration of bacteriophages, antibodies, and mini- antibodies were obtained for both channels of delay line.

  15. Volta phase plate cryo-EM of the small protein complex Prx3

    NASA Astrophysics Data System (ADS)

    Khoshouei, Maryam; Radjainia, Mazdak; Phillips, Amy J.; Gerrard, Juliet A.; Mitra, Alok K.; Plitzko, Jürgen M.; Baumeister, Wolfgang; Danev, Radostin

    2016-01-01

    Cryo-EM of large, macromolecular assemblies has seen a significant increase in the numbers of high-resolution structures since the arrival of direct electron detectors. However, sub-nanometre resolution cryo-EM structures are rare compared with crystal structure depositions, particularly for relatively small particles (<400 kDa). Here we demonstrate the benefits of Volta phase plates for single-particle analysis by time-efficient cryo-EM structure determination of 257 kDa human peroxiredoxin-3 dodecamers at 4.4 Å resolution. The Volta phase plate improves the applicability of cryo-EM for small molecules and accelerates structure determination.

  16. Individual-based modelling of bacterial cultures to study the microscopic causes of the lag phase.

    PubMed

    Prats, Clara; López, Daniel; Giró, Antoni; Ferrer, Jordi; Valls, Joaquim

    2006-08-21

    The lag phase has been widely studied for years in an effort to contribute to the improvement of food safety. Many analytical models have been built and tested by several authors. The use of Individual-based Modelling (IbM) allows us to probe deeper into the behaviour of individual cells; it is a bridge between theories and experiments when needed. INDividual DIScrete SIMulation (INDISIM) has been developed and coded by our group as an IbM simulator and used to study bacterial growth, including the microscopic causes of the lag phase. First of all, the evolution of cellular masses, specifically the mean mass and biomass distribution, is shown to be a determining factor in the beginning of the exponential phase. Secondly, whenever there is a need for an enzyme synthesis, its rate has a direct effect on the lag duration. The variability of the lag phase with different factors is also studied. The known decrease of the lag phase with an increase in the temperature is also observed in the simulations. An initial study of the relationship between individual and collective lag phases is presented, as a complement to the studies already published. One important result is the variability of the individual lag times and generation times. It has also been found that the mean of the individual lags is greater than the population lag. This is the first in a series of studies of the lag phase that we are carrying out. Therefore, the present work addresses a generic system by making a simple set of assumptions.

  17. Near-Atomic Resolution Structure Determination in Over-Focus with Volta Phase Plate by Cs-Corrected Cryo-EM.

    PubMed

    Fan, Xiao; Zhao, Lingyun; Liu, Chuan; Zhang, Jin-Can; Fan, Kelong; Yan, Xiyun; Peng, Hai-Lin; Lei, Jianlin; Wang, Hong-Wei

    2017-10-03

    Volta phase plate (VPP) is a recently developed transmission electron microscope (TEM) apparatus that can significantly enhance the image contrast of biological samples in cryoelectron microscopy, and therefore provide the possibility to solve structures of relatively small macromolecules at high-resolution. In this work, we performed theoretical analysis and found that using phase plate on objective lens spherical aberration (Cs)-corrected TEM may gain some interesting optical properties, including the over-focus imaging of macromolecules. We subsequently evaluated the imaging strategy of frozen-hydrated apo-ferritin with VPP on a Cs-corrected TEM and obtained the structure of apo-ferritin at near-atomic resolution from both under- and over-focused dataset, illustrating the feasibility and new potential of combining VPP with Cs-corrected TEM for high-resolution cryo-EM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Phase Velocity Method for Guided Wave Measurements in Composite Plates

    NASA Astrophysics Data System (ADS)

    Moreno, E.; Galarza, N.; Rubio, B.; Otero, J. A.

    Carbon Fiber Reinforced Polymer is a well-recognized material for aeronautic applications. Its plane structure has been widely used where anisotropic characteristics should be evaluated with flaw detection. A phase velocity method of ultrasonic guided waves based on a pitch-catch configuration is presented for this purpose. Both shear vertical (SV) and shear horizontal (SH) have been studied. For SV (Lamb waves) the measurements were done at different frequencies in order to evaluate the geometrical dispersion and elastic constants. The results for SV are discussed with an orthotropic elastic model. Finally experiments with lamination flaws are presented.

  19. Wavefront-guided correction of ocular aberrations: Are phase plate and refractive surgery solutions equal?

    NASA Astrophysics Data System (ADS)

    Marchese, Linda E.; Munger, Rejean; Priest, David

    2005-08-01

    Wavefront-guided laser eye surgery has been recently introduced and holds the promise of correcting not only defocus and astigmatism in patients but also higher-order aberrations. Research is just beginning on the implementation of wavefront-guided methods in optical solutions, such as phase-plate-based spectacles, as alternatives to surgery. We investigate the theoretical differences between the implementation of wavefront-guided surgical and phase plate corrections. The residual aberrations of 43 model eyes are calculated after simulated refractive surgery and also after a phase plate is placed in front of the untreated eye. In each case, the current wavefront-guided paradigm that applies a direct map of the ocular aberrations to the correction zone is used. The simulation results demonstrate that an ablation map that is a Zernike fit of a direct transform of the ocular wavefront phase error is not as efficient in correcting refractive errors of sphere, cylinder, spherical aberration, and coma as when the same Zernike coefficients are applied to a phase plate, with statistically significant improvements from 2% to 6%.

  20. Performance evaluation of selective mode conversion based on phase plates for a 10-mode fiber.

    PubMed

    Igarashi, Koji; Souma, Daiki; Tsuritani, Takehiro; Morita, Itsuro

    2014-08-25

    We numerically and experimentally evaluate the performance of higher-order mode conversion based on phase plates for 10-mode fibers (10MFs). The phase plates have the phase jump of π between multiple planes, which match the phase patterns of linearly polarized (LP) modes of 10MF. First, we numerically investigate the effects of the fabrication errors such as the phase-difference error and the slope in the phase jump of the phase plate. The simulation results for the mode conversion to LP11 indicate that such errors make the spatial pattern of the converted beam asymmetric. In order to maintain the symmetric pattern, the phase-difference error is required to be less than ± 2%, and the ratio of the slope width to the input beam waist should be suppressed to be less than 0.05. Next, we calculate the coupling power efficiencies of the excitation of LP modes in 10MF when the converted beams after the phase plate are launched into 10MF using a lens. As the calculation results, highly accurate adjustment of the input beam waist is required to suppress the crosstalk due to coupling of undesirable LP modes by less than -20 dB. For mode excitation of LP11 or LP12, crosstalk of more than -20 dB is not avoidable even if the input beam waist is carefully adjusted. In contrast, the crosstalk for the mode excitation of LP21 or LP31 is easily suppressed to be less than -20 dB without careful adjustment of the input beam waist. These results suggest that phase plates are not applicable to mode conversion to LP11 and LP12 in 10MF while they are suitable for conversion to LP02, LP21 and LP31. Finally, we experimentally demonstrate conversion from LP01 to LP21 and LP31 modes in 10MF using phase plates. We obtain nearly ideal LP21 and LP31 modes with the small crosstalk due to the coupling of the other undesirable LP modes.

  1. Design and test of a pumped two-phase mounting plate. [for spacecraft thermal control systems

    NASA Technical Reports Server (NTRS)

    Grote, M. G.; Swanson, T. D.

    1985-01-01

    The design, fabrication, and testing of the full-scale development unit of a pumped two-phase mounting plate (TPMP) used in advanced two-phase spacecraft thermal control systems are described. The mounting plate is tested with R-11 in the evaporator mode for total heat loads of over 3000 watts and local heat fluxes over 4 W/sq cm, and in the condenser mode with condenser loads from 60 to 400 watts and inlet qualities from 8 to 94 percent. The calculated heat-transfer coefficients are between 0.66 and 1.0 W/sq cm/C and are nearly independent of the flow rate and heat load except at very low heat loads. It is shown that the TPMP can be run with inlet conditions down to 22 C subcooling without any significant gradients in the plate and that it performs well with nonuniform heat fluxes.

  2. An automatic system for measurement of retardation of wave plates based on phase-shifted method

    NASA Astrophysics Data System (ADS)

    Gao, Zhishan; Yan, Ming

    2005-02-01

    A practical system is described to measure the retardation of wave plates with phase-shifted method. The tested wave plate is put in and the original angle between the axis of it and the analyzer is random, not 45 degree. For the measurement is made rapidly and automatically, a standard wave plate act as a compensator, the stepping motor is used to drive the analyzer to realize phase shifting and a grating encoder is used to measure its rotating angle. At the same time, while the beam comes out from the analyzer, the photoelectric detector gets its intensity, and then the signals is magnified, filtered and sent to computer through its serial port. The results show the system has the advantages of costing little time and high accuracy.

  3. Motion detection and pattern tracking in microscopical images using phase correlation approach

    NASA Astrophysics Data System (ADS)

    Gladilin, Evgeny; Kappel, Constantin; Eils, Roland

    2007-03-01

    High-throughput live-cell imaging is one of the important tools for the investigation of cellular structure and functions in modern experimental biology. Automatic processing of time series of microscopic images is hampered by a number of technical and natural factors such as permanent movements of cells in the optical field, alteration of optical cell appearance and high level of noise. Detection and compensation of global motion of groups of cells or relocation of a single cell within a dynamical multi-cell environment is the first indispensable step in the image analysis chain. This article presents an approach for detection of global image motion and single cell tracking in time series of confocal laser scanning microscopy images using an extended Fourier-phase correlation technique, which allows for analysis of non-uniform multi-body motion in partially-similar images. Our experimental results have shown that the developed approach is capable to perform cell tracking and registration in dynamical and noisy scenes, and provides a robust tool for fully-automatic registration of time-series of microscopic images.

  4. Phase-contrast versus off-axis illumination: is a more complex microscope always more powerful?

    PubMed

    Hostounský, Zdenek; Pelc, Radek

    2007-06-01

    In this article, a practical demonstration suitable for any biology college classroom is presented. With the examples of a complex biological specimen (slug's radula) and a simple reference specimen (electron microscopical grid imprint in gelatin), both of which can be easily prepared, the capabilities of two imaging modes commonly used in optical microscopy are demonstrated. The results obtained under phase contrast (a rather sophisticated method, 1953 Nobel Prize to Zernike) and off-axis illumination (a very simple method) are compared. The off-axis illumination setup is capable of delivering noticeably better microscopic images of these two particular specimens, yet it can be easily assembled in a laboratory classroom. The outcome of such a demonstration is expected to be the realization on the part of the students that one needs to carefully choose the apparatus to address a given biological problem, with the "bottom line" being that a more complex one may not necessarily yield better results. An attempt to explain this "paradox" is presented, in the particular case presented here, partly from the physiology of vision perspective (the shape-from-shading problem). The overall aim of the present article is to induce in students critical thinking about the capabilities of a laboratory equipment in general and about data interpretation.

  5. Biaxial nematic phase stability and demixing behaviour in monolayers of rod-plate mixtures.

    PubMed

    Martínez-Ratón, Yuri; González-Pinto, Miguel; Velasco, Enrique

    2016-09-21

    We theoretically study the phase behaviour of monolayers of hard rod-plate mixtures using a fundamental-measure density functional in the restricted-orientation (Zwanzig) approximation. Particles can rotate in 3D but their centres of mass are constrained to be on a flat surface. In addition, we consider both species to be subject to an attractive potential proportional to the particle contact area on the surface and with adsorption strengths that depend on the species type. Particles have board-like shape, with sizes chosen using a symmetry criterion: same volume and same aspect ratio κ. Phase diagrams were calculated for κ = 10, 20 and 40 and different values of adsorption strengths. For small adsorption strengths the mixtures exhibit a second-order uniaxial nematic-biaxial nematic transition for molar fraction of rods 0 ≤x≲ 0.9. In the uniaxial nematic phase the particle axes of rods and plates are aligned perpendicular and parallel to the monolayer, respectively. At the transition, the orientational symmetry of the plate axes is broken, and they orient parallel to a director lying on the surface. For large and equal adsorption strengths the mixture demixes at low pressures into a uniaxial nematic phase, rich in plates, and a biaxial nematic phase, rich in rods. The demixing transition is located between two tricritical points. Also, at higher pressures and in the plate-rich part of the phase diagram, the system exhibits a strong first-order uniaxial nematic-biaxial nematic phase transition with a large density coexistence gap. When rod adsorption is considerably large while that of plates is small, the transition to the biaxial nematic phase is always of second order, and its region of stability in the phase diagram considerably widens. At very high pressures the mixture can effectively be identified as a two-dimensional mixture of squares and rectangles which again demixes above a certain critical point. We also studied the relative stability of uniform

  6. Magnetorheological Finishing for Imprinting Continuous Phase Plate Structure onto Optical Surfaces

    SciTech Connect

    Menapace, J A; Dixit, S N; Genin, F Y; Brocious, W F

    2004-01-05

    Magnetorheological finishing (MRF) techniques have been developed to manufacture continuous phase plates (CPP's) and custom phase corrective structures on polished fused silica surfaces. These phase structures are important for laser applications requiring precise manipulation and control of beam-shape, energy distribution, and wavefront profile. The MRF's unique deterministic-sub-aperture polishing characteristics make it possible to imprint complex topographical information onto optical surfaces at spatial scale-lengths approaching 1 mm. In this study, we present the results of experiments and model calculations that explore imprinting two-dimensional sinusoidal structures. Results show how the MRF removal function impacts and limits imprint fidelity and what must be done to arrive at a high quality surface. We also present several examples of this imprinting technology for fabrication of phase correction plates and CPPs for use at high fluences.

  7. Spatial mode demultiplexing technique using angularly multiplexed volume holograms with a phase plate

    NASA Astrophysics Data System (ADS)

    Shimizu, Shimpei; Okamoto, Atsushi; Mizukawa, Fumiya; Ogawa, Kazuhisa; Tomita, Akihisa; Takahata, Taketoshi; Shinada, Satoshi; Wada, Naoya

    2017-09-01

    In this paper, we propose a spatial mode demultiplexing technique that uses a volume holographic demultiplexer (VHDM) with a phase plate. The VHDM can separate the multiplexed spatial modes with a single device by using angularly multiplexed volume holograms. In the VHDM, modal cross-talks, which are called inter-page cross-talks in the holographic data storages, are generated, and hence the separation performance of the VHDM is degraded by the intensity overlap between spatial modes. Therefore, we propose a novel scheme wherein phase modulation with a phase plate is added to the conventional scheme. The proposed scheme can achieve high separation performance by modulating the phase of spatial modes to reduce the intensity overlap. In this study, we demonstrated the basic operation of the proposed method for a specific linearly polarized mode group. The separation performance of the VHDM was observed to be markedly improved by the proposed method.

  8. Diffraction of a plane, finite-radius wave by a spiral phase plate.

    PubMed

    Kotlyar, V V; Khonina, S N; Kovalev, A A; Soifer, V A; Elfstrom, H; Turunen, J

    2006-06-01

    We derive analytical expressions containing a hypergeometric function to describe the Fresnel and Fraunhofer diffraction of a plane wave of circular and ringlike cross section by a spiral phase plate (SPP) of an arbitrary integer order. Experimental diffraction patterns generated by an SPP fabricated in resist through direct e-beam writing are in good agreement with the theoretical intensity distribution.

  9. Planar gas chromatography column on aluminum plate with multi-walled carbon nanotubes as stationary phase

    NASA Astrophysics Data System (ADS)

    Platonov, I. A.; Platonov, V. I.; Pavelyev, V. S.

    2016-04-01

    The high selectivity of the adsorption layer for low-boiling alkanes is shown, the separation factor (α) couple iso-butane / butane is 1.9 at a column temperature of 50 °C.The paper presents sorption and selective properties of planar gas chromatography column on aluminum plate with multi-walled carbon nanotubes as the stationary phase.

  10. Effect of phase delay on the pumping efficiency of a multi-plate gill array

    NASA Astrophysics Data System (ADS)

    Larson, Mary; Kiger, Ken

    2011-11-01

    In nature, pumping by oscillating appendage arrays (used for respiration, feeding or locomotion) have been noted to exhibit distinct patterns of movement depending on their intended function and Reynolds number. One thing that is typically in common, however, is that a phase lag of 60 to 90 degrees between adjacent appendages is used for many low to intermediate Reynolds number conditions (10 to 10000). To understand why this trait is commonly exhibited, a robotic oscillating plate array modeled after a nymphal mayfly was constructed that permitted stroke, pitch and phase lag variation between adjacent plates. Stereoscopic PIV was used to obtain three-dimensional velocity data, allowing computation of the net pumping rate and flow induced dissipation for five cases, focusing on the role of the gill plate interactions and their dependence on the phase lag between adjacent gills. The results indicate that mayfly gills most likely use a phase lag of 90° because it produces the highest net mass flow rate while consuming the least amount of energy. Measurements indicate that this occurs as a balance between excessive dissipation during close-approach events while optimizing favorable hydrodynamic interactions between adjacent plates. Work supported by NSF under grant CBET0730907.

  11. Quantum coherent optical phase modulation in an ultrafast transmission electron microscope.

    PubMed

    Feist, Armin; Echternkamp, Katharina E; Schauss, Jakob; Yalunin, Sergey V; Schäfer, Sascha; Ropers, Claus

    2015-05-14

    Coherent manipulation of quantum systems with light is expected to be a cornerstone of future information and communication technology, including quantum computation and cryptography. The transfer of an optical phase onto a quantum wavefunction is a defining aspect of coherent interactions and forms the basis of quantum state preparation, synchronization and metrology. Light-phase-modulated electron states near atoms and molecules are essential for the techniques of attosecond science, including the generation of extreme-ultraviolet pulses and orbital tomography. In contrast, the quantum-coherent phase-modulation of energetic free-electron beams has not been demonstrated, although it promises direct access to ultrafast imaging and spectroscopy with tailored electron pulses on the attosecond scale. Here we demonstrate the coherent quantum state manipulation of free-electron populations in an electron microscope beam. We employ the interaction of ultrashort electron pulses with optical near-fields to induce Rabi oscillations in the populations of electron momentum states, observed as a function of the optical driving field. Excellent agreement with the scaling of an equal-Rabi multilevel quantum ladder is obtained, representing the observation of a light-driven 'quantum walk' coherently reshaping electron density in momentum space. We note that, after the interaction, the optically generated superposition of momentum states evolves into a train of attosecond electron pulses. Our results reveal the potential of quantum control for the precision structuring of electron densities, with possible applications ranging from ultrafast electron spectroscopy and microscopy to accelerator science and free-electron lasers.

  12. Quantum coherent optical phase modulation in an ultrafast transmission electron microscope

    NASA Astrophysics Data System (ADS)

    Feist, Armin; Echternkamp, Katharina E.; Schauss, Jakob; Yalunin, Sergey V.; Schäfer, Sascha; Ropers, Claus

    2015-05-01

    Coherent manipulation of quantum systems with light is expected to be a cornerstone of future information and communication technology, including quantum computation and cryptography. The transfer of an optical phase onto a quantum wavefunction is a defining aspect of coherent interactions and forms the basis of quantum state preparation, synchronization and metrology. Light-phase-modulated electron states near atoms and molecules are essential for the techniques of attosecond science, including the generation of extreme-ultraviolet pulses and orbital tomography. In contrast, the quantum-coherent phase-modulation of energetic free-electron beams has not been demonstrated, although it promises direct access to ultrafast imaging and spectroscopy with tailored electron pulses on the attosecond scale. Here we demonstrate the coherent quantum state manipulation of free-electron populations in an electron microscope beam. We employ the interaction of ultrashort electron pulses with optical near-fields to induce Rabi oscillations in the populations of electron momentum states, observed as a function of the optical driving field. Excellent agreement with the scaling of an equal-Rabi multilevel quantum ladder is obtained, representing the observation of a light-driven `quantum walk' coherently reshaping electron density in momentum space. We note that, after the interaction, the optically generated superposition of momentum states evolves into a train of attosecond electron pulses. Our results reveal the potential of quantum control for the precision structuring of electron densities, with possible applications ranging from ultrafast electron spectroscopy and microscopy to accelerator science and free-electron lasers.

  13. Application of phase stretch transform to plate license identification under blur and noise conditions (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Asghari, Hossein; Hadar, Ofer; Jalali, Bahram

    2016-09-01

    This paper deals with implementing a new algorithm for edge detection based on the Phase Stretch Transform (PST) for purposes of car plate license recognition. In PST edge detection algorithm, the image is first filtered with a spatial kernel followed by application of a nonlinear frequency-dependent phase. The output of the transform is the phase in the spatial domain. The main step is the 2-D phase function which is typically applied in the frequency domain. The amount of phase applied to the image is frequency dependent with higher amount of phase applied to higher frequency features of the image. Since sharp transitions, such as edges and corners, contain higher frequencies, PST emphasizes the edge information. Features can be further enhanced by applying thresholding and morphological operations. Here we investigate the influence of noise and blur on the ability to recognize the characters in the plate license, by comparison of our suggested algorithm with the well known Canny algorithm. We use several types of noise distributions among them, Gaussian noise, salt and paper noise and uniform distributed noise, with several levels of noise variances. The simulated blur is related to the car velocity and we applied several filters representing different velocities of the car. Another interesting degradation that we intend to investigate is the cases that Laser shield license plate cover is used to distort the image taken by the authorities. Our comparison results are presented in terms of True positive, False positive and False negative probabilities.

  14. Single-Phase Drive Ultrasonic Linear Motor Using a Linked Twin Square Plate Vibrator

    NASA Astrophysics Data System (ADS)

    Yokoyama, Keiji; Tamura, Hideki; Masuda, Kentaro; Takano, Takehiro

    2013-07-01

    A novel linear motion ultrasonic motor, which uses a single resonance mode driven by a single phase and has the same motor characteristics for operation in reverse directions, is developed. An in-plane breathing mode in the square plate is strongly driven by the transverse effect of a piezoelectric ceramic. A stator resonator consists of twin square plates linked by V-shaped beams. Only one side of the square plate can be excited by the resonance of the breathing mode, when the other passive side plate is electrically opened so that the effective elasticities and the resonant frequencies between both plates are different; as a result, the friction edge of the resonator vibrates in a slant locus to move a load slider. The reverse operation is easily obtained by switching the driving side of the square plates. We designed the stator resonator by FEM analysis and fabricated a prototype for our experiment. The prototype motor showed good characteristics, for example, a moving slider velocity of 100 mm/s, a thrust force of 3.5 N, and an efficiency of 30% when the preload was 10 N, the input effective voltage was 5 V, and the input power was 1.2 W.

  15. Method for preparing surfaces of metal composites having a brittle phase for plating. [Patent application

    DOEpatents

    Coates, C.W.; Wilson, T.J.

    1982-05-19

    The present invention is directed to a method for preparing surfaces of two-phase metal composites having relatively brittle and malleable components for plating with corrosion-resistant material. In practice of the present invention, the surfaces of the composite are etched to remove a major portion or fraction of the brittle component. The etched surface is then peened with particulates for breaking the brittle component from the surfaces and for spreading or smearing the malleable component over the surfaces. The peened surface is then chemically cleaned of residual traces of the brittle component to which the corrosion-resistant material may be plated thereon in an adherent manner.

  16. Polarization phase-shifting lateral shearing interferometer with two polarization beam splitter plates

    NASA Astrophysics Data System (ADS)

    Gu, Liyuan; Liu, Lei; Hu, Shiyu; Zeng, Aijun; Huang, Huijie

    2017-08-01

    We proposed a compact and simple polarization phase-shifting lateral shearing interferometer using two polarization beam splitter plates (PBSP). This interferometer is composed of two PBSP, a quarter-wave plate, an analyzer and a CCD camera. With the two PBSP positioned in appropriate spatial positions, optical path difference compensation is achieved, which allows for the implement of aplanatic and common-path shearing interferometer. Therefore, the system possesses significant advantages of simple structure, compact and strong anti-interference ability. The effectiveness of the interferometer is demonstrated by simulations and experiments.

  17. A compact "water-window" microscope with 60-nm spatial resolution based on a double stream gas-puff target and Fresnel zone plate optics

    NASA Astrophysics Data System (ADS)

    Wachulak, Przemyslaw; Torrisi, Alfio; Nawaz, Muhammad F.; Adjei, Daniel; Bartnik, Andrzej; Kostecki, Jerzy; Wegrzynski, Łukasz; Vondrová, Šárka; Turňová, Jana; Fok, Tomasz; Jančarek, Alexandr; Fiedorowicz, Henryk

    2015-05-01

    Radiation with shorter illumination wavelength allows for extension of the diffraction limit towards nanometer scale, which is a straightforward way to significantly improve a spatial resolution in photon based microscopes. Soft X-ray (SXR) radiation, from the so called "water window" spectral range, λ=2.3-4.4 nm, which is particularly suitable for biological imaging due to natural optical contrast, providing much better spatial resolution than one obtained with visible light microscopes. The high contrast is obtained because of selective absorption of radiation by carbon and water, being constituents of the biological samples. We present a desk-top system, capable of resolving 60 nm features in few seconds exposure time. We exploit the advantages of a compact, laser-plasma SXR source, based on a double stream nitrogen gas puff target, developed at the Institute of Optoelectronics, Military University of Technology. The source, emitting quasi-monochromatic, incoherent radiation, in the "water widow" spectral range at λ = 2.88 nm, is coupled with ellipsoidal, grazing incidence condenser and Fresnel zone plate objective. The construction of the microscope with some recent images of test and real samples will be presented and discussed.

  18. Combined spectral estimator for phase velocities of multimode Lamb waves in multilayer plates.

    PubMed

    Ta, De-an; Liu, Zhen-qing; Liu, Xiao

    2006-12-22

    A novel combined spectral estimate (CSE) method for differentiation and estimation the phase velocities of multimode Lamb waves whose wave numbers are much close or overlap one another in multiplayer plates is presented in this paper, which based on auto-regressive (AR) model and 2-D FFT. Simulated signals in brass plate were processed by 2-D FFT and CSE. And experiments are performed by using two conventional angle probes as emitter and receiver on the same surface of three-layered aluminum/xpoxy/aluminum plates, which include symmetrical and unsymmetrical plates. The multimode Lamb waves are excited in these laminates, and the received signal is processed by 2-D FFT and CSE, respectively. The results showed that the phase velocities of multimode signals whose wave numbers are much closed cannot be differentiated by 2-D FFT, but CSE has strong spatial resolution. Compared the measured phase velocities with the theoretical values, the error is smaller than 2% on the whole. It promises to be a useful method in experimental signals processing of multimode Lamb waves.

  19. Switchable Ultrathin Quarter-wave Plate in Terahertz Using Active Phase-change Metasurface

    PubMed Central

    Wang, Dacheng; Zhang, Lingchao; Gu, Yinghong; Mehmood, M. Q.; Gong, Yandong; Srivastava, Amar; Jian, Linke; Venkatesan, T.; Qiu, Cheng-Wei; Hong, Minghui

    2015-01-01

    Metamaterials open up various exotic means to control electromagnetic waves and among them polarization manipulations with metamaterials have attracted intense attention. As of today, static responses of resonators in metamaterials lead to a narrow-band and single-function operation. Extension of the working frequency relies on multilayer metamaterials or different unit cells, which hinder the development of ultra-compact optical systems. In this work, we demonstrate a switchable ultrathin terahertz quarter-wave plate by hybridizing a phase change material, vanadium dioxide (VO2), with a metasurface. Before the phase transition, VO2 behaves as a semiconductor and the metasurface operates as a quarter-wave plate at 0.468 THz. After the transition to metal phase, the quarter-wave plate operates at 0.502 THz. At the corresponding operating frequencies, the metasurface converts a linearly polarized light into a circularly polarized light. This work reveals the feasibility to realize tunable/active and extremely low-profile polarization manipulation devices in the terahertz regime through the incorporation of such phase-change metasurfaces, enabling novel applications of ultrathin terahertz meta-devices. PMID:26442614

  20. Switchable Ultrathin Quarter-wave Plate in Terahertz Using Active Phase-change Metasurface

    NASA Astrophysics Data System (ADS)

    Wang, Dacheng; Zhang, Lingchao; Gu, Yinghong; Mehmood, M. Q.; Gong, Yandong; Srivastava, Amar; Jian, Linke; Venkatesan, T.; Qiu, Cheng-Wei; Hong, Minghui

    2015-10-01

    Metamaterials open up various exotic means to control electromagnetic waves and among them polarization manipulations with metamaterials have attracted intense attention. As of today, static responses of resonators in metamaterials lead to a narrow-band and single-function operation. Extension of the working frequency relies on multilayer metamaterials or different unit cells, which hinder the development of ultra-compact optical systems. In this work, we demonstrate a switchable ultrathin terahertz quarter-wave plate by hybridizing a phase change material, vanadium dioxide (VO2), with a metasurface. Before the phase transition, VO2 behaves as a semiconductor and the metasurface operates as a quarter-wave plate at 0.468 THz. After the transition to metal phase, the quarter-wave plate operates at 0.502 THz. At the corresponding operating frequencies, the metasurface converts a linearly polarized light into a circularly polarized light. This work reveals the feasibility to realize tunable/active and extremely low-profile polarization manipulation devices in the terahertz regime through the incorporation of such phase-change metasurfaces, enabling novel applications of ultrathin terahertz meta-devices.

  1. Tandem-Phase Zone-Plate Optics for High-Energy X-ray Focusing

    NASA Astrophysics Data System (ADS)

    Kagoshima, Yasushi; Takano, Hidekazu; Koyama, Takahisa; Tsusaka, Yoshiyuki; Saikubo, Akihiko

    2011-02-01

    An optical system consisting of two phase zone plates closely arranged in tandem was constructed for focusing high-energy X-rays. The phase zone plates were made from tantalum and their combined thickness was 4.8 µm. An ideal diffraction efficiency of 30% is expected at 30 keV, which is about 3 times higher than that of a single zone plate. The focusing properties at 30 keV were studied both numerically and experimentally. The coaxial tandem arrangement was precisely achieved by observing Young's interference patterns in the far-field produced by the two point foci. A focus size of ˜4 µm was obtained. The photon flux density was 2.2 ×1013 photons/s/mm2, which is 2.4 and 85 times higher than that obtained with a single zone plate and without focusing, respectively. The focused beam was used for scanning X-ray fluorescence microscopy and the residual tin distribution on a float glass surface was imaged.

  2. Tracking three-phase coexistences in binary mixtures of hard plates and spheres

    NASA Astrophysics Data System (ADS)

    Aliabadi, Roohollah; Moradi, Mahmood; Varga, Szabolcs

    2016-02-01

    The stability of demixing phase transition in binary mixtures of hard plates (with thickness L and diameter D) and hard spheres (with diameter σ) is studied by means of Parsons-Lee theory. The isotropic-isotropic demixing, which is found in mixtures of large spheres and small plates, is very likely to be pre-empted by crystallization. In contrast, the nematic-nematic demixing, which is obtained in mixtures of large plates and small spheres, can be stabilized at low diameter ratios (σ/D) and aspect ratios (L/D). At intermediate values of σ/D, where the sizes of the components are similar, neither the isotropic-isotropic nor the nematic-nematic demixing can be stabilized, but a very strong fractionation takes place between a plate rich nematic and a sphere rich isotropic phases. Our results show that the excluded volume interactions are capable alone to explain the experimental observation of the nematic-nematic demixing, but they fail in the description of isotropic-isotropic one [M. Chen et al., Soft Matter 11, 5775 (2015)].

  3. Tracking three-phase coexistences in binary mixtures of hard plates and spheres.

    PubMed

    Aliabadi, Roohollah; Moradi, Mahmood; Varga, Szabolcs

    2016-02-21

    The stability of demixing phase transition in binary mixtures of hard plates (with thickness L and diameter D) and hard spheres (with diameter σ) is studied by means of Parsons-Lee theory. The isotropic-isotropic demixing, which is found in mixtures of large spheres and small plates, is very likely to be pre-empted by crystallization. In contrast, the nematic-nematic demixing, which is obtained in mixtures of large plates and small spheres, can be stabilized at low diameter ratios (σ/D) and aspect ratios (L/D). At intermediate values of σ/D, where the sizes of the components are similar, neither the isotropic-isotropic nor the nematic-nematic demixing can be stabilized, but a very strong fractionation takes place between a plate rich nematic and a sphere rich isotropic phases. Our results show that the excluded volume interactions are capable alone to explain the experimental observation of the nematic-nematic demixing, but they fail in the description of isotropic-isotropic one [M. Chen et al., Soft Matter 11, 5775 (2015)].

  4. Axisymmetric deformation of plates and shells with phase trasformations under thermal cycling

    NASA Astrophysics Data System (ADS)

    Shkutin, L. I.

    2008-03-01

    A mathematical formulation is given of nonlinear axisymmetric buckling problems for plates and shells in the two-phase zones of austenite-to-martensite transformation. Numerical solutions of the direct-and inverse-transformation problems are used to construct hysteresis loops for thermomechanically cycled, pressure-loaded circular plates and shallow spherical domes of titanium nickelide (NiTi) alloy. It is shown that dynamic instability of the dome deformation process can occur during transformation under loads notably lower than the upper critical values for the isothermal states of the material outside the transformation zone. A theoretical analysis gives external loads below which the dome remains stable in the thermally cycled material with phase transformations.

  5. Fraunhofer diffraction of the plane wave by a multilevel (quantized) spiral phase plate.

    PubMed

    Kotlyar, Victor V; Kovalev, Alexey A

    2008-01-15

    We obtain an analytical expression in the form of a finite sum of plane waves that describes the paraxial scalar Fraunhofer diffraction of a limited plane wave by a multilevel (quantized) spiral phase plate (SPP) bounded by a polygonal aperture. For several topological charges of the SPP we numerically obtain the minimal number of SPP sectors for which the RMS between the Fraunhofer diffraction patterns for multilevel and continuous SPP does not exceed 2%.

  6. Surface modes in "photonic cholesteric liquid crystal-phase plate-metal" structure.

    PubMed

    Vetrov, S Ya; Pyatnov, M V; Timofeev, I V

    2014-05-01

    The light transmission spectrum has been calculated for a "cholesteric liquid crystal-phase plate-metal" structure. It is shown that the system can have an isolated waveguide surface mode with characteristics efficiently controllable by external fields acting on the cholesteric. The degree of localization of surface modes and the transmission coefficients have been found to differ considerably for the light of different polarizations.

  7. Influence of Two-Phase Thermocapillary Flow on Liquid Retention in Microscopic Pores

    NASA Technical Reports Server (NTRS)

    Schmidt, George R.; Nadarajah, Arun; Chung, T. J.; Karr, Gerald R.

    1995-01-01

    An important feature of screened propellant acquisition devices is the retention capability or maximum maintainable pressure difference across the porous barrier separating the liquid and gas. Previous experiments with liquid hydrogen showed a marked reduction in retention when the tank containing the device was pressurized with hydrogen vapor. These tests, however did not indicate any appreciable degradation in retention with helium pressurization or direct heating through the screen. The objective of this article is to determine if the thermocapillary convection arising from phase change in the microscopic pores of such screens could cause these disparities in performance. A numerical model of flow in a single pore suggests that the thermocapillary-induced gradient in liquid pressure along the surface can strongly affect surface morphology. In an evaporative environment, this gradient exerts a stabilizing influence on surface curvature, and preserves the momentum balance between the liquid and gas. With condensation, it causes a force imbalance and a destabilizing suction in the middle of the pore that reduces retention. Results also indicate that introducing an inert gas, such as helium, suppresses this retention loss mechanism by lowering thermocapillary circulation and its associated interfacial pressure gradient.

  8. A real-time pseudocolor encoding technique for the phase rate-of-change in the imaging system of microscope

    NASA Astrophysics Data System (ADS)

    Chen, Guanying; Duan, Wenshan

    1999-05-01

    A real-time white light stereo pseudocolor encoding technique for the phase rate-of-change in the imaging system of microscope is presented. It is analyzed by the theory of partially coherent light. The analytic results showed that the information about phase rate-of-change of the input object function is reflected in the output stereo pseudocolor image under given conditions and illuminated by incoherent source.

  9. Toward structural/chemical cotailoring of phase-change Ge-Sb-Te in a transmission electron microscope.

    PubMed

    Zhang, W; Kim, J-G; Zheng, W T; Cui, X Q; Kim, Y-J; Song, S A

    2015-03-01

    Ge2Sb2Te5, as the prototype material for phase-change memory, can be transformed from amorphous phase into nanoscale rocksalt-type GeTe provided with an electron irradiation assisted by heating to 520°C in a 1250 kV transmission electron microscope. This sheds a new light into structural and chemical cotailoring of materials through coupling of thermal and electrical fields.

  10. Direct-write liquid phase transformations with a scanning transmission electron microscope

    SciTech Connect

    Unocic, Raymond R.; Lupini, Andrew R.; Borisevich, Albina Y.; Cullen, David A.; Kalinin, Sergei V.; Jesse, Stephen

    2016-08-03

    The highly energetic electron beam from a scanning transmission electron microscope (STEM) can induce local changes in the state of matter, ranging from local knock-out and atomic movement, to amorphization/crystallization, and chemical/electrochemical reactions occuring at localized liquid-solid and gas-solid interfaces. To date, fundamental studies of e-beam induced phenomena and practical applications have been limited by conventional e-beam rastering modes that allow only for uniform e-beam exposures. Here we develop an automated liquid phase nanolithography method that is capable of directly writing nanometer scaled features within silicon nitride encapsulated liquid cells. An external beam control system, connected to the scan coils of an aberration-corrected STEM, is used to precisely control the position, dwell time, and scan velocity of a sub-nanometer STEM probe. Site-specific locations in a sealed liquid cell containing an aqueous solution of H2PdCl4 are irradiated to controllably deposit palladium onto silicon nitride membranes. We determine the threshold electron dose required for the radiolytic deposition of metallic palladium, explore the influence of electron dose on the feature size and morphology of nanolithographically patterned nanostructures, and propose a feedback-controlled monitoring method for active control of the nanofabricated structures through STEM detector signal monitoring. As a result, this approach enables both fundamental studies of electron beam induced interactions with matter, as well as opens a pathway to fabricate nanostructures with tailored architectures and chemistries via shape-controlled nanolithographic patterning from liquid phase precursors.

  11. Direct-write liquid phase transformations with a scanning transmission electron microscope

    DOE PAGES

    Unocic, Raymond R.; Lupini, Andrew R.; Borisevich, Albina Y.; ...

    2016-08-03

    The highly energetic electron beam from a scanning transmission electron microscope (STEM) can induce local changes in the state of matter, ranging from local knock-out and atomic movement, to amorphization/crystallization, and chemical/electrochemical reactions occuring at localized liquid-solid and gas-solid interfaces. To date, fundamental studies of e-beam induced phenomena and practical applications have been limited by conventional e-beam rastering modes that allow only for uniform e-beam exposures. Here we develop an automated liquid phase nanolithography method that is capable of directly writing nanometer scaled features within silicon nitride encapsulated liquid cells. An external beam control system, connected to the scan coilsmore » of an aberration-corrected STEM, is used to precisely control the position, dwell time, and scan velocity of a sub-nanometer STEM probe. Site-specific locations in a sealed liquid cell containing an aqueous solution of H2PdCl4 are irradiated to controllably deposit palladium onto silicon nitride membranes. We determine the threshold electron dose required for the radiolytic deposition of metallic palladium, explore the influence of electron dose on the feature size and morphology of nanolithographically patterned nanostructures, and propose a feedback-controlled monitoring method for active control of the nanofabricated structures through STEM detector signal monitoring. As a result, this approach enables both fundamental studies of electron beam induced interactions with matter, as well as opens a pathway to fabricate nanostructures with tailored architectures and chemistries via shape-controlled nanolithographic patterning from liquid phase precursors.« less

  12. Direct-write liquid phase transformations with a scanning transmission electron microscope

    SciTech Connect

    Unocic, Raymond R.; Lupini, Andrew R.; Borisevich, Albina Y.; Cullen, David A.; Kalinin, Sergei V.; Jesse, Stephen

    2016-08-03

    The highly energetic electron beam from a scanning transmission electron microscope (STEM) can induce local changes in the state of matter, ranging from local knock-out and atomic movement, to amorphization/crystallization, and chemical/electrochemical reactions occuring at localized liquid-solid and gas-solid interfaces. To date, fundamental studies of e-beam induced phenomena and practical applications have been limited by conventional e-beam rastering modes that allow only for uniform e-beam exposures. Here we develop an automated liquid phase nanolithography method that is capable of directly writing nanometer scaled features within silicon nitride encapsulated liquid cells. An external beam control system, connected to the scan coils of an aberration-corrected STEM, is used to precisely control the position, dwell time, and scan velocity of a sub-nanometer STEM probe. Site-specific locations in a sealed liquid cell containing an aqueous solution of H2PdCl4 are irradiated to controllably deposit palladium onto silicon nitride membranes. We determine the threshold electron dose required for the radiolytic deposition of metallic palladium, explore the influence of electron dose on the feature size and morphology of nanolithographically patterned nanostructures, and propose a feedback-controlled monitoring method for active control of the nanofabricated structures through STEM detector signal monitoring. As a result, this approach enables both fundamental studies of electron beam induced interactions with matter, as well as opens a pathway to fabricate nanostructures with tailored architectures and chemistries via shape-controlled nanolithographic patterning from liquid phase precursors.

  13. Optical metrology of nano-scale mineral dissolutions using a phase-shift interference microscope

    NASA Astrophysics Data System (ADS)

    Satoh, H.; Nishimura, Y.; Tsukamoto, K.; Ueda, A.; Ueta, S.; Kato, K.

    2005-12-01

    Solid materials are greater or less soluble on the Earth's surface environment in nano-scale. Dissolution is critical issue for weathering and geo-environmental assessment. Recent advances in nanoscopy are derived from novel topographic method with scanning probe microscopes (AFM, STM, LCM). As another classical but precise method, interferometry is still useful optical tool and enables quick and easy survey of vertical surface topography by utilizing computer processing. We have newly designed a white-light phase-shift interference microscope (PSI-M) for detecting ultra-slow dissolution and precipitation to validate the endurance of artificial barrier system for radioactive waste repository (Ueda et al., 2005) and assess the geologic CO2 storage system. The measurement system is comprised of Maki-type (modified Michelson) phase-shift interferometer, white light source, computer camera, and Ti reaction cell with syringe pump. Minimum resolutions are calculated to be about 0.7 nm for surface-reflection mode and 6.6 nm for back-reflection mode. It takes only 2 s to obtain a phase-shift interferogram. After sequential image acquisitions, we can measure the rates of advance and retreat in real-time at the surface of the specimen in the view field by image-processing. As a benchmark test of surface reflection mode, we carried out a dissolution experiment on BK7 glass in pure H2O flowing at 105 um/s. Result showed 8.7E-5 nm/s of dissolution velocity, corresponding to a rate of ~3um/yr . Measurement at etch pits on calcite (10-14) in pure H2O showed an acceptable dissolution rate of 2.9E-10 mol/cm2/s (Ueda et al., 2005). Another measurement on anorthite (010) in 0.5M of NaCl-NaOH-HCl solutions at 105 um/s flow showed consistent rates of 2.4E-13 to 2.3E-11 mol/cm2/s at pH = 3-12.4 with the previous data (Blum and Stillings, 1995). These results sufficiently confirmed precision of the rate determination with PSI-M. We have further carried out the dissolution measurement on

  14. Diffraction theory of high numerical aperture subwavelength circular binary phase Fresnel zone plate.

    PubMed

    Zhang, Yaoju; An, Hongchang; Zhang, Dong; Cui, Guihua; Ruan, Xiukai

    2014-11-03

    An analytical model of vector formalism is proposed to investigate the diffraction of high numerical aperture subwavelength circular binary phase Fresnel zone plate (FZP). In the proposed model, the scattering on the FZP's surface, reflection and refraction within groove zones are considered and diffraction fields are calculated using the vector Rayleigh-Sommerfeld integral. The numerical results obtained by the proposed phase thick FZP (TFZP) model show a good agreement with those obtained by the finite-difference time-domain (FDTD) method within the effective extent of etch depth. The optimal etch depths predicted by both methods are approximately equal. The analytical TFZP model is very useful for designing a phase and hybrid amplitude-phase FZP with high-NA and short focal length.

  15. Thermoplastic working with cyclic phase recrystallizations during production of plate steel

    NASA Astrophysics Data System (ADS)

    Smagorinskii, M. E.

    1990-10-01

    The cycles of repeated plastic working with cyclic phase recrystallization developed make it possible to form from the rolling heat the optimum structure and properties in plates in the stage of imparting to the plate the necessary shape and dimensions, that is, directly in the hot rolling process. The use of the method developed on 5000, 3600, and 3000 rolling mills in production of 16.2-100 mm thick plate and skelp of St3, 09G2S, 10KhSND, 09G2BT, and other steels has made it possible to obtain a high combination of mechanical properties and characteristics of fracture toughness. In the majority of cases, the level of these properties is higher than or comparable to the properties of steels after heat treatment. A resource-saving high-production method of thermal cycling from the rolling heat of heavy strip and plates (immediately upon completion of the rolling process) using the heat accumulated in the material with a length of 7-10 min has been developed and introduced. The level of properties obtained corresponds to the condition of the metal after heat treatment (hardening + tempering) and completely meets GOST 5520-73.

  16. Evidence of lower-mantle slab penetration phases in plate motions.

    PubMed

    Goes, Saskia; Capitanio, Fabio A; Morra, Gabriele

    2008-02-21

    It is well accepted that subduction of the cold lithosphere is a crucial component of the Earth's plate tectonic style of mantle convection. But whether and how subducting plates penetrate into the lower mantle is the subject of continuing debate, which has substantial implications for the chemical and thermal evolution of the mantle. Here we identify lower-mantle slab penetration events by comparing Cenozoic plate motions at the Earth's main subduction zones with motions predicted by fully dynamic models of the upper-mantle phase of subduction, driven solely by downgoing plate density. Whereas subduction of older, intrinsically denser, lithosphere occurs at rates consistent with the model, younger lithosphere (of ages less than about 60 Myr) often subducts up to two times faster, while trench motions are very low. We conclude that the most likely explanation is that older lithosphere, subducting under significant trench retreat, tends to lie down flat above the transition to the high-viscosity lower mantle, whereas younger lithosphere, which is less able to drive trench retreat and deforms more readily, buckles and thickens. Slab thickening enhances buoyancy (volume times density) and thereby Stokes sinking velocity, thus facilitating fast lower-mantle penetration. Such an interpretation is consistent with seismic images of the distribution of subducted material in upper and lower mantle. Thus we identify a direct expression of time-dependent flow between the upper and lower mantle.

  17. The Cell Cycle: An Activity Using Paper Plates to Represent Time Spent in Phases of the Cell Cycle

    ERIC Educational Resources Information Center

    Scherer, Yvette D.

    2014-01-01

    In this activity, students are given the opportunity to combine skills in math and geometry for a biology lesson in the cell cycle. Students utilize the data they collect and analyze from an online onion-root-tip activity to create a paper-plate time clock representing a 24-hour cell cycle. By dividing the paper plate into appropriate phases of…

  18. The Cell Cycle: An Activity Using Paper Plates to Represent Time Spent in Phases of the Cell Cycle

    ERIC Educational Resources Information Center

    Scherer, Yvette D.

    2014-01-01

    In this activity, students are given the opportunity to combine skills in math and geometry for a biology lesson in the cell cycle. Students utilize the data they collect and analyze from an online onion-root-tip activity to create a paper-plate time clock representing a 24-hour cell cycle. By dividing the paper plate into appropriate phases of…

  19. Organic matrixlike macromolecules associated with the mineral phase of sea urchin skeletal plates and teeth.

    PubMed

    Weiner, S

    1985-04-01

    The skeletal plates and teeth of the echinoid Paracentrotus lividus contain a heterogeneous assemblage of macromolecules that are not part of the connective tissue, but are presumably intimately associated with the mineral phase. Upon dissolution of the Mg-calcite mineral phase, some of these molecules are insoluble. The insoluble fractions of the teeth and skeletal plates are quite different, the former being predominantly protein and the latter, primarily some unknown nonproteinaceous material. The soluble constituents are similar in both tissues. These hydrophilic macromolecules have been partially separated and characterized. In both hard parts, two distinct classes of macromolecules are present, as indicated by the amino acid compositions of their protein constituents. These two classes of macromolecules are also present in the shells of a foraminifer and in various mollusks, both of which are formed by the "organic matrix-mediated" biomineralization process. The locations of these macromolecules in the teeth and skeletal plates are not known, nor whether they form coherent structures. It is therefore premature to conclude that these macromolecules do function as an organic matrix, although the results presented are in agreement with such an interpretation.

  20. Insight into the microscopic structure of an AdS black hole from a thermodynamical phase transition.

    PubMed

    Wei, Shao-Wen; Liu, Yu-Xiao

    2015-09-11

    Comparing with an ordinary thermodynamic system, we investigate the possible microscopic structure of a charged anti-de Sitter black hole completely from the thermodynamic viewpoint. The number density of the black hole molecules is introduced to measure the microscopic degrees of freedom of the black hole. We found that the number density suffers a sudden change accompanied by a latent heat when the black hole system crosses the small-large black hole coexistence curve, while when the system passes the critical point, it encounters a second-order phase transition with a vanishing latent heat due to the continuous change of the number density. Moreover, the thermodynamic scalar curvature suggests that there is a weak attractive interaction between two black hole molecules. These phenomena might cast new insight into the underlying microscopic structure of a charged anti-de Sitter black hole.

