Fabrication and electric measurements of nanostructures inside transmission electron microscope.
Chen, Qing; Peng, Lian-Mao
2011-06-01
Using manipulation holders specially designed for transmission electron microscope (TEM), nanostructures can be characterized, measured, modified and even fabricated in-situ. In-situ TEM techniques not only enable real-time study of structure-property relationships of materials at atomic scale, but also provide the ability to control and manipulate materials and structures at nanoscale. This review highlights in-situ electric measurements and in-situ fabrication and structure modification using manipulation holder inside TEM. Copyright © 2011 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banu, Afreen; Rathod, Vandana, E-mail: drvandanarathod@rediffmail.com; Ranganath, E.
Highlights: {yields} Silver nanoparticle production by using Rhizopus stolonifer. {yields} Antibacterial activity of silver nanoparticles against extended spectrum {beta}-lactamase producing (ESBL) strains of Enterobacteriaceae. {yields} Synergistic effect of antibiotics with silver nanoparticles towards ESBL-strains. {yields} Characterization of silver nanoparticles made by UV-vis spectra, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transformed infrared (FTIR) spectroscopy, atomic force microscopy (AFM). -- Abstract: This report focuses on the synthesis of silver nanoparticles using the fungus, Rhizopus stolonifer and its antimicrobial activity. Research in nanotechnology highlights the possibility of green chemistry pathways to produce technologically important nanomaterials. Characterization of newly synthesized silvermore » nanoparticles was made by UV-visible absorption spectroscopy, scanning electron microscope (SEM), transmission electron microscope (TEM), Fourier transform infrared (FTIR) spectroscopy and atomic force microscope (AFM). TEM micrograph revealed the formation of spherical nanoparticles with size ranging between 3 and 20 nm. The biosynthesized silver nanoparticles (AgNPs) showed excellent antibacterial activity against ESBL-strains which includes E. coli, Proteus. sp. and Klebsiella sp.« less
Three dimensional profile measurement using multi-channel detector MVM-SEM
NASA Astrophysics Data System (ADS)
Yoshikawa, Makoto; Harada, Sumito; Ito, Keisuke; Murakawa, Tsutomu; Shida, Soichi; Matsumoto, Jun; Nakamura, Takayuki
2014-07-01
In next generation lithography (NGL) for the 1x nm node and beyond, the three dimensional (3D) shape measurements such as side wall angle (SWA) and height of feature on photomask become more critical for the process control. Until today, AFM (Atomic Force Microscope), X-SEM (cross-section Scanning Electron Microscope) and TEM (Transmission Electron Microscope) tools are normally used for 3D measurements, however, these techniques require time-consuming preparation and observation. And both X-SEM and TEM are destructive measurement techniques. This paper presents a technology for quick and non-destructive 3D shape analysis using multi-channel detector MVM-SEM (Multi Vision Metrology SEM), and also reports its accuracy and precision.
Straubinger, Rainer; Beyer, Andreas; Volz, Kerstin
2016-06-01
A reproducible way to transfer a single crystalline sample into a gas environmental cell holder for in situ transmission electron microscopic (TEM) analysis is shown in this study. As in situ holders have only single-tilt capability, it is necessary to prepare the sample precisely along a specific zone axis. This can be achieved by a very accurate focused ion beam lift-out preparation. We show a step-by-step procedure to prepare the sample and transfer it into the gas environmental cell. The sample material is a GaP/Ga(NAsP)/GaP multi-quantum well structure on Si. Scanning TEM observations prove that it is possible to achieve atomic resolution at very high temperatures in a nitrogen environment of 100,000 Pa.
Atomic-Scale Insights into the Oxidation of Aluminum.
Nguyen, Lan; Hashimoto, Teruo; Zakharov, Dmitri N; Stach, Eric A; Rooney, Aidan P; Berkels, Benjamin; Thompson, George E; Haigh, Sarah J; Burnett, Tim L
2018-01-24
The surface oxidation of aluminum is still poorly understood despite its vital role as an insulator in electronics, in aluminum-air batteries, and in protecting the metal against corrosion. Here we use atomic resolution imaging in an environmental transmission electron microscope (TEM) to investigate the mechanism of aluminum oxide formation. Harnessing electron beam sputtering we prepare a pristine, oxide-free metal surface in the TEM. This allows us to study, as a function of crystallographic orientation and oxygen gas pressure, the full oxide growth regime from the first oxide nucleation to a complete saturated, few-nanometers-thick surface film.
Atomic-Scale Insights into the Oxidation of Aluminum
Nguyen, Lan; Hashimoto, Teruo; Zakharov, Dmitri N.; ...
2018-01-10
Here, the surface oxidation of aluminum is still poorly understood despite its vital role as an insulator in electronics, in aluminum–air batteries, and in protecting the metal against corrosion. Here we use atomic resolution imaging in an environmental transmission electron microscope (TEM) to investigate the mechanism of aluminum oxide formation. Harnessing electron beam sputtering we prepare a pristine, oxide-free metal surface in the TEM. This allows us to study, as a function of crystallographic orientation and oxygen gas pressure, the full oxide growth regime from the first oxide nucleation to a complete anometers-thick surface film.
Naval Research Laboratory Major Facilities 2008
2008-10-01
Development Laboratory • Secure Supercomputing Facility • CBD/Tilghman Island IR Field Evaluation Facility • Ultra-Short-Pulse Laser Effects Research...EMI Test Facility • Proximity Operations Testbed GENERAL INFORMATION • Maps EX EC U TI V E D IR EC TO RA TE Code 1100 – Institute for Nanoscience...facility: atomic force microscope (AFM); benchtop transmission electron microscope (TEM); cascade probe station; critical point dryer ; dual beam focused
Resolution Quality and Atom Positions in Sub-?ngstr?m Electron Microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Keefe, Michael A.; Allard Jr, Lawrence Frederick; Blom, Douglas Allen
2005-01-01
John Cowley pioneered use of transmission electron microscopy (TEM) for high-resolution imaging and helped spur improvements in resolution that enabled researchers to pinpoint the positions of all but the lightest atoms within a crystal structure. Sub-{angstrom} capabilities allow imaging of even the lightest atoms. Initially achieved with software aberration correction (focal-series reconstruction of the specimen exit-surface wave), sub-{angstrom} imaging will become commonplace for next-generation electron microscopes with hardware-corrected lenses and monochromated electron beams. Currently, advanced HR-TEMs can image columns of light atoms (carbon, oxygen, nitrogen) in complex structures, including the lithium atoms present in battery materials. The ability to determinemore » whether an image peak represents one single atom (or atom column) instead of several depends on the resolution of the HR-(S)TEM. Rayleigh's resolution criterion, an accepted standard in optics, was derived as a means for judging when two image intensity peaks from two sources of light (stars) are distinguishable from a single source. Atom spacings closer than the Rayleigh limit have been resolved in HR-TEM, suggesting that it may be useful to consider other limits, such as the Sparrow resolution criterion. From the viewpoint of the materials scientist, it is important to be able to use the image to determine whether an image feature represents one or more atoms (resolution), and where the atoms (or atom columns) are positioned relative to one another (resolution quality). When atoms and the corresponding image peaks are separated by more than the Rayleigh limit of the HR-(S)TEM, it is possible to adjust imaging parameters so that relative peak positions in the image correspond to relative atom positions in the specimen. When atoms are closer than the Rayleigh limit, we must find the relationship of the peak position to the atom position by peak fitting or, if we have a suitable model, by image simulation.« less
Rempel, А А; Van Renterghem, W; Valeeva, А А; Verwerft, M; Van den Berghe, S
2017-09-07
The superlattice and domain structures exhibited by ordered titanium monoxide Ti 5 O 5 are disrupted by low energy electron beam irradiation. The effect is attributed to the disordering of the oxygen and titanium sublattices. This disordering is caused by the displacement of both oxygen and titanium atoms by the incident electrons and results in a phase transformation of the monoclinic phase Ti 5 O 5 into cubic B1 titanium monoxide. In order to determine the energies required for the displacement of titanium or oxygen atoms, i.e. threshold displacement energies, a systematic study of the disappearance of superstructure reflections with increasing electron energy and electron bombardment dose has been performed in situ in a transmission electron microscope (TEM). An incident electron energy threshold between 120 and 140 keV has been observed. This threshold can be ascribed to the displacements of titanium atoms with 4 as well as with 5 oxygen atoms as nearest neighbors. The displacement threshold energy of titanium atoms in Ti 5 O 5 corresponding with the observed incident electron threshold energy lies between 6.0 and 7.5 eV. This surprisingly low value can be explained by the presence of either one or two vacant oxygen lattice sites in the nearest neighbors of all titanium atoms.
NASA Astrophysics Data System (ADS)
Xie, Y.; Sohn, S.; Schroers, J.; Cha, J. J.
2017-11-01
Crystallization is a complex process that involves multiscale physics such as diffusion of atomic species over multiple length scales, thermodynamic energy considerations, and multiple possible intermediate states. In situ crystallization experiments inside a transmission electron microscope (TEM) using nanostructured metallic glasses (MGs) provide a unique platform to study directly crystallization kinetics and pathways. Here, we study the embryonic state of eutectic growth using Pt-Ni-Cu-P MG nanorods under in situ TEM. We directly observe the nucleation and growth of a Ni-rich polymorphic phase, followed by the nucleation and slower growth of a Cu-rich phase. The suppressed growth kinetics of the Cu-rich phase is attributed to locally changing chemical compositions. In addition, we show that growth can be controlled by incorporation of an entire nucleus instead of individual atoms. Such a nucleus has to align with the crystallographic orientation of a larger grain before it can be incorporated into the crystal. By directly observing the crystallization processes, particularly the early stages of non-polymorphic growth, in situ TEM crystallization studies of MG nanostructures provide a wealth of information, some of which can be applied to typical bulk crystallization.
Chromatic Aberration Correction for Atomic Resolution TEM Imaging from 20 to 80 kV.
Linck, Martin; Hartel, Peter; Uhlemann, Stephan; Kahl, Frank; Müller, Heiko; Zach, Joachim; Haider, Max; Niestadt, Marcel; Bischoff, Maarten; Biskupek, Johannes; Lee, Zhongbo; Lehnert, Tibor; Börrnert, Felix; Rose, Harald; Kaiser, Ute
2016-08-12
Atomic resolution in transmission electron microscopy of thin and light-atom materials requires a rigorous reduction of the beam energy to reduce knockon damage. However, at the same time, the chromatic aberration deteriorates the resolution of the TEM image dramatically. Within the framework of the SALVE project, we introduce a newly developed C_{c}/C_{s} corrector that is capable of correcting both the chromatic and the spherical aberration in the range of accelerating voltages from 20 to 80 kV. The corrector allows correcting axial aberrations up to fifth order as well as the dominating off-axial aberrations. Over the entire voltage range, optimum phase-contrast imaging conditions for weak signals from light atoms can be adjusted for an optical aperture of at least 55 mrad. The information transfer within this aperture is no longer limited by chromatic aberrations. We demonstrate the performance of the microscope using the examples of 30 kV phase-contrast TEM images of graphene and molybdenum disulfide, showing unprecedented contrast and resolution that matches image calculations.
Resolution Quality and Atom Positions in Sub-Angstrom Electron Microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Keefe, Michael A.; Allard, Lawrence F.; Blom, Douglas A.
2005-02-15
Ability to determine whether an image peak represents one single atom or several depends on resolution of the HR-(S)TEM. Rayleigh's resolution criterion, an accepted standard in optics, was derived as a means for judging when two image intensity peaks from two sources of light (stars) are distinguishable from a single source. Atom spacings closer than the Rayleigh limit have been resolved in HR-TEM, suggesting that it may be useful to consider other limits, such as the Sparrow resolution criterion. From the viewpoint of the materials scientist, it is important to be able to use the image to determine whether anmore » image feature represents one or more atoms (resolution), and where the atoms (or atom columns) are positioned relative to one another (resolution quality). When atoms and the corresponding image peaks are separated by more than the Rayleigh limit of the HR-(S)TEM, it is possible to adjust imaging parameters so that relative peak positions in the image correspond to relative atom positions in the specimen. When atoms are closer than the Rayleigh limit, we must find the relationship of the peak position to the atom position by peak fitting or, if we have a suitable model, by image simulation. Our Rayleigh-Sparrow parameter QRS reveals the ''resolution quality'' of a microscope image. QRS values greater than 1 indicate a clearly resolved twin peak, while values between 1 and 0 mean a lower-quality resolution and an image with peaks displaced from the relative atom positions. The depth of the twin-peak minimum can be used to determine the value of QRS and the true separation of the atom peaks that sum to produce the twin peak in the image. The Rayleigh-Sparrow parameter can be used to refine relative atom positions in defect images where atoms are closer than the Rayleigh limit of the HR-(S)TEM, reducing the necessity for full image simulations from large defect models.« less
Zhang, Xiaobin; Oshima, Yoshifumi
2016-10-01
An atomic resolution phase map, which enables us to observe charge distribution or magnetic properties at an atomic scale, has been pointed out to be retrieved by transport of intensity equation (TIE) when taking two atomic-resolved transmission electron microscope (TEM) images of small defocus difference. In this work, we firstly obtained the atomic-resolved phase maps of an exfoliated molybdenum disulfide sheet using spherical aberration-corrected transmission electron microscope. We successfully observed 60° grain boundary of mechanically exfoliated monolayer molybdenum disulfide sheet. The relative phase shift of a single molybdenum atomic column to the column consisting of two sulfur atoms was obtained to be about 0.01 rad on average, which was about half lower than the simulated TIE phase map, indicating that the individual atomic sites can be distinguished qualitatively. The appropriate condition for retrieving atomic-resolved TIE phase maps was briefly discussed. © The Author 2016. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
2008-01-01
information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD...microscopy ( AEM ), to characterize a variety of III-V semiconductor thin films. The materials investigated include superlattices based on the InAs- GaSb...technique. TEM observations were performed using a Philips-CM 200 FEG transmission electron microscope equipped with a field emission gun, operated at an
Loukanov, Alexandre; Filipov, Chavdar; Mladenova, Polina; Toshev, Svetlin; Emin, Saim
2016-04-01
The object of the present report is to provide a method for a visualization of DNA in TEM by complementary labeling of cytosine with guanine derivative, which contains platinum as contrast-enhanced heavy element. The stretched single-chain DNA was obtained by modifying double-stranded DNA. The labeling method comprises the following steps: (i) stretching and adsorption of DNA on the support film of an electron microscope grid (the hydrophobic carbon film holding negative charged DNA); (ii) complementary labeling of the cytosine bases from the stretched single-stranded DNA pieces on the support film with platinum containing guanine derivative to form base-specific hydrogen bond; and (iii) producing a magnified image of the base-specific labeled DNA. Stretched single-stranded DNA on a support film is obtained by a rapid elongation of DNA pieces on the surface between air and aqueous buffer solution. The attached platinum-containing guanine derivative serves as a high-dense marker and it can be discriminated from the surrounding background of support carbon film and visualized by use of conventional TEM observation at 100 kV accelerated voltage. This method allows examination of specific nucleic macromolecules through atom-by-atom analysis and it is promising way toward future DNA-sequencing or molecular diagnostics of nucleic acids by electron microscopic observation. © 2016 Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
Eyring, LeRoy
1980-01-01
Describes methods for using the high-resolution electron microscope in conjunction with other tools to reveal the identity and environment of atoms. Problems discussed include the ultimate structure of real crystalline solids including defect structure and the mechanisms of chemical reactions. (CS)
NASA Astrophysics Data System (ADS)
Zahoor, Ahmad; Teng, Qiu; Wang, Haiqiao; Choudhry, M. A.; Li, Xiaoyu
2011-06-01
Ag@polycarbazole coaxial nanocables (CNCs) have been successfully fabricated by the oxidative polymerization of carbazole over Ag nanowires (NWs) in acetonitrile. The morphology of Ag NWs and CNCs was studied by employing a transmission electron microscope (TEM) and a scanning electron microscope (SEM), which showed them to be a monodisperse material. The thickness of the polymer sheath was found to be 5 nm to 8 nm by observation under a high-resolution transmission electron microscope (HR-TEM). Energy dispersive X-ray spectroscopy (EDS), FT-IR and Raman measurements were used to characterize the polymer sheath, which demonstrated it to be a carbon material in polycarbazole form. X-ray photoelectron spectroscopy (XPS) was used for an interfacial study, which revealed that Ag surface atoms remained intact during polymer growth. In the end, zeta potential showed that the dispersion stability of Ag NWs increased due to polymer encapsulation, which is significant to obtain a particular alignment for anisotropic measurement of electrical conductivity.
What transmission electron microscopes can visualize now and in the future.
Müller, Shirley A; Aebi, Ueli; Engel, Andreas
2008-09-01
Our review concentrates on the progress made in high-resolution transmission electron microscopy (TEM) in the past decade. This includes significant improvements in sample preparation by quick-freezing aimed at preserving the specimen in a close-to-native state in the high vacuum of the microscope. Following advances in cold stage and TEM vacuum technology systems, the observation of native, frozen hydrated specimens has become a widely used approach. It fostered the development of computer guided, fully automated low-dose data acquisition systems allowing matched pairs of images and diffraction patterns to be recorded for electron crystallography, and the collection of entire tilt-series for electron tomography. To achieve optimal information transfer to atomic resolution, field emission electron guns combined with acceleration voltages of 200-300 kV are now routinely used. The outcome of these advances is illustrated by the atomic structure of mammalian aquaporin-O and by the pore-forming bacterial cytotoxin ClyA resolved to 12 A. Further, the Yersinia injectisome needle, a bacterial pseudopilus and the binding of phalloidin to muscle actin filaments were chosen to document the advantage of the high contrast offered by dedicated scanning transmission electron microscopy (STEM) and/or the STEM's ability to measure the mass of protein complexes and directly link this to their shape. Continued progress emerging from leading research laboratories and microscope manufacturers will eventually enable us to determine the proteome of a single cell by electron tomography, and to more routinely solve the atomic structure of membrane proteins by electron crystallography.
NASA Astrophysics Data System (ADS)
Wan, Hao; Si, Naichao; Wang, Quan; Zhao, Zhenjiang
2018-02-01
Morphology variation, composition alteration and microstructure changes in 1060 aluminum irradiated with 50 keV helium ions were characterized by field emission scanning electron microscopy (FESEM) equipped with x-ray elemental scanning, 3D measuring laser microscope and transmission electron microscope (TEM). The results show that, helium ions irradiation induced surface damage and Si-rich aggregates in the surfaces of irradiated samples. Increasing the dose of irradiation, more damages and Si-rich aggregates would be produced. Besides, defects such as dislocations, dislocation loops and dislocation walls were the primary defects in the ion implanted layer. The forming of surface damages were related with preferentially sputtering of Al component. While irradiation-enhanced diffusion and irradiation-induced segregation resulted in the aggregation of impurity atoms. And the aggregation ability of impurity atoms were discussed based on the atomic radius, displacement energy, lattice binding energy and surface binding energy.
Sakalli, Y; Trettin, R
2017-07-01
Tricalciumsilicate (C 3 S, Alite) is the major component of the Portland cement clinker. Hydration of Alite is decisive in influencing the properties of the resulting material. This is due to its high content in cement. The mechanism of the hydration of C 3 S is very complicated and not yet fully understood. There are different models describing the hydration of C 3 S in various ways. In this work for a better understanding of hydration mechanism, the hydrated C 3 S was investigated by using the transmission electron microscope (TEM) and for the first time, the samples for the investigations were prepared by using of focused ion beam from sintered pellets of C 3 S. Also, an FEI Talos F200x with an integrated Super-X EDS system was used for the investigations. FEI Talos F200X combines outstanding high-resolution S/TEM and TEM imaging with energy dispersive X-ray spectroscopy signal detection, and 3D chemical characterization with compositional mapping. TEM is a very powerful tool for material science. A high energy beam of electrons passes through a very thin sample, and the interactions between the electrons and the atoms can be used to observe the structure of the material and other features in the structure. TEM can be used to study the growth of layers and their composition. TEM produces high-resolution, two-dimensional images and will be used for a wide range of educational, science and industry applications. Chemical analysis can also be performed. The purpose of these investigations was to get the information about the composition of the C-S-H phases and some details of the nanostructure of the C-S-H phases. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.
Studying dynamic processes in liquids by TEM/STEM/DTEM
NASA Astrophysics Data System (ADS)
Abellan, Patricia; Evans, James; Woehl, Taylor; Jungjohann, Katherine; Parent, Lucas; Arslan, Ilke; Ristenpart, William; Browning, Nigel; Mater. Sci. Group Team; Microsc. Group Team; Catal. Sci. Group Collaboration; Ristenpart Res. Group Collaboration
2013-03-01
In order to study dynamic phenomena such as corrosion or catalysis, extreme environmental conditions must be reproduced around the specimen - these include high-temperatures, high-pressures, specific oxidizing/reducing atmospheres or a liquid environment. The use of environmental stages specifically designed to fit in any transmission electron microscope (TEM) allows us to apply the distinct capabilities of each instrument to study dynamic processes. Localized gas/fluid conditions are created around the sample and separated from the high vacuum inside the microscope using hermetically sealed windowed-cells. Advanced capabilities of these techniques include spatial resolutions of ~1 Angstrom or better in aberration corrected instruments or temporal resolutions in the microsecond-nanosecond range in a dynamic TEM (DTEM). Here, unique qualities of the DTEM that benefit the in-situ experiments with gas/fluid environmental cells will be discussed. We also present our results with a liquid stage allowing atomic resolution imaging of nanomaterials in a colloidal suspension, core EEL spectra acquisition, continuous flow, controlled growth of nanocrystals and systematic calibration of the effect of the electron dose on silver nuclei formation.
Artefacts in geometric phase analysis of compound materials.
Peters, Jonathan J P; Beanland, Richard; Alexe, Marin; Cockburn, John W; Revin, Dmitry G; Zhang, Shiyong Y; Sanchez, Ana M
2015-10-01
The geometric phase analysis (GPA) algorithm is known as a robust and straightforward technique that can be used to measure lattice strains in high resolution transmission electron microscope (TEM) images. It is also attractive for analysis of aberration-corrected scanning TEM (ac-STEM) images that resolve every atom column, since it uses Fourier transforms and does not require real-space peak detection and assignment to appropriate sublattices. Here it is demonstrated that, in ac-STEM images of compound materials with compositionally distinct atom columns, an additional geometric phase is present in the Fourier transform. If the structure changes from one area to another in the image (e.g. across an interface), the change in this additional phase will appear as a strain in conventional GPA, even if there is no lattice strain. Strategies to avoid this pitfall are outlined. Copyright © 2015 Elsevier B.V. All rights reserved.
Performance of low-voltage STEM/TEM with delta corrector and cold field emission gun.
Sasaki, Takeo; Sawada, Hidetaka; Hosokawa, Fumio; Kohno, Yuji; Tomita, Takeshi; Kaneyama, Toshikatsu; Kondo, Yukihito; Kimoto, Koji; Sato, Yuta; Suenaga, Kazu
2010-08-01
To reduce radiation damage caused by the electron beam and to obtain high-contrast images of specimens, we have developed a highly stabilized transmission electron microscope equipped with a cold field emission gun and spherical aberration correctors for image- and probe-forming systems, which operates at lower acceleration voltages than conventional transmission electron microscopes. A delta-type aberration corrector is designed to simultaneously compensate for third-order spherical aberration and fifth-order 6-fold astigmatism. Both were successfully compensated in both scanning transmission electron microscopy (STEM) and transmission electron microscopy (TEM) modes in the range 30-60 kV. The Fourier transforms of raw high-angle annular dark field (HAADF) images of a Si[110] sample revealed spots corresponding to lattice spacings of 111 and 96 pm at 30 and 60 kV, respectively, and those of raw TEM images of an amorphous Ge film with gold particles showed spots corresponding to spacings of 91 and 79 pm at 30 and 60 kV, respectively. Er@C(82)-doped single-walled carbon nanotubes, which are carbon-based samples, were successfully observed by HAADF-STEM imaging with an atomic-level resolution.
Gong, Yue; Zhang, Jienan; Jiang, Liwei; Shi, Jin-An; Zhang, Qinghua; Yang, Zhenzhong; Zou, Dongli; Wang, Jiangyong; Yu, Xiqian; Xiao, Ruijuan; Hu, Yong-Sheng; Gu, Lin; Li, Hong; Chen, Liquan
2017-03-29
We report a method for in situ atomic-scale observation of electrochemical delithiation in a working all-solid-state battery using a state-of-the-art chip based in situ transmission electron microscopy (TEM) holder and focused ion beam milling to prepare an all-solid-state lithium-ion battery sample. A battery consisting of LiCoO 2 cathode, LLZO solid state electrolyte and gold anode was constructed, delithiated and observed in an aberration corrected scanning transmission electron microscope at atomic scale. We found that the pristine single crystal LiCoO 2 became nanosized polycrystal connected by coherent twin boundaries and antiphase domain boundaries after high voltage delithiation. This is different from liquid electrolyte batteries, where a series of phase transitions take place at LiCoO 2 cathode during delithiation. Both grain boundaries become more energy favorable along with extraction of lithium ions through theoretical calculation. We also proposed a lithium migration pathway before and after polycrystallization. This new methodology could stimulate atomic scale in situ scanning/TEM studies of battery materials and provide important mechanistic insight for designing better all-solid-state battery.
NASA Astrophysics Data System (ADS)
Wang, Wei; Bhandari, Sagar; Yi, Wei; Bell, David; Westervelt, Robert; Kaxiras, Efthimios
2012-02-01
Ultra-thin membranes such as graphene[1] are of great importance for basic science and technology applications. Graphene sets the ultimate limit of thinness, demonstrating that a free-standing single atomic layer not only exists but can be extremely stable and strong [2--4]. However, both theory [5, 6] and experiments [3, 7] suggest that the existence of graphene relies on intrinsic ripples that suppress the long-wavelength thermal fluctuations which otherwise spontaneously destroy long range order in a two dimensional system. Here we show direct imaging of the atomic features in graphene including the ripples resolved using monochromatic aberration-corrected transmission electron microscopy (TEM). We compare the images observed in TEM with simulated images based on an accurate first-principles total potential. We show that these atomic scale features can be mapped through accurate first-principles simulations into high resolution TEM contrast. [1] Geim, A. K. & Novoselov, K. S. Nat. Mater. 6, 183-191, (2007). [2] Novoselov, K. S.et al. Science 306, 666-669, (2004). [3] Meyer, J. C. et al. Nature 446, 60-63, (2007). [4] Lee, C., Wei, X. D., Kysar, J. W. & Hone, J. Science 321, 385-388, (2008). [5] Nelson, D. R. & Peliti, L. J Phys-Paris 48, 1085-1092, (1987). [6] Fasolino, A., Los, J. H. & Katsnelson, M. I. Nat. Mater. 6, 858-861, (2007). [7] Meyer, J. C. et al. Solid State Commun. 143, 101-109, (2007).
Synthesis of gold nanoparticles with graphene oxide.
Wang, Wenshuo; He, Dawei; Zhang, Xiqing; Duan, Jiahua; Wu, Hongpeng; Xu, Haiteng; Wang, Yongsheng
2014-05-01
Single sheets of functionalized graphene oxide are derived through chemical exfoliation of natural flake graphite. We present an effective synthetic method of graphene-gold nanoparticles hybrid nanocomposites. AFM (Atomic Force Microscope) was used to measure the thickness of the individual GO nanosheet. FTIR (Fourier transform infrared) spectroscopy was used to verify the attachment of oxygen functionalities on the surface of graphene oxide. TEM (Transmission Electron Microscope) data revealed the average diameters of the gold colloids and characterized the composite particles situation. Absorption spectroscopy showed that before and after synthesis the gold particle size did not change. Our studies indicate that the hybrid is potential substrates for catalysts and biosensors.
NASA Astrophysics Data System (ADS)
Pankov, A. M.; Bredikhina, A. S.; Kulnitskiy, B. A.; Perezhogin, I. A.; Skryleva, E. A.; Parkhomenko, Yu. N.; Popov, M. Yu.; Blank, V. D.
2017-08-01
A pressure-induced phase transition of multiwall carbon nanotubes (MWNT) to a new structure at room temperature is studied using a shear diamond anvil cell, X-ray photoelectron spectra (XPS), transmission electron microscope (TEM) and Raman procedures. We observe a cardinal pressure-induced change in the nanoparticles shape from multi-shell tubes to multi-shell spheres. MWNT transforms to onions with layers cross-linked by sp3 bonds under the 45-65 GPa compressive stress combined with shear deformation at room temperature. TEM and XPS results show that about 40% of the carbon atoms in the new phase are sp3-bounded.
Toward atomic-scale bright-field electron tomography for the study of fullerene-like nanostructures.
Bar Sadan, Maya; Houben, Lothar; Wolf, Sharon G; Enyashin, Andrey; Seifert, Gotthard; Tenne, Reshef; Urban, Knut
2008-03-01
We present the advancement of electron tomography for three-dimensional structure reconstruction of fullerene-like particles toward atomic-scale resolution. The three-dimensional reconstruction of nested molybdenum disulfide nanooctahedra is achieved by the combination of low voltage operation of the electron microscope with aberration-corrected phase contrast imaging. The method enables the study of defects and irregularities in the three-dimensional structure of individual fullerene-like particles on the scale of 2-3 A. Control over shape, size, and atomic architecture is a key issue in synthesis and design of functional nanoparticles. Transmission electron microscopy (TEM) is the primary technique to characterize materials down to the atomic level, albeit the images are two-dimensional projections of the studied objects. Recent advancements in aberration-corrected TEM have demonstrated single atom sensitivity for light elements at subångström resolution. Yet, the resolution of tomographic schemes for three-dimensional structure reconstruction has not surpassed 1 nm3, preventing it from becoming a powerful tool for characterization in the physical sciences on the atomic scale. Here we demonstrate that negative spherical aberration imaging at low acceleration voltage enables tomography down to the atomic scale at reduced radiation damage. First experimental data on the three-dimensional reconstruction of nested molybdenum disulfide nanooctahedra is presented. The method is applicable to the analysis of the atomic architecture of a wide range of nanostructures where strong electron channeling is absent, in particular to carbon fullerenes and inorganic fullerenes.
Multifarious applications of atomic force microscopy in forensic science investigations.
Pandey, Gaurav; Tharmavaram, Maithri; Rawtani, Deepak; Kumar, Sumit; Agrawal, Y
2017-04-01
Forensic science is a wide field comprising of several subspecialties and uses methods derived from natural sciences for finding criminals and other evidence valid in a legal court. A relatively new area; Nano-forensics brings a new era of investigation in forensic science in which instantaneous results can be produced that determine various agents such as explosive gasses, biological agents and residues in different crime scenes and terrorist activity investigations. This can be achieved by applying Nanotechnology and its associated characterization techniques in forensic sciences. Several characterization techniques exist in Nanotechnology and nano-analysis is one such technique that is used in forensic science which includes Electron microscopes (EM) like Transmission (TEM) and Scanning (SEM), Raman microscopy (Micro -Raman) and Scanning Probe Microscopes (SPMs) like Atomic Force Microscope (AFM). Atomic force microscopy enables surface characterization of different materials by examining their morphology and mechanical properties. Materials that are immeasurable such as hair, body fluids, textile fibers, documents, polymers, pressure sensitive adhesives (PSAs), etc. are often encountered during forensic investigations. This review article will mainly focus on the use of AFM in the examination of different evidence such as blood stains, forged documents, human hair samples, ammunitions, explosives, and other such applications in the field of Forensic Science. Copyright © 2017 Elsevier B.V. All rights reserved.
Unexpected Huge Dimerization Ratio in One-Dimensional Carbon Atomic Chains.
Lin, Yung-Chang; Morishita, Shigeyuki; Koshino, Masanori; Yeh, Chao-Hui; Teng, Po-Yuan; Chiu, Po-Wen; Sawada, Hidetaka; Suenaga, Kazutomo
2017-01-11
Peierls theory predicted atomic distortion in one-dimensional (1D) crystal due to its intrinsic instability in 1930. Free-standing carbon atomic chains created in situ in transmission electron microscope (TEM)1-3 are an ideal example to experimentally observe the dimerization behavior of carbon atomic chain within a finite length. We report here a surprisingly huge distortion found in the free-standing carbon atomic chains at 773 K, which is 10 times larger than the value expected in the system. Such an abnormally distorted phase only dominates at the elevated temperatures, while two distinct phases, distorted and undistorted, coexist at lower or ambient temperatures. Atom-by-atom spectroscopy indeed shows considerable variations in the carbon 1s spectra at each atomic site but commonly observes a slightly downshifted π* peak, which proves its sp 1 bonding feature. These results suggest that the simple model, relaxed and straight, is not fully adequate to describe the realistic 1D structure, which is extremely sensitive to perturbations such as external force or boundary conditions.
NASA Astrophysics Data System (ADS)
Behera, M.; Ram, S.
2013-02-01
In this article, we report a facile one-step chemical synthesis of gold (Au) nanoparticles (GNPs) from a new precursor salt i.e., gold hydroxide in the presence of poly(vinyl pyrrolidone) (PVP) polymer. The non-aqueous dispersion of GNPs was comprehensively characterized by UV-Visible, FTIR, zeta potential, and transmission electron microscope (TEM). A strong surface plasmon resonance band at 529 nm in the UV-Visible spectrum confirms the formation of GNPs in the Au colloid. The FTIR spectroscopic results showed that PVP molecules get chemisorbed onto the surface of GNP via O-atom of carbonyl group. A negative zeta potential of (-)16 mV reveals accumulation of nonbonding electrons of O-atom of carbonyl group of PVP molecules on the nanosurface of GNP. TEM images demonstrate a core-shell nanostructure with an Au-crystalline core covered by a thin amorphous PVP-shell. PVP-capped GNPs could be a potential candidate for bio-sensing, catalysis, and other applications.
Phase control of austenitic chrome-nickel steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korkh, M. K., E-mail: KorkhMK@imp.uran.ru; Davidov, D. I., E-mail: davidov@imp.uran.ru; Korkh, J. V., E-mail: Korkh@imp.uran.ru
2015-10-27
The paper presents the results of the comparative study of the possibilities of different structural and magnetic methods for detection and visualization of the strain-induced martensitic phase in low carbon austenitic chromium-nickel steel. Results of TEM, SEM, optical microscopy, atomic and magnetic force microscopy, and magnetic measurements are presented. Amount of the magnetic strain-induced martensite was estimated. We pioneered magnetic force microscopic images of the single domain cluster distribution of the strain-induced martensite in austenite-ferrite materials.
Dorin, Thomas; Donnadieu, Patricia; Chaix, Jean-Marc; Lefebvre, Williams; Geuser, Frédéric De; Deschamps, Alexis
2015-11-01
Transmission Electron Microscopy (TEM) can be used to measure the size distribution and volume fraction of fine scale precipitates in metallic systems. However, such measurements suffer from a number of artefacts that need to be accounted for, related to the finite thickness of the TEM foil and to the projected observation in two dimensions of the microstructure. We present a correction procedure to describe the 3D distribution of disc-like particles and apply this method to the plate-like T1 precipitates in an Al-Li-Cu alloy in two ageing conditions showing different particle morphologies. The precipitates were imaged in a High-Angular Annular Dark Field Microscope (HAADF-STEM). The corrected size distribution is further used to determine the precipitate volume fraction. Atom probe tomography (APT) is finally utilised as an alternative way to measure the precipitate volume fraction and test the validity of the electron microscopy results. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Levin, Barnaby
The transmission electron microscope (TEM) is a powerful tool for characterizing the nanoscale and atomic structure of materials, offering insights into their fundamental physical properties. However, TEM characterization requires very thin samples of material to be placed in a high vacuum environment, and exposed to electron radiation. The high vacuum will induce some materials to evaporate or sublimate, preventing them from being accurately characterized, radiation may damage the sample, causing mass loss, or altering its structure, and structurally delicate samples may collapse and break apart when they are thinned for TEM imaging. This dissertation discusses three different projects in which each of these three difficulties pose challenges to TEM characterization of samples. Firstly, we outline strategies for minimizing radiation damage when characterizing materials in TEM at atomic resolution. We consider types of radiation damage, such as vacancy enhanced displacement, that are not included in some previous discussions of beam damage, and we consider how to minimize damage when using new imaging techniques such as annular bright-field scanning TEM. Our methodology emphasizes the general principle that variation of both signal strength and damage cross section must be considered when choosing an experimental electron beam voltage to minimize damage. Secondly, we consider samples containing sulfur, which is prone to sublimation in high vacuum. TEM is routinely used to attempt to characterize the sulfur distribution in lithium-sulfur battery electrodes, but sublimation artifacts can give misleading results. We demonstrate that sulfur sublimation can be suppressed by using cryogenic TEM to characterize sulfur at very low temperatures, or by using the recently developed airSEM to characterize sulfur without exposing it to vacuum. Finally, we discuss the characterization of aging cadmium yellow paint from early 20th century art masterpieces. The binding medium holding paint particles together bends and curls as sample thickness is reduced to 100 nm, making high resolution characterization challenging. We acquire lattice resolution images of the pigment particles through the binder using high voltage zero-loss energy filtered TEM, allowing us to measure the pigment particle size and determine the pigment crystal structure, providing insight into why the paint is aging and how it was synthesized.
Laser ablation of Au-CuO core-shell nanocomposite in water for optoelectronic devices
NASA Astrophysics Data System (ADS)
Ismail, Raid A.; Abdul-Hamed, Ryam S.
2017-12-01
Core-shell gold-copper oxide Au-CuO nanocomposites were synthesized using laser ablation of CuO target in colloidal solution of Au nanoparticles (NPs). The effect of laser fluence on the structural, morphological, electrical, and optical properties of Au-CuO nanocomposites was investigated using x-ray diffraction (XRD), atomic force microscope (AFM), scanning electron microscope (SEM), transmission electron microscope (TEM), photoluminescence (PL), Fourier transformed infrared spectroscopy (FTIR), Hall measurement, and UV-vis spectroscopy. X-ray diffraction results confirm the formation of polycrystalline Au-CuO NPs with monoclinic structure. The optical energy gap for CuO was 4 eV and for the Au-CuO core-shell nanocomposites was found to be in the range of 3.4-3.7 eV. SEM and TEM investigations revealed that the structure and morphology of Au-CuO core-shell nanocomposites were strongly depending on the laser fluence. A formation of Au-CuO nanospheres and platelets structures was observed. The photoluminescence data showed an emission of broad visible peaks between 407 and 420 nm. The effect of laser fluence on the dark and illuminated I-V characteristics of Au-CuO/n-Si heterojunction photodetectors was investigated and analyzed. The experimental data demonstrated that the photodetector prepared at optimum laser fluence exhibited photosensitivity of 0.6 AW-1 at 800 nm.
Kabe, Ryota; Feng, Xinliang; Adachi, Chihaya; Müllen, Klaus
2014-11-01
A water-soluble surfactant consisting of hexa-peri-hexabenzocoronene (HBC) as hydrophobic aromatic core and hydrophilic carboxy substituents was synthesized. It exhibited a self-assembled nanofiber structure in the solid state. Profiting from the π interactions between the large aromatic core of HBC and graphene, the surfactant mediated the exfoliation of graphite into graphene in polar solvents, which was further stabilized by the bulky hydrophilic carboxylic groups. A graphene dispersion with a concentration as high as 1.1 mg L(-1) containing 2-6 multilayer nanosheets was obtained. The lateral size of the graphene sheets was in the range of 100-500 nm based on atomic force microscope (AFM) and transmission electron microscope (TEM) measurements. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Novel Slide-Ring Material/Natural Rubber Composites with High Damping Property
Wang, Wencai; Zhao, Detao; Yang, Jingna; Nishi, Toshio; Ito, Kohzo; Zhao, Xiuying; Zhang, Liqun
2016-01-01
A novel class of polymers called “slide-ring” (SR) materials with slideable junctions were used for high damping composites for the first time. The SR acts as the high damping phase dispersed in the natural rubber (NR) matrix, and epoxidized natural rubber (ENR) acts as the compatibilizer. The morphological, structural, and mechanical properties of the composites were investigated by atomic force microscope (AFM), transmission electron microscope (TEM), dynamic mechanical thermal analyzer (DMTA), rubber processing analyzer (RPA), and tensile tester. AFM and TEM results showed that the SR phase was uniformly dispersed in the composites, in a small size that is a function of ENR. DMTA and RPA results showed that the damping factor of the composites is much higher than that of NR, especially at room temperatures. Stretch hysteresis was used to study the energy dissipation of the composites at large strains. The results showed that SR and ENR can significantly improve the dissipation efficiency at strains lower than 200% strain. Wide-angle X-ray diffraction was used to study the strain-induced crystallization of the composites. The results indicated that the impact of the SR on the crystallization of NR is mitigated by the insulating effect of ENR. PMID:26949077
NASA Astrophysics Data System (ADS)
Ma, Yao; Gao, Bo; Gong, Min; Willis, Maureen; Yang, Zhimei; Guan, Mingyue; Li, Yun
2017-04-01
In this work, a study of the structure modification, induced by high fluence swift heavy ion radiation, of the SiO2/Si structures and gate oxide interface in commercial 65 nm MOSFETs is performed. A key and novel point in this study is the specific use of the transmission electron microscopy (TEM) technique instead of the conventional atomic force microscope (AFM) or scanning electron microscope (SEM) techniques which are typically performed following the chemical etching of the sample to observe the changes in the structure. Using this method we show that after radiation, the appearance of a clearly visible thin layer between the SiO2 and Si is observed presenting as a variation in the TEM intensity at the interface of the two materials. Through measuring the EDX line scans we reveal that the Si:O ratio changed and that this change can be attributed to the migration of the Si towards interface after the Si-O bond is destroyed by the swift heavy ions. For the 65 nm MOSFET sample, the silicon substrate, the SiON insulator and the poly-silicon gate interfaces become blurred under the same irradiation conditions.
Structural and optical studies on spin coated ZnO-graphene conjugated thin films
NASA Astrophysics Data System (ADS)
Srinatha, N.; Angadi, Basavaraj; Son, D. I.; Choi, W. K.
2018-05-01
ZnO-Graphene conjugated thin films were prepared using spin coating technique for different spin rates. Prior to the deposition, ZnO-Graphene nanoparticles were synthesized and their particle size and conjugation was studied through Transmission electron microscope (TEM). The deposited films were characterized using grazing incidence x-ray diffractometer (GIXRD), atomic force microscope (AFM) and UV-Visible spectrometer for their crystallinity, surface topographic features and optical properties. GIXRD patterns confirms the presence of both ZnO and Graphene related crystalline peaks supports the TEM results, which shows the quasi core-shell type conjugation of ZnO-Graphene particles. The crystallinity as well as thickness of the films found to decrease with increase of spin rate. AFM results reveal the uniform, smooth and homogeneity of films and also good adhesivity of ZnO-Graphene with glass substrates. No significant change in the transmittance and absorption with spin rate is observed, while the band gap energy found to decrease due to the reduction in the thickness of the films and conjugation of ZnO-Graphene. All films exhibit˜90 % transmittance in the visible wavelength region, could be potential candidates for optoelectronics and transparent conducting oxide (TCO) applications.
Development and Application of Operando TEM to a Ruthenium Catalyst for CO Oxidation
NASA Astrophysics Data System (ADS)
Miller, Benjamin Kyle
Operando transmission electron microscopy (TEM) is an extension of in-situ TEM in which the performance of the material being observed is measured simultaneously. This is of great value, since structure-performance relationships lie at the heart of materials science. For catalyst materials, like the SiO2-supported Ru nanoparticles studied, the important performance metric, catalyst activity, is measured inside the microscope by determining the gas composition during imaging. This is accomplished by acquisition of electron energy loss spectra (EELS) of the gas in the environmental TEM while catalysis is taking place. In this work, automated methods for rapidly quantifying low-loss and core-loss EELS of gases were developed. A new sample preparation method was also established to increase catalytic conversion inside a differentially-pumped environmental TEM, and the maximum CO conversion observed was about 80%. A system for mixing gases and delivering them to the environmental TEM was designed and built, and a method for locating and imaging nanoparticles in zone axis orientations while minimizing electron dose rate was determined. After atomic resolution images of Ru nanoparticles observed during CO oxidation were obtained, the shape and surface structures of these particles was investigated. A Wulff model structure for Ru particles was compared to experimental images both by manually rotating the model, and by automatically determining a matching orientation using cross-correlation of shape signatures. From this analysis, it was determined that most Ru particles are close to Wulff-shaped during CO oxidation. While thick oxide layers were not observed to form on Ru during CO oxidation, thin RuO2 layers on the surface of Ru nanoparticles were imaged with atomic resolution for the first time. The activity of these layers is discussed in the context of the literature on the subject, which has thus far been inconclusive. We conclude that disordered oxidized ruthenium, rather than crystalline RuO2 is the most active species.
Nakamura, Eiichi
2017-06-20
A molecule is a quantum mechanical entity. "Watching motions and reactions of a molecule with our eyes" has therefore been a dream of chemists for a century. This dream has come true with the aid of the movies of atomic-resolution transmission electron microscopic (AR-TEM) molecular images through real-time observation of dynamic motions of single organic molecules (denoted hereafter as single-molecule atomic-resolution real-time (SMART) TEM imaging). Since 2007, we have reported movies of a variety of single organic molecules, organometallic molecules, and their assemblies, which are rotating, stretching, and reacting. Like movies in the theater, the atomic-resolution molecular movies provide us information on the 3-D structures of the molecules and also their time evolution. The success of the SMART-TEM imaging crucially depends on the development of "chemical fishhooks" with which fish (organic molecules) in solution can be captured on a single-walled carbon nanotube (CNT, serving as a "fishing rod"). The captured molecules are connected to a slowly vibrating CNT, and their motions are displayed on a monitor in real time. A "fishing line" connecting the fish and the rod may be a σ-bond, a van der Waals force, or other weak connections. Here, the molecule/CNT system behaves as a coupled oscillator, where the low-frequency anisotropic vibration of the CNT is transmitted to the molecules via the weak chemical connections that act as an energy filter. Interpretation of the observed motions of the molecules at atomic resolution needs us to consider the quantum mechanical nature of electrons as well as bond rotation, letting us deviate from the conventional statistical world of chemistry. What new horizons can we explore? We have so far carried out conformational studies of individual molecules, assigning anti or gauche conformations to each C-C bond in conformers that we saw. We can also determine the structures of van der Waals assemblies of organic molecules, thereby providing mechanistic insights into crystal formation-phenomena of general significance in science, engineering, and our daily life. Whereas many of the single organic molecules in a vacuum seen by SMART-TEM are sufficiently long-lived for detailed studies, molecules with low ionization potentials (<6 eV) were found to undergo chemical reactions, for example, [60]fullerene and organometallic compounds possibly via a hole catalysis mechanism, where a radical cation of CNT generated under electron irradiation catalyzes the transformation via an electron transfer mechanism. Common organic molecules whose ionization potentials are much higher (>8 eV) than that of CNT (5 eV) remain stable for a time long enough for observation at 60-120 kV acceleration voltage, as they are not oxidized by the CNT radical cation. Alternatively, the reaction may have taken place via an excited state of a molecule produced by energy transfer from CNT possessing excess energy provided by the electron beam. SMART-TEM imaging is a simple approach to the study of the structures and reactions of molecules and their assemblies and will serve as a gateway to the research and education of the science connecting the quantum mechanical world and the real world.
Naik, Umesh Chandra; Srivastava, Shaili; Thakur, Indu Shekhar
2011-08-01
Electroplating industries are the main sources of heavy metals, chromium, nickel, lead, zinc, cadmium and copper. The highest concentrations of chromium (VI) in the effluent cause a direct hazards to human and animals. Therefore, there is a need of an effective and affordable biotechnological solution for removal of chromium from electroplating effluent. Bacterial strains were isolated from electroplating effluent to find out higher tolerant isolate against chromate. The isolate was identified by 16S rDNA sequence analysis. Absorbed chromium level of bacterium was determined by inductively coupled plasma-atomic emission spectrometer (ICP-AES), atomic absorption spectrophotometer (AAS), scanning electron microscope (SEM), transmission electron microscope (TEM) and energy dispersive X-ray analysis (EDX). Removal of metals by bacterium from the electroplating effluent eventually led to the detoxification of effluent confirmed by MTT assay. Conformational changes of functional groups of bacterial cell surface were studied through Fourier transform infrared spectroscopy. The chromate tolerant isolate was identified as Bacillus cereus. Bacterium has potency to remove more than 75% of chromium as measured by ICP-AES and AAS. The study indicated the accumulation of chromium (VI) on bacterial cell surface which was confirmed by the SEM-EDX and TEM analysis. The biosorption of metals from the electroplating effluent eventually led to the detoxification of effluent. The increased survivability of Huh7 cells cultured with treated effluent also confirmed the detoxification as examined by MTT assay. Isolated strain B. cereus was able to remove and detoxify chromium (VI). It would be an efficient tool of the biotechnological approach in mitigating the heavy metal pollutants.
Synthesis of strongly fluorescent molybdenum disulfide nanosheets for cell-targeted labeling.
Wang, Nan; Wei, Fang; Qi, Yuhang; Li, Hongxiang; Lu, Xin; Zhao, Guoqiang; Xu, Qun
2014-11-26
MoS2 nanosheets with polydispersity of the lateral dimensions from natural mineral molybdenite have been prepared in the emulsions microenvironment built by the water/surfactant/CO2 system. The size, thickness, and atomic structure are characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), and laser-scattering particle size analysis. Meanwhile, by the analysis of photoluminescence spectroscopy and microscope, the MoS2 nanosheets with smaller lateral dimensions exhibit extraordinary photoluminescence properties different from those with relatively larger lateral dimensions. The discovery of the excitation dependent photoluminescence for MoS2 nanosheets makes them potentially of interests for the applications in optoelectronics and biology. Moreover, we demonstrate that the fabricated MoS2 nanosheets can be a nontoxic fluorescent label for cell-targeted labeling application.
NASA Astrophysics Data System (ADS)
Boyes, Edward D.; Gai, Pratibha L.
2014-02-01
Advances in atomic resolution Environmental (Scanning) Transmission Electron Microscopy (E(S)TEM) for probing gas-solid catalyst reactions in situ at the atomic level under controlled reaction conditions of gas environment and temperature are described. The recent development of the ESTEM extends the capability of the ETEM by providing the direct visualisation of single atoms and the atomic structure of selected solid state heterogeneous catalysts in their working states in real-time. Atomic resolution E(S)TEM provides a deeper understanding of the dynamic atomic processes at the surface of solids and their mechanisms of operation. The benefits of atomic resolution-E(S)TEM to science and technology include new knowledge leading to improved technological processes with substantial economic benefits, improved healthcare, reductions in energy needs and the management of environmental waste generation. xml:lang="fr"
NASA Astrophysics Data System (ADS)
Ozawa, Soh-ichiro; Yamanaka, Akira; Kobayashi, Kunio; Tanishiro, Yasumasa; Yagi, Katsumichi
1990-04-01
A new technique of in situ oxygen gas reaction thinning of Si films at around 750-800°C in an ultrahigh-vacuum electron microscope was developed. The technique produced films as thin as 10 to 20 nm. Such a thin film allows us to observe surface atomic steps, out-of-phase boundaries and {1/7 0}, {1/7 1/7} and {2/7 0} spots from the Si(111)7× 7 surface. These spots were not observed in previous studies, having been masked by strong inelastic scattering. The technique is useful not only for detecting clear diffraction spots of kinematical intensity for surface structure analysis but also for observation of high-resolution plan-view structure images of clean and adsorbed surfaces.
NASA Astrophysics Data System (ADS)
Singh, Tej; Shekhawat, Dharmender Singh; Jyoti, Kumari
2018-05-01
The synthesis of silver nanoparticles (SNPs) by chemical and physical methods produce harmful products which may cause various environmental problems, thus, there is an increasing demand to use ecofriendly methods. Therefore, biosynthesis of SNPs using Justicia adhatoda flower extract is demonstrated in the present study. The biosynthesized SNPs were characterized by UV-visible spectroscopy, Fourier transform-infrared spectroscopy (FTIR), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and atomic force microscopy (AFM) analysis. The result of UV-visible spectroscopy peaked at 417 nm corresponding to the plasmon absorbance of SNPs. The TEM and SAED result reveals the crystalline nature of SNPs. FTIR spectroscopy used to identify the possible biomolecules responsible for the conversion of silver ions to SNPs. The study concluded that Justicia adhatoda flower extract act as an excellent reducing agent and the green synthesized SNPs are safer to the environment.
Tamilselvan, Selvaraj; Ashokkumar, Thirunavukkarasu; Govindaraju, Kasivelu
2017-04-01
In the present investigation, silver nanoparticles (AgNPs) interactions with Bombyx mori Nuclear Polyhedrosis virus (BmNPV) were characterized using High-Resolution Scanning Electron Microscopy (HR-SEM), Energy Dispersive X-ray Analysis (EDAX), Transmission Electron Microscopy (TEM), Atomic Force Microcopy (AFM) and Confocal Microscope (CM). HR-SEM study reveals that the biosynthesized AgNPs have interacted with BmNPV and were found on the surface. TEM micrographs of normal and viral polyhedra treated with AgNPs showed that the nanoparticles were accumulated in the membrane and it was noted that some of the AgNPs successfully penetrated the membrane by reaching the capsid of BmNPV. AFM and confocal microscopy studies reveal that the disruption in the shell membrane tends to lose its stability due to exposure of AgNPs to BmNPV. Copyright © 2017 Elsevier B.V. All rights reserved.
Preparation and Microcosmic Structural Analysis of Recording Coating on Inkjet Printing Media
Jiang, Bo; Liu, Weiyan; Bai, Yongping; Huang, Yudong; Liu, Li; Han, Jianping
2011-01-01
Preparation of recording coating on inkjet printing (RC-IJP) media was proposed. The microstructure and roughness of RC-IJP was analyzed by scanning electron microscopy (SEM) and atomic force microscope (AFM). The surface infiltration process of RC-IJP was studied by a liquid infiltration instrument. The distribution of C, O and Si composites on recording coating surface is analyzed by energy dispersive spectrum (EDS). The transmission electron microscopy (TEM) analysis showed that the nanoscale silica could be dissolved uniformly in water. Finally, the print color is shown clearly by the preparative recording coating. PMID:21954368
Boehmite nanostructures preparation by hydrothermal method from anodic aluminium oxide membrane.
Yang, X; Wang, J Y; Pan, H Y
2009-02-01
Boehmite nanostructures were successfully synthesized from porous anodic aluminium oxide (AAO) membrane by a simple and efficient hydro-thermal method. The experiment used high purity alumina as raw material, and the whole reaction process avoided superfluous impurities to be introduced. Thus, the purity of Boehmite products was ensured. The examinations of the morphology and structure were carried out by atomic force microscope (AFM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Composition of the specimens was analyzed using energy dispersive X-ray spectroscope (EDX) and X-ray diffraction (XRD). Based on these observations the growth process was analyzed.
Walther, Paul; Schmid, Eberhard; Höhn, Katharina
2013-01-01
Using an electron microscope's scanning transmission mode (STEM) for collection of tomographic datasets is advantageous compared to bright field transmission electron microscopic (TEM). For image formation, inelastic scattering does not cause chromatic aberration, since in STEM mode no image forming lenses are used after the beam has passed the sample, in contrast to regular TEM. Therefore, thicker samples can be imaged. It has been experimentally demonstrated that STEM is superior to TEM and energy filtered TEM for tomography of samples as thick as 1 μm. Even when using the best electron microscope, adequate sample preparation is the key for interpretable results. We adapted protocols for high-pressure freezing of cultivated cells from a physiological state. In this chapter, we describe optimized high-pressure freezing and freeze substitution protocols for STEM tomography in order to obtain high membrane contrast.
Simple route to (NH4)xWO3 nanorods for near infrared absorption
NASA Astrophysics Data System (ADS)
Guo, Chongshen; Yin, Shu; Dong, Qiang; Sato, Tsugio
2012-05-01
Described here is how to synthesize one-dimensional ammonium tungsten bronze ((NH4)xWO3) by a facile solvothermal approach in which ethylene glycol and acetic acid were employed as solvents and ammonium paratungstate was used as a starting material, as well as how to develop the near infrared absorption properties of (NH4)xWO3 nanorods for application as a solar light control filter. The as-obtained product was characterized by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermogravimetry (TG), atomic force microscope (AFM) and UV-Vis-NIR spectra. The SEM and TEM images clearly revealed that the obtained sample possessed rod/fiber-like morphologies with diameters around 120 nm. As determined by UV-Vis-NIR optical measurement, the thin film consisted of (NH4)xWO3 nanoparticles, which can selectively transmit most visible lights, but strongly absorb the near-infrared (NIR) lights and ultraviolet rays. These interesting optical properties make the (NH4)xWO3 nanorods suitable for the solar control windows.Described here is how to synthesize one-dimensional ammonium tungsten bronze ((NH4)xWO3) by a facile solvothermal approach in which ethylene glycol and acetic acid were employed as solvents and ammonium paratungstate was used as a starting material, as well as how to develop the near infrared absorption properties of (NH4)xWO3 nanorods for application as a solar light control filter. The as-obtained product was characterized by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermogravimetry (TG), atomic force microscope (AFM) and UV-Vis-NIR spectra. The SEM and TEM images clearly revealed that the obtained sample possessed rod/fiber-like morphologies with diameters around 120 nm. As determined by UV-Vis-NIR optical measurement, the thin film consisted of (NH4)xWO3 nanoparticles, which can selectively transmit most visible lights, but strongly absorb the near-infrared (NIR) lights and ultraviolet rays. These interesting optical properties make the (NH4)xWO3 nanorods suitable for the solar control windows. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr30612c
4D electron microscopy: principles and applications.
Flannigan, David J; Zewail, Ahmed H
2012-10-16
The transmission electron microscope (TEM) is a powerful tool enabling the visualization of atoms with length scales smaller than the Bohr radius at a factor of only 20 larger than the relativistic electron wavelength of 2.5 pm at 200 keV. The ability to visualize matter at these scales in a TEM is largely due to the efforts made in correcting for the imperfections in the lens systems which introduce aberrations and ultimately limit the achievable spatial resolution. In addition to the progress made in increasing the spatial resolution, the TEM has become an all-in-one characterization tool. Indeed, most of the properties of a material can be directly mapped in the TEM, including the composition, structure, bonding, morphology, and defects. The scope of applications spans essentially all of the physical sciences and includes biology. Until recently, however, high resolution visualization of structural changes occurring on sub-millisecond time scales was not possible. In order to reach the ultrashort temporal domain within which fundamental atomic motions take place, while simultaneously retaining high spatial resolution, an entirely new approach from that of millisecond-limited TEM cameras had to be conceived. As shown below, the approach is also different from that of nanosecond-limited TEM, whose resolution cannot offer the ultrafast regimes of dynamics. For this reason "ultrafast electron microscopy" is reserved for the field which is concerned with femtosecond to picosecond resolution capability of structural dynamics. In conventional TEMs, electrons are produced by heating a source or by applying a strong extraction field. Both methods result in the stochastic emission of electrons, with no control over temporal spacing or relative arrival time at the specimen. The timing issue can be overcome by exploiting the photoelectric effect and using pulsed lasers to generate precisely timed electron packets of ultrashort duration. The spatial and temporal resolutions achievable with short intense pulses containing a large number of electrons, however, are limited to tens of nanometers and nanoseconds, respectively. This is because Coulomb repulsion is significant in such a pulse, and the electrons spread in space and time, thus limiting the beam coherence. It is therefore not possible to image the ultrafast elementary dynamics of complex transformations. The challenge was to retain the high spatial resolution of a conventional TEM while simultaneously enabling the temporal resolution required to visualize atomic-scale motions. In this Account, we discuss the development of four-dimensional ultrafast electron microscopy (4D UEM) and summarize techniques and applications that illustrate the power of the approach. In UEM, images are obtained either stroboscopically with coherent single-electron packets or with a single electron bunch. Coulomb repulsion is absent under the single-electron condition, thus permitting imaging, diffraction, and spectroscopy, all with high spatiotemporal resolution, the atomic scale (sub-nanometer and femtosecond). The time resolution is limited only by the laser pulse duration and energy carried by the electron packets; the CCD camera has no bearing on the temporal resolution. In the regime of single pulses of electrons, the temporal resolution of picoseconds can be attained when hundreds of electrons are in the bunch. The applications given here are selected to highlight phenomena of different length and time scales, from atomic motions during structural dynamics to phase transitions and nanomechanical oscillations. We conclude with a brief discussion of emerging methods, which include scanning ultrafast electron microscopy (S-UEM), scanning transmission ultrafast electron microscopy (ST-UEM) with convergent beams, and time-resolved imaging of biological structures at ambient conditions with environmental cells.
Graphene Nanoribbons Fabricated by Helium Ion microscope
NASA Astrophysics Data System (ADS)
Pickard, D.; Oezyilmaz, B.; Thong, J.; Loh, K. P.; Viswanathan, V.; Zhongkai, A.; Mathew, S.; Kundu, T.; Park, C.; Yi, Z.; Xu, X.; Zhang, K.; Tat, T. C.; Wang, H.; Venkatesan, T.; Botton, G.; Couillard, M.
2010-03-01
Graphene, a monolayer graphitic lattice of carbon atoms has tremendous promise for a variety of applications on account of the zero mass of electrons, high mobility and the sensitivity of transport to perturbations at the interface. Patterning graphene is an obvious challenge and mesoscopic devices based on graphene require high spatial resolution patterning that will induce as little damage as possible. We use a helium ion microscope with its 0.4nm spot size beam to directly write patterns on free standing graphene films. TEM images of the patterns reveal holes as small as 4 nm and ribbons with line widths as narrow as 3 nm. The images show recovery of the graphene lattice at a distance of about a nm from the patterned edge. The linewidths of the ribbon can be varied considerably in a controllable fashion over ribbon lengths of the order of microns. . .
Atom-counting in High Resolution Electron Microscopy:TEM or STEM - That's the question.
Gonnissen, J; De Backer, A; den Dekker, A J; Sijbers, J; Van Aert, S
2017-03-01
In this work, a recently developed quantitative approach based on the principles of detection theory is used in order to determine the possibilities and limitations of High Resolution Scanning Transmission Electron Microscopy (HR STEM) and HR TEM for atom-counting. So far, HR STEM has been shown to be an appropriate imaging mode to count the number of atoms in a projected atomic column. Recently, it has been demonstrated that HR TEM, when using negative spherical aberration imaging, is suitable for atom-counting as well. The capabilities of both imaging techniques are investigated and compared using the probability of error as a criterion. It is shown that for the same incoming electron dose, HR STEM outperforms HR TEM under common practice standards, i.e. when the decision is based on the probability function of the peak intensities in HR TEM and of the scattering cross-sections in HR STEM. If the atom-counting decision is based on the joint probability function of the image pixel values, the dependence of all image pixel intensities as a function of thickness should be known accurately. Under this assumption, the probability of error may decrease significantly for atom-counting in HR TEM and may, in theory, become lower as compared to HR STEM under the predicted optimal experimental settings. However, the commonly used standard for atom-counting in HR STEM leads to a high performance and has been shown to work in practice. Copyright © 2017 Elsevier B.V. All rights reserved.
A novel binary Pt 3Te x/C nanocatalyst for ethanol electro-oxidation
NASA Astrophysics Data System (ADS)
Huang, Meihua; Wang, Fei; Li, Lirong; Guo, Yonglang
The Pt 3Te x/C nanocatalyst was prepared and its catalytic performance for ethanol oxidation was investigated for the first time. The Pt 3Te/C nanoparticles were characterized by an X-ray diffractometer (XRD), transmission electron microscope (TEM) and energy dispersive X-ray spectroscopy equipped with TEM (TEM-EDX). The Pt 3Te/C catalyst has a typical fcc structure of platinum alloys with the presence of Te. Its particle size is about 2.8 nm. Among the synthesized catalysts with different atomic ratios, the Pt 3Te/C catalyst has the highest anodic peak current density. The cyclic voltammograms (CV) show that the anodic peak current density for the Pt 3Te/C, commercial PtRu/C and Pt/C catalysts reaches 1002, 832 and 533 A g -1, respectively. On the current-time curve, the anodic current on the Pt 3Te/C catalyst was higher than those for the catalysts reported. So, these findings show that the Pt 3Te/C catalyst has uniform nanoparticles and the best activity among the synthesized catalysts, and it is better than commercial PtRu/C and Pt/C catalysts for ethanol oxidation at room temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yashchuk, V.V.; Conley, R.; Anderson, E.H.
Verification of the reliability of metrology data from high quality X-ray optics requires that adequate methods for test and calibration of the instruments be developed. For such verification for optical surface profilometers in the spatial frequency domain, a modulation transfer function (MTF) calibration method based on binarypseudo-random (BPR) gratings and arrays has been suggested and and proven to be an effective calibration method for a number of interferometric microscopes, a phase shifting Fizeau interferometer, and a scatterometer. Here we describe the details of development of binarypseudo-random multilayer (BPRML) test samples suitable for characterization of scanning (SEM) and transmission (TEM) electronmore » microscopes. We discuss the results of TEM measurements with the BPRML test samples fabricated from a WiSi{sub 2}/Si multilayer coating with pseudo-randomly distributed layers. In particular, we demonstrate that significant information about the metrological reliability of the TEM measurements can be extracted even when the fundamental frequency of the BPRML sample is smaller than the Nyquist frequency of the measurements. The measurements demonstrate a number of problems related to the interpretation of the SEM and TEM data. Note that similar BPRML testsamples can be used to characterize X-ray microscopes. Corresponding work with X-ray microscopes is in progress.« less
Structural and mechanical characterization of hybrid metallic-inorganic nanosprings
NASA Astrophysics Data System (ADS)
Habtoun, Sabrina; Houmadi, Said; Reig, Benjamin; Pouget, Emilie; Dedovets, Dmytro; Delville, Marie-Hélène; Oda, Reiko; Cristiano, Fuccio; Bergaud, Christian
2017-10-01
Silica nanosprings (NS) are fabricated by a sol-gel deposition of silica precursors onto a template made of self-assembled organic chiral nanostructures. They are deposited and assembled on microstructured silicon substrates, and then metallized and clamped in a single lithography-free step using a focused ion beam (FIB). The resulting suspended hybrid metallic/inorganic NS are then characterized with high-resolution transmission electron microscopy (HRTEM) and scanning TEM/energy-dispersive X-ray spectroscopy (STEM/EDX), showing the atomic structure of the metallic layer. Three-point bending tests are also carried out using an atomic force microscope (AFM) and supported by finite element method (FEM) simulation with COMSOL Multiphysics allowing the characterization of the mechanical behavior and the estimation of the stiffness of the resulting NS. The information obtained on the structural and mechanical properties of the NS is discussed for future nano-electro-mechanical system (NEMS) applications.
NASA Astrophysics Data System (ADS)
Dorin, Thomas; Deschamps, Alexis; De Geuser, Frédéric; Weyland, Matthew
In the Al-Cu-Li system, the main strengthening precipitate is the T1 phase (Al2CuLi). In order to understand the strengthening related to the formation of this phase, we first present an investigation of the morphology of the T1 phase in an AA2198 alloy using Transmission Electron Microscopy (TEM) and Differential Scanning Calorimetry (DSC) in relation with the evolution of micro-hardness. In parallel, we present an investigation of the interaction between T1 precipitates and dislocations using High Angle Annular Dark Field (HAADF) imaging in an atomic resolution Scanning Transmission Electron Microscope (STEM). The atomic scale imaging of precipitates makes it possible to quantify the density of shearing events, which turns out to be insufficient to account for the imposed plastic strain. We discuss the implications of this result in terms of precipitate-dislocation interactions.
