Electron tomography of whole cultured cells using novel transmission electron imaging technique.
Okumura, Taiga; Shoji, Minami; Hisada, Akiko; Ominami, Yusuke; Ito, Sukehiro; Ushiki, Tatsuo; Nakajima, Masato; Ohshima, Takashi
2018-01-01
Since a three-dimensional (3D) cellular ultrastructure is significant for biological functions, it has been investigated using various electron microscopic techniques. Although transmission electron microscopy (TEM)-based techniques are traditionally used, cells must be embedded in resin and sliced into ultrathin sections in sample preparation processes. Block-face observation using a scanning electron microscope (SEM) has also been recently applied to 3D observation of cellular components, but this is a destructive inspection and does not allow re-examination. Therefore, we developed electron tomography using a transmission electron imaging technique called Plate-TEM. With Plate-TEM, the cells cultured directly on a scintillator plate are inserted into a conventional SEM equipped with a Plate-TEM observation system, and their internal structures are observed by detecting scintillation light produced by electrons passing through the cells. This technology has the following four advantages. First, the cells cultured on the plate can be observed at electron-microscopic resolution since they remain on the plate. Second, both surface and internal information can be obtained simultaneously by using electron- and photo-detectors, respectively, because a Plate-TEM detector is installed in an SEM. Third, the cells on the scintillator plate can also be inspected using light microscopy because the plate has transparent features. Finally, correlative observation with other techniques, such as conventional TEM, is possible after Plate-TEM observation because Plate-TEM is a non-destructive analysis technique. We also designed a sample stage to tilt the samples for tomography with Plate-TEM, by which 3D organization of cellular structures can be visualized as a whole cell. In the present study, Mm2T cells were investigated using our tomography system, resulting in 3D visualization of cell organelles such as mitochondria, lipid droplets, and microvilli. Correlative observations with various imaging techniques were also conducted by successive observations with light microscopy, SEM, Plate-TEM, and conventional TEM. Consequently, the Plate-TEM tomography technique encourages understanding of cellular structures at high resolution, which can contribute to cellular biological research. Copyright © 2017 Elsevier Ltd. All rights reserved.
Interaction of electrons with light metal hydrides in the transmission electron microscope.
Wang, Yongming; Wakasugi, Takenobu; Isobe, Shigehito; Hashimoto, Naoyuki; Ohnuki, Somei
2014-12-01
Transmission electron microscope (TEM) observation of light metal hydrides is complicated by the instability of these materials under electron irradiation. In this study, the electron kinetic energy dependences of the interactions of incident electrons with lithium, sodium and magnesium hydrides, as well as the constituting element effect on the interactions, were theoretically discussed, and electron irradiation damage to these hydrides was examined using in situ TEM. The results indicate that high incident electron kinetic energy helps alleviate the irradiation damage resulting from inelastic or elastic scattering of the incident electrons in the TEM. Therefore, observations and characterizations of these materials would benefit from increased, instead decreased, TEM operating voltage. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Brantley, William A; Guo, Wenhua; Clark, William A T; Iijima, Masahiro
2008-02-01
Previous temperature-modulated differential scanning calorimetry (TMDSC) study of nickel-titanium orthodontic wires revealed a large exothermic low-temperature peak that was attributed to transformation within martensitic NiTi. The purpose of this study was to use transmission electron microscopy (TEM) to verify this phase transformation in a clinically popular nickel-titanium wire, identify its mechanism and confirm other phase transformations found by TMDSC, and to provide detailed information about the microstructure of this wire. The 35 degrees C Copper nickel-titanium wire (Ormco) with cross-section dimensions of 0.016 in. x 0.022 in. used in the earlier TMDSC investigation was selected. Foils were prepared for TEM analyses by mechanical grinding, polishing, dimpling, ion milling and plasma cleaning. Standard bright-field and dark-field TEM images were obtained, along with convergent-beam electron diffraction patterns. A cryo-stage with the electron microscope (Phillips CM 200) permitted the specimen to be observed at -187, -45, and 50 degrees C, as well as at room temperature. Microstructures were also observed with an optical microscope and a scanning electron microscope. Room temperature microstructures had randomly oriented, elongated grains that were twinned. Electron diffraction patterns confirmed that phase transformations took place over temperature ranges previously found by TMDSC. TEM observations revealed a high dislocation density and fine-scale oxide particles, and that twinning is the mechanism for the low-temperature transformation in martensitic NiTi. TEM confirmed the low-temperature peak and other phase transformations observed by TMDSC, and revealed that twinning in martensite is the mechanism for the low-temperature peak. The high dislocation density and fine-scale oxide particles in the microstructure are the result of the wire manufacturing process.
Kaymakçı, Mustafa; Acar, Mustafa; Burukoglu, Dilek; Kutlu, Hatice Mehtap; Shojaolsadati, Paria; Cingi, Cemal; Bayar Muluk, Nuray
2015-04-01
In this prospective experimental study, we investigated the preventive effects of 2-aminoethyl diphenylborinate (2-APB) in rats exposed to acoustic trauma (AT). Light microscopic, transmission electron microscopic (TEM), and scanning electron microscopic (SEM) examinations were performed. Eighteen healthy Wistar albino rats were divided into the following three groups: groups 1 (control), 2 (AT), and 3 (AT+APB). The rats in groups 2 and 3 were exposed to AT; in group 3 rats, 2-APB at 2 mg/kg was also administered, initially transperitoneally, after 10 min. During the light microscopic, TEM, and SEM examinations, the structures of the cochlear hair cells, stereocilia, and Deiter's cells were normal in the control group. In the AT group, the organ of Corti and proximate structures were damaged according to the light microscopic examination. During the TEM examination, intense cellular damage and stereocilia loss were detected, while during the SEM examination, extensive damage and stereocilia loss were observed. Decreased damage with preserved cochlear structure was detected during the light microscopic examination in the AT+APB group than in the AT group. During the TEM and SEM examinations, although stereocilia loss occurred in the AT+APB group, near-normal cell, cilia, and tectorial membrane structures were also observed in the AT+APB group compared with the AT group. 2-APB may have protective effects against AT damage of the cochlea. The main mechanism underlying this effect is the inhibition of the vasoconstriction of the cochlear spiral modiolar artery, thereby improving cochlear blood flow. We conclude that 2-APB may also be effective if used immediately following AT.
Size determination of Acipenser ruthenus spermatozoa in different types of electron microscopy.
Psenicka, Martin; Tesarová, Martina; Tesitel, Jakub; Nebesárová, Jana
2010-07-01
In this study three types of scanning electron microscopes were used for the size determination of spermatozoa of sterlet Acipenser ruthenus - high vacuum scanning electron microscope (SEM, JEOL 6300), environmental scanning electron microscope (ESEM, Quanta 200 FEG), field emission scanning electron microscope (FESEM, JEOL 7401F) with cryoattachment Alto 2500 (Gatan) and transmission electron microscope (TEM, JEOL 1010). The use of particular microscopes was tied with different specimen preparation techniques. The aim of this study was to evaluate to what degree the type of used electron microscope can influence the size of different parts of spermatozoa. For high vacuum SEM the specimen was prepared using two slightly different procedures. After chemical fixation with 2.5% glutaraldehyde in 0.1M phosphate buffer and post-fixation by 1% osmium tetroxide, the specimen was dehydrated by acetone series and dried either by critical point method or by means of t-butylalcohol. For ESEM fresh, unfixed material was used, which was dropped on microscopic copper grids. In FESEM working in cryo-mode the specimen was observed in a frozen state. Ultrathin sections from chemically fixed and Epon embedded specimens were prepared for TEM observation. Distinct parts of sterlet spermatozoa were measured in each microscope and the data obtained was statistically processed. Results confirmed that the classical chemical procedure of specimen preparation for SEM including critical point drying method led to a significant contraction of all measured values, which could deviate up to 30% in comparison with values measured on the fresh chemically untreated specimen in ESEM. Surprisingly sperm dimensions determinated on ultrathin sections by TEM are comparable with values obtained in ESEM or FESEM. Copyright 2010 Elsevier Ltd. All rights reserved.
Three-dimensional cytomorphology in fine needle aspiration biopsy of medullary thyroid carcinoma.
Chang, T C; Lai, S M; Wen, C Y; Hsiao, Y L; Huang, S H
2001-01-01
To elucidate three-dimensional (3-D) cytomorphology in fine needle aspiration biopsy (FNAB) of medullary thyroid carcinoma (MTC). ENAB was performed on tumors from five patients with MTC. The aspirate was stained and observed under a light microscope (LM). The aspirate was also fixed, dehydrated, critical point dried, spattered with gold ions and observed with a scanning electron microscope (SEM). For transmission electron microscopy (TEM), the specimen was fixed, dehydrated, embedded in an Epon mixture, cut with an ultramicrotome, mounted on copper grids, electron doubly stained with uranium acetate and lead citrate, and observed with TEM. Findings under SEM were correlated with those under LM and TEM. Under SEM, 3-D cytomorphology of MTC displayed a disorganized cellular arrangement with indistinct cell borders in three cases. The cell surface was uneven and had granular protrusions that corresponded to secretory granules observed under TEM. In one case with multiple endocrine neoplasia type IIB, there were abundant granules on the cell surface. In one case of sporadic MTC with multinucleated tumor giant cells and small cells, granular protrusions also were noted on the cell surface. Granular protrusion was a characteristic finding in FNAB of MTC tinder SEM and might be helpful in the differential diagnosis.
Ultrastructural changes in tracheal epithelial cells exposed to oxygen
NASA Technical Reports Server (NTRS)
Philpott, D. E.; Harrison, G. A.; Turnbill, C.; Black, S.
1977-01-01
White albino rats were sacrificed after 24, 36, 48, 72, and 96 h of exposure to 100% O2 at 1 atm. Tissue was prepared for the scanning electron microscope (SEM) by Critical Point Drying and for the transmission electron microscope (TEM) by plastic embedding. Scanning microscopy showed a loss of microvilli after 48 h of exposure. Cilia appeared relatively normal with SEM, but TEM revealed changes in the outer membrane. In TEM, nonciliated cells appeared swollen and often encroached on the ciliated cells. A heavy mucous blanket remained even after processing. All the changes observed that are induced by oxygen exposure contribute to mucostasis, reducing and/or halting mucociliary clearance.
Three dimensional profile measurement using multi-channel detector MVM-SEM
NASA Astrophysics Data System (ADS)
Yoshikawa, Makoto; Harada, Sumito; Ito, Keisuke; Murakawa, Tsutomu; Shida, Soichi; Matsumoto, Jun; Nakamura, Takayuki
2014-07-01
In next generation lithography (NGL) for the 1x nm node and beyond, the three dimensional (3D) shape measurements such as side wall angle (SWA) and height of feature on photomask become more critical for the process control. Until today, AFM (Atomic Force Microscope), X-SEM (cross-section Scanning Electron Microscope) and TEM (Transmission Electron Microscope) tools are normally used for 3D measurements, however, these techniques require time-consuming preparation and observation. And both X-SEM and TEM are destructive measurement techniques. This paper presents a technology for quick and non-destructive 3D shape analysis using multi-channel detector MVM-SEM (Multi Vision Metrology SEM), and also reports its accuracy and precision.
Zhuang, Kaiwen; Ran, Xin; Lei, Song; Zhang, Chaoliang; Lama, Jebina; Ran, Yuping
2014-01-01
Trichophyton violaceum is a pathogen of tinea capitis and usually cause infection of scalp and hair in children. To investigate the parasitic form of T. violaceum in the human hair tissue, the infected hair strands were collected from a 9-year-old boy with tinea capitis due to T. violaceum and observed under both the scanning electron microscope (SEM) and transmission electron microscope (TEM). The SEM and TEM findings revealed that T. violaceum parasitically lives in the hair shaft in various forms and the morphological transformation of the fungus from hyphae into arthrospores was noted. The involved hair shaft was damaged to the great extent and its ultrastructural changes were evident. Those morphological characteristics of T. violaceum and the three-dimensional ultastructure changes of infected hairs give a better knowledge about the host-fungus relationship in tinea capitis. © 2014 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Hamers, M. F.; Pennock, G. M.; Drury, M. R.
2017-04-01
The study of deformation features has been of great importance to determine deformation mechanisms in quartz. Relevant microstructures in both growth and deformation processes include dislocations, subgrains, subgrain boundaries, Brazil and Dauphiné twins and planar deformation features (PDFs). Dislocations and twin boundaries are most commonly imaged using a transmission electron microscope (TEM), because these cannot directly be observed using light microscopy, in contrast to PDFs. Here, we show that red-filtered cathodoluminescence imaging in a scanning electron microscope (SEM) is a useful method to visualise subgrain boundaries, Brazil and Dauphiné twin boundaries. Because standard petrographic thin sections can be studied in the SEM, the observed structures can be directly and easily correlated to light microscopy studies. In contrast to TEM preparation methods, SEM techniques are non-destructive to the area of interest on a petrographic thin section.
Lu, Mao; Ran, Yuping; Dai, Yaling; Lei, Song; Zhang, Chaoliang; Zhuang, Kaiwen; Hu, Wenying
2016-01-01
This study was aimed to explain the formation mechanisms of corkscrew hairs and cigarette-ash-shaped hairs observed by dermoscopy of tinea capitis. In the present work, the ultrastructure of the involved hairs collected from a girl with tinea capitis caused by Trichophyton violaceum was observed by scanning electron microscope (SEM) and transmission electron microscope (TEM). SEM observation of the corkscrew hair revealed bent hair shaft and asymmetrically disrupted cuticle layer. TEM findings demonstrated the hair shaft became weak. The corkscrew hairs closely covered by scales on the scalp were observed under dermoscopy. We speculate that the formation of corkscrew hairs is a result of a combination of internal damage due to hair degradation by T. violaceum and external resistance due to scales covering the hair. SEM observation of the cigarette-ash-shaped hair revealed irregularly disrupted and incompact end, which might represent the stump of the broken corkscrew hair after treatment. © Wiley Periodicals, Inc.
A Structural Study of Escherichia coli Cells Using an In Situ Liquid Chamber TEM Technology.
Wang, Yibing; Chen, Xin; Cao, Hongliang; Deng, Chao; Cao, Xiaodan; Wang, Ping
2015-01-01
Studying cell microstructures and their behaviors under living conditions has been a challenging subject in microbiology. In this work, in situ liquid chamber TEM was used to study structures of Escherichia coli cells in aqueous solutions at a nanometer-scale resolution. Most of the cells remained intact under electron beam irradiation, and nanoscale structures were observed during the TEM imaging. The analysis revealed structures of pili surrounding the E. coli cells; the movements of the pili in the liquid were also observed during the in situ tests. This technology also allowed the observation of features of the nucleoid in the E. coli cells. Overall, in situ TEM can be applied as a valuable tool to study real-time microscopic structures and processes in microbial cells residing in native aqueous solutions.
NASA Astrophysics Data System (ADS)
Xie, Y.; Sohn, S.; Schroers, J.; Cha, J. J.
2017-11-01
Crystallization is a complex process that involves multiscale physics such as diffusion of atomic species over multiple length scales, thermodynamic energy considerations, and multiple possible intermediate states. In situ crystallization experiments inside a transmission electron microscope (TEM) using nanostructured metallic glasses (MGs) provide a unique platform to study directly crystallization kinetics and pathways. Here, we study the embryonic state of eutectic growth using Pt-Ni-Cu-P MG nanorods under in situ TEM. We directly observe the nucleation and growth of a Ni-rich polymorphic phase, followed by the nucleation and slower growth of a Cu-rich phase. The suppressed growth kinetics of the Cu-rich phase is attributed to locally changing chemical compositions. In addition, we show that growth can be controlled by incorporation of an entire nucleus instead of individual atoms. Such a nucleus has to align with the crystallographic orientation of a larger grain before it can be incorporated into the crystal. By directly observing the crystallization processes, particularly the early stages of non-polymorphic growth, in situ TEM crystallization studies of MG nanostructures provide a wealth of information, some of which can be applied to typical bulk crystallization.
NASA Technical Reports Server (NTRS)
Ahearn, J. S.; Venables, J. D.
1992-01-01
Factors determining the radiation sensitivity of quartz crystal oscillators were studied on NASA's LDEF. Quartz materials were examined in the transmission electron microscope (TEM) and classified as to their sensitivity to radiation damage by establishing the rate of damage caused by the electron beam in the microscope. Two types of materials, i.e., swept premium Q quartz and natural quartz were chosen because clear differences were observed in their response to the electron beam in the TEM studies. Quartz resonators were then fabricated from them, tested for frequency stability over a greater than 6 mo. period and flown on the LDEF satellite. After retrieval (more than 7 yrs in space) the stability of the resonators was again determined. All of the space exposed resonators fabricated with swept premium Q material exhibited a frequency shift above that of the control resonators: none of the resonators fabricated from the natural quartz materials exhibited such a shift. The significant differences observed between the two types of materials in both the ground-based TEM studies and the space radiation induced frequency changes suggest that there may be a correlation between the two observations.
Straubinger, Rainer; Beyer, Andreas; Volz, Kerstin
2016-06-01
A reproducible way to transfer a single crystalline sample into a gas environmental cell holder for in situ transmission electron microscopic (TEM) analysis is shown in this study. As in situ holders have only single-tilt capability, it is necessary to prepare the sample precisely along a specific zone axis. This can be achieved by a very accurate focused ion beam lift-out preparation. We show a step-by-step procedure to prepare the sample and transfer it into the gas environmental cell. The sample material is a GaP/Ga(NAsP)/GaP multi-quantum well structure on Si. Scanning TEM observations prove that it is possible to achieve atomic resolution at very high temperatures in a nitrogen environment of 100,000 Pa.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawasaki, Tadahiro; PRESTO-JST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012; Ueda, Kouta
We have developed an improved, windowed type environmental-cell (E-cell) transmission electron microscope (TEM) for in situ observation of gas-solid interactions, such as catalytic reactions at atmospheric pressure. Our E-cell TEM includes a compact E-cell specimen holder with mechanical stability, resulting in smoother introduction of the desired gases compared with previous E-cell TEMs. In addition, the gas control unit was simplified by omitting the pressure control function of the TEM pre-evacuation chamber. This simplification was due to the successful development of remarkably tough thin carbon films as the window material. These films, with a thickness of <10 nm, were found tomore » withstand pressure differences >2 atm. Appropriate arrangement of the specimen position inside the E-cell provided quantitatively analyzable TEM images, with no disturbances caused by the windowed films. As an application, we used this E-cell TEM to observe the dynamic shape change in a catalytic gold nanoparticle supported on TiO{sub 2} during the oxidation of CO gas.« less
Sakalli, Y; Trettin, R
2017-07-01
Tricalciumsilicate (C 3 S, Alite) is the major component of the Portland cement clinker. Hydration of Alite is decisive in influencing the properties of the resulting material. This is due to its high content in cement. The mechanism of the hydration of C 3 S is very complicated and not yet fully understood. There are different models describing the hydration of C 3 S in various ways. In this work for a better understanding of hydration mechanism, the hydrated C 3 S was investigated by using the transmission electron microscope (TEM) and for the first time, the samples for the investigations were prepared by using of focused ion beam from sintered pellets of C 3 S. Also, an FEI Talos F200x with an integrated Super-X EDS system was used for the investigations. FEI Talos F200X combines outstanding high-resolution S/TEM and TEM imaging with energy dispersive X-ray spectroscopy signal detection, and 3D chemical characterization with compositional mapping. TEM is a very powerful tool for material science. A high energy beam of electrons passes through a very thin sample, and the interactions between the electrons and the atoms can be used to observe the structure of the material and other features in the structure. TEM can be used to study the growth of layers and their composition. TEM produces high-resolution, two-dimensional images and will be used for a wide range of educational, science and industry applications. Chemical analysis can also be performed. The purpose of these investigations was to get the information about the composition of the C-S-H phases and some details of the nanostructure of the C-S-H phases. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.
Artifacts introduced by ion milling in Al-Li-Cu alloys.
Singh, A K; Imam, M A; Sadananda, K
1988-04-01
Ion milling is commonly used to prepare specimens for observation under transmission electron microscope (TEM). This technique sometimes introduces artifacts in specimens contributing to misleading interpretation of TEM results as observed in the present investigation of Al-Li-Cu alloys. This type of alloy, in general, contains several kinds of precipitates, namely delta', T1, and theta'. It is found that ion milling even for a short time produces drastic changes in the precipitate characteristics as compared to standard electropolishing methods of specimen preparation for TEM. Careful analysis of selected area diffraction patterns and micrographs shows that after ion milling delta' precipitates are very irregular, whereas other precipitates coarsen and they are surrounded by misfit dislocations. In situ hot-stage TEM experiments were performed to relate the microstructure to that observed in the ion-milled specimen. Results and causes of ion milling effects on the microstructure are discussed in relation to standard electropolishing techniques and in situ hot-stage experiment.
Glucose biosensor based on GOx/HRP bienzyme at liquid-crystal/aqueous interface.
Khan, Mashooq; Park, Soo-Young
2015-11-01
Glucose oxidase (GOx) and horseradish peroxidase (HRP) were co-immobilized to the polyacrylicacid block of a poly(acrylicacid-b-4-cyanobiphenyl-4'-undecylacrylate) (PAA-b-LCP) copolymer in water. PAA-b-LCP was strongly anchored by the LCP block in 4-cyano-4'-pentylbiphenyl (5CB) which was contained in a transmission electron microscope (TEM) grid for glucose detection. The optimal conditions for the performance of the TEM grid glucose biosensor were studied in terms of the activity and stability of the immobilized enzymes. Glucose in water was detected by the 5CB changing from a planar to a homeotropic orientation, as observed through a polarized optical microscope. The TEM biosensor detected glucose concentrations at ⩾0.02 mM, with an optimal GOx/HRP molar ratio of 3/1. This glucose biosensor has characteristics of enzyme sensitivity and stability, reusability, the ease and selective glucose detection which may provide a new way of detecting glucose. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zahoor, Ahmad; Teng, Qiu; Wang, Haiqiao; Choudhry, M. A.; Li, Xiaoyu
2011-06-01
Ag@polycarbazole coaxial nanocables (CNCs) have been successfully fabricated by the oxidative polymerization of carbazole over Ag nanowires (NWs) in acetonitrile. The morphology of Ag NWs and CNCs was studied by employing a transmission electron microscope (TEM) and a scanning electron microscope (SEM), which showed them to be a monodisperse material. The thickness of the polymer sheath was found to be 5 nm to 8 nm by observation under a high-resolution transmission electron microscope (HR-TEM). Energy dispersive X-ray spectroscopy (EDS), FT-IR and Raman measurements were used to characterize the polymer sheath, which demonstrated it to be a carbon material in polycarbazole form. X-ray photoelectron spectroscopy (XPS) was used for an interfacial study, which revealed that Ag surface atoms remained intact during polymer growth. In the end, zeta potential showed that the dispersion stability of Ag NWs increased due to polymer encapsulation, which is significant to obtain a particular alignment for anisotropic measurement of electrical conductivity.
Development of an analytical environmental TEM system and its application.
Kishita, Keisuke; Sakai, Hisashi; Tanaka, Hiromochi; Saka, Hiroyasu; Kuroda, Kotaro; Sakamoto, Masayuki; Watabe, Akira; Kamino, Takeo
2009-12-01
Many automotive materials, such as catalysts and fuel cell materials, undergo significant changes in structure or properties when subjected to temperature change or the addition of a gas. For this reason, in the development of these materials, it is important to study the behavior of the material under controlled temperatures and gaseous atmospheres. Recently, a new environmental transmission electron microscope (TEM) has been developed for observation with a high resolution at high temperatures and under gaseous atmospheres, thus making it possible to analyze reaction processes in details. Also, the new TEM provides a high degree of reproducibility of observation conditions, thus making it possible to compare and validate observation of various specimens under a given set of conditions. Furthermore, easiness of gas condition and temperature control can provide a powerful tool for the studying of the mechanism of material change, such as oxidation and reduction reactions.
Walther, Paul; Schmid, Eberhard; Höhn, Katharina
2013-01-01
Using an electron microscope's scanning transmission mode (STEM) for collection of tomographic datasets is advantageous compared to bright field transmission electron microscopic (TEM). For image formation, inelastic scattering does not cause chromatic aberration, since in STEM mode no image forming lenses are used after the beam has passed the sample, in contrast to regular TEM. Therefore, thicker samples can be imaged. It has been experimentally demonstrated that STEM is superior to TEM and energy filtered TEM for tomography of samples as thick as 1 μm. Even when using the best electron microscope, adequate sample preparation is the key for interpretable results. We adapted protocols for high-pressure freezing of cultivated cells from a physiological state. In this chapter, we describe optimized high-pressure freezing and freeze substitution protocols for STEM tomography in order to obtain high membrane contrast.
Shock-produced olivine glass: First observation
Jeanloz, R.; Ahrens, T.J.; Lally, J.S.; Nord, G.L.; Christie, J.M.; Heuer, A.H.
1977-01-01
Transmission electron microscope (TEM) observations of an experimentally shock-deformed single crystal of natural peridot, (Mg0.88Fe 0.12SiO4 recovered from peak pressures of about 56 ?? 109 pascals revealed the presence of amorphous zones located within crystalline regions with a high density of tangled dislocations. This is the first reported observation ofolivine glass. The shocked sample exhibits a wide variation in the degree of shock deformation on a small scale, and the glass appears to be intimately associated with the highest density of dislocations. This study suggests that olivine glass may be formed as a result of shock at pressures above about 50 to 55 ?? 109 pascals and that further TEM observations of naturally shocked olivines may demonstrate the presence of glass.
A TEM analysis of nanoparticulates in a Polar ice core
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esquivel, E.V.; Murr, L.E
2004-03-15
This paper explores the prospect for analyzing nanoparticulates in age-dated ice cores representing times in antiquity to establish a historical reference for atmospheric particulate regimes. Analytical transmission electron microscope (TEM) techniques were utilized to observe representative ice-melt water drops dried down on carbon/formvar or similar coated grids. A 10,000-year-old Greenland ice core was melted, and representative water drops were transferred to coated grids in a clean room environment. Essentially, all particulates observed were aggregates and either crystalline or complex mixtures of nanocrystals. Especially notable was the observation of carbon nanotubes and related fullerene-like nanocrystal forms. These observations are similar withmore » some aspects of contemporary airborne particulates including carbon nanotubes and complex nanocrystal aggregates.« less
Characterization of some biological specimens using TEM and SEM
NASA Astrophysics Data System (ADS)
Ghosh, Nabarun; Smith, Don W.
2009-05-01
The advent of novel techniques using the Transmission and Scanning Electron Microscopes improved observation on various biological specimens to characterize them. We studied some biological specimens using Transmission and Scanning Electron Microscopes. We followed negative staining technique with Phosphotungstic acid using bacterial culture of Bacillus subtilis. Negative staining is very convenient technique to view the structural morphology of different samples including bacteria, phage viruses and filaments in a cell. We could observe the bacterial cell wall and flagellum very well when trapped the negative stained biofilm from bacterial culture on a TEM grid. We cut ultra thin sections from the fixed root tips of Pisum sativum (Garden pea). Root tips were pre fixed with osmium tetroxide and post fixed with uranium acetate and placed in the BEEM capsule for block making. The ultrathin sections on the grid under TEM showed the granular chromatin in the nucleus. The protein bodies and large vacuoles with the storage materials were conspicuous. We followed fixation, critical point drying and sputter coating with gold to view the tissues with SEM after placing on stubs. SEM view of the leaf surface of a dangerous weed Tragia hispida showed the surface trichomes. These trichomes when break on touching releases poisonous content causing skin irritation. The cultured tissue from in vitro culture of Albizia lebbeck, a tree revealed the regenerative structures including leaf buds and stomata on the tissue surface. SEM and TEM allow investigating the minute details characteristic morphological features that can be used for classroom teaching.
Fabrication and electric measurements of nanostructures inside transmission electron microscope.
Chen, Qing; Peng, Lian-Mao
2011-06-01
Using manipulation holders specially designed for transmission electron microscope (TEM), nanostructures can be characterized, measured, modified and even fabricated in-situ. In-situ TEM techniques not only enable real-time study of structure-property relationships of materials at atomic scale, but also provide the ability to control and manipulate materials and structures at nanoscale. This review highlights in-situ electric measurements and in-situ fabrication and structure modification using manipulation holder inside TEM. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jiang, N.; Deguchi, M.; Wang, C. L.; Won, J. H.; Jeon, H. M.; Mori, Y.; Hatta, A.; Kitabatake, M.; Ito, T.; Hirao, T.; Sasaki, T.; Hiraki, A.
1997-04-01
A transmission electron microscope (TEM) study of ion-implanted chemical-vapor-deposited (CVD) diamond is presented. CVD diamond used for transmission electron microscope observation was directly deposited onto Mo TEM grids. As-deposited specimens were irradiated by C (100 keV) ions at room temperature with a wide range of implantation doses (10 12-10 17/cm 2). Transmission electron diffraction (TED) patterns indicate that there exists a critical dose ( Dc) for the onset of amorphization of CVD diamond as a result of ion induced damage and the value of critical dose is confirmed to be about 3 × 10 15/cm 2. The ion-induced transformation process is clearly revealed by high resolution electron microscope (HREM) images. For a higher dose implantation (7 × 10 15/cm 2) a large amount of diamond phase is transformed into amorphous carbon and many tiny misoriented diamond blocks are found to be left in the amorphous solid. The average size of these misoriented diamond blocks is only about 1-2 nm. Further bombardment (10 17/cm 2) almost kills all of the diamond phase within the irradiated volume and moreover leads to local formation of micropolycrystalline graphite.
A simple way to obtain backscattered electron images in a scanning transmission electron microscope.
Tsuruta, Hiroki; Tanaka, Shigeyasu; Tanji, Takayoshi; Morita, Chiaki
2014-08-01
We have fabricated a simple detector for backscattered electrons (BSEs) and incorporated the detector into a scanning transmission electron microscope (STEM) sample holder. Our detector was made from a 4-mm(2) Si chip. The fabrication procedure was easy, and similar to a standard transmission electron microscopy (TEM) sample thinning process based on ion milling. A TEM grid containing particle objects was fixed to the detector with a silver paste. Observations were carried out using samples of Au and latex particles at 75 and 200 kV. Such a detector provides an easy way to obtain BSE images in an STEM. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
2008-01-01
information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD...microscopy ( AEM ), to characterize a variety of III-V semiconductor thin films. The materials investigated include superlattices based on the InAs- GaSb...technique. TEM observations were performed using a Philips-CM 200 FEG transmission electron microscope equipped with a field emission gun, operated at an
NASA Technical Reports Server (NTRS)
Jones, C. L.; Brearley, A. J.
2000-01-01
Samples of Allende have been altered hydrothermally under oxidizing conditions at 200 C. TEM studies show that within 30 days evidence of replacement of matrix olivines by fine-grained serpentine is present and by 90 days complete alteration of many grains has occurred.
Loukanov, Alexandre; Filipov, Chavdar; Mladenova, Polina; Toshev, Svetlin; Emin, Saim
2016-04-01
The object of the present report is to provide a method for a visualization of DNA in TEM by complementary labeling of cytosine with guanine derivative, which contains platinum as contrast-enhanced heavy element. The stretched single-chain DNA was obtained by modifying double-stranded DNA. The labeling method comprises the following steps: (i) stretching and adsorption of DNA on the support film of an electron microscope grid (the hydrophobic carbon film holding negative charged DNA); (ii) complementary labeling of the cytosine bases from the stretched single-stranded DNA pieces on the support film with platinum containing guanine derivative to form base-specific hydrogen bond; and (iii) producing a magnified image of the base-specific labeled DNA. Stretched single-stranded DNA on a support film is obtained by a rapid elongation of DNA pieces on the surface between air and aqueous buffer solution. The attached platinum-containing guanine derivative serves as a high-dense marker and it can be discriminated from the surrounding background of support carbon film and visualized by use of conventional TEM observation at 100 kV accelerated voltage. This method allows examination of specific nucleic macromolecules through atom-by-atom analysis and it is promising way toward future DNA-sequencing or molecular diagnostics of nucleic acids by electron microscopic observation. © 2016 Wiley Periodicals, Inc.
Wang, Qing; Kitaura, Ryo; Suzuki, Shoji; Miyauchi, Yuhei; Matsuda, Kazunari; Yamamoto, Yuta; Arai, Shigeo; Shinohara, Hisanori
2016-01-26
Edge-dependent electronic properties of graphene nanoribbons (GNRs) have attracted intense interests. To fully understand the electronic properties of GNRs, the combination of precise structural characterization and electronic property measurement is essential. For this purpose, two experimental techniques using free-standing GNR devices have been developed, which leads to the simultaneous characterization of electronic properties and structures of GNRs. Free-standing graphene has been sculpted by a focused electron beam in transmission electron microscope (TEM) and then purified and narrowed by Joule heating down to several nanometer width. Structure-dependent electronic properties are observed in TEM, and significant increase in sheet resistance and semiconducting behavior become more salient as the width of GNR decreases. The narrowest GNR width we obtained with the present method is about 1.6 nm with a large transport gap of 400 meV.
Novel perovskite coating of strontium zirconate in Inconel substrate
NASA Astrophysics Data System (ADS)
Venkatesh, G.; Blessto, B.; Rao, C. Santhosh Kumar; Subramanian, R.; Berchmans, L. John
2018-02-01
Thermal Barrier Coatings (TBC) provides a low thermal conductivity barrier to heat transfer from the hot gas in the engine to the surface of the coated alloy component. SrZrO3 powder are prepared by Sol Gel synthesis method. The synthesized powder sample is characterized by X Ray Diffraction Technique (XRD), Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) and the results are interpreted. The Polycrystalline nature of SrZrO3 is confirmed and lattice spacing are determined in XRD. SEM shows sub-micron sized particles and a fringed pattern is observed in TEM. The IN718 specimen is Wire Cut and Sand Blasted. A SrZrO3 double layer is coated over the Inconel specimen through a Bond Coat made of NiCoCrAlY by Plasma spraying Process and also characterized. SEM analysis of the Coating shows diffusion of Fe, Sr into the substrate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yashchuk, V.V.; Conley, R.; Anderson, E.H.
Verification of the reliability of metrology data from high quality X-ray optics requires that adequate methods for test and calibration of the instruments be developed. For such verification for optical surface profilometers in the spatial frequency domain, a modulation transfer function (MTF) calibration method based on binarypseudo-random (BPR) gratings and arrays has been suggested and and proven to be an effective calibration method for a number of interferometric microscopes, a phase shifting Fizeau interferometer, and a scatterometer. Here we describe the details of development of binarypseudo-random multilayer (BPRML) test samples suitable for characterization of scanning (SEM) and transmission (TEM) electronmore » microscopes. We discuss the results of TEM measurements with the BPRML test samples fabricated from a WiSi{sub 2}/Si multilayer coating with pseudo-randomly distributed layers. In particular, we demonstrate that significant information about the metrological reliability of the TEM measurements can be extracted even when the fundamental frequency of the BPRML sample is smaller than the Nyquist frequency of the measurements. The measurements demonstrate a number of problems related to the interpretation of the SEM and TEM data. Note that similar BPRML testsamples can be used to characterize X-ray microscopes. Corresponding work with X-ray microscopes is in progress.« less
NASA Astrophysics Data System (ADS)
Gao, Jie; Bao, Liangman; Huang, Hefei; Li, Yan; Lei, Qiantao; Deng, Qi; Liu, Zhe; Yang, Guo; Shi, Liqun
2017-05-01
Hastelloy N alloy was implanted with 30 keV, 5 × 1016 ions/cm2 helium ions at room temperature, and subsequent annealed at 600 °C for 1 h and further annealed at 850 °C for 5 h in vacuum. Using elastic recoil detection analysis (ERDA) and transmission electron microscopy (TEM), the depth profiles of helium concentration and helium bubbles in helium-implanted Hastelloy N alloy were investigated, respectively. The diffusion of helium and molybdenum elements to surface occurred during the vacuum annealing at 850 °C (5 h). It was also observed that bubbles in molybdenum-enriched region were much larger in size than those in deeper region. In addition, it is worth noting that plenty of nano-holes can be observed on the surface of helium-implanted sample after high temperature annealing by scanning electron microscope (SEM). This observation provides the evidence for the occurrence of helium release, which can be also inferred from the results of ERDA and TEM analysis.
In situ nanomechanical testing of twinned metals in a transmission electron microscope
Li, Nan; Wang, Jiangwei; Mao, Scott; ...
2016-04-01
This paper focuses on in situ transmission electron microscope (TEM) characterization to explore twins in face-centered-cubic and body-centered-cubic monolithic metals, and their impact on the overall mechanical performance. Taking advantage of simultaneous nanomechanical deformation and nanoscale imaging using versatile in situ TEM tools, direct correlation of these unique microscopic defects with macroscopic mechanical performance becomes possible. This article summarizes recent evidence to support the mechanisms related to strengthening and plasticity in metals, including nanotwinned Cu, Ni, Al, Au, and others in bulk, thin film, and nanowire forms.
In situ nanomechanical testing of twinned metals in a transmission electron microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Nan; Wang, Jiangwei; Mao, Scott
This paper focuses on in situ transmission electron microscope (TEM) characterization to explore twins in face-centered-cubic and body-centered-cubic monolithic metals, and their impact on the overall mechanical performance. Taking advantage of simultaneous nanomechanical deformation and nanoscale imaging using versatile in situ TEM tools, direct correlation of these unique microscopic defects with macroscopic mechanical performance becomes possible. This article summarizes recent evidence to support the mechanisms related to strengthening and plasticity in metals, including nanotwinned Cu, Ni, Al, Au, and others in bulk, thin film, and nanowire forms.
NASA Technical Reports Server (NTRS)
Ochoa, Ozden O.
2004-01-01
Accurate determination of the transverse properties of carbon fibers is important for assessment and prediction of local material as well as global structural response of composite components. However the measurements are extremely difficult due to the very small diameters of the fibers (few microns only) and must be conducted within a microscope. In this work, environmental scanning electron microscope (ESEM) and transmission electron microscope (TEM) are used to determine the transverse coefficient of thermal expansion of different carbon fibers as a function of temperature.
NASA Technical Reports Server (NTRS)
Berger, Eve L.; Keller, Lindsay P.
2015-01-01
Mineral grains in lunar and asteroidal regolith samples provide a unique record of their interaction with the space environment. Space weathering effects result from multiple processes including: exposure to the solar wind, which results in ion damage and implantation effects that are preserved in the rims of grains (typically the outermost 100 nm); cosmic ray and solar flare activity, which result in track formation; and impact processes that result in the accumulation of vapor-deposited elements, impact melts and adhering grains on particle surfaces. Determining the rate at which these effects accumulate in the grains during their space exposure is critical to studies of the surface evolution of airless bodies. Solar flare energetic particles (mainly Fe-group nuclei) have a penetration depth of a few millimeters and leave a trail of ionization damage in insulating materials that is readily observable by transmission electron microscope (TEM) imaging. The density of solar flare particle tracks is used to infer the length of time an object was at or near the regolith surface (i.e., its exposure age). Track measurements by TEM methods are routine, yet track production rate calibrations have only been determined using chemical etching techniques [e.g., 1, and references therein]. We used focused ion beam-scanning electron microscope (FIB-SEM) sample preparation techniques combined with TEM imaging to determine the track density/exposure age relations for lunar rock 64455. The 64455 sample was used earlier by [2] to determine a track production rate by chemical etching of tracks in anorthite. Here, we show that combined FIB/TEM techniques provide a more accurate determination of a track production rate and also allow us to extend the calibration to solar flare tracks in olivine.
NASA Astrophysics Data System (ADS)
Rajendiran, N.; Mohandoss, T.; Sankaranarayanan, R. K.
2015-02-01
Inclusion complexation behavior of procainamide (PCA) with two cyclodextrins (α-CD and β-CD) were analyzed by absorption, fluorescence, scanning electron microscope (SEM), transmission electron microscope (TEM), Raman image, FT-IR, differential scanning colorimeter (DSC), Powder X ray diffraction (XRD) and 1H NMR. Blue shift was observed in β-CD whereas no significant spectral shift observed in α-CD. The inclusion complex formation results suggest that water molecules also present in the inside of the CD cavity. The present study revealed that the phenyl ring of the PCA drug is entrapped in the CD cavity. Cyclodextrin studies show that PCA forms 1:2 inclusion complex with α-CD and β-CD. PCA:α-CD complex form nano-sized particles (46 nm) and PCA:β-CD complex form self-assembled to micro-sized tubular structures. The shape-shifting of 2D nanosheets into 1D microtubes by simple rolling mechanism were analysed by micro-Raman and TEM images. Thermodynamic parameters (ΔH, ΔG and ΔS) of inclusion process were determined from semiempirical PM3 calculations.
Comments on ”Evidence of the hydrogen release mechanism in bulk MgH2”
NASA Astrophysics Data System (ADS)
Surrey, Alexander; Nielsch, Kornelius; Rellinghaus, Bernd
2017-04-01
The effect of an electron beam induced dehydrogenation of MgH2 in the transmission electron microscope (TEM) is largely underestimated by Nogita et al., and led the authors to a misinterpretation of their TEM observations. Firstly, the selected area diffraction (SAD) pattern is falsely interpreted. A re-evaluation of the SAD pattern reveals that no MgH2 is present in the sample, but that it rather consists of Mg and MgO only. Secondly, the transformation of the sample upon in-situ heating in the TEM cannot be ascribed to dehydrogenation, but is rather to be explained by the (nanoscale) Kirkendall effect, which leads to the formation of hollow MgO shells without any metallic Mg in their cores. Hence, the conclusions drawn from the TEM investigation are invalid, as the authors apparently have never studied MgH2.
Gasga, Jose Reyes; Carbajal-de-la-Torre, Georgina; Bres, Etienne; Gil-Chavarria, Ivet M; Rodríguez-Hernández, Ana G; Garcia-Garcia, Ramiro
2008-02-01
When human tooth enamel is observed with the Transmission Electron Microscope (TEM), a structural defect is registered in the central region of their nanometric grains or crystallites. This defect has been named as Central Dark Line (CDL) and its structure and function in the enamel structure have been unknown yet. In this work we present the TEM analysis to these crystallites using the High Angle Annular Dark Field (HAADF) technique. Our results suggest that the CDL region is the calcium richest part of the human tooth enamel crystallites.
Measurement of the Elastic Modulus of a Single Boron Nitride Nanotube
NASA Astrophysics Data System (ADS)
Chopra, Nasreen G.; Cohen, Marvin L.; Louie, Steven G.; Zettl, A.
1997-03-01
In situ transmission electron microscope (TEM) measurements of thermally-excited vibrational characteristics of boron nitride (BN) nanotubes are used to extract the elastic modulus. We find BN nanotubes to have a higher axial Young's modulus, 1.2 TPa, than any other insulating fiber. This value is consistent with theoretical predictions and confirms previous TEM observations of the high degree of crystallinity of these structures. This work was supported by the U. S. Department of Energy under contract No. DE-AC03-76-SF00098 and the Office of Naval Research, Order No. N00014-95-F-0099
Performance of low-voltage STEM/TEM with delta corrector and cold field emission gun.
Sasaki, Takeo; Sawada, Hidetaka; Hosokawa, Fumio; Kohno, Yuji; Tomita, Takeshi; Kaneyama, Toshikatsu; Kondo, Yukihito; Kimoto, Koji; Sato, Yuta; Suenaga, Kazu
2010-08-01
To reduce radiation damage caused by the electron beam and to obtain high-contrast images of specimens, we have developed a highly stabilized transmission electron microscope equipped with a cold field emission gun and spherical aberration correctors for image- and probe-forming systems, which operates at lower acceleration voltages than conventional transmission electron microscopes. A delta-type aberration corrector is designed to simultaneously compensate for third-order spherical aberration and fifth-order 6-fold astigmatism. Both were successfully compensated in both scanning transmission electron microscopy (STEM) and transmission electron microscopy (TEM) modes in the range 30-60 kV. The Fourier transforms of raw high-angle annular dark field (HAADF) images of a Si[110] sample revealed spots corresponding to lattice spacings of 111 and 96 pm at 30 and 60 kV, respectively, and those of raw TEM images of an amorphous Ge film with gold particles showed spots corresponding to spacings of 91 and 79 pm at 30 and 60 kV, respectively. Er@C(82)-doped single-walled carbon nanotubes, which are carbon-based samples, were successfully observed by HAADF-STEM imaging with an atomic-level resolution.
NASA Astrophysics Data System (ADS)
Carrière, Marie; Gouget, Barbara; Gallien, Jean-Paul; Avoscan, Laure; Gobin, Renée; Verbavatz, Jean-Marc; Khodja, Hicham
2005-04-01
The major health effect of uranium exposure has been reported to be chemical kidney toxicity, functional and histological damages being mainly observed in proximal tubule cells. Uranium enters the proximal tubule as uranyl-bicarbonate or uranyl-citrate complexes. The aim of our research is to investigate the mechanisms of uranium toxicity, intracellular accumulation and repartition after acute intoxication of rat renal proximal tubule epithelial cells, as a function of its chemical form. Microscopic observations of renal epithelial cells after acute exposure to uranyl-bicarbonate showing the presence of intracellular precipitates as thin needles of uranyl-phosphate localized in cell lysosomes have been published. However the initial site of precipitates formation has not been identified yet: they could either be formed outside the cells before internalization, or directly inside the cells. Uranium solubility as a function and initial concentration was specified by ICP-MS analysis of culture media. In parallel, uranium uptake and distribution in cell monolayers exposed to U-bicarbonate was investigated by nuclear microprobe analyses. Finally, the presence of uranium precipitates was tested out by scanning electron microscopic observations (SEM), while extracellular and/or intracellular precipitates were observed on thin sections of cells by transmission electron microscopy (TEM).
Morrow, Benjamin M.; Cerreta, E. K.; McCabe, R. J.; ...
2015-05-14
In-situ straining was used to study deformation behavior of hexagonal close-packed (hcp) metals.Twinning and dislocation motion, both essential to plasticity in hcp materials, were observed.Typically, these processes are characterized post-mortem by examining remnant microstructural features after straining has occurred. By imposing deformation during imaging, direct observation of active deformation mechanisms is possible. This work focuses on straining of structural metals in a transmission electron microscope (TEM), and a recently developed technique that utilizes familiar procedures and equipment to increase ease of experiments. In-situ straining in a TEM presents several advantages over conventional post-mortem characterization, most notably time-resolution of deformation andmore » streamlined identification of active deformation mechanisms. Drawbacks to the technique and applicability to other studies are also addressed. In-situ straining is used to study twin boundary motion in hcp magnesium. A {101¯2} twin was observed during tensile and compressive loading. Twin-dislocation interactions are directly observed. Notably, dislocations are observed to remain mobile, even after multiple interactions with twin boundaries, a result which suggests that Basinki’s dislocation transformation mechanism by twinning is not present in hcp metals. The coupling of in-situ straining with traditional post-mortem characterization yields more detailed information about material behavior during deformation than either technique alone.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
V Yashchuk; R Conley; E Anderson
Verification of the reliability of metrology data from high quality X-ray optics requires that adequate methods for test and calibration of the instruments be developed. For such verification for optical surface profilometers in the spatial frequency domain, a modulation transfer function (MTF) calibration method based on binary pseudo-random (BPR) gratings and arrays has been suggested [1] and [2] and proven to be an effective calibration method for a number of interferometric microscopes, a phase shifting Fizeau interferometer, and a scatterometer [5]. Here we describe the details of development of binary pseudo-random multilayer (BPRML) test samples suitable for characterization of scanningmore » (SEM) and transmission (TEM) electron microscopes. We discuss the results of TEM measurements with the BPRML test samples fabricated from a WiSi2/Si multilayer coating with pseudo-randomly distributed layers. In particular, we demonstrate that significant information about the metrological reliability of the TEM measurements can be extracted even when the fundamental frequency of the BPRML sample is smaller than the Nyquist frequency of the measurements. The measurements demonstrate a number of problems related to the interpretation of the SEM and TEM data. Note that similar BPRML test samples can be used to characterize X-ray microscopes. Corresponding work with X-ray microscopes is in progress.« less
Optimising electron microscopy experiment through electron optics simulation.
Kubo, Y; Gatel, C; Snoeck, E; Houdellier, F
2017-04-01
We developed a new type of electron trajectories simulation inside a complete model of a modern transmission electron microscope (TEM). Our model incorporates the precise and real design of each element constituting a TEM, i.e. the field emission (FE) cathode, the extraction optic and acceleration stages of a 300kV cold field emission gun, the illumination lenses, the objective lens, the intermediate and projection lenses. Full trajectories can be computed using magnetically saturated or non-saturated round lenses, magnetic deflectors and even non-cylindrical symmetry elements like electrostatic biprism. This multi-scale model gathers nanometer size components (FE tip) with parts of meter length (illumination and projection systems). We demonstrate that non-trivial TEM experiments requiring specific and complex optical configurations can be simulated and optimized prior to any experiment using such model. We show that all the currents set in all optical elements of the simulated column can be implemented in the real column (I2TEM in CEMES) and used as starting alignment for the requested experiment. We argue that the combination of such complete electron trajectory simulations in the whole TEM column with automatic optimization of the microscope parameters for optimal experimental data (images, diffraction, spectra) allows drastically simplifying the implementation of complex experiments in TEM and will facilitate the development of advanced use of the electron microscope in the near future. Copyright © 2017 Elsevier B.V. All rights reserved.
Nucleation and Growth of Crystalline Grains in RF-Sputtered TiO 2 Films
Johnson, J. C.; Ahrenkiel, S. P.; Dutta, P.; ...
2009-01-01
Amore » morphous TiO 2 thin films were radio frequency sputtered onto siliconmonoxide and carbon support films on molybdenum transmission electron microscope (TEM) grids and observed during in situ annealing in a TEM heating stage at 250 ∘ C. The evolution of crystallization is consistent with a classical model of homogeneous nucleation and isotropic grain growth. The two-dimensional grain morphology of the TEM foil allowed straightforward recognition of amorphous and crystallized regions of the films, for measurement of crystalline volume fraction and grain number density. By assuming that the kinetic parameters remain constant beyond the onset of crystallization, the final average grain size was computed, using an analytical extrapolation to the fully crystallized state. Electron diffraction reveals a predominance of the anatase crystallographic phase.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yashchuk, Valeriy V; Conley, Raymond; Anderson, Erik H.
We discuss the results of SEM and TEM measurements with the BPRML test samples fabricated from a BPRML (WSi2/Si with fundamental layer thickness of 3 nm) with a Dual Beam FIB (focused ion beam)/SEM technique. In particular, we demonstrate that significant information about the metrological reliability of the TEM measurements can be extracted even when the fundamental frequency of the BPRML sample is smaller than the Nyquist frequency of the measurements. The measurements demonstrate a number of problems related to the interpretation of the SEM and TEM data. Note that similar BPRML test samples can be used to characterize x-raymore » microscopes. Corresponding work with x-ray microscopes is in progress.« less
Matsuda, Junko; Kawasaki, Tatsuya; Futamura, Shotaro; Kawabata, Tsutomu; Taniguchi, Shunsuke; Sasaki, Kazunari
2018-05-19
In situ transmission electron microscopy (TEM) observations of a Ni(O)-Sc2O3-stabilized ZrO2 (ScSZ; 10 mol% Sc2O3, 1 mol% CeO2, 89 mol% ZrO2) anode in a solid oxide fuel cell (SOFC) have been performed at high temperatures under a hydrogen/oxygen gas atmosphere using an environmental transmission electron microscope (ETEM); the specimens were removed from cross-sections of the real SOFC by focused ion beam milling and lifting. When heating the NiO-ScSZ anode under a hydrogen atmosphere of 3 mbar in ETEM, nano-pores were formed at the grain boundaries and on the surface of NiO particles at around 400°C due to the volume shrinkage accompanying the reduction of NiO to Ni. Moreover, densification of Ni occurred when increasing the temperature from 600 to 700°C. High-magnification TEM images obtained in the early stages of NiO reduction revealed that the (111) planes of Ni grew almost parallel to the (111) planes of NiO. In the case of heating Ni-ScSZ under an oxygen atmosphere of 3 mbar in ETEM, oxidation of Ni starting from the surface of the particles occurred above 300°C. All Ni particles became polycrystalline NiO after the temperature was increased to 800°C. Volume expansion/contraction by mass transfer to the outside/inside of the Ni particles in the anode during repeated oxidation/reduction seems to result in the agglomeration of Ni catalysts during long-term SOFC operation. We emphasize that our in situ TEM observations will be applied to observe electrochemical reactions in SOFCs under applied electric fields.
In situ TEM observation of FCC Ti formation at elevated temperatures
Yu, Qian; Kacher, Josh; Gammer, Christoph; ...
2017-07-04
Pure Ti traditionally exhibits the hexagonal closed packed (HCP) crystallographic structure under ambient conditions and the body centered cubic (BCC) structure at elevated temperatures. In addition to these typical structures for Ti alloys, the presence of a face centered cubic (FCC) phase associated with thin films, interfaces, or high levels of plastic deformation has occasionally been reported. Here in this paper we show that small FCC precipitates form in freestanding thin foils during in situ transmission electron microscope (TEM) heating and we discuss the potential origins of the FCC phase in light of the in situ observations. This FCC phasemore » was found to be stable upon cooling and under ambient conditions, which allowed us to explore its mechanical properties and stability via nanomechanical in situ TEM testing. It was found that FCC platelets within the HCP matrix phase were stable under mechanical deformation and exhibited similar mechanical deformation behavior as the parent HCP phase.« less
In situ TEM observation of FCC Ti formation at elevated temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Qian; Kacher, Josh; Gammer, Christoph
Pure Ti traditionally exhibits the hexagonal closed packed (HCP) crystallographic structure under ambient conditions and the body centered cubic (BCC) structure at elevated temperatures. In addition to these typical structures for Ti alloys, the presence of a face centered cubic (FCC) phase associated with thin films, interfaces, or high levels of plastic deformation has occasionally been reported. Here in this paper we show that small FCC precipitates form in freestanding thin foils during in situ transmission electron microscope (TEM) heating and we discuss the potential origins of the FCC phase in light of the in situ observations. This FCC phasemore » was found to be stable upon cooling and under ambient conditions, which allowed us to explore its mechanical properties and stability via nanomechanical in situ TEM testing. It was found that FCC platelets within the HCP matrix phase were stable under mechanical deformation and exhibited similar mechanical deformation behavior as the parent HCP phase.« less
Synthesis and characterization of nanocrystalline graphite from coconut shell with heating process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wachid, Frischa M., E-mail: frischamw@yahoo.com, E-mail: adhiyudhaperkasa@yahoo.com, E-mail: afandisar@yahoo.com, E-mail: nurulrosyidah92@gmail.com, E-mail: darminto@physics.its.ac.id; Perkasa, Adhi Y., E-mail: frischamw@yahoo.com, E-mail: adhiyudhaperkasa@yahoo.com, E-mail: afandisar@yahoo.com, E-mail: nurulrosyidah92@gmail.com, E-mail: darminto@physics.its.ac.id; Prasetya, Fandi A., E-mail: frischamw@yahoo.com, E-mail: adhiyudhaperkasa@yahoo.com, E-mail: afandisar@yahoo.com, E-mail: nurulrosyidah92@gmail.com, E-mail: darminto@physics.its.ac.id
Graphite were synthesized and characterized by heating process of coconut shell with varying temperature (400, 800 and 1000°C) and holding time (3 and 5 hours). After heating process, the samples were characterized by X-ray diffraction (XRD) and analyzed by X'pert HighScore Plus Software, Scanning Electron Microcope-Energy Dispersive X-Ray (SEM-EDX) and Transmission Electron Microscope-Energy Dispersive X-Ray (TEM-EDX). Graphite and londsdaelite phase were analyzed by XRD. According to EDX analysis, the sample was heated in 1000°C got the highest content of carbon. The amorphous carbon and nanocrystalline graphite were observed by SEM-EDX and TEM-EDX.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yashchuk, Valeriy V; Conley, Raymond; Anderson, Erik H
Verification of the reliability of metrology data from high quality x-ray optics requires that adequate methods for test and calibration of the instruments be developed. For such verification for optical surface profilometers in the spatial frequency domain, a modulation transfer function (MTF) calibration method based on binary pseudo-random (BPR) gratings and arrays has been suggested [Proc. SPIE 7077-7 (2007), Opt. Eng. 47(7), 073602-1-5 (2008)} and proven to be an effective calibration method for a number of interferometric microscopes, a phase shifting Fizeau interferometer, and a scatterometer [Nucl. Instr. and Meth. A 616, 172-82 (2010)]. Here we describe the details ofmore » development of binary pseudo-random multilayer (BPRML) test samples suitable for characterization of scanning (SEM) and transmission (TEM) electron microscopes. We discuss the results of TEM measurements with the BPRML test samples fabricated from a WiSi2/Si multilayer coating with pseudo randomly distributed layers. In particular, we demonstrate that significant information about the metrological reliability of the TEM measurements can be extracted even when the fundamental frequency of the BPRML sample is smaller than the Nyquist frequency of the measurements. The measurements demonstrate a number of problems related to the interpretation of the SEM and TEM data. Note that similar BPRML test samples can be used to characterize x-ray microscopes. Corresponding work with x-ray microscopes is in progress.« less
NASA Astrophysics Data System (ADS)
Ma, Yao; Gao, Bo; Gong, Min; Willis, Maureen; Yang, Zhimei; Guan, Mingyue; Li, Yun
2017-04-01
In this work, a study of the structure modification, induced by high fluence swift heavy ion radiation, of the SiO2/Si structures and gate oxide interface in commercial 65 nm MOSFETs is performed. A key and novel point in this study is the specific use of the transmission electron microscopy (TEM) technique instead of the conventional atomic force microscope (AFM) or scanning electron microscope (SEM) techniques which are typically performed following the chemical etching of the sample to observe the changes in the structure. Using this method we show that after radiation, the appearance of a clearly visible thin layer between the SiO2 and Si is observed presenting as a variation in the TEM intensity at the interface of the two materials. Through measuring the EDX line scans we reveal that the Si:O ratio changed and that this change can be attributed to the migration of the Si towards interface after the Si-O bond is destroyed by the swift heavy ions. For the 65 nm MOSFET sample, the silicon substrate, the SiON insulator and the poly-silicon gate interfaces become blurred under the same irradiation conditions.