  1. Method for preparing surfaces of metal composites having a brittle phase for plating

    SciTech Connect

    Coates, C.W.; Wilson, T.J.

    1984-03-20

    The present invention is directed to a method for preparing surfaces of two-phase metal composites having relatively brittle and malleable components for plating with corrosion-resistant material. In practice of the present invention, the surfaces of the composites are etched to remove a major portion or fraction of the brittle component. The etched surface is then peened with particulates for breaking the brittle component from the surfaces and for spreading or smearing the malleable component over the surfaces. The peened surface is then chemically cleaned of residual traces of the brittle component so as to provide a surface of essentially the malleable component to which the corrosion-resistant material may be plated thereon in an adherent manner.

  2. Method and apparatus for acoustic plate mode liquid-solid phase transition detection

    DOEpatents

    Blair, Dianna S.; Freye, Gregory C.; Hughes, Robert C.; Martin, Stephen J.; Ricco, Antonio J.

    1993-01-01

    A method and apparatus for sensing a liquid-solid phase transition event is provided which comprises an acoustic plate mode detecting element placed in contact with a liquid or solid material which generates a high-frequency acoustic wave that is attenuated to an extent based on the physical state of the material is contact with the detecting element. The attenuation caused by the material in contact with the acoustic plate mode detecting element is used to determine the physical state of the material being detected. The method and device are particularly suited for detecting conditions such as the icing and deicing of wings of an aircraft. In another aspect of the present invention, a method is provided wherein the adhesion of a solid material to the detecting element can be measured using the apparatus of the invention.

  3. Method and apparatus for acoustic plate mode liquid-solid phase transition detection

    NASA Astrophysics Data System (ADS)

    Blair, D. S.; Frye, G. C.; Hughes, R. C.; Martin, S. J.; Ricco, A. J.

    1990-05-01

    A method and apparatus for sensing a liquid-solid phase transition event is provided which comprises an acoustic plate mode detecting element placed in contact with a liquid or solid material which generates a high-frequency acoustic wave that is attenuated to an extent based on the physical state of the material in contact with the detecting element. The attenuation caused by the material in contact with the acoustic plate mode detecting element is used to determine the physical state of the material being detected. The method and device are particularly suited for detecting conditions such as the icing and deicing of wings of an aircraft. In another aspect of the present invention, a method is provided wherein the adhesion of a solid material to the detecting element can be measured using the apparatus of the invention.

  4. Low-cost, broadband static phase plate for generating atmosphericlike turbulence.

    PubMed

    Rhoadarmer, T A; Angel, J R

    2001-06-20

    Over the past decade adaptive optics (AO) has proved its worth as AO systems have been used successfully on several telescopes to improve image resolution. As scientists and engineers push the technological state of the art in an effort to make bigger, faster, and better systems, it has become more and more important to test and verify the operation of these systems in a controlled laboratory setting. To perform full-system tests in the presence of atmospheric turbulence, some sort of turbulence generator is needed. We describe a simple, low-cost approach to making static phase plates that generate atmosphericlike wave-front aberrations. These plates have several advantages over traditional heated-air turbulence generators and, as such, are better suited for well-controlled, detailed testing of an AO system.

  5. Method for preparing surfaces of metal composites having a brittle phase for plating

    DOEpatents

    Coates, Cameron W.; Wilson, Thomas J.

    1984-01-01

    The present invention is directed to a method for preparing surfaces of two-phase metal composites having relatively brittle and malleable components for plating with corrosion-resistant material. In practice of the present invention, the surfaces of the composites are etched to remove a major portion or fraction of the brittle component. The etched surface is then peened with particulates for breaking the brittle component from the surfaces and for spreading or smearing the malleable component over the surfaces. The peened surface is then chemically cleaned of residual traces of the brittle component so as to provide a surface of essentially the malleable component to which the corrosion-resistant material may be plated thereon in an adherent manner.

  6. Phase equilibria and plate-fluid interfacial tensions for associating hard sphere fluids confined in slit pores.

    PubMed

    Fu, Dong; Li, Xiao-Sen

    2006-08-28

    The excess Helmholtz free energy functional for associating hard sphere fluid is formulated by using a modified fundamental measure theory [Y. X. Yu and J. Z. Wu, J. Chem. Phys. 117, 10156 (2002)]. Within the framework of density functional theory, the thermodynamic properties including phase equilibria for both molecules and monomers, equilibrium plate-fluid interfacial tensions and isotherms of excess adsorption, average molecule density, average monomer density, and plate-fluid interfacial tension for four-site associating hard sphere fluids confined in slit pores are investigated. The phase equilibria inside the hard slit pores and attractive slit pores are determined according to the requirement that temperature, chemical potential, and grand potential in coexistence phases should be equal and the plate-fluid interfacial tensions at equilibrium states are predicted consequently. The influences of association energy, fluid-solid interaction, and pore width on phase equilibria and equilibrium plate-fluid interfacial tensions are discussed.

  7. Three-dimensional phase-contrast X-ray microtomography with scanning-imaging X-ray microscope optics.

    PubMed

    Takeuchi, Akihisa; Uesugi, Kentaro; Suzuki, Yoshio

    2013-09-01

    A three-dimensional (3D) X-ray tomographic micro-imaging system has been developed. The optical system is based on a scanning-imaging X-ray microscope (SIXM) optics, which is a hybrid system consisting of a scanning microscope optics with a one-dimensional (1D) focusing (line-focusing) device and an imaging microscope optics with a 1D objective. In the SIXM system, each 1D dataset of a two-dimensional (2D) image is recorded independently. An object is illuminated with a line-focused beam. Positional information of the region illuminated by the line-focused beam is recorded with the 1D imaging microscope optics as line-profile data. By scanning the object with the line focus, 2D image data are obtained. In the same manner as for a scanning microscope optics with a multi-pixel detector, imaging modes such as phase contrast and absorption contrast can be arbitrarily configured after the image data acquisition. By combining a tomographic scan method and the SIXM system, quantitative 3D imaging is performed. Results of a feasibility study of the SIXM for 3D imaging are shown.

  8. Generation of cylindrical vector beams based on common-path interferometer with a vortex phase plate

    NASA Astrophysics Data System (ADS)

    Liang, Yansheng; Yan, Shaohui; Yao, Baoli; Lei, Ming; Min, Junwei; Yu, Xianghua

    2016-04-01

    Cylindrical vector (CV) beams have found increasing applications in physics, biology, and chemistry. To generate CV beams, interferometric technique is popularly adopted due to its flexibility. However, most interferometric configurations for the generation of CV beams are faced with system instability arising from external disturbance, limiting their practical applications. A common-path interferometer for the generation of radially and azimuthally polarized beams is proposed to improve the system stability. The optical configuration consists of a vortex phase plate acting to tailor the phase profile and a cube nonpolarizing beamsplitter to split the input beam into two components with mirror-like spiral phase distribution. The generated CV beams show a high quality in polarization and exhibit a better stability of beam profile than those obtained by noncommon-path interferometric configurations.

  9. 3D profile reconstruction of biological sample by in-line image-plane phase-shifting digital microscopic holography

    NASA Astrophysics Data System (ADS)

    Lu, Xiaoxu; Chen, Jianpei; Liu, Shengde; Ma, Zhijian; Zhang, Zhun; Zhong, Liyun

    2012-10-01

    To improve the measuring accuracy is an important research content for digital microscopic holography (DMH) development and application. In this study, we have upgraded application of DMH through the in-line image-plane phase-shifting technique and the image correlation algorithm to reconstruct the 3D profile of a biological sample. Importantly, since this novel DMH system can obtain the phase-shifting hologram with a high ratio of signal to noise conveniently, the reconstructed algorithm of DMH and the compensation operation of the phase aberration are simplified significantly. Moreover, by using the image correlation algorithm, the digital phase mask with high precision also can be obtained easily; thus both the measuring accuracy of DMH and the quality of the reconstructed image are improved significantly. More importantly, this kind of in-line image-plane phase-shifting digital microscopic holography provides a powerful imaging tool to simultaneously reconstruct the amplitude and the phase of the measured object with submicron scale resolution.

  10. Using the Volta phase plate with defocus for cryo-EM single particle analysis

    PubMed Central

    Danev, Radostin; Tegunov, Dimitry; Baumeister, Wolfgang

    2017-01-01

    Previously, we reported an in-focus data acquisition method for cryo-EM single-particle analysis with the Volta phase plate (Danev and Baumeister, 2016). Here, we extend the technique to include a small amount of defocus which enables contrast transfer function measurement and correction. This hybrid approach simplifies the experiment and increases the data acquisition speed. It also removes the resolution limit inherent to the in-focus method thus allowing 3D reconstructions with resolutions better than 3 Å. DOI: http://dx.doi.org/10.7554/eLife.23006.001 PMID:28109158

  11. Study of polarization properties of fiber-optics probes with use of a binary phase plate.

    PubMed

    Alferov, S V; Khonina, S N; Karpeev, S V

    2014-04-01

    We conduct a theoretical and experimental study of the distribution of the electric field components in the sharp focal domain when rotating a zone plate with a π-phase jump placed in the focused beam. Comparing the theoretical and experimental results for several kinds of near-field probes, an analysis of the polarization sensitivity of different types of metal-coated aperture probes is conducted. It is demonstrated that with increasing diameter of the non-metal-coated tip part there occurs an essential redistribution of sensitivity in favor of the transverse electric field components and an increase of the probe's energy throughput.

  12. Subtractive two-frame three-beam phase-stepping interferometry for testing surface shape of quasi-parallel plates.

    PubMed

    Sunderland, Zofia; Patorski, Krzysztof; Trusiak, Maciej

    2016-12-26

    We present an effective method of testing the surface shape of quasi-parallel plates which requires only two phase-shifted three-beam interferograms. We derive a general formula for difference of two three-beam interferograms as a function of the phase shift value. The phase shift does not have to be precisely determined and uniform in the image domain. We show and compare results of extracting the fringe set and corresponding phase distribution related to the plate front surface shape using the two dimensional continuous wavelet transform, Hilbert-Huang transform and Fourier transform methods. Simulated and experimental data is used to verify the algorithm performance and robustness.

  13. Tomographic incoherent phase imaging, a diffraction tomography alternative for any white-light microscope

    NASA Astrophysics Data System (ADS)

    Bon, Pierre; Aknoun, Shérazade; Savatier, Julien; Wattellier, Benoit; Monneret, Serge

    2013-02-01

    In this paper, we discuss the possibility of making tomographic reconstruction of the refractive index of a microscopic sample using a quadriwave lateral shearing interferometer, under incoherent illumination. A Z-stack is performed and the acquired incoherent elecromagnetic fields are deconvoluted before to retrieve in a quantitative manner the refractive index. The results are presented on polystyrene beads and can easily be expanded to biological samples. This technique is suitable to any white-light microscope equipped with nanometric Z-stack module.

  14. Highly intense monocycle terahertz vortex generation by utilizing a Tsurupica spiral phase plate.

    PubMed

    Miyamoto, Katsuhiko; Kang, Bong Joo; Kim, Won Tae; Sasaki, Yuta; Niinomi, Hiromasa; Suizu, Koji; Rotermund, Fabian; Omatsu, Takashige

    2016-12-14

    Optical vortex, possessing an annular intensity profile and an orbital angular momentum (characterized by an integer termed a topological charge) associated with a helical wavefront, has attracted great attention for diverse applications due to its unique properties. In particular for terahertz (THz) frequency range, several approaches for THz vortex generation, including molded phase plates consisting of metal slit antennas, achromatic polarization elements and binary-diffractive optical elements, have been recently proposed, however, they are typically designed for a specific frequency. Here, we demonstrate highly intense broadband monocycle vortex generation near 0.6 THz by utilizing a polymeric Tsurupica spiral phase plate in combination with tilted-pulse-front optical rectification in a prism-cut LiNbO3 crystal. A maximum peak power of 2.3 MW was obtained for THz vortex output with an expected topological charge of 1.15. Furthermore, we applied the highly intense THz vortex beam for studying unique nonlinear behaviors in bilayer graphene towards the development of nonlinear super-resolution THz microscopy and imaging system.

  15. Focal length measurement based on Fresnel diffraction from a phase plate.

    PubMed

    Dashtdar, Masoomeh; Mohammad-Ali Hosseini-Saber, S

    2016-09-10

    A method based on the Fresnel diffraction of light from the phase step is introduced for measuring effective focal length (EFL) and back focal length (BFL) of optical imaging systems. It is shown that, as a transparent plane-parallel plate is illuminated at a boundary region by a monochromatic beam of light, Fresnel diffraction occurs because of the abrupt change in phase imposed by the finite change in refractive index at the plate boundary. Variation of the incident angle in a convergent (or divergent) beam of light causes the periodic intensity along the central fringe of the diffraction pattern. The measurement of the extrema position of the intensity distribution accurately provides the EFL and BFL. The technique is easy to apply and can measure a wide range of both positive and negative focal lengths. The measuring setup can be very compact with low mechanical and optical noises. As examples of this technique, the EFLs of five different lenses are experimentally obtained. The results are quite consistent with the values indicated by the lens manufacturer.

  16. Predictive model for toluene degradation and microbial phenotypic profiles in flat plate vapor phase bioreactor

    SciTech Connect

    Mirpuri, R.; Sharp, W.; Villaverde, S.; Jones, W.; Lewandowski, Z.; Cunningham, A.

    1997-06-01

    A predictive model has been developed to describe degradation of toluene in a flat-plate vapor phase bioreactor (VPBR). The VPBR model incorporates kinetic, stoichiometric, injury, and irreversible loss coefficients from suspended culture studies for toluene degradation by P. putida 54G and measured values of Henry`s law constant and boundary layer thickness at the gas-liquid and liquid-biofilm interface. The model is used to estimate the performance of the reactor with respect to toluene degradation and to predict profiles of toluene concentration and bacterial physiological state within the biofilm. These results have been compared with experimentally determined values from a flat plate VPBR under electron acceptor and electron donor limiting conditions. The model accurately predicts toluene concentrations in the vapor phase and toluene degradation rate by adjusting only three parameters: biomass density and rates of death and endogenous decay. Qualitatively, the model also predicts gradients in the physiological state cells in the biofilm. This model provides a rational design for predicting an upper limit of toluene degradation capability in a VPBR and is currently being tested to assess applications for predicting performance of bench and pilot-scale column reactors.

  17. Highly intense monocycle terahertz vortex generation by utilizing a Tsurupica spiral phase plate

    PubMed Central

    Miyamoto, Katsuhiko; Kang, Bong Joo; Kim, Won Tae; Sasaki, Yuta; Niinomi, Hiromasa; Suizu, Koji; Rotermund, Fabian; Omatsu, Takashige

    2016-01-01

    Optical vortex, possessing an annular intensity profile and an orbital angular momentum (characterized by an integer termed a topological charge) associated with a helical wavefront, has attracted great attention for diverse applications due to its unique properties. In particular for terahertz (THz) frequency range, several approaches for THz vortex generation, including molded phase plates consisting of metal slit antennas, achromatic polarization elements and binary-diffractive optical elements, have been recently proposed, however, they are typically designed for a specific frequency. Here, we demonstrate highly intense broadband monocycle vortex generation near 0.6 THz by utilizing a polymeric Tsurupica spiral phase plate in combination with tilted-pulse-front optical rectification in a prism-cut LiNbO3 crystal. A maximum peak power of 2.3 MW was obtained for THz vortex output with an expected topological charge of 1.15. Furthermore, we applied the highly intense THz vortex beam for studying unique nonlinear behaviors in bilayer graphene towards the development of nonlinear super-resolution THz microscopy and imaging system. PMID:27966595

  18. Highly intense monocycle terahertz vortex generation by utilizing a Tsurupica spiral phase plate

    NASA Astrophysics Data System (ADS)

    Miyamoto, Katsuhiko; Kang, Bong Joo; Kim, Won Tae; Sasaki, Yuta; Niinomi, Hiromasa; Suizu, Koji; Rotermund, Fabian; Omatsu, Takashige

    2016-12-01

    Optical vortex, possessing an annular intensity profile and an orbital angular momentum (characterized by an integer termed a topological charge) associated with a helical wavefront, has attracted great attention for diverse applications due to its unique properties. In particular for terahertz (THz) frequency range, several approaches for THz vortex generation, including molded phase plates consisting of metal slit antennas, achromatic polarization elements and binary-diffractive optical elements, have been recently proposed, however, they are typically designed for a specific frequency. Here, we demonstrate highly intense broadband monocycle vortex generation near 0.6 THz by utilizing a polymeric Tsurupica spiral phase plate in combination with tilted-pulse-front optical rectification in a prism-cut LiNbO3 crystal. A maximum peak power of 2.3 MW was obtained for THz vortex output with an expected topological charge of 1.15. Furthermore, we applied the highly intense THz vortex beam for studying unique nonlinear behaviors in bilayer graphene towards the development of nonlinear super-resolution THz microscopy and imaging system.

  19. Inexpensive read-out for coincident electron spectroscopy with a transmission electron microscope at nanometer scale using micro channel plates and multistrip anodes

    NASA Astrophysics Data System (ADS)

    Hollander, R. W.; Bom, V. R.; van Eijk, C. W. E.; Faber, J. S.; Hoevers, H.; Kruit, P.

    1994-09-01

    The elemental composition of a sample at nanometer scale is determined by measurement of the characteristic energy of Auger electrons, emitted in coincidence with incoming primary electrons from a microbeam in a scanning transmission electron microscope (STEM). Single electrons are detected with position sensitive detectors, consisting of MicroChannel Plates (MCP) and MultiStrip Anodes (MSA), one for the energy of the Auger electrons (Auger-detector) and one for the energy loss of primary electrons (EELS-detector). The MSAs are sensed with LeCroy 2735DC preamplifiers. The fast readout is based on LeCroy's PCOS III system. On the detection of a coincidence (Event) energy data of Auger and EELS are combined with timing data to an Event word. Event words are stored in list mode in a VME memory module. Blocks of Event words are scanned by transputers in VME and two-dimensional energy histograms are filled using the timing information to obtain a maximal true/accidental ratio. The resulting histograms are stored on disk of a PC-386, which also controls data taking. The system is designed to handle 10 5 Events per second, 90% of which are accidental. In the histograms the "true" to "accidental" ratio will be 5. The dead time is 15%.

  20. Phase-Contrast versus Off-Axis Illumination: Is a More Complex Microscope Always More Powerful?

    ERIC Educational Resources Information Center

    Hostounsky, Zdenek; Pelc, Radek

    2007-01-01

    In this article, a practical demonstration suitable for any biology college classroom is presented. With the examples of a complex biological specimen (slug's radula) and a simple reference specimen (electron microscopical grid imprint in gelatin), both of which can be easily prepared, the capabilities of two imaging modes commonly used in optical…

  1. Phase-Contrast versus Off-Axis Illumination: Is a More Complex Microscope Always More Powerful?

    ERIC Educational Resources Information Center

    Hostounsky, Zdenek; Pelc, Radek

    2007-01-01

    In this article, a practical demonstration suitable for any biology college classroom is presented. With the examples of a complex biological specimen (slug's radula) and a simple reference specimen (electron microscopical grid imprint in gelatin), both of which can be easily prepared, the capabilities of two imaging modes commonly used in optical…

  2. Diffraction of plane waves by finite-radius spiral phase plates of integer and fractional topological charge.

    PubMed

    Garcia-Gracia, Hipolito; Gutiérrez-Vega, Julio C

    2009-04-01

    A detailed analysis of the plane-wave diffraction by a finite-radius circular spiral phase plate (SPP) with integer and fractional topological charge and with variable transmission coefficients inside and outside of the plate edge is presented. We characterize the effect of varying the transmission coefficients and the parameters of the SPP on the propagated field. The vortex structure for integer and fractional phase step of the SPPs with and without phase apodization at the plate edge is also analyzed. The consideration of the interference between the light crossing the SPP and the light that undergoes no phase alteration at the aperture plane reveals new and interesting phenomena associated to this classical problem.

  3. Continuous distributed phase-plate advances for high-energy laser systems

    NASA Astrophysics Data System (ADS)

    Marozas, J. A.; Collins, T. J. B.; Zuegel, J. D.; McKenty, P. W.; Cao, D.; Fochs, S.; Radha, P. B.

    2016-05-01

    The distributed phase plate (DPP) design code Zhizhoo’ has been used to design full- aperture, continuous near-field transmission optics for a wide variety of high-fidelity focal-spot shapes for high-energy laser systems: OMEGA EP, Dynamic Compression Sector (DCS), and the National Ignition Facility (NIF). The envelope shape, or profile, of the focal spot affects the hydrodynamics of directly driven targets in these laser systems. Controlling the envelope shape to a high degree of fidelity impacts the quality of the ablatively driven implosions. The code Zhizhoo’ not only produces DPP's with great control of the envelope shape, but also spectral and gradient control as well as robustness from near-field phase aberrations. The focal-spot shapes can take on almost any profile from symmetric to irregular patterns and with high fidelity relative to the objective function over many decades of intensity. The control over the near-field phase spectrum and phase gradients offer greater manufacturability of the full- aperture continuous surface-relief pattern. The flexibility and speed of the DPP design code Zhizhoo’ will be demonstrated by showing the wide variety of successful designs that have been made and those that are in progress.

  4. Fabrication of large-scale multilevel phase-type Fresnel zone plate arrays by femtosecond laser direct writing

    NASA Astrophysics Data System (ADS)

    Yu, Yan-Hao; Tian, Zhen-Nan; Jiang, Tong; Niu, Li-Gang; Gao, Bing-Rong

    2016-03-01

    We report on the fabrication of large-scale eight-level phase-type Fresnel zone plate arrays (FZPAs) by femtosecond-laser direct writing technology. A high-speed galvanometer scanning system was used to fabricate each Fresnel zone plate to realize high fabrication efficiency. To overcome the limited fabrication scale in the case of galvanometer scanning, inter-plate movements were controlled by multi-axis air-bearing precise positioning stages. With the system, FZPAs whose fill-factor was designed to be 100% realized a diffraction efficiency of 89%. The focusing and imaging properties of the FZPAs were also evaluated, and the FZPAs showed high fidelity.

  5. Dual-wavelength linear regression phase unwrapping in three-dimensional microscopic images of cancer cells.

    PubMed

    Khmaladze, Alexander; Matz, Rebecca L; Zhang, Chi; Wang, Ting; Holl, Mark M Banaszak; Chen, Zhan

    2011-03-15

    We present a study of the three-dimensional structure of cancer cells using dual-wavelength phase-imaging digital holographic microscopy. Phase imaging of objects with optical height variation greater than the wavelength of light is ambiguous and causes phase wrapping. By comparing two phase images recorded at different wavelengths, the images can be accurately unwrapped. The unwrapping method is computationally fast and straightforward, and it can process complex topologies. Additionally, the limitations on the total optical height are significantly relaxed. This new methodology is widely applicable to other phase-imaging techniques as well as in applications beyond optical microscopy.

  6. Analytical Round Robin for Elastic-Plastic Analysis of Surface Cracked Plates, Phase II Results

    NASA Technical Reports Server (NTRS)

    Allen, P. A.; Wells, D. N.

    2017-01-01

    The second phase of an analytical round robin for the elastic-plastic analysis of surface cracks in flat plates was conducted under the auspices of ASTM Interlaboratory Study 732. The interlaboratory study (ILS) had 10 participants with a broad range of expertise and experience, and experimental results from a surface crack tension test in 4142 steel plate loaded well into the elastic-plastic regime provided the basis for the study. The participants were asked to evaluate a surface crack tension test according to the version of the surface crack initiation toughness testing standard published at the time of the ILS, E2899-13. Data were provided to each participant that represent the fundamental information that would be provided by a mechanical test laboratory prior to evaluating the test result. Overall, the participant’s test analysis results were in good agreement and constructive feedback was received that has resulted in an improved published version of the standard E2899-15.

  7. An alternative view of phospholipid phase behavior at the air-water interface. Microscope and film balance studies.

    PubMed Central

    von Tscharner, V; McConnell, H M

    1981-01-01

    Pure-lipid films at the water interface have surface-pressures vs. area isotherms that are often interpreted as involving first-order phase transitions from a condensed region to a liquid-expanded region. Two phases are presumed to coexist in the intermediate part of the isotherm. We constructed a film balance that could be placed on the stage of an epifluorescence microscope. A dipalmitoyl phosphatidylcholine film containing a low concentration of a fluorescent lipid probe showed an inhomogeneous fluorescence distribution in the so-called liquid-expanded region of the isotherm. Only the intermediate and condensed regions could be prepared so as to be optically homogeneous below 25 degrees C. We investigated membrane flow and lateral lipid diffusion in the membrane on the trough. The isotherms and isochores were measured. The results require, at least, a modified description of the monolayer structure in various regions of the isotherms. The solid-condensed region corresponds to a gel phase of the lipids where there is no flow in the membrane, lateral diffusion is low, the compressibility is low, and the membrane is optically homogeneous. The "liquid-condensed/liquid-expanded" region appears to be a homogeneous membrane where lateral diffusion and membrane flow are both rapid. This is a region of high compressibility. The "liquid-expanded" region is not homogeneous as seen under the microscope, and the flow of the surface layer can be very fast. PMID:6895478

  8. Spectro-microscopic Characterization of Physical Properties and Phase Separations in Individual Atmospheric Particles

    NASA Astrophysics Data System (ADS)

    OBrien, R. E.; Wang, B.; Neu, A.; Kelly, S. T.; Lundt, N.; Epstein, S. A.; MacMillan, A.; You, Y.; Laskin, A.; Nizkorodov, S.; Bertram, A. K.; Moffet, R.; Gilles, M.

    2013-12-01

    The phase state and liquid-liquid phase separations of ambient and laboratory generated aerosol particles were investigated using (1) scanning transmission x-ray microscopy/near-edge x-ray absorption fine structure spectroscopy (STXM/NEXAFS) coupled to a relative humidity (RH) controlled in-situ chamber and (2) environmental scanning electron microscopy (ESEM). The phase states of the particles were determined from measurements of their size and optical density. A comparison is made between the observed phase states of ambient samples and of laboratory generated aerosols to determine how well laboratory samples represent the phase of ambient samples. In addition, liquid-liquid phase separations in laboratory generated particles were investigated. Preliminary results showing that liquid-liquid phase separations occur at RH's between the deliquescence and efflorescence points and that the organic phase surrounds the inorganic phase will be presented. The STXM/NEXAFS technique provides insight into the degree of mixing at the deliquescence point and the degree of phase separation for particles of atmospherically relevant sizes.

  9. A novel silver-coated solid-phase microextraction metal fiber based on electroless plating technique.

    PubMed

    Feng, Juanjuan; Sun, Min; Li, Jubai; Liu, Xia; Jiang, Shengxiang

    2011-09-09

    A novel silver-coated solid-phase microextraction fiber was prepared based on electroless plating technique. Good extraction performance of the fiber for model compounds including phthalate esters (dibutyl phthalate, dioctyl phthalate, dicyclohexyl phthalate and diallyl phthalate) and polycyclic aromatic hydrocarbons (naphthalene, fluorene, phenanthrene, fluoranthene) in aqueous solution was obtained. Under the optimized conditions (extraction temperature, extraction time, ionic strength and desorption temperature), the proposed SPME-GC method showed wide linear ranges with correlation coefficients (R(2)) ranging from 0.9745 to 0.9984. The limits of detection were at the range of 0.02 to 0.1 μg L(-1). Single fiber repeatability and fiber-to-fiber reproducibility as well as stability to acid, alkali and high temperature were studied and the results were all satisfactory. The method was applied successfully to the aqueous extracts of disposable paper cup and instant noodle barrel. Several kinds of analytes were detected and quantified.

  10. Cascades of pi-phase plates: a transparent diffractive focusing system.

    PubMed

    Cagniot, Emmanuel; Fromager, Michael; Godin, Thomas; Traïche, Mohamed; Passilly, Nicolas; Päivänranta, Birgit; Ait-Ameur, Kamel

    2010-07-01

    Typically, refractive lenses are used to focus rays of light, but an alternative way can be found by exploiting diffraction of light. It is well known that cascades of hard-edge apertures are able to focus light but with the great drawback of absorption losses. In this paper, we demonstrate that replacing hard-edge apertures with pi-phase plates within a cascade greatly improves the focusing of collimated Gaussian beams. In addition, we propose a simple model to design this cascade, in particular to find the locations and the radii of the different optics once the focal length has been chosen. This model deduced from numerical simulation is useful for sizing cascades consisting of a high number of components and characterized by a strong focusing ability, without requiring a time-consuming optimization process.

  11. Ion beam figuring of continuous phase plates based on the frequency filtering process

    NASA Astrophysics Data System (ADS)

    Xu, Mingjin; Dai, Yifan; Xie, Xuhui; Zhou, Lin; Li, Shengyi; Peng, Wenqiang

    2017-03-01

    Ion beam figuring (IBF) technology is an effective technique for fabricating continuous phase plates (CPPs) with small feature structures. This study proposes a multi-pass IBF approach with different beam diameters based on the frequency filtering method to improve the machining accuracy and efficiency of CPPs during IBF. We present the selection principle of the frequency filtering method, which incorporates different removal functions that maximize material removal over the topographical frequencies being imprinted. Large removal functions are used early in the fabrication to figure the surface profile with low frequency. Small removal functions are used to perform final topographical correction with higher frequency and larger surface gradient. A high-precision surface can be obtained as long as the filtering frequency is suitably selected. This method maximizes the high removal efficiency of the large removal function and the high corrective capability of the small removal function. Consequently, the fast convergence of the machining accuracy and efficiency can be achieved.

  12. SEARCHING FOR PLANETS IN HOLEY DEBRIS DISKS WITH THE APODIZING PHASE PLATE

    SciTech Connect

    Meshkat, Tiffany; Kenworthy, Matthew A.; Bailey, Vanessa P.; Su, Kate Y. L.; Hinz, Philip M.; Smith, Paul S.; Mamajek, Eric E.

    2015-02-10

    We present our first results from a high-contrast imaging search for planetary mass companions around stars with gapped debris disks, as inferred from the stars' bright infrared excesses. For the six considered stars, we model the disks' unresolved infrared spectral energy distributions in order to derive the temperature and location of the disk components. With VLT/NaCo Apodizing Phase Plate coronagraphic L'-band imaging, we search for planetary mass companions that may be sculpting the disks. We detect neither disks nor companions in this sample, confirmed by comparing plausible point sources with archival data. In order to calculate our mass sensitivity limit, we revisit the stellar age estimates. One target, HD 17848, at 540 ± 100 Myr old is significantly older than previously estimated. We then discuss our high-contrast imaging results with respect to the disk properties.

  13. Test results of a pumped two-phase mounting plate with ammonia. [designed for spacecraft thermal control

    NASA Technical Reports Server (NTRS)

    Swanson, T. D.; Mccabe, M. E., Jr.; Grote, M. G.

    1987-01-01

    The design, fabrication, and testing of full-scale prototype units of a two-phase mounting plate (TPMP), which will be used in a two-phase ammonia-based thermal control system for a large spacecraft, are described. The mounting plate uses an evaporator design in which liquid is mechanically pumped through porous feed tubes within the plate. The prototype TPMPs were tested with ammonia at heat loads over 3000 W (3.2 W/sq cm) and local heat fluxes of up to 4 W/sq cm. Calculated total heat transfer coefficients from these tests were between 0.8 and 1.0 W/sq cm per C. This represents a better than twenty-fold improvement over comparable single-phase heat transfer coefficients. Design diagrams are included.

  14. Thin-Film Phase Plates for Transmission Electron Microscopy Fabricated from Metallic Glasses.

    PubMed

    Dries, Manuel; Hettler, Simon; Schulze, Tina; Send, Winfried; Müller, Erich; Schneider, Reinhard; Gerthsen, Dagmar; Luo, Yuansu; Samwer, Konrad

    2016-10-01

    Thin-film phase plates (PPs) have become an interesting tool to enhance the contrast of weak-phase objects in transmission electron microscopy (TEM). The thin film usually consists of amorphous carbon, which suffers from quick degeneration under the intense electron-beam illumination. Recent investigations have focused on the search for alternative materials with an improved material stability. This work presents thin-film PPs fabricated from metallic glass alloys, which are characterized by a high electrical conductivity and an amorphous structure. Thin films of the zirconium-based alloy Zr65.0Al7.5Cu27.5 (ZAC) were fabricated and their phase-shifting properties were evaluated. The ZAC film was investigated by different TEM techniques, which reveal beneficial properties compared with amorphous carbon PPs. Particularly favorable is the small probability for inelastic plasmon scattering, which results from the combined effect of a moderate inelastic mean free path and a reduced film thickness due to a high mean inner potential. Small probability plasmon scattering improves contrast transfer at high spatial frequencies, which makes the ZAC alloy a promising material for PP fabrication.

  15. Noncontact Atomic Force Microscope Dissipation Reveals a Central Peak of SrTiO_{3} Structural Phase Transition.

    PubMed

    Kisiel, M; Pellegrini, F; Santoro, G E; Samadashvili, M; Pawlak, R; Benassi, A; Gysin, U; Buzio, R; Gerbi, A; Meyer, E; Tosatti, E

    2015-07-24

    The critical fluctuations at second order structural transitions in a bulk crystal may affect the dissipation of mechanical probes even if completely external to the crystal surface. Here, we show that noncontact force microscope dissipation bears clear evidence of the antiferrodistortive phase transition of SrTiO_{3}, known for a long time to exhibit a unique, extremely narrow neutron scattering "central peak." The noncontact geometry suggests a central peak linear response coupling connected with strain. The detailed temperature dependence reveals for the first time the intrinsic central peak width of order 80 kHz, 2 orders of magnitude below the established neutron upper bound.

  16. Microscopic Modeling of Tribochemical Processes Vapor-Phase Lubrication and Nanotribology in MEMS

    DTIC Science & Technology

    2003-05-01

    INJECTORS, NAVIER STOKES EQUATIONS , JET FLOW, ADHESIVES, FLUID FLOW, LIQUID JETS, MOLECULAR DYNAMICS....VAPOR PHASES, *LUBRICATION, *TRIBOLOGY, * NANOTECHNOLOGY , *MICROELECTROMECHANICAL SYSTEMS, SURFACE ROUGHNESS, ELECTROMECHANICAL DEVICES, NOZZLES

  17. Macroscopic and microscopic investigations on uniaxial ratchetting of two-phase Ti–6Al–4V alloy

    SciTech Connect

    Kang, Guozheng; Dong, Yawei; Liu, Yujie; Jiang, Han

    2014-06-01

    The uniaxial ratchetting of Ti–6Al–4V alloy with two phases (i.e., primary hexagonal close packed (HCP) α and secondary body-centered cubic (BCC) β phases) was investigated by macroscopic and microscopic experiments at room temperature. Firstly, the effects of cyclic softening/hardening feature, applied mean stress and stress amplitude on the uniaxial ratchetting of the alloy were discussed. The macroscopic investigation of Ti–6Al–4V alloy presents obvious strain-amplitude-dependent cyclic softening, as well as a three-staged evolution curve with regard to the ratchetting strain rate. The ratchetting depends greatly on the applied mean stress and stress amplitude while the ratchetting strain increases with the increasing applied mean stress and stress amplitude. Then, the evolution of dislocation patterns and deformation twinning during the uniaxial ratchetting of two-phase Ti–6Al–4V alloy were observed using transmission electron microscopy (TEM). The microscopic observation shows that deformation twinning occurs in the primary α phase and its amount increases gradually during the uniaxial ratchetting. Simultaneously, the planar dislocation evolves from discrete lines to some dislocation nets and parallel lines with the increasing number of cycles. The deformation twinning in the primary α phase is one of main contributions to the uniaxial ratchetting of Ti–6Al–4V alloy, and should be considered in the construction of corresponding constitutive model. - Highlights: • A three-staged ratchetting occurs in the stress-controlled cyclic tests of Ti–6Al–4V alloy. • Dislocation patterns change from discrete lines to nets and parallel lines. • Deformation twinning occurs during the uniaxial ratchetting. • Both dislocation slipping and twinning are the causes of ratchetting.

  18. Microscopic description of octupole shape-phase transitions in light actinide and rare-earth nuclei

    NASA Astrophysics Data System (ADS)

    Nomura, K.; Vretenar, D.; Nikšić, T.; Lu, Bing-Nan

    2014-02-01

    A systematic analysis of low-lying quadrupole and octupole collective states is presented based on the microscopic energy density functional framework. By mapping the deformation constrained self-consistent axially symmetric mean-field energy surfaces onto the equivalent Hamiltonian of the sdf interacting boson model (IBM), that is, onto the energy expectation value in the boson condensate state, the Hamiltonian parameters are determined. The study is based on the global relativistic energy density functional DD-PC1. The resulting IBM Hamiltonian is used to calculate excitation spectra and transition rates for the positive- and negative-parity collective states in four isotopic chains characteristic for two regions of octupole deformation and collectivity: Th, Ra, Sm, and Ba. Consistent with the empirical trend, the microscopic calculation based on the systematics of β2-β3 energy maps, the resulting low-lying negative-parity bands and transition rates show evidence of a shape transition between stable octupole deformation and octupole vibrations characteristic for β3-soft potentials.

  19. Phase separation in mixtures of ovalbumin and konjac glucomannan: physicochemical and microscopic investigations.

    PubMed

    Zhou, Bin; Liu, Jinjin; Ye, Ting; Wang, Yuntao; Xu, Wei; Li, Bin

    2014-09-01

    The phase behavior and microstructure of ovalbumin (OVA)/konjac glucomannan (KGM) mixtures were studied at pH 7.0. Phase diagrams were established by centrifugation and visual observation. Micro-phase separation of the OVA/KGM mixtures was quantified by measuring the turbidity. The microstructures of the phase separated mixtures were studied by measuring rheological property and confocal laser scanning microscopy (CLSM). The phase behavior of OVA/KGM mixtures appeared to be one single phase or two separated phases depending on the content of OVA and KGM. OVA had a pronounced effect on turbidity of OVA/KGM mixtures. The particle size of mixtures increased with increasing OVA and KGM concentration, which was the largest (119.1 μm) at 0.25 wt.% KGM and 5 wt.% OVA. The G' and G″ cross-over at a mixture of 0.20 wt.% KGM and 4 wt.% OVA demonstrated the buildup of microstructure during phase separation. The association of OVA aggregates could be observed under CLSM. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. MicroRaman, PXRD, EDS and microscopic investigation of magnesium calcite biomineral phases. The case of sea urchin biominerals

    NASA Astrophysics Data System (ADS)

    Borzęcka-Prokop, B.; Wesełucha-Birczyńska, A.; Koszowska, E.

    2007-02-01

    This study concerns Mg-calcite characterization (and in particular molecular structure and microstructural studies of mineral phases) of a sea urchin mineralised test and spines. Sea urchins are spiny sea animals (kingdom Animalia, phylum Echinodermata, class Echinoidea). Microscopic observations, SEM, EDS, PXRD and spectroscopic microRaman methods have been applied to characterize the biomineral parts of the sea urchin. The latter technique is very useful in research of biological systems and especially suitable for monitoring differences within biomineral phases exhibiting varieties of morphological forms. Crystalline magnesium calcium carbonate, Mg xCa 1- xCO 3 (magnesian calcite; space group R-3 cH; a = 4.9594(8) Å, c = 16.886(6) Å), has been identified as the predominant biomineral component.

  1. Nonanalytic microscopic phase transitions and temperature oscillations in the microcanonical ensemble: An exactly solvable one-dimensional model for evaporation

    NASA Astrophysics Data System (ADS)

    Hilbert, Stefan; Dunkel, Jörn

    2006-07-01

    We calculate exactly both the microcanonical and canonical thermodynamic functions (TDFs) for a one-dimensional model system with piecewise constant Lennard-Jones type pair interactions. In the case of an isolated N -particle system, the microcanonical TDFs exhibit (N-1) singular (nonanalytic) microscopic phase transitions of the formal order N/2 , separating N energetically different evaporation (dissociation) states. In a suitably designed evaporation experiment, these types of phase transitions should manifest themselves in the form of pressure and temperature oscillations, indicating cooling by evaporation. In the presence of a heat bath (thermostat), such oscillations are absent, but the canonical heat capacity shows a characteristic peak, indicating the temperature-induced dissociation of the one-dimensional chain. The distribution of complex zeros of the canonical partition may be used to identify different degrees of dissociation in the canonical ensemble.

  2. Coherence-controlled holographic microscopy principle embodiment into Q-PHASE microscope: story of a successful technology transfer

    NASA Astrophysics Data System (ADS)

    Lostak, M.; Chmelik, R.

    2016-03-01

    Curiously, the coherence-controlled holographic microscopy (CCHM) was brought into the world owing to the endeavor of Chmelik's team at Brno University of Technology (BUT) to avoid scanning in confocal microscopy. As coherence gating seemed to be the way, the Leith & Upatnieks proposal of incoherent holography had been considered attractive. Their method made interference system free from strict dependence on both spatial and temporal coherence. Off axis holographic system proposed on such basis has been proved capable of coherence based depth discrimination in single wide-field shot in reflected-light arrangement. Consequently, extremely low-coherence holographic imaging had been found highly contributive also to the image quality depriving it from coherence artefacts and improving its transversal resolution. This is why CCHM promised high precision of quantitative phase imaging (QPI) in transmitted light set up that was realized for cell biology. However the cost of necessarily complicated optical design and need of very precise mechanics forced the team of prof Chmelik at BUT to search for a company capable of mastering the instrument. It was TESCAN ORSAY the highly successful scanning electron microscopes producer that finally took charge of the commercial design. Long-term collaboration of the company with BUT made possible both the CCHM technology successful transfer up to Q-PHASE microscope production as well as the company Light microscopy division reinforcement. This contribution merges views of CCHM technology author and the TESCAN development team.

  3. Macroscopic rates, microscopic observations, and molecular models of the dissolution of carbonate phases.

    SciTech Connect

    Duckworth, Owen W.; Cygan, Randall Timothy; Martin, Scot T.

    2004-05-01

    Bulk and surface energies are calculated for endmembers of the isostructural rhombohedral carbonate mineral family, including Ca, Cd, Co, Fe, Mg, Mn, Ni, and Zn compositions. The calculations for the bulk agree with the densities, bond distances, bond angles, and lattice enthalpies reported in the literature. The calculated energies also correlate with measured dissolution rates: the lattice energies show a log-linear relationship to the macroscopic dissolution rates at circumneutral pH. Moreover, the energies of ion pairs translated along surface steps are calculated and found to predict experimentally observed microscopic step retreat velocities. Finally, pit formation excess energies decrease with increasing pit size, which is consistent with the nonlinear dissolution kinetics hypothesized for the initial stages of pit formation.

  4. Hard X-Ray Fourier Transform Holography with Zone Plates

    SciTech Connect

    Watanabe, Norio; Yokosuka, Hiroki; Ohigashi, Takuji; Aoki, Sadao; Takano, Hidekazu; Takeuchi, Akihisa; Suzuki, Yoshio

    2004-05-12

    Using two zone plates, a hard x-ray lens-less Fourier transform holographic microscope with cone-beam illumination was investigated at SPring-8 BL20XU. One zone plate was placed on the optical axis, and another zone plate was placed 16 mm downstream and 9 {mu}m off the optical axis. The diverging x-rays from the focus of the upstream zone plate illuminated a specimen where the focus of the downstream zone plate was placed. A hologram of a copper mesh of 12.7 {mu}m pitch could be obtained. The intensity and the phase could be successfully reconstructed with sub-micron resolution.

  5. Estimation of visibility of phase contrast with extraction voltages for field emission gun electron microscopes.

    PubMed

    Meng, Xing

    2017-02-01

    Estimation was made for visibility of phase contrast with varying extraction voltages. The resulting decay rates of visibility show that images with low image contrast from cryo EM will be seriously impacted with high extraction voltages.

  6. Microscopic description of the polyamorphic phases of triphenyl phosphite by means of multidimensional solid-state NMR spectroscopy.

    PubMed

    Senker, Jürgen; Sehnert, Jan; Correll, Sascha

    2005-01-12

    The structural properties of a second, apparently amorphous phase (aII) of the molecular glass former triphenyl phosphite were studied by means of multidimensional solid-state NMR spectroscopy and X-ray diffraction. Phase aII was prepared by annealing the supercooled liquid in the temperature range 210 K microscopic description of phase aII. For T(a) > 223 K a nano- or microcrystalline material is formed, whereas for T(a) < 223 K phase aII is homogeneous and disordered. Our data strongly suggest that some of the TPP molecules in phase aII tend toward a parallel alignment. The regions, where the molecules preferentially align appear to be spatially separated and consist of only a few molecules. Whereas the mean cubic expansion of an individual region does not change within the experimental error, the percentage of correlated molecules increases with rising T(a). Based on our results, phase aII can consistently be described as a second liquid, where a part of the molecules exhibit structural correlations. The transformation of the supercooled liquid into phase aII is therefore considered as a liquid-liquid phase transition.

  7. Neutron Diffraction Residual Strain Tensor Measurements Within The Phase IA Weld Mock-up Plate P-5

    SciTech Connect

    Hubbard, Camden R

    2011-09-01

    Oak Ridge National Laboratory (ORNL) has worked with NRC and EPRI to apply neutron and X-ray diffraction methods to characterize the residual stresses in a number of dissimilar metal weld mockups and samples. The design of the Phase IA specimens aimed to enable stress measurements by several methods and computational modeling of the weld residual stresses. The partial groove in the 304L stainless steel plate was filled with weld beads of Alloy 82. A summary of the weld conditions for each plate is provided in Table 1. The plates were constrained along the long edges during and after welding by bolts with spring-loaded washers attached to the 1-inch thick Al backing plate. The purpose was to avoid stress relief due to bending of the welded stainless steel plate. The neutron diffraction method was one of the methods selected by EPRI for non-destructive through thickness strain and stress measurement. Four different plates (P-3 to P-6) were studied by neutron diffraction strain mapping, representing four different welding conditions. Through thickness neutron diffraction strain mappings at NRSF2 for the four plates and associated strain-free d-zero specimens involved measurement along seven lines across the weld and at six to seven depths. The mountings of each plate for neutron diffraction measurements were such that the diffraction vector was parallel to each of the three primary orthogonal directions of the plate: two in-plane directions, longitudinal and transverse, and the direction normal to the plate (shown in left figure within Table 1). From the three orthogonal strains for each location, the residual stresses along the three plate directions were calculated. The principal axes of the strain and stress tensors, however, need not necessarily align with the plate coordinate system. To explore this, plate P-5 was selected for examination of the possibility that the principal axes of strain are not along the sample coordinate system axes. If adequate data could

  8. Piezoelectric phased array acousto-ultrasonic interrogation of damage in thin plates

    NASA Astrophysics Data System (ADS)

    Purekar, Ashish S.