The potentials and challenges of electron microscopy in the study of atomic chains
NASA Astrophysics Data System (ADS)
Banhart, Florian; Torre, Alessandro La; Romdhane, Ferdaous Ben; Cretu, Ovidiu
2017-04-01
The article is a brief review on the potential of transmission electron microscopy (TEM) in the investigation of atom chains which are the paradigm of a strictly one-dimensional material. After the progress of TEM in the study of new two-dimensional materials, microscopy of free-standing one-dimensional structures is a new challenge with its inherent potentials and difficulties. In-situ experiments in the TEM allowed, for the first time, to generate isolated atomic chains consisting of metals, carbon or boron nitride. Besides having delivered a solid proof for the existence of atomic chains, in-situ TEM studies also enabled us to measure the electrical properties of these fundamental linear structures. While ballistic quantum conductivity is observed in chains of metal atoms, electrical transport in chains of sp1-hybridized carbon is limited by resonant states and reflections at the contacts. Although substantial progress has been made in recent TEM studies of atom chains, fundamental questions have to be answered, concerning the structural stability of the chains, bonding states at the contacts, and the suitability for applications in nanotechnology. Contribution to the topical issue "The 16th European Microscopy Congress (EMC 2016)", edited by Richard Brydson and Pascale Bayle-Guillemaud
Sub-nanometer milling of layered materials by a focused Helium Ion Beam
NASA Astrophysics Data System (ADS)
Zhang, Hongzhou; Fox, Daniel; Zhou, Yangbo; O'Connell, Robert
2014-03-01
The modification of the structure and geometry of materials at the nanoscale can be used to tailor their properties. A controllable process which can achieve this is required for the development of next generation nano-devices. We used the highly focused beam of helium ions in a helium ion microscope (HIM) to fabricate nanostructures within various layered materials such as graphene, MoS2, TiO2 and Mn2O3. Arbitrary patterns can be defined in order to produce structures such as nanoribbons. The edge configuration of atoms in such structures plays a large role in defining their properties. High resolution transmission electron microscopy (TEM) and scanning-TEM (STEM) were used to analyse the structure of the materials after milling. The direct milling of the materials by the helium ions means this approach is suitable for a wide range of nanomaterials. Complex structures can be realized via sophisticated beam control. This also results in the ability to mill along different directions in a crystal, producing edges with different configurations.
Chiu, Chung-Hua; Huang, Chun-Wei; Chen, Jui-Yuan; Huang, Yu-Ting; Hu, Jung-Chih; Chen, Lien-Tai; Hsin, Cheng-Lun; Wu, Wen-Wei
2013-06-07
Copper silicide has been studied in the applications of electronic devices and catalysts. In this study, Cu3Si/Si nanowire heterostructures were fabricated through solid state reaction in an in situ transmission electron microscope (TEM). The dynamic diffusion of the copper atoms in the growth process and the formation mechanism are characterized. We found that two dimensional stacking faults (SF) may retard the growth of Cu3Si. Due to the evidence of the block of edge-nucleation (heterogeneous) by the surface oxide, center-nucleation (homogeneous) is suggested to dominate the silicidation. Furthermore, the electrical transport properties of various silicon channel length with Cu3Si/Si heterostructure interfaces and metallic Cu3Si NWs have been investigated. The observations not only provided an alternative pathway to explore the formation mechanisms and interface properties of Cu3Si/Si, but also suggested the potential application of Cu3Si at nanoscale for future processing in nanotechnology.
NASA Astrophysics Data System (ADS)
Aguirre, Rodolfo, II
Cadmium telluride (CdTe) is a material used to make solar cells because it absorbs the sunlight very efficiently and converts it into electricity. However, CdTe modules suffer from degradation of 1% over a period of 1 year. Improvements on the efficiency and stability can be achieved by designing better materials at the atomic scale. Experimental techniques to study materials at the atomic scale, such as Atomic Probe Tomography (APT) and Transmission Electron Microscope (TEM) are expensive and time consuming. On the other hand, Molecular Dynamics (MD) offers an inexpensive and fast computer simulation technique to study the growth evolution of materials with atomic scale resolution. In combination with advance characterization software, MD simulations provide atomistic visualization, defect analysis, structure maps, 3-D atomistic view, and composition profiles. MD simulations help to design better quality materials by predicting material behavior at the atomic scale. In this work, a new MD method to study several phenomena such as polycrystalline growth of CdTe-based materials, interdiffusion of atoms at interfaces, and deposition of a copper doped ZnTe back contact is established. Results are compared with experimental data found in the literature and experiments performed and shown to be in remarkably good agreement.
In situ nanomechanical testing of twinned metals in a transmission electron microscope
Li, Nan; Wang, Jiangwei; Mao, Scott; ...
2016-04-01
This paper focuses on in situ transmission electron microscope (TEM) characterization to explore twins in face-centered-cubic and body-centered-cubic monolithic metals, and their impact on the overall mechanical performance. Taking advantage of simultaneous nanomechanical deformation and nanoscale imaging using versatile in situ TEM tools, direct correlation of these unique microscopic defects with macroscopic mechanical performance becomes possible. This article summarizes recent evidence to support the mechanisms related to strengthening and plasticity in metals, including nanotwinned Cu, Ni, Al, Au, and others in bulk, thin film, and nanowire forms.
In situ nanomechanical testing of twinned metals in a transmission electron microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Nan; Wang, Jiangwei; Mao, Scott
This paper focuses on in situ transmission electron microscope (TEM) characterization to explore twins in face-centered-cubic and body-centered-cubic monolithic metals, and their impact on the overall mechanical performance. Taking advantage of simultaneous nanomechanical deformation and nanoscale imaging using versatile in situ TEM tools, direct correlation of these unique microscopic defects with macroscopic mechanical performance becomes possible. This article summarizes recent evidence to support the mechanisms related to strengthening and plasticity in metals, including nanotwinned Cu, Ni, Al, Au, and others in bulk, thin film, and nanowire forms.
NASA Technical Reports Server (NTRS)
Ochoa, Ozden O.
2004-01-01
Accurate determination of the transverse properties of carbon fibers is important for assessment and prediction of local material as well as global structural response of composite components. However the measurements are extremely difficult due to the very small diameters of the fibers (few microns only) and must be conducted within a microscope. In this work, environmental scanning electron microscope (ESEM) and transmission electron microscope (TEM) are used to determine the transverse coefficient of thermal expansion of different carbon fibers as a function of temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovarik, Libor; Stevens, Andrew J.; Liyu, Andrey V.
Aberration correction for scanning transmission electron microscopes (STEM) has dramatically increased spatial image resolution for beam-stable materials, but it is the sample stability rather than the microscope that often limits the practical resolution of STEM images. To extract physical information from images of beam sensitive materials it is becoming clear that there is a critical dose/dose-rate below which the images can be interpreted as representative of the pristine material, while above it the observation is dominated by beam effects. Here we describe an experimental approach for sparse sampling in the STEM and in-painting image reconstruction in order to reduce themore » electron dose/dose-rate to the sample during imaging. By characterizing the induction limited rise-time and hysteresis in scan coils, we show that sparse line-hopping approach to scan randomization can be implemented that optimizes both the speed of the scan and the amount of the sample that needs to be illuminated by the beam. The dose and acquisition time for the sparse sampling is shown to be effectively decreased by factor of 5x relative to conventional acquisition, permitting imaging of beam sensitive materials to be obtained without changing the microscope operating parameters. As a result, the use of sparse line-hopping scan to acquire STEM images is demonstrated with atomic resolution aberration corrected Z-contrast images of CaCO 3, a material that is traditionally difficult to image by TEM/STEM because of dose issues.« less
Kovarik, Libor; Stevens, Andrew J.; Liyu, Andrey V.; ...
2016-10-17
Aberration correction for scanning transmission electron microscopes (STEM) has dramatically increased spatial image resolution for beam-stable materials, but it is the sample stability rather than the microscope that often limits the practical resolution of STEM images. To extract physical information from images of beam sensitive materials it is becoming clear that there is a critical dose/dose-rate below which the images can be interpreted as representative of the pristine material, while above it the observation is dominated by beam effects. Here we describe an experimental approach for sparse sampling in the STEM and in-painting image reconstruction in order to reduce themore » electron dose/dose-rate to the sample during imaging. By characterizing the induction limited rise-time and hysteresis in scan coils, we show that sparse line-hopping approach to scan randomization can be implemented that optimizes both the speed of the scan and the amount of the sample that needs to be illuminated by the beam. The dose and acquisition time for the sparse sampling is shown to be effectively decreased by factor of 5x relative to conventional acquisition, permitting imaging of beam sensitive materials to be obtained without changing the microscope operating parameters. The use of sparse line-hopping scan to acquire STEM images is demonstrated with atomic resolution aberration corrected Z-contrast images of CaCO3, a material that is traditionally difficult to image by TEM/STEM because of dose issues.« less
Mechanical Alloying of W-Mo-V-Cr-Ta High Entropy Alloys
NASA Astrophysics Data System (ADS)
Das, Sujit; Robi, P. S.
2018-04-01
Recent years have seen the emergence of high-entropy alloys (HEAs) consisting of five or more elements in equi-atomic or near equi-atomic ratios. These alloys in single phase solid solution exhibit exceptional mechanical properties viz., high strength at room and elevated temperatures, reasonable ductility and stable microstructure over a wide range of temperatures making it suitable for high temperature structural materials. In spite of the attractive properties, processing of these materials remains a challenge. Reports regarding fabrication and characterisation of a few refractory HEA systems are available. The processing of these alloys have been carried out by arc melting of small button sized materials. The present paper discusses the development of a novel refractory W-Mo-V-Cr-Ta HEA powder based on a new alloy design concept. The powder mixture was milled for time periods up to 64 hours. Single phase alloy powder having body centred cubic structure was processed by mechanical alloying. The milling characteristics and extent of alloying during the ball milling were characterized using X-ray diffractiometre (XRD), field emission scanning electron microscope (FESEM) and transmission electron microscope (TEM). A single phase solid solution alloy powder having body-centred cubic (BCC) structure with a lattice parameter of 3.15486 Å was obtained after milling for 32 hours.
NASA Astrophysics Data System (ADS)
Mirabi, Ali; Dalirandeh, Zeinab; Rad, Ali Shokuhi
2015-05-01
A new method has been developed for the separation/preconcentration of trace level cadmium ions using diphenyl carbazone/sodium dodecyl sulfate immobilized on magnetic nanoparticle Fe3O4 as a new sorbent SPE and their determination by flame atomic absorption spectrometry (FAAS). Synthesized nanoparticle was characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM). Various influencing parameters on the separation and preconcentration of trace level cadmium ions such as, pH value, amount of nanoparticles, amount of diphenyl carbazone, condition of eluting solution, the effects of matrix ions were examined. The cadmium ions can be eluted from the modified magnetic nanoparticle using 1 mol L-1 HCl as a desorption reagent. The detection limit of this method for cadmium was 3.71 ng ml-1 and the R.S.D. was 0.503% (n=6). The advantages of this new method include rapidity, easy preparation of sorbents and a high concentration factor. The proposed method has been applied to the determination of Cd ions at trace levels in real samples such as, green tea, rice, tobacco, carrot, lettuce, ginseng, spice, tap water, river water, sea water with satisfactory results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
V Yashchuk; R Conley; E Anderson
Verification of the reliability of metrology data from high quality X-ray optics requires that adequate methods for test and calibration of the instruments be developed. For such verification for optical surface profilometers in the spatial frequency domain, a modulation transfer function (MTF) calibration method based on binary pseudo-random (BPR) gratings and arrays has been suggested [1] and [2] and proven to be an effective calibration method for a number of interferometric microscopes, a phase shifting Fizeau interferometer, and a scatterometer [5]. Here we describe the details of development of binary pseudo-random multilayer (BPRML) test samples suitable for characterization of scanningmore » (SEM) and transmission (TEM) electron microscopes. We discuss the results of TEM measurements with the BPRML test samples fabricated from a WiSi2/Si multilayer coating with pseudo-randomly distributed layers. In particular, we demonstrate that significant information about the metrological reliability of the TEM measurements can be extracted even when the fundamental frequency of the BPRML sample is smaller than the Nyquist frequency of the measurements. The measurements demonstrate a number of problems related to the interpretation of the SEM and TEM data. Note that similar BPRML test samples can be used to characterize X-ray microscopes. Corresponding work with X-ray microscopes is in progress.« less
Optimising electron microscopy experiment through electron optics simulation.
Kubo, Y; Gatel, C; Snoeck, E; Houdellier, F
2017-04-01
We developed a new type of electron trajectories simulation inside a complete model of a modern transmission electron microscope (TEM). Our model incorporates the precise and real design of each element constituting a TEM, i.e. the field emission (FE) cathode, the extraction optic and acceleration stages of a 300kV cold field emission gun, the illumination lenses, the objective lens, the intermediate and projection lenses. Full trajectories can be computed using magnetically saturated or non-saturated round lenses, magnetic deflectors and even non-cylindrical symmetry elements like electrostatic biprism. This multi-scale model gathers nanometer size components (FE tip) with parts of meter length (illumination and projection systems). We demonstrate that non-trivial TEM experiments requiring specific and complex optical configurations can be simulated and optimized prior to any experiment using such model. We show that all the currents set in all optical elements of the simulated column can be implemented in the real column (I2TEM in CEMES) and used as starting alignment for the requested experiment. We argue that the combination of such complete electron trajectory simulations in the whole TEM column with automatic optimization of the microscope parameters for optimal experimental data (images, diffraction, spectra) allows drastically simplifying the implementation of complex experiments in TEM and will facilitate the development of advanced use of the electron microscope in the near future. Copyright © 2017 Elsevier B.V. All rights reserved.
UHV-TEM-REM Studies of Si(111) Surfaces
NASA Astrophysics Data System (ADS)
Yagi, K.; Yamanaka, A.; Sato, H.; Shima, M.; Ohse, H.; Ozawa, S.; Tanishiro, Y.
Recent progresses of ultra-high vacuum transmission and reflection electron microscope studies of clean Si(111) surfaces are described. Anisotropy of surface atomic steps such as step energy, bunching of steps, are studied. Out of phase boundaries are observed in transmission mode and its energy relative to the step energy is studied. The phase transition between the 1 × 1 and the 7 × 7 structures around 830°C, studied previously is re-examined under various conditions. Contraction strains of the 7 × 7 structure and adatom density on terraces play important role during the transition. Diffuse scattering observed by LEED and RHEED above the transition temperature is not observed in teh TED pattern from a thin film.
Efficient creation of electron vortex beams for high resolution STEM imaging.
Béché, A; Juchtmans, R; Verbeeck, J
2017-07-01
The recent discovery of electron vortex beams carrying quantised angular momentum in the TEM has led to an active field of research, exploring a variety of potential applications including the possibility of mapping magnetic states at the atomic scale. A prerequisite for this is the availability of atomic sized electron vortex beams at high beam current and mode purity. In this paper we present recent progress showing that by making use of the Aharonov-Bohm effect near the tip of a long single domain ferromagnetic Nickel needle, a very efficient aperture for the production of electron vortex beams can be realised. The aperture transmits more than 99% of all electrons and provides a vortex mode purity of up to 92%. Placing this aperture in the condenser plane of a state of the art Cs corrected microscope allows us to demonstrate atomic resolution HAADF STEM images with spatial resolution better than 1 Angström, in agreement with theoretical expectations and only slightly inferior to the performance of a non-vortex probe on the same instrument. Copyright © 2016 Elsevier B.V. All rights reserved.
Considerable knock-on displacement of metal atoms under a low energy electron beam.
Gu, Hengfei; Li, Geping; Liu, Chengze; Yuan, Fusen; Han, Fuzhou; Zhang, Lifeng; Wu, Songquan
2017-03-15
Under electron beam irradiation, knock-on atomic displacement is commonly thought to occur only when the incident electron energy is above the incident-energy threshold of the material in question. However, we report that when exposed to intense electrons at room temperature at a low incident energy of 30 keV, which is far below the theoretically predicted incident-energy threshold of zirconium, Zircaloy-4 (Zr-1.50Sn-0.25Fe-0.15Cr (wt.%)) surfaces can undergo considerable displacement damage. We demonstrate that electron beam irradiation of the bulk Zircaloy-4 surface resulted in a striking radiation effect that nanoscale precipitates within the surface layer gradually emerged and became clearly visible with increasing the irradiation time. Our transmission electron microscope (TEM) observations further reveal that electron beam irradiation of the thin-film Zircaly-4 surface caused the sputtering of surface α-Zr atoms, the nanoscale atomic restructuring in the α-Zr matrix, and the amorphization of precipitates. These results are the first direct evidences suggesting that displacement of metal atoms can be induced by a low incident electron energy below threshold. The presented way to irradiate may be extended to other materials aiming at producing appealing properties for applications in fields of nanotechnology, surface technology, and others.
Effects of fluoride residue on thermal stability in Cu/porous low-k interconnects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobayashi, Y.; Ozaki, S.; Nakamura, T.
2014-06-19
We have investigated the effects of fluoride residue on the thermal stability of a Cu/barrier metal (BM)/porous low-k film (k < 2.3) structure. We confirmed that the Cu agglomerated more on a BM/inter layer dielectric (ILD) with a fluoride residue. To consider the effect of fluoride residue on Cu agglomeration, the structural state at the Cu/BM interface was evaluated with a cross-section transmission electron microscope (TEM) and atomic force microscope (AFM). In addition, the chemical bonding state at the Cu/BM interface was evaluated with the interface peeling-off method and X-ray photoelectron spectroscopy (XPS). Moreover, we confirmed the ionization of fluoridemore » residue and oxidation of Cu with fluoride and moisture to clarify the effect of fluoride residue on Cu. Our experimental results indicated that the thermal stability in Cu/porous low-k interconnects was degraded by enhancement of Cu oxidation with fluoride ions diffusion as an oxidizing catalyst.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yashchuk, Valeriy V; Conley, Raymond; Anderson, Erik H.
We discuss the results of SEM and TEM measurements with the BPRML test samples fabricated from a BPRML (WSi2/Si with fundamental layer thickness of 3 nm) with a Dual Beam FIB (focused ion beam)/SEM technique. In particular, we demonstrate that significant information about the metrological reliability of the TEM measurements can be extracted even when the fundamental frequency of the BPRML sample is smaller than the Nyquist frequency of the measurements. The measurements demonstrate a number of problems related to the interpretation of the SEM and TEM data. Note that similar BPRML test samples can be used to characterize x-raymore » microscopes. Corresponding work with x-ray microscopes is in progress.« less
High activity of cubic PtRh alloys supported on graphene towards ethanol electrooxidation.
Rao, Lu; Jiang, Yan-Xia; Zhang, Bin-Wei; Cai, Yuan-Rong; Sun, Shi-Gang
2014-07-21
Cubic PtRh alloys supported on graphene (PtxRhy/GN) with different atomic ratio of Pt and Rh were directly synthesized for the first time using the modified polyol method with Br(-) for the shape-directing agents. The process didn't use surface-capping agents such as PVP that easily occupy the active sites of electrocatalysts and are difficult to remove. Graphene is the key factor for cubic shape besides Br(-) and keeping catalysts high-dispersed. The X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM) were used to characterize the structure and morphology of these electrocatalysts. The results showed that they were composed of homogeneous cubic PtRh alloys. Traditional electrochemical methods, such as cyclic voltammetry and chronoamperometry, were used to investigate the electrocatalytic properties of PtxRhy/GN towards ethanol electrooxidation. It can be seen that PtxRhy/GN with all atomic ratios exhibited high catalytic activity, and the most active one has a composition with Pt : Rh = 9 : 1 atomic ratio. Electrochemical in situ FTIR spectroscopy was used to evaluate the cleavage of C-C bond in ethanol at room temperature in acidic solutions, the results illustrated that Rh in an alloy can promote the split of C-C bond in ethanol, and the alloy catalyst with atomic ratio Pt : Rh = 1 : 1 showed obviously better performance for the C-C bond breaking in ethanol and higher selectivity for the enhanced activity of ethanol complete oxidation to CO2 than alloys with other ratios of Pt and Rh. The investigation indicates that high activity of PtxRhy/GN electrocatalyst towards ethanol oxidation is due to the specific shape of alloys and the synergistic effect of two metal elements as well as graphene support.
Kaymakçı, Mustafa; Acar, Mustafa; Burukoglu, Dilek; Kutlu, Hatice Mehtap; Shojaolsadati, Paria; Cingi, Cemal; Bayar Muluk, Nuray
2015-04-01
In this prospective experimental study, we investigated the preventive effects of 2-aminoethyl diphenylborinate (2-APB) in rats exposed to acoustic trauma (AT). Light microscopic, transmission electron microscopic (TEM), and scanning electron microscopic (SEM) examinations were performed. Eighteen healthy Wistar albino rats were divided into the following three groups: groups 1 (control), 2 (AT), and 3 (AT+APB). The rats in groups 2 and 3 were exposed to AT; in group 3 rats, 2-APB at 2 mg/kg was also administered, initially transperitoneally, after 10 min. During the light microscopic, TEM, and SEM examinations, the structures of the cochlear hair cells, stereocilia, and Deiter's cells were normal in the control group. In the AT group, the organ of Corti and proximate structures were damaged according to the light microscopic examination. During the TEM examination, intense cellular damage and stereocilia loss were detected, while during the SEM examination, extensive damage and stereocilia loss were observed. Decreased damage with preserved cochlear structure was detected during the light microscopic examination in the AT+APB group than in the AT group. During the TEM and SEM examinations, although stereocilia loss occurred in the AT+APB group, near-normal cell, cilia, and tectorial membrane structures were also observed in the AT+APB group compared with the AT group. 2-APB may have protective effects against AT damage of the cochlea. The main mechanism underlying this effect is the inhibition of the vasoconstriction of the cochlear spiral modiolar artery, thereby improving cochlear blood flow. We conclude that 2-APB may also be effective if used immediately following AT.
Ohno, Y; Inoue, K; Fujiwara, K; Kutsukake, K; Deura, M; Yonenaga, I; Ebisawa, N; Shimizu, Y; Inoue, K; Nagai, Y; Yoshida, H; Takeda, S; Tanaka, S; Kohyama, M
2017-12-01
We have developed an analytical method to determine the segregation levels on the same tilt boundaries (TBs) at the same nanoscopic location by a joint use of atom probe tomography and scanning transmission electron microscopy, and discussed the mechanism of oxygen segregation at TBs in silicon ingots in terms of bond distortions around the TBs. The three-dimensional distribution of oxygen atoms was determined at the typical small- and large-angle TBs by atom probe tomography with a low impurity detection limit (0.01 at.% on a TB plane) simultaneously with high spatial resolution (about 0.4 nm). The three-dimensional distribution was correlated with the atomic stress around the TBs; the stress at large-angle TBs was estimated by ab initio calculations based on atomic resolution scanning transmission electron microscopy data and that at small-angle TBs were calculated with the elastic theory based on dark-field transmission electron microscopy data. Oxygen atoms would segregate at bond-centred sites under tensile stress above about 2 GPa, so as to attain a more stable bonding network by reducing the local stress. The number of oxygen atoms segregating in a unit TB area N GB (in atoms nm -2 ) was determined to be proportional to both the number of the atomic sites under tensile stress in a unit TB area n bc and the average concentration of oxygen atoms around the TB [O i ] (in at.%) with N GB ∼ 50 n bc [O i ]. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.
Electron tomography of whole cultured cells using novel transmission electron imaging technique.
Okumura, Taiga; Shoji, Minami; Hisada, Akiko; Ominami, Yusuke; Ito, Sukehiro; Ushiki, Tatsuo; Nakajima, Masato; Ohshima, Takashi
2018-01-01
Since a three-dimensional (3D) cellular ultrastructure is significant for biological functions, it has been investigated using various electron microscopic techniques. Although transmission electron microscopy (TEM)-based techniques are traditionally used, cells must be embedded in resin and sliced into ultrathin sections in sample preparation processes. Block-face observation using a scanning electron microscope (SEM) has also been recently applied to 3D observation of cellular components, but this is a destructive inspection and does not allow re-examination. Therefore, we developed electron tomography using a transmission electron imaging technique called Plate-TEM. With Plate-TEM, the cells cultured directly on a scintillator plate are inserted into a conventional SEM equipped with a Plate-TEM observation system, and their internal structures are observed by detecting scintillation light produced by electrons passing through the cells. This technology has the following four advantages. First, the cells cultured on the plate can be observed at electron-microscopic resolution since they remain on the plate. Second, both surface and internal information can be obtained simultaneously by using electron- and photo-detectors, respectively, because a Plate-TEM detector is installed in an SEM. Third, the cells on the scintillator plate can also be inspected using light microscopy because the plate has transparent features. Finally, correlative observation with other techniques, such as conventional TEM, is possible after Plate-TEM observation because Plate-TEM is a non-destructive analysis technique. We also designed a sample stage to tilt the samples for tomography with Plate-TEM, by which 3D organization of cellular structures can be visualized as a whole cell. In the present study, Mm2T cells were investigated using our tomography system, resulting in 3D visualization of cell organelles such as mitochondria, lipid droplets, and microvilli. Correlative observations with various imaging techniques were also conducted by successive observations with light microscopy, SEM, Plate-TEM, and conventional TEM. Consequently, the Plate-TEM tomography technique encourages understanding of cellular structures at high resolution, which can contribute to cellular biological research. Copyright © 2017 Elsevier Ltd. All rights reserved.
Using Graphene Liquid Cell Transmission Electron Microscopy to Study in Situ Nanocrystal Etching.
Hauwiller, Matthew R; Ondry, Justin C; Alivisatos, A Paul
2018-05-17
Graphene liquid cell electron microscopy provides the ability to observe nanoscale chemical transformations and dynamics as the reactions are occurring in liquid environments. This manuscript describes the process for making graphene liquid cells through the example of graphene liquid cell transmission electron microscopy (TEM) experiments of gold nanocrystal etching. The protocol for making graphene liquid cells involves coating gold, holey-carbon TEM grids with chemical vapor deposition graphene and then using those graphene-coated grids to encapsulate liquid between two graphene surfaces. These pockets of liquid, with the nanomaterial of interest, are imaged in the electron microscope to see the dynamics of the nanoscale process, in this case the oxidative etching of gold nanorods. By controlling the electron beam dose rate, which modulates the etching species in the liquid cell, the underlying mechanisms of how atoms are removed from nanocrystals to form different facets and shapes can be better understood. Graphene liquid cell TEM has the advantages of high spatial resolution, compatibility with traditional TEM holders, and low start-up costs for research groups. Current limitations include delicate sample preparation, lack of flow capability, and reliance on electron beam-generated radiolysis products to induce reactions. With further development and control, graphene liquid cell may become a ubiquitous technique in nanomaterials and biology, and is already being used to study mechanisms governing growth, etching, and self-assembly processes of nanomaterials in liquid on the single particle level.
Interaction of electrons with light metal hydrides in the transmission electron microscope.
Wang, Yongming; Wakasugi, Takenobu; Isobe, Shigehito; Hashimoto, Naoyuki; Ohnuki, Somei
2014-12-01
Transmission electron microscope (TEM) observation of light metal hydrides is complicated by the instability of these materials under electron irradiation. In this study, the electron kinetic energy dependences of the interactions of incident electrons with lithium, sodium and magnesium hydrides, as well as the constituting element effect on the interactions, were theoretically discussed, and electron irradiation damage to these hydrides was examined using in situ TEM. The results indicate that high incident electron kinetic energy helps alleviate the irradiation damage resulting from inelastic or elastic scattering of the incident electrons in the TEM. Therefore, observations and characterizations of these materials would benefit from increased, instead decreased, TEM operating voltage. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yashchuk, Valeriy V; Conley, Raymond; Anderson, Erik H
Verification of the reliability of metrology data from high quality x-ray optics requires that adequate methods for test and calibration of the instruments be developed. For such verification for optical surface profilometers in the spatial frequency domain, a modulation transfer function (MTF) calibration method based on binary pseudo-random (BPR) gratings and arrays has been suggested [Proc. SPIE 7077-7 (2007), Opt. Eng. 47(7), 073602-1-5 (2008)} and proven to be an effective calibration method for a number of interferometric microscopes, a phase shifting Fizeau interferometer, and a scatterometer [Nucl. Instr. and Meth. A 616, 172-82 (2010)]. Here we describe the details ofmore » development of binary pseudo-random multilayer (BPRML) test samples suitable for characterization of scanning (SEM) and transmission (TEM) electron microscopes. We discuss the results of TEM measurements with the BPRML test samples fabricated from a WiSi2/Si multilayer coating with pseudo randomly distributed layers. In particular, we demonstrate that significant information about the metrological reliability of the TEM measurements can be extracted even when the fundamental frequency of the BPRML sample is smaller than the Nyquist frequency of the measurements. The measurements demonstrate a number of problems related to the interpretation of the SEM and TEM data. Note that similar BPRML test samples can be used to characterize x-ray microscopes. Corresponding work with x-ray microscopes is in progress.« less
Size determination of Acipenser ruthenus spermatozoa in different types of electron microscopy.
Psenicka, Martin; Tesarová, Martina; Tesitel, Jakub; Nebesárová, Jana
2010-07-01
In this study three types of scanning electron microscopes were used for the size determination of spermatozoa of sterlet Acipenser ruthenus - high vacuum scanning electron microscope (SEM, JEOL 6300), environmental scanning electron microscope (ESEM, Quanta 200 FEG), field emission scanning electron microscope (FESEM, JEOL 7401F) with cryoattachment Alto 2500 (Gatan) and transmission electron microscope (TEM, JEOL 1010). The use of particular microscopes was tied with different specimen preparation techniques. The aim of this study was to evaluate to what degree the type of used electron microscope can influence the size of different parts of spermatozoa. For high vacuum SEM the specimen was prepared using two slightly different procedures. After chemical fixation with 2.5% glutaraldehyde in 0.1M phosphate buffer and post-fixation by 1% osmium tetroxide, the specimen was dehydrated by acetone series and dried either by critical point method or by means of t-butylalcohol. For ESEM fresh, unfixed material was used, which was dropped on microscopic copper grids. In FESEM working in cryo-mode the specimen was observed in a frozen state. Ultrathin sections from chemically fixed and Epon embedded specimens were prepared for TEM observation. Distinct parts of sterlet spermatozoa were measured in each microscope and the data obtained was statistically processed. Results confirmed that the classical chemical procedure of specimen preparation for SEM including critical point drying method led to a significant contraction of all measured values, which could deviate up to 30% in comparison with values measured on the fresh chemically untreated specimen in ESEM. Surprisingly sperm dimensions determinated on ultrathin sections by TEM are comparable with values obtained in ESEM or FESEM. Copyright 2010 Elsevier Ltd. All rights reserved.
Nano Electronics on Atomically Controlled van der Waals Quantum Heterostructures
2015-03-30
for the structural of the atomically sharp interface between hBN and Bi2Te3. Finally, we have developed unprecedentedly clean graphene supercoductor...crystals by MBE method. We also use transmission electron microscopy (TEM) analysis for the structural of the atomically sharp interface between hBN and...by MBE method. We also use transmission electron microscopy (TEM) analysis for the structural of the atomically sharp interface between hBN and Bi2Te3
Ultrastructural changes in tracheal epithelial cells exposed to oxygen
NASA Technical Reports Server (NTRS)
Philpott, D. E.; Harrison, G. A.; Turnbill, C.; Black, S.
1977-01-01
White albino rats were sacrificed after 24, 36, 48, 72, and 96 h of exposure to 100% O2 at 1 atm. Tissue was prepared for the scanning electron microscope (SEM) by Critical Point Drying and for the transmission electron microscope (TEM) by plastic embedding. Scanning microscopy showed a loss of microvilli after 48 h of exposure. Cilia appeared relatively normal with SEM, but TEM revealed changes in the outer membrane. In TEM, nonciliated cells appeared swollen and often encroached on the ciliated cells. A heavy mucous blanket remained even after processing. All the changes observed that are induced by oxygen exposure contribute to mucostasis, reducing and/or halting mucociliary clearance.
Microstructure of RERTR DU-alloys irradiated with krypton ions up to 100 dpa
NASA Astrophysics Data System (ADS)
Gan, J.; Keiser, D. D., Jr.; Miller, B. D.; Wachs, D. M.; Allen, T. R.; Kirk, M.; Rest, J.
2011-04-01
The radiation stability of the interaction product formed at the fuel-matrix interface of research reactor dispersion fuels, under fission-product bombardment, has a strong impact on fuel performance. Three depleted uranium alloys were cast that consisted of the following five phases to be investigated: U(Si, Al) 3, (U, Mo)(Si, Al) 3, UMo 2Al 20, U 6Mo 4Al 43, and UAl 4. Irradiation of transmission electron microscopy (TEM) disc samples with 500-keV Kr ions at 200 °C to doses up to ˜100 displacements per atom (dpa) were conducted using a 300-keV electron microscope equipped with an ion accelerator. TEM results show that the U(Si, Al) 3 and UAl 4 phases remain crystalline at 100 dpa without forming voids. The (U, Mo)(Si, Al) 3 and UMo 2Al 20 phases become amorphous at 1 and ˜2 dpa, respectively, and show no evidence of voids at 100 dpa. The U 6Mo 4Al 43 phase goes to amorphous at less than 1 dpa and reveals high density voids at 100 dpa.
NASA Astrophysics Data System (ADS)
Dasan, Y. K.; Bhat, A. H.; Faiz, A.
2015-07-01
This work evaluates the use of oil palm empty fruit bunch (OPEFB) fiber as a source of cellulose to obtain nanocrystalline cellulose (CNC) by acid hydrolysis reaction. The raw OPEFB fibers were pretreated with aqueous Sodium hydroxide at 80°C followed by bleaching treatment and further hydrolyzed with Sulphuric acid at 45°C with limited range of hydrolysis time and acid concentration. The resulting CNC's were characterized for spectroscopic, crystallographic and morphological properties using Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffractometer (XRD), Transmission Electron Microscope (TEM) and Atomic Force Microscopy (AFM). Finding of this study shows that the properties of CNC's are strongly dependent on the hydrolysis time and acid concentration.
Skowron, Stephen T; Chamberlain, Thomas W; Biskupek, Johannes; Kaiser, Ute; Besley, Elena; Khlobystov, Andrei N
2017-08-15
The main objective of this Account is to assess the challenges of transmission electron microscopy (TEM) of molecules, based on over 15 years of our work in this field, and to outline the opportunities in studying chemical reactions under the electron beam (e-beam). During TEM imaging of an individual molecule adsorbed on an atomically thin substrate, such as graphene or a carbon nanotube, the e-beam transfers kinetic energy to atoms of the molecule, displacing them from equilibrium positions. Impact of the e-beam triggers bond dissociation and various chemical reactions which can be imaged concurrently with their activation by the e-beam and can be presented as stop-frame movies. This experimental approach, which we term ChemTEM, harnesses energy transferred from the e-beam to the molecule via direct interactions with the atomic nuclei, enabling accurate predictions of bond dissociation events and control of the type and rate of chemical reactions. Elemental composition and structure of the reactant molecules as well as the operating conditions of TEM (particularly the energy of the e-beam) determine the product formed in ChemTEM processes, while the e-beam dose rate controls the reaction rate. Because the e-beam of TEM acts simultaneously as a source of energy for the reaction and as an imaging tool monitoring the same reaction, ChemTEM reveals atomic-level chemical information, such as pathways of reactions imaged for individual molecules, step-by-step and in real time; structures of illusive reaction intermediates; and direct comparison of catalytic activity of different transition metals filmed with atomic resolution. Chemical transformations in ChemTEM often lead to previously unforeseen products, demonstrating the potential of this method to become not only an analytical tool for studying reactions, but also a powerful instrument for discovery of materials that can be synthesized on preparative scale.
Hagedorn, Till; El Ouali, Mehdi; Paul, William; Oliver, David; Miyahara, Yoichi; Grütter, Peter
2011-11-01
A modification of the common electrochemical etching setup is presented. The described method reproducibly yields sharp tungsten tips for usage in the scanning tunneling microscope and tuning fork atomic force microscope. In situ treatment under ultrahigh vacuum (p ≤10(-10) mbar) conditions for cleaning and fine sharpening with minimal blunting is described. The structure of the microscopic apex of these tips is atomically resolved with field ion microscopy and cross checked with field emission. © 2011 American Institute of Physics
Mapping the layer count of few-layer hexagonal boron nitride at high lateral spatial resolutions
NASA Astrophysics Data System (ADS)
Mohsin, Ali; Cross, Nicholas G.; Liu, Lei; Watanabe, Kenji; Taniguchi, Takashi; Duscher, Gerd; Gu, Gong
2018-01-01
Layer count control and uniformity of two dimensional (2D) layered materials are critical to the investigation of their properties and to their electronic device applications, but methods to map 2D material layer count at nanometer-level lateral spatial resolutions have been lacking. Here, we demonstrate a method based on two complementary techniques widely available in transmission electron microscopes (TEMs) to map the layer count of multilayer hexagonal boron nitride (h-BN) films. The mass-thickness contrast in high-angle annular dark-field (HAADF) imaging in the scanning transmission electron microscope (STEM) mode allows for thickness determination in atomically clean regions with high spatial resolution (sub-nanometer), but is limited by surface contamination. To complement, another technique based on the boron K ionization edge in the electron energy loss spectroscopy spectrum (EELS) of h-BN is developed to quantify the layer count so that surface contamination does not cause an overestimate, albeit at a lower spatial resolution (nanometers). The two techniques agree remarkably well in atomically clean regions with discrepancies within ±1 layer. For the first time, the layer count uniformity on the scale of nanometers is quantified for a 2D material. The methodology is applicable to layer count mapping of other 2D layered materials, paving the way toward the synthesis of multilayer 2D materials with homogeneous layer count.
Multi-scale characterization by FIB-SEM/TEM/3DAP.
Ohkubo, T; Sepehri-Amin, H; Sasaki, T T; Hono, K
2014-11-01
In order to improve properties of functional materials, it is important to understand the relation between the structure and the properties since the structure has large effect to the properties. This can be done by using multi-scale microstructure analysis from macro-scale to nano and atomic scale. Scanning electron microscope (SEM) equipped with focused ion beam (FIB), transmission electron microscope (TEM) and 3D atom probe (3DAP) are complementary analysis tools making it possible to know the structure and the chemistry from micron to atomic resolution. SEM gives us overall microstructural and chemical information by various kinds of detectors such as secondary electron, backscattered electron, EDS and EBSD detectors. Also, it is possible to analyze 3D structure and chemistry via FIB serial sectioning. In addition, using TEM we can focus on desired region to get more complementary information from HRTEM/STEM/Lorentz images, SAED/NBD patterns and EDS/EELS to see the detail micro or nano-structure and chemistry. Especially, combination of probe Cs corrector and split EDS detectors with large detector size enable us to analyze the atomic scale elemental distribution. Furthermore, if the specimen has a complicated 3D nanostructure, or we need to analyze light elements such as hydrogen, lithium or boron, 3DAP can be used as the only technique which can visualize and analyze distribution of all constituent atoms of our materials within a few hundreds nm area. Hence, site-specific sample preparation using FIB/SEM is necessary to get desired information from region of interest. Therefore, this complementary analysis combination works very well to understand the detail of materials.In this presentation, we will show the analysis results obtained from some of functional materials by Carl Zeiss CrossBeam 1540EsB FIB/SEM, FEI Tecnai G(2) F30, Titan G2 80-200 TEMs and locally build laser assisted 3DAP. As the one of the example, result of multi-scale characterization for ultra-fine grain Nd-Fe-B permanent magnet will be shown [1]. In order to improve the magnetic properties, especially to increase the coercivity (resistance against magnetization reversal) of the magnet, decreasing the grain size and isolating each grain by non-ferromagnetic grain boundary phase are quite important since the nucleation of magnetic reversal from grain boundary phase can be suppressed and pinning force of magnetic domain wall at the grain boundary phase can be strengthened. Therefore, micro and nano structure and chemistry analysis can shed a light do grain boundary engineering.Figure 1(a,b) shows SEM BSE images of ultrafine grain Nd-Fe-B sintered magnet and the reconstructed 3D tomography of Nd-rich phases obtained by FIB/SEM serial sectioning. This data can provide us information about the distribution of Nd-rich phase and its volume fraction. Moreover, the HRTEM image from the grain boundary phase, the 3DAP maps and the concentration depth profiles are shown in Fig. 1(c,d,e). This magnet shows high coercivity (1517kA/m), and by comparing these results with the microstructures of low coercivity specimen, importance of grain boundary formation was confirmed and it gives us hint to improve the coercivity further. We will show the detail and results from other materials.jmicro;63/suppl_1/i6/DFU046F1F1DFU046F1Fig. 1.(a) SEM BSE images of ultrafine grain Nd-Fe-B sintered magnet. (b) 3D FIB/SEM tomography of Nd-rich phases. (c) HRTEM image from the grain boundary phase. (d) 3DAP maps of Nd, Cu and Al. (e) Concentration depth profiles for Fe, Nd+Pr, B, Co, Cu and Al, determined from the selected box in (d)[1]. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
von Allwörden, H; Ruschmeier, K; Köhler, A; Eelbo, T; Schwarz, A; Wiesendanger, R
2016-07-01
The design of an atomic force microscope with an all-fiber interferometric detection scheme capable of atomic resolution at about 500 mK is presented. The microscope body is connected to a small pumped (3)He reservoir with a base temperature of about 300 mK. The bakeable insert with the cooling stage can be moved from its measurement position inside the bore of a superconducting 10 T magnet into an ultra-high vacuum chamber, where the tip and sample can be exchanged in situ. Moreover, single atoms or molecules can be evaporated onto a cold substrate located inside the microscope. Two side chambers are equipped with standard surface preparation and surface analysis tools. The performance of the microscope at low temperatures is demonstrated by resolving single Co atoms on Mn/W(110) and by showing atomic resolution on NaCl(001).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Yang; Nikiforov, Alexey Y.; Kaspar, Tiffany C.
2016-11-01
In this study, a strontium doped lanthanum cobalt ferrite thin film with 30% Sr on A-site, denoted as La0.7Sr0.3Co0.2Fe0.8O3-δ or LSCF-7328, was investigated before and after annealing at 800 °C under CO2 containing atmosphere for 9 hours. The formation of secondary phases on surface of post-annealed LSCF-7328 has been observed using atomic force microscope (AFM) and scanning electron microscope (SEM). The extent of Sr segregation at the film surface was observed using the synchrotron-based total reflection X-ray fluorescence (TXRF) technique. The bonding environment of the secondary phases formed on the surface was investigated by synchrotron-based hard X-ray photoelectron spectroscopy (HAXPES).more » Transmission electron microscope (TEM) and related spectroscopy techniques were used for microstructural and quantitative elemental analyses of the secondary phases on surface. These studies revealed that the secondary phases on surface consisted of SrO covered with a capping layer of SrCO3. The formation of Co-rich phases has also been observed on the surface of post-annealed LSCF-7328.« less
Stability of DNA Origami Nanoarrays in Cell Lysate
Mei, Qian; Wei, Xixi; Su, Fengyu; Liu, Yan; Youngbull, Cody; Johnson, Roger; Lindsay, Stuart; Yan, Hao; Meldrum, Deirdre
2012-01-01
Scaffolded DNA origami, a method to create self-assembled nanostructures with spatially addressable features, has recently been used to develop water-soluble molecular chips for label-free RNA detection, platforms for deterministic protein positioning, and single molecule reaction observatories. These applications highlight the possibility of exploiting the unique properties and biocompatibility of DNA nanostructures in live, cellular systems. Herein, we assembled several DNA origami nanostructures of differing shape, size and probes, and investigated their interaction with lysate obtained from various normal and cancerous cell lines. We separated and analyzed the origami–lysate mixtures using agarose gel electrophoresis and recovered the DNA structures for functional assay and subsequent microscopic examination. Our results demonstrate that DNA origami nanostructures are stable in cell lysate and can be easily separated from lysate mixtures, in contrast to natural, single- and double-stranded DNA. Atomic force microscope (AFM) and transmission electron microscope (TEM) images show that the DNA origami structures are fully intact after separation from cell lysates and hybridize to their targets, verifying the superior structural integrity and functionality of self-assembled DNA origami nanostructures relative to conventional oligonucleotides. The stability and functionality of DNA origami structures in cell lysate validate their use for biological applications, for example, as programmable molecular rafts or disease detection platforms. PMID:21366226
Preparation of high-quality planar FeRh thin films for in situ TEM investigations
NASA Astrophysics Data System (ADS)
Almeida, Trevor P.; McGrouther, Damien; Pivak, Yevheniy; Perez Garza, Hector Hugo; Temple, Rowan; Massey, Jamie; Marrows, Christopher H.; McVitie, Stephen
2017-10-01
The preparation of a planar FeRh thin film using a focused ion beam (FIB) secondary electron microscope (SEM) for the purpose of in situ transmission electron microscopy (TEM) is presented. A custom SEM stub with 45° faces allows for the transfer and milling of the sample on a TEM heating chip, whilst Fresnel imaging within the TEM revealed the presence of the magnetic domain walls, confirming the quality of the FIB-prepared sample.
Theory of a Quantum Scanning Microscope for Cold Atoms
NASA Astrophysics Data System (ADS)
Yang, D.; Laflamme, C.; Vasilyev, D. V.; Baranov, M. A.; Zoller, P.
2018-03-01
We propose and analyze a scanning microscope to monitor "live" the quantum dynamics of cold atoms in a cavity QED setup. The microscope measures the atomic density with subwavelength resolution via dispersive couplings to a cavity and homodyne detection within the framework of continuous measurement theory. We analyze two modes of operation. First, for a fixed focal point the microscope records the wave packet dynamics of atoms with time resolution set by the cavity lifetime. Second, a spatial scan of the microscope acts to map out the spatial density of stationary quantum states. Remarkably, in the latter case, for a good cavity limit, the microscope becomes an effective quantum nondemolition device, such that the spatial distribution of motional eigenstates can be measured backaction free in single scans, as an emergent quantum nondemolition measurement.
Theory of a Quantum Scanning Microscope for Cold Atoms.
Yang, D; Laflamme, C; Vasilyev, D V; Baranov, M A; Zoller, P
2018-03-30
We propose and analyze a scanning microscope to monitor "live" the quantum dynamics of cold atoms in a cavity QED setup. The microscope measures the atomic density with subwavelength resolution via dispersive couplings to a cavity and homodyne detection within the framework of continuous measurement theory. We analyze two modes of operation. First, for a fixed focal point the microscope records the wave packet dynamics of atoms with time resolution set by the cavity lifetime. Second, a spatial scan of the microscope acts to map out the spatial density of stationary quantum states. Remarkably, in the latter case, for a good cavity limit, the microscope becomes an effective quantum nondemolition device, such that the spatial distribution of motional eigenstates can be measured backaction free in single scans, as an emergent quantum nondemolition measurement.
Frontiers of in situ electron microscopy
Zheng, Haimei; Zhu, Yimei; Meng, Shirley Ying
2015-01-01
In situ transmission electron microscopy (TEM) has become an increasingly important tool for materials characterization. It provides key information on the structural dynamics of a material during transformations and the correlation between structure and properties of materials. With the recent advances in instrumentation, including aberration corrected optics, sample environment control, the sample stage, and fast and sensitive data acquisition, in situ TEM characterization has become more and more powerful. In this article, a brief review of the current status and future opportunities of in situ TEM is included. It also provides an introduction to the six articles covered by inmore » this issue of MRS Bulletin explore the frontiers of in situ electron microscopy, including liquid and gas environmental TEM, dynamic four-dimensional TEM, nanomechanics, ferroelectric domain switching studied by in situ TEM, and state-of-the-art atomic imaging of light elements (i.e., carbon atoms) and individual defects.« less
Brantley, William A; Guo, Wenhua; Clark, William A T; Iijima, Masahiro
2008-02-01
Previous temperature-modulated differential scanning calorimetry (TMDSC) study of nickel-titanium orthodontic wires revealed a large exothermic low-temperature peak that was attributed to transformation within martensitic NiTi. The purpose of this study was to use transmission electron microscopy (TEM) to verify this phase transformation in a clinically popular nickel-titanium wire, identify its mechanism and confirm other phase transformations found by TMDSC, and to provide detailed information about the microstructure of this wire. The 35 degrees C Copper nickel-titanium wire (Ormco) with cross-section dimensions of 0.016 in. x 0.022 in. used in the earlier TMDSC investigation was selected. Foils were prepared for TEM analyses by mechanical grinding, polishing, dimpling, ion milling and plasma cleaning. Standard bright-field and dark-field TEM images were obtained, along with convergent-beam electron diffraction patterns. A cryo-stage with the electron microscope (Phillips CM 200) permitted the specimen to be observed at -187, -45, and 50 degrees C, as well as at room temperature. Microstructures were also observed with an optical microscope and a scanning electron microscope. Room temperature microstructures had randomly oriented, elongated grains that were twinned. Electron diffraction patterns confirmed that phase transformations took place over temperature ranges previously found by TMDSC. TEM observations revealed a high dislocation density and fine-scale oxide particles, and that twinning is the mechanism for the low-temperature transformation in martensitic NiTi. TEM confirmed the low-temperature peak and other phase transformations observed by TMDSC, and revealed that twinning in martensite is the mechanism for the low-temperature peak. The high dislocation density and fine-scale oxide particles in the microstructure are the result of the wire manufacturing process.
Rasheed, Tahir; Bilal, Muhammad; Iqbal, Hafiz M N; Li, Chuanlong
2017-10-01
Biosynthesis of nanoparticles from plant extracts is receiving enormous interest due to their abundant availability and a broad spectrum of bioactive reducing metabolites. In this study, the reducing potential of Artemisia vulgaris leaves extract (AVLE) was investigated for synthesizing silver nanoparticles without the addition of any external reducing or capping agent. The appearance of blackish brown color evidenced the complete synthesis of nanoparticles. The synthesized silver nanoparticles were characterized by UV-vis spectroscopy, scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscope (TEM), atomic force microscopy (AFM) and Fourier transforms infrared spectroscopy (FT-IR) analysis. UV-vis absorption profile of the bio-reduced sample elucidated the main peak around 420nm, which correspond to the surface plasmon resonance of silver nanoparticles. SEM and AFM analyses confirmed the morphology of the synthesized nanoparticles. Similarly, particles with a distinctive peak of silver were examined with EDX. The average diameter of silver nanoparticles was about 25nm from Transmission Electron Microscopy (TEM). FTIR spectroscopy scrutinized the involvement of various functional groups during nanoparticle synthesis. The green synthesized nanoparticles presented effective antibacterial activity against pathogenic bacteria than AVLE alone. In-vitro antioxidant assays revealed that silver nanoparticles (AV-AgNPs) exhibited promising antioxidant properties. The nanoparticles also displayed a potent cytotoxic effect against HeLa and MCF-7 cell lines. In conclusion, the results supported the advantages of employing a bio-green approach for developing silver nanoparticles with antimicrobial, antioxidant, and antiproliferative activities in a simple and cost- competitive manner. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dasan, Y. K., E-mail: aamir.bhat@petronas.com.my; Bhat, A. H., E-mail: aamir.bhat@petronas.com.my; Faiz, A., E-mail: faizahmad@petronas.com.my
2015-07-22
This work evaluates the use of oil palm empty fruit bunch (OPEFB) fiber as a source of cellulose to obtain nanocrystalline cellulose (CNC) by acid hydrolysis reaction. The raw OPEFB fibers were pretreated with aqueous Sodium hydroxide at 80°C followed by bleaching treatment and further hydrolyzed with Sulphuric acid at 45°C with limited range of hydrolysis time and acid concentration. The resulting CNC’s were characterized for spectroscopic, crystallographic and morphological properties using Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffractometer (XRD), Transmission Electron Microscope (TEM) and Atomic Force Microscopy (AFM). Finding of this study shows that the properties of CNC’s aremore » strongly dependent on the hydrolysis time and acid concentration.« less
Dynamic wet-ETEM observation of Pt/C electrode catalysts in a moisturized cathode atmosphere.
Yoshida, Kenta; Bright, Alexander N; Ward, Michael R; Lari, Leonardo; Zhang, Xudong; Hiroyama, Tomoki; Boyes, Edward D; Gai, Pratibha L
2014-10-24
The gas injection line of the latest spherical aberration-corrected environmental transmission electron microscope has been modified for achieving real-time/atomic-scale observations in moisturised gas atmospheres for the first time. The newly developed Wet-TEM system is applied to platinum carbon electrode catalysts to investigate the effect of water molecules on the platinum/carbon interface during deactivation processes such as sintering and corrosion. Dynamic in situ movies obtained in dry and 24% moisturised nitrogen environments visualize the rapid rotation, migration and agglomeration of platinum nanoparticles due to the physical adsorption of water and the hydroxylation of the carbon surface. The origin of the long-interconnected aggregation of platinum nanoparticles was discovered to be a major deactivation process in addition to conventional carbon corrosion.
A New Maraging Stainless Steel with Excellent Strength-Toughness-Corrosion Synergy.
Tian, Jialong; Wang, Wei; Babar Shahzad, M; Yan, Wei; Shan, Yiyin; Jiang, Zhouhua; Yang, Ke
2017-11-10
A new maraging stainless steel with superior strength-toughness-corrosion synergy has been developed based on an innovative concept of alloy design. The high strength-toughness combination is achieved by forming dispersive nano-sized intermetallic compounds in the soft lath martensitic matrix with a slight amount of residual austenite. The good corrosion resistance is guaranteed by exactly controlling the Co content based on understanding the synergistic effect between Co and Cr. The fine structure characteristics of two dominant strengthening precipitations including Ni₃Ti and Mo-rich phases were finely characterized associated with transmission electron microscope (TEM) and atom probe tomography (APT) analyses. The relationship among microstructure, strength and toughness is discussed. The precipitation mechanism of different precipitates in the new maraging stainless steel is revealed based on the APT analysis.
Structure and growth of the mesoscopic surfactant/silica thin films
NASA Astrophysics Data System (ADS)
Zhou, Linbo
1999-10-01
We report the study of the structure and the growth of the mesoscopic surfactant/silica thin films. We use X-ray diffraction coupled with Scanning Electron Microscope (SEM), Atomic Force Microscope (AFM), Transmission Electron Microscope (TEM) and light scattering techniques to study the structure, lattice strain and the drying effect of the thin films as well as the growth kinetics and mechanism. The surfactant/silica materials are synthesized using the supramolecular assemblies of the surfactant molecules to template the condensation of the inorganic species. The subsequent calcination yields the mesoporous silica materials, which have many application properties such as unusual electronic, optical, magnetic and elastic characteristics. The films are grown on mica, graphite and silicon substrates in an acidic CTAC (Cetyltrimethyl Ammonium Chloride)/TEOS (Tetraethyl Orthosilicate) solution and are found to consist of the hexagonally packed tubules. The substrate plays an important role in the epitaxial arrangement of the film. We use the light scattering and cryo TEM to study the micelle morphology and aggregation in the solution and use synchrotron radiation X-ray diffraction to study the growth of the film at the solid/liquid interfaces in-situ. An induction time is found followed by the growth of the film at a nonlinear growth rate. The induction time depends on the ratio of the concentrations of CTAC to TEOS in the high CTAC concentration regime. The growth kinetics and mechanism are elucidated in a context of a growth model. For the technological application, Micromolding in Capillaries (MIMIC) technique and the field guided growth are used to process the patterned mesoscopic surfactant/silica thin films and align the nanotubules into the desired orientation. X-ray diffraction characterization has been performed to study the structure and orientation of the thin films. The combined influence of the electric field and the confinement of the mold allows the synthesis of the surfactant/silica thin films with the controlled orientation.
Electron Microscopist | Center for Cancer Research
PROGRAM DESCRIPTION The Cancer Research Technology Program (CRTP) develops and implements emerging technology, cancer biology expertise and research capabilities to accomplish NCI research objectives. The CRTP is an outward-facing, multi-disciplinary hub purposed to enable the external cancer research community and provides dedicated support to NCI’s intramural Center for Cancer Research (CCR). The dedicated units provide electron microscopy, protein characterization, protein expression, optical microscopy and genetics. These research efforts are an integral part of CCR at the Frederick National Laboratory for Cancer Research (FNLCR). CRTP scientists also work collaboratively with intramural NCI investigators to provide research technologies and expertise. KEY ROLES/RESPONSIBILITIES - THIS POSITION IS CONTINGENT UPON FUNDING APPROVAL The Electron Microscopist will: Operate ultramicrotomes (Leica) and other instrumentation related to the preparation of embedded samples for EM (TEM and SEM) Operate TEM microscopes, (specifically Hitachi, FEI T20 and FEI T12) as well as SEM microscopes (Hitachi); task will include loading samples, screening, and performing data collection for a variety of samples: from cells to proteins Manage maintenance for the TEM and SEM microscopes Provide technical advice to investigators on sample preparation and data collection
Gignac, Lynne M; Mittal, Surbhi; Bangsaruntip, Sarunya; Cohen, Guy M; Sleight, Jeffrey W
2011-12-01
The ability to prepare multiple cross-section transmission electron microscope (XTEM) samples from one XTEM sample of specific sub-10 nm features was demonstrated. Sub-10 nm diameter Si nanowire (NW) devices were initially cross-sectioned using a dual-beam focused ion beam system in a direction running parallel to the device channel. From this XTEM sample, both low- and high-resolution transmission electron microscope (TEM) images were obtained from six separate, specific site Si NW devices. The XTEM sample was then re-sectioned in four separate locations in a direction perpendicular to the device channel: 90° from the original XTEM sample direction. Three of the four XTEM samples were successfully sectioned in the gate region of the device. From these three samples, low- and high-resolution TEM images of the Si NW were taken and measurements of the NW diameters were obtained. This technique demonstrated the ability to obtain high-resolution TEM images in directions 90° from one another of multiple, specific sub-10 nm features that were spaced 1.1 μm apart.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allwörden, H. von; Ruschmeier, K.; Köhler, A.
The design of an atomic force microscope with an all-fiber interferometric detection scheme capable of atomic resolution at about 500 mK is presented. The microscope body is connected to a small pumped {sup 3}He reservoir with a base temperature of about 300 mK. The bakeable insert with the cooling stage can be moved from its measurement position inside the bore of a superconducting 10 T magnet into an ultra-high vacuum chamber, where the tip and sample can be exchanged in situ. Moreover, single atoms or molecules can be evaporated onto a cold substrate located inside the microscope. Two side chambersmore » are equipped with standard surface preparation and surface analysis tools. The performance of the microscope at low temperatures is demonstrated by resolving single Co atoms on Mn/W(110) and by showing atomic resolution on NaCl(001).« less
2017-01-01
We report an approach, named chemTEM, to follow chemical transformations at the single-molecule level with the electron beam of a transmission electron microscope (TEM) applied as both a tunable source of energy and a sub-angstrom imaging probe. Deposited on graphene, disk-shaped perchlorocoronene molecules are precluded from intermolecular interactions. This allows monomolecular transformations to be studied at the single-molecule level in real time and reveals chlorine elimination and reactive aryne formation as a key initial stage of multistep reactions initiated by the 80 keV e-beam. Under the same conditions, perchlorocoronene confined within a nanotube cavity, where the molecules are situated in very close proximity to each other, enables imaging of intermolecular reactions, starting with the Diels–Alder cycloaddition of a generated aryne, followed by rearrangement of the angular adduct to a planar polyaromatic structure and the formation of a perchlorinated zigzag nanoribbon of graphene as the final product. ChemTEM enables the entire process of polycondensation, including the formation of metastable intermediates, to be captured in a one-shot “movie”. A molecule with a similar size and shape but with a different chemical composition, octathio[8]circulene, under the same conditions undergoes another type of polycondensation via thiyl biradical generation and subsequent reaction leading to polythiophene nanoribbons with irregular edges incorporating bridging sulfur atoms. Graphene or carbon nanotubes supporting the individual molecules during chemTEM studies ensure that the elastic interactions of the molecules with the e-beam are the dominant forces that initiate and drive the reactions we image. Our ab initio DFT calculations explicitly incorporating the e-beam in the theoretical model correlate with the chemTEM observations and give a mechanism for direct control not only of the type of the reaction but also of the reaction rate. Selection of the appropriate e-beam energy and control of the dose rate in chemTEM enabled imaging of reactions on a time frame commensurate with TEM image capture rates, revealing atomistic mechanisms of previously unknown processes. PMID:28191929
NASA Astrophysics Data System (ADS)
Nakano, Haruhisa; Takahashi, Makoto; Sato, Motonobu; Kotsugi, Masato; Ohkochi, Takuo; Muro, Takayuki; Nihei, Mizuhisa; Yokoyama, Naoki
2013-11-01
The resistive switching characteristics of a TiO2/Ti structure have been investigated using a conductive atomic force microscopy (AFM) system with 5-nm-diameter carbon nanotube (CNT) probes. The resistive switching showed bipolar resistive random access memory (ReRAM) behaviors with extremely low switching currents in the order of Picoamperes when voltages were applied. From transmission electron microscopy (TEM) observation, we confirmed that filament-like nanocrystals, having a diameter of about 10 nm, existed in TiO2 films at resistive switching areas after not only set operation but also reset operation. Moreover, photoemission electron microscopy (PEEM) analysis showed that the anatase-type TiO2 structure did not change after set and reset operations. From these results, we suggested that the Picoampere resistive switching occurred at the interface between the TiO2 dielectric and conductive nanocrystal without any structural changes in the TiO2 film and nanocrystal. The resistive switching mechanism we suggested is highly promising to realize extremely low-power-consumption ReRAMs with vertically contacted CNT electrodes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Wenpei; Wu, Jianbo; Yoon, Aram
Atomic motion at grain boundaries is essential to microstructure development, growth and stability of catalysts and other nanostructured materials. However, boundary atomic motion is often too fast to observe in a conventional transmission electron microscope (TEM) and too slow for ultrafast electron microscopy. We report on the entire transformation process of strained Pt icosahedral nanoparticles (ICNPs) into larger FCC crystals, captured at 2.5 ms time resolution using a fast electron camera. Results show slow diffusive dislocation motion at nm/s inside ICNPs and fast surface transformation at μm/s. By characterizing nanoparticle strain, we show that the fast transformation is driven bymore » inhomogeneous surface stress. And interaction with pre-existing defects led to the slowdown of the transformation front inside the nanoparticles. Particle coalescence, assisted by oxygen-induced surface migration at T ≥ 300°C, also played a critical role. Thus by studying transformation in the Pt ICNPs at high time and spatial resolution, we obtain critical insights into the transformation mechanisms in strained Pt nanoparticles.« less
Lausch, V; Hermann, P; Laue, M; Bannert, N
2014-06-01
Successive application of negative staining transmission electron microscopy (TEM) and tip-enhanced Raman spectroscopy (TERS) is a new correlative approach that could be used to rapidly and specifically detect and identify single pathogens including bioterrorism-relevant viruses in complex samples. Our objective is to evaluate the TERS-compatibility of commonly used electron microscopy (EM) grids (sample supports), chemicals and negative staining techniques and, if required, to devise appropriate alternatives. While phosphortungstic acid (PTA) is suitable as a heavy metal stain, uranyl acetate, paraformaldehyde in HEPES buffer and alcian blue are unsuitable due to their relatively high Raman scattering. Moreover, the low thermal stability of the carbon-coated pioloform film on copper grids (pioloform grids) negates their utilization. The silicon in the cantilever of the silver-coated atomic force microscope tip used to record TERS spectra suggested that Si-based grids might be employed as alternatives. From all evaluated Si-based TEM grids, the silicon nitride (SiN) grid was found to be best suited, with almost no background Raman signals in the relevant spectral range, a low surface roughness and good particle adhesion properties that could be further improved by glow discharge. Charged SiN grids have excellent particle adhesion properties. The use of these grids in combination with PTA for contrast in the TEM is suitable for subsequent analysis by TERS. The study reports fundamental modifications and optimizations of the negative staining EM method that allows a combination with near-field Raman spectroscopy to acquire a spectroscopic signature from nanoscale biological structures. This should facilitate a more precise diagnosis of single viral particles and other micro-organisms previously localized and visualized in the TEM. © 2014 The Society for Applied Microbiology.
Microcellular nanocomposite injection molding process
Mingjun Yuan; Lih-Sheng Turng; Rick Spindler; Daniel Caulfield; Chris Hunt
2003-01-01
This study aims to explore the processing benefits and property improvements of combining nanocomposites with microcellular injection molding. The molded parts produced based on the Design of Experiments (DOE) matrices were subjected to tensile testing, impact testing, and Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), Dynamic Mechanical...
NASA Astrophysics Data System (ADS)
William, R. V.; Sivaprakash, P.; Marikani, A.; Reddy, V. Raghavendra; Arumugam, S.
2018-02-01
We present here the experimental results of BiFe0.75Cr0.25O3 (BFCO) thin film deposited by sol-gel spin coating technique directly on Pt(111)/Ti/SiO2/Si substrate at different thicknesses. The crystal structure of BFCO has been investigated using X-ray diffraction which acts as a double perovskite structure with high crystallinity obtained at 400 °C. Further microscopic studies such as scanning electron microscope (SEM) with EDAX, transmission electron microscope (TEM) were also used in identifying the grain size and particle distribution over Pt (111) substrate. Atomic force microscopy (AFM) on the films at a different thickness (- 80 to - 250 nm) reveals that the surface roughness and other amplitude parameters increases with the increase in thickness signifying an increase of grain size with thickness. Increase in grain size and substrate clamping effect between the BFCO film and the substrate induces change in ferroelectric polarization and dielectric properties in relation to thickness effect. Similarly, decrease in magnetization from 9.241 emu/cm3 (- 80 nm) to 5.7791 emu/cm3 (- 250 nm) is attributed to the formation of anti-sites and anti-phase boundaries in the films. In addition, temperature dependence of magnetization reveals ferromagnetic super-exchange interaction of BFCO which is unlike the spin structure of antiferromagnetic BiFeO3.
A New Maraging Stainless Steel with Excellent Strength–Toughness–Corrosion Synergy
Tian, Jialong; Wang, Wei; Babar Shahzad, M.; Yan, Wei; Shan, Yiyin; Jiang, Zhouhua; Yang, Ke
2017-01-01
A new maraging stainless steel with superior strength–toughness–corrosion synergy has been developed based on an innovative concept of alloy design. The high strength–toughness combination is achieved by forming dispersive nano-sized intermetallic compounds in the soft lath martensitic matrix with a slight amount of residual austenite. The good corrosion resistance is guaranteed by exactly controlling the Co content based on understanding the synergistic effect between Co and Cr. The fine structure characteristics of two dominant strengthening precipitations including Ni3Ti and Mo-rich phases were finely characterized associated with transmission electron microscope (TEM) and atom probe tomography (APT) analyses. The relationship among microstructure, strength and toughness is discussed. The precipitation mechanism of different precipitates in the new maraging stainless steel is revealed based on the APT analysis. PMID:29125550
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, C.; Golberg, D., E-mail: xuzhi@iphy.ac.cn, E-mail: golberg.dmitri@nims.go.jp; Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennodai 1, Tsukuba, Ibaraki 3058577
2015-08-31
Photocurrent spectroscopy of individual free-standing ZnO nanowires inside a high-resolution transmission electron microscope (TEM) is reported. By using specially designed optical in situ TEM system capable of scanning tunneling microscopy probing paired with light illumination, opto-mechano-electrical tripling phenomenon in ZnO nanowires is demonstrated. Splitting of photocurrent spectra at around 3.3 eV under in situ TEM bending of ZnO nanowires directly corresponds to nanowire deformation and appearance of expanded and compressed nanowire sides. Theoretical simulation of a bent ZnO nanowire has an excellent agreement with the experimental data. The splitting effect could be explained by a change in the valence band structuremore » of ZnO nanowires due to a lattice strain. The strain-induced splitting provides important clues for future flexible piezo-phototronics.« less
Kumar, Vineet
2011-12-01
The grain size statistics, commonly derived from the grain map of a material sample, are important microstructure characteristics that greatly influence its properties. The grain map for nanomaterials is usually obtained manually by visual inspection of the transmission electron microscope (TEM) micrographs because automated methods do not perform satisfactorily. While the visual inspection method provides reliable results, it is a labor intensive process and is often prone to human errors. In this article, an automated grain mapping method is developed using TEM diffraction patterns. The presented method uses wide angle convergent beam diffraction in the TEM. The automated technique was applied on a platinum thin film sample to obtain the grain map and subsequently derive grain size statistics from it. The grain size statistics obtained with the automated method were found in good agreement with the visual inspection method.