TEM in situ micropillar compression tests of ion irradiated oxide dispersion strengthened alloy
NASA Astrophysics Data System (ADS)
Yano, K. H.; Swenson, M. J.; Wu, Y.; Wharry, J. P.
2017-01-01
The growing role of charged particle irradiation in the evaluation of nuclear reactor candidate materials requires the development of novel methods to assess mechanical properties in near-surface irradiation damage layers just a few micrometers thick. In situ transmission electron microscopic (TEM) mechanical testing is one such promising method. In this work, microcompression pillars are fabricated from a Fe2+ ion irradiated bulk specimen of a model Fe-9%Cr oxide dispersion strengthened (ODS) alloy. Yield strengths measured directly from TEM in situ compression tests are within expected values, and are consistent with predictions based on the irradiated microstructure. Measured elastic modulus values, once adjusted for the amount of deformation and deflection in the base material, are also within the expected range. A pillar size effect is only observed in samples with minimum dimension ≤100 nm due to the low inter-obstacle spacing in the as received and irradiated material. TEM in situ micropillar compression tests hold great promise for quantitatively determining mechanical properties of shallow ion-irradiated layers.
Liposomes self-assembled from electrosprayed composite microparticles
NASA Astrophysics Data System (ADS)
Yu, Deng-Guang; Yang, Jun-He; Wang, Xia; Tian, Feng
2012-03-01
Composite microparticles, consisting of polyvinylpyrrolidone (PVP), naproxen (NAP) and lecithin (PC), have been successfully prepared using an electrospraying process and exploited as templates to manipulate molecular self-assembly for the synthesis of liposomes in situ. Field emission scanning electron microscope (FESEM) and transmission electron microscope (TEM) observations demonstrate that the microparticles have an average diameter of 960 ± 140 nm and a homogeneous structure. X-ray diffraction (XRD) patterns, differential scanning calorimetry (DSC) and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) results verify that the building blocks NAP and PC are scattered in the polymer matrix in a molecular way owing to the very fast drying of the electrospraying process and the favorable secondary interactions among the components. FESEM, scanning probe microscope (SPM) and TEM observations demonstrate that the liposomes can be achieved through molecular self-assembly in situ when the microparticles contact water thanks to ‘like prefers like’ and by means of the confinement effect of the microparticles. The liposomes have an encapsulation rate of 91.3%, and 80.7% of the drug in the liposomes can be freed into the dissolution medium in a sustained way and by a diffusion mechanism over a period of 24 h. The developed strategy not only provides a new, facile, and effective method to assemble and organize molecules of multiple components into liposomes with electrosprayed microparticles as templates, but also opens a new avenue for nanofabrication in a step-by-step and controllable way.
NASA Astrophysics Data System (ADS)
Ozawa, Soh-ichiro; Yamanaka, Akira; Kobayashi, Kunio; Tanishiro, Yasumasa; Yagi, Katsumichi
1990-04-01
A new technique of in situ oxygen gas reaction thinning of Si films at around 750-800°C in an ultrahigh-vacuum electron microscope was developed. The technique produced films as thin as 10 to 20 nm. Such a thin film allows us to observe surface atomic steps, out-of-phase boundaries and {1/7 0}, {1/7 1/7} and {2/7 0} spots from the Si(111)7× 7 surface. These spots were not observed in previous studies, having been masked by strong inelastic scattering. The technique is useful not only for detecting clear diffraction spots of kinematical intensity for surface structure analysis but also for observation of high-resolution plan-view structure images of clean and adsorbed surfaces.
NASA Astrophysics Data System (ADS)
Hamers, Maartje F.; Pennock, Gill M.; Herwegh, Marco; Drury, Martyn R.
2016-10-01
Planar deformation features (PDFs) in quartz are one of the most reliable and most widely used forms of evidence for hypervelocity impact. PDFs can be identified in scanning electron microscope cathodoluminescence (SEM-CL) images, but not all PDFs show the same CL behavior: there are nonluminescent and red luminescent PDFs. This study aims to explain the origin of the different CL emissions in PDFs. Focused ion beam (FIB) thin foils were prepared of specific sample locations selected in composite color SEM-CL images and were analyzed in a transmission electron microscope (TEM). The FIB preparation technique allowed a direct, often one-to-one correlation between the CL images and the defect structure observed in TEM. This correlation shows that composite color SEM-CL imaging allows distinction between amorphous PDFs on one hand and healed PDFs and basal Brazil twins on the other: nonluminescent PDFs are amorphous, while healed PDFs and basal Brazil twins are red luminescent, with a dominant emission peak at 650 nm. We suggest that the red luminescence is the result of preferential beam damage along dislocations, fluid inclusions, and twin boundaries. Furthermore, a high-pressure phase (possibly stishovite) in PDFs can be detected in color SEM-CL images by its blue luminescence.
Spectral analysis of scattered light from flowers' petals
NASA Astrophysics Data System (ADS)
Ozawa, Atsumi; Uehara, Tomomi; Sekiguchi, Fumihiko; Imai, Hajime
2009-07-01
A new method was developed for studying absorption characteristics of opaque samples based on the light scattering spectroscopy. Measurements were made in white, red and violet petals of Petunia hybrida, and gave the absorption spectra in a non-destructive manner without damaging the cell structures of the petal. The red petal has absorption peak at 550 nm and the violet has three absorption peaks: at 450, 670, and 550 nm. The results were discussed in correlation with the microscopic cell structures of the petal observed with optical microscope and transmission electron microscopy (TEM). Only the cells placed in the surface have the pigments giving the color of the petal.
Improvement of the High Fluence Irradiation Facility at the University of Tokyo
NASA Astrophysics Data System (ADS)
Murakami, Kenta; Iwai, Takeo; Abe, Hiroaki; Sekimura, Naoto
2016-08-01
This paper reports the modification of the High Fluence Irradiation Facility at the University of Tokyo (HIT). The HIT facility was severely damaged during the 2011 earthquake, which occurred off the Pacific coast of Tohoku. A damaged 1.0 MV tandem Cockcroft-Walton accelerator was replaced with a 1.7 MV accelerator, which was formerly used in another campus of the university. A decision was made to maintain dual-beam irradiation capability by repairing the 3.75 MV single-ended Van de Graaff accelerator and reconstructing the related beamlines. A new beamline was connected with a 200 kV transmission electron microscope (TEM) to perform in-situ TEM observation under ion irradiation.
NASA Astrophysics Data System (ADS)
Pankov, A. M.; Bredikhina, A. S.; Kulnitskiy, B. A.; Perezhogin, I. A.; Skryleva, E. A.; Parkhomenko, Yu. N.; Popov, M. Yu.; Blank, V. D.
2017-08-01
A pressure-induced phase transition of multiwall carbon nanotubes (MWNT) to a new structure at room temperature is studied using a shear diamond anvil cell, X-ray photoelectron spectra (XPS), transmission electron microscope (TEM) and Raman procedures. We observe a cardinal pressure-induced change in the nanoparticles shape from multi-shell tubes to multi-shell spheres. MWNT transforms to onions with layers cross-linked by sp3 bonds under the 45-65 GPa compressive stress combined with shear deformation at room temperature. TEM and XPS results show that about 40% of the carbon atoms in the new phase are sp3-bounded.
Sarobol, Pylin; Chandross, Michael E.; Carroll, Jay D.; ...
2015-09-22
Aerosol deposition (AD) is a solid-state deposition technology that has been developed to fabricate ceramic coatings nominally at room temperature. Sub-micron ceramic particles accelerated by pressurized gas impact, deform, and consolidate on substrates under vacuum. Ceramic particle consolidation in AD coatings is highly dependent on particle deformation and bonding; these behaviors are not well understood. In this work, atomistic simulations and in situ micro-compressions in the scanning electron microscope, and the transmission electron microscope (TEM) were utilized to investigate fundamental mechanisms responsible for plastic deformation/fracture of particles under applied compression. Results showed that highly defective micron-sized alumina particles, initially containingmore » numerous dislocations or a grain boundary, exhibited no observable shape change before fracture/fragmentation. Simulations and experimental results indicated that particles containing a grain boundary only accommodate low strain energy per unit volume before crack nucleation and propagation. In contrast, nearly defect-free, sub-micron, single crystal alumina particles exhibited plastic deformation and fracture without fragmentation. Dislocation nucleation/motion, significant plastic deformation, and shape change were observed. Simulation and TEM in situ micro-compression results indicated that nearly defect-free particles accommodate high strain energy per unit volume associated with dislocation plasticity before fracture. As a result, the identified deformation mechanisms provide insight into feedstock design for AD.« less
Preparation of high-quality planar FeRh thin films for in situ TEM investigations
NASA Astrophysics Data System (ADS)
Almeida, Trevor P.; McGrouther, Damien; Pivak, Yevheniy; Perez Garza, Hector Hugo; Temple, Rowan; Massey, Jamie; Marrows, Christopher H.; McVitie, Stephen
2017-10-01
The preparation of a planar FeRh thin film using a focused ion beam (FIB) secondary electron microscope (SEM) for the purpose of in situ transmission electron microscopy (TEM) is presented. A custom SEM stub with 45° faces allows for the transfer and milling of the sample on a TEM heating chip, whilst Fresnel imaging within the TEM revealed the presence of the magnetic domain walls, confirming the quality of the FIB-prepared sample.
Zhang, Weiqi; Ji, Yinglu; Meng, Jie; Wu, Xiaochun; Xu, Haiyan
2012-01-01
In this work, behaviors of positively-charged AuNRs in a highly metastatic tumor cell line MDA-MB-231 are examined based on UV-vis-NIR absorption spectroscopy in combination with inductively coupled plasma mass spectrometry (ICP-MS), transmission electron microscopy (TEM) and dark-field microscopic observation. It is found that characteristic surface plasmon resonance (SPR) peaks of AuNRs can be detected using spectroscopic method within living cells that have taken up AuNRs. The peak area of transverse SPR band is shown to be proportionally related to the amount of AuNRs in the cells determined with ICP-MS, which suggests a facile and real time quantification method for AuNRs in living cells. The shape of longitudinal SPR band in UV-vis-NIR spectrum reflects the aggregation state of AuNRs in the cells during the incubation period, which is proved by TEM and microscopic observations. Experimental results reveal that AuNRs are internalized by the cells rapidly; the accumulation, distribution and aggregation of AuNRs in the cells compartments are time and dose dependent. The established spectroscopic analysis method can not only monitor the behaviors of AuNRs in living cells but may also be helpful in choosing the optimum laser stimulation wavelength for anti-tumor thermotherapy. PMID:22384113
3D-profile measurement of advanced semiconductor features by using FIB as reference metrology
NASA Astrophysics Data System (ADS)
Takamasu, Kiyoshi; Iwaki, Yuuki; Takahashi, Satoru; Kawada, Hiroki; Ikota, Masami
2017-03-01
A novel method of sub-nanometer uncertainty for the 3D-profile measurement and LWR (Line Width Roughness) measurement by using FIB (Focused Ion Beam) processing, and TEM (Transmission Electron Microscope) and CD-SEM (Critical Dimension Scanning Electron Microscope) images measurement is proposed to standardize 3D-profile measurement through reference metrology. In this article, we apply the methodology to line profile measurements and roughness measurement of advanced FinFET (Fin-shaped Field-Effect Transistor) features. The FinFET features are horizontally sliced as a thin specimen by FIB micro sampling system. Horizontally images of the specimens are obtained then by a planar TEM. LWR is calculated from the edges positions on TEM images. Moreover, we already have demonstrated the novel on-wafer 3D-profile metrology as "FIB-to-CDSEM method" with FIB slope cut and CD-SEM measuring. Using the method, a few micrometers wide on a wafer is coated and cut by 45-degree slope using FIB tool. Then, the wafer is transferred to CD-SEM to measure the cross section image by top down CD-SEM measurement. We applied FIB-to-CDSEM method to a CMOS image sensor feature. The 45-degree slope cut surface is observed using AFM. The surface profile of slope cut surface and line profiles are analyzed for improving the accuracy of FIB-to-CDSEM method.
Development and Application of Operando TEM to a Ruthenium Catalyst for CO Oxidation
NASA Astrophysics Data System (ADS)
Miller, Benjamin Kyle
Operando transmission electron microscopy (TEM) is an extension of in-situ TEM in which the performance of the material being observed is measured simultaneously. This is of great value, since structure-performance relationships lie at the heart of materials science. For catalyst materials, like the SiO2-supported Ru nanoparticles studied, the important performance metric, catalyst activity, is measured inside the microscope by determining the gas composition during imaging. This is accomplished by acquisition of electron energy loss spectra (EELS) of the gas in the environmental TEM while catalysis is taking place. In this work, automated methods for rapidly quantifying low-loss and core-loss EELS of gases were developed. A new sample preparation method was also established to increase catalytic conversion inside a differentially-pumped environmental TEM, and the maximum CO conversion observed was about 80%. A system for mixing gases and delivering them to the environmental TEM was designed and built, and a method for locating and imaging nanoparticles in zone axis orientations while minimizing electron dose rate was determined. After atomic resolution images of Ru nanoparticles observed during CO oxidation were obtained, the shape and surface structures of these particles was investigated. A Wulff model structure for Ru particles was compared to experimental images both by manually rotating the model, and by automatically determining a matching orientation using cross-correlation of shape signatures. From this analysis, it was determined that most Ru particles are close to Wulff-shaped during CO oxidation. While thick oxide layers were not observed to form on Ru during CO oxidation, thin RuO2 layers on the surface of Ru nanoparticles were imaged with atomic resolution for the first time. The activity of these layers is discussed in the context of the literature on the subject, which has thus far been inconclusive. We conclude that disordered oxidized ruthenium, rather than crystalline RuO2 is the most active species.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banu, Afreen; Rathod, Vandana, E-mail: drvandanarathod@rediffmail.com; Ranganath, E.
Highlights: {yields} Silver nanoparticle production by using Rhizopus stolonifer. {yields} Antibacterial activity of silver nanoparticles against extended spectrum {beta}-lactamase producing (ESBL) strains of Enterobacteriaceae. {yields} Synergistic effect of antibiotics with silver nanoparticles towards ESBL-strains. {yields} Characterization of silver nanoparticles made by UV-vis spectra, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transformed infrared (FTIR) spectroscopy, atomic force microscopy (AFM). -- Abstract: This report focuses on the synthesis of silver nanoparticles using the fungus, Rhizopus stolonifer and its antimicrobial activity. Research in nanotechnology highlights the possibility of green chemistry pathways to produce technologically important nanomaterials. Characterization of newly synthesized silvermore » nanoparticles was made by UV-visible absorption spectroscopy, scanning electron microscope (SEM), transmission electron microscope (TEM), Fourier transform infrared (FTIR) spectroscopy and atomic force microscope (AFM). TEM micrograph revealed the formation of spherical nanoparticles with size ranging between 3 and 20 nm. The biosynthesized silver nanoparticles (AgNPs) showed excellent antibacterial activity against ESBL-strains which includes E. coli, Proteus. sp. and Klebsiella sp.« less
Electron Microscopist | Center for Cancer Research
PROGRAM DESCRIPTION The Cancer Research Technology Program (CRTP) develops and implements emerging technology, cancer biology expertise and research capabilities to accomplish NCI research objectives. The CRTP is an outward-facing, multi-disciplinary hub purposed to enable the external cancer research community and provides dedicated support to NCI’s intramural Center for Cancer Research (CCR). The dedicated units provide electron microscopy, protein characterization, protein expression, optical microscopy and genetics. These research efforts are an integral part of CCR at the Frederick National Laboratory for Cancer Research (FNLCR). CRTP scientists also work collaboratively with intramural NCI investigators to provide research technologies and expertise. KEY ROLES/RESPONSIBILITIES - THIS POSITION IS CONTINGENT UPON FUNDING APPROVAL The Electron Microscopist will: Operate ultramicrotomes (Leica) and other instrumentation related to the preparation of embedded samples for EM (TEM and SEM) Operate TEM microscopes, (specifically Hitachi, FEI T20 and FEI T12) as well as SEM microscopes (Hitachi); task will include loading samples, screening, and performing data collection for a variety of samples: from cells to proteins Manage maintenance for the TEM and SEM microscopes Provide technical advice to investigators on sample preparation and data collection
Gignac, Lynne M; Mittal, Surbhi; Bangsaruntip, Sarunya; Cohen, Guy M; Sleight, Jeffrey W
2011-12-01
The ability to prepare multiple cross-section transmission electron microscope (XTEM) samples from one XTEM sample of specific sub-10 nm features was demonstrated. Sub-10 nm diameter Si nanowire (NW) devices were initially cross-sectioned using a dual-beam focused ion beam system in a direction running parallel to the device channel. From this XTEM sample, both low- and high-resolution transmission electron microscope (TEM) images were obtained from six separate, specific site Si NW devices. The XTEM sample was then re-sectioned in four separate locations in a direction perpendicular to the device channel: 90° from the original XTEM sample direction. Three of the four XTEM samples were successfully sectioned in the gate region of the device. From these three samples, low- and high-resolution TEM images of the Si NW were taken and measurements of the NW diameters were obtained. This technique demonstrated the ability to obtain high-resolution TEM images in directions 90° from one another of multiple, specific sub-10 nm features that were spaced 1.1 μm apart.
Probing plasmodesmata function with biochemical inhibitors.
White, Rosemary G
2015-01-01
To investigate plasmodesmata (PD) function, a useful technique is to monitor the effect on cell-to-cell transport of applying an inhibitor of a physiological process, protein, or other cell component of interest. Changes in PD transport can then be monitored in one of several ways, most commonly by measuring the cell-to-cell movement of fluorescent tracer dyes or of free fluorescent proteins. Effects on PD structure can be detected in thin sections of embedded tissue observed using an electron microscope, most commonly a Transmission Electron Microscope (TEM). This chapter outlines commonly used inhibitors, methods for treating different tissues, how to detect altered cell-to-cell transport and PD structure, and important caveats.
Transmission electron microscope sample holder with optical features
Milas, Mirko [Port Jefferson, NY; Zhu, Yimei [Stony Brook, NY; Rameau, Jonathan David [Coram, NY
2012-03-27
A sample holder for holding a sample to be observed for research purposes, particularly in a transmission electron microscope (TEM), generally includes an external alignment part for directing a light beam in a predetermined beam direction, a sample holder body in optical communication with the external alignment part and a sample support member disposed at a distal end of the sample holder body opposite the external alignment part for holding a sample to be analyzed. The sample holder body defines an internal conduit for the light beam and the sample support member includes a light beam positioner for directing the light beam between the sample holder body and the sample held by the sample support member.
Laser ablation of Au-CuO core-shell nanocomposite in water for optoelectronic devices
NASA Astrophysics Data System (ADS)
Ismail, Raid A.; Abdul-Hamed, Ryam S.
2017-12-01
Core-shell gold-copper oxide Au-CuO nanocomposites were synthesized using laser ablation of CuO target in colloidal solution of Au nanoparticles (NPs). The effect of laser fluence on the structural, morphological, electrical, and optical properties of Au-CuO nanocomposites was investigated using x-ray diffraction (XRD), atomic force microscope (AFM), scanning electron microscope (SEM), transmission electron microscope (TEM), photoluminescence (PL), Fourier transformed infrared spectroscopy (FTIR), Hall measurement, and UV-vis spectroscopy. X-ray diffraction results confirm the formation of polycrystalline Au-CuO NPs with monoclinic structure. The optical energy gap for CuO was 4 eV and for the Au-CuO core-shell nanocomposites was found to be in the range of 3.4-3.7 eV. SEM and TEM investigations revealed that the structure and morphology of Au-CuO core-shell nanocomposites were strongly depending on the laser fluence. A formation of Au-CuO nanospheres and platelets structures was observed. The photoluminescence data showed an emission of broad visible peaks between 407 and 420 nm. The effect of laser fluence on the dark and illuminated I-V characteristics of Au-CuO/n-Si heterojunction photodetectors was investigated and analyzed. The experimental data demonstrated that the photodetector prepared at optimum laser fluence exhibited photosensitivity of 0.6 AW-1 at 800 nm.
Brodusch, Nicolas; Voisard, Frédéric; Gauvin, Raynald
2017-11-01
Characterising the impact of lithium additions in the precipitation sequence in Al-Li-Cu alloys is important to control the strengthening of the final material. Since now, transmission electron microscopy (TEM) at high beam voltage has been the technique of choice to monitor the size and spatial distribution of δ' precipitates (Al 3 Li). Here we report on the imaging of the δ' phase in such alloys using backscattered electrons (BSE) and low accelerating voltage in a high-resolution field-emission scanning electron microscope. By applying low-energy Ar + ion milling to the surface after mechanical polishing (MP), the MP-induced corroded layers were efficiently removed and permitted the δ's to be visible with a limited impact on the observed microstructure. The resulting BSE contrast between the δ's and the Al matrix was compared with that obtained using Monte Carlo modelling. The artefacts possibly resulting from the sample preparation procedure were reviewed and discussed and permitted to confirm that these precipitates were effectively the metastable δ's. The method described in this report necessitates less intensive sample preparation than that required for TEM and provides a much larger field of view and an easily interpretable contrast compared to the transmission techniques. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.
Vijayarathna, Soundararajan; Chen, Yeng; Kanwar, Jagat R; Sasidharan, Sreenivasan
2017-07-01
Over the years a number of microscopy methods have been developed to assess the changes in cells. Some non-invasive techniques such as holographic digital microscopy (HDM), which although does not destroy the cells, but helps to monitor the events that leads to initiation of apoptotic cell death. In this study, the apoptogenic property and the cytotoxic effect of P. longifolia leaf methanolic extract (PLME) against the human cervical carcinoma cells (HeLa) was studied using light microscope (LM), holographic digital microscopy (HDM), scanning electron microscope (SEM) and transmission electron microscope (TEM). The average IC 50 value of PLME against HeLa cells obtained by MTT and CyQuant assay was 22.00μg/mL at 24h. However, noncancerous Vero cells tested with PLME exhibited no cytotoxicity with the IC 50 value of 51.07μg/mL at 24h by using MTT assay. Cytological observations showed nuclear condensation, cell shrinkage, multinucleation, abnormalities of mitochondrial cristae, membrane blebbing, disappearance of microvilli and filopodia, narrowing of lamellipodia, holes, formation of numerous smaller vacuoles, cytoplasmic extrusions and formation of apoptotic bodies as confirmed collectively by HDM, LM, SEM and TEM. In conclusion, PLME was able to produce distinctive morphological features of HeLa cell death that corresponds to apoptosis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
In situ TEM near-field optical probing of nanoscale silicon crystallization.
Xiang, Bin; Hwang, David J; In, Jung Bin; Ryu, Sang-Gil; Yoo, Jae-Hyuck; Dubon, Oscar; Minor, Andrew M; Grigoropoulos, Costas P
2012-05-09
Laser-based processing enables a wide variety of device configurations comprising thin films and nanostructures on sensitive, flexible substrates that are not possible with more traditional thermal annealing schemes. In near-field optical probing, only small regions of a sample are illuminated by the laser beam at any given time. Here we report a new technique that couples the optical near-field of the laser illumination into a transmission electron microscope (TEM) for real-time observations of the laser-materials interactions. We apply this technique to observe the transformation of an amorphous confined Si volume to a single crystal of Si using laser melting. By confinement of the material volume to nanometric dimensions, the entire amorphous precursor is within the laser spot size and transformed into a single crystal. This observation provides a path for laser processing of single-crystal seeds from amorphous precursors, a potentially transformative technique for the fabrication of solar cells and other nanoelectronic devices.
Ultrastructural Changes and Corneal Wound Healing After SMILE and PRK Procedures.
Wei, Shengsheng; Wang, Yan; Wu, Di; Zu, PeiPei; Zhang, Hui; Su, Xiaolian
2016-10-01
To compare keratocyte activation, cellular morphologic changes and wound healing after SMILE and PRK procedures using transmission electron microscope (TEM). In this study, 22 New Zealand white rabbits (10- to 15-week old) were used. The right eyes of all animals underwent SMILE procedure and the left eyes underwent PRK procedure. Cornea samples taken 1 day and 1 week postoperatively were examined using TEM. Using TEM 1 day after SMILE procedure, the organization of collagen fibers seemed to have been preserved without thermal alterations. Keratocyte activation was observed in the anterior stroma. Disrupted collagen arrangement and debris of cells are visible in the area of damage, and some phagocytic cells and a large number of secondary lysosomes are visible in those cells. At the perimeter zone of the interface, many coenocytes and collagen fragments could be found within the phagocytic cell. One week after SMILE procedure, potential lacuna could be discerned. A large part of the interface of the lenticule extracted had an appearance of clearly being adhered to some mucus secretions. One day after PRK procedure, an irregular epithelial surface was visible using TEM. Keratocytes had been activated and the rough endoplasmic reticulum in those cells had expanded. One week after PRK procedure, the epithelial surface still was irregular and keratinization of the epithelium was still visible in some areas. Corneal endothelium cells were mildly damaged and some vacuoles within the cytoplasm could be discerned. In the anterior stroma, some unhealthy activated keratocytes could still be observed. New collagen fibrils were found present near the activated keratocytes. Using TEM, keratocyte activation could still be observed after SMILE compared to after PRK procedure. Fewer cellular ultrastructural changes were seen after SMILE procedure. Unlike in PRK procedure, no damaged epithelium and endothelium were found after SMILE.
Guo, Q; Sun, D L; Han, X L; Cheng, S R; Chen, G Q; Jiang, L T; Wu, G H
2012-02-01
Compressive properties of Al matrix composite reinforced with Ti-6Al-4V meshes (TC4(m)/5A06 Al composite) under the strain rates of 10(-3)S(-1) and 1S(-1) at different temperature were measured and microstructure of composites after compression was characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM). Compressive strength decreased with the test temperature increased and the strain-rate sensitivity (R) of composite increased with the increasing temperature. SEM observations showed that grains of Al matrix were elongated severely along 45° direction (angle between axis direction and fracture surface) and TC4 fibres were sheared into several parts in composite compressed under the strain rate of 10(-3)S(-1) at 25°C and 250°C. Besides, amounts of cracks were produced at the interfacial layer between TC4 fibre and Al matrix and in (Fe, Mn)Al(6) phases. With the compressive temperature increasing to 400°C, there was no damage at the interfacial layer between TC4 fibre and Al matrix and in (Fe, Mn)Al(6) phases, while equiaxed recrystal grains with sizes about 10 μm at the original grain boundaries of Al matrix were observed. However, interface separation of TC4 fibres and Al matrix occurred in composite compressed under the strain rate of 1S(-1) at 250°C and 400°C. With the compressive temperature increasing from 25°C to 100°C under the strain rate of 10(-3) S(-1), TEM microstructure in Al matrix exhibited high density dislocations and slipping bands (25°C), polygonized dislocations and dynamic recovery (100°C), equiaxed recrystals with sizes below 500 μm (250°C) and growth of equiaxed recrystals (400°C), respectively. Copyright © 2011 Elsevier Ltd. All rights reserved.
In-situ TEM observation of nano-void formation in UO2 under irradiation
NASA Astrophysics Data System (ADS)
Sabathier, C.; Martin, G.; Michel, A.; Carlot, G.; Maillard, S.; Bachelet, C.; Fortuna, F.; Kaitasov, O.; Oliviero, E.; Garcia, P.
2014-05-01
Transmission electron microscopy (TEM) observations of UO2 polycrystals irradiated in situ with 4 MeV Au ions were performed at room temperature (RT) to better understand the mechanisms of cavity and ultimately fission products nucleation in UO2. Experiments were carried out at the JANNuS Orsay facility that enables in situ ion irradiations inside the microscope to be carried out. The majority of 4 MeV gold ions were transmitted through the thin foil, and the induced radiation defects were investigated by TEM. Observations showed that nano-void formation occurs at ambient temperature in UO2 thin foils irradiated with energetic heavy ions under an essentially nuclear energy loss regime. The diameter and density of nano-objects were measured as a function of the gold irradiation dose at RT. A previous paper has also revealed a similar nano-object population after a Xe implantation performed at 390 keV at 870 K. The nano-object density was modelled using simple concepts derived from Classical Molecular Dynamics simulations. The results are in good agreement, which suggests a mechanism of heterogeneous nucleation induced by energetic cascade overlaps. This indicates that nano-void formation mechanism is controlled by radiation damage. Such nanovoids are likely to act as sinks for mobile fission products during reactor operation.
Dorin, Thomas; Donnadieu, Patricia; Chaix, Jean-Marc; Lefebvre, Williams; Geuser, Frédéric De; Deschamps, Alexis
2015-11-01
Transmission Electron Microscopy (TEM) can be used to measure the size distribution and volume fraction of fine scale precipitates in metallic systems. However, such measurements suffer from a number of artefacts that need to be accounted for, related to the finite thickness of the TEM foil and to the projected observation in two dimensions of the microstructure. We present a correction procedure to describe the 3D distribution of disc-like particles and apply this method to the plate-like T1 precipitates in an Al-Li-Cu alloy in two ageing conditions showing different particle morphologies. The precipitates were imaged in a High-Angular Annular Dark Field Microscope (HAADF-STEM). The corrected size distribution is further used to determine the precipitate volume fraction. Atom probe tomography (APT) is finally utilised as an alternative way to measure the precipitate volume fraction and test the validity of the electron microscopy results. Copyright © 2015 Elsevier Ltd. All rights reserved.
Microcellular nanocomposite injection molding process
Mingjun Yuan; Lih-Sheng Turng; Rick Spindler; Daniel Caulfield; Chris Hunt
2003-01-01
This study aims to explore the processing benefits and property improvements of combining nanocomposites with microcellular injection molding. The molded parts produced based on the Design of Experiments (DOE) matrices were subjected to tensile testing, impact testing, and Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), Dynamic Mechanical...
Microscopic observations of osteoblast growth on micro-arc oxidized β titanium
NASA Astrophysics Data System (ADS)
Chen, Hsien-Te; Chung, Chi-Jen; Yang, Tsai-Ching; Tang, Chin-Hsin; He, Ju-Liang
2013-02-01
Titanium alloys are widely used in orthopedic and dental implants, owing to their excellent physical properties and biocompatibility. By using the micro-arc oxidation (MAO), we generated anatase-rich (A-TiO2) and rutile-rich (R-TiO2) titanium dioxide coatings, individually on β-Ti alloy, in which the latter achieved an enhanced in vitro and in vivo performance. Thoroughly elucidating how the osteoblasts interact with TiO2 coatings is of worthwhile interest. This study adopts the focused ion beam (FIB) to section off the TiO2 coated samples for further scanning electron microscope (SEM) and transmission electron microscope (TEM) observation. The detailed crystal structures of the TiO2 coated specimens are also characterized. Experimental results indicate osteoblasts adhered more tenaciously and grew conformably with more lamellipodia extent on the R-TiO2 specimen than on the A-TiO2 and raw β-Ti specimens. FIB/SEM cross-sectional images of the cell/TiO2 interface revealed micro gaps between the cell membrane and contact surface of A-TiO2 specimen, while it was not found on the R-TiO2 specimen. Additionally, the number of adhered and proliferated cells on the R-TiO2 specimen was visually greater than the others. Closely examining EDS line scans and elemental mappings of the FIB/TEM cross-sectional images of the cell/TiO2 interface reveals both the cell body and interior space of the TiO2 coating contain nitrogen and sulfur (the biological elements in cell). This finding supports the assumption that osteoblast can grow into the porous structure of TiO2 coatings and demonstrating that the R-TiO2 coating formed by MAO serves the best for β-Ti alloys as orthopedic and dental implants.
Erratum to: Psammoma bodies in two types of human ovarian tumours: a mineralogical study
NASA Astrophysics Data System (ADS)
Meng, Fanlu; Wang, Changqiu; Li, Yan; Lu, Anhuai; Mei, Fang; Liu, Jianying; Du, Jingyun; Zhang, Yan
2015-06-01
Psammoma body (PB) is a common form of calcification in pathological diagnosis and closely relevant to tumours. This paper focuses on the mineralogical characteristics of PBs in ovarian serous cancer and teratoma by using polarization microscope (POM), environmental scanning electron microscope (ESEM), micro-Fourier transform infrared spectroscopy (micro-FT-IR), transmission electron microscope (TEM), micro-area synchrotron radiation X-ray powder diffraction (μ-SRXRD) and fluorescence (μ-SRXRF). Both the PBs in tissues and separated from eight typical cases were investigated. POM and ESEM observation revealed the inside-out growth pattern of PBs. μ-SRXRD and micro-FT-IR results demonstrated the dominant mineral phase of PBs in ovarian serous cancer and teratoma was AB-type carbonate hydroxyapatite (Ca10[(PO4)6-x-y(CO3)x(HPO4)y][(OH)2-u(CO3)u] with 0 ≤ x,y,u ≤ 2). As observed by ESEM and TEM, the layer-rich PBs in teratoma were up to 70 μm and mainly consisted of 5 nm-wide, 5-12 nm-long columnar crystals; the PBs in ovarian serous cancer with a maximum diameter of 35 μm were composed of slightly longer columnar crystals and granulates with 20-100 nm in diameter. The selected area electron diffraction patterns showed dispersed polycrystalline diffraction rings with arching behavior of (002) diffraction, indicating the aggregated nanocrystals grew in the preferred orientation of (002) face. The EDX and μ-SRXRF results together indicated the existence of Na, Mg, Zn and Sr in PBs. These detailed mineralogical characteristics may help uncover the nature of the pathological PBs in ovary.
Psammoma bodies in two types of human ovarian tumours: a mineralogical study
NASA Astrophysics Data System (ADS)
Fanlu, Meng; Changqiu, Wang; Yan, Li; Anhuai, Lu; Fang, Mei; Jianying, Liu; Jingyun, Du; Yan, Zhang
2015-06-01
Psammoma body (PB) is a common form of calcification in pathological diagnosis and closely relevant to tumours. This paper focuses on the mineralogical characteristics of PBs in ovarian serous cancer and teratoma by using polarization microscope (POM), environmental scanning electron microscope (ESEM), micro-Fourier transform infrared spectroscopy (micro-FT-IR), transmission electron microscope (TEM), micro-area synchrotron radiation X-ray powder diffraction (μ-SRXRD) and fluorescence (μ-SRXRF). Both the PBs in tissues and separated from eight typical cases were investigated. POM and ESEM observation revealed the inside-out growth pattern of PBs. μ-SRXRD and micro-FT-IR results demonstrated the dominant mineral phase of PBs in ovarian serous cancer and teratoma was AB-type carbonate hydroxyapatite (Ca10[(PO4)6-x-y(CO3)x(HPO4 2-)y][(OH)2-u(CO3)u] with 0 ≤ x,y,u ≤ 2). As observed by ESEM and TEM, the layer-rich PBs in teratoma were up to 70 μm and mainly consisted of 5 nm-wide, 5-12 nm-long columnar crystals; the PBs in ovarian serous cancer with a maximum diameter of 35 μm were composed of slightly longer columnar crystals and granulates with 20-100 nm in diameter. The selected area electron diffraction patterns showed dispersed polycrystalline diffraction rings with arching behavior of (002) diffraction, indicating the aggregated nanocrystals grew in the preferred orientation of (002) face. The EDX and μ-SRXRF results together indicated the existence of Na, Mg, Zn and Sr in PBs. These detailed mineralogical characteristics may help uncover the nature of the pathological PBs in ovary.
Cold-stage microscopy system for fast-frozen liquids.
Talmon, Y; Davis, H T; Scriven, L E; Thomas, E L
1979-06-01
The least artifact-laden fixation technique for examining colloidal suspensions, microemulsions, and other microstructured liquids in the electron microscope appears to be thermal fixation, i.e., ultrafast freezing of the liquid specimen. For rapid-enough cooling and for observation in TEM/STEM a thin sample is needed. The need is met by trapping a thin layer ( approximately 100 nm) of liquid between two polyimide films ( approximately 40 nm thickness) mounted on copper grids and immersing the resulting sandwich in liquid nitrogen at its melting point. For liquids containing water, polyimides films are used since this polymer is far less susceptible to the electron beam damage observed for the commonly used polymer films such as Formvar and collodion in contact with ice. Transfer of the frozen sample into the microscope column without deleterious frost deposition and warming is accomplished with a new transfer module for the cooling stage of the JEOL JEM-100CX microscope, which makes a true cold stage out of a device originally intended for cooling specimens inside the column. Sample results obtained with the new fast-freeze, cold-stage microscopy system are given.
Dillon, Shen J.; Bufford, Daniel C.; Jawaharram, Gowtham S.; ...
2017-04-13
Our work reports on irradiation-induced creep (IIC) measured on nanolaminate (Cu-W and Ni-Ag) and nanocrystalline alloys (Cu-W) at room temperature using a combination of heavy ion irradiation and nanopillar compression performed concurrently in situ in a transmission electron microscope. Furthermore, we observed appreciable IIC in multilayers with 50 nm layer thicknesses at high stress, ≈½ the yield strength, but not in multilayers with only 5 nm layer thicknesses.
Liu, Jun; Liu, Wenjing; Yang, Jun
2016-02-11
We confirmed that ATP is released from cochlear marginal cells in the stria vascular but the cell organelle in which ATP stores was not identified until now. Thus, we studied the ATP-containing cell organelles and suggest that these are lysosomes. Primary cultures of marginal cells of Sprague-Dawley rats aged 1-3 days was established. Vesicles within marginal cells stained with markers were identified under confocal laser scanning microscope and transmission electron microscope (TEM). Then ATP release from marginal cells was measured after glycyl-L-phenylalanine-ß- naphthylamide (GPN) treatment using a bioluminescent assay. Quinacrine-stained granules within marginal cells were labeled with LysoTracker, a lysosome tracer, and lysosomal-associated membrane protein 1(LAMP1), but not labeled with the mitochondrial tracer MitoTracker. Furthermore, LysoTracker-labelled puncta showed accumulation of Mant-ATP, an ATP analog. Treatment with 200 μM GPN quenched fluorescently labeled puncta after incubation with LysoTracker or quinacrine, but not MitoTracker. Quinacrine-labeled organelles observed by TEM were lysosomes, and an average 27.7 percent increase in ATP luminescence was observed in marginal cells extracellular fluid after GPN treatment. ATP-containing vesicles in cochlear marginal cells of the stria vascular from neonatal rats are likely lysosomes. ATP release from marginal cells may be via Ca(2+)-dependent lysosomal exocytosis.
Kuo, Chi-Liang; Huang, Michael H
2008-04-16
We report the growth of ultralong β-Ga(2)O(3) nanowires and nanobelts on silicon substrates using a vapor phase transport method. The growth was carried out in a tube furnace, with gallium metal serving as the gallium source. The nanowires and nanobelts can grow to lengths of hundreds of nanometers and even millimeters. Their full lengths have been captured by both scanning electron microscope (SEM) and optical images. X-ray diffraction (XRD) patterns and transmission electron microscope (TEM) images have been used to study the crystal structures of these nanowires and nanobelts. Strong blue emission from these ultralong nanostructures can be readily observed by irradiation with an ultraviolet (UV) lamp. Diffuse reflectance spectroscopy measurements gave a band gap of 4.56 eV for these nanostructures. The blue emission shows a band maximum at 470 nm. Interestingly, by annealing the silicon substrates in an oxygen atmosphere to form a thick SiO(2) film, and growing Ga(2)O(3) nanowires over the sputtered gold patterned regions, horizontal Ga(2)O(3) nanowire growth in the non-gold-coated regions can be observed. These horizontal nanowires can grow to as long as over 10 µm in length. Their composition has been confirmed by TEM characterization. This represents one of the first examples of direct horizontal growth of oxide nanowires on substrates.
Rempel, А А; Van Renterghem, W; Valeeva, А А; Verwerft, M; Van den Berghe, S
2017-09-07
The superlattice and domain structures exhibited by ordered titanium monoxide Ti 5 O 5 are disrupted by low energy electron beam irradiation. The effect is attributed to the disordering of the oxygen and titanium sublattices. This disordering is caused by the displacement of both oxygen and titanium atoms by the incident electrons and results in a phase transformation of the monoclinic phase Ti 5 O 5 into cubic B1 titanium monoxide. In order to determine the energies required for the displacement of titanium or oxygen atoms, i.e. threshold displacement energies, a systematic study of the disappearance of superstructure reflections with increasing electron energy and electron bombardment dose has been performed in situ in a transmission electron microscope (TEM). An incident electron energy threshold between 120 and 140 keV has been observed. This threshold can be ascribed to the displacements of titanium atoms with 4 as well as with 5 oxygen atoms as nearest neighbors. The displacement threshold energy of titanium atoms in Ti 5 O 5 corresponding with the observed incident electron threshold energy lies between 6.0 and 7.5 eV. This surprisingly low value can be explained by the presence of either one or two vacant oxygen lattice sites in the nearest neighbors of all titanium atoms.
High cycle fatigue in the transmission electron microscope
Bufford, Daniel C.; Stauffer, Douglas; Mook, William M.; ...
2016-06-28
One of the most common causes of structural failure in metals is fatigue induced by cyclic loading. Historically, microstructure-level analysis of fatigue cracks has primarily been performed post mortem. However, such investigations do not directly reveal the internal structural processes at work near micro- and nanoscale fatigue cracks and thus do not provide direct evidence of active microstructural mechanisms. In this paper, the tension–tension fatigue behavior of nanocrystalline Cu was monitored in real time at the nanoscale by utilizing a new capability for quantitative cyclic mechanical loading performed in situ in a transmission electron microscope (TEM). Controllable loads were appliedmore » at frequencies from one to several hundred hertz, enabling accumulations of 10 6 cycles within 1 h. The nanometer-scale spatial resolution of the TEM allows quantitative fatigue crack growth studies at very slow crack growth rates, measured here at ~10 –12 m·cycle –1. This represents an incipient threshold regime that is well below the tensile yield stress and near the minimum conditions for fatigue crack growth. Evidence of localized deformation and grain growth within 150 nm of the crack tip was observed by both standard imaging and precession electron diffraction orientation mapping. Finally, these observations begin to reveal with unprecedented detail the local microstructural processes that govern damage accumulation, crack nucleation, and crack propagation during fatigue loading in nanocrystalline Cu.« less
High cycle fatigue in the transmission electron microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bufford, Daniel C.; Stauffer, Douglas; Mook, William M.
One of the most common causes of structural failure in metals is fatigue induced by cyclic loading. Historically, microstructure-level analysis of fatigue cracks has primarily been performed post mortem. However, such investigations do not directly reveal the internal structural processes at work near micro- and nanoscale fatigue cracks and thus do not provide direct evidence of active microstructural mechanisms. In this paper, the tension–tension fatigue behavior of nanocrystalline Cu was monitored in real time at the nanoscale by utilizing a new capability for quantitative cyclic mechanical loading performed in situ in a transmission electron microscope (TEM). Controllable loads were appliedmore » at frequencies from one to several hundred hertz, enabling accumulations of 10 6 cycles within 1 h. The nanometer-scale spatial resolution of the TEM allows quantitative fatigue crack growth studies at very slow crack growth rates, measured here at ~10 –12 m·cycle –1. This represents an incipient threshold regime that is well below the tensile yield stress and near the minimum conditions for fatigue crack growth. Evidence of localized deformation and grain growth within 150 nm of the crack tip was observed by both standard imaging and precession electron diffraction orientation mapping. Finally, these observations begin to reveal with unprecedented detail the local microstructural processes that govern damage accumulation, crack nucleation, and crack propagation during fatigue loading in nanocrystalline Cu.« less
Liu, Jun; Liu, Wenjing; Yang, Jun
2016-01-01
We confirmed that ATP is released from cochlear marginal cells in the stria vascular but the cell organelle in which ATP stores was not identified until now. Thus, we studied the ATP-containing cell organelles and suggest that these are lysosomes. Primary cultures of marginal cells of Sprague-Dawley rats aged 1–3 days was established. Vesicles within marginal cells stained with markers were identified under confocal laser scanning microscope and transmission electron microscope (TEM). Then ATP release from marginal cells was measured after glycyl-L-phenylalanine-ß- naphthylamide (GPN) treatment using a bioluminescent assay. Quinacrine-stained granules within marginal cells were labeled with LysoTracker, a lysosome tracer, and lysosomal-associated membrane protein 1(LAMP1), but not labeled with the mitochondrial tracer MitoTracker. Furthermore, LysoTracker-labelled puncta showed accumulation of Mant-ATP, an ATP analog. Treatment with 200 μM GPN quenched fluorescently labeled puncta after incubation with LysoTracker or quinacrine, but not MitoTracker. Quinacrine-labeled organelles observed by TEM were lysosomes, and an average 27.7 percent increase in ATP luminescence was observed in marginal cells extracellular fluid after GPN treatment. ATP-containing vesicles in cochlear marginal cells of the stria vascular from neonatal rats are likely lysosomes. ATP release from marginal cells may be via Ca2+-dependent lysosomal exocytosis. PMID:26864824
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, C.; Golberg, D., E-mail: xuzhi@iphy.ac.cn, E-mail: golberg.dmitri@nims.go.jp; Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennodai 1, Tsukuba, Ibaraki 3058577
2015-08-31
Photocurrent spectroscopy of individual free-standing ZnO nanowires inside a high-resolution transmission electron microscope (TEM) is reported. By using specially designed optical in situ TEM system capable of scanning tunneling microscopy probing paired with light illumination, opto-mechano-electrical tripling phenomenon in ZnO nanowires is demonstrated. Splitting of photocurrent spectra at around 3.3 eV under in situ TEM bending of ZnO nanowires directly corresponds to nanowire deformation and appearance of expanded and compressed nanowire sides. Theoretical simulation of a bent ZnO nanowire has an excellent agreement with the experimental data. The splitting effect could be explained by a change in the valence band structuremore » of ZnO nanowires due to a lattice strain. The strain-induced splitting provides important clues for future flexible piezo-phototronics.« less
Kumar, Vineet
2011-12-01
The grain size statistics, commonly derived from the grain map of a material sample, are important microstructure characteristics that greatly influence its properties. The grain map for nanomaterials is usually obtained manually by visual inspection of the transmission electron microscope (TEM) micrographs because automated methods do not perform satisfactorily. While the visual inspection method provides reliable results, it is a labor intensive process and is often prone to human errors. In this article, an automated grain mapping method is developed using TEM diffraction patterns. The presented method uses wide angle convergent beam diffraction in the TEM. The automated technique was applied on a platinum thin film sample to obtain the grain map and subsequently derive grain size statistics from it. The grain size statistics obtained with the automated method were found in good agreement with the visual inspection method.
NASA Astrophysics Data System (ADS)
Wang, Shuangyue; Yan, Hongwei; Li, Dengji; Qiao, Liang; Han, Shaobo; Yuan, Xiaodong; Liu, Wei; Xiang, Xia; Zu, Xiaotao
2018-02-01
Dual-layer and tri-layer broadband antireflective (AR) films with excellent transmittance were successfully fabricated using base-/acid-catalyzed mixed sols and propylene oxide (PO) modified silica sols. The sols and films were characterized by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), transmission electron microscope (TEM), and scanning transmission electron microscope (STEM). FTIR and TEM results suggest that the PO molecules were covalently bonded to the silica particles and the bridge structure existing in PO modified silica sol is responsible for the low density of the top layer. The density ratio between different layers was measured by cross-sectional STEM, and the results are 1.69:1 and 2.1:1.7:1 from bottom-layer to top-layer for dual-layer and tri-layer films, respectively. The dual-layer film demonstrates good stability with 99.8% at the central wavelength of 351 nm and nearly 99.5% at the central wavelength of 1053 nm in laser system, and for the tri-layer AR film, the maximum transmittance reached nearly 100% at both the central wavelengths of 527 and 1053 nm.
Synthesis, characterization, in vitro anti-proliferative and hemolytic activity of hydroxyapatite
NASA Astrophysics Data System (ADS)
Palanivelu, R.; Ruban Kumar, A.
2014-06-01
Hydroxyapatite (Ca10(PO4)6(OH)2, HAP) nanoparticles are widely used in several biomedical applications due to its compositional similarities to bone mineral, excellent biocompatibility and bioactivity, osteoconductivity. In this present investigation, HAP nanoparticles synthesized by precipitation technique using calcium nitrate and di-ammonium phosphate. The crystalline nature and the functional group analysis are confirmed using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Fourier transform Raman spectroscopy (FT-Raman) respectively. The morphological observations are ascertained from field emission electron scanning electron microscope (FE-SEM) and transmission electron microscope (TEM). In vitro anti-proliferative and hemolytic activities are carried out on the synthesized HAP samples and the studies reveals that HAP have mild activity against erythrocytes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Rabindar K., E-mail: rkrksharma6@gmail.com; Reddy, G. B., E-mail: rkrksharma6@gmail.com
In this report, we synthesize vertically aligned molybdenum trioxide (α−MoO{sub 3}) nanoflakes (NFs) with high aspect ratio (height/thickness >15) on the cobalt coated glass substrates by the plasma assisted sublimation process, employing Mo metal strip as a sublimation source. The effect of substrate temperature, nature of substrate as well as the geometry of the sublimation source (Mo-strip) have been investigated on the morphological, structural and optical properties of the grown NFs, keeping plasma parameters as fixed. The surface morphology, crystalline structure and optical properties of MoO{sub 3} NFs have been studied systematically by using scanning electron microscope (SEM), transmission electronmore » microscope (TEM) with selected area electron diffraction (SAED), X-ray diffractometer, and IR- spectroscopy. The experimental observations endorse that the characteristics of MoO{sub 3} NFs are strongly depend on substrate temperature, substrate nature as well as geometry of Mo-strip. All the observed results are well in consonance with each other.« less
Tao, J.; Sun, K.; Yin, W. -G.; ...
2016-11-22
The ground-state electronic order in doped manganites is frequently associated with a lattice modulation, contributing to their many interesting properties. However, measuring the thermal evolution of the lattice superstructure with reciprocal-space probes alone can lead to ambiguous results with competing interpretations. Here, we provide direct observations of the evolution of the superstructure in La 1/3Ca 2/3MnO 3 in real space, as well as reciprocal space, using transmission electron microscopic (TEM) techniques. We show that the transitions are the consequence of a proliferation of dislocations plus electronic phase separation. The resulting states are well described by the symmetries associated with electronic-liquid-crystalmore » (ELC) phases. Furthermore, our results resolve the long-standing controversy over the origin of the incommensurate superstructure and suggest a new structural model that is consistent with recent theoretical calculations.« less
Paulkumar, Kanniah; Gnanajobitha, Gnanadhas; Vanaja, Mahendran; Rajeshkumar, Shanmugam; Malarkodi, Chelladurai; Pandian, Kannaiyan; Annadurai, Gurusamy
2014-01-01
Utilization of biological materials in synthesis of nanoparticles is one of the hottest topics in modern nanoscience and nanotechnology. In the present investigation, the silver nanoparticles were synthesized by using the leaf and stem extract of Piper nigrum. The synthesized nanoparticle was characterized by UV-vis spectroscopy, X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), energy dispersive X-ray analysis (EDAX), and Fourier Transform Infrared Spectroscopy (FTIR). The observation of the peak at 460 nm in the UV-vis spectra for leaf- and stem-synthesized silver nanoparticles reveals the reduction of silver metal ions into silver nanoparticles. Further, XRD analysis has been carried out to confirm the crystalline nature of the synthesized silver nanoparticles. The TEM images show that the leaf- and stem-synthesized silver nanoparticles were within the size of about 7-50 nm and 9-30 nm, respectively. The FTIR analysis was performed to identify the possible functional groups involved in the synthesis of silver nanoparticles. Further, the antibacterial activity of the green-synthesized silver nanoparticles was examined against agricultural plant pathogens. The antibacterial property of silver nanoparticles is a beneficial application in the field of agricultural nanotechnology.
Structural and optical studies on spin coated ZnO-graphene conjugated thin films
NASA Astrophysics Data System (ADS)
Srinatha, N.; Angadi, Basavaraj; Son, D. I.; Choi, W. K.
2018-05-01
ZnO-Graphene conjugated thin films were prepared using spin coating technique for different spin rates. Prior to the deposition, ZnO-Graphene nanoparticles were synthesized and their particle size and conjugation was studied through Transmission electron microscope (TEM). The deposited films were characterized using grazing incidence x-ray diffractometer (GIXRD), atomic force microscope (AFM) and UV-Visible spectrometer for their crystallinity, surface topographic features and optical properties. GIXRD patterns confirms the presence of both ZnO and Graphene related crystalline peaks supports the TEM results, which shows the quasi core-shell type conjugation of ZnO-Graphene particles. The crystallinity as well as thickness of the films found to decrease with increase of spin rate. AFM results reveal the uniform, smooth and homogeneity of films and also good adhesivity of ZnO-Graphene with glass substrates. No significant change in the transmittance and absorption with spin rate is observed, while the band gap energy found to decrease due to the reduction in the thickness of the films and conjugation of ZnO-Graphene. All films exhibit˜90 % transmittance in the visible wavelength region, could be potential candidates for optoelectronics and transparent conducting oxide (TCO) applications.
Ramalingam, Kirithiga; Vuthaluru, Seenu; Srivastava, Anurag; Dinda, Amit Kumar; Dhar, Anita
2017-01-01
Duct ectasia (DE) and periductal mastitis (PDM) are the most common benign breast conditions seen in women. The etiopathogenesis of these entities is still not clear and most of the theories regarding the causation are based on the histological features as seen on light microscopy. The ultramicroscopic features associated with these conditions that may give more insight to the etiopathogenesis are unknown. To study the ultrastructural changes occurring in mammary duct cones in patients with DE and PDM using Transmission Electron Microscopic (TEM). Major ducts removed by radical duct excision from 21 patients with final histopathological diagnosis of DE and PDM were subjected to TEM study with 2 normal duct samples as controls. The TEM features of DE were denudation of the epithelial cells with focal loss of microvilli, widening of the inter-epithelial junctions with focal disruption of the T bars, periductal collagenisation without inflammation, and features suggestive of Epithelial Mesenchymal Transition (EMT). PDM features are intact epithelial lining with proliferative epithelium and periductal collagenisation with inflammation. Based on the TEM findings, we suggest that DE and PDM are two different entities. EMT a novel finding observed in DE in this study.
Ramalingam, Kirithiga; Vuthaluru, Seenu; Srivastava, Anurag; Dinda, Amit Kumar; Dhar, Anita
2017-01-01
Introduction Duct ectasia (DE) and periductal mastitis (PDM) are the most common benign breast conditions seen in women. The etiopathogenesis of these entities is still not clear and most of the theories regarding the causation are based on the histological features as seen on light microscopy. The ultramicroscopic features associated with these conditions that may give more insight to the etiopathogenesis are unknown. Aim To study the ultrastructural changes occurring in mammary duct cones in patients with DE and PDM using Transmission Electron Microscopic (TEM). Method Major ducts removed by radical duct excision from 21 patients with final histopathological diagnosis of DE and PDM were subjected to TEM study with 2 normal duct samples as controls. Results The TEM features of DE were denudation of the epithelial cells with focal loss of microvilli, widening of the inter-epithelial junctions with focal disruption of the T bars, periductal collagenisation without inflammation, and features suggestive of Epithelial Mesenchymal Transition (EMT). PDM features are intact epithelial lining with proliferative epithelium and periductal collagenisation with inflammation. Conclusions Based on the TEM findings, we suggest that DE and PDM are two different entities. EMT a novel finding observed in DE in this study. PMID:28273122
Preparation of carbon-free TEM microgrids by metal sputtering.
Janbroers, S; de Kruijff, T R; Xu, Q; Kooyman, P J; Zandbergen, H W
2009-08-01
A new method for preparing carbon-free, temperature-stable Transmission Electron Microscope (TEM) grids is presented. An 80% Au/20% Pd metal film is deposited onto a 'holey' microgrid carbon supported on standard mixed-mesh Au TEM grids. Subsequently, the carbon film is selectively removed using plasma cleaning. In this way, an all-metal TEM film is made containing the 'same' microgrid as the original carbon film. Although electron transparency of the foil is reduced significantly, the open areas for TEM inspection of material over these areas are maintained. The metal foil can be prepared with various thicknesses and ensures good electrical conductivity. The new Au/Pd grids are stable to at least 775K under vacuum conditions.
CHARACTERISTICS OF INDIVIDUAL PARTICLES AT A RURAL SITE IN THE EASTERN UNITED STATES
To determine the nature of aerosol particles in a rural area of the eastern United States, aerosol samples were collected at Deep Creek Lake, Maryland, on various substrates and analyzed by a scanning electron microscope (SEM) and a transmission electron microscope (TEM). SEM ana...
DNA translocation measurements in solid-state nanopores fabricated using helium-ion microscope
NASA Astrophysics Data System (ADS)
Liu, Liping; Miao, Wang; Huynh, Chuong; Liu, Quanjun; Ling, Xinsheng
2012-02-01
We report high-quality DNA translocation measurements in solid-state nanopores drilled in free-standing SiN membranes by using a helium-ion beam in a Zeiss helium-ion microscope (HIM). We show that the HIM nanopores have similar performance as the TEM-drilled pores.