    Structural Health Monitoring (SHM) and Condition Based Maintenance (CBM) systems can provide substantial benefits for aging aerospace systems as well as newer systems still in the design process. In aging aerospace systems, a retrofitted SHM system would alert users of incipient damage preventing catastrophic failure. For newer systems, incorporating a SHM approach and using CBM techniques can reduce life-cycle costs. Central to such SHM and CBM systems is the ability to detect damage in a structure. Traditional approaches to damage detection in structures involve one of two methods. In the modal dynamics approach, the natural frequencies and modeshapes of a structure shift when damage occurs. The location, type, and amount of damage is determined by the shifts in the modal properties due to damage. Alternately, in an Ultrasonics approach, the structure is scanned with a specialized transducer which induces high frequency vibrations in the structure. Damage in the structure is inferred when these vibrations are altered. In the same vein as Ultrasonics, Acoustic Emission based methods listen for energy release in the structure upon defect growth. All of these techniques have limitations which hinder their usage in a practical system. This thesis attempts to develop a methodology with the benefits of the modal approach as well as the Ultrasonics/Acoustic Emission approach. The methodology is commonly referred to as an Acousto-Ultrasonic technique for damage detection. The structural dynamics of plate structures is described as wavelike in nature where the plate is a medium for wave propagation. For thin plates, bulk wave propagation is described using Lamb wave modes. The two fundamental modes of wave propagation are the in-plane acoustic mode and the transverse bending mode. The interaction of these waves with a discontinuity or damaged region changes the way the waves propagate. Part of the incident wavefront is reflected back while the rest is transmitted through

  9. Surface wave phase velocities from 2-D surface wave tomography studies in the Anatolian plate

    NASA Astrophysics Data System (ADS)

    Arif Kutlu, Yusuf; Erduran, Murat; Çakır, Özcan; Vinnik, Lev; Kosarev, Grigoriy; Oreshin, Sergey

    2014-05-01

    We study the Rayleigh and Love surface wave fundamental mode propagation beneath the Anatolian plate. To examine the inter-station phase velocities a two-station method is used along with the Multiple Filter Technique (MFT) in the Computer Programs in Seismology (Herrmann and Ammon, 2004). The near-station waveform is deconvolved from the far-station waveform removing the propagation effects between the source and the station. This method requires that the near and far stations are aligned with the epicentre on a great circle path. The azimuthal difference of the earthquake to the two-stations and the azimuthal difference between the earthquake and the station are restricted to be smaller than 5o. We selected 3378 teleseismic events (Mw >= 5.7) recorded by 394 broadband local stations with high signal-to-noise ratio within the years 1999-2013. Corrected for the instrument response suitable seismogram pairs are analyzed with the two-station method yielding a collection of phase velocity curves in various period ranges (mainly in the range 25-185 sec). Diffraction from lateral heterogeneities, multipathing, interference of Rayleigh and Love waves can alter the dispersion measurements. In order to obtain quality measurements, we select only smooth portions of the phase velocity curves, remove outliers and average over many measurements. We discard these average phase velocity curves suspected of suffering from phase wrapping errors by comparing them with a reference Earth model (IASP91 by Kennett and Engdahl, 1991). The outlined analysis procedure yields 3035 Rayleigh and 1637 Love individual phase velocity curves. To obtain Rayleigh and Love wave travel times for a given region we performed 2-D tomographic inversion for which the Fast Marching Surface Tomography (FMST) code developed by N. Rawlinson at the Australian National University was utilized. This software package is based on the multistage fast marching method by Rawlinson and Sambridge (2004a, 2004b). The

  10. Microscopic Phase-Space Exploration Modeling of ^{258}Fm Spontaneous Fission.

    PubMed

    Tanimura, Yusuke; Lacroix, Denis; Ayik, Sakir

    2017-04-14

    We show that the total kinetic energy (TKE) of nuclei after the spontaneous fission of ^{258}Fm can be well reproduced using simple assumptions on the quantum collective phase space explored by the nucleus after passing the fission barrier. Assuming energy conservation and phase-space exploration according to the stochastic mean-field approach, a set of initial densities is generated. Each density is then evolved in time using the nuclear time-dependent density-functional theory with pairing. This approach goes beyond the mean-field theory by allowing spontaneous symmetry breaking as well as a wider dynamical phase-space exploration leading to larger fluctuations in collective space. The total kinetic energy and mass distributions are calculated. New information on the fission process: fluctuations in scission time, strong correlation between TKE and collective deformation, as well as prescission particle emission, are obtained. We conclude that fluctuations of the TKE and mass are triggered by quantum fluctuations.

  11. A microscopic frictional theory for reactions in condensed phases: Influence of nonlinear couplings

    NASA Astrophysics Data System (ADS)

    Nagaoka, Masataka; Yoshida, Naoto; Yamabe, Tokio

    1996-10-01

    On the assumption of external bath equilibrium, a set of simultaneous linear generalized Langevin equations (GLE) for a microscopic Hamiltonian is derived, whose potential function includes cubic (i.e., nonlinear) coupling terms, which are linear in internal coordinates but quadratic in external bath coordinates. Furthermore, on the linear GLE treatment, a closed expression of time-dependent friction coefficient and a rate constant in the Grote-Hynes theory (GHT) are derived microscopically, reflecting the reactant and solvent structures. By comparing the rate constant of GHT with that of the multidimensional transition-state theory (TST) for the whole solution system, we conclude that these rate expressions are different from each other and the deviation is due to the dynamic effect via the nonlinear coupling among the reaction, internal, and external normal coordinates. Moreover, the friction coefficient depends on temperature and the deviation becomes larger with temperature increasing. By the second-order perturbation theory, we have estimated the deviation which is approximately equal to a transmission coefficient κ, for a real cluster reaction system: the formic acid-water-water system. We have obtained κ of 0.92, which is smaller than unity. A mode analysis shows that two hindered translational motions of the solvent with low frequencies prevent the reaction from proceeding. Besides, we have investigated the isotope effect of a medium water molecule and found that the dynamic isotope effect for the reaction is quite large, i.e., κ for heavy water is much smaller than that for light water. Not the change of the reactive frequency on the free energy surface but that of the frictional effect in the deuterium substitution mainly contributes to the isotope effect. Further, the temperature dependence of κ for the reaction has been estimated and it is found that κ becomes smaller with temperature increasing and the change of the frictional effect in

  12. Extracting Constitutive Stress-Strain Behavior of Microscopic Phases by Micropillar Compression

    NASA Astrophysics Data System (ADS)

    Williams, J. J.; Walters, J. L.; Wang, M. Y.; Chawla, N.; Rohatgi, A.

    2013-02-01

    The macroscopic behavior of metallic materials is a complex function of microstructure. The size, morphology, volume fraction, crystallography, and distribution of a 2nd phase within a surrounding matrix all control the mechanical properties. Understanding the contributions of the individual microconstituents to the mechanical behavior of multiphase materials has proven difficult due to the inability to obtain accurate constitutive relationships of each individual constituent. In dual-phase steels, for example, the properties of martensite or ferrite in bulk form are not representative of their behavior at the microscale. In this study, micropillar compression was employed to determine the mechanical properties of individual microconstituents in metallic materials with "composite" microstructures, consisting of two distinct microconstituents: (I) a Mg-Al alloy with pure Mg dendrites and eutectic regions and (II) a powder metallurgy steel with ferrite and martensite constituents. The approach is first demonstrated in a Mg-Al directionally solidified alloy where the representative stress-strain behavior of the matrix and eutectic phases was obtained. The work is then extended to a dual-phase steel where the constitutive behavior of the ferrite and martensite were obtained. Here, the results were also incorporated into a modified rule-of-mixtures approach to predict the composite behavior of the steel. The constitutive behavior of the ferrite and martensite phases developed from micropillar compression was coupled with existing strength-porosity models from the literature to predict the ultimate tensile strength of the steel. Direct comparisons of the predictions with tensile tests of the bulk dual-phase steel were conducted and the correlations were quite good.

  13. 3.9 Å structure of the nucleosome core particle determined by phase-plate cryo-EM

    PubMed Central

    Chua, Eugene Y.D.; Vogirala, Vinod K.; Inian, Oviya; Wong, Andrew S.W.; Nordenskiöld, Lars; Plitzko, Juergen M.; Danev, Radostin; Sandin, Sara

    2016-01-01

    The Volta phase plate is a recently developed electron cryo-microscopy (cryo-EM) device that enables contrast enhancement of biological samples. Here we have evaluated the potential of combining phase-plate imaging and single particle analysis to determine the structure of a small protein–DNA complex. To test the method, we made use of a 200 kDa Nucleosome Core Particle (NCP) reconstituted with 601 DNA for which a high-resolution X-ray crystal structure is known. We find that the phase plate provides a significant contrast enhancement that permits individual NCPs and DNA to be clearly identified in amorphous ice. The refined structure from 26,060 particles has an overall resolution of 3.9 Å and the density map exhibits structural features consistent with the estimated resolution, including clear density for amino acid side chains and DNA features such as the phosphate backbone. Our results demonstrate that phase-plate cryo-EM promises to become an important method to determine novel near-atomic resolution structures of small and challenging samples, such as nucleosomes in complex with nucleosome-binding factors. PMID:27563056

  14. Imaging performance of attenuated phase-shift mask using coherent scattering microscope

    NASA Astrophysics Data System (ADS)

    Lee, Jae Uk; Jeong, SeeJun; Hong, Seong Chul; Lee, Seung Min; Ahn, Jinho

    2014-03-01

    The half-tone phase shift mask (PSM) has been suggested for better imaging performances like image contrast, NILS and H-V bias compared to the binary mask (BIM) in EUV lithography. In this paper, we measured imaging performance of a fabricated half-tone attenuated PSM with Coherent Scattering Microscopy (CSM) and the results were compared with simulation data obtained by EM-suite tool. We prepared a half-tone attenuated PSM which has 12.7% reflectivity and 180° phase shift with absorber stack of 16.5mn-thick TaN absorber and 24nm-thick Mo phase shifter. With CSM, an actinic inspection tool, we measured the imaging properties of PSM. The diffraction efficiencies of BIM were measured as 31%, 36%, and 44% for 88 nm, 100 nm, and 128 nm mask CD, respectively, while those of PSM were measured as 45%, 62%, and 81%. Also the aerial image at wafer level obtained by CSM with high volume manufacturing tool's (HVM) illumination condition (NA=0.33, σ=0.9) showed higher image contrast and NILS with phase shift effect. And the measured data were consistent with the simulation data.

  15. Microscopic Studies of Fast Phase Transformations in GeSbTe Films

    DTIC Science & Technology

    2001-04-01

    focussed laser pulse (figure 3). Amorphization in a crystalline matrix with cubic structure should lead to 6.8 % increase in thickness. For a film...a cubic structure of the rim leads to a perfect erasure, which is identified by an epsilon of one. This state of the bit is reached after 50 ns. If a...always have the cubic structure , independent of the surrounding environment. A capping layer on top of the phase change material was lifted by thermal

  16. Decoding the pair correlations and properties of equilibrium microscopic cluster phases

    NASA Astrophysics Data System (ADS)

    Bollinger, Jonathan; Jadrich, Ryan; Truskett, Thomas

    Due to competing interactions acting between particles, dispersed colloidal suspensions can reversibly transition to phases comprising aggregate clusters. Cluster phases have been reported for both 'model' colloidal particles and complex monomers (e.g., proteins); however, many questions remain regarding how to detect and characterize cluster phases given only pair structural correlations (the information most accessible across diverse systems) and how to relate clustering susceptibility and behavior to underlying monomer-monomer interactions. Using molecular simulations and liquid-state theory across a wide survey of conditions, we decode the widely-observed intermediate range order pre-peak in the structure factor by: (1) validating a physically-intuitive rule for detecting clustering based on the pre-peak thermal correlation length; and (2) relating pre-peak position to cluster size and bulk monomer density. We further demonstrate how clustering transitions and resultant properties relate to monomer interactions along coordinates tunable in experiments. These trends are suitable for comparing against clustering systems that can be directly visualized (via, e.g., confocal microscopy), which should aid in assessing the realism of commonly-adopted monomer interaction potentials.

  17. Translational Symmetry and Microscopic Constraints on Symmetry-Enriched Topological Phases: A View from the Surface

    NASA Astrophysics Data System (ADS)

    Cheng, Meng; Zaletel, Michael; Barkeshli, Maissam; Vishwanath, Ashvin; Bonderson, Parsa

    2016-10-01

    The Lieb-Schultz-Mattis theorem and its higher-dimensional generalizations by Oshikawa and Hastings require that translationally invariant 2D spin systems with a half-integer spin per unit cell must either have a continuum of low energy excitations, spontaneously break some symmetries, or exhibit topological order with anyonic excitations. We establish a connection between these constraints and a remarkably similar set of constraints at the surface of a 3D interacting topological insulator. This, combined with recent work on symmetry-enriched topological phases with on-site unitary symmetries, enables us to develop a framework for understanding the structure of symmetry-enriched topological phases with both translational and on-site unitary symmetries, including the effective theory of symmetry defects. This framework places stringent constraints on the possible types of symmetry fractionalization that can occur in 2D systems whose unit cell contains fractional spin, fractional charge, or a projective representation of the symmetry group. As a concrete application, we determine when a topological phase must possess a "spinon" excitation, even in cases when spin rotational invariance is broken down to a discrete subgroup by the crystal structure. We also describe the phenomena of "anyonic spin-orbit coupling," which may arise from the interplay of translational and on-site symmetries. These include the possibility of on-site symmetry defect branch lines carrying topological charge per unit length and lattice dislocations inducing degeneracies protected by on-site symmetry.

  18. Laves phase in alloy 718 fusion zone — microscopic and calorimetric studies

    SciTech Connect

    Manikandan, S.G.K.; Sivakumar, D.; Prasad Rao, K.; Kamaraj, M.

    2015-02-15

    Microstructural characterization of alloy 718 fusion zone welded with both solid solution and age hardenable filler metal has been done. The microsegregation and the aging response were studied by employing three levels of weld cooling rate. Gas Tungsten Arc welding process was used. The fusion zone of solid solution filler metal has been responding to the aging treatment due to the weld process conditions and weld metal chemistry. However the weld metal composition was modified due to the higher molybdenum (Mo) content in solid solution filler metal. The effect of this modification on the phase reaction temperatures was studied and the same was compared with the conventional filler metal. - Graphical abstract: Display Omitted - Highlights: • Interdendritic segregation has been controlled by weld cooling rate. • Laves phase formation has been studied with cooling rate and weld metal chemistry. • Aging response with solid solution filler metal has been demonstrated. • Reduction in Laves phase and alloying element segregation has been confirmed. • Reaction temperatures were found modified because of Mo addition.

  19. Characteristics of Plate-Fin Heat Exchanger with Phase Change Material

    NASA Astrophysics Data System (ADS)

    Okada, Masashi

    In the present paper, a plate-fin heat exchanger with a phase change material (PCM) was studied. The heat exchanger was a singlepass cross-flow type, where both fluids (air) were unmixed. N-octadecane, of which the fusion temperature is 28.0°C, was used as the PCM. Three kinds of experiments were carried out and the inlet and outlet temperatures and the temperatures in the PCM were measured. In the first experiments, the effectiveness and the overall heat-transfer coefficient were obtained at steady states. By the calculations of steady three-dimensional heat conduction, the effects of the parameters, ---, dimensions, thermal properties, and heat transfer coefficients of air ---, on the overall heat-transfer coefficients were obtaiend clearly. In the second experiments, after the higher-temperature air-flow was stopped, the outlet temperatures of the lower-temperature air were maintained at the constant temperatures for 90-150 minutes. In the third experiments, the higher temperature air was flowed intermittently with an equal interval. The fluctuation of the outlet temperature of the lower-temperature air was within ±2.5°C. The above transient and periodical experiments showed that the present heat exchanger with PCM had useful characters of latent heat storage.

  20. Note: Measurement of synchrotron radiation phase-space beam properties to verify astigmatism compensation in Fresnel zone plate focusing optics

    NASA Astrophysics Data System (ADS)

    Kagoshima, Yasushi; Miyagawa, Takamasa; Kagawa, Saki; Takeda, Shingo; Takano, Hidekazu

    2017-08-01

    The intensity distribution in phase space of an X-ray synchrotron radiation beamline was measured using a pinhole camera method, in order to verify astigmatism compensation by a Fresnel zone plate focusing optical system. The beamline is equipped with a silicon double crystal monochromator. The beam size and divergence at an arbitrary distance were estimated. It was found that the virtual source point was largely different between the vertical and horizontal directions, which is probably caused by thermal distortion of the monochromator crystal. The result is consistent with our astigmatism compensation by inclining a Fresnel zone plate.

  1. Real-time monitoring of the cell physiological and pathological processes using computer-aided phase microscope

    NASA Astrophysics Data System (ADS)

    Vasilenko, Irina A.; Shabalin, Vladimir; Tychinsky, Vladimir P.; Kufal, Georgy E.; Konradov, A.; Slinchenko, O. I.

    1996-01-01

    Living cells investigation and cell response to external factors are of great interest for practical medicine and biology. The main advantages of computer aided phase microscope (CPM) Cytoscan which permits us to observe the cell surface and internal structure consists in superresolution and the possibility of the dynamic processes registering. We attempt to characterize some aspects of the morphofunctional status of human lymphocytes determining the dynamics of the selected points in normal or pathological cells. To evaluate the lymphocyte homeostasis donors and persons of autoimmune diseases were analyzed and the changes of optical and geometrical cell parameters registered by CPM Cytoscan. The dynamic process registration allowed us to perform the real-time quantitative analysis of the living lymphocyte activity in norm and pathology.

  2. In situ electron microscope study of the phase transformation, structure and growth of thin Te1-xSex films

    NASA Astrophysics Data System (ADS)

    Vermaak, J. S.; Raubenheimer, D.

    1988-01-01

    An in-situ electron microscope technique was utilized to observe directly the amorphous-to-crystalline phase transformation, the isothermal growth rates, as well as the orientation and structure of the recrystallized films for the Te1-xSex alloy system for x=0.2, 0.3 and 0.4. Activation energies of E=0.91, 0.93 and 0.96 eV and crystallization temperatures of Tc=-14, 81.5 and 85°C for the three alloys, respectively, were found. In all three cases the crystallization process originated from single crystalline nuclei with a hexagonal structure and with the c-axis in general parallel to the substrate surface.

  3. Radiotracer investigations to study the hydrodynamic characteristics of continuous phase in a pulsed sieve plate extraction column

    NASA Astrophysics Data System (ADS)

    Din, G. U.; Khan, I. H.; Chughtai, I. R.; Inayat, M. H.; Jin, J. H.

    2013-05-01

    The present investigations are focused to study the hydrodynamic characteristics of continuous phase in a pulsed sieve plate extraction column using 68Ga in the form of gallium chloride from an industrial radionuclide generator (68Ge/68Ga). Labeling of water with the subject radiotracer in water-kerosene environment was evaluated. Experiments for Residence Time Distribution (RTD) analysis were carried out for a range of dispersed phase superficial velocities in a liquid-liquid extraction pulsed sieve plate column operating in the emulsion regime with water as continuous and kerosene as dispersed phase. Axial Dispersion Model (ADM) was used to simulate the hydrodynamic characteristics of continuous phase. It has been observed that the axial mixing in the continuous phase decreases and slip velocity increases with increase in superficial velocity of dispersed phase while the holdup of continuous phase was found to decrease with increase in superficial velocity of dispersed phase. ADM with open-open boundary condition was found to be a suitable model for the subject system.

  4. Electron microscopic evidence for a tribologically induced phase transformation as the origin of wear in diamond

    SciTech Connect

    Zhang, Xinyi; Schneider, Reinhard; Müller, Erich; Gerthsen, Dagmar; Mee, Manuel; Meier, Sven; Gumbsch, Peter

    2014-02-14

    Tribological testing of a coarse-grained diamond layer, deposited by plasma-enhanced chemical vapor deposition, was performed on a ring-on-ring tribometer with a diamond counterpart. The origin of the wear of diamond and of the low friction coefficient of 0.15 was studied by analyzing the microstructure of worn and unworn regions by transmission and scanning electron microscopy. In the worn regions, the formation of an amorphous carbon layer with a thickness below 100 nm is observed. Electron energy loss spectroscopy of the C-K ionization edge reveals the transition from sp{sup 3}-hybridized C-atoms in crystalline diamond to a high fraction of sp{sup 2}-hybridized C-atoms in the tribo-induced amorphous C-layer within a transition region of less than 5 nm thickness. The mechanically induced phase transformation from diamond to the amorphous phase is found to be highly anisotropic which is clearly seen at a grain boundary, where the thickness of the amorphous layer above the two differently oriented grains abruptly changes.

  5. Kinetics of phase transition in protein solutions on microscopic and mesoscopic length scales

    NASA Astrophysics Data System (ADS)

    Filobelo, Luis F.

    2005-11-01

    Phase transformations in solutions of macromolecules are fundamental for all living things, and of great importance in science and industry. For instance, insulin is biosynthesized in the beta cells of the pancreas and stored in crystalline form, which protects it form cleavage, until it is needed. Certain diseases such as Alzheimer, sickle cell anemia, and eye cataract are produced by the polymerization of protein molecules, which loose their functionality after the phase transition. Additionally, separation operations in manufacturing of pharmaceuticals can be eliminated if the crystals produced have a narrow size distribution. The nucleation and growth of crystals can be adequately controlled only if the mechanisms that govern these processes are well understood. Here we have investigated several facets of the kinetics controlling the behavior of phase transition in protein solutions. We performed experiments to determine the homogenous nucleation rate for lysozyme and insulin crystals and the contribution of heterogeneously nucleated crystals. In the first segment of this work we discuss the existence of a solution-to-crystal spinodal boundary derived from these determinations, and showed that the formation of crystalline nuclei from solution occur in two steps for lysozyme: the formation of quasi-droplets of a disordered intermediate, followed by the nucleation of ordered crystalline embryos within these droplets in which the rate of each step depends on a respective free energy barrier and on the growth rate of its near-critical clusters. We addressed experimentally the relative significance of the free-energy barriers and the kinetic factors for the nucleation of crystals from solution. Using dynamic and static light scattering along with differential refractometry, we also characterized the appearance of dense liquid droplets and the magnitude of the second osmotic virial coefficient B2 for insulin in both aqueous solution and in solution containing 15% (v

  6. Testing Single Phase IGBT H-Bridge Switch Plates for the High Voltage Converter Modulator at the Spallation Neutron Source

    SciTech Connect

    Peplov, Vladimir V; Anderson, David E; Solley, Dennis J

    2014-01-01

    Three IGBT H-bridge switching networks are used in each High Voltage Converter Modulator (HVCM) system at the Spallation Neutron Source (SNS) to generate drive currents to three boost transformer primaries switching between positive and negative bus voltages at 20 kHz. Every switch plate assembly is tested before installing it into an operational HVCM. A Single Phase Test Stand has been built for this purpose, and it is used for adjustment, measurement and testing of different configurations of switch plates. This paper will present a description of the Test Stand configuration and discuss the results of testing switch plates with two different types of IGBT gate drivers currently in use on the HVCM systems. Comparison of timing characteristics of the original and new drivers and the resulting performance reinforces the necessity to replace the original H-bridge network drivers with the upgraded units.

  7. Visualization and void fraction measurement of gas-liquid two-phase flow in plate heat exchanger.

    PubMed

    Asano, H; Takenaka, N; Fujii, T; Maeda, N

    2004-10-01

    Adiabatic and boiling gas-liquid two-phase flows in a simulated plate heat exchanger with a single-ribbed channel were visualized by a thermal neutron radiography method. In the experiments under adiabatic condition, the air-water two-phase flows in an aluminum test section were visualized. In the boiling two-phase flow experiments, chlorofluorocarbon R141b was used as the working fluid. Two-dimensional distributions of void fraction were measured from visualized images via some image processing techniques. As a result, it was shown that both the phases tended to flow straight in the ribbed channel, and mixing of gas and liquid phases was weak. Moreover, when working fluids flew into the test section as a gas-liquid mixture, the phase distributions were strongly affected by a liquid pool at the test section inlet.

  8. Microscopic analysis of the compressibility in the spinel phase of Si3N4

    NASA Astrophysics Data System (ADS)

    Mori-Sánchez, P.; Franco, R.; Martín Pendás, A.; Luaña, V.; Recio, J. M.

    2001-06-01

    Quantum-mechanical static simulations of the high-pressure spinel phase of Si3N4 have been performed to determine the unit cell geometry and the equation of state from 0 to 50 GPa. The application of the Bader theory to the ab initio electron density leads to quantum consistent atomic charges and volumes, the crystalline bonding graph, and the prediction of a highly ionic bonding. The computed thermodynamic properties have been interpreted in terms of the local behaviour of the Si and N quantum subgroups and constitutive unit cell polyhedra. We show that: i) the bulk compressibility can be estimated from the average of the tetrahedral and octahedral compressibilities, and ii) the N response to pressure controls the macroscopic behaviour. Our conclusions can be useful in the search of very hard, N-based materials.

  9. Microscopic analysis of nuclear quantum phase transitions in the N{approx_equal}90 region

    SciTech Connect

    Li, Z. P.; Niksic, T.; Vretenar, D.; Meng, J.; Lalazissis, G. A.; Ring, P.

    2009-05-15

    The analysis of shape transitions in Nd isotopes, based on the framework of relativistic energy-density functionals and restricted to axially symmetric shapes in T. Niksic, D. Vretenar, G. A. Lalazissis, and P. Ring [Phys. Rev. Lett. 99, 092502 (2007)], is extended to the region Z=60,62,64 with N{approx_equal}90 and includes both {beta} and {gamma} deformations. Collective excitation spectra and transition probabilities are calculated starting from a five-dimensional Hamiltonian for quadrupole vibrational and rotational degrees of freedom, with parameters determined by constrained self-consistent relativistic mean-field calculations for triaxial shapes. The results reproduce available data and show that there is an abrupt change of structure at N=90 that can be approximately characterized by the X(5) analytic solution at the critical point of the first-order quantum phase transition between spherical and axially deformed shapes.

  10. Influence of Two-Phase Thermocapillary Flow on Cryogenic Liquid Retention in Microscopic Pores

    NASA Technical Reports Server (NTRS)

    Schmidt, G. R.; Nadarajah, A.; Chung, T. J.; Karr, G. R.

    1994-01-01

    Previous experiments indicate that the bubble point pressure of spacecraft liquid hydrogen acquisition devices is reduced substantially when the ullage is pressurized with heated hydrogen vapor. The objective is to determine whether the two-phase thermocapillary convection arising from thermodynamic non-equilibrium along the porous surfaces of such devices could lead to this observed degradation in retention performance. We also examine why retention capability appears to be unaffected by pressurization with heated helium or direct heating through the porous structure. Computational assessments based on coupled solution of the flowfield and liquid free surface indicate that for highly wetting fluids in small pores, dynamic pressure and vapor recoil dictate surface morphology and drive meniscus deformation. With superheating, the two terms exert the same influence on curvature and promote mechanical equilibrium, but with subcooling, the pressure distribution produces a suction about the pore center-line that degrades retention. This result points to thermocapillary-induced deformation arising from condensation as the cause for retention loss. It also indicates that increasing the level of non-equilibrium by reducing accommodation coefficient restricts deformation and explains why retention failure does not occur with direct screen heating or helium pressurization.

  11. High-throughput 3D tracking of bacteria on a standard phase contrast microscope

    NASA Astrophysics Data System (ADS)

    Taute, K. M.; Gude, S.; Tans, S. J.; Shimizu, T. S.

    2015-11-01

    Bacteria employ diverse motility patterns in traversing complex three-dimensional (3D) natural habitats. 2D microscopy misses crucial features of 3D behaviour, but the applicability of existing 3D tracking techniques is constrained by their performance or ease of use. Here we present a simple, broadly applicable, high-throughput 3D bacterial tracking method for use in standard phase contrast microscopy. Bacteria are localized at micron-scale resolution over a range of 350 × 300 × 200 μm by maximizing image cross-correlations between their observed diffraction patterns and a reference library. We demonstrate the applicability of our technique to a range of bacterial species and exploit its high throughput to expose hidden contributions of bacterial individuality to population-level variability in motile behaviour. The simplicity of this powerful new tool for bacterial motility research renders 3D tracking accessible to a wider community and paves the way for investigations of bacterial motility in complex 3D environments.

  12. Pulmonary vascular response during phases of canine heartworm disease: scanning electron microscopic study.

    PubMed

    Schaub, R G; Rawlings, C A

    1980-07-01

    Pulmonary arteries and veins of 14 dogs in phases of heartworm disease (Dirofilaria immitis infection) were examined by scanning electron microscopy. Two dogs were infected with D immitis microfilaria only, whereas 12 dogs were infected with adult D immitis. Seven of the dogs infected with adult worms were untreated. Two of these 7 dogs had natural infections of unknown duration introduced by mosquito bite, whereas 5 were experimentally infected for 30 days. The remaining five dogs were experimentally infected for 1 year and had worms removed by drug therapy. These five dogs were maintained 12 months after treatment. Arteries and veins from dogs infected with microfilaria had a continuous sheet of endothelial cells. Arterial endothelium from the seven nontreated dogs infected with adult heartworms exhibited swirling patterns, pore formation, and separation of intercellular junctions. Arteries from all dogs had numerous endothelialized villus protrusions; veins had similar, less extensive changes. Arteries and veins from experimentally infected dogs were similar to naturally infected dogs, indicating the infection procedure produced lesions similar to that normally seen in heartworm disease. The extent of vascular lesions was reduced in four of the five treated dogs that had been infected with adult worms. Adult worms, not microfilaria, may produce the vascular lesions seen in heartworm disease. Lesions will regress if worms are removed from the circulation. Lesions may be caused by generation of humoral factors initiated by the presence of adult worms.

  13. Multiphoton microscopic imaging of esophagus during the early phase of tumor progression.

    PubMed

    Xu, Jian; Kang, Deyong; Xu, Meifang; Zhuo, Shuangmu; Zhu, Xiaoqin; Chen, Jianxin

    2013-01-01

    Esophageal cancer is one of the most common cancer and leading cause of cancer death worldwide. Multiphoton microscopy (MPM) has become a novel optical tool of choice for imaging tissue architecture and cellular morphology based on two-photon excited fluorescence and second harmonic generation. In this study, we used MPM to image microstructure of human normal esophagus, carcinoma in situ, and early invasive carcinoma in order to investigate the morphological change of tissue structure during the early phase of tumor progression. The diagnostic features such as the appearance of cancerous cells, the absence of the basement membrane were extracted to distinguish between normal and cancerous esophagus tissue. The infiltration depth during tumor progression was determined by the appearance of cancerous cells. The significant change of layer structure between cancerous tissue and normal esophagus was described. We also quantitatively described the differences of morphology between normal and cancerous cells. These results correlated well with the corresponding histological findings. With the advancement of clinically miniaturized MPM and the multi-photon probe, combining MPM with standard endoscopy will therefore allow us to make a real-time in vivo diagnosis of early esophageal cancer at the cellular level. © Wiley Periodicals, Inc.

  14. Lifshitz phase: the microscopic structure of aqueous and ethanol mixtures of 1,n-diols.

    PubMed

    Požar, Martina; Perera, Aurélien

    2017-06-14

    We study binary mixtures of ethylene glycol and 1,3-propandiol with water or ethanol using computer simulations. Despite strong hydrogen bonding tendencies between all these molecules, we find that these mixtures are surprisingly homogeneous, in contrast to the strong micro-heterogeneity found in aqueous ethanol mixtures. The aqueous diol mixtures are found to be close to ideal mixtures, with near-ideal Kirkwood-Buff integrals. Ethanol-diol mixtures show weak non-ideality. The origin of this unexpected randomness is due to the fact that the two hydrogen bonding hydroxyl groups of the 1,n-diol are bound by the neutral alkyl bond, which prevents the micro-segregation of the different types of hydroxyl groups. These findings suggest that random disorder can arise in the presence of strong interactions - in contrast to the usual picture of random disorder due to weak interactions between the components. They point to the important role of molecular topology in tuning concentration fluctuations in complex liquids. We propose and justify herein the name of Lifshitz phases to designate such types of disordered systems.

  15. High-throughput 3D tracking of bacteria on a standard phase contrast microscope

    PubMed Central

    Taute, K.M.; Gude, S.; Tans, S.J.; Shimizu, T.S.

    2015-01-01

    Bacteria employ diverse motility patterns in traversing complex three-dimensional (3D) natural habitats. 2D microscopy misses crucial features of 3D behaviour, but the applicability of existing 3D tracking techniques is constrained by their performance or ease of use. Here we present a simple, broadly applicable, high-throughput 3D bacterial tracking method for use in standard phase contrast microscopy. Bacteria are localized at micron-scale resolution over a range of 350 × 300 × 200 μm by maximizing image cross-correlations between their observed diffraction patterns and a reference library. We demonstrate the applicability of our technique to a range of bacterial species and exploit its high throughput to expose hidden contributions of bacterial individuality to population-level variability in motile behaviour. The simplicity of this powerful new tool for bacterial motility research renders 3D tracking accessible to a wider community and paves the way for investigations of bacterial motility in complex 3D environments. PMID:26522289

  16. A simple and cost-effective solid-phase protein nano-assay using polyacrylamide-coated glass plates.

    PubMed

    Krajewski, Wladyslaw A

    2015-02-01

    A new solid-phase protein nano-assay is suggested for simple and sensitive estimation of protein content in sample buffers (a 1-μl sample is sufficient for analysis). The assay is different from conventional "on-filter" assays in that it uses inexpensive fully transparent polyacrylamide gel (PAAG)-coated glass plates as solid support and, thus, combines the convenience of "on-membrane" staining with the sensitivity and ease of documentation of "in-gel" staining (and, therefore, is especially suited for standard lab gel documentation systems). The PAAG plates assay is compatible with all dyes for in-gel protein staining. Depending on the sensitivity of the staining protocol, the assay can be used in macro-, micro-, and nano-assay formats. We also describe a low-cost two-component colloidal Coomassie brilliant blue G-250 (CBB G-250) staining protocol for fast quantitative visualization of proteins spotted on a PAAG plate (the detection limit is up to 2 ng of proteins even when using a Nikon CoolPix digital camera and white light transilluminator instead of a gel scanner). The suggested colloidal CBB G-250 protocol could also be used for visualizing nano-amounts of proteins in polyacrylamide gels. The PAAG plate assay could be useful for proteomic applications and, in general, for all cases where a fast, sensitive, and easily documentable cost-effective solid-phase protein assay is required.

  17. Triggering of leukocytes by phase contrast in imaging cytometry with scanning fluorescence microscope (SFM)

    NASA Astrophysics Data System (ADS)

    Bocsi, József; Pierzchalski, Arkadiusz; Marecka, Monika; Malkusch, Wolf; Tárnok, Attila

    2009-02-01

    Slide-based cytometry (SBC) leads to breakthrough in cytometry of cells in tissues, culture and suspension. Carl Zeiss Imaging Solutions' new automated SFM combines imaging with cytometry. A critical step in image analysis is selection of appropriate triggering signal to detect all objects. Without correct target cell definition analysis is hampered. DNA-staining is among the most common triggering signals. However, the majority of DNA-dyes yield massive spillover into other fluorescence channels limiting their application. By microscopy objects of >5μm diameter can be easily detected by phase-contrast signal (PCS) without any staining. Aim was to establish PCS - triggering for cell identification. Axio Imager.Z1 motorized SFM was used (high-resolution digital camera, AxioCam MRm; AxioVision software: automatic multi-channel scanning, analysis). Leukocytes were stained with FITC (CD4, CD8) and APC (CD3) labelled antibodies in combinations using whole blood method. Samples were scanned in three channels (PCS/FITC/APC). Exposition-times for PCS were set as low as possible; the detection efficiency was verified by fluorescence. CD45-stained leukocytes were counted and compared to the number of PCS detected events. Leukocyte subtyping was compared with other cytometers. In focus the PCS of cells showed ring-form that was not optimal for cell definition. Out of focus PCS allows more effective qualitative and quantitative cell analyses. PCS was an accurate triggering signal for leukocytes enabling cell counting and discrimination of leukocytes from platelets. Leukocyte subpopulation frequencies were comparable to those obtained by other cytometers. In conclusion PCS is a suitable trigger-signal not interfering with fluorescence detection.

  18. Microscopic analysis of K{sup +}-nucleus elastic scattering based on K{sup +}-nucleon phase shifts

    SciTech Connect

    Arellano, H.F.; Geramb, H.V. von

    2005-08-01

    We investigate K{sup +}-nucleus elastic scattering at intermediate energies within a microscopic optical model approach using the current K{sup +}-nucleon (KN) phase shifts from the Center for Nuclear Studies of the George Washington University as primary input. The KN phase shifts are used to generate Gel'fand-Levitan-Marchenko real and local inversion potentials. These potentials are supplemented with a short-range, complex separable term in such a way that the corresponding unitary and nonunitary KN S matrices are exactly reproduced. These KN potentials allow us to calculate all needed on- and off-shell contributions of the t matrix, the driving effective interaction in the full-folding K{sup +}-nucleus optical model potentials reported here. Elastic scattering of positive kaons from {sup 6}Li, {sup 12}C, {sup 28}Si, and {sup 40}Ca are studied at beam momenta in the range 400-1000 MeV/c, leading to a fair description of most differential and total cross section data. To complete the analysis of the full-folding model, three kinds of simpler t{rho} calculations are considered and the results are discussed.

  19. Fluid-structure interaction study of the splitter plate in a TBCC exhaust system during mode transition phase

    NASA Astrophysics Data System (ADS)

    Guo, Shuai; Xu, Jinglei; Mo, Jianwei; Gu, Rui; Pang, Lina

    2015-07-01

    Splitter plate plays an important role in a turbine-based combined-cycle (TBCC) exhaust system during the mode transition phase when turbojet engine and ramjet engine operate simultaneously. Dissimilar pressure distribution on both sides of the plate has a potential origin in the aeroelastic coupling, which is an interesting topic while few research works have devoted to that aspect. To better understand the aeroelastic behavior of the plate and the corresponding dynamic flow features, an integrated fluid-structure interaction simulation is conducted under one particular operation condition during mode transition phase in the TBCC exhaust system. A finite-volume-based CFD solver FLUENT is adopted to solve the unsteady Reynolds average Navier-Stokes equations. ABAQUS, a finite-element-method-based CSD solver, is employed to compute the plate elastic deformation. A two-way interaction between the fluid and the structure is accomplished by the mesh-based parallel-code coupling interface (MpCCI) in a loosely-coupled manner. The accuracy of the coupling procedure is validated for the flutter of a flat plate in supersonic flow. Then, features of steady flow field of the TBCC exhaust system are discussed, followed by the investigation of the aeroelastic phenomenon of the splitter plate and the evolution process of the flow field pattern. Finally, performances variation of the exhaust system is obtained and discussed. The results show that the plate vibrates with decaying amplitude and reaches a dynamic stable state eventually. The thrust, lift and pitch moment of the TBCC exhaust system are increased by 0.68%, 2.82% and 5.86%, respectively, compared with the corresponding values in steady state which does not take into account the fluid-structure interaction effects. The analysis reveals the importance of considering the fluid-structure interaction effects in designing the splitter plate in the TBCC exhaust system and demonstrates the availability of the present coupled

  20. Shed Vortex Structure and Phase-Averaged Velocity Statistics in Symmetric/Asymmetric Turbulent Flat Plate Wakes

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan

    2017-01-01

    The near wake of a flat plate is investigated via direct numerical simulations (DNS). Many earlier experimental investigations have used thin plates with sharp trailing edges and turbulent boundary layers to create the wake. This results in large theta divided by D (sub TE) values (theta is the boundary layer momentum thickness towards the end of the plate and D (sub TE) is the trailing edge thickness). In the present study the emphasis is on relatively thick plates with circular trailing edges (CTE) resulting in theta divided by D values less than one (D is the plate thickness and the diameter of the CTE), and vigorous vortex shedding. The Reynolds numbers based on the plate length and D are 1.255 x 10 (sup 6) and 10,000, respectively. Two cases are computed; one with turbulent boundary layers on both the upper and lower surfaces of the plate (statistically the same, symmetric wake, Case TT) and, a second with turbulent and laminar boundary layers on the upper and lower surfaces, respectively (asymmetric case, Case TL). The data and understanding obtained is of considerable engineering interest, particularly in turbomachinery where the pressure side of an airfoil can remain laminar or transitional because of a favorable pressure gradient and the suction side is turbulent. Shed-vortex structure and phase-averaged velocity statistics obtained in the two cases are compared here. The upper negative shed vortices in Case TL (turbulent separating boundary layer) are weaker than the lower positive ones (laminar separating boundary layer) at inception (a factor 1.27 weaker in terms of peak phase-averaged spanwise vorticity at first appearance of a peak). The upper vortices weaken rapidly as they travel downstream. A second feature of interest in Case TL is a considerable increase in the peak phase-averaged, streamwise normal intensity (random component) with increasing streamwise distance (x divided by D) that occurs nears the positive vortex cores. This behavior is

  1. Microscopic identification of Chinese medicinal materials based on X-ray phase contrast imaging: from qualitative to quantitative

    NASA Astrophysics Data System (ADS)

    Xue, Y.; Liang, Z.; Tan, H.; Ni, L.; Zhao, Z.; Xiao, T.; Xu, H.

    2016-07-01

    Although a variety of methods, ranging from simple morphological examination to physical and chemical analysis, and DNA molecular biology, exist for authenticating Chinese medicinal materials(CMMs), no methods can achieve both the source species identification and quality evaluation of CMMs simultaneously. Furthermore, the methods that are currently available for the identification of CMMs, including both optical and electronic microscopy, usually entail strict requirements for sample preparation or testing environment, such as the slicing of super-thin sections, or processing with specific chemical reagents. These treatments not only damage the CMMs but may also cause some of the original microstructures to be missed. Additionally, they may even yield false results. Owing to the unique penetrating character of X-rays, X-ray phase contrast imaging(XPCI) can be used to realize the inner microstructures of CMMs through nondestructive imaging. With the higher flux and luminance of the third generation of synchrotron radiation facility, XPCI can provides clearer and finer microstructures of CMMs, which are mainly composed of C, H, O, and N elements, with better spatial and density resolutions. For more than ten years, the X-ray imaging group at the Shanghai Institute of Applied Physics has investigated the microstructures of CMMs by XPCI and they have established and developed a quantitative X-ray phase contrast micro-CT for investigating the characteristic microstructures of CMMs. During this period, a variety of typical CMMs have been investigated, from two-dimensional (2D) radiography to three-dimensional (3D) micro-CT, from qualitative to quantitative. Taken together, these results verify that quantitative X-ray phase contrast micro-CT is a practical tool for the microscopic investigation of CMMs. Additionally, further efforts are being made to find the relationship between the microstructures' quantitative factors and active chemical components. At present

  2. 3D tracking and phase-contrast imaging by twin-beams digital holographic microscope in microfluidics

    NASA Astrophysics Data System (ADS)

    Miccio, L.; Memmolo, P.; Finizio, A.; Paturzo, M.; Merola, F.; Grilli, S.; Ferraro, P.

    2012-06-01

    A compact twin-beam interferometer that can be adopted as a flexible diagnostic tool in microfluidic platforms is presented. The devise has two functionalities, as explained in the follow, and can be easily integrated in microfluidic chip. The configuration allows 3D tracking of micro-particles and, at same time, furnishes Quantitative Phase-Contrast maps of tracked micro-objects by interference microscopy. Experimental demonstration of its effectiveness and compatibility with biological field is given on for in vitro cells in microfluidic environment. Nowadays, several microfluidic configuration exist and many of them are commercially available, their development is due to the possibility for manipulating droplets, handling micro and nano-objects, visualize and quantify processes occurring in small volumes and, clearly, for direct applications on lab-on-a chip devices. In microfluidic research field, optical/photonics approaches are the more suitable ones because they have various advantages as to be non-contact, full-field, non-invasive and can be packaged thanks to the development of integrable optics. Moreover, phase contrast approaches, adapted to a lab-on-a-chip configurations, give the possibility to get quantitative information with remarkable lateral and vertical resolution directly in situ without the need to dye and/or kill cells. Furthermore, numerical techniques for tracking of micro-objects needs to be developed for measuring velocity fields, trajectories patterns, motility of cancer cell and so on. Here, we present a compact holographic microscope that can ensure, by the same configuration and simultaneously, accurate 3D tracking and quantitative phase-contrast analysis. The system, simple and solid, is based on twin laser beams coming from a single laser source. Through a easy conceptual design, we show how these two different functionalities can be accomplished by the same optical setup. The working principle, the optical setup and the mathematical

  3. Effect of fringe-artifact correction on sub-tomogram averaging from Zernike phase-plate cryo-TEM.

    PubMed

    Kishchenko, Gregory P; Danev, Radostin; Fisher, Rebecca; He, Jie; Hsieh, Chyongere; Marko, Michael; Sui, Haixin

    2015-09-01

    Zernike phase-plate (ZPP) imaging greatly increases contrast in cryo-electron microscopy, however fringe artifacts appear in the images. A computational de-fringing method has been proposed, but it has not been widely employed, perhaps because the importance of de-fringing has not been clearly demonstrated. For testing purposes, we employed Zernike phase-plate imaging in a cryo-electron tomographic study of radial-spoke complexes attached to microtubule doublets. We found that the contrast enhancement by ZPP imaging made nonlinear denoising insensitive to the filtering parameters, such that simple low-frequency band-pass filtering made the same improvement in map quality. We employed sub-tomogram averaging, which compensates for the effect of the "missing wedge" and considerably improves map quality. We found that fringes (caused by the abrupt cut-on of the central hole in the phase plate) can lead to incorrect representation of a structure that is well-known from the literature. The expected structure was restored by amplitude scaling, as proposed in the literature. Our results show that de-fringing is an important part of image-processing for cryo-electron tomography of macromolecular complexes with ZPP imaging.

  4. Effect of fringe-artifact correction on sub-tomogram averaging from Zernike phase-plate cryo-TEM

    PubMed Central

    Kishchenko, Gregory P.; Danev, Radostin; Fisher, Rebecca; He, Jie; Hsieh, Chyongere; Marko, Michael; Sui, Haixin

    2015-01-01

    Zernike phase-plate (ZPP) imaging greatly increases contrast in cryo-electron microscopy, however fringe artifacts appear in the images. A computational de-fringing method has been proposed, but it has not been widely employed, perhaps because the importance of de-fringing has not been clearly demonstrated. For testing purposes, we employed Zernike phase-plate imaging in a cryo-electron tomographic study of radial-spoke complexes attached to microtubule doublets. We found that the contrast enhancement by ZPP imaging made nonlinear denoising insensitive to the filtering parameters, such that simple low-frequency band-pass filtering made the same improvement in map quality. We employed sub-tomogram averaging, which compensates for the effect of the “missing wedge” and considerably improves map quality. We found that fringes (caused by the abrupt cut-on of the central hole in the phase plate) can lead to incorrect representation of a structure that is well-known from the literature. The expected structure was restored by amplitude scaling, as proposed in the literature. Our results show that de-fringing is an important part of image-processing for cryo-electron tomography of macromolecular complexes with ZPP imaging. PMID:26210582

  5. The natural history of uterine leiomyomas: light and electron microscopic studies of fibroid phases, interstitial ischemia, inanosis, and reclamation.

    PubMed

    Flake, Gordon P; Moore, Alicia B; Sutton, Deloris; Kissling, Grace E; Horton, John; Wicker, Benita; Walmer, David; Robboy, Stanley J; Dixon, Darlene

    2013-01-01

    We propose, and offer evidence to support, the concept that many uterine leiomyomas pursue a self-limited life cycle. This cycle can be arbitrarily divided on the basis of morphologic assessment of the collagen content into 4 phases: (1) proliferation, (2) proliferation and synthesis of collagen, (3) proliferation, synthesis of collagen, and early senescence, and (4) involution. Involution occurs as a result of both vascular and interstitial ischemia. Interstitial ischemia is the consequence of the excessive elaboration of collagen, resulting in reduced microvascular density, increased distance between myocytes and capillaries, nutritional deprivation, and myocyte atrophy. The end stage of this process is an involuted tumor with a predominance of collagen, little to no proliferative activity, myocyte atrophy, and myocyte cell death. Since many of the dying cells exhibit light microscopic and ultrastructural features that appear distinct from either necrosis or apoptosis, we refer to this process as inanosis, because it appears that nutritional deprivation, or inanition, is the underlying cause of cell death. The disposal of myocytes dying by inanosis also differs in that there is no phagocytic reaction, but rather an apparent dissolution of the cell, which might be viewed as a process of reclamation as the molecular contents are reclaimed and recycled.

  6. The Natural History of Uterine Leiomyomas: Light and Electron Microscopic Studies of Fibroid Phases, Interstitial Ischemia, Inanosis, and Reclamation

    PubMed Central

    Flake, Gordon P.; Moore, Alicia B.; Sutton, Deloris; Kissling, Grace E.; Horton, John; Wicker, Benita; Walmer, David; Robboy, Stanley J.; Dixon, Darlene

    2013-01-01

    We propose, and offer evidence to support, the concept that many uterine leiomyomas pursue a self-limited life cycle. This cycle can be arbitrarily divided on the basis of morphologic assessment of the collagen content into 4 phases: (1) proliferation, (2) proliferation and synthesis of collagen, (3) proliferation, synthesis of collagen, and early senescence, and (4) involution. Involution occurs as a result of both vascular and interstitial ischemia. Interstitial ischemia is the consequence of the excessive elaboration of collagen, resulting in reduced microvascular density, increased distance between myocytes and capillaries, nutritional deprivation, and myocyte atrophy. The end stage of this process is an involuted tumor with a predominance of collagen, little to no proliferative activity, myocyte atrophy, and myocyte cell death. Since many of the dying cells exhibit light microscopic and ultrastructural features that appear distinct from either necrosis or apoptosis, we refer to this process as inanosis, because it appears that nutritional deprivation, or inanition, is the underlying cause of cell death. The disposal of myocytes dying by inanosis also differs in that there is no phagocytic reaction, but rather an apparent dissolution of the cell, which might be viewed as a process of reclamation as the molecular contents are reclaimed and recycled. PMID:24348569

  7. Skeletal growth phases of the cold-water coral Lophelia pertusa shown by scanning electron microscope and electron backscatter diffraction

    NASA Astrophysics Data System (ADS)

    Mouchi, Vincent; Vonlanthen, Pierre; Verrecchia, Eric P.; Crowley, Quentin G.