Lucia, Umberto
2016-01-01
The relation between macroscopic irreversibility and microscopic reversibility is a present unsolved problem. Constructal law is introduced to develop analytically the Einstein’s, Schrödinger’s, and Gibbs’ considerations on the interaction between particles and thermal radiation (photons). The result leads to consider the atoms and molecules as open systems in continuous interaction with flows of photons from their surroundings. The consequent result is that, in any atomic transition, the energy related to the microscopic irreversibility is negligible, while when a great number of atoms (of the order of Avogadro’s number) is considered, this energy related to irreversibility becomes so large that its order of magnitude must be taken into account. Consequently, macroscopic irreversibility results related to microscopic irreversibility by flows of photons and amount of atoms involved in the processes. PMID:27762333
NASA Astrophysics Data System (ADS)
Wang, Shuangyue; Yan, Hongwei; Li, Dengji; Qiao, Liang; Han, Shaobo; Yuan, Xiaodong; Liu, Wei; Xiang, Xia; Zu, Xiaotao
2018-02-01
Dual-layer and tri-layer broadband antireflective (AR) films with excellent transmittance were successfully fabricated using base-/acid-catalyzed mixed sols and propylene oxide (PO) modified silica sols. The sols and films were characterized by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), transmission electron microscope (TEM), and scanning transmission electron microscope (STEM). FTIR and TEM results suggest that the PO molecules were covalently bonded to the silica particles and the bridge structure existing in PO modified silica sol is responsible for the low density of the top layer. The density ratio between different layers was measured by cross-sectional STEM, and the results are 1.69:1 and 2.1:1.7:1 from bottom-layer to top-layer for dual-layer and tri-layer films, respectively. The dual-layer film demonstrates good stability with 99.8% at the central wavelength of 351 nm and nearly 99.5% at the central wavelength of 1053 nm in laser system, and for the tri-layer AR film, the maximum transmittance reached nearly 100% at both the central wavelengths of 527 and 1053 nm.
A Monochromatic, Aberration-Corrected, Dual-Beam Low Energy Electron Microscope
Mankos, Marian; Shadman, Khashayar
2013-01-01
The monochromatic, aberration-corrected, dual-beam low energy electron microscope (MAD-LEEM) is a novel instrument aimed at imaging of nanostructures and surfaces at sub-nanometer resolution that includes a monochromator, aberration corrector and dual beam illumination. The monochromator reduces the energy spread of the illuminating electron beam, which significantly improves spectroscopic and spatial resolution. The aberration corrector utilizes an electron mirror with negative aberrations that can be used to compensate the aberrations of the LEEM objective lens for a range of electron energies. Dual flood illumination eliminates charging generated when a conventional LEEM is used to image insulating specimens. MAD-LEEM is designed for the purpose of imaging biological and insulating specimens, which are difficult to image with conventional LEEM, Low-Voltage SEM, and TEM instruments. The MAD-LEEM instrument can also be used as a general purpose LEEM with significantly improved resolution. The low impact energy of the electrons is critical for avoiding beam damage, as high energy electrons with keV kinetic energies used in SEMs and TEMs cause irreversible change to many specimens, in particular biological materials. A potential application for MAD-LEEM is in DNA sequencing, which demands imaging techniques that enable DNA sequencing at high resolution and speed, and at low cost. The key advantages of the MAD-LEEM approach for this application are the low electron impact energies, the long read lengths, and the absence of heavy-atom DNA labeling. Image contrast simulations of the detectability of individual nucleotides in a DNA strand have been developed in order to refine the optics blur and DNA base contrast requirements for this application. PMID:23582636
A monochromatic, aberration-corrected, dual-beam low energy electron microscope.
Mankos, Marian; Shadman, Khashayar
2013-07-01
The monochromatic, aberration-corrected, dual-beam low energy electron microscope (MAD-LEEM) is a novel instrument aimed at imaging of nanostructures and surfaces at sub-nanometer resolution that includes a monochromator, aberration corrector and dual beam illumination. The monochromator reduces the energy spread of the illuminating electron beam, which significantly improves spectroscopic and spatial resolution. The aberration corrector utilizes an electron mirror with negative aberrations that can be used to compensate the aberrations of the LEEM objective lens for a range of electron energies. Dual flood illumination eliminates charging generated when a conventional LEEM is used to image insulating specimens. MAD-LEEM is designed for the purpose of imaging biological and insulating specimens, which are difficult to image with conventional LEEM, Low-Voltage SEM, and TEM instruments. The MAD-LEEM instrument can also be used as a general purpose LEEM with significantly improved resolution. The low impact energy of the electrons is critical for avoiding beam damage, as high energy electrons with keV kinetic energies used in SEMs and TEMs cause irreversible change to many specimens, in particular biological materials. A potential application for MAD-LEEM is in DNA sequencing, which demands imaging techniques that enable DNA sequencing at high resolution and speed, and at low cost. The key advantages of the MAD-LEEM approach for this application are the low electron impact energies, the long read lengths, and the absence of heavy-atom DNA labeling. Image contrast simulations of the detectability of individual nucleotides in a DNA strand have been developed in order to refine the optics blur and DNA base contrast requirements for this application. Copyright © 2013 Elsevier B.V. All rights reserved.
Preparation of carbon-free TEM microgrids by metal sputtering.
Janbroers, S; de Kruijff, T R; Xu, Q; Kooyman, P J; Zandbergen, H W
2009-08-01
A new method for preparing carbon-free, temperature-stable Transmission Electron Microscope (TEM) grids is presented. An 80% Au/20% Pd metal film is deposited onto a 'holey' microgrid carbon supported on standard mixed-mesh Au TEM grids. Subsequently, the carbon film is selectively removed using plasma cleaning. In this way, an all-metal TEM film is made containing the 'same' microgrid as the original carbon film. Although electron transparency of the foil is reduced significantly, the open areas for TEM inspection of material over these areas are maintained. The metal foil can be prepared with various thicknesses and ensures good electrical conductivity. The new Au/Pd grids are stable to at least 775K under vacuum conditions.
Multi-scale Observation of Biological Interactions of Nanocarriers: from Nano to Macro
Jin, Su-Eon; Bae, Jin Woo; Hong, Seungpyo
2010-01-01
Microscopic observations have played a key role in recent advancements in nanotechnology-based biomedical sciences. In particular, multi-scale observation is necessary to fully understand the nano-bio interfaces where a large amount of unprecedented phenomena have been reported. This review describes how to address the physicochemical and biological interactions of nanocarriers within the biological environments using microscopic tools. The imaging techniques are categorized based on the size scale of detection. For observation of the nano-scale biological interactions of nanocarriers, we discuss atomic force microscopy (AFM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). For the micro to macro-scale (in vitro and in vivo) observation, we focus on confocal laser scanning microscopy (CLSM) as well as in vivo imaging systems such as magnetic resonance imaging (MRI), superconducting quantum interference devices (SQUIDs), and IVIS®. Additionally, recently developed combined techniques such as AFM-CLSM, correlative Light and Electron Microscopy (CLEM), and SEM-spectroscopy are also discussed. In this review, we describe how each technique helps elucidate certain physicochemical and biological activities of nanocarriers such as dendrimers, polymers, liposomes, and polymeric/inorganic nanoparticles, thus providing a toolbox for bioengineers, pharmaceutical scientists, biologists, and research clinicians. PMID:20232368
CHARACTERISTICS OF INDIVIDUAL PARTICLES AT A RURAL SITE IN THE EASTERN UNITED STATES
To determine the nature of aerosol particles in a rural area of the eastern United States, aerosol samples were collected at Deep Creek Lake, Maryland, on various substrates and analyzed by a scanning electron microscope (SEM) and a transmission electron microscope (TEM). SEM ana...
DNA translocation measurements in solid-state nanopores fabricated using helium-ion microscope
NASA Astrophysics Data System (ADS)
Liu, Liping; Miao, Wang; Huynh, Chuong; Liu, Quanjun; Ling, Xinsheng
2012-02-01
We report high-quality DNA translocation measurements in solid-state nanopores drilled in free-standing SiN membranes by using a helium-ion beam in a Zeiss helium-ion microscope (HIM). We show that the HIM nanopores have similar performance as the TEM-drilled pores.
Zhuang, Kaiwen; Ran, Xin; Lei, Song; Zhang, Chaoliang; Lama, Jebina; Ran, Yuping
2014-01-01
Trichophyton violaceum is a pathogen of tinea capitis and usually cause infection of scalp and hair in children. To investigate the parasitic form of T. violaceum in the human hair tissue, the infected hair strands were collected from a 9-year-old boy with tinea capitis due to T. violaceum and observed under both the scanning electron microscope (SEM) and transmission electron microscope (TEM). The SEM and TEM findings revealed that T. violaceum parasitically lives in the hair shaft in various forms and the morphological transformation of the fungus from hyphae into arthrospores was noted. The involved hair shaft was damaged to the great extent and its ultrastructural changes were evident. Those morphological characteristics of T. violaceum and the three-dimensional ultastructure changes of infected hairs give a better knowledge about the host-fungus relationship in tinea capitis. © 2014 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Hamers, M. F.; Pennock, G. M.; Drury, M. R.
2017-04-01
The study of deformation features has been of great importance to determine deformation mechanisms in quartz. Relevant microstructures in both growth and deformation processes include dislocations, subgrains, subgrain boundaries, Brazil and Dauphiné twins and planar deformation features (PDFs). Dislocations and twin boundaries are most commonly imaged using a transmission electron microscope (TEM), because these cannot directly be observed using light microscopy, in contrast to PDFs. Here, we show that red-filtered cathodoluminescence imaging in a scanning electron microscope (SEM) is a useful method to visualise subgrain boundaries, Brazil and Dauphiné twin boundaries. Because standard petrographic thin sections can be studied in the SEM, the observed structures can be directly and easily correlated to light microscopy studies. In contrast to TEM preparation methods, SEM techniques are non-destructive to the area of interest on a petrographic thin section.
Two-probe atomic-force microscope manipulator and its applications.
Zhukov, A A; Stolyarov, V S; Kononenko, O V
2017-06-01
We report on a manipulator based on a two-probe atomic force microscope (AFM) with an individual feedback system for each probe. This manipulator works under an upright optical microscope with 3 mm focal distance. The design of the microscope helps us tomanipulate nanowires using the microscope probes as a two-prong fork. The AFM feedback is realized based on the dynamic full-time contact mode. The applications of the manipulator and advantages of its two-probe design are presented.
Electron Microscope Center Opens at Berkeley.
ERIC Educational Resources Information Center
Robinson, Arthur L.
1981-01-01
A 1.5-MeV High Voltage Electron Microscope has been installed at the Lawrence Berkeley Laboratory which will help materials scientists and biologists study samples in more true-to-life situations. A 1-MeV Atomic Resolution Microscope will be installed at the same location in two years which will allow scientists to distinguish atoms. (DS)
Purchase of a Transmission Electron Microscope for Xavier University of Louisiana
2015-05-15
imaging facility on the second floor of the Pharmacy Addition at Xavier University that already includes two scanning electron microscopes. The new TEM...is now in use. Xavier University has formally pledged to provide funds for the 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY...for Public Release; Distribution Unlimited Final Report: Purchase of a Transmission Electron Microscope for Xavier University of Louisiana The views
Characterization of Akiyama probe applied to dual-probes atomic force microscope
NASA Astrophysics Data System (ADS)
Wang, Hequn; Gao, Sitian; Li, Wei; Shi, Yushu; Li, Qi; Li, Shi; Zhu, Zhendong
2016-10-01
The measurement of nano-scale line-width has always been important and difficult in the field of nanometer measurements, while the rapid development of integrated circuit greatly raises the demand again. As one kind of scanning probe microscope (SPM), atomic force microscope (AFM) can realize quasi three-dimensional measurement, which is widely used in nanometer scale line-width measurement. Our team researched a dual-probes atomic force microscope, which can eliminate the prevalent effect of probe width on measurement results. In dual-probes AFM system, a novel head are newly designed. A kind of self-sensing and self-exciting probes which is Nanosensors cooperation's patented probe—Akiyama probe, is used in this novel head. The Akiyama probe applied to dual-probe atomic force microscope is one of the most important issues. The characterization of Akiyama probe would affect performance and accuracy of the whole system. The fundamental features of the Akiyama probe are electrically and optically characterized in "approach-withdraw" experiments. Further investigations include the frequency response of an Akiyama probe to small mechanical vibrations externally applied to the tip and the effective loading force yielding between the tip and the sample during the periodic contact. We hope that the characterization of the Akiyama probe described in this paper will guide application for dual-probe atomic force microscope.
Ghadi, Arezou; Mahjoub, Soleiman; Tabandeh, Fatemeh; Talebnia, Farid
2014-01-01
Chitosan nanoparticles have become of great interest for nanomedicine, biomedical engineering and development of new therapeutic drug release systems with improved bioavailability, increased specificity and sensitivity, and reduced pharmacological toxicity. The aim of the present study was to synthesis and optimize of the chitosan nanoparticles for industrial and biomedical applications. Fe3O4 was synthesized and optimized as magnetic core nanoparticles and then chitosan covered this magnetic core. The size and morphology of the nano-magnetic chitosan was analyzed by scanning electron microscope (SEM). Topography and size distribution of the nanoparticles were shown with two-dimensional and three-dimensional images of atomic force microscopy (AFM). The nanoparticles were analyzed using transmission electron microscopy (TEM). The chitosan nanoparticles prepared in the experiment exhibited white powder shape. The SEM micrographs of the nano-magnetic chitosan showed that they were approximately uniform spheres. The unmodified chitosan nanoparticles composed of clusters of nanoparticles with sizes ranging from 10 nm to 80 nm. AFM provides a three-dimensional surface profile. The TEM image showed physical aggregation of the chitosan nanoparticles. The results show that a novel chitosan nanoparticle was successfully synthesized and characterized. It seems that this nanoparticle like the other chitosan nano particles has potential applications for nanomedicine, biomedical engineering, industrial and pharmaceutical fields.
Images from Phoenix's MECA Instruments
NASA Technical Reports Server (NTRS)
2008-01-01
The image on the upper left is from NASA's Phoenix Mars Lander's Optical Microscope after a sample informally called 'Sorceress' was delivered to its silicon substrate on the 38th Martian day, or sol, of the mission (July 2, 2008). A 3D representation of the same sample is on the right, as seen by Phoenix's Atomic Force Microscope. This is 100 times greater magnification than the view from the Optical Microscope, and the most highly magnified image ever seen from another world. The Optical Microscope and the Atomic Force Microscope are part of Phoenix's Microscopy, Electrochemistry and Conductivity Analyzer instrument. The Atomic Force Microscope was developed by a Swiss-led consortium in collaboration with Imperial College London. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.Localised corrosion in aluminium alloy 2024-T3 using in situ TEM.
Malladi, Sairam; Shen, Chenggang; Xu, Qiang; de Kruijff, Tom; Yücelen, Emrah; Tichelaar, Frans; Zandbergen, Henny
2013-11-28
An approach to carry out chemical reactions using aggressive gases in situ in a transmission electron microscope (TEM), at ambient pressures of 1.5 bar using a windowed environmental cell, called a nanoreactor, is presented here. The nanoreactor coupled with a specially developed holder with platinum tubing permits the usage of aggressive chemicals like hydrochloric acid (HCl).
Koh, Ai Leen; Shachaf, Catherine M.; Elchuri, Sailaja; Nolan, Garry P.; Sinclair, Robert
2008-01-01
We demonstrate the use of electron microscopy as a powerful characterization tool to identify and locate antibody-conjugated composite organic-inorganic (COINs) surface enhanced Raman scattering (SERS) nanoparticles on cells. U937 leukemia cells labeled with antibody CD54-conjugated COINs were characterized in their native, hydrated state using wet Scanning Electron Microscopy (SEM) and in their dehydrated state using high-resolution SEM. In both cases, the backscattered electron detector (BSE) was used to detect and identify the silver constituents in COINs due to its high sensitivity to atomic number variations within a specimen. The imaging and analytical capabilities in the SEM were further complemented by higher resolution Transmission Electron Microscope (TEM) images and Scanning Auger Electron Spectroscopy (AES) data to give reliable and high-resolution information about nanoparticles and their binding to cell surface antigens. PMID:18995965
DOE Office of Scientific and Technical Information (OSTI.GOV)
Padmaja, S.; Jayakumar, S., E-mail: s_jayakumar_99@yahoo.com; Balaji, R.
Cadmium Sulphide (CdS) nanoparticles were reinforced in Poly(ethylene Oxide) (PEO) and Poly(methyl methacrylate) (PMMA) matrices by in situ technique. The presence of CdS in PEO and PMMA matrix was confirmed using X-ray photoelectron spectroscopy (XPS). Fourier Transform Infrared spectroscopy (FTIR) analysis disclosed the co-ordination of CdS in the matrices. Thermal analysis of the nanocomposites was carried out using Differential Scanning calorimetric studies (DSC). The optical studies using UV–vis spectroscopy were carried out to find the band gap of the materials and the absorption onset. The CdS particle size in the matrices was found by Effective Mass Approximation (EMA) model usingmore » the band gap values and was confirmed by TEM studies. The surface trapped emissions of the nanocomposites were observed from the photoluminescence (PL) spectra. The distribution of CdS particles in the polymer matrices were presented by Atomic force microscopic studies (AFM).« less
Mussel inspired polymerized P(TA-TETA) for facile functionalization of carbon nanotube
NASA Astrophysics Data System (ADS)
Si, Shuxian; Gao, Tingting; Wang, Junhao; Liu, Qinze; Zhou, Guowei
2018-03-01
This article describes a novel and effective approach for non-covalent modification of carbon nanotube (CNT) via the mussel inspired polymerization of tannic acid (TA) and triethylenetetramine (TETA) and subsequent surface initiated atom transfer radical polymerization (SI-ATRP). Fourier transform infrared spectroscopy (FT-IR), thermo-gravimetric analysis (TGA), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) and photograph were used to study the successful preparation of polymer brush grafted CNT (CNT-P(TA-TETA)-PDMAEMA) composite as well as the pH-responsive behavior of the composite. Furthermore, by amine protonation and in situ reduction, gold nanoparticles were successfully uploaded and the catalytic property of CNT-P(TA-TETA)-PDMAEMA/Au was investigated. We believe that the surface functionalization strategy can be extended to graphene and other substrates, and the surface properties can be regulated by grafting polymer brushes with different functionalities.
Three-dimensional cytomorphology in fine needle aspiration biopsy of medullary thyroid carcinoma.
Chang, T C; Lai, S M; Wen, C Y; Hsiao, Y L; Huang, S H
2001-01-01
To elucidate three-dimensional (3-D) cytomorphology in fine needle aspiration biopsy (FNAB) of medullary thyroid carcinoma (MTC). ENAB was performed on tumors from five patients with MTC. The aspirate was stained and observed under a light microscope (LM). The aspirate was also fixed, dehydrated, critical point dried, spattered with gold ions and observed with a scanning electron microscope (SEM). For transmission electron microscopy (TEM), the specimen was fixed, dehydrated, embedded in an Epon mixture, cut with an ultramicrotome, mounted on copper grids, electron doubly stained with uranium acetate and lead citrate, and observed with TEM. Findings under SEM were correlated with those under LM and TEM. Under SEM, 3-D cytomorphology of MTC displayed a disorganized cellular arrangement with indistinct cell borders in three cases. The cell surface was uneven and had granular protrusions that corresponded to secretory granules observed under TEM. In one case with multiple endocrine neoplasia type IIB, there were abundant granules on the cell surface. In one case of sporadic MTC with multinucleated tumor giant cells and small cells, granular protrusions also were noted on the cell surface. Granular protrusion was a characteristic finding in FNAB of MTC tinder SEM and might be helpful in the differential diagnosis.
Isakozawa, Shigeto; Nagaoki, Isao; Watabe, Akira; Nagakubo, Yasuhira; Saito, Nobuhiro; Matsumoto, Hiroaki; Zhang, Xiao Feng; Taniguchi, Yoshifumi; Baba, Norio
2016-08-01
A new in situ environmental transmission electron microscope (ETEM) was developed based on a 300 kV TEM with a cold field emission gun (CFEG). Particular caution was taken in the ETEM design to assure uncompromised imaging and analytical performance of the TEM. Because of the improved pumping system between the gun and column, the vacuum of CFEG was largely improved and the probe current was sufficiently stabilized to operate without tip flashing for 2-3 h or longer. A high brightness of 2.5 × 10(9) A/cm(2) sr was measured at 300 kV, verifying the high quality of the CFEG electron beam. A specially designed gas injection-heating holder was used in the in situ TEM study at elevated temperatures with or without gas around the TEM specimen. Using this holder in a 10 Pa gas atmosphere and specimen temperatures up to 1000°C, high-resolution ETEM performance and analysis were achieved. © The Author 2016. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
The Analog Atomic Force Microscope: Measuring, Modeling, and Graphing for Middle School
ERIC Educational Resources Information Center
Goss, Valerie; Brandt, Sharon; Lieberman, Marya
2013-01-01
using an analog atomic force microscope (A-AFM) made from a cardboard box and mailing tubes. Varying numbers of ping pong balls inside the tubes mimic atoms on a surface. Students use a dowel to make macroscale measurements similar to those of a nanoscale AFM tip as it…
Static and Dynamic Electron Microscopy Investigations at the Atomic and Ultrafast Scales
NASA Astrophysics Data System (ADS)
Suri, Pranav Kumar
Advancements in the electron microscopy capabilities - aberration-corrected imaging, monochromatic spectroscopy, direct-electron detectors - have enabled routine visualization of atomic-scale processes with millisecond temporal resolutions in this decade. This, combined with progress in the transmission electron microscopy (TEM) specimen holder technology and nanofabrication techniques, allows comprehensive experiments on a wide range of materials in various phases via in situ methods. The development of ultrafast (sub-nanosecond) time-resolved TEM with ultrafast electron microscopy (UEM) has further pushed the envelope of in situ TEM to sub-nanosecond temporal resolution while maintaining sub-nanometer spatial resolution. A plethora of materials phenomena - including electron-phonon coupling, phonon transport, first-order phase transitions, bond rotation, plasmon dynamics, melting, and dopant atoms arrangement - are not yet clearly understood and could be benefitted with the current in situ TEM capabilities having atomic-level and ultrafast precision. Better understanding of these phenomena and intrinsic material dynamics (e.g. how phonons propagate in a material, what time-scales are involved in a first-order phase transition, how fast a material melts, where dopant atoms sit in a crystal) in new-generation and technologically important materials (e.g. two-dimensional layered materials, semiconductor and magnetic devices, rare-earth-element-free permanent magnets, unconventional superconductors) could bring a paradigm shift in their electronic, structural, magnetic, thermal and optical applications. Present research efforts, employing cutting-edge static and dynamic in situ electron microscopy resources at the University of Minnesota, are directed towards understanding the atomic-scale crystallographic structural transition and phonon transport in an iron-pnictide parent compound LaFeAsO, studying the mechanical stability of fast moving hard-drive heads in heat-assisted magnetic recording (HAMR) technology, exploring the possibility of ductile ceramics in magnesium oxide (MgO) nanomaterials, and revealing the atomic-structure of newly discovered rare-earth-element-free iron nitride (FeN) magnetic materials. Via atomic-resolution imaging and electron diffraction coupled with in situ TEM cooling on LaFeAsO, it was found that additional effects not related to the structural transition, namely dynamical scattering and electron channeling, can give signatures reminiscent of those typically associated with the symmetry change. UEM studies on LaFeAsO revealed direct, real-space imaging of the emergence and evolution of acoustic phonons and resolved dispersion behavior during propagation and scattering. Via UEM bright-field imaging, megahertz vibrational frequencies were observed upon laser-illumination in TEM specimens made out of HAMR devices which could be detrimental to their long-term thermal and structural reliability. Compression testing of 100-350 nm single-crystal MgO nanocubes shows size-dependent stresses and engineering strains of 4-13.8 GPa and 0.046-0.221 respectively at the first signs of yield accompanied by an absence of brittle fracture, which is a significant increase in plasticity of a brittle ceramic material. Atomic-scale characterization of FeN phases show that it is possible to detect interstitial locations of low atomic-number nitrogen atoms in iron crystal and hints at a development of novel routes (without involving rare-earth elements) for bulk permanent magnet synthesis.
Formation of the YBa2Cu2NbOy Phase in Thin Films (POSTPRINT)
2010-03-01
protective layer was deposited on the top of YBCNO film by dc sputtering . A 200 nm 200 nm area film was selected and cut with a Ga ion beam (30 kV...200 TEM at 200 kV. Samples for TEM were prepared using a focused ion beam (FIB (Eindhoven, The Netherlands)) microscope. For TEM examination, a thin Pt...by dc magnetron sputtering deposition of Ag with 93 mm thickness. Transport current measurements were made in liquid nitrogen with the 4-probe method
Glucose biosensor based on GOx/HRP bienzyme at liquid-crystal/aqueous interface.
Khan, Mashooq; Park, Soo-Young
2015-11-01
Glucose oxidase (GOx) and horseradish peroxidase (HRP) were co-immobilized to the polyacrylicacid block of a poly(acrylicacid-b-4-cyanobiphenyl-4'-undecylacrylate) (PAA-b-LCP) copolymer in water. PAA-b-LCP was strongly anchored by the LCP block in 4-cyano-4'-pentylbiphenyl (5CB) which was contained in a transmission electron microscope (TEM) grid for glucose detection. The optimal conditions for the performance of the TEM grid glucose biosensor were studied in terms of the activity and stability of the immobilized enzymes. Glucose in water was detected by the 5CB changing from a planar to a homeotropic orientation, as observed through a polarized optical microscope. The TEM biosensor detected glucose concentrations at ⩾0.02 mM, with an optimal GOx/HRP molar ratio of 3/1. This glucose biosensor has characteristics of enzyme sensitivity and stability, reusability, the ease and selective glucose detection which may provide a new way of detecting glucose. Copyright © 2015 Elsevier Inc. All rights reserved.
Dopant concentration dependent growth of Fe:ZnO nanostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sahai, Anshuman; Goswami, Navendu, E-mail: navendugoswami@gmail.com
2016-05-23
Systematic investigations of structural properties of 1-10% Fe doped ZnO nanostructure (Fe:ZnO NS) prepared via chemical precipitation method have been reported. Structural properties were probed thoroughly employing scanning electron microscope (SEM) and transmission electron microscope (TEM), energy dispersive X-ray (EDAX) analysis and X-ray diffraction (XRD). Morphological transformation of nanostructures (NS) with Fe incorporation is evident in SEM/TEM images. Nanoparticles (NP) obtained with 1% Fe, evolve to nanorods (NR) for 3% Fe; NR transform to nanocones (NC) (for 5% and 7% Fe) and finally NC transform to nanoflakes (NF) at 10% Fe. Morover, primary phase of Zn{sub 1-x}Fe{sub x}O along withmore » secondary phases of ZnFe{sub 2}O{sub 4} and Fe{sub 2}O{sub 3} were also revealed through XRD measurements. Based on collective XRD, SEM, TEM, and EDAX interpretations, a model for morphological evolution of NS was proposed and the pivotal role of Fe dopant was deciphered.« less
The Effect of Buffer Types on the In0.82Ga0.18As Epitaxial Layer Grown on an InP (100) Substrate.
Zhang, Min; Guo, Zuoxing; Zhao, Liang; Yang, Shen; Zhao, Lei
2018-06-08
In 0.82 Ga 0.18 As epitaxial layers were grown on InP (100) substrates at 530 °C by a low-pressure metalorganic chemical vapor deposition (LP-MOCVD) technique. The effects of different buffer structures, such as a single buffer layer, compositionally graded buffer layers, and superlattice buffer layers, on the crystalline quality and property were investigated. Double-crystal X-ray diffraction (DC-XRD) measurement, Raman scattering spectrum, and Hall measurements were used to evaluate the crystalline quality and electrical property. Scanning electron microscope (SEM), atomic force microscope (AFM), and transmission electron microscope (TEM) were used to characterize the surface morphology and microstructure, respectively. Compared with the In 0.82 Ga 0.18 As epitaxial layer directly grown on an InP substrate, the quality of the sample is not obviously improved by using a single In 0.82 Ga 0.18 As buffer layer. By introducing the graded In x Ga 1−x As buffer layers, it was found that the dislocation density in the epitaxial layer significantly decreased and the surface quality improved remarkably. In addition, the number of dislocations in the epitaxial layer greatly decreased under the combined action of multi-potential wells and potential barriers by the introduction of a In 0.82 Ga 0.18 As/In 0.82 Al 0.18 As superlattice buffer. However, the surface subsequently roughened, which may be explained by surface undulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, L.; Graham, M. E.; Li, G.
The photoreduction of CO{sub 2} into methane provides a carbon-neutral energy alternative to fossil fuels, but its feasibility requires improvements in the photo-efficiency of materials tailored to this reaction. We hypothesize that mixed phase TiO{sub 2} nano-materials with high interfacial densities are extremely active photocatalysts well suited to solar fuel production by reducing CO{sub 2} to methane and shifting to visible light response. Mixed phase TiO{sub 2} films were synthesized by direct current (DC) magnetron sputtering and characterized by X-ray diffraction (XRD), atomic force microscope (AFM), scanning electron microscope (SEM) and transmission electron microscope (TEM). Bundles of anatase-rutile nano-columns havingmore » high densities of two kinds of interfaces (those among the bundles and those between the columns) are fabricated. Films sputtered at a low deposition angle showed the highest methane yield, compared to TiO{sub 2} fabricated under other sputtering conditions and commercial standard Degussa P25 under UV irradiation. The yield of methane could be significantly increased ({approx} 12% CO{sub 2} conversion) by increasing the CO{sub 2} to water ratio and temperature (< 100 C) as a combined effect. These films also displayed a light response strongly shifted into the visible range. This is explained by the creation of non-stoichiometric titania films having unique features that we can potentially tailor to the solar energy applications.« less
Midinfrared absorption measured at a lambda/400 resolution with an atomic force microscope.
Houel, Julien; Homeyer, Estelle; Sauvage, Sébastien; Boucaud, Philippe; Dazzi, Alexandre; Prazeres, Rui; Ortéga, Jean-Michel
2009-06-22
Midinfrared absorption can be locally measured using a detection combining an atomic force microscope and a pulsed excitation. This is illustrated for the midinfrared bulk GaAs phonon absorption and for the midinfrared absorption of thin SiO(2) microdisks. We show that the signal given by the cantilever oscillation amplitude of the atomic force microscope follows the spectral dependence of the bulk material absorption. The absorption spatial resolution achieved with microdisks is around 50 nanometer for an optical excitation around 22 micrometer wavelength.
A Cost-Effective Atomic Force Microscope for Undergraduate Control Laboratories
ERIC Educational Resources Information Center
Jones, C. N.; Goncalves, J.
2010-01-01
This paper presents a simple, cost-effective and robust atomic force microscope (AFM), which has been purposely designed and built for use as a teaching aid in undergraduate controls labs. The guiding design principle is to have all components be open and visible to the students, so the inner functioning of the microscope has been made clear to…
Measuring Roughnesses Of Optical Surfaces
NASA Technical Reports Server (NTRS)
Coulter, Daniel R.; Al-Jumaily, Gahnim A.; Raouf, Nasrat A.; Anderson, Mark S.
1994-01-01
Report discusses use of scanning tunneling microscopy and atomic force microscopy to measure roughnesses of optical surfaces. These techniques offer greater spatial resolution than other techniques. Report notes scanning tunneling microscopes and atomic force microscopes resolve down to 1 nm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steurer, Wolfram, E-mail: wst@zurich.ibm.com; Gross, Leo; Schlittler, Reto R.
2014-02-15
We describe a nanostencil lithography tool capable of operating at variable temperatures down to 30 K. The setup is compatible with a combined low-temperature scanning tunneling microscope/atomic force microscope located within the same ultra-high-vacuum apparatus. The lateral movement capability of the mask allows the patterning of complex structures. To demonstrate operational functionality of the tool and estimate temperature drift and blurring, we fabricated LiF and NaCl nanostructures on Cu(111) at 77 K.
Steurer, Wolfram; Gross, Leo; Schlittler, Reto R; Meyer, Gerhard
2014-02-01
We describe a nanostencil lithography tool capable of operating at variable temperatures down to 30 K. The setup is compatible with a combined low-temperature scanning tunneling microscope/atomic force microscope located within the same ultra-high-vacuum apparatus. The lateral movement capability of the mask allows the patterning of complex structures. To demonstrate operational functionality of the tool and estimate temperature drift and blurring, we fabricated LiF and NaCl nanostructures on Cu(111) at 77 K.
Adya, Ashok K; Canetta, Elisabetta; Walker, Graeme M
2006-01-01
Morphological changes in the cell surfaces of the budding yeast Saccharomyces cerevisiae (strain NCYC 1681), and the fission yeast Schizosaccharomyces pombe (strain DVPB 1354), in response to thermal and osmotic stresses, were investigated using an atomic force microscope. With this microscope imaging, together with measurements of culture viability and cell size, it was possible to relate topological changes of the cell surface at nanoscale with cellular stress physiology. As expected, when the yeasts were exposed to thermostress or osmostress, their viability together with the mean cell volume decreased in conjunction with the increase in thermal or osmotic shock. Nevertheless, the viability of cells stressed for up to 1 h remained relatively high. For example, viabilities were >50% and >90% for the thermostressed, and >60% and >70% for the osmostressed S. cerevisiae and Schiz. pombe, respectively. Mean cell volume measurements, and bearing and roughness analyses of atomic force microscope images of stressed yeasts indicate that Schiz. pombe may be more resistant to physical stresses than S. cerevisiae. Overall, this study has highlighted the usefulness of atomic force microscope in studies of yeast stress physiology.
Structural and compositional evolution of Al{sub 3}(Zr,Y) precipitates in Al-Zr-Y alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Haiyan, E-mail: gaohaiyan@sjtu.edu.cn
Structural and compositional evolution of Al{sub 3}(Zr,Y) precipitates in aged Al-Zr-Y alloy was investigated through atom probe tomography (APT) and transmission electron microscope (TEM) analysis and first principles calculations. The results show that short-bar-shaped D0{sub 19}-Al{sub 3}Y with some Zr atoms dissolved in precipitated at the very beginning of decomposition and worked as heterogeneous nuclei for L1{sub 2}-Al{sub 3}Zr with spherical morphology after being aged at 400 °C for 2 h. Quasi-static coarsening happened as the aging treatment lasted from 2 h to 200 h. However, distribution of Zr and Y atoms in Al{sub 3}(Zr,Y) is nearly uniform and Al{submore » 3}(Zr,Y) do not have the typical “Al{sub 3}RE core-Al{sub 3}Zr shell” structure which observed in other RE containing Al-Zr-RE alloys with L1{sub 2}-Al{sub 3}RE as nuclei. First principles calculations revealed that binding energy between Y and Zr is strong during the growth of Al{sub 3}(Zr,Y), which led to the co-precipitation of Y and Zr atoms and attribute to the evolution of Al{sub 3}(Zr,Y). - Highlights: •Al{sub 3}Y precipitated firstly and then became nuclei for Al{sub 3}Zr during aging of Al-Zr-Y. •Al{sub 3}(Zr,Y) precipitates do not have the typical “Al{sub 3}Y core-Al{sub 3}Zr shell” structure. •Strong binding between Y and Zr led to the co-precipitation of Y and Zr atoms.« less
First Atomic Force Microscope Image from Mars
NASA Technical Reports Server (NTRS)
2008-01-01
This calibration image presents three-dimensional data from the atomic force microscope on NASA's Phoenix Mars Lander, showing surface details of a substrate on the microscope station's sample wheel. It will be used as an aid for interpreting later images that will show shapes of minuscule Martian soil particles. The area imaged by the microscope is 40 microns by 40 microns, small enough to fit on an eyelash. The grooves in this substrate are 14 microns (0.00055 inch) apart, from center to center. The vertical dimension is exaggerated in the image to make surface details more visible. The grooves are 300 nanometers (0.00001 inch) deep. This is the first atomic force microscope image recorded on another planet. It was taken on July 9, 2008, during the 44th Martian day, or sol, of the Phoenix mission since landing. Phoenix's Swiss-made atomic force microscope builds an image of the surface shape of a particle by sensing it with a sharp tip at the end of a spring, all microfabricated out of a silicon wafer. A strain gauge records how far the spring flexes to follow the contour of the surface. It can provide details of soil-particle shapes smaller than one-hundredth the width of a human hair. This is about 20 times smaller than what can be resolved with Phoenix's optical microscope, which has provided much higher-magnification imaging than anything seen on Mars previously. Both microscopes are part of Phoenix's Microscopy, Electrochemistry and Conductivity Analyzer.A microscopic study investigating the structure of SnSe surfaces
NASA Astrophysics Data System (ADS)
Kim, Sang-ui; Duong, Anh-Tuan; Cho, Sunglae; Rhim, S. H.; Kim, Jungdae
2016-09-01
SnSe has been widely studied due to its many potential applications that take advantage of its excellent thermoelectric, photovoltaic, and optoelectronic properties. However, experimental investigations into the microscopic structure of SnSe remain largely unexplored. Herein, for the first time, the atomic and electronic structures of SnSe surfaces are studied by a home-built low temperature scanning tunneling microscope (STM) and density functional theory (DFT) calculations. The cleaved surface of SnSe is comprised of covalently bonded Se and Sn atoms in zigzag patterns. However, rectangular periodicity was observed in the atomic images of SnSe surfaces for filled and empty state probing. Detailed atomic structures are analyzed by DFT calculations, indicating that the bright extrusions of both filled and empty state images are mostly located at the positions of Sn atoms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
In situ transmission electron microscope (TEM) video (accelerated 10 times) of nucleation and self-organization of a high-density carbon nanotube network from catalytic iron nanoparticles, forming a vertically aligned forest.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Westraadt, J.E., E-mail: johan.westraadt@nmmu.ac.za; Olivier, E.J.; Neethling, J.H.
2015-11-15
Spinodal decomposition (SD) is an important phenomenon in materials science and engineering. For example, it is considered to be responsible for the 475 °C embrittlement of stainless steels comprising the bcc (ferrite) or bct (martensite) phases. Structural characterization of the evolving minute nano-scale concentration fluctuations during SD in the Fe–Cr system is, however, a notable challenge, and has mainly been considered accessible via atom probe tomography (APT) and small-angle neutron scattering. The standard tool for nanostructure characterization, viz. transmission electron microscopy (TEM), has only been successfully applied to late stages of SD when embrittlement is already severe. However, we heremore » demonstrate that the structural evolution in the early stages of SD in binary Fe–Cr, and alloys based on the binary, are accessible via analytical scanning TEM. An Fe–36 wt% Cr alloy aged at 500 °C for 1, 10 and 100 h is investigated using an aberration-corrected microscope and it is found that highly coherent and interconnected Cr-rich regions develop. The wavelength of decomposition is rather insensitive to the sample thickness and it is quantified to 2, 3 and 6 nm after ageing for 1, 10 and 100 h, which is in reasonable agreement with prior APT analysis. The concentration amplitude is more sensitive to the sample thickness and acquisition parameters but the TEM analysis is in good agreement with APT analysis for the longest ageing time. These findings open up for combinatorial TEM studies where both local crystallography and chemistry is required. - Highlights: • STEM-EELS analysis was successfully applied to resolve early stage SD in Fe–Cr. • Compositional wavelength measured with STEM-EELS compares well to previous ATP studies. • Compositional amplitude measured with STEM-EELS is a function of experimental parameters. • STEM-EELS allows for combinatorial studies of SD using complementary techniques.« less
NASA Astrophysics Data System (ADS)
Jiang, N.; Deguchi, M.; Wang, C. L.; Won, J. H.; Jeon, H. M.; Mori, Y.; Hatta, A.; Kitabatake, M.; Ito, T.; Hirao, T.; Sasaki, T.; Hiraki, A.
1997-04-01
A transmission electron microscope (TEM) study of ion-implanted chemical-vapor-deposited (CVD) diamond is presented. CVD diamond used for transmission electron microscope observation was directly deposited onto Mo TEM grids. As-deposited specimens were irradiated by C (100 keV) ions at room temperature with a wide range of implantation doses (10 12-10 17/cm 2). Transmission electron diffraction (TED) patterns indicate that there exists a critical dose ( Dc) for the onset of amorphization of CVD diamond as a result of ion induced damage and the value of critical dose is confirmed to be about 3 × 10 15/cm 2. The ion-induced transformation process is clearly revealed by high resolution electron microscope (HREM) images. For a higher dose implantation (7 × 10 15/cm 2) a large amount of diamond phase is transformed into amorphous carbon and many tiny misoriented diamond blocks are found to be left in the amorphous solid. The average size of these misoriented diamond blocks is only about 1-2 nm. Further bombardment (10 17/cm 2) almost kills all of the diamond phase within the irradiated volume and moreover leads to local formation of micropolycrystalline graphite.
You, Yun-Wen; Chang, Hsun-Yun; Liao, Hua-Yang; Kao, Wei-Lun; Yen, Guo-Ji; Chang, Chi-Jen; Tsai, Meng-Hung; Shyue, Jing-Jong
2012-10-01
Based on a scanning electron microscope operated at 30 kV with a homemade specimen holder and a multiangle solid-state detector behind the sample, low-kV scanning transmission electron microscopy (STEM) is presented with subsequent electron tomography for three-dimensional (3D) volume structure. Because of the low acceleration voltage, the stronger electron-atom scattering leads to a stronger contrast in the resulting image than standard TEM, especially for light elements. Furthermore, the low-kV STEM yields less radiation damage to the specimen, hence the structure can be preserved. In this work, two-dimensional STEM images of a 1-μm-thick cell section with projection angles between ±50° were collected, and the 3D volume structure was reconstructed using the simultaneous iterative reconstructive technique algorithm with the TomoJ plugin for ImageJ, which are both public domain software. Furthermore, the cross-sectional structure was obtained with the Volume Viewer plugin in ImageJ. Although the tilting angle is constrained and limits the resulting structural resolution, slicing the reconstructed volume generated the depth profile of the thick specimen with sufficient resolution to examine cellular uptake of Au nanoparticles, and the final position of these nanoparticles inside the cell was imaged.
Influence of Sc on microstructure and mechanical properties of Al-Si-Mg-Cu-Zr alloy
NASA Astrophysics Data System (ADS)
Li, Yukun; Du, Xiaodong; Zhang, Ya; Zhang, Zhen; Fu, Junwei; Zhou, Shi'ang; Wu, Yucheng
2018-02-01
In the present study, the effects of Mg, Cu, Sc and Zr combined additions on the microstructure and mechanical properties of hypoeutectic Al-Si cast alloy were systematically investigated. Characterization techniques such as optical microscopy (OM), scanning electron microscope (SEM), energy dispersive spectrometer (EDS), electron back-scatter diffraction (EBSD), atomic force microscopy (AFM), transmission electron microscope (TEM), Brinell hardness tester and universal testing machine were employed to analyze the microstructure and mechanical properties. The results showed that Sc served as modifier on the microstructure of Al-3Si-0.45Mg-0.45Cu-0.2Zr alloys, including modification of eutectic Si and grains. Extraordinarily, grain refinement was found to be related to the primary particles, which exhibited a close orientation to matrix. After T6 heat treatment, the grain structures were composed of nano-scaled secondary Al3(Sc, Zr) precipitates and spherical eutectic Si. Combined with T6 heat treatment, the highest hardness, yield strength, ultimate tensile strength and elongation were achieved in 0.56 wt.% Sc-modified alloy. Interestingly, the strength and ductility had a similar tendency. This paper demonstrated that combined additions of Mg, Cu, Sc and Zr could significantly improve the microstructure and performance of the hypoeutectic Al-Si cast alloy.
Pallela, Ramjee; Bojja, Sreedhar; Janapala, Venkateswara Rao
2011-07-01
Collagens were isolated and partially characterized from the marine demosponge, Ircinia fusca from Gulf of Mannar (GoM), India, with an aim to develop potentially applicable collagens from unused and under-used resources. The yield of insoluble, salt soluble and acid soluble forms of collagens was 31.71 ± 1.59, 20.69 ± 1.03, and 17.38 ± 0.87 mg/g dry weight, respectively. Trichrome staining, Scanning & Transmission Electron microscopic (SEM & TEM) studies confirmed the presence of collagen in the isolated, terminally globular irciniid filaments. The partially purified (gel filtration chromatography), non-fibrillar collagens appeared as basement type collagenous sheets under light microscopy whereas the purified fibrillar collagens appeared as fibrils with a repeated band periodicity of 67 nm under Atomic Force Microscope (AFM). The non-fibrillar and fibrillar collagens were seen to have affinity for anti-collagen type IV and type I antibodies raised against human collagens, respectively. The macromolecules, i.e., total protein, carbohydrate and lipid contents within the tissues were also quantified. The present information on the three characteristic irciniid collagens (filamentous, fibrillar and non-fibrillar) could assist the future attempts to unravel the therapeutically important, safer collagens from marine sponges for their use in pharmaceutical and cosmeceutical industries. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kim, Duckhoe; Sahin, Ozgur
2015-03-01
Scanning probe microscopes can be used to image and chemically characterize surfaces down to the atomic scale. However, the localized tip-sample interactions in scanning probe microscopes limit high-resolution images to the topmost atomic layer of surfaces, and characterizing the inner structures of materials and biomolecules is a challenge for such instruments. Here, we show that an atomic force microscope can be used to image and three-dimensionally reconstruct chemical groups inside a protein complex. We use short single-stranded DNAs as imaging labels that are linked to target regions inside a protein complex, and T-shaped atomic force microscope cantilevers functionalized with complementary probe DNAs allow the labels to be located with sequence specificity and subnanometre resolution. After measuring pairwise distances between labels, we reconstruct the three-dimensional structure formed by the target chemical groups within the protein complex using simple geometric calculations. Experiments with the biotin-streptavidin complex show that the predicted three-dimensional loci of the carboxylic acid groups of biotins are within 2 Å of their respective loci in the corresponding crystal structure, suggesting that scanning probe microscopes could complement existing structural biological techniques in solving structures that are difficult to study due to their size and complexity.
Scanning tunneling microscopy and atomic force microscopy: application to biology and technology.
Hansma, P K; Elings, V B; Marti, O; Bracker, C E
1988-10-14
The scanning tunneling microscope (STM) and the atomic force microscope (AFM) are scanning probe microscopes capable of resolving surface detail down to the atomic level. The potential of these microscopes for revealing subtle details of structure is illustrated by atomic resolution images including graphite, an organic conductor, an insulating layered compound, and individual adsorbed oxygen atoms on a semiconductor. Application of the STM for imaging biological materials directly has been hampered by the poor electron conductivity of most biological samples. The use of thin conductive metal coatings and replicas has made it possible to image some biological samples, as indicated by recently obtained images of a recA-DNA complex, a phospholipid bilayer, and an enzyme crystal. The potential of the AFM, which does not require a conductive sample, is shown with molecular resolution images of a nonconducting organic monolayer and an amino acid crystal that reveals individual methyl groups on the ends of the amino acids. Applications of these new microscopes to technology are demonstrated with images of an optical disk stamper, a diffraction grating, a thin-film magnetic recording head, and a diamond cutting tool. The STM has even been used to improve the quality of diffraction gratings and magnetic recording heads.
Strain mapping in TEM using precession electron diffraction
Taheri, Mitra Lenore; Leff, Asher Calvin
2017-02-14
A sample material is scanned with a transmission electron microscope (TEM) over multiple steps having a predetermined size at a predetermined angle. Each scan at a predetermined step and angle is compared to a template, wherein the template is generated from parameters of the material and the scanning. The data is then analyzed using local mis-orientation mapping and/or Nye's tensor analysis to provide information about local strain states.
NASA Technical Reports Server (NTRS)
Berger, Eve L.; Keller, Lindsay P.
2015-01-01
Mineral grains in lunar and asteroidal regolith samples provide a unique record of their interaction with the space environment. Space weathering effects result from multiple processes including: exposure to the solar wind, which results in ion damage and implantation effects that are preserved in the rims of grains (typically the outermost 100 nm); cosmic ray and solar flare activity, which result in track formation; and impact processes that result in the accumulation of vapor-deposited elements, impact melts and adhering grains on particle surfaces. Determining the rate at which these effects accumulate in the grains during their space exposure is critical to studies of the surface evolution of airless bodies. Solar flare energetic particles (mainly Fe-group nuclei) have a penetration depth of a few millimeters and leave a trail of ionization damage in insulating materials that is readily observable by transmission electron microscope (TEM) imaging. The density of solar flare particle tracks is used to infer the length of time an object was at or near the regolith surface (i.e., its exposure age). Track measurements by TEM methods are routine, yet track production rate calibrations have only been determined using chemical etching techniques [e.g., 1, and references therein]. We used focused ion beam-scanning electron microscope (FIB-SEM) sample preparation techniques combined with TEM imaging to determine the track density/exposure age relations for lunar rock 64455. The 64455 sample was used earlier by [2] to determine a track production rate by chemical etching of tracks in anorthite. Here, we show that combined FIB/TEM techniques provide a more accurate determination of a track production rate and also allow us to extend the calibration to solar flare tracks in olivine.
Tewari, Sumit; Bastiaans, Koen M; Allan, Milan P; van Ruitenbeek, Jan M
2017-01-01
Scanning tunneling microscopes (STM) are used extensively for studying and manipulating matter at the atomic scale. In spite of the critical role of the STM tip, procedures for controlling the atomic-scale shape of STM tips have not been rigorously justified. Here, we present a method for preparing tips in situ while ensuring the crystalline structure and a reproducibly prepared tip structure up to the second atomic layer. We demonstrate a controlled evolution of such tips starting from undefined tip shapes.
Yamada, Yutaro; Konno, Hiroki; Shimabukuro, Katsuya
2017-01-01
In this study, we present a new technique called correlative atomic force and transmission electron microscopy (correlative AFM/TEM) in which a targeted region of a sample can be observed under AFM and TEM. The ultimate goal of developing this new technique is to provide a technical platform to expand the fields of AFM application to complex biological systems such as cell extracts. Recent advances in the time resolution of AFM have enabled detailed observation of the dynamic nature of biomolecules. However, specifying molecular species, by AFM alone, remains a challenge. Here, we demonstrate correlative AFM/TEM, using actin filaments as a test sample, and further show that immuno-electron microscopy (immuno-EM), to specify molecules, can be integrated into this technique. Therefore, it is now possible to specify molecules, captured under AFM, by subsequent observation using immuno-EM. In conclusion, correlative AFM/TEM can be a versatile method to investigate complex biological systems at the molecular level. PMID:28828286
NASA Astrophysics Data System (ADS)
Zhang, Xiao-Juan; Lin, Dong-Yang; Yan, Xiao-Hui; Wang, Xiao-Xiang
2011-12-01
A homogeneous amorphous calcium phosphate (ACP) coating containing magnesium was achieved on titanium substrates by electrochemical deposition (ECD). Its amorphous structure is confirmed by transmission electron microscope (TEM) together with grazing reflection absorption infrared spectroscopy (IR) spectrometer. In the images of high-resolution transmission electron microscope (HRTEM), the ACP spheres are assembled by nano-particles with the diameter of 5-10 nm. In the alkaline environment, nucleation of hydroxyapatite (HAP) occurs on the surfaces of ACP spheres. By consuming the Ca and PO 4 ions inside the ACP spheres, the HAP nuclei grow outward. Confirmed by TEM, the ACP spheres converse to hollow HAP spheres composed of HAP nano-needles. The coating is finally constructed by the HAP nano-needles, which are themselves aggregated by numerous nano-particles.
Report on the Installation and Preparedness of a Protochips Fusion in-situ Heating Holder for TEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edmondson, Philip D.
2017-03-01
This brief report documents the procurement and installation of a Protochips Fusion (formerly Aduro) high-temperature, high stability transmission electron microscopy (TEM) specimen holder that allows for the high spatial resolution characterization of material specimens at high temperature in situ of an electron microscope. This specimen holder was specifically procured for use with The FEI Talos F200X Scanning/Transmission Electron Microscope (STEM) in Oak Ridge National Laboratory’s (ORNL’s) Low Activation Materials Development and Analysis (LAMDA) Laboratory. The Protochips Fusion holder will enable high-resolution structural and chemical analysis of irradiated materials at high temperature, becoming a unique capability worldwide, and would encourage high-qualitymore » in situ experiments to be conducted on irradiated materials.« less
Isotope analysis in the transmission electron microscope.
Susi, Toma; Hofer, Christoph; Argentero, Giacomo; Leuthner, Gregor T; Pennycook, Timothy J; Mangler, Clemens; Meyer, Jannik C; Kotakoski, Jani
2016-10-10
The Ångström-sized probe of the scanning transmission electron microscope can visualize and collect spectra from single atoms. This can unambiguously resolve the chemical structure of materials, but not their isotopic composition. Here we differentiate between two isotopes of the same element by quantifying how likely the energetic imaging electrons are to eject atoms. First, we measure the displacement probability in graphene grown from either 12 C or 13 C and describe the process using a quantum mechanical model of lattice vibrations coupled with density functional theory simulations. We then test our spatial resolution in a mixed sample by ejecting individual atoms from nanoscale areas spanning an interface region that is far from atomically sharp, mapping the isotope concentration with a precision better than 20%. Although we use a scanning instrument, our method may be applicable to any atomic resolution transmission electron microscope and to other low-dimensional materials.
Brooks, Adam J; Yao, Zhongwen
2017-10-01
The data presented in this article is related to the research experiment, titled: ' Quasi in-situ energy dispersive X-ray spectroscopy observation of matrix and solute interactions on Y-Ti-O oxide particles in an austenitic stainless steel under 1 MeV Kr 2+ high temperature irradiation' (Brooks et al., 2017) [1]. Quasi in-situ analysis during 1 MeV Kr 2+ 520 °C irradiation allowed the same microstructural area to be observed using a transmission electron microscope (TEM), on an oxide dispersion strengthened (ODS) austenitic stainless steel sample. The data presented contains two sets of energy dispersive X-ray spectroscopy (EDX) data collected before and after irradiation to 1.5 displacements-per-atom (~1.25×10 -3 dpa/s with 7.5×10 14 ions cm -2 ). The vendor software used to process and output the data is the Bruker Esprit v1.9 suite. The data includes the spectral (counts vs. keV energy) of the quasi in-situ scanned region (512×512 pixels at 56k magnification), along with the EDX scanning parameters. The.raw files from the Bruker Esprit v1.9 output are additionally included along with the.rpl data information files. Furthermore included are the two quasi in-situ HAADF images for visual comparison of the regions before and after irradiation. This in-situ experiment is deemed ' quasi' due to the thin foil irradiation taking place at an external TEM facility. We present this data for critical and/or extended analysis from the scientific community, with applications applying to: experimental data correlation, confirmation of results, and as computer based modeling inputs.
NASA Astrophysics Data System (ADS)
Thambiraj, S.; Ravi Shankaran, D.
2017-08-01
We aimed to develop a simple and low-cost method for the production of high-performance cellulose nanomaterials from renewable and sustainable resources. Here, cellulose microcrystals (CMCs) were prepared by controlled acidic and basic hydrolysis of cotton from textile industry wastes. The resulted CMCs were further converted into cellulose nanocrystals (CNCs) with high crystallinity by acidic hydrolysis. The physicochemical characteristics and morphological feature of CMCs and CNCs were studied by various analytical techniques such as UV-vis spectroscopy, Fourier-transform infrared spectroscopy (FT-IR), Scanning electron microscope (SEM), Fluorescence spectroscopy, Atomic force microscopy (AFM), High-resolution transmission electron microscopy (HR-TEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The isolated CNCs possess a needle-like morphological structure with the longitudinal and lateral dimensions of 180 ± 60 nm, 10 ± 1 nm, respectively. The AFM result reveals that the CNCs have a high aspect ratio of 40 ± 14 nm and the average thickness of 6.5 nm. The XRD and TEM analysis indicate that the synthesized CNCs possess face-centered cubic crystal structure. Preliminary experiments were carried out to fabricate CNCs incorporated poly (vinyl alcohol) (PVA) film. The results suggest that the concept of waste to wealth could be well executed from the prepared CNCs, which have great potential for various applications including bio-sensors, food packaging and drug delivery applications.
A Hydrogen and He Isotope Nanoprobe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doyle, Barney L.; Van Deusen, Stuart B.
Materials that incorporate hydrogen and helium isotopes are of great interest at Sandia and throughout the NNSA and DOE. The Ion Beam Lab at SNL-NM has invented techniques using micron to mm-size MeV ion beams to recoil these light isotopes (Elastic Recoil Detection or ERD) that can very accurately make such measurements. However, there are many measurements that would benefit NW and DOE that require much better resolution, such as the distribution of H isotopes (and 3He) in individual grains of materials relevant to TPBARs, H and He-embrittlement of weapon components important to Tritium Sustainment Programs, issues with GTSs, batteries…more » Higher resolution would also benefit the field of materials science in general. To address these and many other issues, nm-scale lateral resolution is required. This LDRD demonstrated that neutral H atoms could be recoiled through a thin film by 70 keV electrons and detected with a Channeltron electron multiplier (CEM). The electrons were steered away from the CEM by strong permanent magnets. This proved the feasibility that the high energy electrons from a transmissionelectron- microscope-TEM can potentially be used to recoil and subsequently detect (e-ERD), quantify and map the concentration of H and He isotopes with nm resolution. This discovery could lead to a TEM-based H/He-isotope nanoprobe with 1000x higher resolution than currently available.« less
Electrical conductivity measurements of bacterial nanowires from Pseudomonas aeruginosa
NASA Astrophysics Data System (ADS)
Maruthupandy, Muthusamy; Anand, Muthusamy; Maduraiveeran, Govindhan; Sait Hameedha Beevi, Akbar; Jeeva Priya, Radhakrishnan
2015-12-01
The extracellular appendages of bacteria (flagella) that transfer electrons to electrodes are called bacterial nanowires. This study focuses on the isolation and separation of nanowires that are attached via Pseudomonas aeruginosa bacterial culture. The size and roughness of separated nanowires were measured using transmission electron microscopy (TEM) and atomic force microscopy (AFM), respectively. The obtained bacterial nanowires indicated a clear image of bacterial nanowires measuring 16 nm in diameter. The formation of bacterial nanowires was confirmed by microscopic studies (AFM and TEM) and the conductivity nature of bacterial nanowire was investigated by electrochemical techniques. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), which are nondestructive voltammetry techniques, suggest that bacterial nanowires could be the source of electrons—which may be used in various applications, for example, microbial fuel cells, biosensors, organic solar cells, and bioelectronic devices. Routine analysis of electron transfer between bacterial nanowires and the electrode was performed, providing insight into the extracellular electron transfer (EET) to the electrode. CV revealed the catalytic electron transferability of bacterial nanowires and electrodes and showed excellent redox activities. CV and EIS studies showed that bacterial nanowires can charge the surface by producing and storing sufficient electrons, behave as a capacitor, and have features consistent with EET. Finally, electrochemical studies confirmed the development of bacterial nanowires with EET. This study suggests that bacterial nanowires can be used to fabricate biomolecular sensors and nanoelectronic devices.
Electron holography—basics and applications
NASA Astrophysics Data System (ADS)
Lichte, Hannes; Lehmann, Michael
2008-01-01
Despite the huge progress achieved recently by means of the corrector for aberrations, allowing now a true atomic resolution of 0.1 nm, hence making it an unrivalled tool for nanoscience, transmission electron microscopy (TEM) suffers from a severe drawback: in a conventional electron micrograph only a poor phase contrast can be achieved, i.e. phase structures are virtually invisible. Therefore, conventional TEM is nearly blind for electric and magnetic fields, which are pure phase objects. Since such fields provoked by the atomic structure, e.g. of semiconductors and ferroelectrics, largely determine the solid state properties, hence the importance for high technology applications, substantial object information is missing. Electron holography in TEM offers the solution: by superposition with a coherent reference wave, a hologram is recorded, from which the image wave can be completely reconstructed by amplitude and phase. Now the object is displayed quantitatively in two separate images: one representing the amplitude, the other the phase. From the phase image, electric and magnetic fields can be determined quantitatively in the range from micrometre down to atomic dimensions by all wave optical methods that one can think of, both in real space and in Fourier space. Electron holography is pure wave optics. Therefore, we discuss the basics of coherence and interference, the implementation into a TEM, the path of rays for recording holograms as well as the limits in lateral and signal resolution. We outline the methods of reconstructing the wave by numerical image processing and procedures for extracting the object properties of interest. Furthermore, we present a broad spectrum of applications both at mesoscopic and atomic dimensions. This paper gives an overview of the state of the art pointing at the needs for further development. It is also meant as encouragement for those who refrain from holography, thinking that it can only be performed by specialists in highly specialized laboratories. In fact, a modern TEM built for atomic resolution and equipped with a field emitter or a Schottky emitter, well aligned by a skilled operator, can deliver good holograms. Running commercially available image processing software and mathematics programs on a laptop-computer is sufficient for reconstruction of the amplitude and phase images and extracting desirable object information.
Optical Interferometric Micrometrology
NASA Technical Reports Server (NTRS)
Abel, Phillip B.; Lauer, James R.
1989-01-01
Resolutions in angstrom and subangstrom range sought for atomic-scale surface probes. Experimental optical micrometrological system built to demonstrate calibration of piezoelectric transducer to displacement sensitivity of few angstroms. Objective to develop relatively simple system producing and measuring translation, across surface of specimen, of stylus in atomic-force or scanning tunneling microscope. Laser interferometer used to calibrate piezoelectric transducer used in atomic-force microscope. Electronic portion of calibration system made of commercially available components.
Scanning ion-conductance and atomic force microscope with specialized sphere-shaped nanopippettes
NASA Astrophysics Data System (ADS)
Zhukov, M. V.; Sapozhnikov, I. D.; Golubok, A. O.; Chubinskiy-Nadezhdin, V. I.; Komissarenko, F. E.; Lukashenko, S. Y.
2017-11-01
A scanning ion-conductance microscope was designed on the basis of scanning probe microscope NanoTutor. The optimal parameters of nanopipettes fabrication were found according to scanning electron microscopy diagnostics, current-distance I (Z) and current-voltage characteristics. A comparison of images of test objects, including biological samples, was carried out in the modes of optical microscopy, atomic force microscopy and scanning ion-conductance microscopy. Sphere-shaped nanopippettes probes were developed and tested to increase the stability of pipettes, reduce invasiveness and improve image quality of atomic force microscopy in tapping mode. The efficiency of sphere-shaped nanopippettes is shown.
Resonant difference-frequency atomic force ultrasonic microscope
NASA Technical Reports Server (NTRS)
Cantrell, John H. (Inventor); Cantrell, Sean A. (Inventor)
2010-01-01
A scanning probe microscope and methodology called resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM), employs an ultrasonic wave launched from the bottom of a sample while the cantilever of an atomic force microscope, driven at a frequency differing from the ultrasonic frequency by one of the contact resonance frequencies of the cantilever, engages the sample top surface. The nonlinear mixing of the oscillating cantilever and the ultrasonic wave in the region defined by the cantilever tip-sample surface interaction force generates difference-frequency oscillations at the cantilever contact resonance. The resonance-enhanced difference-frequency signals are used to create images of nanoscale near-surface and subsurface features.
The Tunneling Microscope: A New Look at the Atomic World.
ERIC Educational Resources Information Center
Golovchenko, J. A.
1986-01-01
A new instrument called the tunneling microscope has recently been developed that is capable of generating real-space images of surfaces showing atomic structure. Discusses current capabilities, limitations, and the physics involved in the technique. Includes results from a study of silicon crystal surfaces. (JN)
Detecting single-electron events in TEM using low-cost electronics and a silicon strip sensor.
Gontard, Lionel C; Moldovan, Grigore; Carmona-Galán, Ricardo; Lin, Chao; Kirkland, Angus I
2014-04-01
There is great interest in developing novel position-sensitive direct detectors for transmission electron microscopy (TEM) that do not rely in the conversion of electrons into photons. Direct imaging improves contrast and efficiency and allows the operation of the microscope at lower energies and at lower doses without loss in resolution, which is especially important for studying soft materials and biological samples. We investigate the feasibility of employing a silicon strip detector as an imaging detector for TEM. This device, routinely used in high-energy particle physics, can detect small variations in electric current associated with the impact of a single charged particle. The main advantages of using this type of sensor for direct imaging in TEM are its intrinsic radiation hardness and large detection area. Here, we detail design, simulation, fabrication and tests in a TEM of the front-end electronics developed using low-cost discrete components and discuss the limitations and applications of this technology for TEM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawasaki, Tadahiro; PRESTO-JST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012; Ueda, Kouta
We have developed an improved, windowed type environmental-cell (E-cell) transmission electron microscope (TEM) for in situ observation of gas-solid interactions, such as catalytic reactions at atmospheric pressure. Our E-cell TEM includes a compact E-cell specimen holder with mechanical stability, resulting in smoother introduction of the desired gases compared with previous E-cell TEMs. In addition, the gas control unit was simplified by omitting the pressure control function of the TEM pre-evacuation chamber. This simplification was due to the successful development of remarkably tough thin carbon films as the window material. These films, with a thickness of <10 nm, were found tomore » withstand pressure differences >2 atm. Appropriate arrangement of the specimen position inside the E-cell provided quantitatively analyzable TEM images, with no disturbances caused by the windowed films. As an application, we used this E-cell TEM to observe the dynamic shape change in a catalytic gold nanoparticle supported on TiO{sub 2} during the oxidation of CO gas.« less
Substantial tensile ductility in sputtered Zr-Ni-Al nano-sized metallic glass
Liontas, Rachel; Jafary-Zadeh, Mehdi; Zeng, Qiaoshi; ...
2016-08-04
We investigate the mechanical behavior and atomic-level structure of glassy Zr-Ni-Al nano-tensile specimens with widths between 75 and 215 nm. We focus our studies on two different energy states: (1) as-sputtered and (2) sputtered then annealed below the glass transition temperature (T g). In-situ tensile experiments conducted inside a scanning electron microscope (SEM) reveal substantial tensile ductility in some cases reaching >10% engineering plastic strains, >150% true plastic strains, and necking down to a point during tensile straining in specimens as wide as ~150 nm. We found the extent of ductility depends on both the specimen size and the annealingmore » conditions. Using molecular dynamics (MD) simulations, transmission electron microscopy (TEM), and synchrotron x-ray diffraction (XRD), we explain the observed mechanical behavior through changes in free volume as well as short- and medium-range atomic-level order that occur upon annealing. This work demonstrates the importance of carefully choosing the metallic glass fabrication method and post-processing conditions for achieving a certain atomic-level structure and free volume within the metallic glass, which then determine the overall mechanical response. Lastly, an important implication is that sputter deposition may be a particularly promising technique for producing thin coatings of metallic glasses with significant ductility, due to the high level of disorder and excess free volume resulting from the sputtering process and to the suitability of sputtering for producing thin coatings that may exhibit enhanced size-induced ductility.« less
Atomic force microscope with combined FTIR-Raman spectroscopy having a micro thermal analyzer
Fink, Samuel D [Aiken, SC; Fondeur, Fernando F [North Augusta, SC
2011-10-18
An atomic force microscope is provided that includes a micro thermal analyzer with a tip. The micro thermal analyzer is configured for obtaining topographical data from a sample. A raman spectrometer is included and is configured for use in obtaining chemical data from the sample.