Frith, C H; Ayres, P H; Shinohara, Y; West, R
1986-01-01
A total of 75 BALB/cStCrlfC3H/Nctr male weanling mice were administered either 0 or 250 ppm of 4 ethylsulfonylnaphthalene-1-sulfonamide (ENS) in the diet for periods up to 14 days to evaluate the early morphological changes of the transitional epithelium of the urinary bladder with scanning (SEM) and transmission (TEM) electron microscopy. Primary TEM changes included hyperplasia of the epithelium, loosening of the intercellular junctions, autophagic vacuoles and electron dense granules in the mitochondria. Primary SEM changes included sloughing of epithelial cells, irregularity in the size and shape of the transitional epithelial cells and the presence of microvilli. Although pleomorphic microvilli were present after only three days of treatment with ENS, it appears that they are a transient observation in a series of morphological changes. The reversibility or transient nature of the pleomorphic microvilli may indicate that they are an acute toxic response and may not necessarily indicate a preneoplastic change.
NASA Astrophysics Data System (ADS)
Rodriguez-Manzo, Julio Alejandro; Balan, Adrian; Nayor, Carl; Parkin, Will; Puster, Matthew; Johnson, A. T. Charlie; Drndic, Marija
2015-03-01
We present a study of the effects of the defects produced by electron irradiation on the electrical and crystalline properties of graphene and MoS2 monolayers. We realized back or side gated electrical devices from monolayer MoS2 or graphene crystals (triangles respectively hexagons) suspended on a 50nm SiNx m. The devices are exposed to electron irradiation inside a 200kV transmission electron microscope (TEM) and we perform in situ conductance measurements. The number of defects and the quality of the crystalline lattice obtained by diffraction are correlated with the observed decrease in mobility and conductivity of the devices. We observe a different behavior between MoS2 and graphene, and try to associate this with different models for conduction with defects. Finally, we use the TEM electron beam to tailor the macroscopic layers into ribbons to be used as the sensing element in MoS2 nanoribbon - nanopore devices for DNA detection and sequencing.
Chiu, Chung-Hua; Huang, Chun-Wei; Chen, Jui-Yuan; Huang, Yu-Ting; Hu, Jung-Chih; Chen, Lien-Tai; Hsin, Cheng-Lun; Wu, Wen-Wei
2013-06-07
Copper silicide has been studied in the applications of electronic devices and catalysts. In this study, Cu3Si/Si nanowire heterostructures were fabricated through solid state reaction in an in situ transmission electron microscope (TEM). The dynamic diffusion of the copper atoms in the growth process and the formation mechanism are characterized. We found that two dimensional stacking faults (SF) may retard the growth of Cu3Si. Due to the evidence of the block of edge-nucleation (heterogeneous) by the surface oxide, center-nucleation (homogeneous) is suggested to dominate the silicidation. Furthermore, the electrical transport properties of various silicon channel length with Cu3Si/Si heterostructure interfaces and metallic Cu3Si NWs have been investigated. The observations not only provided an alternative pathway to explore the formation mechanisms and interface properties of Cu3Si/Si, but also suggested the potential application of Cu3Si at nanoscale for future processing in nanotechnology.
Purchase of a Transmission Electron Microscope for Xavier University of Louisiana
2015-05-15
imaging facility on the second floor of the Pharmacy Addition at Xavier University that already includes two scanning electron microscopes. The new TEM...is now in use. Xavier University has formally pledged to provide funds for the 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY...for Public Release; Distribution Unlimited Final Report: Purchase of a Transmission Electron Microscope for Xavier University of Louisiana The views
Cellular control over spicule formation in sea urchin embryos: A structural approach.
Beniash, E; Addadi, L; Weiner, S
1999-03-01
The spicules of the sea urchin embryo form in intracellular membrane-delineated compartments. Each spicule is composed of a single crystal of calcite and amorphous calcium carbonate. The latter transforms with time into calcite by overgrowth of the preexisting crystal. Relationships between the membrane surrounding the spiculogenic compartment and the spicule mineral phase were studied in the transmission electron microscope (TEM) using freeze-fracture. In all the replicas observed the spicules were tightly surrounded by the membrane. Furthermore, a variety of structures that are related to the material exchange process across the membrane were observed. The spiculogenic cells were separated from other cell types of the embryo, frozen, and freeze-dried on the TEM grids. The contents of electron-dense granules in the spiculogenic cells were shown by electron diffraction to be composed of amorphous calcium carbonate. These observations are consistent with the notion that the amorphous calcium carbonate-containing granules contain the precursor mineral phase for spicule formation and that the membrane surrounding the forming spicule is involved both in transport of material and in controlling spicule mineralization. Copyright 1999 Academic Press.
Microscopic Structure of Metal Whiskers
NASA Astrophysics Data System (ADS)
Borra, Vamsi; Georgiev, Daniel G.; Karpov, V. G.; Shvydka, Diana
2018-05-01
We present TEM images of the interior of metal whiskers (MWs) grown on electroplated Sn films. Along with earlier published information, our observations focus on a number of questions, such as, why MWs' diameters are in the micron range (significantly exceeding the typical nanosizes of nuclei in solids), why the diameters remain practically unchanged in the course of MW growth, what the nature of MW diameter stochasticity is, and what the origin of the well-known striation structure of MW side surfaces is. In an attempt to address such questions, we perform an in-depth study of MW structure at the nanoscale by detaching a MW from its original film, reducing its size to a thin slice by cutting its sides by a focused ion beam, and performing TEM on that structure. Also, we examine the root of the MW and Cu-Sn interface for the intermetallic compounds. Our TEM observations reveal a rich nontrivial morphology suggesting that MWs may consist of many side-by-side grown filaments. This structure appears to extend to the outside whisker surface and be the reason for the striation. In addition, we put forward a theory where nucleation of multiple thin metal needles results in micron-scale and larger MW diameters. This theory is developed in the average field approximation similar to the roughening transitions of metal surfaces. The theory also predicts MW nucleation barriers and other observed features.
Electric current distribution of a multiwall carbon nanotube
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Li-Ying; Chang, Chia-Seng, E-mail: jasonc@phys.sinica.edu.tw; Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
2016-07-15
The electric current distribution in a multiwall carbon nanotube (MWCNT) was studied by in situ measuring the electric potential along an individual MWCNT in the ultra-high vacuum transmission electron microscope (TEM). The current induced voltage drop along each section of a side-bonded MWCNT was measured by a potentiometric probe in TEM. We have quantitatively derived that the current on the outermost shell depends on the applied current and the shell diameter. More proportion of the total electronic carriers hop into the inner shells when the applied current is increased. The larger a MWCNT’s diameter is, the easier the electronic carriersmore » can hop into the inner shells. We observed that, for an 8 nm MWCNT with 10 μA current applied, 99% of the total current was distributed on the outer two shells.« less
Masai, J; Shibata, T; Kagawa, Y; Kondo, S
1992-07-01
Using a scanning tunneling microscope (STM), we observed reconstructed subunit complexes of H(+)-ATPase of a thermophilic bacterium. The measurement was carried out in air without conductive coating on the samples deposited on a highly oriented pyrolytic graphite (HOPG). The F1 subunit complex of the H(+)-ATPase, and an H(+)-ATPase whose F0 portion was embedded into liposomes prepared from soybean lecithin were imaged. Overall structural images of the subunit complex F1 were obtained: the structural dimensions of the STM images are in agreement with those deduced from conventional methods such as an transmission electron microscopy (TEM) and small-angle X-ray scattering (SAX) experimentation. Regarding the STM imaging of these samples, we discuss the advantages and disadvantages of the STM over those of conventional methods such as a TEM and SAX.
Synthesis, characterization, in vitro anti-proliferative and hemolytic activity of hydroxyapatite.
Palanivelu, R; Ruban Kumar, A
2014-06-05
Hydroxyapatite (Ca10(PO4)6(OH)2, HAP) nanoparticles are widely used in several biomedical applications due to its compositional similarities to bone mineral, excellent biocompatibility and bioactivity, osteoconductivity. In this present investigation, HAP nanoparticles synthesized by precipitation technique using calcium nitrate and di-ammonium phosphate. The crystalline nature and the functional group analysis are confirmed using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Fourier transform Raman spectroscopy (FT-Raman) respectively. The morphological observations are ascertained from field emission electron scanning electron microscope (FE-SEM) and transmission electron microscope (TEM). In vitro anti-proliferative and hemolytic activities are carried out on the synthesized HAP samples and the studies reveals that HAP have mild activity against erythrocytes. Copyright © 2014 Elsevier B.V. All rights reserved.
Pantelić, Dejan; Curčić, Srećko; Savić-Šević, Svetlana; Korać, Aleksandra; Kovačević, Aleksander; Curčić, Božidar; Bokić, Bojana
2011-03-28
The iridescent features of the butterfly species Apatura iris (Linnaeus, 1758) and A. ilia (Denis & Schiffermüller, 1775) were studied. We recognized the structural color of scales only on the dorsal side of both the fore and hind wings of males of both of the aforementioned butterfly species. The scale dimensions and microstructure were analyzed by a scanning electron microscope (SEM) and transmission electron microscope (TEM). The optical properties were measured and it was found that the peak reflectivity is around 380 nm, with a spectral width (full width at half maximum) of approximately 50 nm in both species. The angular selectivity is high and a purple iridescent color is observed within the angular range of only 18 degrees in both species.
Localised corrosion in aluminium alloy 2024-T3 using in situ TEM.
Malladi, Sairam; Shen, Chenggang; Xu, Qiang; de Kruijff, Tom; Yücelen, Emrah; Tichelaar, Frans; Zandbergen, Henny
2013-11-28
An approach to carry out chemical reactions using aggressive gases in situ in a transmission electron microscope (TEM), at ambient pressures of 1.5 bar using a windowed environmental cell, called a nanoreactor, is presented here. The nanoreactor coupled with a specially developed holder with platinum tubing permits the usage of aggressive chemicals like hydrochloric acid (HCl).
Isakozawa, Shigeto; Nagaoki, Isao; Watabe, Akira; Nagakubo, Yasuhira; Saito, Nobuhiro; Matsumoto, Hiroaki; Zhang, Xiao Feng; Taniguchi, Yoshifumi; Baba, Norio
2016-08-01
A new in situ environmental transmission electron microscope (ETEM) was developed based on a 300 kV TEM with a cold field emission gun (CFEG). Particular caution was taken in the ETEM design to assure uncompromised imaging and analytical performance of the TEM. Because of the improved pumping system between the gun and column, the vacuum of CFEG was largely improved and the probe current was sufficiently stabilized to operate without tip flashing for 2-3 h or longer. A high brightness of 2.5 × 10(9) A/cm(2) sr was measured at 300 kV, verifying the high quality of the CFEG electron beam. A specially designed gas injection-heating holder was used in the in situ TEM study at elevated temperatures with or without gas around the TEM specimen. Using this holder in a 10 Pa gas atmosphere and specimen temperatures up to 1000°C, high-resolution ETEM performance and analysis were achieved. © The Author 2016. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Yang; Nikiforov, Alexey Y.; Kaspar, Tiffany C.
2016-11-01
In this study, a strontium doped lanthanum cobalt ferrite thin film with 30% Sr on A-site, denoted as La0.7Sr0.3Co0.2Fe0.8O3-δ or LSCF-7328, was investigated before and after annealing at 800 °C under CO2 containing atmosphere for 9 hours. The formation of secondary phases on surface of post-annealed LSCF-7328 has been observed using atomic force microscope (AFM) and scanning electron microscope (SEM). The extent of Sr segregation at the film surface was observed using the synchrotron-based total reflection X-ray fluorescence (TXRF) technique. The bonding environment of the secondary phases formed on the surface was investigated by synchrotron-based hard X-ray photoelectron spectroscopy (HAXPES).more » Transmission electron microscope (TEM) and related spectroscopy techniques were used for microstructural and quantitative elemental analyses of the secondary phases on surface. These studies revealed that the secondary phases on surface consisted of SrO covered with a capping layer of SrCO3. The formation of Co-rich phases has also been observed on the surface of post-annealed LSCF-7328.« less
Formation of the YBa2Cu2NbOy Phase in Thin Films (POSTPRINT)
2010-03-01
protective layer was deposited on the top of YBCNO film by dc sputtering . A 200 nm 200 nm area film was selected and cut with a Ga ion beam (30 kV...200 TEM at 200 kV. Samples for TEM were prepared using a focused ion beam (FIB (Eindhoven, The Netherlands)) microscope. For TEM examination, a thin Pt...by dc magnetron sputtering deposition of Ag with 93 mm thickness. Transport current measurements were made in liquid nitrogen with the 4-probe method
Mayer, Carl; Li, Nan; Mara, Nathan Allan; ...
2014-11-07
Nanolaminate composites show promise as high strength and toughness materials. Still, due to the limited volume of these materials, micron scale mechanical testing methods must be used to determine the properties of these films. To this end, a novel approach combining a double notch shear testing geometry and compression with a flat punch in a nanoindenter was developed to determine the mechanical properties of these films under shear loading. To further elucidate the failure mechanisms under shear loading, in situ TEM experiments were performed using a double notch geometry cut into the TEM foil. Aluminum layer thicknesses of 50nm andmore » 100nm were used to show the effect of constraint on the deformation. Higher shear strength was observed in the 50 nm sample (690±54 MPa) compared to the 100 nm sample (423±28.7 MPa). Additionally, failure occurred along the Al-SiC interface in the 50 nm sample as opposed to failure within the Al layer in the 100 nm sample.« less
Transmission Electron Microscopy of Minerals and Rocks
NASA Astrophysics Data System (ADS)
McLaren, Alex C.
1991-04-01
Of the many techniques that have been applied to the study of crystal defects, none has contributed more to our understanding of their nature and influence on the physical and chemical properties of crystalline materials than transmission electron microscopy (TEM). TEM is now used extensively by an increasing number of earth scientists for direct observation of defect microstructures in minerals and rocks. Transmission Electron Microscopy of Rocks and Minerals is an introduction to the principles of the technique and is the only book to date on the subject written specifically for geologists and mineralogists. The first part of the book deals with the essential physics of the transmission electron microscope and presents the basic theoretical background required for the interpretation of images and electron diffraction patterns. The final chapters are concerned with specific applications of TEM in mineralogy and deal with such topics as planar defects, intergrowths, radiation-induced defects, dislocations and deformation-induced microstructures. The examples cover a wide range of rock-forming minerals from crustal rocks to those in the lower mantle, and also take into account the role of defects in important mineralogical and geological processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, P. N., E-mail: pnrao@rrcat.gov.in; Rai, S. K.; Srivastava, A. K.
2016-06-28
Microstructure and composition analysis of periodic multilayer structure consisting of a low electron density contrast (EDC) material combination by grazing incidence hard X-ray reflectivity (GIXR), resonant soft X-ray reflectivity (RSXR), and transmission electron microscopy (TEM) are presented. Measurements of reflectivity at different energies allow combining the sensitivity of GIXR data to microstructural parameters like layer thicknesses and interfacing roughness, with the layer composition sensitivity of RSXR. These aspects are shown with an example of 10-period C/B{sub 4}C multilayer. TEM observation reveals that interfaces C on B{sub 4}C and B{sub 4}C on C are symmetric. Although GIXR provides limited structural informationmore » when EDC between layers is low, measurements using a scattering technique like GIXR with a microscopic technique like TEM improve the microstructural information of low EDC combination. The optical constants of buried layers have been derived by RSXR. The derived optical constants from the measured RSXR data suggested the presence of excess carbon into the boron carbide layer.« less
Dopant concentration dependent growth of Fe:ZnO nanostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sahai, Anshuman; Goswami, Navendu, E-mail: navendugoswami@gmail.com
2016-05-23
Systematic investigations of structural properties of 1-10% Fe doped ZnO nanostructure (Fe:ZnO NS) prepared via chemical precipitation method have been reported. Structural properties were probed thoroughly employing scanning electron microscope (SEM) and transmission electron microscope (TEM), energy dispersive X-ray (EDAX) analysis and X-ray diffraction (XRD). Morphological transformation of nanostructures (NS) with Fe incorporation is evident in SEM/TEM images. Nanoparticles (NP) obtained with 1% Fe, evolve to nanorods (NR) for 3% Fe; NR transform to nanocones (NC) (for 5% and 7% Fe) and finally NC transform to nanoflakes (NF) at 10% Fe. Morover, primary phase of Zn{sub 1-x}Fe{sub x}O along withmore » secondary phases of ZnFe{sub 2}O{sub 4} and Fe{sub 2}O{sub 3} were also revealed through XRD measurements. Based on collective XRD, SEM, TEM, and EDAX interpretations, a model for morphological evolution of NS was proposed and the pivotal role of Fe dopant was deciphered.« less
Understanding the Magnesiothermic Reduction Mechanism of TiO2 to Produce Ti
NASA Astrophysics Data System (ADS)
Choi, Kyunsuk; Choi, Hanshin; Sohn, Il
2017-04-01
Titanium dioxide (TiO2) powders in the mineral form of rutile were reduced to metallic and an intermediate phase via a magnesiothermic reaction in molten Mg at temperatures between 973 K and 1173 K (700 °C and 900 °C) under high-purity Ar atmosphere. The reaction behavior and pathway indicated intermediate phase formation during the magnesiothermic reduction of TiO2 using XRD (X-ray diffraction), SEM (scanning electron microscope), and TEM (transmission electron microscope). Mg/TiO2 = 2 resulted in various intermediate phases of oxygen containing titanium, including Ti6O, Ti3O, and Ti2O, with metallic Ti present. MgTi2O4 ternary intermediate phases could also be observed, but they were dependent on the excess Mg present in the sample. Nevertheless, even with excessive amounts of Mg at Mg/TiO2 = 10, complete reduction to metallic Ti could not be obtained and some Ti6O intermediate phases were present. Although thermodynamics do not predict the formation of the MgTi2O4 spinel phase, detailed phase identification through XRD, SEM, and TEM showed significant amounts of this intermediate ternary phase even at excess Mg additions. Considering the stepwise reduction of TiO2 by Mg and the pronounced amounts of MgTi2O4 phase observed, the rate-limiting reaction is likely the reduction of MgTi2O4 to the TitO phase. Thus, an additional reduction step beyond thermodynamic predictions was developed.
Microstructural Study of 17-4PH Stainless Steel after Plasma-Transferred Arc Welding.
Deng, Dewei; Chen, Rui; Sun, Qi; Li, Xiaona
2015-01-29
The improvement of the surface qualities and surface hardening of precipitation hardened martensitic stainless steel 17-4PH was achieved by the plasma-transferred arc welding (PTAW) process deposited with Co-based alloy. The microstructure of the heat affected zone (HAZ) and base metal were characterized by optical microscope (OM), scanning electron microscope (SEM) and transmission electron microscope (TEM). The results show that there are obvious microstructural differences between the base metal and HAZ. For example, base material is transformed from lath martensite to austenite due to the heateffect of the welding process. On the other hand, the precipitate in the matrix (bar-like shape Cr₇C₃ phase with a width of about one hundred nanometres and a length of hundreds of nanometres) grows to a rectangular appearance with a width of about two hundred nanometres and a length of about one micron. Stacking fault could also be observed in the Cr₇C₃ after PTAW. The above means that welding can obviously improve the surface qualities.
UHV-TEM-REM Studies of Si(111) Surfaces
NASA Astrophysics Data System (ADS)
Yagi, K.; Yamanaka, A.; Sato, H.; Shima, M.; Ohse, H.; Ozawa, S.; Tanishiro, Y.
Recent progresses of ultra-high vacuum transmission and reflection electron microscope studies of clean Si(111) surfaces are described. Anisotropy of surface atomic steps such as step energy, bunching of steps, are studied. Out of phase boundaries are observed in transmission mode and its energy relative to the step energy is studied. The phase transition between the 1 × 1 and the 7 × 7 structures around 830°C, studied previously is re-examined under various conditions. Contraction strains of the 7 × 7 structure and adatom density on terraces play important role during the transition. Diffuse scattering observed by LEED and RHEED above the transition temperature is not observed in teh TED pattern from a thin film.
Paulkumar, Kanniah; Gnanajobitha, Gnanadhas; Vanaja, Mahendran; Rajeshkumar, Shanmugam; Malarkodi, Chelladurai; Pandian, Kannaiyan; Annadurai, Gurusamy
2014-01-01
Utilization of biological materials in synthesis of nanoparticles is one of the hottest topics in modern nanoscience and nanotechnology. In the present investigation, the silver nanoparticles were synthesized by using the leaf and stem extract of Piper nigrum. The synthesized nanoparticle was characterized by UV-vis spectroscopy, X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), energy dispersive X-ray analysis (EDAX), and Fourier Transform Infrared Spectroscopy (FTIR). The observation of the peak at 460 nm in the UV-vis spectra for leaf- and stem-synthesized silver nanoparticles reveals the reduction of silver metal ions into silver nanoparticles. Further, XRD analysis has been carried out to confirm the crystalline nature of the synthesized silver nanoparticles. The TEM images show that the leaf- and stem-synthesized silver nanoparticles were within the size of about 7–50 nm and 9–30 nm, respectively. The FTIR analysis was performed to identify the possible functional groups involved in the synthesis of silver nanoparticles. Further, the antibacterial activity of the green-synthesized silver nanoparticles was examined against agricultural plant pathogens. The antibacterial property of silver nanoparticles is a beneficial application in the field of agricultural nanotechnology. PMID:24558336
Morphological studies of the developing human esophageal epithelium.
Ménard, D
1995-06-15
This article focusses on the structural development of human esophageal ciliated epithelium. A combination of transmission electron microscopic (TEM), scanning electron microscopic (SEM), radioautographic, and light microscopic (LM) analyses were carried out using intact fetal tissues between 8 and 20 weeks of gestation as well as cultured esophageal explants. Up to the age of 10 weeks, the stratified esophageal epithelium consisted of two longitudinal primary folds. The surface cells were undifferentiated and contained large glycogen aggregates. Between 11 and 16 weeks, the primary folds (now up to four) had developed secondary folds. The thickness of the epithelium drastically increased (123%) in concomittance with a differentiation of surface columnar ciliated cells. These highly specialized surface cells exhibited junctional complexes and well-developed organelles with numerous microvilli interspersed among the cilia. Transverse sections revealed the internal structure of the cilia with a consistent pattern of nine doublet microtubules surrounding a central pair of single microtubules. Freeze-fracture studies illustrated the presence of a ciliary necklace composed of 6 ring-like rows of intramembranous particles. They also revealed the structure of ciliary cell tight junctions consisting of up to nine anastomosing strands (P-face) or complementary grooves (E-face). Ultrastructural studies (LM, TEM, SEM) of the esophageal squamous epithelium obtained after 15 days of culture showed that the newly formed epithelium was similar to adult human epithelium. Finally LM and SEM observations established that the esophagogastric junction was not yet well delineated, consisting of a transitional area composed of a mixture of esophageal ciliated cells and gastric columnar mucous cells.
What transmission electron microscopes can visualize now and in the future.
Müller, Shirley A; Aebi, Ueli; Engel, Andreas
2008-09-01
Our review concentrates on the progress made in high-resolution transmission electron microscopy (TEM) in the past decade. This includes significant improvements in sample preparation by quick-freezing aimed at preserving the specimen in a close-to-native state in the high vacuum of the microscope. Following advances in cold stage and TEM vacuum technology systems, the observation of native, frozen hydrated specimens has become a widely used approach. It fostered the development of computer guided, fully automated low-dose data acquisition systems allowing matched pairs of images and diffraction patterns to be recorded for electron crystallography, and the collection of entire tilt-series for electron tomography. To achieve optimal information transfer to atomic resolution, field emission electron guns combined with acceleration voltages of 200-300 kV are now routinely used. The outcome of these advances is illustrated by the atomic structure of mammalian aquaporin-O and by the pore-forming bacterial cytotoxin ClyA resolved to 12 A. Further, the Yersinia injectisome needle, a bacterial pseudopilus and the binding of phalloidin to muscle actin filaments were chosen to document the advantage of the high contrast offered by dedicated scanning transmission electron microscopy (STEM) and/or the STEM's ability to measure the mass of protein complexes and directly link this to their shape. Continued progress emerging from leading research laboratories and microscope manufacturers will eventually enable us to determine the proteome of a single cell by electron tomography, and to more routinely solve the atomic structure of membrane proteins by electron crystallography.
Effect of ECAP processing on corrosion resistance of AE21 and AE42 magnesium alloys
NASA Astrophysics Data System (ADS)
Minárik, P.; Král, R.; Janeček, M.
2013-09-01
Corrosion properties of AE21 and AE42 magnesium alloys were investigated in the extruded state and after subsequent 8 passes of Equal Channel Angular Pressing (ECAP) via route Bc, by Electrochemical Impedance Spectroscopy (EIS) in 0.1 M NaCl solution. The resulting microstructure was observed by the Transmission Electron Microscope (TEM) and the Scanning Electron Microscope (SEM). Corrosion layer created after 7 days of immersion was observed by (SEM) in order to explain different evolution of the corrosion resistance after ECAP processing in both alloys. It was found that Al-rich Al11RE3 dispersed particles (present in both alloys) strongly influence the corrosion process and enhance the corrosion resistance. Ultra-fine grained structure was found to reduce the corrosion resistance in AE21. On the other hand, the microstructure of AE42 after ECAP and particularly the better distribution of the alloying elements in the matrix enhance the corrosion resistance when compared to the extruded material.
Multi-scale Observation of Biological Interactions of Nanocarriers: from Nano to Macro
Jin, Su-Eon; Bae, Jin Woo; Hong, Seungpyo
2010-01-01
Microscopic observations have played a key role in recent advancements in nanotechnology-based biomedical sciences. In particular, multi-scale observation is necessary to fully understand the nano-bio interfaces where a large amount of unprecedented phenomena have been reported. This review describes how to address the physicochemical and biological interactions of nanocarriers within the biological environments using microscopic tools. The imaging techniques are categorized based on the size scale of detection. For observation of the nano-scale biological interactions of nanocarriers, we discuss atomic force microscopy (AFM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). For the micro to macro-scale (in vitro and in vivo) observation, we focus on confocal laser scanning microscopy (CLSM) as well as in vivo imaging systems such as magnetic resonance imaging (MRI), superconducting quantum interference devices (SQUIDs), and IVIS®. Additionally, recently developed combined techniques such as AFM-CLSM, correlative Light and Electron Microscopy (CLEM), and SEM-spectroscopy are also discussed. In this review, we describe how each technique helps elucidate certain physicochemical and biological activities of nanocarriers such as dendrimers, polymers, liposomes, and polymeric/inorganic nanoparticles, thus providing a toolbox for bioengineers, pharmaceutical scientists, biologists, and research clinicians. PMID:20232368
In situ sputter cleaning of thin film metal substrates for UHV-TEM corrosion studies.
NASA Technical Reports Server (NTRS)
Heinemann, K.; Poppa, H.
1973-01-01
A prerequisite for conducting valid corrosion experiments by in situ electron microscopy techniques is not only the achievement of UHV background pressure conditions at the site of the specimen but also the ability to clean the surface of the thin metal substrate specimen before initiation of the corrosive interaction. A miniaturized simple ion gun has been constructed for this purpose. The gun is small enough to be incorporated into an UHV electron microscope specimen chamber with hot stage in such a way as to permit bombardment of the substrate specimen while observing it by transmission electron microscopy TEM. It is shown that the ion beam generated is confined well enough to cause a sputtering removal of substrate material at a rate of approximately 5-10 A/min and to prevent the sputter deposition of contaminating material from the specimen holder.
NASA Astrophysics Data System (ADS)
Gunawan, R.; Sugiarti, E.; Isnaeni; Purawiardi, R. I.; Widodo, H.; Muslimin, A. N.; Yuliasari; Ronaldus, C. E.; Prastomo, N.; Hastuty, S.
2018-03-01
The optical, electrical and structural characteristics of InGaN-based blue light-emitting diodes (LEDs) were investigated to identify the degradation of LED before and after current injection. The sample was injected by high current of 200 A/cm2 for 5 and 20 minutes. It was observed that injection of current shifts light intensity and wavelength characteristics that indicated defect generation. Transmission Electron Microscopy (TEM) characterization was carried out in order to clarify the structure degradation caused by defect in active layer which consisted of 14 quantum well with thickness of about 5 nm and confined with barrier layer with thickness of about 12 nm. TEM results showed pre-existing defect in LED before injection with high current. Furthermore, discontinue and edge defect was found in dark spot region of LED after injection with high current.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
In situ transmission electron microscope (TEM) video (accelerated 10 times) of nucleation and self-organization of a high-density carbon nanotube network from catalytic iron nanoparticles, forming a vertically aligned forest.
Strain mapping in TEM using precession electron diffraction
Taheri, Mitra Lenore; Leff, Asher Calvin
2017-02-14
A sample material is scanned with a transmission electron microscope (TEM) over multiple steps having a predetermined size at a predetermined angle. Each scan at a predetermined step and angle is compared to a template, wherein the template is generated from parameters of the material and the scanning. The data is then analyzed using local mis-orientation mapping and/or Nye's tensor analysis to provide information about local strain states.
NASA Astrophysics Data System (ADS)
Grogan, Joseph M.
There are many scientifically interesting and technologically relevant nanoscale phenomena that take place in liquid media. Examples include aggregation and assembly of nanoparticles; colloidal crystal formation; liquid phase growth of structures such as nanowires; electrochemical deposition and etching for fabrication processes and battery applications; interfacial phenomena; boiling and cavitation; and biological interactions. Understanding of these fields would benefit greatly from real-time, in situ transmission electron microscope (TEM) imaging with nanoscale resolution. Most liquids cannot be imaged by traditional TEM due to evaporation in the high vacuum environment and the requirement that samples be very thin. Liquid-cell in situ TEM has emerged as an exciting new experimental technique that hermetically seals a thin slice of liquid between two electron transparent membranes to enable TEM imaging of liquid-based processes. This work presents details of the fabrication of a custom-made liquid-cell in situ TEM device, dubbed the nanoaquarium. The nanoaquarium's highlights include an exceptionally thin sample cross section (10s to 100s of nm); wafer scale processing that enables high-yield mass production; robust hermetic sealing that provides leak-free operation without use of glue, epoxy, or any polymers; compatibility with lab-on-chip technology; and on-chip integrated electrodes for sensing and actuation. The fabrication process is described, with an emphasis on direct wafer bonding. Experimental results involving direct observation of colloid aggregation using an aqueous solution of gold nanoparticles are presented. Quantitative analysis of the growth process agrees with prior results and theory, indicating that the experimental technique does not radically alter the observed phenomenon. For the first time, in situ observations of nanoparticles at a contact line and in an evaporating thin film of liquid are reported, with applications for techniques such as dip-coating and drop-casting, commonly used for depositing nanoparticles on a surface via convective-capillary assembly. Theoretical analysis suggests that the observed particle motion and aggregation are caused by gradients in surface tension and disjoining pressure in the thin liquid film.
NASA Technical Reports Server (NTRS)
Christoffersen, R.; Keller, L. P.
2007-01-01
Space weathering on the moon and asteroids results largely from the alteration of the outer surfaces of regolith grains by the combined effects of solar ion irradiation and other processes that include deposition of impact or sputter-derived vapors. Although no longer considered the sole driver of space weathering, solar ion irradiation remains a key part of the space weathering puzzle, and quantitative data on its effects on regolith minerals are still in short supply. For the lunar regolith, previous transmission electron microscope (TEM) studies performed by ourselves and others have uncovered altered rims on ilmenite (FeTiO3) grains that point to this phase as a unique "witness plate" for unraveling nanoscale space weathering processes. Most notably, the radiation processed portions of these ilmenite rims consistently have a crystalline structure, in contrast to radiation damaged rims on regolith silicates that are characteristically amorphous. While this has tended to support informal designation of ilmenite as a "radiation resistant" regolith mineral, there are to date no experimental data that directly and quantitatively compare ilmenite s response to ion radiation relative to lunar silicates. Such data are needed because the radiation processed rims on ilmenite grains, although crystalline, are microstructurally and chemically complex, and exhibit changes linked to the formation of nanophase Fe metal, a key space weathering process. We report here the first ion radiation processing study of ilmenite performed by in-situ means using the Intermediate Voltage Electron Microscope- Tandem Irradiation facility (IVEM-Tandem) at Argonne National Laboratory. The capability of this facility for performing real time TEM observations of samples concurrent with ion irradiation makes it uniquely suited for studying the dose-dependence of amorphization and other changes in irradiated samples.
Insights into Collisional between Small Bodies: Comparison of Impacted Magnesium-rich Minerals
NASA Technical Reports Server (NTRS)
Lederer, Susan M.; Jensen, E. A.; Strojia, C.; Smith, D. C.; Keller, L. P.; Nakamura-Messenger, K.; Berger, E. L.; Lindsay, S. S.; Wooden, D. H.; Cintala, M. J.;
2013-01-01
Impacts are sustained by comets and asteroids throughout their lives, especially early in the Solar system's history, as described by the Nice model. Identifying observable properties that may be altered due to impacts can lead to a better understanding their collisional histories. Here, we investigate spectral effects and physical shock features observed in infrared spectra and Transmission Electron Microscope (TEM) images, respectively, of magnesium-rich minerals subjected to shock through impact experiments. Samples of magnesium-rich forsterite (Mg2SiO4, olivine), orthoenstatite (Mg2SiO3, pyroxene), diopside (MgCaSi2O6, monoclinic pyroxene), and magnesite (MgCO3, carbonate) were impacted at speeds of 2.4 km/s, 2.6 km/s and 2.8 km/s. Impact experiments were conducted in the Johnson Space Center Experimental Impact Laboratory using the vertical gun. Clear signatures are observed in both the mid-IR spectra (shift in wavelengths of the spectral peaks and relative amplitude changes) of all minerals except magnesite, and in TEM images (planar dislocations) of both the forsterite and orthoenstatite samples. Further discussion on forsterite and enstatite analyses can be found in Jensen et al., this meeting.
Gong, Yue; Zhang, Jienan; Jiang, Liwei; Shi, Jin-An; Zhang, Qinghua; Yang, Zhenzhong; Zou, Dongli; Wang, Jiangyong; Yu, Xiqian; Xiao, Ruijuan; Hu, Yong-Sheng; Gu, Lin; Li, Hong; Chen, Liquan
2017-03-29
We report a method for in situ atomic-scale observation of electrochemical delithiation in a working all-solid-state battery using a state-of-the-art chip based in situ transmission electron microscopy (TEM) holder and focused ion beam milling to prepare an all-solid-state lithium-ion battery sample. A battery consisting of LiCoO 2 cathode, LLZO solid state electrolyte and gold anode was constructed, delithiated and observed in an aberration corrected scanning transmission electron microscope at atomic scale. We found that the pristine single crystal LiCoO 2 became nanosized polycrystal connected by coherent twin boundaries and antiphase domain boundaries after high voltage delithiation. This is different from liquid electrolyte batteries, where a series of phase transitions take place at LiCoO 2 cathode during delithiation. Both grain boundaries become more energy favorable along with extraction of lithium ions through theoretical calculation. We also proposed a lithium migration pathway before and after polycrystallization. This new methodology could stimulate atomic scale in situ scanning/TEM studies of battery materials and provide important mechanistic insight for designing better all-solid-state battery.
NASA Astrophysics Data System (ADS)
Zhu, Shuihan
PVC/SBR blends---new thermoplastic elastomer material---were developed. They have potential applications due to low costs and low-temperature elasticity. A unique compatibilization method was employed to enhance the mechanical properties of the materials a compatibilizer miscible with one of the blend components can react chemically with the other component(s). Improvements in tensile and impact behavior were observed as a result of the compatibilization. A novel characterization technique to study the interface of PVC/SBR blends was developed. This technique involves the observation of the unstained sample under electron beam irradiation by a transmission electron microscope (TEM). An enrichment of rubber at the interface between PVC and SBR was detected in the compatiblized PVC/SBR blends. Magnetic relaxation measurements show that the rubber concentration in the proximity of PVC increases with the degree of covulcanization between NBR and SBR. The interface development and the rheological effect during processing were investigated. The interfacial concentration profile and the interfacial thickness were obtained by grayscale measurements on TEM micrographs, evaluation of SIMS images, and measurements of micromechanical properties.
Kuwan; Tsukamoto; Taki; Horibuchi; Oki; Kawaguchi; Shibata; Sawaki; Hiramatsu
2000-01-01
Cross-sectional transmission electron microscope (TEM) observation was performed for selectively grown gallium nitride (GaN) in order to examine the dependence of GaN microstructure on the growth conditions. The GaN films were grown by hydride vapour phase epitaxy (HVPE) or metalorganic vapour phase epitaxy (MOVPE) on GaN covered with a patterned mask. Thin foil specimens for TEM observation were prepared with focused ion beam (FIB) machining apparatus. It was demonstrated that the c-axis of GaN grown over the terrace of the mask tilts towards the centre of the terrace when the GaN is grown in a carrier gas of N2. The wider terrace results in a larger tilting angle if other growth conditions are identical. The tilting is attributed to 'horizontal dislocations' (HDs) generated during the overgrowth of GaN on the mask terrace. The HDs in HVPE-GaN have a semi-loop shape and are tangled with one another, while those in MOVPE-GaN are straight and lined up to form low-angle grain boundaries.
NASA Astrophysics Data System (ADS)
Zhang, Xiao-Juan; Lin, Dong-Yang; Yan, Xiao-Hui; Wang, Xiao-Xiang
2011-12-01
A homogeneous amorphous calcium phosphate (ACP) coating containing magnesium was achieved on titanium substrates by electrochemical deposition (ECD). Its amorphous structure is confirmed by transmission electron microscope (TEM) together with grazing reflection absorption infrared spectroscopy (IR) spectrometer. In the images of high-resolution transmission electron microscope (HRTEM), the ACP spheres are assembled by nano-particles with the diameter of 5-10 nm. In the alkaline environment, nucleation of hydroxyapatite (HAP) occurs on the surfaces of ACP spheres. By consuming the Ca and PO 4 ions inside the ACP spheres, the HAP nuclei grow outward. Confirmed by TEM, the ACP spheres converse to hollow HAP spheres composed of HAP nano-needles. The coating is finally constructed by the HAP nano-needles, which are themselves aggregated by numerous nano-particles.
Report on the Installation and Preparedness of a Protochips Fusion in-situ Heating Holder for TEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edmondson, Philip D.
2017-03-01
This brief report documents the procurement and installation of a Protochips Fusion (formerly Aduro) high-temperature, high stability transmission electron microscopy (TEM) specimen holder that allows for the high spatial resolution characterization of material specimens at high temperature in situ of an electron microscope. This specimen holder was specifically procured for use with The FEI Talos F200X Scanning/Transmission Electron Microscope (STEM) in Oak Ridge National Laboratory’s (ORNL’s) Low Activation Materials Development and Analysis (LAMDA) Laboratory. The Protochips Fusion holder will enable high-resolution structural and chemical analysis of irradiated materials at high temperature, becoming a unique capability worldwide, and would encourage high-qualitymore » in situ experiments to be conducted on irradiated materials.« less
Studying dynamic processes in liquids by TEM/STEM/DTEM
NASA Astrophysics Data System (ADS)
Abellan, Patricia; Evans, James; Woehl, Taylor; Jungjohann, Katherine; Parent, Lucas; Arslan, Ilke; Ristenpart, William; Browning, Nigel; Mater. Sci. Group Team; Microsc. Group Team; Catal. Sci. Group Collaboration; Ristenpart Res. Group Collaboration
2013-03-01
In order to study dynamic phenomena such as corrosion or catalysis, extreme environmental conditions must be reproduced around the specimen - these include high-temperatures, high-pressures, specific oxidizing/reducing atmospheres or a liquid environment. The use of environmental stages specifically designed to fit in any transmission electron microscope (TEM) allows us to apply the distinct capabilities of each instrument to study dynamic processes. Localized gas/fluid conditions are created around the sample and separated from the high vacuum inside the microscope using hermetically sealed windowed-cells. Advanced capabilities of these techniques include spatial resolutions of ~1 Angstrom or better in aberration corrected instruments or temporal resolutions in the microsecond-nanosecond range in a dynamic TEM (DTEM). Here, unique qualities of the DTEM that benefit the in-situ experiments with gas/fluid environmental cells will be discussed. We also present our results with a liquid stage allowing atomic resolution imaging of nanomaterials in a colloidal suspension, core EEL spectra acquisition, continuous flow, controlled growth of nanocrystals and systematic calibration of the effect of the electron dose on silver nuclei formation.
Naval Research Laboratory Major Facilities 2008
2008-10-01
Development Laboratory • Secure Supercomputing Facility • CBD/Tilghman Island IR Field Evaluation Facility • Ultra-Short-Pulse Laser Effects Research...EMI Test Facility • Proximity Operations Testbed GENERAL INFORMATION • Maps EX EC U TI V E D IR EC TO RA TE Code 1100 – Institute for Nanoscience...facility: atomic force microscope (AFM); benchtop transmission electron microscope (TEM); cascade probe station; critical point dryer ; dual beam focused
Investigations of stacking fault density in perpendicular recording media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piramanayagam, S. N., E-mail: prem-SN@dsi.a-star.edu.sg; Varghese, Binni; Yang, Yi
In magnetic recording media, the grains or clusters reverse their magnetization over a range of reversal field, resulting in a switching field distribution. In order to achieve high areal densities, it is desirable to understand and minimize such a distribution. Clusters of grains which contain stacking faults (SF) or fcc phase have lower anisotropy, an order lower than those without them. It is believed that such low anisotropy regions reverse their magnetization at a much lower reversal field than the rest of the material with a larger anisotropy. Such clusters/grains cause recording performance deterioration, such as adjacent track erasure andmore » dc noise. Therefore, the observation of clusters that reverse at very low reversal fields (nucleation sites, NS) could give information on the noise and the adjacent track erasure. Potentially, the observed clusters could also provide information on the SF. In this paper, we study the reversal of nucleation sites in granular perpendicular media based on a magnetic force microscope (MFM) methodology and validate the observations with high resolution cross-section transmission electron microscopy (HRTEM) measurements. Samples, wherein a high anisotropy CoPt layer was introduced to control the NS or SF in a systematic way, were evaluated by MFM, TEM, and magnetometry. The magnetic properties indicated that the thickness of the CoPt layer results in an increase of nucleation sites. TEM measurements indicated a correlation between the thickness of CoPt layer and the stacking fault density. A clear correlation was also observed between the MFM results, TEM observations, and the coercivity and nucleation field of the samples, validating the effectiveness of the proposed method in evaluating the nucleation sites which potentially arise from stacking faults.« less
Observation of a single-beam gradient-force optical trap for dielectric particles in air.
Omori, R; Kobayashi, T; Suzuki, A
1997-06-01
A single-beam gradient-force optical trap for dielectric particles, which relies solely on the radiation pressure force of a TEM(00)-mode laser light, is demonstrated in air for what is believed to be the first time. It was observed that micrometer-sized glass spheres with a refractive index of n=1.45 remained trapped in the focus region for more than 30 min, and we could transfer them three dimensionally by moving the beam focus and the microscope stage. A laser power of ~40 mW was sufficient to trap a 5- microm -diameter glass sphere. The present method has several distinct advantages over the conventional optical levitation method.
NASA Astrophysics Data System (ADS)
Pathan, Idris G.; Suryawanshi, Dinesh N.; Bari, Anil R.; Patil, Lalchand A.
2018-05-01
This work presents the effect of iron doping having different volume ratios (1 ml, 2.5 ml and 5 ml) on the structural, microstructural and electrical properties of zinc stannate thin films, prepared by spray pyrolysis method. These properties were characterized with X-ray diffraction (XRD) and Transmission Electron Microscope (TEM). In our study, XRD pattern indicates that ZnSnO3 has a perovskite phase with face exposed hexahedron structure. The electron diffraction fringes observed are in consistent with the peak observed in XRD patterns. Moreover the sensor reported in our study is cost-effective, user friendly and easy to fabricate.
Narushima, Takashi; Hyono, Atsushi; Nishida, Naoki; Yonezawa, Tetsu
2012-10-01
Copper/gelatin composite particles with controlled sizes were prepared at room temperature from cupric sulfate pentahydrate in the presence of gelatin as a protective reagent by using hydrazine monohydrate as a reducing agent. The formed particles with the size between 190-940 nm were secondary aggregated particles which were composed of smaller nanosized particles ("particle-in-particle"), the presence of which was established by XRD patterns and a cross-sectional TEM image. The sintering behavior of these copper/gelatin composite particles was demonstrated by in-situ heating TEM under a high vacuum (approximately 10(-5) Pa) and separately with the oxygen partial pressure controlled at the 10(-4) Pa level. It was established that the particles began to sinter at about 330 degrees C with the oxygen and that they sublimate above 450 degrees C both in the vacuum and oxygen conditions. This result shows that the introduction of an adequate amount of oxygen was effective to remove the gelatin surrounding the particles. It can also be concluded that the sintering of the copper/gelatin composite particles occurred even in the absence of a reducing agent such as hydrogen gas.
Suzuki, Michio; Nakayama, Seiji; Nagasawa, Hiromichi; Kogure, Toshihiro
2013-02-01
Although the formation mechanism of calcite crystals in the prismatic layer has been studied well in many previous works, the initial state of calcite formation has not been observed in detail using electron microscopes. In this study, we report that the soft prismatic layer with transparent color (the thin prismatic layer) in the tip of the fresh shell of Pinctada fucata was picked up to observe the early calcification phase. A scanning electron microscope (SEM) image showed that the growth tip of the thin prismatic layer was covered by the periostracum, which was also where the initial formation of calcite crystals began. A cross-section containing the thin calcite crystals in the thin prismatic layer with the periostracum was made using a focused ion beam (FIB) system. In a transmission electron microscope (TEM) observation, the thin calcite crystal (thickness is about 1μm) on the periostracum was found to be a single crystal with the c-axis oriented perpendicular to the shell surface. On the other hand, many aggregated small particles consisting of bassanite crystals were observed in the periostracum suggesting the possibility that not only organic sulfate but also inorganic sulfates exist in the prismatic layer. These discoveries in the early calcification phase of the thin prismatic layer may help to clarify the mechanism of regulating the nucleation and orientation of the calcite crystal in the shell. Copyright © 2012 Elsevier Ltd. All rights reserved.
Detecting single-electron events in TEM using low-cost electronics and a silicon strip sensor.
Gontard, Lionel C; Moldovan, Grigore; Carmona-Galán, Ricardo; Lin, Chao; Kirkland, Angus I
2014-04-01
There is great interest in developing novel position-sensitive direct detectors for transmission electron microscopy (TEM) that do not rely in the conversion of electrons into photons. Direct imaging improves contrast and efficiency and allows the operation of the microscope at lower energies and at lower doses without loss in resolution, which is especially important for studying soft materials and biological samples. We investigate the feasibility of employing a silicon strip detector as an imaging detector for TEM. This device, routinely used in high-energy particle physics, can detect small variations in electric current associated with the impact of a single charged particle. The main advantages of using this type of sensor for direct imaging in TEM are its intrinsic radiation hardness and large detection area. Here, we detail design, simulation, fabrication and tests in a TEM of the front-end electronics developed using low-cost discrete components and discuss the limitations and applications of this technology for TEM.
Experimental analysis of two-layered dissimilar metals by roll bonding
NASA Astrophysics Data System (ADS)
Zhao, Guanghui; Li, Yugui; Li, Juan; Huang, Qingxue; Ma, Lifeng
2018-02-01
Rolling reduction and base layers thickness have important implications for rolling compounding. A two-layered 304 stainless steel/Q345R low alloyed steel was roll bonded. The roll bonding was performed at the three thickness reductions of 25%, 40% and 55% with base layers of various thicknesses (Q345R). The microstructures of the composite were investigated by the ultra-deep microscope (OM) and scanning electron microscope (SEM) and Transmission electron microscope (TEM). Simultaneously, the mechanical properties of the composite were experimentally measured and the tensile fracture surfaces were observed by SEM. The interfaces were successfully bonded without any cracking or voids, which indicated a good fabrication of the 304/Q345R composite. The rolling reduction rate and thinning increase of the substrate contributed to the bonding effects appearance of the roll bonded sheet. The Cr and Ni enriched diffusion layer was formed by the interface elements diffusion. The Cr and Ni diffusion led to the formation of ˜10 μm wide Cr and Ni layers on the carbon steel side.
Microstructural Study of 17-4PH Stainless Steel after Plasma-Transferred Arc Welding
Deng, Dewei; Chen, Rui; Sun, Qi; Li, Xiaona
2015-01-01
The improvement of the surface qualities and surface hardening of precipitation hardened martensitic stainless steel 17-4PH was achieved by the plasma-transferred arc welding (PTAW) process deposited with Co-based alloy. The microstructure of the heat affected zone (HAZ) and base metal were characterized by optical microscope (OM), scanning electron microscope (SEM) and transmission electron microscope (TEM). The results show that there are obvious microstructural differences between the base metal and HAZ. For example, base material is transformed from lath martensite to austenite due to the heateffect of the welding process. On the other hand, the precipitate in the matrix (bar-like shape Cr7C3 phase with a width of about one hundred nanometres and a length of hundreds of nanometres) grows to a rectangular appearance with a width of about two hundred nanometres and a length of about one micron. Stacking fault could also be observed in the Cr7C3 after PTAW. The above means that welding can obviously improve the surface qualities. PMID:28787947
Lu, Xiaonan; Rasco, Barbara A.; Kang, Dong-Hyun; Jabal, Jamie M.F.; Aston, D. Eric; Konkel, Michael E.
2012-01-01
The antimicrobial effects of garlic (Allium sativum) extract (25, 50, 75, 100, and 200 μl/ml) and diallyl sulfide (5, 10 and 20 μM) on Listeria monocytogenes and Escherichia coli O157:H7 cultivated in tryptic soy broth at 4, 22 and 35°C for up to 7 days were investigated. L. monocytogenes was more resistant to garlic extract and diallyl compounds treatment than E. coli O157:H7. Fourier transform Infrared (FT-IR) spectroscopy indicated that diallyl constituents contributed more to the antimicrobial effect than phenolic compounds. This effect was verified by Raman spectroscopy and Raman mapping on single bacteria. Scanning electron microscope (SEM) and transmission electron microscope (TEM) showed cell membrane damage consistent with spectroscopic observation. The degree of bacterial cell injury could be quantified using chemometric methods. PMID:21553849
Structural and magnetic properties of chromium doped zinc ferrite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sebastian, Rintu Mary; Thankachan, Smitha; Xavier, Sheena
2014-01-28
Zinc chromium ferrites with chemical formula ZnCr{sub x}Fe{sub 2−x}O{sub 4} (x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0) were prepared by Sol - Gel technique. The structural as well as magnetic properties of the synthesized samples have been studied and reported here. The structural characterizations of the samples were analyzed by using X – Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscope (SEM), and Transmission Electron Microscope (TEM). The single phase spinel cubic structure of all the prepared samples was tested by XRD and FTIR. The particle size was observed to decrease from 18.636 nm to 6.125more » nm by chromium doping and induced a tensile strain in all the zinc chromium mixed ferrites. The magnetic properties of few samples (x = 0.0, 0.4, 1.0) were investigated using Vibrating Sample Magnetometer (VSM)« less
The effects of ferrocene concentration on CNT growth on micron silica gel
NASA Astrophysics Data System (ADS)
Othman, Raja N.; Wilkinson, Arthur N.
2017-12-01
The growth of CNT on micron size spherical silica gel of high porosity was performed in this work. The CNT was grown via floating catalyst chemical vapor deposition method (FCCVD). The reaction temperature and time were kept at 760 °C and 3 hours, respectively. The concentration of the catalyst used, which was ferrocene, was varied from 1 wt. % to 9.6 wt. %, with respect to toluene. Striking difference in the morphology of the synthesized tubes was observed using Field Emission Scanning Electron Microscope (FESEM) and Transmission Electron Microscope (TEM) images. The quality and quantity of the CNT were further characterized via Raman Spectroscopy and Thermogravimetric Analysis. Based on these characterizations, it was found that the ferrocene concentration greatly affects the morphology of the obtained CNT; with 1 wt.% and 9.6 wt.% ferrocene concentrations yield CNT of bigger outer diameters, compared to the CNT obtained from 5 wt.% ferrocene concentrations.
Metal dusting behavior of 321 stainless steel: Effects of edge and corner
NASA Astrophysics Data System (ADS)
Chang, Chia-Hao; Tsai, Wen-Ta
2011-04-01
The metal dusting behavior of 321 stainless steel (SS) in a flowing mixed CO/H2/H2O gas stream at 600 °C for 500 h and 1000 h was investigated. The microstructures and chemical compositions of the reaction products at the surface and those in the substrate under the pits were examined by using a scanning electron microscope (SEM) and a transmission electron microscope (TEM), each combined with an energy dispersive spectrometer (EDS). The phenomenon of a pitting attack that occurred preferentially at the edges and corners of the specimens was the focus of this study. The carburization behavior in the steel substrate under the pits was also characterized. Matrix carbide in the form of Cr7C3 and grain boundary carbide in the form of Cr23C6 were identified by TEM.
Boehmite nanostructures preparation by hydrothermal method from anodic aluminium oxide membrane.
Yang, X; Wang, J Y; Pan, H Y
2009-02-01
Boehmite nanostructures were successfully synthesized from porous anodic aluminium oxide (AAO) membrane by a simple and efficient hydro-thermal method. The experiment used high purity alumina as raw material, and the whole reaction process avoided superfluous impurities to be introduced. Thus, the purity of Boehmite products was ensured. The examinations of the morphology and structure were carried out by atomic force microscope (AFM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Composition of the specimens was analyzed using energy dispersive X-ray spectroscope (EDX) and X-ray diffraction (XRD). Based on these observations the growth process was analyzed.
Ismaiel, Ahmed A; Ghaly, Mohamed F; El-Naggar, Ayman K
2011-05-01
The association of kefir microbiota was observed by electron microscopic examination. Scanning electron microscopic (SEM) observations revealed that kefir grain surface is very rough and the inner portions had scattered irregular holes on its surface. The interior of the grain comprised fibrillar materials which were interpreted as protein, lipid and a soluble polysaccharide, the kefiran complex that surrounds yeast and bacteria in the grain. Yeast was observed more clearly than bacteria on the outer portion of the grain. Transmission electron microscopic (TEM) observations of kefir revealed that the grain comprised a mixed culture of yeast and bacteria growing in close association with each other. Microbiota is dominated by budded and long-flattened yeast cells growing together with lactobacilli and lactococci bacteria. Bacterial cells with rounded ends were also observed in this mixed culture. Kefir grains, kefir suspensions, and kefiran were tested for antimicrobial activities against several bacterial and fungal species. The highest activity was obtained against Streptococcus faecalis KR6 and Fusarium graminearum CZ1. Growth of Aspergillus flavus AH3 producing for aflatoxin B1 for 10 days in broth medium supplemented with varying concentrations of kefir filtrate (%, v/v) showed that sporulation was completely inhibited at the higher concentrations of kefir filtrate (7-10%, v/v). The average values of both mycelial dry weights and aflatoxin B1 were completely inhibited at 10% (v/v). This is the first in vitro study about the antifungal characteristics of kefir against filamentous fungi which was manifested by applying its inhibitory effect on the productivity of aflatoxin B1 by A. flavus AH3.
Zhang, Xiaobin; Oshima, Yoshifumi
2016-10-01
An atomic resolution phase map, which enables us to observe charge distribution or magnetic properties at an atomic scale, has been pointed out to be retrieved by transport of intensity equation (TIE) when taking two atomic-resolved transmission electron microscope (TEM) images of small defocus difference. In this work, we firstly obtained the atomic-resolved phase maps of an exfoliated molybdenum disulfide sheet using spherical aberration-corrected transmission electron microscope. We successfully observed 60° grain boundary of mechanically exfoliated monolayer molybdenum disulfide sheet. The relative phase shift of a single molybdenum atomic column to the column consisting of two sulfur atoms was obtained to be about 0.01 rad on average, which was about half lower than the simulated TIE phase map, indicating that the individual atomic sites can be distinguished qualitatively. The appropriate condition for retrieving atomic-resolved TIE phase maps was briefly discussed. © The Author 2016. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Ex Situ Investigation of Anisotropic Interconnection in Silicon-Titanium-Nickel Alloy Anode Material
Cho, Jong -Soo; Alaboina, Pankaj Kumar; Kang, Chan -Soon; ...
2017-03-10
Herein we investigate the nanostructural evolution of Silicon-Titanium-Nickel (Si-Ti-Ni) ternary alloy material synthesized by melt spinning process for advanced lithium-ion battery anode. The synthesized material was found to have nano-Silicon particles dispersed in the Ti 4Ni 4Si 7 (STN) alloy buffering matrix and was characterized by X-ray diffraction (XRD), High resolution- transmission electron microscope (HR-TEM), Scanning transmission electron microscopes - energy dispersive X-ray spectrometer (STEM-EDS), and electrochemical performance test. The role of STN matrix is to accommodate the volume expansion stresses of the dispersed Si nanoparticles. However, an interesting behavior was observed during cycling. The Si nanoparticles were observed tomore » form interconnection channels growing through the weak STN matrix cracks and evolving to a network isolating the STN matrix into small puddles. In conclusion, this unique nanostructural evolution of Si particles and isolation of the STN matrix failing to offer significant buffering effect to the grown Si network eventually accelerates more volume expansions during cycling due to less mechanical confinement and leads to performance degradation and poor cycle stability.« less
Zhang, Yanmin; He, Langchong; Zhou, Yali
2008-01-01
The present study was to evaluate the effects of taspine isolated from Radix et Rhizoma Leonticsi on the growth and apoptosis of human umbilical vein endothelial cell (HUVEC) line by MTT and flow cytometer, respectively. At the same time, a series of changes were observed in HUVEC treated by taspine, including microstructure, protein expression of bax, bcl-2 and VEGF. The change of microstructure was observed by transmission electron microscope (TEM). The protein expression of bax and bcl-2 was detected by immunohistochemistry (IHC), and VEGF protein secreted was determined by enzyme-linked immunosorbent assay (ELISA). The results showed taspine could inhibit growth and induce apoptosis of HUVEC in a dose-dependent manner. Cell cycle was significantly stopped at the S phase. Under electronic microscope, the morphology of HUVEC treated with taspine showed nuclear karyopycnosis, chromatin agglutination and typical apoptotic body. Bcl-2 and VEGF expressions were decreased and bax expression was increased. All these results demonstrate that taspine has an inhibitory effect on growth of HUVEC and can induce its apoptosis.