    2016-04-01

    Lophelia pertusa is a cold-water coral, which may form reefs by the association of multiple coralites within which a polyp lives. Each individual polyp builds an aragonite skeleton by an initial phase of early mineralization (traditionally referred to as centres of calcification) from which aragonite fibres grow in thickening deposits. The skeleton wall features successive optically opaque and translucent bands previously attributed to different regimes of growth as either uniform in crystal orientation (translucent bands) or with a chaotic organization (opaque bands). The processes involved in any organizational changes are still unknown. Microlayers in the coral wall, which represent separate periods of skeletal growth, have been recently identified and described. These growth patterns are readily visible under scanning electron microscope (SEM) after etching in dilute formic acid, but they do not necessarily form continuously visible structures. Here we present high quality SEM images and electron backscatter diffraction (EBSD) maps to study aragonite fibre orientation across the wall of L. pertusa. Both microlayers and opaque and translucent bands are compared to the crystallographic orientation of the aragonite fibres. EBSD maps and SEM images indicate that aragonite fibres do not exhibit a chaotic orientation, even in opaque bands. The absence of continuity of microlayers is partially explained by an association of multiple crystallographic preferred orientations of aragonite fibres. In the case of L. pertusa, careful textural characterisation is necessary prior to elemental or isotope analysis in order to select a skeletal transect representing a linear and continuous time period.

  8. Microscopic evidence of magnetic and structure phase transition in multiferroic spinel FeV2O4

    NASA Astrophysics Data System (ADS)

    Myoung, Bo Ra; Kim, Sam Jin; Lim, Jung Tae; Kouh, Taejoon; Kim, Chul Sung

    2017-05-01

    We report the microscopic evidence for magnetic and structural phase transitions in multiferroic spinel FeV2O4 from the hyperfine magnetic interaction. FeV2O4 sample shows three different crystal structures with the phase transitions from tetragonal to orthorhombic structure around 70 K, from orthorhombic to tetragonal structure around 109 K, and from tetragonal to cubic structure around 140 K. Mössbauer spectra of FeV2O4, obtained at various temperatures, were analyzed with severely distorted 8-line below TC, and doublet at TC. Also, the Mössbauer spectra change from doublet to singlet around TJT ≅ 140 K due to the reduction of Jahn-Teller effect. The value of electric quadrupole splitting (Δ EQ ) is 3.05 mm/s at 4.2 K, indicating the noncollinear spin structure with strong polarization from the gap energy of 5T2g band, Δ1 ≅ 0. Whereas, there is collinear spin structure between TS ≅ 70 K < T < TC ≅ 109 K, since Δ1 in this temperature range increases from the value when T < TS due to the non-degenerate energy state with commensuration in the collinear state. Also, we have found that large polar angle θ for T < TS suggests the spin of the Fe2+ cations aligns along c-axis with the distortion in the a-b plane, while the small azimuthal angle θ suggest the direction of the spin is within ab-plane for TS < T < TC.

  9. On-sky Performance Analysis of the Vector Apodizing Phase Plate Coronagraph on MagAO/Clio2

    NASA Astrophysics Data System (ADS)

    Otten, Gilles P. P. L.; Snik, Frans; Kenworthy, Matthew A.; Keller, Christoph U.; Males, Jared R.; Morzinski, Katie M.; Close, Laird M.; Codona, Johanan L.; Hinz, Philip M.; Hornburg, Kathryn J.; Brickson, Leandra L.; Escuti, Michael J.

    2017-01-01

    We report on the performance of a vector apodizing phase plate coronagraph that operates over a wavelength range of 2–5 μm and is installed in MagAO/Clio2 at the 6.5 m Magellan Clay telescope at Las Campanas Observatory, Chile. The coronagraph manipulates the phase in the pupil to produce three beams yielding two coronagraphic point-spread functions (PSFs) and one faint leakage PSF. The phase pattern is imposed through the inherently achromatic geometric phase, enabled by liquid crystal technology and polarization techniques. The coronagraphic optic is manufactured using a direct-write technique for precise control of the liquid crystal pattern and multitwist retarders for achromatization. By integrating a linear phase ramp to the coronagraphic phase pattern, two separated coronagraphic PSFs are created with a single pupil-plane optic, which makes it robust and easy to install in existing telescopes. The two coronagraphic PSFs contain a 180° dark hole on each side of a star, and these complementary copies of the star are used to correct the seeing halo close to the star. To characterize the coronagraph, we collected a data set of a bright (mL = 0–1) nearby star with ∼1.5 hr of observing time. By rotating and optimally scaling one PSF and subtracting it from the other PSF, we see a contrast improvement by 1.46 magnitudes at 3.5 λ /D. With regular angular differential imaging at 3.9 μm, the MagAO vector apodizing phase plate coronagraph delivers a 5σ {{Δ }}{mag} contrast of 8.3 (={10}-3.3) at 2 λ /D and 12.2 (={10}-4.8) at 3.5 λ /D.

  10. Electroless Ni-P/Nano-SiO2 Composite Plating on Dual Phase Magnesium-Lithium Alloy

    NASA Astrophysics Data System (ADS)

    Zou, Y.; Zhang, Z. W.; Zhang, M. L.

    The application of Mg-Li alloys is restricted in practice due to mainly poor corrosion resistance and wear resistance. Electroless nickel plating is one of the common and effective ways to protect alloys from corrosion. In this study, nano-SiO2 particles with Ni-P matrix have been successfully co-deposited onto dual phase Mg-8Li base alloy through electroless plating, generating homogeneously Ni-P/nano-SiO2 composite coating. The morphology, elemental composition and structures of coatings were investigated. Coating performances were evaluated using hardness tests and electrochemical analysis. The results indicate that the Ni-P/nano-SiO2 composite coating can significantly improve the wear and corrosion resistance.

  11. Planar gas chromatography column on glass plate with nanodispersed silica as the stationary phase

    NASA Astrophysics Data System (ADS)

    Platonov, I. A.; Platonov, V. I.; Pavelyev, V. S.; Agafonov, A. N.

    2016-04-01

    The paper presents the GC column in the plane of the glass plate with the adsorption layer nanodispersed silica. Created gas chromatographic column allows to separate a mixture of five alkanes from pentane to nonane in isothermal (90 ° C) mode less than one minute.

  12. Research of beam conditioning technologies using continuous phase plate, Multi-FM smoothing by spectral dispersion and polarization smoothing

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Jia, Huaiting; Tian, Xiaocheng; Yuan, Haoyu; Zhu, Na; Su, Jingqin; Hu, Dongxia; Zhu, Qihua; Zheng, Wanguo

    2016-10-01

    In the research of inertial confinement fusion, laser plasma interaction (LPI) is becoming a key problem that affects ignition. Here, multi-frequency modulation (Multi-FM) smoothing by spectral dispersion (SSD), continuous phase plate (CPP) and polarization smoothing (PS) were experimentally studied and implemented on the SG-III laser facility. After using these techniques, the far field distribution of SG-Ⅲ laser facility can be adjusted, controlled and repeated accurately. The output spectrums of the cascade phase modulators used for Multi-FM SSD were stable and the FM-to-AM effect can be restrained. Experiments on SG-III laser facility indicate that when the number of color cycles adopts 1, imposing SSD with 3.3 times diffraction limit (TDL) did not lead to pinhole closure in the spatial filters of preamplifier and main amplifiers with 30-TDL pinhole size. The nonuniformity of the focal spots using Multi-FM SSD, CPP and PS drops to 0.18, comparing to 0.26 with CPP+SSD, 0.57 with CPP+PS and 0.84 with only CPP and wedged lens. Polarization smoothing using flat birefringent plate in the convergent beam of final optics assembly (FOA) was studied. The PS plates were manufactured and equipped on SG-III laser facility for LPI research. Combined beam smoothing and polarization manipulation were also studied to solve the LPI problem. Results indicate that through adjusting dispersion directions of SSD beams in a quad, two dimensional SSD can be obtained. Using polarization control plate (PCP), polarization on the near field and far field can be manipulated, providing new method to solve LPI problem in indirect drive laser fusion.

  13. Vortex characteristics of Fraunhofer diffractions of a plane wave by a spiral phase plate limited by pseudoring polygonal apertures.

    PubMed

    Tang, Huiqin; Wang, Taofen; Zhu, Kaicheng

    2008-08-15

    We introduce a multilevel spiral phase plate (SPP) limited by a pseudoring polygonal aperture (PRPA). Such an SPP has the advantages of easier fabrication and greater suppression of the sidelobes of the diffraction field over that generated with a polygonal aperture (PA). The Fraunhofer diffraction fields generated by an SPP with a PRPA or with a PA have the same topological charge features and a similar diffraction pattern. Numerical evaluations show that the maximum bright annular-intensity difference between the diffraction patterns for the SPP with a PRPA and that of a PA does not exceed 3% under optimal design parameters.

  14. Quantitative X-ray wavefront measurements of Fresnel zone plate and K-B mirrors using phase retrieval.

    PubMed

    Huang, Xiaojing; Wojcik, Michael; Burdet, Nicolas; Peterson, Isaac; Morrison, Graeme R; Vine, David J; Legnini, Daniel; Harder, Ross; Chu, Yong S; Robinson, Ian K

    2012-10-08

    A scanning coherent diffraction imaging method was used to reconstruct the X-ray wavefronts produced by a Fresnel zone plate (FZP) and by Kirkpatrick-Baez (KB) focusing mirrors. The ptychographical measurement was conducted repeatedly by placing a lithographed test sample at different defocused planes. The wavefronts, recovered by phase-retrieval at well-separated planes, show good consistency with numerical propagation results, which provides a self-verification. The validity of the obtained FZP wavefront was further confirmed with theoretical predictions.

  15. Numerical analysis on performance of naphthalene phase change thermal storage system in aluminum plate-fin unit

    NASA Astrophysics Data System (ADS)

    Yang, Lin; Peng, Hao; Ling, Xiang; Dong, Huihua

    2015-02-01

    This paper presents a numerical simulation for the prediction of time, temperature and liquid fraction during the melting and solidification process in the latent heat storage of phase changed materials (PCM). The mathematical model, regarding the solid-liquid phase change heat transfer based on the enthalpy formulation, has been proposed. Naphthalene was used as the PCM which is contained in up layer of plate-fin thermal storage. Transient simulations were performed using a commercial computational fluid dynamics package, Fluent, based on the finite volume method. This computational model endeavored to describe both the melting and solidification processes of the PCM. A series of numerical calculations have been done in order to analyses the influence of several heat transfer fluid operating conditions and several fin geometric parameters on the thermal storage unit. Numerical results, which could be used for operating conditions and geometry optimization, provide guideline for the design of the latent thermal energy storage system.

  16. Numerical Simulation of Temperature Controlled Solid Phase Forming Process of Polymeric Plate

    NASA Astrophysics Data System (ADS)

    Liu, Haipeng; Hu, Ping; Fu, Zhengchun; Yan, Yue; Zhang, Guanli

    2005-08-01

    In this paper, a new forming process of polymeric plate called stretch-forming was simulated by adopting the thermo-elasto-visco-plastic large deformation finite element formulation based on Updated Lagrangian method. Some details of this forming process were also studied. It was shown that temperature has important effect on the forming process. Slide contact was assumed in the simulation. Friction force was ignored due to good lubrication. The adopted algorithm is verified by analyzing a thermoforming problem provided in a NUMIFORM'98 paper and comparing simulation results with experimental measures in that paper.

  17. Bleached phase holograms exposed on Agfa-Gevaert 10E75 NAH plates

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Singh, K.

    1991-02-01

    An experimental study has been made of the diffraction efficiency, scattering and stability against printout effect of bleached, photographically recorded two- beam interference gratings using Agfa-Gevaert 10E75 NAH plates. The efficiency is increased by using bleaching processes that convert the silver image into a dielectric image. Plots of the diffraction efficiency and scattering against exposure, and variation of the maximum diffraction efficiency as a function of departure from the Bragg angle, and exposure to white light, for various bleaching processes, are given. A maximum diffraction efficiency of approximately 54% has been achieved by using a potassium iodide and iodine bleach process.

  18. Oxidation of ammonium sulfite by a multi-needle-to-plate gas phase pulsed corona discharge reactor

    NASA Astrophysics Data System (ADS)

    Ren, Hua; Lu, Na; Shang, Kefeng; Li, Jie; Wu, Yan

    2013-03-01

    The oxidation of ammonium sulfite in the ammonia-based flue gas desulfurization (FGD) process was investigated in a multi-needle-to-plate gas phase pulsed corona discharge reactor in this paper. The effect of several parameters, including capacitance and peak pulse voltage of discharge system, electrode gap and bubbling gas flow rate on the oxidation rate of ammonium sulfite was reviewed. The oxidation rate of ammonium sulfite could reach 47.2% at the capacitance, the peak pulse voltage, electrode gap and bubbling gas flow rate equal to 2 nF, -24.6 k V, 35 mm and 4 L min-1 within treatment time of 40 min The experimental results indicate that the gas phase pulsed discharge system with a multi-needle-to-plate electrode can oxide the ammonium sulfite. The oxidation rate increased with the applied capacitance and peak pulse voltage and decreased with the electrode gap. As the bubbling gas flow rate increased, the oxidation rate increased first and then tended to reach a stationary value. These results would be important for the process optimization of the (NH4)2SO3 to (NH4)2SO4 oxidation.

  19. Effect of sodium dodecylbenzene sulfonate on the motion of three-phase contact lines on the Wilhelmy plate surface.

    PubMed

    Karakashev, Stoyan I; Phan, Chi M; Nguyen, Anh V

    2005-11-15

    The combined approach of the molecular-kinetic and hydrodynamic theories for description of the motion of three-phase gas-liquid-solid contact lines has been examined using the Wilhelmy plate method. The whole dynamic meniscus has been divided into molecular, hydrodynamic, and static-like regions. The Young-Laplace equation and the molecular-kinetic and hydrodynamic dewetting theories have been applied to describe the meniscus profiles and contact angle. The dissipative forces accompanying the dynamic dewetting have also been investigated. The experiments with a Wilhelmy plate made from an acrylic polymer sheet were carried out using a computerized apparatus for contact angle analysis (OCA 20, DataPhysics, Germany). The extrapolated dynamic contact angle versus velocity of the three-phase contact line for Milli-Q water and 5x10(-4) M SDBS solution was experimentally obtained and compared with the combined MHD models with low and moderate Reynolds numbers. The models predict similar results for the extrapolated contact angle. SDBS decreases the equilibrium contact angle and increases the molecular jumping length but does not affect the molecular frequency significantly. The hydrodynamic deformation of the meniscus, viscous dissipation, and friction were also influenced by the SDBS surfactant.

  20. Multiview holographic 3D dynamic display by combining a nano-grating patterned phase plate and LCD.

    PubMed

    Wan, Wenqiang; Qiao, Wen; Huang, Wenbin; Zhu, Ming; Ye, Yan; Chen, Xiangyu; Chen, Linsen

    2017-01-23

    Limited by the refreshable data volume of commercial spatial light modulator (SLM), electronic holography can hardly provide satisfactory 3D live video. Here we propose a holography based multiview 3D display by separating the phase information of a lightfield from the amplitude information. In this paper, the phase information was recorded by a 5.5-inch 4-view phase plate with a full coverage of pixelated nano-grating arrays. Because only amplitude information need to be updated, the refreshing data volume in a 3D video display was significantly reduced. A 5.5 inch TFT-LCD with a pixel size of 95 μm was used to modulate the amplitude information of a lightfield at a rate of 20 frames per second. To avoid crosstalk between viewing points, the spatial frequency and orientation of each nano-grating in the phase plate was fine tuned. As a result, the transmission light converged to the viewing points. The angular divergence was measured to be 1.02 degrees (FWHM) by average, slightly larger than the diffraction limit of 0.94 degrees. By refreshing the LCD, a series of animated sequential 3D images were dynamically presented at 4 viewing points. The resolution of each view was 640 × 360. Images for each viewing point were well separated and no ghost images were observed. The resolution of the image and the refreshing rate in the 3D dynamic display can be easily improved by employing another SLM. The recoded 3D videos showed the great potential of the proposed holographic 3D display to be used in mobile electronics.

  1. Analytical Round Robin for Elastic-Plastic Analysis of Surface Cracked Plates: Phase I Results

    NASA Technical Reports Server (NTRS)

    Wells, D. N.; Allen, P. A.

    2012-01-01

    An analytical round robin for the elastic-plastic analysis of surface cracks in flat plates was conducted with 15 participants. Experimental results from a surface crack tension test in 2219-T8 aluminum plate provided the basis for the inter-laboratory study (ILS). The study proceeded in a blind fashion given that the analysis methodology was not specified to the participants, and key experimental results were withheld. This approach allowed the ILS to serve as a current measure of the state of the art for elastic-plastic fracture mechanics analysis. The analytical results and the associated methodologies were collected for comparison, and sources of variability were studied and isolated. The results of the study revealed that the J-integral analysis methodology using the domain integral method is robust, providing reliable J-integral values without being overly sensitive to modeling details. General modeling choices such as analysis code, model size (mesh density), crack tip meshing, or boundary conditions, were not found to be sources of significant variability. For analyses controlled only by far-field boundary conditions, the greatest source of variability in the J-integral assessment is introduced through the constitutive model. This variability can be substantially reduced by using crack mouth opening displacements to anchor the assessment. Conclusions provide recommendations for analysis standardization.

  2. Morphology of the type strain of Bacillus anthracis EY 3169T=ATCC 14578T grown either aerobically or anaerobically on agar plates--observation by light and laser microscopes.

    PubMed

    Yabuuchi, Eiko; Koseki, Masayuki

    2003-01-01

    Growth characteristics including cell-arrangement of the type strain of Bacillus anthracis EY 3169T=ATCC 14578T grown on agar plates in level 3 laboratory were observed by both light and laser microscopes. Small daughter colonies appeared on parent colonies grown on 5% sheep blood or chocolate agar plates after 12 days incubation at room temperature. Daughter colonies, stained by Wirtz-Conklin method, were composed with vegetative cells and spores. Growth of daughter colonies might be supported by the debris of cells in the parent colony. Colonies grown under anaerobic conditions were flat with smooth edges, and the cells neither formed chains of any length, nor produced any spores after 25 days incubation at room temperature. It was thought that spores of B. anthracis were produced at the terminal stage of individual cell life instead of under unfavorable conditions for the organism. Air is needed for spore formation and cell-chain formation. More nutrients, probably amino acids, are needed for anaerobic growth rather than aerobic.

  3. Microscopic Derivation of the Ginzburg-Landau Equations for the Periodic Anderson Model in the Coexistence Phase of Superconductivity and Antiferromagnetism

    NASA Astrophysics Data System (ADS)

    Val'kov, V. V.; Zlotnikov, A. O.

    2016-12-01

    On the basis of the periodic Anderson model, the microscopic Ginzburg-Landau equations for heavy-fermion superconductors in the coexistence phase of superconductivity and antiferromagnetism have been derived. The obtained expressions are valid in the vicinity of quantum critical point of heavy-fermion superconductors when the onset temperatures of antiferromagnetism and superconductivity are sufficiently close to each other. It is shown that the formation of antiferromagnetic ordering causes a decrease of the critical temperature of superconducting transition and order parameter in the phase of coexisting superconductivity and antiferromagnetism.

  4. Wind loads on flat plate photovoltaic array fields. Phase III, final report

    SciTech Connect

    Miller, R.D.; Zimmerman, D.K.

    1981-04-01

    The results of an experimental analysis (boundary layer wind tunnel test) of the aerodynamic forces resulting from winds acting on flat plate photovoltaic arrays are presented. Local pressure coefficient distributions and normal force coefficients on the arrays are shown and compared to theoretical results. Parameters that were varied when determining the aerodynamic forces included tilt angle, array separation, ground clearance, protective wind barriers, and the effect of the wind velocity profile. Recommended design wind forces and pressures are presented, which envelop the test results for winds perpendicular to the array's longitudinal axis. This wind direction produces the maximum wind loads on the arrays except at the array edge where oblique winds produce larger edge pressure loads.

  5. Anisotropic contrast optical microscope

    NASA Astrophysics Data System (ADS)

    Peev, D.; Hofmann, T.; Kananizadeh, N.; Beeram, S.; Rodriguez, E.; Wimer, S.; Rodenhausen, K. B.; Herzinger, C. M.; Kasputis, T.; Pfaunmiller, E.; Nguyen, A.; Korlacki, R.; Pannier, A.; Li, Y.; Schubert, E.; Hage, D.; Schubert, M.

    2016-11-01

    An optical microscope is described that reveals contrast in the Mueller matrix images of a thin, transparent, or semi-transparent specimen located within an anisotropic object plane (anisotropic filter). The specimen changes the anisotropy of the filter and thereby produces contrast within the Mueller matrix images. Here we use an anisotropic filter composed of a semi-transparent, nanostructured thin film with sub-wavelength thickness placed within the object plane. The sample is illuminated as in common optical microscopy but the light is modulated in its polarization using combinations of linear polarizers and phase plate (compensator) to control and analyze the state of polarization. Direct generalized ellipsometry data analysis approaches permit extraction of fundamental Mueller matrix object plane images dispensing with the need of Fourier expansion methods. Generalized ellipsometry model approaches are used for quantitative image analyses. These images are obtained from sets of multiple images obtained under various polarizer, analyzer, and compensator settings. Up to 16 independent Mueller matrix images can be obtained, while our current setup is limited to 11 images normalized by the unpolarized intensity. We demonstrate the anisotropic contrast optical microscope by measuring lithographically defined micro-patterned anisotropic filters, and we quantify the adsorption of an organic self-assembled monolayer film onto the anisotropic filter. Comparison with an isotropic glass slide demonstrates the image enhancement obtained by our method over microscopy without the use of an anisotropic filter. In our current instrument, we estimate the limit of detection for organic volumetric mass within the object plane of ≈49 fg within ≈7 × 7 μm2 object surface area. Compared to a quartz crystal microbalance with dissipation instrumentation, where contemporary limits require a total load of ≈500 pg for detection, the instrumentation demonstrated here improves

  6. Anisotropic contrast optical microscope.

    PubMed

    Peev, D; Hofmann, T; Kananizadeh, N; Beeram, S; Rodriguez, E; Wimer, S; Rodenhausen, K B; Herzinger, C M; Kasputis, T; Pfaunmiller, E; Nguyen, A; Korlacki, R; Pannier, A; Li, Y; Schubert, E; Hage, D; Schubert, M

    2016-11-01

    An optical microscope is described that reveals contrast in the Mueller matrix images of a thin, transparent, or semi-transparent specimen located within an anisotropic object plane (anisotropic filter). The specimen changes the anisotropy of the filter and thereby produces contrast within the Mueller matrix images. Here we use an anisotropic filter composed of a semi-transparent, nanostructured thin film with sub-wavelength thickness placed within the object plane. The sample is illuminated as in common optical microscopy but the light is modulated in its polarization using combinations of linear polarizers and phase plate (compensator) to control and analyze the state of polarization. Direct generalized ellipsometry data analysis approaches permit extraction of fundamental Mueller matrix object plane images dispensing with the need of Fourier expansion methods. Generalized ellipsometry model approaches are used for quantitative image analyses. These images are obtained from sets of multiple images obtained under various polarizer, analyzer, and compensator settings. Up to 16 independent Mueller matrix images can be obtained, while our current setup is limited to 11 images normalized by the unpolarized intensity. We demonstrate the anisotropic contrast optical microscope by measuring lithographically defined micro-patterned anisotropic filters, and we quantify the adsorption of an organic self-assembled monolayer film onto the anisotropic filter. Comparison with an isotropic glass slide demonstrates the image enhancement obtained by our method over microscopy without the use of an anisotropic filter. In our current instrument, we estimate the limit of detection for organic volumetric mass within the object plane of ≈49 fg within ≈7 × 7 μm(2) object surface area. Compared to a quartz crystal microbalance with dissipation instrumentation, where contemporary limits require a total load of ≈500 pg for detection, the instrumentation demonstrated here improves

  7. Microscope basics.

    PubMed

    Sluder, Greenfield; Nordberg, Joshua J

    2013-01-01

    This chapter provides information on how microscopes work and discusses some of the microscope issues to be considered in using a video camera on the microscope. There are two types of microscopes in use today for research in cell biology-the older finite tube-length (typically 160mm mechanical tube length) microscopes and the infinity optics microscopes that are now produced. The objective lens forms a magnified, real image of the specimen at a specific distance from the objective known as the intermediate image plane. All objectives are designed to be used with the specimen at a defined distance from the front lens element of the objective (the working distance) so that the image formed is located at a specific location in the microscope. Infinity optics microscopes differ from the finite tube-length microscopes in that the objectives are designed to project the image of the specimen to infinity and do not, on their own, form a real image of the specimen. Three types of objectives are in common use today-plan achromats, plan apochromats, and plan fluorite lenses. The concept of mounting video cameras on the microscope is also presented in the chapter.

  8. Liquid and vapour-phase antifungal activities of selected essential oils against candida albicans: microscopic observations and chemical characterization of cymbopogon citratus

    PubMed Central

    2010-01-01

    Background Use of essential oils for controlling Candida albicans growth has gained significance due to the resistance acquired by pathogens towards a number of widely-used drugs. The aim of this study was to test the antifungal activity of selected essential oils against Candida albicans in liquid and vapour phase and to determine the chemical composition and mechanism of action of most potent essential oil. Methods Minimum Inhibitory concentration (MIC) of different essential oils in liquid phase, assayed through agar plate dilution, broth dilution & 96-well micro plate dilution method and vapour phase activity evaluated through disc volatilization method. Reduction of C. albicans cells with vapour exposure was estimated by kill time assay. Morphological alteration in treated/untreated C. albicans cells was observed by the Scanning electron microscopy (SEM)/Atomic force microscopy (AFM) and chemical analysis of the strongest antifungal agent/essential oil has been done by GC, GC-MS. Results Lemon grass (Cymbopogon citratus) essential oil exhibited the strongest antifungal effect followed by mentha (Mentha piperita) and eucalyptus (Eucalyptus globulus) essential oil. The MIC of lemon grass essential oil in liquid phase (288 mg/l) was significantly higher than that in the vapour phase (32.7 mg/l) and a 4 h exposure was sufficient to cause 100% loss in viability of C. albicans cells. SEM/AFM of C. albicans cells treated with lemon grass essential oil at MIC level in liquid and vapour phase showed prominent shrinkage and partial degradation, respectively, confirming higher efficacy of vapour phase. GC-MS analysis revealed that lemon grass essential oil was dominated by oxygenated monoterpenes (78.2%); α-citral or geranial (36.2%) and β-citral or neral (26.5%), monoterpene hydrocarbons (7.9%) and sesquiterpene hydrocarbons (3.8%). Conclusion Lemon grass essential oil is highly effective in vapour phase against C. albicans, leading to deleterious morphological

  9. Liquid and vapour-phase antifungal activities of selected essential oils against Candida albicans: microscopic observations and chemical characterization of Cymbopogon citratus.

    PubMed

    Tyagi, Amit K; Malik, Anushree

    2010-11-10

    Use of essential oils for controlling Candida albicans growth has gained significance due to the resistance acquired by pathogens towards a number of widely-used drugs. The aim of this study was to test the antifungal activity of selected essential oils against Candida albicans in liquid and vapour phase and to determine the chemical composition and mechanism of action of most potent essential oil. Minimum Inhibitory concentration (MIC) of different essential oils in liquid phase, assayed through agar plate dilution, broth dilution & 96-well micro plate dilution method and vapour phase activity evaluated through disc volatilization method. Reduction of C. albicans cells with vapour exposure was estimated by kill time assay. Morphological alteration in treated/untreated C. albicans cells was observed by the Scanning electron microscopy (SEM)/Atomic force microscopy (AFM) and chemical analysis of the strongest antifungal agent/essential oil has been done by GC, GC-MS. Lemon grass (Cymbopogon citratus) essential oil exhibited the strongest antifungal effect followed by mentha (Mentha piperita) and eucalyptus (Eucalyptus globulus) essential oil. The MIC of lemon grass essential oil in liquid phase (288 mg/l) was significantly higher than that in the vapour phase (32.7 mg/l) and a 4 h exposure was sufficient to cause 100% loss in viability of C. albicans cells. SEM/AFM of C. albicans cells treated with lemon grass essential oil at MIC level in liquid and vapour phase showed prominent shrinkage and partial degradation, respectively, confirming higher efficacy of vapour phase. GC-MS analysis revealed that lemon grass essential oil was dominated by oxygenated monoterpenes (78.2%); α-citral or geranial (36.2%) and β-citral or neral (26.5%), monoterpene hydrocarbons (7.9%) and sesquiterpene hydrocarbons (3.8%). Lemon grass essential oil is highly effective in vapour phase against C. albicans, leading to deleterious morphological changes in cellular structures and cell

  10. Plate Tectonics Constrained by Evidence-Based Magmatic Temperatures and Phase Relations of Fertile Lherzolite (Invited)

    NASA Astrophysics Data System (ADS)

    Green, D. H.; Falloon, T.

    2010-12-01

    In order to understand Earth’s plate tectonics we must interpret the most direct probes for mantle composition and temperature distribution i.e. the primitive basaltic magmas and peridotites representing partial melts and mantle residues. An evidence-based approach to identification of parental magmas and determination of their temperatures requires glass and phenocryst compositions and experimentally calibrated Fe/Mg partitioning between olivine and melt. We have compared magmatic crystallization temperatures between ‘hot-spot’(proposed to be plume-related) and normal mid-ocean ridge basalt (MORB) parental liquids, by examining three representative magmatic suites from both ocean island (Hawaii, Iceland, and Réunion) and mid-ocean ridge settings (Cocos-Nazca, East Pacific Rise, and Mid-Atlantic Ridge). We have glass and olivine phenocryst compositions, including volatile (H2O) contents, and have calculated parental liquid compositions at 0.2GPa by incrementally adding olivine back into the glass compositions until a liquid in equilibrium with the most-magnesian olivine phenocryst composition is obtained. The results of these calculations demonstrate that there is very little difference (maximum of ~20°C) between the ranges of crystallization temperatures of the parental liquids (MORB:1243-1351°C versus OIB:1286-1372°C) when volatile contents are taken into account. However while lacking temperature contrast, the source regions for ‘hot-spot’ parental magmas contain geochemical signatures of old subducted crust/lithosphere. The mantle depths of origin determined for both the MORB and OIB suites are similar (MORB:1-2 GPa; OIB:1-2.5 GPa). Calculations of mantle potential temperatures (Tp) are model dependent, particularly to melt fraction from an inferred source. Assuming similar fertile lherzolite sources, the differences in Tp values between the hottest MORB and the hottest ocean island tholeiite sources are ~80°C. These differences disappear if the

  11. Phase transformations during the Ag-In plating and bonding of vertical diode elements of multijunction solar cells

    SciTech Connect

    Klochko, N. P. Khrypunov, G. S.; Volkova, N. D.; Kopach, V. R.; Lyubov, V. N.; Kirichenko, M. V.; Momotenko, A. V.; Kharchenko, N. M.; Nikitin, V. A.

    2013-06-15

    The conditions of the bonding of silicon multijunction solar cells with vertical p-n junctions using Ag-In solder are studied. The compositions of electrodeposited indium films on silicon wafers silver plated by screen printing and silver and indium films fabricated by layer-by-layer electrochemical deposition onto the surface of silicon vertical diode cells silver plated in vacuum are studied. Studying the electrochemical-deposition conditions, structure, and surface morphology of the grown layers showed that guaranteed bonding is provided by 8-min heat treatment at 400 Degree-Sign C under the pressure of a stack of metallized silicon wafers; however, the ratio of the indium and silver layer thicknesses should not exceed 1: 3. As this condition is satisfied, the solder after wafer bonding has the InAg{sub 3} structure (or InAg{sub 3} with an Ag phase admixture), due to which the junction melting point exceeds 700 Degree-Sign C, which guarantees the functioning of such solar cells under concentrated illumination.

  12. TLC of alkaloids on cyanopropyl bonded stationary phases. Part II. Connection with RP18 and silica plates.

    PubMed

    Petruczynik, Anna; Waksmundzka-Hajnos, Monika; Plech, Tomasz; Tuzimski, Tomasz; Hajnos, Michał Ł; Jóźwiak, Grzegorz; Gadzikowska, Maria; Rompała, Anna

    2008-04-01

    Some standards of the alkaloids and synthetic or natural mixtures are separated by two-dimensional thin-layer chromatography (TLC) on different adsorbent layers. Normal- and reversed-phase systems are used to obtain significant differences in the separation selectivity. Optimization of the one-dimensional TLC separation of the alkaloids' standards is performed on cyanopropyl-silica, RP18W, and silica layers in various eluents containing (besides diluent and modifier) silanol blockers, such as diethyl amine or ammonia. The most selective systems are used for the separation of the alkaloids' mixtures by two-dimensional TLC with an adsorbent gradient method. The mixtures of alkaloids or plant extracts (Chelidonium majus, Fumaria officinalis, or Glaucium flavum) are chromatographed in system I; the plates are connected with the plate pre-coated with various adsorbent, and partly separated fractions are transferred to the second layer and developed in system II. CN-silica-RP18W and CN-silica-silica are used as the connected layers. The alkaloids are identified by R(F) values of standards, and the components of plant extracts are identified in both systems, and by the comparison of UV spectra obtained in diode array detector densitometry.

  13. CMS Resistive Plate Chamber overview, from the present system to the upgrade phase I

    NASA Astrophysics Data System (ADS)

    Paolucci, P.; Hadjiiska, R.; Litov, L.; Pavlov, B.; Petkov, P.; Dimitrov, A.; Beernaert, K.; Cimmino, A.; Costantini, S.; Guillaume, G.; Lellouch, J.; Marinov, A.; Ocampo, A.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Verwilligen, P.; Yazgan, E.; Zaganidis, N.; Aleksandrov, A.; Genchev, V.; Iaydjiev, P.; Rodozov, M.; Shopova, M.; Sultanov, G.; Ban, Y.; Cai, J.; Xue, Z.; Ge, Y.; Li, Q.; Qian, S.; Avila, C.; Chaparro, L. F.; Gomez, J. P.; Gomez Moreno, B.; Osorio Oliveros, A. F.; Sanabria, J. C.; Assran, Y.; Sharma, A.; Abbrescia, M.; Colaleo, A.; Pugliese, G.; Loddo, F.; Calabria, C.; Maggi, M.; Benussi, L.; Bianco, S.; Colafranceschi, S.; Piccolo, D.; Carrillo, C.; Iorio, O.; Buontempo, S.; Vitulo, P.; Berzano, U.; Gabusi, M.; Kang, M.; Lee, K. S.; Park, S. K.; Shin, S.; Kim, M. S.; Seo, H. K.; Goh, J.; Choi, Y.-I.

    2013-04-01

    Resistive Plate Chambers have been chosen as dedicated trigger muon detector for the Compact Muon Solenoid experiment [1] at the Large Hadron Collider [2] at CERN. The system consists of about 3000 m2 of double gap RPC chambers placed in both the barrel and endcap muon regions. About 5.6 fb-1 (2010-2011) of proton-proton collision data have been used to study the performance of the RPC detector and trigger. A full high voltage scan of all the RPC chambers has been done at beginning of 2011 data taking to evaluate the working point chamber by chamber and to eventually spot aging effects. The excellent behaviour of the RPC detector can be summarized with an average detector efficiency of about 97%, an average cluster size of 1.8 and an intrinsic noise rate of 0.1 Hz/cm2. This is a clear fulfilment of all the requirements decided 18 years ago in the CMS TDR document [3].

  14. Cryo-EM structure of haemoglobin at 3.2 Å determined with the Volta phase plate

    NASA Astrophysics Data System (ADS)

    Khoshouei, Maryam; Radjainia, Mazdak; Baumeister, Wolfgang; Danev, Radostin

    2017-06-01

    With the advent of direct electron detectors, the perspectives of cryo-electron microscopy (cryo-EM) have changed in a profound way. These cameras are superior to previous detectors in coping with the intrinsically low contrast and beam-induced motion of radiation-sensitive organic materials embedded in amorphous ice, and hence they have enabled the structure determination of many macromolecular assemblies to atomic or near-atomic resolution. Nevertheless, there are still limitations and one of them is the size of the target structure. Here, we report the use of a Volta phase plate in determining the structure of human haemoglobin (64 kDa) at 3.2 Å. Our results demonstrate that this method can be applied to complexes that are significantly smaller than those previously studied by conventional defocus-based approaches. Cryo-EM is now close to becoming a fast and cost-effective alternative to crystallography for high-resolution protein structure determination.

  15. Measurement of Acoustic Intensity Distribution and Radiation Power of Flat-Plate Phased-Array Sound Source

    NASA Astrophysics Data System (ADS)

    Yokoyama, Tomoki; Takahashi, Kumiko; Seki, Daizaburou; Hasegawa, Akio

    2002-05-01

    The acoustic intensity distribution and radiation power of a flat-plate phased-array sound source consisting of Tonpilz-type transducers were measured. This study shows that the active acoustic intensity is skewed in the direction of wave propagation. In addition, it clarifies that if the measurement is carried out in the immediate vicinity of the sound source, the reactive acoustic intensity distribution is effective for identifying the positions of the individual sound source elements. Experimental values of active radiation power agree well with theoretical values. Conversely, experimental values of reactive radiation power do not agree with theoretical values; it is clear that they fluctuate significantly with distance from the radiating surface. The reason for this is explained in the case of a point sound source.

  16. [Microscopic colitis].

    PubMed

    Bohr, Johan

    2002-02-11

    Microscopic colitis is an umbrella term for a newly described group of colitides, belonging to the inflammatory bowel diseases, which are only diagnosable by microscopic evaluation of a macroscopically normal colon mucosa. Collagenous colitis and lymphocytic colitis are the most common of these colitides. Microscopic colitis is characterised clinically by chronic non-bloody watery diarrhoea. Crampy abdominal pain, nocturnal diarrhoea, urgency, and initial weight loss are usual. Concomitant diseases of autoimmune origin and arthralgia are commonly seen. Treatment of microscopic colitis follows the guidelines for treatment of other inflammatory bowel diseases, but a substantial part of the patients with microscopic colitis enter spontaneous remission after some years. A minor part, however, have very troublesome symptoms and are almost refractory to treatment. Microscopic colitis has apparently no malignant potential.

  17. Using a short-pulse diffraction-limited laser beam to probe filamentation of a random phase plate smoothed beam.

    PubMed

    Kline, J L; Montgomery, D S; Flippo, K A; Johnson, R P; Rose, H A; Shimada, T; Williams, E A

    2008-10-01

    A short pulse (few picoseconds) laser probe provides high temporal resolution measurements to elucidate details of fast dynamic phenomena not observable with typical longer laser pulse probes and gated diagnostics. Such a short pulse laser probe (SPLP) has been used to measure filamentation of a random phase plate (RPP) smoothed laser beam in a gas-jet plasma. The plasma index of refraction due to driven density and temperature fluctuations by the RPP beam perturbs the phase front of a SPLP propagating at a 90 degree angle with respect to the RPP interaction beam. The density and temperature fluctuations are quasistatic on the time scale of the SPLP (approximately 2 ps). The transmitted near-field intensity distribution from the SPLP provides a measure of the phase front perturbation. At low plasma densities, the transmitted intensity pattern is asymmetric with striations across the entire probe beam in the direction of the RPP smoothed beam. As the plasma density increases, the striations break up into smaller sizes along the direction of the RPP beam propagation. The breakup of the intensity pattern is consistent with self-focusing of the RPP smoothed interaction beam. Simulations of the experiment using the wave propagation code, PF3D, are in qualitative agreement demonstrating that the asymmetric striations can be attributed to the RPP driven density fluctuations. Quantification of the beam breakup measured by the transmitted SPLP could lead to a new method for measuring self-focusing of lasers in underdense plasmas.

  18. Study of axial mixing, holdup and slip velocity of dispersed phase in a pulsed sieve plate extraction column using radiotracer technique.

    PubMed

    Ghiyas Ud Din; Imran Rafiq Chughtai; Hameed Inayat, Mansoor; Hussain Khan, Iqbal

    2009-01-01

    Axial mixing, holdup and slip velocity of dispersed phase which are parameters of fundamental importance in the design and operation of liquid-liquid extraction pulsed sieve plate columns have been investigated. Experiments for residence time distribution (RTD) analysis have been carried out for a range of pulsation frequency and amplitude in a liquid-liquid extraction pulsed sieve plate column with water as dispersed and kerosene as continuous phase using radiotracer technique. The column was operated in emulsion region and (99m)Tc in the form of sodium pertechnetate eluted from a (99)Mo/(99m)Tc generator was used to trace the dispersed phase. Axial dispersed plug flow model with open-open boundary condition and two points measurement method was used to simulate the hydrodynamics of dispersed phase. It has been observed that the axial mixing and holdup of dispersed phase increases with increase in pulsation frequency and amplitude until a maximum value is achieved while slip velocity decreases with increase in pulsation frequency and amplitude until it approaches a minimum value. Short lived and low energy radiotracer (99m)Tc in the form of sodium pertechnetate was found to be a good water tracer to study the hydrodynamics of a liquid-liquid extraction pulsed sieve plate column operating with two immiscible liquids, water and kerosene. Axial dispersed plug flow model with open-open boundary condition was found to be a suitable model to describe the hydrodynamics of dispersed phase in the pulsed sieve plate extraction column.

  19. Engineering of apodizer filters in the optical imaging using a set of phase plates

    NASA Astrophysics Data System (ADS)

    Palillero-Sandoval, Omar; Márquez-Aguilar, Pedro Antonio; Berriel-Valdos, Luis Raul

    2016-10-01

    A numerical study of the performance of a set of phase masks and apodizer filters, which are able to extend the depth of field (DOF) in the imaging system, are presented using a test object with different levels of gray. The ambiguity function is used to display which of these filters, placed in the pupil function, can increase the DOF. The intensity quasi-point spread functions (IQPSFs) show invariance in the central spot of the IQPSF when the apodizer is placed in the optical system. This approach minimizes the replicas of the object that appears in the background of the restored images produced by the numerical processing when in the pupil function these phase filters are used simultaneously. The correlation coefficient criteria and minimum squares differences were used to evaluate the quality of the restoration process.

  20. Relocating Seismicity on the Arctic Plate Boundary Using Teleseismic and Regional Phases and a Bayesian Multiple Event Locator

    NASA Astrophysics Data System (ADS)

    Gibbons, Steven J.; Dahl-Jensen, Trine; Kværna, Tormod; Larsen, Tine B.; Paulsen, Berit; Voss, Peter

    2016-04-01

    The tectonophysics of plate boundaries are illuminated by the pattern of seismicity - and the ability to locate seismic events accurately depends upon the number and quality of observations, the distribution of recording stations, and how well the traveltimes of seismic phases are modelled. The boundary between the Eurasian and North American plates between 70 and 84 degrees North hosts large seismic events which are well recorded teleseismically and many more events at far lower magnitudes that are well recorded only at regional distances. Existing seismic bulletins have considerable spread and bias resulting from limited station coverage and deficiencies in the velocity models applied; this is particularly acute for the lower magnitude events which may only be constrained by a small number of Pn and Sn arrivals. Over the past 15 years, there has been a significant improvement in the seismic network in the Arctic - a difficult region to instrument due to the harsh climate, a sparsity of quiet and accessible sites, and the expense and difficult logistics of deploying and maintaining stations. New deployments and upgrades to stations on Greenland, Svalbard, and the islands Jan Mayen, Hopen, and Bjørnøya have resulted in a sparse but stable regional seismic network which results in events down to magnitudes below 3 generating high quality Pn and Sn signals on multiple stations. A catalog of over 1000 events in the region since 1998 has been generated using many new phase readings on stations on both sides of the spreading ridge in addition to teleseismic P phases. The Bayesloc program, a Bayesian hierarchical multiple event location algorithm, has been used to relocate the full set of events iteratively and this has resulted in a significant reduction in the spread in hypocenter estimates for both large and small events. Whereas single event location algorithms minimize the vector of time residuals on an event-by-event basis, Bayesloc favours the hypocenters which

  1. Hard X-ray Microscopic Imaging Of Human Breast Tissues

    NASA Astrophysics Data System (ADS)

    Park, Sung H.; Kim, Hong T.; Kim, Jong K.; Jheon, Sang H.; Youn, Hwa S.

    2007-01-01

    X-ray microscopy with synchrotron radiation will be a useful tool for innovation of x-ray imaging in clinical and laboratory settings. It helps us observe detailed internal structure of material samples non-invasively in air. And, it also has the potential to solve some tough problems of conventional breast imaging if it could evaluate various conditions of breast tissue effectively. A new hard x-ray microscope with a spatial resolution better than 100 nm was installed at Pohang Light Source, a third generation synchrotron radiation facility in Pohang, Korea. The x-ray energy was set at 6.95 keV, and the x-ray beam was monochromatized by W/B4C monochromator. Condenser and objective zone plates were used as x-ray lenses. Zernike phase plate next to condenser zone plate was introduced for improved contrast imaging. The image of a sample was magnified 30 times by objective zone plate and 20 times by microscope objective, respectively. After additional 10 times digital magnification, the total magnifying power was up to 6000 times in the end. Phase contrast synchrotron images of 10-μm-thick female breast tissue of the normal, fibroadenoma, fibrocystic change and carcinoma cases were obtained. By phase contrast imaging, hard x-rays enable us to observe many structures of breast tissue without sample preparations such as staining or fixation.

  2. Fracture of titanium plates used for mandibular reconstruction following ablative tumor surgery.

    PubMed

    Martola, Martta; Lindqvist, Christian; Hänninen, Hannu; Al-Sukhun, Jehad

    2007-02-01

    The purpose of this study was to identify reasons for fracture of titanium mandibular reconstruction plates, when used to bridge lateral mandibular defects after ablative tumor surgery. Sixteen titanium reconstruction plates from sheep mandibles were examined to identify reasons for the plate fractures. The broken plates and the seemingly unbroken plates were examined separately. The plates were removed from the mandibular bone and inspected by dye penetrant examination, metallography, optical microscope, scanning electron microscope, and energy dispersive X-ray spectrometer. Furthermore, axial load fatigue tests were performed in two different environments, air and physiologic salt solution, 0.9% NaCl, to compare titanium behavior in air and the human body. The site of crack initiation was the inner curvature of the reconstruction plate, and the cracks initiated as a result of stress concentration in the shoulder fillet of the plate. The cracks grew in a cyclic manner under masticatory loading of the mandible and the plate. The plate fracture occurred by means of fatigue. The corrosive environment did not affect the failure of the titanium plate, and the fracture was not caused by hydrogen embrittlement. The results revealed that the fatigue properties of the plates may have been impaired by the residual stresses generated in plate bending. Adjustive bending of the plates, in the surgical operation, may thus be an important cause of fracture of the reconstruction plates, because of generated residual stresses, which affect the mean stress in fatigue loading. To make the plates function without failure the plates should match closely with the three-dimensional shape of the mandible, to avoid any bending in the operative phase. (c) 2006 Wiley Periodicals, Inc.

  3. Integration of a scanning ion conductance microscope into phase contrast optics and its application to the quantification of morphological parameters of selected cells.

    PubMed

    Mann, S A; Meyer, J W; Dietzel, I D

    2006-11-01

    We have previously described a pulse-mode scanning ion conductance microscope to investigate membrane surfaces and volume changes of individual cells in culture. We have now developed a miniaturized scanning headstage that enables us to select individual cells for recording under phase contrast optics, considerably improving the selection of individual cells for scanning as well as the positioning of the scanning frames with respect to the position of the cell somata. We show an application in which surfaces and volumes of somata and processes of cultured cells from the central nervous system were quantified separately.

  4. Microscopic dynamics of AC{sub 60} compounds in the plastic, polymer, and dimer phases investigated by inelastic neutron scattering

    SciTech Connect

    Schober, H.; Toelle, A.; Renker, B.; Heid, R.; Gompf, F.

    1997-09-01

    We present inelastic neutron-scattering results for AC{sub 60} (A=K,Rb,Cs) compounds. The spectra of the high-temperature fcc phases strongly resemble the ones of pristine C{sub 60} in the plastic phase. At equal temperatures we find identical rotational diffusion constants for pristine C{sub 60} and Rb{sub 1}C{sub 60} (D{sub r}=2.4 10{sup 10} s{sup {minus}1} at 400 K). The changes taking place in the inelastic part of the spectra on cooling AC{sub 60} indicate the formation of strong intermolecular bonds. The buildup of intensities in the gap region separating internal and external vibrations in pure C{sub 60} is the most prominent signature of this transition. The spectra of the low-temperature phases depend on their thermal history. The differences can be explained by the formation of a polymer phase (upon slow cooling from the fcc phase) and a dimer phase (upon fast cooling), respectively. The experimental data are analyzed on the basis of lattice dynamical calculations. The density-of-states are well modeled assuming a [2+2] bond for the polymer and a single intercage bond for the dimer. Indications for different intercage bonding are also found in the internal mode spectra, which, on the other hand, react only weakly to the charge transfer. The dimer phase is metastable and converts into the polymer phase with a strongly temperature-dependent time constant. The transition from the polymer to the fcc phase is accompanied by inelastic precursor effects which are interpreted as the signature of inhomogeneities arising from plastic monomer regions embedded in the polymer phase. In the polymer phase AC{sub 60} compounds show strong anharmonic behavior in the low-temperature region. The possible connection with the metal-to-insulator transition is discussed. {copyright} {ital 1997} {ital The American Physical Society}

  5. Origin of phase shift in atomic force microscopic investigation of the surface morphology of NR/NBR blend film.

    PubMed

    Thanawan, S; Radabutra, S; Thamasirianunt, P; Amornsakchai, T; Suchiva, K

    2009-01-01

    Atomic force microscopy (AFM) was used to study the morphology and surface properties of NR/NBR blend. Blends at 1/3, 1/1 and 3/1 weight ratios were prepared in benzene and formed film by casting. AFM phase images of these blends in tapping mode displayed islands in the sea morphology or matrix-dispersed structures. For blend 1/3, NR formed dispersed phase while in blends 1/1 and 3/1 phase inversion was observed. NR showed higher phase shift angle in AFM phase imaging for all blends. This circumstance was governed by adhesion energy hysteresis between the device tip and the rubber surface rather than surface stiffness of the materials, as proved by force distance measurements in the AFM contact mode.