Uncertainty quantification in nanomechanical measurements using the atomic force microscope
Ryan Wagner; Robert Moon; Jon Pratt; Gordon Shaw; Arvind Raman
2011-01-01
Quantifying uncertainty in measured properties of nanomaterials is a prerequisite for the manufacture of reliable nanoengineered materials and products. Yet, rigorous uncertainty quantification (UQ) is rarely applied for material property measurements with the atomic force microscope (AFM), a widely used instrument that can measure properties at nanometer scale...
RBS, TEM and SEM Characterization of Gold Nanoclusters in TiO2(110)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shutthanandan, V; Zhang, Yanwen; Wang, Chong M.
2004-05-01
Nucleation of gold nanoclusters in TiO2(110) single crystal using ion implantation and subsequent annealing were studied by Rutherford backscattering spectrometry /channeling (RBS/C), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Approximately 1000 Au2+/nm2 was implanted at room temperature in TiO2(110) substrates. TEM and SEM measurements revel that rounded nanoclusters were formed during the implantation. In contrast subsequent annealing in air for 10 hours at 1275 K promoted the formation of faceted (rectangular shaped) Au nano structures in TiO2. RBS channeling measurements further reveled that Au atoms randomly occupied in the host TiO2 lattice during the implantation. However, some ofmore » the gold atoms were moved into the Ti lattice position after annealing.« less
Atomic Oxygen Textured Polymers
NASA Technical Reports Server (NTRS)
Banks, Bruce A.; Rutledge, Sharon K.; Hunt, Jason D.; Drobotij, Erin; Cales, Michael R.; Cantrell, Gidget
1995-01-01
Atomic oxygen can be used to microscopically alter the surface morphology of polymeric materials in space or in ground laboratory facilities. For polymeric materials whose sole oxidation products are volatile species, directed atomic oxygen reactions produce surfaces of microscopic cones. However, isotropic atomic oxygen exposure results in polymer surfaces covered with lower aspect ratio sharp-edged craters. Isotropic atomic oxygen plasma exposure of polymers typically causes a significant decrease in water contact angle as well as altered coefficient of static friction. Such surface alterations may be of benefit for industrial and biomedical applications. The results of atomic oxygen plasma exposure of thirty-three (33) different polymers are presented, including typical morphology changes, effects on water contact angle, and coefficient of static friction.
Thickness-dependent structure and properties of SnS2 thin films prepared by atomic layer deposition
NASA Astrophysics Data System (ADS)
Seo, Wondeok; Shin, Seokyoon; Ham, Giyul; Lee, Juhyun; Lee, Seungjin; Choi, Hyeongsu; Jeon, Hyeongtag
2017-03-01
Tin disulfide (SnS2) thin films were deposited by a thermal atomic layer deposition (ALD) method at low temperatures. The physical, chemical, and electrical characteristics of SnS2 were investigated as a function of the film thickness. SnS2 exhibited a (001) hexagonal plane peak at 14.9° in the X-ray diffraction (XRD) results and an A1g peak at 311 cm-1 in the Raman spectra. These results demonstrate that SnS2 thin films grown at 150 °C showed a crystalline phase at film thicknesses above 11.2 nm. The crystallinity of the SnS2 thin films was evaluated by a transmission electron microscope (TEM). The X-ray photoelectron spectroscopy (XPS) analysis revealed that SnS2 consisted of Sn4+ and S2- valence states. Both the optical band gap and the transmittance of SnS2 decreased as the film thickness increased. The band gap of SnS2 decreased from 3.0 to 2.4 eV and the transmittance decreased from 85 to 32% at a wavelength of 400 nm. In addition, the resistivity of the thin film SnS2 decreased from 1011 to 106 Ω·cm as the film thickness increased.
Takeo, Kamino; Toshie, Yaguchi; Mitsuru, Konno; Akira, Watabe; Yasuhira, Nagakubo
2006-10-01
A specimen heating holder equipped with a gas injector and an evaporator has been developed for use with conventional transmission electron microscopes (TEMs). The developed specimen holder allows both synthesis of metal oxide support and deposition of catalyst nano-particles in situ. Since the holder is designed to be used in small gapped high-resolution objective lens pole-piece, all the procedure from the synthesis of support material to the deposition of catalyst as well as the behavior of the catalyst nano-particles on the support can be observed at near atomic resolution. The developed specimen holder was applied to the study of AuPd catalyst. First, air was injected onto heated aluminum particles via a gas injector to synthesize Al(2)O(3) support. Then, nano-particles of AuPd were deposited on the Al(2)O(3) support. After the deposition, the synthesized Al(2)O(3) support was heated and air was injected again to observe behaviors of the deposited AuPd nano-particles at elevated temperatures in the aerial environment. Behaviors of the AuPd nano-particles such as coalescence, segmentation and diffusion to the Al(2)O(3) support were dynamically observed at atomic level high resolution.
Schryvers, D; Salje, E K H; Nishida, M; De Backer, A; Idrissi, H; Van Aert, S
2017-05-01
The present contribution gives a review of recent quantification work of atom displacements, atom site occupations and level of crystallinity in various systems and based on aberration corrected HR(S)TEM images. Depending on the case studied, picometer range precisions for individual distances can be obtained, boundary widths at the unit cell level determined or statistical evolutions of fractions of the ordered areas calculated. In all of these cases, these quantitative measures imply new routes for the applications of the respective materials. Copyright © 2017 Elsevier B.V. All rights reserved.
A simple way to obtain backscattered electron images in a scanning transmission electron microscope.
Tsuruta, Hiroki; Tanaka, Shigeyasu; Tanji, Takayoshi; Morita, Chiaki
2014-08-01
We have fabricated a simple detector for backscattered electrons (BSEs) and incorporated the detector into a scanning transmission electron microscope (STEM) sample holder. Our detector was made from a 4-mm(2) Si chip. The fabrication procedure was easy, and similar to a standard transmission electron microscopy (TEM) sample thinning process based on ion milling. A TEM grid containing particle objects was fixed to the detector with a silver paste. Observations were carried out using samples of Au and latex particles at 75 and 200 kV. Such a detector provides an easy way to obtain BSE images in an STEM. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Metal dusting behavior of 321 stainless steel: Effects of edge and corner
NASA Astrophysics Data System (ADS)
Chang, Chia-Hao; Tsai, Wen-Ta
2011-04-01
The metal dusting behavior of 321 stainless steel (SS) in a flowing mixed CO/H2/H2O gas stream at 600 °C for 500 h and 1000 h was investigated. The microstructures and chemical compositions of the reaction products at the surface and those in the substrate under the pits were examined by using a scanning electron microscope (SEM) and a transmission electron microscope (TEM), each combined with an energy dispersive spectrometer (EDS). The phenomenon of a pitting attack that occurred preferentially at the edges and corners of the specimens was the focus of this study. The carburization behavior in the steel substrate under the pits was also characterized. Matrix carbide in the form of Cr7C3 and grain boundary carbide in the form of Cr23C6 were identified by TEM.
Chmielewski, Adrian; Nelayah, Jaysen; Amara, Hakim; Creuze, Jérôme; Alloyeau, Damien; Wang, Guillaume; Ricolleau, Christian
2018-01-12
We use in situ transmission electron microscopy to monitor in real time the evaporation of gold, copper, and bimetallic copper-gold nanoparticles at high temperature. Besides, we extend the Kelvin equation to two-component systems to predict the evaporation rates of spherical liquid mono- and bimetallic nanoparticles. By linking this macroscopic model to experimental TEM data, we determine the surface energies of pure gold, pure copper, Cu_{50}Au_{50}, and Cu_{25}Au_{75} nanoparticles in the liquid state. Our model suggests that the surface energy varies linearly with the composition in the liquid Cu-Au nanoalloy; i.e., it follows a Vegard's rulelike dependence. To get atomic-scale insights into the thermodynamic properties of Cu-Au alloys on the whole composition range, we perform Monte Carlo simulations employing N-body interatomic potentials. These simulations at a microscopic level confirm the Vegard's rulelike behavior of the surface energy obtained from experiments combined with macroscopic modeling.
Liquid-Like, Self-Healing Aluminum Oxide during Deformation at Room Temperature.
Yang, Yang; Kushima, Akihiro; Han, Weizhong; Xin, Huolin; Li, Ju
2018-04-11
Effective protection from environmental degradation relies on the integrity of oxide as diffusion barriers. Ideally, the passivation layer can repair its own breaches quickly under deformation. While studies suggest that the native aluminum oxide may manifest such properties, it has yet to be experimentally proven because direct observations of the air-environmental deformation of aluminum oxide and its initial formation at room temperature are challenging. Here, we report in situ experiments to stretch pure aluminum nanotips under O 2 gas environments in a transmission electron microscope (TEM). We discovered that aluminum oxide indeed deforms like liquid and can match the deformation of Al without any cracks/spallation at moderate strain rate. At higher strain rate, we exposed fresh metal surface, and visualized the self-healing process of aluminum oxide at atomic resolution. Unlike traditional thin-film growth or nanoglass consolidation processes, we observe seamless coalescence of new oxide islands without forming any glass-glass interface or surface grooves, indicating greatly accelerated glass kinetics at the surface compared to the bulk.
Extended and Point Defects in Diamond Studied with the Aid of Various Forms of Microscopy.
Steeds; Charles; Gilmore; Butler
2000-07-01
It is shown that star disclinations can be a significant source of stress in chemical vapor deposited (CVD) diamond. This purely geometrical origin contrasts with other sources of stress that have been proposed previously. The effectiveness is demonstrated of the use of electron irradiation using a transmission electron microscope (TEM) to displace atoms from their equilibrium sites to investigate intrinsic defects and impurities in CVD diamond. After irradiation, the samples are studied by low temperature photoluminescence microscopy using UV or blue laser illumination. Results are given that are interpreted as arising from isolated <100> split self-interstitials and positively charged single vacancies. Negatively charged single vacancies can also be revealed by this technique. Nitrogen and boron impurities may also be studied similarly. In addition, a newly developed liquid gallium source scanned ion beam mass spectrometry (SIMS) instrument has been used to map out the B distribution in B doped CVD diamond specimens. The results are supported by micro-Raman spectroscopy.
Kang, Shaohong; Yu, Tao; Liu, Tingting; Guan, Shiyou
2018-02-15
We proposed a large-sized graphene preparation method by short-circuit discharge of the lithium-graphite primary battery for the first time. LiC x is obtained through lithium ions intercalation into graphite cathode in the above primary battery. Graphene was acquired by chemical reaction between LiC x and stripper agents with dispersion under sonication conditions. The gained graphene is characterized by Raman spectrum, X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Atomic force microscope (AFM) and Scanning electron microscopy (SEM). The results indicate that the as-prepared graphene has a large size and few defects, and it is monolayer or less than three layers. The quality of graphene is significant improved compared to the reported electrochemical methods. The yield of graphene can reach 8.76% when the ratio of the H 2 O and NMP is 3:7. This method provides a potential solution for the recycling of waste lithium ion batteries. Copyright © 2017 Elsevier Inc. All rights reserved.
Precipitation Behaviors of a New Antibacterial Maraging Stainless Steel for Medical Instruments
NASA Astrophysics Data System (ADS)
Zhang, H. W.; Xu, Y. L.; Chen, L. J.; Wang, X. W.; Wu, Z. Y.; Li, S.; Li, J.; Xiao, X. S.
2018-06-01
A new antibacterial maraging stainless steel with high hardness and good antibacterial property has been developed. The hardness of the new maraging stainless steel with a cold rolling deformation of 85 pct reaches the peak about 58.5 HRC after aging heat treatment, which is mainly due to the ɛ-Cu and Ni-, Al-, Ti-rich precipitates. Reverted austenite transformed from the martensite is responsible for the decrease of hardness when aging at higher temperature. Three-dimensional atom probe (3DAP) and transmission electric microscope (TEM) were used to investigate the precipitates formed in the martensite matrix after aging at 713 K for 4 hours. The ɛ-Cu and Ni-, Al-, Ti-rich precipitates distribute uniformly in the martensite matrix, and the Ni-, Al-, Ti-rich precipitates are nucleated on the Cu-rich precipitates. Because of the ɛ-Cu precipitates, the new maraging stainless steel possesses an excellent antibacterial property with the rate about 95.08 pct, which has a wide application prospect on scalpels and surgical needles.
NASA Astrophysics Data System (ADS)
Chmielewski, Adrian; Nelayah, Jaysen; Amara, Hakim; Creuze, Jérôme; Alloyeau, Damien; Wang, Guillaume; Ricolleau, Christian
2018-01-01
We use in situ transmission electron microscopy to monitor in real time the evaporation of gold, copper, and bimetallic copper-gold nanoparticles at high temperature. Besides, we extend the Kelvin equation to two-component systems to predict the evaporation rates of spherical liquid mono- and bimetallic nanoparticles. By linking this macroscopic model to experimental TEM data, we determine the surface energies of pure gold, pure copper, Cu50 Au50 , and Cu25 Au75 nanoparticles in the liquid state. Our model suggests that the surface energy varies linearly with the composition in the liquid Cu-Au nanoalloy; i.e., it follows a Vegard's rulelike dependence. To get atomic-scale insights into the thermodynamic properties of Cu-Au alloys on the whole composition range, we perform Monte Carlo simulations employing N -body interatomic potentials. These simulations at a microscopic level confirm the Vegard's rulelike behavior of the surface energy obtained from experiments combined with macroscopic modeling.
NASA Astrophysics Data System (ADS)
Umnov, S.; Asainov, O.
2015-04-01
Thin aluminum films were prepared using the method of magnetron sputtering with and without argon ion beam assistance. The influence of argon ion beam on the reflectivity in the UV range and the structure of aluminum films was studied. The structure of the films was studied by transmission electron microscopy (TEM), X-ray diffractometry (XRD) and atomic- force microscope (AFM). The study has shown that the films deposed with the assistance of the argon ion beam have more significant microstresses associated with an increase of crystallites microstructure defects as compared to the films deposed without ion assistance. Comparison of the measured reflectivity of aluminum films deposed without and with the assistance of the ion beam has shown that the films characterized by a higher level of microstructure def ects have increased reflectivity in the UV range. The studies suggest that the defects of thin aluminum films crystal structure influence its optical properties.
In situ study of heavy ion irradiation response of immiscible Cu/Fe multilayers
Chen, Youxing; Li, Nan; Bufford, Daniel Charles; ...
2016-04-09
By providing active defect sinks that capture and annihilate radiation induced defect clusters immiscible metallic multilayers with incoherent interfaces can effectively reduce defect density in ion irradiated metals. Although it is anticipated that defect density within the layers should vary as a function of distance to the layer interface, there is, to date, little in situ TEM evidence to validate this hypothesis. In our study monolithic Cu films and Cu/Fe multilayers with individual layer thickness, h, of 100 and 5 nm were subjected to in situ Cu ion irradiation at room temperature to nominally 1 displacement-per-atom inside a transmission electronmore » microscope. Rapid formation and propagation of defect clusters were observed in monolithic Cu, whereas fewer defects with smaller dimensions were generated in Cu/Fe multilayers with smaller h. Moreover, in situ video shows that the cumulative defect density in Cu/Fe 100 nm multilayers indeed varies, as a function of distance to the layer interfaces, supporting a long postulated hypothesis.« less
Precipitates and boundaries interaction in ferritic ODS steels
NASA Astrophysics Data System (ADS)
Sallez, Nicolas; Hatzoglou, Constantinos; Delabrouille, Fredéric; Sornin, Denis; Chaffron, Laurent; Blat-Yrieix, Martine; Radiguet, Bertrand; Pareige, Philippe; Donnadieu, Patricia; Bréchet, Yves
2016-04-01
In the course of a recrystallization study of Oxide Dispersion Strengthened (ODS) ferritic steels during extrusion, particular interest was paid to the (GB) Grain Boundaries interaction with precipitates. Complementary and corresponding characterization experiments using Transmission Electron Microscopy (TEM), Energy Dispersive X-ray spectroscopy (EDX) and Atom Probe Tomography (APT) have been carried out on a voluntarily interrupted extrusion or extruded samples. Microscopic observations of Precipitate Free Zones (PFZ) and precipitates alignments suggest precipitate interaction with migrating GB involving dissolution and Oswald ripening of the precipitates. This is consistent with the local chemical information gathered by EDX and APT. This original mechanism for ODS steels is similar to what had been proposed in the late 80s for similar observation made on Ti alloys reinforced by nanosized yttrium oxides: An interaction mechanism between grain boundaries and precipitates involving a diffusion controlled process of precipitates dissolution at grain boundaries. It is believed that this mechanism can be of primary importance to explain the mechanical behaviour of such steels.
Transmission/Scanning Transmission Electron Microscopy | Materials Science
imaging such as high resolution TEM. Transmission electron diffraction patterns help to determine the microstructure of a material and its defects. Phase-contrast imaging or high-resolution (HR) TEM imaging gives high scattering angle can be collected to form high-resolution, chemically sensitive, atomic number (Z
A Student-Built Scanning Tunneling Microscope
ERIC Educational Resources Information Center
Ekkens, Tom
2015-01-01
Many introductory and nanotechnology textbooks discuss the operation of various microscopes including atomic force (AFM), scanning tunneling (STM), and scanning electron microscopes (SEM). In a nanotechnology laboratory class, students frequently utilize microscopes to obtain data without a thought about the detailed operation of the tool itself.…
Electron Energy Loss Spectroscopy imaging of surface plasmons at the nanometer scale.
Colliex, Christian; Kociak, Mathieu; Stéphan, Odile
2016-03-01
Since their first realization, electron microscopes have demonstrated their unique ability to map with highest spatial resolution (sub-atomic in most recent instruments) the position of atoms as a consequence of the strong scattering of the incident high energy electrons by the nuclei of the material under investigation. When interacting with the electron clouds either on atomic orbitals or delocalized over the specimen, the associated energy transfer, measured and analyzed as an energy loss (Electron Energy Loss Spectroscopy) gives access to analytical properties (atom identification, electron states symmetry and localization). In the moderate energy-loss domain (corresponding to an optical spectral domain from the infrared (IR) to the rather far ultra violet (UV), EELS spectra exhibit characteristic collective excitations of the rather-free electron gas, known as plasmons. Boundary conditions, such as surfaces and/or interfaces between metallic and dielectric media, generate localized surface charge oscillations, surface plasmons (SP), which are associated with confined electric fields. This domain of research has been extraordinarily revived over the past few years as a consequence of the burst of interest for structures and devices guiding, enhancing and controlling light at the sub-wavelength scale. The present review focuses on the study of these surface plasmons with an electron microscopy-based approach which associates spectroscopy and mapping at the level of a single and well-defined nano-object, typically at the nanometer scale i.e. much improved with respect to standard, and even near-field, optical techniques. After calling to mind some early studies, we will briefly mention a few basic aspects of the required instrumentation and associated theoretical tools to interpret the very rich data sets recorded with the latest generation of (Scanning)TEM microscopes. The following paragraphs will review in more detail the results obtained on simple planar and spherical surfaces (or interfaces), extending then to more complex geometries isolated and in interaction, thus establishing basic rules from the classical to the quantum domain. A few hints towards application domains and prospective fields rich of interest will finally be indicated, confirming the demonstrated key role of electron-beam nanoplasmonics, the more as an yet-enhanced energy resolution down to the 10meV comes on the verge of current access. Copyright © 2015 Elsevier B.V. All rights reserved.
Making Mn substitutional impurities in InAs using a scanning tunneling microscope.
Song, Young Jae; Erwin, Steven C; Rutter, Gregory M; First, Phillip N; Zhitenev, Nikolai B; Stroscio, Joseph A
2009-12-01
We describe in detail an atom-by-atom exchange manipulation technique using a scanning tunneling microscope probe. As-deposited Mn adatoms (Mn(ad)) are exchanged one-by-one with surface In atoms (In(su)) to create a Mn surface-substitutional (Mn(In)) and an exchanged In adatom (In(ad)) by an electron tunneling induced reaction Mn(ad) + In(su) --> Mn(In) + In(ad) on the InAs(110) surface. In combination with density-functional theory and high resolution scanning tunneling microscopy imaging, we have identified the reaction pathway for the Mn and In atom exchange.
Direct imaging of atomic-scale ripples in few-layer graphene.
Wang, Wei L; Bhandari, Sagar; Yi, Wei; Bell, David C; Westervelt, Robert; Kaxiras, Efthimios
2012-05-09
Graphene has been touted as the prototypical two-dimensional solid of extraordinary stability and strength. However, its very existence relies on out-of-plane ripples as predicted by theory and confirmed by experiments. Evidence of the intrinsic ripples has been reported in the form of broadened diffraction spots in reciprocal space, in which all spatial information is lost. Here we show direct real-space images of the ripples in a few-layer graphene (FLG) membrane resolved at the atomic scale using monochromated aberration-corrected transmission electron microscopy (TEM). The thickness of FLG amplifies the weak local effects of the ripples, resulting in spatially varying TEM contrast that is unique up to inversion symmetry. We compare the characteristic TEM contrast with simulated images based on accurate first-principles calculations of the scattering potential. Our results characterize the ripples in real space and suggest that such features are likely common in ultrathin materials, even in the nanometer-thickness range.
Evolution and stabilization of subnanometric metal species in confined space by in situ TEM
Liu, Lichen; Zakharov, Dmitri N.; Arenal, Raul; ...
2018-02-08
Understanding the behavior and dynamic structural transformation of subnanometric metal species under reaction conditions will be helpful for understanding catalytic phenomena and for developing more efficient and stable catalysts based on single atoms and clusters.In this work,the evolution and stabilization of subnanometric Pt species confined in MCM-22 zeolite has been studied by in situ transmission electron microscopy (TEM). By correlating the results from in situ TEM studies and the results obtained in a continuous fix-bed reactor,it has been possible to delimitate the factors that control the dynamic agglomeration and redispersion behavior of metal species under reaction conditions. Here, the dynamicmore » reversible transformation between atomically dispersed Pt species and clusters/nanoparticles during CO oxidation at different temperatures has been elucidated.Ithas also been confirmed that subnanometric Pt clusters can be stabilized in MCM-22 crystallites during NO reduction with CO and H 2.« less
Evolution and stabilization of subnanometric metal species in confined space by in situ TEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Lichen; Zakharov, Dmitri N.; Arenal, Raul
Understanding the behavior and dynamic structural transformation of subnanometric metal species under reaction conditions will be helpful for understanding catalytic phenomena and for developing more efficient and stable catalysts based on single atoms and clusters.In this work,the evolution and stabilization of subnanometric Pt species confined in MCM-22 zeolite has been studied by in situ transmission electron microscopy (TEM). By correlating the results from in situ TEM studies and the results obtained in a continuous fix-bed reactor,it has been possible to delimitate the factors that control the dynamic agglomeration and redispersion behavior of metal species under reaction conditions. Here, the dynamicmore » reversible transformation between atomically dispersed Pt species and clusters/nanoparticles during CO oxidation at different temperatures has been elucidated.Ithas also been confirmed that subnanometric Pt clusters can be stabilized in MCM-22 crystallites during NO reduction with CO and H 2.« less
Bittencourt, Carla; Van Tendeloo, Gustaaf
2015-01-01
Summary A major revolution for electron microscopy in the past decade is the introduction of aberration correction, which enables one to increase both the spatial resolution and the energy resolution to the optical limit. Aberration correction has contributed significantly to the imaging at low operating voltages. This is crucial for carbon-based nanomaterials which are sensitive to electron irradiation. The research of carbon nanomaterials and nanohybrids, in particular the fundamental understanding of defects and interfaces, can now be carried out in unprecedented detail by aberration-corrected transmission electron microscopy (AC-TEM). This review discusses new possibilities and limits of AC-TEM at low voltage, including the structural imaging at atomic resolution, in three dimensions and spectroscopic investigation of chemistry and bonding. In situ TEM of carbon-based nanomaterials is discussed and illustrated through recent reports with particular emphasis on the underlying physics of interactions between electrons and carbon atoms. PMID:26425406
Aqeel, Yousuf; Siddiqui, Ruqaiyyah; Ateeq, Muhammad; Raza Shah, Muhammad; Kulsoom, Huma; Khan, Naveed Ahmed
2015-01-01
Light microscopy and electron microscopy have been successfully used in the study of microbes, as well as free-living protists. Unlike light microscopy, which enables us to observe living organisms or the electron microscope which provides a two-dimensional image, atomic force microscopy provides a three-dimensional surface profile. Here, we observed two free-living amoebae, Acanthamoeba castellanii and Balamuthia mandrillaris under the phase contrast inverted microscope, transmission electron microscope and atomic force microscope. Although light microscopy was of lower magnification, it revealed functional biology of live amoebae such as motility and osmoregulation using contractile vacuoles of the trophozoite stage, but it is of limited value in defining the cyst stage. In contrast, transmission electron microscopy showed significantly greater magnification and resolution to reveal the ultra-structural features of trophozoites and cysts including intracellular organelles and cyst wall characteristics but it only produced a snapshot in time of a dead amoeba cell. Atomic force microscopy produced three-dimensional images providing detailed topographic description of shape and surface, phase imaging measuring boundary stiffness, and amplitude measurements including width, height and length of A. castellanii and B. mandrillaris trophozoites and cysts. These results demonstrate the importance of the application of various microscopic methods in the biological and structural characterization of the whole cell, ultra-structural features, as well as surface components and cytoskeleton of protist pathogens. © 2014 The Author(s) Journal of Eukaryotic Microbiology © 2014 International Society of Protistologists.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buck, E.C.; Dietz, N.L.; Bates, J.K.
Uranium contaminated soils from the Fernald Operation Site, Ohio, have been examined by a combination of optical microscopy, scanning electron microscopy with backscattered electron detection (SEM/BSE), and analytical electron microscopy (AEM). A method is described for preparing of transmission electron microscopy (TEM) thin sections by ultramicrotomy. By using these thin sections, SEM and TEM images can be compared directly. Uranium was found in iron oxides, silicates (soddyite), phosphates (autunites), and fluorite. Little uranium was associated with clays. The distribution of uranium phases was found to be inhomogeneous at the microscopic level.
Long, Wu-Jian; Wei, Jing-Jie; Ma, Hongyan; Xing, Feng
2017-11-24
This paper presents an experimental investigation on the effect of uniformly dispersed graphene oxide (GO) nanosheets on dynamic mechanical properties of cement based composites prepared with recycled fine aggregate (RFA). Three different amounts of GO, 0.05%, 0.10%, and 0.20% in mass of cement, were used in the experiments. The visual inspections of GO nanosheets were also carried out after ultrasonication by transmission electron microscope (TEM) atomic force microscope (AFM), and Raman to characterize the dispersion effect of graphite oxide. Dynamic mechanical analyzer test showed that the maximum increased amount of loss factor and storage modulus, energy absorption was 125%, 53%, and 200% when compared to the control sample, respectively. The flexural and compressive strengths of GO-mortar increased up to 22% to 41.3% and 16.2% to 16.4% with 0.20 wt % GO at 14 and 28 days, respectively. However the workability decreased by 7.5% to 18.8% with 0.05% and 0.2% GO addition. Microstructural analysis with environmental scanning electron microscopy (ESEM)/backscattered mode (BSEM) showed that the GO-cement composites had a much denser structure and better crystallized hydration products, meanwhile mercury intrusion porosimetry (MIP) testing and image analysis demonstrated that the incorporation of GO in the composites can help in refining capillary pore structure and reducing the air voids content.
Gopinath, V; MubarakAli, D; Priyadarshini, S; Priyadharsshini, N Meera; Thajuddin, N; Velusamy, P
2012-08-01
In the recent decades, increased development of green synthesis of nanoparticles is inevitable because of its incredible applications in all fields of science. There were numerous work have been produced based on the plant and its extract mediated synthesis of nanoparticles, in this present study to explore that the novel approaches for the biosynthesis of silver nanoparticles using plant fruit bodies. The plant, Tribulus terrestris L. fruit bodies are used in this study, where the dried fruit body extract was mixed with silver nitrate in order to synthesis of silver nanoparticles. The active phytochemicals present in the plant were responsible for the quick reduction of silver ion (Ag(+)) to metallic silver nanoparticles (Ag(0)). The reduced silver nanoparticles were characterized by Transmission Electron Microscope (TEM), Atomic Force Microscope (AFM), XRD, FTIR, UV-vis spectroscopy. The spherical shaped silver nanoparticles were observed and it was found to be 16-28 nm range of sizes. The diffraction pattern also confirmed that the higher percentage of silver with fine particles size. The antibacterial property of synthesized nanoparticles was observed by Kirby-Bauer method with clinically isolated multi-drug resistant bacteria such as Streptococcus pyogens, Pseudomonas aeruginosa, Escherichia coli, Bacillus subtilis and Staphylococcus aureus. The plant materials mediated synthesis of silver nanoparticles have comparatively rapid and less expensive and wide application to antibacterial therapy in modern medicine. Copyright © 2012 Elsevier B.V. All rights reserved.
Wei, Jing-Jie; Xing, Feng
2017-01-01
This paper presents an experimental investigation on the effect of uniformly dispersed graphene oxide (GO) nanosheets on dynamic mechanical properties of cement based composites prepared with recycled fine aggregate (RFA). Three different amounts of GO, 0.05%, 0.10%, and 0.20% in mass of cement, were used in the experiments. The visual inspections of GO nanosheets were also carried out after ultrasonication by transmission electron microscope (TEM) atomic force microscope (AFM), and Raman to characterize the dispersion effect of graphite oxide. Dynamic mechanical analyzer test showed that the maximum increased amount of loss factor and storage modulus, energy absorption was 125%, 53%, and 200% when compared to the control sample, respectively. The flexural and compressive strengths of GO-mortar increased up to 22% to 41.3% and 16.2% to 16.4% with 0.20 wt % GO at 14 and 28 days, respectively. However the workability decreased by 7.5% to 18.8% with 0.05% and 0.2% GO addition. Microstructural analysis with environmental scanning electron microscopy (ESEM)/backscattered mode (BSEM) showed that the GO-cement composites had a much denser structure and better crystallized hydration products, meanwhile mercury intrusion porosimetry (MIP) testing and image analysis demonstrated that the incorporation of GO in the composites can help in refining capillary pore structure and reducing the air voids content. PMID:29186810
EBSD and TEM characterization of high burn-up mixed oxide fuel
NASA Astrophysics Data System (ADS)
Teague, Melissa; Gorman, Brian; Miller, Brandon; King, Jeffrey
2014-01-01
Understanding and studying the irradiation behavior of high burn-up oxide fuel is critical to licensing of future fast breeder reactors. Advancements in experimental techniques and equipment are allowing for new insights into previously irradiated samples. In this work dual column focused ion beam (FIB)/scanning electron microscope (SEM) was utilized to prepared transmission electron microscope samples from mixed oxide fuel with a burn-up of 6.7% FIMA. Utilizing the FIB/SEM for preparation resulted in samples with a dose rate of <0.5 mRem/h compared to ∼1.1 R/h for a traditionally prepared TEM sample. The TEM analysis showed that the sample taken from the cooler rim region of the fuel pellet had ∼2.5× higher dislocation density than that of the sample taken from the mid-radius due to the lower irradiation temperature of the rim. The dual column FIB/SEM was additionally used to prepared and serially slice ∼25 μm cubes. High quality electron back scatter diffraction (EBSD) were collected from the face at each step, showing, for the first time, the ability to obtain EBSD data from high activity irradiated fuel.
NASA Technical Reports Server (NTRS)
Ahearn, J. S.; Venables, J. D.
1992-01-01
Factors determining the radiation sensitivity of quartz crystal oscillators were studied on NASA's LDEF. Quartz materials were examined in the transmission electron microscope (TEM) and classified as to their sensitivity to radiation damage by establishing the rate of damage caused by the electron beam in the microscope. Two types of materials, i.e., swept premium Q quartz and natural quartz were chosen because clear differences were observed in their response to the electron beam in the TEM studies. Quartz resonators were then fabricated from them, tested for frequency stability over a greater than 6 mo. period and flown on the LDEF satellite. After retrieval (more than 7 yrs in space) the stability of the resonators was again determined. All of the space exposed resonators fabricated with swept premium Q material exhibited a frequency shift above that of the control resonators: none of the resonators fabricated from the natural quartz materials exhibited such a shift. The significant differences observed between the two types of materials in both the ground-based TEM studies and the space radiation induced frequency changes suggest that there may be a correlation between the two observations.
EBSD and TEM Characterization of High Burn-up Mixed Oxide Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teague, Melissa C.; Gorman, Brian P.; Miller, Brandon D.
2014-01-01
Understanding and studying the irradiation behavior of high burn-up oxide fuel is critical to licensing of future fast breeder reactors. Advancements in experimental techniques and equipment are allowing for new insights into previously irradiated samples. In this work dual column focused ion beam (FIB)/scanning electron microscope (SEM) was utilized to prepared transmission electron microscope samples from mixed oxide fuel with a burn-up of 6.7% FIMA. Utilizing the FIB/SEM for preparation resulted in samples with a dose rate of <0.5 mRem/h compared to approximately 1.1 R/h for a traditionally prepared TEM sample. The TEM analysis showed that the sample taken frommore » the cooler rim region of the fuel pellet had approximately 2.5x higher dislocation density than that of the sample taken from the mid-radius due to the lower irradiation temperature of the rim. The dual column FIB/SEM was additionally used to prepared and serially slice approximately 25 um cubes. High quality electron back scatter diffraction (EBSD) were collected from the face at each step, showing, for the first time, the ability to obtain EBSD data from high activity irradiated fuel.« less
A Structural Study of Escherichia coli Cells Using an In Situ Liquid Chamber TEM Technology.
Wang, Yibing; Chen, Xin; Cao, Hongliang; Deng, Chao; Cao, Xiaodan; Wang, Ping
2015-01-01
Studying cell microstructures and their behaviors under living conditions has been a challenging subject in microbiology. In this work, in situ liquid chamber TEM was used to study structures of Escherichia coli cells in aqueous solutions at a nanometer-scale resolution. Most of the cells remained intact under electron beam irradiation, and nanoscale structures were observed during the TEM imaging. The analysis revealed structures of pili surrounding the E. coli cells; the movements of the pili in the liquid were also observed during the in situ tests. This technology also allowed the observation of features of the nucleoid in the E. coli cells. Overall, in situ TEM can be applied as a valuable tool to study real-time microscopic structures and processes in microbial cells residing in native aqueous solutions.
Imaging powders with the atomic force microscope: from biominerals to commercial materials.
Friedbacher, G; Hansma, P K; Ramli, E; Stucky, G D
1991-09-13
Atomically resolved images of pressed powder samples have been obtained with the atomic force microscope (AFM). The technique was successful in resolving the particle, domain, and atomic structure of pismo clam (Tivela stultorum) and sea urchin (Strongylocentrotus purpuratus) shells and of commercially available calcium carbonate (CaCO(3)) and strontium carbonate (SrCO(3)) powders. Grinding and subsequent pressing of the shells did not destroy the microstructure of these materials. The atomic-resolution imaging capabilities of AFM can be applied to polycrystalline samples by means of pressing powders with a grain size as small as 50 micrometers. These results illustrate that the AFM is a promising tool for material science and the study of biomineralization.
A Computer-Controlled Classroom Model of an Atomic Force Microscope
ERIC Educational Resources Information Center
Engstrom, Tyler A.; Johnson, Matthew M.; Eklund, Peter C.; Russin, Timothy J.
2015-01-01
The concept of "seeing by feeling" as a way to circumvent limitations on sight is universal on the macroscopic scale--reading Braille, feeling one's way around a dark room, etc. The development of the atomic force microscope (AFM) in 1986 extended this concept to imaging in the nanoscale. While there are classroom demonstrations that use…
Characterizing the surface roughness of thermomechanical pulp fibers with atomic force microscopy
Rebecca Snell; Leslie H. Groom; Timothy G. Rials
2001-01-01
Loblolly pine, separated into mature and juvenile portions, was refined at various pressures (4, 8 and 12 bar). Fiber surfaces were investigated using a Scanning Electron Microscope (SEM) and an Atomic Force Microscope (AFM). Refiner pressure had a significant effect on the fiber surefaces. SEM images showed an apparent increase in surface roughness with increased...
NASA Astrophysics Data System (ADS)
Zhang, Haijun; Wang, Liqiong; Lu, Lilin; Toshima, Naoki
2016-08-01
Understanding of the “structure-activity” relations for catalysts at an atomic level has been regarded as one of the most important objectives in catalysis studies. Bimetallic nanoclusters (NCs) in its many types, such as core/shell, random alloy, cluster-in-cluster, bi-hemisphere, and crown jewel (one kind of atom locating at the top position of another kind of NC), attract significant attention owing to their excellent optical, electronic, and catalytic properties. PVP-protected crown jewel-structured Pt/Au (CJ-Pt/Au) bimetallic nanoclusters (BNCs) with Au atoms located at active top sites were synthesized via a replacement reaction using 1.4-nm Pt NCs as mother clusters even considering the fact that the replacement reaction between Pt and Au3+ ions is difficult to be occurred. The prepared CJ-Pt/Au colloidal catalysts characterized by UV-Vis, TEM, HR-TEM and HAADF-STEM-EELS showed a high catalytic activity for aerobic glucose oxidation, and the top Au atoms decorating the Pt NCs were about 15 times more active than the Au atoms of Au NCs with similar particle size.
Zhang, Haijun; Wang, Liqiong; Lu, Lilin; Toshima, Naoki
2016-01-01
Understanding of the “structure-activity” relations for catalysts at an atomic level has been regarded as one of the most important objectives in catalysis studies. Bimetallic nanoclusters (NCs) in its many types, such as core/shell, random alloy, cluster-in-cluster, bi-hemisphere, and crown jewel (one kind of atom locating at the top position of another kind of NC), attract significant attention owing to their excellent optical, electronic, and catalytic properties. PVP-protected crown jewel-structured Pt/Au (CJ-Pt/Au) bimetallic nanoclusters (BNCs) with Au atoms located at active top sites were synthesized via a replacement reaction using 1.4-nm Pt NCs as mother clusters even considering the fact that the replacement reaction between Pt and Au3+ ions is difficult to be occurred. The prepared CJ-Pt/Au colloidal catalysts characterized by UV-Vis, TEM, HR-TEM and HAADF-STEM-EELS showed a high catalytic activity for aerobic glucose oxidation, and the top Au atoms decorating the Pt NCs were about 15 times more active than the Au atoms of Au NCs with similar particle size. PMID:27476577
Livi, Kenneth J T; Villalobos, Mario; Leary, Rowan; Varela, Maria; Barnard, Jon; Villacís-García, Milton; Zanella, Rodolfo; Goodridge, Anna; Midgley, Paul
2017-09-12
Two synthetic goethites of varying crystal size distributions were analyzed by BET, conventional TEM, cryo-TEM, atomic resolution STEM and HRTEM, and electron tomography in order to determine the effects of crystal size, shape, and atomic scale surface roughness on their adsorption capacities. The two samples were determined by BET to have very different site densities based on Cr VI adsorption experiments. Model specific surface areas generated from TEM observations showed that, based on size and shape, there should be little difference in their adsorption capacities. Electron tomography revealed that both samples crystallized with an asymmetric {101} tablet habit. STEM and HRTEM images showed a significant increase in atomic-scale surface roughness of the larger goethite. This difference in roughness was quantified based on measurements of relative abundances of crystal faces {101} and {201} for the two goethites, and a reactive surface site density was calculated for each goethite. Singly coordinated sites on face {210} are 2.5 more dense than on face {101}, and the larger goethite showed an average total of 36% {210} as compared to 14% for the smaller goethite. This difference explains the considerably larger adsorption capacitiy of the larger goethite vs the smaller sample and points toward the necessity of knowing the atomic scale surface structure in predicting mineral adsorption processes.
Chapman, Michael S; Trzynka, Andrew; Chapman, Brynmor K
2013-04-01
When refining the fit of component atomic structures into electron microscopic reconstructions, use of a resolution-dependent atomic density function makes it possible to jointly optimize the atomic model and imaging parameters of the microscope. Atomic density is calculated by one-dimensional Fourier transform of atomic form factors convoluted with a microscope envelope correction and a low-pass filter, allowing refinement of imaging parameters such as resolution, by optimizing the agreement of calculated and experimental maps. A similar approach allows refinement of atomic displacement parameters, providing indications of molecular flexibility even at low resolution. A modest improvement in atomic coordinates is possible following optimization of these additional parameters. Methods have been implemented in a Python program that can be used in stand-alone mode for rigid-group refinement, or embedded in other optimizers for flexible refinement with stereochemical restraints. The approach is demonstrated with refinements of virus and chaperonin structures at resolutions of 9 through 4.5 Å, representing regimes where rigid-group and fully flexible parameterizations are appropriate. Through comparisons to known crystal structures, flexible fitting by RSRef is shown to be an improvement relative to other methods and to generate models with all-atom rms accuracies of 1.5-2.5 Å at resolutions of 4.5-6 Å. Copyright © 2013 Elsevier Inc. All rights reserved.
Knowledge Extraction from Atomically Resolved Images.
Vlcek, Lukas; Maksov, Artem; Pan, Minghu; Vasudevan, Rama K; Kalinin, Sergei V
2017-10-24
Tremendous strides in experimental capabilities of scanning transmission electron microscopy and scanning tunneling microscopy (STM) over the past 30 years made atomically resolved imaging routine. However, consistent integration and use of atomically resolved data with generative models is unavailable, so information on local thermodynamics and other microscopic driving forces encoded in the observed atomic configurations remains hidden. Here, we present a framework based on statistical distance minimization to consistently utilize the information available from atomic configurations obtained from an atomically resolved image and extract meaningful physical interaction parameters. We illustrate the applicability of the framework on an STM image of a FeSe x Te 1-x superconductor, with the segregation of the chalcogen atoms investigated using a nonideal interacting solid solution model. This universal method makes full use of the microscopic degrees of freedom sampled in an atomically resolved image and can be extended via Bayesian inference toward unbiased model selection with uncertainty quantification.
Radical Chemistry and Charge Manipulation with an Atomic Force Microscope
NASA Astrophysics Data System (ADS)
Gross, Leo
The fuctionalization of tips by atomic manipulation dramatically increased the resolution of atomic force microscopy (AFM). The combination of high-resolution AFM with atomic manipulation now offers the unprecedented possibility to custom-design individual molecules by making and breaking bonds with the tip of the microscope and directly characterizing the products on the atomic scale. We recently applied this technique to generate and study reaction intermediates and to investigate chemical reactions trigged by atomic manipulation. We formed diradicals by dissociating halogen atoms and then reversibly triggered ring-opening and -closing reactions via atomic manipulation, allowing us to switch and control the molecule's reactivity, magnetic and optical properties. Additional information about charge states and charge distributions can be obtained by Kelvin probe force spectroscopy. On multilayer insulating films we investigated single-electron attachment, detachment and transfer between individual molecules. EU ERC AMSEL (682144), EU project PAMS (610446).
Celotta, Robert J; Balakirsky, Stephen B; Fein, Aaron P; Hess, Frank M; Rutter, Gregory M; Stroscio, Joseph A
2014-12-01
A major goal of nanotechnology is to develop the capability to arrange matter at will by placing individual atoms at desired locations in a predetermined configuration to build a nanostructure with specific properties or function. The scanning tunneling microscope has demonstrated the ability to arrange the basic building blocks of matter, single atoms, in two-dimensional configurations. An array of various nanostructures has been assembled, which display the quantum mechanics of quantum confined geometries. The level of human interaction needed to physically locate the atom and bring it to the desired location limits this atom assembly technology. Here we report the use of autonomous atom assembly via path planning technology; this allows atomically perfect nanostructures to be assembled without the need for human intervention, resulting in precise constructions in shorter times. We demonstrate autonomous assembly by assembling various quantum confinement geometries using atoms and molecules and describe the benefits of this approach.
Wang, Qing; Kitaura, Ryo; Suzuki, Shoji; Miyauchi, Yuhei; Matsuda, Kazunari; Yamamoto, Yuta; Arai, Shigeo; Shinohara, Hisanori
2016-01-26
Edge-dependent electronic properties of graphene nanoribbons (GNRs) have attracted intense interests. To fully understand the electronic properties of GNRs, the combination of precise structural characterization and electronic property measurement is essential. For this purpose, two experimental techniques using free-standing GNR devices have been developed, which leads to the simultaneous characterization of electronic properties and structures of GNRs. Free-standing graphene has been sculpted by a focused electron beam in transmission electron microscope (TEM) and then purified and narrowed by Joule heating down to several nanometer width. Structure-dependent electronic properties are observed in TEM, and significant increase in sheet resistance and semiconducting behavior become more salient as the width of GNR decreases. The narrowest GNR width we obtained with the present method is about 1.6 nm with a large transport gap of 400 meV.
Novel perovskite coating of strontium zirconate in Inconel substrate
NASA Astrophysics Data System (ADS)
Venkatesh, G.; Blessto, B.; Rao, C. Santhosh Kumar; Subramanian, R.; Berchmans, L. John
2018-02-01
Thermal Barrier Coatings (TBC) provides a low thermal conductivity barrier to heat transfer from the hot gas in the engine to the surface of the coated alloy component. SrZrO3 powder are prepared by Sol Gel synthesis method. The synthesized powder sample is characterized by X Ray Diffraction Technique (XRD), Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) and the results are interpreted. The Polycrystalline nature of SrZrO3 is confirmed and lattice spacing are determined in XRD. SEM shows sub-micron sized particles and a fringed pattern is observed in TEM. The IN718 specimen is Wire Cut and Sand Blasted. A SrZrO3 double layer is coated over the Inconel specimen through a Bond Coat made of NiCoCrAlY by Plasma spraying Process and also characterized. SEM analysis of the Coating shows diffusion of Fe, Sr into the substrate.
NASA Astrophysics Data System (ADS)
Hikmah, N.; Idrus, N. F.; Jai, J.; Hadi, A.
2016-06-01
Silver and copper nanoparticles are well-known as the good antimicrobial agent. The nano-size of particles influences in enhancing the antimicrobial activity. This paper discusses the effect of molarity on the microstructure and morphology of silver-copper core-shell nanoparticles prepared by a polyol method. In this study, silver-copper nanoparticles are synthesized through the green approach of polyol method using ethylene glycol (EG) as green solvent and reductant, and polyoxyethylene-(80)-sorbitan monooleate (Tween 80) as a nontoxic stabilizer. The phase and morphology of silver-copper nanoparticles are characterized by X-ray diffraction (XRD) and Field emission scanning electron microscope (FESEM) and Transmission electron microscope (TEM). The results XRD confirm the pure crystalline of silver and copper nanoparticles with face-centered cubic (FCC) structure. FESEM and TEM analysis confirm the existence of Ag and Cu nanoparticles in core-shell shape.
Atomic-resolution transmission electron microscopy of electron beam–sensitive crystalline materials
NASA Astrophysics Data System (ADS)
Zhang, Daliang; Zhu, Yihan; Liu, Lingmei; Ying, Xiangrong; Hsiung, Chia-En; Sougrat, Rachid; Li, Kun; Han, Yu
2018-02-01
High-resolution imaging of electron beam–sensitive materials is one of the most difficult applications of transmission electron microscopy (TEM). The challenges are manifold, including the acquisition of images with extremely low beam doses, the time-constrained search for crystal zone axes, the precise image alignment, and the accurate determination of the defocus value. We develop a suite of methods to fulfill these requirements and acquire atomic-resolution TEM images of several metal organic frameworks that are generally recognized as highly sensitive to electron beams. The high image resolution allows us to identify individual metal atomic columns, various types of surface termination, and benzene rings in the organic linkers. We also apply our methods to other electron beam–sensitive materials, including the organic-inorganic hybrid perovskite CH3NH3PbBr3.
New innovations for contrast enhancement in electron microscopy
NASA Astrophysics Data System (ADS)
Mohan, A.
In this study two techniques for producing and improving contrast in Electron Microscopy are discussed. The first technique deals with the production of secondary contrast in a Variable Pressure SEM under poor vacuum conditions using the specimen current signal. A review of the prior work in this field shows that the presence of the gas ions in the microscope column results in the amplification of the specimen current signal which is enriched in secondary content. The focus of this study is to establish practical conditions for imaging samples in the microscope using specimen current with gas amplification. This is done by understanding the different variables in the microscope which affect the image formation process and then finding out optimum conditions for obtaining the best possible image, i.e., the image most enhanced in secondary contrast. A few 'real life' samples analyzed using this technique show that the gas amplified specimen current images contain secondary information and, in some cases, provide clear advantages to imaging with conventional secondary and backscattered detectors. The second technique dealing with the production of phase contrast in the TEM for extremely thin, electron transparent samples, is analyzed. A review of the literature regarding prior work in the field shows that, while the theoretical aspects of production of phase contrast in the TEM using a phase plate are well understood, there have been problems in practically implementing this in the microscope. One major assumption with most of the studies is that a fiber, partially coated with gold, results in the formation of point charges which is an essential requirement for symmetrically shifting the phase of the electron beam. The focus of this portion of the dissertation is to image the type of fields associated with such a phase plate using the technique of electron holography. It is found that there are two types of fields associated with a phase plate of this sort. One is a cylindrical field which extends along the length of the fiber while the other is a localized spherically symmetric field. A series of simulations show that the spherical field can produce phase contrast in the TEM and also improve the contrast transfer properties of the microscope.
Eibl, O
1995-02-15
This paper summarizes results obtained by high-resolution transmission electron microscopy on the crystal structure and microstructure of the (Bi,Pb)2Sr2Ca(n)-1CunO4 + 2n + delta high-Tc superconducting oxides. The experimental basis for the work presented here are high-resolution structure images obtained at ultra-thin (3 nm) areas of carefully prepared transmission electron microscope (TEM) samples. The analysis was carried out on a 400 kV TEM equipped with a pole piece yielding 0.17 nm point-to-point resolution. From the images obtained the projected crystal potential of the cations can be extracted directly, as confirmed by detailed image simulation. Structural analysis of the oxygen sublattice remains an unsolved problem by high-resolution TEM (HRTEM), mainly because of the small scattering factors, and thus the contribution of the oxygen sublattice to the image contrast is small. The (BiPb)2Sr2Ca(n)-1CunO4 + 2n + delta phases are modulated structures that can be understood as an average structure plus a superimposed displacement field. The crystal structure consists of BiO double layers and perovskite-type cuboids (containing Sr, Ca, Cu, and O), which are sandwiched between the BiO double layers. The displacement field can be directly analyzed by HRTEM, and the largest displacement amplitudes of 70 pm were determined for the Bi atoms in the n = 1 compound. The chemical composition of the n = 2 and n = 3 compounds was determined by EDX in the TEM for the cation sublattice. A significant (Ca + Sr) deficiency (approximately 10%) with respect to Cu was found. The (Sr + Ca)/Cu mole fraction ratio was 1.31 for the Bi-2212 phase and 1.14 for the Bi(Pb)-2223 phase. The oxygen content cannot be determined by EDX in the TEM with the accuracy necessary for a correlation with electrical and superconducting properties. The defect structure present in these materials, that is, intergrown lamellae with different crystal structures and equal or different chemical compositions, stacking faults, and grain boundaries, is summarized. The importance of grain boundaries for understanding and improving superconducting properties is emphasized.
NASA Astrophysics Data System (ADS)
Ezealisiji, K. M.; Noundou, X. S.; Ukwueze, S. E.
2017-11-01
In recent time, various phytosynthetic methods have been employed for the fabrication of silver nanoparticles; these unique metal nanoparticles are used in several applications which include pharmaceuticals and material engineering. The current research reports a rapid and simple synthetic partway for silver nanoparticles (AgNPs) using root bark aqueous extract of Annona muricata and the evaluation of its antimicrobial efficacy against pathogenic microorganisms. The root bark extract was treated with aqueous silver nitrate solution. Silver ions were reduced to silver atoms which on aggregation gave Silver nanoparticles; the biosynthesized AgNPs were characteristically spherical, discreet and stabilized by phytochemical entities and were characterized using ultraviolet visible spectroscopy, transmission electron microscope (TEM) and photon correlation microscopy. The aqueous plant extract-AgNPs suspension was subjected to Fourier transform infrared spectroscopy. TEM result for the average particle size is 22 ± 2 nm. The polydispersity index and zeta-potential were found to be 0.44 ± 0.02 and - 27.90 ± 0.01 mV, respectively (Zeta-Sizer). The antimicrobial evaluation result showed that the synthesized silver nanoparticles at different concentration were very active against the Gram-positive bacteria ( B. subtilis, S. aureous) and Gram-negative bacteria ( K. Pneumonia, E. Coli and Pseudomonas aeruginosa), P. aeruginosa being most susceptible to the anti microbial effect of the silver nanoparticles. Stable silver nanoparticles with antimicrobial activity were obtained through biosynthesis.
Comparative studies of thin film growth on aluminium by AFM, TEM and GDOES characterization
NASA Astrophysics Data System (ADS)
Qi, Jiantao; Thompson, George E.
2016-07-01
In this present study, comparative studies of trivalent chromium conversion coating formation, associated with aluminium dissolution process, have been investigated using atomic force microscopy (AFM), transmission electron microscopy (TEM) and glow-discharge optical emission spectroscopy (GDOES). High-resolution electron micrographs revealed the evident and uniform coating initiation on the whole surface after conversion treatment for only 30 s, although a network of metal ridges was created by HF etching pre-treatment. In terms of conversion treatment process on electropolished aluminium, constant kinetics of coating growth, ∼0.30 ± 0.2 nm/s, were found after the prolonged conversion treatment for 600 s. The availability of electrolyte anions for coating deposition determined the growth process. Simultaneously, a proceeding process of aluminium dissolution during conversion treatment, of ∼0.11 ± 0.02 nm/s, was found for the first time, indicating constant kinetics of anodic reactions. The distinct process of aluminium consumption was assigned with loss of corrosion protection of the deposited coating material as evidenced in the electrochemical impedance spectroscopy. Based on the present data, a new mechanism of coating growth on aluminium was proposed, and it consisted of an activation period (0-30 s), a linear growth period (0.30 nm/s, up for 600 s) and limited growth period (0.17 nm/s, 600-1200 s). In addition, the air-drying post-treatment and a high-vacuum environment in the microscope revealed a coating shrinkage, especially in the coatings after conversion treatments for longer time.
NASA Astrophysics Data System (ADS)
Al-Shabib, Nasser Abdulatif; Khan, Javed Masood; Alsenaidy, Mohammad A.; Alsenaidy, Abdulrahman M.; Khan, Mohd Shahnawaz; Husain, Fohad Mabood; Khan, Mohammad Rashid; Naseem, Mohammad; Sen, Priyankar; Alam, Parvez; Khan, Rizwan Hasan
2018-02-01
Amyloid fibrils are playing key role in the pathogenesis of various neurodegenerative diseases. Generally anionic molecules are known to induce amyloid fibril in several proteins. In this work, we have studied the effect of anionic food additive dye i.e., tartrazine (TZ) on the amyloid fibril formation of human serum albumins (HSA) and bovine serum albumin (BSA) at pHs 7.4 and 3.5. We have employed various biophysical methods like, turbidity measurements, Rayleigh Light Scattering (RLS), Dynamic Light Scattering (DLS), intrinsic fluorescence, Congo red assay, far-UV CD, transmission electron microscopy (TEM) and atomic force microscopy (AFM) to decipher the mechanism of TZ-induce amyloid fibril formation in both the serum albumins at pHs 7.4 and 3.5. The obtained results suggest that both the albumins forms amyloid-like aggregates in the presence of 1.0 to 15.0 mM of TZ at pH 3.5, but no amyloid fibril were seen at pH 7.4. The possible cause of TZ-induced amyloid fibril formation is electrostatic and hydrophobic interaction because sulfate group of TZ may have interacted electrostatically with positively charged amino acids of the albumins at pH 3.5 and increased protein-protein and protein-TZ interactions leading to amyloid fibril formation. The TEM, RLS and DLS results are suggesting that BSA forms bigger size amyloids compared to HSA, may be due to high surface hydrophobicity of BSA.
A Transmission Electron Microscope Investigation of Space Weathering Effects in Hayabusa Samples
NASA Technical Reports Server (NTRS)
Keller, Lindsay P.; Berger, Eve L.
2014-01-01
The Hayabusa mission to asteroid 25143 Itokawa successfully returned the first direct samples of the regolith from the surface of an asteroid. The Hayabusa samples thus present a special opportunity to directly investigate the evolution of asteroidal surfaces, from the development of the regolith to the study of the more complex effects of space weathering. Here we describe the mineralogy, microstructure and composition of three Hayabusa mission particles using transmission electron microscope (TEM) techniques
Characterization of some biological specimens using TEM and SEM
NASA Astrophysics Data System (ADS)
Ghosh, Nabarun; Smith, Don W.
2009-05-01
The advent of novel techniques using the Transmission and Scanning Electron Microscopes improved observation on various biological specimens to characterize them. We studied some biological specimens using Transmission and Scanning Electron Microscopes. We followed negative staining technique with Phosphotungstic acid using bacterial culture of Bacillus subtilis. Negative staining is very convenient technique to view the structural morphology of different samples including bacteria, phage viruses and filaments in a cell. We could observe the bacterial cell wall and flagellum very well when trapped the negative stained biofilm from bacterial culture on a TEM grid. We cut ultra thin sections from the fixed root tips of Pisum sativum (Garden pea). Root tips were pre fixed with osmium tetroxide and post fixed with uranium acetate and placed in the BEEM capsule for block making. The ultrathin sections on the grid under TEM showed the granular chromatin in the nucleus. The protein bodies and large vacuoles with the storage materials were conspicuous. We followed fixation, critical point drying and sputter coating with gold to view the tissues with SEM after placing on stubs. SEM view of the leaf surface of a dangerous weed Tragia hispida showed the surface trichomes. These trichomes when break on touching releases poisonous content causing skin irritation. The cultured tissue from in vitro culture of Albizia lebbeck, a tree revealed the regenerative structures including leaf buds and stomata on the tissue surface. SEM and TEM allow investigating the minute details characteristic morphological features that can be used for classroom teaching.
Guided self-assembly of nanostructured titanium oxide
NASA Astrophysics Data System (ADS)
Wang, Baoxiang; Rozynek, Zbigniew; Fossum, Jon Otto; Knudsen, Kenneth D.; Yu, Yingda
2012-02-01
A series of nanostructured titanium oxide particles were synthesized by a simple wet chemical method and characterized by means of small-angle x-ray scattering (SAXS)/wide-angle x-ray scattering (WAXS), atomic force microscope (AFM), scanning electron microscope (SEM), transmission electron microscope (TEM), thermal analysis, and rheometry. Tetrabutyl titanate (TBT) and ethylene glycol (EG) can be combined to form either TiOx nanowires or smooth nanorods, and the molar ratio of TBT:EG determines which of these is obtained. Therefore, TiOx nanorods with a highly rough surface can be obtained by hydrolysis of TBT with the addition of cetyl-trimethyl-ammonium bromide (CTAB) as surfactant in an EG solution. Furthermore, TiOx nanorods with two sharp ends can be obtained by hydrolysis of TBT with the addition of salt (LiCl) in an EG solution. The AFM results show that the TiOx nanorods with rough surfaces are formed by the self-assembly of TiOx nanospheres. The electrorheological (ER) effect was investigated using a suspension of titanium oxide nanowires or nanorods dispersed in silicone oil. Oil suspensions of titanium oxide nanowires or nanorods exhibit a dramatic reorganization when submitted to a strong DC electric field and the particles aggregate to form chain-like structures along the direction of applied electric field. Two-dimensional SAXS images from chains of anisotropically shaped particles exhibit a marked asymmetry in the SAXS patterns, reflecting the preferential self-assembly of the particles in the field. The suspension of rough TiOx nanorods shows stronger ER properties than that of the other nanostructured TiOx particles. We find that the particle surface roughness plays an important role in modification of the dielectric properties and in the enhancement of the ER effect.
Guided self-assembly of nanostructured titanium oxide.
Wang, Baoxiang; Rozynek, Zbigniew; Fossum, Jon Otto; Knudsen, Kenneth D; Yu, Yingda
2012-02-24
A series of nanostructured titanium oxide particles were synthesized by a simple wet chemical method and characterized by means of small-angle x-ray scattering (SAXS)/wide-angle x-ray scattering (WAXS), atomic force microscope (AFM), scanning electron microscope (SEM), transmission electron microscope (TEM), thermal analysis, and rheometry. Tetrabutyl titanate (TBT) and ethylene glycol (EG) can be combined to form either TiO(x) nanowires or smooth nanorods, and the molar ratio of TBT:EG determines which of these is obtained. Therefore, TiO(x) nanorods with a highly rough surface can be obtained by hydrolysis of TBT with the addition of cetyl-trimethyl-ammonium bromide (CTAB) as surfactant in an EG solution. Furthermore, TiO(x) nanorods with two sharp ends can be obtained by hydrolysis of TBT with the addition of salt (LiCl) in an EG solution. The AFM results show that the TiO(x) nanorods with rough surfaces are formed by the self-assembly of TiO(x) nanospheres. The electrorheological (ER) effect was investigated using a suspension of titanium oxide nanowires or nanorods dispersed in silicone oil. Oil suspensions of titanium oxide nanowires or nanorods exhibit a dramatic reorganization when submitted to a strong DC electric field and the particles aggregate to form chain-like structures along the direction of applied electric field. Two-dimensional SAXS images from chains of anisotropically shaped particles exhibit a marked asymmetry in the SAXS patterns, reflecting the preferential self-assembly of the particles in the field. The suspension of rough TiO(x) nanorods shows stronger ER properties than that of the other nanostructured TiO(x) particles. We find that the particle surface roughness plays an important role in modification of the dielectric properties and in the enhancement of the ER effect.
Devi, Th Babita; Ahmaruzzaman, M
2016-09-01
In the current study, we report the utilization of the biogenic potential of Benincasa hispida (ash gourd) peel extract for the synthesis of Ag embedded AgCl nanoparticles nanoparticles (Ag/AgCl NPs) without the use of any external organic solvents. The appearance of dark brown color from the pale yellow color confirmed the formation of Ag/AgCl nanoparticles which was further validated by absorbance peak using UV-visible spectroscopy. The phytochemicals (flavones) present in the B. hispida peel extract acts as a reducing/stabilizing agents. The morphology and size of the synthesized NPs were characterized by transmission electron microscope (TEM), selected area electron microscope (SAED) and high resolution transmission electron microscope (HR-TEM). FT-IR spectra of the B. hispida peel extract and after the development of nanoparticles are determined to identify the functional groups responsible for the conversion of metal ions to metal nanoparticles. The synthesized nanoparticles showed an excellent photocatalytic property in the degradation of toxic dye like malachite green oxalate under sunlight irradiation. For the first time, malachite green oxalate dye was degraded by Ag/AgCl nanoparticles under sunlight irradiation.
Abnormal elastic modulus behavior in a crystalline-amorphous core-shell nanowire system.
Lee, Jeong Hwan; Choi, Su Ji; Kwon, Ji Hwan; Van Lam, Do; Lee, Seung Mo; Kim, An Soon; Baik, Hion Suck; Ahn, Sang Jung; Hong, Seong Gu; Yun, Yong Ju; Kim, Young Heon
2018-06-13
We investigated the elastic modulus behavior of crystalline InAs/amorphous Al2O3 core-shell heterostructured nanowires with shell thicknesses varying between 10 and 90 nm by conducting in situ tensile tests inside a transmission electron microscope (TEM). Counterintuitively, the elastic modulus behaviors of InAs/Al2O3 core-shell nanowires differ greatly from those of bulk-scale composite materials, free from size effects. According to our results, the elastic modulus of InAs/Al2O3 core-shell nanowires increases, peaking at a shell thickness of 40 nm, and then decreases in the range of 50-90 nm. This abnormal behavior is attributed to the continuous decrease in the elastic modulus of the Al2O3 shell as the thickness increases, which is caused by changes in the atomic/electronic structure during the atomic layer deposition process and the relaxation of residual stress/strain in the shell transferred from the interfacial mismatch between the core and shell materials. A novel method for estimating the elastic modulus of the shell in a heterostructured core-shell system was suggested by considering these two effects, and the predictions from the suggested method coincided well with the experimental results. We also found that the former and latter effects account for 89% and 11% of the change in the elastic modulus of the shell. This study provides new insight by showing that the size dependency, which is caused by the inhomogeneity of the atomic/electronic structure and the residual stress/strain, must be considered to evaluate the mechanical properties of heterostructured nanowires.
Double-tilt in situ TEM holder with ultra-high stability.
Xu, Mingjie; Dai, Sheng; Blum, Thomas; Li, Linze; Pan, Xiaoqing
2018-05-06
A double tilting holder with high stability is essential for acquiring atomic-scale information by transmission electron microscopy (TEM), but the availability of such holders for in situ TEM studies under various external stimuli is limited. Here, we report a unique design of seal-bearing components that provides ultra-high stability and multifunctionality (including double tilting) in an in situ TEM holder. The seal-bearing subsystem provides superior vibration damping and electrical insulation while maintaining excellent vacuum sealing and small form factor. A wide variety of in situ TEM applications including electrical measurement, STM mapping, photovoltaic studies, and CL spectroscopy can be performed on this platform with high spatial resolution imaging and electrical sensitivity at the pA scale. Copyright © 2018 Elsevier B.V. All rights reserved.
MIDAS: Lessons learned from the first spaceborne atomic force microscope
NASA Astrophysics Data System (ADS)
Bentley, Mark Stephen; Arends, Herman; Butler, Bart; Gavira, Jose; Jeszenszky, Harald; Mannel, Thurid; Romstedt, Jens; Schmied, Roland; Torkar, Klaus
2016-08-01
The Micro-Imaging Dust Analysis System (MIDAS) atomic force microscope (AFM) onboard the Rosetta orbiter was the first such instrument launched into space in 2004. Designed only a few years after the technique was invented, MIDAS is currently orbiting comet 67P Churyumov-Gerasimenko and producing the highest resolution 3D images of cometary dust ever made in situ. After more than a year of continuous operation much experience has been gained with this novel instrument. Coupled with operations of the Flight Spare and advances in terrestrial AFM a set of "lessons learned" has been produced, cumulating in recommendations for future spaceborne atomic force microscopes. The majority of the design could be reused as-is, or with incremental upgrades to include more modern components (e.g. the processor). Key additional recommendations are to incorporate an optical microscope to aid the search for particles and image registration, to include a variety of cantilevers (with different spring constants) and a variety of tip geometries.