Palaeontological evidence of membrane relationship in step-by-step membrane fusion
WANG, XIN; LIU, WENZHE; DU, KAIHE
2011-01-01
Studies on membrane fusion in living cells indicate that initiation of membrane fusion is a transient and hard to capture process. Despite previous research, membrane behaviour at this point is still poorly understood. Recent palaeobotanical research has revealed snapshots of membrane fusion in a 15-million-year-old fossil pinaceous cone. To reveal the membrane behaviour during the fusion, we conducted more observations on the same fossil material. Several discernible steps of membrane fusion have been fixed naturally and observed in the fossil material. This observation provides transmission electron microscope (TEM) images of the transient intermediate stage and clearly shows the relationship between membranes. Observing such a transient phenomenon in fossil material implies that the fixing was most likely accomplished quickly by a natural process. The mechanism behind this phenomenon is clearly worthy of further enquiry. PMID:21190428
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buck, E.C.; Dietz, N.L.; Bates, J.K.
Uranium contaminated soils from the Fernald Operation Site, Ohio, have been examined by a combination of optical microscopy, scanning electron microscopy with backscattered electron detection (SEM/BSE), and analytical electron microscopy (AEM). A method is described for preparing of transmission electron microscopy (TEM) thin sections by ultramicrotomy. By using these thin sections, SEM and TEM images can be compared directly. Uranium was found in iron oxides, silicates (soddyite), phosphates (autunites), and fluorite. Little uranium was associated with clays. The distribution of uranium phases was found to be inhomogeneous at the microscopic level.
EBSD and TEM characterization of high burn-up mixed oxide fuel
NASA Astrophysics Data System (ADS)
Teague, Melissa; Gorman, Brian; Miller, Brandon; King, Jeffrey
2014-01-01
Understanding and studying the irradiation behavior of high burn-up oxide fuel is critical to licensing of future fast breeder reactors. Advancements in experimental techniques and equipment are allowing for new insights into previously irradiated samples. In this work dual column focused ion beam (FIB)/scanning electron microscope (SEM) was utilized to prepared transmission electron microscope samples from mixed oxide fuel with a burn-up of 6.7% FIMA. Utilizing the FIB/SEM for preparation resulted in samples with a dose rate of <0.5 mRem/h compared to ∼1.1 R/h for a traditionally prepared TEM sample. The TEM analysis showed that the sample taken from the cooler rim region of the fuel pellet had ∼2.5× higher dislocation density than that of the sample taken from the mid-radius due to the lower irradiation temperature of the rim. The dual column FIB/SEM was additionally used to prepared and serially slice ∼25 μm cubes. High quality electron back scatter diffraction (EBSD) were collected from the face at each step, showing, for the first time, the ability to obtain EBSD data from high activity irradiated fuel.
EBSD and TEM Characterization of High Burn-up Mixed Oxide Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teague, Melissa C.; Gorman, Brian P.; Miller, Brandon D.
2014-01-01
Understanding and studying the irradiation behavior of high burn-up oxide fuel is critical to licensing of future fast breeder reactors. Advancements in experimental techniques and equipment are allowing for new insights into previously irradiated samples. In this work dual column focused ion beam (FIB)/scanning electron microscope (SEM) was utilized to prepared transmission electron microscope samples from mixed oxide fuel with a burn-up of 6.7% FIMA. Utilizing the FIB/SEM for preparation resulted in samples with a dose rate of <0.5 mRem/h compared to approximately 1.1 R/h for a traditionally prepared TEM sample. The TEM analysis showed that the sample taken frommore » the cooler rim region of the fuel pellet had approximately 2.5x higher dislocation density than that of the sample taken from the mid-radius due to the lower irradiation temperature of the rim. The dual column FIB/SEM was additionally used to prepared and serially slice approximately 25 um cubes. High quality electron back scatter diffraction (EBSD) were collected from the face at each step, showing, for the first time, the ability to obtain EBSD data from high activity irradiated fuel.« less
Alteration of the RANKL/RANK/OPG System in Periprosthetic Osteolysis with Septic Loosening.
Wang, Long; Dai, Zixun; Xie, Jie; Liao, Hao; Lv, Cheng; Hu, Yihe
2016-02-01
The pathogenesis of periprosthetic osteolysis with septic loosening remains incompletely understood. The purpose of this study was to investigate whether expression of the RANKL/RANK/OPG system is altered in septic interface membranes (SIMs). Seventeen cases with a SIM, 26 cases with an aseptic interface membrane (AIM), and 12 cases with a normal synovium (NS) were assessed. Scanning and transmission electron microscopy (SEM and TEM, respectively) were used to observe the microscopic morphology of three tissue conditions. Differences in RANKL, RANK, and OPG expression at the mRNA level were assessed by real-time quantitative PCR, and differences at the protein level were assessed by immunohistochemical staining and Western blotting. SEM showed wear debris widely distributed on the AIM surface, and TEM showed Bacillus activity in the SIM. RANKL expression and the RANKL/OPG ratio were significantly increased in SIMs. Imbalance in the RANKL/RANK/OPG system is related to periprosthetic osteolysis with septic loosening but is not the only possible pathogenic mechanism.
Burlaud-Gaillard, Julien; Sellin, Caroline; Georgeault, Sonia; Uzbekov, Rustem; Lebos, Claude; Guillaume, Jean-Marc; Roingeard, Philippe
2014-01-01
The intracellular morphogenesis of flaviviruses has been well described, but flavivirus release from the host cell remains poorly documented. We took advantage of the optimized production of an attenuated chimeric yellow fever/dengue virus for vaccine purposes to study this phenomenon by microscopic approaches. Scanning electron microscopy (SEM) showed the release of numerous viral particles at the cell surface through a short-lived process. For transmission electron microscopy (TEM) studies of the intracellular ultrastructure of the small number of cells releasing viral particles at a given time, we developed a new correlative microscopy method: CSEMTEM (for correlative scanning electron microscopy - transmission electron microscopy). CSEMTEM analysis suggested that chimeric flavivirus particles were released as individual particles, in small exocytosis vesicles, via a regulated secretory pathway. Our morphological findings provide new insight into interactions between flaviviruses and cells and demonstrate that CSEMTEM is a useful new method, complementary to SEM observations of biological events by intracellular TEM investigations.
Visible cathodoluminescence of Er ions in β-Ga(2)O(3) nanowires and microwires.
Nogales, E; Méndez, B; Piqueras, J
2008-01-23
Erbium doped β-Ga(2)O(3) nanowires and microwires have been obtained by a vapour-solid process from an initial mixture of Ga(2)O(3) and Er(2)O(3) powders. X-ray diffraction (XRD) analysis reveals the presence of erbium gallium garnet as well as β-Ga(2)O(3) phases in the microwires. Scanning electron microscopy (SEM) images show that the larger microwires have a nearly rectangular cross-section. Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) analysis show good crystal quality of the β-Ga(2)O(3) nanowires. The nanostructures have been studied by means of the cathodoluminescence technique in the scanning electron microscope. Er intraionic blue, green and red emission lines are observed in luminescence spectra even at room temperature, which confirms the optical activity of the rare earth ions in the grown structures. Mapping of the main 555 nm emission intensity shows a non-homogeneous distribution of Er ions in the microstructures.
Burlaud-Gaillard, Julien; Sellin, Caroline; Georgeault, Sonia; Uzbekov, Rustem; Lebos, Claude; Guillaume, Jean-Marc; Roingeard, Philippe
2014-01-01
The intracellular morphogenesis of flaviviruses has been well described, but flavivirus release from the host cell remains poorly documented. We took advantage of the optimized production of an attenuated chimeric yellow fever/dengue virus for vaccine purposes to study this phenomenon by microscopic approaches. Scanning electron microscopy (SEM) showed the release of numerous viral particles at the cell surface through a short-lived process. For transmission electron microscopy (TEM) studies of the intracellular ultrastructure of the small number of cells releasing viral particles at a given time, we developed a new correlative microscopy method: CSEMTEM (for correlative scanning electron microscopy - transmission electron microscopy). CSEMTEM analysis suggested that chimeric flavivirus particles were released as individual particles, in small exocytosis vesicles, via a regulated secretory pathway. Our morphological findings provide new insight into interactions between flaviviruses and cells and demonstrate that CSEMTEM is a useful new method, complementary to SEM observations of biological events by intracellular TEM investigations. PMID:24681578
Kim, Hyea; Lee, Jung Tae; Magasinski, Alexandre; ...
2015-10-26
Lithium insertion into sulfur confined within 200 nm cylindrical inner pores of individual carbon nanotubes (CNTs) was monitored in-situ in a transmission electron microscope (TEM). This electrochemical reaction was initiated at one end of the S-filled CNTs. The material expansion during lithiation was accommodated by the expansion into the remaining empty pore volume and no fracture of the CNT walls was detected. A sharp interface between the initial and lithiated S was observed. The reaction front was flat, oriented perpendicular to the confined S cylinder and propagated along the cylinder length. Lithiation of S in the proximity of conductive carbonmore » proceeded at the same rate as the one in the center of the pore, suggesting the presence of electron pathways at the Li 2S/S interface. Density of states (DOS) calculations further confirmed this hypothesis. In-situ electron diffraction showed a direct phase transformation of S into nanocrystalline Li 2S without detectable formation of any intermediates, such as polysulfides and LiS. These important insights may elucidate some of the reaction mechanisms and guide the improvements in the design of C-S nanocomposites for high specific energy Li-S batteries. As a result, the proposed use of conductive CNTs with tunable pore diameter as cylindrical reaction vessels for in-situ TEM studies of electrochemical reactions proved to be highly advantageous and may help to resolve the on-going problems in battery technology.« less
Influence of Environmental Changes on Physiology and Development of Polar Vascular Plants
NASA Astrophysics Data System (ADS)
Giełwanowska, Irena; Pastorczyk, Marta; Kellmann-Sopyła, Wioleta
2011-01-01
Polar vascular plants native to the Arctic and the Antarctic geobotanical zone have been growing and reproducing effectively under difficult environmental conditions, colonizing frozen ground areas formerly covered by ice. Our macroscopic observations and microscopic studies conducted by means of a light microscope (LM) and transmission electron microscope (TEM) concerning the anatomical and ultrastructural observations of vegetative and generative tissue in Cerastium arcticum, Colobanthus quitensis, Silene involucrata, plants from Caryophyllaceae and Deschampsia antarctica, Poa annua and Poa arctica, from Poaceae family. In the studies, special attention was paid to plants coming from diversity habitats where stress factors operated with clearly different intensity. In all examinations plants, differences in anatomy were considerable. In Deschampsia antarctica the adaxial epidermis of hairgrass leaves from a humid microhabitat, bulliform cells differentiated. Mesophyll was composed of cells of irregular shapes and resembled aerenchyma. The ultrastructural observations of mesophyll in all plants showed tight adherence of chloroplasts, mitochondria and peroxisomes, surface deformations of these organelles and formation of characteristic outgrowths and pocket concavities filled with cytoplasm with vesicles and organelles by chloroplasts. In reproduction biology of examined Caryophyllaceae and Poaceae plants growing in natural conditions, in the Arctic and in the Antarctic, and in a greenhouse in Olsztyn showed that this plant develops two types of bisexual flowers. Almost all ovules developed and formed seeds with a completely differentiated embryo both under natural conditions in the Arctic and the Antarctic and in a greenhouse in Olsztyn.
Influence of Environmental Changes on Physiology and Development of Polar Vascular Plants
NASA Astrophysics Data System (ADS)
Giełwanowska, Irena; Pastorczyk, Marta; Kellmann-Sopyła, Wioleta
2011-01-01
Polar vascular plants native to the Arctic and the Antarctic geobotanical zone have been growing and reproducing effectively under difficult environmental conditions, colonizing frozen ground areas formerly covered by ice. Our macroscopic observations and microscopic studies conducted by means of a light microscope (LM) and transmission electron microscope (TEM) concerning the anatomical and ultrastructural observations of vegetative and generative tissue in
Evolution of Moiré Profiles from van der Waals Superstructures of Boron Nitride Nanosheets
Liao, Yunlong; Cao, Wei; Connell, John W.; Chen, Zhongfang; Lin, Yi
2016-01-01
Two-dimensional (2D) van der Waals (vdW) superstructures, or vdW solids, are formed by the precise restacking of 2D nanosheet lattices, which can lead to unique physical and electronic properties that are not available in the parent nanosheets. Moiré patterns formed by the crystalline mismatch between adjacent nanosheets are the most direct features for vdW superstructures under microscopic imaging. In this article, transmission electron microscopy (TEM) observation of hexagonal Moiré patterns with unusually large micrometer-sized lateral areas (up to ~1 μm2) and periodicities (up to ~50 nm) from restacking of liquid exfoliated hexagonal boron nitride nanosheets (BNNSs) is reported. This observation was attributed to the long range crystallinity and the contaminant-free surfaces of these chemically inert nanosheets. Parallel-line-like Moiré fringes with similarly large periodicities were also observed. The simulations and experiments unambiguously revealed that the hexagonal patterns and the parallel fringes originated from the same rotationally mismatched vdW stacking of BNNSs and can be inter-converted by simply tilting the TEM specimen following designated directions. This finding may pave the way for further structural decoding of other 2D vdW superstructure systems with more complex Moiré images. PMID:27188697
Gilloteaux, Jacques; Jamison, James M; Arnold, David; Taper, Henryk S; Von Gruenigen, Vivian E; Summers, Jack L
2003-08-01
Human ovarian carcinoma cells (MDAH 2774) were treated with sodium ascorbate (VC), menadione (VK3), or with a VC:VK3 combination for 1 h and then studied using light microscopy (LM) and scanning (SEM) and transmission electron (TEM) microscopy. Plasma membrane damage (blisters and blebs, hairy aspect) results from vitamin C (VC) treatment, while cytoskeletal damage and self-morsellation are caused by vitamin K3 (VK3) treatment. VC:VK3-treated cells exhibit exacerbated injuries characteristic of both VC and VK3 treatment as well as a significant decrease in cell diameters from 20-35 microm for control cells to 7-12 microm for VC:VK3 treatment. Moreover, after a 1-h exposure to the vitamin combination, autoschizis (43%), apoptosis (3%), and oncosis (1.9%) are observed at the percentages indicated. All cellular changes associated with autoschizis observed with SEM were confirmed by LM and TEM observations and are consistent with cell death by autoschizis: decrease in cell size, cytoplasmic self-excisions, degradation of the nucleus and nucleolus without formation of apoptotic bodies and, ultimately, karyorrhexis and karyolysis. These results also suggest that the vitamin combination may find clinical use in the treatment of ovarian cancer.
NASA Astrophysics Data System (ADS)
Gilloteaux, Jacques; Jamison, James M.; Arnold, David; Taper, Henryk S.; von Gruenigen, Vivian E.; Summers, Jack L.
2003-08-01
Human ovarian carcinoma cells (MDAH 2774) were treated with sodium ascorbate (VC), menadione (VK3), or with a VC:VK3 combination for 1 h and then studied using light microscopy (LM) and scanning (SEM) and transmission electron (TEM) microscopy. Plasma membrane damage (blisters and blebs, hairy aspect) results from vitamin C (VC) treatment, while cytoskeletal damage and self-morsellation are caused by vitamin K3 (VK3) treatment. VC:VK3-treated cells exhibit exacerbated injuries characteristic of both VC and VK3 treatment as well as a significant decrease in cell diameters from 20 35 [mu]m for control cells to 7 12 [mu]m for VC:VK3 treatment. Moreover, after a 1-h exposure to the vitamin combination, autoschizis (43%), apoptosis (3%), and oncosis (1.9%) are observed at the percentages indicated. All cellular changes associated with autoschizis observed with SEM were confirmed by LM and TEM observations and are consistent with cell death by autoschizis: decrease in cell size, cytoplasmic self-excisions, degradation of the nucleus and nucleolus without formation of apoptotic bodies and, ultimately, karyorrhexis and karyolysis. These results also suggest that the vitamin combination may find clinical use in the treatment of ovarian cancer.
NASA Astrophysics Data System (ADS)
Hikmah, N.; Idrus, N. F.; Jai, J.; Hadi, A.
2016-06-01
Silver and copper nanoparticles are well-known as the good antimicrobial agent. The nano-size of particles influences in enhancing the antimicrobial activity. This paper discusses the effect of molarity on the microstructure and morphology of silver-copper core-shell nanoparticles prepared by a polyol method. In this study, silver-copper nanoparticles are synthesized through the green approach of polyol method using ethylene glycol (EG) as green solvent and reductant, and polyoxyethylene-(80)-sorbitan monooleate (Tween 80) as a nontoxic stabilizer. The phase and morphology of silver-copper nanoparticles are characterized by X-ray diffraction (XRD) and Field emission scanning electron microscope (FESEM) and Transmission electron microscope (TEM). The results XRD confirm the pure crystalline of silver and copper nanoparticles with face-centered cubic (FCC) structure. FESEM and TEM analysis confirm the existence of Ag and Cu nanoparticles in core-shell shape.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Widjaja, Ongky, E-mail: wijayaongky@yahoo.co.id; Arie, Arenst Andreas, E-mail: arenst@unpar.ac.id; Halim, Martin
In this work, kerosene oil based nanocarbons were synthesized by a nebulized spray pyrolysis method. This method was conducted at temperature of 700°C under a nitrogen inert atmospheric condition. Activated carbon and ferrocene were used as substrate and catalyst, respectively. Initially, ferrocene was dissolved in the oil with fixed concentration of 0.02 g/ml. The pyrolysis reaction was carried out by varying the operating time of 15, 30 and 45 minutes. The main aim of this work was to investigate the effect of varying the operation time on the morphology and structural characteristics of as-prepared carbon products. The morphology and structural characteristicsmore » of synthesized nanocarbons were examined by Scanning Electron Microscope (SEM), Transmission Electron Microscopy (TEM), and Raman Spectroscopy, respectively. SEM and TEM observations showed that nano carbons were formed as agglomerated carbon nanospheres (CNSs) and graphene for all variation of operating time. Furthermore, it was observed that the size of agglomerated CNSs was proportional with the operating time from 15 to 45 minutes. Raman analysis showed that the ratio between graphite like and disorder carbon structure (I{sub G}/I{sub D})of carbon samples increased from operating time of 15 to 30 minutes, however the ratio decreased from 30 minutes to 45 minutes.« less
Using Graphene Liquid Cell Transmission Electron Microscopy to Study in Situ Nanocrystal Etching.
Hauwiller, Matthew R; Ondry, Justin C; Alivisatos, A Paul
2018-05-17
Graphene liquid cell electron microscopy provides the ability to observe nanoscale chemical transformations and dynamics as the reactions are occurring in liquid environments. This manuscript describes the process for making graphene liquid cells through the example of graphene liquid cell transmission electron microscopy (TEM) experiments of gold nanocrystal etching. The protocol for making graphene liquid cells involves coating gold, holey-carbon TEM grids with chemical vapor deposition graphene and then using those graphene-coated grids to encapsulate liquid between two graphene surfaces. These pockets of liquid, with the nanomaterial of interest, are imaged in the electron microscope to see the dynamics of the nanoscale process, in this case the oxidative etching of gold nanorods. By controlling the electron beam dose rate, which modulates the etching species in the liquid cell, the underlying mechanisms of how atoms are removed from nanocrystals to form different facets and shapes can be better understood. Graphene liquid cell TEM has the advantages of high spatial resolution, compatibility with traditional TEM holders, and low start-up costs for research groups. Current limitations include delicate sample preparation, lack of flow capability, and reliance on electron beam-generated radiolysis products to induce reactions. With further development and control, graphene liquid cell may become a ubiquitous technique in nanomaterials and biology, and is already being used to study mechanisms governing growth, etching, and self-assembly processes of nanomaterials in liquid on the single particle level.
New innovations for contrast enhancement in electron microscopy
NASA Astrophysics Data System (ADS)
Mohan, A.
In this study two techniques for producing and improving contrast in Electron Microscopy are discussed. The first technique deals with the production of secondary contrast in a Variable Pressure SEM under poor vacuum conditions using the specimen current signal. A review of the prior work in this field shows that the presence of the gas ions in the microscope column results in the amplification of the specimen current signal which is enriched in secondary content. The focus of this study is to establish practical conditions for imaging samples in the microscope using specimen current with gas amplification. This is done by understanding the different variables in the microscope which affect the image formation process and then finding out optimum conditions for obtaining the best possible image, i.e., the image most enhanced in secondary contrast. A few 'real life' samples analyzed using this technique show that the gas amplified specimen current images contain secondary information and, in some cases, provide clear advantages to imaging with conventional secondary and backscattered detectors. The second technique dealing with the production of phase contrast in the TEM for extremely thin, electron transparent samples, is analyzed. A review of the literature regarding prior work in the field shows that, while the theoretical aspects of production of phase contrast in the TEM using a phase plate are well understood, there have been problems in practically implementing this in the microscope. One major assumption with most of the studies is that a fiber, partially coated with gold, results in the formation of point charges which is an essential requirement for symmetrically shifting the phase of the electron beam. The focus of this portion of the dissertation is to image the type of fields associated with such a phase plate using the technique of electron holography. It is found that there are two types of fields associated with a phase plate of this sort. One is a cylindrical field which extends along the length of the fiber while the other is a localized spherically symmetric field. A series of simulations show that the spherical field can produce phase contrast in the TEM and also improve the contrast transfer properties of the microscope.
A Transmission Electron Microscope Investigation of Space Weathering Effects in Hayabusa Samples
NASA Technical Reports Server (NTRS)
Keller, Lindsay P.; Berger, Eve L.
2014-01-01
The Hayabusa mission to asteroid 25143 Itokawa successfully returned the first direct samples of the regolith from the surface of an asteroid. The Hayabusa samples thus present a special opportunity to directly investigate the evolution of asteroidal surfaces, from the development of the regolith to the study of the more complex effects of space weathering. Here we describe the mineralogy, microstructure and composition of three Hayabusa mission particles using transmission electron microscope (TEM) techniques
Devi, Th Babita; Ahmaruzzaman, M
2016-09-01
In the current study, we report the utilization of the biogenic potential of Benincasa hispida (ash gourd) peel extract for the synthesis of Ag embedded AgCl nanoparticles nanoparticles (Ag/AgCl NPs) without the use of any external organic solvents. The appearance of dark brown color from the pale yellow color confirmed the formation of Ag/AgCl nanoparticles which was further validated by absorbance peak using UV-visible spectroscopy. The phytochemicals (flavones) present in the B. hispida peel extract acts as a reducing/stabilizing agents. The morphology and size of the synthesized NPs were characterized by transmission electron microscope (TEM), selected area electron microscope (SAED) and high resolution transmission electron microscope (HR-TEM). FT-IR spectra of the B. hispida peel extract and after the development of nanoparticles are determined to identify the functional groups responsible for the conversion of metal ions to metal nanoparticles. The synthesized nanoparticles showed an excellent photocatalytic property in the degradation of toxic dye like malachite green oxalate under sunlight irradiation. For the first time, malachite green oxalate dye was degraded by Ag/AgCl nanoparticles under sunlight irradiation.
NASA Astrophysics Data System (ADS)
Jiang, Hao; Li, Tie; Wang, Yifeng; He, Pengfei
2018-04-01
Soot particles emitted from diesel engines have a significant impact on the atmospheric environment. Detailed understanding of soot formation and oxidation processes is helpful for reducing the pollution of soot particles, which requires information such as the size and nano-structure parameters of the soot primary particles sampled in a high-temperature and high-pressure diesel jet flame. Based on the thermophoretic principle, a novel sampling probe minimally disturbing the diesel jet flame in a constant volume combustion vessel is developed for analysing soot particles. The injected quantity of diesel fuel is less than 10 mg, and the soot particles sampled by carriers with a transmission electron microscope (TEM) grid and lacey TEM grid can be used to analyse the morphologies of soot aggregates and the nano-structure of the soot primary particles, respectively. When the quantity of diesel fuel is more than 10 mg, in order to avoid burning-off of the carriers in higher temperature and pressure conditions, single-crystal silicon chips are employed. Ultrasonic oscillations and alcohol extraction are then implemented to obtain high quality soot samples for observation using a high-resolution transmission electron microscope. An in-house Matlab-based code is developed to extract the nano-structure parameters of the soot particles. A complete sampling and analysis procedure of the soot particles is provided to study the formation and oxidation mechanism of soot.
Deformation behavior of austenitic stainless steel at deep cryogenic temperatures
NASA Astrophysics Data System (ADS)
Han, Wentuo; Liu, Yuchen; Wan, Farong; Liu, Pingping; Yi, Xiaoou; Zhan, Qian; Morrall, Daniel; Ohnuki, Somei
2018-06-01
The nonmagnetic austenite steels are the jacket materials for low-temperature superconductors of fusion reactors. The present work provides evidences that austenites transform to magnetic martensite when deformation with a high-strain is imposed at 77 K and 4.2 K. The 4.2 K test is characterized by serrated yielding that is related to the specific motion of dislocations and phase transformations. The in-situ transmission electron microscope (TEM) observations in nanoscale reveal that austenites achieve deformation by twinning under low-strain conditions at deep cryogenic temperatures. The generations of twins, martensitic transformations, and serrated yielding are in order of increasing difficulty.
Study on industrial wastewater treatment using superconducting magnetic separation
NASA Astrophysics Data System (ADS)
Zhang, Hao; Zhao, Zhengquan; Xu, Xiangdong; Li, Laifeng
2011-06-01
The mechanism of industrial wastewater treatment using superconducting magnetic separation is investigated. Fe 3O 4 nanoparticles were prepared by liquid precipitation and characterized by X-ray diffraction (XRD). Polyacrylic acid (PAA) film was coated on the magnetic particles using plasma coating technique. Transmission electron microscope (TEM) observation and infrared spectrum measurement indicate that the particle surface is well coated with PAA, and the film thickness is around 1 nm. Practical paper factory wastewater treatment using the modified magnetic seeds in a superconducting magnet (SCM) was carried out. The results show that the maximum removal rate of chemical oxygen demand (COD) by SCM method can reach 76%.
Development of 1500mm Wide Wrought Magnesium Alloys by Twin Roll Casting Technique in Turkey
NASA Astrophysics Data System (ADS)
Duygulu, Ozgur; Ucuncuoglu, Selda; Oktay, Gizem; Temur, Deniz Sultan; Yucel, Onuralp; Kaya, Ali Arslan
Magnesium alloy AZ31, AZ61, AZ91, AM50 and AM60 sheets were produced by twin roll casting first time in Turkey. Sheets of 4.5-6.5mm thick and 1500mm width were successfully achieved. Microstructure of the sheet was analyzed by optical microscope, scanning electron microscope (SEM) and transmission electron microscope (TEM). Semi-quantitative analyses were performed by SEM-EDS. In addition, X-ray studies were performed for both characterization and texture purposes. Mechanical properties were investigated by tensile tests and also hardness measurements. Homogenization and annealing heat treatments were performed on the produced sheets.
Sonomura, Takahiro; Furuta, Takahiro; Nakatani, Ikuko; Yamamoto, Yo; Honma, Satoru; Kaneko, Takeshi
2014-11-01
Ten years have passed since a serial block-face scanning electron microscopy (SBF-SEM) method was developed [1]. In this innovative method, samples were automatically sectioned with an ultramicrotome placed inside a scanning electron microscope column, and the block surfaces were imaged one after another by SEM to capture back-scattered electrons. The contrast-inverted images obtained by the SBF-SEM were very similar to those acquired using conventional TEM. SFB-SEM has made easy to acquire image stacks of the transmission electron microscopy (TEM) in the mesoscale, which is taken with the confocal laser-scanning microcopy(CF-LSM).Furthermore, serial-section SEM has been combined with the focused ion beam (FIB) milling method [2]. FIB-incorporated SEM (FIB-SEM) has enabled the acquisition of three-dimensional images with a higher z-axis resolution com- pared to ultramicrotome-equipped SEM.We tried immunocytochemistry for FIB-SEM and correlated this immunoreactivity with that in CF-LSM. Dendrites of neurons in the rat neostriatum were visualized using a recombinant viral vector. Moreover, the thalamostriatal afferent terminals were immunolabeled with Cy5 fluorescence for vesicular glutamate transporter 2 (VGluT2). After detection of the sites of terminals apposed to the dendrites by using CF-LSM, GFP and VGluT2 immunoreactivities were further developed for EM by using immunogold/silver enhancement and immunoperoxidase/diaminobenzidine (DAB) methods, respectively.We showed that conventional immuno-cytochemical staining for TEM was applicable to FIB-SEM. Furthermore, several synaptic contacts, which were thought to exist on the basis of CF-LSM findings, were confirmed with FIB-SEM, revealing the usefulness of the combined method of CF-LSM and FIB-SEM. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
An electron energy loss spectrometer based streak camera for time resolved TEM measurements.
Ali, Hasan; Eriksson, Johan; Li, Hu; Jafri, S Hassan M; Kumar, M S Sharath; Ögren, Jim; Ziemann, Volker; Leifer, Klaus
2017-05-01
We propose an experimental setup based on a streak camera approach inside an energy filter to measure time resolved properties of materials in the transmission electron microscope (TEM). In order to put in place the streak camera, a beam sweeper was built inside an energy filter. After exciting the TEM sample, the beam is swept across the CCD camera of the filter. We describe different parts of the setup at the example of a magnetic measurement. This setup is capable to acquire time resolved diffraction patterns, electron energy loss spectra (EELS) and images with total streaking times in the range between 100ns and 10μs. Copyright © 2016 Elsevier B.V. All rights reserved.
Transmission Electron Microscope Measures Lattice Parameters
NASA Technical Reports Server (NTRS)
Pike, William T.
1996-01-01
Convergent-beam microdiffraction (CBM) in thermionic-emission transmission electron microscope (TEM) is technique for measuring lattice parameters of nanometer-sized specimens of crystalline materials. Lattice parameters determined by use of CBM accurate to within few parts in thousand. Technique developed especially for use in quantifying lattice parameters, and thus strains, in epitaxial mismatched-crystal-lattice multilayer structures in multiple-quantum-well and other advanced semiconductor electronic devices. Ability to determine strains in indivdual layers contributes to understanding of novel electronic behaviors of devices.
Ponderomotive phase plate for transmission electron microscopes
Reed, Bryan W [Livermore, CA
2012-07-10
A ponderomotive phase plate system and method for controllably producing highly tunable phase contrast transfer functions in a transmission electron microscope (TEM) for high resolution and biological phase contrast imaging. The system and method includes a laser source and a beam transport system to produce a focused laser crossover as a phase plate, so that a ponderomotive potential of the focused laser crossover produces a scattering-angle-dependent phase shift in the electrons of the post-sample electron beam corresponding to a desired phase contrast transfer function.
Influence of graphene quantum dots on electrical properties of polymer composites
NASA Astrophysics Data System (ADS)
Arthisree, D.; Joshi, Girish M.
2017-07-01
We successfully prepared synthetic nanocomposite (SNC) by dispersing graphene quantum dots (GQD) in cellulose acetate (CA) polymer system. The dispersion and occupied network of GQD were foreseen by microscopic techniques. The variation of plane to crossed linked array network was observed by the polarizing optical microscopic (POM) technique. The scanning electron microscopy (SEM) revealed the leaves like impressions of GQD in host polymer system. The series network of GQD occupied in CA at higher resolution was confirmed by transmission electron microscopy (TEM). The two dimensional (2D) topographic images demonstrated an entangled polymer network to plane morphology. The variation in surface roughness was evaluated from the dimensional (3D) topography. The influence of temperature on AC conductivity with highest value (4 × 10-5 S cm-1), contributes to the decrease in activation energy. The DC conductivity obeys the percolation criteria co-related to the GQD loading by weight fraction. Furthermore, this synthetic nanocomposite is feasible for the development of sensing and electrical applications.
A high selective methanol gas sensor based on molecular imprinted Ag-LaFeO3 fibers.
Rong, Qian; Zhang, Yumin; Wang, Chao; Zhu, Zhongqi; Zhang, Jin; Liu, Qingju
2017-09-21
Ag-LaFeO 3 molecularly imprinted polymers (ALMIPs) were fabricated, which provided special recognition sites to methanol. Then ALMIPs fiber 1, fiber 2 and fiber 3 were prepared using filter paper, silk and carbon fibers template, respectively. Based on the observation of X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), and Nitrogen adsorption surface area analyzer (BET), the structure, morphology and surface area of the fibers were characterized. The ALMIPs fibers (fiber 1, fiber 2 and fiber 3) show excellent selectivity and good response to methanol. The responses to 5 ppm methanol and the optimal operating temperature of ALMIPs fibers are 23.5 and 175 °C (fiber 1), 19.67 and 125 °C (fiber 2), 17.59 and 125 °C (fiber 3), and a lower response (≤10, 3, 2) to other test gases including formaldehyde, acetone, ethanol, ammonia, gasoline and benzene was measured, respectively.
Abouna, Sylvie; Gonzalez-Rizzo, Silvina; Grimonprez, Adrien; Gros, Olivier
2015-01-01
Since the discovery of thioautotrophic bacterial symbiosis in the giant tubeworm Riftia pachyptila, there has been great impetus to investigate such partnerships in other invertebrates. In this study, we present the occurrence of a sulphur-oxidizing symbiosis in a metazoan belonging to the phylum Cnidaria in which this event has never been described previously. Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM) observations and Energy-dispersive X-ray spectroscopy (EDXs) analysis, were employed to unveil the presence of prokaryotes population bearing elemental sulphur granules, growing on the body surface of the metazoan. Phylogenetic assessments were also undertaken to identify this invertebrate and microorganisms in thiotrophic symbiosis. Our results showed the occurrence of a thiotrophic symbiosis in a cnidarian identified as Cladonema sp. This is the first report describing the occurrence of a sulphur-oxidizing symbiosis in a cnidarian. Furthermore, of the two adult morphologies, the polyp and medusa, this mutualistic association was found restricted to the polyp form of Cladonema sp.
Dynamic wet-ETEM observation of Pt/C electrode catalysts in a moisturized cathode atmosphere.
Yoshida, Kenta; Bright, Alexander N; Ward, Michael R; Lari, Leonardo; Zhang, Xudong; Hiroyama, Tomoki; Boyes, Edward D; Gai, Pratibha L
2014-10-24
The gas injection line of the latest spherical aberration-corrected environmental transmission electron microscope has been modified for achieving real-time/atomic-scale observations in moisturised gas atmospheres for the first time. The newly developed Wet-TEM system is applied to platinum carbon electrode catalysts to investigate the effect of water molecules on the platinum/carbon interface during deactivation processes such as sintering and corrosion. Dynamic in situ movies obtained in dry and 24% moisturised nitrogen environments visualize the rapid rotation, migration and agglomeration of platinum nanoparticles due to the physical adsorption of water and the hydroxylation of the carbon surface. The origin of the long-interconnected aggregation of platinum nanoparticles was discovered to be a major deactivation process in addition to conventional carbon corrosion.
Plana-Ruiz, S; Portillo, J; Estradé, S; Peiró, F; Kolb, Ute; Nicolopoulos, S
2018-06-06
A general method to set illuminating conditions for selectable beam convergence and probe size is presented in this work for Transmission Electron Microscopes (TEM) fitted with µs/pixel fast beam scanning control, (S)TEM, and an annular dark field detector. The case of interest of beam convergence and probe size, which enables diffraction pattern indexation, is then used as a starting point in this work to add 100 Hz precession to the beam while imaging the specimen at a fast rate and keeping the projector system in diffraction mode. The described systematic alignment method for the adjustment of beam precession on the specimen plane while scanning at fast rates is mainly based on the sharpness of the precessed STEM image. The complete alignment method for parallel condition and precession, Quasi-Parallel PED-STEM, is presented in block diagram scheme, as it has been tested on a variety of instruments. The immediate application of this methodology is that it renders the TEM column ready for the acquisition of Precessed Electron Diffraction Tomographies (EDT) as well as for the acquisition of slow Precessed Scanning Nanometer Electron Diffraction (SNED). Examples of the quality of the Precessed Electron Diffraction (PED) patterns and PED-STEM alignment images are presented with corresponding probe sizes and convergence angles. Copyright © 2018. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Cremons, Daniel R.; Schliep, Karl B.; Flannigan, David J.
2013-09-01
With ultrafast transmission electron microscopy (UTEM), access can be gained to the spatiotemporal scales required to directly visualize rapid, non-equilibrium structural dynamics of materials. This is achieved by operating a transmission electron microscope (TEM) in a stroboscopic pump-probe fashion by photoelectrically generating coherent, well-timed electron packets in the gun region of the TEM. These probe photoelectrons are accelerated down the TEM column where they travel through the specimen before reaching a standard, commercially-available CCD detector. A second laser pulse is used to excite (pump) the specimen in situ. Structural changes are visualized by varying the arrival time of the pump laser pulse relative to the probe electron packet at the specimen. Here, we discuss how ultrafast nanoscale motions of crystalline materials can be visualized and precisely quantified using diffraction contrast in UTEM. Because diffraction contrast sensitively depends upon both crystal lattice orientation as well as incoming electron wavevector, minor spatial/directional variations in either will produce dynamic and often complex patterns in real-space images. This is because sections of the crystalline material that satisfy the Laue conditions may be heterogeneously distributed such that electron scattering vectors vary over nanoscale regions. Thus, minor changes in either crystal grain orientation, as occurs during specimen tilting, warping, or anisotropic expansion, or in the electron wavevector result in dramatic changes in the observed diffraction contrast. In this way, dynamic contrast patterns observed in UTEM images can be used as sensitive indicators of ultrafast specimen motion. Further, these motions can be spatiotemporally mapped such that direction and amplitude can be determined.
Effects of Vernonia cinerea less methanol extract on growth and morphogenesis of Candida albicans.
Latha, L Yoga; Darah, I; Jain, K; Sasidharan, S
2011-05-01
Vernonia (V.) cinerea Less (Asteraceae) have many therapeutic uses in the practice of traditional medicine. The methanol extract of V cinerea, was screened for antiyeast activity against pathogenic yeast Candida albicans. The antimicrobial activities were studied by using disc diffusion method and broth dilution method. The effect of the extract on the growth profile of the yeast was also examined via time-kill assay. In addition to the fungicidal effects study, microscopic observations using Scanning (SEM) electron microscopy, Transmission (TEM) electron microscopy and light microscopy (LM) were done to determine the major alterations in the microstructure of Candida (C) albicans. The extract showed a favorable antimicrobial activity against C. albicans with a minimum inhibitory concentration (MIC) value of 1.56 mg/mL. Time-kill assay suggested that Vernonia cinerea extract had completely inhibited Candida albicans growth and also exhibited prolonged antiyeast activity. The main abnormalities notes from these microscopic observations were the alterations in morphology and complete collapse of the yeast cells after 36 h of exposure to the extract. The extract of Vernonia cinerea may be an effective agent to treat the Candida albicans infection.
NASA Astrophysics Data System (ADS)
Suresh, C.; Nagabhushana, H.; Basavaraj, R. B.; Prasad, B. Daruka
2017-05-01
For the first time Tb3+ (1-5 mol %) doped LaOF nanophosphors using Aloe vera (AV) leaves extract as bio-surfactant were synthesized by facile ultrasound supported sonochemical route at relatively high temperature (700°C) and short duration of 3h. The powder X-ray diffraction (PXRD) profiles of LaOF nanophosphors showed tetragonal structure. The morphological features of LaOF with effect of Sonication time and concentration of bio-surfactant were studied by scanning electron microscope (SEM). The particle size were estimated from transmission electron microscope (TEM) image was found to be in the range of 20-30 nm. The characteristic photoluminescence emission peaks at 487, 541, 586 and 620 nm in green region corresponding to 5D4→7Fj (j=6, 5, 4, 3) transitions of Tb3+ were observed. The LaOF: Tb3+ nanophosphors exhibit green luminescence with better chromaticity coordinates, colour purity and higher intensity under low-voltage electron beam excitation were observed by Commission International De I'Eclairage (CIE) along with colour correlated temperature (CCT). All results indicate that these obtained nanophosphors have potential applications in field emission display device.
2017-01-01
We report an approach, named chemTEM, to follow chemical transformations at the single-molecule level with the electron beam of a transmission electron microscope (TEM) applied as both a tunable source of energy and a sub-angstrom imaging probe. Deposited on graphene, disk-shaped perchlorocoronene molecules are precluded from intermolecular interactions. This allows monomolecular transformations to be studied at the single-molecule level in real time and reveals chlorine elimination and reactive aryne formation as a key initial stage of multistep reactions initiated by the 80 keV e-beam. Under the same conditions, perchlorocoronene confined within a nanotube cavity, where the molecules are situated in very close proximity to each other, enables imaging of intermolecular reactions, starting with the Diels–Alder cycloaddition of a generated aryne, followed by rearrangement of the angular adduct to a planar polyaromatic structure and the formation of a perchlorinated zigzag nanoribbon of graphene as the final product. ChemTEM enables the entire process of polycondensation, including the formation of metastable intermediates, to be captured in a one-shot “movie”. A molecule with a similar size and shape but with a different chemical composition, octathio[8]circulene, under the same conditions undergoes another type of polycondensation via thiyl biradical generation and subsequent reaction leading to polythiophene nanoribbons with irregular edges incorporating bridging sulfur atoms. Graphene or carbon nanotubes supporting the individual molecules during chemTEM studies ensure that the elastic interactions of the molecules with the e-beam are the dominant forces that initiate and drive the reactions we image. Our ab initio DFT calculations explicitly incorporating the e-beam in the theoretical model correlate with the chemTEM observations and give a mechanism for direct control not only of the type of the reaction but also of the reaction rate. Selection of the appropriate e-beam energy and control of the dose rate in chemTEM enabled imaging of reactions on a time frame commensurate with TEM image capture rates, revealing atomistic mechanisms of previously unknown processes. PMID:28191929
Atmospheric tar balls from biomass burning in Mexico
NASA Astrophysics Data System (ADS)
Adachi, K.; Buseck, P. R.
2009-12-01
Tar balls are spherical, organic aerosol particles that result from biofuel or biomass burning. They absorb sunlight and cause warming of the atmosphere. Although distinctive when viewed with a transmission electron microscope (TEM) because of their spherical shape, much remains to be determined about details of their compositions, occurrences, and generation. Here we aim to characterize the occurrences of tar balls using individual-particle analyses with a TEM and to study their formation in young biomass-burning smoke. The samples were collected using the U.S. Forest Service Twin Otter aircraft during the MILAGRO (Megacity Initiative: Local and Global Research Observations) campaign conducted in March 2006. We analyzed 84 TEM grid samples from ~30 biomass-burning events near Mexico City and over Yucatan. Sixty samples were from young smoke (less than an hour old), and others were from haze that mainly occurred from biomass burning. Tar balls have neither an evident nucleus nor are they normally attached to other particles. They are almost perfectly spherical on TEM grids, indicating that they were solid when collected. It appears as if tar balls consist of lower volatility organic matter than many other organic aerosol particles. On average, 9% by number of biomass-burning aerosol particles were tar balls in samples collected between a few minutes to an hour after emission. On the other hand, samples collected within a few minutes after emission included few or no tar balls. The occurrences and abundances of atmospheric tar balls are important when evaluating the effects of smoke on local and regional climate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Shan, E-mail: coralgao@hotmail.com; Engineering Ceramics Key Laboratory of Shandong Province, Shandong University, Jinan 250061; Sun, Kangning, E-mail: sunkangning@sdu.edu.cn
Highlights: ► We succeeded in synthesizing hydroxyapatite nano fibers by a chemical method. ► The reaction temperature is only 90 °C. ► The synthetic hydroxyapatite nano fiber is single crystal. - Abstract: We report a novel chemical precipitation route for the synthesis of hydroxyapatite (Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}, HA) fibers using surfactants as templates. Fourier transform infrared spectroscopy (FTIR) and powder X-ray diffraction (PXRD) reveal the characteristic peaks of HA. Transmission electron microscope (TEM) and high-resolution TEM revealed the nano structure, crystallinity and morphology of the HA fibers. The morphology of the HA fibers after calcinations were characterized bymore » scanning electron microscope (SEM). Br{sup −} ions were quickly replaced by the excess PO{sub 4}{sup 3−} ions in the solution after the addition of cetyltrime-thylammonium bromide (CTAB). Meanwhile, CTAB formed a rod-like micelles. Precursors reacted with PO{sub 4}{sup 3−} at the surface of CTAB micelles and finally formed the nanofiber structure.« less
Iridovirus infections in farm-reared tropical ornamental fish.
Paperna, I; Vilenkin, M; de Matos, A P
2001-12-20
A systemic viral infection in both gourami Trichogaster spp. and swordtail Xiphophorus hellerii and an outbreak of lymphocystis in scalare Pterophyllum scalarae and gourami are reported to have occurred in fish reared in ornamental fish farms in Israel. The systemic infection developed in endothelial cells that became hypertrophic and their contents were modified. The presence of such cells in light-microscopically examined stained smears and sections provides an initial indication for this systemic viral infection. Infection in gourami caused hemorrhagic dropsy. Transmission electron microscopic (TEM) images of iridovirus-like particles recovered from gouramies showed them to be 138 to 201 nm from vertex to vertex (v-v); those from swordtails were 170 to 188 nm v-v. TEM images of lymphocystis virions from scalare were 312 to 342 nm v-v and from gourami 292 to 341 nm v-v. Lymphocystis cells from the gourami were joined by a solid hyaline plate, which was lacking in the infection in scalare where the intercellular spaces between the lymphocystis cells consisted of loose connective tissue.
Microstructural Study of Micron-Sized Craters Simulating Stardust Impacts in Aluminum 1100 Targets
NASA Technical Reports Server (NTRS)
Leroux, Hugues; Borg, Janet; Troadec, David; Djouadi, Zahia; Horz, Friedrich
2006-01-01
Various microscopic techniques were used to characterize experimental micro- craters in aluminium foils to prepare for the comprehensive analysis of the cometary and interstellar particle impacts in aluminium foils to be returned by the Stardust mission. First, SEM (Scanning Electron Microscopy) and EDS (Energy Dispersive X-ray Spectroscopy) were used to study the morphology of the impact craters and the bulk composition of the residues left by soda-lime glass impactors. A more detailed structural and compositional study of impactor remnants was then performed using TEM (Transmission Electron Microscopy), EDS, and electron diffraction methods. The TEM samples were prepared by Focused Ion Beam (FIB) methods. This technique proved to be especially valuable in studying impact crater residues and impact crater morphology. Finally, we also showed that InfraRed microscopy (IR) can be a quick and reliable tool for such investigations. The combination of all of these tools enables a complete microscopic characterization of the craters.
NASA Astrophysics Data System (ADS)
Lin, Yung-Chi; Shih, Toung-Yi; Tien, Shih-Kang; Duh, Jenq-Gong
2007-11-01
Interfacial morphologies and microstructure of Sn-3Ag-0.5Cu/Ni-P under bump metallization (UBM) with various phosphorous contents were investigated by transmission electron microscope (TEM) and field emission electron probe microanalyzer (FE-EPMA). It was revealed that as the Ni-Sn-P compound was formed between the solder matrix and Ni-P UBM, the conventionally so-called phosphorous-rich (P-rich) layer was transformed to a series of layer compounds, including Ni3P, Ni12P5 and Ni2P. The relationship between Ni-Sn-P formation and evolution of P-rich layers was probed by electron microscopic characterization with the aid of the phase diagram of Ni-P. On the basis of the TEM micrograph, the selected area diffraction (SAD) pattern, and the FE-EPMA results, the detailed phase evolution of P-rich layers in the SnAgCu/Ni-P joint was revealed and proposed.
Carbon nanotubes and other fullerene-related nanocrystals in the environment: A TEM study
NASA Astrophysics Data System (ADS)
Murr, L. E.; Soto, K. F.; Esquivel, E. V.; Bang, J. J.; Guerrero, P. A.; Lopez, D. A.; Ramirez, D. A.
2004-06-01
Carbon nanotubes and other fullerene-related nanocrystals are ubiquitous in the atmospheric environment—both indoor and outdoor. In fact, these nanostructures have been observed even in a 10,000 year-old ice core sample, indicating their natural existence in antiquity, probably as natural gas/methane combustion products. Similar carbon nanotubes and complex carbon nanocrystal aggregates are observed to be emitted from contemporary combustion sources such as kitchen stoves (natural gas and propane), water heater and furnace exhaust vents, natural gas-burning (electric) power plants, and industrial furnace operations, among others. These observations have been made by collecting nanoparticulates and nanocrystal aggregates on carbon/formvar and silicon monoxide/formvarcoated 3 mm grids that were examined with a transmission-electron microscope. This study begins to establish an environmental context for considering the potential impact of future nanostructured particles on human health.
Three-dimensional intracellular structure of a whole rice mesophyll cell observed with FIB-SEM.
Oi, Takao; Enomoto, Sakiko; Nakao, Tomoyo; Arai, Shigeo; Yamane, Koji; Taniguchi, Mitsutaka
2017-07-01
Ultrathin sections of rice leaf blades observed two-dimensionally using a transmission electron microscope (TEM) show that the chlorenchyma is composed of lobed mesophyll cells, with intricate cell boundaries, and lined with chloroplasts. The lobed cell shape and chloroplast positioning are believed to enhance the area available for the gas exchange surface for photosynthesis in rice leaves. However, a cell image revealing the three-dimensional (3-D) ultrastructure of rice mesophyll cells has not been visualized. In this study, a whole rice mesophyll cell was observed using a focused ion beam scanning electron microscope (FIB-SEM), which provides many serial sections automatically, rapidly and correctly, thereby enabling 3-D cell structure reconstruction. Rice leaf blades were fixed chemically using the method for conventional TEM observation, embedded in resin and subsequently set in the FIB-SEM chamber. Specimen blocks were sectioned transversely using the FIB, and block-face images were captured using the SEM. The sectioning and imaging were repeated overnight for 200-500 slices (each 50 nm thick). The resultant large-volume image stacks ( x = 25 μm, y = 25 μm, z = 10-25 μm) contained one or two whole mesophyll cells. The 3-D models of whole mesophyll cells were reconstructed using image processing software. The reconstructed cell models were discoid shaped with several lobes around the cell periphery. The cell shape increased the surface area, and the ratio of surface area to volume was twice that of a cylinder having the same volume. The chloroplasts occupied half the cell volume and spread as sheets along the cell lobes, covering most of the inner cell surface, with adjacent chloroplasts in close contact with each other. Cellular and sub-cellular ultrastructures of a whole mesophyll cell in a rice leaf blade are demonstrated three-dimensionally using a FIB-SEM. The 3-D models and numerical information support the hypothesis that rice mesophyll cells enhance their CO 2 absorption with increased cell surface and sheet-shaped chloroplasts. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Microscopical analysis of synovial fluid wear debris from failing CoCr hip prostheses
NASA Astrophysics Data System (ADS)
Ward, M. B.; Brown, A. P.; Cox, A.; Curry, A.; Denton, J.
2010-07-01
Metal on metal hip joint prostheses are now commonly implanted in patients with hip problems. Although hip replacements largely go ahead problem free, some complications can arise such as infection immediately after surgery and aseptic necrosis caused by vascular complications due to surgery. A recent observation that has been made at Manchester is that some Cobalt Chromium (CoCr) implants are causing chronic pain, with the source being as yet unidentified. This form of replacement failure is independent of surgeon or hospital and so some underlying body/implant interface process is thought to be the problem. When the synovial fluid from a failed joint is examined particles of metal (wear debris) can be found. Transmission Electron Microscopy (TEM) has been used to look at fixed and sectioned samples of the synovial fluid and this has identified fine (< 100 nm) metal and metal oxide particles within the fluid. TEM EDX and Electron Energy Loss Spectroscopy (EELS) have been employed to examine the composition of the particles, showing them to be chromium rich. This gives rise to concern that the failure mechanism may be associated with the debris.
Jin, Rencheng; Chen, Gang; Pei, Jian; Sun, Jingxue; Wang, Yang
2011-09-01
The controlled synthesis of one-dimensional and three-dimensional Sb(2)Se(3) nanostructures has been achieved by a facile solvothermal process in the presence of citric acid. By simply controlling the concentration of citric acid, the nucleation, growth direction and exposed facet can be readily tuned, which brings the different morphologies and nanostructures to the final products. The as-prepared products have been characterized by means of X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy (TEM), high-resolution TEM and selected area electron diffraction. Based on the electron microscope observations, a possible growth mechanism of Sb(2)Se(3) with distinctive morphologies including ultralong nanobelts, hierarchical urchin-like nanostructures is proposed and discussed in detail. The electrochemical hydrogen storage measurements reveal that the morphology plays a key role on the hydrogen storage capacity of Sb(2)Se(3) nanostructures. The Sb(2)Se(3) ultralong nanobelts with high percentage of {-111} facets exhibit higher hydrogen storage capacity (228.5 mA h g(-1)) and better cycle stability at room temperature.
Note: Evaluation of slurry particle size analyzers for chemical mechanical planarization process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jang, Sunjae; Kulkarni, Atul; Qin, Hongyi
In the chemical mechanical planarization (CMP) process, slurry particle size is important because large particles can cause defects. Hence, selection of an appropriate particle measuring system is necessary in the CMP process. In this study, a scanning mobility particle sizer (SMPS) and dynamic light scattering (DLS) were compared for particle size distribution (PSD) measurements. In addition, the actual particle size and shape were confirmed by transmission electron microscope (TEM) results. SMPS classifies the particle size according to the electrical mobility, and measures the particle concentration (single particle measurement). On the other hand, the DLS measures the particle size distribution bymore » analyzing scattered light from multiple particles (multiple particle measurement). For the slurry particles selected for evaluation, it is observed that SMPS shows bi-modal particle sizes 30 nm and 80 nm, which closely matches with the TEM measurements, whereas DLS shows only single mode distribution in the range of 90 nm to 100 nm and showing incapability of measuring small particles. Hence, SMPS can be a better choice for the evaluation of CMP slurry particle size and concentration measurements.« less
Dubey, J P
2018-04-25
Water buffalo (Bubalus bubalis) is important for the economy of Asia, South America and parts of Europe. Coccidiosis is an important cause of neonatal mortality in livestock, including buffalo. Of more than 12 species of Eimeria in buffalo, Eimeria bareillyi is the most pathogenic. There are uncertainties concerning its asexual and sexual development. During a previously reported outbreak of fatal enteritis associated with E. bareillyi in buffaloes in the Netherlands, sections of small intestine were re-evaluated histologically and by transmission electron microscopy (TEM) to seek details of endogenous development. Profuse asexual multiplication occurred in the jejunum and ileum. Light microscopic examination revealed that parasites divided in two (probably endodyogeny) or more organisms. There were two or more generations of morphologically different merozoites; some of these observations were confirmed by TEM. Details of gametogonic development, including oocyst wall formation are provided. Schizogonic and gametogonic development described in the present study can serve as a guide for differential diagnosis of Eimeria species in histological sections of intestines of buffaloes.
NASA Astrophysics Data System (ADS)
Wang, J.; Guo, J. P.; Yi, J. J.; Huang, Q. G.; Li, H. M.; Li, Y. F.; Gao, K. J.; Yang, W. T.
2014-08-01
This paper reports the preparation of coral-shaped topological morphology nascent polyethylene (PE) particles promoted by the novel heterogeneous non-metallocene catalyst (m-CH3PhO)TiCl3/carbon nanotubes (CNTs), with AlEt3 used as a cocatalyst. Scanning electron microscope (SEM), high resolution transmission electron microscope (HR-TEM) and inductively coupled plasma (ICP) emission spectroscopy were used to determine the morphology of the catalyst particles and the content of (m-CH3PhO)TiCl3. The carbon nanotube surface was treated with Grignard Reagent prior to reacting with (m-CH3PhO)TiCl3. The catalyst system could effectively catalyze ethylene polymerization and ethylene with 1- hexene copolymerization, the catalytic activity could reach up to 5.8 kg/((gTi)h). Morphology of the obtained polymer particles by SEM and HR-TEM technique revealed that the nascent polyethylene particles looked like coral shape in micro-size. The multiwalled carbon nanotubes (MWCNTs) supported catalysts polymerized ethylene to form polymer nanocomposite in situ. The microscopic examination of this nanocomposite revealed that carbon nanoparticles in PE matrix had a good distribution and the cryogenically fractured surface was ductile-like when polymerization time was 2 min.
A study on the cytotoxicity of carbon-based materials
Saha, Dipendu; Heldt, Caryn L.; Gencoglu, Maria F.; ...