  6. Tensile Residual Stress Mitigation Using Low Temperature Phase Transformation Filler Wire in Welded Armor Plates

    SciTech Connect

    Feng, Zhili; Bunn, Jeffrey R; Tzelepis, Demetrios A; Payzant, E Andrew; Yu, Xinghua

    2016-01-01

    Hydrogen induced cracking (HIC) has been a persistent issue in welding of high-strength steels. Mitigating residual stresses is one of the most efficient ways to control HIC. The current study develops a proactive in-process weld residual stress mitigation technique, which manipulates the thermal expansion and contraction sequence in the weldments during welding process. When the steel weld is cooled after welding, martensitic transformation will occur at a temperature below 400 C. Volume expansion in the weld due to the martensitic transformation will reduce tensile stresses in the weld and heat affected zone and in some cases produce compressive residual stresses in the weld. Based on this concept, a customized filler wire which undergoes a martensitic phase transformation during cooling was developed. The new filler wire shows significant improvement in terms of reducing the tendency of HIC in high strength steels. Bulk residual stress mapping using neutron diffraction revealed reduced tensile and compressive residual stresses in the welds made by the new filler wire.

  7. Two-dimensional X-ray focusing by off-axis grazing incidence phase Fresnel zone plate on the laboratory X-ray source

    NASA Astrophysics Data System (ADS)

    Grigoriev, Maxim; Fakhrtdinov, Rashid; Irzhak, Dmitry; Firsov, Alexander; Firsov, Anatoly; Svintsov, Alexander; Erko, Alexey; Roshchupkin, Dmitry

    2017-02-01

    The results of studying a two-dimensional X-ray focusing by an off-axis grazing incidence phase Fresnel zone plate on the laboratory X-ray source are presented. This optics enables obtaining a focal spot of 2 μm on the laboratory X-ray source with a focusing efficiency of 30% at a high signal/noise ratio.

  8. Direct observation of electronic-liquid-crystal phase transitions and their microscopic origin in La1/3Ca2/3MnO3.

    PubMed

    Tao, J; Sun, K; Yin, W-G; Wu, L; Xin, H; Wen, J G; Luo, W; Pennycook, S J; Tranquada, J M; Zhu, Y

    2016-11-22

    The ground-state electronic order in doped manganites is frequently associated with a lattice modulation, contributing to their many interesting properties. However, measuring the thermal evolution of the lattice superstructure with reciprocal-space probes alone can lead to ambiguous results with competing interpretations. Here we provide direct observations of the evolution of the superstructure in La1/3Ca2/3MnO3 in real space, as well as reciprocal space, using transmission electron microscopic (TEM) techniques. We show that the transitions are the consequence of a proliferation of dislocations plus electronic phase separation. The resulting states are well described by the symmetries associated with electronic-liquid-crystal (ELC) phases. Moreover, our results resolve the long-standing controversy over the origin of the incommensurate superstructure and suggest a new structural model that is consistent with recent theoretical calculations.

  9. Direct observation of electronic-liquid-crystal phase transitions and their microscopic origin in La1/3Ca2/3MnO3

    NASA Astrophysics Data System (ADS)

    Tao, J.; Sun, K.; Yin, W.-G.; Wu, L.; Xin, H.; Wen, J. G.; Luo, W.; Pennycook, S. J.; Tranquada, J. M.; Zhu, Y.

    2016-11-01

    The ground-state electronic order in doped manganites is frequently associated with a lattice modulation, contributing to their many interesting properties. However, measuring the thermal evolution of the lattice superstructure with reciprocal-space probes alone can lead to ambiguous results with competing interpretations. Here we provide direct observations of the evolution of the superstructure in La1/3Ca2/3MnO3 in real space, as well as reciprocal space, using transmission electron microscopic (TEM) techniques. We show that the transitions are the consequence of a proliferation of dislocations plus electronic phase separation. The resulting states are well described by the symmetries associated with electronic-liquid-crystal (ELC) phases. Moreover, our results resolve the long-standing controversy over the origin of the incommensurate superstructure and suggest a new structural model that is consistent with recent theoretical calculations.

  10. Direct observation of electronic-liquid-crystal phase transitions and their microscopic origin in La1/3Ca2/3MnO3

    PubMed Central

    Tao, J.; Sun, K.; Yin, W.-G.; Wu, L.; Xin, H.; Wen, J. G.; Luo, W.; Pennycook, S. J.; Tranquada, J. M.; Zhu, Y.

    2016-01-01

    The ground-state electronic order in doped manganites is frequently associated with a lattice modulation, contributing to their many interesting properties. However, measuring the thermal evolution of the lattice superstructure with reciprocal-space probes alone can lead to ambiguous results with competing interpretations. Here we provide direct observations of the evolution of the superstructure in La1/3Ca2/3MnO3 in real space, as well as reciprocal space, using transmission electron microscopic (TEM) techniques. We show that the transitions are the consequence of a proliferation of dislocations plus electronic phase separation. The resulting states are well described by the symmetries associated with electronic-liquid-crystal (ELC) phases. Moreover, our results resolve the long-standing controversy over the origin of the incommensurate superstructure and suggest a new structural model that is consistent with recent theoretical calculations. PMID:27874069

  11. Direct observation of electronic-liquid-crystal phase transitions and their microscopic origin in La1/3Ca2/3MnO3

    DOE PAGES

    Tao, J.; Sun, K.; Yin, W. -G.; ...

    2016-11-22

    The ground-state electronic order in doped manganites is frequently associated with a lattice modulation, contributing to their many interesting properties. However, measuring the thermal evolution of the lattice superstructure with reciprocal-space probes alone can lead to ambiguous results with competing interpretations. Here, we provide direct observations of the evolution of the superstructure in La1/3Ca2/3MnO3 in real space, as well as reciprocal space, using transmission electron microscopic (TEM) techniques. We show that the transitions are the consequence of a proliferation of dislocations plus electronic phase separation. The resulting states are well described by the symmetries associated with electronic-liquid-crystal (ELC) phases. Furthermore,more » our results resolve the long-standing controversy over the origin of the incommensurate superstructure and suggest a new structural model that is consistent with recent theoretical calculations.« less

  12. Desorption atmospheric pressure photoionization with polydimethylsiloxane as extraction phase and sample plate material.

    PubMed

    Vaikkinen, A; Kotiaho, T; Kostiainen, R; Kauppila, T J

    2010-12-03

    Desorption atmospheric pressure photoionization (DAPPI) is an ambient ionization technique for mass spectrometry (MS) that can be used to ionize polar as well as neutral and completely non-polar analytes. In this study polydimethylsiloxane (PDMS) was used as a solid phase extraction sorbent for DAPPI-MS analysis. Pieces of PDMS polymer were soaked in an aqueous sample, where the analytes were sorbed from the sample solution to PDMS. After this, the extracted analytes were desorbed directly from the polymer by the hot DAPPI spray solvent plume, without an elution step. Swelling and extracting the PDMS with a cleaning solvent prior to extraction diminished the high background in the DAPPI mass spectrum caused by PDMS oligomers. Acetone, hexane, pentane, toluene, diisopropylamine and triethylamine were tested for this purpose. The amines were most efficient in reducing the PDMS background, but they also suppressed the signals of low proton affinity analytes. Toluene was chosen as the optimum cleaning solvent, since it reduced the PDMS background efficiently and gave intensive signals of most of the studied analytes. The effects of DAPPI spray solvents toluene, acetone and anisole on the PDMS background and the ionization of analytes were also compared and extraction conditions were optimized. Anisole gave a low background for native PDMS, but toluene ionized the widest range of analytes. Analysis of verapamil, testosterone and anthracene from purified, spiked wastewater was performed to demonstrate that the method is suited for in-situ analysis of water streams. In addition, urine spiked with several analytes was analyzed by the PDMS method and compared to the conventional DAPPI procedure, where sample droplets are applied on PMMA surface. With the PDMS method the background ion signals caused by the urine matrix were lower, the S/N ratios of analytes were 2-10 times higher, and testosterone, anthracene and benzo[a]pyrene that were not detected from PMMA in urine

  13. Nanosecond in situ transmission electron microscope studies of the reversible Ge{sub 2}Sb{sub 2}Te{sub 5} crystalline <==> amorphous phase transformation

    SciTech Connect

    Santala, M. K.; Reed, B. W.; LaGrange, T.; Campbell, G. H.; Browning, N. D.; Topuria, T.; Raoux, S.; Meister, S.; Cui, Y.

    2012-01-15

    Chalcogenide-based phase-change materials have wide use in optical recording media and are growing in importance for use in non-volatile electronic memory. For both applications, rapid switching between the amorphous and crystalline phases is necessary, and understanding the changes during rapidly driven phase transitions is of scientific and technological significance. Laser-induced crystallization and amorphization occur rapidly and changes in atomic structure, microstructure, and temperature are difficult to observe experimentally and determine computationally. We have used nanosecond-scale time-resolved diffraction with intense electron pulses to study Ge{sub 2}Sb{sub 2}Te{sub 5} during laser crystallization. Using a unique and unconventional specimen geometry, cycling between the amorphous and crystalline phases was achieved, enabling in situ transmission electron microscope (TEM) study of both microstructural and crystallographic changes caused by repeated switching. Finite element analysis was used to simulate interactions of the laser with the nano-structured specimens and to model the rapidly changing specimen temperature. Such time-resolved experimental methods combined with simulation of experimentally inaccessible physical characteristics will be fundamental to advancing the understanding of rapidly driven phase transformations.

  14. Shearing interference microscope for step-height measurements.

    PubMed

    Trịnh, Hưng-Xuân; Lin, Shyh-Tsong; Chen, Liang-Chia; Yeh, Sheng-Lih; Chen, Chin-Sheng; Hoang, Hong-Hai

    2017-03-07

    A shearing interference microscope using a Savart prism as the shear plate is proposed for inspecting step-heights. Where the light beam propagates through the Savart prism and microscopic system to illuminate the sample, it then turns back to re-pass through the Savart prism and microscopic system to generate a shearing interference pattern on the camera. Two measurement modes, phase-shifting and phase-scanning, can be utilized to determine the depths of the step-heights on the sample. The first mode, which employs a narrowband source, is based on the five-step phase-shifting algorithm and has a measurement range of a quarter-wavelength. The second mode, which adopts a broadband source, is based on peak-intensity identification technology and has a measurement range up to a few micrometres. This paper is to introduce the configuration and measurement theory of this microscope, perform a setup used to implement it, and present the experimental results from the uses of the setup. The results not only verify the validity but also confirm the high measurement repeatability of the proposed microscope.

  15. Near Fault Observatories (NFO) services and integration plan for European Plate Observing System (EPOS) Implementation Phase

    NASA Astrophysics Data System (ADS)

    Chiaraluce, Lauro

    2016-04-01

    the services provided by other Thematic Core Services for the standard data (e.g. seismic and geodetic) and on the direct access to the e-infrastructures of individual NFOs via the Integrated Core Services web services for access and distribution of non standard data (e.g. strain- and tilt-meters, geochemical and electro- magneto-telluric data). We will collaborate with the other groups possessing the same data on data harmonization in terms of both format and metadata description to optimise and facilitate the integration and interoperability processes. The services will include a Virtual Laboratory, novel visualization tools for data and products describing the anatomy of active faults and the physical processes governing earthquake generation. VL is an online engagement and knowledge sharing initiative for communicating to the other scientists, stockholders and the public the state of scientific knowledge concerning earthquake source and tectonic processes generating catastrophic events. The availability of real-time data provides the unique opportunity of observing all phases of the earthquake rupture. It is thus of crucial importance developing methodologies to follow in real-time the evolution of the event (e.g. Earthquake Early Warning systems). NFOs are ideal infrastructures for hosting testing centers where a variety of scientific algorithms for real-time monitoring can be independently evaluated. Besides the interest for fundamental science, such developments have a societal impact and can attract new stakeholders such as industry partners who are interested in adopting in such (e.g. EEW) technologies.

  16. Axial dispersion, holdup and slip velocity of dispersed phase in a pulsed sieve plate extraction column by radiotracer residence time distribution analysis.

    PubMed

    Din, Ghiyas Ud; Chughtai, Imran Rafiq; Inayat, Mansoor Hameed; Khan, Iqbal Hussain

    2008-12-01

    Axial dispersion, holdup and slip velocity of dispersed phase have been investigated for a range of dispersed and continuous phase superficial velocities in a pulsed sieve plate extraction column using radiotracer residence time distribution (RTD) analysis. Axial dispersion model (ADM) was used to simulate the hydrodynamics of the system. It has been observed that increase in dispersed phase superficial velocity results in a decrease in its axial dispersion and increase in its slip velocity while its holdup increases till a maximum asymptotic value is achieved. An increase in superficial velocity of continuous phase increases the axial dispersion and holdup of dispersed phase until a maximum value is obtained, while slip velocity of dispersed phase is found to decrease in the beginning and then it increases with increase in superficial velocity of continuous phase.

  17. Microscopic origin of resistance drift in the amorphous state of the phase-change compound GeTe

    NASA Astrophysics Data System (ADS)

    Gabardi, S.; Caravati, S.; Sosso, G. C.; Behler, J.; Bernasconi, M.

    2015-08-01

    Aging is a common feature of the glassy state. In the case of phase-change chalcogenide alloys the aging of the amorphous state is responsible for an increase of the electrical resistance with time. This phenomenon called drift is detrimental in the application of these materials in phase-change nonvolatile memories, which are emerging as promising candidates for storage class memories. By means of combined molecular dynamics and electronic structure calculations based on density functional theory, we have unraveled the atomistic origin of the resistance drift in the prototypical phase-change compound GeTe. The drift results from a widening of the band gap and a reduction of Urbach tails due to structural relaxations leading to the removal of chains of Ge-Ge homopolar bonds. The same structural features are actually responsible for the high mobility above the glass transition which boosts the crystallization speed exploited in the device.

  18. Relative permeability and the microscopic distribution of wetting and nonwetting phases in the pore space of Berea sandstone

    SciTech Connect

    Schlueter, E.M.; Cook, N.G.W. |; Witherspoon, P.A.; Myer, L.R.

    1994-04-01

    Experiments to study relative permeabilities of a partially saturated rock have been carried out in Berea sandstone using fluids that can be solidified in place. The effective permeability of the spaces not occupied by the wetting fluid (paraffin wax) or the nonwetting fluid (Wood`s metal), have been measured at various saturations after solidifying each of the phases. The tests were conducted on Berea sandstone samples that had an absolute permeability of about 600 md. The shape of the laboratory-derived relative permeability vs. saturation curves measured with the other phase solidified conforms well with typical curves obtained using conventional experimental methods. The corresponding wetting and nonwetting fluid distributions at different saturations are presented and analyzed in light of the role of the pore structure in the invasion process, and their impact on relative permeability and capillary pressure. Irreducible wetting and nonwetting phase fluid distributions are studied. The effect of clay minerals on permeability is also assessed.

  19. Molecular orientation behavior of chiral nematic liquid crystals based on the presence of blue phases using polarized microscopic FT-IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Matsumura, Masanori; Katayama, Norihisa

    2016-07-01

    Study on molecular orientation behavior of highly twisted chiral nematic liquid crystals (N∗LCs) expressing blue phases (BPs) is important for developing new devices. This study examines the change of molecular orientation of N∗LCs due to the presence of BPs. Polarized microscopic FT-IR spectroscopy was used to study the in- and out-of-plane molecular orientations of N∗LCs that undergo a phase transition involving BPs. The band intensity ratio of CN to CH2 stretching modes (CN/CH2) in the IR spectra was used to determine the orientation of N∗LC molecules. The measured spectra indicated that the helical axis of N∗LC molecules was perpendicular to the substrate before heating and inclined on the substrate after cooling the sample which has phase transition from BP I to chiral nematic (N∗). The N∗LC molecule in the cell of rubbed orientation film exhibited the in-plane anisotropy after a heating-cooling ramp only in samples that passed through BP I. These results indicate that the changes of molecular orientation of N∗LC by phase transition are affected by BP I.

  20. Prediction of CO/sub 2/ flood performance: Interaction of phase behavior with microscopic pore structure heterogeneity

    SciTech Connect

    Dui, K.K.; Orr, F.M.

    1984-09-01

    This paper examines the effects of microscopic heterogeneity, present in rock pore structures or resulting from high water saturations, on the performance of one-dimensional CO/sub 2/ floods. A one-dimensional simulator, shown previously to model slim tube displacements quantitatively, was modified to include effects of an isolated or trapped fraction, unavailable for mixing with injected fluids, and a dendritic fraction, which exchanges material with the flowing fraction by mass transfer. Model formulation, numerical solution and validation tests are described. Results of simulations with no water present indicate that performance of a one-dimensional CO/sub 2/ flood is sensitive to restrictions to local mixing. Calculated oil recovery decreases as the flowing fraction, Peclet number and Damkohler number decrease. Comparisons of calculated and measured residual oil saturations in CO/sub 2/ core floods support this observation. Comparison of secondary and tertiary displacements by continuous CO/sub 2/ injection and alternate and simultaneous injection of CO/sub 2/ and water indicates that performance of secondary displacements is not strongly affected by restricted local mixing. In tertiary displacements, however, total oil recovery and the rate of recovery are reduced if effects of trapped and dendritic saturations are included.

  1. μCT-Based Analysis of the Solid Phase in Foams: Cell Wall Corrugation and other Microscopic Features.

    PubMed

    Pardo-Alonso, Samuel; Solórzano, Eusebio; Vicente, Jerome; Brabant, Loes; Dierick, Manuel L; Manke, Ingo; Hilger, Andr; Laguna, Ester; Rodriguez-Perez, Miguel Angel

    2015-10-01

    This work presents a series of three-dimensional computational methods with the objective of analyzing and quantifying some important structural characteristics in a collection of low-density polyolefin-based foams. First, the solid phase tortuosity, local thickness, and surface curvature, have been determined over the solid phase of the foam. These parameters were used to quantify the presence of wrinkles located at the cell walls of the foams under study. In addition, a novel segmentation technique has been applied to the continuous solid phase. This novel method allows performing a separate analysis of the constituting elements of this phase, that is, cell struts and cell walls. The methodology is based on a solid classification algorithm and evaluates the local topological dissimilarities existing between these elements. Thanks to this method it was possible to perform a separate analysis of curvature, local thickness, and corrugation ratio in the solid constituents that reveals additional differences that were not detected in the first analysis of the continuous structure. The methods developed in this work are applicable to other types of porous materials in fields such as geoscience or biomedicine.

  2. Microscopic Polyangiitis

    PubMed Central

    Chung, Sharon A.; Seo, Philip

    2010-01-01

    Synopsis In 1923, Friedrich Wohlwill described two patients with a “microscopic form of periarteritis nodosa”, which was distinct from classical polyarteritis nodosa. This disease, now known as microscopic polyangiitis (MPA), is a primary systemic vasculitis characterized by inflammation of the small-caliber blood vessels and the presence of circulating antineutrophil cytoplasmic antibodies (ANCA). Typically, microscopic polyangiitis presents with glomerulonephritis and pulmonary capillaritis, although involvement of the skin, nerves, and gastrointestinal tract is not uncommon. Treatment of MPA generally requires use of a cytotoxic agent (such as cyclophosphamide) in addition to high-dose glucocorticoids. Recent research has focused on identifying alternate treatment strategies that minimize or eliminate exposure to cytotoxic agents. This article will review the history, pathogenesis, clinical manifestations, and treatment of MPA. PMID:20688249

  3. Phase diagrams and microscopic structures of (Hg,Cd)Te, (Hg,Zn)Te, and (Cd,Zn)Te alloys

    NASA Technical Reports Server (NTRS)

    Patrick, R. S.; Chen, A.-B.; Sher, A.; Berding, M. A.

    1988-01-01

    A cluster theory based on the quasi-chemical approximation has been applied to study the local correlation bond-length distribution, and phase diagrams of the II-VI pseudobinary alloys Hg(1 - x)Cd(x)Te, Hg(1 - x)Zn(x)Te, and Cd(1 - x)Zn(x)Te. The cluster energy is calculated by letting it relax in some effective alloy medium and then considering the contributions from the strain and chemical energies. Two different models are presented to simulate the alloy medium. While both models show that all three alloys have nearly random distributions, the signs of the local correlation prove to be sensitive to the alloy medium chosen for the energy calculation. Good agreement is found between experiment and the bond lengths and phase diagrams in both models.

  4. Microscopic Phase-Space Exploration Modeling of Fm 258 Spontaneous Fission

    NASA Astrophysics Data System (ADS)

    Tanimura, Yusuke; Lacroix, Denis; Ayik, Sakir

    2017-04-01

    We show that the total kinetic energy (TKE) of nuclei after the spontaneous fission of Fm 258 can be well reproduced using simple assumptions on the quantum collective phase space explored by the nucleus after passing the fission barrier. Assuming energy conservation and phase-space exploration according to the stochastic mean-field approach, a set of initial densities is generated. Each density is then evolved in time using the nuclear time-dependent density-functional theory with pairing. This approach goes beyond the mean-field theory by allowing spontaneous symmetry breaking as well as a wider dynamical phase-space exploration leading to larger fluctuations in collective space. The total kinetic energy and mass distributions are calculated. New information on the fission process: fluctuations in scission time, strong correlation between TKE and collective deformation, as well as prescission particle emission, are obtained. We conclude that fluctuations of the TKE and mass are triggered by quantum fluctuations.

  5. Martian Microscope

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The microscopic imager (circular device in center) is in clear view above the surface at Meridiani Planum, Mars, in this approximate true-color image taken by the panoramic camera on the Mars Exploration Rover Opportunity. The image was taken on the 9th sol of the rover's journey. The microscopic imager is located on the rover's instrument deployment device, or arm. The arrow is pointing to the lens of the instrument. Note the dust cover, which flips out to the left of the lens, is open. This approximated color image was created using the camera's violet and infrared filters as blue and red.

  6. Martian Microscope

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The microscopic imager (circular device in center) is in clear view above the surface at Meridiani Planum, Mars, in this approximate true-color image taken by the panoramic camera on the Mars Exploration Rover Opportunity. The image was taken on the 9th sol of the rover's journey. The microscopic imager is located on the rover's instrument deployment device, or arm. The arrow is pointing to the lens of the instrument. Note the dust cover, which flips out to the left of the lens, is open. This approximated color image was created using the camera's violet and infrared filters as blue and red.

  7. In situ electron microscope study of the phase transformation, structure and growth of thin Te 1- xSe x films

    NASA Astrophysics Data System (ADS)

    Vermaak, J. S.; Raubenheimer, D.

    1990-01-01

    An in-situ electron microscope technique was utilized to observe directly the amorphous-to-crystalline phase transformation, the isothermal growth rates, as well as the orientation and structure of the recrystallized films for the Te 1-xSe x alloy system for x=0.2, 0.3 and 0.4. Activation energies of E=0.91, 0.93 and 0.96 eV and crystallization temperatures of Tc=-14, 81.5 and 85°C for the three alloys, respectively, were found. In all three cases the crystallization process originated from single crystalline nuclei with a hexagonal structure and with the c-axis in general parallel to the substrate surface.

  8. Re-evaluation of differential phase contrast (DPC) in a scanning laser microscope using a split detector as an alternative to differential interference contrast (DIC) optics.

    PubMed

    Amos, W B; Reichelt, S; Cattermole, D M; Laufer, J

    2003-05-01

    In this paper, differential phase imaging (DPC) with transmitted light is implemented by adding a suitable detection system to a standard commercially available scanning confocal microscope. DPC, a long-established method in scanning optical microscopy, depends on detecting the intensity difference between opposite halves or quadrants of a split photodiode detector placed in an aperture plane. Here, DPC is compared with scanned differential interference contrast (DIC) using a variety of biological specimens and objective lenses of high numerical aperture. While DPC and DIC images are generally similar, DPC seems to have a greater depth of field. DPC has several advantages over DIC. These include low cost (no polarizing or strain-free optics are required), absence of a double scanning spot, electronically variable direction of shading and the ability to image specimens in plastic dishes where birefringence prevents the use of DIC. DPC is also here found to need 20 times less laser power at the specimen than DIC.

  9. Deformation measurement of carbon fiber reinforced plastics using phase-shifting scanning electron microscope Moiré method after Fourier transform

    NASA Astrophysics Data System (ADS)

    Wang, Qinghua; Ri, Shien; Tsuda, Hiroshi; Kishimoto, Satoshi; Tanaka, Yoshihisa; Kagawa, Yutaka

    2015-07-01

    The deformation distributions of carbon fiber reinforced plastics (CFRP) under a three-point bending load were nondestructively investigated using the phase shifting scanning electron microscope (SEM) moiré method. The complex fast Fourier transform (FFT) and the discrete Fourier transform (DFT) were used to filter the useless moiré fringes in the case of bidirectional moiré fringes. The SEM moiré fringes under different magnifications and the deformation results measured by the direct, complex FFT- and the DFT- phase shifting moiré methods as well as the moiré fringe centering method were compared and analyzed. Experiments demonstrate that the deformation measurement is a bit influenced by the useless moiré fringes in the phase shifting moiré methods and complex FFT processing works better for nondense moiré fringes. The relative strain changes gradually and the specimen grating pitch increases gradually from top to bottom along the loading direction, suggesting that the real compressive strain is greater in the upper side. The micro/nano-scale deformation distribution characteristic is helpful for better understanding of the mechanical properties of the CFRP specimen.

  10. Microscopic colitis.

    PubMed

    Delgado, Jorge; Delgado, Bertha; Fich, Alex; Odes, Shmuel

    2004-08-01

    Microscopic colitis is an idiopathic chronic inflammatory bowel disease presenting with watery diarrhea. While colonoscopy and radiology findings are normal, the colon shows striking pathologic findings, including lymphocytic colitis and collagenous colitis. The clinical course is usually benign with sustained remission. Recent medical evidence shows that bismuth and budesonide are effective treatments.

  11. High-resolution quasi-monochromatic X-ray imaging using a Fresnel phase zone plate and a multilayer mirror.

    PubMed

    Do, A; Troussel, Ph; Baton, S D; Dervieux, V; Gontier, D; Lecherbourg, L; Loupias, B; Obst, L; Pérez, F; Renaudin, P; Reverdin, Ch; Rubbelynck, C; Stemmler, Ph; Soullié, G

    2017-01-01

    High-resolution, high-sensitivity X-ray imaging is a real challenge in laser plasma diagnostic to attain reliable data in high-energy density plasma experiments. In this context, ultra-high-intensity lasers generate hot and dense plasma but only in a small volume. An experiment has been performed at the LULI2000 laser facility to diagnose such plasma conditions from thermal spectroscopic data. To image the emission zone plasma's Al Heβ, a Fresnel-lens-based X-ray imager has been developed. It features a 846 μm-diameter Fresnel Phase Zone Plate (FPZP) and a Pd/B4C multilayer mirror (thickness d = 5.1 nm). This association can be used between 1500 eV and 2100 eV. The FPZP's efficiency was measured on a synchrotron facility (SOLEIL) and its spatial resolution in a laser facility (EQUINOX). The mirror reflectivity was measured on the synchrotron facility BESSY II. With experimental conditions, the system resolution reaches 3.8 ± 0.6 μm with an adequate efficiency in the 1800 eV-1900 eV energy range with a solid angle of 9 × 10(-6) sr. Consequently, a FPZP is an excellent optics setup for high-resolution quasi-monochromatic X-ray imaging and provides a good collection angle. Bragg-Fresnel lenses, based on the principle of FPZP and mirrors, are currently designed for an X-ray imager at the Laser MégaJoule facility.

  12. Microscopic colitis

    PubMed Central

    Ianiro, Gianluca; Cammarota, Giovanni; Valerio, Luca; Annicchiarico, Brigida Eleonora; Milani, Alessandro; Siciliano, Massimo; Gasbarrini, Antonio

    2012-01-01

    Microscopic colitis may be defined as a clinical syndrome, of unknown etiology, consisting of chronic watery diarrhea, with no alterations in the large bowel at the endoscopic and radiologic evaluation. Therefore, a definitive diagnosis is only possible by histological analysis. The epidemiological impact of this disease has become increasingly clear in the last years, with most data coming from Western countries. Microscopic colitis includes two histological subtypes [collagenous colitis (CC) and lymphocytic colitis (LC)] with no differences in clinical presentation and management. Collagenous colitis is characterized by a thickening of the subepithelial collagen layer that is absent in LC. The main feature of LC is an increase of the density of intra-epithelial lymphocytes in the surface epithelium. A number of pathogenetic theories have been proposed over the years, involving the role of luminal agents, autoimmunity, eosinophils, genetics (human leukocyte antigen), biliary acids, infections, alterations of pericryptal fibroblasts, and drug intake; drugs like ticlopidine, carbamazepine or ranitidine are especially associated with the development of LC, while CC is more frequently linked to cimetidine, non-steroidal antiinflammatory drugs and lansoprazole. Microscopic colitis typically presents as chronic or intermittent watery diarrhea, that may be accompanied by symptoms such as abdominal pain, weight loss and incontinence. Recent evidence has added new pharmacological options for the treatment of microscopic colitis: the role of steroidal therapy, especially oral budesonide, has gained relevance, as well as immunosuppressive agents such as azathioprine and 6-mercaptopurine. The use of anti-tumor necrosis factor-α agents, infliximab and adalimumab, constitutes a new, interesting tool for the treatment of microscopic colitis, but larger, adequately designed studies are needed to confirm existing data. PMID:23180940

  13. Microscopic colitis.

    PubMed

    Ianiro, Gianluca; Cammarota, Giovanni; Valerio, Luca; Annicchiarico, Brigida Eleonora; Milani, Alessandro; Siciliano, Massimo; Gasbarrini, Antonio

    2012-11-21

    Microscopic colitis may be defined as a clinical syndrome, of unknown etiology, consisting of chronic watery diarrhea, with no alterations in the large bowel at the endoscopic and radiologic evaluation. Therefore, a definitive diagnosis is only possible by histological analysis. The epidemiological impact of this disease has become increasingly clear in the last years, with most data coming from Western countries. Microscopic colitis includes two histological subtypes [collagenous colitis (CC) and lymphocytic colitis (LC)] with no differences in clinical presentation and management. Collagenous colitis is characterized by a thickening of the subepithelial collagen layer that is absent in LC. The main feature of LC is an increase of the density of intra-epithelial lymphocytes in the surface epithelium. A number of pathogenetic theories have been proposed over the years, involving the role of luminal agents, autoimmunity, eosinophils, genetics (human leukocyte antigen), biliary acids, infections, alterations of pericryptal fibroblasts, and drug intake; drugs like ticlopidine, carbamazepine or ranitidine are especially associated with the development of LC, while CC is more frequently linked to cimetidine, non-steroidal antiinflammatory drugs and lansoprazole. Microscopic colitis typically presents as chronic or intermittent watery diarrhea, that may be accompanied by symptoms such as abdominal pain, weight loss and incontinence. Recent evidence has added new pharmacological options for the treatment of microscopic colitis: the role of steroidal therapy, especially oral budesonide, has gained relevance, as well as immunosuppressive agents such as azathioprine and 6-mercaptopurine. The use of anti-tumor necrosis factor-α agents, infliximab and adalimumab, constitutes a new, interesting tool for the treatment of microscopic colitis, but larger, adequately designed studies are needed to confirm existing data.

  14. Phase decomposition of γ-U (bcc) in U-10 wt% Mo fuel alloy during hot isostatic pressing of monolithic fuel plate

    NASA Astrophysics Data System (ADS)

    Park, Y.; Eriksson, N.; Newell, R.; Keiser, D. D.; Sohn, Y. H.

    2016-11-01

    Eutectoid decomposition of γ-phase (cI2) into α-phase (oC4) and γ‧-phase (tI6) during the hot isostatic pressing (HIP) of the U-10 wt% Mo (U10Mo) alloy was investigated using monolithic fuel plate samples consisting of U10Mo fuel alloy, Zr diffusion barrier and AA6061 cladding. The decomposition of the γ-phase was observed because the HIP process is carried out near the eutectoid temperature, 555 °C. Initially, a cellular structure, consisting of γ‧-phase surrounded by α-phase, developed from the destabilization of the γ-phase. The cellular structure further developed into an alternating lamellar structure of α- and γ‧-phases. Using scanning electron microscopy and transmission electron microscopy, qualitative and quantitative microstructural analyses were carried out to identify the phase constituents, and elucidate the microstructural development based on time-temperature-transformation diagram of the U10Mo alloy. The destabilization of γ -phase into α- and γ‧-phases would be minimized when HIP process was carried out with rapid ramping/cooling rate and dwell temperature higher than 560 °C.

  15. Measurement of optical absorption in polycrystalline CVD diamond plates by the phase photothermal method at a wavelength of 10.6 {mu}m

    SciTech Connect

    Luk'yanov, A Yu; Serdtsev, E V; Volkov, P V; Ral'chenko, Viktor G; Savel'ev, A V; Konov, Vitalii I; Khomich, A V

    2008-12-31

    A highly-efficient phase photothermal method is developed for quantitative measurements of the small optical absorption coefficient in thin plates made of highly transparent materials in which bulk losses significantly exceed surface losses. The bulk absorption coefficient at 10.6 {mu}m is estimated in polycrystalline diamond plates grown from the vapour phase (a CVD diamond). The results are compared with those for natural and synthetic diamond single crystals and with the concentrations of nitrogen and hydrogen impurities. The absorption coefficient of the best samples of the CVD diamond did not exceed 0.06 cm{sup -1}, which, taking into account the high thermal conductivity of the CVD diamond (1800-2200 W mK{sup -1} at room temperature), makes this material attractive for fabricating output windows of high-power CO{sub 2} lasers, especially for manufacturing large-size optics. (laser applications and other topics in quantum electronics)

  16. Search for microscopic and macroscopic biaxiality in the cybotactic nematic phase of new oxadiazole bent-core mesogens

    NASA Astrophysics Data System (ADS)

    Kim, Young-Ki; Cukrov, Greta; Vita, Francesco; Scharrer, Eric; Samulski, Edward T.; Francescangeli, Oriano; Lavrentovich, Oleg D.

    2016-06-01

    The possibility of biaxial orientational order in nematic liquid crystals is a subject of intense current interest. We explore the tendencies toward local and global biaxial ordering in the recently synthesized trimethylated oxadiazole-based bent-core mesogens with a pronounced asymmetric (bow-type) shape of molecules. The combination of x-ray diffraction and optical studies suggests that the biaxial order is expressed differently at the short- and long-range scales. Locally, at the scale of a few molecules, x-ray-diffraction data demonstrate biaxial packing. However, above the mesoscopic scale, the global orientational order in all three compounds is uniaxial, as evidenced by uniform homeotropic alignment of the nematic phase which is optically tested over the entire temperature range and by the observations of topological defects induced by individual and aggregated colloidal spheres in the nematic bulk.

  17. Single-phase driven ultrasonic motor using two orthogonal bending modes of sandwiching piezo-ceramic plates

    NASA Astrophysics Data System (ADS)

    Ma, Yuting; Choi, Minkyu; Uchino, Kenji

    2016-11-01

    A compact ultrasonic motor using sandwiching piezo-ceramic plates was developed, having advantages of low manufacturing costs, simple driving circuit, and high scalability. The stator is composed of two piezoelectric plates attached to a T-shaped steel body. Two orthogonal bending modes can be excited by driving one piezoelectric plate and the reversed motion of the rotor can be obtained by driving the piezoelectric plate on the opposite side. The prototype stator with a size of 15 mm × 2.44 mm × 2 mm, operated at 44.8 kHz, was experimentally characterized, and a maximum torque of 2 mN m was obtained. Maximum power of 2.3 mW and efficiency of 9% were produced with a load of 0.8 mN m at a rotation speed of 27 rpm.

  18. Single-phase driven ultrasonic motor using two orthogonal bending modes of sandwiching piezo-ceramic plates.

    PubMed

    Ma, Yuting; Choi, Minkyu; Uchino, Kenji

    2016-11-01

    A compact ultrasonic motor using sandwiching piezo-ceramic plates was developed, having advantages of low manufacturing costs, simple driving circuit, and high scalability. The stator is composed of two piezoelectric plates attached to a T-shaped steel body. Two orthogonal bending modes can be excited by driving one piezoelectric plate and the reversed motion of the rotor can be obtained by driving the piezoelectric plate on the opposite side. The prototype stator with a size of 15 mm × 2.44 mm × 2 mm, operated at 44.8 kHz, was experimentally characterized, and a maximum torque of 2 mN m was obtained. Maximum power of 2.3 mW and efficiency of 9% were produced with a load of 0.8 mN m at a rotation speed of 27 rpm.

  19. Atomic Force Microscope Mediated Chromatography

    NASA Technical Reports Server (NTRS)

    Anderson, Mark S.

    2013-01-01

    The atomic force microscope (AFM) is used to inject a sample, provide shear-driven liquid flow over a functionalized substrate, and detect separated components. This is demonstrated using lipophilic dyes and normal phase chromatography. A significant reduction in both size and separation time scales is achieved with a 25-micron-length column scale, and one-second separation times. The approach has general applications to trace chemical and microfluidic analysis. The AFM is now a common tool for ultra-microscopy and nanotechnology. It has also been demonstrated to provide a number of microfluidic functions necessary for miniaturized chromatography. These include injection of sub-femtoliter samples, fluidic switching, and sheardriven pumping. The AFM probe tip can be used to selectively remove surface layers for subsequent microchemical analysis using infrared and tip-enhanced Raman spectroscopy. With its ability to image individual atoms, the AFM is a remarkably sensitive detector that can be used to detect separated components. These diverse functional components of microfluidic manipulation have been combined in this work to demonstrate AFM mediated chromatography. AFM mediated chromatography uses channel-less, shear-driven pumping. This is demonstrated with a thin, aluminum oxide substrate and a non-polar solvent system to separate a mixture of lipophilic dyes. In conventional chromatographic terms, this is analogous to thin-layer chromatography using normal phase alumina substrate with sheardriven pumping provided by the AFM tip-cantilever mechanism. The AFM detection of separated components is accomplished by exploiting the variation in the localized friction of the separated components. The AFM tip-cantilever provides the mechanism for producing shear-induced flows and rapid pumping. Shear-driven chromatography (SDC) is a relatively new concept that overcomes the speed and miniaturization limitations of conventional liquid chromatography. SDC is based on a

  20. Acoustic imaging microscope

    DOEpatents

    Deason, Vance A.; Telschow, Kenneth L.

    2006-10-17

    An imaging system includes: an object wavefront source and an optical microscope objective all positioned to direct an object wavefront onto an area of a vibrating subject surface encompassed by a field of view of the microscope objective, and to direct a modulated object wavefront reflected from the encompassed surface area through a photorefractive material; and a reference wavefront source and at least one phase modulator all positioned to direct a reference wavefront through the phase modulator and to direct a modulated reference wavefront from the phase modulator through the photorefractive material to interfere with the modulated object wavefront. The photorefractive material has a composition and a position such that interference of the modulated object wavefront and modulated reference wavefront occurs within the photorefractive material, providing a full-field, real-time image signal of the encompassed surface area.

  1. Real-time monitoring of the functional status of platelets treated by Infukoll using a computer-aided laser phase microscope

    NASA Astrophysics Data System (ADS)

    Vasilenko, Irina A.; Babakova, Svetlana; Kiseleva, Elena; Dyugeev, Adyan; Konradov, Alexander A.; Shabalin, Vladimir

    1999-02-01

    Combined analysis of optic-geometrical characteristics makes it possible to comprehensively evaluate the morphological and functional state of the cytological object, which can not be done during visual observation. The technique is discussed for real-time monitoring of the functional status of platelets using computer-aided phase microscope (CPM) 'Cytoscan'. High accuracy and sensitivity of CPM with respect to determination of local temporal phase make it possible to register the dynamic processes in the voluntarily chosen points and sections of micro-objects, to obtain the Fourier's spectra and other characteristics suitable for statistical analysis. Human platelets were prepared from venous blood of healthy donors and pregnant women by standard methods, suspended in culture medium 199 and treated by different doses of 6% Infukoll HES. Nonfixating and nonstaining cells were studied with CPM: height accuracy 0.5 nm, magnification 1000, acquisition time 4 - 30 s. In our experiments we used time resolution about 0.03 s and 30 x lens with numerical aperture 0.65. During investigations of temporal processes a certain section was chosen in the topogram of cell image and local values for the phase of scattered wave in each of the points of the chosen cell's profile were measured. On the basis of the results of automated phase image analysis of optic-geometrical characteristics of living cells, the new quantitative express-method for evaluating of the functional status of human platelets was developed and tested. The structural changes of cells were visualized in alteration of 3-D images, phase profiles, in the decrease of mean cell phase diameters, heights, volumes, in disturbance of histograms of phase heights distribution by cell image points. New data on the behavior of platelets treated by Infukoll in vitro and in vivo were obtained. Analysis of intracellular dynamics was allowed to characterize the cell's regions of maximal activity, but the intensity of processes

  2. Terahertz Microscope

    DTIC Science & Technology

    2010-05-01

    bases and bacterial spores , etc. Recently, biomolecular nanoparticles have been successfully imaged using a THz microscope by the group of Prof. Han...compounds, pharmaceutical materials, illegal drugs, amino acids, nuclei-bases and 30 bacterial spores , etc. THz waves can also penetrate through many...Am. B, vol. 7, pp. 2006-2015, 1990. 25. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, Princeton U

  3. Electrosorption-enhanced solid-phase microextraction of trace anions using a platinum plate coated with single-walled carbon nanotubes.

    PubMed

    Li, Quanlong; Ding, Yujing; Yuan, Dongxing

    2011-08-15

    A platinum plate coated with single-walled carbon nanotubes (SWCNTs@Pt) was prepared by means of electrophoretic deposition. Using the SWCNTs@Pt plate, an electrosorption-enhanced solid-phase microextraction (EE-SPME) technique was proposed for the extraction of trace anions in water, described as follows: a positive potential was applied to the SWCNTs@Pt plate to extract F(-), Cl(-), Br(-), NO(3)(-) and SO(4)(2-) from water using electrosorption, and then a negative potential was applied to the plate placed in ultra-pure water for the desorption of the absorbed anions, and finally the desorbed anions were analyzed using ion chromatography (IC). The EE-SPME parameters, including extraction potential and time as well as desorption potential and time, were investigated. An analytical method based on the above procedures, i.e., EE-SPME-IC, was established and used for the analysis of trace anions in water. The results showed that the application of potential on the SWCNTs@Pt plate significantly enhanced the ion extraction efficiency, and an enrichment factor of 15-38 was achieved. The SWCNTs@Pt plate could be used more than 50 times without significant decay. The linear range, the limit of detection (S/N=3), the limit of quantification (S/N=10) and repeatability (n=7) of our EE-SPME-IC method were 1.0-150.0 μg/L, 0.06-0.26 μg/L, 0.19-0.85 μg/L and 2.1-8.0%, respectively. The proposed method was successfully applied for the analysis of trace anions in deionized water, and acceptable recoveries between 65.3 and 121.1% were obtained for the spiked deionized water samples. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Plate-mantle interaction through time explains two-phase uplift history of the eastern Australian passive margin

    NASA Astrophysics Data System (ADS)

    Dietmar Müller, R.; Flament, Nicolas; Matthews, Kara J.; Williams, Simon E.; Gurnis, Michael

    2015-04-01

    The origin of passive margin mountains is a hotly debated topic in geodynamics. The Eastern Highlands of Australia are a type example whose uplift history has been investigated for several decades, with suggested mechanisms ranging from flexural rift shoulder uplift, volcanism and underplating to mantle-convection driven dynamic topography. Most of the highlands have experienced a distinct two-phase uplift history, with the first phase being Late Cretaceous in age, followed by a mid-late Cenozoic renewal in uplift, but the timing and magnitude of uplift differs along strike. We investigate the origin of the Eastern Highlands with a coupled plate-mantle model, using a thorough parameter space analysis, including two alternative subduction boundary evolution models. The first model includes a large (~1000 km width at its maximum extent) Early Cretaceous (140-120 Ma) back-arc basin east of the Lord Howe Rise, representing the now subducted South Loyalty Basin which may have formed due to eastward rollback of the long-lived west-dipping eastern Gondwanaland subduction zone; the alternative scenario is based on the premise that west-dipping subduction is continuous to the East of the Lord Howe Rise between 140-85 Ma, without a large back-arc basin, and the South Loyalty Basin opening as a back arc basin from 85-55 Ma, which is subsequently consumed by subduction. We further investigate the influence of a low-viscosity asthenosphere and of the viscosity profile of the lower mantle on dynamic topography, as well as the effect of changing the buoyancy of the basal dense layer (LLSVP) that contributes to the long-wavelength Pacific superswell. Our best-fit model produces a total uplift up to ~400 m in the interval between 120 and 90-70 Ma, well-matched with recent published estimates from river profile inversion for the Snowy Mountains, New England and the Central Highlands. The driving mechanism is rebound from the eastwards motion of Australia over a sinking slab, first

  5. Differential interference contrast microscopy using Savart plates

    NASA Astrophysics Data System (ADS)

    Trịnh, Hưng-Xuân; Lin, Shyh-Tsong; Chen, Liang-Chia; Yeh, Sheng-Lih; Chen, Chin-Sheng

    2017-04-01

    A new differential interference contrast microscopy (DICM), which uses Savart prisms as a shearing plate and a phase-shifting device, is proposed. The system consists of a phase-shifting module (PSM) and a DICM module (DICMM). The PSM has two Savart prisms: the first prism separates the incident beam into two parallel beams, and the second prism recombines these two beams. The optical path difference (OPD) of the two beams, which is represented by a biased OPD, can be adjusted by rotating the angle of the normal surface of the second prism. In the DICMM, the other Savart prism is used to replace the Nomarski prism (NP) in conventional DICM. It combines with an afocal microscopic system (AMS) to produce a Savart-DICM system, which is able to perform a phase-shifting technique by changing the biased OPD to produce a phase shift of π/2 for each step. This paper describes the configuration and measurement theory of the microscope. The experimental results confirm the validity and capability of the proposed microscope.

  6. Deformation characteristics of {delta} phase in the delta-processed Inconel 718 alloy

    SciTech Connect

    Zhang, H.Y.; Zhang, S.H.; Cheng, M.; Li, Z.X.

    2010-01-15

    The hot working characteristics of {delta} phase in the delta-processed Inconel 718 alloy during isothermal compression deformation at temperature of 950 deg. C and strain rate of 0.005 s{sup -1}, were studied by using optical microscope, scanning electron microscope and quantitative X-ray diffraction technique. The results showed that the dissolution of plate-like {delta} phase and the precipitation of spherical {delta} phase particles coexisted during the deformation, and the content of {delta} phase decreased from 7.05 wt.% to 5.14 wt.%. As a result of deformation breakage and dissolution breakage, the plate-like {delta} phase was spheroidized and transferred to spherical {delta} phase particles. In the center with largest strain, the plate-like {delta} phase disappeared and spherical {delta} phase appeared in the interior of grains and grain boundaries.

  7. Preparation and magnetic properties of Ni-P-La coating by electroless plating on silicon substrate

    NASA Astrophysics Data System (ADS)

    Gao, Yun; Wang, Jihui; Yuan, Jing; Li, Haiqin

    2016-02-01

    Ni-P-La coatings were prepared on Si substrate by electroless plating method under different La content, pH value, plating temperature and plating time. The surface morphology, chemical composition, structure and magnetic properties of coatings were observed and determined by scanning electron microscope (SEM), energy dispersive X-ray spectrometry (EDS), X-ray diffractometer (XRD) and vibrating sample magnetometer (VSM). The results showed that Ni-P-La coating is smooth and uniform with a cellular morphology grown in columnar manner. With the increase of La content, pH value and plating time, the thickness and saturation magnetization of coating are increased continuously, but the stability of plating bath is decreased greatly with La content and pH value. Under higher plating temperature, the thickness and saturation magnetization of coatings are obviously enhanced. But too high plating temperature is harmful to the plating bath and coating. The optimum plating conditions for Ni-P-La coating is La2O3 addition of 10 mg L-1, pH value of 5.0, plating temperature of 75 °C and plating time of 45 min. The role of La element is to benefit the deposition of Ni element, promote the formation of Ni phase during the annealing process, and thus improve the magnetic properties of Ni-P-La coating.

  8. Formation of III–V ternary solid solutions on GaAs and GaSb plates via solid-phase substitution reactions

    SciTech Connect

    Vasil’ev, V. I.; Gagis, G. S. Kuchinskii, V. I.; Danil’chenko, V. G.