First-principles study of twin grain boundaries in epitaxial BaSi{sub 2} on Si(111)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baba, Masakazu; Suemasu, Takashi, E-mail: suemasu@bk.tsukuba.ac.jp; Kohyama, Masanori
2016-08-28
Epitaxial films of BaSi{sub 2} on Si(111) for solar cell applications possess three epitaxial variants and exhibit a minority carrier diffusion length (ca. 9.4 μm) much larger than the domain size (ca. 0.2 μm); thus, the domain boundaries (DBs) between the variants do not act as carrier recombination centers. In this work, transmission electron microscopy (TEM) was used to observe the atomic arrangements around the DBs in BaSi{sub 2} epitaxial films on Si(111), and the most stable atomic configuration was determined by first-principles calculations based on density functional theory to provide possible interface models. Bright-field TEM along the a-axis of BaSi{sub 2}more » revealed that each DB was a twin boundary between two different epitaxial variants, and that Ba{sup (II)} atoms form hexagons containing central Ba{sup (I)} atoms in both the bulk and DB regions. Four possible interface models containing Ba{sup (I)}-atom interface layers were constructed, each consistent with TEM observations and distinguished by the relationship between the Si tetrahedron arrays in the two domains adjacent across the interface. This study assessed the structural relaxation of initial interface models constructed from surface slabs terminated by Ba{sup (I)} atoms or from zigzag surface slabs terminated by Si tetrahedra and Ba{sup (II)} atoms. In these models, the interactions or relative positions between Si tetrahedra appear to dominate the relaxation behavior and DB energies. One of the four interface models whose relationship between first-neighboring Si tetrahedra across the interface was the same as that in the bulk was particularly stable, with a DB energy of 95 mJ/m{sup 2}. There were no significant differences in the partial densities of states and band gaps between the bulk and DB regions, and it was therefore concluded that such DBs do not affect the minority carrier properties of BaSi{sub 2}.« less
Comments on ”Evidence of the hydrogen release mechanism in bulk MgH2”
NASA Astrophysics Data System (ADS)
Surrey, Alexander; Nielsch, Kornelius; Rellinghaus, Bernd
2017-04-01
The effect of an electron beam induced dehydrogenation of MgH2 in the transmission electron microscope (TEM) is largely underestimated by Nogita et al., and led the authors to a misinterpretation of their TEM observations. Firstly, the selected area diffraction (SAD) pattern is falsely interpreted. A re-evaluation of the SAD pattern reveals that no MgH2 is present in the sample, but that it rather consists of Mg and MgO only. Secondly, the transformation of the sample upon in-situ heating in the TEM cannot be ascribed to dehydrogenation, but is rather to be explained by the (nanoscale) Kirkendall effect, which leads to the formation of hollow MgO shells without any metallic Mg in their cores. Hence, the conclusions drawn from the TEM investigation are invalid, as the authors apparently have never studied MgH2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Day, R.D.; Russell, P.E.
The Atomic Force Microscope (AFM) is a recently developed instrument that has achieved atomic resolution imaging of both conducting and non- conducting surfaces. Because the AFM is in the early stages of development, and because of the difficulty of building the instrument, it is currently in use in fewer than ten laboratories worldwide. It promises to be a valuable tool for obtaining information about engineering surfaces and aiding the .study of precision fabrication processes. This paper gives an overview of AFM technology and presents plans to build an instrument designed to look at engineering surfaces.
Probing the microscopic corrugation of liquid surfaces with gas-liquid collisions
NASA Technical Reports Server (NTRS)
King, Mackenzie E.; Nathanson, Gilbert M.; Hanning-Lee, Mark A.; Minton, Timothy K.
1993-01-01
We have measured the directions and velocities of Ne, Ar, and Xe atoms scattering from perfluorinated ether and hydrocarbon liquids to probe the relationship between the microscopic roughness of liquid surfaces and gas-liquid collision dynamics. Impulsive energy transfer is governed by the angle of deflection: head-on encounters deposit more energy than grazing collisions. Many atoms scatter in the forward direction, particularly at glancing incidence. These results imply that the incoming atoms recoil locally from protruding C-H and C-F groups in hard spherelike collisions.
Development of 1500mm Wide Wrought Magnesium Alloys by Twin Roll Casting Technique in Turkey
NASA Astrophysics Data System (ADS)
Duygulu, Ozgur; Ucuncuoglu, Selda; Oktay, Gizem; Temur, Deniz Sultan; Yucel, Onuralp; Kaya, Ali Arslan
Magnesium alloy AZ31, AZ61, AZ91, AM50 and AM60 sheets were produced by twin roll casting first time in Turkey. Sheets of 4.5-6.5mm thick and 1500mm width were successfully achieved. Microstructure of the sheet was analyzed by optical microscope, scanning electron microscope (SEM) and transmission electron microscope (TEM). Semi-quantitative analyses were performed by SEM-EDS. In addition, X-ray studies were performed for both characterization and texture purposes. Mechanical properties were investigated by tensile tests and also hardness measurements. Homogenization and annealing heat treatments were performed on the produced sheets.
An electron energy loss spectrometer based streak camera for time resolved TEM measurements.
Ali, Hasan; Eriksson, Johan; Li, Hu; Jafri, S Hassan M; Kumar, M S Sharath; Ögren, Jim; Ziemann, Volker; Leifer, Klaus
2017-05-01
We propose an experimental setup based on a streak camera approach inside an energy filter to measure time resolved properties of materials in the transmission electron microscope (TEM). In order to put in place the streak camera, a beam sweeper was built inside an energy filter. After exciting the TEM sample, the beam is swept across the CCD camera of the filter. We describe different parts of the setup at the example of a magnetic measurement. This setup is capable to acquire time resolved diffraction patterns, electron energy loss spectra (EELS) and images with total streaking times in the range between 100ns and 10μs. Copyright © 2016 Elsevier B.V. All rights reserved.
Design and calibration of a vacuum compatible scanning tunneling microscope
NASA Technical Reports Server (NTRS)
Abel, Phillip B.
1990-01-01
A vacuum compatible scanning tunneling microscope was designed and built, capable of imaging solid surfaces with atomic resolution. The single piezoelectric tube design is compact, and makes use of sample mounting stubs standard to a commercially available surface analysis system. Image collection and display is computer controlled, allowing storage of images for further analysis. Calibration results from atomic scale images are presented.
Vacancy Transport and Interactions on Metal Surfaces
2014-03-06
prevent obtaining systematical pictures with atomic scale resolution. Thus the experiments on adatom and mono -vacancy surface diffusion on Ag(110) were...vacuum conditions with atomic scale resolution with Scanning Tunneling Microscope (STM) and Field Ion Microscope (FIM). For each investigated material...experimental conditions for creation of surface vacancies on Au(100) has been determined and observations of surface diffusion of mono vacancies has been
Nano Goes to School: A Teaching Model of the Atomic Force Microscope
ERIC Educational Resources Information Center
Planinsic, Gorazd; Kovac, Janez
2008-01-01
The paper describes a teaching model of the atomic force microscope (AFM), which proved to be successful in the role of an introduction to nanoscience in high school. The model can demonstrate the two modes of operation of the AFM (contact mode and oscillating mode) as well as some basic principles that limit the resolution of the method. It can…
Precise Orientation of a Single C60 Molecule on the Tip of a Scanning Probe Microscope
NASA Astrophysics Data System (ADS)
Chiutu, C.; Sweetman, A. M.; Lakin, A. J.; Stannard, A.; Jarvis, S.; Kantorovich, L.; Dunn, J. L.; Moriarty, P.
2012-06-01
We show that the precise orientation of a C60 molecule which terminates the tip of a scanning probe microscope can be determined with atomic precision from submolecular contrast images of the fullerene cage. A comparison of experimental scanning tunneling microscopy data with images simulated using computationally inexpensive Hückel theory provides a robust method of identifying molecular rotation and tilt at the end of the probe microscope tip. Noncontact atomic force microscopy resolves the atoms of the C60 cage closest to the surface for a range of molecular orientations at tip-sample separations where the molecule-substrate interaction potential is weakly attractive. Measurements of the C60C60 pair potential acquired using a fullerene-terminated tip are in excellent agreement with theoretical predictions based on a pairwise summation of the van der Waals interactions between C atoms in each cage, i.e., the Girifalco potential [L. Girifalco, J. Phys. Chem. 95, 5370 (1991)JPCHAX0022-365410.1021/j100167a002].
Friction Stir Processing of Copper-Coated SiC Particulate-Reinforced Aluminum Matrix Composite
Huang, Chih-Wei; Aoh, Jong-Ning
2018-01-01
In the present work, we proposed a novel friction stir processing (FSP) to produce a locally reinforced aluminum matrix composite (AMC) by stirring copper-coated SiC particulate reinforcement into Al6061 alloy matrix. Electroless-plating process was applied to deposit the copper surface coating on the SiC particulate reinforcement for the purpose of improving the interfacial adhesion between SiC particles and Al matrix. The core-shell SiC structure provides a layer for the atomic diffusion between aluminum and copper to enhance the cohesion between reinforcing particles and matrix on one hand, the dispersion of fine copper in the Al matrix during FSP provides further dispersive strengthening and solid solution strengthening, on the other hand. Hardness distribution and tensile results across the stir zone validated the novel concept in improving the mechanical properties of AMC that was realized via FSP. Optical microscope (OM) and Transmission Electron Microscopy (TEM) investigations were conducted to investigate the microstructure. Energy dispersive spectrometer (EDS), electron probe micro-analyzer (EPMA), and X-ray diffraction (XRD) were explored to analyze the atomic inter-diffusion and the formation of intermetallic at interface. The possible strengthening mechanisms of the AMC containing Cu-coated SiC particulate reinforcement were interpreted. The concept of strengthening developed in this work may open a new way of fabricating of particulate reinforced metal matrix composites. PMID:29652846
Transmission Electron Microscope Measures Lattice Parameters
NASA Technical Reports Server (NTRS)
Pike, William T.
1996-01-01
Convergent-beam microdiffraction (CBM) in thermionic-emission transmission electron microscope (TEM) is technique for measuring lattice parameters of nanometer-sized specimens of crystalline materials. Lattice parameters determined by use of CBM accurate to within few parts in thousand. Technique developed especially for use in quantifying lattice parameters, and thus strains, in epitaxial mismatched-crystal-lattice multilayer structures in multiple-quantum-well and other advanced semiconductor electronic devices. Ability to determine strains in indivdual layers contributes to understanding of novel electronic behaviors of devices.
Ponderomotive phase plate for transmission electron microscopes
Reed, Bryan W [Livermore, CA
2012-07-10
A ponderomotive phase plate system and method for controllably producing highly tunable phase contrast transfer functions in a transmission electron microscope (TEM) for high resolution and biological phase contrast imaging. The system and method includes a laser source and a beam transport system to produce a focused laser crossover as a phase plate, so that a ponderomotive potential of the focused laser crossover produces a scattering-angle-dependent phase shift in the electrons of the post-sample electron beam corresponding to a desired phase contrast transfer function.
Deliquescence Measurements of Potassium Salts
NASA Astrophysics Data System (ADS)
Freney, E. J.; Martin, S. T.; Buseck, P. R.
2007-12-01
Potassium compounds such as KCl, K2SO4, and KNO3 are salts resulting from biomass burning. With time the number of aerosol particles containing KCl decreases, and the number of particles containing KNO3 and K2SO4 increases. The transformation of KCl to K2SO4 and KNO3 with aging of the smoke could lead to changes in the hygroscopic properties of the smoke particles and thus their cloud-nucleating potential. Similar reaction mechanisms are likely to be involved in the conversion of KCl in smoke particles as occur for NaCl in sea salt. Little experimental work has been published on the hygroscopic properties of potassium salts because of their high DRH values. Instruments that are commonly used to measure hygroscopic properties such as differential mobility analyzers or electrodynamic balances do not operate accurately at RH > 90%. Here we present data describing the hygroscopic properties of several fresh potassium salts, as well as laboratory generated mixed salts, using transmission and scanning electron microscopes (TEM and SEM). Both microscopes have environmental chambers that enable study of the interaction of water with single particles. DRH values for KCl, KNO3 and K2SO4 were found to be 86%, 92%, and 97%, respectively. KNO3 particles formed by atomization appear rounded and undergo continuous hygroscopic growth without a distinct deliquescence point. Similar results have been published for NaNO3. In contrast, when KNO3 powder is ground in a mortar and pestle and placed in the SEM, the grains appear euhedral and have a DRH at 92%, in agreement with literature values. It appears that KNO3 particles formed by atomization will readily take up water at RH values below their DRH. Our results indicate that the hygroscopic properties of KNO3 particles are influenced by their histories. Water associated with aged or mixed particles at RH's less than their DRH will affect how these particles uptake and react with gases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Celotta, Robert J., E-mail: robert.celotta@nist.gov, E-mail: joseph.stroscio@nist.gov; Hess, Frank M.; Rutter, Gregory M.
2014-12-15
A major goal of nanotechnology is to develop the capability to arrange matter at will by placing individual atoms at desired locations in a predetermined configuration to build a nanostructure with specific properties or function. The scanning tunneling microscope has demonstrated the ability to arrange the basic building blocks of matter, single atoms, in two-dimensional configurations. An array of various nanostructures has been assembled, which display the quantum mechanics of quantum confined geometries. The level of human interaction needed to physically locate the atom and bring it to the desired location limits this atom assembly technology. Here we report themore » use of autonomous atom assembly via path planning technology; this allows atomically perfect nanostructures to be assembled without the need for human intervention, resulting in precise constructions in shorter times. We demonstrate autonomous assembly by assembling various quantum confinement geometries using atoms and molecules and describe the benefits of this approach.« less
Atomic structures of B20 FeGe thin films grown on the Si(111) surface
NASA Astrophysics Data System (ADS)
Kim, Wondong; Noh, Seungkyun; Yoon, Jisoo; Kim, Young Heon; Lee, Inho; Kim, Jae-Sung; Hwang, Chanyong
We investigated the growth and atomic structures of FeGe thin films on the Si (111) surface by using scanning tunneling microscopy (STM) and transmission electron microscopy (TEM). The 2 5nm- thick FeGe thin films were prepared on the clean Si(111) 7x7 surface by co-deposition of Fe and Ge from separated electron-beam evaporators. With direct deposition on the substrate at the temperature above 550 K, the surface of FeGe films was not smooth and consisted of coarse grains. By the combination of room-temperature annealing and post-annealing process around 800 K, the structure of FeGe thin films evolved into the well crystalized structures. Atom-resolved STM images revealed that there are at least four different surface terminations. We constructed atomic models for each surface terminations based on the bulk atomic arrangement of a B20 chiral structure and confirmed that the observed STM images are successfully reproduced by using computational simulations employing Vienna Ab Initio Simulation package (VASP) with a B20 chiral structure model. TEM cross-sectional images also support our atomic models by revealing clearly the characteristic zigzag features of B20 structures of FeGe(111) thin films.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Ping
Controlling metallic nanoparticle (NP) interactions plays a vital role in the development of new joining techniques (nanosolder) that bond at lower processing temperatures but remain viable at higher temperatures. The pr imary objective of this project is t o develop a fundamental understanding of the actual reaction processes, associated atomic mechanisms, and the resulting microstructure that occur during thermally - driven bond formation concerning metal - metal nano - scale (%3C50nm) interfaces. In this LDRD pr oject, we have studied metallic NPs interaction at the elevated temperatures by combining in - situ transmission electron microscopy (TEM ) using an aberrationmore » - corrected scanning transmission electron microscope (AC - STEM) and atomic - scale modeling such as m olecular dynamic (MD) simulations. Various metallic NPs such as Ag, Cu and Au are synthesized by chemical routines. Numerous in - situ e xperiments were carried out with focus of the research on study of Ag - Cu system. For the first time, using in - situ STEM he ating experiments , we directly observed t he formation of a 3 - dimensional (3 - D) epitaxial Cu - Ag core - shell nanoparticle during the thermal interaction of Cu and Ag NPs at elevated temperatures (150 - 300 o C). The reaction takes place at temperatures as low as 150 o C and was only observed when care was taken to circumvent the effects of electron beam irradiation during STEM imaging. Atomic - scale modeling verified that the Cu - Ag core - shell structure is energetically favored, and indicated that this phenomenon is a nano - scale effect related to the large surface - to - volume ratio of the NPs. The observation potentially can be used for developing new nanosolder technology that uses Ag shell as the "glue" that stic ks the particles of Cu together. The LDRD has led to several journal publications and numerous conference presentations, and a TA. In addition, we have developed new TEM characterization techniques and phase - field modeling tools that can be used for future materials research at Sandia. Acknowledgeme nts This work was supported by the Laboratory Directed Research and Development (LDRD) program of Sandia National Laboratories. Sandia National Laboratories is a multi - program laboratory managed and operated by Sandia Corporation, a wholly owned subsidia ry of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE - AC04 - 94AL85000.« less
Plana-Ruiz, S; Portillo, J; Estradé, S; Peiró, F; Kolb, Ute; Nicolopoulos, S
2018-06-06
A general method to set illuminating conditions for selectable beam convergence and probe size is presented in this work for Transmission Electron Microscopes (TEM) fitted with µs/pixel fast beam scanning control, (S)TEM, and an annular dark field detector. The case of interest of beam convergence and probe size, which enables diffraction pattern indexation, is then used as a starting point in this work to add 100 Hz precession to the beam while imaging the specimen at a fast rate and keeping the projector system in diffraction mode. The described systematic alignment method for the adjustment of beam precession on the specimen plane while scanning at fast rates is mainly based on the sharpness of the precessed STEM image. The complete alignment method for parallel condition and precession, Quasi-Parallel PED-STEM, is presented in block diagram scheme, as it has been tested on a variety of instruments. The immediate application of this methodology is that it renders the TEM column ready for the acquisition of Precessed Electron Diffraction Tomographies (EDT) as well as for the acquisition of slow Precessed Scanning Nanometer Electron Diffraction (SNED). Examples of the quality of the Precessed Electron Diffraction (PED) patterns and PED-STEM alignment images are presented with corresponding probe sizes and convergence angles. Copyright © 2018. Published by Elsevier B.V.
Atomic Force Microscope (AFM) measurements and analysis on Sagem 05R0025 secondary substrate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soufli, R; Baker, S L; Robinson, J C
2006-02-22
The summary of Atomic Force Microscope (AFM) on Sagem 05R0025 secondary substrate: (1) 2 x 2 {micro}m{sup 2} and 10 x 10 {micro}m{sup 2} AFM measurements and analysis on Sagem 05R0025 secondary substrate at LLNL indicate rather uniform and extremely isotropic finish across the surface, with high-spatial frequency roughness {sigma} in the range 5.1-5.5 {angstrom} rms; (2) the marked absence of pronounced long-range polishing marks in any direction, combined with increased roughness in the very high spatial frequencies, are consistent with ion-beam polishing treatment on the surface. These observations are consistent with all earlier mirrors they measured from the samemore » vendor; and (3) all data were obtained with a Digital Instruments Dimension 5000{trademark} atomic force microscope.« less
Spin microscope based on optically detected magnetic resonance
Berman, Gennady P [Los Alamos, NM; Chernobrod, Boris M [Los Alamos, NM
2010-06-29
The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.
Spin microscope based on optically detected magnetic resonance
Berman, Gennady P.; Chernobrod, Boris M.
2009-11-10
The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of impaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.
Spin microscope based on optically detected magnetic resonance
Berman, Gennady P.; Chernobrod, Boris M.
2007-12-11
The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.
Spin microscope based on optically detected magnetic resonance
Berman, Gennady P [Los Alamos, NM; Chernobrod, Boris M [Los Alamos, NM
2010-07-13
The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.
Spin microscope based on optically detected magnetic resonance
Berman, Gennady P [Los Alamos, NM; Chernobrod, Boris M [Los Alamos, NM
2009-10-27
The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karcı, Özgür; Department of Nanotechnology and Nanomedicine, Hacettepe University, Beytepe, 06800 Ankara; Dede, Münir
We describe the design of a wide temperature range (300 mK-300 K) atomic force microscope/magnetic force microscope with a self-aligned fibre-cantilever mechanism. An alignment chip with alignment groves and a special mechanical design are used to eliminate tedious and time consuming fibre-cantilever alignment procedure for the entire temperature range. A low noise, Michelson fibre interferometer was integrated into the system for measuring deflection of the cantilever. The spectral noise density of the system was measured to be ~12 fm/√Hz at 4.2 K at 3 mW incident optical power. Abrikosov vortices in BSCCO(2212) single crystal sample and a high density hardmore » disk sample were imaged at 10 nm resolution to demonstrate the performance of the system.« less
Martian Dust Collected by Phoenix's Arm
NASA Technical Reports Server (NTRS)
2008-01-01
This image from NASA's Phoenix Lander's Optical Microscope shows particles of Martian dust lying on the microscope's silicon substrate. The Robotic Arm sprinkled a sample of the soil from the Snow White trench onto the microscope on July 2, 2008, the 38th Martian day, or sol, of the mission after landing. Subsequently, the Atomic Force Microscope, or AFM, zoomed in one of the fine particles, creating the first-ever image of a particle of Mars' ubiquitous fine dust, the most highly magnified image ever seen from another world. The Atomic Force Microscope was developed by a Swiss-led consortium in collaboration with Imperial College London. The AFM is part of Phoenix's Microscopy, Electrochemistry and Conductivity Analyzer instrument. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwarz, Udo; Albers, Boris J.; Liebmann, Marcus
2008-02-27
The authors present the design and first results of a low-temperature, ultrahigh vacuum scanning probe microscope enabling atomic resolution imaging in both scanning tunneling microscopy (STM) and noncontact atomic force microscopy (NC-AFM) modes. A tuning-fork-based sensor provides flexibility in selecting probe tip materials, which can be either metallic or nonmetallic. When choosing a conducting tip and sample, simultaneous STM/NC-AFM data acquisition is possible. Noticeable characteristics that distinguish this setup from similar systems providing simultaneous STM/NC-AFM capabilities are its combination of relative compactness (on-top bath cryostat needs no pit), in situ exchange of tip and sample at low temperatures, short turnaroundmore » times, modest helium consumption, and unrestricted access from dedicated flanges. The latter permits not only the optical surveillance of the tip during approach but also the direct deposition of molecules or atoms on either tip or sample while they remain cold. Atomic corrugations as low as 1 pm could successfully be resolved. In addition, lateral drifts rates of below 15 pm/h allow long-term data acquisition series and the recording of site-specific spectroscopy maps. Results obtained on Cu(111) and graphite illustrate the microscope's performance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozhukhov, A. S., E-mail: antonkozhukhov@yandex.ru; Sheglov, D. V.; Latyshev, A. V.
A technique for reversible surface modification with an atomic-force-microscope (AFM) probe is suggested. In this method, no significant mechanical or topographic changes occur upon a local variation in the surface potential of a sample under the AFM probe. The method allows a controlled relative change in the ohmic resistance of a channel in a Hall bridge within the range 20–25%.
NASA Astrophysics Data System (ADS)
Yannouleas, Constantine; Brandt, Benedikt B.; Landman, Uzi
2016-07-01
Advances with trapped ultracold atoms intensified interest in simulating complex physical phenomena, including quantum magnetism and transitions from itinerant to non-itinerant behavior. Here we show formation of antiferromagnetic ground states of few ultracold fermionic atoms in single and double well (DW) traps, through microscopic Hamiltonian exact diagonalization for two DW arrangements: (i) two linearly oriented one-dimensional, 1D, wells, and (ii) two coupled parallel wells, forming a trap of two-dimensional, 2D, nature. The spectra and spin-resolved conditional probabilities reveal for both cases, under strong repulsion, atomic spatial localization at extemporaneously created sites, forming quantum molecular magnetic structures with non-itinerant character. These findings usher future theoretical and experimental explorations into the highly correlated behavior of ultracold strongly repelling fermionic atoms in higher dimensions, beyond the fermionization physics that is strictly applicable only in the 1D case. The results for four atoms are well described with finite Heisenberg spin-chain and cluster models. The numerical simulations of three fermionic atoms in symmetric DWs reveal the emergent appearance of coupled resonating 2D Heisenberg clusters, whose emulation requires the use of a t-J-like model, akin to that used in investigations of high T c superconductivity. The highly entangled states discovered in the microscopic and model calculations of controllably detuned, asymmetric, DWs suggest three-cold-atom DW quantum computing qubits.
Manipulating, Reacting, and Constructing Single Molecules with a Scanning Tunneling Microscope Tip
NASA Astrophysics Data System (ADS)
Hla, S.-W.
The fascinating advances in atom and molecule manipulation with the scanning tunneling microscope (STM) tip allow scientists to fabricate artificial atomic scale structures, to study local quantum phenomena, or to probe physical and chemical properties of single atoms and molecules on surfaces. Recent achievements in individual synthesis of single molecules with the STM tip further open up an entirely new opportunities in nanoscience and technology. The STM manipulation techniques usef ul in the molecular construction are reviewed and prospects for future opportunities of single molecule chemical engineering and their possible implications to nano-scale science and technology are discussed.
NASA Astrophysics Data System (ADS)
Yu, Peng
Aluminum-based metal matrix composites (MMCs) have been widely used as structural materials in the automobile and aerospace industry due to their specific properties. In this thesis, we report the fabrication of in-situ formed alumina and aluminide intermetallic reinforced aluminum-based metal matrix composites by the displacement reactions between Al and selected metal oxides (NiO, CuO and ZnO). These MMCs were produced when the Al-20wt% NiO, Al-20wt% CuO and Al-10wt% ZnO green compacts were reaction sintered in the tube furnaces. In this work, differential thermal analysis (DTA) was performed on the green samples. The green samples were then sintered separately in different tube furnaces for 30 minutes. In order to study the reaction mechanisms, the x-ray diffractometry (XRD) was used to obtain diffraction patterns of these sintered samples, the scanning electron microscope (SEM) and transmission electron microscope (TEM) were used to study the microstructures of these samples. The elemental quantitative compositions of samples were determined by the energy dispersive x-ray spectrometry (EDX). In order to study the effect of cooling rate on the samples, the green samples were further sintered to 1000°C and cooled down to room temperature in different conditions: by furnace-cooling, air-quenching, oil-quenching or NaCl-solution-quenching. The SEM, TEM and atomic force microscopy (AFM) were conducted to investigate their microstructures. A microhardness tester was used to measure the hardness values of these samples. It was found that during sintering of the Al-20wt% NiO green sample, displacement reaction between Al and NiO initially occurred in solid-solid form and was soon halted by its products that separated the NiO particles from the Al matrix. The reaction then resumed in solid-liquid form as the temperature increased to the eutectic temperature of Al3Ni-Al when liquid (Al, Ni) phase appeared in the sample. After cooling, Al2O 3 particles, Al3Ni proeutectic phase and fiber-like Al 3Ni-Al eutectic were found in the sintered Al-MMC sample. (Abstract shortened by UMI.)
Direct microscopic image and measurement of the atomization process of a port fuel injector
NASA Astrophysics Data System (ADS)
Esmail, Mohamed; Kawahara, Nobuyuki; Tomita, Eiji; Sumida, Mamoru
2010-07-01
The main objective of this study is to observe and investigate the phenomena of atomization, i.e. the fuel break-up process very close to the nozzle exit of a practical port fuel injector (PFI). In order to achieve this objective, direct microscopic images of the atomization process were obtained using an ultra-high-speed video camera that could record 102 frames at rates of up to 1 Mfps, coupled with a long-distance microscope and Barlow lens. The experiments were carried out using a PFI in a closed chamber at atmospheric pressure. Time-series images of the spray behaviour were obtained with a high temporal resolution using backlighting. The direct microscopic images of a liquid column break-up were compared with experimental results from laser-induced exciplex fluorescence (LIEF), and the wavelength obtained from the experimental results compared with that predicated from the Kelvin-Helmholtz break-up model. The droplet size diameters from a ligament break-up were compared with results predicated from Weber's analysis. Furthermore, experimental results of the mean droplet diameter from a direct microscopic image were compared with the results obtained from phase Doppler anemometry (PDA) experimental results. Three conclusions were obtained from this study. The atomization processes and detailed characterizations of the break-up of a liquid column were identified; the direct microscopic image results were in good agreement with the results obtained from LIEF, experimental results of the wavelength were in good agreement with those from the Kelvin-Helmholtz break-up model. The break-up process of liquid ligaments into droplets was investigated, and Weber's analysis of the predicated droplet diameter from ligament break-up was found to be applicable only at larger wavelengths. Finally, the direct microscopic image method and PDA method give qualitatively similar trends for droplet size distribution and quantitatively similar values of Sauter mean diameter.
Zhao, Jingpeng; Wei, Zuwu; Feng, Xin; Miao, Miao; Sun, Lining; Cao, Shaomei; Shi, Liyi; Fang, Jianhui
2014-09-10
Highly flexible, transparent, and luminescent nanofibrillated cellulose (NFC) nanopaper with heterogeneous network, functionalized by rare-earth up-converting luminescent nanoparticles (UCNPs), was rapidly synthesized by using a moderate pressure extrusion paper-making process. NFC was successfully prepared from garlic skin using an efficient extraction approach combined with high frequency ultrasonication and high pressure homogenization after removing the noncellulosic components. An efficient epoxidation treatment was carried out to enhance the activity of the UCNPs (NaYF4:Yb,Er) with oleic acid ligand capped on the surface. The UCNPs after epoxidation then reacted with NFC in aqueous medium to form UCNP-grafted NFC nanocomposite (NFC-UCNP) suspensions at ambient temperature. Through the paper-making process, the assembled fluorescent NFC-UCNP hybrid nanopaper exhibits excellent properties, including high transparency, strong up-conversion luminescence, and good flexibility. The obtained hybrid nanopaper was characterized by transmission electron microscopy (TEM), atomic force microscope (AFM), Fourier transform infrared spectroscopy (FTIR), field emission-scanning electron microscope (FE-SEM), up-conversion luminescence (UCL) spectrum, and ultraviolet and visible (UV-vis) spectrophotometer. The experimental results demonstrate that the UCNPs have been successfully grafted to the NFC matrix with heterogeneous network. And the superiorly optical transparent and luminescent properties of the nanopaper mainly depend on the ratio of UCNPs to NFC. Of importance here is that, NFC and UCNPs afford the nanopaper a prospective candidate for multimodal anti-counterfeiting, sensors, and ion probes applications.
Nucleation and Growth of Crystalline Grains in RF-Sputtered TiO 2 Films
Johnson, J. C.; Ahrenkiel, S. P.; Dutta, P.; ...
2009-01-01
Amore » morphous TiO 2 thin films were radio frequency sputtered onto siliconmonoxide and carbon support films on molybdenum transmission electron microscope (TEM) grids and observed during in situ annealing in a TEM heating stage at 250 ∘ C. The evolution of crystallization is consistent with a classical model of homogeneous nucleation and isotropic grain growth. The two-dimensional grain morphology of the TEM foil allowed straightforward recognition of amorphous and crystallized regions of the films, for measurement of crystalline volume fraction and grain number density. By assuming that the kinetic parameters remain constant beyond the onset of crystallization, the final average grain size was computed, using an analytical extrapolation to the fully crystallized state. Electron diffraction reveals a predominance of the anatase crystallographic phase.« less
MoS{sub 2} nanosheet functionalized with Cu nanoparticles and its application for glucose detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Jingwei; Dong, Zhengping; Gansu Provincial Engineering Laboratory for Chemical Catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000
Graphical abstract: - Highlights: • First report on decorating MoS{sub 2} nanosheet with Cu nanoparticles by chemical reduction. • Cu nanoparticles were uniformly decorated on MoS{sub 2} nanosheet. • Glucose biosensor based on copper nanoparticles-MoS{sub 2} nanosheet hybrid is fabricated. • The biosensor exhibits high sensitivity. - Abstract: For the first time, Cu nanoparticles were evenly decorated on MoS{sub 2} nanosheet by chemical reduction. The as-prepared Cu-MoS{sub 2} hybrid was characterized by atomic force microscope (AFM), Raman spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD) and then used to fabricate a non-enzymatic glucose sensor. The performance of our sensor wasmore » investigated by cyclic voltammetry and amperometric measurement in alkaline media. Electrochemical tests showed that Cu-MoS{sub 2} hybrid exhibited synergistic electrocatalytic activity on the oxidation of glucose with a high sensitivity of 1055 μA mM{sup −1} cm{sup −2} and a linear range up to 4 mM.« less
Latychevskaia, Tatiana; Longchamp, Jean-Nicolas; Escher, Conrad; Fink, Hans-Werner
2015-12-01
The current state of the art in structural biology is led by NMR, X-ray crystallography and TEM investigations. These powerful tools however all rely on averaging over a large ensemble of molecules. Here, we present an alternative concept aiming at structural analysis at the single molecule level. We show that by combining electron holography and coherent diffraction imaging estimations concerning the phase of the scattered wave become needless as the phase information is extracted from the data directly and unambiguously. Performed with low-energy electrons the resolution of this lens-less microscope is just limited by the De Broglie wavelength of the electron wave and the numerical aperture, given by detector geometry. In imaging freestanding graphene, a resolution of 2Å has been achieved revealing the 660.000 unit cells of the graphene sheet from a single data set. Once applied to individual biomolecules the method shall ultimately allow for non-destructive imaging and imports the potential to distinguish between different conformations of proteins with atomic resolution. Copyright © 2015. Published by Elsevier B.V.
Liquid-Like, Self-Healing Aluminum Oxide during Deformation at Room Temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yang; Kushima, Akihiro; Han, Weizhong
Effective protection from environmental degradation relies on the integrity of oxide as diffusion barriers. Ideally, the passivation layer can repair its own breaches quickly under deformation. While studies suggest that the native aluminum oxide may manifest such properties, it has yet to be experimentally proven because direct observations of the air-environmental deformation of aluminum oxide and its initial formation at room temperature are challenging. In this letter, we report in situ experiments to stretch pure aluminum nanotips under O 2 gas environments in a transmission electron microscope (TEM). We discovered that aluminum oxide indeed deforms like liquid and can matchmore » the deformation of Al without any cracks/spallation at moderate strain rate. At higher strain rate, we exposed fresh metal surface, and visualized the self-healing process of aluminum oxide at atomic resolution. Unlike traditional thin-film growth or nanoglass consolidation processes, we observe seamless coalescence of new oxide islands without forming any glass–glass interface or surface grooves, indicating greatly accelerated glass kinetics at the surface compared to the bulk.« less
Liquid-Like, Self-Healing Aluminum Oxide during Deformation at Room Temperature
Yang, Yang; Kushima, Akihiro; Han, Weizhong; ...
2018-02-28
Effective protection from environmental degradation relies on the integrity of oxide as diffusion barriers. Ideally, the passivation layer can repair its own breaches quickly under deformation. While studies suggest that the native aluminum oxide may manifest such properties, it has yet to be experimentally proven because direct observations of the air-environmental deformation of aluminum oxide and its initial formation at room temperature are challenging. In this letter, we report in situ experiments to stretch pure aluminum nanotips under O 2 gas environments in a transmission electron microscope (TEM). We discovered that aluminum oxide indeed deforms like liquid and can matchmore » the deformation of Al without any cracks/spallation at moderate strain rate. At higher strain rate, we exposed fresh metal surface, and visualized the self-healing process of aluminum oxide at atomic resolution. Unlike traditional thin-film growth or nanoglass consolidation processes, we observe seamless coalescence of new oxide islands without forming any glass–glass interface or surface grooves, indicating greatly accelerated glass kinetics at the surface compared to the bulk.« less
NASA Astrophysics Data System (ADS)
Al-Khodir, Fatima A. I.; Refat, Moamen S.
2016-09-01
Four Ca(II), Fe(III), Pd(II) and Au(III) complexes of chloramphenicol drug have been synthesized and well characterized using elemental analyses, (infrared, electronic, and 1H-NMR) spectra, magnetic susceptibility measurement, and thermal analyses. Infrared spectral data show that the chloramphenicol drug coordinated to Ca(II), Pd(II) and Au(III) metal ions through two hydroxyl groups with 1:1 or 1:2 M ratios, but Fe(III) ions chelated towards chloramphenicol drug via the oxygen and nitrogen atoms of amide group with 1:2 ratio based on presence of keto↔enol form. The X-ray powder diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscopy (TEM) techniques were used to identify the nano-size particles of both iron(III) and gold(III) chloramphenicol complexes. The antimicrobial assessments of the chloramphenicol complexes were scanned and collected the results against of some kind of bacteria and fungi. The cytotoxic activity of the gold(III) complex was tested against the human colon carcinoma (HCT-116) and human hepatocellular carcinoma (HepG-2) tumor cell lines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Shan, E-mail: coralgao@hotmail.com; Engineering Ceramics Key Laboratory of Shandong Province, Shandong University, Jinan 250061; Sun, Kangning, E-mail: sunkangning@sdu.edu.cn
Highlights: ► We succeeded in synthesizing hydroxyapatite nano fibers by a chemical method. ► The reaction temperature is only 90 °C. ► The synthetic hydroxyapatite nano fiber is single crystal. - Abstract: We report a novel chemical precipitation route for the synthesis of hydroxyapatite (Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}, HA) fibers using surfactants as templates. Fourier transform infrared spectroscopy (FTIR) and powder X-ray diffraction (PXRD) reveal the characteristic peaks of HA. Transmission electron microscope (TEM) and high-resolution TEM revealed the nano structure, crystallinity and morphology of the HA fibers. The morphology of the HA fibers after calcinations were characterized bymore » scanning electron microscope (SEM). Br{sup −} ions were quickly replaced by the excess PO{sub 4}{sup 3−} ions in the solution after the addition of cetyltrime-thylammonium bromide (CTAB). Meanwhile, CTAB formed a rod-like micelles. Precursors reacted with PO{sub 4}{sup 3−} at the surface of CTAB micelles and finally formed the nanofiber structure.« less
Iridovirus infections in farm-reared tropical ornamental fish.
Paperna, I; Vilenkin, M; de Matos, A P
2001-12-20
A systemic viral infection in both gourami Trichogaster spp. and swordtail Xiphophorus hellerii and an outbreak of lymphocystis in scalare Pterophyllum scalarae and gourami are reported to have occurred in fish reared in ornamental fish farms in Israel. The systemic infection developed in endothelial cells that became hypertrophic and their contents were modified. The presence of such cells in light-microscopically examined stained smears and sections provides an initial indication for this systemic viral infection. Infection in gourami caused hemorrhagic dropsy. Transmission electron microscopic (TEM) images of iridovirus-like particles recovered from gouramies showed them to be 138 to 201 nm from vertex to vertex (v-v); those from swordtails were 170 to 188 nm v-v. TEM images of lymphocystis virions from scalare were 312 to 342 nm v-v and from gourami 292 to 341 nm v-v. Lymphocystis cells from the gourami were joined by a solid hyaline plate, which was lacking in the infection in scalare where the intercellular spaces between the lymphocystis cells consisted of loose connective tissue.
Microstructural Study of Micron-Sized Craters Simulating Stardust Impacts in Aluminum 1100 Targets
NASA Technical Reports Server (NTRS)
Leroux, Hugues; Borg, Janet; Troadec, David; Djouadi, Zahia; Horz, Friedrich
2006-01-01
Various microscopic techniques were used to characterize experimental micro- craters in aluminium foils to prepare for the comprehensive analysis of the cometary and interstellar particle impacts in aluminium foils to be returned by the Stardust mission. First, SEM (Scanning Electron Microscopy) and EDS (Energy Dispersive X-ray Spectroscopy) were used to study the morphology of the impact craters and the bulk composition of the residues left by soda-lime glass impactors. A more detailed structural and compositional study of impactor remnants was then performed using TEM (Transmission Electron Microscopy), EDS, and electron diffraction methods. The TEM samples were prepared by Focused Ion Beam (FIB) methods. This technique proved to be especially valuable in studying impact crater residues and impact crater morphology. Finally, we also showed that InfraRed microscopy (IR) can be a quick and reliable tool for such investigations. The combination of all of these tools enables a complete microscopic characterization of the craters.
Lu, Mao; Ran, Yuping; Dai, Yaling; Lei, Song; Zhang, Chaoliang; Zhuang, Kaiwen; Hu, Wenying
2016-01-01
This study was aimed to explain the formation mechanisms of corkscrew hairs and cigarette-ash-shaped hairs observed by dermoscopy of tinea capitis. In the present work, the ultrastructure of the involved hairs collected from a girl with tinea capitis caused by Trichophyton violaceum was observed by scanning electron microscope (SEM) and transmission electron microscope (TEM). SEM observation of the corkscrew hair revealed bent hair shaft and asymmetrically disrupted cuticle layer. TEM findings demonstrated the hair shaft became weak. The corkscrew hairs closely covered by scales on the scalp were observed under dermoscopy. We speculate that the formation of corkscrew hairs is a result of a combination of internal damage due to hair degradation by T. violaceum and external resistance due to scales covering the hair. SEM observation of the cigarette-ash-shaped hair revealed irregularly disrupted and incompact end, which might represent the stump of the broken corkscrew hair after treatment. © Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Lin, Yung-Chi; Shih, Toung-Yi; Tien, Shih-Kang; Duh, Jenq-Gong
2007-11-01
Interfacial morphologies and microstructure of Sn-3Ag-0.5Cu/Ni-P under bump metallization (UBM) with various phosphorous contents were investigated by transmission electron microscope (TEM) and field emission electron probe microanalyzer (FE-EPMA). It was revealed that as the Ni-Sn-P compound was formed between the solder matrix and Ni-P UBM, the conventionally so-called phosphorous-rich (P-rich) layer was transformed to a series of layer compounds, including Ni3P, Ni12P5 and Ni2P. The relationship between Ni-Sn-P formation and evolution of P-rich layers was probed by electron microscopic characterization with the aid of the phase diagram of Ni-P. On the basis of the TEM micrograph, the selected area diffraction (SAD) pattern, and the FE-EPMA results, the detailed phase evolution of P-rich layers in the SnAgCu/Ni-P joint was revealed and proposed.
Hyperbaric hydrothermal atomic force microscope
Knauss, Kevin G.; Boro, Carl O.; Higgins, Steven R.; Eggleston, Carrick M.
2002-01-01
A hyperbaric hydrothermal atomic force microscope (AFM) is provided to image solid surfaces in fluids, either liquid or gas, at pressures greater than normal atmospheric pressure. The sample can be heated and its surface imaged in aqueous solution at temperatures greater than 100.degree. C. with less than 1 nm vertical resolution. A gas pressurized microscope base chamber houses the stepper motor and piezoelectric scanner. A chemically inert, flexible membrane separates this base chamber from the sample cell environment and constrains a high temperature, pressurized liquid or gas in the sample cell while allowing movement of the scanner. The sample cell is designed for continuous flow of liquid or gas through the sample environment.
Hyperbaric Hydrothermal Atomic Force Microscope
Knauss, Kevin G.; Boro, Carl O.; Higgins, Steven R.; Eggleston, Carrick M.
2003-07-01
A hyperbaric hydrothermal atomic force microscope (AFM) is provided to image solid surfaces in fluids, either liquid or gas, at pressures greater than normal atmospheric pressure. The sample can be heated and its surface imaged in aqueous solution at temperatures greater than 100.degree. C. with less than 1 nm vertical resolution. A gas pressurized microscope base chamber houses the stepper motor and piezoelectric scanner. A chemically inert, flexible membrane separates this base chamber from the sample cell environment and constrains a high temperature, pressurized liquid or gas in the sample cell while allowing movement of the scanner. The sample cell is designed for continuous flow of liquid or gas through the sample environment.
Rieder, Karl-Heinz; Meyer, Gerhard; Hla, Saw-Wai; Moresco, Francesca; Braun, Kai F; Morgenstern, Karina; Repp, Jascha; Foelsch, Stefan; Bartels, Ludwig
2004-06-15
The scanning tunnelling microscope, initially invented to image surfaces down to the atomic scale, has been further developed in the last few years to an operative tool, with which atoms and molecules can be manipulated at will at low substrate temperatures in different manners to create and investigate artificial structures, whose properties can be investigated employing spectroscopic dI/dV measurements. The tunnelling current can be used to selectively break chemical bonds, but also to induce chemical association. These possibilities give rise to startling new opportunities for physical and chemical experiments on the single atom and single molecule level. Here we provide a short overview on recent results obtained with these techniques.
The Atomic Force Microscopic (AFM) Characterization of Nanomaterials
2009-06-01
Several Types of Microscopes ..................................................................................................7 8 OM on Mica Surface...12 9 AFM on Mica Surface...12 10 OM Images SWNTs on Mica After 1) 30 Minutes, b) 60
Yamasaki, Jun; Kawai, Tomoyuki; Tanaka, Nobuo
2004-01-01
Spherical aberration (C(S))-corrected transmission electron microscopy (TEM) and annular dark-field scanning TEM (ADF-STEM) are applied to high-resolution observation of stacking faults in Si(1 - x)Ge(x) alloy films prepared on a Si(100) buffer layer by the chemical vapor deposition method. Both of the images clarify the individual nature of stacking faults from their directly interpretable image contrast and also by using image simulation in the case of the C(S)-corrected TEM. Positions of the atomic columns obtained in the ADF-STEM images almost agree with a projection of the theoretical model studied by Chou et al. (Phys. Rev. B 32(1985): 7979). Comparison between the C(S)-corrected TEM and ADF-STEM images shows that their resolution is at a similar level, but directly interpretable image contrast is obtained in ultrathin samples for C(S)-corrected TEM and in slightly thicker samples for ADF-STEM.
Designs for a quantum electron microscope.
Kruit, P; Hobbs, R G; Kim, C-S; Yang, Y; Manfrinato, V R; Hammer, J; Thomas, S; Weber, P; Klopfer, B; Kohstall, C; Juffmann, T; Kasevich, M A; Hommelhoff, P; Berggren, K K
2016-05-01
One of the astounding consequences of quantum mechanics is that it allows the detection of a target using an incident probe, with only a low probability of interaction of the probe and the target. This 'quantum weirdness' could be applied in the field of electron microscopy to generate images of beam-sensitive specimens with substantially reduced damage to the specimen. A reduction of beam-induced damage to specimens is especially of great importance if it can enable imaging of biological specimens with atomic resolution. Following a recent suggestion that interaction-free measurements are possible with electrons, we now analyze the difficulties of actually building an atomic resolution interaction-free electron microscope, or "quantum electron microscope". A quantum electron microscope would require a number of unique components not found in conventional transmission electron microscopes. These components include a coherent electron beam-splitter or two-state-coupler, and a resonator structure to allow each electron to interrogate the specimen multiple times, thus supporting high success probabilities for interaction-free detection of the specimen. Different system designs are presented here, which are based on four different choices of two-state-couplers: a thin crystal, a grating mirror, a standing light wave and an electro-dynamical pseudopotential. Challenges for the detailed electron optical design are identified as future directions for development. While it is concluded that it should be possible to build an atomic resolution quantum electron microscope, we have also identified a number of hurdles to the development of such a microscope and further theoretical investigations that will be required to enable a complete interpretation of the images produced by such a microscope. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Switched capacitor charge pump used for low-distortion imaging in atomic force microscope.
Zhang, Jie; Zhang, Lian Sheng; Feng, Zhi Hua
2015-01-01
The switched capacitor charge pump (SCCP) is an effective method of linearizing charges on piezoelectric actuators and therefore constitute a significant approach to nano-positioning. In this work, it was for the first time implemented in an atomic force microscope for low-distortion imaging. Experimental results showed that the image quality was improved evidently under the SCCP drive compared with that under traditional linear voltage drive. © Wiley Periodicals, Inc.
Qin, Shengyong; Kim, Tae-Hwan; Wang, Zhouhang; Li, An-Ping
2012-06-01
The wide variety of nanoscale structures and devices demands novel tools for handling, assembly, and fabrication at nanoscopic positioning precision. The manipulation tools should allow for in situ characterization and testing of fundamental building blocks, such as nanotubes and nanowires, as they are built into functional devices. In this paper, a bottom-up technique for nanomanipulation and nanofabrication is reported by using a 4-probe scanning tunneling microscope (STM) combined with a scanning electron microscope (SEM). The applications of this technique are demonstrated in a variety of nanosystems, from manipulating individual atoms to bending, cutting, breaking carbon nanofibers, and constructing nanodevices for electrical characterizations. The combination of the wide field of view of SEM, the atomic position resolution of STM, and the flexibility of multiple scanning probes is expected to be a valuable tool for rapid prototyping in the nanoscience and nanotechnology.
NASA Astrophysics Data System (ADS)
Wang, J.; Guo, J. P.; Yi, J. J.; Huang, Q. G.; Li, H. M.; Li, Y. F.; Gao, K. J.; Yang, W. T.
2014-08-01
This paper reports the preparation of coral-shaped topological morphology nascent polyethylene (PE) particles promoted by the novel heterogeneous non-metallocene catalyst (m-CH3PhO)TiCl3/carbon nanotubes (CNTs), with AlEt3 used as a cocatalyst. Scanning electron microscope (SEM), high resolution transmission electron microscope (HR-TEM) and inductively coupled plasma (ICP) emission spectroscopy were used to determine the morphology of the catalyst particles and the content of (m-CH3PhO)TiCl3. The carbon nanotube surface was treated with Grignard Reagent prior to reacting with (m-CH3PhO)TiCl3. The catalyst system could effectively catalyze ethylene polymerization and ethylene with 1- hexene copolymerization, the catalytic activity could reach up to 5.8 kg/((gTi)h). Morphology of the obtained polymer particles by SEM and HR-TEM technique revealed that the nascent polyethylene particles looked like coral shape in micro-size. The multiwalled carbon nanotubes (MWCNTs) supported catalysts polymerized ethylene to form polymer nanocomposite in situ. The microscopic examination of this nanocomposite revealed that carbon nanoparticles in PE matrix had a good distribution and the cryogenically fractured surface was ductile-like when polymerization time was 2 min.
NASA Astrophysics Data System (ADS)
Hamers, Maartje F.; Pennock, Gill M.; Herwegh, Marco; Drury, Martyn R.
2016-10-01
Planar deformation features (PDFs) in quartz are one of the most reliable and most widely used forms of evidence for hypervelocity impact. PDFs can be identified in scanning electron microscope cathodoluminescence (SEM-CL) images, but not all PDFs show the same CL behavior: there are nonluminescent and red luminescent PDFs. This study aims to explain the origin of the different CL emissions in PDFs. Focused ion beam (FIB) thin foils were prepared of specific sample locations selected in composite color SEM-CL images and were analyzed in a transmission electron microscope (TEM). The FIB preparation technique allowed a direct, often one-to-one correlation between the CL images and the defect structure observed in TEM. This correlation shows that composite color SEM-CL imaging allows distinction between amorphous PDFs on one hand and healed PDFs and basal Brazil twins on the other: nonluminescent PDFs are amorphous, while healed PDFs and basal Brazil twins are red luminescent, with a dominant emission peak at 650 nm. We suggest that the red luminescence is the result of preferential beam damage along dislocations, fluid inclusions, and twin boundaries. Furthermore, a high-pressure phase (possibly stishovite) in PDFs can be detected in color SEM-CL images by its blue luminescence.
NASA Astrophysics Data System (ADS)
Ren, He
Molecular architectures and topologies are found contributing to the formation of supramolecular structures of giant molecules. Dr. Cheng's research group developed a diverse of giant molecules via precisely controlled chemistry synthetic routes. These giant molecules can be categorized into several different families, namely giant surfactants, giant shape amphiphiles and giant polyhedron. By analyzing the hierarchical structures of these carefully designed and precisely synthesized giant molecules, the structural factors which affect, or even dominates, in some cases, the formation of supramolecular structures are revealed in these intensive researches. The results will further contribute to the understanding of dependence of supramolecular structures on molecular designs as well as molecular topology, and providing a practical solution to the scaling up of microscopic molecular functionalities to macroscopic material properties. Molecular Nano Particles (MNPs), including fullerene (C60), POSS, Polyoxometalate (POM) and proteins etc., is defined and applied as a specific type of building blocks in the design and synthesis of giant molecules. The persistence in shape and symmetry is considered as one of the major properties of MNPs. This persistence will support the construction of giant molecules for further supramolecular structures' study by introducing specific shapes, or precisely located side groups which will facilitate self-assembling behaviors with pre-programmed secondary interactions. Dictating material physical properties by its chemical composition is an attractive yet currently failed approach in the study of materials. However, the pursuit of determining material properties by microscopic molecular level properties is never seized, and found its solution when the idea of crystal engineering is raised: should each atom in the material is located exactly where it is designed to be and is properly bonded, the property of the material is hence determined. In such "bottom-up" approach, the precise fabrication of 2 nm 100 nm nanostructures, is of great research interest. In this thesis, crystal engineering of giant molecules based on PDI conjugated POSS Nano-Atom (PDI-BPOSS) nano-atoms via self-assembly is performed and studied. Herein, three different giant molecules were synthesized: shape amphiphile, m-phenyl-(PDI-BPOSS)2 (S1) and tetrahedron, R-(PDI-BPOSS)4 (S2) and S-(PDI-BPOSS)4 (S3). Single crystals were grown for S1 and S2, X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and transmission electron microscopy (TEM) were performed, and crystal structures of these samples were determined, while hexagonal superlattice without crystal order can be observed for S3 to exhibit crystal-like morphology.
Han, Xiaodong; Wang, Lihua; Yue, Yonghai; Zhang, Ze
2015-04-01
In this review, we briefly introduce our in situ atomic-scale mechanical experimental technique (ASMET) for transmission electron microscopy (TEM), which can observe the atomic-scale deformation dynamics of materials. This in situ mechanical testing technique allows the deformation of TEM samples through a simultaneous double-tilt function, making atomic-scale mechanical microscopy feasible. This methodology is generally applicable to thin films, nanowires (NWs), tubes and regular TEM samples to allow investigation of the dynamics of mechanically stressed samples at the atomic scale. We show several examples of this technique applied to Pt and Cu single/polycrystalline specimens. The in situ atomic-scale observation revealed that when the feature size of these materials approaches the nano-scale, they often exhibit "unusual" deformation behaviours compared to their bulk counterparts. For example, in Cu single-crystalline NWs, the elastic-plastic transition is size-dependent. An ultra-large elastic strain of 7.2%, which approaches the theoretical elasticity limit, can be achieved as the diameter of the NWs decreases to ∼6 nm. The crossover plasticity transition from full dislocations to partial dislocations and twins was also discovered as the diameter of the single-crystalline Cu NWs decreased. For Pt nanocrystals (NC), the long-standing uncertainties of atomic-scale plastic deformation mechanisms in NC materials (grain size G less than 15 nm) were clarified. For larger grains with G<∼10 nm, we frequently observed movements and interactions of cross-grain full dislocations. For G between 6 and 10 nm, stacking faults resulting from partial dislocations become more frequent. For G<∼6 nm, the plasticity mechanism transforms from a mode of cross-grain dislocation to a collective grain rotation mechanism. This grain rotation process is mediated by grain boundary (GB) dislocations with the assistance of GB diffusion and shuffling. These in situ atomic-scale images provide a direct demonstration that grain rotation, through the evolution of the misorientation angle between neighbouring grains, can be quantitatively assessed by the dislocation content within the grain boundaries. In combination with the revolutionary Cs-corrected sub-angstrom imaging technologies developed by Urban et al., the opportunities for experimental mechanics at the atomic scale are emerging. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Gasga, Jose Reyes; Carbajal-de-la-Torre, Georgina; Bres, Etienne; Gil-Chavarria, Ivet M; Rodríguez-Hernández, Ana G; Garcia-Garcia, Ramiro
2008-02-01
When human tooth enamel is observed with the Transmission Electron Microscope (TEM), a structural defect is registered in the central region of their nanometric grains or crystallites. This defect has been named as Central Dark Line (CDL) and its structure and function in the enamel structure have been unknown yet. In this work we present the TEM analysis to these crystallites using the High Angle Annular Dark Field (HAADF) technique. Our results suggest that the CDL region is the calcium richest part of the human tooth enamel crystallites.
Measurement of the Elastic Modulus of a Single Boron Nitride Nanotube
NASA Astrophysics Data System (ADS)
Chopra, Nasreen G.; Cohen, Marvin L.; Louie, Steven G.; Zettl, A.
1997-03-01
In situ transmission electron microscope (TEM) measurements of thermally-excited vibrational characteristics of boron nitride (BN) nanotubes are used to extract the elastic modulus. We find BN nanotubes to have a higher axial Young's modulus, 1.2 TPa, than any other insulating fiber. This value is consistent with theoretical predictions and confirms previous TEM observations of the high degree of crystallinity of these structures. This work was supported by the U. S. Department of Energy under contract No. DE-AC03-76-SF00098 and the Office of Naval Research, Order No. N00014-95-F-0099
Chu, C T; Howell, D N; Morgenlander, J C; Hulette, C M; McLendon, R E; Miller, S E
1999-10-01
The distinction between intracranial viral infections and inflammatory conditions requiring immunosuppression is important. Although specific laboratory reagents are readily available for some viruses, diagnosis of arbovirus infection is more difficult. Transmission electron microscopy (TEM) theoretically allows identification of viral particles independent of reagent availability, but it has limited sensitivity. We report two cases of human flavivirus encephalitis diagnosed by TEM. Laser scanning confocal microscopy (LSCM) was used in one case to survey unembedded tissue slices for focal abnormalities, from which fragments smaller than 1 mm2 were excised for epoxy embedding. This facilitated TEM identification of intracytoplasmic, budding, 35-40 nm spherical virus particles, confirmed by serology as St. Louis encephalitis. In contrast to mosquitoes and newborn mice, in which high viral loads are associated with minimal tissue responses, these biopsies showed florid angiodestructive inflammation and microgliosis, with rare virions in necrotic perivascular cells and astrocytes. To our knowledge, this represents the first ultrastructural study of St. Louis encephalitis in humans, indicating the potential value of LSCM-aided TEM.
TEM in situ micropillar compression tests of ion irradiated oxide dispersion strengthened alloy
NASA Astrophysics Data System (ADS)
Yano, K. H.; Swenson, M. J.; Wu, Y.; Wharry, J. P.
2017-01-01
The growing role of charged particle irradiation in the evaluation of nuclear reactor candidate materials requires the development of novel methods to assess mechanical properties in near-surface irradiation damage layers just a few micrometers thick. In situ transmission electron microscopic (TEM) mechanical testing is one such promising method. In this work, microcompression pillars are fabricated from a Fe2+ ion irradiated bulk specimen of a model Fe-9%Cr oxide dispersion strengthened (ODS) alloy. Yield strengths measured directly from TEM in situ compression tests are within expected values, and are consistent with predictions based on the irradiated microstructure. Measured elastic modulus values, once adjusted for the amount of deformation and deflection in the base material, are also within the expected range. A pillar size effect is only observed in samples with minimum dimension ≤100 nm due to the low inter-obstacle spacing in the as received and irradiated material. TEM in situ micropillar compression tests hold great promise for quantitatively determining mechanical properties of shallow ion-irradiated layers.
Artifacts introduced by ion milling in Al-Li-Cu alloys.
Singh, A K; Imam, M A; Sadananda, K
1988-04-01
Ion milling is commonly used to prepare specimens for observation under transmission electron microscope (TEM). This technique sometimes introduces artifacts in specimens contributing to misleading interpretation of TEM results as observed in the present investigation of Al-Li-Cu alloys. This type of alloy, in general, contains several kinds of precipitates, namely delta', T1, and theta'. It is found that ion milling even for a short time produces drastic changes in the precipitate characteristics as compared to standard electropolishing methods of specimen preparation for TEM. Careful analysis of selected area diffraction patterns and micrographs shows that after ion milling delta' precipitates are very irregular, whereas other precipitates coarsen and they are surrounded by misfit dislocations. In situ hot-stage TEM experiments were performed to relate the microstructure to that observed in the ion-milled specimen. Results and causes of ion milling effects on the microstructure are discussed in relation to standard electropolishing techniques and in situ hot-stage experiment.
Transmission electron microscope studies of extraterrestrial materials
NASA Technical Reports Server (NTRS)
Keller, Lindsay P.
1995-01-01
Transmission Electron Microscopy, X-Ray spectrometry and electron-energy-loss spectroscopy are used to analyse carbon in interplanetary dust particles. Optical micrographs are shown depicting cross sections of the dust particles embedded in sulphur. Selected-area electron diffraction patterns are shown. Transmission Electron Microscope specimens of lunar soil were prepared using two methods: ion-milling and ultramicrotomy. A combination of high resolution TEM imaging and electron diffraction is used to characterize the opaque assemblages. The opaque assemblages analyzed in this study are dominated by ilmenite with lesser rutile and spinel exsolutions, and traces of Fe metal.
NASA Astrophysics Data System (ADS)
Liu, B. H.; Teo, H. W.; Mo, Z. H.; Mai, Z. H.; Lam, J.; Xue, J. M.; Zhao, Y. Z.; Tan, P. K.
2017-01-01
Using in situ transmission electron microscopy (TEM), we studied boron diffusion and segregation in CoFeB/SiO2 nanostructured thin film stacks. We also investigated how these phenomena affected the phase and microstructure of CoFeB thin films under electron beam irradiation at 300 kV. A unique phase transformation was observed in CoFeB thin films under high-dose electron irradiation, from a polycrystalline Co3Fe to a unilateral amorphous phase of Co3Fe and nanocrystalline FexCo23-xB6. The unilateral amorphization of the Co3Fe film showed an electron-dose-rate sensitivity with a threshold dose rate. Detailed in situ TEM studies revealed that the unilateral amorphization of the Co3Fe film arose from boron segregation at the bottom of the Co3Fe thin film induced by radiation-enhanced diffusion of boron atoms that were displaced by electron knock-on effects. The radiation-induced nanocrystallization of FexCo23-xB6 was also found to be dose-rate sensitive with a higher electron beam current leading to earlier nucleation and more rapid grain growth. The nanocrystallization of FexCo23-xB6 occurred preferentially at the CoFeB/SiO2 interface. Kinetic studies by in situ TEM revealed the surface crystallization and diffusion-controlled nucleation and grain growth mechanisms. The radiation-enhanced atomic diffusivity and high-concentration of radiation-induced point defects at the Co3Fe/SiO2 interface enhanced the local short-range ordering of Fe, Co, and B atoms, favoring nucleation and grain growth of FexCo23-xB6 at the interface.
Fast resolution change in neutral helium atom microscopy
NASA Astrophysics Data System (ADS)
Flatabø, R.; Eder, S. D.; Ravn, A. K.; Samelin, B.; Greve, M. M.; Reisinger, T.; Holst, B.
2018-05-01
In neutral helium atom microscopy, a beam of atoms is scanned across a surface. Though still in its infancy, neutral helium microscopy has seen a rapid development over the last few years. The inertness and low energy of the helium atoms (less than 0.1 eV) combined with a very large depth of field and the fact that the helium atoms do not penetrate any solid material at low energies open the possibility for a non-destructive instrument that can measure topology on the nanoscale even on fragile and insulating surfaces. The resolution is determined by the beam spot size on the sample. Fast resolution change is an attractive property of a microscope because it allows different aspects of a sample to be investigated and makes it easier to identify specific features. However up till now it has not been possible to change the resolution of a helium microscope without breaking the vacuum and changing parts of the atom source. Here we present a modified source design, which allows fast, step wise resolution change. The basic design idea is to insert a moveable holder with a series of collimating apertures in front of the source, thus changing the effective source size of the beam and thereby the spot size on the surface and thus the microscope resolution. We demonstrate a design with 3 resolution steps. The number of resolution steps can easily be extended.
Four-probe measurements with a three-probe scanning tunneling microscope.
Salomons, Mark; Martins, Bruno V C; Zikovsky, Janik; Wolkow, Robert A
2014-04-01
We present an ultrahigh vacuum (UHV) three-probe scanning tunneling microscope in which each probe is capable of atomic resolution. A UHV JEOL scanning electron microscope aids in the placement of the probes on the sample. The machine also has a field ion microscope to clean, atomically image, and shape the probe tips. The machine uses bare conductive samples and tips with a homebuilt set of pliers for heating and loading. Automated feedback controlled tip-surface contacts allow for electrical stability and reproducibility while also greatly reducing tip and surface damage due to contact formation. The ability to register inter-tip position by imaging of a single surface feature by multiple tips is demonstrated. Four-probe material characterization is achieved by deploying two tips as fixed current probes and the third tip as a movable voltage probe.
Atomic Force Microscope for Imaging and Spectroscopy
NASA Technical Reports Server (NTRS)
Pike, W. T.; Hecht, M. H.; Anderson, M. S.; Akiyama, T.; Gautsch, S.; deRooij, N. F.; Staufer, U.; Niedermann, Ph.; Howald, L.; Mueller, D.
2000-01-01
We have developed, built, and tested an atomic force microscope (AFM) for extraterrestrial applications incorporating a micromachined tip array to allow for probe replacement. It is part of a microscopy station originally intended for NASA's 2001 Mars lander to identify the size, distribution, and shape of Martian dust and soil particles. As well as imaging topographically down to nanometer resolution, this instrument can be used to reveal chemical information and perform infrared and Raman spectroscopy at unprecedented resolution.
Atomic force microscope observations of otoconia in the newt
NASA Technical Reports Server (NTRS)
Hallworth, R.; Wiederhold, M. L.; Campbell, J. B.; Steyger, P. S.
1995-01-01
Calcitic and aragonitic otoconia from the Japanese red-bellied newt, Cynops pyrrhogaster, were examined using an atomic force microscope. The surface structure of both otoconial polymorphs consisted of arrays of elements approximately 50 nm in diameter. Elements were generally round and were separated by shallow depressions of no more than 20 nm. The elements are suggested to be single crystals of calcium carbonate. The relationship of these observations to theories of otoconial genesis is discussed.
TEM in situ cube-corner indentation analysis using ViBe motion detection algorithm
NASA Astrophysics Data System (ADS)
Yano, K. H.; Thomas, S.; Swenson, M. J.; Lu, Y.; Wharry, J. P.
2018-04-01
Transmission electron microscopic (TEM) in situ mechanical testing is a promising method for understanding plasticity in shallow ion irradiated layers and other volume-limited materials. One of the simplest TEM in situ experiments is cube-corner indentation of a lamella, but the subsequent analysis and interpretation of the experiment is challenging, especially in engineering materials with complex microstructures. In this work, we: (a) develop MicroViBE, a motion detection and background subtraction-based post-processing approach, and (b) demonstrate the ability of MicroViBe, in combination with post-mortem TEM imaging, to carry out an unbiased qualitative interpretation of TEM indentation videos. We focus this work around a Fe-9%Cr oxide dispersion strengthened (ODS) alloy, irradiated with Fe2+ ions to 3 dpa at 500 °C. MicroViBe identifies changes in Laue contrast that are induced by the indentation; these changes accumulate throughout the mechanical loading to generate a "heatmap" of features in the original TEM video that change the most during the loading. Dislocation loops with b = ½ <111> identified by post-mortem scanning TEM (STEM) imaging correspond to hotspots on the heatmap, whereas positions of dislocation loops with b = <100> do not correspond to hotspots. Further, MicroViBe enables consistent, objective quantitative approximation of the b = ½ <111> dislocation loop number density.
NASA Astrophysics Data System (ADS)
Ohno, Yutaka; Yoshida, Hideto; Takeda, Seiji; Liang, Jianbo; Shigekawa, Naoteru
2018-02-01
The intrinsic microstructure of Si/GaAs heterointerfaces fabricated by surface-activated bonding at room temperature is examined by plane-view transmission electron microscopy (TEM) and cross-sectional scanning TEM using damage-free TEM specimens prepared only by mechanochemical etching. The bonded heterointerfaces include an As-deficient crystalline GaAs layer with a thickness of less than 1 nm and an amorphous Si layer with a thickness of approximately 3 nm, introduced by the irradiation of an Ar atom beam for surface activation before bonding. It is speculated that the interface resistance mainly originates from the As-deficient defects in the former layer.
Current at Metal-Organic Interfaces
NASA Astrophysics Data System (ADS)
Kern, Klaus
2012-02-01
Charge transport through atomic and molecular constrictions greatly affects the operation and performance of organic electronic devices. Much of our understanding of the charge injection and extraction processes in these systems relays on our knowledge of the electronic structure at the metal-organic interface. Despite significant experimental and theoretical advances in studying charge transport in nanoscale junctions, a microscopic understanding at the single atom/molecule level is missing. In the present talk I will present our recent results to probe directly the nanocontact between single molecules and a metal electrode using scanning probe microscopy and spectroscopy. The experiments provide unprecedented microscopic details of single molecule and atom junctions and open new avenues to study quantum critical and many body phenomena at the atomic scale. Implications for energy conversion devices and carbon based nanoelectronics will also be discussed.