2016-05-25
With an aim to understand the origin and key contributing factors towards carboninduced cytotoxicity, we have studied five different carbon samples with diverse surface area, pore width, shape and size, conductivity and surface functionality. All the carbon materials were characterized with surface area and pore size distribution, x-ray photoelectron spectroscopy (XPS) and electron microscopic imaging. We performed cytotoxicity study in Caco-2 cells by colorimetric assay, oxidative stress analysis by reactive oxygen species (ROX) detection, cellular metabolic activity measurement by adenosine triphosphate (ATP) depletion and visualization of cellular internalization by TEM imaging. The carbon materials demonstrated a varying degree of cytotoxicitymore » in contact with Caco-2 cells. The lowest cell survival rate was observed for nanographene, which possessed the minimal size amongst all the carbon samples under study. None of the carbons induced oxidative stress to the cells as indicated by the ROX generation results. Cellular metabolic activity study revealed that the carbon materials caused ATP depletion in cells and nanographene caused the highest depletion. Visual observation by TEM imaging indicated the cellular internalization of nanographene. This study confirmed that the size is the key cause of carbon-induced cytotoxicity and it is probably caused by the ATP depletion within the cell.« less
Ma, Jianfeng; Ji, Zhe; Zhou, Xia; Zhang, Zhiheng; Xu, Feng
2013-02-01
Transmission electron microscopy (TEM), fluorescence microscopy, and confocal Raman microscopy can be used to characterize ultrastructural and compositional heterogeneity of plant cell walls. In this study, TEM observations revealed the ultrastructural characterization of Cornus alba L. fiber, vessel, axial parenchyma, ray parenchyma, and pit membrane between cells, notably with the ray parenchyma consisting of two well-defined layers. Fluorescence microscopy evidenced that cell corner middle lamella was more lignified than adjacent compound middle lamella and secondary wall with variation in lignification level from cell to cell. In situ Raman images showed that the inhomogeneity in cell wall components (cellulose and lignin) among different cells and within morphologically distinct cell wall layers. As the significant precursors of lignin biosynthesis, the pattern of coniferyl alcohol and aldehyde (joint abbreviation Lignin-CAA for both structures) distribution in fiber cell wall was also identified by Raman images, with higher concentration occurring in the fiber secondary wall where there was the highest cellulose concentration. Moreover, noteworthy was the observation that higher concentration of lignin and very minor amounts of cellulose were visualized in the pit membrane areas. These complementary microanalytical methods provide more accurate and complete information with regard to ultrastructural and compositional characterization of plant cell walls.
NASA Astrophysics Data System (ADS)
Hintsala, Eric Daniel
This dissertation presents progress towards understanding the ductile-to-brittle transition (DBT) using a mixture of nanomechanical experiments and an analytical model. The key concept is dislocation shielding of crack tips, which is occurs due to a dislocation back stress. In order to properly evaluate the role of these interactions, in-situ experiments are ideal by reducing the number of interacting dislocations and allowing direct observation of cracking behavior and the dislocations themselves. First, in-situ transmission electron microscope (TEM) compression experiments of plasma-synthesized silicon nanocubes (NCs) are presented which shows plastic strains greater than 50% in a semi-brittle material. The mechanical properties are discussed and plasticity mechanisms are identified using post-mortem imaging with a combination of dark field and high-resolution imaging. This observations help to develop a back stress model which is used to fit the hardening regime. This represents the first study of its kind where back stresses are used in a discrete manner to match hardening rates. However, the important measurable quantities for evaluating the DBT include fracture toughness values and energetic activation parameters for cracking and plasticity. In order to do this, a new method for doing in-situ fracture experiments is explored. This method is pre-notched three point bending experiments, which were fabricated by focused ion beam (FIB) milling. Two different materials are evaluated: a model ductile material, Nitronic 50, an austenitic steel alloy, and a model brittle material, silicon. These experiments are performed in-situ scanning electron microscope (SEM) and TEM and explore different aspects including electron backscatter diffraction (EBSD) to track deformation in SEM scale experiments, pre-notching using a converged TEM beam to produce sharper notches better replicating natural cracks, etching procedures to reduce residual FIB damage and elevated temperature experiments. Lastly, an analytical method to predict DBTs is presented which can account for effects of strain rate, temperature and impurity presence. The model is tested by pre-existing data on macroscopic compact tension specimens of single crystal Fe-3%Si. Next, application of the model to nano/micro scale fracture toughness experiments is explored and the large number of confounding variables is discussed in detail. A first attempt at fitting is also presented.
Sample holder with optical features
Milas, Mirko; Zhu, Yimei; Rameau, Jonathan David
2013-07-30
A sample holder for holding a sample to be observed for research purposes, particularly in a transmission electron microscope (TEM), generally includes an external alignment part for directing a light beam in a predetermined beam direction, a sample holder body in optical communication with the external alignment part and a sample support member disposed at a distal end of the sample holder body opposite the external alignment part for holding a sample to be analyzed. The sample holder body defines an internal conduit for the light beam and the sample support member includes a light beam positioner for directing the light beam between the sample holder body and the sample held by the sample support member.
Wu, Yong-Xiang; Zhu, Guo-Xia; Liu, Xin-Qin; Sun, Fei; Zhou, Ke; Wang, Shuang; Wang, Chun-Mei; Jia, Jin-Wen; Song, Jian-Tao; Lu, Lian-Jun
2014-12-24
Noise exposure (NE) is a severe modern health hazard that induces hearing impairment. However, the noise-induced ultrastructural changes of blood-labyrinth barrier (BLB) and the potential involvements of tight junction proteins (TJP) remain inconclusive. We investigated the effects of NE on not only the ultrastructure of cochlea and permeability of BLB but also the expression of TJP within the guinea pig cochlea. Male albino guinea pigs were exposed to white noise for 4 h or 2 consecutive days (115 dB sound pressure level, 6 hours per day) and the hearing impairments and light microscopic change of BLB were evaluated with auditory brainstem responses (ABR) and the cochlear sensory epithelia surface preparation, respectively. The cochlear ultrastructure and BLB permeability after NE 2d were revealed with transmission electron microscope (TEM) and lanthanum nitrate-tracing techniques, respectively. The potential alterations of TJPs Claudin-5 and Occludin were quantified with immunohistochemistry and western blot. NE induced significant hearing impairment and NE 2d contributed to significant outer hair cell (OHC) loss that is most severe in the first row of outer hair cells. Furthermore, the loosen TJ and an obvious leakage of lanthanum nitrate particles beneath the basal lamina were revealed with TEM. Moreover, a dose-dependent decrease of Claudin-5 and Occludin was observed in the cochlea after NE. All these findings suggest that both decrease of Claudin-5 and Occludin and increased BLB permeability are involved in the pathologic process of noise-induced hearing impairment; however, the causal relationship and underlying mechanisms should be further investigated.
Atomic-Scale Insights into the Oxidation of Aluminum.
Nguyen, Lan; Hashimoto, Teruo; Zakharov, Dmitri N; Stach, Eric A; Rooney, Aidan P; Berkels, Benjamin; Thompson, George E; Haigh, Sarah J; Burnett, Tim L
2018-01-24
The surface oxidation of aluminum is still poorly understood despite its vital role as an insulator in electronics, in aluminum-air batteries, and in protecting the metal against corrosion. Here we use atomic resolution imaging in an environmental transmission electron microscope (TEM) to investigate the mechanism of aluminum oxide formation. Harnessing electron beam sputtering we prepare a pristine, oxide-free metal surface in the TEM. This allows us to study, as a function of crystallographic orientation and oxygen gas pressure, the full oxide growth regime from the first oxide nucleation to a complete saturated, few-nanometers-thick surface film.
Atomic-Scale Insights into the Oxidation of Aluminum
Nguyen, Lan; Hashimoto, Teruo; Zakharov, Dmitri N.; ...
2018-01-10
Here, the surface oxidation of aluminum is still poorly understood despite its vital role as an insulator in electronics, in aluminum–air batteries, and in protecting the metal against corrosion. Here we use atomic resolution imaging in an environmental transmission electron microscope (TEM) to investigate the mechanism of aluminum oxide formation. Harnessing electron beam sputtering we prepare a pristine, oxide-free metal surface in the TEM. This allows us to study, as a function of crystallographic orientation and oxygen gas pressure, the full oxide growth regime from the first oxide nucleation to a complete anometers-thick surface film.
Chu, C T; Howell, D N; Morgenlander, J C; Hulette, C M; McLendon, R E; Miller, S E
1999-10-01
The distinction between intracranial viral infections and inflammatory conditions requiring immunosuppression is important. Although specific laboratory reagents are readily available for some viruses, diagnosis of arbovirus infection is more difficult. Transmission electron microscopy (TEM) theoretically allows identification of viral particles independent of reagent availability, but it has limited sensitivity. We report two cases of human flavivirus encephalitis diagnosed by TEM. Laser scanning confocal microscopy (LSCM) was used in one case to survey unembedded tissue slices for focal abnormalities, from which fragments smaller than 1 mm2 were excised for epoxy embedding. This facilitated TEM identification of intracytoplasmic, budding, 35-40 nm spherical virus particles, confirmed by serology as St. Louis encephalitis. In contrast to mosquitoes and newborn mice, in which high viral loads are associated with minimal tissue responses, these biopsies showed florid angiodestructive inflammation and microgliosis, with rare virions in necrotic perivascular cells and astrocytes. To our knowledge, this represents the first ultrastructural study of St. Louis encephalitis in humans, indicating the potential value of LSCM-aided TEM.
Transmission electron microscope studies of extraterrestrial materials
NASA Technical Reports Server (NTRS)
Keller, Lindsay P.
1995-01-01
Transmission Electron Microscopy, X-Ray spectrometry and electron-energy-loss spectroscopy are used to analyse carbon in interplanetary dust particles. Optical micrographs are shown depicting cross sections of the dust particles embedded in sulphur. Selected-area electron diffraction patterns are shown. Transmission Electron Microscope specimens of lunar soil were prepared using two methods: ion-milling and ultramicrotomy. A combination of high resolution TEM imaging and electron diffraction is used to characterize the opaque assemblages. The opaque assemblages analyzed in this study are dominated by ilmenite with lesser rutile and spinel exsolutions, and traces of Fe metal.
TEM in situ cube-corner indentation analysis using ViBe motion detection algorithm
NASA Astrophysics Data System (ADS)
Yano, K. H.; Thomas, S.; Swenson, M. J.; Lu, Y.; Wharry, J. P.
2018-04-01
Transmission electron microscopic (TEM) in situ mechanical testing is a promising method for understanding plasticity in shallow ion irradiated layers and other volume-limited materials. One of the simplest TEM in situ experiments is cube-corner indentation of a lamella, but the subsequent analysis and interpretation of the experiment is challenging, especially in engineering materials with complex microstructures. In this work, we: (a) develop MicroViBE, a motion detection and background subtraction-based post-processing approach, and (b) demonstrate the ability of MicroViBe, in combination with post-mortem TEM imaging, to carry out an unbiased qualitative interpretation of TEM indentation videos. We focus this work around a Fe-9%Cr oxide dispersion strengthened (ODS) alloy, irradiated with Fe2+ ions to 3 dpa at 500 °C. MicroViBe identifies changes in Laue contrast that are induced by the indentation; these changes accumulate throughout the mechanical loading to generate a "heatmap" of features in the original TEM video that change the most during the loading. Dislocation loops with b = ½ <111> identified by post-mortem scanning TEM (STEM) imaging correspond to hotspots on the heatmap, whereas positions of dislocation loops with b = <100> do not correspond to hotspots. Further, MicroViBe enables consistent, objective quantitative approximation of the b = ½ <111> dislocation loop number density.
Direct evidence on Ta-Metal Phases Igniting Resistive Switching in TaOx Thin Film
Kyu Yang, Min; Ju, Hyunsu; Hwan Kim, Gun; Lee, Jeon-Kook; Ryu, Han-Cheol
2015-01-01
A Ta/TaOx/Pt stacked capacitor-like device for resistive switching was fabricated and examined. The tested device demonstrated stable resistive switching characteristics including uniform distribution of resistive switching operational parameters, highly promising endurance, and retention properties. To reveal the resistive switching mechanism of the device, micro structure analysis using high-resolution transmission electron microscope (HR-TEM) was performed. From the observation results, two different phases of Ta-metal clusters of cubic α-Ta and tetragonal β-Ta were founded in the amorphous TaOx mother-matrix after the device was switched from high resistance state (HRS) to low resistance state (LRS) by externally applied voltage bias. The observed Ta metal clusters unveiled the origin of the electric conduction paths in the TaOx thin film at the LRS. PMID:26365532
Direct evidence on Ta-Metal Phases Igniting Resistive Switching in TaOx Thin Film
NASA Astrophysics Data System (ADS)
Kyu Yang, Min; Ju, Hyunsu; Hwan Kim, Gun; Lee, Jeon-Kook; Ryu, Han-Cheol
2015-09-01
A Ta/TaOx/Pt stacked capacitor-like device for resistive switching was fabricated and examined. The tested device demonstrated stable resistive switching characteristics including uniform distribution of resistive switching operational parameters, highly promising endurance, and retention properties. To reveal the resistive switching mechanism of the device, micro structure analysis using high-resolution transmission electron microscope (HR-TEM) was performed. From the observation results, two different phases of Ta-metal clusters of cubic α-Ta and tetragonal β-Ta were founded in the amorphous TaOx mother-matrix after the device was switched from high resistance state (HRS) to low resistance state (LRS) by externally applied voltage bias. The observed Ta metal clusters unveiled the origin of the electric conduction paths in the TaOx thin film at the LRS.
Carbon isotope evidence for a magmatic origin for Archaean gold-quartz vein ore deposits
NASA Technical Reports Server (NTRS)
Burrows, D. R.; Wood, P. C.; Spooner, E. T. C.
1986-01-01
Sediments from three sites in the Santa Barbara Basin were examined with a 160X power light microscope and TEM equipment to characterize the magnetostatic bacteria (MB) in the samples. Both the free magnetite and the crystals in the MB in the samples had lengths from 40-60 nm in length and increased in size from one end to the next. An intact magnetosome was also observed. Scanning the sediments with saturation isothermal remanent magnetization (SIRM) and altering field demagnetization techniques using a SQUID magnetometer yielded coercivity spectra which showed that the primary remanence carrier in the sediments was single domain magnetite. Although it is expected that the predominance of the bacterial magnetite component will decrease with depth in the open ocean basin, single-domain bacteria as old as 50 Myr have been observed in oceanic sediments.
Cytotoxicity of lidocaine to human corneal endothelial cells in vitro.
Yu, Hao-Ze; Li, Yi-Han; Wang, Rui-Xin; Zhou, Xin; Yu, Miao-Miao; Ge, Yuan; Zhao, Jun; Fan, Ting-Jun
2014-04-01
Lidocaine has been reported to induce apoptosis on rabbit corneal endothelial cells. However, the apoptotic effect and exact mechanism involved in cytotoxicity of lidocaine are not well-established in human corneal endothelial (HCE) cells. In this study, we investigated the apoptosis-inducing effect of lidocaine on HCE cells in vitro. After HCE cells were treated with lidocaine at concentrations of 0.15625-10.0 g/l, the morphology and ultrastructure of the cells were observed by inverted light microscope and transmission electron microscope (TEM). Cell viability was measured by MTT assay, and the apoptotic ratio was evaluated with flow cytometry and fluorescent microscopic counting after FITC-Annexin V/PI and AO/EB staining. DNA fragmentation was detected by electrophoresis, and the activation of caspases was evaluated by ELISA. In addition, changes in mitochondrial membrane potential were determined by JC-1 staining. Results suggest that lidocaine above 1.25 g/l reduced cellular viability and triggered apoptosis in HCE cells in a time- and dose-dependent manner. Diminishment of ΔΨm and the activation of caspases indicate that lidocaine-induced apoptosis was caspase dependent and may be related to mitochondrial pathway. © 2013 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).
NASA Astrophysics Data System (ADS)
Takamasu, Kiyoshi; Takahashi, Satoru; Kawada, Hiroki; Ikota, Masami
2018-03-01
LER (Line Edge Roughness) and LWR (Line Width Roughness) of the semiconductor device are an important evaluation scale of the performance of the device. Conventionally, LER and LWR is evaluated from CD-SEM (Critical Dimension Scanning Electron Microscope) images. However, CD-SEM measurement has a problem that high frequency random noise is large, and resolution is not sufficiently high. For random noise of CD-SEM measurement, some techniques are proposed. In these methods, it is necessary to set parameters for model and processing, and it is necessary to verify the correctness of these parameters using reference metrology. We have already proposed a novel reference metrology using FIB (Focused Ion Beam) process and planar-TEM (Transmission Electron Microscope) method. In this study, we applied the proposed method to three new samples such as SAQP (Self-Aligned Quadruple Patterning) FinFET device, EUV (Extreme Ultraviolet Lithography) conventional resist, and EUV new material resist. LWR and PSD (Power Spectral Density) of LWR are calculated from the edge positions on planar-TEM images. We confirmed that LWR and PSD of LWR can be measured with high accuracy and evaluated the difference by the proposed method. Furthermore, from comparisons with PSD of the same sample by CD-SEM, the validity of measurement of PSD and LWR by CD-SEM can be verified.
Focused ion beam (FIB)/scanning electron microscopy (SEM) in tissue structural research.
Leser, Vladka; Milani, Marziale; Tatti, Francesco; Tkalec, Ziva Pipan; Strus, Jasna; Drobne, Damjana
2010-10-01
The focused ion beam (FIB) and scanning electron microscope (SEM) are commonly used in material sciences for imaging and analysis of materials. Over the last decade, the combined FIB/SEM system has proven to be also applicable in the life sciences. We have examined the potential of the focused ion beam/scanning electron microscope system for the investigation of biological tissues of the model organism Porcellio scaber (Crustacea: Isopoda). Tissue from digestive glands was prepared as for conventional SEM or as for transmission electron microscopy (TEM). The samples were transferred into FIB/SEM for FIB milling and an imaging operation. FIB-milled regions were secondary electron imaged, back-scattered electron imaged, or energy dispersive X-ray (EDX) analyzed. Our results demonstrated that FIB/SEM enables simultaneous investigation of sample gross morphology, cell surface characteristics, and subsurface structures. The same FIB-exposed regions were analyzed by EDX to provide basic compositional data. When samples were prepared as for TEM, the information obtained with FIB/SEM is comparable, though at limited magnification, to that obtained from TEM. A combination of imaging, micro-manipulation, and compositional analysis appears of particular interest in the investigation of epithelial tissues, which are subjected to various endogenous and exogenous conditions affecting their structure and function. The FIB/SEM is a promising tool for an overall examination of epithelial tissue under normal, stressed, or pathological conditions.
Nakamura, Eiichi
2017-06-20
A molecule is a quantum mechanical entity. "Watching motions and reactions of a molecule with our eyes" has therefore been a dream of chemists for a century. This dream has come true with the aid of the movies of atomic-resolution transmission electron microscopic (AR-TEM) molecular images through real-time observation of dynamic motions of single organic molecules (denoted hereafter as single-molecule atomic-resolution real-time (SMART) TEM imaging). Since 2007, we have reported movies of a variety of single organic molecules, organometallic molecules, and their assemblies, which are rotating, stretching, and reacting. Like movies in the theater, the atomic-resolution molecular movies provide us information on the 3-D structures of the molecules and also their time evolution. The success of the SMART-TEM imaging crucially depends on the development of "chemical fishhooks" with which fish (organic molecules) in solution can be captured on a single-walled carbon nanotube (CNT, serving as a "fishing rod"). The captured molecules are connected to a slowly vibrating CNT, and their motions are displayed on a monitor in real time. A "fishing line" connecting the fish and the rod may be a σ-bond, a van der Waals force, or other weak connections. Here, the molecule/CNT system behaves as a coupled oscillator, where the low-frequency anisotropic vibration of the CNT is transmitted to the molecules via the weak chemical connections that act as an energy filter. Interpretation of the observed motions of the molecules at atomic resolution needs us to consider the quantum mechanical nature of electrons as well as bond rotation, letting us deviate from the conventional statistical world of chemistry. What new horizons can we explore? We have so far carried out conformational studies of individual molecules, assigning anti or gauche conformations to each C-C bond in conformers that we saw. We can also determine the structures of van der Waals assemblies of organic molecules, thereby providing mechanistic insights into crystal formation-phenomena of general significance in science, engineering, and our daily life. Whereas many of the single organic molecules in a vacuum seen by SMART-TEM are sufficiently long-lived for detailed studies, molecules with low ionization potentials (<6 eV) were found to undergo chemical reactions, for example, [60]fullerene and organometallic compounds possibly via a hole catalysis mechanism, where a radical cation of CNT generated under electron irradiation catalyzes the transformation via an electron transfer mechanism. Common organic molecules whose ionization potentials are much higher (>8 eV) than that of CNT (5 eV) remain stable for a time long enough for observation at 60-120 kV acceleration voltage, as they are not oxidized by the CNT radical cation. Alternatively, the reaction may have taken place via an excited state of a molecule produced by energy transfer from CNT possessing excess energy provided by the electron beam. SMART-TEM imaging is a simple approach to the study of the structures and reactions of molecules and their assemblies and will serve as a gateway to the research and education of the science connecting the quantum mechanical world and the real world.
eV-TEM: Transmission electron microscopy in a low energy cathode lens instrument.
Geelen, Daniël; Thete, Aniket; Schaff, Oliver; Kaiser, Alexander; van der Molen, Sense Jan; Tromp, Rudolf
2015-12-01
We are developing a transmission electron microscope that operates at extremely low electron energies, 0-40 eV. We call this technique eV-TEM. Its feasibility is based on the fact that at very low electron energies the number of energy loss pathways decreases. Hence, the electron inelastic mean free path increases dramatically. eV-TEM will enable us to study elastic and inelastic interactions of electrons with thin samples. With the recent development of aberration correction in cathode lens instruments, a spatial resolution of a few nm appears within range, even for these very low electron energies. Such resolution will be highly relevant to study biological samples such as proteins and cell membranes. The low electron energies minimize adverse effects due to radiation damage. Copyright © 2015. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Jiangdong
The effects of laser shock processing on microstructure, the residual stress, and hot corrosion behavior of the Ni-based superalloy GH202 were investigated. The microstructures of GH202 before and after laser shock processing (LSP) were characterized by electron backscattered diffraction (EBSD) and transmission electron microscope (TEM). A large number of crystal defects (twins, dislocation arrays, and high dense tangles) were generated on the surface of GH202 treated with LSP. The cross-sectional compressive residual stress and micro-hardness of specimens treated by LSP were improved significantly. The corrosion kinetics of GH202 with or without LSP treatment at 800 °C and 900 °C weremore » investigated. Analysis by X-ray diffraction (XRD) revealed that the corrosion products mainly consist of Cr{sub 2}O{sub 3}, TiO{sub 2}, Al{sub 2}O{sub 3}, NiO, CrS, Ni{sub 3}S{sub 2}, and Na{sub 2}CrO{sub 4}. The surface and cross-section morphologies were observed by scanning electron microscope (SEM) combined with energy dispersive spectroscopy (EDS). The results confirmed that the crystal defects induced by LSP promotes the creation of diffusion paths for elements (Cr, Al, and Ti), allowing the formation of tiny homogeneous oxidation films in a very short time. Additionally, the spallation of oxidation film on the treated specimens was alleviated significantly. Overall, the hot corrosion resistance of Ni-based GH202 induced by LSP was improved in Na{sub 2}SO{sub 4} and NaCl molten salt from 800 °C to 900 °C. - Highlights: • Microstructure changes of GH202 before and after LSP were observed by EBSD and TEM. • The hardness and residual compressive stress after LSP were significantly increased. • The increased diffusion paths for elements helped to form oxidation films quickly. • Hot corrosion resistance of GH202 after LSP was significantly improved.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishii, Yoshiyuki, E-mail: yishii@nih.go.jp
2013-04-19
Highlights: •HPV16 pseudovirions (16PsVs) infection induces an autophagy response. •The autophagy was analyzed by transmission electron microscope (TEM). •TEM showed the double-membrane vesicles in HeLa cells inoculated with 16PsVs. •These vesicles incorporated 16PsVs particles in the lumen. •These results imply that autophagosomes are generated from the plasma membrane. -- Abstract: Autophagy is a bulk degradation process for subcellular proteins and organelles to manage cell starvation. Autophagy is associated with the formation of autophagosomes and further functions as a defense mechanism against infection by various pathogens. Human papillomavirus (HPV) infection induces an autophagy response, such as up-regulation of marker proteins formore » autophagy, in host keratinocytes. However, direct microscopic evidence for autophagy induction by HPV infection is still lacking. Here, I report an electron microscopic analysis of autophagosomes elicited by the entry of HPV pseudovirions (PsVs). HeLa cells showed enhanced infectivity for PsVs of HPV type 16 (16PsVs) when treated with an autophagy inhibitor, suggesting the involvement of autophagy in HPV infection. In HeLa cells inoculated with 16PsVs, transmission electron microscopy showed the presence of cup-shaped, double-membrane vesicles (phagophores) and double-membrane-bound vesicles, which are typical structures of autophagosomes. These double-membrane vesicles displayed a large lumen volume and incorporated 10–50 16PsVs particles in the lumen. These results demonstrate that autophagy is indeed induced during the HPV16 entry process and imply that autophagosomes are generated from the plasma membrane by HPV infection.« less
Brooks, Adam J; Yao, Zhongwen
2017-10-01
The data presented in this article is related to the research experiment, titled: ' Quasi in-situ energy dispersive X-ray spectroscopy observation of matrix and solute interactions on Y-Ti-O oxide particles in an austenitic stainless steel under 1 MeV Kr 2+ high temperature irradiation' (Brooks et al., 2017) [1]. Quasi in-situ analysis during 1 MeV Kr 2+ 520 °C irradiation allowed the same microstructural area to be observed using a transmission electron microscope (TEM), on an oxide dispersion strengthened (ODS) austenitic stainless steel sample. The data presented contains two sets of energy dispersive X-ray spectroscopy (EDX) data collected before and after irradiation to 1.5 displacements-per-atom (~1.25×10 -3 dpa/s with 7.5×10 14 ions cm -2 ). The vendor software used to process and output the data is the Bruker Esprit v1.9 suite. The data includes the spectral (counts vs. keV energy) of the quasi in-situ scanned region (512×512 pixels at 56k magnification), along with the EDX scanning parameters. The.raw files from the Bruker Esprit v1.9 output are additionally included along with the.rpl data information files. Furthermore included are the two quasi in-situ HAADF images for visual comparison of the regions before and after irradiation. This in-situ experiment is deemed ' quasi' due to the thin foil irradiation taking place at an external TEM facility. We present this data for critical and/or extended analysis from the scientific community, with applications applying to: experimental data correlation, confirmation of results, and as computer based modeling inputs.
Liquid crystal-based glucose biosensor functionalized with mixed PAA and QP4VP brushes.
Khan, Mashooq; Park, Soo-Young
2015-06-15
4-Cyano-4'-pentylbiphenyl (5CB) in a transmission electron microscopy (TEM) grid was developed for glucose detection by coating with a monolayer of mixed polymer brushes using poly(acrylicacid-b-4-cynobiphenyl-4'-oxyundecylacrylate) (PAA-b-LCP) and quaternized poly(4-vinylpyridine-b-4-cynobiphenyl-4'-oxyundecylacrylate) (QP4VP-b-LCP) (LCP stands for liquid crystal polymer) at the 5CB/aqueous interface. The resultant 5CB in TEM grid was functionalized with the PAA and QP4VP brushes, which were strongly anchored by the LCP block. The PAA brush rendered the 5CB/aqueous interface pH-responsive and the QP4VP brush immobilized glucose oxidase (GOx) through electrostatic interactions without the aid of coupling agents. The glucose was detected through a homeotropic-to-planar orientational transition of the 5CB observed through a polarized optical microscope (POM) under crossed polarizers. The optimum immobilization with a 0.78 µM GOx solution on the dual-brush-coated TEM grid enabled glucose detection at concentrations higher than 0.5 mM with response times shorter than 180 s. This TEM grid glucose sensor provided a linear response of birefringence of the 5CB to glucose concentrations ranging from 0.5 to 11 mM with a Michaelis-Menten constant (Km) of 1.67 mM. This new and sensitive glucose biosensor has the advantages of low production cost, simple enzyme immobilization, high enzyme sensitivity and stability, and easy detection with POM, and may be useful for prescreening the glucose level in the human body. Copyright © 2015 Elsevier B.V. All rights reserved.
Microstructure analysis in the coupling region of fiber coupler with a novel electrical micro-heater
NASA Astrophysics Data System (ADS)
Shuai, Cijun; Gao, Chengde; Nie, Yi; Hu, Huanlong; Peng, Shuping
2011-12-01
Fused-tapered fiber coupler is widely used in optical-fiber communication, optical-fiber sensor and optical signal processing. Its optical performance is mainly determined by the glass properties in the coupling region. In this study, the effect of fused biconical taper (FBT) process on glass microstructure of fiber coupler was investigated by testing the microstructure of the cross-section of coupling region. The fiber coupler is fabricated with a novel home-designed electrical heater. Our experimental results show that the boundary between fiber core and fiber cladding become vague or indistinct after FBT under transmission electron microscopy (TEM) and Ge 2+ in fiber core diffuses into fiber cladding. Crystallizations are observed in coupling region under scanning electron microscope (SEM) and microscopic infrared (IR), and the micro crystallizations become smaller with the drawing speed increasing. The wave number of fiberglass increases after FBT and it is in proportion to the drawing speed. The analysis of the microstructure in the coupling region explored the mechanism of the improvement in the performance of fiber couplers which can be used for the guidance of fabrication process.
Hata, S; Miyazaki, S; Gondo, T; Kawamoto, K; Horii, N; Sato, K; Furukawa, H; Kudo, H; Miyazaki, H; Murayama, M
2017-04-01
This paper reports the preliminary results of a new in-situ three-dimensional (3D) imaging system for observing plastic deformation behavior in a transmission electron microscope (TEM) as a directly relevant development of the recently reported straining-and-tomography holder [Sato K et al. (2015) Development of a novel straining holder for transmission electron microscopy compatible with single tilt-axis electron tomography. Microsc. 64: 369-375]. We designed an integrated system using the holder and newly developed straining and image-acquisition software and then developed an experimental procedure for in-situ straining and time-resolved electron tomography (ET) data acquisition. The software for image acquisition and 3D visualization was developed based on the commercially available ET software TEMographyTM. We achieved time-resolved 3D visualization of nanometer-scale plastic deformation behavior in a Pb-Sn alloy sample, thus demonstrating the capability of this system for potential applications in materials science. © The Author 2016. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Huang, Jian-Ping; Zhu, Fang; Jiang, Xiang; Zhang, Shan-Gan; Ban, Li-Ping
2017-01-01
The morphology and distribution of the antennal sensilla of adult diving beetle Cybister japonicus Sharp (Dytiscidae, Coleoptera), have been examined. Five types of sensilla on the antennae were identified by scanning electron microscope (SEM) and transmission electron microscope (TEM). Sensilla placodea and elongated s. placodea are the most abundant types of sensilla, distributing only on the flagellum. Both these types of sensilla carry multiple pore systems with a typical function as chemoreceptors. Three types of s. coeloconica (Type I–III) were also identified, with the characterization of the pit-in-pit style, and carrying pegs externally different from each other. Our data indicated that both type I and type II of s. coleconica contain two bipolar neurons, while the type III of s. coleconica contains three dendrites in the peg. Two sensory dendrites in the former two sensilla are tightly embedded inside the dendrite sheath, with no space left for sensilla lymph. There are no specific morphological differences in the antennal sensilla observed between males and females, except that the males have longer antennae and more sensilla than the females. PMID:28358865
Abouna, Sylvie; Gonzalez-Rizzo, Silvina; Grimonprez, Adrien; Gros, Olivier
2015-01-01
Background Since the discovery of thioautotrophic bacterial symbiosis in the giant tubeworm Riftia pachyptila, there has been great impetus to investigate such partnerships in other invertebrates. In this study, we present the occurrence of a sulphur-oxidizing symbiosis in a metazoan belonging to the phylum Cnidaria in which this event has never been described previously. Methodology/Principal Findings Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM) observations and Energy-dispersive X-ray spectroscopy (EDXs) analysis, were employed to unveil the presence of prokaryotes population bearing elemental sulphur granules, growing on the body surface of the metazoan. Phylogenetic assessments were also undertaken to identify this invertebrate and microorganisms in thiotrophic symbiosis. Our results showed the occurrence of a thiotrophic symbiosis in a cnidarian identified as Cladonema sp. Conclusions/Significance This is the first report describing the occurrence of a sulphur-oxidizing symbiosis in a cnidarian. Furthermore, of the two adult morphologies, the polyp and medusa, this mutualistic association was found restricted to the polyp form of Cladonema sp. PMID:26011278
Clay minerals in primitive meteorites and interplanetary dust 2. Smectites and micas
NASA Technical Reports Server (NTRS)
Keller, L. P.; Zolensky, M. E.
1991-01-01
The classification is briefly summarized of stony meteorites and cosmic dust, and the mineralogy and chemistry is described of serpentine group minerals. The occurrence of smectites and micas in extraterrestrial materials is examined. The characterization of fine grained minerals in meteorites and IDPs relies heavily on electron beam instruments, especially the transmission electron microscope (TEM). Typically, phyllosilicates are identified by a combination of high resolution imaging of basal spacings, electron diffraction, and chemical analysis. Smectites can be difficult to differentiate from micas because the smectites lose their interlayer water and the interlayer partly collapse in the high vacuum of the TEM.
NASA Astrophysics Data System (ADS)
Meliana, Y.; Harmami, S. B.; Restu, W. K.
2017-02-01
This research investigated nanoencapsulation of Centella asiatica and Zingiber officinale extract. The encapsulated extract was used as a complex matrix of multi-layered interfacial membranes between malto dextrin and gum Arabic. Characterization of nanoencapsulation using Transmission Electron Microscope (TEM), Fourier Transform Infrared Spectroscopy (FTIR) and BET surface area (SA) showed the morphology, functional group and cumulative adsorption in the surface area of pores. The TEM image of the nanoencapsulated powders of Centella asiatica and Zingiber officinale extract showed a nearly spherical shape with the particle size of 664 nm from its average radius.
A study of over production and enhanced secretion of enzymes. Quarterly report 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dashek, W.V.
1992-12-28
The current project is concerned with the over-production and enhanced secretion of PPO, cellulase and lignin peroxidase. The project is divided into two segments: over-production of lignocellulolytic enzymes by genetic engineering methodologies and hyper-production and enhanced secretion of these enzymes by biochemical/electron microscopical techniques. The former approach employs recombinant DNA procedures, ligation of appropriate nuclease generated DNA fragments into a vector and the subsequent transformation of Escherichia coli to yield E. coli harboring a C. versicolor DNA insert. The biochemistry/electron microscopical method involves substrate induction and the time-dependent addition of respiration and PPO inhibitors to elevate C.versicolor`s ability to synthesizemore » and secrete lignocellulosic enzymes. In this connection, cell fractionation/kinetic analysis, TEM immunoelectron microscopic localization and TEM substrate localization of PPO are being employed to assess the route of secretion. Both approaches will culminate in the batch culture of either E. coli or C. versicolor, in a fermentor with the subsequent development of rapid isolation and purification procedures to yield elevated quantities of pure lignocellulosic enzymes. During the past year, research effort were directed toward determining the route of polyphenol oxidase (PPO) secretion by the wood-decay fungus, Coriolus versicolor. In addition, research activities were continued to over-produce and to purify PPO as well as define the time-dependent intra- and extra-cellular appearances of C. versicolor ligninases and cellulases.« less
Dislocation evolution in 316 L stainless steel during multiaxial ratchetting deformation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong Yawei; Kang Guozheng, E-mail: guozhengkang@yahoo.com.cn; Liu Yujie
2012-03-15
Dislocation patterns and their evolutions in 316 L stainless steel during the multiaxial ratchetting deformation were observed by transmission electron microscopy (TEM). The microscopic observations indicate that the dislocation evolution presented during the multiaxial ratchetting with four kinds of multiaxial loading paths is similar to that in the uniaxial case [G. Z. Kang et al., Mater Sci Eng A 527 (2010) 5952]. That is, dislocation networks and dislocation tangles are formed quickly by the multiple-slip and cross-slip of dislocation activated by applied multiaxial stress; and then polarized patterns such as dislocation walls and elongated incipient dislocation cells are formed atmore » the last stage of multiaxial ratchetting. The dislocation patterns evolve more quickly from the modes at low dislocation density to the ones at high density during the multiaxial ratchetting than that in the uniaxial case, and some traces of multiple-slip are observed in the multiaxial ones. The dislocation evolution during the multiaxial ratchetting deformation is summarized by comparing the observed dislocation patterns with those presented in the multiaxial strain-controlled and symmetrical stress-controlled cyclic tests. The multiaxial ratchetting of 316 L stainless steel can be microscopically and qualitatively explained by the observed evolution of dislocation patterns. - Highlights: Black-Right-Pointing-Pointer Dislocation patterns change from lines and nets to tangles, walls and cells. Black-Right-Pointing-Pointer Dislocation patterns evolve quicker in the multiaxial case. Black-Right-Pointing-Pointer Aligned dislocation arrays and some traces of multiple slips are observed. Black-Right-Pointing-Pointer Heterogeneous dislocation patterns result in the multiaxial ratchetting.« less
Merroun, Mohamed L; Nedelkova, Marta; Ojeda, Jesus J; Reitz, Thomas; Fernández, Margarita López; Arias, José M; Romero-González, María; Selenska-Pobell, Sonja
2011-12-15
This work describes the mechanisms of uranium biomineralization at acidic conditions by Bacillus sphaericus JG-7B and Sphingomonas sp. S15-S1 both recovered from extreme environments. The U-bacterial interaction experiments were performed at low pH values (2.0-4.5) where the uranium aqueous speciation is dominated by highly mobile uranyl ions. X-ray absorption spectroscopy (XAS) showed that the cells of the studied strains precipitated uranium at pH 3.0 and 4.5 as a uranium phosphate mineral phase belonging to the meta-autunite group. Transmission electron microscopic (TEM) analyses showed strain-specific localization of the uranium precipitates. In the case of B. sphaericus JG-7B, the U(VI) precipitate was bound to the cell wall. Whereas for Sphingomonas sp. S15-S1, the U(VI) precipitates were observed both on the cell surface and intracellularly. The observed U(VI) biomineralization was associated with the activity of indigenous acid phosphatase detected at these pH values in the absence of an organic phosphate substrate. The biomineralization of uranium was not observed at pH 2.0, and U(VI) formed complexes with organophosphate ligands from the cells. This study increases the number of bacterial strains that have been demonstrated to precipitate uranium phosphates at acidic conditions via the activity of acid phosphatase. Copyright © 2011 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sudheer,, E-mail: sudheer@rrcat.gov.in; Tiwari, P.; Rai, V. N.
The plasmonic responses of silver nanoparticles extracted from silver halide based electron microscope film are investigated. Photo-reduction process is carried out to convert the silver halide grains into the metallic silver. The centrifuge technique is used for separating the silver nanoparticles from the residual solution. Morphological study performed by field emission scanning electron microscope (FESEM) shows that all the nanoparticles have an average diameter of ~120 nm with a high degree of mono dispersion in size. The localized surface plasmon resonance (LSPR) absorption peak at ~537 nm confirms the presence of large size silver nanoparticles.
Nanoscale welding of multi-walled carbon nanotubes by 1064 nm fiber laser
NASA Astrophysics Data System (ADS)
Yuan, Yanping; Liu, Zhi; Zhang, Kaihu; Han, Weina; Chen, Jimin
2018-07-01
This study proposes an efficient approach which uses 1064 nm continuous fiber laser to achieve nanoscale welding of crossed multi-walled carbon nanotubes (MWCNTs). By changing the irradiation time, different quality of nanoscale welding is obtained. The morphology changes are investigated by scanning electron microscope (SEM) and transmission electron microscope (TEM). The experiments demonstrate that better quality of MWCNTs nanoscale welding after 3 s irradiation can be obtained. It is found that new graphene layers between crossed nanotubes induced by laser make the nanoscale welding achieved due to the absorption of laser energy.
Transmission Electron Microscopy of Magnetite Plaquettes in Orgueil
NASA Technical Reports Server (NTRS)
Chan, Q. H. S.; Han, J.; Zolensky, M.
2016-01-01
Magnetite sometimes takes the form of a plaquette - barrel-shaped stack of magnetite disks - in carbonaceous chondrites (CC) that show evidence of aqueous alteration. The asymmetric nature of the plaquettes caused Pizzarello and Groy to propose magnetite plaquettes as a naturally asymmetric mineral that can indroduce symmetry-breaking in organic molecules. Our previous synchrotron X-ray computed microtomography (SXRCT) and electron backscatter diffraction (EBSD) analyses of the magnetite plaquettes in fifteen CCs indicate that magnetite plaquettes are composed of nearly parallel discs, and the crystallographic orientations of the discs change around a rotational axis normal to the discs surfaces. In order to further investigate the nanostructures of magnetite plaquettes, we made two focused ion beam (FIB) sections of nine magnetite plaquettes from a thin section of CI Orgueil for transmission electron microscope (TEM) analysis. The X-ray spectrum imaging shows that the magnetite discs are purely iron oxide Fe3O4 (42.9 at% Fe and 57.1 at% O), which suggest that the plaquettes are of aqueous origin as it is difficult to form pure magnetite as a nebular condensate. The selected area electron diffraction (SAED) patterns acquired across the plaquettes show that the magnetite discs are single crystals. SEM and EBSD analyses suggest that the planar surfaces of the magnetite discs belong to the {100} planes of the cubic inverse spinel structure, which are supported by our TEM observations. Kerridge et al. suggested that the epitaxial relationship between magnetite plaquette and carbonate determines the magnetite face. However, according to our TEM observation, the association of magnetite with porous networks of phyllosilicate indicates that the epitaxial relationship with carbonate is not essential to the formation of magnetite plaquettes. It was difficult to determine the preferred rotational orientation of the plaquettes due to the symmetry of the cubic structure, however, we are able to observe small but consistent rotational orientation across several discs within a plaquette.
ERIC Educational Resources Information Center
Eyring, LeRoy
1980-01-01
Describes methods for using the high-resolution electron microscope in conjunction with other tools to reveal the identity and environment of atoms. Problems discussed include the ultimate structure of real crystalline solids including defect structure and the mechanisms of chemical reactions. (CS)
Nakano, Hiromi; Kamimoto, Konatsu; Yamamoto, Takahisa; Furuta, Yoshio
2018-06-11
We first successfully synthesized Li 1+ x − y Nb 1− x −3 y Ti x +4 y O₃ (LNT) solid solutions (0.13 ≤ x ≤ 0.18, 0 ≤ y ≤ 0.06) rapidly at 1373 K for one hour under 0.35 MPa by the controlling of air pressure using an air-pressure control atmosphere furnace. The composition is a formation area of a superstructure for LNT, in which the periodical intergrowth layer was formed in the matrix, and where it can be controlled by Ti content. Therefore, the sintering time depended on Ti content, and annealing was repeated for over 24 h until a homogeneous structure was formed using a conventional electric furnace. We clarified the mechanism of the rapid sintering using various microscale to nanoscale characterization techniques: X-ray diffraction, a scanning electron microscope, a transmission electron microscope (TEM), a Cs-corrected scanning TEM equipped with electron energy-loss spectroscopy, and X-ray absorption fine structure spectroscopy.
Pan, Ko-Ying; Wei, Da-Hua
2016-01-01
Substantial synthetic vanadium pentoxide (V2O5) nanowires were successfully produced by a vapor-solid (VS) method of thermal evaporation without using precursors as nucleation sites for single crystalline V2O5 nanowires with a (110) growth plane. The micromorphology and microstructure of V2O5 nanowires were analyzed by scanning electron microscope (SEM), energy-dispersive X-ray spectroscope (EDS), transmission electron microscope (TEM) and X-ray diffraction (XRD). The spiral growth mechanism of V2O5 nanowires in the VS process is proved by a TEM image. The photo-luminescence (PL) spectrum of V2O5 nanowires shows intrinsic (410 nm and 560 nm) and defect-related (710 nm) emissions, which are ascribable to the bound of inter-band transitions (V 3d conduction band to O 2p valence band). The electrical resistivity could be evaluated as 64.62 Ω·cm via four-point probe method. The potential differences between oxidation peak and reduction peak are 0.861 V and 0.470 V for the first and 10th cycle, respectively. PMID:28335268
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levin, Barnaby D. A.; Zachman, Michael J.; Werner, Jörg G.
Abstract Lithium sulfur (Li–S) batteries have the potential to provide higher energy storage density at lower cost than conventional lithium ion batteries. A key challenge for Li–S batteries is the loss of sulfur to the electrolyte during cycling. This loss can be mitigated by sequestering the sulfur in nanostructured carbon–sulfur composites. The nanoscale characterization of the sulfur distribution within these complex nanostructured electrodes is normally performed by electron microscopy, but sulfur sublimates and redistributes in the high-vacuum conditions of conventional electron microscopes. The resulting sublimation artifacts render characterization of sulfur in conventional electron microscopes problematic and unreliable. Here, we demonstratemore » two techniques, cryogenic transmission electron microscopy (cryo-TEM) and scanning electron microscopy in air (airSEM), that enable the reliable characterization of sulfur across multiple length scales by suppressing sulfur sublimation. We use cryo-TEM and airSEM to examine carbon–sulfur composites synthesized for use as Li–S battery cathodes, noting several cases where the commonly employed sulfur melt infusion method is highly inefficient at infiltrating sulfur into porous carbon hosts.« less
NASA Astrophysics Data System (ADS)
Wang, Zhongwei; Yan, Yu; Su, Yanjing; Qiao, Lijie
2017-06-01
The subsurface microstructures of metallic implants play a key role in bio-tribocorrosion. Due to wear or change of local environment, the implant surface can have inhomogeneous electrochemical corrosion properties. In this work, the effect of electrochemical corrosion conditions on the subsurface microstructure evolution of CoCrMo alloys for artificial joints was investigated. Transmission electron microscope (TEM) was employed to observe the subsurface microstructures of worn areas at different applied potentials in a simulated physiological solution. The results showed that applied potentials could affect the severity of the subsurface deformation not only by changing the surface passivation but also affecting the adsorption of protein on the alloy surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adil, Muhammad, E-mail: muhammadadil86@hotmail.com; Zaid, Hasnah Mohd, E-mail: hasnamz@petronas.com.my; Chuan, Lee Kean, E-mail: lee.kc@petronas.com.my
2015-07-22
Dielectric nano powder synthesis is carried by a simple and fast sol-gel auto-combustion method. The transformation of crystalline phases of as-synthesized nano powders is investigated through the detailed transmission electron microscopy (TEM), revealed the crystallographic alterations and morphological information even at lattice scale. From specific area electron diffraction (SAED) pattern, has specified the d-spacing and corresponding planes supported by the observed lattice fringes. The morphological characterization of nanoparticles is performed through field-emission scanning electron microscopy (FESEM), exhibiting the increment in particle size due to agglomeration with the increase in annealing temperature. Furthermore, EDX pattern has been used to verify themore » formation of nanoparticles by revealing the presence of required elements.« less
NASA Astrophysics Data System (ADS)
Wang, Wei; Bai, Xianwei; Guan, Xiangxiang; Shen, Xi; Yao, Yuan; Wang, Yanguo; Zou, Bingsuo; Yu, Richeng
2017-10-01
Manganese bromide has attracted enormous attention for its applications in the syntheses of organic-inorganic hybrid compounds. A complete understanding of structural and chemical stabilities of MnBr2 is important for controlling its properties. Here, we focus on the irradiation resistance of MnBr2. The chief purpose of this research is reached by in situ transmission electron microscopy. It is demonstrated that the deliquescent MnBr2 powder is prone to adsorb the vapor in air, and the hydrous MnBr2 can be decomposed under its continuous exposure to electron beam, indicated by a transmission electron microscope via the catalysis of Cu grid at room temperature.
NASA Astrophysics Data System (ADS)
Li, Wei; Cheng, Zhi-Lin; Liu, Zan
2017-01-01
The calcium borate/graphene oxide (CB/GO) nanocomposites have been successfully prepared by a liquid phase-based ultrasonic-assisted stripping method, which were subsequently explored as lubricant additive. The structure and morphology of the as-prepared nanocomposites were characterized by FT-IR, XRD, Raman, TEM, EDS and TGA, revealing that CB nanoparticles were uniformly loaded on GO surfaces. The nanocomposites were highly dispersed into the base oil by sand milling. The tribological properties of CB/GO nanocomposites as lubricating oil additive were investigated using a four-ball machine, and the wear scar surfaces were observed by the 3D Laser Scanning Microscope. The results indicated that CB/GO nanocomposites were of excellent antifriction, antiwear ability and load-carrying capacity.
Cryo-FIB specimen preparation for use in a cartridge-type cryo-TEM.
He, Jie; Hsieh, Chyongere; Wu, Yongping; Schmelzer, Thomas; Wang, Pan; Lin, Ying; Marko, Michael; Sui, Haixin
2017-08-01
Cryo-electron tomography (cryo-ET) is a well-established technique for studying 3D structural details of subcellular macromolecular complexes and organelles in their nearly native context in the cell. A primary limitation of the application of cryo-ET is the accessible specimen thickness, which is less than the diameters of almost all eukaryotic cells. It has been shown that focused ion beam (FIB) milling can be used to prepare thin, distortion-free lamellae of frozen biological material for high-resolution cryo-ET. Commercial cryosystems are available for cryo-FIB specimen preparation, however re-engineering and additional fixtures are often essential for reliable results with a particular cryo-FIB and cryo-transmission electron microscope (cryo-TEM). Here, we describe our optimized protocol and modified instrumentation for cryo-FIB milling to produce thin lamellae and subsequent damage-free cryotransfer of the lamellae into our cartridge-type cryo-TEM. Published by Elsevier Inc.
Parmenter, Christopher D J; Fay, Michael W; Hartfield, Cheryl; Eltaher, Hoda M
2016-04-01
The preparation of thinned lamellae from bulk samples for transmission electron microscopy (TEM) analysis has been possible in the focussed ion beam scanning electron microscope (FIB-SEM) for over 20 years via the in situ lift-out method. Lift-out offers a fast and site specific preparation method for TEM analysis, typically in the field of materials science. More recently it has been applied to a low-water content biological sample (Rubino 2012). This work presents the successful lift-out of high-water content lamellae, under cryogenic conditions (cryo-FIB lift-out) and using a nanomanipulator retaining its full range of motion, which are advances on the work previously done by Rubino (2012). Strategies are explored for maintaining cryogenic conditions, grid attachment using cryo-condensation of water and protection of the lamella when transferring to the TEM. © 2016 Wiley Periodicals, Inc.
Chapter 14: Electron Microscopy on Thin Films for Solar Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romero, Manuel; Abou-Ras, Daniel; Nichterwitz, Melanie
2016-07-22
This chapter overviews the various techniques applied in scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and highlights their possibilities and also limitations. It gives the various imaging and analysis techniques applied on a scanning electron microscope. The chapter shows that imaging is divided into that making use of secondary electrons (SEs) and of backscattered electrons (BSEs), resulting in different contrasts in the images and thus providing information on compositions, microstructures, and surface potentials. Whenever aiming for imaging and analyses at scales of down to the angstroms range, TEM and its related techniques are appropriate tools. In many cases,more » also SEM techniques provide the access to various material properties of the individual layers, not requiring specimen preparation as time consuming as TEM techniques. Finally, the chapter dedicates to cross-sectional specimen preparation for electron microscopy. The preparation decides indeed on the quality of imaging and analyses.« less
NASA Astrophysics Data System (ADS)
Wang, Wei; Bhandari, Sagar; Yi, Wei; Bell, David; Westervelt, Robert; Kaxiras, Efthimios
2012-02-01
Ultra-thin membranes such as graphene[1] are of great importance for basic science and technology applications. Graphene sets the ultimate limit of thinness, demonstrating that a free-standing single atomic layer not only exists but can be extremely stable and strong [2--4]. However, both theory [5, 6] and experiments [3, 7] suggest that the existence of graphene relies on intrinsic ripples that suppress the long-wavelength thermal fluctuations which otherwise spontaneously destroy long range order in a two dimensional system. Here we show direct imaging of the atomic features in graphene including the ripples resolved using monochromatic aberration-corrected transmission electron microscopy (TEM). We compare the images observed in TEM with simulated images based on an accurate first-principles total potential. We show that these atomic scale features can be mapped through accurate first-principles simulations into high resolution TEM contrast. [1] Geim, A. K. & Novoselov, K. S. Nat. Mater. 6, 183-191, (2007). [2] Novoselov, K. S.et al. Science 306, 666-669, (2004). [3] Meyer, J. C. et al. Nature 446, 60-63, (2007). [4] Lee, C., Wei, X. D., Kysar, J. W. & Hone, J. Science 321, 385-388, (2008). [5] Nelson, D. R. & Peliti, L. J Phys-Paris 48, 1085-1092, (1987). [6] Fasolino, A., Los, J. H. & Katsnelson, M. I. Nat. Mater. 6, 858-861, (2007). [7] Meyer, J. C. et al. Solid State Commun. 143, 101-109, (2007).
Shang, Qing; Huang, Sijin; Zhang, Aixin; Feng, Jia; Yang, Song
2017-11-01
To improve the bioavailability of ibuprofen (IBU), we developed a novel binary complex of poly(PEGMA-co-MAA) hydrogel and IBU-loaded PLGA nanoparticles (IBU-PLGA NPs@hydrogels) as an oral intestinal targeting drug delivery system (OIDDS). The IBU-loaded PLGA NPs and pH-sensitive hydrogels were obtained via the solvent evaporation method and radical polymerization, respectively. The final OIDDS was obtained by immersing the hydrogel chips in the IBU-loaded PLGA NPs solutions (pH 7.4) for 3 d. The size distribution and morphology of cargo-free NPs were studied by laser granularity analyzer and transmission electron microscope (TEM). The inner structures of the pH-sensitive hydrogel chips were observed with an S-4800 scanning electron microscope (SEM). The distribution states of IBU in the OIDDS were also studied with X-ray diffraction (XRD) and differential scanning calorimetry (DSC). TEM photographs illustrated that the PLGA NPs had a round shape with an average diameter about 100 nm. Fourier transform infrared spectrum (FTIR) confirmed the synthesis of poly(PEGMA-co-MAA) hydrogel. The SEM picture showed that the final hydrogel had 3D net-work structures. Moreover, the poly(PEGMA-co-MAA) hydrogel showed an excellent pH-sensitivity. The XRD and DSC curves suggested that IBU distributed in the OIDDS with an amorphous state. The cumulated release profiles indicated that the final OIDDS could release IBU in alkaline environment (e.g. intestinal tract) at a sustained manner. Therefore, the novel OIDDS could improve the oral bioavailability of IBU, and had a potential application in drug delivery.
NASA Astrophysics Data System (ADS)
Torres, Monica
The use of pipelines for the transmission of gas offers not only efficiency, but a number of economic advantages. Nevertheless, pipelines are subject to aggressive operating conditions and environments which can lead to in-service degradation [1] and thus to failures. These failures can have catastrophic consequences, such as environmental damage and loss of life [2]. One of the most dangerous threats to pipeline integrity is stress corrosion cracking (SCC). Despite the substantial progress that has been achieved in the field, due to the complex nature of this phenomenon there is still not a complete understanding of this form of external corrosion. This makes its detection and prevention a challenge and therefore a risk to pipeline integrity, and most importantly, to the safety of the population. SCC cracks are the result of the interaction between a corrosive environment, applied stresses, and a susceptible microstructure. To date, what defines a susceptible microstructure remains ambiguous, as SCC has been observed in a range of steel grades, microstructures, chemical composition, and grain sizes. Therefore, in order to be able to accurately predict and prevent this hazardous form of corrosion, it is imperative to advance our knowledge on the subject and gain a better understanding on the microstructural features of highly susceptible pipeline materials, especially in the subsurface zone where crack nucleation must take place. Therefore, a microstructural characterization of the region near the surface layer was carried-out utilizing TEM. TEM analysis revealed the dislocation character, ferrite morphology, and apparent carbide precipitation in some grain boundaries. Furthermore, light microscopy, SEM, and hardness testing were performed to expand our knowledge on the microscopical features of highly SCC susceptible service components. This investigation presents a new approach to SCC characterization, which exposed the sub-surface region microscopical characteristics of service components with confirmed SCC.
Effects of X-ray on the metacestodes of Echinococcus granulosus in vitro.
Mao, Rui; Wu, Ge; Wang, Hui; Lu, Pengfei; Li, Jun; Li, Haitao; Ainiwaer, Aimudula; Bai, Yiwei; Shu, Mingyang; Bao, Yongxing; Zhang, Wenbao
2017-09-21
Radiotherapy may represent an alternative treatment modality for cystic echinococcosis (CE), but there is no adequate evidence for it up to now. In this study, we aim to investigate the parasiticidal effects of X-ray on the metacestodes of Echinococcus granulosus in vitro. Protoscoleces obtained from sheep naturally infected with CE were cultivated in RPMI 1640 medium containing 10% fetal bovine serum (FBS) at 37 °C in 5% CO 2 . Upon encystation on day 14, the metacestodes were subjected to various intensities of X-ray. Metacestode structures were observed using light microscope and transmission electron microscopy (TEM), and Real-Time PCR was carried out to determine the expression of EgTPX, EgHSP70, EgEPC1 and Caspase-3. On day 14, encystation was noticed in the majority of protoscoleces in the control group. In the X-ray groups, the encystation rate showed significant decrease compared with that of the control group (P < 0.05), especially the groups subjected to a dose of ≥40 Gy (P < 0.01). Light microscope findings indicated the hooklets on the rostellum were deranged in the irradiation group, and malformation was noticed in the suckers in a dose dependent manner. For the TEM findings, the cellular structure of the germinal layer of the cysts was completely interrupted by X-ray on day 7. The expression of EgTPX, EgHSP70, EgEPC1 and Caspase-3 was up-regulated after irradiation, especially at a dose of ≥45Gy (P < 0.05). X-ray showed parasiticidal effects on the metacestodes of E. granulosus. Irradiation triggered increased expression of EgTPX, EgHSP70, EgEPC1 and Caspase-3.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jia, Jianbo
The flow behavior of a powder metallurgy (P/M) Ti-22Al-25Nb alloy during hot compression tests has been investigated at a strain rate of 0.01 s{sup −1} and a temperature range of 980–1100 °C up to various true strains from 0.1 to 0.9. The effects of deformation temperature and strain on microstructure characterization and nucleation mechanisms of dynamic recrystallization (DRX) were assessed by means of Optical microscope (OM), electron backscatter diffraction (EBSD) and transmission electron microscope (TEM) techniques, respectively. The results indicated that the process of DRX was promoted by increasing deformation temperature and strain. By regression analysis, a power exponent relationshipmore » between peak stresses and sizes of stable DRX grains was developed. In addition, it is suggested that the discontinuous dynamic recrystallization (DDRX) and continuous dynamic recrystallization (CDRX) controlled nucleation mechanisms for DRX grains operated simultaneously during the whole hot process, and which played the leading role varied with hot process parameters of temperature and strain. It was further demonstrated that the CDRX featured by progressive subgrain rotation was weakened by elevating deformation temperatures. - Highlights: •Flow behavior of a P/M Ti-22Al-25Nb is studied by hot compression tests. •Microstructure evolution of alloy is affected by deformation temperature and strain. •The relationship between peak stress and stable DRX grain size was developed. •The process of DRX was promoted by increasing deformation temperature and strain. •Nucleation mechanisms of DRX were identified by EBSD analysis and TEM observation.« less
Degradability enhancement of poly(lactic acid) by stearate-Zn(3)Al LDH nanolayers.