    2015-07-15

    Processes are considered in which ultrathin layers of III–V ternary solid solutions are formed via the delivery of Group-V element vapors to GaAs and GaSb semiconductor plates, with solid-phase substitution reactions occurring in the surface layers of these plates. This method can form defect-free GaAs{sup 1–x}P{sup x}, GaAs{sup x}Sb{sup 1–x}, and GaP{sup x}Sb{sup 1–x} layers with thicknesses of 10–20 nm and a content x of the embedded components of up to 0.04.

  9. The Use of Polystyrene Beads to Prepare Arrayed Samples of Bacillus thuringiensis for Microscopic Examination.

    PubMed

    Ammons, David; Rampersad, Joanne

    2015-09-01

    A common activity in the global search for useful Cry toxins is the microscopic screening of bacterial colonies for the presence of Bacillus thuringiensis. High-throughput screens require that aliquots from large numbers of colonies be arrayed on a microscopic slide. However, precisely placing a small amount of bacteria on a slide, and at a density that is useful for microscopic examination, is both difficult to achieve and time consuming. Herein we share a simple technique that utilizes a hooked wand and small polystyrene beads to quickly collect, and uniformly apply, aliquots of bacterial colonies onto gridded microscope slides in a manner optimal for viewing. If desired, libraries of examined bacteria can simultaneously be generated by discharging the beads into indexed multiwell plates. This simple and inexpensive method is robust, suitable for both light and phase contrast microscopy, and has been also used successfully to screen randomly mutated bacteria for phenotypic changes.

  10. Microscopic analysis of the superconducting quantum critical point: Finite-temperature crossovers in transport near a pair-breaking quantum phase transition

    NASA Astrophysics Data System (ADS)

    Shah, Nayana; Lopatin, Andrei

    2007-09-01

    A microscopic analysis of the superconducting quantum critical point realized via a pair-breaking quantum phase transition is presented. Finite-temperature crossovers are derived for the electrical conductivity, which is a key probe of superconducting fluctuations. By using the diagrammatic formalism for disordered systems, we are able to incorporate the interplay between fluctuating Cooper pairs and electrons, that is outside the scope of a time-dependent Ginzburg-Landau or effective bosonic action formalism. It is essential to go beyond the standard approximation in order to capture the zero-temperature correction which results purely from the (dynamic) quantum fluctuations and dictates the behavior of the conductivity in an entire low-temperature quantum regime. All dynamic contributions are of the same order and conspire to add up to a negative total, thereby inhibiting the conductivity as a result of superconducting fluctuations. On the contrary, the classical and the intermediate regimes are dominated by the positive bosonic channel. Our theory is applicable in one, two, and three dimensions and is relevant for experiments on superconducting nanowires, doubly connected cylinders, thin films, and bulk in the presence of magnetic impurities, magnetic field, or other pair breakers. A window of nonmonotonic behavior is predicted to exist as either the temperature or the pair-breaking parameter is swept.

  11. Generation of an ultralong pure longitudinal magnetization needle with high axial homogeneity using an azimuthally polarized beam modulated by pure multi-zone plate phase filter

    NASA Astrophysics Data System (ADS)

    Yan, Weichao; Nie, Zhongquan; Zhang, Xueru; Wang, Yuxiao; Song, Yinglin

    2017-08-01

    Based on the vector diffraction theory and the inverse Faraday effect in the magneto-optic film, light-induced magnetization distributions, for a high numerical aperture focusing configuration with an azimuthally polarized beam modulated by an optimized pure multi-zone plate phase filter, are investigated. By making use of the compeletely destructive interference of its inter circle with the π phase shift between adjacent sub-annuli, and the capability to extend the constructive interference in the propagating direction through its narrow outer annulus modulated by three misplaced helical phases, an ultralong (107λ ) magnetization needle with both transverse super-resolution (0.37λ ) and uniform axial field strength is achieved in the focal region. The perfect magnetization needle and the accessible method give a guide for ultrahigh density magnetic storage, fabricating magnetic lattices for spin wave operation, as well as atomic trapping.

  12. Activation of carbon dioxide by a terminal uranium-nitrogen bond in the gas-phase: a demonstration of the principle of microscopic reversibility.

    PubMed

    Dau, Phuong D; Armentrout, P B; Michelini, Maria C; Gibson, John K

    2016-03-14

    Activation of CO2 is demonstrated by its spontaneous dissociative reaction with the gas-phase anion complex NUOCl2(-), which can be considered as NUO(+) coordinated by two chloride anion ligands. This reaction was previously predicted by density functional theory to occur exothermically, without barriers above the reactant energy. The present results demonstrate the validity of the prediction of microscopic reversibility, and provide a rare case of spontaneous dissociative addition of CO2 to a gas-phase complex. The activation of CO2 by NUOCl2(-) proceeds by conversion of a U[triple bond, length as m-dash]N bond to a U[double bond, length as m-dash]O bond and creation of an isocyanate ligand to yield the complex UO2(NCO)Cl2(-), in which uranyl, UO2(2+), is coordinated by one isocyanate and two chloride anion ligands. This activation of CO2 by a uranium(vi) nitride complex is distinctive from previous reports of oxidative insertion of CO2 into lower oxidation state U(iii) or U(iv) solid complexes, during which both C-O bonds remain intact. This unusual observation of spontaneous addition and activation of CO2 by NUOCl2(-) is a result of the high oxophilicity of uranium. If the computed Gibbs free energy of the reaction pathway, rather than the energy, is considered, there are barriers above the reactant asymptotes such that the observed reaction should not proceed under thermal conditions. This result provides a demonstration that energy rather than Gibbs free energy determines reactivity under low-pressure bimolecular conditions.

  13. Plate motion

    SciTech Connect

    Gordon, R.G. )

    1991-01-01

    The motion of tectonic plates on the earth is characterized in a critical review of U.S. research from the period 1987-1990. Topics addressed include the NUVEL-1 global model of current plate motions, diffuse plate boundaries and the oceanic lithosphere, the relation between plate motions and distributed deformations, accelerations and the steadiness of plate motions, the distribution of current Pacific-North America motion across western North America and its margin, plate reconstructions and their uncertainties, hotspots, and plate dynamics. A comprehensive bibliography is provided. 126 refs.

  14. Densitometric HPTLC method for qualitative, quantitative analysis and stability study of Coenzyme Q10 in pharmaceutical formulations utilizing normal and reversed-phase silica gel plates.

    PubMed

    Abdel-Kader, Maged Saad; Alam, Prawez; Alqasoumi, Saleh Ibrahim

    2016-03-01

    Two simple, precise and stability-indicating densitometric HPTLC method were developed and validated for qualitative and quantitative analysis of Coenzyme Q10 in pharmaceutical formulations using normal-phase (Method I) and reversed phase (Method II) silica gel TLC plates. Both methods were developed and validated with 10×20 cm glass-backed plates coated with 0.2 mm layers of either silica gel 60 F254 (E-Merck, Germany) using hexane-ethyl acetate (8.5:1.5 v/v) as developing system (Method I) or RP-18 silica gel 60 F254 (E-Merck, Germany) using methanol-acetone (4:6 v/v) as mobile phase (Method II). Both analyses were scanned with a densitometer at 282 nm. Linearity was found in the ranges 50-800 ng/spot (r(2)=0.9989) and 50-800 ng/spot (r(2)=0.9987) for Method I and Method II respectively. Stability of Coenzyme Q10 was explored by the two methods using acid, base, hydrogen peroxide, temperature and different solvents. Due to the efficiency of the method in separating Coenzyme Q10 from other ingredients including its degradation products, it can be applied for quality control, standardization of different pharmaceutical formulations and stability study.

  15. Phase and electron microscopic observations of osmotically induced wrinkling and the role of endocytotic vesicles in the plasmolysis of the Gram-negative cell wall.

    PubMed

    Schwarz, H; Koch, A L

    1995-12-01

    When a Gram-negative bacterium is challenged with a sufficient concentration of a non-penetrating solute such as sucrose, water is sucked out of the cell. Plasmolysis spaces may form if the cell's cytoplasmic membrane (CM) separates from the murein wall (M) and the outer membrane (OM). However, we suggest that first wrinkling of the wall envelope, forced by dehydration of the cytoplasm, occurs. The cryofixation, freeze-substitution electron microscope studies used here are much too slow to study the kinetics of shrinkage, wrinkling and plasmolysis. However, they are consistent with faster phase microscope studies and previous stopflow experiments. For the electron microscopy studies reported here, only sucrose was used as the osmotic agent and under conditions that do not cause extreme plasmolysis. Plasmolysis spaces were associated with the formation of small membrane-bound vesicles in the nearby cytoplasm. Such vesicles formed by osmotic challenge are called 'endocytotic' in plant cell systems. They had been recorded in earlier plasmolysis studies in bacteria, but not interpreted as a concomitant part of plasmolysis space formation in certain locations of the cell. We suggest that the endocytotic vesicles form because the phospholipid membranes are capable of very little contraction so extra membrane must be disposed of when plasmolysis spaces form. In the case of plasmolysis spaces forming at poles and constriction sites, for geometric reasons the surface area of the CM may be conserved without disposition of excess membrane. We suggest that it is this biophysical property of lipid membranes that leads to the frequent formation of plasmolysis spaces at a pole and at the site of future division. We also observed a novel structure, this is seen only under mild osmotic up-shock, and consists of very thin, straight, uniform and long plasmolysis spaces which were called 'lamellar spaces'; these commonly formed inside the sidewalls and were usually associated with the

  16. Conjugate phase plate use in analysis of the frequency response of imaging systems designed for extended depth of field.

    PubMed

    Ojeda-Castañeda, Jorge; Landgrave, J E A; Gómez-Sarabia, Cristina M

    2008-08-01

    We unveil a relationship between generating a point spread function with a pair of conjugate phase elements and visualizing the modulation transfer function (MTF) of a single phase element for a variable focus error, at a tunable spatial frequency. We show that the defocused MTF of a pair of conjugate phase elements can be expressed as the modulus of the second order ambiguity function of a single phase element. Finally, we propose a tunable wavefront coding technique with a pair of quartic (4th power) conjugate phase elements.

  17. High-resolution electron microscope

    NASA Technical Reports Server (NTRS)

    Nathan, R.

    1977-01-01

    Employing scanning transmission electron microscope as interferometer, relative phases of diffraction maximums can be determined by analysis of dark field images. Synthetic aperture technique and Fourier-transform computer processing of amplitude and phase information provide high resolution images at approximately one angstrom.

  18. Ultra-thin optical vortex phase plate based on the L-shaped nanoantenna for both linear and circular polarized incidences

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Guo, Zhongyi; Sun, Yongxuan; Shen, Fei; Li, Yan; Liu, Yi; Wang, Xinshun; Qu, Shiliang

    2015-11-01

    Based on the L-shaped gold nanoantennas, the ultra-thin optical vortex phase plates (VPPs) have been designed to generate the optical vortex beams with different topological charges, which are independent of the incident polarization states and suitable for both X/Y linear and circular polarization incidences simultaneously. The phase and amplitude of transmitted cross-polarization light can be simultaneously manipulated by changing two degrees of freedom (the length and the width) in the L-shaped nanoantenna unit. Evolution properties of the generated vortex beam are demonstrated and analyzed. The different interactions of angular momentums between light and the VPP in the different incident polarization states have also been investigated fully. The designed VPP shows a superior broadband characteristics in near-infrared wavelength ranging from 750 nm to 1200 nm, which enable a potential implication for integrated optics and vortex optics.

  19. Quasi-phase-matching high harmonic generation using trains of pulses produced using an array of birefringent plates.

    PubMed

    O'Keeffe, Kevin; Robinson, Tom; Hooker, Simon M

    2012-03-12

    Quasi-phase-matched high harmonic generation using trains of up to 8 counter-propagating pulses is explored. For trains of up to 4 pulses the measured enhancement of the harmonic signal scales with the number of pulses N as (N + 1)², as expected. However, for trains with N > 4, no further enhancement of the harmonic signal is observed. This effect is ascribed to changes of the coherence length Lc within the generating medium. Techniques for overcoming the variation of Lc are discussed. The pressure dependence of quasi-phase-matching is investigated and the switch from true-phase-matching to quasi-phase-matching is observed.

  20. Quantitative phase retrieval with arbitrary pupil and illumination

    SciTech Connect

    Claus, Rene A.; Naulleau, Patrick P.; Neureuther, Andrew R.; Waller, Laura

    2015-10-02

    We present a general algorithm for combining measurements taken under various illumination and imaging conditions to quantitatively extract the amplitude and phase of an object wave. The algorithm uses the weak object transfer function, which incorporates arbitrary pupil functions and partially coherent illumination. The approach is extended beyond the weak object regime using an iterative algorithm. Finally, we demonstrate the method on measurements of Extreme Ultraviolet Lithography (EUV) multilayer mask defects taken in an EUV zone plate microscope with both a standard zone plate lens and a zone plate implementing Zernike phase contrast.

  1. On thermodynamic and microscopic reversibility

    SciTech Connect

    Crooks, Gavin E.

    2011-07-12

    The word 'reversible' has two (apparently) distinct applications in statistical thermodynamics. A thermodynamically reversible process indicates an experimental protocol for which the entropy change is zero, whereas the principle of microscopic reversibility asserts that the probability of any trajectory of a system through phase space equals that of the time reversed trajectory. However, these two terms are actually synonymous: a thermodynamically reversible process is microscopically reversible, and vice versa.

  2. Thermal Lens Microscope

    NASA Astrophysics Data System (ADS)

    Uchiyama, Kenji; Hibara, Akihide; Kimura, Hiroko; Sawada, Tsuguo; Kitamori, Takehiko

    2000-09-01

    We developed a novel laser microscope based on the thermal lens effect induced by a coaxial beam comprised of excitation and probe beams. The signal generation mechanism was confirmed to be an authentic thermal lens effect from the measurement of signal and phase dependences on optical configurations between the sample and the probe beam focus, and therefore, the thermal lens effect theory could be applied. Two-point spatial resolution was determined by the spot size of the excitation beam, not by the thermal diffusion length. Sensitivity was quite high, and the detection ability, evaluated using a submicron microparticle containing dye molecules, was 0.8 zmol/μm2, hence a distribution image of trace chemical species could be obtained quantitatively. In addition, analytes are not restricted to fluorescent species, therefore, the thermal lens microscope is a promising analytical microscope. A two-dimensional image of a histamine molecule distribution, which was produced in mast cells at the femtomole level in a human nasal mucous polyp, was obtained.

  3. ⁵⁷Fe polarization-dependent synchrotron Mössbauer spectroscopy using a diamond phase plate and an iron borate nuclear Bragg monochromator.

    PubMed

    Mitsui, Takaya; Imai, Yasuhiko; Masuda, Ryo; Seto, Makoto; Mibu, Ko

    2015-03-01

    Energy-domain (57)Fe polarization-dependent synchrotron radiation Mössbauer spectroscopy was developed by using a diamond X-ray phase plate and an iron borate nuclear Bragg monochromator. The former controls the polarization of the incident synchrotron radiation X-rays and the latter filters the (57)Fe-Mössbauer radiation with a narrow bandwidth of ∼3.4 Γ0 (Γ0 ≃ 4.7 neV: natural linewidth of the (57)Fe nucleus) from the broadband synchrotron radiation. The developed nuclear diffraction optics allowed (57)Fe-Mössbauer studies to be performed with various polarization states, i.e. linear polarization, circular polarization and non-polarization. In this paper, the spectrometer system, beam characterization, performance-test experiments and a grazing-incidence Mössbauer measurement of an isotope-enriched ((57)Fe: 95%) iron thin film are described.

  4. Vector diffraction analysis of high numerical aperture focused beams modified by two- and three-zone annular multi-phase plates.

    PubMed

    Jabbour, Toufic; Kuebler, Stephen

    2006-02-06

    Vector diffraction theory was applied to study the effect of two- and three-zone annular multi-phase plates (AMPs) on the three-dimensional point-spread-function (PSF) that results when linearly polarized light is focused using a high numerical aperture refractory lens. Conditions are identified for which a three-zone AMP generates a PSF that is axially superresolved by 19% with minimal change in the transverse profile and sufficiently small side lobes that the intensity pattern could be used for advanced photolithographic techniques, such as multi-photon 3D microfabrication, as well as multi-photon imaging. Conditions are also found in which a three-zone AMP generates a PSF that is axially elongated by 510% with only 1% change along the transverse direction. This intensity distribution could be used for sub-micron-scale laser drilling and machining.

  5. A large granite stage and measuring microscope.

    NASA Technical Reports Server (NTRS)

    Alston-Garnjost, M.; Davis, J. W.; Dauber, P. M.; Smits, R. G.

    1971-01-01

    A stage and measuring microscope servocontrolled by a computer have been constructed. The travel of the stage is 0.5 x 0.5 m and the travel of the microscope objective is 7.5 cm. The measuring accuracy is 1 micron in the x-y plane and 5 microns along the z axis. The mechanical and optical construction of the stage and microscope, as well as the way in which the control electronics are organized, permit great flexibility of operation. Possible applications include the scanning and measuring of astronomical plates, the laying out of patterns of semiconductor devices of very large sizes, and the measurement of precision grids.

  6. A Full-Field KB-FZP Microscope for Hard X-Ray Imaging with Sub 100 nm Resolution

    SciTech Connect

    Rau, C.; Crecea, V.; Peterson, K.M.; Jemian, P.R.; Richter, C.-P.; Neuhausler, U.; Schmeider, G.; Yu, X.; Braun, P.V.; Robinson, I.K.

    2007-06-28

    A full-field hard X-ray microscope has been built at the UNICAT/APS beamline 34ID-C. A Kirkpatrick-Baez mirror is used for the condenser and a micro-Fresnel Zone Plate (FZP) as the objective lens. The zone plates available give access to 50-85 nm spatial resolution operating the microscope between 6-12keV photon energy. The first tomography experiments have been performed with this device. A KB-FZP microscope has been built for sub-100 nm imaging and tomography. Features of 50 nm have been visualized at 9 keV photon energy. A 40 x 20 microns field of view of can be imaged in a minute. The first tomography experiments have been performed with this device. Further, it is planned to apply phase contrast techniques, such as the Zernike method. Both the efficiency and the resolution of the instrument can be further improved. A more efficient zone plate and an improved detector will reduce the exposure times and the use of the 50x100 times more intense so called 'pink-beam' is possible. To improve the resolution, the zone plates deliver in their third order a resolution of 15 nm. A KB-FZP microscope has been built for sub-100 nm imaging and tomography. Features of 50 nm have been visualized at 9 keV photon energy. A 40 x 20 microns field of view of can be imaged in seconds. Tomography experiments have been performed with this device. Phase objects have been visualized taking image series. Phase contrast techniques, such as the Zernike method will be tested in the future. Both the efficiency and the resolution of the instrument can be further improved. Together with the instrument for In-line phase contrast imaging the nano- and micrometer lenghtscale is covered.

  7. Ergonomic microscope comfort and control.

    PubMed

    Thomas, Elizabeth Anne

    2011-03-01

    Microscope use in the inspection phase of computer chip manufacturing is a major cause of worker discomfort and injury. A two-phase ergonomics project to reduce employee fatigue and discomfort was planned, implemented, and evaluated in a microscope user environment within a high-technology manufacturing environment. Total Quality Management methodology and tools were employed by a multidisciplinary team led by an occupational health nurse practitioner to accomplish the project goals. A multifaceted approach including equipment changes, administrative changes, and focused training for behavior changes achieved the desired reduction in reports of fatigue and discomfort among microscope users. Occupational health nurses are ideal candidates to lead teams to accomplish meaningful health and safety goals consistent with corporate quality initiatives and strategic objectives. Copyright 2011, SLACK Incorporated.

  8. Scanning Microscopes Using X Rays and Microchannels

    NASA Technical Reports Server (NTRS)

    Wang, Yu

    2003-01-01

    Scanning microscopes that would be based on microchannel filters and advanced electronic image sensors and that utilize x-ray illumination have been proposed. Because the finest resolution attainable in a microscope is determined by the wavelength of the illumination, the xray illumination in the proposed microscopes would make it possible, in principle, to achieve resolutions of the order of nanometers about a thousand times as fine as the resolution of a visible-light microscope. Heretofore, it has been necessary to use scanning electron microscopes to obtain such fine resolution. In comparison with scanning electron microscopes, the proposed microscopes would likely be smaller, less massive, and less expensive. Moreover, unlike in scanning electron microscopes, it would not be necessary to place specimens under vacuum. The proposed microscopes are closely related to the ones described in several prior NASA Tech Briefs articles; namely, Miniature Microscope Without Lenses (NPO-20218), NASA Tech Briefs, Vol. 22, No. 8 (August 1998), page 43; and Reflective Variants of Miniature Microscope Without Lenses (NPO-20610), NASA Tech Briefs, Vol. 26, No. 9 (September 2002) page 6a. In all of these microscopes, the basic principle of design and operation is the same: The focusing optics of a conventional visible-light microscope are replaced by a combination of a microchannel filter and a charge-coupled-device (CCD) image detector. A microchannel plate containing parallel, microscopic-cross-section holes much longer than they are wide is placed between a specimen and an image sensor, which is typically the CCD. The microchannel plate must be made of a material that absorbs the illuminating radiation reflected or scattered from the specimen. The microchannels must be positioned and dimensioned so that each one is registered with a pixel on the image sensor. Because most of the radiation incident on the microchannel walls becomes absorbed, the radiation that reaches the

  9. Improved Zernike-type phase contrast for transmission electron microscopy.

    PubMed

    Koeck, P J B

    2015-07-01

    Zernike phase contrast has been recognized as a means of recording high-resolution images with high contrast using a transmission electron microscope. This imaging mode can be used to image typical phase objects such as unstained biological molecules or cryosections of biological tissue. According to the original proposal discussed in Danev and Nagayama (2001) and references therein, the Zernike phase plate applies a phase shift of π/2 to all scattered electron beams outside a given scattering angle and an image is recorded at Gaussian focus or slight underfocus (below Scherzer defocus). Alternatively, a phase shift of -π/2 is applied to the central beam using the Boersch phase plate. The resulting image will have an almost perfect contrast transfer function (close to 1) from a given lowest spatial frequency up to a maximum resolution determined by the wave length, the amount of defocus and the spherical aberration of the microscope. In this paper, I present theory and simulations showing that this maximum spatial frequency can be increased considerably without loss of contrast by using a Zernike or Boersch phase plate that leads to a phase shift between scattered and unscattered electrons of only π /4, and recording images at Scherzer defocus. The maximum resolution can be improved even more by imaging at extended Scherzer defocus, though at the cost of contrast loss at lower spatial frequencies. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  10. Development and validation of a method for fipronil residue determination in ovine plasma using 96-well plate solid-phase extraction and gas chromatography-tandem mass spectrometry.

    PubMed

    Bichon, E; Richard, C A; Le Bizec, B

    2008-08-01

    Fipronil, a phenylpyrazole insecticide introduced for pest control on a broad range of crops, undergoes a reinforcement of the regulation within the European Union (2007/52/EC directive) due to its potential effects on environment and human health. In order to assess the plasmatic concentrations of fipronil residues (sulfone, sulfide, fipronil, desulfinyl and amide) in ovine, a methodology based on gas chromatography coupled with tandem mass spectrometry (GC-MS/MS) was developed and validated according to the European standard (2002/657/EC). The proposed method allows a large number of samples to be treated concurrently (n=80) using a reduced sample amounts (0.2 mL), and consents to reach a level of quantification of 0.1 pg microL(-1). The sample preparation consisted of a single solid-phase extraction (SPE) purification on a 96-well plate filled with a styrene-divinyl-benzene phase. Linearity was demonstrated all along the investigated range of concentrations, i.e. from 0.25 to 2000 pg microL(-1), with coefficient of determination (R(2)) from 0.977 to 0.994, depending on target analytes. Calculated decision limit (CCalpha) and detection capability (CCbeta) for fipronil, sulfone and sulphide were in the range 0.05-0.16 and 0.28-0.73 pg microL(-1) respectively.

  11. Characterizing cycle-to-cycle variations of the shedding cycle in the turbulent wake of a normal flat plate using generalized phase averages

    NASA Astrophysics Data System (ADS)

    Martinuzzi, Robert

    2016-11-01

    Quasi-periodic vortex shedding in the turbulent wake of a thin-flat plate placed normal to a uniform stream at Reynolds number of 6700 is investigated based on Particle Image Velocimetry experiments. The wake structure and vortex formation are characterized using a generalized phase average (GPA), a refinement of the triple decomposition of Reynolds and Hussain (1970) incorporating elements of mean-field theory (Stuart, 1958). The resulting analysis highlights the importance of cycle-to-cycle variations in characterizing vortex formation, wake topology and the residual turbulent Reynolds Stresses. For example, it is shown that during high-amplitude cycles vorticity is strongly concentrated within the well-organized shed vortices, whereas during low-amplitude cycles the shed vortices are highly distorted resulting in significant modulation of the shedding frequency. It is found that high-amplitude cycles contribute more to the coherent Reynolds stress field while the low-amplitude cycles contribute to the residual stress field. It is further shown that traditional phase-averaging techniques lead to an over-estimation of the residual stress field. Natural Sciences and Engineering Research Council of Canada.

  12. Involvement of the German Research Center for GeoSciences (GFZ) in the EPOS Implementation Phase 2015-18 (European Plate Observing System)

    NASA Astrophysics Data System (ADS)

    Hoffmann, T. L.; Lauterjung, J.

    2015-12-01

    Under the Horizon 2020 Programme INFRADEV-3, the European Commission (EC) has awarded a prioritized grant for the establishment of the European Plate Observing System (EPOS) during a four-year Implementation Phase 2015-18. As laid in detail during the EPOS Preparatory Phase 2010-14, the EPOS cyberinfrastructure will be established as an ERIC (European Research Infrastructure Consortium) and it will encompass the implementation of both the EPOS Integrated Core Services (ICS) for solid Earth Science and a multitude of EPOS Thematic Core Services (TCS). As one of the 29 awardees of the EC grant, the German Research Center for Geosciences (GFZ) will play an important role in the implementation of EPOS and its Thematic and Integrated Core Services. The presented poster will give an overview of GFZ's involvement in the different Work Packages, including administrative tasks (WP3 Harmonization) as well as the technical implementation efforts (WP7 ICS Development, WP8 Seismology, WP11 Volcano Observations, WP12 Satellite Data, WP13 Geomagnetic Observations, WP14 Anthropogenic Hazards, WP15 Geological Information and Modelling, WP16 Multi-Scale Laboratories and WP17 Geo Energy Test Beds).

  13. Plasma-Enhanced Atomic Layer Deposition of Ruthenium-Titanium Nitride Mixed-Phase Layers for Direct-Plate Liner and Copper Diffusion Barrier Applications

    NASA Astrophysics Data System (ADS)

    Gildea, Adam James

    Current interconnect networks in semiconductor processing utilize a sputtered TaN diffusion barrier, Ta liner, and Cu seed to improve the adhesion, microstructure, and electromigration resistance of electrochemically deposited copper that fills interconnect wires and vias. However, as wire/via widths shrink due to device scaling, it becomes increasingly difficult to have the volume of a wire/via be occupied with ECD Cu which increases line resistance and increases the delay in signal propagation in IC chips. A single layer that could serve the purpose of a Cu diffusion barrier and ECD Cu adhesion promoter could allow ECD Cu to occupy a larger volume of a wire/via, leading to a decrease in line resistance and decrease in signal delay. Previous work has shown RuTaN, RuWCN, and RuCo films can act as Cu diffusion barriers and be directly platable to thickness of 2-3nm. However, other material selections may prove as effective or possibly better. Mixed-phase films of ruthenium titanium nitride grown by atomic layer deposition (ALD) were investigated for their performance as a Cu diffusion barrier and as a surface for the direct plating of ECD Cu. All Ru was deposited by plasma-enhanced atomic layer deposition (PEALD) while TiN was deposited by either thermal ALD or PEALD. RuTiN, films with thermal ALD TiN and a Ru:Ti of 20:1 showed barrier performance comparable to PVD TaN at 3-4 nm thickness and 15 nm planar films were directly platable. Follow up work is certainly needed for this material set, yet initial results indicate RuTiN could serve as an effective direct plate liner for Cu interconnects.

  14. Duration of convergence at the Pacific-Gondwana plate margin: insights from accessory phase petrochronology of the Alpine Schist, New Zealand

    NASA Astrophysics Data System (ADS)

    Briggs, S. I.; Cottle, J. M.; Smit, M. A.; Arnush, N. F.

    2016-12-01

    The timing, duration and along-strike synchroneity of metamorphism and anataxis in the Alpine Schist of New Zealand is a matter of considerable debate. Our preliminary data indicate that metamorphism resulting in garnet growth occurred from 97 - 75 Ma, and anatectic melting occurred from 80 - 51 Ma. These events are contemporaneous with rifting of Zealandia from East Gondwana, and Tasman Sea spreading from 83 - 52 Ma. An important implication of these results is that Late Cretaceous convergence along the Zealandia segment of the Pacific-Gondwana plate margin may have persisted much later than previously thought, and that convergence and extension occurred coevally in adjacent areas. This poses the question: for how long did convergence continue along the Pacific-Gondwana plate margin during East Gondwana breakup? To fully decipher the multiple stages of the complex metamorphic history recorded in the Alpine Schist, we combine Lu-Hf garnet geochronology with U-Th/Pb and REE analyses of zircon and monazite. We use the newly developed `single-shot laser ablation split stream' (SS-LASS) analysis method to obtain depth profiles through 5-10 µm metamorphic zircon overgrowths at 100 nm depth resolution to constrain both the timing and petrological context of discrete metamorphic zircon (re-)crystallization events recorded in the Alpine Schist. We also employ high spatial resolution LASS analysis to target rare 5 - 20 µm monazite in thin section to augment garnet and zircon data. Our multi-accessory phase petrochronology approach is capable of resolving discrete short-duration thermal events, strengthening the geological interpretation of `mean' Lu-Hf garnet ages and discerning between an episodic versus a prolonged history of metamorphism. In addition, comparison with geochronology from anatectic pegmatites clarifies the temporal relationship between metamorphism and melting in the Alpine Schist, while providing direct constraints on the timing and duration of

  15. A high-throughput approach for the determination of pesticide residues in cucumber samples using solid-phase microextraction on 96-well plate.

    PubMed

    Bagheri, Habib; Es'haghi, Ali; Es-haghi, Ali; Mesbahi, Noushin

    2012-08-31

    A high-throughput solid-phase microextraction (SPME) on 96-well plate together with gas chromatography-mass spectrometry (GC-MS) was developed for the determination of some selected pesticides in cucumber samples. Pieces with the length of 1.0 cm of silicon tubing were precisely prepared and then coated on the end part of stainless steel wires. The prepared fibers were positioned in a home-made polytetrafluoroethylene (PTFE)-based constructed ninety-six holes block to have the possibility of simultaneous immersion of the SPME fibers into the center of individual wells. Pesticides such as diazinon, penconazol, tebuconazol, bitertanol, malathion, phosalone and chlorpyrifos-methyl were selected for their highly application in cucumber field. The performances of the SPME fibers, such as intra and inter-fibers reproducibility, were evaluated and the results showed a good similarity in extraction yields. A volume of 1 mL of the aquatic supernatant of the cucumber samples was transferred into the 96-well plate and the array of SPME fibers was applied for the extraction of the selected pesticides. The important parameters influencing the whole extraction process including, organic solvent percent, salt addition, dilution factor, stirring rate and extraction time were optimized. The inter- and intra-day RSD% were found to be less than 15.4%. Limits of detection (LOD) and limits of quantification (LOQ) were below 60 and 180 μg kg(-1), respectively. The coefficient of determination was satisfactory (r(2)>0.99) for all the studied analytes. The developed method was successfully applied to the monitoring of several samples gathered from local markets.

  16. Microscopic Rayleigh Droplet Beams

    NASA Astrophysics Data System (ADS)

    Doak, R. B.

    2005-11-01

    A periodically triggered Rayleigh Droplet Beam (RDB) delivers a perfectly linear and periodic stream of identical, monoenergetic droplets that are phase-locked to the trigger signal. The droplet diameter and spacing are easily adjusted of choice of nozzle diameter and trigger frequency. Any liquid of low viscosity may be emloyed as the beam fluid. Although the field of nanofluidics is expanding rapidly, little effort has yet been devoted to ``external flows'' such as RDB's. At ASU we have generated RDB's of water and methanol down to 2 microns in droplet diameter. Nozzle clogging is the sole impediment to smaller droplets. Microscopic Rayleigh droplet beams offer tremendous potential for fundamental physical measurements, fluid dynamics research, and nanofabrication. This talk will describe the apparatus and techniques used at ASU to generate RDB's (surprisingly simple and inexpensive), discuss the triboelectric phenomena that play a role (surprisingly significant), present some initial experimental fluid dynamics measurements, and briefly survey RDB applications. Our particular interest in RDB's is as microscopic transport systems to deliver hydrated, undenatured proteins into vacuum for structure determination via serial diffraction of x-rays or electrons. This may offer the first general method for structure determination of non-crystallizable proteins.

  17. Soft x-ray laser microscope

    SciTech Connect

    Suckewer, P.I.

    1990-10-01

    The program consisted of two phases (Phase I and Phase II). The goal of the Phase I (first year program) was to design and construct the Soft X-ray Laser Contact Microscope. Such microscope was constructed and adapted to PPL's 18.2nm soft X-ray Laser (SXL), which in turn was modified and prepared for microscopy experiments. Investigation of the photoresist response to 18.2nm laser radiation and transmissivity of 0.1m thick silicion-nitride (Si[sub 3]N[sub 4]) windows were important initial works. The goal of the first year of Phase II was to construct X-ray contact microscope in combination with existing optical phase microscope, already used by biologists. In the second year of Phase II study of dehydrated Horeseshoe Crab and Hela cancer cells were performed with COXRALM. Also during Phase II, the Imaging X-Ray Laser Microscope (IXRALM) was designed and constructed. This paper describes the development of each of the microscopes and their application for research.

  18. Optical alignment and spinning of laser-trapped microscopic particles

    NASA Astrophysics Data System (ADS)

    Friese, M. E. J.; Nieminen, T. A.; Heckenberg, N. R.; Rubinsztein-Dunlop, H.

    1998-07-01

    Light-induced rotation of absorbing microscopic particles by transfer of angular momentum from light to the material raises the possibility of optically driven micromachines. The phenomenon has been observed using elliptically polarized laser beams or beams with helical phase structure,. But it is difficult to develop high power in such experiments because of overheating and unwanted axial forces, limiting the achievable rotation rates to a few hertz. This problem can in principle be overcome by using transparent particles, transferring angular momentum by a mechanism first observed by Beth in 1936, when he reported a tiny torque developed in a quartz `wave-plate' owing to the change in polarization of transmitted light. Here we show that an optical torque can be induced on microscopic birefringent particles of calcite held by optical tweezers. Depending on the polarization of the incident beam, the particles either become aligned with the plane of polarization (and thus can be rotated through specified angles) or spin with constant rotation frequency. Because these microscopic particles are transparent, they can be held in three-dimensional optical traps at very high power without heating, leading to rotation rates of over 350Hz.

  19. Development of a scanning time of flight microscope and its application to the study of charge transport in phase separated structured organic semiconductors

    SciTech Connect

    Paul, Sanjoy; Ellman, Brett Singh, Gautam; Tripathi, Suvagata; Twieg, Robert J.

    2016-04-14

    We describe a tool for studying the two-dimensional spatial variation in electronic properties of organic semiconductors: the scanning time-of-flight microscope (STOFm). The STOFm simultaneously measures the transmittance of polarized light and time-of-flight current transients with a pixel size <30 μm, making it especially valuable for studies of the correlations of structure with charge generation and transport in liquid crystalline organic semiconductors (LC OSCs). Adapting a previously developed photopolymerization technique, we characterize the instrument using patterned samples of a LC OSC bounded by a non-semiconducting polymer matrix.

  20. A Tandem Microscopic-Electrochemical Examination of A Charge-Induced Surface Phase Sequence: Ordered Au(110) in Aqueous Iodide Electrolytes as Probed by Potentiodynamic Scanning Tunneling Microscopy

    DTIC Science & Technology

    1994-02-01

    unlimited. V4 3 9 075 ABSTRACT Atomic-level structural and dynamical aspects of the electrode potential- induced sequence of surface phases on...system exhibits a potentially rich series of electroinduced phase transitions triggered primarily by increasing iodide adsorption towards more...positive potentials, together with alkali cation coadsorption. Exploration of the real-space phase-transition dynamics , in particular, is facilitated by

  1. Peen plating

    NASA Technical Reports Server (NTRS)

    Babecki, A. J. (Inventor); Haehner, C. L.

    1973-01-01

    A process for metal plating which comprises spraying a mixture of metallic powder and small peening particles at high velocity against a surface is described. The velocity must be sufficient to impact and bond metallic powder onto the surface. In the case of metal surfaces, the process has as one of its advantages providing mechanical working (hardening) of the surface simultaneously with the metal plating.

  2. Microfluidic device enabled quantitative time-lapse microscopic-photography for phenotyping vegetative and reproductive phases in Fusarium virguliforme, which is pathogenic to soybean.

    PubMed

    Marshall, Jill; Qiao, Xuan; Baumbach, Jordan; Xie, Jingyu; Dong, Liang; Bhattacharyya, Madan K

    2017-03-15

    Time-lapse microscopic-photography allows in-depth phenotyping of microorganisms. Here we report development of such a system using a microfluidic device, generated from polydimethylsiloxane and glass slide, placed on a motorized stage of a microscope for conducting time-lapse microphotography of multiple observations in 20 channels simultaneously. We have demonstrated the utility of the device in studying growth, germination and sporulation in Fusarium virguliforme that causes sudden death syndrome in soybean. To measure the growth differences, we developed a polyamine oxidase fvpo1 mutant in this fungus that fails to grow in minimal medium containing polyamines as the sole nitrogen source. Using this system, we demonstrated that the conidiospores of the pathogen take an average of five hours to germinate. During sporulation, it takes an average of 10.5 h for a conidiospore to mature and get detached from its conidiophore for the first time. Conidiospores are developed in a single conidiophore one after another. The microfluidic device enabled quantitative time-lapse microphotography reported here should be suitable for screening compounds, peptides, micro-organisms to identify fungitoxic or antimicrobial agents for controlling serious plant pathogens. The device could also be applied in identifying suitable target genes for host-induced gene silencing in pathogens for generating novel disease resistance in crop plants.

  3. Microfluidic device enabled quantitative time-lapse microscopic-photography for phenotyping vegetative and reproductive phases in Fusarium virguliforme, which is pathogenic to soybean

    PubMed Central

    Marshall, Jill; Qiao, Xuan; Baumbach, Jordan; Xie, Jingyu; Dong, Liang; Bhattacharyya, Madan K.

    2017-01-01

    Time-lapse microscopic-photography allows in-depth phenotyping of microorganisms. Here we report development of such a system using a microfluidic device, generated from polydimethylsiloxane and glass slide, placed on a motorized stage of a microscope for conducting time-lapse microphotography of multiple observations in 20 channels simultaneously. We have demonstrated the utility of the device in studying growth, germination and sporulation in Fusarium virguliforme that causes sudden death syndrome in soybean. To measure the growth differences, we developed a polyamine oxidase fvpo1 mutant in this fungus that fails to grow in minimal medium containing polyamines as the sole nitrogen source. Using this system, we demonstrated that the conidiospores of the pathogen take an average of five hours to germinate. During sporulation, it takes an average of 10.5 h for a conidiospore to mature and get detached from its conidiophore for the first time. Conidiospores are developed in a single conidiophore one after another. The microfluidic device enabled quantitative time-lapse microphotography reported here should be suitable for screening compounds, peptides, micro-organisms to identify fungitoxic or antimicrobial agents for controlling serious plant pathogens. The device could also be applied in identifying suitable target genes for host-induced gene silencing in pathogens for generating novel disease resistance in crop plants. PMID:28295054

  4. An entanglement-enhanced microscope.

    PubMed

    Ono, Takafumi; Okamoto, Ryo; Takeuchi, Shigeki

    2013-01-01

    Among the applications of optical phase measurement, the differential interference contrast microscope is widely used for the evaluation of opaque materials or biological tissues. However, the signal-to-noise ratio for a given light intensity is limited by the standard quantum limit, which is critical for measurements where the probe light intensity is limited to avoid damaging the sample. The standard quantum limit can only be beaten by using N quantum correlated particles, with an improvement factor of √N. Here we report the demonstration of an entanglement-enhanced microscope, which is a confocal-type differential interference contrast microscope where an entangled photon pair (N=2) source is used for illumination. An image of a Q shape carved in relief on the glass surface is obtained with better visibility than with a classical light source. The signal-to-noise ratio is 1.35±0.12 times better than that limited by the standard quantum limit.

  5. Microscope and method of use

    SciTech Connect

    Bongianni, W.L.

    1981-08-18

    A method and apparatus for electronically focusing and electronically scanning microscopic specimens are given. In the invention, visual images of even moving, living, opaque specimens can be acoustically obtained and viewed with virtually no time needed for processing (i.e., real time processing is used). And planar samples are not required. The specimens (if planar) need not be moved during scanning, although it will be desirable and possible to move or rotate nonplanar specimens (e.g., laser fusion targets) against the lens of the apparatus. No coupling fluid is needed, so specimens need not be wetted. A phase acoustic microscope is also made from the basic microscope components together with electronic mixers.

  6. Microscope and method of use

    DOEpatents

    Bongianni, Wayne L.

    1984-01-01

    A method and apparatus for electronically focusing and electronically scanning microscopic specimens are given. In the invention, visual images of even moving, living, opaque specimens can be acoustically obtained and viewed with virtually no time needed for processing (i.e., real time processing is used). And planar samples are not required. The specimens (if planar) need not be moved during scanning, although it will be desirable and possible to move or rotate nonplanar specimens (e.g., laser fusion targets) against the lens of the apparatus. No coupling fluid is needed, so specimens need not be wetted. A phase acoustic microscope is also made from the basic microscope components together with electronic mixers.

  7. Microscope and method of use

    DOEpatents

    Bongianni, W.L.

    1984-04-17

    A method and apparatus for electronically focusing and electronically scanning microscopic specimens are given. In the invention, visual images of even moving, living, opaque specimens can be acoustically obtained and viewed with virtually no time needed for processing (i.e., real time processing is used). And planar samples are not required. The specimens (if planar) need not be moved during scanning, although it will be desirable and possible to move or rotate nonplanar specimens (e.g., laser fusion targets) against the lens of the apparatus. No coupling fluid is needed, so specimens need not be wetted. A phase acoustic microscope is also made from the basic microscope components together with electronic mixers. 7 figs.

  8. A new screening test for antimitotic compounds using the universal M phase-specific protein kinase, p34cdc2/cyclin Bcdc13, affinity-immobilized on p13suc1-coated microtitration plates.

    PubMed

    Rialet, V; Meijer, L

    1991-01-01

    A universal intracellular factor, the "M phase-Promoting Factor" (MPF), triggers the G2/M transition of the cell cycle in all organisms. This factor displays an easily assayable histone H1 kinase (H1K) activity and is composed of at least two subunits, p34cdc2 (catalytic) and cyclin Bcdc13 (regulatory). We describe here a microtitration plate assay using affinity-immobilized H1K-MPF as a cell cycle-specific target to screen for antimitotic compounds. First, meiotic starfish oocytes were selected as the most convenient and abundant source of M phase extracts containing high levels of H1K. Second, we used the strong and specific interaction between p34cdc2 and p13suc1 to affinity-immobilize H1K-MPF on p13suc1-coated microtitration plates. p13suc1-coated wells specifically retain the M phase kinase, the activity of which is assayed with histone H1 and gamma-32P-ATP. Among 10 microtitration plates, Maxisorp plates (Nunc) proved to be the most efficient at retaining H1K through p13suc1. Experimental conditions to coat the plates with p13suc1, to immobilize and to measure p34cdc2/cyclin Bcdc13 kinase activity, as well as to store p13suc1-precoated plates, have been optimized. Using this system we tested 18 currently used anticancer drugs and S or G2 inhibitors; none of them displayed any inhibitory activity. The microtitration assay has allowed the detection of two H1K inhibitors, isopentenyladenine (I50: 40 microM) and staurosporine (I50: 3.2 nM). This affinity-immobilized H1K-MPF can thus now be used as a simple screening system to detect inhibitors of a major cell cycle-regulating component. This method may prove useful to screen for antimitotic compounds of potential anticancer interest.

  9. The Scanning Optical Microscope.

    ERIC Educational Resources Information Center

    Sheppard, C. J. R.

    1978-01-01

    Describes the principle of the scanning optical microscope and explains its advantages over the conventional microscope in the improvement of resolution and contrast, as well as the possibility of producing a picture from optical harmonies generated within the specimen.

  10. FIRST RESULTS FROM VERY LARGE TELESCOPE NACO APODIZING PHASE PLATE: 4 {mu}m IMAGES OF THE EXOPLANET {beta} PICTORIS b

    SciTech Connect

    Quanz, Sascha P.; Meyer, Michael R.; Kenworthy, Matthew A.; Girard, Julien H. V.; Kasper, Markus; Lagrange, Anne-Marie; Bonnefoy, Mickael; Chauvin, Gael; Apai, Daniel; Boccaletti, Anthony; Hinz, Philip M.; Lenzen, Rainer

    2010-10-10

    Direct imaging of exoplanets requires both high contrast and high spatial resolution. Here, we present the first scientific results obtained with the newly commissioned apodizing phase plate coronagraph (APP) on VLT/NACO. We detected the exoplanet {beta} Pictoris b in the narrowband filter centered at 4.05 {mu}m (NB4.05). The position angle (209.{sup 0}13 {+-} 2.{sup 0}12) and the projected separation to its host star (0.''354 {+-} 0.''012, i.e., 6.8 {+-} 0.2 AU at a distance of 19.3 pc) are in good agreement with the recently presented data from Lagrange et al. Comparing the observed NB4.05 magnitude of 11.20 {+-} 0.23 mag to theoretical atmospheric models, we find a best fit with a 7-10 M {sub Jupiter} object for an age of 12 Myr, again in agreement with previous estimates. Combining our results with published L' photometry, we can compare the planet's [L' - NB4.05] color to that of cool field dwarfs of higher surface gravity suggesting an effective temperature of {approx}1700 K. The best-fit theoretical model predicts an effective temperature of {approx}1470 K, but this difference is not significant given our photometric uncertainties. Our results demonstrate the potential of NACO/APP for future planet searches and provide independent confirmation as well as complementary data for {beta} Pic b.

  11. MRF Applications: On the Road to Making Large-Aperture Ultraviolet Laser Resistant Continuous Phase Plates for High-Power Lasers

    SciTech Connect

    Menapace, J A; Davis, P J; Steele, W A; Hachkowski, M R; Nelson, A; Xin, K

    2006-10-26

    Over the past two years we have developed MRF tools and procedures to manufacture large-aperture (430 X 430 mm) continuous phase plates (CPPs) that are capable of operating in the infrared portion (1053 nm) of high-power laser systems. This is accomplished by polishing prescribed patterns of continuously varying topographical features onto finished plano optics using MRF imprinting techniques. We have been successful in making, testing, and using large-aperture CPPs whose topography possesses spatial periods as low as 4 mm and surface peak-to-valleys as high as 8.6 {micro}m. Combining this application of MRF technology with advanced MRF finishing techniques that focus on ultraviolet laser damage resistance makes it potentially feasible to manufacture large-aperture CPPs that can operate in the ultraviolet (351 nm) without sustaining laser-induced damage. In this paper, we will discuss the CPP manufacturing process and the results of 351-nm/3-nsec equivalent laser performance experiments conducted on large-aperture CPPs manufactured using advanced MRF protocols.

  12. Contributions of the German Research Center for Geosciences (GFZ) to the EPOS Implementation Phase 2015-18 (European Plate Observing System)

    NASA Astrophysics Data System (ADS)

    Hoffmann, T. L.; Lauterjung, J.

    2016-12-01

    The European Plate Observing System project is currently approaching the end of year one of its four-year Implementation Phase 2015-18 (EPOS-IP). Established under the Horizon 2020 Programme INFRADEV-3, the EPOS cyberinfrastructure is being established as an ERIC (European Research Infrastructure Consortium) and encompasses the implementation of both the EPOS Integrated Core Services (ICS) for solid Earth Science and a multitude of EPOS Thematic Core Services (TCS). The TCS-Elements themselves will integrate a number of Service Providers that deliver Data, Data Products, Services and Software (DDSS) to their specific scientific community. As one of the 29 awardees of the EC grant, the German Research Center for Geosciences (GFZ) plays an important role in the implementation of EPOS and its Thematic and Integrated Core Services. The presented poster will give an overview of GFZ's participation in nine technical EPOS Work Packages (WP7 ICS Development, WP8 Seismology, WP11 Volcano Observations, WP12 Satellite Data, WP13 Geomagnetic Observations, WP14 Anthropogenic Hazards, WP15 Geological Information and Modelling, WP16 Multi-Scale Laboratories and WP17 Geo Energy Test Beds) as well as in four administrative EPOS Work Packages (WP2 Communication, WP3 Harmonization, WP4 Legal & Governance, and WP5 Financial).