NASA Astrophysics Data System (ADS)
Takamasu, Kiyoshi; Takahashi, Satoru; Kawada, Hiroki; Ikota, Masami
2018-03-01
LER (Line Edge Roughness) and LWR (Line Width Roughness) of the semiconductor device are an important evaluation scale of the performance of the device. Conventionally, LER and LWR is evaluated from CD-SEM (Critical Dimension Scanning Electron Microscope) images. However, CD-SEM measurement has a problem that high frequency random noise is large, and resolution is not sufficiently high. For random noise of CD-SEM measurement, some techniques are proposed. In these methods, it is necessary to set parameters for model and processing, and it is necessary to verify the correctness of these parameters using reference metrology. We have already proposed a novel reference metrology using FIB (Focused Ion Beam) process and planar-TEM (Transmission Electron Microscope) method. In this study, we applied the proposed method to three new samples such as SAQP (Self-Aligned Quadruple Patterning) FinFET device, EUV (Extreme Ultraviolet Lithography) conventional resist, and EUV new material resist. LWR and PSD (Power Spectral Density) of LWR are calculated from the edge positions on planar-TEM images. We confirmed that LWR and PSD of LWR can be measured with high accuracy and evaluated the difference by the proposed method. Furthermore, from comparisons with PSD of the same sample by CD-SEM, the validity of measurement of PSD and LWR by CD-SEM can be verified.
Focused ion beam (FIB)/scanning electron microscopy (SEM) in tissue structural research.
Leser, Vladka; Milani, Marziale; Tatti, Francesco; Tkalec, Ziva Pipan; Strus, Jasna; Drobne, Damjana
2010-10-01
The focused ion beam (FIB) and scanning electron microscope (SEM) are commonly used in material sciences for imaging and analysis of materials. Over the last decade, the combined FIB/SEM system has proven to be also applicable in the life sciences. We have examined the potential of the focused ion beam/scanning electron microscope system for the investigation of biological tissues of the model organism Porcellio scaber (Crustacea: Isopoda). Tissue from digestive glands was prepared as for conventional SEM or as for transmission electron microscopy (TEM). The samples were transferred into FIB/SEM for FIB milling and an imaging operation. FIB-milled regions were secondary electron imaged, back-scattered electron imaged, or energy dispersive X-ray (EDX) analyzed. Our results demonstrated that FIB/SEM enables simultaneous investigation of sample gross morphology, cell surface characteristics, and subsurface structures. The same FIB-exposed regions were analyzed by EDX to provide basic compositional data. When samples were prepared as for TEM, the information obtained with FIB/SEM is comparable, though at limited magnification, to that obtained from TEM. A combination of imaging, micro-manipulation, and compositional analysis appears of particular interest in the investigation of epithelial tissues, which are subjected to various endogenous and exogenous conditions affecting their structure and function. The FIB/SEM is a promising tool for an overall examination of epithelial tissue under normal, stressed, or pathological conditions.
3D-profile measurement of advanced semiconductor features by using FIB as reference metrology
NASA Astrophysics Data System (ADS)
Takamasu, Kiyoshi; Iwaki, Yuuki; Takahashi, Satoru; Kawada, Hiroki; Ikota, Masami
2017-03-01
A novel method of sub-nanometer uncertainty for the 3D-profile measurement and LWR (Line Width Roughness) measurement by using FIB (Focused Ion Beam) processing, and TEM (Transmission Electron Microscope) and CD-SEM (Critical Dimension Scanning Electron Microscope) images measurement is proposed to standardize 3D-profile measurement through reference metrology. In this article, we apply the methodology to line profile measurements and roughness measurement of advanced FinFET (Fin-shaped Field-Effect Transistor) features. The FinFET features are horizontally sliced as a thin specimen by FIB micro sampling system. Horizontally images of the specimens are obtained then by a planar TEM. LWR is calculated from the edges positions on TEM images. Moreover, we already have demonstrated the novel on-wafer 3D-profile metrology as "FIB-to-CDSEM method" with FIB slope cut and CD-SEM measuring. Using the method, a few micrometers wide on a wafer is coated and cut by 45-degree slope using FIB tool. Then, the wafer is transferred to CD-SEM to measure the cross section image by top down CD-SEM measurement. We applied FIB-to-CDSEM method to a CMOS image sensor feature. The 45-degree slope cut surface is observed using AFM. The surface profile of slope cut surface and line profiles are analyzed for improving the accuracy of FIB-to-CDSEM method.
Nanomechanical properties of platinum thin films synthesized by atomic layer deposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mamun, M.A.; Gu, D.; Baumgart, H.
2015-03-01
The nanomechanical properties of Pt thin films grown on Si (100) using atomic layer deposition (ALD) were investigated using nanoindentation. Recently, atomic layer deposition (ALD) has successfully demonstrated the capability to deposit ultra-thin films of platinum (Pt). Using (methylcyclopentadienyl) trimethylplatinum (MeCpPtMe3) as chemical platinum precursor and oxygen (O2) as the oxidizing agent, the ALD synthesis of Pt can be achieved with high conformity and excellent film uniformity. The ALD process window for Pt films was experimentally established in the temperature range between 270 °C and 320 °C, where the sheet conductance was constant over that temperature range, indicating stable ALDmore » Pt film growth rate. ALD growth of Pt films exhibits very poor nucleation and adhesion characteristics on bare Si surfaces when the native oxide was removed by 2% HF etch. Pt adhesion improves for thermally oxidized Si wafers and for Si wafers covered with native oxide. Three ALD Pt films deposited at 800, 900, and 1000 ALD deposition cycles were tested for the structural and mechanical properties. Additionally, the sample with 900 ALD deposition cycles was further annealed in forming gas (95% N2 and 5% H2) at 450 °C for 30 min in order to passivate dangling bonds in the grain boundaries of the polycrystalline Pt film. Cross-sectional transmission electron microscopy (TEM), X-ray diffraction (XRD), atomic force microscopy (AFM), and scanning electron microscope (SEM) were employed to characterize the films' surface structure and morphology. Nanoindentation technique was used to evaluate the hardness and modulus of the ALD Pt films of various film thicknesses. The results indicate that the films depict comparable hardness and modulus results; however, the 800 and 1000 ALD deposition cycles films without forming gas annealing experienced significant amount of pileup, whereas the 900 ALD deposition cycles sample annealed in forming gas resulted in a smaller pileup.« less
Atom probe study of grain boundary segregation in technically pure molybdenum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babinsky, K., E-mail: katharina.babinsky@stud.unileoben.ac.at; Weidow, J., E-mail: jonathan.weidow@chalmers.se; Knabl, W., E-mail: wolfram.knabl@plansee.com
2014-01-15
Molybdenum, a metal with excellent physical, chemical and high-temperature properties, is an interesting material for applications in lighting-technology, high performance electronics, high temperature furnace construction and coating technology. However, its applicability as a structural material is limited because of the poor oxidation resistance at high temperatures and a brittle-to-ductile transition around room temperature, which is influenced by the grain size and the content of interstitial impurities at the grain boundaries. Due to the progress of the powder metallurgical production during the last decades, the amount of impurities in the current quality of molybdenum has become so small that surface sensitivemore » techniques are not applicable anymore. Therefore, the atom probe, which allows the detection of small amounts of impurities as well as their location, seems to be a more suitable technique. However, a site-specific specimen preparation procedure for grain boundaries in refractory metals with a dual focused ion beam/scanning electron microscope is still required. The present investigation describes the development and successful application of such a site-specific preparation technique for grain boundaries in molybdenum, which is significantly improved by a combination with transmission electron microscopy. This complimentary technique helps to improve the visibility of grain boundaries during the last preparation steps and to evidence the presence of grain and subgrain boundaries without segregants in atom probe specimens. Furthermore, in industrially processed and recrystallized molybdenum sheets grain boundary segregation of oxygen, nitrogen and potassium is successfully detected close to segregated regions which are believed to be former sinter pores. - Highlights: • First study of grain boundary segregation in molybdenum by atom probe • Site-specific preparation technique by FIB and TEM successfully developed • Grain boundary segregation of oxygen, nitrogen and potassium found • Segregation in former sinter-pores detected • Presence of grain boundaries without segregation evidenced.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akashi, Tetsuya; Takahashi, Yoshio; Tanigaki, Toshiaki, E-mail: toshiaki.tanigaki.mv@hitachi.com
2015-02-16
Atomic-resolution electromagnetic field observation is critical to the development of advanced materials and to the unveiling of their fundamental physics. For this purpose, a spherical-aberration corrected 1.2-MV cold field-emission transmission electron microscope has been developed. The microscope has the following superior properties: stabilized accelerating voltage, minimized electrical and mechanical fluctuation, and coherent electron emission. These properties have enabled to obtain 43-pm information transfer. On the bases of these performances, a 43-pm resolution has been obtained by correcting lens aberrations up to the third order. Observations of GaN [411] thin crystal showed a projected atomic locations with a separation of 44 pm.
Scanning force microscope for in situ nanofocused X-ray diffraction studies
Ren, Zhe; Mastropietro, Francesca; Davydok, Anton; Langlais, Simon; Richard, Marie-Ingrid; Furter, Jean-Jacques; Thomas, Olivier; Dupraz, Maxime; Verdier, Marc; Beutier, Guillaume; Boesecke, Peter; Cornelius, Thomas W.
2014-01-01
A compact scanning force microscope has been developed for in situ combination with nanofocused X-ray diffraction techniques at third-generation synchrotron beamlines. Its capabilities are demonstrated on Au nano-islands grown on a sapphire substrate. The new in situ device allows for in situ imaging the sample topography and the crystallinity by recording simultaneously an atomic force microscope (AFM) image and a scanning X-ray diffraction map of the same area. Moreover, a selected Au island can be mechanically deformed using the AFM tip while monitoring the deformation of the atomic lattice by nanofocused X-ray diffraction. This in situ approach gives access to the mechanical behavior of nanomaterials. PMID:25178002
NASA Technical Reports Server (NTRS)
Jones, C. L.; Brearley, A. J.
2000-01-01
Samples of Allende have been altered hydrothermally under oxidizing conditions at 200 C. TEM studies show that within 30 days evidence of replacement of matrix olivines by fine-grained serpentine is present and by 90 days complete alteration of many grains has occurred.
Dielectrophoretic immobilization of proteins: Quantification by atomic force microscopy.
Laux, Eva-Maria; Knigge, Xenia; Bier, Frank F; Wenger, Christian; Hölzel, Ralph
2015-09-01
The combination of alternating electric fields with nanometer-sized electrodes allows the permanent immobilization of proteins by dielectrophoretic force. Here, atomic force microscopy is introduced as a quantification method, and results are compared with fluorescence microscopy. Experimental parameters, for example the applied voltage and duration of field application, are varied systematically, and the influence on the amount of immobilized proteins is investigated. A linear correlation to the duration of field application was found by atomic force microscopy, and both microscopical methods yield a square dependence of the amount of immobilized proteins on the applied voltage. While fluorescence microscopy allows real-time imaging, atomic force microscopy reveals immobilized proteins obscured in fluorescence images due to low S/N. Furthermore, the higher spatial resolution of the atomic force microscope enables the visualization of the protein distribution on single nanoelectrodes. The electric field distribution is calculated and compared to experimental results with very good agreement to atomic force microscopy measurements. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Phase modulation atomic force microscope with true atomic resolution
NASA Astrophysics Data System (ADS)
Fukuma, Takeshi; Kilpatrick, Jason I.; Jarvis, Suzanne P.
2006-12-01
We have developed a dynamic force microscope (DFM) working in a novel operation mode which is referred to as phase modulation atomic force microscopy (PM-AFM). PM-AFM utilizes a fixed-frequency excitation signal to drive a cantilever, which ensures stable imaging even with occasional tip crash and adhesion to the surface. The tip-sample interaction force is detected as a change of the phase difference between the cantilever deflection and excitation signals and hence the time response is not influenced by the Q factor of the cantilever. These features make PM-AFM more suitable for high-speed imaging than existing DFM techniques such as amplitude modulation and frequency modulation atomic force microscopies. Here we present the basic principle of PM-AFM and the theoretical limit of its performance. The design of the developed PM-AFM is described and its theoretically limited noise performance is demonstrated. Finally, we demonstrate the true atomic resolution imaging capability of the developed PM-AFM by imaging atomic-scale features of mica in water.
eV-TEM: Transmission electron microscopy in a low energy cathode lens instrument.
Geelen, Daniël; Thete, Aniket; Schaff, Oliver; Kaiser, Alexander; van der Molen, Sense Jan; Tromp, Rudolf
2015-12-01
We are developing a transmission electron microscope that operates at extremely low electron energies, 0-40 eV. We call this technique eV-TEM. Its feasibility is based on the fact that at very low electron energies the number of energy loss pathways decreases. Hence, the electron inelastic mean free path increases dramatically. eV-TEM will enable us to study elastic and inelastic interactions of electrons with thin samples. With the recent development of aberration correction in cathode lens instruments, a spatial resolution of a few nm appears within range, even for these very low electron energies. Such resolution will be highly relevant to study biological samples such as proteins and cell membranes. The low electron energies minimize adverse effects due to radiation damage. Copyright © 2015. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Lee, Ji-hyun; Chae, Byeong-Kyu; Kim, Joong-Jeong; Lee, Sun Young; Park, Chan Gyung
2015-01-01
Dopant control becomes more difficult and critical as silicon devices become smaller. We observed the dopant distribution in a thermally annealed polysilicon gate using Transmission Electron Microscopy (TEM) and Atom probe tomography (APT). Phosphorus was doped at the silicon-nitride-diffusion-barrier-layer-covered polycrystalline silicon gate. Carbon also incorporated at the gate for the enhancement of operation uniformity. The impurity distribution was observed using atom probe tomography. The carbon atoms had segregated at grain boundaries and suppressed silicon grain growth. Phosphorus atoms, on the other hand, tended to pile-up at the interface. A 1-nm-thick diffusion barrier effectively blocked P atom out-diffusion. [Figure not available: see fulltext.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishii, Yoshiyuki, E-mail: yishii@nih.go.jp
2013-04-19
Highlights: •HPV16 pseudovirions (16PsVs) infection induces an autophagy response. •The autophagy was analyzed by transmission electron microscope (TEM). •TEM showed the double-membrane vesicles in HeLa cells inoculated with 16PsVs. •These vesicles incorporated 16PsVs particles in the lumen. •These results imply that autophagosomes are generated from the plasma membrane. -- Abstract: Autophagy is a bulk degradation process for subcellular proteins and organelles to manage cell starvation. Autophagy is associated with the formation of autophagosomes and further functions as a defense mechanism against infection by various pathogens. Human papillomavirus (HPV) infection induces an autophagy response, such as up-regulation of marker proteins formore » autophagy, in host keratinocytes. However, direct microscopic evidence for autophagy induction by HPV infection is still lacking. Here, I report an electron microscopic analysis of autophagosomes elicited by the entry of HPV pseudovirions (PsVs). HeLa cells showed enhanced infectivity for PsVs of HPV type 16 (16PsVs) when treated with an autophagy inhibitor, suggesting the involvement of autophagy in HPV infection. In HeLa cells inoculated with 16PsVs, transmission electron microscopy showed the presence of cup-shaped, double-membrane vesicles (phagophores) and double-membrane-bound vesicles, which are typical structures of autophagosomes. These double-membrane vesicles displayed a large lumen volume and incorporated 10–50 16PsVs particles in the lumen. These results demonstrate that autophagy is indeed induced during the HPV16 entry process and imply that autophagosomes are generated from the plasma membrane by HPV infection.« less
Gauquelin, N; van den Bos, K H W; Béché, A; Krause, F F; Lobato, I; Lazar, S; Rosenauer, A; Van Aert, S; Verbeeck, J
2017-10-01
Nowadays, aberration corrected transmission electron microscopy (TEM) is a popular method to characterise nanomaterials at the atomic scale. Here, atomically resolved images of nanomaterials are acquired, where the contrast depends on the illumination, imaging and detector conditions of the microscope. Visualization of light elements is possible when using low angle annular dark field (LAADF) STEM, annular bright field (ABF) STEM, integrated differential phase contrast (iDPC) STEM, negative spherical aberration imaging (NCSI) and imaging STEM (ISTEM). In this work, images of a NdGaO 3 -La 0.67 Sr 0.33 MnO 3 (NGO-LSMO) interface are quantitatively evaluated by using statistical parameter estimation theory. For imaging light elements, all techniques are providing reliable results, while the techniques based on interference contrast, NCSI and ISTEM, are less robust in terms of accuracy for extracting heavy column locations. In term of precision, sample drift and scan distortions mainly limits the STEM based techniques as compared to NCSI. Post processing techniques can, however, partially compensate for this. In order to provide an outlook to the future, simulated images of NGO, in which the unavoidable presence of Poisson noise is taken into account, are used to determine the ultimate precision. In this future counting noise limited scenario, NCSI and ISTEM imaging will provide more precise values as compared to the other techniques, which can be related to the mechanisms behind the image recording. Copyright © 2017 Elsevier B.V. All rights reserved.
Lu, Feng; Belkin, Mikhail A
2011-10-10
We report a simple technique that allows obtaining mid-infrared absorption spectra with nanoscale spatial resolution under low-power illumination from tunable quantum cascade lasers. Light absorption is detected by measuring associated sample thermal expansion with an atomic force microscope. To detect minute thermal expansion we tune the repetition frequency of laser pulses in resonance with the mechanical frequency of the atomic force microscope cantilever. Spatial resolution of better than 50 nm is experimentally demonstrated.
Espinosa, G; Rodríguez, R; Gil, J M; Suzuki-Vidal, F; Lebedev, S V; Ciardi, A; Rubiano, J G; Martel, P
2017-03-01
Numerical simulations of laboratory astrophysics experiments on plasma flows require plasma microscopic properties that are obtained by means of an atomic kinetic model. This fact implies a careful choice of the most suitable model for the experiment under analysis. Otherwise, the calculations could lead to inaccurate results and inappropriate conclusions. First, a study of the validity of the local thermodynamic equilibrium in the calculation of the average ionization, mean radiative properties, and cooling times of argon plasmas in a range of plasma conditions of interest in laboratory astrophysics experiments on radiative shocks is performed in this work. In the second part, we have made an analysis of the influence of the atomic kinetic model used to calculate plasma microscopic properties of experiments carried out on magpie on radiative bow shocks propagating in argon. The models considered were developed assuming both local and nonlocal thermodynamic equilibrium and, for the latter situation, we have considered in the kinetic model different effects such as external radiation field and plasma mixture. The microscopic properties studied were the average ionization, the charge state distributions, the monochromatic opacities and emissivities, the Planck mean opacity, and the radiative power loss. The microscopic study was made as a postprocess of a radiative-hydrodynamic simulation of the experiment. We have also performed a theoretical analysis of the influence of these atomic kinetic models in the criteria for the onset possibility of thermal instabilities due to radiative cooling in those experiments in which small structures were experimentally observed in the bow shock that could be due to this kind of instability.
NASA Astrophysics Data System (ADS)
Espinosa, G.; Rodríguez, R.; Gil, J. M.; Suzuki-Vidal, F.; Lebedev, S. V.; Ciardi, A.; Rubiano, J. G.; Martel, P.
2017-03-01
Numerical simulations of laboratory astrophysics experiments on plasma flows require plasma microscopic properties that are obtained by means of an atomic kinetic model. This fact implies a careful choice of the most suitable model for the experiment under analysis. Otherwise, the calculations could lead to inaccurate results and inappropriate conclusions. First, a study of the validity of the local thermodynamic equilibrium in the calculation of the average ionization, mean radiative properties, and cooling times of argon plasmas in a range of plasma conditions of interest in laboratory astrophysics experiments on radiative shocks is performed in this work. In the second part, we have made an analysis of the influence of the atomic kinetic model used to calculate plasma microscopic properties of experiments carried out on magpie on radiative bow shocks propagating in argon. The models considered were developed assuming both local and nonlocal thermodynamic equilibrium and, for the latter situation, we have considered in the kinetic model different effects such as external radiation field and plasma mixture. The microscopic properties studied were the average ionization, the charge state distributions, the monochromatic opacities and emissivities, the Planck mean opacity, and the radiative power loss. The microscopic study was made as a postprocess of a radiative-hydrodynamic simulation of the experiment. We have also performed a theoretical analysis of the influence of these atomic kinetic models in the criteria for the onset possibility of thermal instabilities due to radiative cooling in those experiments in which small structures were experimentally observed in the bow shock that could be due to this kind of instability.
Four-probe measurements with a three-probe scanning tunneling microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salomons, Mark; Martins, Bruno V. C.; Zikovsky, Janik
2014-04-15
We present an ultrahigh vacuum (UHV) three-probe scanning tunneling microscope in which each probe is capable of atomic resolution. A UHV JEOL scanning electron microscope aids in the placement of the probes on the sample. The machine also has a field ion microscope to clean, atomically image, and shape the probe tips. The machine uses bare conductive samples and tips with a homebuilt set of pliers for heating and loading. Automated feedback controlled tip-surface contacts allow for electrical stability and reproducibility while also greatly reducing tip and surface damage due to contact formation. The ability to register inter-tip position bymore » imaging of a single surface feature by multiple tips is demonstrated. Four-probe material characterization is achieved by deploying two tips as fixed current probes and the third tip as a movable voltage probe.« less
A versatile atomic force microscope integrated with a scanning electron microscope.
Kreith, J; Strunz, T; Fantner, E J; Fantner, G E; Cordill, M J
2017-05-01
A versatile atomic force microscope (AFM), which can be installed in a scanning electron microscope (SEM), is introduced. The flexible design of the instrument enables correlated analysis for different experimental configurations, such as AFM imaging directly after nanoindentation in vacuum. In order to demonstrate the capabilities of the specially designed AFM installed inside a SEM, slip steps emanating around nanoindents in single crystalline brass were examined. This example showcases how the combination of AFM and SEM imaging can be utilized for quantitative dislocation analysis through the measurement of the slip step heights without the hindrance of oxide formation. Finally, an in situ nanoindentation technique is introduced, illustrating the use of AFM imaging during indentation experiments to examine plastic deformation occurring under the indenter tip. The mechanical indentation data are correlated to the SEM and AFM images to estimate the number of dislocations emitted to the surface.
Microstructures and properties of rapidly solidified alloys
NASA Technical Reports Server (NTRS)
Shechtman, D.; Horowitz, E.
1984-01-01
The microstructure and properties of rapidly solidified aluminum alloys were researched. The effects of powder and flake chemistry and morphology and alternative consolidation processing parameters are being conducted. Samples of the powders being utilized were obtained for comprehensive metallurgical characterization. Seven aluminum alloys in the form of thin foils were studied by a variety of techniques including optical metallography, scanning electron microscope, and transmission electron microscope. Details of the microstructural characteristics are presented along with a discussion of the solidification process. A better understanding of the microstructure of the rapidly solidified aluminum alloys prepared by a variety of techniques such as roller quenching, the vacuum atomized procedure, ultrasonically atomized in inert atmospheres, and atomized in flue gas was provided.
The deflection of carbon composite carbon nanotube / graphene using molecular dynamics simulation
NASA Astrophysics Data System (ADS)
Kolesnikova, A. S.; Kirillova, I. V.; Kossovich, L. U.
2018-02-01
For the first time, the dependence of the bending force on the transverse displacement of atoms in the center of the composite material consisting of graphene and parallel oriented zigzag nanotubes was studied. Mathematical modeling of the action of the needle of the atomic force microscope was carried out using the single-layer armchair carbon nanotube. Armchair nanotubes are convenient for using them as a needle of an atomic force microscope, because their edges are not sharpened (unlike zigzag tubes). Consequently, armchair nanotubes will cause minimal damage upon contact with the investigation object. The geometric parameters of the composite was revealed under the action of the bending force of 6μN.
Thompson, J B; Paloczi, G T; Kindt, J H; Michenfelder, M; Smith, B L; Stucky, G; Morse, D E; Hansma, P K
2000-01-01
The mixture of EDTA-soluble proteins found in abalone nacre are known to cause the nucleation and growth of aragonite on calcite seed crystals in supersaturated solutions of calcium carbonate. Past atomic force microscope studies of the interaction of these proteins with calcite crystals did not observe this transition because no information about the crystal polymorph on the surface was obtained. Here we have used the atomic force microscope to directly observe changes in the atomic lattice on a calcite seed crystal after the introduction of abalone shell proteins. The observed changes are consistent with a transition to (001) aragonite growth on a (1014) calcite surface. PMID:11106633
NASA Astrophysics Data System (ADS)
Setiawan, Widagdo
Recent advances in using microscopes in ultracold atom experiment have allowed experimenters for the first time to directly observe and manipulate individual atoms in individual lattice sites. This technique enhances our capability to simulate strongly correlated systems such as Mott insulator and high temperature superconductivity. Currently, all ultracold atom experiments with high resolution imaging capability use bosonic atoms. In this thesis, I present our progress towards creating the fermionic version of the microscope experiment which is more suitable for simulating real condensed matter systems. Lithium is ideal due to the existence of both fermionic and bosonic isotopes, its light mass, which means faster experiment time scales that suppresses many sources of technical noise, and also due to the existence of a broad Feshbach resonance, which can be used to tune the inter-particle interaction strength over a wide range from attractive, non-interacting, and repulsive interactions. A high numerical aperture objective will be used to image and manipulate the atoms with single lattice site resolution. This setup should allow us to implement the Hubbard hamiltonian which could describe interesting quantum phases such as antiferromagnetism, d-wave superfluidity, and high temperature superconductivity. I will also discuss the feasibility of the Raman sideband cooling method for cooling the atoms during the imaging process. We have also developed a new electronic control system to control the sequence of the experiment. This electronic system is very scalable in order to keep up with the increasing complexity of atomic physics experiments. Furthermore, the system is also designed to be more precise in order to keep up with the faster time scale of lithium experiment.
NASA Astrophysics Data System (ADS)
Yedra, Lluís; Eswara, Santhana; Dowsett, David; Wirtz, Tom
2016-06-01
Isotopic analysis is of paramount importance across the entire gamut of scientific research. To advance the frontiers of knowledge, a technique for nanoscale isotopic analysis is indispensable. Secondary Ion Mass Spectrometry (SIMS) is a well-established technique for analyzing isotopes, but its spatial-resolution is fundamentally limited. Transmission Electron Microscopy (TEM) is a well-known method for high-resolution imaging down to the atomic scale. However, isotopic analysis in TEM is not possible. Here, we introduce a powerful new paradigm for in-situ correlative microscopy called the Parallel Ion Electron Spectrometry by synergizing SIMS with TEM. We demonstrate this technique by distinguishing lithium carbonate nanoparticles according to the isotopic label of lithium, viz. 6Li and 7Li and imaging them at high-resolution by TEM, adding a new dimension to correlative microscopy.
The Morphology of Silver Layers on SU8 polymers prepared by Electroless Deposition
NASA Astrophysics Data System (ADS)
Dutta, Aniruddha; Yuan, Biao; Heinrich, Helge; Grabill, Chris; Williams, Henry; Kuebler, Stephen; Bhattacharya, Aniket
2010-03-01
Silver was deposited onto the functionalized surface of polymeric SU-8 where gold nanoparticles (Au-NPs) act as nucleation sites using electroless metallization chemistry. Here we report on the evolution of the nanoscale morphology of deposited Ag studied by Transmission Electron Microscopy (TEM). In TEM of sample cross sections correlations between the original gold and the silver nanoparticles were obtained while plan-view TEM results showed the distribution of nanoparticles on the surface. Scanning TEM with a high-angle annular dark field detector was used to obtain atomic number contrast. The morphology of the deposited Ag was controlled through the presence and absence of gum Arabic. The thickness and height fluctuations of the Ag layer were determined as a function of time and a statistical analysis of the growth process was conducted for the initial deposition periods.
Leiterer, Christian; Deckert-Gaudig, Tanja; Singh, Prabha; Wirth, Janina; Deckert, Volker; Fritzsche, Wolfgang
2015-05-01
Tip-enhanced Raman spectroscopy, a combination of Raman spectroscopy and scanning probe microscopy, is a powerful technique to detect the vibrational fingerprint of molecules at the nanometer scale. A metal nanoparticle at the apex of an atomic force microscope tip leads to a large enhancement of the electromagnetic field when illuminated with an appropriate wavelength, resulting in an increased Raman signal. A controlled positioning of individual nanoparticles at the tip would improve the reproducibility of the probes and is quite demanding due to usually serial and labor-intensive approaches. In contrast to commonly used submicron manipulation techniques, dielectrophoresis allows a parallel and scalable production, and provides a novel approach toward reproducible and at the same time affordable tip-enhanced Raman spectroscopy tips. We demonstrate the successful positioning of an individual plasmonic nanoparticle on a commercial atomic force microscope tip by dielectrophoresis followed by experimental proof of the Raman signal enhancing capabilities of such tips. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kisielowski, Christian
Christian Kisielowski, an expert in electron microscopy at Lawrence Berkeley National Laboratory, investigates ways to allow studies of single atoms using sophisticated microscopes and imaginative techniques. His goal is to account for every atom in the interior of both simple and complex materials. Find out how he and his colleagues are breaking the barriers to account for every atom.
NASA Astrophysics Data System (ADS)
Ćelik, Ümit; Karcı, Özgür; Uysallı, Yiǧit; Özer, H. Özgür; Oral, Ahmet
2017-01-01
We describe a novel radiation pressure based cantilever excitation method for imaging in dynamic mode atomic force microscopy (AFM) for the first time. Piezo-excitation is the most common method for cantilever excitation, however it may cause spurious resonance peaks. Therefore, the direct excitation of the cantilever plays a crucial role in AFM imaging. A fiber optic interferometer with a 1310 nm laser was used both for the excitation of the cantilever at the resonance and the deflection measurement of the cantilever in a commercial low temperature atomic force microscope/magnetic force microscope (AFM/MFM) from NanoMagnetics Instruments. The laser power was modulated at the cantilever's resonance frequency by a digital Phase Locked Loop (PLL). The laser beam is typically modulated by ˜500 μW, and ˜141.8 nmpp oscillation amplitude is obtained in moderate vacuum levels between 4 and 300 K. We have demonstrated the performance of the radiation pressure excitation in AFM/MFM by imaging atomic steps in graphite, magnetic domains in CoPt multilayers between 4 and 300 K and Abrikosov vortex lattice in BSCCO(2212) single crystal at 4 K for the first time.
Çelik, Ümit; Karcı, Özgür; Uysallı, Yiğit; Özer, H Özgür; Oral, Ahmet
2017-01-01
We describe a novel radiation pressure based cantilever excitation method for imaging in dynamic mode atomic force microscopy (AFM) for the first time. Piezo-excitation is the most common method for cantilever excitation, however it may cause spurious resonance peaks. Therefore, the direct excitation of the cantilever plays a crucial role in AFM imaging. A fiber optic interferometer with a 1310 nm laser was used both for the excitation of the cantilever at the resonance and the deflection measurement of the cantilever in a commercial low temperature atomic force microscope/magnetic force microscope (AFM/MFM) from NanoMagnetics Instruments. The laser power was modulated at the cantilever's resonance frequency by a digital Phase Locked Loop (PLL). The laser beam is typically modulated by ∼500 μW, and ∼141.8 nm pp oscillation amplitude is obtained in moderate vacuum levels between 4 and 300 K. We have demonstrated the performance of the radiation pressure excitation in AFM/MFM by imaging atomic steps in graphite, magnetic domains in CoPt multilayers between 4 and 300 K and Abrikosov vortex lattice in BSCCO(2212) single crystal at 4 K for the first time.
Raman-atomic force microscopy of the ommatidial surfaces of Dipteran compound eyes.
Anderson, Mark S; Gaimari, Stephen D
2003-06-01
The ommatidial lens surfaces of the compound eyes in several species of files (Insecta: Diptera) and a related order (Mecoptera) were analyzed using a recently developed Raman-atomic force microscope. We demonstrate in this work that the atomic force microscope (AFM) is a potentially useful instrument for gathering phylogenetic data and that the newly developed Raman-AFM may extend this application by revealing nanometer-scale surface chemistry. This is the first demonstration of apertureless near-field Raman spectroscopy on an intact biological surface. For Chrysopilus testaceipes Bigot (Rhagionidae), this reveals unique cerebral cortex-like surface ridges with periodic variation in height and surface chemistry. Most other Brachyceran flies, and the "Nematoceran" Sylvicola fenestralis (Scopoli) (Anisopodidae), displayed the same morphology, while other taxa displayed various other characteristics, such as a nodule-like (Tipula (Triplicitipula) sp. (Tipulidae)) or coalescing nodule-like (Tabanus punctifer Osten Sacken (Tabanidae)) morphology, a smooth morphology with distinct pits and grooves (Dilophus orbatus (Say) (Bibionidae)), or an entirely smooth surface (Bittacus chlorostigma MacLachlan (Mecoptera: Bittacidae)). The variation in submicrometer structure and surface chemistry provides a new information source of potential phylogenetic importance, suggesting the Raman-atomic force microscope could provide a new tool useful to systematic and evolutionary inquiry.
Raman-atomic force microscopy of the ommatidial surfaces of Dipteran compound eyes
NASA Technical Reports Server (NTRS)
Anderson, Mark S.; Gaimari, Stephen D.
2003-01-01
The ommatidial lens surfaces of the compound eyes in several species of files (Insecta: Diptera) and a related order (Mecoptera) were analyzed using a recently developed Raman-atomic force microscope. We demonstrate in this work that the atomic force microscope (AFM) is a potentially useful instrument for gathering phylogenetic data and that the newly developed Raman-AFM may extend this application by revealing nanometer-scale surface chemistry. This is the first demonstration of apertureless near-field Raman spectroscopy on an intact biological surface. For Chrysopilus testaceipes Bigot (Rhagionidae), this reveals unique cerebral cortex-like surface ridges with periodic variation in height and surface chemistry. Most other Brachyceran flies, and the "Nematoceran" Sylvicola fenestralis (Scopoli) (Anisopodidae), displayed the same morphology, while other taxa displayed various other characteristics, such as a nodule-like (Tipula (Triplicitipula) sp. (Tipulidae)) or coalescing nodule-like (Tabanus punctifer Osten Sacken (Tabanidae)) morphology, a smooth morphology with distinct pits and grooves (Dilophus orbatus (Say) (Bibionidae)), or an entirely smooth surface (Bittacus chlorostigma MacLachlan (Mecoptera: Bittacidae)). The variation in submicrometer structure and surface chemistry provides a new information source of potential phylogenetic importance, suggesting the Raman-atomic force microscope could provide a new tool useful to systematic and evolutionary inquiry.
A combined scanning tunneling microscope-atomic layer deposition tool.
Mack, James F; Van Stockum, Philip B; Iwadate, Hitoshi; Prinz, Fritz B
2011-12-01
We have built a combined scanning tunneling microscope-atomic layer deposition (STM-ALD) tool that performs in situ imaging of deposition. It operates from room temperature up to 200 °C, and at pressures from 1 × 10(-6) Torr to 1 × 10(-2) Torr. The STM-ALD system has a complete passive vibration isolation system that counteracts both seismic and acoustic excitations. The instrument can be used as an observation tool to monitor the initial growth phases of ALD in situ, as well as a nanofabrication tool by applying an electric field with the tip to laterally pattern deposition. In this paper, we describe the design of the tool and demonstrate its capability for atomic resolution STM imaging, atomic layer deposition, and the combination of the two techniques for in situ characterization of deposition.
NASA Astrophysics Data System (ADS)
Roy, Chiranjeeb; John, Sajeev
2010-02-01
We derive a quantum theory of the role of acoustic and optical phonons in modifying the optical absorption line shape, polarization dynamics, and population dynamics of a two-level atom (quantum dot) in the “colored” electromagnetic vacuum of a photonic band-gap (PBG) material. This is based on a microscopic Hamiltonian describing both radiative and vibrational processes quantum mechanically. We elucidate the extent to which phonon-assisted decay limits the lifetime of a single photon-atom bound state and derive the modified spontaneous emission dynamics due to coupling to various phonon baths. We demonstrate that coherent interaction with undamped phonons can lead to an enhanced lifetime of a photon-atom bound state in a PBG. This results in reduction of the steady-state atomic polarization but an increase in the fractionalized upper state population in the photon-atom bound state. We demonstrate, on the other hand, that the lifetime of the photon-atom bound state in a PBG is limited by the lifetime of phonons due to lattice anharmonicities (breakup of phonons into lower energy phonons) and purely nonradiative decay. We also derive the modified polarization decay and dephasing rates in the presence of such damping. This leads to a microscopic, quantum theory of the optical absorption line shapes. Our model and formalism provide a starting point for describing dephasing and relaxation in the presence of external coherent fields and multiple quantum dot interactions in electromagnetic reservoirs with radiative memory effects.
If Only We Could Account For Every Atom (LBNL Summer Lecture Series)
Kisielowski, Christian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Science Division
2018-02-16
Christian Kisielowski, an expert in electron microscopy at Lawrence Berkeley National Laboratory, investigates ways to allow studies of single atoms using sophisticated microscopes and imaginative techniques. His goal is to account for every atom in the interior of both simple and complex materials. Find out how he and his colleagues are breaking the barriers to account for every atom.
Synthesis and characterization of nanocrystalline graphite from coconut shell with heating process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wachid, Frischa M., E-mail: frischamw@yahoo.com, E-mail: adhiyudhaperkasa@yahoo.com, E-mail: afandisar@yahoo.com, E-mail: nurulrosyidah92@gmail.com, E-mail: darminto@physics.its.ac.id; Perkasa, Adhi Y., E-mail: frischamw@yahoo.com, E-mail: adhiyudhaperkasa@yahoo.com, E-mail: afandisar@yahoo.com, E-mail: nurulrosyidah92@gmail.com, E-mail: darminto@physics.its.ac.id; Prasetya, Fandi A., E-mail: frischamw@yahoo.com, E-mail: adhiyudhaperkasa@yahoo.com, E-mail: afandisar@yahoo.com, E-mail: nurulrosyidah92@gmail.com, E-mail: darminto@physics.its.ac.id
Graphite were synthesized and characterized by heating process of coconut shell with varying temperature (400, 800 and 1000°C) and holding time (3 and 5 hours). After heating process, the samples were characterized by X-ray diffraction (XRD) and analyzed by X'pert HighScore Plus Software, Scanning Electron Microcope-Energy Dispersive X-Ray (SEM-EDX) and Transmission Electron Microscope-Energy Dispersive X-Ray (TEM-EDX). Graphite and londsdaelite phase were analyzed by XRD. According to EDX analysis, the sample was heated in 1000°C got the highest content of carbon. The amorphous carbon and nanocrystalline graphite were observed by SEM-EDX and TEM-EDX.
Clay minerals in primitive meteorites and interplanetary dust 2. Smectites and micas
NASA Technical Reports Server (NTRS)
Keller, L. P.; Zolensky, M. E.
1991-01-01
The classification is briefly summarized of stony meteorites and cosmic dust, and the mineralogy and chemistry is described of serpentine group minerals. The occurrence of smectites and micas in extraterrestrial materials is examined. The characterization of fine grained minerals in meteorites and IDPs relies heavily on electron beam instruments, especially the transmission electron microscope (TEM). Typically, phyllosilicates are identified by a combination of high resolution imaging of basal spacings, electron diffraction, and chemical analysis. Smectites can be difficult to differentiate from micas because the smectites lose their interlayer water and the interlayer partly collapse in the high vacuum of the TEM.
NASA Astrophysics Data System (ADS)
Meliana, Y.; Harmami, S. B.; Restu, W. K.
2017-02-01
This research investigated nanoencapsulation of Centella asiatica and Zingiber officinale extract. The encapsulated extract was used as a complex matrix of multi-layered interfacial membranes between malto dextrin and gum Arabic. Characterization of nanoencapsulation using Transmission Electron Microscope (TEM), Fourier Transform Infrared Spectroscopy (FTIR) and BET surface area (SA) showed the morphology, functional group and cumulative adsorption in the surface area of pores. The TEM image of the nanoencapsulated powders of Centella asiatica and Zingiber officinale extract showed a nearly spherical shape with the particle size of 664 nm from its average radius.
Brodusch, Nicolas; Voisard, Frédéric; Gauvin, Raynald
2017-11-01
Characterising the impact of lithium additions in the precipitation sequence in Al-Li-Cu alloys is important to control the strengthening of the final material. Since now, transmission electron microscopy (TEM) at high beam voltage has been the technique of choice to monitor the size and spatial distribution of δ' precipitates (Al 3 Li). Here we report on the imaging of the δ' phase in such alloys using backscattered electrons (BSE) and low accelerating voltage in a high-resolution field-emission scanning electron microscope. By applying low-energy Ar + ion milling to the surface after mechanical polishing (MP), the MP-induced corroded layers were efficiently removed and permitted the δ's to be visible with a limited impact on the observed microstructure. The resulting BSE contrast between the δ's and the Al matrix was compared with that obtained using Monte Carlo modelling. The artefacts possibly resulting from the sample preparation procedure were reviewed and discussed and permitted to confirm that these precipitates were effectively the metastable δ's. The method described in this report necessitates less intensive sample preparation than that required for TEM and provides a much larger field of view and an easily interpretable contrast compared to the transmission techniques. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.
A study of over production and enhanced secretion of enzymes. Quarterly report 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dashek, W.V.
1992-12-28
The current project is concerned with the over-production and enhanced secretion of PPO, cellulase and lignin peroxidase. The project is divided into two segments: over-production of lignocellulolytic enzymes by genetic engineering methodologies and hyper-production and enhanced secretion of these enzymes by biochemical/electron microscopical techniques. The former approach employs recombinant DNA procedures, ligation of appropriate nuclease generated DNA fragments into a vector and the subsequent transformation of Escherichia coli to yield E. coli harboring a C. versicolor DNA insert. The biochemistry/electron microscopical method involves substrate induction and the time-dependent addition of respiration and PPO inhibitors to elevate C.versicolor`s ability to synthesizemore » and secrete lignocellulosic enzymes. In this connection, cell fractionation/kinetic analysis, TEM immunoelectron microscopic localization and TEM substrate localization of PPO are being employed to assess the route of secretion. Both approaches will culminate in the batch culture of either E. coli or C. versicolor, in a fermentor with the subsequent development of rapid isolation and purification procedures to yield elevated quantities of pure lignocellulosic enzymes. During the past year, research effort were directed toward determining the route of polyphenol oxidase (PPO) secretion by the wood-decay fungus, Coriolus versicolor. In addition, research activities were continued to over-produce and to purify PPO as well as define the time-dependent intra- and extra-cellular appearances of C. versicolor ligninases and cellulases.« less
Vijayarathna, Soundararajan; Chen, Yeng; Kanwar, Jagat R; Sasidharan, Sreenivasan
2017-07-01
Over the years a number of microscopy methods have been developed to assess the changes in cells. Some non-invasive techniques such as holographic digital microscopy (HDM), which although does not destroy the cells, but helps to monitor the events that leads to initiation of apoptotic cell death. In this study, the apoptogenic property and the cytotoxic effect of P. longifolia leaf methanolic extract (PLME) against the human cervical carcinoma cells (HeLa) was studied using light microscope (LM), holographic digital microscopy (HDM), scanning electron microscope (SEM) and transmission electron microscope (TEM). The average IC 50 value of PLME against HeLa cells obtained by MTT and CyQuant assay was 22.00μg/mL at 24h. However, noncancerous Vero cells tested with PLME exhibited no cytotoxicity with the IC 50 value of 51.07μg/mL at 24h by using MTT assay. Cytological observations showed nuclear condensation, cell shrinkage, multinucleation, abnormalities of mitochondrial cristae, membrane blebbing, disappearance of microvilli and filopodia, narrowing of lamellipodia, holes, formation of numerous smaller vacuoles, cytoplasmic extrusions and formation of apoptotic bodies as confirmed collectively by HDM, LM, SEM and TEM. In conclusion, PLME was able to produce distinctive morphological features of HeLa cell death that corresponds to apoptosis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Amanokura, Jin; Ono, Hiroshi; Hombo, Kyoko
2011-05-01
In order to obtain a high-speed copper chemical mechanical polishing (CMP) process for through silicon vias (TSV) application, we developed a new Cu CMP slurry through friction analysis of Cu reaction layer by an atomic force microscope (AFM) technique. A lateral modulation friction force microscope (LM-FFM) is able to measure the friction value properly giving a vibration to the layer. We evaluated the torsional displacement between the probe of the LM-FFM and the Cu reaction layer under a 5 nm vibration to cancel the shape effect of the Cu reaction layer. The developed Cu CMP slurry forms a frictionally easy-removable Cu reaction layer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sudheer,, E-mail: sudheer@rrcat.gov.in; Tiwari, P.; Rai, V. N.
The plasmonic responses of silver nanoparticles extracted from silver halide based electron microscope film are investigated. Photo-reduction process is carried out to convert the silver halide grains into the metallic silver. The centrifuge technique is used for separating the silver nanoparticles from the residual solution. Morphological study performed by field emission scanning electron microscope (FESEM) shows that all the nanoparticles have an average diameter of ~120 nm with a high degree of mono dispersion in size. The localized surface plasmon resonance (LSPR) absorption peak at ~537 nm confirms the presence of large size silver nanoparticles.
Nanoscale welding of multi-walled carbon nanotubes by 1064 nm fiber laser
NASA Astrophysics Data System (ADS)
Yuan, Yanping; Liu, Zhi; Zhang, Kaihu; Han, Weina; Chen, Jimin
2018-07-01
This study proposes an efficient approach which uses 1064 nm continuous fiber laser to achieve nanoscale welding of crossed multi-walled carbon nanotubes (MWCNTs). By changing the irradiation time, different quality of nanoscale welding is obtained. The morphology changes are investigated by scanning electron microscope (SEM) and transmission electron microscope (TEM). The experiments demonstrate that better quality of MWCNTs nanoscale welding after 3 s irradiation can be obtained. It is found that new graphene layers between crossed nanotubes induced by laser make the nanoscale welding achieved due to the absorption of laser energy.
Nakano, Hiromi; Kamimoto, Konatsu; Yamamoto, Takahisa; Furuta, Yoshio
2018-06-11
We first successfully synthesized Li 1+ x − y Nb 1− x −3 y Ti x +4 y O₃ (LNT) solid solutions (0.13 ≤ x ≤ 0.18, 0 ≤ y ≤ 0.06) rapidly at 1373 K for one hour under 0.35 MPa by the controlling of air pressure using an air-pressure control atmosphere furnace. The composition is a formation area of a superstructure for LNT, in which the periodical intergrowth layer was formed in the matrix, and where it can be controlled by Ti content. Therefore, the sintering time depended on Ti content, and annealing was repeated for over 24 h until a homogeneous structure was formed using a conventional electric furnace. We clarified the mechanism of the rapid sintering using various microscale to nanoscale characterization techniques: X-ray diffraction, a scanning electron microscope, a transmission electron microscope (TEM), a Cs-corrected scanning TEM equipped with electron energy-loss spectroscopy, and X-ray absorption fine structure spectroscopy.
Pan, Ko-Ying; Wei, Da-Hua
2016-01-01
Substantial synthetic vanadium pentoxide (V2O5) nanowires were successfully produced by a vapor-solid (VS) method of thermal evaporation without using precursors as nucleation sites for single crystalline V2O5 nanowires with a (110) growth plane. The micromorphology and microstructure of V2O5 nanowires were analyzed by scanning electron microscope (SEM), energy-dispersive X-ray spectroscope (EDS), transmission electron microscope (TEM) and X-ray diffraction (XRD). The spiral growth mechanism of V2O5 nanowires in the VS process is proved by a TEM image. The photo-luminescence (PL) spectrum of V2O5 nanowires shows intrinsic (410 nm and 560 nm) and defect-related (710 nm) emissions, which are ascribable to the bound of inter-band transitions (V 3d conduction band to O 2p valence band). The electrical resistivity could be evaluated as 64.62 Ω·cm via four-point probe method. The potential differences between oxidation peak and reduction peak are 0.861 V and 0.470 V for the first and 10th cycle, respectively. PMID:28335268
NASA Astrophysics Data System (ADS)
Rajendiran, N.; Mohandoss, T.; Sankaranarayanan, R. K.
2015-02-01
Inclusion complexation behavior of procainamide (PCA) with two cyclodextrins (α-CD and β-CD) were analyzed by absorption, fluorescence, scanning electron microscope (SEM), transmission electron microscope (TEM), Raman image, FT-IR, differential scanning colorimeter (DSC), Powder X ray diffraction (XRD) and 1H NMR. Blue shift was observed in β-CD whereas no significant spectral shift observed in α-CD. The inclusion complex formation results suggest that water molecules also present in the inside of the CD cavity. The present study revealed that the phenyl ring of the PCA drug is entrapped in the CD cavity. Cyclodextrin studies show that PCA forms 1:2 inclusion complex with α-CD and β-CD. PCA:α-CD complex form nano-sized particles (46 nm) and PCA:β-CD complex form self-assembled to micro-sized tubular structures. The shape-shifting of 2D nanosheets into 1D microtubes by simple rolling mechanism were analysed by micro-Raman and TEM images. Thermodynamic parameters (ΔH, ΔG and ΔS) of inclusion process were determined from semiempirical PM3 calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levin, Barnaby D. A.; Zachman, Michael J.; Werner, Jörg G.
Abstract Lithium sulfur (Li–S) batteries have the potential to provide higher energy storage density at lower cost than conventional lithium ion batteries. A key challenge for Li–S batteries is the loss of sulfur to the electrolyte during cycling. This loss can be mitigated by sequestering the sulfur in nanostructured carbon–sulfur composites. The nanoscale characterization of the sulfur distribution within these complex nanostructured electrodes is normally performed by electron microscopy, but sulfur sublimates and redistributes in the high-vacuum conditions of conventional electron microscopes. The resulting sublimation artifacts render characterization of sulfur in conventional electron microscopes problematic and unreliable. Here, we demonstratemore » two techniques, cryogenic transmission electron microscopy (cryo-TEM) and scanning electron microscopy in air (airSEM), that enable the reliable characterization of sulfur across multiple length scales by suppressing sulfur sublimation. We use cryo-TEM and airSEM to examine carbon–sulfur composites synthesized for use as Li–S battery cathodes, noting several cases where the commonly employed sulfur melt infusion method is highly inefficient at infiltrating sulfur into porous carbon hosts.« less
Electron microscopy study of gold nanoparticles deposited on transition metal oxides.
Akita, Tomoki; Kohyama, Masanori; Haruta, Masatake
2013-08-20
Many researchers have investigated the catalytic performance of gold nanoparticles (GNPs) supported on metal oxides for various catalytic reactions of industrial importance. These studies have consistently shown that the catalytic activity and selectivity depend on the size of GNPs, the kind of metal oxide supports, and the gold/metal oxide interface structure. Although researchers have proposed several structural models for the catalytically active sites and have identified the specific electronic structures of GNPs induced by the quantum effect, recent experimental and theoretical studies indicate that the perimeter around GNPs in contact with the metal oxide supports acts as an active site in many reactions. Thus, it is of immense importance to investigate the detailed structures of the perimeters and the contact interfaces of gold/metal oxide systems by using electron microscopy at an atomic scale. This Account describes our investigation, at the atomic scale using electron microscopy, of GNPs deposited on metal oxides. In particular, high-resolution transmission electron microscopy (HRTEM) and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) are valuable tools to observe local atomic structures, as has been successfully demonstrated for various nanoparticles, surfaces, and material interfaces. TEM can be applied to real powder catalysts as received without making special specimens, in contrast to what is typically necessary to observe bulk materials. For precise structure analyses at an atomic scale, model catalysts prepared by using well-defined single-crystalline substrates are also adopted for TEM observations. Moreover, aberration-corrected TEM, which has high spatial resolution under 0.1 nm, is a promising tool to observe the interface structure between GNPs and metal oxide supports including oxygen atoms at the interfaces. The oxygen atoms in particular play an important role in the behavior of gold/metal oxide interfaces, because they may participate in catalytic reaction steps. Detailed information about the interfacial structures between GNPs and metal oxides provides valuable structure models for theoretical calculations which can elucidate the local electronic structure effective for activating a reactant molecule. Based on our observations with HRTEM and HAADF-STEM, we report the detailed structure of gold/metal oxide interfaces.
Development of an analytical environmental TEM system and its application.
Kishita, Keisuke; Sakai, Hisashi; Tanaka, Hiromochi; Saka, Hiroyasu; Kuroda, Kotaro; Sakamoto, Masayuki; Watabe, Akira; Kamino, Takeo
2009-12-01
Many automotive materials, such as catalysts and fuel cell materials, undergo significant changes in structure or properties when subjected to temperature change or the addition of a gas. For this reason, in the development of these materials, it is important to study the behavior of the material under controlled temperatures and gaseous atmospheres. Recently, a new environmental transmission electron microscope (TEM) has been developed for observation with a high resolution at high temperatures and under gaseous atmospheres, thus making it possible to analyze reaction processes in details. Also, the new TEM provides a high degree of reproducibility of observation conditions, thus making it possible to compare and validate observation of various specimens under a given set of conditions. Furthermore, easiness of gas condition and temperature control can provide a powerful tool for the studying of the mechanism of material change, such as oxidation and reduction reactions.
Cryo-FIB specimen preparation for use in a cartridge-type cryo-TEM.
He, Jie; Hsieh, Chyongere; Wu, Yongping; Schmelzer, Thomas; Wang, Pan; Lin, Ying; Marko, Michael; Sui, Haixin
2017-08-01
Cryo-electron tomography (cryo-ET) is a well-established technique for studying 3D structural details of subcellular macromolecular complexes and organelles in their nearly native context in the cell. A primary limitation of the application of cryo-ET is the accessible specimen thickness, which is less than the diameters of almost all eukaryotic cells. It has been shown that focused ion beam (FIB) milling can be used to prepare thin, distortion-free lamellae of frozen biological material for high-resolution cryo-ET. Commercial cryosystems are available for cryo-FIB specimen preparation, however re-engineering and additional fixtures are often essential for reliable results with a particular cryo-FIB and cryo-transmission electron microscope (cryo-TEM). Here, we describe our optimized protocol and modified instrumentation for cryo-FIB milling to produce thin lamellae and subsequent damage-free cryotransfer of the lamellae into our cartridge-type cryo-TEM. Published by Elsevier Inc.
Parmenter, Christopher D J; Fay, Michael W; Hartfield, Cheryl; Eltaher, Hoda M
2016-04-01
The preparation of thinned lamellae from bulk samples for transmission electron microscopy (TEM) analysis has been possible in the focussed ion beam scanning electron microscope (FIB-SEM) for over 20 years via the in situ lift-out method. Lift-out offers a fast and site specific preparation method for TEM analysis, typically in the field of materials science. More recently it has been applied to a low-water content biological sample (Rubino 2012). This work presents the successful lift-out of high-water content lamellae, under cryogenic conditions (cryo-FIB lift-out) and using a nanomanipulator retaining its full range of motion, which are advances on the work previously done by Rubino (2012). Strategies are explored for maintaining cryogenic conditions, grid attachment using cryo-condensation of water and protection of the lamella when transferring to the TEM. © 2016 Wiley Periodicals, Inc.
Chapter 14: Electron Microscopy on Thin Films for Solar Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romero, Manuel; Abou-Ras, Daniel; Nichterwitz, Melanie
2016-07-22
This chapter overviews the various techniques applied in scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and highlights their possibilities and also limitations. It gives the various imaging and analysis techniques applied on a scanning electron microscope. The chapter shows that imaging is divided into that making use of secondary electrons (SEs) and of backscattered electrons (BSEs), resulting in different contrasts in the images and thus providing information on compositions, microstructures, and surface potentials. Whenever aiming for imaging and analyses at scales of down to the angstroms range, TEM and its related techniques are appropriate tools. In many cases,more » also SEM techniques provide the access to various material properties of the individual layers, not requiring specimen preparation as time consuming as TEM techniques. Finally, the chapter dedicates to cross-sectional specimen preparation for electron microscopy. The preparation decides indeed on the quality of imaging and analyses.« less
NASA Technical Reports Server (NTRS)
Panda, Binayak; Gorti, Sridhar
2013-01-01
A number of research instruments are available at NASA's Marshall Space Flight Center (MSFC) to support ISS researchers and their investigations. These modern analytical tools yield valuable and sometimes new informative resulting from sample characterization. Instruments include modern scanning electron microscopes equipped with field emission guns providing analytical capabilities that include angstron-level image resolution of dry, wet and biological samples. These microscopes are also equipped with silicon drift X-ray detectors (SDD) for fast yet precise analytical mapping of phases, as well as electron back-scattered diffraction (EBSD) units to map grain orientations in crystalline alloys. Sample chambers admit large samples, provide variable pressures for wet samples, and quantitative analysis software to determine phase relations. Advances in solid-state electronics have also facilitated improvements for surface chemical analysis that are successfully employed to analyze metallic materials and alloys, ceramics, slags, and organic polymers. Another analytical capability at MSFC is a mganetic sector Secondary Ion Mass Spectroscopy (SIMS) that quantitatively determines and maps light elements such as hydrogen, lithium, and boron along with their isotopes, identifies and quantifies very low level impurities even at parts per billion (ppb) levels. Still other methods available at MSFC include X-ray photo-electron spectroscopy (XPS) that can determine oxidation states of elements as well as identify polymers and measure film thicknesses on coated materials, Scanning Auger electron spectroscopy (SAM) which combines surface sensitivity, spatial lateral resolution (approximately 20 nm), and depth profiling capabilities to describe elemental compositions in near surface regions and even the chemical state of analyzed atoms. Conventional Transmission Electron Microscope (TEM) for observing internal microstructures at very high magnifications and the Electron Probe Micro-analyzer (EPMA) for very precise microanalysis are available as needed by the researcher. Space Station researchers are invited to work with MSFC in analyzing their samples using these techniques.
Atomic Structure of Intrinsic and Electron-Irradiation-Induced Defects in MoTe2
2018-01-01
Studying the atomic structure of intrinsic defects in two-dimensional transition-metal dichalcogenides is difficult since they damage quickly under the intense electron irradiation in transmission electron microscopy (TEM). However, this can also lead to insights into the creation of defects and their atom-scale dynamics. We first show that MoTe2 monolayers without protection indeed quickly degrade during scanning TEM (STEM) imaging, and discuss the observed atomic-level dynamics, including a transformation from the 1H phase into 1T′, 3-fold rotationally symmetric defects, and the migration of line defects between two 1H grains with a 60° misorientation. We then analyze the atomic structure of MoTe2 encapsulated between two graphene sheets to mitigate damage, finding the as-prepared material to contain an unexpectedly large concentration of defects. These include similar point defects (or quantum dots, QDs) as those created in the nonencapsulated material and two different types of line defects (or quantum wires, QWs) that can be transformed from one to the other under electron irradiation. Our density functional theory simulations indicate that the QDs and QWs embedded in MoTe2 introduce new midgap states into the semiconducting material and may thus be used to control its electronic and optical properties. Finally, the edge of the encapsulated material appears amorphous, possibly due to the pressure caused by the encapsulation. PMID:29503509
Truong, Quang Duc; Devaraju, Murukanahally Kempaiah; Tomai, Takaaki; Honma, Itaru
2013-10-23
LiCoPO4 cathode materials have been synthesized by a sol-gel route. X-ray diffraction analysis confirmed that LiCoPO4 was well-crystallized in an orthorhombic structure in the Pmna space group. From the high-resolution transmission electron microscopy (HR-TEM) image, the lattice fringes of {001} and {100} are well-resolved. The HR-TEM image and selected area electron diffraction pattern reveal the highly crystalline nature of LiCoPO4 having an ordered olivine structure. The atom-by-atom structure of LiCoPO4 olivine has been observed, for the first time, using high-angle annular dark-field (HAADF) and annual bright-field scanning transmission electron microscopy. We observed the bright contrast in Li columns in the HAADF images and strong contrast in the ABF images, directly indicating the antisite exchange defects in which Co atoms partly occupy the Li sites. The LiCoPO4 cathode materials delivered an initial discharge capacity of 117 mAh/g at a C/10 rate with moderate cyclic performance. The discharge profile of LiCoPO4 shows a plateau at 4.75 V, revealing its importance as a potentially high-voltage cathode. The direct visualization of atom-by-atom structure in this work represents important information for the understanding of the structure of the active cathode materials for Li-ion batteries.
Distortion of DNA Origami on Graphene Imaged with Advanced TEM Techniques.
Kabiri, Yoones; Ananth, Adithya N; van der Torre, Jaco; Katan, Allard; Hong, Jin-Yong; Malladi, Sairam; Kong, Jing; Zandbergen, Henny; Dekker, Cees
2017-08-01
While graphene may appear to be the ultimate support membrane for transmission electron microscopy (TEM) imaging of DNA nanostructures, very little is known if it poses an advantage over conventional carbon supports in terms of resolution and contrast. Microscopic investigations are carried out on DNA origami nanoplates that are supported onto freestanding graphene, using advanced TEM techniques, including a new dark-field technique that is recently developed in our lab. TEM images of stained and unstained DNA origami are presented with high contrast on both graphene and amorphous carbon membranes. On graphene, the images of the origami plates show severe unwanted distortions, where the rectangular shape of the nanoplates is significantly distorted. From a number of comparative control experiments, it is demonstrated that neither staining agents, nor screening ions, nor the level of electron-beam irradiation cause this distortion. Instead, it is suggested that origami nanoplates are distorted due to hydrophobic interaction of the DNA bases with graphene upon adsorption of the DNA origami nanoplates. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thinning of Large Biological Cells for Cryo-TEM Characterization by Cryo-FIB Milling
Strunk, Korrinn M.; Ke, Danxia; Gray, Jennifer L.; Zhang, Peijun
2013-01-01
SUMMARY Focused ion beam milling at cryogenic temperatures (cryo-FIB) is a valuable tool that can be used to thin vitreous biological specimens for subsequent imaging and analysis in a cryo-transmission electron microscope (cryo-TEM) in their frozen-hydrated state. This technique offers the potential benefit of eliminating the mechanical artifacts that are typically found with cryo-ultramicrotomy. However, due to the additional complexity in transferring samples in and out of the FIB, contamination and devitrification of the amorphous ice is commonly encountered. In order to address these problems, we have designed a new sample cryo-shuttle that specifically accepts Polara TEM cartridges directly in order to simplify the transfer process between the FIB and TEM. We used the quality of the ice in the sample as an indicator to test various parameters used the process, and demonstrated with successful milling of large mammalian cells. By comparing the results from larger HeLa cells to those from E. coli cells, we discuss some of the artifacts and challenges we have encountered using this technique. PMID:22906009
Wen, C; Ma, Y J
2018-03-01
The determination of atomic structures and further quantitative information such as chemical compositions at atomic scale for semiconductor defects or heteroepitaxial interfaces can provide direct evidence to understand their formation, modification, and/or effects on the properties of semiconductor films. The commonly used method, high-resolution transmission electron microscopy (HRTEM), suffers from difficulty in acquiring images that correctly show the crystal structure at atomic resolution, because of the limitation in microscope resolution or deviation from the Scherzer-defocus conditions. In this study, an image processing method, image deconvolution, was used to achieve atomic-resolution (∼1.0 Å) structure images of small lattice-mismatch (∼1.0%) AlN/6H-SiC (0001) and large lattice-mismatch (∼8.5%) AlSb/GaAs (001) heteroepitaxial interfaces using simulated HRTEM images of a conventional 300-kV field-emission-gun transmission electron microscope under non-Scherzer-defocus conditions. Then, atomic-scale chemical compositions at the interface were determined for the atomic intermixing and Lomer dislocation with an atomic step by analyzing the deconvoluted image contrast. Furthermore, the effect of dynamical scattering on contrast analysis was also evaluated for differently weighted atomic columns in the compositions. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jennewein, Stephan; Brossard, Ludovic; Sortais, Yvan R. P.; Browaeys, Antoine; Cheinet, Patrick; Robert, Jacques; Pillet, Pierre
2018-05-01
We measure the coherent scattering of low-intensity, near-resonant light by a cloud of laser-cooled two-level rubidium atoms with a size comparable to the wavelength of light. We isolate a two-level atomic structure by applying a 300-G magnetic field. We measure both the temporal and the steady-state coherent optical response of the cloud for various detunings of the laser and for atom numbers ranging from 5 to 100. We compare our results to a microscopic coupled-dipole model and to a multimode, paraxial Maxwell-Bloch model. In the low-intensity regime, both models are in excellent agreement, thus validating the Maxwell-Bloch model. Comparing to the data, the models are found in very good agreement for relatively low densities (n /k3≲0.1 ), while significant deviations start to occur at higher density. This disagreement indicates that light scattering in dense, cold atomic ensembles is still not quantitatively understood, even in pristine experimental conditions.
Construction of a Quantum Matter Synthesizer
NASA Astrophysics Data System (ADS)
Trisnadi, Jonathan; McDonald, Mickey; Chin, Cheng
2017-04-01
We report progress on the construction of a new platform to manipulate ultracold atoms. The ``Quantum Matter Synthesizer (QMS)'' will have the capability of deterministically preparing large 2D arrays of atoms with single site addressability. Cesium atoms are first transferred into a science cell (specially textured to reduce reflectance to 0.1% across a wide range of wavelengths and incident angles) via a moving 1D lattice, where they are loaded into a magic-wavelength, far-detuned 2D optical lattice. Two NA=0.8 microscope objectives surround the science cell from above and below. The lower objective will be used to project an array of optical tweezers created via a digital micromirror device (DMD) onto the atom-trapping plane, which will be used to rearrange atoms into a desired configuration after first taking a site-resolved fluorescence image of the initial atomic distribution with the upper objective. We provide updates on our magnetic-optical trap and Raman-sideband cooling performance, characterization of the resolution of our microscope objectives, and stability tests for the objective mounting structure.
Low-energy ion beam synthesis of Ag endotaxial nanostructures in silicon
NASA Astrophysics Data System (ADS)
Nagarajappa, Kiran; Guha, Puspendu; Thirumurugan, Arun; Satyam, Parlapalli V.; Bhatta, Umananda M.
2018-06-01
Coherently, embedded metal nanostructures (endotaxial) are known to have potential applications concerning the areas of plasmonics, optoelectronics and thermoelectronics. Incorporating appropriate concentrations of metal atoms into crystalline silicon is critical for these applications. Therefore, choosing proper dose of low-energy ions, instead of depositing thin film as a source of metal atoms, helps in avoiding surplus concentration of metal atoms that diffuses into the silicon crystal. In this work, 30 keV silver negative ions are implanted into a SiO x /Si(100) at two different fluences: 1 × 1015 and 2.5 × 1015 Ag- ions/cm2. Later, the samples are annealed at 700 °C for 1 h in Ar atmosphere. Embedded silver nanostructures have been characterized using planar and cross-sectional TEM (XTEM) analysis. Planar TEM analysis shows the formation of mostly rectangular silver nanostructures following the fourfold symmetry of the substrate. XTEM analysis confirms the formation of prism-shaped silver nanostructures embedded inside crystalline silicon. Endotaxial nature of the embedded crystals has been discussed using selected area electron diffraction analysis.
Simulation of Tip-Sample Interaction in the Atomic Force Microscope
NASA Technical Reports Server (NTRS)
Good, Brian S.; Banerjea, Amitava
1994-01-01
Recent simulations of the interaction between planar surfaces and model Atomic Force Microscope (AFM) tips have suggested that there are conditions under which the tip may become unstable and 'avalanche' toward the sample surface. Here we investigate via computer simulation the stability of a variety of model AFM tip configurations with respect to the avalanche transition for a number of fcc metals. We perform Monte-Carlo simulations at room temperature using the Equivalent Crystal Theory (ECT) of Smith and Banerjea. Results are compared with recent experimental results as well as with our earlier work on the avalanche of parallel planar surfaces. Our results on a model single-atom tip are in excellent agreement with recent experiments on tunneling through mechanically-controlled break junctions.