Eili, Mahboobeh; Shameli, Kamyar; Ibrahim, Nor Azowa; Yunus, Wan Md Zin Wan
2012-01-01
Recent environmental problems and societal concerns associated with the disposal of petroleum based plastics throughout the world have triggered renewed efforts to develop new biodegradable products compatible with our environment. This article describes the preparation, characterization and biodegradation study of poly(lactic acid)/layered double hydroxide (PLA/LDH) nanocomposites from PLA and stearate-Zn(3)Al LDH. A solution casting method was used to prepare PLA/stearate-Zn(3)Al LDH nanocomposites. The anionic clay Zn(3)Al LDH was firstly prepared by co-precipitation method from a nitrate salt solution at pH 7.0 and then modified by stearate anions through an ion exchange reaction. This modification increased the basal spacing of the synthetic clay from 8.83 Å to 40.10 Å. The morphology and properties of the prepared PLA/stearate-Zn(3)Al LDH nanocomposites were studied by X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), thermogravimetric analysis (TGA), tensile tests as well as biodegradation studies. From the XRD analysis and TEM observation, the stearate-Zn(3)Al LDH lost its ordered stacking-structure and was greatly exfoliated in the PLA matrix. Tensile test results of PLA/stearate-Zn(3)Al LDH nanocomposites showed that the presence of around 1.0-3.0 wt % of the stearate-Zn(3)Al LDH in the PLA drastically improved its elongation at break. The biodegradation studies demonstrated a significant biodegradation rate improvement of PLA in the presence of stearate-Zn(3)Al LDH nanolayers. This effect can be caused by the catalytic role of the stearate groups in the biodegradation mechanism leading to much faster disintegration of nanocomposites than pure PLA.
Jiang, Hongrong; Zeng, Xin; Xi, Zhijiang; Liu, Ming; Li, Chuanyan; Li, Zhiyang; Jin, Lian; Wang, Zhifei; Deng, Yan; He, Nongyue
2013-04-01
In present study, we put forward an approach to prepare three-layer core-shell Fe3O4@SiO2@Au magnetic nanocomposites via the combination of self-assembling, seed-mediated growing and multi-step chemical reduction. The Fe3O4@SiO2@Au magnetic nanocomposites were analyzed and characterized by transmission electron microscope (TEM), scanning electronic microscope (SEM), energy dispersive spectrometer analysis (EDS), Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometer (VSM), and ultraviolet and visible spectrophotometer (UV-Vis). TEM and SEM characterizations showed that the FeO4@SiO2@Au nanocomposites were obtained successfully with three-layer structures, especially a layer of thin, smooth and continuous gold shell. The average diameter of Fe3O4@SiO2@Au nanocomposites was about 600 nm and an excellent dispersity was observed for the as-prepared nanoparticles. EDS characterizations demonstrated that the nanocomposites contained three elements of the precursors, Fe, Si, and Au. Furthermore, FT-IR showed that the silica and gold shell were coated successfully. UV-Vis and VSM characterizations showed that the Fe3O4@SiO2@Au nanocomposites exhibited good optical and magnetic property, and the saturation magnetization was 25.76 emu/g. In conclusion, the Fe3O4@SiO2@Au magnetic nanocomposites with three-layer core-shell structures were prepared. Furthermore, Fe3O4@SiO2@Au magnetic nanocomposites were modified with streptavidin (SA) successfully, and it was validated that they performed low fluorescence background, suggesting that they should have good applications especially in bioassay based on fluorescence detection through bonding the biotinylated fluorescent probes.
Degradability Enhancement of Poly(Lactic Acid) by Stearate-Zn3Al LDH Nanolayers
Eili, Mahboobeh; Shameli, Kamyar; Ibrahim, Nor Azowa; Yunus, Wan Md Zin Wan
2012-01-01
Recent environmental problems and societal concerns associated with the disposal of petroleum based plastics throughout the world have triggered renewed efforts to develop new biodegradable products compatible with our environment. This article describes the preparation, characterization and biodegradation study of poly(lactic acid)/layered double hydroxide (PLA/LDH) nanocomposites from PLA and stearate-Zn3Al LDH. A solution casting method was used to prepare PLA/stearate-Zn3Al LDH nanocomposites. The anionic clay Zn3Al LDH was firstly prepared by co-precipitation method from a nitrate salt solution at pH 7.0 and then modified by stearate anions through an ion exchange reaction. This modification increased the basal spacing of the synthetic clay from 8.83 Å to 40.10 Å. The morphology and properties of the prepared PLA/stearate-Zn3Al LDH nanocomposites were studied by X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), thermogravimetric analysis (TGA), tensile tests as well as biodegradation studies. From the XRD analysis and TEM observation, the stearate-Zn3Al LDH lost its ordered stacking-structure and was greatly exfoliated in the PLA matrix. Tensile test results of PLA/stearate-Zn3Al LDH nanocomposites showed that the presence of around 1.0–3.0 wt % of the stearate-Zn3Al LDH in the PLA drastically improved its elongation at break. The biodegradation studies demonstrated a significant biodegradation rate improvement of PLA in the presence of stearate-Zn3Al LDH nanolayers. This effect can be caused by the catalytic role of the stearate groups in the biodegradation mechanism leading to much faster disintegration of nanocomposites than pure PLA. PMID:22942682
Madhavan, Priya; Jamal, Farida; Pei, Chong Pei; Othman, Fauziah; Karunanidhi, Arunkumar; Ng, Kee Peng
2018-06-01
Infections by non-albicans Candida species are a life-threatening condition, and formation of biofilms can lead to treatment failure in a clinical setting. This study was aimed to demonstrate the in vitro antibiofilm activity of fluconazole (FLU) and voriconazole (VOR) against C. glabrata, C. parapsilosis and C. rugosa with diverse antifungal susceptibilities to FLU and VOR. The antibiofilm activities of FLU and VOR in the form of suspension as well as pre-coatings were assessed by XTT [2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide] reduction assay. Morphological and intracellular changes exerted by the antifungal drugs on Candida cells were examined by scanning electron microscope (SEM) and transmission electron microscope (TEM). The results of the antibiofilm activities showed that FLU drug suspension was capable of killing C. parapsilosis and C. rugosa at minimum inhibitory concentrations (MICs) of 4× MIC FLU and 256× MIC FLU, respectively. While VOR MICs ranging from 2× to 32× were capable of killing the biofilms of all Candida spp tested. The antibiofilm activities of pre-coated FLU were able to kill the biofilms at ¼× MIC FLU and ½× MIC FLU for C. parapsilosis and C. rugosa strains, respectively. While pre-coated VOR was able to kill the biofilms, all three Candida sp at ½× MIC VOR. SEM and TEM examinations showed that FLU and VOR treatments exerted significant impact on Candida cell with various degrees of morphological changes. In conclusion, a fourfold reduction in MIC 50 of FLU and VOR towards ATCC strains of C. glabrata, C. rugosa and C. rugosa clinical strain was observed in this study.
NASA Technical Reports Server (NTRS)
Raj, S. V.; Noebe, R. D.; Bowman, R.
1989-01-01
The effect of a zirconium addition (0.05 at. pct) to a stoichiometric NiAl alloy on the brittle-to-ductile transition temperature (BDTT) of this alloy was investigated. Constant velocity tensile tests were conducted to fracture between 300 and 1100 K under initial strain rate 0.00014/sec, and the true stress and true strain values were determined from plots of load vs time after subtracting the elastic strain. The inelastic strain was measured under a traveling microscope. Microstructural characterization of as-extruded and fractured specimens was carried out by SEM and TEM. It was found that, while the addition of 0.05 at. pct Zr strengthened the NiAl alloy, it increased its BDTT; this shift in the BDTT could not be attributed either to variations in grain size or to impurity contents. Little or no room-temperature ductility was observed for either alloy.
Distortion of DNA Origami on Graphene Imaged with Advanced TEM Techniques.
Kabiri, Yoones; Ananth, Adithya N; van der Torre, Jaco; Katan, Allard; Hong, Jin-Yong; Malladi, Sairam; Kong, Jing; Zandbergen, Henny; Dekker, Cees
2017-08-01
While graphene may appear to be the ultimate support membrane for transmission electron microscopy (TEM) imaging of DNA nanostructures, very little is known if it poses an advantage over conventional carbon supports in terms of resolution and contrast. Microscopic investigations are carried out on DNA origami nanoplates that are supported onto freestanding graphene, using advanced TEM techniques, including a new dark-field technique that is recently developed in our lab. TEM images of stained and unstained DNA origami are presented with high contrast on both graphene and amorphous carbon membranes. On graphene, the images of the origami plates show severe unwanted distortions, where the rectangular shape of the nanoplates is significantly distorted. From a number of comparative control experiments, it is demonstrated that neither staining agents, nor screening ions, nor the level of electron-beam irradiation cause this distortion. Instead, it is suggested that origami nanoplates are distorted due to hydrophobic interaction of the DNA bases with graphene upon adsorption of the DNA origami nanoplates. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thinning of Large Biological Cells for Cryo-TEM Characterization by Cryo-FIB Milling
Strunk, Korrinn M.; Ke, Danxia; Gray, Jennifer L.; Zhang, Peijun
2013-01-01
SUMMARY Focused ion beam milling at cryogenic temperatures (cryo-FIB) is a valuable tool that can be used to thin vitreous biological specimens for subsequent imaging and analysis in a cryo-transmission electron microscope (cryo-TEM) in their frozen-hydrated state. This technique offers the potential benefit of eliminating the mechanical artifacts that are typically found with cryo-ultramicrotomy. However, due to the additional complexity in transferring samples in and out of the FIB, contamination and devitrification of the amorphous ice is commonly encountered. In order to address these problems, we have designed a new sample cryo-shuttle that specifically accepts Polara TEM cartridges directly in order to simplify the transfer process between the FIB and TEM. We used the quality of the ice in the sample as an indicator to test various parameters used the process, and demonstrated with successful milling of large mammalian cells. By comparing the results from larger HeLa cells to those from E. coli cells, we discuss some of the artifacts and challenges we have encountered using this technique. PMID:22906009
NASA Technical Reports Server (NTRS)
Noguchi, T.; Nakamura, T.; Zolensky, Michael E.; Tanaka, M.; Hashimoto, T.; Konno, M.; Nakato, A.; Ogami, T.; Fujimura, A.; Abe, M.;
2011-01-01
Surface materials on airless solar system bodies exposed to interplanetary space are gradually changed their visible to near-infrared reflectance spectra by the process called "space weathering", which makes the spectra darker and redder. Hapke et al. proposed a model of space weathering: vapor deposition of nanophase reduced iron (npFe(sup 0)) on the surfaces of the grains within the very surface of lunar regolith. This model has been proved by detailed observation of the surfaces of the lunar soil grains by transmission electron microscope (TEM). They demonstrated that npFe(sup 0) was formed by a combination of vapor deposition and irradiation effects. In other words, both micrometeorite impacts and irradiation by solar wind and galactic cosmic ray play roles on the space weathering on the Moon. Because there is a continuum of reflectance spectra from those of Q-type asteroids (almost the same as those of ordinary chondrites) to those of S-type asteroids, it is strongly suggested that reflectance spectra of asteroids composed of ordinary chondrite-like materials were modified over time to those of S-type asteroids due to space weathering. It is predicted that a small amount of npFe(sup 0) on the surface of grains in the asteroidal regolith composed of ordinary chondrite-like materials is the main agent of asteroidal space weathering.
Changes of ns-soot mixing states and shapes in an urban area during CalNex
NASA Astrophysics Data System (ADS)
Adachi, Kouji; Buseck, Peter R.
2013-05-01
Aerosol particles from megacities influence the regional and global climate as well as the health of their occupants. We used transmission electron microscopes (TEMs) to study aerosol particles collected from the Los Angeles area during the 2010 CalNex campaign. We detected major amounts of ns-soot, defined as consisting of carbon nanospheres, sulfate, sea salt, and organic aerosol (OA) and lesser amounts of brochosome particles from leaf hoppers. Ns-soot-particle shapes, mixing states, and abundances varied significantly with sampling times and days. Within plumes having high CO2 concentrations, much ns-soot was compacted and contained a relatively large number of carbon nanospheres. Ns-soot particles from both CalNex samples and Mexico City, the latter collected in 2006, had a wide range of shapes when mixed with other aerosol particles, but neither sets showed spherical ns-soot nor the core-shell configuration that is commonly used in optical calculations. Our TEM observations and light-absorption calculations of modeled particles indicate that, in contrast to ns-soot particles that are embedded within other materials or have the hypothesized core-shell configurations, those attached to other aerosol particles hardly enhance their light absorption. We conclude that the ways in which ns-soot mixes with other particles explain the observations of smaller light amplification by ns-soot coatings than model calculations during the CalNex campaign and presumably in other areas.
Damage to Hippocampus of Rats after Being Exposed to Infrasound.
Zhang, Meng Yao; Chen, Chen; Xie, Xue Jun; Xu, Sheng Long; Guo, Guo Zhen; Wang, Jin
2016-06-01
The objective was to observe damage of hippocampus in rats after exposure to infrasound, and to assess HSP70 expression in hippocampus. SD rats in the experimental group were exposed to 140 dB (8 Hz) infrasound for 2 h per day for 3 days. The morphology of the hippocampus was examined by transmission electronic microscopic (TEM). Cell apoptosis was observed by TUNEL staining at 0 h, 24 h, 48 h, and 2 w after exposure. HSP70 expression was detected by immunohistochemistry (IHC) and Western blotting (WB). TEM showed that hippocampus was significantly damaged by exposure, and exhibited recovery 1 week after exposure. The TUNEL data showed that neuronal apoptosis after exposure was significantly higher than in the control rats at 24 h and 48 h, and the apoptotic cells decreased one week after exposure. IHC and WB showed HSP70 expression was significantly higher in the exposed rats, peaked at 24 h. Exposure to 140 dB (8 Hz) infrasound for 2 h per day for 3 days appeared to induce damage to the hippocampus of rats, based on changes in ultrastructure and increased cell apoptosis. However, recovery from the damage occurred overtime. HSP70 expression also increased after the exposure and decreased by 48. Copyright © 2016 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.
Structural and Magnetic Response in Bimetallic Core/Shell Magnetic Nanoparticles
Nairan, Adeela; Khan, Usman; Iqbal, Munawar; Khan, Maaz; Javed, Khalid; Riaz, Saira; Naseem, Shahzad; Han, Xiufeng
2016-01-01
Bimagnetic monodisperse CoFe2O4/Fe3O4 core/shell nanoparticles have been prepared by solution evaporation route. To demonstrate preferential coating of iron oxide onto the surface of ferrite nanoparticles X-ray diffraction (XRD), High resolution transmission electron microscope (HR-TEM) and Raman spectroscopy have been performed. XRD analysis using Rietveld refinement technique confirms single phase nanoparticles with average seed size of about 18 nm and thickness of shell is 3 nm, which corroborates with transmission electron microscopy (TEM) analysis. Low temperature magnetic hysteresis loops showed interesting behavior. We have observed large coercivity 15.8 kOe at T = 5 K, whereas maximum saturation magnetization (125 emu/g) is attained at T = 100 K for CoFe2O4/Fe3O4 core/shell nanoparticles. Saturation magnetization decreases due to structural distortions at the surface of shell below 100 K. Zero field cooled (ZFC) and Field cooled (FC) plots show that synthesized nanoparticles are ferromagnetic till room temperature and it has been noticed that core/shell sample possess high blocking temperature than Cobalt Ferrite. Results indicate that presence of iron oxide shell significantly increases magnetic parameters as compared to the simple cobalt ferrite. PMID:28335200
NASA Technical Reports Server (NTRS)
Meyer, Marit E.
2015-01-01
Fire safety in the indoor spacecraft environment is concerned with a unique set of fuels which are designed to not combust. Unlike terrestrial flaming fires, which often can consume an abundance of wood, paper and cloth, spacecraft fires are expected to be generated from overheating electronics consisting of flame resistant materials. Therefore, NASA prioritizes fire characterization research for these fuels undergoing oxidative pyrolysis in order to improve spacecraft fire detector design. A thermal precipitator designed and built for spacecraft fire safety test campaigns at the NASA White Sands Test Facility (WSTF) successfully collected an abundance of smoke particles from oxidative pyrolysis. A thorough microscopic characterization has been performed for ten types of smoke from common spacecraft materials or mixed materials heated at multiple temperatures using the following techniques: SEM, TEM, high resolution TEM, high resolution STEM and EDS. Resulting smoke particle morphologies and elemental compositions have been observed which are consistent with known thermal decomposition mechanisms in the literature and chemical make-up of the spacecraft fuels. Some conclusions about particle formation mechanisms are explored based on images of the microstructure of Teflon smoke particles and tar ball-like particles from Nomex fabric smoke.
Microstructural evolution of Alloy 690 during sensitization at 700 deg. C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzalez-Rodriguez, J.G.; Casales, M.; Espinoza Medina, M.A.
2003-12-15
A structural characterization of sensitized Alloy 690 has been carried out. Alloy 690 was solution annealed (SA; 1100 deg. C for 30 min, water quenched, WQ) and sensitized at 700 deg. C for 5, 12, 24, 36, 48 and 72 h, followed by water quenched. Techniques employed included scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffraction and corrosion weight-loss tests. It was found that the cubic Cr{sub 0.19}Fe{sub 0.7}Ni{sub 0.11} phase was the main component in all the conditions. In addition, a grain refinement was observed when the aging time was increased; but after 48 h of aging,more » a discrete, semicontinuous network of Cr{sub 23}C{sub 6} precipitates was detected by X-ray diffraction, in addition to the NiCrO{sub 4}, Ni{sub 9}S{sub 8} and (Fe,Ni){sub 9}S{sub 8} phases found by TEM at the grain boundaries, making this alloy more susceptible to intergranular attack (IGA). After 72 h of aging, chromium continues diffusing, 'back-filling' the prior depletion profile, recovering the IGA resistance.« less
Alterations in mineral properties of zebrafish skeletal bone induced by liliput dtc232 gene mutation
NASA Astrophysics Data System (ADS)
Wang, Xiu-Mei; Cui, Fu-Zhai; Ge, Jun; Ma, Chen
2003-11-01
The alterations of mineral properties of bone by gene mutation in the zebrafish, which is associated with abnormal bone mineralization and bone diseases, were reported for the first time in this paper. Transmission electron microscope (TEM), Fourier transform infrared microspectroscopy (FTIRM) and thermogravimetric analysis (TGA) were used to investigate the changes in the mineral. Significant variations of the morphologies of the minerals and the mineral/matrix ratio after liliputdtc232(lil) gene mutation have been observed. The morphologies of the minerals, examined by TEM, revealed that the mutated mineral was in bigger size and the shape was block shaped but not plate shaped. The results of FTIRM indicated that the lil mutant zebrafish skeleton exhibited a greater mineral/matrix ratio (phosphate/matrix=4.86±0.28) than that of wild-type zebrafish bone (phosphate/matrix=4.17±0.67), which was confirmed by TGA analysis. Furthermore, the mineral of lil bone became less mature and crystalline with more ion substitutions. And the selected areas electron diffraction (SAED) patterns showed that the main crystal phases of the two type fishes were both hydroxyapatite. In addition, we have discussed the relationship among the mineral properties, nanomechanical properties and biomineralization process.
Green synthesis of Silver and Gold Nanoparticles for Enhanced catalytic and bactericidal activity
NASA Astrophysics Data System (ADS)
Naraginti, S.; Tiwari, N.; Sivakumar, A.
2017-11-01
A rapid one step green synthetic method using kiwi fruit extract was employed for preparation of silver and gold nanoparticles. The synthesized nanoparticles were successfully used as green catalysts for the reduction of 4-nitrophenol (4-NP) and methylene blue (MB). They also exhibited excellent antimicrobial activity against clinically isolated Pseudomonas aeruginosa (P.aeruginosa) and Staphylococcus aureus (S.aureus). It was noticed that with increase in concentration of the aqueous silver and gold solutions, particle size of the Ag and Au NPS showed increase as evidenced from UV-Visible spectroscopy and TEM micrograph. The method employed for the synthesis required only a few minutes for more than 90% formation of nanoparticles when the temperature was raised to 80°C. It was also noticed that the catalytic activity of nanoparticles depends upon the size of the particles. These nanoparticles were observed to be crystalline from the clear lattice fringes in the transmission electron microscopic (TEM) images, bright circular spots in the selected area electron diffraction (SAED) pattern and peaks in the X-ray diffraction (XRD) pattern. The Fourier-transform infrared (FTIR) spectrum indicated the presence of different functional groups in the biomolecule capping the nanoparticles.
Electron microscopic study of soot particulate matter emissions from aircraft turbine engines.
Liati, Anthi; Brem, Benjamin T; Durdina, Lukas; Vögtli, Melanie; Dasilva, Yadira Arroyo Rojas; Eggenschwiler, Panayotis Dimopoulos; Wang, Jing
2014-09-16
The microscopic characteristics of soot particulate matter (PM) in gas turbine exhaust are critical for an accurate assessment of the potential impacts of the aviation industry on the environment and human health. The morphology and internal structure of soot particles emitted from a CFM 56-7B26/3 turbofan engine were analyzed in an electron microscopic study, down to the nanoscale, for ∼ 100%, ∼ 65%, and ∼ 7% static engine thrust as a proxy for takeoff, cruising, and taxiing, respectively. Sampling was performed directly on transmission electron microscopy (TEM) grids with a state-of-the-art sampling system designed for nonvolatile particulate matter. The electron microscopy results reveal that ∼ 100% thrust produces the highest amount of soot, the highest soot particle volume, and the largest and most crystalline primary soot particles with the lowest oxidative reactivity. The opposite is the case for soot produced during taxiing, where primary soot particles are smallest and most reactive and the soot amount and volume are lowest. The microscopic characteristics of cruising condition soot resemble the ones of the ∼ 100% thrust conditions, but they are more moderate. Real time online measurements of number and mass concentration show also a clear correlation with engine thrust level, comparable with the TEM study. The results of the present work, in particular the small size of primary soot particles present in the exhaust (modes of 24, 20, and 13 nm in diameter for ∼ 100%, ∼ 65% and ∼ 7% engine thrust, respectively) could be a concern for human health and the environment and merit further study. This work further emphasizes the significance of the detailed morphological characteristics of soot for assessing environmental impacts.
Direct TEM observations of growth mechanisms of two-dimensional MoS2 flakes
Fei, Linfeng; Lei, Shuijin; Zhang, Wei-Bing; Lu, Wei; Lin, Ziyuan; Lam, Chi Hang; Chai, Yang; Wang, Yu
2016-01-01
A microscopic understanding of the growth mechanism of two-dimensional materials is of particular importance for controllable synthesis of functional nanostructures. Because of the lack of direct and insightful observations, how to control the orientation and the size of two-dimensional material grains is still under debate. Here we discern distinct formation stages for MoS2 flakes from the thermolysis of ammonium thiomolybdates using in situ transmission electron microscopy. In the initial stage (400 °C), vertically aligned MoS2 structures grow in a layer-by-layer mode. With the increasing temperature of up to 780 °C, the orientation of MoS2 structures becomes horizontal. When the growth temperature reaches 850 °C, the crystalline size of MoS2 increases by merging adjacent flakes. Our study shows direct observations of MoS2 growth as the temperature evolves, and sheds light on the controllable orientation and grain size of two-dimensional materials. PMID:27412892
Direct observation of multiple rotational stacking faults coexisting in freestanding bilayer MoS2.
Li, Zuocheng; Yan, Xingxu; Tang, Zhenkun; Huo, Ziyang; Li, Guoliang; Jiao, Liying; Liu, Li-Min; Zhang, Miao; Luo, Jun; Zhu, Jing
2017-08-16
Electronic properties of two-dimensional (2D) MoS 2 semiconductors can be modulated by introducing specific defects. One important type of defect in 2D layered materials is known as rotational stacking fault (RSF), but the coexistence of multiple RSFs with different rotational angles was not directly observed in freestanding 2D MoS 2 before. In this report, we demonstrate the coexistence of three RSFs with three different rotational angles in a freestanding bilayer MoS 2 sheet as directly observed using an aberration-corrected transmission electron microscope (TEM). Our analyses show that these RSFs originate from cracks and dislocations within the bilayer MoS 2 . First-principles calculations indicate that RSFs with different rotational angles change the electronic structures of bilayer MoS 2 and produce two new symmetries in their bandgaps and offset crystal momentums. Therefore, employing RSFs and their coexistence is a promising route in defect engineering of MoS 2 to fabricate suitable devices for electronics, optoelectronics, and energy conversion.
Phytotoxicity and uptake of nanoscale zero-valent iron (nZVI) by two plant species.
Ma, Xingmao; Gurung, Arun; Deng, Yang
2013-01-15
Use of nano-scale zero valent iron (nZVI) for the treatment of various environmental pollutants has been proven successful. However, large scale introduction of engineered nanomaterials such as nZVI into the environment has recently attracted serious concerns. There is an urgent need to investigate the environmental fate and impact of nZVI due to the scope of its application. The goal of this study was to evaluate the toxicity and accumulation of bare nZVI by two commonly encountered plant species: cattail (Typha latifolia) and hybrid poplars (Populous deltoids×Populous nigra). Plant seedlings were grown hydroponically in a greenhouse and dosed with different concentrations of nZVI (0-1000 mg/L) for four weeks. The nZVI exhibited strong toxic effect on Typha at higher concentrations (>200 mg/L) but enhanced plant growth at lower concentrations. nZVI also significantly reduced the transpiration and growth of hybrid poplars at higher concentrations. Microscopic images indicated that large amount of nZVI coated on plant root surface as irregular aggregates and some nZVI penetrated into several layers of epidermal cells. Transmission electron microscope (TEM) and scanning transmission electron microscope (STEM) confirmed the internalization of nZVI by poplar root cells but similar internalization was not observed for Typha root cells. The upward transport to shoots was minimal for both plant species. Copyright © 2012 Elsevier B.V. All rights reserved.
Cross-sectional TEM specimen preparation for W/B{sub 4}C multilayer sample using FIB
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mondal, Puspen, E-mail: puspen@rrcat.gov.in; Pradhan, P. C.; Tiwari, Pragya
2016-05-23
A recent emergence of a cross-beam scanning electron microscopy (SEM)/focused-ion-beam (FIB) system have given choice to fabricate cross-sectional transmission electron microscopy (TEM) specimen of thin film multilayer sample. A 300 layer pair thin film multilayer sample of W/B{sub 4}C was used to demonstrate the specimen lift-out technique in very short time as compared to conventional cross-sectional sample preparation technique. To get large area electron transparent sample, sample prepared by FIB is followed by Ar{sup +} ion polishing at 2 kV with grazing incident. The prepared cross-sectional sample was characterized by transmission electron microscope.
Analysis of Local Structure, Chemistry and Bonding by Electron Energy Loss Spectroscopy
NASA Astrophysics Data System (ADS)
Mayer, Joachim
In the present chapter, the reader will first be introduced briefly to the basic principles of analytical transmission electron microscopy (ATEM) with special emphasis on electron energy-loss spectroscopy (EELS) and energy-filtering TEM. The quantification of spectra to obtain chemical information and the origin and interpretation of near-edge fine structures in EELS (ELNES) are discussed. Special attention will be given to the characterization of internal interfaces and the literature in this area will be reviewed. Selected examples of the application of ATEM in the investigation of internal interfaces will be given. These examples include both EELS in the energy-filtering TEM and in the scanning transmission electron microscope (STEM).
Synthesis of gold nanoparticles with graphene oxide.
Wang, Wenshuo; He, Dawei; Zhang, Xiqing; Duan, Jiahua; Wu, Hongpeng; Xu, Haiteng; Wang, Yongsheng
2014-05-01
Single sheets of functionalized graphene oxide are derived through chemical exfoliation of natural flake graphite. We present an effective synthetic method of graphene-gold nanoparticles hybrid nanocomposites. AFM (Atomic Force Microscope) was used to measure the thickness of the individual GO nanosheet. FTIR (Fourier transform infrared) spectroscopy was used to verify the attachment of oxygen functionalities on the surface of graphene oxide. TEM (Transmission Electron Microscope) data revealed the average diameters of the gold colloids and characterized the composite particles situation. Absorption spectroscopy showed that before and after synthesis the gold particle size did not change. Our studies indicate that the hybrid is potential substrates for catalysts and biosensors.
Apparatus and methods for controlling electron microscope stages
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duden, Thomas
Methods and apparatus for generating an image of a specimen with a microscope (e.g., TEM) are disclosed. In one aspect, the microscope may generally include a beam generator, a stage, a detector, and an image generator. A plurality of crystal parameters, which describe a plurality of properties of a crystal sample, are received. In a display associated with the microscope, an interactive control sphere based at least in part on the received crystal parameters and that is rotatable by a user to different sphere orientations is presented. The sphere includes a plurality of stage coordinates that correspond to a pluralitymore » of positions of the stage and a plurality of crystallographic pole coordinates that correspond to a plurality of polar orientations of the crystal sample. Movement of the sphere causes movement of the stage, wherein the stage coordinates move in conjunction with the crystallographic coordinates represented by pole positions so as to show a relationship between stage positions and the pole positions.« less
Endosymbiotic copepods may feed on zooxanthellae from their coral host, Pocillopora damicornis
NASA Astrophysics Data System (ADS)
Cheng, Y.-R.; Dai, C.-F.
2010-03-01
The Xarifiidae is one of the most common families of endosymbiotic copepods that live in close association with scleractinian corals. Previous studies on xarifiids primarily focused on their taxonomy and morphology, while their influence on corals is still unknown. In this study, we collected a total of 1,579 individuals belonging to 6 species of xarifiids from 360 colonies of Pocillopora damicornis at Nanwan Bay, southern Taiwan from July 2007 to May 2008. Furthermore, using optical and electron microscopic observations, we examined the gut contents of Xarifia fissilis, the most abundant species of the Xarifiidae that we collected. We found that the gut of X. fissilis was characterized by a reddish-brown color due to the presence of numerous unicellular algae with diameters of 5-10 μm. TEM observations indicated that the unicellular algae possessed typical characteristics of Symbiodinium including a peripheral chloroplast, stalked pyrenoids, starch sheaths, mesokaryotic nuclei, amphiesmas, an accumulation body, and mitochondria. After starving the isolated X. fissilis in the light and dark (light intensity: 140 μmol photon m-2 s-1; photoperiod: 12 h light/12 h dark) for 2 weeks, fluorescence was clearly visible in its gut and fecal pellets under fluorescent microscopic observations. The cultivation experiment supports the hypothesis that the unicellular algae were beneficial to the survival of X. fissilis under light conditions, possibly through transferring photosynthates to the hosts. These results suggest that X. fissilis may consume and retain unicellular algae for further photosynthesis.
Novel duck parvovirus identified in Cherry Valley ducks (Anas platyrhynchos domesticus), China.
Li, Chuanfeng; Li, Qi; Chen, Zongyan; Liu, Guangqing
2016-10-01
An unknown infectious disease in Cherry Valley ducks (Anas platyrhynchos domesticus) characterized by short beak and strong growth retardation occurred in China during 2015. The causative agent of this disease, tentatively named duck short beak and dwarfism syndrome (DSBDS), as well as the evolutionary relationships between this causative agent and all currently known avian-origin parvoviruses were clarified by virus isolation, transmission electron microscope (TEM) observation, analysis of nuclear acid type, (RT-)PCR identification, whole genome sequencing, and NS1 protein sequences-based phylogenetic analyses. The results indicated that the causative agent of DSBDS is closely related with the goose parvovirus-like virus, which is divergent from all currently known avian-origin parvoviruses and should be a novel duck parvovirus (NDPV). Copyright © 2016 Elsevier B.V. All rights reserved.
Novel Slide-Ring Material/Natural Rubber Composites with High Damping Property
Wang, Wencai; Zhao, Detao; Yang, Jingna; Nishi, Toshio; Ito, Kohzo; Zhao, Xiuying; Zhang, Liqun
2016-01-01
A novel class of polymers called “slide-ring” (SR) materials with slideable junctions were used for high damping composites for the first time. The SR acts as the high damping phase dispersed in the natural rubber (NR) matrix, and epoxidized natural rubber (ENR) acts as the compatibilizer. The morphological, structural, and mechanical properties of the composites were investigated by atomic force microscope (AFM), transmission electron microscope (TEM), dynamic mechanical thermal analyzer (DMTA), rubber processing analyzer (RPA), and tensile tester. AFM and TEM results showed that the SR phase was uniformly dispersed in the composites, in a small size that is a function of ENR. DMTA and RPA results showed that the damping factor of the composites is much higher than that of NR, especially at room temperatures. Stretch hysteresis was used to study the energy dissipation of the composites at large strains. The results showed that SR and ENR can significantly improve the dissipation efficiency at strains lower than 200% strain. Wide-angle X-ray diffraction was used to study the strain-induced crystallization of the composites. The results indicated that the impact of the SR on the crystallization of NR is mitigated by the insulating effect of ENR. PMID:26949077
Effect of isovalent dopants on photodegradation ability of ZnS nanoparticles
NASA Astrophysics Data System (ADS)
Khaparde, Rohini; Acharya, Smita
2016-06-01
Isovalent (Mn, Cd, Cu, Co)-doped-ZnS nanoparticles having size vary in between 2 to 5 nm are synthesized by co-precipitation route. Their photocatalytic activity for decoloration of Cango Red and Malachite Green dyes is tested in visible radiation under natural conditions. Structural and morphological features of the samples are investigated by X-ray diffraction, Raman spectroscopy, Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM) and UVsbnd Vis spectrometer. Single phase zinc blende structure of as-synthesized undoped and doped-ZnS is confirmed by XRD and revealed by Rietveld fitting. SEM and TEM images show ultrafine nanoparticles having size in the range of 2 to 5 nm. UV-Vis absorption spectra exhibit blue shift in absorption edge of undoped and doped ZnS as compared to bulk counterpart. The photocatalytic activity as a function of dopant concentration and irradiation time is systematically studied. The rate of de-coloration of dyes is detected by UVsbnd Vis absorption spectroscopy and organic dye mineralization is confirmed by table of carbon (TOC) study. The photocatalytic activity of Mn-doped ZnS is highest amongst all dopants; however Co as a dopant is found to reduce photocatalytic activity than pure ZnS.
Sun, Cheng; Müller, Erich; Meffert, Matthias; Gerthsen, Dagmar
2018-04-01
Transmission electron microscopy (TEM) with low-energy electrons has been recognized as an important addition to the family of electron microscopies as it may avoid knock-on damage and increase the contrast of weakly scattering objects. Scanning electron microscopes (SEMs) are well suited for low-energy electron microscopy with maximum electron energies of 30 keV, but they are mainly used for topography imaging of bulk samples. Implementation of a scanning transmission electron microscopy (STEM) detector and a charge-coupled-device camera for the acquisition of on-axis transmission electron diffraction (TED) patterns, in combination with recent resolution improvements, make SEMs highly interesting for structure analysis of some electron-transparent specimens which are traditionally investigated by TEM. A new aspect is correlative SEM, STEM, and TED imaging from the same specimen region in a SEM which leads to a wealth of information. Simultaneous image acquisition gives information on surface topography, inner structure including crystal defects and qualitative material contrast. Lattice-fringe resolution is obtained in bright-field STEM imaging. The benefits of correlative SEM/STEM/TED imaging in a SEM are exemplified by structure analyses from representative sample classes such as nanoparticulates and bulk materials.
New Developments in Cathodoluminescence Spectroscopy for the Study of Luminescent Materials
den Engelsen, Daniel; Fern, George R.; Harris, Paul G.; Ireland, Terry G.; Silver, Jack
2017-01-01
Herein, we describe three advanced techniques for cathodoluminescence (CL) spectroscopy that have recently been developed in our laboratories. The first is a new method to accurately determine the CL-efficiency of thin layers of phosphor powders. When a wide band phosphor with a band gap (Eg > 5 eV) is bombarded with electrons, charging of the phosphor particles will occur, which eventually leads to erroneous results in the determination of the luminous efficacy. To overcome this problem of charging, a comparison method has been developed, which enables accurate measurement of the current density of the electron beam. The study of CL from phosphor specimens in a scanning electron microscope (SEM) is the second subject to be treated. A detailed description of a measuring method to determine the overall decay time of single phosphor crystals in a SEM without beam blanking is presented. The third technique is based on the unique combination of microscopy and spectrometry in the transmission electron microscope (TEM) of Brunel University London (UK). This combination enables the recording of CL-spectra of nanometre-sized specimens and determining spatial variations in CL emission across individual particles by superimposing the scanning TEM and CL-images. PMID:28772671
NASA Astrophysics Data System (ADS)
Karreman, M. A.
2013-03-01
Correlative microscopy is the combined use of two different forms of microscopy in the study of a specimen, allowing for the exploitation of the advantages of both imaging tools. The integrated Laser and Electron Microscope (iLEM), developed at Utrecht University, combines a fluorescence microscope (FM) and a transmission electron microscope (TEM) in a single set-up. The region of interest in the specimen is labeled or tagged with a fluorescent probe and can easily be identified within a large field of view with the FM. Next, this same area is retraced in the TEM and can be studied at high resolution. The iLEM demands samples that can be imaged with both FM and TEM. Biological specimen, typically composed of light elements, generate low image contrast in the TEM. Therefore, these samples are often ‘contrasted’ with heavy metal stains. FM, on the other hand, images fluorescent samples. Sample preparation for correlative microscopy, and iLEM in particular, is complicated by the fact that the heavy metals stains employed for TEM quench the fluorescent signal of the probe that is imaged with FM. The first part of this thesis outlines preparation procedures for biological material yielding specimen that can be imaged with the iLEM. Here, approaches for the contrasting of thin sections of cells and tissue are introduced that do not affect the fluorescence signal of the probe that marks the region of interest. Furthermore, two novel procedures, VIS2FIXH and VIS2FIXFS are described that allow for the chemical fixation of thin sections of cryo-immobilized material. These procedures greatly expedite the sample preparation process, and open up novel possibilities for the immuno-labeling of difficult antigens, eg. proteins and lipids that are challenging to preserve. The second part of this thesis describes applications of iLEM in research in the field of life and material science. The iLEM was employed in the study of UVC induced apoptosis (programmed cell death) of human umbilical vein endothelial cells. A novel, RNA containing body was identified in the nuclei of cells going through the various stages of the apoptotic process. Furthermore, we demonstrated the potential of iLEM in the study of Facio Scapulo Humeral Dystrophy (FSHD), the third most common form of inherited muscular dystrophy. In this study, diseased cells are identified based on the immuno-labeling of proteins associated with FSHD pathology. In the field of heterogeneous catalysis, a structural and functional characterization of Fluid Catalytic Cracking (FCC) particles was performed with iLEM. FCC particles are employed in petrochemical industry, where they catalyze the breakdown of large molecules in crude oil fractions into functional products with lower molecular weight, like gasoline. The catalytic sites in the FCC particles were selectively stained with a fluorescent probe, and next their structure was investigated with TEM. The iLEM allowed for the identification and characterization of catalytically active areas in the FCC particles. Furthermore, a unique study of the deactivation processes taking place in an industrial FCC unit was performed by analyzing a sample derived from a FCC reactor
Gopinath, V; MubarakAli, D; Priyadarshini, S; Priyadharsshini, N Meera; Thajuddin, N; Velusamy, P
2012-08-01
In the recent decades, increased development of green synthesis of nanoparticles is inevitable because of its incredible applications in all fields of science. There were numerous work have been produced based on the plant and its extract mediated synthesis of nanoparticles, in this present study to explore that the novel approaches for the biosynthesis of silver nanoparticles using plant fruit bodies. The plant, Tribulus terrestris L. fruit bodies are used in this study, where the dried fruit body extract was mixed with silver nitrate in order to synthesis of silver nanoparticles. The active phytochemicals present in the plant were responsible for the quick reduction of silver ion (Ag(+)) to metallic silver nanoparticles (Ag(0)). The reduced silver nanoparticles were characterized by Transmission Electron Microscope (TEM), Atomic Force Microscope (AFM), XRD, FTIR, UV-vis spectroscopy. The spherical shaped silver nanoparticles were observed and it was found to be 16-28 nm range of sizes. The diffraction pattern also confirmed that the higher percentage of silver with fine particles size. The antibacterial property of synthesized nanoparticles was observed by Kirby-Bauer method with clinically isolated multi-drug resistant bacteria such as Streptococcus pyogens, Pseudomonas aeruginosa, Escherichia coli, Bacillus subtilis and Staphylococcus aureus. The plant materials mediated synthesis of silver nanoparticles have comparatively rapid and less expensive and wide application to antibacterial therapy in modern medicine. Copyright © 2012 Elsevier B.V. All rights reserved.
Zhang, Yanmin; Qu, Youle; Zhang, Jie; Wang, Xiaojuan
2010-06-01
The present study was to evaluate the effects of Ardipusilloside I isolated from Ardisia pusilla on the growth, vascular endothelial growth factor receptor (VEGFR) expression and apoptosis of NCI-H460 cell line by MTT, ELISA and flow cytometer, respectively. The docking assay between Ardipusilloside I and VEGFR was studied by Sybyl/Sketch module. The change of microstructure was observed by transmission electron microscope (TEM). DNA fragmentation was visualized by agarose gel electrophoresis. The protein expression of Bax and Bcl-2 was detected by immunohistochemistry (IHC). A series of changes were observed in NCI-H460 cell treated by Ardipusilloside I, including microstructure, DNA fragmentation, protein expression of VEGFR, Bax and Bcl-2. The results showed Ardipusilloside I had a good docking with VEGFR and could inhibit growth and induce apoptosis of NCI-H460 cell in a dose-dependent manner. Cell cycle was significantly stopped at the G(1) phase. Under electronic microscope, the morphology of NCI-H460 cell treated with Ardipusilloside I showed nuclear karyopycnosis, chromatin agglutination and typical apoptotic body. VEGFR and Bcl-2 expression were decreased and Bax expression was increased. In conclusion, all these results demonstrate that Ardipusilloside I has a good docking with VEGFR and has an inhibitory effect on growth of NCI-H460 cell and can induce its apoptosis.
de Jonge, Niels
2018-04-01
The sample dependent spatial resolution was calculated for transmission electron microscopy (TEM) and scanning TEM (STEM) of objects (e.g., nanoparticles, proteins) embedded in a layer of liquid water or amorphous ice. The theoretical model includes elastic- and inelastic scattering, beam broadening, and chromatic aberration. Different contrast mechanisms were evaluated as function of the electron dose, the detection angle, and the sample configuration. It was found that the spatial resolution scales with the electron dose to the -1/4th power. Gold- and carbon nanoparticles were examined in the middle of water layers ranging from 0.01--10 µm thickness representing relevant classes of experiments in both materials science and biology. The optimal microscope settings differ between experimental configurations. STEM performs the best for gold nanoparticles for all layer thicknesses, while carbon is best imaged with phase-contrast TEM for thin layers but bright field STEM is preferred for thicker layers. The resolution was also calculated for a water layer enclosed between thin membranes. The influence of chromatic aberration correction for TEM was examined as well. The theory is broadly applicable to other types of materials and sample configurations. Copyright © 2018 Elsevier B.V. All rights reserved.
Surface phenomenon in Electrochemical Systems
NASA Astrophysics Data System (ADS)
Gupta, Tanya
Interfaces play a critical role in the performance of electrochemical systems. This thesis focusses on interfaces in batteries and covers aspects of interfacial morphologies of metal anodes, including Silicon, Lithium and Zinc. Growth and cycling of electrochemically grown Lithium and Zinc metal structures is investigated. A new morphology of Zinc, called Hyper Dendritic Zinc is introduced. It is cycled against Prussian Blue Analogues and is shown to improve the performance of this couple significantly. Characterization of materials is done using various electron microscopy techniques ranging from Low Energy Electron Microscope (LEEM), to high energy Transmission Electron Microscope (TEM). LEEM is used for capturing subtle surface phenomenon occurring during epitaxial process of electrolyte on anode. The system studied is Silicon (100) during Chemical Vapor Deposition of Ethylene Carbonate. A strain driven relaxation theory is modeled to explain the unusual restructuring of Si substrate. The other extreme, TEM, is often used to study electrochemical processes, without clear understanding of how the high-energy electron beam can influence the sample under investigation. Here, we study the radiolysis in liquid cell TEM and emphasize on the enhancement of radiation dose at interfaces of the liquid due to generation of secondary and backscattered electrons from adjoining materials. It is shown that this effect is localized in a 10 nm region around the interface and can play a dominating role if there is an interface of liquid with heavy metals like Gold and Platinum which are frequently used as electrode materials. This analysis can be used to establish guidelines for experimentalists to follow, for accurate interpretation of their results.
In situ TEM and analytical STEM studies of ZnO nanotubes with Sn cores and Sn nanodrops
NASA Astrophysics Data System (ADS)
Ortega, Y.; Jäger, W.; Piqueras, J.; Häussler, D.; Fernández, P.
2013-10-01
ZnO nanorods with Sn core regions grown by a thermal evaporation-deposition method from a mixture of SnO2 and ZnS powders as precursors, are used to study the behaviour of liquid metal in the nanotubes' core regions and the formation of liquid metal nanodrops at the tube ends by in situ TEM experiments. The compositions of the core materials and of the nanodrops were assessed by employing HAADF-STEM imaging and spatially resolved EDXS measurements. By applying variable thermal load through changing the electron-beam flux of the electron microscope, melting of the metallic core can be induced and the behaviour of the liquid metal of the nanorods can be monitored locally. Within the nanorod core, melting and reversible thermal expansion and contraction of Sn core material is reproducibly observed. For nanotubes with core material near-tip regions, a nanodrop emerges from the tip upon melting the core material, followed by reabsorption of the melt into the core and re-solidification upon decreasing the heat load, being reminiscent of a ‘soldering nanorod’. The radius of the liquid nanodrop can reach a few tens of nanometres, containing a total volume of 10-20 up to 10-18 l of liquid Sn. In situ TEM confirms that the radius of the nanodrop can be controlled via the thermal load: it increases with increasing temperature and decreases with decreasing temperature. In addition, some phenomena related to structure modifications during extended electron-beam exposure are also described.
Monninger, Mitchell K; Nguessan, Chrystal A; Blancett, Candace D; Kuehl, Kathleen A; Rossi, Cynthia A; Olschner, Scott P; Williams, Priscilla L; Goodman, Steven L; Sun, Mei G
2016-12-01
Transmission electron microscopy can be used to observe the ultrastructure of viruses and other microbial pathogens with nanometer resolution. In a transmission electron microscope (TEM), the image is created by passing an electron beam through a specimen with contrast generated by electron scattering from dense elements in the specimen. Viruses do not normally contain dense elements, so a negative stain that places dense heavy metal salts around the sample is added to create a dark border. To prepare a virus sample for a negative stain transmission electron microscopy, a virus suspension is applied to a TEM grid specimen support, which is a 3mm diameter fragile specimen screen coated with a few nanometers of plastic film. Then, deionized (dI) water rinses and a negative stain solution are applied to the grid. All infectious viruses must be handled in a biosafety cabinet (BSC) and many require a biocontainment laboratory environment. Staining viruses in biosafety levels (BSL) 3 and 4 is especially challenging because the support grids are small, fragile, and easily moved by air currents. In this study we evaluated a new device for negative staining viruses called mPrep/g capsule. It is a capsule that holds up to two TEM grids during all processing steps and for storage after staining is complete. This study reports that the mPrep/g capsule method is valid and effective to negative stain virus specimens, especially in high containment laboratory environments. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Microchemical and Structural Evidence for Space Weathering in Soils from Asteroid Itokawa
NASA Technical Reports Server (NTRS)
Thompson, M. S.; Christoffersen, R.; Zega, T. J.
2013-01-01
The chemistry, microstructure and optical properties of grains on the surfaces of airless bodies are continu-ously modified due to their interactions predominantly with solar energetic ions and micrometeorite impacts. Collectively known as space weathering, this phenomenon results in a discrepancy between remotely sensed spectra from asteroids and those ac-quired directly from meteorites. The return of pristine samples from the asteroid Itokawa provides insight into surface processes on airless bodies and will help in correlating remote sensing data with laboratory analysis of meteorites. Samples and Methods: We examined Itokawa samples RA-QD02-0042-01 and RA-QD-02-0042-02, ultramicrotomed sec-tions of a singular grain prepared by the Hayabusa sample cura-tion team. We analyzed these slices using a 200 keV JEOL 2010F transmission electron microscope (TEM) at Arizona State Uni-versity and a 200 keV JEOL 2500SE TEM at NASA JSC. Both field emission TEMs are equipped with energy-dispersive X-ray spectrometers (EDS) and scanning TEM (STEM) detectors. Results and Discussion: TEM observations reveal that the sectioned grain predominantly consists of a single crystal of low-Ca orthopyroxene, with subsidiary smaller regions of olivine, Fe-Ni sulfide, and Fe-Ni metal. EDS-spectrum imaging and high-resolution TEM (HRTEM) show local, nanocrystalline regions of the outermost 2 to 5 nm of the pyroxene are composed of an Fe-Mg-S-rich and Si- and O-depleted layer that is underlain by a 2- to 5-nm thick amorphous zone enriched in Si. These layers occur in multiple microtome slices and have uniform thicknesses. We also observe localized 'islands' of material on the surface of the pyroxene which HRTEM imaging indicates are amorphous and EDS measurements show are compositionally heterogeneous. A 10- to 60-nm thick partially amorphous zone occurs below the compositionally distinct rim. While this this zone is associated with the compositionally heterogeneous outer layer, it also occurs as a local stand-alone feature on the exterior rim of the grain. Ar-eas of the pyroxene grain rim also exhibit a vesicular texture. The TEM data indicate a complex history of space weather-ing for samples RA-QD02-0042-01 and -02. The outermost layer of nanocrystalline material with varied composition is consistent with previously suggested [3-4] chemical and structural pro-cessing by solar wind ions, with a possible additional role for im-pact vapor deposition [3-4]. The amorphous and compositionally distinct islands on the surface of this grain, similar to lunar glasses, suggest formation through vapor deposition via micrometeor-ite impact events. In comparison, the amorphization and vesicula-tion textures are likely a product of radiation damage from the solar wind. The depth and degree of amorphization, in conjunction with model calculations, will help provide an upper limit on exposure time for these particles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, Trisha; Lee, Jeong-Ho; Meng, Ze-Da
Highlights: ► CdSe–graphene is synthesized by hydrothermal method. ► Three molar solutions of CdSe were used making three different composites. ► RhB and Texbrite MST-L were used as sample dye solutions. ► Texbrite MST-L is photo degraded in visible light. ► UV-spectroscopic analysis was done to measure degradation. - Abstract: CdSe–graphene composites were prepared using simple “hydrothermal method” where the graphene surface was modified using different molar solutions of cadmium selenide (CdSe) in aqueous media. The characterization of CdSe–graphene composites were studied by X-ray diffraction (XRD), energy dispersive X-ray (EDX), scanning electron microscope (SEM), and with transmission electron microscope (TEM).more » The catalytic activities of CdSe-composites were evaluated by degradation of rhodamine B (RhB) and commercial industrial dye “Texbrite MST-L (TXT-MST)” with fixed concentration. The degradation was observed by the decrease in the absorbance peak studied by UV spectrophotometer. The decrease in the dye concentration indicated catalytic degradation effect by CdSe–graphene composites.« less
NASA Astrophysics Data System (ADS)
Sivasankari, J.; Selvakumar Sellaiyan, S.; Sankar, S.; Devi, L. Vimala; Sivaji, K.
2017-01-01
Pure MgO, rare-earth (Er) doped MgO (MgO:Er), and alkali metal ions (Li, Na and K) co-doped MgO:Er [i.e. MgO: Er+X (X=Li, Na, and K)] nanopowders were synthesized by solution combustion method and characterized. The XRD analysis reveals the cubic structure and the substitution of dopants and co-dopants in MgO. Annealing at 800 °C, increases the sizes of nano-crystallites of all samples appreciably, indicating the grain growth and the improvement in crystallinity of all the samples. Increase in lattice parameter, d spacing and band gap were observed after annealing. Structural and morphological analysis using scanning electron microscope (SEM) and transmission electron microscope (TEM) studies has shown that the samples contain structures like agglomerated clusters. FT-IR spectra confirm the stretching mode of hydroxyl groups, carbonate and presence of MgO bonding. The characteristic wavelength ranging from 2600 cm-1 to 3000 cm-1 were assigned to transition of 4S3/2→4I13/2 and 4I11/2→4I15/2 of Er3+.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Longtao, E-mail: longtaojiang@163.com; Wang, Pingping; Xiu, Ziyang
2015-08-15
In this work, aluminum matrix composites reinforced with diamond particles (diamond/aluminum composites) were fabricated by squeeze casting method. The material exhibited a thermal conductivity as high as 613 W / (m · K). The obtained composites were investigated by scanning electron microscope and transmission electron microscope in terms of the (100) and (111) facets of diamond particles. The diamond particles were observed to be homogeneously distributed in the aluminum matrix. The diamond{sub (111)}/Al interface was found to be devoid of reaction products. While at the diamond{sub (100)}/Al interface, large-sized aluminum carbides (Al{sub 4}C{sub 3}) with twin-crystal structure were identified. Themore » interfacial characteristics were believed to be responsible for the excellent thermal conductivity of the material. - Graphical abstract: Display Omitted - Highlights: • Squeeze casting method was introduced to fabricate diamond/Al composite. • Sound interfacial bonding with excellent thermal conductivity was produced. • Diamond{sub (111)}/ aluminum interface was firstly characterized by TEM/HRTEM. • Physical combination was the controlling bonding for diamond{sub (111)}/aluminum. • The growth mechanism of Al{sub 4}C{sub 3} was analyzed by crystallography theory.« less
Crimp, Martin A
2006-05-01
The imaging and characterization of dislocations is commonly carried out by thin foil transmission electron microscopy (TEM) using diffraction contrast imaging. However, the thin foil approach is limited by difficult sample preparation, thin foil artifacts, relatively small viewable areas, and constraints on carrying out in situ studies. Electron channeling imaging of electron channeling contrast imaging (ECCI) offers an alternative approach for imaging crystalline defects, including dislocations. Because ECCI is carried out with field emission gun scanning electron microscope (FEG-SEM) using bulk specimens, many of the limitations of TEM thin foil analysis are overcome. This paper outlines the development of electron channeling patterns and channeling imaging to the current state of the art. The experimental parameters and set up necessary to carry out routine channeling imaging are reviewed. A number of examples that illustrate some of the advantages of ECCI over thin foil TEM are presented along with a discussion of some of the limitations on carrying out channeling contrast analysis of defect structures. Copyright (c) 2006 Wiley-Liss, Inc.
Xia, Weiwei; Xu, Feng; Zhu, Chongyang; ...
2016-07-15
The fundamental electrochemical reaction mechanisms and the phase transformation pathways of layer-structured α-MoO 3 nanobelt during the sodiation/desodiation process to date remain largely unknown. In this study, to observe the real-time sodiation/desodiaton behaviors of α-MoO 3 during electrochemical cycling, we construct a MoO 3 anode sodium-ion battery inside a transmission electron microscope (TEM). Utilizing in situ TEM and electron diffraction pattern (EDP) observation, α-MoO 3 nanobelts are found to undergo a unique multi-step phase transformation. Upon the first sodiation, α-MoO 3 nanobelts initially form amorphous Na xMoO3 phase and are subsequently sodiated into intermediate phase of crystalline NaMoO 2, finallymore » resulting in the crystallized Mo nanograins embedded within the Na 2O matrix. During the first desodiation process, Mo nanograins are firstly re-oxidized into intermediate phase NaMoO 2 that is further transformed into amorphous Na 2MoO 3, resulting in an irreversible phase transformation. Upon subsequent sodiation/desodiation cycles, however, a stable and reversible phase transformation between crystalline Mo and amorphous Na2MoO 3 phases has been revealed. In conclusion, our work provides an in-deepth understanding of the phase transformation pathways of α-MoO 3 nanobelts upon electrochemical sodiation/desodiation processes, with the hope of assistance in designing sodium-ion batteries with enhanced performance.« less
A Novel Method for In Situ Electromechanical Characterization of Nanoscale Specimens
Reid, Russell C.; Piqué, Alberto; Kang, Wonmo
2017-01-01
Electrically assisted deformation (EAD) is increasingly being used to improve the formability of metals during processes such as sheet metal rolling and forging. Adoption of this technique is proceeding despite disagreement concerning the underlying mechanism responsible for EAD. The experimental procedure described herein enables a more explicit study compared to previous EAD research by removing thermal effects, which are responsible for disagreement in interpreting previous EAD results. Furthermore, as the procedure described here enables EAD observation in situ and in real time in a transmission electron microscope (TEM), it is superior to existing post-mortem methods that observe EAD effects post-test. Test samples consist of a single crystal copper (SCC) foil having a free-standing tensile test section of nanoscale thickness, fabricated using a combination of laser and ion beam milling. The SCC is mounted to an etched silicon base that provides mechanical support and electrical isolation while serving as a heat sink. Using this geometry, even at high current density (~3,500 A/mm2), the test section experiences a negligible temperature increase (<0.02 °C), thus eliminating Joule heating effects. Monitoring material deformation and identifying the corresponding changes to microstructures, e.g. dislocations, are accomplished by acquiring and analyzing a series of TEM images. Our sample preparation and in situ experiment procedures are robust and versatile as they can be readily utilized to test materials with different microstructures, e.g., single and polycrystalline copper. PMID:28605394
Phage Conversion for β-Lactam Antibiotic Resistance of Staphylococcus aureus from Foods.