  13. Experimental and numerical analyses on a plate heat exchanger with phase change for waste heat recovery at off-design conditions

    NASA Astrophysics Data System (ADS)

    Cipollone, Roberto; Bianchi, Giuseppe; Di Battista, Davide; Fatigati, Fabio

    2015-11-01

    This paper analyzes the performances of an evaporator for small scale waste heat recovery applications based on bottoming Organic Rankine Cycles with net output power in the range 2-5 kW. The heat recovery steam generator is a plate heat exchanger with oil as hot stream and an organic fluid on the cold side. An experimental characterization of the heat exchanger was carried out at different operating points measuring temperatures, pressures and flow rates on both sides. The measurement data further allowed to validate a numerical model of the evaporator whereas heat transfer coefficients were evaluated comparing several literature correlations, especially for the phase-change of the organic fluid. With reference to a waste heat recovery application in industrial compressed air systems, multiple off-design conditions were simulated considering the effects of oil mass flow rate and temperature on the superheating of the organic fluid, a key parameter to ensure a proper operation of the expansion machine, thus of the energy recovery process.

  14. Diffraction of a finite-radius plane wave and a Gaussian beam by a helical axicon and a spiral phase plate.

    PubMed

    Kotlyar, Victor V; Kovalev, Alexey A; Skidanov, Roman V; Moiseev, Oleg Yu; Soifer, Victor A

    2007-07-01

    We derive what we believe to be new analytical relations to describe the Fraunhofer diffraction of the finite-radius plane wave by a helical axicon (HA) and a spiral phase plate (SPP). The solutions are deduced in the form of a series of the Bessel functions for the HA and a finite sum of the Bessel functions for the SPP. The solution for the HA changes to that for the SPP if the axicon parameter is set equal to zero. We also derive what we believe to be new analytical relations to describe the Fresnel and Fraunhofer diffraction of the Gaussian beam by a HA are derived. The solutions are deduced in the form of a series of the hypergeometric functions. We have fabricated by photolithography a binary diffractive optical element (a HA with number n=10) able to produce in the focal plane of a spherical lens an optical vortex, which was then used to perform rotation of several polystyrene beads of diameter 5 microm.

  15. A new approach to the application of solid phase extraction disks with LC-MS/MS for the analysis of drugs on a 96-well plate format.

    PubMed

    Cudjoe, Erasmus; Pawliszyn, Janusz

    2009-11-01

    A new 96-well disk solid phase extraction sample preparation technique which does not involve vacuum pumps integrated with liquid chromatographic tandem mass spectrometric (LC-MS/MS) was developed for high throughput determination of benzodiazepines (nordiazepam, diazepam, lorazepam and oxazepam). In addition, the method completely allows the re-use of the SPE disk membranes for subsequent analyses after re-conditioning. The method utilizes a robotic autosampler for parallel extractions in a 96-well plate format. Results have been presented for independent extractions from three matrices; phosphate buffer solution, urine, and plasma. Factors affecting data reproducibility, extraction kinetics, sample throughput, and reliability of the system were investigated and optimized. A total time required per sample was 0.94 min using 96-well format. Method reproducibility was < or =9% relative standard deviation for all three matrices. Limits of detection and quantitation recorded were respectively in the range 0.02-0.15 and 0.2-2.0 ng/mL with linearity ranging from 0.2 to 500 ng/mL for all matrices.

  16. Fine Structure in Multi-Phase Zr8Ni21-Zr7Ni10-Zr2Ni7 Alloy Revealed by Transmission Electron Microscope

    PubMed Central

    Shen, Haoting; Bendersky, Leonid A.; Young, Kwo; Nei, Jean

    2015-01-01

    The microstructure of an annealed alloy with a Zr8Ni21 composition was studied by both scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The presence of three phases, Zr8Ni21, Zr2Ni7, and Zr7Ni10, was confirmed by SEM/X-ray energy dispersive spectroscopy compositional mapping and TEM electron diffraction. Distribution of the phases and their morphology can be linked to a multi-phase structure formed by a sequence of reactions: (1) L → Zr2Ni7 + L’; (2) peritectic Zr2Ni7 + L’ → Zr2Ni7 + Zr8Ni21 + L”; (3) eutectic L” → Zr8Ni21 + Zr7Ni10. The effect of annealing at 960 °C, which was intended to convert a cast structure into a single-phase Zr8Ni21 structure, was only moderate and the resulting alloy was still multi-phased. TEM and crystallographic analysis of the Zr2Ni7 phase show a high density of planar (001) defects that were explained as low-energy boundaries between rotational variants and stacking faults. The crystallographic features arise from the pseudo-hexagonal structure of Zr2Ni7. This highly defective Zr2Ni7 phase was identified as the source of the broad X-ray diffraction peaks at around 38.4° and 44.6° when a Cu-K was used as the radiation source. PMID:28793460

  17. Microscope sterility during spine surgery.

    PubMed

    Bible, Jesse E; O'Neill, Kevin R; Crosby, Colin G; Schoenecker, Jonathan G; McGirt, Matthew J; Devin, Clinton J

    2012-04-01

    Prospective study. Assess the contamination rates of sterile microscope drapes after spine surgery. The use of the operating microscope has become more prevalent in certain spine procedures, providing superior magnification, visualization, and illumination of the operative field. However, it may represent an additional source of bacterial contamination and increase the risk of developing a postoperative infection. This study included 25 surgical spine cases performed by a single spine surgeon that required the use of the operative microscope. Sterile culture swabs were used to obtain samples from 7 defined locations on the microscope drape after its use during the operation. The undraped technician's console was sampled in each case as a positive control, and an additional 25 microscope drapes were swabbed immediately after they were applied to the microscope to obtain negative controls. Swab samples were assessed for bacterial growth on 5% sheep blood Columbia agar plates using a semiquantitative technique. No growth was observed on any of the 25 negative control drapes. In contrast, 100% of preoperative and 96% of postoperative positive controls demonstrated obvious contamination. In the postoperative group, all 7 sites of evaluation were found to be contaminated with rates of 12% to 44%. Four of the 7 evaluated locations were found to have significant contamination rates compared with negative controls, including the shafts of the optic eyepieces on the main surgeon side (24%, P = 0.022), "forehead" portion on both the main surgeon (24%, P = 0.022) and assistant sides (28%, P = 0.010), and "overhead" portion of the drape (44%, P = 0.0002). Bacterial contamination of the operative microscope was found to be significant after spine surgery. Contamination was more common around the optic eyepieces, likely due to inadvertent touching of unsterile portions. Similarly, all regions above the eyepieces also have a propensity for contamination because of unknown contact

  18. PCM Composite Cold Plate.

    DTIC Science & Technology

    1996-04-01

    packaging design for phase change materials (PCMs) used in thermal management. To control expansion stress, conventional PCM heat sinks have strong encapsulation that weighs more than the PCM they contain. The objective of this work is to develop PCM heat sinks configured as thin sandwich plates, in which the mass of the encapsulation is a small fraction of the PCM mass. The design is based on a lightweight carbon fiber core that has suitable mechanical, thermal, and capillary properties. PCM composite plates were fabricated with dimensions 15x15x0.6 cm3 and with a

  19. Direct observation of electronic-liquid-crystal phase transitions and their microscopic origin in La1/3Ca2/3MnO3

    SciTech Connect

    Tao, J.; Sun, K.; Yin, W. -G.; Wu, L.; Xin, H.; Wen, J. G.; Luo, W.; Pennycook, S. J.; Tranquada, J. M.; Zhu, Y.

    2016-11-22

    The ground-state electronic order in doped manganites is frequently associated with a lattice modulation, contributing to their many interesting properties. However, measuring the thermal evolution of the lattice superstructure with reciprocal-space probes alone can lead to ambiguous results with competing interpretations. Here, we provide direct observations of the evolution of the superstructure in La1/3Ca2/3MnO3 in real space, as well as reciprocal space, using transmission electron microscopic (TEM) techniques. We show that the transitions are the consequence of a proliferation of dislocations plus electronic phase separation. The resulting states are well described by the symmetries associated with electronic-liquid-crystal (ELC) phases. Furthermore, our results resolve the long-standing controversy over the origin of the incommensurate superstructure and suggest a new structural model that is consistent with recent theoretical calculations.

  20. Plate tectonics conserves angular momentum

    NASA Astrophysics Data System (ADS)

    Bowin, C.

    2009-03-01

    A new combined understanding of plate tectonics, Earth internal structure, and the role of impulse in deformation of the Earth's crust is presented. Plate accelerations and decelerations have been revealed by iterative filtering of the quaternion history for the Euler poles that define absolute plate motion history for the past 68 million years, and provide an unprecedented precision for plate angular rotation variations with time at 2-million year intervals. Stage poles represent the angular rotation of a plate's motion between adjacent Euler poles, and from which the maximum velocity vector for a plate can be determined. The consistent maximum velocity variations, in turn, yield consistent estimates of plate accelerations and decelerations. The fact that the Pacific plate was shown to accelerate and decelerate, implied that conservation of plate tectonic angular momentum must be globally conserved, and that is confirmed by the results shown here (total angular momentum ~1.4 E+27 kgm2s-1). Accordingly, if a plate decelerates, other plates must increase their angular momentums to compensate. In addition, the azimuth of the maximum velocity vectors yields clues as to why the "bend" in the Emperor-Hawaiian seamount trend occurred near 46 Myr. This report summarizes processing results for 12 of the 14 major tectonic plates of the Earth (except for the Juan de Fuca and Philippine plates). Plate accelerations support the contention that plate tectonics is a product of torques that most likely are sustained by the sinking of positive density anomalies due to phase changes in subducted gabbroic lithosphere at depth in the upper lower mantle (above 1200 km depth). The tectonic plates are pulled along by the sinking of these positive mass anomalies, rather than moving at near constant velocity on the crests of convection cells driven by rising heat. These results imply that spreading centers are primarily passive reactive features, and fracture zones (and wedge-shaped sites

  1. TEAM Electron Microscope Animation

    SciTech Connect

    2012-01-01

    The TEAM Electron Microscope, a device that enables atomic-scale imaging in 3-D, has a rotating stage that can hold and position samples inside electron microscopes with unprecedented stability, position-control accuracy, and range of motion.The TEAM Stage makes one of the world's most powerful electron microscopes even better, and enables previously impossible experiments.

  2. Fermi Gas Microscope

    NASA Astrophysics Data System (ADS)

    Setiawan, Widagdo

    Recent advances in using microscopes in ultracold atom experiment have allowed experimenters for the first time to directly observe and manipulate individual atoms in individual lattice sites. This technique enhances our capability to simulate strongly correlated systems such as Mott insulator and high temperature superconductivity. Currently, all ultracold atom experiments with high resolution imaging capability use bosonic atoms. In this thesis, I present our progress towards creating the fermionic version of the microscope experiment which is more suitable for simulating real condensed matter systems. Lithium is ideal due to the existence of both fermionic and bosonic isotopes, its light mass, which means faster experiment time scales that suppresses many sources of technical noise, and also due to the existence of a broad Feshbach resonance, which can be used to tune the inter-particle interaction strength over a wide range from attractive, non-interacting, and repulsive interactions. A high numerical aperture objective will be used to image and manipulate the atoms with single lattice site resolution. This setup should allow us to implement the Hubbard hamiltonian which could describe interesting quantum phases such as antiferromagnetism, d-wave superfluidity, and high temperature superconductivity. I will also discuss the feasibility of the Raman sideband cooling method for cooling the atoms during the imaging process. We have also developed a new electronic control system to control the sequence of the experiment. This electronic system is very scalable in order to keep up with the increasing complexity of atomic physics experiments. Furthermore, the system is also designed to be more precise in order to keep up with the faster time scale of lithium experiment.

  3. Determination of ultrasonic wave velocities and phase velocity dispersion curves of an Inconel 600 plate using resonant ultrasound spectroscopy and leaky Lamb waves.

    PubMed

    Kim, Young H; Song, Sung-Jin; Kwon, Sung-Duk; Cheong, Yong-Moo; Jung, Hyun-Kyu

    2004-04-01

    A plate of Inconel 600 was interrogated using the resonant ultrasound spectroscopy (RUS) and the reflected leaky Lamb waves (LLW). It was found that the plate used in the present work has anisotropy in its material properties by the RUS. The longitudinal and the transverse wave velocities of the Inconel 600 plate were determined by the RUS, ultrasonic pulse-echo method and cut-off frequencies of the LLWs. The wave velocities in the direction of thickness determined by the RUS under the assumption of the orthotropic symmetry were quite similar to those obtained by other methods, the pulse-echo method and from cut-off frequencies. The reflected LLW from the plate was measured with varying the incident angle. The dispersion curves obtained from the reflected LLWs show good agreement with the theoretical calculation in general. The mismatches may be caused by anisotropy of the plate.

  4. Special Features of the Structure of Plates from an Alloy of the Al - Zn - Mg - Cu System

    NASA Astrophysics Data System (ADS)

    Chikova, O. A.; Zamyatin, V. M.; Ovsyannikov, B. V.

    2014-05-01

    Comparative analysis of the structure and phase composition of plates from aluminum alloy 7050 in state T7451 is performed by the methods of light and electron microscopy. Factors influencing the fatigue endurance are determined. Data on changes in the microstructure of specimens of alloy 7050 in long-term holds at 121 and 163 °C are obtained right on the object stage of the microscope.

  5. Downgoing plate controls on overriding plate deformation in subduction zones

    NASA Astrophysics Data System (ADS)

    Garel, Fanny; Davies, Rhodri; Goes, Saskia; Davies, Huw; Kramer, Stephan; Wilson, Cian

    2014-05-01

    Although subduction zones are convergent margins, deformation in the upper plate can be extensional or compressional and tends to change through time, sometimes in repeated episodes of strong deformation, e.g, phases of back-arc extension. It is not well understood what factors control this upper plate deformation. We use the code Fluidity, which uses an adaptive mesh and a free-surface formulation, to model a two-plate subduction system in 2-D. The model includes a composite temperature- and stress-dependent rheology, and plates are decoupled by a weak layer, which allows for free trench motion. We investigate the evolution of the state of stress and topography of the overriding plate during the different phases of the subduction process: onset of subduction, free-fall sinking in the upper mantle and interaction of the slab with the transition zone, here represented by a viscosity contrast between upper and lower mantle. We focus on (i) how overriding plate deformation varies with subducting plate age; (ii) how spontaneous and episodic back-arc spreading develops for some subduction settings; (iii) the correlation between overriding plate deformation and slab interaction with the transition zone; (iv) whether these trends resemble observations on Earth.

  6. Phase measurements of EUV mask defects

    DOE PAGES

    Claus, Rene A.; Wang, Yow-Gwo; Wojdyla, Antoine; ...

    2015-02-22

    Extreme Ultraviolet (EUV) Lithography mask defects were examined on the actinic mask imaging system, SHARP, at Lawrence Berkeley National Laboratory. Also, a quantitative phase retrieval algorithm based on the Weak Object Transfer Function was applied to the measured through-focus aerial images to examine the amplitude and phase of the defects. The accuracy of the algorithm was demonstrated by comparing the results of measurements using a phase contrast zone plate and a standard zone plate. Using partially coherent illumination to measure frequencies that would otherwise fall outside the numerical aperture (NA), it was shown that some defects are smaller than themore » conventional resolution of the microscope. We found that the programmed defects of various sizes were measured and shown to have both an amplitude and a phase component that the algorithm is able to recover.« less

  7. Phase measurements of EUV mask defects

    SciTech Connect

    Claus, Rene A.; Wang, Yow-Gwo; Wojdyla, Antoine; Benk, Markus P.; Goldberg, Kenneth A.; Neureuther, Andrew R.; Naulleau, Patrick P.; Waller, Laura

    2015-02-22

    Extreme Ultraviolet (EUV) Lithography mask defects were examined on the actinic mask imaging system, SHARP, at Lawrence Berkeley National Laboratory. Also, a quantitative phase retrieval algorithm based on the Weak Object Transfer Function was applied to the measured through-focus aerial images to examine the amplitude and phase of the defects. The accuracy of the algorithm was demonstrated by comparing the results of measurements using a phase contrast zone plate and a standard zone plate. Using partially coherent illumination to measure frequencies that would otherwise fall outside the numerical aperture (NA), it was shown that some defects are smaller than the conventional resolution of the microscope. We found that the programmed defects of various sizes were measured and shown to have both an amplitude and a phase component that the algorithm is able to recover.

  8. Use of fractal zone plates for transmission X-ray microscopy.

    PubMed

    Ge, Xin; Wang, Zhili; Gao, Kun; Wang, Dajiang; Wu, Zhao; Chen, Jian; Pan, Zhiyun; Zhang, Kai; Hong, Youli; Zhu, Peiping; Wu, Ziyu

    2012-09-01

    In this contribution we discuss the possibility of designing a modified transmission X-ray microscope by using fractal zone plates (Fzps) as diffractive optical elements. In the modified transmission X-ray microscope optical layout, we first introduced a fractal zone plate as the microscope objective. Indeed, a fractal zone plate cannot only be used as an image-forming component but also as a condenser element to achieve an extended depth of field. Numerical analysis reveals that fractal zone plates and conventional Fresnel zone plates have similar imaging capabilities under different coherent illumination. Using a fractal zone plate as a condenser we also simulated axial irradiance. Results confirm that fractal zone plates can improve focusing capability with an extended depth of field. Although preliminary, these simulations clearly reveal that fractal zone plates, when available, will be of great help in microscope layouts, in particular for foreseen high-resolution applications in the "water window" as strongly required in biological research.

  9. Cryogenic immersion microscope

    DOEpatents

    Le Gros, Mark; Larabell, Carolyn A.

    2010-12-14

    A cryogenic immersion microscope whose objective lens is at least partially in contact with a liquid reservoir of a cryogenic liquid, in which reservoir a sample of interest is immersed is disclosed. When the cryogenic liquid has an index of refraction that reduces refraction at interfaces between the lens and the sample, overall resolution and image quality are improved. A combination of an immersion microscope and x-ray microscope, suitable for imaging at cryogenic temperatures is also disclosed.

  10. Simple versatile shearing interferometer suitable for measurements on a microscopic scale

    NASA Astrophysics Data System (ADS)

    Mihaylova, Emilia; Toal, Vincent

    2009-02-01

    Micro-electromechanical systems (MEMS) behave differently from massive samples. Conventional testing and inspection techniques usually fail at the microscale. Recently there has been an increasing interest in the application of optical techniques for microstructure testing, because they are high-resolution, non-contact, full-field, fast and relatively inexpensive. New interferometric systems, which are suitable for microscopic optical metrology, are of interest for engineering and industrial applications. A modified electronic speckle pattern shearing interferometer (ESPSI) with a very simple shearing device has been designed for metrology applications on the microscale. The shearing device consists of two partially reflective glass plates. The reflection coefficients of the coatings are 0.3 and 0.7, respectively. The distance and the tilt between the two glass plates control the size of the shear. A long working distance microscope objective is attached to the CCD camera to form a field of view variable over several millimetres in width. The suitability of the system for microscopic measurements is demonstrated. The capability of the system for phase shifting is also demonstrated. The results obtained are promising for future applications of the ESPSI system for testing and characterisation of MEMS.

  11. Development of x-ray laminography under an x-ray microscopic condition

    SciTech Connect

    Hoshino, Masato; Uesugi, Kentaro; Takeuchi, Akihisa; Suzuki, Yoshio; Yagi, Naoto

    2011-07-15

    An x-ray laminography system under an x-ray microscopic condition was developed to obtain a three-dimensional structure of laterally-extended planar objects which were difficult to observe by x-ray tomography. An x-ray laminography technique was introduced to an x-ray transmission microscope with zone plate optics. Three prototype sample holders were evaluated for x-ray imaging laminography. Layered copper grid sheets were imaged as a laminated sample. Diatomite powder on a silicon nitride membrane was measured to confirm the applicability of this method to non-planar micro-specimens placed on the membrane. The three-dimensional information of diatom shells on the membrane was obtained at a spatial resolution of sub-micron. Images of biological cells on the membrane were also obtained by using a Zernike phase contrast technique.

  12. Upgrade of a Scanning Confocal Microscope to a Single-Beam Path STED Microscope

    PubMed Central

    Klauss, André; König, Marcelle; Hille, Carsten

    2015-01-01

    By overcoming the diffraction limit in light microscopy, super-resolution techniques, such as stimulated emission depletion (STED) microscopy, are experiencing an increasing impact on life sciences. High costs and technically demanding setups, however, may still hinder a wider distribution of this innovation in biomedical research laboratories. As far-field microscopy is the most widely employed microscopy modality in the life sciences, upgrading already existing systems seems to be an attractive option for achieving diffraction-unlimited fluorescence microscopy in a cost-effective manner. Here, we demonstrate the successful upgrade of a commercial time-resolved confocal fluorescence microscope to an easy-to-align STED microscope in the single-beam path layout, previously proposed as “easy-STED”, achieving lateral resolution < λ/10 corresponding to a five-fold improvement over a confocal modality. For this purpose, both the excitation and depletion laser beams pass through a commercially available segmented phase plate that creates the STED-doughnut light distribution in the focal plane, while leaving the excitation beam unaltered when implemented into the joint beam path. Diffraction-unlimited imaging of 20 nm-sized fluorescent beads as reference were achieved with the wavelength combination of 635 nm excitation and 766 nm depletion. To evaluate the STED performance in biological systems, we compared the popular phalloidin-coupled fluorescent dyes Atto647N and Abberior STAR635 by labeling F-actin filaments in vitro as well as through immunofluorescence recordings of microtubules in a complex epithelial tissue. Here, we applied a recently proposed deconvolution approach and showed that images obtained from time-gated pulsed STED microscopy may benefit concerning the signal-to-background ratio, from the joint deconvolution of sub-images with different spatial information which were extracted from offline time gating. PMID:26091552

  13. Thermal-Wave Microscope

    NASA Technical Reports Server (NTRS)

    Jones, Robert E.; Kramarchuk, Ihor; Williams, Wallace D.; Pouch, John J.; Gilbert, Percy

    1989-01-01

    Computer-controlled thermal-wave microscope developed to investigate III-V compound semiconductor devices and materials. Is nondestructive technique providing information on subsurface thermal features of solid samples. Furthermore, because this is subsurface technique, three-dimensional imaging also possible. Microscope uses intensity-modulated electron beam of modified scanning electron microscope to generate thermal waves in sample. Acoustic waves generated by thermal waves received by transducer and processed in computer to form images displayed on video display of microscope or recorded on magnetic disk.

  14. This-layer chromatography/electrospray ionization triple-quadrupole linear ion trap mass spectrometry system: analysis of rhodamine dyes separated on reversed-phase C8 plates

    SciTech Connect

    Ford, Michael J; Kertesz, Vilmos; Van Berkel, Gary J

    2005-01-01

    The direct analysis of separated rhodamine dyes on reversed-phase C{sub 8} thin-layer chromatography plates using a surface sampling/electrospray emitter probe coupled with a triple-quadrupole linear ion trap mass spectrometer is presented. This report represents continuing work to advance the performance metrics and utility of this basic surface sampling electrospray mass spectrometry system for the analysis of thin-layer chromatography plates. Experimental results examining the role of sampling probe spray end configuration on liquid aspiration rate and gas-phase ion signal generated are discussed. The detection figures-of-merit afforded by full-scan, automated product ion and selected reaction monitoring modes of operation were examined. The effect of different eluting solvents on mass spectrum signal levels with the reversed-phase C{sub 8} plate was investigated. The combined effect of eluting solvent flow-rate and development lane surface scan rate on preservation of chromatographic resolution was also studied. Analysis of chromatographically separated red pen ink extracts from eight different pens using selected reaction monitoring demonstrated the potential of this surface sampling electrospray mass spectrometry system for targeted compound analysis with real samples.

  15. Plate electronics

    NASA Astrophysics Data System (ADS)

    Carlowicz, Michael

    Using a Cray T3D supercomputer and a simple assumption about the physical character of Earth's mantle, a pair of researchers from the University of California at Berkeley have built a computer model that may help explain why the planet's tectonic plates look the way they do.In creating a three-dimensional numerical simulation of convection in the Earth's interior, UC researchers Hans-Peter Bunge and Mark Richards simplified their model to account for just one major physical effect: that the viscosity of the mantle increases with depth. Reviewing some recent—but not yet widely accepted—seismic data, Bunge and Richards assumed for the sake of the model that the viscosity of the mantle increases by a factor of 30 from the lithosphere to the core-mantle boundary. Relying on that assumption, the pair ran the model for nearly three weeks on a supercomputer at Los Alamos National Laboratory and found that the simulation produced an effect similar to what we see on the surface of Earth. The model produced a surface paralleling the actual width of plates and the geometry of the plate boundaries.

  16. Mailing microscope slides

    USDA-ARS?s Scientific Manuscript database

    Many insects feed agriculturally important crops, trees, and ornamental plants and cause millions of dollars of damage annually. Identification for some of these require the preparation of a microscope slide for examination. There are times when a microscope slide may need to be sent away to a speci...

  17. The Homemade Microscope.

    ERIC Educational Resources Information Center

    Baker, Roger C., Jr.

    1991-01-01

    Directions for the building of a pocket microscope that will make visible the details of insect structure and living bacteria are described. Background information on the history of microscopes and lenses is provided. The procedures for producing various types of lenses are included. (KR)

  18. The Light Microscope.

    ERIC Educational Resources Information Center

    Baker, W. L.

    1995-01-01

    Describes the function of the various parts of the microscope and their integration in the formation of an optical image. Presents a procedure for setting up a microscope to obtain maximum resolution and contrast for each objective lens at all magnifications. (JRH)

  19. The Homemade Microscope.

    ERIC Educational Resources Information Center

    Baker, Roger C., Jr.

    1991-01-01

    Directions for the building of a pocket microscope that will make visible the details of insect structure and living bacteria are described. Background information on the history of microscopes and lenses is provided. The procedures for producing various types of lenses are included. (KR)

  20. Photography through the Microscope.

    ERIC Educational Resources Information Center

    McNeil, D. W.

    1992-01-01

    Describes how to illuminate and optically stain slides for microscope use and how to interface a 35mm camera with a microscope using an adaptor. Provides equipment descriptions and sources, details about illumination, image formation, darkfield adaptors, centerable filter adaptors, darkfield stops, rheinburg filters, and choosing specimens to…

  1. Mars Life? - Microscopic Structures

    NASA Image and Video Library

    1996-08-09

    In the center of this electron microscope image of a small chip from a meteorite are several tiny structures that are possible microscopic fossils of primitive, bacteria-like organisms that may have lived on Mars more than 3.6 billion years ago. http://photojournal.jpl.nasa.gov/catalog/PIA00283

  2. Optical Analysis of Microscope Images

    NASA Astrophysics Data System (ADS)

    Biles, Jonathan R.

    Microscope images were analyzed with coherent and incoherent light using analog optical techniques. These techniques were found to be useful for analyzing large numbers of nonsymbolic, statistical microscope images. In the first part phase coherent transparencies having 20-100 human multiple myeloma nuclei were simultaneously photographed at 100 power magnification using high resolution holographic film developed to high contrast. An optical transform was obtained by focussing the laser onto each nuclear image and allowing the diffracted light to propagate onto a one dimensional photosensor array. This method reduced the data to the position of the first two intensity minima and the intensity of successive maxima. These values were utilized to estimate the four most important cancer detection clues of nuclear size, shape, darkness, and chromatin texture. In the second part, the geometric and holographic methods of phase incoherent optical processing were investigated for pattern recognition of real-time, diffuse microscope images. The theory and implementation of these processors was discussed in view of their mutual problems of dimness, image bias, and detector resolution. The dimness problem was solved by either using a holographic correlator or a speckle free laser microscope. The latter was built using a spinning tilted mirror which caused the speckle to change so quickly that it averaged out during the exposure. To solve the bias problem low image bias templates were generated by four techniques: microphotography of samples, creation of typical shapes by computer graphics editor, transmission holography of photoplates of samples, and by spatially coherent color image bias removal. The first of these templates was used to perform correlations with bacteria images. The aperture bias was successfully removed from the correlation with a video frame subtractor. To overcome the limited detector resolution it is necessary to discover some analog nonlinear intensity

  3. Phase contrast in high resolution electron microscopy

    DOEpatents

    Rose, H.H.

    1975-09-23

    This patent relates to a device for developing a phase contrast signal for a scanning transmission electron microscope. The lens system of the microscope is operated in a condition of defocus so that predictable alternate concentric regions of high and low electron density exist in the cone of illumination. Two phase detectors are placed beneath the object inside the cone of illumination, with the first detector having the form of a zone plate, each of its rings covering alternate regions of either higher or lower electron density. The second detector is so configured that it covers the regions of electron density not covered by the first detector. Each detector measures the number of electrons incident thereon and the signal developed by the first detector is subtracted from the signal developed by the record detector to provide a phase contrast signal. (auth)

  4. An evaluation of the use of a commercial scanner to obtain experimental data produced by gas-phase electron diffraction and recorded on photographic plates

    NASA Astrophysics Data System (ADS)

    Aarset, Kirsten; Hagen, Kolbjørn; Page, Elizabeth M.; Rice, David A.

    1999-03-01

    A commercial scanner (Agfa Arcus II) has been used to retrieve electron-diffraction data from photographic plates. The data thus obtained from five different molecules has been analysed and the results compared with the original published data. Excellent agreement was observed between bond distances and amplitudes obtained from refinements on data collected from this scanner, a similar scanner and a micro-densitometer. It is planned to use the Agfa Arcus II scanner for future measurement of electron-diffraction intensity data from photographic plates.

  5. Buckling of trapezoidal plates

    SciTech Connect

    Radloff, H.D.; Hyer, M.W.; Nemeth, M.P.

    1995-12-31

    This study focuses on the buckling response of flat composite plates with an isosceles planform, as shown below. The study consisted of both analytical and experimental phases. In the study the parallel edges x = 0 and L were clamped or simply supported. Clamped parallel edges were used in the experimental phase of the study. The nonparallel edges were simply supported. The parallel edges were assumed to remain straight and buckling was assumed to occur because these edges moved toward each other. A Rayleigh-Ritz approach was used, with the finite-element code ABAQUS being used to check specific cases. The buckling displacements were assumed to be in the form of harmonic functions. The prebuckling force resultant N{sub x} was assumed to be given by N{sub x}(x,y) = P/W(x), where P is the applied load and W(x) is the varying width of the plate. N{sub y}(x,y) and N{sub x,y}(x,y) were taken to be zero. Experiments were conducted on a number of laminates and a number of plate geometries, and the results were compared to predictions of the Rayleigh-Ritz scheme. In general correlation was good, though the analysis underpredicted the number of buckling half-waves.

  6. [Microscopic colitis: update 2014].

    PubMed

    Burgmann, Konstantin; Fraga, Montserrat; Schoepfer, Alain M; Yun, Pu

    2014-09-03

    Microscopic colitis, which includes lymphocytic colitis and collagenous colitis, represents a frequent cause of chronic watery diarrhea especially in the elderly population. Several medications, such as nonsteroidal antiinflammatory drugs, proton pump inhibitors or antidepressants, as well as cigarette smoking have been recognized as risk factors for microscopic colitis. The diagnosis of microscopic colitis is based on a macroscopically normal ileo-colonoscopy and several biopsies from the entire colon, which demonstrate the pathognomonic histopathologic findings. Therapy is mainly based on the use of budesonide. Other medications, such as mesalazine, cholestyramine and bismuth, have been evaluated as well but the evidence is less solid.

  7. Mars Life? - Microscopic Structures

    NASA Technical Reports Server (NTRS)

    1996-01-01

    In the center of this electron microscope image of a small chip from a meteorite are several tiny structures that are possible microscopic fossils of primitive, bacteria-like organisms that may have lived on Mars more than 3.6 billion years ago. A two-year investigation by a NASA research team found organic molecules, mineral features characteristic of biological activity and possible microscopic fossils such as these inside of an ancient Martian rock that fell to Earth as a meteorite. The largest possible fossils are less than 1/100th the diameter of a human hair in size while most are ten times smaller.

  8. Plating Waste Sludge Metal Recovery.

    DTIC Science & Technology

    1985-05-30

    l - ~ ’.4 41 *4 7.1 4...34 L €5 ’ ’ . ’ " " r ,*: -: ,., -. . .,,:€ ,, .. € : ....- -1. PHASE I - UERATURE REVIEW Phase I of the project "Plating Waste Sludge Metal Recovery...8217’’,. ’.’.."..-’......’ ...’ , m .m llll- l ..m~ l : j nm~, l ~linn~ . l , b~~h~h , . r - r. -*1 . * , * . . , .d PHASE IV -

  9. Microscopic tubes in igneous rocks

    NASA Technical Reports Server (NTRS)

    Richter, D.; Simmons, G.

    1977-01-01

    Microscopic tubes have been observed in several igneous rocks and may be quite common. They occur in single crystals and have either elliptical or circular cross-sections 1 to 5 microns in diameter and are ten to hundreds of microns long. Microtubes may be hollow or partially or completely filled with another phase, but are distinct from acicular crystals of accessory minerals such as rutile. Microtubes can form by at least three processes: (1) the partial annealing of microcracks, (2) the natural etching of dislocations, or (3) the primary inclusion of fluid material during crystal growth.

  10. Intermittent Plate Tectonics

    NASA Astrophysics Data System (ADS)

    Silver, P. G.; Behn, M. D.

    2006-12-01

    Intermittent Plate Tectonics A basic premise of Earth Science is that plate tectonics has been continuously operating since it began early in Earth's history. Yet, plate-tectonic theory itself, specifically the collisional phase of the Wilson Cycle, constitutes a process that is capable of stopping all plate motion. The plausibility of a plate-tectonic hiatus is most easily illustrated by considering the expected future of the present-day plate-tectonic configuration. Since the opening of the Atlantic at ~200 ma, the area of the Atlantic basin has been growing at the expense of the Pacific. If this trend continues, relative plate motion models predict that in ~350 my, the Pacific Ocean basin will effectively close leading to widespread continent-continent collisions. Since a continent-continent collision represents the termination of subduction locally, the accumulated effect of all collisions is to stop subduction globally. In this scenario, ridges would then stop spreading and young oceanic lithosphere would cool, reaching a steady-state thickness of 100 km in about 80 my, based on the properties of oceanic lithosphere today. This would constitute the stoppage of plate tectonics. The presumption that plate tectonics never stops in the face of continental collisions is equivalent to requiring that subduction flux is approximately constant through time, such that subduction initiation roughly balances subduction termination. Such a balance then raises several questions about the subduction initiation process. When and how does subduction initiate? Is there a detectible relationship between subduction cessation and subduction initiation? We can gain some guidance into these questions by examining the plate motion history over the last 200 my. Subduction initiation has occurred over the last 80 my in three intra- oceanic subduction zones: Aleutians, Marianas-Izu-Bonin and Tonga-Kermadec in the Pacific basin. In these cases, however, subduction initiation would not

  11. Plate tectonics conserves angular momentum

    NASA Astrophysics Data System (ADS)

    Bowin, C.

    2010-03-01

    A new combined understanding of plate tectonics, Earth internal structure, and the role of impulse in deformation of the Earth's crust is presented. Plate accelerations and decelerations have been revealed by iterative filtering of the quaternion history for the Euler poles that define absolute plate motion history for the past 68 million years, and provide an unprecedented precision for plate angular rotation variations with time at 2-million year intervals. Stage poles represent the angular rotation of a plate's motion between adjacent Euler poles, and from which the maximum velocity vector for a plate can be determined. The consistent maximum velocity variations, in turn, yield consistent estimates of plate accelerations and decelerations. The fact that the Pacific plate was shown to accelerate and decelerate, implied that conservation of plate tectonic angular momentum must be globally conserved, and that is confirmed by the results shown here (total angular momentum ~1.4+27 kg m2 s-1). Accordingly, if a plate decelerates, other plates must increase their angular momentums to compensate. In addition, the azimuth of the maximum velocity vectors yields clues as to why the "bend" in the Emperor-Hawaiian seamount trend occurred near 46 Myr. This report summarizes processing results for 12 of the 14 major tectonic plates of the Earth (except for the Juan de Fuca and Philippine plates). Plate accelerations support the contention that plate tectonics is a product of torques that most likely are sustained by the sinking of positive density anomalies revealed by geoid anomalies of the degree 4-10 packet of the Earth's spherical harmonic coefficients. These linear positive geoid anomalies underlie plate subduction zones and are presumed due to phase changes in subducted gabbroic lithosphere at depth in the upper lower mantle (above 1200 km depth). The tectonic plates are pulled along by the sinking of these positive mass anomalies, rather than moving at near constant

  12. Terrestrial Clay under Microscope

    NASA Image and Video Library

    2008-09-30

    A scanning electron microscope captured this image of terresterial soil containing a phyllosilicate mineral from Koua Bocca, Ivory Coast, West Africa. This soil shares some similarities with Martian soil scooped by NASA Phoenix Lander.

  13. Assessment of Petrological Microscopes.

    ERIC Educational Resources Information Center

    Mathison, Charter Innes

    1990-01-01

    Presented is a set of procedures designed to check the design, ergonomics, illumination, function, optics, accessory equipment, and image quality of a microscope being considered for purchase. Functions for use in a petrology or mineralogy laboratory are stressed. (CW)

  14. Microscope collision protection apparatus

    DOEpatents

    DeNure, Charles R.

    2001-10-23

    A microscope collision protection apparatus for a remote control microscope which protects the optical and associated components from damage in the event of an uncontrolled collision with a specimen, regardless of the specimen size or shape. In a preferred embodiment, the apparatus includes a counterbalanced slide for mounting the microscope's optical components. This slide replaces the rigid mounts on conventional upright microscopes with a precision ball bearing slide. As the specimen contacts an optical component, the contacting force will move the slide and the optical components mounted thereon. This movement will protect the optical and associated components from damage as the movement causes a limit switch to be actuated, thereby stopping all motors responsible for the collision.

  15. Assessment of Petrological Microscopes.

    ERIC Educational Resources Information Center

    Mathison, Charter Innes

    1990-01-01

    Presented is a set of procedures designed to check the design, ergonomics, illumination, function, optics, accessory equipment, and image quality of a microscope being considered for purchase. Functions for use in a petrology or mineralogy laboratory are stressed. (CW)

  16. Infrared microscope inspection apparatus

    DOEpatents

    Forman, S.E.; Caunt, J.W.

    1985-02-26

    Apparatus and system for inspecting infrared transparents, such as an array of photovoltaic modules containing silicon solar cells, includes an infrared microscope, at least three sources of infrared light placed around and having their axes intersect the center of the object field and means for sending the reflected light through the microscope. The apparatus is adapted to be mounted on an X-Y translator positioned adjacent the object surface. 4 figs.

  17. Hypoxia in Microscopic Tumors

    PubMed Central

    Li, Xiao-Feng; O’Donoghue, Joseph A

    2008-01-01

    Tumor hypoxia has been commonly observed in a broad spectrum of primary solid malignancies. Hypoxia is associated with tumor progression, increased aggressiveness, enhanced metastatic potential and poor prognosis. Hypoxic tumor cells are resistant to radiotherapy and some forms of chemotherapy. Using an animal model, we recently showed that microscopic tumors less than 1 mm diameter were severely hypoxic. In this review, models and techniques for the study of hypoxia in microscopic tumors are discussed. PMID:18384940

  18. Infrared microscope inspection apparatus

    DOEpatents

    Forman, Steven E.; Caunt, James W.

    1985-02-26

    Apparatus and system for inspecting infrared transparents, such as an array of photovoltaic modules containing silicon solar cells, includes an infrared microscope, at least three sources of infrared light placed around and having their axes intersect the center of the object field and means for sending the reflected light through the microscope. The apparatus is adapted to be mounted on an X-Y translator positioned adjacent the object surface.

  19. [Stereo microscope, neglected tool].

    PubMed

    Gacek, Grzegorz

    2017-01-01

    Stereoscopes, in author opinion, are neglected tools in modern biology. This article shortly describes technical and application capabilities of the present stereomicroscopes. The two main types of stereomicroscope construction are depicted: Greenough microscope and Common Main Objective microscope. The technological breakthrough, asymmetrical optical design of stereomicroscopes, the Fusion Optics, is presented too. Because of very wide offer of a stereomicroscope platforms, illumination systems, software and imaging systems, the article contains also very useful factors to consider when selecting a stereomicroscope.

  20. Microscopic Theory of Fission

    SciTech Connect

    Younes, W.; Gogny, D.

    2008-04-17

    In recent years, the microscopic method has been applied to the notoriously difficult problem of nuclear fission with unprecedented success. In this paper, we discuss some of the achievements and promise of the microscopic method, as embodied in the Hartree-Fock method using the Gogny finite-range effective interaction, and beyond-mean-field extensions to the theory. The nascent program to describe induced fission observables using this approach at the Lawrence Livermore National Laboratory is presented.

  1. Microscopic colitis: a review.

    PubMed

    Farrukh, A; Mayberry, J F

    2014-12-01

    In recent years, microscopic colitis has been increasingly diagnosed. This review was carried out to evaluate demographic factors for microscopic colitis and to perform a systematic assessment of available treatment options. Relevant publications up to December 2013 were identified following searches of PubMed and Google Scholar using the key words 'microscopic colitis', 'collagenous colitis' and 'lymphocytic colitis'. Two-hundred and forty-eight articles were identified. The term microscopic colitis includes lymphocytic colitis and collagenous colitis. Both have common clinical symptoms but are well defined histopathologically. The clinical course is usually benign, but serious complications, including death, may occur. A peak incidence from 60 to 70 years of age with a female preponderance is observed. Although most cases are idiopathic, associations with autoimmune disorders, such as coeliac disease and hypothyroidism, as well as with exposure to nonsteroidal anti-inflammatory drugs and proton-pump inhibitors, have been observed. The incidence and prevalence of microscopic colitis is rising and good-quality epidemiological research is needed. Treatment is currently largely based on anecdotal evidence and on results from limited clinical trials of budesonide. Long-term follow-up of these patients is not well established. The review synthesizes work on the definition of microscopic colitis and the relationship between collagenous and lymphocytic colitis. It reviews the international epidemiology and work on aetiology. In addition, it critically considers the efficacy of a range of treatments. Colorectal Disease © 2014 The Association of Coloproctology of Great Britain and Ireland.

  2. Microscopic examination of normal nail clippings.

    PubMed

    Werner, Betina; Antunes, Andre

    2013-01-01

    Nail clipping analysis for diagnosing causes of onychodystrophy other than onychomycosis is investigated to a very small extent. In order to achieve acceptance as a diagnostic method for any kind of nail abnormalities, normal microscopic parameters have to be established first. In most reported cases, nail plates were fixed in formalin with processing of the specimens with routine automated histotechnique. Fifteen pairs of normal nails were studied. One nail fragment was placed in a container with formalin, and the other was kept dry in a proper receptacle. Fixed specimens were submitted to standard automated tissue processing (formalin group) and dry specimens were directly embedded in paraffin (dry group). Several microscopic parameters were analyzed. Nail plate thickness ranged from 0.25 to 0.50 mm (mean 0.36 mm) and subungual region from 0 to 0.31 mm (mean 0.11 mm). Forty-one percent of cases presented onychokaryosis, and hypereosinophilic nuclear shadows were detected in 63%, statistically more frequent in the dry group (p=0.002). Parakeratosis was present in 86% of nails varying from 1 to 13 layers (mean 5.6). None of the nails presented fungi, neutrophils, and blood or serum collections. Bacteria were seen in 60% of specimens. Both groups yielded adequate microscopic preparations for analysis with no statistical difference in the dryness or hardness of specimens or difficulty in cutting the paraffin blocks (p=1). These microscopic findings of a normal population can be used as parameters for evaluating any cause of onychodystrophy. The dry method is faster and cheaper and yields adequate slide preparations for microscopic analysis of nail clippings.

  3. Gain and far-field patterns for phase-correcting Fresnel zone plate antennas at millimeter-wave and terahertz frequencies

    NASA Astrophysics Data System (ADS)

    Wiltse, James C.

    2007-04-01

    The Fresnel zone plate lens antenna, which provides advantages compared to a normal paraboloidal or spherical lens, has been extensively investigated in the millimeter-wave and terahertz regions. The advantages include reduced weight, volume, and attenuation and simplicity of design. The principal disadvantage is that the zone plate sometimes provides reduced gain compared to a true lens. Particularly at high millimeter-wave or terahertz frequencies the low loss of the zone plate more than compensates for the reduced directivity. This paper investigates the gains and far-field patterns for a number of cases and gives both the analysis and numerical results for the examples. These cases have dealt with large-angle designs, where the focal length (F) and diameter (D) are comparable (F/D = 0.3 to 2.5), unlike the typical optical examples. The antenna patterns are found to have beamwidths and first sidelobes that are similar to what one would obtain with a standard lens, given the same aperture illumination. Appropriate feed designs are also described. For best aperture efficiency the illumination taper is about 10 dB, and this gives first sidelobe levels of about -24dB for a circular aperture. Far-out average sidelobes are not as low as for a true lens, and this is where the gain is affected.

  4. The Scanning Optical Microscope: An Overview

    NASA Astrophysics Data System (ADS)

    Kino, G. S.; Corte, T. R.; Xiao, G. Q.

    1988-07-01

    In the last few years there has been a resurgence in research on optical microscopes. One reason stems from the invention of the acoustic microscope by Quate and Lemons,1 and the realization that some of the same principles could be applied to the optical microscope. The acoustic microscope has better transverse definition for the same wavelength than the standard optical microscope and at the same time has far better range definition. Consequently, Kompfner, who was involved with the work on the early acoustic microscope, decided to try out similar scanning microscope principles with optics, and started a group with Wilson and Sheppard to carry out such research at Oxford.2 Sometime earlier, Petran et a13 had invented the tandem scanning microscope which used many of the same principles. Now, in our laboratory at Stanford, these ideas on the tandem scanning microscope and the scanning optical microscope are converging. Another aspect of this work, which stems from the earlier experience with the acoustic microscope, involves measurement of both phase and amplitude of the optical beam. It is also possible to use scanned optical microscopy for other purposes. For instance, an optical beam can be used to excite electrons and holes in semiconductors, and the generated current can be measured. By scanning the optical beam over the semiconductor, an image can be obtained of the regions where there is strong or weak electron hole generation. This type of microscope is called OBIC (Optical Beam Induced Current). A second application involves fluorescent imaging of biological materials. Here we have the excellent range definition of a scanning optical microscope which eliminates unwanted glare from regions of the material where the beam is unfocused.3 A third application is focused on the heating effect of the light beam. With such a system, images can be obtained which are associated with changes in the thermal properties of a material, changes in recombination rates in

  5. The virtual microscope.

    PubMed

    Catalyürek, Umit; Beynon, Michael D; Chang, Chialin; Kurc, Tahsin; Sussman, Alan; Saltz, Joel

    2003-12-01

    We present the design and implementation of the Virtual Microscope, a software system employing a client/server architecture to provide a realistic emulation of a high power light microscope. The system provides a form of completely digital telepathology, allowing simultaneous access to archived digital slide images by multiple clients. The main problem the system targets is storing and processing the extremely large quantities of data required to represent a collection of slides. The Virtual Microscope client software runs on the end user's PC or workstation, while database software for storing, retrieving and processing the microscope image data runs on a parallel computer or on a set of workstations at one or more potentially remote sites. We have designed and implemented two versions of the data server software. One implementation is a customization of a database system framework that is optimized for a tightly coupled parallel machine with attached local disks. The second implementation is component-based, and has been designed to accommodate access to and processing of data in a distributed, heterogeneous environment. We also have developed caching client software, implemented in Java, to achieve good response time and portability across different computer platforms. The performance results presented show that the Virtual Microscope systems scales well, so that many clients can be adequately serviced by an appropriately configured data server.

  6. A high resolution ion microscope for cold atoms

    NASA Astrophysics Data System (ADS)

    Stecker, Markus; Schefzyk, Hannah; Fortágh, József; Günther, Andreas

    2017-04-01

    We report on an ion-optical system that serves as a microscope for ultracold ground state and Rydberg atoms. The system is designed to achieve a magnification of up to 1000 and a spatial resolution in the 100 nm range, thereby surpassing many standard imaging techniques for cold atoms. The microscope consists of four electrostatic lenses and a microchannel plate in conjunction with a delay line detector in order to achieve single particle sensitivity with high temporal and spatial resolution. We describe the design process of the microscope including ion-optical simulations of the imaging system and characterize aberrations and the resolution limit. Furthermore, we present the experimental realization of the microscope in a cold atom setup and investigate its performance by patterned ionization with a structure size down to 2.7 μm. The microscope meets the requirements for studying various many-body effects, ranging from correlations in cold quantum gases up to Rydberg molecule formation.

  7. Links between microscopic and macroscopic fluid mechanics

    NASA Astrophysics Data System (ADS)

    Hoover, Wm. G.; Hoover, C. G.