Zhang, Jincan; Lin, Li; Sun, Luzhao; Huang, Yucheng; Koh, Ai Leen; Dang, Wenhui; Yin, Jianbo; Wang, Mingzhan; Tan, Congwei; Li, Tianran; Tan, Zhenjun; Liu, Zhongfan; Peng, Hailin
2017-07-01
The atomically thin 2D nature of suspended graphene membranes holds promising in numerous technological applications. In particular, the outstanding transparency to electron beam endows graphene membranes great potential as a candidate for specimen support of transmission electron microscopy (TEM). However, major hurdles remain to be addressed to acquire an ultraclean, high-intactness, and defect-free suspended graphene membrane. Here, a polymer-free clean transfer of sub-centimeter-sized graphene single crystals onto TEM grids to fabricate large-area and high-quality suspended graphene membranes has been achieved. Through the control of interfacial force during the transfer, the intactness of large-area graphene membranes can be as high as 95%, prominently larger than reported values in previous works. Graphene liquid cells are readily prepared by π-π stacking two clean single-crystal graphene TEM grids, in which atomic-scale resolution imaging and temporal evolution of colloid Au nanoparticles are recorded. This facile and scalable production of clean and high-quality suspended graphene membrane is promising toward their wide applications for electron and optical microscopy. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
In-line three-dimensional holography of nanocrystalline objects at atomic resolution
Chen, F.-R.; Van Dyck, D.; Kisielowski, C.
2016-01-01
Resolution and sensitivity of the latest generation aberration-corrected transmission electron microscopes allow the vast majority of single atoms to be imaged with sub-Ångstrom resolution and their locations determined in an image plane with a precision that exceeds the 1.9-pm wavelength of 300 kV electrons. Such unprecedented performance allows expansion of electron microscopic investigations with atomic resolution into the third dimension. Here we report a general tomographic method to recover the three-dimensional shape of a crystalline particle from high-resolution images of a single projection without the need for sample rotation. The method is compatible with low dose rate electron microscopy, which improves on signal quality, while minimizing electron beam-induced structure modifications even for small particles or surfaces. We apply it to germanium, gold and magnesium oxide particles, and achieve a depth resolution of 1–2 Å, which is smaller than inter-atomic distances. PMID:26887849
Versatile technique for assessing thickness of 2D layered materials by XPS
NASA Astrophysics Data System (ADS)
Zemlyanov, Dmitry Y.; Jespersen, Michael; Zakharov, Dmitry N.; Hu, Jianjun; Paul, Rajib; Kumar, Anurag; Pacley, Shanee; Glavin, Nicholas; Saenz, David; Smith, Kyle C.; Fisher, Timothy S.; Voevodin, Andrey A.
2018-03-01
X-ray photoelectron spectroscopy (XPS) has been utilized as a versatile method for thickness characterization of various two-dimensional (2D) films. Accurate thickness can be measured simultaneously while acquiring XPS data for chemical characterization of 2D films having thickness up to approximately 10 nm. For validating the developed technique, thicknesses of few-layer graphene (FLG), MoS2 and amorphous boron nitride (a-BN) layer, produced by microwave plasma chemical vapor deposition (MPCVD), plasma enhanced chemical vapor deposition (PECVD), and pulsed laser deposition (PLD) respectively, were accurately measured. The intensity ratio between photoemission peaks recorded for the films (C 1s, Mo 3d, B 1s) and the substrates (Cu 2p, Al 2p, Si 2p) is the primary input parameter for thickness calculation, in addition to the atomic densities of the substrate and the film, and the corresponding electron attenuation length (EAL). The XPS data was used with a proposed model for thickness calculations, which was verified by cross-sectional transmission electron microscope (TEM) measurement of thickness for all the films. The XPS method determines thickness values averaged over an analysis area which is orders of magnitude larger than the typical area in cross-sectional TEM imaging, hence provides an advanced approach for thickness measurement over large areas of 2D materials. The study confirms that the versatile XPS method allows rapid and reliable assessment of the 2D material thickness and this method can facilitate in tailoring growth conditions for producing very thin 2D materials effectively over a large area. Furthermore, the XPS measurement for a typical 2D material is non-destructive and does not require special sample preparation. Therefore, after XPS analysis, exactly the same sample can undergo further processing or utilization.
Versatile technique for assessing thickness of 2D layered materials by XPS
Zemlyanov, Dmitry Y.; Jespersen, Michael; Zakharov, Dmitry N.; ...
2018-02-07
X-ray photoelectron spectroscopy (XPS) has been utilized as a versatile method for thickness characterization of various two-dimensional (2D) films. Accurate thickness can be measured simultaneously while acquiring XPS data for chemical characterization of 2D films having thickness up to approximately 10 nm. For validating the developed technique, thicknesses of few-layer graphene (FLG), MoS 2 and amorphous boron nitride (a-BN) layer, produced by microwave plasma chemical vapor deposition (MPCVD), plasma enhanced chemical vapor deposition (PECVD), and pulsed laser deposition (PLD) respectively, were accurately measured. The intensity ratio between photoemission peaks recorded for the films (C 1s, Mo 3d, B 1s) andmore » the substrates (Cu 2p, Al 2p, Si 2p) is the primary input parameter for thickness calculation, in addition to the atomic densities of the substrate and the film, and the corresponding electron attenuation length (EAL). The XPS data was used with a proposed model for thickness calculations, which was verified by cross-sectional transmission electron microscope (TEM) measurement of thickness for all the films. The XPS method determines thickness values averaged over an analysis area which is orders of magnitude larger than the typical area in cross-sectional TEM imaging, hence provides an advanced approach for thickness measurement over large areas of 2D materials. The study confirms that the versatile XPS method allows rapid and reliable assessment of the 2D material thickness and this method can facilitate in tailoring growth conditions for producing very thin 2D materials effectively over a large area. Furthermore, the XPS measurement for a typical 2D material is non-destructive and does not require special sample preparation. Furthermore, after XPS analysis, exactly the same sample can undergo further processing or utilization.« less
Gola, Deepak; Malik, Anushree; Namburath, Maneesh; Ahammad, Shaikh Ziauddin
2017-10-01
Presence of industrial dyes and heavy metal as a contaminant in environment poses a great risk to human health. In order to develop a potential technology for remediation of dyes (Reactive remazol red, Yellow 3RS, Indanthrene blue and Vat novatic grey) and heavy metal [Cu(II), Ni(II), Cd(II), Zn(II), Cr(VI) and Pb(II)] contamination, present study was performed with entomopathogenic fungi, Beauveria bassiana (MTCC no. 4580). High dye removal (88-97%) was observed during the growth of B. bassiana while removal percentage for heavy metals ranged from 58 to 75%. Further, detailed investigations were performed with Pb(II) in terms of growth kinetics, effect of process parameters and mechanism of removal. Growth rate decreased from 0.118 h -1 (control) to 0.031 h -1 , showing 28% reduction in biomass at 30 mg L -1 Pb(II) with 58.4% metal removal. Maximum Pb(II) removal was observed at 30 °C, neutral pH and 30 mg L -1 initial metal concentration. FTIR analysis indicated the changes induced by Pb(II) in functional groups on biomass surface. Further, microscopic analysis (SEM and atomic force microscopy (AFM)) was performed to understand the changes in cell surface morphology of the fungal cell. SEM micrograph showed a clear deformation of fungal hyphae, whereas AFM studies proved the increase in surface roughness (RSM) in comparison to control cell. Homogenous bioaccumulation of Pb(II) inside the fungal cell was clearly depicted by TEM-high-angle annular dark field coupled with EDX. Present study provides an insight into the mechanism of Pb(II) bioremediation and strengthens the significance of using entomopathogenic fungus such as B. bassiana for metal and dye removal.
Versatile technique for assessing thickness of 2D layered materials by XPS.
Zemlyanov, Dmitry Y; Jespersen, Michael; Zakharov, Dmitry N; Hu, Jianjun; Paul, Rajib; Kumar, Anurag; Pacley, Shanee; Glavin, Nicholas; Saenz, David; Smith, Kyle C; Fisher, Timothy S; Voevodin, Andrey A
2018-03-16
X-ray photoelectron spectroscopy (XPS) has been utilized as a versatile method for thickness characterization of various two-dimensional (2D) films. Accurate thickness can be measured simultaneously while acquiring XPS data for chemical characterization of 2D films having thickness up to approximately 10 nm. For validating the developed technique, thicknesses of few-layer graphene (FLG), MoS 2 and amorphous boron nitride (a-BN) layer, produced by microwave plasma chemical vapor deposition (MPCVD), plasma enhanced chemical vapor deposition (PECVD), and pulsed laser deposition (PLD) respectively, were accurately measured. The intensity ratio between photoemission peaks recorded for the films (C 1s, Mo 3d, B 1s) and the substrates (Cu 2p, Al 2p, Si 2p) is the primary input parameter for thickness calculation, in addition to the atomic densities of the substrate and the film, and the corresponding electron attenuation length (EAL). The XPS data was used with a proposed model for thickness calculations, which was verified by cross-sectional transmission electron microscope (TEM) measurement of thickness for all the films. The XPS method determines thickness values averaged over an analysis area which is orders of magnitude larger than the typical area in cross-sectional TEM imaging, hence provides an advanced approach for thickness measurement over large areas of 2D materials. The study confirms that the versatile XPS method allows rapid and reliable assessment of the 2D material thickness and this method can facilitate in tailoring growth conditions for producing very thin 2D materials effectively over a large area. Furthermore, the XPS measurement for a typical 2D material is non-destructive and does not require special sample preparation. Therefore, after XPS analysis, exactly the same sample can undergo further processing or utilization.
Versatile technique for assessing thickness of 2D layered materials by XPS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zemlyanov, Dmitry Y.; Jespersen, Michael; Zakharov, Dmitry N.
X-ray photoelectron spectroscopy (XPS) has been utilized as a versatile method for thickness characterization of various two-dimensional (2D) films. Accurate thickness can be measured simultaneously while acquiring XPS data for chemical characterization of 2D films having thickness up to approximately 10 nm. For validating the developed technique, thicknesses of few-layer graphene (FLG), MoS 2 and amorphous boron nitride (a-BN) layer, produced by microwave plasma chemical vapor deposition (MPCVD), plasma enhanced chemical vapor deposition (PECVD), and pulsed laser deposition (PLD) respectively, were accurately measured. The intensity ratio between photoemission peaks recorded for the films (C 1s, Mo 3d, B 1s) andmore » the substrates (Cu 2p, Al 2p, Si 2p) is the primary input parameter for thickness calculation, in addition to the atomic densities of the substrate and the film, and the corresponding electron attenuation length (EAL). The XPS data was used with a proposed model for thickness calculations, which was verified by cross-sectional transmission electron microscope (TEM) measurement of thickness for all the films. The XPS method determines thickness values averaged over an analysis area which is orders of magnitude larger than the typical area in cross-sectional TEM imaging, hence provides an advanced approach for thickness measurement over large areas of 2D materials. The study confirms that the versatile XPS method allows rapid and reliable assessment of the 2D material thickness and this method can facilitate in tailoring growth conditions for producing very thin 2D materials effectively over a large area. Furthermore, the XPS measurement for a typical 2D material is non-destructive and does not require special sample preparation. Furthermore, after XPS analysis, exactly the same sample can undergo further processing or utilization.« less
Puigmartí-Luis, Josep; Minoia, Andrea; Pérez Del Pino, Angel; Ujaque, Gregori; Rovira, Concepció; Lledós, Agustí; Lazzaroni, Roberto; Amabilino, David B
2006-12-13
A new series of secondary amides bearing long alkyl chains with pi-electron-donor cores has been synthesized and characterised, and their self-assembly upon casting at surfaces has been studied. The different supramolecular assemblies of the materials have been visualized by using atomic force microscopy (AFM) and transmission electron microscopy (TEM). It is possible to obtain well-defined fibres of these aromatic core molecules as a result of the hydrogen bonds between the amide groups. Indeed, by altering the alkyl-chain lengths, constitutions, concentrations and solvent, it is possible to form different rodlike aggregates on graphite. Aggregate sizes with a lower limit of 6-8 nm width have been reached for different amide derivatives, while others show larger aggregates with rodlike morphologies which are several micrometers in length. For one compound that forms nanofibres, doping was performed by using a chemical oxidant, and the resulting layer on graphite was shown to exhibit metallic-like spectroscopy curves when probed with current-sensing AFM. This technique also revealed current maps of the surface of the molecular material. Fibre formation not only takes place on the graphite surface: nanometre scale rods have been imaged by using TEM on a grid after evaporation of solutions of the compounds in chloroform. Molecular modelling proves the importance of the hydrogen bonds in the generation of the fibres, and indicates that the constitution of the molecules is vital for the formation of the desired columnar stacks, results that are consistent with the images obtained by microscopic techniques. The results show the power of noncovalent bonds in self-assembly processes that can lead to electrically conducting nanoscale supramolecular wires.
NASA Astrophysics Data System (ADS)
Yamazaki, Kenji; Maehara, Yosuke; Gohara, Kazutoshi
2018-06-01
The number of layers affects the electronic properties of graphene owing to its unique band structure, called the Dirac corn. Raman spectroscopy is a key diagnostic tool for identifying the number of graphene layers and for determining their physical properties. Here, we observed moiré structures in transmission electron microscopy (TEM) observations; these are signature patterns in multilayer, although Raman spectra showed the typical intensity of the 2D/G peak in the monolayer. We also performed a multi-slice TEM image simulation to compare the 3D atomic structures of the two graphene membranes with experimental TEM images. We found that the experimental moiré image was constructed with a 9-12 Å interlayer distance between graphene membranes. This structure was constructed by transferring CVD-grown graphene films that formed on both sides of the Cu substrate at once.
High-Resolution Characterization of UMo Alloy Microstructure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devaraj, Arun; Kovarik, Libor; Joshi, Vineet V.
2016-11-30
This report highlights the capabilities and procedure for high-resolution characterization of UMo fuels in PNNL. Uranium-molybdenum (UMo) fuel processing steps, from casting to forming final fuel, directly affect the microstructure of the fuel, which in turn dictates the in-reactor performance of the fuel under irradiation. In order to understand the influence of processing on UMo microstructure, microstructure characterization techniques are necessary. Higher-resolution characterization techniques like transmission electron microscopy (TEM) and atom probe tomography (APT) are needed to interrogate the details of the microstructure. The findings from TEM and APT are also directly beneficial for developing predictive multiscale modeling tools thatmore » can predict the microstructure as a function of process parameters. This report provides background on focused-ion-beam–based TEM and APT sample preparation, TEM and APT analysis procedures, and the unique information achievable through such advanced characterization capabilities for UMo fuels, from a fuel fabrication capability viewpoint.« less
NASA Astrophysics Data System (ADS)
Dutta, Aniruddha; Heinrich, Helge; Kuebler, Stephen; Grabill, Chris; Bhattacharya, Aniket
2011-03-01
Gold nanoparticles(Au-NPs) act as nucleation sites for electroless deposition of silver on functionalized SU8 polymeric surfaces. Here we report the nanoscale morphology of Au and Ag nanoparticles as studied by Transmission Electron Microscopy (TEM). Scanning TEM with a high-angle annular dark-field detector is used to obtain atomic number contrast. From the intensity-calibrated plan-view scanning TEM images we determine the mean thickness and the volume distribution of the Au-NPs on the surface of the functionalized polymer. We also report the height and the radius distribution of the gold nanoparticles obtained from STEM images taking into consideration the experimental errors. The cross sectional TEM images yield the density and the average distance of the Au and Ag nanoparticles on the surface of the polymer. Supported by grant NSF, Chemistry Division.
Quantum Gas Microscope for Fermionic Atoms
NASA Astrophysics Data System (ADS)
Okan, Melih; Cheuk, Lawrence; Nichols, Matthew; Lawrence, Katherine; Zhang, Hao; Zwierlein, Martin
2016-05-01
Strongly interacting fermions define the properties of complex matter throughout nature, from atomic nuclei and modern solid state materials to neutron stars. Ultracold atomic Fermi gases have emerged as a pristine platform for the study of many-fermion systems. In this poster we demonstrate the realization of a quantum gas microscope for fermionic 40 K atoms trapped in an optical lattice and the recent experiments which allows one to probe strongly correlated fermions at the single atom level. We combine 3D Raman sideband cooling with high- resolution optics to simultaneously cool and image individual atoms with single lattice site resolution at a detection fidelity above 95%. The imaging process leaves the atoms predominantly in the 3D motional ground state of their respective lattice sites, inviting the implementation of a Maxwell's demon to assemble low-entropy many-body states. Single-site resolved imaging of fermions enables the direct observation of magnetic order, time resolved measurements of the spread of particle correlations, and the detection of many-fermion entanglement. NSF, AFOSR-PECASE, AFOSR-MURI on Exotic Phases of Matter, ARO-MURI on Atomtronics, ONR, a Grant from the Army Research Office with funding from the DARPA OLE program, and the David and Lucile Packard Foundation.
Electron microscopic study of soot particulate matter emissions from aircraft turbine engines.
Liati, Anthi; Brem, Benjamin T; Durdina, Lukas; Vögtli, Melanie; Dasilva, Yadira Arroyo Rojas; Eggenschwiler, Panayotis Dimopoulos; Wang, Jing
2014-09-16
The microscopic characteristics of soot particulate matter (PM) in gas turbine exhaust are critical for an accurate assessment of the potential impacts of the aviation industry on the environment and human health. The morphology and internal structure of soot particles emitted from a CFM 56-7B26/3 turbofan engine were analyzed in an electron microscopic study, down to the nanoscale, for ∼ 100%, ∼ 65%, and ∼ 7% static engine thrust as a proxy for takeoff, cruising, and taxiing, respectively. Sampling was performed directly on transmission electron microscopy (TEM) grids with a state-of-the-art sampling system designed for nonvolatile particulate matter. The electron microscopy results reveal that ∼ 100% thrust produces the highest amount of soot, the highest soot particle volume, and the largest and most crystalline primary soot particles with the lowest oxidative reactivity. The opposite is the case for soot produced during taxiing, where primary soot particles are smallest and most reactive and the soot amount and volume are lowest. The microscopic characteristics of cruising condition soot resemble the ones of the ∼ 100% thrust conditions, but they are more moderate. Real time online measurements of number and mass concentration show also a clear correlation with engine thrust level, comparable with the TEM study. The results of the present work, in particular the small size of primary soot particles present in the exhaust (modes of 24, 20, and 13 nm in diameter for ∼ 100%, ∼ 65% and ∼ 7% engine thrust, respectively) could be a concern for human health and the environment and merit further study. This work further emphasizes the significance of the detailed morphological characteristics of soot for assessing environmental impacts.
Band Excitation for Scanning Probe Microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jesse, Stephen
2017-01-02
The Band Excitation (BE) technique for scanning probe microscopy uses a precisely determined waveform that contains specific frequencies to excite the cantilever or sample in an atomic force microscope to extract more information, and more reliable information from a sample. There are a myriad of details and complexities associated with implementing the BE technique. There is therefore a need to have a user friendly interface that allows typical microscopists access to this methodology. This software enables users of atomic force microscopes to easily: build complex band-excitation waveforms, set-up the microscope scanning conditions, configure the input and output electronics for generatemore » the waveform as a voltage signal and capture the response of the system, perform analysis on the captured response, and display the results of the measurement.« less
2017-01-01
Controlled synthesis of a hybrid nanomaterial based on titanium oxide and single-layer graphene (SLG) using atomic layer deposition (ALD) is reported here. The morphology and crystallinity of the oxide layer on SLG can be tuned mainly with the deposition temperature, achieving either a uniform amorphous layer at 60 °C or ∼2 nm individual nanocrystals on the SLG at 200 °C after only 20 ALD cycles. A continuous and uniform amorphous layer formed on the SLG after 180 cycles at 60 °C can be converted to a polycrystalline layer containing domains of anatase TiO2 after a postdeposition annealing at 400 °C under vacuum. Using aberration-corrected transmission electron microscopy (AC-TEM), characterization of the structure and chemistry was performed on an atomic scale and provided insight into understanding the nucleation and growth. AC-TEM imaging and electron energy loss spectroscopy revealed that rocksalt TiO nanocrystals were occasionally formed at the early stage of nucleation after only 20 ALD cycles. Understanding and controlling nucleation and growth of the hybrid nanomaterial are crucial to achieving novel properties and enhanced performance for a wide range of applications that exploit the synergetic functionalities of the ensemble. PMID:28356613
Jiang, Jin-yang; Wang, Danqian; Chu, Hong-yan; Ma, Han; Liu, Yao; Gao, Yun; Shi, Jinjie; Sun, Wei
2017-01-01
An elaborative study was carried out on the growth mechanism and properties of the passive film for a new kind of alloyed corrosion-resistant steel (CR steel). The passive film naturally formed in simulated concrete pore solutions (pH = 13.3). The corrosion resistance was evaluated by various methods including open circuit potential (OCP), linear polarization resistance (LPR) measurements, and electrochemical impedance spectroscopy (EIS). Meanwhile, the 2205 duplex stainless steel (SS steel) was evaluated for comparison. Moreover, the passive film with CR steel was studied by means of X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), Atomic Force Microscope (AFM), and the Mott‑Schottky approach. The results showed that the excellent passivity of CR steel could be detected in a high alkaline environment. The grain boundaries between the fine passive film particles lead to increasing Cr oxide content in the later passivation stage. The filling of cation vacancies in the later passivation stage as well as the orderly crystalized inner layer contributed to the excellent corrosion resistance of CR steel. A passive film growth model for CR steel was proposed. PMID:28772772
NASA Astrophysics Data System (ADS)
Lu, Jinlin; Li, Yanhong; Li, Shengli; Jiang, San Ping
2016-02-01
In this article, sulfonic acid-grafted reduced graphene oxide (S-rGO) were synthesized using a one-pot method under mild conditions, and used as Pt catalyst supports to prepare Pt/S-rGO electrocatalysts through a self-assembly route. The structure, morphologies and physicochemical properties of S-rGO were examined in detail by techniques such as atomic force microscope (AFM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The S-rGO nanosheets show excellent solubility and stability in water and the average particle size of Pt nanoparticles supported on S-rGO is ~3.8 nm with symmetrical and uniform distribution. The electrocatalytic properties of Pt/S-rGO were investigated for methanol oxidation reaction (MOR) in direct methanol fuel cells (DMFCs). In comparison to Pt supported on high surface area Vulcan XC-72 carbon (Pt/VC) and Pt/rGO, the Pt/S-rGO electrocatalyst exhibits a much higher electrocatalytic activity, faster reaction kinetics and a better stability. The results indicate that Pt/S-rGO is a promising and effective electrocatalyst for MOR of DMFCs.
Lu, Jinlin; Li, Yanhong; Li, Shengli; Jiang, San Ping
2016-02-15
In this article, sulfonic acid-grafted reduced graphene oxide (S-rGO) were synthesized using a one-pot method under mild conditions, and used as Pt catalyst supports to prepare Pt/S-rGO electrocatalysts through a self-assembly route. The structure, morphologies and physicochemical properties of S-rGO were examined in detail by techniques such as atomic force microscope (AFM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The S-rGO nanosheets show excellent solubility and stability in water and the average particle size of Pt nanoparticles supported on S-rGO is ~3.8 nm with symmetrical and uniform distribution. The electrocatalytic properties of Pt/S-rGO were investigated for methanol oxidation reaction (MOR) in direct methanol fuel cells (DMFCs). In comparison to Pt supported on high surface area Vulcan XC-72 carbon (Pt/VC) and Pt/rGO, the Pt/S-rGO electrocatalyst exhibits a much higher electrocatalytic activity, faster reaction kinetics and a better stability. The results indicate that Pt/S-rGO is a promising and effective electrocatalyst for MOR of DMFCs.
Akkam, Yazan; Al-Batayneh, Khalid M.; Abo Alrob, Osama; Alkilany, Alaaldin M.; Benamara, Mourad
2018-01-01
(1) Background: There is a growing need for the development of new methods for the synthesis of nanoparticles. The interest in such particles has raised concerns about the environmental safety of their production methods; (2) Objectives: The current methods of nanoparticle production are often expensive and employ chemicals that are potentially harmful to the environment, which calls for the development of “greener” protocols. Herein we describe the synthesis of gold nanoparticles (AuNPs) using plant extracts, which offers an alternative, efficient, inexpensive, and environmentally friendly method to produce well-defined geometries of nanoparticles; (3) Methods: The phytochemicals present in the aqueous leaf extract acted as an effective reducing agent. The generated AuNPs were characterized by Transmission electron microscopy (TEM), Scanning electron microscope (SEM), and Atomic Force microscopy (AFM), X-ray diffraction (XRD), UV-visible spectroscopy, energy dispersive X-ray (EDX), and thermogravimetric analyses (TGA); (4) Results and Conclusions: The prepared nanoparticles were found to be biocompatible and exhibited no antimicrobial or antifungal effect, deeming the particles safe for various applications in nanomedicine. TGA analysis revealed that biomolecules, which were present in the plant extract, capped the nanoparticles and acted as stabilizing agents. PMID:29562669
Jiang, Jin-Yang; Wang, Danqian; Chu, Hong-Yan; Ma, Han; Liu, Yao; Gao, Yun; Shi, Jinjie; Sun, Wei
2017-04-14
An elaborative study was carried out on the growth mechanism and properties of the passive film for a new kind of alloyed corrosion-resistant steel (CR steel). The passive film naturally formed in simulated concrete pore solutions (pH = 13.3). The corrosion resistance was evaluated by various methods including open circuit potential (OCP), linear polarization resistance (LPR) measurements, and electrochemical impedance spectroscopy (EIS). Meanwhile, the 2205 duplex stainless steel (SS steel) was evaluated for comparison. Moreover, the passive film with CR steel was studied by means of X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), Atomic Force Microscope (AFM), and the Mott‑Schottky approach. The results showed that the excellent passivity of CR steel could be detected in a high alkaline environment. The grain boundaries between the fine passive film particles lead to increasing Cr oxide content in the later passivation stage. The filling of cation vacancies in the later passivation stage as well as the orderly crystalized inner layer contributed to the excellent corrosion resistance of CR steel. A passive film growth model for CR steel was proposed.
Ultrashort channel silicon nanowire transistors with nickel silicide source/drain contacts.
Tang, Wei; Dayeh, Shadi A; Picraux, S Tom; Huang, Jian Yu; Tu, King-Ning
2012-08-08
We demonstrate the shortest transistor channel length (17 nm) fabricated on a vapor-liquid-solid (VLS) grown silicon nanowire (NW) by a controlled reaction with Ni leads on an in situ transmission electron microscope (TEM) heating stage at a moderate temperature of 400 °C. NiSi(2) is the leading phase, and the silicide-silicon interface is an atomically sharp type-A interface. At such channel lengths, high maximum on-currents of 890 (μA/μm) and a maximum transconductance of 430 (μS/μm) were obtained, which pushes forward the performance of bottom-up Si NW Schottky barrier field-effect transistors (SB-FETs). Through accurate control over the silicidation reaction, we provide a systematic study of channel length dependent carrier transport in a large number of SB-FETs with channel lengths in the range of 17 nm to 3.6 μm. Our device results corroborate with our transport simulations and reveal a characteristic type of short channel effects in SB-FETs, both in on- and off-state, which is different from that in conventional MOSFETs, and that limits transport parameter extraction from SB-FETs using conventional field-effect transconductance measurements.
Jagusiak, Anna; Piekarska, Barbara; Pańczyk, Tomasz; Jemioła-Rzemińska, Małgorzata; Bielańska, Elżbieta; Stopa, Barbara; Zemanek, Grzegorz; Rybarska, Janina; Roterman, Irena; Konieczny, Leszek
2017-01-01
A method of dispersion of single-wall carbon nanotubes (SWNTs) in aqueous media using Congo red (CR) is proposed. Nanotubes covered with CR constitute the high capacity system that provides the possibility of binding and targeted delivery of different drugs, which can intercalate into the supramolecular, ribbon-like CR structure. The study revealed the presence of strong interactions between CR and the surface of SWNTs. The aim of the study was to explain the mechanism of this interaction. The interaction of CR and carbon nanotubes was studied using spectral analysis of the SWNT-CR complex, dynamic light scattering (DLS), differential scanning calorimetry (DSC) and microscopic methods: atomic force microscopy (AFM), transmission (TEM), scanning (SEM) and optical microscopy. The results indicate that the binding of supramolecular CR structures to the surface of the nanotubes is based on the "face to face stacking". CR molecules attached directly to the surface of the nanotubes can bind further, parallel-oriented molecules and form supramolecular and protruding structures. This explains the high CR binding capacity of carbon nanotubes. The presented system - containing SWNTs covered with CR - offers a wide range of biomedical applications.
NASA Astrophysics Data System (ADS)
Kano, Sho; Yang, Huilong; Shen, Jingjie; Zhao, Zishou; McGrady, John; Hamaguchi, Dai; Ando, Mamami; Tanigawa, Hiroyasu; Abe, Hiroaki
2018-04-01
In order to clarify the instability of M23C6 in F82H steel under irradiation, both electron irradiation using a high voltage electron microscope (HVEM) and ion irradiation using an ion accelerator were performed. For the electron irradiation, in-situ observation under 2 MV electron irradiation and ex-situ high resolution electron microscopic (HREM) analysis were utilized to evaluate the response of M23C6 against irradiation. The temperature dependence of the irradiation induced instability of the carbide was first confirmed: 293 K < T < 573 K, by observation of lowering in contrast at the periphery of carbides, 698 K < T < 773 K, fragmentation at the interface between carbides and matrix, and at 773 K, formation and coarsening of new particles near the periphery of M23C6. HREM analysis showed the loss of the lattice fringe contrast at the pre-existing M23C6 precipitates at temperatures ranging from 473 to 773 K, indicating severe loss of crystallinity due to dissolution of the constituent atoms though irradiation-enhanced diffusion under the vacancy diffusion by the focused electron beam irradiation. For the ion irradiation, 10.5 MeV-Fe3+ ion was applied to bombard the F82H steel at 673 K to achieve the displacement damage of ≈20 dpa at the depth of 1.0 μm from surface. Cross-section TEM specimens were prepared by a focused ion beam technique. The shrinkage of carbide particles was observed especially near the irradiation surface. Besides, the lattice fringes at the periphery of carbide were observed in the irradiated M23C6 by the HREM analysis, which is different from that observed in the electron irradiation. It was clarified that the instability of M23C6 is dependent on the irradiation conditions, indicating that the flow rate of vacancy type defects might be the key factor to cause the dissolution of constituent atoms of carbide particles into matrix under irradiation.
Design and performance of a beetle-type double-tip scanning tunneling microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaschinsky, Philipp; Coenen, Peter; Pirug, Gerhard
2006-09-15
A combination of a double-tip scanning tunneling microscope with a scanning electron microscope in ultrahigh vacuum environment is presented. The compact beetle-type design made it possible to integrate two independently driven scanning tunneling microscopes in a small space. Moreover, an additional level for coarse movement allows the decoupling of the translation and approach of the tunneling tip. The position of the two tips can be controlled from the millimeter scale down to 50 nm with the help of an add-on electron microscope. The instrument is capable of atomic resolution imaging with each tip.
Sharp Tips on the Atomic Force Microscope
NASA Technical Reports Server (NTRS)
2008-01-01
This image shows the eight sharp tips of the NASA's Phoenix Mars Lander's Atomic Force Microscope, or AFM. The AFM is part of Phoenix's Microscopy, Electrochemistry, and Conductivity Analyzer, or MECA. The microscope maps the shape of particles in three dimensions by scanning them with one of the tips at the end of a beam. For the AFM image taken, the tip at the end of the upper right beam was used. The tip pointing up in the enlarged image is the size of a smoke particle at its base, or 2 microns. This image was taken with a scanning electron microscope before Phoenix launched on August 4, 2007. The AFM was developed by a Swiss-led consortium in collaboration with Imperial College London. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.Improvement of the High Fluence Irradiation Facility at the University of Tokyo
NASA Astrophysics Data System (ADS)
Murakami, Kenta; Iwai, Takeo; Abe, Hiroaki; Sekimura, Naoto
2016-08-01
This paper reports the modification of the High Fluence Irradiation Facility at the University of Tokyo (HIT). The HIT facility was severely damaged during the 2011 earthquake, which occurred off the Pacific coast of Tohoku. A damaged 1.0 MV tandem Cockcroft-Walton accelerator was replaced with a 1.7 MV accelerator, which was formerly used in another campus of the university. A decision was made to maintain dual-beam irradiation capability by repairing the 3.75 MV single-ended Van de Graaff accelerator and reconstructing the related beamlines. A new beamline was connected with a 200 kV transmission electron microscope (TEM) to perform in-situ TEM observation under ion irradiation.
Cross-sectional TEM specimen preparation for W/B{sub 4}C multilayer sample using FIB
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mondal, Puspen, E-mail: puspen@rrcat.gov.in; Pradhan, P. C.; Tiwari, Pragya
2016-05-23
A recent emergence of a cross-beam scanning electron microscopy (SEM)/focused-ion-beam (FIB) system have given choice to fabricate cross-sectional transmission electron microscopy (TEM) specimen of thin film multilayer sample. A 300 layer pair thin film multilayer sample of W/B{sub 4}C was used to demonstrate the specimen lift-out technique in very short time as compared to conventional cross-sectional sample preparation technique. To get large area electron transparent sample, sample prepared by FIB is followed by Ar{sup +} ion polishing at 2 kV with grazing incident. The prepared cross-sectional sample was characterized by transmission electron microscope.
Analysis of Local Structure, Chemistry and Bonding by Electron Energy Loss Spectroscopy
NASA Astrophysics Data System (ADS)
Mayer, Joachim
In the present chapter, the reader will first be introduced briefly to the basic principles of analytical transmission electron microscopy (ATEM) with special emphasis on electron energy-loss spectroscopy (EELS) and energy-filtering TEM. The quantification of spectra to obtain chemical information and the origin and interpretation of near-edge fine structures in EELS (ELNES) are discussed. Special attention will be given to the characterization of internal interfaces and the literature in this area will be reviewed. Selected examples of the application of ATEM in the investigation of internal interfaces will be given. These examples include both EELS in the energy-filtering TEM and in the scanning transmission electron microscope (STEM).
Zhang, Suoxin; Qian, Jianqiang; Li, Yingzi; Zhang, Yingxu; Wang, Zhenyu
2018-06-04
Atomic force microscope (AFM) is an idealized tool to measure the physical and chemical properties of the sample surfaces by reconstructing the force curve, which is of great significance to materials science, biology, and medicine science. Frequency modulation atomic force microscope (FM-AFM) collects the frequency shift as feedback thus having high force sensitivity and it accomplishes a true noncontact mode, which means great potential in biological sample detection field. However, it is a challenge to establish the relationship between the cantilever properties observed in practice and the tip-sample interaction theoretically. Moreover, there is no existing method to reconstruct the force curve in FM-AFM combining the higher harmonics and the higher flexural modes. This paper proposes a novel method that a full force curve can be reconstructed by any order higher harmonics of the first two flexural modes under any vibration amplitude in FM-AFM. Moreover, in the small amplitude regime, short range forces are reconstructed more accurately by higher harmonics analysis compared with fundamental harmonics using the Sader-Jarvis formula.
Sensing mode atomic force microscope
Hough, Paul V. C.; Wang, Chengpu
2003-01-01
An atomic force microscope utilizes a pulse release system and improved method of operation to minimize contact forces between a probe tip affixed to a flexible cantilever and a specimen being measured. The pulse release system includes a magnetic particle affixed proximate the probe tip and an electromagnetic coil. When energized, the electromagnetic coil generates a magnetic field which applies a driving force on the magnetic particle sufficient to overcome adhesive forces exhibited between the probe tip and specimen. The atomic force microscope includes two independently displaceable piezo elements operable along a Z-axis. A controller drives the first Z-axis piezo element to provide a controlled approach between the probe tip and specimen up to a point of contact between the probe tip and specimen. The controller then drives the first Z-axis piezo element to withdraw the cantilever from the specimen. The controller also activates the pulse release system which drives the probe tip away from the specimen during withdrawal. Following withdrawal, the controller adjusts the height of the second Z-axis piezo element to maintain a substantially constant approach distance between successive samples.
NASA Astrophysics Data System (ADS)
Fukuma, Takeshi; Jarvis, Suzanne P.
2006-04-01
We have developed a liquid-environment frequency modulation atomic force microscope (FM-AFM) with a low noise deflection sensor for a wide range of cantilevers with different dimensions. A simple yet accurate equation describing the theoretical limit of the optical beam deflection method in air and liquid is presented. Based on the equation, we have designed a low noise deflection sensor. Replaceable microscope objective lenses are utilized for providing a high magnification optical view (resolution: <3μm) as well as for focusing a laser beam (laser spot size: ˜10μm). Even for a broad range of cantilevers with lengths from 35to125μm, the sensor provides deflection noise densities of less than 11fm/√Hz in air and 16fm/√Hz in water. In particular, a cantilever with a length of 50μm gives the minimum deflection noise density of 5.7fm/√Hz in air and 7.3fm/√Hz in water. True atomic resolution of the developed FM-AFM is demonstrated by imaging mica in water.
Role of chalcogen vapor annealing in inducing bulk superconductivity in Fe1 +yTe1 -xSex
NASA Astrophysics Data System (ADS)
Lin, Wenzhi; Ganesh, P.; Gianfrancesco, Anthony; Wang, Jun; Berlijn, Tom; Maier, Thomas A.; Kalinin, Sergei V.; Sales, Brian C.; Pan, Minghu
2015-02-01
Recent investigations have shown that Fe1 +yTe1 -xSex can be made superconducting by annealing it in Se and O vapors. The current lore is that these chalcogen vapors induce superconductivity by removing the magnetic excess Fe atoms. To investigate this phenomenon, we performed a combination of magnetic susceptibility, specific heat, and transport measurements together with scanning tunneling microscopy and spectroscopy and density functional theory calculations on Fe1 +yTe1 -xSex treated with Te vapor. We conclude that the main role of the Te vapor is to quench the magnetic moments of the excess Fe atoms by forming FeTem (m ≥1 ) complexes. We show that the remaining FeTem complexes are still damaging to the superconductivity and therefore that their removal potentially could further improve superconductive properties in these compounds.
Phase stability and microstructures of high entropy alloys ion irradiated to high doses
NASA Astrophysics Data System (ADS)
Xia, Songqin; Gao, Michael C.; Yang, Tengfei; Liaw, Peter K.; Zhang, Yong
2016-11-01
The microstructures of AlxCoCrFeNi (x = 0.1, 0.75 and 1.5 in molar ratio) high entropy alloys (HEAs) irradiated at room temperature with 3 MeV Au ions at the highest fluence of 105, 91, and 81 displacement per atom, respectively, were studied. Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) analyses show that the initial microstructures and phase composition of all three alloys are retained after ion irradiation and no phase decomposition is observed. Furthermore, it is demonstrated that the disordered face-centered cubic (FCC) and disordered body-centered cubic (BCC) phases show much less defect cluster formation and structural damage than the NiAl-type ordered B2 phase. This effect is explained by higher entropy of mixing, higher defect formation/migration energies, substantially lower thermal conductivity, and higher atomic level stress in the disordered phases.
Spectral analysis of scattered light from flowers' petals
NASA Astrophysics Data System (ADS)
Ozawa, Atsumi; Uehara, Tomomi; Sekiguchi, Fumihiko; Imai, Hajime
2009-07-01
A new method was developed for studying absorption characteristics of opaque samples based on the light scattering spectroscopy. Measurements were made in white, red and violet petals of Petunia hybrida, and gave the absorption spectra in a non-destructive manner without damaging the cell structures of the petal. The red petal has absorption peak at 550 nm and the violet has three absorption peaks: at 450, 670, and 550 nm. The results were discussed in correlation with the microscopic cell structures of the petal observed with optical microscope and transmission electron microscopy (TEM). Only the cells placed in the surface have the pigments giving the color of the petal.
Liposomes self-assembled from electrosprayed composite microparticles
NASA Astrophysics Data System (ADS)
Yu, Deng-Guang; Yang, Jun-He; Wang, Xia; Tian, Feng
2012-03-01
Composite microparticles, consisting of polyvinylpyrrolidone (PVP), naproxen (NAP) and lecithin (PC), have been successfully prepared using an electrospraying process and exploited as templates to manipulate molecular self-assembly for the synthesis of liposomes in situ. Field emission scanning electron microscope (FESEM) and transmission electron microscope (TEM) observations demonstrate that the microparticles have an average diameter of 960 ± 140 nm and a homogeneous structure. X-ray diffraction (XRD) patterns, differential scanning calorimetry (DSC) and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) results verify that the building blocks NAP and PC are scattered in the polymer matrix in a molecular way owing to the very fast drying of the electrospraying process and the favorable secondary interactions among the components. FESEM, scanning probe microscope (SPM) and TEM observations demonstrate that the liposomes can be achieved through molecular self-assembly in situ when the microparticles contact water thanks to ‘like prefers like’ and by means of the confinement effect of the microparticles. The liposomes have an encapsulation rate of 91.3%, and 80.7% of the drug in the liposomes can be freed into the dissolution medium in a sustained way and by a diffusion mechanism over a period of 24 h. The developed strategy not only provides a new, facile, and effective method to assemble and organize molecules of multiple components into liposomes with electrosprayed microparticles as templates, but also opens a new avenue for nanofabrication in a step-by-step and controllable way.
Apparatus and methods for controlling electron microscope stages
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duden, Thomas
Methods and apparatus for generating an image of a specimen with a microscope (e.g., TEM) are disclosed. In one aspect, the microscope may generally include a beam generator, a stage, a detector, and an image generator. A plurality of crystal parameters, which describe a plurality of properties of a crystal sample, are received. In a display associated with the microscope, an interactive control sphere based at least in part on the received crystal parameters and that is rotatable by a user to different sphere orientations is presented. The sphere includes a plurality of stage coordinates that correspond to a pluralitymore » of positions of the stage and a plurality of crystallographic pole coordinates that correspond to a plurality of polar orientations of the crystal sample. Movement of the sphere causes movement of the stage, wherein the stage coordinates move in conjunction with the crystallographic coordinates represented by pole positions so as to show a relationship between stage positions and the pole positions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lev, Benjamin
The SQCRAMscope, Scanning Quantum Cryogenic Atom Microscope, is a novel scanning probe microscope we developed during this DOE fund period. It is now capable of imaging transport in cryogenically cooled solid-state samples, as we have recently demonstrated with iron-based pnictide superconductors. As such, it opens a new frontier in the quantum-based metrology of materials and is the first example of the direct marriage of ultracold AMO physics with condensed matter physics. We predict the SQCRAMscope will become an important element in the toolbox for exploring strongly correlated and topologically nontrivial materials.
Nanoscale Subsurface Imaging via Resonant Difference-Frequency Atomic Force Ultrasonic Microscopy
NASA Technical Reports Server (NTRS)
Cantrell, Sean A.; Cantrell, John H.; Lilehei, Peter T.
2007-01-01
A novel scanning probe microscope methodology has been developed that employs an ultrasonic wave launched from the bottom of a sample while the cantilever of an atomic force microscope, driven at a frequency differing from the ultrasonic frequency by the fundamental resonance frequency of the cantilever, engages the sample top surface. The nonlinear mixing of the oscillating cantilever and the ultrasonic wave in the region defined by the cantilever tip-sample surface interaction force generates difference-frequency oscillations at the cantilever fundamental resonance. The resonance-enhanced difference-frequency signals are used to create images of embedded nanoscale features.
Kloß, Simon D; Neudert, Lukas; Döblinger, Markus; Nentwig, Markus; Oeckler, Oliver; Schnick, Wolfgang
2017-09-13
Thorough investigation of nitridophosphates has rapidly accelerated through development of new synthesis strategies. Here we used the recently developed high-pressure metathesis to prepare the first rare-earth metal nitridophosphate, Ce 4 Li 3 P 18 N 35 , with a high degree of condensation >1/2. Ce 4 Li 3 P 18 N 35 consists of an unprecedented hexagonal framework of PN 4 tetrahedra and exhibits blue luminescence peaking at 455 nm. Transmission electron microscopy (TEM) revealed two intergrown domains with slight structural and compositional variations. One domain type shows extremely weak superstructure phenomena revealed by atomic-resolution scanning TEM (STEM) and single-crystal diffraction using synchrotron radiation. The corresponding superstructure involves a modulated displacement of Ce atoms in channels of tetrahedra 6-rings. The displacement model was refined in a supercell as well as in an equivalent commensurate (3 + 2)-dimensional description in superspace group P6 3 (α, β, 0)0(-α - β, α, 0)0. In the second domain type, STEM revealed disordered vacancies of the same Ce atoms that were modulated in the first domain type, leading to sum formula Ce 4-0.5x Li 3 P 18 N 35-1.5x O 1.5x (x ≈ 0.72) of the average structure. The examination of these structural intricacies may indicate the detection limit of synchrotron diffraction and TEM. We discuss the occurrence of either Ce displacements or Ce vacancies that induce the incorporation of O as necessary stabilization of the crystal structure.
Misra, S; Zhou, B B; Drozdov, I K; Seo, J; Urban, L; Gyenis, A; Kingsley, S C J; Jones, H; Yazdani, A
2013-10-01
We describe the construction and performance of a scanning tunneling microscope capable of taking maps of the tunneling density of states with sub-atomic spatial resolution at dilution refrigerator temperatures and high (14 T) magnetic fields. The fully ultra-high vacuum system features visual access to a two-sample microscope stage at the end of a bottom-loading dilution refrigerator, which facilitates the transfer of in situ prepared tips and samples. The two-sample stage enables location of the best area of the sample under study and extends the experiment lifetime. The successful thermal anchoring of the microscope, described in detail, is confirmed through a base temperature reading of 20 mK, along with a measured electron temperature of 250 mK. Atomically resolved images, along with complementary vibration measurements, are presented to confirm the effectiveness of the vibration isolation scheme in this instrument. Finally, we demonstrate that the microscope is capable of the same level of performance as typical machines with more modest refrigeration by measuring spectroscopic maps at base temperature both at zero field and in an applied magnetic field.
Sun, Jian; Akiba, Uichi; Fujihira, Masamichi
2008-09-01
Stretch lengths of pure gold mono-atomic wires have been studied recently with an electrochemical scanning tunneling microscope (STM). Here, we will report a study of stretch lengths of gold mono-atomic wires with and without 1,6-hexanedithiol (HDT) using the STM break-junction method. First, the stretch length was measured as a function of electrode potentials of a bare Au(111) substrate and a gold STM tip in a 0.1 M NaClO4 aqueous solution. Second, a self-assembled monolayer (SAM) was fabricated on an Au(111) substrate by dipping the substrate into a 1 mM HDT ethanol solution. At last, we measured the stretch length of gold mono-atomic wires on a substrate covered with the SAM in place of the bare Au(111) substrate. We compared the electrode potential dependence of the stretch lengths of gold mono-atomic wires covered with and without HDT. We will discuss the effect of the electrode potential on the stretch lengths by taking account of electrocapillarity of gold mono-atomic wires.
Saito, Akira; Tanaka, Takehiro; Takagi, Yasumasa; Hosokawa, Hiromasa; Notsu, Hiroshi; Ohzeki, Gozo; Tanaka, Yoshihito; Kohmura, Yoshiki; Akai-Kasaya, Megumi; Ishikawa, Tetsuya; Kuwahara, Yuji; Kikuta, Seishi; Aono, Masakazu
2011-04-01
X-ray induced atomic motion on a Ge(111)-c(2 x 8) clean surface at room temperature was directly observed with atomic resolution using a synchrotron radiation (SR)-based scanning tunneling microscope (STM) system under ultra high vacuum condition. The atomic motion was visualized as a tracking image by developing a method to merge the STM images before and after X-ray irradiation. Using the tracking image, the atomic mobility was found to be strongly affected by defects on the surface, but was not dependent on the incident X-ray energy, although it was clearly dependent on the photon density. The atomic motion can be attributed to surface diffusion, which might not be due to core-excitation accompanied with electronic transition, but a thermal effect by X-ray irradiation. The crystal surface structure was possible to break even at a lower photon density than the conventionally known barrier. These results can alert X-ray studies in the near future about sample damage during measurements, while suggesting the possibility of new applications. Also the obtained results show a new availability of the in-situ SR-STM system.
Inada, H; Su, D; Egerton, R F; Konno, M; Wu, L; Ciston, J; Wall, J; Zhu, Y
2011-06-01
We report detailed investigation of high-resolution imaging using secondary electrons (SE) with a sub-nanometer probe in an aberration-corrected transmission electron microscope, Hitachi HD2700C. This instrument also allows us to acquire the corresponding annular dark-field (ADF) images both simultaneously and separately. We demonstrate that atomic SE imaging is achievable for a wide range of elements, from uranium to carbon. Using the ADF images as a reference, we studied the SE image intensity and contrast as functions of applied bias, atomic number, crystal tilt, and thickness to shed light on the origin of the unexpected ultrahigh resolution in SE imaging. We have also demonstrated that the SE signal is sensitive to the terminating species at a crystal surface. A possible mechanism for atomic-scale SE imaging is proposed. The ability to image both the surface and bulk of a sample at atomic-scale is unprecedented, and can have important applications in the field of electron microscopy and materials characterization. Copyright © 2010 Elsevier B.V. All rights reserved.
Synthesis of single-molecule nanocars.
Vives, Guillaume; Tour, James M
2009-03-17
The drive to miniaturize devices has led to a variety of molecular machines inspired by macroscopic counterparts such as molecular motors, switches, shuttles, turnstiles, barrows, elevators, and nanovehicles. Such nanomachines are designed for controlled mechanical motion and the transport of nanocargo. As researchers miniaturize devices, they can consider two complementary approaches: (1) the "top-down" approach, which reduces the size of macroscopic objects to reach an equivalent microscopic entity using photolithography and related techniques and (2) the "bottom-up" approach, which builds functional microscopic or nanoscopic entities from molecular building blocks. The top-down approach, extensively used by the semiconductor industry, is nearing its scaling limits. On the other hand, the bottom-up approach takes advantage of the self-assembly of smaller molecules into larger networks by exploiting typically weak molecular interactions. But self-assembly alone will not permit complex assembly. Using nanomachines, we hope to eventually consider complex, enzyme-like directed assembly. With that ultimate goal, we are currently exploring the control of nanomachines that would provide a basis for the future bottom-up construction of complex systems. This Account describes the synthesis of a class of molecular machines that resemble macroscopic vehicles. We designed these so-called nanocars for study at the single-molecule level by scanning probe microscopy (SPM). The vehicles have a chassis connected to wheel-terminated axles and convert energy inputs such as heat, electric fields, or light into controlled motion on a surface, ultimately leading to transport of nanocargo. At first, we used C(60) fullerenes as wheels, which allowed the demonstration of a directional rolling mechanism of a nanocar on a gold surface by STM. However, because of the low solubility of the fullerene nanocars and the incompatibility of fullerenes with photochemical processes, we developed new p-carborane- and ruthenium-based wheels with greater solubility in organic solvents. Although fullerene wheels must be attached in the final synthetic step, p-carborane- and ruthenium-based wheels do not inhibit organometallic coupling reactions, which allows a more convergent synthesis of molecular machines. We also prepared functional nanotrucks for the transport of atoms and molecules, as well as self-assembling nanocars and nanotrains. Although engineering challenges such as movement over long distance and non-atomically flat surfaces remain, the greatest current research challenge is imaging. The detailed study of nanocars requires complementary single molecule imaging techniques such as STM, AFM, TEM, or single-molecule fluorescence microscopy. Further developments in engineering and synthesis could lead to enzyme-like manipulation and assembly of atoms and small molecules in nonbiological environments.
Paulkumar, Kanniah; Gnanajobitha, Gnanadhas; Vanaja, Mahendran; Rajeshkumar, Shanmugam; Malarkodi, Chelladurai; Pandian, Kannaiyan; Annadurai, Gurusamy
2014-01-01
Utilization of biological materials in synthesis of nanoparticles is one of the hottest topics in modern nanoscience and nanotechnology. In the present investigation, the silver nanoparticles were synthesized by using the leaf and stem extract of Piper nigrum. The synthesized nanoparticle was characterized by UV-vis spectroscopy, X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), energy dispersive X-ray analysis (EDAX), and Fourier Transform Infrared Spectroscopy (FTIR). The observation of the peak at 460 nm in the UV-vis spectra for leaf- and stem-synthesized silver nanoparticles reveals the reduction of silver metal ions into silver nanoparticles. Further, XRD analysis has been carried out to confirm the crystalline nature of the synthesized silver nanoparticles. The TEM images show that the leaf- and stem-synthesized silver nanoparticles were within the size of about 7-50 nm and 9-30 nm, respectively. The FTIR analysis was performed to identify the possible functional groups involved in the synthesis of silver nanoparticles. Further, the antibacterial activity of the green-synthesized silver nanoparticles was examined against agricultural plant pathogens. The antibacterial property of silver nanoparticles is a beneficial application in the field of agricultural nanotechnology.
Effect of isovalent dopants on photodegradation ability of ZnS nanoparticles
NASA Astrophysics Data System (ADS)
Khaparde, Rohini; Acharya, Smita
2016-06-01
Isovalent (Mn, Cd, Cu, Co)-doped-ZnS nanoparticles having size vary in between 2 to 5 nm are synthesized by co-precipitation route. Their photocatalytic activity for decoloration of Cango Red and Malachite Green dyes is tested in visible radiation under natural conditions. Structural and morphological features of the samples are investigated by X-ray diffraction, Raman spectroscopy, Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM) and UVsbnd Vis spectrometer. Single phase zinc blende structure of as-synthesized undoped and doped-ZnS is confirmed by XRD and revealed by Rietveld fitting. SEM and TEM images show ultrafine nanoparticles having size in the range of 2 to 5 nm. UV-Vis absorption spectra exhibit blue shift in absorption edge of undoped and doped ZnS as compared to bulk counterpart. The photocatalytic activity as a function of dopant concentration and irradiation time is systematically studied. The rate of de-coloration of dyes is detected by UVsbnd Vis absorption spectroscopy and organic dye mineralization is confirmed by table of carbon (TOC) study. The photocatalytic activity of Mn-doped ZnS is highest amongst all dopants; however Co as a dopant is found to reduce photocatalytic activity than pure ZnS.
Sun, Cheng; Müller, Erich; Meffert, Matthias; Gerthsen, Dagmar
2018-04-01
Transmission electron microscopy (TEM) with low-energy electrons has been recognized as an important addition to the family of electron microscopies as it may avoid knock-on damage and increase the contrast of weakly scattering objects. Scanning electron microscopes (SEMs) are well suited for low-energy electron microscopy with maximum electron energies of 30 keV, but they are mainly used for topography imaging of bulk samples. Implementation of a scanning transmission electron microscopy (STEM) detector and a charge-coupled-device camera for the acquisition of on-axis transmission electron diffraction (TED) patterns, in combination with recent resolution improvements, make SEMs highly interesting for structure analysis of some electron-transparent specimens which are traditionally investigated by TEM. A new aspect is correlative SEM, STEM, and TED imaging from the same specimen region in a SEM which leads to a wealth of information. Simultaneous image acquisition gives information on surface topography, inner structure including crystal defects and qualitative material contrast. Lattice-fringe resolution is obtained in bright-field STEM imaging. The benefits of correlative SEM/STEM/TED imaging in a SEM are exemplified by structure analyses from representative sample classes such as nanoparticulates and bulk materials.
New Developments in Cathodoluminescence Spectroscopy for the Study of Luminescent Materials
den Engelsen, Daniel; Fern, George R.; Harris, Paul G.; Ireland, Terry G.; Silver, Jack
2017-01-01
Herein, we describe three advanced techniques for cathodoluminescence (CL) spectroscopy that have recently been developed in our laboratories. The first is a new method to accurately determine the CL-efficiency of thin layers of phosphor powders. When a wide band phosphor with a band gap (Eg > 5 eV) is bombarded with electrons, charging of the phosphor particles will occur, which eventually leads to erroneous results in the determination of the luminous efficacy. To overcome this problem of charging, a comparison method has been developed, which enables accurate measurement of the current density of the electron beam. The study of CL from phosphor specimens in a scanning electron microscope (SEM) is the second subject to be treated. A detailed description of a measuring method to determine the overall decay time of single phosphor crystals in a SEM without beam blanking is presented. The third technique is based on the unique combination of microscopy and spectrometry in the transmission electron microscope (TEM) of Brunel University London (UK). This combination enables the recording of CL-spectra of nanometre-sized specimens and determining spatial variations in CL emission across individual particles by superimposing the scanning TEM and CL-images. PMID:28772671
Chou, Yi-Chia; Tang, Wei; Chiou, Chien-Jyun; Chen, Kai; Minor, Andrew M; Tu, K N
2015-06-10
Effects of strain impact a range of applications involving mobility change in field-effect-transistors. We report the effect of strain fluctuation on epitaxial growth of NiSi2 in a Si nanowire via point contact and atomic layer reactions, and we discuss the thermodynamic, kinetic, and mechanical implications. The generation and relaxation of strain shown by in situ TEM is periodic and in synchronization with the atomic layer reaction. The Si lattice at the epitaxial interface is under tensile strain, which enables a high solubility of supersaturated interstitial Ni atoms for homogeneous nucleation of an epitaxial atomic layer of the disilicide phase. The tensile strain is reduced locally during the incubation period of nucleation by the dissolution of supersaturated Ni atoms in the Si lattice but the strained-Si state returns once the atomic layer epitaxial growth of NiSi2 occurs by consuming the supersaturated Ni.
NASA Astrophysics Data System (ADS)
Karreman, M. A.
2013-03-01
Correlative microscopy is the combined use of two different forms of microscopy in the study of a specimen, allowing for the exploitation of the advantages of both imaging tools. The integrated Laser and Electron Microscope (iLEM), developed at Utrecht University, combines a fluorescence microscope (FM) and a transmission electron microscope (TEM) in a single set-up. The region of interest in the specimen is labeled or tagged with a fluorescent probe and can easily be identified within a large field of view with the FM. Next, this same area is retraced in the TEM and can be studied at high resolution. The iLEM demands samples that can be imaged with both FM and TEM. Biological specimen, typically composed of light elements, generate low image contrast in the TEM. Therefore, these samples are often ‘contrasted’ with heavy metal stains. FM, on the other hand, images fluorescent samples. Sample preparation for correlative microscopy, and iLEM in particular, is complicated by the fact that the heavy metals stains employed for TEM quench the fluorescent signal of the probe that is imaged with FM. The first part of this thesis outlines preparation procedures for biological material yielding specimen that can be imaged with the iLEM. Here, approaches for the contrasting of thin sections of cells and tissue are introduced that do not affect the fluorescence signal of the probe that marks the region of interest. Furthermore, two novel procedures, VIS2FIXH and VIS2FIXFS are described that allow for the chemical fixation of thin sections of cryo-immobilized material. These procedures greatly expedite the sample preparation process, and open up novel possibilities for the immuno-labeling of difficult antigens, eg. proteins and lipids that are challenging to preserve. The second part of this thesis describes applications of iLEM in research in the field of life and material science. The iLEM was employed in the study of UVC induced apoptosis (programmed cell death) of human umbilical vein endothelial cells. A novel, RNA containing body was identified in the nuclei of cells going through the various stages of the apoptotic process. Furthermore, we demonstrated the potential of iLEM in the study of Facio Scapulo Humeral Dystrophy (FSHD), the third most common form of inherited muscular dystrophy. In this study, diseased cells are identified based on the immuno-labeling of proteins associated with FSHD pathology. In the field of heterogeneous catalysis, a structural and functional characterization of Fluid Catalytic Cracking (FCC) particles was performed with iLEM. FCC particles are employed in petrochemical industry, where they catalyze the breakdown of large molecules in crude oil fractions into functional products with lower molecular weight, like gasoline. The catalytic sites in the FCC particles were selectively stained with a fluorescent probe, and next their structure was investigated with TEM. The iLEM allowed for the identification and characterization of catalytically active areas in the FCC particles. Furthermore, a unique study of the deactivation processes taking place in an industrial FCC unit was performed by analyzing a sample derived from a FCC reactor
de Jonge, Niels
2018-04-01
The sample dependent spatial resolution was calculated for transmission electron microscopy (TEM) and scanning TEM (STEM) of objects (e.g., nanoparticles, proteins) embedded in a layer of liquid water or amorphous ice. The theoretical model includes elastic- and inelastic scattering, beam broadening, and chromatic aberration. Different contrast mechanisms were evaluated as function of the electron dose, the detection angle, and the sample configuration. It was found that the spatial resolution scales with the electron dose to the -1/4th power. Gold- and carbon nanoparticles were examined in the middle of water layers ranging from 0.01--10 µm thickness representing relevant classes of experiments in both materials science and biology. The optimal microscope settings differ between experimental configurations. STEM performs the best for gold nanoparticles for all layer thicknesses, while carbon is best imaged with phase-contrast TEM for thin layers but bright field STEM is preferred for thicker layers. The resolution was also calculated for a water layer enclosed between thin membranes. The influence of chromatic aberration correction for TEM was examined as well. The theory is broadly applicable to other types of materials and sample configurations. Copyright © 2018 Elsevier B.V. All rights reserved.
Ramalingam, Kirithiga; Vuthaluru, Seenu; Srivastava, Anurag; Dinda, Amit Kumar; Dhar, Anita
2017-01-01
Duct ectasia (DE) and periductal mastitis (PDM) are the most common benign breast conditions seen in women. The etiopathogenesis of these entities is still not clear and most of the theories regarding the causation are based on the histological features as seen on light microscopy. The ultramicroscopic features associated with these conditions that may give more insight to the etiopathogenesis are unknown. To study the ultrastructural changes occurring in mammary duct cones in patients with DE and PDM using Transmission Electron Microscopic (TEM). Major ducts removed by radical duct excision from 21 patients with final histopathological diagnosis of DE and PDM were subjected to TEM study with 2 normal duct samples as controls. The TEM features of DE were denudation of the epithelial cells with focal loss of microvilli, widening of the inter-epithelial junctions with focal disruption of the T bars, periductal collagenisation without inflammation, and features suggestive of Epithelial Mesenchymal Transition (EMT). PDM features are intact epithelial lining with proliferative epithelium and periductal collagenisation with inflammation. Based on the TEM findings, we suggest that DE and PDM are two different entities. EMT a novel finding observed in DE in this study.
Ramalingam, Kirithiga; Vuthaluru, Seenu; Srivastava, Anurag; Dinda, Amit Kumar; Dhar, Anita
2017-01-01
Introduction Duct ectasia (DE) and periductal mastitis (PDM) are the most common benign breast conditions seen in women. The etiopathogenesis of these entities is still not clear and most of the theories regarding the causation are based on the histological features as seen on light microscopy. The ultramicroscopic features associated with these conditions that may give more insight to the etiopathogenesis are unknown. Aim To study the ultrastructural changes occurring in mammary duct cones in patients with DE and PDM using Transmission Electron Microscopic (TEM). Method Major ducts removed by radical duct excision from 21 patients with final histopathological diagnosis of DE and PDM were subjected to TEM study with 2 normal duct samples as controls. Results The TEM features of DE were denudation of the epithelial cells with focal loss of microvilli, widening of the inter-epithelial junctions with focal disruption of the T bars, periductal collagenisation without inflammation, and features suggestive of Epithelial Mesenchymal Transition (EMT). PDM features are intact epithelial lining with proliferative epithelium and periductal collagenisation with inflammation. Conclusions Based on the TEM findings, we suggest that DE and PDM are two different entities. EMT a novel finding observed in DE in this study. PMID:28273122
Surface phenomenon in Electrochemical Systems
NASA Astrophysics Data System (ADS)
Gupta, Tanya
Interfaces play a critical role in the performance of electrochemical systems. This thesis focusses on interfaces in batteries and covers aspects of interfacial morphologies of metal anodes, including Silicon, Lithium and Zinc. Growth and cycling of electrochemically grown Lithium and Zinc metal structures is investigated. A new morphology of Zinc, called Hyper Dendritic Zinc is introduced. It is cycled against Prussian Blue Analogues and is shown to improve the performance of this couple significantly. Characterization of materials is done using various electron microscopy techniques ranging from Low Energy Electron Microscope (LEEM), to high energy Transmission Electron Microscope (TEM). LEEM is used for capturing subtle surface phenomenon occurring during epitaxial process of electrolyte on anode. The system studied is Silicon (100) during Chemical Vapor Deposition of Ethylene Carbonate. A strain driven relaxation theory is modeled to explain the unusual restructuring of Si substrate. The other extreme, TEM, is often used to study electrochemical processes, without clear understanding of how the high-energy electron beam can influence the sample under investigation. Here, we study the radiolysis in liquid cell TEM and emphasize on the enhancement of radiation dose at interfaces of the liquid due to generation of secondary and backscattered electrons from adjoining materials. It is shown that this effect is localized in a 10 nm region around the interface and can play a dominating role if there is an interface of liquid with heavy metals like Gold and Platinum which are frequently used as electrode materials. This analysis can be used to establish guidelines for experimentalists to follow, for accurate interpretation of their results.
Structural properties of GaAsN grown on (001) GaAs by metalorganic molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Ok, Young-Woo; Choi, Chel-Jong; Seong, Tae-Yeon; Uesugi, K.; Suemune, I.
2001-07-01
Detailed transmission electron microscopy (TEM) and transmission electron diffraction (TED) examination has been made of metalorganic molecular beam epitaxial GaAsN layers grown on (001) GaAs substrates. TEM results show that lateral composition modulation occurs in the GaAs1-xNx layer (x 6.75%). It is shown that increasing N composition and Se (dopant) concentration leads to poor crystallinity. It is also shown that the addition of Se increases N composition. Atomic force microscopy (AFM) results show that the surfaces of the samples experience a morphological change from faceting to islanding, as the N composition and Se concentration increase. Based on the TEM and AFM results, a simple model is given to explain the formation of the lateral composition modulation.
NASA Astrophysics Data System (ADS)
Gao, Jie; Bao, Liangman; Huang, Hefei; Li, Yan; Lei, Qiantao; Deng, Qi; Liu, Zhe; Yang, Guo; Shi, Liqun
2017-05-01
Hastelloy N alloy was implanted with 30 keV, 5 × 1016 ions/cm2 helium ions at room temperature, and subsequent annealed at 600 °C for 1 h and further annealed at 850 °C for 5 h in vacuum. Using elastic recoil detection analysis (ERDA) and transmission electron microscopy (TEM), the depth profiles of helium concentration and helium bubbles in helium-implanted Hastelloy N alloy were investigated, respectively. The diffusion of helium and molybdenum elements to surface occurred during the vacuum annealing at 850 °C (5 h). It was also observed that bubbles in molybdenum-enriched region were much larger in size than those in deeper region. In addition, it is worth noting that plenty of nano-holes can be observed on the surface of helium-implanted sample after high temperature annealing by scanning electron microscope (SEM). This observation provides the evidence for the occurrence of helium release, which can be also inferred from the results of ERDA and TEM analysis.
Crimp, Martin A
2006-05-01
The imaging and characterization of dislocations is commonly carried out by thin foil transmission electron microscopy (TEM) using diffraction contrast imaging. However, the thin foil approach is limited by difficult sample preparation, thin foil artifacts, relatively small viewable areas, and constraints on carrying out in situ studies. Electron channeling imaging of electron channeling contrast imaging (ECCI) offers an alternative approach for imaging crystalline defects, including dislocations. Because ECCI is carried out with field emission gun scanning electron microscope (FEG-SEM) using bulk specimens, many of the limitations of TEM thin foil analysis are overcome. This paper outlines the development of electron channeling patterns and channeling imaging to the current state of the art. The experimental parameters and set up necessary to carry out routine channeling imaging are reviewed. A number of examples that illustrate some of the advantages of ECCI over thin foil TEM are presented along with a discussion of some of the limitations on carrying out channeling contrast analysis of defect structures. Copyright (c) 2006 Wiley-Liss, Inc.