Lee, Young-Duck; Park, Jong-Hyun
2016-02-01
Temperate phages have been suggested to carry virulence factors and other lysogenic conversion genes that play important roles in pathogenicity. In this study, phage TEM123 in wild-type Staphylococcus aureus from food sources was analyzed with respect to its morphology, genome sequence, and antibiotic resistance conversion ability. Phage TEM123 from a mitomycin C-induced lysate of S. aureus was isolated from foods. Morphological analysis under a transmission electron microscope revealed that it belonged to the family Siphoviridae. The genome of phage TEM123 consisted of a double-stranded DNA of 43,786 bp with a G+C content of 34.06%. A bioinformatics analysis of the phage genome identified 43 putative open reading frames (ORFs). ORF1 encoded a protein that was nearly identical to the metallo-β-lactamase enzymes that degrade β-lactam antibiotics. After transduction to S. aureus with phage TEM123, the metallo-β-lactamase gene was confirmed in the transductant by PCR and sequencing analyses. In a β-lactam antibiotic susceptibility test, the transductant was more highly resistant to β-lactam antibiotics than S. aureus S133. Phage TEM123 might play a role in the transfer of β-lactam antibiotic resistance determinants in S. aureus. Therefore, we suggest that the prophage of S. aureus with its exotoxin is a risk factor for food safety in the food chain through lateral gene transfer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shanmugavel, T., E-mail: gokulrajs@hotmail.com, E-mail: shanmugavelnano@gmail.com; Raj, S. Gokul, E-mail: gokulrajs@hotmail.com, E-mail: shanmugavelnano@gmail.com; Rajarajan, G.
2015-06-24
Combustion synthesis of single phase Nickel ferrite was successfully achieved at low temperature regime. The obtained powders were calcinated to increase the crystallinity and their characterization change due to calcinations is investigated in detail. Citric acid used as a chelating agent for the synthesis of nickel ferrite. Pure single phase nickel ferrites were found at this low temperature. The average crystalline sizes were measured by using powder XRD measurements. Surface morphology was investigated through Transmission Electron Microscope (TEM). Particle size calculated in XRD is compared with TEM results. Magnetic behaviour of the samples is analyzed by using Vibrating Sample Magnetometermore » (VSM). Saturation magnetization, coercivity and retentivity are measured and their results are discussed in detail.« less
NASA Astrophysics Data System (ADS)
Gao, Min; Lu, Liqian; Wang, Xiaoyue; Lin, Houke; Zhou, Qingsong
2017-11-01
For sustain the release rate and prolong half-life of breviscapine in vivo, the breviscapine-loaded halloysite nanotubes complex was prepared. The breviscapine was encapsulated into halloysite nanotubes (HNTs) using a vacuum process. The complex were investigated by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), transmission electron microscope (TEM), X-ray diffraction (XRD) and fourier transform infrared spectroscopy(FT-IR). The formation of breviscapine-loaded HNTs complex was proved by the test results of SEM, DSC, TEM and IR analysise. The results confirmed that breviscapine was successfully loaded in the halloysite nanotubes. Additionally, the in vitro drug release of breviscapine from breviscapine-loaded HNTs complex was investigated, the result indicated this complex has apparent sustained-release effect.
Matsushita, Tadashi; Watanabe, Jiro; Nakao, Tatsuya; Yamashita, Seiichi
2014-11-01
For the last decades, the performance of the lithium-ion battery (LIB) has been significantly improved and its applications have been expanding rapidly. However, its performance has yet to be enhanced.In the lithium-ion battery development, it is important to elucidate the electrode structure change in detail during the charge and discharge cycling. In particular, solid electrolyte interface (SEI) formed by decomposition of the electrolytes on the graphite negative electrode surface should play an important role for battery properties. Therefore, it is essential to control the structure and composition of SEI to improve the battery performance. Here, we conducted a scanning electron microscope (SEM) and transmission electron microscope (TEM) study to elucidate the structures of the SEI during the charge and discharge process using LiNi1/3Co1/3Mn1/3O2 [1] cathode and graphite anode. [2] Since SEI is a lithium-containing compound with high activity, it was observed without being exposed to the atmosphere. The electrodes including SEI were sampled after dismantling batteries with cutoff voltages of 3V and 4.2V for the charge process and 3V for the discharge process. Fig.1 shows SEM images of the graphite electrode surface during the charge and discharge process. The change of the SEI structure during the process was clearly observed. Further, TEM images showed that the SEI grew thicker during the charge process and becomes thinner when discharged. These results with regard to the reversible SEI structure could give a new insight for the battery development.jmicro;63/suppl_1/i21/DFU056F1F1DFU056F1Fig. 1.SEM images of the graphite electrode surface:(a) before charge process;(b) with charge-cutoff voltage of 3.0V; (c) with charge-cutoff voltage of 4.2V; (d) with discharge-cutoff voltage of 3.0V. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Dopant mapping in thin FIB prepared silicon samples by Off-Axis Electron Holography.
Pantzer, Adi; Vakahy, Atsmon; Eliyahou, Zohar; Levi, George; Horvitz, Dror; Kohn, Amit
2014-03-01
Modern semiconductor devices function due to accurate dopant distribution. Off-Axis Electron Holography (OAEH) in the transmission electron microscope (TEM) can map quantitatively the electrostatic potential in semiconductors with high spatial resolution. For the microelectronics industry, ongoing reduction of device dimensions, 3D device geometry, and failure analysis of specific devices require preparation of thin TEM samples, under 70 nm thick, by focused ion beam (FIB). Such thicknesses, which are considerably thinner than the values reported to date in the literature, are challenging due to FIB induced damage and surface depletion effects. Here, we report on preparation of TEM samples of silicon PN junctions in the FIB completed by low-energy (5 keV) ion milling, which reduced amorphization of the silicon to 10nm thick. Additional perpendicular FIB sectioning enabled a direct measurement of the TEM sample thickness in order to determine accurately the crystalline thickness of the sample. Consequently, we find that the low-energy milling also resulted in a negligible thickness of electrically inactive regions, approximately 4nm thick. The influence of TEM sample thickness, FIB induced damage and doping concentrations on the accuracy of the OAEH measurements were examined by comparison to secondary ion mass spectrometry measurements as well as to 1D and 3D simulations of the electrostatic potentials. We conclude that for TEM samples down to 100 nm thick, OAEH measurements of Si-based PN junctions, for the doping levels examined here, resulted in quantitative mapping of potential variations, within ~0.1 V. For thinner TEM samples, down to 20 nm thick, mapping of potential variations is qualitative, due to a reduced accuracy of ~0.3 V. This article is dedicated to the memory of Zohar Eliyahou. Copyright © 2014 Elsevier B.V. All rights reserved.
Guinel, M J-F; Brodusch, N; Verde-Gómez, Y; Escobar-Morales, B; Gauvin, R
2013-10-01
Carbon nanotubes (CNTs) decorated with platinum (Pt) nanoparticles (NPs) have been characterized using a cold field-emission scanning electron microscope (SEM) and a high resolution field-emission transmission electron microscope (TEM). With this particular composite material, the complementary nature of the two instruments was demonstrated. Although the long CNTs were found to be mostly bent and defective in some parts, the nucleation of Pt occurred randomly and uniformly covered the CNTs. The NPs displayed a large variation in size, were sometimes defective with twins and stacking faults, and were found to be faceted with the presence of surface steps. The shape and size of the NPs and the presence of defects may have significant consequences on the activity of the Pt catalyst material. Also, thin layers of platinum oxide were identified on the surface of some NPs. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.
Controlling dispersion of graphene nanoplatelets in aqueous solution by ultrasonic technique
NASA Astrophysics Data System (ADS)
Wang, Baomin; Jiang, Ruishuang; Song, Wanzeng; Liu, Hui
2017-08-01
The homogenous graphene nanoplatelets (GNP) suspension had been prepared through ultrasonic exfoliation in the presence of methylcellulose (MC) as dispersant. The influence of different sonication times on dispersing of aqueous GNP suspension was monitored by UV-Vis absorbance, sedimentation test, optical microscope and transmission electron microscope (TEM). The study of UV-Vis absorbance verifies that the minimum sonication time to break the 0.1 g/L concentration of bundled GNPs is 20 min; furthermore, the GNP suspension achieved the best dispersion, when sonication time increased up to 80 min. From optical microscope images of GNPs, the agglomeration of GNPs was broken by enough sonication energy, and the distribution of GNPs particles became more uniform. The dispersing mechanism had been discussed and simulated by HRTEM image. The bundled GNPs were exfoliated by cavitation effect of ultrasonic irradiation, meanwhile, the dispersant adsorbed on the surface of GNPs prevented re-entanglement by forming steric hindrance.
Comparisons of methods to obtain insoluble particles in snow for transmission electron microscopy
NASA Astrophysics Data System (ADS)
Ren, Yong; Zhang, Xiongfei; Wei, Hailun; Xu, Liang; Zhang, Jian; Sun, Jiaxing; Wang, Xin; Li, Weijun
2017-03-01
Most studies of insoluble particles in snow have been focused on their mass concentration. Little is understood about the physicochemical properties of individual insoluble particles in snow. However, the information is essential to trace sources of the particles, to understand ice nuclei, and to quantify critical aerosol particles (e.g., black carbon) in snow analyzed by bulk methods. The lack of individual particle analyses of snow meltwater stems from the difficulty of producing feasible samples of the snow-borne insoluble particles. In this study, we examined six sample preparation methods and compared their results using transmission electron microscopy (TEM). The results are the following: (1) Drop-by-drop method (DDM) is the easiest method to make TEM samples but cannot remove the influence of the dissolved substances in snow meltwater. (2) Direct filtration method (DFM) was infeasible because the water penetration of carbon film on copper TEM grids is low. (3) Filtration and transfer method (FTM) is through using ultrasonication to transfer insoluble particles on the nuclepore polycarbonate membranes to TEM grids. The drawback of this method is that ultrasonication breaks individual particles into fragments. (4) Freeze-drying method (FDM) can result in new particles from the drying dissolved substances, which interferes with the identification of insoluble particles. (5) Dilution-gravity separation method (DGM) can obtain different substances based on their specific gravity in long standing water. The method can effectively reduce soluble substances but lose insoluble carbonaceous particles (e.g., soot and organic particles). (6) Tangential flow filtration and dilution (TFF-D) through concentrating and desalting dissolved substances is to remove the dissolved substances but keep insoluble particles in snow meltwater. The TFF-D method not only can be suitable for electron microscopy to study individual insoluble particles in snow meltwater but also for any offline microscopic observation such as Raman spectroscopy and mass spectrometry.
Nano-Scale Structure of Twin Boundaries in Shocked Zircon from the Vredefort Impact Structure.
NASA Astrophysics Data System (ADS)
Sharp, T. G.; Cavosie, A. J.
2017-12-01
Shock deformation of zircon produces distinct microstructures that can be used as evidence of shock in natural samples. These deformation features include {112} twins that have been observed in naturally shocked samples from Vredefort and elsewhere [1-3]. Electron backscatter diffraction (EBSD) has shown that these twins are polysynthetic, generally < 1µm wide and have a 65°/<110> crystallographic relation to the host zircon [2]. The structure and composition of these twin boundaries, and their effects on element mobility have not been explored previously. Here we use high-resolution TEM to investigate the nano-structure of a {112} twin in a shocked zircon crystal from the 2.0 Ga Vredefort impact structure [3]. Focused-ion-beam lift-out techniques were used to prepare a TEM foil with a 1 µm wide {112}-twin lamella. The foil was characterized by TEM imaging and electron diffraction using a FEI CM200-FEG transmission electron microscope. Selected area diffraction from the {112}-twin boundary, along a <111> zone, showed no apparent evidence of twining. However, the domain boundaries displayed weak diffraction contrast in this orientation. High-resolution images show a 50-nm wide zone of heterogeneous structural disorder and locally amorphous domains along the twin boundaries that is inferred to be a localized metamict zone. The detailed lattice structure of the interface was not discernable because of this structural disorder. Diffraction and imaging along <021> confirms that the {112}-twin composition plane is a mirror plane. The crystallographic relations observed along <110> and <021> are consistent with the 65°/<110> twin structure previously determined from EBSD [2]. Enhanced metamict disorder suggests a higher concentration of actinides along the twin boundaries and implies actinide mobility near twin boundaries. [1] Moser et al, 2011 Can J Earth Sci. [2] Erickson et al. 2013 Am Min. [3] Cavosie et al. 2015 Geol.
Large volume serial section tomography by Xe Plasma FIB dual beam microscopy.
Burnett, T L; Kelley, R; Winiarski, B; Contreras, L; Daly, M; Gholinia, A; Burke, M G; Withers, P J
2016-02-01
Ga(+) Focused Ion Beam-Scanning Electron Microscopes (FIB-SEM) have revolutionised the level of microstructural information that can be recovered in 3D by block face serial section tomography (SST), as well as enabling the site-specific removal of smaller regions for subsequent transmission electron microscope (TEM) examination. However, Ga(+) FIB material removal rates limit the volumes and depths that can be probed to dimensions in the tens of microns range. Emerging Xe(+) Plasma Focused Ion Beam-Scanning Electron Microscope (PFIB-SEM) systems promise faster removal rates. Here we examine the potential of the method for large volume serial section tomography as applied to bainitic steel and WC-Co hard metals. Our studies demonstrate that with careful control of milling parameters precise automated serial sectioning can be achieved with low levels of milling artefacts at removal rates some 60× faster. Volumes that are hundreds of microns in dimension have been collected using fully automated SST routines in feasible timescales (<24h) showing good grain orientation contrast and capturing microstructural features at the tens of nanometres to the tens of microns scale. Accompanying electron back scattered diffraction (EBSD) maps show high indexing rates suggesting low levels of surface damage. Further, under high current Ga(+) FIB milling WC-Co is prone to amorphisation of WC surface layers and phase transformation of the Co phase, neither of which have been observed at PFIB currents as high as 60nA at 30kV. Xe(+) PFIB dual beam microscopes promise to radically extend our capability for 3D tomography, 3D EDX, 3D EBSD as well as correlative tomography. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Corrosion performance of 7075 alloy under laser heat treatment
NASA Astrophysics Data System (ADS)
Liu, Tong; Su, Ruiming; Qu, Yingdong; Li, Rongde
2018-05-01
Microstructure, exfoliation corrosion (EXCO), intergranular corrosion (IGC) and potentidynamic polarization test of the 7075 aluminum alloy after retrogression and re-aging (RRA) treatment, and laser retrogression and re-aging (LRRA), respectively, were studied by using scanning electron microscope, and transmission electron microscope (TEM). The results show that after pre-aging, laser treatment (650 W, 2 mm s‑1) and re-aging a lot of matrix precipitates of alloy were precipitated again. The semi-continuous grain boundary precipitates and the wider precipitate-free zones (PFZ) improve the corrosion resistance of the alloy. The corrosion properties of the alloy after LRRA (650 W, 2 mm s‑1) treatment are better than that after RRA treatment.
Structural and optical properties of II-VI and III-V compound semiconductors
NASA Astrophysics Data System (ADS)
Huang, Jingyi
This dissertation is on the study of structural and optical properties of some III-V and II-VI compound semiconductors. The first part of this dissertation is a study of the deformation mechanisms associated with nanoindentation and nanoscratching of InP, GaN, and ZnO crystals. The second part is an investigation of some fundamental issues regarding compositional fluctuations and microstructure in GaInNAs and InAlN alloys. In the first part, the microstructure of (001) InP scratched in an atomic force microscope with a small diamond tip has been studied as a function of applied normal force and crystalline direction in order to understand at the nanometer scale the deformation mechanisms in the zinc-blende structure. TEM images show deeper dislocation propagation for scratches along <110> compared to <100>. High strain fields were observed in <100> scratches, indicating hardening due to locking of dislocations gliding on different slip planes. Reverse plastic flow have been observed in <110> scratches in the form of pop-up events that result from recovery of stored elastic strain. In a separate study, nanoindentation-induced plastic deformation has been studied in c-, a-, and m-plane ZnO single crystals and c-plane GaN respectively, to study the deformation mechanism in wurtzite hexagonal structures. TEM results reveal that the prime deformation mechanism is slip on basal planes and in some cases, on pyramidal planes, and strain built up along particular directions. No evidence of phase transformation or cracking was observed in both materials. CL imaging reveals quenching of near band-edge emission by dislocations. In the second part, compositional inhomogeneity in quaternary GaInNAs and ternary InAlN alloys has been studied using TEM. It is shown that exposure to antimony during growth of GaInNAs results in uniform chemical composition in the epilayer, as antimony suppresses the surface mobility of adatoms that otherwise leads to two-dimensional growth and elemental segregation. In a separate study, compositional instability is observed in lattice-matched InAlN films grown on GaN, for growth beyond a certain thickness. Beyond 200 nm of thickness, two sub-layers with different indium content are observed, the top one with lower indium content.
Morphometrics of cellular damage in mice testis receiving X-ray and high-energy particle irradiation
NASA Technical Reports Server (NTRS)
Sapp, Walter J.
1987-01-01
Murine tests were exposed to single, low doses of either X-ray, helium, or argon radiation. Animals were sacrificed seventy-two hours later. Testes were fixed for transmission electron microscopy (TEM) and sectioned at either 60 nm for TEM observation or at 2 micron for counting using routine light microscope methods. Counts of the total population of surviving spermatogonia, including all type A cells, intermediate, and type B cells, were taken from tubule cross sections identified as Stage 6 and Stage 1 according to spermatogonial configuration. The surviving fraction of spermatogonia as compared to control, S/S sub o, was calculated for each dose. For both ions and X-rays, there was a rapid decline in survival at dose levels of .10 to .15 Gy in Stage 6 tubules. This was followed by a more gradual decrease in population. At higher doses, 0.30 Gy for argon and 0.80 Gy for helium and X-rays, the cell survival rates declined rapidly. Pre-leptotene spermatocytes in Stage 1 tubules exhibited a different survival curve indicating the extreme radio-sensitivity of type B spermatogonia. Data verify that the seminiferous tubules are composed of a heterogeneous population of cells with different radio-sensitivities and that these differences are manifested even at very low doses.
NASA Astrophysics Data System (ADS)
Naganathan, Kiruthika; Thirunavukkarasu, Somanathan
2017-04-01
Green synthesis of silver nanoparticles (SNP) opens a new path to kill and prevent various infectious diseases and also tumor. In this study, we have synthesized silver nanoparticles using multiple fruit peel waste (pomegranate, orange, banana and apple (POBA)). The primarily nanoparticles formation has been confirmed by the color change. The synthesized SNP were analyzed by various physicochemical techniques such as UV- Visible spectroscopy, x-ray diffraction (XRD), fourier transform infra red (FT-IR) spectroscopy and transmission electron microscope (TEM). The formation of SNP was confirmed by its absorbance peak observed at 430 nm in UV-Visible spectrum. Further, the obtained SNP were identified by XRD and TEM, respectively to know the crystalline nature and size and shape of the particles. The activities of SNP were checked with human pathogens (Salmonella, E.coli and Pseudomonas), plant pathogen (Fusarium) and marine pathogen (Aeromonas hydrophila) and also studied the scavenging effect and anticancer properties against MCF-7 cell lines. This studies proves that the SNP prepared from fruit waste peel extract approach appears extremely fast, cost efficient, eco-friendly and alternative for conventional methods of SNP synthesis to promote the usage of these nanoparticles in medicinal application.
Characteristics of biogenic calcite in the prismatic layer of a pearl oyster, Pinctada fucata.
Okumura, Taiga; Suzuki, Michio; Nagasawa, Hiromichi; Kogure, Toshihiro
2010-10-01
The fine structure of the calcite prism in the outer layer of a pearl oyster, Pinctada fucata, has been investigated using various electron beam techniques, in order to understand its characteristics and growth mechanism including the role of intracrystalline organic substances. As the calcite prismatic layer grows thicker, sinuous boundaries develop to divide the prism into a number of domains. The crystal misorientation between the adjacent domains is several to more than ten degrees. The component of the misorientation is mainly the rotation about the c-axis. There is no continuous organic membrane at the boundaries. Furthermore, the crystal orientation inside the domains changes gradually, as indicated by the electron back-scattered diffraction (EBSD) in a scanning electron microscope (SEM). Transmission electron microscopy (TEM) examination revealed that the domain consists of sub-grains of a few hundred nanometers divided by small-angle grain boundaries, which are probably the origin of the gradual change of the crystal orientation inside the domains. Spherular Fresnel contrasts were often observed at the small-angle grain boundaries, in defocused TEM images. Electron energy-loss spectroscopy (EELS) indicated the spherules are organic macromolecules, suggesting that incorporation of organic macromolecules during the crystal growth forms the sub-grain structure of the calcite prism.
TEM in situ lithiation of tin nanoneedles for battery applications
Janish, Matthew T.; Mackay, David T.; Liu, Yang; ...
2015-08-12
Materials such as tin (Sn) and silicon that alloy with lithium (Li) have attracted renewed interest as anode materials in Li-ion batteries. Although their superior capacity to graphite and other intercalation materials has been known for decades, their mechanical instability due to extreme volume changes during cycling has traditionally limited their commercial viability. This limitation is changing as processes emerge that produce nanostructured electrodes. The nanostructures can accommodate the repeated expansion and contraction as Li is inserted and removed without failing mechanically. Recently, one such nano-manufacturing process, which is capable of depositing coatings of Sn “nanoneedles” at low temperature withmore » no template and at industrial scales, has been described. The present work is concerned with observations of the lithiation and delithiation behavior of these Sn nanoneedles during in situ experiments in the transmission electron microscope, along with a brief review of how in situ TEM experiments have been used to study the lithiation of Li-alloying materials. Individual needles are successfully lithiated and delithiated in solid-state half-cells against a Li-metal counter-electrode. Furthermore the microstructural evolution of the needles is discussed, including the transformation of one needle from single-crystal Sn to polycrystalline Sn–Li and back to single-crystal Sn.« less
Sajeesh, S; Sharma, Chandra P
2006-02-01
In present study, novel pH sensitive polymethacrylic acid-chitosan-polyethylene glycol (PCP) nanoparticles were prepared under mild aqueous conditions via polyelectrolyte complexation. Free radical polymerization of methacrylic acid (MAA) was carried out in presence of chitosan (CS) and polyethylene glycol (PEG) using a water-soluble initiator and particles were obtained spontaneously during polymerization without using organic solvents or surfactants/steric stabilizers. Dried particles were analyzed by scanning electron microscopy (SEM) and particles dispersed in phosphate buffer (pH 7.0) were visualized under transmission electron microscope (TEM). SEM studies indicated that PCP particles have an aggregated and irregular morphology, however, TEM revealed that these aggregated particles were composed of smaller fragments with size less than 1 micron. Insulin and bovine serum albumin (BSA) as model proteins were incorporated into the nanoparticles by diffusion filling method and their in vitro release characteristics were evaluated at pH 1.2 and 7.4. PCP nanoparticles exhibited good protein encapsulation efficiency and pH responsive release profile was observed under in vitro conditions. Trypsin inhibitory effect of these PCP nanoparticles was studied using casein substrate and these particles displayed lesser inhibitory effect than reference polymer carbopol. Preliminary investigation suggests that these particles can serve as good candidate for oral peptide delivery. Copyright 2005 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masih Das, Paul; Danda, Gopinath; Cupo, Andrew
Black phosphorus (BP) is a highly anisotropic allotrope of phosphorus with high promise for fast functional electronics and optoelectronics. We demonstrate that high-resolution and controlled structural modification of few-layer BP along arbitrary crystal direction can be achieved with nanometer-scale precision on a few-minute timescales leading to the formation of sub-nm wide armchair and zigzag BP nanoribbons. The nanoribbons are assembled, along with nanopores and nanogaps, using a combination of mechanical-liquid exfoliation and in situ transmission electron microscope (TEM) and scanning TEM nanosculpting. Here we report time-dependent structural properties of the one-dimensional systems under electron irradiation and probe their oxidation propertiesmore » with electron energy-loss spectroscopy (EELS). Finally, we demonstrate the use of STEM to controllably narrow and thin the nanoribbons until they break into nanogaps. The observations are rationalized using density functional theory for transition state calculations and electronic band-structure evolution for the various stages of the narrowing procedure. In particular, we predict that the sub- and few-nm wide BP nanoribbons realized experimentally possess clear one-dimensional quantum confinement, even when the systems are made up of a few layers. We find the demonstration of this procedure is key for the development of BP-based electronic, optoelectronic, thermoelectric, and other applications in reduced dimensions.« less
NASA Astrophysics Data System (ADS)
Adam, Adam Abdalla Elbashir; Cheng, Xiaomin; Abuelhassan, Hassan H.; Miao, Xiang Shui
2017-06-01
Phase-change materials (PCMs) are the most promising candidates to be used as an active media in the universal data storage and spintronic devices, due to their large differences in physical properties of the amorphous-crystalline phase transition behavior. In the present study, the microstructure, magnetic and electrical behaviors of Ge0.94Mn0.06Te thin film were investigated. The crystallographic structure of Ge0.94Mn0.06Te thin film was studied sing X-ray diffractometer (XRD) and High Resolution Transmission Electron Microscope (HR-TEM). The XRD pattern showed that the crystallization structure of the film was rhombohedral phase for GeTe with a preference (202) orientation. The HR-TEM image of the crystalline Ge0.94Mn0.06Te thin film demonstrated that, there were two large crystallites and small amorphous areas. The magnetization as a function of the magnetic field analyses of both amorphous and crystalline states showed the ferromagnetic hysteretic behaviors. Then, the hole carriers concentration of the film was measured and it found to be greater than 1021 cm-3 at room temperature. Moreover, the anomalous of Hall Effect (AHE) was clearly observed for the measuring temperatures 5, 10 and 50 K. The results demonstrated that the magnitude of AHE decreased when the temperature was increasing.
Controlled Sculpture of Black Phosphorus Nanoribbons
Masih Das, Paul; Danda, Gopinath; Cupo, Andrew; ...
2016-05-18
Black phosphorus (BP) is a highly anisotropic allotrope of phosphorus with high promise for fast functional electronics and optoelectronics. We demonstrate that high-resolution and controlled structural modification of few-layer BP along arbitrary crystal direction can be achieved with nanometer-scale precision on a few-minute timescales leading to the formation of sub-nm wide armchair and zigzag BP nanoribbons. The nanoribbons are assembled, along with nanopores and nanogaps, using a combination of mechanical-liquid exfoliation and in situ transmission electron microscope (TEM) and scanning TEM nanosculpting. Here we report time-dependent structural properties of the one-dimensional systems under electron irradiation and probe their oxidation propertiesmore » with electron energy-loss spectroscopy (EELS). Finally, we demonstrate the use of STEM to controllably narrow and thin the nanoribbons until they break into nanogaps. The observations are rationalized using density functional theory for transition state calculations and electronic band-structure evolution for the various stages of the narrowing procedure. In particular, we predict that the sub- and few-nm wide BP nanoribbons realized experimentally possess clear one-dimensional quantum confinement, even when the systems are made up of a few layers. We find the demonstration of this procedure is key for the development of BP-based electronic, optoelectronic, thermoelectric, and other applications in reduced dimensions.« less
NASA Astrophysics Data System (ADS)
Lee, N. J.; Kang, T. S.; Hu, Q.; Lee, T. S.; Yoon, T.-S.; Lee, H. H.; Yoo, E. J.; Choi, Y. J.; Kang, C. J.
2018-06-01
Tri-state resistive switching characteristics of bilayer resistive random access memory devices based on manganese oxide (MnO)/tantalum oxide (Ta2O5) have been studied. The current–voltage (I–V) characteristics of the Ag/MnO/Ta2O5/Pt device show tri-state resistive switching (RS) behavior with a high resistance state (HRS), intermediate resistance state (IRS), and low resistance state (LRS), which are controlled by the reset process. The MnO/Ta2O5 film shows bipolar RS behavior through the formation and rupture of conducting filaments without the forming process. The device shows reproducible and stable RS both from the HRS to the LRS and from the IRS to the LRS. In order to elucidate the tri-state RS mechanism in the Ag/MnO/Ta2O5/Pt device, transmission electron microscope (TEM) images are measured in the LRS, IRS and HRS. White lines like dendrites are observed in the Ta2O5 film in both the LRS and the IRS. Poole–Frenkel conduction, space charge limited conduction, and Ohmic conduction are proposed as the dominant conduction mechanisms for the Ag/MnO/Ta2O5/Pt device based on the obtained I–V characteristics and TEM images.
Kawamoto, Naoyuki; Kakefuda, Yohei; Mori, Takao; Hirose, Kenji; Mitome, Masanori; Bando, Yoshio; Golberg, Dmitri
2015-11-20
We developed an original method of in situ nanoscale characterization of thermal resistance utilizing a high-resolution transmission electron microscope (HRTEM). The focused electron beam of the HRTEM was used as a contact-free heat source and a piezo-movable nanothermocouple was developed as a thermal detector. This method has a high flexibility of supplying thermal-flux directions for nano/microscale thermal conductivity analysis, and is a powerful way to probe the thermal properties of complex or composite materials. Using this method we performed reproducible measurements of electron beam-induced temperature changes in pre-selected sections of a heat-sink α-Al(2)O(3)/epoxy-based resin composite. Observed linear behavior of the temperature change in a filler reveals that Fourier's law holds even at such a mesoscopic scale. In addition, we successfully determined the thermal resistance of the nanoscale interfaces between neighboring α-Al(2)O(3) fillers to be 1.16 × 10(-8) m(2)K W(-1), which is 35 times larger than that of the fillers themselves. This method that we have discovered enables evaluation of thermal resistivity of composites on the nanoscale, combined with the ultimate spatial localization and resolution sample analysis capabilities that TEM entails.
Zhao, Jian; Cao, Xuesong; Liu, Xiaoyu; Wang, Zhenyu; Zhang, Chenchen; White, Jason C; Xing, Baoshan
2016-11-01
The potential adverse effects of CuO nanoparticles (NPs) have increasingly attracted attention. Combining electron microscopic and toxicological investigations, we determined the adhesion, uptake, and toxicity of CuO NPs to eukaryotic alga Chlorella pyrenoidosa. CuO NPs were toxic to C. pyrenoidosa, with a 72 h EC50 of 45.7 mg/L. Scanning electron microscopy showed that CuO NPs were attached onto the surface of the algal cells and interacted with extracellular polymeric substances (EPS) excreted by the organisms. Transmission electron microscopy (TEM) showed that EPS layer of algae was thickened by nearly 4-fold after CuO NPs exposure, suggesting a possible protective mechanism. In spite of the thickening of EPS layer, CuO NPs were still internalized by endocytosis and were stored in algal vacuoles. TEM and electron diffraction analysis confirmed that the internalized CuO NPs were transformed to Cu2O NPs (d-spacing, ∼0.213 nm) with an average size approximately 5 nm. The toxicity investigation demonstrated that severe membrane damage was observed after attachment of CuO NPs with algae. Reactive oxygen species generation and mitochondrial depolarization were also noted upon exposure to CuO NPs. This work provides useful information on understanding the role of NPs-algae physical interactions in nanotoxicity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovarik, Libor; Stevens, Andrew J.; Liyu, Andrey V.
Aberration correction for scanning transmission electron microscopes (STEM) has dramatically increased spatial image resolution for beam-stable materials, but it is the sample stability rather than the microscope that often limits the practical resolution of STEM images. To extract physical information from images of beam sensitive materials it is becoming clear that there is a critical dose/dose-rate below which the images can be interpreted as representative of the pristine material, while above it the observation is dominated by beam effects. Here we describe an experimental approach for sparse sampling in the STEM and in-painting image reconstruction in order to reduce themore » electron dose/dose-rate to the sample during imaging. By characterizing the induction limited rise-time and hysteresis in scan coils, we show that sparse line-hopping approach to scan randomization can be implemented that optimizes both the speed of the scan and the amount of the sample that needs to be illuminated by the beam. The dose and acquisition time for the sparse sampling is shown to be effectively decreased by factor of 5x relative to conventional acquisition, permitting imaging of beam sensitive materials to be obtained without changing the microscope operating parameters. As a result, the use of sparse line-hopping scan to acquire STEM images is demonstrated with atomic resolution aberration corrected Z-contrast images of CaCO 3, a material that is traditionally difficult to image by TEM/STEM because of dose issues.« less
Kovarik, Libor; Stevens, Andrew J.; Liyu, Andrey V.; ...
2016-10-17
Aberration correction for scanning transmission electron microscopes (STEM) has dramatically increased spatial image resolution for beam-stable materials, but it is the sample stability rather than the microscope that often limits the practical resolution of STEM images. To extract physical information from images of beam sensitive materials it is becoming clear that there is a critical dose/dose-rate below which the images can be interpreted as representative of the pristine material, while above it the observation is dominated by beam effects. Here we describe an experimental approach for sparse sampling in the STEM and in-painting image reconstruction in order to reduce themore » electron dose/dose-rate to the sample during imaging. By characterizing the induction limited rise-time and hysteresis in scan coils, we show that sparse line-hopping approach to scan randomization can be implemented that optimizes both the speed of the scan and the amount of the sample that needs to be illuminated by the beam. The dose and acquisition time for the sparse sampling is shown to be effectively decreased by factor of 5x relative to conventional acquisition, permitting imaging of beam sensitive materials to be obtained without changing the microscope operating parameters. The use of sparse line-hopping scan to acquire STEM images is demonstrated with atomic resolution aberration corrected Z-contrast images of CaCO3, a material that is traditionally difficult to image by TEM/STEM because of dose issues.« less
Comparison between measured and predicted turbulence frequency spectra in ITG and TEM regimes
NASA Astrophysics Data System (ADS)
Citrin, J.; Arnichand, H.; Bernardo, J.; Bourdelle, C.; Garbet, X.; Jenko, F.; Hacquin, S.; Pueschel, M. J.; Sabot, R.
2017-06-01
The observation of distinct peaks in tokamak core reflectometry measurements—named quasi-coherent-modes (QCMs)—are identified as a signature of trapped-electron-mode (TEM) turbulence (Arnichand et al 2016 Plasma Phys. Control. Fusion 58 014037). This phenomenon is investigated with detailed linear and nonlinear gyrokinetic simulations using the Gene code. A Tore-Supra density scan is studied, which traverses through a linear (LOC) to saturated (SOC) ohmic confinement transition. The LOC and SOC phases are both simulated separately. In the LOC phase, where QCMs are observed, TEMs are robustly predicted unstable in linear studies. In the later SOC phase, where QCMs are no longer observed, ion-temperature-gradient (ITG) modes are identified. In nonlinear simulations, in the ITG (SOC) phase, a broadband spectrum is seen. In the TEM (LOC) phase, a clear emergence of a peak at the TEM frequencies is seen. This is due to reduced nonlinear frequency broadening of the underlying linear modes in the TEM regime compared with the ITG regime. A synthetic diagnostic of the nonlinearly simulated frequency spectra reproduces the features observed in the reflectometry measurements. These results support the identification of core QCMs as an experimental marker for TEM turbulence.
Natchimuthu, V; Thomas, Sabu; Ramalingam, Murugan; Ravi, S
2017-09-01
Lennox-Gastaut syndrome (LGS) is commonly characterized by a triad of features including multiple seizure types, intellectual disability or regression. LGS type of seizures is epilepsy which is due to abnormal vibrations occurring in seizures. During the time of such abnormal vibrations, both the seizures and the lungs suffer a lack in oxygen content to a considerable extent. This results in prolonged vibrations and loses of nervous control. As a neuro-lung protective strategy, a novel attempt has been made to enrich both seizures and lungs with oxygen content through the support of Perfluorodecalin (an excellent oxygen carrier) C 10 F 18 (PFD) and Perfluorohexane C 6 F 14 (PFH) along with an enhancement in the antiepileptic activity by the two chosen antiepileptic drugs (AEDs) Carbamazepine (CBZ) and Benzodiazepine (BDZ). Perfluorodecalin C 10 F 18 (PFD) and Perfluorohexane C 6 F 14 (PFH) emulsions were prepared by sonication process with combination of nonionic emulsifier, Lecithin (l-α-phosphatidylcholine) as a surfactant in Aqueous phase medium. These emulsions were mixed with Carbamazepine (CBZ) and Benzodiazepine (BDZ) drugs maintained at a temperature of about -20°C to 20°C and were set to slow evaporation process. The products are subjected to Optical microscope, Transmission electron microscopy (TEM) and Scanning Electron Microscope (SEM) - Energy dispersive X-ray Spectroscopy (EDS). Study reveals the co-existence of fluorine and drug ensuring the oxygen uptake by the drug. Morphology of TEM, Optical microscopic images and the particle diameter estimated through Image_J confirms this analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mueller, H.; Wetzig, K.; Schultrich, B.; Pompe, Wolfgang; Chapliev, N. I.; Konov, Vitaly I.; Pimenov, S. M.; Prokhorov, Alexander M.
1989-05-01
The investigation of laser interaction with solid surfaces and of the resulting mechanism of surface modification are of technical interest to optimize technological processes, and they are also of fundamental scientific importance. Most instructive indormation is available with the ail of the in-situ techniques. For instance, measuring of the photon emission of the irradiated surface ane the plasma torch (if it is produced) simultaneously to laser action, makes it possible to gain a global characterization of the laser-solid interaction. In order to obtain additional information about surface and structure modifications in microscopic detail , a laser and scanning electron microscope were combined in to a tandem equipment (LASEM). Inside this eqiipment the microscopic observation is carried out directly at the laser irradiated area without any displacement of the sample. In this way, the stepwise development of surface modification during multipulse irradiation is visible in microscopic details and much more reliable information about the surface modification process is obtainable in comparison to an external laser irradiation. Such kind of equipments were realized simultaneously and independently in the Institut of General Physics (Moscow) and the Central Institute of Solid State Physics and Material Research (Dresden) using a CO2 and a LTd-glass-laser, respectively. In the following the advantages and possibilities of a LASEM shall be demonstrated by some selected investigations of WC-CO hardmeta. The results were obtained in collaboration by both groups with the aid of the pulsed CO2-laser. The TEA CO2 laser was transmitted through a ZnSe-window into the sample chamber of the SEM and focused ofAo tfte sample surface. It was operated in TEM - oo mode with a repetition rate of about 1 pulse per second. A peak power density of about 160 MW/cm2 was achieved in front of the sample surface.
NASA Astrophysics Data System (ADS)
Hariharan, S.; Karthikeyan, B.
2018-03-01
In the evolution of nanotechnology research for smart and precise sensor fabrication, here we report the implementation of simple logic gate operations performing by luminescent nanostructures in biomolecule environment based on photoluminescence (PL) technique. This present work deals with the luminescence property of α-Bi2O3 and Ag modified α-Bi2O3 nanostructures for D-glucose and Bovine serum albumin (BSA) sensing applications. These nanostructures are prepared by simple co-precipitation method and their morphology are examined using transmission electron microscope (TEM). We explore the PL characteristics of the prepared nanostructures and observe their change in PL intensity in the presence of D-glucose and BSA molecules. Enhancement in PL intensity is observed in the presence of D-glucose and BSA. Based on the PL response of prepared nanostructures in the biomolecule environment, we demonstrate biophotonic logic gates including YES, PASS 0, OR and INHIBIT gates.
Unexpected Huge Dimerization Ratio in One-Dimensional Carbon Atomic Chains.
Lin, Yung-Chang; Morishita, Shigeyuki; Koshino, Masanori; Yeh, Chao-Hui; Teng, Po-Yuan; Chiu, Po-Wen; Sawada, Hidetaka; Suenaga, Kazutomo
2017-01-11
Peierls theory predicted atomic distortion in one-dimensional (1D) crystal due to its intrinsic instability in 1930. Free-standing carbon atomic chains created in situ in transmission electron microscope (TEM)1-3 are an ideal example to experimentally observe the dimerization behavior of carbon atomic chain within a finite length. We report here a surprisingly huge distortion found in the free-standing carbon atomic chains at 773 K, which is 10 times larger than the value expected in the system. Such an abnormally distorted phase only dominates at the elevated temperatures, while two distinct phases, distorted and undistorted, coexist at lower or ambient temperatures. Atom-by-atom spectroscopy indeed shows considerable variations in the carbon 1s spectra at each atomic site but commonly observes a slightly downshifted π* peak, which proves its sp 1 bonding feature. These results suggest that the simple model, relaxed and straight, is not fully adequate to describe the realistic 1D structure, which is extremely sensitive to perturbations such as external force or boundary conditions.
Fungi and bacteria involved in desert varnish formation
NASA Technical Reports Server (NTRS)
Taylor-George, S.; Palmer, F.; Staley, J. T.; Curtiss, B.; Adams, J. B.; Borns, D. J.
1983-01-01
Desert varnish is a coating of ferromanganese oxides and clays that develops on rock surfaces in arid to semi-arid regions. Active respiration but not photosynthesis was detected on varnished rock surfaces from the Sonoran Desert. Light microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations, and cultivation experiments indicate that both fungi, primarily dematiaceous hyphomycetes, and bacteria are found on and within desert varnish coatings from the arid regions studied. Some fungi grow as microcolonial fungi (MCF) on rocks, and microscopic observations suggest MCF become incorporated in the varnish coating. SEM-EDAX (energy dispersive X-ray systems) analyses indicate the MCF contain 3 of the characteristic elements of varnish: iron, aluminum, and silicon. In some locations, MCF are also enriched in manganese relative to the rock substratum. Furthermore, some of the dematiaceous hyphomycetes that have been cultivated are able to oxidize manganese under laboratory conditions. It is possible that manganese-oxidizing bacteria, which are found in varnish, also play an important role in varnish formation.
Liquid-Like, Self-Healing Aluminum Oxide during Deformation at Room Temperature.
Yang, Yang; Kushima, Akihiro; Han, Weizhong; Xin, Huolin; Li, Ju
2018-04-11
Effective protection from environmental degradation relies on the integrity of oxide as diffusion barriers. Ideally, the passivation layer can repair its own breaches quickly under deformation. While studies suggest that the native aluminum oxide may manifest such properties, it has yet to be experimentally proven because direct observations of the air-environmental deformation of aluminum oxide and its initial formation at room temperature are challenging. Here, we report in situ experiments to stretch pure aluminum nanotips under O 2 gas environments in a transmission electron microscope (TEM). We discovered that aluminum oxide indeed deforms like liquid and can match the deformation of Al without any cracks/spallation at moderate strain rate. At higher strain rate, we exposed fresh metal surface, and visualized the self-healing process of aluminum oxide at atomic resolution. Unlike traditional thin-film growth or nanoglass consolidation processes, we observe seamless coalescence of new oxide islands without forming any glass-glass interface or surface grooves, indicating greatly accelerated glass kinetics at the surface compared to the bulk.
Optical second harmonic generation from Pt nanowires with boomerang-like cross-sectional shapes
NASA Astrophysics Data System (ADS)
Ogata, Yoichi; Anh Tuan, Nguyen; Miyauchi, Yoshihiro; Mizutani, Goro
2011-08-01
We have fabricated Pt nanowires with boomerang-like cross-sectional shapes on the MgO(110) faceted template and observed their optical second-harmonic generation (SHG) response. In the TEM images the Pt nanowires on the MgO substrate had macroscopic C2v symmetry, however, their structure had microscopic imperfections. In the SHG response, as a function of the sample rotation angle around the substrate normal, we found contributions from the nonlinear susceptibility elements χ113, χ223, χ311, χ322, and χ333 originating from the broken symmetry in the 3; [110] direction of the MgO substrate. The indices 1 and 2 denote the [001] and [11¯0] directions, respectively. Under C2v symmetry no SHG is expected in the s-in/s-out polarization configuration, however, a finite SHG was observed in this polarization configuration. We suggest that the SHG in the forbidden configuration might originate from the imperfections in the nanowire structure.
Precipitates and boundaries interaction in ferritic ODS steels
NASA Astrophysics Data System (ADS)
Sallez, Nicolas; Hatzoglou, Constantinos; Delabrouille, Fredéric; Sornin, Denis; Chaffron, Laurent; Blat-Yrieix, Martine; Radiguet, Bertrand; Pareige, Philippe; Donnadieu, Patricia; Bréchet, Yves
2016-04-01
In the course of a recrystallization study of Oxide Dispersion Strengthened (ODS) ferritic steels during extrusion, particular interest was paid to the (GB) Grain Boundaries interaction with precipitates. Complementary and corresponding characterization experiments using Transmission Electron Microscopy (TEM), Energy Dispersive X-ray spectroscopy (EDX) and Atom Probe Tomography (APT) have been carried out on a voluntarily interrupted extrusion or extruded samples. Microscopic observations of Precipitate Free Zones (PFZ) and precipitates alignments suggest precipitate interaction with migrating GB involving dissolution and Oswald ripening of the precipitates. This is consistent with the local chemical information gathered by EDX and APT. This original mechanism for ODS steels is similar to what had been proposed in the late 80s for similar observation made on Ti alloys reinforced by nanosized yttrium oxides: An interaction mechanism between grain boundaries and precipitates involving a diffusion controlled process of precipitates dissolution at grain boundaries. It is believed that this mechanism can be of primary importance to explain the mechanical behaviour of such steels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, J.; Sun, K.; Yin, W. -G.
The ground-state electronic order in doped manganites is frequently associated with a lattice modulation, contributing to their many interesting properties. However, measuring the thermal evolution of the lattice superstructure with reciprocal-space probes alone can lead to ambiguous results with competing interpretations. Here, we provide direct observations of the evolution of the superstructure in La 1/3Ca 2/3MnO 3 in real space, as well as reciprocal space, using transmission electron microscopic (TEM) techniques. We show that the transitions are the consequence of a proliferation of dislocations plus electronic phase separation. The resulting states are well described by the symmetries associated with electronic-liquid-crystalmore » (ELC) phases. Furthermore, our results resolve the long-standing controversy over the origin of the incommensurate superstructure and suggest a new structural model that is consistent with recent theoretical calculations.« less
Analytical electron microscope study of eight ataxites
NASA Technical Reports Server (NTRS)
Novotny, P. M.; Goldstein, J. I.; Williams, D. B.
1982-01-01
Optical and electron optical (SEM, TEM, AEM) techniques were employed to investigate the fine structure of eight ataxite-iron meteorites. Structural studies indicated that the ataxites can be divided into two groups: a Widmanstaetten decomposition group and a martensite decomposition group. The Widmanstaetten decomposition group has a Type I plessite microstructure and the central taenite regions contain highly dislocated lath martensite. The steep M shaped Ni gradients in the taenite are consistent with the fast cooling rates, of not less than 500 C/my, observed for this group. The martensite decomposition group has a Type III plessite microstructure and contains all the chemical group IVB ataxites. The maximum taenite Ni contents vary from 47.5 to 52.7 wt % and are consistent with slow cooling to low temperatures of not greater than 350 C at cooling rates of not greater than 25 C/my.
Direct observation of twin deformation in YBa2Cu3O7-x thin films by in situ nanoindentation in TEM
NASA Astrophysics Data System (ADS)
Lee, Joon Hwan; Zhang, Xinghang; Wang, Haiyan
2011-04-01
The deformation behaviors of YBa2Cu3O7-x (YBCO) thin films with twinning structures were studied via in situ nanoindentation experiments in a transmission electron microscope. The YBCO films were grown on SrTiO3 (001) substrates by pulsed laser deposition. Both ex situ (conventional) and in situ nanoindentation were conducted to reveal the deformation of the YBCO films from the directions perpendicular and parallel to the twin interfaces. The hardness measured perpendicular to the twin interfaces is ˜50% and 40% higher than that measured parallel to the twin interfaces ex situ and in situ, respectively. Detailed in situ movie analysis reveals that the twin structures play an important role in deformation and strengthening mechanisms in YBCO thin films.
Fishelson, Lev
2006-01-01
Morphological and cytological alterations at the light microscope (LM) and transmission electron microscope (TEM) levels were observed in the thymus, spleen, head-kidney, and liver of cardinal fishes (Apogonidae, Teleostei) from the Gulf of Aqaba, Red Sea, sampled from a strongly polluted site at the northern end of the gulf, and compared to similar samples from a clean, reference site. At the polluted site, the most prominent change was the formation of numerous deposits of cells rich in phagosomes with lipofucin, melanin granules, and phagocytosed debris, including a high increase in number and dimensions of Hassall's corpuscles and melano-macrophage centers. The number of Hassall's corpuscles was 20 (+/-8.0)/mm(2) and of melano-macrophage centers 18 (+/-4.0)/mm(2) at the polluted site, and 7.0 (+/-4.0)/m(2) vs. 5.0 (+/-2.0)/mm(2) respectively at the reference site. In numerous instances the head kidney's melano-macrophage centers in fishes from the polluted site were encapsulated by reticulocytes, a phenomenon recognized as a marker of neoplasmosis and possible malignancy. In the spleens of fishes from the polluted site, numerous deposits of cell debris, peroxisomes, and enlarged lysosomes were also observed. The livers (hepatopancreas) of fishes from polluted waters demonstrated very strong hyperlipogeny. Many of their hepatocytes were laden with lipid vesicles, fragmented endoplasmic reticulula, and aberrant mitochondria. Although the observed alterations in the glands and liver do not indicate any immediate threat to the life of the fish, they can become crucial with respect to energy turnover and fecundity trajectories. This study strongly suggests the use of cytological alterations in vital organs, such as were observed, as pathological biomarkers to environmental stress. (c) 2004 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Xu, Wei; Fan, Yapei; Liu, Xinfang; Luo, Denglin; Liu, Huan; Yang, Ningning
2018-04-01
Silver nanoparticles (Ag NPs) were green fabricated using soluble green tea powder (SGTP) as stabilizer and reducing agent. The properties and morphology of Ag NPs were investigated through UV–visible spectroscopy, field emission transmission electron microscope (FE-TEM) and fourier transform infrared (FT-IR). The spectroscopy showed surface plasmon resonance around at 420 nm revealing the synthesis of Ag NPs. FE-TEM results confirmed that the Ag NPs are spherical and face-centered cubic structure. FT-IR spectroscopy identified the role of various functional groups in the nanoparticle synthesis. The one spot biosynthesized Ag NPs showed favourable antibacterial properties on Escherichia coli and Staphyloccocus aureus, and excellent catalytic reduction of 4-nitrophenol. This work provided a feasible, green method to fabricate Ag NPs with promising photocatalytic and antimicrobial activities.
NASA Technical Reports Server (NTRS)
Heinemann, K.; Poppa, H.
1986-01-01
A commercial transmission electron microscope (TEM), with flat-plate upper pole piece configuration of the objective lens, and top-entry specimen introduction was modified by introducing an ultrahigh vacuum (UHV) specimen chamber for in situ TEM experimentation. The pumping and design principles and special features of this UHV chamber, which makes it possible to obtain 5 x 10 to the -10th mbar pressure at the site of the specimen, while maintaining the airlock system that allows operation in the 10 to the -10th mbar range within 15 min after specimen change, are described. Design operating pressures and image quality (resolution of metal particles smaller than 1 nm in size) were achieved. Schematic drawings and design dimensions are included.
A FIB/TEM Study of a Complex Wark-Lovering Rim on a Vigarano CAI
NASA Technical Reports Server (NTRS)
Keller, L. P.; Needham, A. W.; Messenger, S.
2013-01-01
Wark-Lovering (WL) rims are thin multilayered mineral sequences that surround most Ca, Al-rich inclusions (CAIs). Several processes have been proposed for WL rim formation, including condensation, flash-heating or reaction with a nebular reservoir, or combinations of these [e.g. 1-7], but no consensus exists. Our previous coordinated transmission electron microscope (TEM) and NanoSIMS O isotopic measurements showed that a WL rim experienced flash heating events in a nebular environment with planetary O isotopic composition, distinct from the (16)O-rich formation environment [6]. Our efforts have focused on CAIs from the CV(sub red) chondrites, especially Vigarano, because these have escaped much of the parent body alteration effects that are common in CAIs from CV(sub ox) group.
Grain Nucleation and Growth in Deformed NiTi Shape Memory Alloys: An In Situ TEM Study
NASA Astrophysics Data System (ADS)
Burow, J.; Frenzel, J.; Somsen, C.; Prokofiev, E.; Valiev, R.; Eggeler, G.
2017-12-01
The present study investigates the evolution of nanocrystalline (NC) and ultrafine-grained (UFG) microstructures in plastically deformed NiTi. Two deformed NiTi alloys were subjected to in situ annealing in a transmission electron microscope (TEM) at 400 and 550 °C: an amorphous material state produced by high-pressure torsion (HPT) and a mostly martensitic partly amorphous alloy produced by wire drawing. In situ annealing experiments were performed to characterize the microstructural evolution from the initial nonequilibrium states toward energetically more favorable microstructures. In general, the formation and evolution of nanocrystalline microstructures are governed by the nucleation of new grains and their subsequent growth. Austenite nuclei which form in HPT and wire-drawn microstructures have sizes close to 10 nm. Grain coarsening occurs in a sporadic, nonuniform manner and depends on the physical and chemical features of the local environment. The mobility of grain boundaries in NiTi is governed by the local interaction of each grain with its microstructural environment. Nanograin growth in thin TEM foils seems to follow similar kinetic laws to those in bulk microstructures. The present study demonstrates the strength of in situ TEM analysis and also highlights aspects which need to be considered when interpreting the results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colby, Robert J.; Alsem, Daan H.; Liyu, Andrey V.
2015-06-01
The development of environmental transmission electron microscopy (TEM) has enabled in situ experiments in a gaseous environment with high resolution imaging and spectroscopy. Addressing scientific challenges in areas such as catalysis, corrosion, and geochemistry can require pressures much higher than the ~20 mbar achievable with a differentially pumped, dedicated environmental TEM. Gas flow stages, in which the environment is contained between two semi-transparent thin membrane windows, have been demonstrated at pressures of several atmospheres. While this constitutes significant progress towards operando measurements, the design of many current gas flow stages is such that the pressure at the sample cannot necessarilymore » be directly inferred from the pressure differential across the system. Small differences in the setup and design of the gas flow stage can lead to very different sample pressures. We demonstrate a method for measuring the gas pressure directly, using a combination of electron energy loss spectroscopy and TEM imaging. This method requires only two energy filtered TEM images, limiting the measurement time to a few seconds and can be performed during an ongoing experiment at the region of interest. This approach provides a means to ensure reproducibility between different experiments, and even between very differently designed gas flow stages.« less
Imai, Takehito
2011-05-01
The influence of human hair bleaching agents with different bleaching strength on the ultrastructure of human hair was studied using a transmission electron microscope (TEM) and an energy dispersive X-ray spectrometer equipped with TEM (EDS-TEM). Two kinds of bleaching agents were used: a lightener agent with a weak bleaching effect and a powder-bleach with a stronger bleaching effect. From the comparison of the bleaching properties obtained by the electronic staining of black and white hair samples, it was suggested that the permeability of hair was increased by bleaching, and there was an increase of the stainability of hair subjected to electronic staining. The bleaching action provoked the decomposition of melanin granules and the flow out of granular contents into the intermacrofibrillar matrix. Some metal elements were detected in the melanin granular matrix by EDS-TEM. As a result, the diffusion of metal elements into the intermacrofibrillar matrix promoted further damage to the hair by catalytic action with the hydrogen peroxide in the bleaching agents outside the melanin granules. Further study will lead us to the edge of the development of a new bleaching agent, which reacts only with melanin granules and causes the minimum of damage to outside the melanin granules.