    2003-01-01

    The microscopic and macroscopic versions of fluid mechanics differ qualitatively. Microscopic particles obey time-reversible ordinary differential equations. The resulting particle trajectories {q(t)} may be time-averaged or ensemble-averaged so as to generate field quantities corresponding to macroscopic variables. On the other hand, the macroscopic continuum fields described by fluid mechanics follow irreversible partial differential equations. Smooth particle methods bridge the gap separating these two views of fluids by solving the macroscopic field equations with particle dynamics that resemble molecular dynamics. Recently, nonlinear dynamics have provided some useful tools for understanding the relationship between the microscopic and macroscopic points of view. Chaos and fractals play key roles in this new understanding. Non-equilibrium phase-space averages look very different from their equilibrium counterparts. Away from equilibrium the smooth phase-space distributions are replaced by fractional-dimensional singular distributions that exhibit time irreversibility.

  8. Integrated elastic microscope device

    NASA Astrophysics Data System (ADS)

    Lee, W. M.; Wright, D.; Watkins, R.; Cen, Zi

    2015-03-01

    The growing power of imaging and computing power of smartphones is creating the possibility of converting your smartphone into a high power pocket microscopy system. High quality miniature microscopy lenses attached to smartphone are typically made with glass or plastics that can only be produce at low cost with high volume. To revise the paradigm of microscope lenses, we devised a simple droplet lens fabrication technique that which produces low cost and high performance lens. Each lens is integrated into thin 3-D printed holder with complimentary light emitted diode (LEDs) that clips onto majority of smartphones. The integrated device converts a smartphone into a high power optical microscope/dermatoscope at around $2. This low cost device has wide application in a multitude of practical uses such as material inspection, dermascope and educational microscope.

  9. Zernike Phase Contrast Electron Cryo-Tomography Applied to Marine Cyanobacteria Infected with Cyanophages

    PubMed Central

    Dai, Wei; Fu, Caroline; Khant, Htet A.; Ludtke, Steven J.; Schmid, Michael F.; Chiu, Wah

    2015-01-01

    Advances in electron cryo-tomography have provided a new opportunity to visualize the internal 3D structures of a bacterium. An electron microscope equipped with Zernike phase contrast optics produces images with dramatically increased contrast compared to images obtained by conventional electron microscopy. Here we describe a protocol to apply Zernike phase plate technology for acquiring electron tomographic tilt series of cyanophage-infected cyanobacterial cells embedded in ice, without staining or chemical fixation. We detail the procedures for aligning and assessing phase plates for data collection, and methods to obtain 3D structures of cyanophage assembly intermediates in the host, by subtomogram alignment, classification and averaging. Acquiring three to four tomographic tilt series takes approximately 12 h on a JEM2200FS electron microscope. We expect this time requirement to decrease substantially as the technique matures. Time required for annotation and subtomogram averaging varies widely depending on the project goals and data volume. PMID:25321408

  10. Corrugated cover plate for flat plate collector

    DOEpatents

    Hollands, K. G. Terry; Sibbitt, Bruce

    1978-01-01

    A flat plate radiant energy collector is providing having a transparent cover. The cover has a V-corrugated shape which reduces the amount of energy reflected by the cover away from the flat plate absorber of the collector.

  11. Electron microscope studies

    SciTech Connect

    Crewe, A.V.; Kapp, O.H.

    1992-07-01

    This is a report covering the research performed in the Crewe laboratory between 1964 and 1992. Because of limitations of space we have provided relatively brief summaries of the major research directions of the facility during these years. A complete bibliography has been included and we have referenced groups of pertinent publications at the beginning of each section. This report summarizes our efforts to develop better electron microscopes and chronicles many of the experimental programs, in materials science and biology, that acted both as a stimulus to better microscope design and also as a testing ground for many instrumental innovations.

  12. Shock compression dynamics under a microscope

    NASA Astrophysics Data System (ADS)

    Dlott, Dana D.

    2017-01-01

    Our laboratory has developed a tabletop laser miniflyer launcher used for a wide variety of studies in the physical and chemical sciences. The flyers, typically 0.7 mm in diameter, can be used to shock microgram quantities of interesting materials. Frequently 100 shock experiments per day are performed. A microscope objective transmits the photon Doppler velocimeter (PDV) flyer plate diagnostic and various laser beams, and collects signals from the shocked materials that can be transmitted to video cameras, spectrographs, streak cameras, etc. In this paper I describe the flyer plate apparatus and then discuss three recent efforts: (1) Shock dissipation in nanoporous media; (2) Probing micropressures in shocked microstructured media; and (3) Shock initiation of nanotechnology reactive materials.

  13. Making Art with Microscopes

    ERIC Educational Resources Information Center

    Benedis-Grab, Gregory

    2011-01-01

    Interdisciplinary teaching is a great way to focus on overarching concepts and help students make connections across disciplines. Historically, art and science have been connected disciplines. The botanical prints of the 18th and 19th centuries and early work with microscopes are two examples of a need for strong artistic skills in the science…

  14. Microscope on Mars

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image taken at Meridiani Planum, Mars by the panoramic camera on the Mars Exploration Rover Opportunity shows the rover's microscopic imager (circular device in center), located on its instrument deployment device, or 'arm.' The image was acquired on the ninth martian day or sol of the rover's mission.

  15. Microscope on Mars

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image taken at Meridiani Planum, Mars by the panoramic camera on the Mars Exploration Rover Opportunity shows the rover's microscopic imager (circular device in center), located on its instrument deployment device, or 'arm.' The image was acquired on the ninth martian day or sol of the rover's mission.

  16. Making Art with Microscopes

    ERIC Educational Resources Information Center

    Benedis-Grab, Gregory

    2011-01-01

    Interdisciplinary teaching is a great way to focus on overarching concepts and help students make connections across disciplines. Historically, art and science have been connected disciplines. The botanical prints of the 18th and 19th centuries and early work with microscopes are two examples of a need for strong artistic skills in the science…

  17. IMIS: An intelligence microscope imaging system

    NASA Technical Reports Server (NTRS)

    Caputo, Michael; Hunter, Norwood; Taylor, Gerald

    1994-01-01

    Until recently microscope users in space relied on traditional microscopy techniques that required manual operation of the microscope and recording of observations in the form of written notes, drawings, or photographs. This method was time consuming and required the return of film and drawings from space for analysis. No real-time data analysis was possible. Advances in digital and video technologies along with recent developments in article intelligence will allow future space microscopists to have a choice of three additional modes of microscopy: remote coaching, remote control, and automation. Remote coaching requires manual operations of the microscope with instructions given by two-way audio/video transmission during critical phases of the experiment. When using the remote mode of microscopy, the Principal Investigator controls the microscope from the ground. The automated mode employs artificial intelligence to control microscope functions and is the only mode that can be operated in the other three modes as well. The purpose of this presentation is to discuss the advantages and disadvantages of the four modes of of microscopy and how the IMIS, a proposed intelligent microscope imaging system, can be used as a model for developing and testing concepts, operating procedures, and equipment design of specifications required to provide a comprehensive microscopy/imaging capability onboard Space Station Freedom.

  18. IMIS: An intelligence microscope imaging system

    NASA Technical Reports Server (NTRS)

    Caputo, Michael; Hunter, Norwood; Taylor, Gerald

    1994-01-01

    Until recently microscope users in space relied on traditional microscopy techniques that required manual operation of the microscope and recording of observations in the form of written notes, drawings, or photographs. This method was time consuming and required the return of film and drawings from space for analysis. No real-time data analysis was possible. Advances in digital and video technologies along with recent developments in article intelligence will allow future space microscopists to have a choice of three additional modes of microscopy: remote coaching, remote control, and automation. Remote coaching requires manual operations of the microscope with instructions given by two-way audio/video transmission during critical phases of the experiment. When using the remote mode of microscopy, the Principal Investigator controls the microscope from the ground. The automated mode employs artificial intelligence to control microscope functions and is the only mode that can be operated in the other three modes as well. The purpose of this presentation is to discuss the advantages and disadvantages of the four modes of of microscopy and how the IMIS, a proposed intelligent microscope imaging system, can be used as a model for developing and testing concepts, operating procedures, and equipment design of specifications required to provide a comprehensive microscopy/imaging capability onboard Space Station Freedom.

  19. X-ray laser microscope apparatus

    DOEpatents

    Suckewer, Szymon; DiCicco, Darrell S.; Hirschberg, Joseph G.; Meixler, Lewis D.; Sathre, Robert; Skinner, Charles H.

    1990-01-01

    A microscope consisting of an x-ray contact microscope and an optical microscope. The optical, phase contrast, microscope is used to align a target with respect to a source of soft x-rays. The source of soft x-rays preferably comprises an x-ray laser but could comprise a synchrotron or other pulse source of x-rays. Transparent resist material is used to support the target. The optical microscope is located on the opposite side of the transparent resist material from the target and is employed to align the target with respect to the anticipated soft x-ray laser beam. After alignment with the use of the optical microscope, the target is exposed to the soft x-ray laser beam. The x-ray sensitive transparent resist material whose chemical bonds are altered by the x-ray beam passing through the target mater GOVERNMENT LICENSE RIGHTS This invention was made with government support under Contract No. De-FG02-86ER13609 awarded by the Department of Energy. The Government has certain rights in this invention.

  20. Autophagy: a new phase in the maturation of growth plate chondrocytes is regulated by HIF, mTOR and AMP kinase.

    PubMed

    Srinivas, Vickram; Bohensky, Jolene; Shapiro, Irving M

    2009-01-01

    The overall goal of the investigation was to examine autophagy in the growth plate and to ascertain how this process was regulated. Herein, we show that in the postmitotic maturing zone of the growth plate, chondrocytes express an autophagic phenotype. This robust and particulate immunohistochemical response provides direct evidence that autophagy is a new and transient stage in the chondrocyte maturation pathway. We found that induction of autophagy was regulated by mTOR, a sensor of cellular metabolism. When mTOR was inhibited, changes in LC3 fluorescence indicated that this kinase regulated development of the autophagic state. To determine if AMP kinase was required for chondrocyte autophagy, we suppressed its expression in N1511 cells using siRNA technology. When these cells were serum starved, a condition that triggers autophagy, there was no change in LC3 distribution. This result confirmed that AMP kinase was required for the induction of the autophagic response. Based on the 2 studies described above, and our previous observation that HIF-1 is required for the induction of autophagy, we put forward the hypothesis that autophagy is regulated by the activities of AMP kinase and mTOR in a HIF-1-dependent manner. Once autophagy is activated, the postmitotic chondrocytes would be expected to remain viable in their unique microenvironment and complete their life cycle.

  1. Microscopic features of moving traffic jams

    NASA Astrophysics Data System (ADS)

    Kerner, Boris S.; Klenov, Sergey L.; Hiller, Andreas; Rehborn, Hubert

    2006-04-01

    Empirical and numerical microscopic features of moving traffic jams are presented. Based on a single vehicle data analysis, it is found that within wide moving jams, i.e., between the upstream and downstream jam fronts there is a complex microscopic spatiotemporal structure. This jam structure consists of alternations of regions in which traffic flow is interrupted and flow states of low speeds associated with “moving blanks” within the jam. Moving blanks within a wide moving jam resemble electron holes in the valence band of semiconductors: As the moving blanks that propagate upstream appear due to downstream vehicle motion within the jam, so appearance of electron holes moving with the electric field results from electron motion against the electric field in the valence band of semiconductors. Empirical features of moving blanks are found. Based on microscopic models in the context of the Kerner’s three-phase traffic theory, physical reasons for moving blanks emergence within wide moving jams are disclosed. Microscopic nonlinear effects of moving jam emergence, propagation, and dissolution as well as a diverse variety of hysteresis effects in freeway traffic associated with phase transitions and congested traffic propagation are numerically investigated. Microscopic structure of moving jam fronts is numerically studied and compared with empirical results.

  2. Soft x-ray laser microscope. Final report

    SciTech Connect

    Suckewer, P.I.

    1990-10-01

    The program consisted of two phases (Phase I and Phase II). The goal of the Phase I (first year program) was to design and construct the Soft X-ray Laser Contact Microscope. Such microscope was constructed and adapted to PPL`s 18.2nm soft X-ray Laser (SXL), which in turn was modified and prepared for microscopy experiments. Investigation of the photoresist response to 18.2nm laser radiation and transmissivity of 0.1m thick silicion-nitride (Si{sub 3}N{sub 4}) windows were important initial works. The goal of the first year of Phase II was to construct X-ray contact microscope in combination with existing optical phase microscope, already used by biologists. In the second year of Phase II study of dehydrated Horeseshoe Crab and Hela cancer cells were performed with COXRALM. Also during Phase II, the Imaging X-Ray Laser Microscope (IXRALM) was designed and constructed. This paper describes the development of each of the microscopes and their application for research.

  3. Measurement of Stress Distribution Around a Circular Hole in a Plate Under Bending Moment Using Phase-shifting Method with Reflective Polariscope Arrangement

    NASA Astrophysics Data System (ADS)

    Baek, Tae Hyun

    Photoelasticity is one of the most widely used whole-field optical methods for stress analysis. The technique of birefringent coatings, also called the method of photoelastic coatings, extends the classical procedures of model photoelasticity to the measurement of surface strains in opaque models made of any structural material. Photoelastic phase-shifting method can be used for the determination of the phase values of isochromatics and isoclinics. In this paper, photoelastic phase-shifting technique and conventional Babinet-Soleil compensation method were utilized to analyze a specimen with a triangular hole and a circular hole under bending. Photoelastic phase-shifting technique is whole-field measurement. On the other hand, conventional compensation method is point measurement. Three groups of results were obtained by phase-shifting method with reflective polariscope arrangement, conventional compensation method and FEM simulation, respectively. The results from the first two methods agree with each other relatively well considering experiment error. The advantage of photoelastic phase-shifting method is that it is possible to measure the stress distribution accurately close to the edge of holes.

  4. Wave-Based Inversion & Imaging for the Optical Quadrature Microscope

    SciTech Connect

    Lehman, S K

    2005-10-27

    The Center for Subsurface Sensing & Imaging System's (CenSSIS) Optical Quadrature Microscope (OQM) is a narrow band visible light microscope capable of measuring both amplitude and phase of a scattered field. We develop a diffraction tomography, that is, wave-based, scattered field inversion and imaging algorithm, for reconstructing the refractive index of the scattering object.

  5. Sputtering and ion plating

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The proceedings of a conference on sputtering and ion plating are presented. Subjects discussed are: (1) concepts and applications of ion plating, (2) sputtering for deposition of solid film lubricants, (3) commercial ion plating equipment, (4) industrial potential for ion plating and sputtering, and (5) fundamentals of RF and DC sputtering.

  6. Ultra high frequency imaging acoustic microscope

    DOEpatents

    Deason, Vance A.; Telschow, Kenneth L.

    2006-05-23

    An imaging system includes: an object wavefront source and an optical microscope objective all positioned to direct an object wavefront onto an area of a vibrating subject surface encompassed by a field of view of the microscope objective, and to direct a modulated object wavefront reflected from the encompassed surface area through a photorefractive material; and a reference wavefront source and at least one phase modulator all positioned to direct a reference wavefront through the phase modulator and to direct a modulated reference wavefront from the phase modulator through the photorefractive material to interfere with the modulated object wavefront. The photorefractive material has a composition and a position such that interference of the modulated object wavefront and modulated reference wavefront occurs within the photorefractive material, providing a full-field, real-time image signal of the encompassed surface area.

  7. Femtosecond scanning tunneling microscope

    SciTech Connect

    Taylor, A.J.; Donati, G.P.; Rodriguez, G.; Gosnell, T.R.; Trugman, S.A.; Some, D.I.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). By combining scanning tunneling microscopy with ultrafast optical techniques we have developed a novel tool to probe phenomena on atomic time and length scales. We have built and characterized an ultrafast scanning tunneling microscope in terms of temporal resolution, sensitivity and dynamic range. Using a novel photoconductive low-temperature-grown GaAs tip, we have achieved a temporal resolution of 1.5 picoseconds and a spatial resolution of 10 nanometers. This scanning tunneling microscope has both cryogenic and ultra-high vacuum capabilities, enabling the study of a wide range of important scientific problems.

  8. Ion photon emission microscope

    DOEpatents

    Doyle, Barney L.

    2003-04-22

    An ion beam analysis system that creates microscopic multidimensional image maps of the effects of high energy ions from an unfocussed source upon a sample by correlating the exact entry point of an ion into a sample by projection imaging of the ion-induced photons emitted at that point with a signal from a detector that measures the interaction of that ion within the sample. The emitted photons are collected in the lens system of a conventional optical microscope, and projected on the image plane of a high resolution single photon position sensitive detector. Position signals from this photon detector are then correlated in time with electrical effects, including the malfunction of digital circuits, detected within the sample that were caused by the individual ion that created these photons initially.

  9. Electron microscope aperture system

    NASA Technical Reports Server (NTRS)

    Heinemann, K. (Inventor)

    1976-01-01

    An electron microscope including an electron source, a condenser lens having either a circular aperture for focusing a solid cone of electrons onto a specimen or an annular aperture for focusing a hollow cone of electrons onto the specimen, and an objective lens having an annular objective aperture, for focusing electrons passing through the specimen onto an image plane are described. The invention also entails a method of making the annular objective aperture using electron imaging, electrolytic deposition and ion etching techniques.

  10. Microscopic enteritis: Bucharest consensus.

    PubMed

    Rostami, Kamran; Aldulaimi, David; Holmes, Geoffrey; Johnson, Matt W; Robert, Marie; Srivastava, Amitabh; Fléjou, Jean-François; Sanders, David S; Volta, Umberto; Derakhshan, Mohammad H; Going, James J; Becheanu, Gabriel; Catassi, Carlo; Danciu, Mihai; Materacki, Luke; Ghafarzadegan, Kamran; Ishaq, Sauid; Rostami-Nejad, Mohammad; Peña, A Salvador; Bassotti, Gabrio; Marsh, Michael N; Villanacci, Vincenzo

    2015-03-07

    Microscopic enteritis (ME) is an inflammatory condition of the small bowel that leads to gastrointestinal symptoms, nutrient and micronutrient deficiency. It is characterised by microscopic or sub-microscopic abnormalities such as microvillus changes and enterocytic alterations in the absence of definite macroscopic changes using standard modern endoscopy. This work recognises a need to characterize disorders with microscopic and submicroscopic features, currently regarded as functional or non-specific entities, to obtain further understanding of their clinical relevance. The consensus working party reviewed statements about the aetiology, diagnosis and symptoms associated with ME and proposes an algorithm for its investigation and treatment. Following the 5(th) International Course in Digestive Pathology in Bucharest in November 2012, an international group of 21 interested pathologists and gastroenterologists formed a working party with a view to formulating a consensus statement on ME. A five-step agreement scale (from strong agreement to strong disagreement) was used to score 21 statements, independently. There was strong agreement on all statements about ME histology (95%-100%). Statements concerning diagnosis achieved 85% to 100% agreement. A statement on the management of ME elicited agreement from the lowest rate (60%) up to 100%. The remaining two categories showed general agreement between experts on clinical presentation (75%-95%) and pathogenesis (80%-90%) of ME. There was strong agreement on the histological definition of ME. Weaker agreement on management indicates a need for further investigations, better definitions and clinical trials to produce quality guidelines for management. This ME consensus is a step toward greater recognition of a significant entity affecting symptomatic patients previously labelled as non-specific or functional enteropathy.

  11. Microscopic enteritis: Bucharest consensus

    PubMed Central

    Rostami, Kamran; Aldulaimi, David; Holmes, Geoffrey; Johnson, Matt W; Robert, Marie; Srivastava, Amitabh; Fléjou, Jean-François; Sanders, David S; Volta, Umberto; Derakhshan, Mohammad H; Going, James J; Becheanu, Gabriel; Catassi, Carlo; Danciu, Mihai; Materacki, Luke; Ghafarzadegan, Kamran; Ishaq, Sauid; Rostami-Nejad, Mohammad; Peña, A Salvador; Bassotti, Gabrio; Marsh, Michael N; Villanacci, Vincenzo

    2015-01-01

    Microscopic enteritis (ME) is an inflammatory condition of the small bowel that leads to gastrointestinal symptoms, nutrient and micronutrient deficiency. It is characterised by microscopic or sub-microscopic abnormalities such as microvillus changes and enterocytic alterations in the absence of definite macroscopic changes using standard modern endoscopy. This work recognises a need to characterize disorders with microscopic and submicroscopic features, currently regarded as functional or non-specific entities, to obtain further understanding of their clinical relevance. The consensus working party reviewed statements about the aetiology, diagnosis and symptoms associated with ME and proposes an algorithm for its investigation and treatment. Following the 5th International Course in Digestive Pathology in Bucharest in November 2012, an international group of 21 interested pathologists and gastroenterologists formed a working party with a view to formulating a consensus statement on ME. A five-step agreement scale (from strong agreement to strong disagreement) was used to score 21 statements, independently. There was strong agreement on all statements about ME histology (95%-100%). Statements concerning diagnosis achieved 85% to 100% agreement. A statement on the management of ME elicited agreement from the lowest rate (60%) up to 100%. The remaining two categories showed general agreement between experts on clinical presentation (75%-95%) and pathogenesis (80%-90%) of ME. There was strong agreement on the histological definition of ME. Weaker agreement on management indicates a need for further investigations, better definitions and clinical trials to produce quality guidelines for management. This ME consensus is a step toward greater recognition of a significant entity affecting symptomatic patients previously labelled as non-specific or functional enteropathy. PMID:25759526

  12. Color Laser Microscope

    NASA Astrophysics Data System (ADS)

    Awamura, D.; Ode, T.; Yonezawa, M.

    1987-04-01

    A color laser microscope utilizing a new color laser imaging system has been developed for the visual inspection of semiconductors. The light source, produced by three lasers (Red; He-Ne, Green; Ar, Blue; He-Cd), is deflected horizontally by an AOD (Acoustic Optical Deflector) and vertically by a vibration mirror. The laser beam is focused in a small spot which is scanned over the sample at high speed. The light reflected back from the sample is reformed to contain linear information by returning to the original vibration mirror. The linear light is guided to the CCD image sensor where it is converted into a video signal. Individual CCD image sensors are used for each of the three R, G, or B color image signals. The confocal optical system with its laser light source yields a color TV monitor image with no flaring and a much sharper resolution than that of the conventional optical microscope. The AOD makes possible a high speed laser scan and a NTSC or PAL TV video signal is produced in real time without any video memory. Since the light source is composed of R, G, and B laser beams, color separation superior to that of white light illumination is achieved. Because of the photometric linearity of the image detector, the R, G, and B outputs of the system are most suitably used for hue analysis. The CCD linear image sensors in the optical system produce no geometrical distortion, and good color registration is available principally. The output signal can be used for high accuracy line width measuring. The many features of the color laser microscope make it ideally suited for the visual inspection of semiconductor processing. A number of these systems have already been installed in such a capacity. The Color Laser Microscope can also be a very useful tool for the fields of material engineering and biotechnology.

  13. Microscopic Image Inside 'Endurance'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This magnified view of a rock surface inside 'Endurance Crater' combines four frames taken by the microscopic imager on NASA's Mars Exploration Rover Opportunity during the rover's 142nd martian day, or sol, on June 17, 2004. This patch of rock is in a region of contact between a layer of rock corresponding to bedrock that Opportunity examined earlier at 'Eagle Crater' and the next-lower layer. The area imaged is about 6 centimeters (2.4 inches) on each side.

  14. Thimble microscope system

    NASA Astrophysics Data System (ADS)

    Kamal, Tahseen; Rubinstein, Jaden; Watkins, Rachel; Cen, Zijian; Kong, Gary; Lee, W. M.

    2016-12-01

    Wearable computing devices, e.g. Google Glass, Smart watch, embodies the new human design frontier, where technology interfaces seamlessly with human gestures. During examination of any subject in the field (clinic, surgery, agriculture, field survey, water collection), our sensory peripherals (touch and vision) often go hand-in-hand. The sensitivity and maneuverability of the human fingers are guided with tight distribution of biological nerve cells, which perform fine motor manipulation over a range of complex surfaces that is often out of sight. Our sight (or naked vision), on the other hand, is generally restricted to line of sight that is ill-suited to view around corner. Hence, conventional imaging methods are often resort to complex light guide designs (periscope, endoscopes etc) to navigate over obstructed surfaces. Using modular design strategies, we constructed a prototype miniature microscope system that is incorporated onto a wearable fixture (thimble). This unique platform allows users to maneuver around a sample and take high resolution microscopic images. In this paper, we provide an exposition of methods to achieve a thimble microscopy; microscope lens fabrication, thimble design, integration of miniature camera and liquid crystal display.

  15. Virtual pinhole confocal microscope

    SciTech Connect

    George, J.S.; Rector, D.M.; Ranken, D.M.; Peterson, B.; Kesteron, J.

    1999-06-01

    Scanned confocal microscopes enhance imaging capabilities, providing improved contrast and image resolution in 3-D, but existing systems have significant technical shortcomings and are expensive. Researchers at Los Alamos National Laboratory have developed a novel approach--virtual pinhole confocal microscopy--that uses state of the art illumination, detection, and data processing technologies to produce an imager with a number of advantages: reduced cost, faster imaging, improved efficiency and sensitivity, improved reliability and much greater flexibility. Work at Los Alamos demonstrated proof of principle; prototype hardware and software have been used to demonstrate technical feasibility of several implementation strategies. The system uses high performance illumination, patterned in time and space. The authors have built functional confocal imagers using video display technologies (LCD or DLP) and novel scanner based on a micro-lens array. They have developed a prototype system for high performance data acquisition and processing, designed to support realtime confocal imaging. They have developed algorithms to reconstruct confocal images from a time series of spatially sub-sampled images; software development remains an area of active development. These advances allow the collection of high quality confocal images (in fluorescence, reflectance and transmission modes) with equipment that can inexpensively retrofit to existing microscopes. Planned future extensions to these technologies will significantly enhance capabilities for microscopic imaging in a variety of applications, including confocal endoscopy, and confocal spectral imaging.

  16. Comparison of turbulent-flow chromatography with automated solid-phase extraction in 96-well plates and liquid-liquid extraction used as plasma sample preparation techniques for liquid chromatography-tandem mass spectrometry.

    PubMed

    Zimmer, D; Pickard, V; Czembor, W; Müller, C

    1999-08-27

    Turbulent flow chromatography (TFC) combined with the high selectivity and sensitivity of tandem mass spectrometry (MS-MS) is a new technique for the fast direct analysis of drugs from crude plasma. TFC in the 96-well plate format reduces significantly the time required for sample clean-up in the laboratory. For example, for 100 samples the workload for a technician is reduced from about 8 h by a manual liquid-liquid extraction (LLE) assay to about 1 h in the case of TFC. Sample clean-up and analysis are performed on-line on the same column. Similar chromatographic performance and validation results were achieved using HTLC Turbo-C18 columns (Cohesive Technologies) and Oasis HLB extraction columns (Waters). One 96-well plate with 96 plasma samples is analyzed within 5.25 h, corresponding to 3.3 min per sample. Compared to this LLE and analysis of 96 samples takes about 16 h. Two structurally different and highly protein bound compounds, drug A and drug B, were analyzed under identical TFC conditions and the assays were fully validated for the application to toxicokinetics studies (compliant with Good Laboratory Practices-GLP). The limit of quantitation was 1.00 microg/l and the linear working range covered three orders of magnitude for both drugs. In the case of drug A the quality of analysis by TFC was similar to the reference LLE assay and slightly better than automated solid-phase extraction in 96-well plates. The accuracy was -3.1 to 6.7% and the precision was 3.1 to 6.8% in the case of drug A determined for dog plasma by TFC-MS-MS. For drug B the accuracy was -3.7 to 3.5% and the precision was 1.6 to 5.4% for rat plasma, which is even slightly better than what was achieved with the validated protein precipitation assay.

  17. Battery plate containing filler with conductive coating

    NASA Technical Reports Server (NTRS)

    Rowlette, John J. (Inventor)

    1985-01-01

    The plate (10) comprises a matrix or binder resin phase (12) in which is dispersed particulate, conductive tin oxide such as tin oxide coated glass fibers (14). A monopolar plate (11) is prepared by coating a layer (18) of electrolytically active material onto a surface of the plate (10). Tin oxide is prevented from reduction by coating a surface of the plate (10) with a conductive, impervious layer resistant to reduction such as a thin film (22) of lead adhered to the plate with a layer (21) of conductive adhesive. The plate (10) can be formed by casting a molten dispersion from mixer (36) onto a sheet (30) of lead foil or by passing an assembly of a sheet (41) of resin, a sheet (43) of fiberglass and a sheet (45) of lead between the nip of heated rollers (48, 50).

  18. Battery plate containing filler with conductive coating

    NASA Technical Reports Server (NTRS)

    Rowlette, John J. (Inventor)

    1986-01-01

    The plate (10) comprises a matrix or binder resin phase (12) in which is dispersed particulate, conductive tin oxide such as tin oxide coated glass fibers (14). A monopolar plate (11) is prepared by coating a layer (18) of electrolytically active material onto a surface of the plate (10). Tin oxide is prevented from reduction by coating a surface of the plate (10) with a conductive, impervious layer resistant to reduction such as a thin film (22) of lead adhered to the plate with a layer (21) of conductive adhesive. The plate (10) can be formed by casting a molten dispersion from mixer (36) onto a sheet (30) of lead foil or by passing an assembly of a sheet (41) of resin, a sheet (43) of fiberglass and a sheet (45) of lead between the nip of heated rollers (48, 50).

  19. Plate mode velocities in graphite/epoxy plates

    NASA Technical Reports Server (NTRS)

    Prosser, W. H.; Gorman, M. R.

    1994-01-01

    Measurements of the velocities of the extensional and flexural plate modes were made along three directions of propagation in four graphite/epoxy composite plates. The acoustic signals were generated by simulated acoustic emission events (pencil lead breaks or Hsu-Neilson sources) and detected by by broadband ultrasonic transducers. The first arrival of the extensional plate mode, which is nondispersive at low frequencies, was measured at a number of different distances from the source along the propagation direction of interest. The velocity was determined by plotting the distance versus arrival time and computing its slope. Because of the large dispersion of the flexural mode, a Fourier phase velocity technique was used to characterize this mode. The velocity was measured up to a frequency of 160 kHz. Theoretical predictions of the velocities of these modes were also made and compared with experimental observations. Classical plate theory yields good agreement with the measured extensional velocities. For predictions of the dispersion of the flexural mode, Mindlin plates theory, which includes the effects of shear deformation and rotatory inertia was shown to give better agreement with the experimental measurements.

  20. Constructing a multi-scan synchrotron X-ray microscope to study the function of osteocyte canaliculi in mouse bone

    NASA Astrophysics Data System (ADS)

    Nango, Nobuhito; Kubota, Shogo; Yashiro, Wataru; Momose, Atsushi; Takada, Yasunari; Matsuo, Koichi

    2012-07-01

    Formulating a multi-scan method applied to an X-ray microscope CT with synchrotron radiation, we attempted to analyze the 3D functional structure of osteocyte canaliculi inside the cortical bone of a mouse tibia. We employed a two-method combination to scan the same position of the specimen. To extract the internal bone canalicular structure, we first combined a Talbot interferometer with an X-ray microscope, and applied a differential phase imaging method to measure the absolute value of bone mineral around the canaliculi. Next, we used the X-ray microscope without the Talbot interferometer under a defocus condition, moving the specimen toward the zone plate by 6 mm. This defocus contrast method visualizes the canaliculi by emphasizing the edges of the bone. We performed CT scans by the two configurations and precisely aligned resultant 3D images so that the same position in the specimen is compared. We could extract the osteocyte canaliculi and evaluate the mineral density of their surroundings. The degree of mineralization varied for each osteocyte lacuna and canaliculus. The multi-scan microscopic X-ray CT is a powerful tool for analyzing bone mineralization.

  1. Super-resolution imaging of ciliary microdomains in isolated olfactory sensory neurons using a custom STED microscope

    NASA Astrophysics Data System (ADS)

    Meyer, Stephanie A.; Ozbay, Baris; Restrepo, Diego; Gibson, Emily A.

    2014-03-01

    We performed super-resolution imaging of isolated olfactory sensory neurons (OSNs) using a custom-built Stimulated Emission Depletion (STED) microscope. The design for the STED microscope is based on the system developed in the laboratory of Dr. Stefan Hell1. Our system is capable of imaging with sub-diffraction limited resolution simultaneously in two color channels (at Atto 590/Atto 647N wavelengths). A single, pulsed laser source (ALP; Fianium, Inc.) generates all four laser beams, two excitation and two STED. The two STED beams are coupled into one polarization maintaining (PM) fiber and the two excitation beams into another. They are then collimated and both STED beams pass through a vortex phase plate (RPC Photonics) to allow shaping into a donut at the focus of the objective lens. The beams are then combined and sent into an inverted research microscope (IX-71; Olympus Inc.) allowing widefield epifluorescence, brightfield and DIC imaging on the same field of view as STED imaging. A fast piezo stage scans the sample during STED and confocal imaging. The fluorescent signals from the two color channels are detected with two avalanche photodiodes (APD) after appropriate spectral filtering. The resolution of the system was characterized by imaging 40 nm fluorescent beads as ~60 nm (Atto 590) and ~50 nm (Atto 647N). We performed STED imaging on immunolabeled isolated OSNs tagged at the CNGA2 and ANO2 proteins. The STED microscope allows us to resolve ciliary CNGA2 microdomains of ~54 nm that were blurred in confocal.

  2. Constructing a multi-scan synchrotron X-ray microscope to study the function of osteocyte canaliculi in mouse bone

    SciTech Connect

    Nango, Nobuhito; Kubota, Shogo; Yashiro, Wataru; Momose, Atsushi; Takada, Yasunari; Matsuo, Koichi

    2012-07-31

    Formulating a multi-scan method applied to an X-ray microscope CT with synchrotron radiation, we attempted to analyze the 3D functional structure of osteocyte canaliculi inside the cortical bone of a mouse tibia. We employed a two-method combination to scan the same position of the specimen. To extract the internal bone canalicular structure, we first combined a Talbot interferometer with an X-ray microscope, and applied a differential phase imaging method to measure the absolute value of bone mineral around the canaliculi. Next, we used the X-ray microscope without the Talbot interferometer under a defocus condition, moving the specimen toward the zone plate by 6 mm. This defocus contrast method visualizes the canaliculi by emphasizing the edges of the bone. We performed CT scans by the two configurations and precisely aligned resultant 3D images so that the same position in the specimen is compared. We could extract the osteocyte canaliculi and evaluate the mineral density of their surroundings. The degree of mineralization varied for each osteocyte lacuna and canaliculus. The multi-scan microscopic X-ray CT is a powerful tool for analyzing bone mineralization.

  3. Role of the Tectonic inheritance on multi-phased rifting of the Sperchios Basin (Greece), north-western boundary of the Aegean Plate

    NASA Astrophysics Data System (ADS)

    Chanier, Frank; Ferriere, Jacky; Averbuch, Olivier; Gaullier, Virginie; Graveleau, Fabien

    2017-04-01

    The Aegean plate is characterized by active extension, mainly occurring during the Pliocene to the Quaternary. This extensional deformation is considered as the upper plate response to the rollback of the northward subducting African slab. In Central Greece, it has led to the formation of large rifted basins, such as the Corinth Rift or the Sperchios basin. Both are experiencing active tectonics, as seismicity and morphotectonic analysis demonstrate. In this study, we focus on the East-West Sperchios basin, which has developed obliquely across a major NW-SE thrust zone separating the internal and external zones of the Hellenides mountain range. This range has developed since the late Jurassic, with the obduction of the Maliac Ocean, up to the Eocene times, with the collision of the External Zones. The Frontal Thrust of the internal Hellenides constitutes a major discontinuity within the crust, which may have influenced the development of the Sperchios basin. Our field investigations indicate that the southern boundary of the Sperchios rifted basin shows several large E-W to NW-SE normal faults that accommodate km-scale offsets. Our fault plane analysis showed a variety of fault orientations, all with dip-slip slicken-slides. It suggests at least two major episodes of extension, starting with a NE-SW direction in the Pliocene and then followed by a N-S direction. The latter is still active today and confirmed by geodetic studies and by earthquakes focal mechanisms. The early NE-SW episode of extension (mainly Pliocene in age) is expressed in the field by low-angle normal faults, dipping 20 to 30° northeastward, more or less parallel to the Frontal thrust of the Internal Hellenides. These low-angle normal faults are separating the platform limestones of the external zones from the upper tectonic units of the internal zones. We suggest that these low-angle normal faults are corresponding to the earlier stage of rifting and that they are rooted in the major thrust

  4. Q: How do Microscopes Work?

    ERIC Educational Resources Information Center

    Zimov, Sarah

    2004-01-01

    Microscopes allow scientists to examine everyday objects in extraordinary ways. They provide high-resolution images that show objects in fine detail. This brief article describes the many types of microscopes and how they are used in different scientific venues.

  5. Q: How do Microscopes Work?

    ERIC Educational Resources Information Center

    Zimov, Sarah

    2004-01-01

    Microscopes allow scientists to examine everyday objects in extraordinary ways. They provide high-resolution images that show objects in fine detail. This brief article describes the many types of microscopes and how they are used in different scientific venues.

  6. Nanoscale X-Ray Microscopic Imaging of Mammalian Mineralized Tissue

    PubMed Central

    Andrews, Joy C.; Almeida, Eduardo; van der Meulen, Marjolein C.H.; Alwood, Joshua S.; Lee, Chialing; Liu, Yijin; Chen, Jie; Meirer, Florian; Feser, Michael; Gelb, Jeff; Rudati, Juana; Tkachuk, Andrei; Yun, Wenbing; Pianetta, Piero

    2010-01-01

    A novel hard transmission X-ray microscope (TXM) at the Stanford Synchrotron Radiation Light-source operating from 5 to 15 keV X-ray energy with 14 to 30 µm2 field of view has been used for high-resolution (30–40 nm) imaging and density quantification of mineralized tissue. TXM is uniquely suited for imaging of internal cellular structures and networks in mammalian mineralized tissues using relatively thick (50 µm), untreated samples that preserve tissue micro- and nanostructure. To test this method we performed Zernike phase contrast and absorption contrast imaging of mouse cancellous bone prepared under different conditions of in vivo loading, fixation, and contrast agents. In addition, the three-dimensional structure was examined using tomography. Individual osteocytic lacunae were observed embedded within trabeculae in cancellous bone. Extensive canalicular networks were evident and included processes with diameters near the 30–40 nm instrument resolution that have not been reported previously. Trabecular density was quantified relative to rod-like crystalline apatite, and rod-like trabecular struts were found to have 51–54% of pure crystal density and plate-like areas had 44–53% of crystal density. The nanometer resolution of TXM enables future studies for visualization and quantification of ultrastructural changes in bone tissue resulting from osteoporosis, dental disease, and other pathologies. PMID:20374681

  7. Light Microscopy Microscope Experiment

    NASA Image and Video Library

    2016-02-04

    Ground testing for the first confocal Light Microscopy Microscope (LMM) Experiment. Procter and Gamble is working with NASA Glenn scientists to prepare for a study that examines product stabilizers in a microgravity environment. The particles in the tube glow orange because they have been fluorescently tagged with a dye that reacts to green laser lights to allow construction of a 3D image point by point. The experiment, which will be sent to the ISS later this year, will help P&G develop improved product stabilizers to extend shelf life and develop more environmentally friendly packaging.

  8. Low frequency acoustic microscope

    DOEpatents

    Khuri-Yakub, Butrus T.

    1986-11-04

    A scanning acoustic microscope is disclosed for the detection and location of near surface flaws, inclusions or voids in a solid sample material. A focused beam of acoustic energy is directed at the sample with its focal plane at the subsurface flaw, inclusion or void location. The sample is scanned with the beam. Detected acoustic energy specularly reflected and mode converted at the surface of the sample and acoustic energy reflected by subsurface flaws, inclusions or voids at the focal plane are used for generating an interference signal which is processed and forms a signal indicative of the subsurface flaws, inclusions or voids.

  9. Nanosecond electron microscopes

    PubMed

    Bostanjoglo; Elschner; Mao; Nink; Weingartner

    2000-04-01

    Combining electron optics, fast electronics and pulsed lasers, a transmission and a photoelectron emission microscope were built, which visualize events in thin films and on surfaces with a time resolution of several nanoseconds. The high-speed electron microscopy is capable to track fast laser-induced processes in metals below the ablation threshold, which are difficult to detect by other imaging techniques. The material response to nano- and femtosecond laser pulses was found to be very different. It was dominated by thermo/chemocapillary flow and chemical reactions in the case of nanosecond pulses, and by mechanical deformations and non-thermal electron emission after a femtosecond pulse.

  10. Atomic Force Microscope

    SciTech Connect

    Day, R.D.; Russell, P.E.

    1988-12-01

    The Atomic Force Microscope (AFM) is a recently developed instrument that has achieved atomic resolution imaging of both conducting and non- conducting surfaces. Because the AFM is in the early stages of development, and because of the difficulty of building the instrument, it is currently in use in fewer than ten laboratories worldwide. It promises to be a valuable tool for obtaining information about engineering surfaces and aiding the .study of precision fabrication processes. This paper gives an overview of AFM technology and presents plans to build an instrument designed to look at engineering surfaces.

  11. Adirondack Under the Microscope

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image was taken by the Mars Exploration Rover Spirit front hazard-identification camera after the rover's first post-egress drive on Mars Sunday, Jan. 15, 2004. Engineers drove the rover approximately 3 meters (10 feet) from the Columbia Memorial Station toward the first rock target, seen in the foreground. The football-sized rock was dubbed Adirondack because of its mountain-shaped appearance. Scientists have begun using the microscopic imager instrument at the end of the rover's robotic arm to examine the rock and understand how it formed.

  12. Adirondack Under the Microscope

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image was taken by the Mars Exploration Rover Spirit front hazard-identification camera after the rover's first post-egress drive on Mars Sunday, Jan. 15, 2004. Engineers drove the rover approximately 3 meters (10 feet) from the Columbia Memorial Station toward the first rock target, seen in the foreground. The football-sized rock was dubbed Adirondack because of its mountain-shaped appearance. Scientists have begun using the microscopic imager instrument at the end of the rover's robotic arm to examine the rock and understand how it formed.

  13. Solid state optical microscope

    DOEpatents

    Young, I.T.

    1983-08-09

    A solid state optical microscope wherein wide-field and high-resolution images of an object are produced at a rapid rate by utilizing conventional optics with a charge-coupled photodiode array. A galvanometer scanning mirror, for scanning in one of two orthogonal directions is provided, while the charge-coupled photodiode array scans in the other orthogonal direction. Illumination light from the object is incident upon the photodiodes, creating packets of electrons (signals) which are representative of the illuminated object. The signals are then processed, stored in a memory, and finally displayed as a video signal. 2 figs.

  14. Solid state optical microscope

    DOEpatents

    Young, Ian T.

    1983-01-01

    A solid state optical microscope wherein wide-field and high-resolution images of an object are produced at a rapid rate by utilizing conventional optics with a charge-coupled photodiode array. A galvanometer scanning mirror, for scanning in one of two orthogonal directions is provided, while the charge-coupled photodiode array scans in the other orthogonal direction. Illumination light from the object is incident upon the photodiodes, creating packets of electrons (signals) which are representative of the illuminated object. The signals are then processed, stored in a memory, and finally displayed as a video signal.

  15. Microscopic structure of gelatin coacervates.

    PubMed

    Mohanty, Biswaranjan; Bohidar, H B

    2005-07-01

    Microscopic structure of simple coacervates of gelatin having concentration approximately 130 g/l were studied at 25 degrees C by atomic force microscopy (AFM), rheology, small angle neutron scattering (SANS), UV absorption and circular dichroism (CD) techniques. The behavior of viscoelastic exponents Delta' and Delta'' of storage and loss modulii (G'(omega) approximately omega Delta', G''(omega) approximately omega Delta") revealed that, Delta' = 0.25+/-0.01 and Delta'' = 0.78+/-0.1 for coacervates. The mass fractal dimension 'd(f)' for coacervate was found to be 2.27, which attributed a compact heterogeneous network structure to the coacervates. This is supported by AFM pictures. The CD and UV absorption data indicated presence of helical structures inside the coacervates phase. SANS results showed the existence of a single length scale associated with this system identified as gelatin persistence length, zeta = 27+/-2 A. These studies indicate that the coacervate phase is a low dimensional dense heterogeneous material comprised of strongly interconnected triple helices which imparts a large storage modulus to this material.

  16. Microscopic Tribotactic Walkers

    NASA Astrophysics Data System (ADS)

    Steimel, Joshua; Aragones, Juan; Alexander-Katz, Alfredo

    2014-03-01

    The translational motion of a rotating object near a surface is strongly dependent on the friction between the object and the surface. The process of friction is inherently directional and the friction coefficient can be anisotropic even in the absence of a net friction coefficient gradient. This is macroscopically observed in the ordering motif of some animal hair or scales and a microscopic analog can be imagined where the friction coefficient is determined by the strength and density of reversible bonds between a rotating object and the substrate. For high friction coefficients most of the rotational motion is converted into translational motion; conversely for low friction coefficients the object primarily rotates in place. We exploited this property to design and test a new class of motile system that displays tribotaxis, which is the process by which an object detects differences in the local friction coefficient and moves accordingly either to regions of higher or lower friction. These synthetic tribotactic microscopic walkers, composed of a pair of functionalized superparamagnetic beads, detect gradients in the spatial friction coefficient and migrate towards high friction areas when actuated in a random fashion. The effective friction between the walkers and the substrate is controlled by the local density of active receptors in the substrate. The tribotactic walkers also displayed trapping in high friction areas where the density of free receptors is higher.

  17. Forensic Scanning Electron Microscope

    NASA Astrophysics Data System (ADS)

    Keeley, R. H.

    1983-03-01

    The scanning electron microscope equipped with an x-ray spectrometer is a versatile instrument which has many uses in the investigation of crime and preparation of scientific evidence for the courts. Major applications include microscopy and analysis of very small fragments of paint, glass and other materials which may link an individual with a scene of crime, identification of firearms residues and examination of questioned documents. Although simultaneous observation and chemical analysis of the sample is the most important feature of the instrument, other modes of operation such as cathodoluminescence spectrometry, backscattered electron imaging and direct x-ray excitation are also exploited. Marks on two bullets or cartridge cases can be compared directly by sequential scanning with a single beam or electronic linkage of two instruments. Particles of primer residue deposited on the skin and clothing when a gun is fired can be collected on adhesive tape and identified by their morphology and elemental composition. It is also possible to differentiate between the primer residues of different types of ammunition. Bullets may be identified from the small fragments left behind as they pass through the body tissues. In the examination of questioned documents the scanning electron microscope is used to establish the order in which two intersecting ink lines were written and to detect traces of chemical markers added to the security inks on official documents.

  18. High thermal capacity cold plate/hot plate

    NASA Technical Reports Server (NTRS)

    Hwangbo, H.; Mcever, W. S.

    1985-01-01

    The results of an analytical study to determine the feasibility of a novel two-phase cold plate/hot plate (CPHP) are presented. A key feature of the CPHP is the use of capillary forces to separate the liquid and vapor phases and distribute the liquid over the evaporating/condensing surface. The liquid phase is held by capillary forces in a reservoir and is carried to the evaporating surface by a wick. The reservoir is replenished at intervals from a valved external liquid supply line. In the hot plate mode, liquid accumulates in the reservoir and is removed by an external condensate line. Performance requirements for the device were capability of handling a power density of 4 watts/sq cm, an outlet quality (percentage of vapor flow to total flow) greater than 90 percent, and operation in a 0-g environment. An analytical model of CPHP operation was developed which concentrated on the liquid and vapor flows. It was found that the liquid carrying capillary grooves of rectangular cross-section gave significantly better predicted performance than V-shaped grooves. Using the analytical model, capillary groove width and length, vapor channel dimensions, and other parameters were selected to meet the performance requirements with a 100-percent margin.

  19. Microscopic Faraday rotation measurement system using pulsed magnetic fields.

    PubMed

    Egami, Shigeki; Watarai, Hitoshi

    2009-09-01

    Microscopic Faraday rotation measurement system using a pulsed magnetic field has been constructed, which can be applied to micron sized diamagnetic and paramagnetic materials. A pulsed magnetic coil could generate a maximum magnetic flux density of about 12 T. The performance of the microscopic Faraday rotation apparatus was demonstrated by the measurement of the Verdet constant V of a polystyrene particle, after the calibration of the pulsed magnetic flux density using a glass plate as a standard material. Also, the magneto-optical rotation dispersion of some diamagnetic substances have been measured and analyzed with V=alambda(-2)+b. The values of a and b were compared to their magnetic susceptibilities.

  20. Williamson Polishing & Plating Site

    EPA Pesticide Factsheets

    Williamson Polishing & Plating Co. Inc. was a plating shop located in the Martindale-Brightwood neighborhood of Indianapolis. The facility conducted job shop polishing and electroplating services. The vacant site contains a 14,651-square-foot building.