In situ TEM observation of FCC Ti formation at elevated temperatures
Yu, Qian; Kacher, Josh; Gammer, Christoph; ...
2017-07-04
Pure Ti traditionally exhibits the hexagonal closed packed (HCP) crystallographic structure under ambient conditions and the body centered cubic (BCC) structure at elevated temperatures. In addition to these typical structures for Ti alloys, the presence of a face centered cubic (FCC) phase associated with thin films, interfaces, or high levels of plastic deformation has occasionally been reported. Here in this paper we show that small FCC precipitates form in freestanding thin foils during in situ transmission electron microscope (TEM) heating and we discuss the potential origins of the FCC phase in light of the in situ observations. This FCC phasemore » was found to be stable upon cooling and under ambient conditions, which allowed us to explore its mechanical properties and stability via nanomechanical in situ TEM testing. It was found that FCC platelets within the HCP matrix phase were stable under mechanical deformation and exhibited similar mechanical deformation behavior as the parent HCP phase.« less
In situ TEM observation of FCC Ti formation at elevated temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Qian; Kacher, Josh; Gammer, Christoph
Pure Ti traditionally exhibits the hexagonal closed packed (HCP) crystallographic structure under ambient conditions and the body centered cubic (BCC) structure at elevated temperatures. In addition to these typical structures for Ti alloys, the presence of a face centered cubic (FCC) phase associated with thin films, interfaces, or high levels of plastic deformation has occasionally been reported. Here in this paper we show that small FCC precipitates form in freestanding thin foils during in situ transmission electron microscope (TEM) heating and we discuss the potential origins of the FCC phase in light of the in situ observations. This FCC phasemore » was found to be stable upon cooling and under ambient conditions, which allowed us to explore its mechanical properties and stability via nanomechanical in situ TEM testing. It was found that FCC platelets within the HCP matrix phase were stable under mechanical deformation and exhibited similar mechanical deformation behavior as the parent HCP phase.« less
Surfactant-assisted atomic-level engineering of spin valves
NASA Astrophysics Data System (ADS)
Chopra, Harsh Deep; Yang, David X.; Chen, P. J.; Egelhoff, W. F.
2002-03-01
Surfactant Ag is successfully used to atomically engineer interfaces and nanostructure in NiO-Co-Cu-based bottom spin valves. At a Cu spacer thickness of 1.5 nm, a strong net ferromagnetic (or positive) coupling >13.92 kA/m (>175 Oe) between NiO-pinned and ``free'' Co layers leads to a negligible ``giant'' magnetoresistance (GMR) effect (<0.7%) in Ag-free samples. In contrast, the net ferromagnetic coupling could be reduced by a factor of 2 or more in spin valves deposited in the presence of ~1-3 ML of surfactant Ag, and such samples exhibit more than an order of magnitude increase in GMR (8.5-13 %). Based on transmission electron microscopy (TEM), a large contribution to net ferromagnetic coupling in Ag-free samples could be directly attributed to the presence of numerous pinholes. In situ x-ray photoelectron spectroscopy and TEM studies show that surfactant Ag floats out to the surface during deposition of successive Co and Cu overlayers, leaving behind smooth interfaces and continuous layers that are less prone to intermixing and pinholes. The use of surfactants in the present study also illustrates their potential use in atomic engineering of magnetoelectronics devices and other multilayer systems.
Atom Resolved Electron Microscpe Images of Polyvinylidene Fluoride Nanofibers for Water Desalination
NASA Astrophysics Data System (ADS)
Liu, Suqi; Reneker, Darrell
Ultra-thin nanofibers of polyvinylidene fluoride (PVDF), observed with an aberration corrected transmission electron microscope, in a through focus series of 50 images, revealed three-dimensional positions and motions of some molecular segments. The x,y positions of fluorine atoms in the PVDF segments were observed at high resolution as described in (DOI: 10.1039/c5nr01619c). The methods described in (DOI:10.1038/nature11074) were used to measure the positions of fluorine atoms along the observation direction of the microscope. PVDF is widely used to separate salt ions from water in reverse osmosis systems. The observed separation depends on the atomic scale positions and motions of segments of the PVDF molecules. Conformational changes and the associated changes in the directions of the dipole moments of PVDF segments distinguish the diffusion of dipolar water molecules from diffusion of salt ions to accomplish desalination. Authors thank Coalescence Filtration Nanofibers Consortium at The University of Akron for support.
Theoretical Study of tip apex electronic structure in Scanning Tunneling Microscope
NASA Astrophysics Data System (ADS)
Choi, Heesung; Huang, Min; Randall, John; Cho, Kyeongjae
2011-03-01
Scanning Tunneling Microscope (STM) has been widely used to explore diverse surface properties with an atomic resolution, and STM tip has played a critical role in controlling surface structures. However, detailed information of atomic and electronic structure of STM tip and the fundamental understanding of STM images are still incomplete. Therefore, it is important to develop a comprehensive understanding of the electronic structure of STM tip. We have studied the atomic and electronic structures of STM tip with various transition metals (TMs) by DFT method. The d-electrons of TM tip apex atoms show different orbital states near the Fermi level. We will present comprehensive data of STM tips from our DFT calculation. Verified quantification of the tip electronic structures will lead to fundamental understanding of STM tip structure-property relationship. This work is supported by the DARPA TBN Program and the Texas ETF. DARPA Tip Based Nanofabrication Program and the Emerging Technology Fund of the State of Texas.
In-line three-dimensional holography of nanocrystalline objects at atomic resolution
Chen, F. -R.; Van Dyck, D.; Kisielowski, C.
2016-02-18
We report that resolution and sensitivity of the latest generation aberration-corrected transmission electron microscopes allow the vast majority of single atoms to be imaged with sub-Ångstrom resolution and their locations determined in an image plane with a precision that exceeds the 1.9-pm wavelength of 300 kV electrons. Such unprecedented performance allows expansion of electron microscopic investigations with atomic resolution into the third dimension. Here we show a general tomographic method to recover the three-dimensional shape of a crystalline particle from high-resolution images of a single projection without the need for sample rotation. The method is compatible with low dose ratemore » electron microscopy, which improves on signal quality, while minimizing electron beam-induced structure modifications even for small particles or surfaces. Lastly, we apply it to germanium, gold and magnesium oxide particles, and achieve a depth resolution of 1–2 Å, which is smaller than inter-atomic distances.« less
Optical Thin Film Thickness Measurement for the Single Atom Microscope
NASA Astrophysics Data System (ADS)
Nelson, Courtney; Frisbie, Dustin; Singh, Jaideep; Spinlab Team
2017-09-01
The Single Atom Microscope Project proposes an efficient, selective, and sensitive method to measure the 1022Ne+24 He ->1225 Mg + n reaction. This rare nuclear reaction is a source of neutrons for heavy element development through the slow neutron capture process. This method embeds Magnesium atoms in a solid neon film. The Magnesium atoms exhibit a shifted fluorescence spectrum allowing for the detection of individual fluorescence photons against the excitation light background. Currently, Ytterbium is used in place of Magnesium-25 because it has been more thoroughly studied than Magnesium and we expect it to have a brighter signal. To identify the signal emitted from the Ytterbium atoms, we need to quantify the amount of signal and background per atom in the neon film. We need to know the film thickness to find the number of atoms in the film to determine the amount of light emitted per atom. In preparation for the neon film measurement, I constructed an experiment to advance the understanding of what is required to optically measure a thin film by using a cover glass slide in place of the thin film. This preliminary experiment has determined a measurement method for finding the thickness of a neon thin film on a sapphire substrate. This work is supported by Michigan State University, U.S. National Science Foundation under Grant Number 1654610, and U.S. NSF REU.
NASA Astrophysics Data System (ADS)
Xu, Zhenfeng; Ding, Zhimin; Liang, Bo
2018-03-01
The M23C6 carbides precipitate along the austenite grain boundary in the 100Mn13 high carbon high manganese steel after 1323 K (1050 °C) solution treatment and subsequent 748 K (475 °C) aging treatment. The grain boundary M23C6 carbides not only spread along the grain boundary and into the incoherent austenite grain, but also grow slowly into the coherent austenite grain. On the basis of the research with optical microscope, a further investigation for the M23C6/ γ coherent interface was carried out by transmission electron microscope (TEM). The results show that the grain boundary M23C6 carbides have orientation relationships with only one of the adjacent austenite grains in the same planes: (\\bar{1}1\\bar{1})_{{{M}_{ 2 3} {C}_{ 6} }} //(\\bar{1}1\\bar{1})_{γ } , (\\bar{1}11)_{{{M}_{ 2 3} {C}_{ 6} }} //(\\bar{1}11)_{γ } ,[ 1 10]_{{{M}_{ 2 3} {C}_{ 6} }} //[ 1 10]_{γ } . The flat M23C6/ γ coherent interface lies on the low indexed crystal planes {111}. Moreover, in M23C6/ γ coherent interface, there are embossments which stretch into the coherent austenite grain γ. Dislocations distribute in the embossments and coherent interface frontier. According to the experimental observation, the paper suggests that the embossments can promote the M23C6/ γ coherent interface move. Besides, the present work has analyzed chemical composition of experimental material and the crystal structures of austenite and M23C6, which indicates that the transformation can be completed through a little diffusion for C atoms and a simple variant for austenite unit cell.
NASA Astrophysics Data System (ADS)
Laxmi; Khan, Shabnam; Kareem, Abdul; Zafar, Fahmina; Nishat, Nahid
2018-01-01
A series of novel coordination polyurethanes [HTPU-M, where M = Mn(II) 'd5', Ni(II) 'd8', and Zn(II) 'd10'] have been synthesized to investigate the effect of divalent metal ions coordination on structure, thermal and adsorption properties of low molecular weight hydroxyl terminated polyurethane (HTPU). HTPU-M have been synthesized in situ where, sbnd OH group of HTPU (synthesized by the condensation polymerization reaction of ethylene glycol (EG) and toluene diisocyanate (TDI) in presence of catalyst) on condensation polymerization with metal acetate in presence of acid catalyst synthesized HTPU-M followed by coordination of metal ions with hetero atoms. The structure, composition and geometry of HTPU-M have been confirmed by vibrational spectrometry (FTIR), 1H NMR, elemental analysis and UV-Visible spectroscopy. Morphological structures of HTPU-M were analyzed by X-Ray Diffraction analysis (XRD), Field Emission Scanning Electron Microscope (FE-SEM) with Energy Dispersive X-ray spectroscopy (EDX) and High Resolution Transmission Electron Microscope (HR-TEM) techniques. The thermal degradation pattern and thermal stability of HTPU-M in comparison to HTPU was investigated by thermal-gravimetric (TG)/differential thermal (DT), analyses along with Integral procedure decomposition temperature (IPDT) by Doyle method. The molecular weight of HTPU was determined by gel permeation chromatography (GPC). The preliminary adsorption/desorption studies of HTPU-M for Congo red (CR) was studied by batch adsorption techniques. The results indicated that HTPU-M have amorphous, layered morphology with higher number of nano-sized grooves in comparison to HTPU. Coordination of metal to HTPU plays a key role in enhancing the thermal stability [HTPU-Ni(II) > HTPU-Mn(II) > HTPU-Zn(II) > HTPU]. The HTPU-M can be utilized for industrial waste water treatment by removing environmental pollutants.
Atomic Layer Deposition of L-Alanine Polypeptide
Fu, Yaqin; Li, Binsong; Jiang, Ying-Bing; ...
2014-10-30
L-Alanine polypeptide thin films were synthesized via atomic layer deposition (ALD). Rather, instead of using an amino acid monomer as the precursor, an L-alanine amino acid derivatized with a protecting group was used to prevent self-polymerization, increase the vapor pressure, and allow linear cycle-by-cycle growth emblematic of ALD. Moreover, the successful deposition of a conformal polypeptide film has been confirmed by FTIR, TEM, and Mass Spectrometry, and the ALD process has been extended to polyvaline.
Isolating and moving single atoms using silicon nanocrystals
Carroll, Malcolm S.
2010-09-07
A method is disclosed for isolating single atoms of an atomic species of interest by locating the atoms within silicon nanocrystals. This can be done by implanting, on the average, a single atom of the atomic species of interest into each nanocrystal, and then measuring an electrical charge distribution on the nanocrystals with scanning capacitance microscopy (SCM) or electrostatic force microscopy (EFM) to identify and select those nanocrystals having exactly one atom of the atomic species of interest therein. The nanocrystals with the single atom of the atomic species of interest therein can be sorted and moved using an atomic force microscope (AFM) tip. The method is useful for forming nanoscale electronic and optical devices including quantum computers and single-photon light sources.
NASA Astrophysics Data System (ADS)
Ouma Alunda, Bernard; Lee, Yong Joong; Park, Soyeun
2018-06-01
A typical line-scan rate for a commercial atomic force microscope (AFM) is about 1 Hz. At such a rate, more than four minutes of scanning time is required to obtain an image of 256 × 256 pixels. Despite control electronics of most commercial AFMs permit faster scan rates, default piezoelectric X–Y scanners limit the overall speed of the system. This is a direct consequence of manufacturers choosing a large scan range over the maximum operating speed for a X–Y scanner. Although some AFM manufacturers offer reduced-scan area scanners as an option, the speed improvement is not significant because such scanners do not have large enough reduction in the scan range and are mainly targeted to reducing the overall cost of the AFM systems. In this article, we present a simple parallel-kinematic substitute scanner for a commercial atomic force microscope to afford a higher scanning speed with no other hardware or software upgrade to the original system. Although the scan area reduction is unavoidable, our modified commercial XE-70 AFM from Park Systems has achieved a line scan rate of over 50 Hz, more than 10 times faster than the original, unmodified system. Our flexure-guided X–Y scanner can be a simple drop-in replacement option for enhancing the speed of various aging atomic force microscopes.
NASA Astrophysics Data System (ADS)
Matsoso, Boitumelo J.; Ranganathan, Kamalakannan; Mutuma, Bridget K.; Lerotholi, Tsenolo; Jones, Glenn; Coville, Neil J.
2017-03-01
Herein we report on the synthesis and characterization of novel crystalline hexagonal boron nitride (h-BN) quantum- and nanodots embedded in large-area boron carbon nitride (BCN) films. The films were grown on a Cu substrate by an atmospheric pressure chemical vapour deposition technique. Methane, ammonia, and boric acid were used as precursors for C, N and B to grow these few atomic layer thick uniform films. We observed that both the size of the h-BN quantum/nanodots and thickness of the BCN films were influenced by the vaporization temperature of boric acid as well as the H3BO3 (g) flux over the Cu substrate. These growth conditions were easily achieved by changing the position of the solid boric acid in the reactor with respect to the Cu substrate. Atomic force microscope (AFM) and TEM analyses show a variation in the h-BN dot size distribution, ranging from nanodots (˜224 nm) to quantum dots (˜11 nm) as the B-source is placed further away from the Cu foil. The distance between the B-source and the Cu foil gave an increase in the C atomic composition (42 at% C-65 at% C) and a decrease in both B and N contents (18 at% B and 14 at% N to 8 at% B and 7 at% N). UV-vis absorption spectra showed a higher band gap energy for the quantum dots (5.90 eV) in comparison with the nanodots (5.68 eV) due to a quantum confinement effect. The results indicated that the position of the B-source and its reaction with ammonia plays a significant role in controlling the nucleation of the h-BN quantum- and nanodots. The films are proposed to be used in solar cells. A mechanism to explain the growth of h-BN quantum/nanodots in BCN films is reported.
Wen, C; Wan, W; Li, F H; Tang, D
2015-04-01
The [110] cross-sectional samples of 3C-SiC/Si (001) were observed with a spherical aberration-corrected 300 kV high-resolution transmission electron microscope. Two images taken not close to the Scherzer focus condition and not representing the projected structures intuitively were utilized for performing the deconvolution. The principle and procedure of image deconvolution and atomic sort recognition are summarized. The defect structure restoration together with the recognition of Si and C atoms from the experimental images has been illustrated. The structure maps of an intrinsic stacking fault in the area of SiC, and of Lomer and 60° shuffle dislocations at the interface have been obtained at atomic level. Copyright © 2015 Elsevier Ltd. All rights reserved.
Phage Conversion for β-Lactam Antibiotic Resistance of Staphylococcus aureus from Foods.
Lee, Young-Duck; Park, Jong-Hyun
2016-02-01
Temperate phages have been suggested to carry virulence factors and other lysogenic conversion genes that play important roles in pathogenicity. In this study, phage TEM123 in wild-type Staphylococcus aureus from food sources was analyzed with respect to its morphology, genome sequence, and antibiotic resistance conversion ability. Phage TEM123 from a mitomycin C-induced lysate of S. aureus was isolated from foods. Morphological analysis under a transmission electron microscope revealed that it belonged to the family Siphoviridae. The genome of phage TEM123 consisted of a double-stranded DNA of 43,786 bp with a G+C content of 34.06%. A bioinformatics analysis of the phage genome identified 43 putative open reading frames (ORFs). ORF1 encoded a protein that was nearly identical to the metallo-β-lactamase enzymes that degrade β-lactam antibiotics. After transduction to S. aureus with phage TEM123, the metallo-β-lactamase gene was confirmed in the transductant by PCR and sequencing analyses. In a β-lactam antibiotic susceptibility test, the transductant was more highly resistant to β-lactam antibiotics than S. aureus S133. Phage TEM123 might play a role in the transfer of β-lactam antibiotic resistance determinants in S. aureus. Therefore, we suggest that the prophage of S. aureus with its exotoxin is a risk factor for food safety in the food chain through lateral gene transfer.
Direct Writing of Graphene-based Nanoelectronics via Atomic Force Microscopy
2012-05-07
To) 07-05-2012 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Direct Writing of Graphene -based Nanoelectronics via Atomic Force Microscopy 5b. GRANT...ABSTRACT This project employs direct writing with an atomic force microscope (AFM) to fabricate simple graphene -based electronic components like resistors...and transistors at nanometer-length scales. The goal is to explore their electrical properties for graphene -based electronics. Conducting
Shock-produced olivine glass: First observation
Jeanloz, R.; Ahrens, T.J.; Lally, J.S.; Nord, G.L.; Christie, J.M.; Heuer, A.H.
1977-01-01
Transmission electron microscope (TEM) observations of an experimentally shock-deformed single crystal of natural peridot, (Mg0.88Fe 0.12SiO4 recovered from peak pressures of about 56 ?? 109 pascals revealed the presence of amorphous zones located within crystalline regions with a high density of tangled dislocations. This is the first reported observation ofolivine glass. The shocked sample exhibits a wide variation in the degree of shock deformation on a small scale, and the glass appears to be intimately associated with the highest density of dislocations. This study suggests that olivine glass may be formed as a result of shock at pressures above about 50 to 55 ?? 109 pascals and that further TEM observations of naturally shocked olivines may demonstrate the presence of glass.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shanmugavel, T., E-mail: gokulrajs@hotmail.com, E-mail: shanmugavelnano@gmail.com; Raj, S. Gokul, E-mail: gokulrajs@hotmail.com, E-mail: shanmugavelnano@gmail.com; Rajarajan, G.
2015-06-24
Combustion synthesis of single phase Nickel ferrite was successfully achieved at low temperature regime. The obtained powders were calcinated to increase the crystallinity and their characterization change due to calcinations is investigated in detail. Citric acid used as a chelating agent for the synthesis of nickel ferrite. Pure single phase nickel ferrites were found at this low temperature. The average crystalline sizes were measured by using powder XRD measurements. Surface morphology was investigated through Transmission Electron Microscope (TEM). Particle size calculated in XRD is compared with TEM results. Magnetic behaviour of the samples is analyzed by using Vibrating Sample Magnetometermore » (VSM). Saturation magnetization, coercivity and retentivity are measured and their results are discussed in detail.« less
A TEM analysis of nanoparticulates in a Polar ice core
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esquivel, E.V.; Murr, L.E
2004-03-15
This paper explores the prospect for analyzing nanoparticulates in age-dated ice cores representing times in antiquity to establish a historical reference for atmospheric particulate regimes. Analytical transmission electron microscope (TEM) techniques were utilized to observe representative ice-melt water drops dried down on carbon/formvar or similar coated grids. A 10,000-year-old Greenland ice core was melted, and representative water drops were transferred to coated grids in a clean room environment. Essentially, all particulates observed were aggregates and either crystalline or complex mixtures of nanocrystals. Especially notable was the observation of carbon nanotubes and related fullerene-like nanocrystal forms. These observations are similar withmore » some aspects of contemporary airborne particulates including carbon nanotubes and complex nanocrystal aggregates.« less
NASA Astrophysics Data System (ADS)
Gao, Min; Lu, Liqian; Wang, Xiaoyue; Lin, Houke; Zhou, Qingsong
2017-11-01
For sustain the release rate and prolong half-life of breviscapine in vivo, the breviscapine-loaded halloysite nanotubes complex was prepared. The breviscapine was encapsulated into halloysite nanotubes (HNTs) using a vacuum process. The complex were investigated by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), transmission electron microscope (TEM), X-ray diffraction (XRD) and fourier transform infrared spectroscopy(FT-IR). The formation of breviscapine-loaded HNTs complex was proved by the test results of SEM, DSC, TEM and IR analysise. The results confirmed that breviscapine was successfully loaded in the halloysite nanotubes. Additionally, the in vitro drug release of breviscapine from breviscapine-loaded HNTs complex was investigated, the result indicated this complex has apparent sustained-release effect.
Dopant mapping in thin FIB prepared silicon samples by Off-Axis Electron Holography.
Pantzer, Adi; Vakahy, Atsmon; Eliyahou, Zohar; Levi, George; Horvitz, Dror; Kohn, Amit
2014-03-01
Modern semiconductor devices function due to accurate dopant distribution. Off-Axis Electron Holography (OAEH) in the transmission electron microscope (TEM) can map quantitatively the electrostatic potential in semiconductors with high spatial resolution. For the microelectronics industry, ongoing reduction of device dimensions, 3D device geometry, and failure analysis of specific devices require preparation of thin TEM samples, under 70 nm thick, by focused ion beam (FIB). Such thicknesses, which are considerably thinner than the values reported to date in the literature, are challenging due to FIB induced damage and surface depletion effects. Here, we report on preparation of TEM samples of silicon PN junctions in the FIB completed by low-energy (5 keV) ion milling, which reduced amorphization of the silicon to 10nm thick. Additional perpendicular FIB sectioning enabled a direct measurement of the TEM sample thickness in order to determine accurately the crystalline thickness of the sample. Consequently, we find that the low-energy milling also resulted in a negligible thickness of electrically inactive regions, approximately 4nm thick. The influence of TEM sample thickness, FIB induced damage and doping concentrations on the accuracy of the OAEH measurements were examined by comparison to secondary ion mass spectrometry measurements as well as to 1D and 3D simulations of the electrostatic potentials. We conclude that for TEM samples down to 100 nm thick, OAEH measurements of Si-based PN junctions, for the doping levels examined here, resulted in quantitative mapping of potential variations, within ~0.1 V. For thinner TEM samples, down to 20 nm thick, mapping of potential variations is qualitative, due to a reduced accuracy of ~0.3 V. This article is dedicated to the memory of Zohar Eliyahou. Copyright © 2014 Elsevier B.V. All rights reserved.
Guinel, M J-F; Brodusch, N; Verde-Gómez, Y; Escobar-Morales, B; Gauvin, R
2013-10-01
Carbon nanotubes (CNTs) decorated with platinum (Pt) nanoparticles (NPs) have been characterized using a cold field-emission scanning electron microscope (SEM) and a high resolution field-emission transmission electron microscope (TEM). With this particular composite material, the complementary nature of the two instruments was demonstrated. Although the long CNTs were found to be mostly bent and defective in some parts, the nucleation of Pt occurred randomly and uniformly covered the CNTs. The NPs displayed a large variation in size, were sometimes defective with twins and stacking faults, and were found to be faceted with the presence of surface steps. The shape and size of the NPs and the presence of defects may have significant consequences on the activity of the Pt catalyst material. Also, thin layers of platinum oxide were identified on the surface of some NPs. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.
Controlling dispersion of graphene nanoplatelets in aqueous solution by ultrasonic technique
NASA Astrophysics Data System (ADS)
Wang, Baomin; Jiang, Ruishuang; Song, Wanzeng; Liu, Hui
2017-08-01
The homogenous graphene nanoplatelets (GNP) suspension had been prepared through ultrasonic exfoliation in the presence of methylcellulose (MC) as dispersant. The influence of different sonication times on dispersing of aqueous GNP suspension was monitored by UV-Vis absorbance, sedimentation test, optical microscope and transmission electron microscope (TEM). The study of UV-Vis absorbance verifies that the minimum sonication time to break the 0.1 g/L concentration of bundled GNPs is 20 min; furthermore, the GNP suspension achieved the best dispersion, when sonication time increased up to 80 min. From optical microscope images of GNPs, the agglomeration of GNPs was broken by enough sonication energy, and the distribution of GNPs particles became more uniform. The dispersing mechanism had been discussed and simulated by HRTEM image. The bundled GNPs were exfoliated by cavitation effect of ultrasonic irradiation, meanwhile, the dispersant adsorbed on the surface of GNPs prevented re-entanglement by forming steric hindrance.
Simple Activities to Improve Students' Understanding of Microscopic Friction
ERIC Educational Resources Information Center
Corpuz, Edgar de Guzman; Rebello, N. Sanjay
2012-01-01
We are currently on the verge of several breakthroughs in nanoscience and technology, and we need to prepare our citizenry to be scientifically literate about the microscopic world. Previous research shows that students' mental models of friction at the atomic level are significantly influenced by their macroscopic ideas. Most students see…
NASA Technical Reports Server (NTRS)
Lauer, James L.; Abel, Phillip B.
1988-01-01
The characteristics of the scanning tunneling microscope and atomic force microscope (AFM) are briefly reviewed, and optical methods, mainly interferometry, of sufficient resolution to measure AFM deflections are discussed. The methods include optical resonators, laser interferometry, multiple-beam interferometry, and evanescent wave detection. Experimental results using AFM are reviewed.
NASA Astrophysics Data System (ADS)
Corpuz, Edgar D.; Rebello, N. Sanjay
2011-12-01
Our previous research showed that students’ mental models of friction at the atomic level are significantly influenced by their macroscopic ideas. For most students, friction is due to the meshing of bumps and valleys and rubbing of atoms. The aforementioned results motivated us to further investigate how students can be helped to improve their present models of microscopic friction. Teaching interviews were conducted to study the dynamics of their model construction as they interacted with the interviewer, the scaffolding activities, and/or with each other. In this paper, we present the different scaffolding activities and the variation in the ideas that students generated as they did the hands-on and minds-on scaffolding activities. Results imply that through a series of carefully designed scaffolding activities, it is possible to facilitate the refinement of students’ ideas of microscopic friction.
A compact CCD-monitored atomic force microscope with optical vision and improved performances.
Mingyue, Liu; Haijun, Zhang; Dongxian, Zhang
2013-09-01
A novel CCD-monitored atomic force microscope (AFM) with optical vision and improved performances has been developed. Compact optical paths are specifically devised for both tip-sample microscopic monitoring and cantilever's deflection detecting with minimized volume and optimal light-amplifying ratio. The ingeniously designed AFM probe with such optical paths enables quick and safe tip-sample approaching, convenient and effective tip-sample positioning, and high quality image scanning. An image stitching method is also developed to build a wider-range AFM image under monitoring. Experiments show that this AFM system can offer real-time optical vision for tip-sample monitoring with wide visual field and/or high lateral optical resolution by simply switching the objective; meanwhile, it has the elegant performances of nanometer resolution, high stability, and high scan speed. Furthermore, it is capable of conducting wider-range image measurement while keeping nanometer resolution. Copyright © 2013 Wiley Periodicals, Inc.
A universal fluid cell for the imaging of biological specimens in the atomic force microscope.
Kasas, Sandor; Radotic, Ksenja; Longo, Giovanni; Saha, Bashkar; Alonso-Sarduy, Livan; Dietler, Giovanni; Roduit, Charles
2013-04-01
Recently, atomic force microscope (AFM) manufacturers have begun producing instruments specifically designed to image biological specimens. In most instances, they are integrated with an inverted optical microscope, which permits concurrent optical and AFM imaging. An important component of the set-up is the imaging chamber, whose design determines the nature of the experiments that can be conducted. Many different imaging chamber designs are available, usually designed to optimize a single parameter, such as the dimensions of the substrate or the volume of fluid that can be used throughout the experiment. In this report, we present a universal fluid cell, which simultaneously optimizes all of the parameters that are important for the imaging of biological specimens in the AFM. This novel imaging chamber has been successfully tested using mammalian, plant, and microbial cells. Copyright © 2013 Wiley Periodicals, Inc.
Mapping flexible protein domains at subnanometer resolution with the atomic force microscope.
Müller, D J; Fotiadis, D; Engel, A
1998-06-23
The mapping of flexible protein domains with the atomic force microscope is reviewed. Examples discussed are the bacteriorhodopsin from Halobacterium salinarum, the head-tail-connector from phage phi29, and the hexagonally packed intermediate layer from Deinococcus radiodurans which all were recorded in physiological buffer solution. All three proteins undergo reversible structural changes that are reflected in standard deviation maps calculated from aligned topographs of individual protein complexes. Depending on the lateral resolution (up to 0.8 nm) flexible surface regions can ultimately be correlated with individual polypeptide loops. In addition, multivariate statistical classification revealed the major conformations of the protein surface.
Torun, H; Finkler, O; Degertekin, F L
2009-07-01
The authors describe a method for athermalization in atomic force microscope (AFM) based force spectroscopy applications using microstructures that thermomechanically match the AFM probes. The method uses a setup where the AFM probe is coupled with the matched structure and the displacements of both structures are read out simultaneously. The matched structure displaces with the AFM probe as temperature changes, thus the force applied to the sample can be kept constant without the need for a separate feedback loop for thermal drift compensation, and the differential signal can be used to cancel the shift in zero-force level of the AFM.
Pace, P; Huntington, Shane; Lyytikäinen, K; Roberts, A; Love, J
2004-04-05
We show a quantitative connection between Refractive Index Profiles (RIP) and measurements made by an Atomic Force Microscope (AFM). Germanium doped fibers were chemically etched in hydrofluoric acid solution (HF) and the wet etching characteristics of germanium were studied using an AFM. The AFM profiles were compared to both a concentration profile of the preform determined using a Scanning Electron Microscope (SEM) and a RIP of the fiber measured using a commercial profiling instrument, and were found to be in excellent agreement. It is now possible to calculate the RIP of a germanium doped fiber directly from an AFM profile.
Atomic Force Microscope Investigations of Bacterial Biofilms Treated with Gas Discharge Plasmas
NASA Astrophysics Data System (ADS)
Vandervoort, Kurt; Zelaya, Anna; Brelles-Marino, Graciela
2012-02-01
We present investigations of bacterial biofilms before and after treatment with gas discharge plasmas. Gas discharge plasmas represent a way to inactivate bacteria under conditions where conventional disinfection methods are often ineffective. These conditions involve biofilm communities, where bacteria grow embedded in an exopolysaccharide matrix, and cooperative interactions between cells make organisms less susceptible to standard inactivation methods. In this study, biofilms formed by the opportunistic bacterium Pseudomonas aeruginosa were imaged before and after plasma treatment using an atomic force microscope (AFM). Through AFM images and micromechanical measurements we observed bacterial morphological damage and reduced AFM tip-sample surface adhesion following plasma treatment.
Inorganic resist materials based on zirconium phosphonate for atomic force microscope lithography
NASA Astrophysics Data System (ADS)
Kang, Mankyu; Kim, Seonae; Jung, JinHyuck; Kim, Heebom; Shin, Inkyun; Jeon, Chanuk; Lee, Haiwon
2014-03-01
New inorganic resist materials based on metal complexes were investigated for atomic force microscope (AFM) lithography. Phosphoric acids are good for self-assembly because of their strong binding energy. In this work, zirconium phosphonate system are newly synthesized for spin-coatable materials in aqueous solutions and leads to negative tone pattern for improving line edge roughness. Low electron exposure by AFM lithography could generate a pattern by electrochemical reaction and cross-linking of metal-oxo complexes. It has been reported that the minimum pattern results are affected by lithographic speed, and the applied voltage between a tip and a substrate.
Yoshizawa, Shunsuke; Kim, Howon; Kawakami, Takuto; Nagai, Yuki; Nakayama, Tomonobu; Hu, Xiao; Hasegawa, Yukio; Uchihashi, Takashi
2014-12-12
We have studied the superconducting Si(111)-(√7×√3)-In surface using a ³He-based low-temperature scanning tunneling microscope. Zero-bias conductance images taken over a large surface area reveal that vortices are trapped at atomic steps after magnetic fields are applied. The crossover behavior from Pearl to Josephson vortices is clearly identified from their elongated shapes along the steps and significant recovery of superconductivity within the cores. Our numerical calculations combined with experiments clarify that these characteristic features are determined by the relative strength of the interterrace Josephson coupling at the atomic step.
NASA Astrophysics Data System (ADS)
Meroz, Yasmine
2015-06-01
In the 1980s the world witnessed the advent of single-molecule experiments. The first atomic resolution characterization of a surface was reported by scanning tunneling microscope (STM) in 1982 [1], followed by atomic force microscope (AFM) in 1986 [2]. The first optical detection and spectroscopy of a single molecule in a solid took place in 1989 [3,4], in a time where essentially all chemical experiments were made on bulk, i.e. averaging over millions of copies of the same molecule.
Pt thermal atomic layer deposition for silicon x-ray micropore optics.
Takeuchi, Kazuma; Ezoe, Yuichiro; Ishikawa, Kumi; Numazawa, Masaki; Terada, Masaru; Ishi, Daiki; Fujitani, Maiko; Sowa, Mark J; Ohashi, Takaya; Mitsuda, Kazuhisa
2018-04-20
We fabricated a silicon micropore optic using deep reactive ion etching and coated by Pt with atomic layer deposition (ALD). We confirmed that a metal/metal oxide bilayer of Al 2 O 3 ∼10 nm and Pt ∼20 nm was successfully deposited on the micropores whose width and depth are 20 μm and 300 μm, respectively. An increase of surface roughness of sidewalls of the micropores was observed with a transmission electron microscope and an atomic force microscope. X-ray reflectivity with an Al Kα line at 1.49 keV before and after the deposition was measured and compared to ray-tracing simulations. The surface roughness of the sidewalls was estimated to increase from 1.6±0.2 nm rms to 2.2±0.2 nm rms. This result is consistent with the microscope measurements. Post annealing of the Pt-coated optic at 1000°C for 2 h showed a sign of reduced surface roughness and better angular resolution. To reduce the surface roughness, possible methods such as the annealing after deposition and a plasma-enhanced ALD are discussed.
NASA Astrophysics Data System (ADS)
Kizu, Ryosuke; Misumi, Ichiko; Hirai, Akiko; Kinoshita, Kazuto; Gonda, Satoshi
2018-07-01
A metrological atomic force microscope with a tip-tilting mechanism (tilting-mAFM) has been developed to expand the capabilities of 3D nanometrology, particularly for high-resolution topography measurements at the surfaces of vertical sidewalls and for traceable measurements of nanodevice linewidth. In the tilting-mAFM, the probe tip is tilted from vertical to 16° at maximum such that the probe tip can touch and trace the vertical sidewall of a nanometer-scale structure; the probe of a conventional atomic force microscope cannot reach the vertical surface because of its finite cone angle. Probe displacement is monitored in three axes by using high-resolution laser interferometry, which is traceable to the SI unit of length. A central-symmetric 3D scanner with a parallel spring structure allows probe scanning with extremely low interaxial crosstalk. A unique technique for scanning vertical sidewalls was also developed and applied. The experimental results indicated high repeatability in the scanned profiles and sidewall angle measurements. Moreover, the 3D measurement of a line pattern was demonstrated, and the data from both sidewalls were successfully stitched together with subnanometer accuracy. Finally, the critical dimension of the line pattern was obtained.
Probing plasmodesmata function with biochemical inhibitors.
White, Rosemary G
2015-01-01
To investigate plasmodesmata (PD) function, a useful technique is to monitor the effect on cell-to-cell transport of applying an inhibitor of a physiological process, protein, or other cell component of interest. Changes in PD transport can then be monitored in one of several ways, most commonly by measuring the cell-to-cell movement of fluorescent tracer dyes or of free fluorescent proteins. Effects on PD structure can be detected in thin sections of embedded tissue observed using an electron microscope, most commonly a Transmission Electron Microscope (TEM). This chapter outlines commonly used inhibitors, methods for treating different tissues, how to detect altered cell-to-cell transport and PD structure, and important caveats.
Transmission electron microscope sample holder with optical features
Milas, Mirko [Port Jefferson, NY; Zhu, Yimei [Stony Brook, NY; Rameau, Jonathan David [Coram, NY
2012-03-27
A sample holder for holding a sample to be observed for research purposes, particularly in a transmission electron microscope (TEM), generally includes an external alignment part for directing a light beam in a predetermined beam direction, a sample holder body in optical communication with the external alignment part and a sample support member disposed at a distal end of the sample holder body opposite the external alignment part for holding a sample to be analyzed. The sample holder body defines an internal conduit for the light beam and the sample support member includes a light beam positioner for directing the light beam between the sample holder body and the sample held by the sample support member.
Corrosion performance of 7075 alloy under laser heat treatment
NASA Astrophysics Data System (ADS)
Liu, Tong; Su, Ruiming; Qu, Yingdong; Li, Rongde
2018-05-01
Microstructure, exfoliation corrosion (EXCO), intergranular corrosion (IGC) and potentidynamic polarization test of the 7075 aluminum alloy after retrogression and re-aging (RRA) treatment, and laser retrogression and re-aging (LRRA), respectively, were studied by using scanning electron microscope, and transmission electron microscope (TEM). The results show that after pre-aging, laser treatment (650 W, 2 mm s‑1) and re-aging a lot of matrix precipitates of alloy were precipitated again. The semi-continuous grain boundary precipitates and the wider precipitate-free zones (PFZ) improve the corrosion resistance of the alloy. The corrosion properties of the alloy after LRRA (650 W, 2 mm s‑1) treatment are better than that after RRA treatment.
2017-11-09
to correlate the atomic-scale magnetism and spin density with the macroscopic spin transport properties of 2D materials. This is a long-term effort...devices, our goal is to correlate the atomic-scale magnetism and spin density with the macroscopic spin transport properties of 2D materials. This is a... correlate the change in transport with the atomic structure of hydrogen-doped graphene, we subsequently use the STM to investigate the graphene
NASA Astrophysics Data System (ADS)
Whelan, Colm T.
2018-04-01
A knowledge of atomic theory should be an essential part of every physicist's and chemist's toolkit. This book provides an introduction to the basic ideas that govern our understanding of microscopic matter, and the essential features of atomic structure and spectra are presented in a direct and easily accessible manner. Semi-classical ideas are reviewed and an introduction to the quantum mechanics of one and two electron systems and their interaction with external electromagnetic fields is featured. Multielectron atoms are also introduced, and the key methods for calculating their properties reviewed.
Toggling Bistable Atoms via Mechanical Switching of Bond Angle
NASA Astrophysics Data System (ADS)
Sweetman, Adam; Jarvis, Sam; Danza, Rosanna; Bamidele, Joseph; Gangopadhyay, Subhashis; Shaw, Gordon A.; Kantorovich, Lev; Moriarty, Philip
2011-04-01
We reversibly switch the state of a bistable atom by direct mechanical manipulation of bond angle using a dynamic force microscope. Individual buckled dimers at the Si(100) surface are flipped via the formation of a single covalent bond, actuating the smallest conceivable in-plane toggle switch (two atoms) via chemical force alone. The response of a given dimer to a flip event depends critically on both the local and nonlocal environment of the target atom—an important consideration for future atomic scale fabrication strategies.
NASA Astrophysics Data System (ADS)
Wagner, Andrew James
As electronic and mechanical devices are scaled downward in size and upward in complexity, macroscopic principles no longer apply. Synthesis of three-dimensionally confined structures exhibit quantum confinement effects allowing, for example, silicon nanoparticles to luminesce. The reduction in size of classically brittle materials reveals a ductile-to-brittle transition. Such a transition, attributed to a reduction in defects, increases elasticity. In the case of silicon, elastic deformation can improve electronic carrier mobility by over 50%, a vital attribute of modern integrated circuits. The scalability of such principles and the changing atomistic processes which contribute to them presents a vitally important field of research. Beginning with the direct observation of dislocations and lattice planes in the 1950s, the transmission electron microscope has been a powerful tool in materials science. More recently, as nanoscale technologies have proliferated modern life, their unique ability to spatially resolve nano- and atomic-scale structures has become a critical component of materials research and characterization. Signals produced by an incident beam of high-energy electrons enables researchers to both image and chemically analyze materials at the atomic scale. Coherently and elastically-scattered electrons can be collected to produce atomic-scale images of a crystalline sample. New specimen stages have enabled routine investigation of samples heated up to 1000 °C and cooled to liquid nitrogen temperatures. MEMS-based transducers allow for sub-nm scale mechanical testing and ultrathin membranes allow study of liquids and gases. Investigation of a myriad of previously "unseeable" processes can now be observed within the TEM, and sometimes something new is found within the old. High-temperature annealing of pure a Si:H films leads to crystallization of the film. Such films provide higher carrier mobility compared to amorphous films, offering improved photovoltaic performance. The annealing process, however, requires exceptionally high temperature (> 600 °C) and time (tens of hours), limiting throughput and costing energy. In an effort to fabricate polycrystalline solar cells at lower cost, large ( 30 nm) silicon nanocrystals were incorporated into hydrogenated amorphous silicon (a Si:H) thin films. When annealed, the embedded nanocrystals were expected to act as heterogeneous nucleation sites and crystallize the surrounding amorphous matrix. When observed in the TEM, an additional and unexpected event was observed. At the boundary between the nanocrystal and amorphous matrix, nanocavities were observed to form. Continued annealing resulted in movement of the cavities away from the nanocrystal while leaving behind a crystalline tail. The origins and fundamental mechanisms of this phenomenon were examined by in-situ heating TEM and ex-situ crystallographic TEM techniques. We demonstrate a mechanism of solid-phase crystallization (SPC) enabled by nanoscale cavities formed at the interface between an hydrogenated amorphous silicon film and embedded 30 nm to 40 nm Si nanocrystals. The nanocavities, 10 nm to 25 nm across, have the unique property of an internal surface that is part amorphous and part crystalline, enabling capillarity-driven diffusion from the amorphous to the crystalline domain. The nanocavities propagate rapidly through the amorphous phase, up to five times faster than the SPC growth rate, while "pulling behind" a crystalline tail. It is shown that twin boundaries exposed on the crystalline surface accelerate crystal growth and influence the direction of nanocavity propagation. The mechanical properties and mechanisms of plasticity in these same silicon nanocubes have also been investigated. The strain-dependent mechanical properties and the underlying mechanisms governing the elastic-plastic response are explored in detail. Elastic strains approaching 7% and flow stresses of 11 GPa were observed, significantly higher than that observed in other nanoscale volumes of Si. In-situ imaging revealed the formation of 5 nm dislocation embryos at 7% strain, giving way at 20% strain to continuous nucleation of leading partial dislocations with {111}-habit at the embryo surface.
career at NREL in 1995 by conducting scanning tunneling microscope (STM) studies of the atomic structure revealed a new strain-induced step structure and contributed to the development of world-record-efficiency NREL's Computational Materials Science team, probing the atomic structure of dislocations in III-V
Morphological studies of the developing human esophageal epithelium.
Ménard, D
1995-06-15
This article focusses on the structural development of human esophageal ciliated epithelium. A combination of transmission electron microscopic (TEM), scanning electron microscopic (SEM), radioautographic, and light microscopic (LM) analyses were carried out using intact fetal tissues between 8 and 20 weeks of gestation as well as cultured esophageal explants. Up to the age of 10 weeks, the stratified esophageal epithelium consisted of two longitudinal primary folds. The surface cells were undifferentiated and contained large glycogen aggregates. Between 11 and 16 weeks, the primary folds (now up to four) had developed secondary folds. The thickness of the epithelium drastically increased (123%) in concomittance with a differentiation of surface columnar ciliated cells. These highly specialized surface cells exhibited junctional complexes and well-developed organelles with numerous microvilli interspersed among the cilia. Transverse sections revealed the internal structure of the cilia with a consistent pattern of nine doublet microtubules surrounding a central pair of single microtubules. Freeze-fracture studies illustrated the presence of a ciliary necklace composed of 6 ring-like rows of intramembranous particles. They also revealed the structure of ciliary cell tight junctions consisting of up to nine anastomosing strands (P-face) or complementary grooves (E-face). Ultrastructural studies (LM, TEM, SEM) of the esophageal squamous epithelium obtained after 15 days of culture showed that the newly formed epithelium was similar to adult human epithelium. Finally LM and SEM observations established that the esophagogastric junction was not yet well delineated, consisting of a transitional area composed of a mixture of esophageal ciliated cells and gastric columnar mucous cells.
Natchimuthu, V; Thomas, Sabu; Ramalingam, Murugan; Ravi, S
2017-09-01
Lennox-Gastaut syndrome (LGS) is commonly characterized by a triad of features including multiple seizure types, intellectual disability or regression. LGS type of seizures is epilepsy which is due to abnormal vibrations occurring in seizures. During the time of such abnormal vibrations, both the seizures and the lungs suffer a lack in oxygen content to a considerable extent. This results in prolonged vibrations and loses of nervous control. As a neuro-lung protective strategy, a novel attempt has been made to enrich both seizures and lungs with oxygen content through the support of Perfluorodecalin (an excellent oxygen carrier) C 10 F 18 (PFD) and Perfluorohexane C 6 F 14 (PFH) along with an enhancement in the antiepileptic activity by the two chosen antiepileptic drugs (AEDs) Carbamazepine (CBZ) and Benzodiazepine (BDZ). Perfluorodecalin C 10 F 18 (PFD) and Perfluorohexane C 6 F 14 (PFH) emulsions were prepared by sonication process with combination of nonionic emulsifier, Lecithin (l-α-phosphatidylcholine) as a surfactant in Aqueous phase medium. These emulsions were mixed with Carbamazepine (CBZ) and Benzodiazepine (BDZ) drugs maintained at a temperature of about -20°C to 20°C and were set to slow evaporation process. The products are subjected to Optical microscope, Transmission electron microscopy (TEM) and Scanning Electron Microscope (SEM) - Energy dispersive X-ray Spectroscopy (EDS). Study reveals the co-existence of fluorine and drug ensuring the oxygen uptake by the drug. Morphology of TEM, Optical microscopic images and the particle diameter estimated through Image_J confirms this analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nonmonotonic velocity dependence of atomic friction.
Reimann, Peter; Evstigneev, Mykhaylo
2004-12-03
We propose a theoretical model for friction force microscopy experiments with special emphasis on the realistic description of dissipation and inertia effects. Its main prediction is a nonmonotonic dependence of the friction force upon the sliding velocity of the atomic force microscope tip relative to an atomically flat surface. The region around the force maximum can be approximately described by a universal scaling law and should be observable under experimentally realistic conditions.
Stoffers, Andreas; Barthel, Juri; Liebscher, Christian H; Gault, Baptiste; Cojocaru-Mirédin, Oana; Scheu, Christina; Raabe, Dierk
2017-04-01
In the course of a thorough investigation of the performance-structure-chemistry interdependency at silicon grain boundaries, we successfully developed a method to systematically correlate aberration-corrected scanning transmission electron microscopy and atom probe tomography. The correlative approach is conducted on individual APT and TEM specimens, with the option to perform both investigations on the same specimen in the future. In the present case of a Σ9 grain boundary, joint mapping of the atomistic details of the grain boundary topology, in conjunction with chemical decoration, enables a deeper understanding of the segregation of impurities observed at such grain boundaries.
Néel, Nicolas; Lattelais, Marie; Bocquet, Marie-Laure; Kröger, Jörg
2016-02-23
Single-molecule chemistry with a scanning tunneling microscope has preponderantly been performed on metal surfaces. The molecule-metal hybridization, however, is often detrimental to genuine molecular properties and obscures their changes upon chemical reactions. We used graphene on Ir(111) to reduce the coupling between Ir(111) and adsorbed phthalocyanine molecules. By local electron injection from the tip of a scanning tunneling microscope the two pyrrolic H atoms were removed from single phthalocyanines. The detachment of the H atom pair induced a strong modification of the molecular electronic structure, albeit with no change in the adsorption geometry. Spectra and maps of the differential conductance combined with density functional calculations unveiled the entire depopulation of the highest occupied molecular orbital upon H abstraction. Occupied π states of intact molecules are proposed to be emptied via intramolecular electron transfer to dangling σ states of H-free N atoms.
In situ study on atomic mechanism of melting and freezing of single bismuth nanoparticles
Li, Yingxuan; Zang, Ling; Jacobs, Daniel L.; Zhao, Jie; Yue, Xiu; Wang, Chuanyi
2017-01-01
Experimental study of the atomic mechanism in melting and freezing processes remains a formidable challenge. We report herein on a unique material system that allows for in situ growth of bismuth nanoparticles from the precursor compound SrBi2Ta2O9 under an electron beam within a high-resolution transmission electron microscope (HRTEM). Simultaneously, the melting and freezing processes within the nanoparticles are triggered and imaged in real time by the HRTEM. The images show atomic-scale evidence for point defect induced melting, and a freezing mechanism mediated by crystallization of an intermediate ordered liquid. During the melting and freezing, the formation of nucleation precursors, nucleation and growth, and the relaxation of the system, are directly observed. Based on these observations, an interaction–relaxation model is developed towards understanding the microscopic mechanism of the phase transitions, highlighting the importance of cooperative multiscale processes. PMID:28194017
Kim, Honggyu; Zhang, Jack Y.; Raghavan, Santosh; ...
2016-12-22
Unveiling the identity, spatial configuration, and microscopic structure of point defects is one of the key challenges in materials science. Here, we demonstrate that quantitative scanning transmission electron microscopy (STEM) can be used to directly observe Sr vacancies in SrTiO 3 and to determine the atom column relaxations around them. By combining recent advances in quantitative STEM, including variableangle, high-angle annular dark-field imaging and rigid registration methods, with frozen phonon multislice image simulations, we identify which Sr columns contain vacancies and quantify the number of vacancies in them. Here, picometer precision measurements of the surrounding atom column positions show thatmore » the nearest-neighbor Ti atoms are displaced away from the Sr vacancies. The results open up a new methodology for studying the microscopic mechanisms by which point defects control materials properties.« less
In situ study on atomic mechanism of melting and freezing of single bismuth nanoparticles
NASA Astrophysics Data System (ADS)
Li, Yingxuan; Zang, Ling; Jacobs, Daniel L.; Zhao, Jie; Yue, Xiu; Wang, Chuanyi
2017-02-01
Experimental study of the atomic mechanism in melting and freezing processes remains a formidable challenge. We report herein on a unique material system that allows for in situ growth of bismuth nanoparticles from the precursor compound SrBi2Ta2O9 under an electron beam within a high-resolution transmission electron microscope (HRTEM). Simultaneously, the melting and freezing processes within the nanoparticles are triggered and imaged in real time by the HRTEM. The images show atomic-scale evidence for point defect induced melting, and a freezing mechanism mediated by crystallization of an intermediate ordered liquid. During the melting and freezing, the formation of nucleation precursors, nucleation and growth, and the relaxation of the system, are directly observed. Based on these observations, an interaction-relaxation model is developed towards understanding the microscopic mechanism of the phase transitions, highlighting the importance of cooperative multiscale processes.
In situ study on atomic mechanism of melting and freezing of single bismuth nanoparticles.
Li, Yingxuan; Zang, Ling; Jacobs, Daniel L; Zhao, Jie; Yue, Xiu; Wang, Chuanyi
2017-02-13
Experimental study of the atomic mechanism in melting and freezing processes remains a formidable challenge. We report herein on a unique material system that allows for in situ growth of bismuth nanoparticles from the precursor compound SrBi 2 Ta 2 O 9 under an electron beam within a high-resolution transmission electron microscope (HRTEM). Simultaneously, the melting and freezing processes within the nanoparticles are triggered and imaged in real time by the HRTEM. The images show atomic-scale evidence for point defect induced melting, and a freezing mechanism mediated by crystallization of an intermediate ordered liquid. During the melting and freezing, the formation of nucleation precursors, nucleation and growth, and the relaxation of the system, are directly observed. Based on these observations, an interaction-relaxation model is developed towards understanding the microscopic mechanism of the phase transitions, highlighting the importance of cooperative multiscale processes.
Kim, Kwang-Il; Kim, Young Heon; Ogawa, Takashi; Choi, Suji; Cho, Boklae; Ahn, Sang Jung; Park, In-Yong
2018-05-11
A gas field ion source (GFIS) has many advantages that are suitable for ion microscope sources, such as high brightness and a small virtual source size, among others. In order to apply a tip-based GFIS to an ion microscope, it is better to create a trimer/single atom tip (TSAT), where the ion beam must be generated in several atoms of the tip apex. Here, unlike the conventional method which uses tip heating or a reactive gas, we show that the tip surface can be cleaned using only the field evaporation phenomenon and that the TSAT can also be fabricated using an insulating layer containing tungsten oxide, which remains after electrochemical etching. Using this method, we could get TSAT over 90% of yield. Copyright © 2018. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Honggyu; Zhang, Jack Y.; Raghavan, Santosh
Unveiling the identity, spatial configuration, and microscopic structure of point defects is one of the key challenges in materials science. Here, we demonstrate that quantitative scanning transmission electron microscopy (STEM) can be used to directly observe Sr vacancies in SrTiO 3 and to determine the atom column relaxations around them. By combining recent advances in quantitative STEM, including variableangle, high-angle annular dark-field imaging and rigid registration methods, with frozen phonon multislice image simulations, we identify which Sr columns contain vacancies and quantify the number of vacancies in them. Here, picometer precision measurements of the surrounding atom column positions show thatmore » the nearest-neighbor Ti atoms are displaced away from the Sr vacancies. The results open up a new methodology for studying the microscopic mechanisms by which point defects control materials properties.« less
NASA Astrophysics Data System (ADS)
Liang, Wei; Zhu, Fei; Ling, Yunhan; Liu, Kezhao; Hu, Yin; Pan, Qifa; Chen, Limin; Zhang, Zhengjun
2018-05-01
Mechanical and structural evolutions of single-crystalline silicon irradiated by a series of doses 1 MeV Au+ ions and Cu+ ions are characterized by Surface laser-acoustic wave spectroscopy by (LA wave), Rutherford backscattering spectrometry and channeling (RBS/C) and transmission electron microscopy (TEM). The behavior of implanted Au+ and Cu+ ions was also simulated by using Stopping and range of ions in matter (SRIM) software package, respectively. It is demonstrated that LA wave and RBS could be applied for accurate evaluation of the TEM observed amorphous layer's thickness. The modified mechanical properties depend on the species and the dose of implantation. For 1 MeV Au+ ions, the threshold dose of completely amorphous is 5 × 1014 atoms/cm2, while the one for Cu+ ions is 5 × 1015 atoms/cm2. Upon completely amorphous, the young's modulus and layer density decreased significantly while saturated with the dose increasing sequentially.
Guo, Q; Sun, D L; Han, X L; Cheng, S R; Chen, G Q; Jiang, L T; Wu, G H
2012-02-01
Compressive properties of Al matrix composite reinforced with Ti-6Al-4V meshes (TC4(m)/5A06 Al composite) under the strain rates of 10(-3)S(-1) and 1S(-1) at different temperature were measured and microstructure of composites after compression was characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM). Compressive strength decreased with the test temperature increased and the strain-rate sensitivity (R) of composite increased with the increasing temperature. SEM observations showed that grains of Al matrix were elongated severely along 45° direction (angle between axis direction and fracture surface) and TC4 fibres were sheared into several parts in composite compressed under the strain rate of 10(-3)S(-1) at 25°C and 250°C. Besides, amounts of cracks were produced at the interfacial layer between TC4 fibre and Al matrix and in (Fe, Mn)Al(6) phases. With the compressive temperature increasing to 400°C, there was no damage at the interfacial layer between TC4 fibre and Al matrix and in (Fe, Mn)Al(6) phases, while equiaxed recrystal grains with sizes about 10 μm at the original grain boundaries of Al matrix were observed. However, interface separation of TC4 fibres and Al matrix occurred in composite compressed under the strain rate of 1S(-1) at 250°C and 400°C. With the compressive temperature increasing from 25°C to 100°C under the strain rate of 10(-3) S(-1), TEM microstructure in Al matrix exhibited high density dislocations and slipping bands (25°C), polygonized dislocations and dynamic recovery (100°C), equiaxed recrystals with sizes below 500 μm (250°C) and growth of equiaxed recrystals (400°C), respectively. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hla, Saw Wai
2014-05-01
Atomic manipulation using a scanning tunneling microscope (STM) tip enables the construction of quantum structures on an atom-by-atom basis, as well as the investigation of the electronic and dynamical properties of individual atoms on a one-atom-at-a-time basis. An STM is not only an instrument that is used to ‘see’ individual atoms by means of imaging, but is also a tool that is used to ‘touch’ and ‘take’ the atoms, or to ‘hear’ their movements. Therefore, the STM can be considered as the ‘eyes’, ‘hands’ and ‘ears’ of the scientists, connecting our macroscopic world to the exciting atomic world. In this article, various STM atom manipulation schemes and their example applications are described. The future directions of atomic level assembly on surfaces using scanning probe tips are also discussed.
Francis, Sijo; Joseph, Siby; Koshy, Ebey P; Mathew, Beena
2017-07-01
Plant-derived nanomaterials opened a green approach in solving the current environment issues. Present study focused on rapid microwave-assisted synthesis and applications of gold and silver nanoparticles mediated by aqueous leaf extract of Mussaenda glabrata. The synthesized nanoparticles were characterized by UV-vis, FT-IR, powder XRD, energy-dispersive X-ray spectroscopy (EDX), transmission electron (TEM), and atomic force microscopic techniques (AFM). FCC crystal structure of both nanoparticles was confirmed by peaks corresponding to (111), (200), (220), and (311) planes in XRD spectra and bright circular spots in SAED pattern. IC 50 values shown by gold and silver nanoparticles (44.1 ± 0.82 and 57.92 ± 1.33 μg/mL) reflected their high free radical scavenging potential. The synthesized gold and silver nanoparticles revealed their potency to inhibit pathogenic microorganisms Bacillus pumilus, Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Aspergillus niger, and Penicillium chrysogenum. Anthropogenic pollutants rhodamine B and methyl orange were effectively degraded from aquatic environment and waste water sewages of dye industries using the prepared nanocatalysts. The catalytic capacities of the synthesized nanoparticles were also exploited in the reduction of 4-nitrophenol. Graphical abstract.
Qin, Hangdao; Xiao, Rong; Chen, Jing
2018-06-01
The parent activated carbon (ACP) was modified with urea and thiourea to obtain N-doped activated carbon (ACN) and N, S co-doped activated carbon (ACNS), respectively. Iron supported on activated carbon (Fe/ACP, Fe/ACN and Fe/ACNS) were prepared and worked as catalyst for catalytic wet peroxide oxidation of benzoic acid (BA). The catalysts were characterized by N 2 adsorption-desorption, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscope (TEM), and their performance was evaluated in terms of benzoic acid and TOC removal. The results indicated the doped N and S improved the adsorption capacity as well as catalytic activity of activated carbon. Besides, the catalytic activity toward benzoic acid degradation was found to be enhanced by Fe/ACNS compared to that of Fe/ACP and Fe/ACN. The enhanced catalytic performance was attributed to the presence of the nitrogen and sulfur atoms may serve to improve the relative amount of Fe 2+ on iron oxide surface and also help prevent leaching of Fe. It was also observed that the stability or reutilization of Fe/ACNS catalyst was fairly good. Copyright © 2018 Elsevier B.V. All rights reserved.
Xin, Yuxuan; Qi, Qi; Mao, Zhenmin; Zhan, Xiaoping
2017-08-07
A novel ultrasound-responsive liposomal system for tumor targeting was prepared in order to increase the antitumor efficacy and decrease serious side effects. In this paper, PLGA nanoparticles were used ultrasound-responsive agents instead of conventional microbubbles. The PLGA-nanoparticles were prepared by an emulsion solvent evaporation method. The liposomes were prepared by a lipid film hydration method. Particle size, zeta potential, encapsulation efficiency and drug loading capacity of the liposomes were studied by light scattering analysis and dialysis. Transmission electron microscopy (TEM) and atomic force microscope (AFM) were used to investigate the morphology of liposomes. The release in vitro was carried out in the pH 7.4 phosphate buffer solutions, as a result, liposome L3 encapsulating PLGA-nanoparticles displayed good stability under simulative physiological conditions and quickly responsive release under the ultrasound. The release in vivo was carried out on the rats, as a result, liposome L3 showed higher bioavailability than traditional intravenous injectable administration, and liposome L3 showed higher elimination ratio after stimulation by ultrasound than L3 without stimulation. Thus, the novel ultrasound-responsive liposome encapsulating PLGA-nanoparticles has a potential to be developed as a new drug delivery system for anti-tumor drug. Copyright © 2017 Elsevier B.V. All rights reserved.
Crystal defect studies using x-ray diffuse scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larson, B.C.
1980-01-01
Microscopic lattice defects such as point (single atom) defects, dislocation loops, and solute precipitates are characterized by local electronic density changes at the defect sites and by distortions of the lattice structure surrounding the defects. The effect of these interruptions of the crystal lattice on the scattering of x-rays is considered in this paper, and examples are presented of the use of the diffuse scattering to study the defects. X-ray studies of self-interstitials in electron irradiated aluminum and copper are discussed in terms of the identification of the interstitial configuration. Methods for detecting the onset of point defect aggregation intomore » dislocation loops are considered and new techniques for the determination of separate size distributions for vacancy loops and interstitial loops are presented. Direct comparisons of dislocation loop measurements by x-rays with existing electron microscopy studies of dislocation loops indicate agreement for larger size loops, but x-ray measurements report higher concentrations in the smaller loop range. Methods for distinguishing between loops and three-dimensional precipitates are discussed and possibilities for detailed studies considered. A comparison of dislocation loop size distributions obtained from integral diffuse scattering measurements with those from TEM show a discrepancy in the smaller sizes similar to that described above.« less
Inversion domain boundaries in ZnO with additions of Fe2O3 studied by high-resolution ADF imaging.
Wolf, Frank; Freitag, Bert H; Mader, Werner
2007-01-01
Columns of metal atoms in the polytypoid compound Fe2O3(ZnO)15 could be resolved by high angle annular dark field imaging in a transmission electron microscopy (TEM)/STEM electron microscope--a result which could not be realized by high-resolution bright field imaging due to inherent strain from inversion domains and inversion domain boundaries (IDBs) in the crystals. The basal plane IDB was imaged in [11 00] yielding the spacing of the two adjacent ZnO domains, while imaging in [21 1 0] yields the position of single metal ions. The images allow the construction of the entire domain structure including the stacking sequence and positions of the oxygen ions. The IDB consists of a single layer of octahedrally co-ordinated Fe3+ ions, and the inverted ZnO domains are related by point symmetry at the iron position. The FeO6 octahedrons are compressed along the ZnO c-axis resulting in a FeO bond length of 0.208 nm which is in the range of FeO distances in iron containing oxides. The model of the basal plane boundary resembles that of the IDB in polytypoid ZnO-In2O3 compounds.
Synthesis and characterization of 2D graphene sheets from graphite powder
NASA Astrophysics Data System (ADS)
Patel, Rakesh V.; Patel, R. H.; Chaki, S. H.
2018-05-01
Graphene is 2D material composed of one atom thick hexagonal layer. This material has attracted great attention among scientific community because of its high surface area, excellent mechanical properties and conductivity due to free electrons in the 2D lattice. There are various approaches to prepare graphene nanosheets such as top-down approach where graphite exfoliation and nanotube unwrapping can be done. The bottom up approach involves deposition of hydrocarbon through CVD, epitaxial method and organo-synthesis etc.. In present studies top down approach method was used to prepare graphene. The graphite powder with around 20 µm to 150µm particle size was subjected to concentrated strong acid in presence of strong oxidizing agent in order to increase the d-spacing between layers which leads to the disruption of crystal lattice as confirmed by XRD (X'pert Philips). FT Raman spectra taken via (Renishaw InVia microscope) of pristine powder and Graphene oxide revealed the increase in D-band and reduction in G-Band. These exfoliated sheets have oxygen rich complexes at the surface of the layers as characterised by FTIR technique. The GO powder was ultrasonicated to prepare the stable suspension of Graphene. The graphene layers were observed under TEM (Philips Tecnai 20) as 2dimensional sheets with around 1µm sizes.
NASA Astrophysics Data System (ADS)
Shu, Jian; Qiu, Zhenli; Wei, Qiaohua; Zhuang, Junyang; Tang, Dianping
2015-10-01
5,10,15,20-Tetraphenyl-21H,23H-porphine cobalt flat stacking on the reduced graphene oxide with platinum nanoparticles (PtNPs/CoTPP/rGO) were first synthesized and functionalized with monoclonal rabbit anti-aflatoxin B1 antibody (anti-AFB1) for highly efficient electrochemical immunoassay of aflatoxin B1 (AFB1) in this work. Transmission electron microscopy (TEM), atomic force microscope (AFM) and spectral techniques were employed to characterize the PtNPs/CoTPP/rGO hybrids. Using anti-AFB1-conjugated PtNPs/CoTPP/rGO as the signal-transduction tag, a novel non-enzymatic electrochemical immunosensing system was designed for detection of target AFB1 on the AFB1-bovine serum albumin-functionalized sensing interface. Experimental results revealed that the designed immunoassay could exhibit good electrochemical responses for target analyte and allowed the detection of AFB1 at a concentration as low as 5.0 pg mL-1 (5.0 ppt). Intra- and inter-assay coefficients of variation were below 10%. Importantly, the methodology was further validated for analyzing naturally contaminated or spiked blank peanut samples with consistent results obtained by AFB1 ELISA kit, thus providing a promising approach for quantitative monitoring of organic pollutants.
Matsuda, Junko; Kawasaki, Tatsuya; Futamura, Shotaro; Kawabata, Tsutomu; Taniguchi, Shunsuke; Sasaki, Kazunari
2018-05-19
In situ transmission electron microscopy (TEM) observations of a Ni(O)-Sc2O3-stabilized ZrO2 (ScSZ; 10 mol% Sc2O3, 1 mol% CeO2, 89 mol% ZrO2) anode in a solid oxide fuel cell (SOFC) have been performed at high temperatures under a hydrogen/oxygen gas atmosphere using an environmental transmission electron microscope (ETEM); the specimens were removed from cross-sections of the real SOFC by focused ion beam milling and lifting. When heating the NiO-ScSZ anode under a hydrogen atmosphere of 3 mbar in ETEM, nano-pores were formed at the grain boundaries and on the surface of NiO particles at around 400°C due to the volume shrinkage accompanying the reduction of NiO to Ni. Moreover, densification of Ni occurred when increasing the temperature from 600 to 700°C. High-magnification TEM images obtained in the early stages of NiO reduction revealed that the (111) planes of Ni grew almost parallel to the (111) planes of NiO. In the case of heating Ni-ScSZ under an oxygen atmosphere of 3 mbar in ETEM, oxidation of Ni starting from the surface of the particles occurred above 300°C. All Ni particles became polycrystalline NiO after the temperature was increased to 800°C. Volume expansion/contraction by mass transfer to the outside/inside of the Ni particles in the anode during repeated oxidation/reduction seems to result in the agglomeration of Ni catalysts during long-term SOFC operation. We emphasize that our in situ TEM observations will be applied to observe electrochemical reactions in SOFCs under applied electric fields.