Histological studies on the marsupium of two terrestrial isopods (Crustacea, Isopoda, Oniscidea)
Csonka, Diána; Halasy, Katalin; Hornung, Elisabeth
2015-01-01
Abstract The marsupium, a brood pouch in peracarid crustaceans (Crustacea, Malacostraca) has evolved in terrestrial environment for providing nutrition and optimal conditions for embryogenesis. In the present study we give details on the histology and ultrastructure of its constituting elements such as oostegites and cotyledons. Marsupia of two different eco-morphological types of woodlice, namely the non-conglobating species Trachelipus rathkii Brandt, 1833 and the conglobating species Cylisticus convexus De Geer, 1778 were investigated. Light microscopic (LM) studies showed some differences in the main structure of the two species’ brood pouch: in Trachelipus rathkii, a ‘clinger’ type woodlice, the oostegites bend outwards during brood incubation as growing offspring require more space, while in Cylisticus convexus, a ‘roller’ type isopod, the sternites arch into the body cavity to ensure space for developing offspring and still allowing conglobation of the gravid females. The quantitative analysis of the oostegites’ cuticle proved that the outer part is about 2.5 - 3 times thicker compared to the inner part in both species. Electron microscopic (TEM) examinations show only small histological differences in the oostegites and cotyledon structure of the two species. Cellular elements and moderately electron dense fleecy precipitate are found in the hemolymph space between the two cuticles of oostegites. The cells contain PAS positive polysaccharide areas. TEM studies revealed some differences in the cotyledon ultrastructure of the two species. Cotyledons of Trachelipus rathkii consist of cells with cristate mitochondria and granular endoplasmic reticulum with cisterns. Cotyledons of Cylisticus convexus consist of cells with densely cristate mitochondria and ribosomes attached to vesicular membrane structures. In both species cells with electron dense bodies were observed. We conclude that - besides the differences in marsupial shapes - the fine structure of the oostegites and cotyledons is hardly affected by the eco-morphological type, specifically the conglobating or non-conglobating character of the studied species. PMID:26261442
Structural and spectral properties of undoped and tungsten doped Zn3(PO4)2ZnO nanopowders
NASA Astrophysics Data System (ADS)
Satyavathi, K.; Subba Rao, M.; Nagabhaskararao, Y.; Cole, Sandhya
2018-01-01
Pure and tungsten doped Zn3(PO4)2ZnO nanopowders (NPs) are prepared using sol-gel method. It has the longest track record of used in dentistry. It is used for cementation of inlays, crowns and orthodontic appliances. The systematic investigations like X-ray Diffraction (XRD), Scanning electron microscope (SEM) with energy dispersive X-ray (EDX) spectroscope, Transmission electron microscope (TEM), Fourier transform infrared (FT-IR) spectroscopy, Optical absorption, Photoluminescence (PL) and Electron Paramagnetic Resonance (EPR) spectroscopic techniques are carried out for the prepared NPs. XRD pattern reveals that the prepared samples are in crystalline nature in which Zn3(PO4)2 corresponding to monoclinic phase and ZnO corresponding to hexagonal wurtzite phase, the average crystallite size of prepared nanopowders is in the range of 20-30 nm. The lattice strain, lattice cell parameters, unit cell volume and dislocation density of the prepared NPs are also calculated. The morphology of the prepared NPs is analyzed with SEM and TEM images. The distribution of Zn, P, O and W species in the prepared samples are identified by the chemical composition mapping through EDX. IR spectra of prepared samples exhibit the characteristic sharp absorption band peaks. The sharp absorption bands observed in the region 1200-900 cm-1 are due to complex stretching of characteristic PO43- groups. The absorption spectra exhibit a broad band around 696 nm is recognized due to 2B2g → 2B1g (dxy → dx2- y2) transition of tungsten ions. The PL spectra exhibit four emission peaks in the visible region indicating the quantum-confinement-induced photoluminescence. The CIE chromaticity diagram suggests that the prepared NPs have good color purity. The EPR spectra indicate that the W5+ ions occupy octahedral site symmetry in the host lattice.
NASA Astrophysics Data System (ADS)
Phanjom, Probin; Ahmed, Giasuddin
2017-12-01
Synthesis of silver nanoparticles (AgNPs) under different physicochemical conditions like concentration of silver nitrate (AgNO3), pH and temperature, using fungal cell filtrate of Aspergillus oryzae (MTCC No. 1846) and its antibacterial properties were demonstrated. When fungal cell filtrate having neutral pH was exposed to different concentrations of aqueous solution AgNO3 (1-10 mM), formation of stable AgNPs of different sizes was observed. The size of the AgNPs decreased with the increase of AgNO3 concentration from 1 mM to 8 mM, however, the particles size increased with the increase of AgNO3 concentration from 9 mM to 10 mM. When fungal cell filtrate exposed to aqueous solution of 1 mM AgNO3 at different pH (4-10), the silver ions (Ag+) were reduced leading to the formation of stable AgNPs of different sizes. The size of the AgNPs decreased with the increase of alkaline conditions. When aqueous solution of 1mM AgNO3 with fungal cell filtrate, having neutral pH, was exposed to different temperatures (10, 30, 50, 70 and 90 °С), formation of stable AgNPs having different sizes were obtained. The size of the AgNPs decreased with the increase of temperature. Synergetic effect with antibiotics and size dependent antibacterial activities were also demonstrated against Escherichia coli (MTCC 1687), Staphylococcus aureus (MTCC 737), Bacillus subtilis (MTCC 441) and Klebseilla pneumoniae (MTCC 4030). The formation AgNPs was characterized by UV-vis spectrophotometer. Transmission electron microscope (TEM) confirmed the sizes of the obtained nanoparticles. X-ray diffractometer (XRD) spectrum confirmed the formation of metallic silver. The Fourier transform infrared spectroscopy (FTIR) confirmed the presence of protein as stabilizing agent around AgNPs. Scanning electron microscope (TEM) confirmed the morphological changes in the treated bacterial organisms.
In situ TEM of radiation effects in complex ceramics.
Lian, Jie; Wang, L M; Sun, Kai; Ewing, Rodney C
2009-03-01
In situ transmission electron microscopy (TEM) has been extensively applied to study radiation effects in a wide variety of materials, such as metals, ceramics and semiconductors and is an indispensable tool in obtaining a fundamental understanding of energetic beam-matter interactions, damage events, and materials' behavior under intense radiation environments. In this article, in situ TEM observations of radiation effects in complex ceramics (e.g., oxides, silicates, and phosphates) subjected to energetic ion and electron irradiations have been summarized with a focus on irradiation-induced microstructural evolution, changes in microchemistry, and the formation of nanostructures. New results for in situ TEM observation of radiation effects in pyrochlore, A(2)B(2)O(7), and zircon, ZrSiO(4), subjected to multiple beam irradiations are presented, and the effects of simultaneous irradiations of alpha-decay and beta-decay on the microstructural evolution of potential nuclear waste forms are discussed. Furthermore, in situ TEM results of radiation effects in a sodium borosilicate glass subjected to electron-beam exposure are introduced to highlight the important applications of advanced analytical TEM techniques, including Z-contrast imaging, energy filtered TEM (EFTEM), and electron energy loss spectroscopy (EELS), in studying radiation effects in materials microstructural evolution and microchemical changes. By combining ex situ TEM and advanced analytical TEM techniques with in situ TEM observations under energetic beam irradiations, one can obtain invaluable information on the phase stability and response behaviors of materials under a wide range of irradiation conditions. (c) 2009 Wiley-Liss, Inc.
Castejon, O J; Castejon, H V; Diaz, M; Castellano, A
2001-10-01
Cortical biopsies of 11 patients with traumatic brain oedema were consecutively studied by light microscopy (LM) using thick plastic sections, scanning-transmission electron microscopy ((S)TEM) using semithin plastic sections and transmission electron microscopy (TEM) using ultrathin sections. Samples were glutaraldehyde-osmium fixed and embedded in Araldite or Epon. Thick sections were stained with toluidine-blue for light microscopy. Semithin sections were examined unstained and uncoated for (S)TEM. Ultrathin sections were stained with uranyl and lead. Perivascular haemorrhages and perivascular extravasation of proteinaceous oedema fluid were observed in both moderate and severe oedema. Ischaemic pyramidal and non-pyramidal nerve cells appeared shrunken, electron dense and with enlargement of intracytoplasmic membrane compartment. Notably swollen astrocytes were observed in all samples examined. Glycogen-rich and glycogen-depleted astrocytes were identified in anoxic-ischaemic regions. Dark and hydropic satellite, interfascicular and perivascular oligodendrocytes were also found. The status spongiosus of severely oedematous brain parenchyma observed by LM and (S)TEM was correlated with the enlarged extracellular space and disrupted neuropil observed by TEM. The (S)TEM is recommended as a suitable technique for studying pathological processes in the central nervous system and as an informative adjunct to LM and TEM.
Antibacterial properties of silver nanoparticles synthesized by marine Ochrobactrum sp.
Thomas, Roshmi; Janardhanan, Anju; Varghese, Rintu T; Soniya, E V; Mathew, Jyothis; Radhakrishnan, E K
2014-01-01
Metal nanoparticle synthesis is an interesting area in nanotechnology due to their remarkable optical, magnetic, electrical, catalytic and biomedical properties, but there needs to develop clean, non-toxic and environmental friendly methods for the synthesis and assembly of nanoparticles. Biological agents in the form of microbes have emerged up as efficient candidates for nanoparticle synthesis due to their extreme versatility to synthesize diverse nanoparticles with varying size and shape. In the present study, an eco favorable method for the biosynthesis of silver nanoparticles using marine bacterial isolate has been attempted. Very interestingly, molecular identification proved it as a strain of Ochrobactrum anhtropi. In addition, the isolate was found to have the potential to form silver nanoparticles intracellularly at room temperature within 24 h. The biosynthesized silver nanoparticles were characterized by UV-Vis spectroscopy, transmission electron microscope (TEM) and scanning electron microscope (SEM). The UV-visible spectrum of the aqueous medium containing silver nanoparticles showed a peak at 450 nm corresponding to the plasmon absorbance of silver nanoparticles. The SEM and TEM micrographs revealed that the synthesized silver nanoparticles were spherical in shape with a size range from 38 nm - 85 nm. The silver nanoparticles synthesized by the isolate were also used to explore its antibacterial potential against pathogens like Salmonella Typhi, Salmonella Paratyphi, Vibrio cholerae and Staphylococcus aureus.
Antibacterial properties of silver nanoparticles synthesized by marine Ochrobactrum sp
Thomas, Roshmi; Janardhanan, Anju; Varghese, Rintu T.; Soniya, E.V.; Mathew, Jyothis; Radhakrishnan, E.K.
2014-01-01
Metal nanoparticle synthesis is an interesting area in nanotechnology due to their remarkable optical, magnetic, electrical, catalytic and biomedical properties, but there needs to develop clean, non-toxic and environmental friendly methods for the synthesis and assembly of nanoparticles. Biological agents in the form of microbes have emerged up as efficient candidates for nanoparticle synthesis due to their extreme versatility to synthesize diverse nanoparticles with varying size and shape. In the present study, an eco favorable method for the biosynthesis of silver nanoparticles using marine bacterial isolate has been attempted. Very interestingly, molecular identification proved it as a strain of Ochrobactrum anhtropi. In addition, the isolate was found to have the potential to form silver nanoparticles intracellularly at room temperature within 24 h. The biosynthesized silver nanoparticles were characterized by UV-Vis spectroscopy, transmission electron microscope (TEM) and scanning electron microscope (SEM). The UV-visible spectrum of the aqueous medium containing silver nanoparticles showed a peak at 450 nm corresponding to the plasmon absorbance of silver nanoparticles. The SEM and TEM micrographs revealed that the synthesized silver nanoparticles were spherical in shape with a size range from 38 nm – 85 nm. The silver nanoparticles synthesized by the isolate were also used to explore its antibacterial potential against pathogens like Salmonella Typhi, Salmonella Paratyphi, Vibrio cholerae and Staphylococcus aureus. PMID:25763025
Newly recognized hosts for uranium in the Hanford Site vadose zone
Stubbs, J.E.; Veblen, L.A.; Elbert, D.C.; Zachara, J.M.; Davis, J.A.; Veblen, D.R.
2009-01-01
Uranium contaminated sediments from the U.S. Department of Energy's Hanford Site have been investigated using electron microscopy. Six classes of solid hosts for uranium were identified. Preliminary sediment characterization was carried out using optical petrography, and electron microprobe analysis (EMPA) was used to locate materials that host uranium. All of the hosts are fine-grained and intergrown with other materials at spatial scales smaller than the analytical volume of the electron microprobe. A focused ion beam (FIB) was used to prepare electron-transparent specimens of each host for the transmission electron microscope (TEM). The hosts were identified as: (1) metatorbernite [Cu(UO2)2(PO4)2??8H2O]; (2) coatings on sediment clasts comprised mainly of phyllosilicates; (3) an amorphous zirconium (oxyhydr)oxide found in clast coatings; (4) amorphous and poorly crystalline materials that line voids within basalt lithic fragments; (5) amorphous palagonite surrounding fragments of basaltic glass; and (6) Fe- and Mn-oxides. These findings demonstrate the effectiveness of combining EMPA, FIB, and TEM to identify solid-phase contaminant hosts. Furthermore, they highlight the complexity of U geochemistry in the Hanford vadose zone, and illustrate the importance of microscopic transport in controlling the fate of contaminant metals in the environment. ?? 2008 Elsevier Ltd.
Martin, Joannie; Beauparlant, Martin; Sauvé, Sébastien; L'Espérance, Gilles
2016-12-01
Asbestos amosite fibers were investigated to evaluate the damage caused by a transmission electron microscope (TEM) electron beam. Since elemental x-ray intensity ratios obtained by energy dispersive x-ray spectroscopy (EDS) are commonly used for asbestos identification, the impact of beam damage on these ratios was evaluated. It was determined that the magnesium/silicon ratio best represented the damage caused to the fiber. Various tests showed that most fibers have a current density threshold above which the chemical composition of the fiber is modified. The value of this threshold current density varied depending on the fiber, regardless of fiber diameter, and in some cases could not be determined. The existence of a threshold electron dose was also demonstrated. This value was dependent on the current density used and can be increased by providing a recovery period between exposures to the electron beam. This study also established that the electron beam current is directly related to the damage rate above a current density of 165 A/cm 2 . The large number of different results obtained suggest, that in order to ensure that the amosite fibers are not damaged, analysis should be conducted below a current density of 100 A/cm 2 .
Zhu, Zhihong; Tong, Hua; Ren, Yaoyao; Hu, Jiming
2006-01-01
The ultrastructure of clam (Meretrix lusoria) was investigated by means of scanning electron microscope (SEM), transmission electron microscope (TEM) and X-ray diffraction analyzer (XRD) combining with in situ texture decalcified technique and the micro-hardness of clam was determined, in order to understand the spatial relationship between the mineral phase and organic matrix and further explain the correlation between the property and structure. The results showed that hierarchical fabrication is the major structure character of this mollusc shell. There is specific braided structure forming from domains composed of needle-like structure made up of the single crystal of aragonite. High magnification TEM image of clam indicates the intracrystal region of the aragonite single crystal is made up of subgrain phase and some amorphous substance. There are various crystal grain growth preferential orientations in the different growth direction of the shell. An amount of organic microtubule distribute evenly in the base of calcium carbonate as reinforcement phase. The mechanical property of this natural biological composite is better than other aragonite layer of mollusc shells and pearls according to the data of micro-hardness testing. The braided structure and organic microtubule reinforcement phase are responsible for its high mechanical performance. The stereo hierarchical fabrication of clam was elucidated for the first time.
Wang, Fang; Sun, Ying; Cao, Meng; Nishi, Ryuji
2016-04-01
This study investigates the influence of structure depth on image blurring of micrometres-thick films by experiment and simulation with a conventional transmission electron microscope (TEM). First, ultra-high-voltage electron microscope (ultra-HVEM) images of nanometer gold particles embedded in thick epoxy-resin films were acquired in the experiment and compared with simulated images. Then, variations of image blurring of gold particles at different depths were evaluated by calculating the particle diameter. The results showed that with a decrease in depth, image blurring increased. This depth-related property was more apparent for thicker specimens. Fortunately, larger particle depth involves less image blurring, even for a 10-μm-thick epoxy-resin film. The quality dependence on depth of a 3D reconstruction of particle structures in thick specimens was revealed by electron tomography. The evolution of image blurring with structure depth is determined mainly by multiple elastic scattering effects. Thick specimens of heavier materials produced more blurring due to a larger lateral spread of electrons after scattering from the structure. Nevertheless, increasing electron energy to 2MeV can reduce blurring and produce an acceptable image quality for thick specimens in the TEM. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Abdelraheem, A.; El-Shazly, A. H.; Elkady, M. F.
2018-05-01
Lately, supercritical CO2 (SCCO2) have been getting great interest. It can be used in numerous applications because it is environmentally friendly, safe, comparatively low cost, and nonflammable. One of its applications is being a solvent in the synthesis of polymeric-clay nanocomposite. In this paper, intercalated polyaniline-clay nanocomposite (PANC) was prepared using SCCO2. The intercalation structure of polyaniline chains between clay layers was verified by various characterization techniques. Scanning electron microscope and transmission electron microscope (SEM-TEM) were used to show the morphology of the synthesized nanocomposite. The molecular structure of PANC nanocomposite was confirmed using Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The BET surface area and the conductivity of the nanocomposite were determined.
NASA Astrophysics Data System (ADS)
Sa, Kadambinee; Mahakul, Prakash C.; Subramanyam, B. V. R. S.; Raiguru, Jagatpati; Das, Sonali; Alam, Injamul; Mahanandia, Pitamber
2018-03-01
Graphene and carbon nanotubes (CNTs) have tremendous interest as reinforcing fillers due to their excellent physical properties. However, their reinforcing effect in polymer matrix is limited due to agglomeration of graphene and CNTs within the polymer matrix. Mechanical properties by the admixture of reduced graphene oxide (rGO) and CNTs in Poly (methyl methacrylate) (PMMA) prepared by solution mixing method has been investigated. The prepared samples are characterized using X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM) and Raman spectroscopy. The hybrid composite shows improvement in the mechanical properties compared to rGO/PMMA and MWCNTs/PMMA composites due to better interaction between rGO-MWCNTs and polymer matrix.
NASA Astrophysics Data System (ADS)
Levin, Barnaby
The transmission electron microscope (TEM) is a powerful tool for characterizing the nanoscale and atomic structure of materials, offering insights into their fundamental physical properties. However, TEM characterization requires very thin samples of material to be placed in a high vacuum environment, and exposed to electron radiation. The high vacuum will induce some materials to evaporate or sublimate, preventing them from being accurately characterized, radiation may damage the sample, causing mass loss, or altering its structure, and structurally delicate samples may collapse and break apart when they are thinned for TEM imaging. This dissertation discusses three different projects in which each of these three difficulties pose challenges to TEM characterization of samples. Firstly, we outline strategies for minimizing radiation damage when characterizing materials in TEM at atomic resolution. We consider types of radiation damage, such as vacancy enhanced displacement, that are not included in some previous discussions of beam damage, and we consider how to minimize damage when using new imaging techniques such as annular bright-field scanning TEM. Our methodology emphasizes the general principle that variation of both signal strength and damage cross section must be considered when choosing an experimental electron beam voltage to minimize damage. Secondly, we consider samples containing sulfur, which is prone to sublimation in high vacuum. TEM is routinely used to attempt to characterize the sulfur distribution in lithium-sulfur battery electrodes, but sublimation artifacts can give misleading results. We demonstrate that sulfur sublimation can be suppressed by using cryogenic TEM to characterize sulfur at very low temperatures, or by using the recently developed airSEM to characterize sulfur without exposing it to vacuum. Finally, we discuss the characterization of aging cadmium yellow paint from early 20th century art masterpieces. The binding medium holding paint particles together bends and curls as sample thickness is reduced to 100 nm, making high resolution characterization challenging. We acquire lattice resolution images of the pigment particles through the binder using high voltage zero-loss energy filtered TEM, allowing us to measure the pigment particle size and determine the pigment crystal structure, providing insight into why the paint is aging and how it was synthesized.
Chromatic Aberration Correction for Atomic Resolution TEM Imaging from 20 to 80 kV.
Linck, Martin; Hartel, Peter; Uhlemann, Stephan; Kahl, Frank; Müller, Heiko; Zach, Joachim; Haider, Max; Niestadt, Marcel; Bischoff, Maarten; Biskupek, Johannes; Lee, Zhongbo; Lehnert, Tibor; Börrnert, Felix; Rose, Harald; Kaiser, Ute
2016-08-12
Atomic resolution in transmission electron microscopy of thin and light-atom materials requires a rigorous reduction of the beam energy to reduce knockon damage. However, at the same time, the chromatic aberration deteriorates the resolution of the TEM image dramatically. Within the framework of the SALVE project, we introduce a newly developed C_{c}/C_{s} corrector that is capable of correcting both the chromatic and the spherical aberration in the range of accelerating voltages from 20 to 80 kV. The corrector allows correcting axial aberrations up to fifth order as well as the dominating off-axial aberrations. Over the entire voltage range, optimum phase-contrast imaging conditions for weak signals from light atoms can be adjusted for an optical aperture of at least 55 mrad. The information transfer within this aperture is no longer limited by chromatic aberrations. We demonstrate the performance of the microscope using the examples of 30 kV phase-contrast TEM images of graphene and molybdenum disulfide, showing unprecedented contrast and resolution that matches image calculations.
LDRD Final Report - In Operando Liquid Cell TEM Characterization of Nickel-Based Electrocatalyst
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nielsen, M. H.
2016-11-07
A commercial electrochemistry stage for transmission electron microscopy (TEM) was tested to determine whether to purchase one for the microscopes at Lawrence Livermore National Lab (LLNL). Deposition of a nickel-based electrocatalyst was pursued as a material system for the purpose of testing the stage. The stage was found to be problematic with recurring issues in the electrical connections and vacuum sealing, which has thus far precluded a systematic investigation of the original material system. However, the electrochemical cells purchased through this FS will allow the Lawrence Fellow (Nielsen) to continue testing the stage. Furthermore, discussions with a second vendor, whichmore » released a similar electrochemical TEM stage during the course of this FS, have resulted in an upcoming longterm loan of their stage at Lawrence Berkeley National Lab (LBNL) for testing. In addition, low-loss electron energy-loss spectroscopy (EELS) measurements on nickel-bearing electrolyte solutions led to a broader EELS investigation of solvents and salt solutions. These measurements form the basis of a manuscript in preparation on EELS measurements of the liquid phase.« less
In-situ TEM investigations of graphic-epitaxy and small particles
NASA Technical Reports Server (NTRS)
Heinemann, K.
1983-01-01
Palladium was deposited inside a controlled-vacuum specimen chamber of a transmission electron microscope (TEM) onto MgO and alpha-alumina substrate surfaces. Annealing and various effects of gas exposure of the particulate Pd deposits were studied in-situ by high resolution TEM and electron diffraction. Whereas substrate temperatures of 500 C or annealing of room temperature (RT) deposits to 500 C were needed to obtain epitaxy on sapphire, RT deposits on MgO were perfectly epitaxial. For Pd/MgO a lattice expansion of 2 to 4% was noted; the highest values of expansion were found for the smallest particles. The lattice expansion of small Pd particles on alumina substrates was less than 1%. Long-time RT exposure of Pd/MgO in a vacuum yielded some moblity and coalescence events, but notably fewer than for Pd on sapphire. Exposure to air or oxygen greatly enhanced the particle mobility and coalescence and also resulted in the flattening of Pd particles on MgO substrates. Electron-beam irradiation further enhanced this effect. Exposure to air for several tens of hours of Pd/MgO led to strong coalescence.
TEM Derivative-Producing Enterobacter aerogenes Strains: Dissemination of a Prevalent Clone
Dumarche, P.; De Champs, C.; Sirot, D.; Chanal, C.; Bonnet, R.; Sirot, J.
2002-01-01
TEM-24 (CAZ-6) extended-spectrum β-lactamase (ESBL) was detected in 1988 in Clermont-Ferrand, France, in Klebsiella pneumoniae (blaTEM-24) and Enterobacter aerogenes (blaTEM-24b), and since 1994, a TEM-24-producing E. aerogenes clonal strain has been observed elsewhere in the country. To determine if the spread of this clonal strain was restricted to TEM-24-producing E. aerogenes strains, 84 E. aerogenes strains (non-TEM/SHV-producing strains, TEM-1- or -2-producing strains, and different ESBL-producing strains), isolated from 1988 to 1999 in Clermont-Ferrand (n = 59) and in 11 other French hospitals in 1998 (n = 25), were studied. A clonal strain was found for TEM-24- but also for TEM-3- and TEM-1- or 2-producing isolates. This study shows that there is a clonal strain dependent on acquisition of the TEM-type enzyme (TEM-24 and other TEM types). PMID:11897606
Cardona, Albert; Saalfeld, Stephan; Preibisch, Stephan; Schmid, Benjamin; Cheng, Anchi; Pulokas, Jim; Tomancak, Pavel; Hartenstein, Volker
2010-01-01
The analysis of microcircuitry (the connectivity at the level of individual neuronal processes and synapses), which is indispensable for our understanding of brain function, is based on serial transmission electron microscopy (TEM) or one of its modern variants. Due to technical limitations, most previous studies that used serial TEM recorded relatively small stacks of individual neurons. As a result, our knowledge of microcircuitry in any nervous system is very limited. We applied the software package TrakEM2 to reconstruct neuronal microcircuitry from TEM sections of a small brain, the early larval brain of Drosophila melanogaster. TrakEM2 enables us to embed the analysis of the TEM image volumes at the microcircuit level into a light microscopically derived neuro-anatomical framework, by registering confocal stacks containing sparsely labeled neural structures with the TEM image volume. We imaged two sets of serial TEM sections of the Drosophila first instar larval brain neuropile and one ventral nerve cord segment, and here report our first results pertaining to Drosophila brain microcircuitry. Terminal neurites fall into a small number of generic classes termed globular, varicose, axiform, and dendritiform. Globular and varicose neurites have large diameter segments that carry almost exclusively presynaptic sites. Dendritiform neurites are thin, highly branched processes that are almost exclusively postsynaptic. Due to the high branching density of dendritiform fibers and the fact that synapses are polyadic, neurites are highly interconnected even within small neuropile volumes. We describe the network motifs most frequently encountered in the Drosophila neuropile. Our study introduces an approach towards a comprehensive anatomical reconstruction of neuronal microcircuitry and delivers microcircuitry comparisons between vertebrate and insect neuropile. PMID:20957184
NASA Astrophysics Data System (ADS)
Tan, Yong; Xu, Chuan Shan; Xia, Xin Shu; Yu, He Ping; Bai, Ding Qun; He, Yong; Xu, Jing; Wang, Ping; Wang, Xin Na; Leung, Albert Wing Nang
2009-05-01
In the present study, a novel LED source was applied for activating pyropheophorbids-a methyl ester (MPPa) in cisplatin-resistant ovarian cell line COC1/DDP cells. MPPa concentration was 2 μM and light energy from 0.125-8 J/cm2. Cytotoxicity was investigated 24 h using MTT reduction assay and light microscopy after treatment. Cellular ultrastructure was observed using transmission electron microscopy (TEM) and nuclear chromatin by fluorescent microscope with Hoechst33258 staining. MTT reduction assay showed that the cytotoxicity of LED-activated MPPa in the COC1/DDP cells increased along with the light dose of LED source and LED-activated MPPa resulted in light-dependent cytotoxicity. The observations from light microscopy reinforced the above results. TEM showed that necrotic cells with the disruption of karyotheca, karyorrhexis, and karyolysis of nucleus and apoptotic cells, especially the apoptotic body, can be seen post LED-activated MPPa. Hoechst33258 staining showed that condensation of chromatin and nuclear fragmentations could be found in many treated cells and some of them formed the structure of apoptotic bodies when COC1/DDP cells were exposed to 2 μM MPPa for 20 h and then 1 J/cm2 irradiation of LED source. The findings demonstrated that the novel LED source could efficiently activated MPPa and LED-activated MPPa could significantly kill cisplatin-resistant ovarian cell line COC1/DDP cells through two major pathways including necrosis and apoptosis, suggesting that LED is a novel and efficient light source and LED-activated MPPa might be potential therapeutic modality for treating cisplatin-resistant ovarian carcinoma.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arezzo, Alberto, E-mail: alberto.arezzo@unito.it; Arolfo, Simone; Allaix, Marco Ettore
Purpose: This study was undertaken to assess the short-term outcomes of neoadjuvant short-course radiation therapy (SCRT) followed by transanal endoscopic microsurgery (TEM) for T1-T2 N0 extraperitoneal rectal cancer. Recent studies suggest that neoadjuvant radiation therapy followed by TEM is safe and has results similar to those with abdominal rectal resection for the treatment of extraperitoneal early rectal cancer. Methods and Materials: We planned a prospective pilot study including 25 consecutive patients with extraperitoneal T1-T2 N0 M0 rectal adenocarcinoma undergoing SCRT followed by TEM 4 to 10 weeks later (SCRT-TEM). Safety, efficacy, and acceptability of this treatment modality were compared with historicalmore » groups of patients with similar rectal cancer stage and treated with long-course radiation therapy (LCRT) followed by TEM (LCRT-TEM), TEM alone, or laparoscopic rectal resection with total mesorectal excision (TME) at our institution. Results: The study was interrupted after 14 patients underwent SCRT of 25 Gy in 5 fractions followed by TEM. Median time between SCRT and TEM was 7 weeks (range: 4-10 weeks). Although no preoperative complications occurred, rectal suture dehiscence was observed in 7 patients (50%) at 4 weeks follow-up, associated with an enterocutaneous fistula in the sacral area in 2 cases. One patient required a colostomy. Quality of life at 1-month follow-up, according to European Organization for Research and Treatment of Cancer QLQ-C30 survey score, was significantly worse in SCRT-TEM patients than in LCRT-TEM patients (P=.0277) or TEM patients (P=.0004), whereas no differences were observed with TME patients (P=.604). At a median follow-up of 10 months (range: 6-26 months), we observed 1 (7%) local recurrence at 6 months that was treated with abdominoperineal resection. Conclusions: SCRT followed by TEM for T1-T2 N0 rectal cancer is burdened by a high rate of painful dehiscence of the suture line and enterocutaneous fistula, compared to TEM alone and TEM following LCRT, which forced us to stop the study.« less
Mohite, Pallavi; Apte, Mugdha; Kumar, Ameeta Ravi; Zinjarde, Smita
2016-06-01
When cells of Schwanniomyces occidentalis NCIM 3459 were incubated with 1 mM tetrachloroauric acid (HAuCl4) or silver nitrate (AgNO3), cell-associated nanoparticles were obtained. Their presence was confirmed by scanning electron microscope observations. The cell-free supernatant (CFS) of the yeast mediated the synthesis of gold nanoparticles. On account of the difficulties associated with the use of cell-bound nanoparticles, further work was restricted to extracellular nanoparticles. It was hypothesized that the CFS contained thermostable biomolecule(s) that mediated metal reduction reactions. Extraction of the CFS with chloroform/methanol (2:1) and subsequent separation by preparative thin layer chromatography led to the activity-guided purification of a glycolipid. The glycolipid was hydrolyzed and the glycone (glucose) and aglycone components (palmitic acid and oleic acid) were identified by gas chromatography-mass spectrometry. The purified glycolipid mediated the synthesis of gold and silver nanoparticles that were characterized by using an X-ray diffractometer and transmission electron microscope (TEM). The extracellular nanoparticles displayed catalytic activities and reduced 4-nitroaniline to benzene-1,4-diamine. This paper thus highlights nanoparticle synthesis by a hitherto unreported yeast culture, identifies the biomolecules involved in the process, and describes a potential application of the nanostructures.
Wang, Cheng-Li; Hwang, Weng-Sing; Chang, Kuo-Ming; Ko, Horng-Huey; Hsi, Chi-Shiung; Huang, Hong-Hsin; Wang, Moo-Chin
2011-01-28
Synthesis of Zn(2)Ti(3)O(8) powders for attenuating UVA using TiCl(4), Zn(NO(3))(2)·6H(2)O and NH(4)OH as precursor materials by hydrothermal process has been investigated. The X-ray diffractometry (XRD) results show the phases of ZnO, anatase TiO(2) and Zn(2)Ti(3)O(8) coexisted when the zinc titanate powders were calcined at 600 °C for 1 h. When calcined at 900 °C for 1 h, the XRD results reveal the existence of ZnO, Zn(2)TiO(4), rutile TiO(2) and ZnTiO(3). Scanning electron microscope (SEM) observations show extensive large agglomeration in the samples. Transmission electron microscope (TEM) and electron diffraction (ED) examination results indicate that ZnTiO(3) crystallites formed with a size of about 5 nm on the matrix of plate-like ZnO when calcined at 700 °C for 1 h. The calcination samples have acceptable absorbance at a wavelength of 400 nm, indicating that the zinc titanate precursor powders calcined at 700 °C for 1 h can be used as an UVA-attenuating agent.
Wang, Cheng-Li; Hwang, Weng-Sing; Chang, Kuo-Ming; Ko, Horng-Huey; Hsi, Chi-Shiung; Huang, Hong-Hsin; Wang, Moo-Chin
2011-01-01
Synthesis of Zn2Ti3O8 powders for attenuating UVA using TiCl4, Zn(NO3)2·6H2O and NH4OH as precursor materials by hydrothermal process has been investigated. The X-ray diffractometry (XRD) results show the phases of ZnO, anatase TiO2 and Zn2Ti3O8 coexisted when the zinc titanate powders were calcined at 600 °C for 1 h. When calcined at 900 °C for 1 h, the XRD results reveal the existence of ZnO, Zn2TiO4, rutile TiO2 and ZnTiO3. Scanning electron microscope (SEM) observations show extensive large agglomeration in the samples. Transmission electron microscope (TEM) and electron diffraction (ED) examination results indicate that ZnTiO3 crystallites formed with a size of about 5 nm on the matrix of plate-like ZnO when calcined at 700 °C for 1 h. The calcination samples have acceptable absorbance at a wavelength of 400 nm, indicating that the zinc titanate precursor powders calcined at 700 °C for 1 h can be used as an UVA-attenuating agent. PMID:21541035
Ghaemi, Ferial; Ahmadian, Ali; Yunus, Robiah; Ismail, Fudziah; Rahmanian, Saeed
2016-01-01
In the current study, carbon nanofibers (CNFs) were grown on a carbon fiber (CF) surface by using the chemical vapor deposition method (CVD) and the influences of some parameters of the CVD method on improving the mechanical properties of a polypropylene (PP) composite were investigated. To obtain an optimum surface area, thickness, and yield of the CNFs, the parameters of the chemical vapor deposition (CVD) method, such as catalyst concentration, reaction temperature, reaction time, and hydrocarbon flow rate, were optimized. It was observed that the optimal surface area, thickness, and yield of the CNFs caused more adhesion of the fibers with the PP matrix, which enhanced the composite properties. Besides this, the effectiveness of reinforcement of fillers was fitted with a mathematical model obtaining good agreement between the experimental result and the theoretical prediction. By applying scanning electronic microscope (SEM), transmission electron microscope (TEM), and Raman spectroscopy, the surface morphology and structural information of the resultant CF-CNF were analyzed. Additionally, SEM images and a mechanical test of the composite with a proper layer of CNFs on the CF revealed not only a compactness effect but also the thickness and surface area roles of the CNF layers in improving the mechanical properties of the composites. PMID:28344263
Jain, Gaurav K; Pathan, Shadab A; Akhter, Sohail; Jayabalan, Nirmal; Talegaonkar, Sushma; Khar, Roop K; Ahmad, Farhan J
2011-02-01
The interaction of PLGA-chitosan Nanoplexes with ocular mucosa was investigated ex vivo and in vivo to assess their potential as ocular delivery system. Fluorescent Rhodamine Nanoplexes (Rd-Nanoplexes) were prepared by ionotropic gelation method. The size and morphology of Nanoplexes was investigated by TEM, SEM and PCS. The corneal retention, uptake and penetration of Nanoplexes were analyzed by spectrofluorimetry and confocal microscopy. Corneas from Rd-Nanoplexes-treated rabbits were evaluated for the in vivo uptake and ocular tolerance. The Nanoplexes prepared were round with a mean diameter of 115.6±17nm and the encapsulation efficiency of Rd was 59.4±2.5%. Data from ex vivo and in vivo studies showed that the amounts of Rd in the cornea were significantly higher for Nanoplexes than for a control Rd solution, these amounts being fairly constant for up to 24h. Confocal microscopy of the corneas revealed paracellular and transcellular uptake of the Nanoplexes. The uptake mechanism postulated was adsorptive-mediated endocytosis and opening of the tight junctions between epithelial cells. No alteration was microscopically observed after ocular surface exposure to Nanoplexes. Taken together, these data demonstrate that Nanoplexes are potentially useful as ocular drug carriers. Copyright © 2010 Elsevier B.V. All rights reserved.
Green synthesis and characterization of Au@Pt core-shell bimetallic nanoparticles using gallic acid
NASA Astrophysics Data System (ADS)
Zhang, Guojun; Zheng, Hongmei; Shen, Ming; Wang, Lei; Wang, Xiaosan
2015-06-01
In this study, we developed a facile and benign green synthesis approach for the successful fabrication of well-dispersed urchin-like Au@Pt core-shell nanoparticles (NPs) using gallic acid (GA) as both a reducing and protecting agent. The proposed one-step synthesis exploits the differences in the reduction potentials of AuCl4- and PtCl62-, where the AuCl4- ions are preferentially reduced to Au cores and the PtCl62- ions are then deposited continuously onto the Au core surface as a Pt shell. The as-prepared Au@Pt NPs were characterized by transmission electron microscope (TEM); high-resolution transmission electron microscope (HR-TEM); scanning electron microscope (SEM); UV-vis absorption spectra (UV-vis); X-ray diffraction (XRD); Fourier transmission infrared spectra (FT-IR). We systematically investigated the effects of some experimental parameters on the formation of the Au@Pt NPs, i.e., the reaction temperature, the molar ratios of HAuCl4/H2PtCl6, and the amount of GA. When polyvinylpyrrolidone K-30 (PVP) was used as a protecting agent, the Au@Pt core-shell NPs obtained using this green synthesis method were better dispersed and smaller in size. The as-prepared Au@Pt NPs exhibited better catalytic activity in the reaction where NaBH4 reduced p-nitrophenol to p-aminophenol. However, the results showed that the Au@Pt bimetallic NPs had a lower catalytic activity than the pure Au NPs obtained by the same method, which confirmed the formation of Au@Pt core-shell nanostructures because the active sites on the surfaces of the Au NPs were covered with a Pt shell.
NASA Astrophysics Data System (ADS)
Qiu, Teng; Xie, Huxiao; Zhang, Jiangru; Zahoor, Amad; Li, Xiaoyu
2011-03-01
Ag/polypyrrole (PPy) coaxial nanocables (NCs) were synthesized by an ion adsorption method. In this method, the pre-made Ag nanowires (NWs) were dispersed in the aqueous solution of copper acetate (Cu(Ac)2), and the Cu2+ ions adsorbed onto the surface of Ag NWs can oxidize pyrrole monomers to polymerize into uniform PPy sheath outside Ag NWs after the Cu(Ac)2-treated Ag NWs were re-dispersed in the aqueous solution of pyrrole. The morphology of NCs was characterized by transmission electron microscope (TEM) and scanning electron microscope (SEM). The relationship between the thickness of polymer sheath and the concentration of Cu(Ac)2 was established. As Cu(Ac)2 which served as the oxidant can also be replaced by AgNO3 in this synthesis, the differences on the structure of polymer sheath caused by different oxidants were studied by surface-enhanced Raman scattering (SERS), high-resolution transmission electron microscope (HR-TEM), Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS). Comparing with the characterization results of Ag/PPy NCs synthesized using AgNO3 as the oxidant which indicates the random arrangement of PPy chains at the interface between polymer sheath and Ag NWs, PPy chain oxidized by Cu2+ tends to show a relatively ordered conformation at the interface with the pyrrole rings identically taking the plane vertical to the surface of Ag NWs. In addition, although the main part of the polymer sheath was composed of PPy whatever kind of oxidant was used, the sheath of the NCs oxidized by Cu2+ is typical for the existence of Cu(I)-pyrrole coordinate structures with strong Cu(I)-N bond signal shown in XPS characterization.
NASA Astrophysics Data System (ADS)
Wirth, R.; Morales, L. G.
2011-12-01
Focused ion beam (FIB) techniques have been successfully applied to the preparation of site-specific electron transparent membranes for transmission electron microscopy (TEM) investigations in Geosciences since several years. For example, systematic TEM studies of nano-inclusions in diamond foils prepared with FIB have improved our knowledge on diamond formation. However, FIB is not exclusively used for sample preparation for TEM application because it has been proved that one and the same TEM foil can also be used for Synchrotron IR, Synchrotron X-Ray fluorescence (XRF), scanning transmission X-Ray microscopy (STXM) and NanoSIMS analysis. In addition, FIB milling turned out to be very useful for sample preparation of Brillouin scattering experiments and has a strong potential for preparation of highly-polished, micrometer-scale samples. However, a real break through in FIB application was achieved combining a Ga-ion source of the FIB with an electron source of a scanning electron microscope (SEM) in one single instrument. The combination of FIB/SEM renders access to the third dimension of the sample possible. A cavity normal to the sample surface is sputtered with Ga-ions and this newly created inner surface is imaged with the electron beam. Alternating slicing and viewing along these cavities allow the acquisition of a sequence of images that allows the observation in 3 dimensions. Recently, this technique has been successfully applied to image the structure of grain or phase boundaries in metamorphic rocks as well as micro- and nanoporosity in shales, but its applicability goes far beyond these few examples. Combining slicing and viewing with X-Ray and electron backscatter diffraction (EBSD) analysis can provide 3D elemental mapping and 3D crystallographic orientation mapping of crystalline materials. Combined FIB/SEM devices also facilitate the preparation of substantially thinner and cleaner TEM foils (approximately 30 nm) because electron beam imaging controls the progress of the sputtering process without sputtering the sample during imaging. Electron induce sputtering is substantially smaller than ion induced sputtering. Finally, the amorphous layers created by Ga-ion sputtering and Ga-ion implantation can be removed from the foil surfaces by subsequent argon ion bombardment under a low angle of incidence and low acceleration voltage thus permitting TEM high-resolution imaging and electron energy-loss spectroscopy (EELS). Additionally, ultra-thin foils have the advantage that they are electron transparent even at 30 keV, the common operational voltage of a SEM. Therefore the electron column of the FIB/SEM system can be used as a TEM at low voltage and images can be made either in bright-field, dark field and through a high-angle annular dark field (HAADF) detector. The HAADF detector provides information about the chemical composition of the specimen with high spatial resolution because it is Z-contrast sensitive.
The core contribution of transmission electron microscopy to functional nanomaterials engineering
NASA Astrophysics Data System (ADS)
Carenco, Sophie; Moldovan, Simona; Roiban, Lucian; Florea, Ileana; Portehault, David; Vallé, Karine; Belleville, Philippe; Boissière, Cédric; Rozes, Laurence; Mézailles, Nicolas; Drillon, Marc; Sanchez, Clément; Ersen, Ovidiu
2016-01-01
Research on nanomaterials and nanostructured materials is burgeoning because their numerous and versatile applications contribute to solve societal needs in the domain of medicine, energy, environment and STICs. Optimizing their properties requires in-depth analysis of their structural, morphological and chemical features at the nanoscale. In a transmission electron microscope (TEM), combining tomography with electron energy loss spectroscopy and high-magnification imaging in high-angle annular dark-field mode provides access to all features of the same object. Today, TEM experiments in three dimensions are paramount to solve tough structural problems associated with nanoscale matter. This approach allowed a thorough morphological description of silica fibers. Moreover, quantitative analysis of the mesoporous network of binary metal oxide prepared by template-assisted spray-drying was performed, and the homogeneity of amino functionalized metal-organic frameworks was assessed. Besides, the morphology and internal structure of metal phosphide nanoparticles was deciphered, providing a milestone for understanding phase segregation at the nanoscale. By extrapolating to larger classes of materials, from soft matter to hard metals and/or ceramics, this approach allows probing small volumes and uncovering materials characteristics and properties at two or three dimensions. Altogether, this feature article aims at providing (nano)materials scientists with a representative set of examples that illustrates the capabilities of modern TEM and tomography, which can be transposed to their own research.Research on nanomaterials and nanostructured materials is burgeoning because their numerous and versatile applications contribute to solve societal needs in the domain of medicine, energy, environment and STICs. Optimizing their properties requires in-depth analysis of their structural, morphological and chemical features at the nanoscale. In a transmission electron microscope (TEM), combining tomography with electron energy loss spectroscopy and high-magnification imaging in high-angle annular dark-field mode provides access to all features of the same object. Today, TEM experiments in three dimensions are paramount to solve tough structural problems associated with nanoscale matter. This approach allowed a thorough morphological description of silica fibers. Moreover, quantitative analysis of the mesoporous network of binary metal oxide prepared by template-assisted spray-drying was performed, and the homogeneity of amino functionalized metal-organic frameworks was assessed. Besides, the morphology and internal structure of metal phosphide nanoparticles was deciphered, providing a milestone for understanding phase segregation at the nanoscale. By extrapolating to larger classes of materials, from soft matter to hard metals and/or ceramics, this approach allows probing small volumes and uncovering materials characteristics and properties at two or three dimensions. Altogether, this feature article aims at providing (nano)materials scientists with a representative set of examples that illustrates the capabilities of modern TEM and tomography, which can be transposed to their own research. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05460e
Unravelling the secret of seed-based gels in water: the nanoscale 3D network formation.
Samateh, Malick; Pottackal, Neethu; Manafirasi, Setareh; Vidyasagar, Adiyala; Maldarelli, Charles; John, George
2018-05-09
Chia (Salvia hispanica) and basil (Ocimum basilicum) seeds have the intrinsic ability to form a hydrogel concomitant with moisture-retention, slow releasing capability and proposed health benefits such as curbing diabetes and obesity by delaying digestion process. However, the underlying mode of gelation at nanoscopic level is not clearly explained or explored. The present study elucidates and corroborates the hypothesis that the gelling behavior of such seeds is due to their nanoscale 3D-network formation. The preliminary study revealed the influence of several conditions like polarity, pH and hydrophilicity/hydrophobicity on fiber extrusion from the seeds which leads to gelation. Optical microscopic analysis clearly demonstrated bundles of fibers emanating from the seed coat while in contact with water, and live growth of fibers to form 3D network. Scanning electron microscope (SEM) and transmission electron microscope (TEM) studies confirmed 3D network formation with fiber diameters ranging from 20 to 50 nm.
Investigation of Microstructural Features Determining the Toughness of 980 MPa Bainitic Weld Metal
NASA Astrophysics Data System (ADS)
Cao, R.; Zhang, X. B.; Wang, Z.; Peng, Y.; Du, W. S.; Tian, Z. L.; Chen, J. H.
2014-02-01
The microstructural features that control the impact toughness of weld metals of a 980 MPa 8 pct Ni high-strength steel are investigated using instrumented Charpy V tester, optical microscope (OM), scanning electron microscope (SEM), transmission electron microscope (TEM), electron back-scattered diffraction (EBSD), and finite-element method (FEM) calculation. The results show that the critical event for cleavage fracture in this high-strength steel and weld metals is the propagation of a bainite packet-sized crack across the packet boundary into contiguous packets, and the bainitic packet sizes control the impact toughness. The high-angle misorientation boundaries detected in a bainite packet by EBSD form fine tear ridges on fracture surfaces. However, they are not the decisive factors controlling the cleavage fracture. The effects of Ni content are essential factors for improving the toughness. The extra large cleavage facets seriously deteriorate the toughness, which are formed on the interfaces of large columnar crystals growing in welding pools with high heat input.
NASA Astrophysics Data System (ADS)
Tian, Chenguang; Lu, Huimin; Zhao, Liyuan
The super-light LA141 (Mg-14%Li-1%Al) alloy was produced and processed by high-pressure torsion (HPT) under the imposed pressure of 3 GPa and different shear strains γ through 3, 6, 9 and 12 turns at room temperature (RT). The microstructure evolution of the alloy during the HPT treatment was investigated by transmission electron microscope (TEM) and optical microscope (OM). It turned out that the grains were substantially refined, and the optical microscope revealed that the grains of HPT processed samples at the edge of the disc were finer by comparison with the ones near the center of the disc. Later, Vickers indentation analysis was used to evaluate the micro-hardness of deformed samples, and tension test was employed to obtain the strength and elongation at room temperature. The results indicated that the micro-hardness and tensile strength had increased to a certain extent, and the elongation had been significantly improved.
2013-10-01
thrombin inhibition, leading to coagulopathy. Using intravital microscopy, we have obtained direct in vivo data showing glycocalyx thickness reduction...collected in 3.2% citrate for coagulation assays (ROTEM, TEM Innovations GmbH, Munich, Germany). Intravital Microscopy The system described in detail...microscopic fields containing venules were randomly selected. The first dye (TR-Dx70) was injected 5 min before baseline. Image sequences of
NASA Astrophysics Data System (ADS)
Verma, Vivek; Pandey, Vibhav; Singh, Sukhveer; Aloysius, R. P.; Annapoorni, S.; Kotanala, R. K.
2009-08-01
Lithium ferrite has been considered as one of the highly strategic magnetic material. Nano-crystalline Li 0.5Fe 2.5O 4 was prepared by four different techniques and characterized by X-ray diffraction, vibrating sample magnetometer (VSM), transmission electron microscope (TEM) and Fourier transform infrareds (FTIR). The effect of annealing temperature (700, 900 and 1050 °C) on microstructure has been correlated to the magnetic properties. From X-ray diffraction patterns, it is confirmed that the pure phase of lithium ferrite began to form at 900 °C annealing. The particle size of as-prepared lithium ferrite was observed around 40, 31, 22 and 93 nm prepared by flash combustion, sol-gel, citrate precursor and standard ceramic technique, respectively. Lithium ferrite prepared by citrate precursor method shows a maximum saturation magnetization 67.6 emu/g at 5 KOe.
NASA Astrophysics Data System (ADS)
Kwon, Yong-Su; Choi, Kee-Bong; Lim, Hyungjun; Lee, Sunghwi; Lee, Jae-Jong
2018-06-01
Simple and versatile methodologies have been reported that customize the surface of superparamagnetic iron oxide (SPIO) nanoparticles and impart additional fluorescence capabilities to these contrast agents. Herein, we present the rational design, synthesis, characterization, and biological applications of a new magnetic-based fluorescent probe. The dual modality imaging protocol was developed by labeling fluorophore with alginate natural polymers that have excellent biocompatibility and biodegradability, and using gelification method to form nanocomposites containing SPIO. The formation of alginate-based fluorescent magnetic (AFM) nanoparticles was observed in spherical and elliptical forms with a diameter of less than 500 nm by a transmission electron microscope (TEM). The fluorescent wavelength band in the range of 560 nm was also confirmed in the UV–visible spectrophotometer. In this study, we demonstrate that the multi-tasking design of AFM nanoparticles provides an ideal platform for building balanced dual-image probes of magnetic resonance imaging and optical imaging.
Jung, Lena; Hauer, Benedikt; Li, Peining; Bornhöfft, Manuel; Mayer, Joachim; Taubner, Thomas
2016-03-07
We present a study on subsurface imaging with an infrared scattering-type scanning near-field optical microscope (s-SNOM). The depth-limitation for the visibility of gold nanoparticles with a diameter of 50 nm under Si 3 N 4 is determined to about 50 nm. We first investigate spot size and signal strength concerning their particle-size dependence for a dielectric cover layer with positive permittivity. The experimental results are confirmed by model calculations and a comparison to TEM images. In the next step, we investigate spectroscopically also the regime of negative permittivity of the capping layer and its influence on lateral resolution and signal strength in experiment and simulations. The explanation of this observation combines subsurface imaging and superlensing, and shows up limitations of the latter regarding small structure sizes.
Creep deformation and rupture behavior of CLAM steel at 823 K and 873 K
NASA Astrophysics Data System (ADS)
Zhong, Boyu; Huang, Bo; Li, Chunjing; Liu, Shaojun; Xu, Gang; Zhao, Yanyun; Huang, Qunying
2014-12-01
China Low Activation Martensitic (CLAM) steel is selected as the candidate structural material in Fusion Design Study (FDS) series fusion reactor conceptual designs. The creep property of CLAM steel has been studied in this paper. Creep tests have been carried out at 823 K and 873 K over a stress range of 150-230 MPa. The creep curves showed three creep regimes, primary creep, steady-state creep and tertiary creep. The relationship between minimum creep rate (ε˙min) and the applied stress (σ) could be described by Norton power law, and the stress exponent n was decreased with the increase of the creep temperature. The creep mechanism was analyzed with the fractographes of the rupture specimens which were examined by scanning electron microscopy (SEM). The coarsening of precipitates observed with transmission electron microscope (TEM) indicated the microstructural degradation after creep test.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Padmaja, S.; Jayakumar, S., E-mail: s_jayakumar_99@yahoo.com; Balaji, R.
Cadmium Sulphide (CdS) nanoparticles were reinforced in Poly(ethylene Oxide) (PEO) and Poly(methyl methacrylate) (PMMA) matrices by in situ technique. The presence of CdS in PEO and PMMA matrix was confirmed using X-ray photoelectron spectroscopy (XPS). Fourier Transform Infrared spectroscopy (FTIR) analysis disclosed the co-ordination of CdS in the matrices. Thermal analysis of the nanocomposites was carried out using Differential Scanning calorimetric studies (DSC). The optical studies using UV–vis spectroscopy were carried out to find the band gap of the materials and the absorption onset. The CdS particle size in the matrices was found by Effective Mass Approximation (EMA) model usingmore » the band gap values and was confirmed by TEM studies. The surface trapped emissions of the nanocomposites were observed from the photoluminescence (PL) spectra. The distribution of CdS particles in the polymer matrices were presented by Atomic force microscopic studies (AFM).« less
Raman spectroscopy of sputtered metal-graphene and metal-oxide-graphene interfaces
NASA Astrophysics Data System (ADS)
Chen, Ching-Tzu; Gajek, Marcin; Freitag, Marcus; Kuroda, Marcelo; Perebeinos, Vasili; Raoux, Simone
2012-02-01
In this talk, we report our recent development in sputtering deposition of magnetic and non-magnetic metal and metal-oxide thin films on graphene for applications in spintronics and nanoeleoctronics. TEM and SEM images demonstrate homogeneous coverage, uniform thickness, and good crystallinity of the sputtered films. Raman spectroscopy shows that the structure of the underlying graphene is well preserved, and the spectral weight of the defect D mode is comparable to that of the e-beam evaporated samples. Most significantly, we report the first observation of graphene-enhanced surface excitations of crystalline materials. Specifically, we discover two pronounced dispersive Raman modes at the interface of graphene and the nickel-oxide and cobalt-oxide films which we attribute to the strong light absorption and high-order resonant scattering process in the graphene layer. We will present the frequency-dependent, polarization-dependent Raman data of these two modes and discuss their microscopic origin.
The Microstructure of Lunar Micrometeorite Impact Craters
NASA Technical Reports Server (NTRS)
Noble, S. K.; Keller, L. P.; Christoffersen, R.; Rahman, Z.
2016-01-01
The peak of the mass flux of impactors striking the lunar surface is made up of objects approximately 200 micrometers in diameter that erode rocks, comminute regolith grains, and produce agglutinates. The effects of these micro-scale impacts are still not fully understood. Much effort has focused on evaluating the physical and optical effects of micrometeorite impacts on lunar and meteoritic material using pulsed lasers to simulate the energy deposited into a substrate in a typical hypervelocity impact. Here we characterize the physical and chemical changes that accompany natural micrometeorite impacts into lunar rocks with long surface exposure to the space environment (12075 and 76015). Transmission electron microscope (TEM) observations were obtained from cross-sections of approximately 10-20 micrometers diameter craters that revealed important micro-structural details of micrometeorite impact processes, including the creation of npFe (sup 0) in the melt, and extensive deformation around the impact site.
Slack, J.F.; Wei-Teh, Jiang; Peacor, D.R.; Okita, P.M.
1992-01-01
Berthierine, a 7 A?? Fe-Al member of the serpentine group, occurs in the footwall stringer zone of the Archean Kidd Creek massive sulfide deposit, associated with quartz, muscovite, chlorite, pyrite, sphalerite, chalcopyrite, and local tourmaline, cassiterite, and halloysite. Petrographic and scanning electron microscopic (SEM) studies reveal different types of berthierine occurrences, including interlayers within the rims on deformed chlorite, intergrowths with muscovite and halloysite, and discrete coarse grains. This is the first reported occurrence of berthierine from volcanogenic massive sulfide deposits. Textural relations suggest that most of the berthierine formed as a primary hydrothermal mineral at relatively high temperatures (~350??C) in the footwall stringer zone, probably by the replacement of a pre-existing aluminous phase such as muscovite or chlorite. However, the intergrowth textures observed by SEM and TEM suggest that some of the berthierine originated by syn- or post-metamorphic replacement of chlorite. -from Authors
Characterization of lycopene hydrocolloidal structure induced by tomato processing.
Jazaeri, Sahar; Mohammadi, Abdorreza; Kermani, Amir Mehrabi Panah; Paliyath, Gopinadhan; Kakuda, Yukio
2018-04-15
Tomato juice and paste are special type of dispersions, composed of suspended particles (pulp) dispersed in a colloidal liquid medium (serum). The bright red appearance of soluble solid separated by high speed centrifugation denoted the presence of lycopene in this fraction. Since lycopene is a hydrophobic compound it is not expected to appear in the water soluble fraction. HPLC analysis indicated presence of substantial amount of lycopene in soluble fraction which was confirmed by the appearance of lycopene crystals when observed under Transmission Electron Microscope (TEM). Considerable amount of pectin in the soluble fraction led to hypothesis that pectin facilitated the formation of hydrocolloidal system of suspended lycopene during processing. Enzyme treatment confirmed this hypothesis when pectinase effectively disrupted colloidal system and precipitated lycopene. Necessity of the divalent ions to retain the suspension signified the electrostatic interactions in the matrix surrounding lycopene crystals. Copyright © 2017 Elsevier Ltd. All rights reserved.
Robin, Frédéric; Delmas, Julien; Schweitzer, Cédric; Tournilhac, Olivier; Lesens, Olivier; Chanal, Catherine; Bonnet, Richard
2007-04-01
Two clinical isolates of Escherichia coli, CF1179 and CF1295, were isolated from a patient hospitalized in the hematology unit of the University Hospital of Clermont-Ferrand, Clermont-Ferrand, France. They were resistant to penicillin-clavulanate combinations and to ceftazidime. The double-disk synergy test was positive only for isolate CF1179. Molecular comparison of the isolates showed that they were clonally related. E. coli recombinant strains exhibiting the resistance phenotype of the clinical strains were obtained by cloning. The clones corresponding to strains CF1179 and CF1295 produced TEM-type beta-lactamases with pI values of 5.7 and 5.3, respectively. Sequencing analysis revealed two novel blaTEM genes encoding closely related complex mutant TEM enzymes, designated TEM-151 (pI 5.3) and TEM-152 (pI 5.7). These two genes also harbored a new promoter region which presented a 9-bp deletion. The two novel beta-lactamases differed from the parental enzyme, TEM-1, by the substitution Arg164His, previously observed in extended-spectrum beta-lactamases (ESBLs), and by the substitutions Met69Val and Asn276Asp, previously observed in the inhibitor-resistant penicillinase TEM-36/IRT-7. They differed by two amino acid substitutions: TEM-152 harbored a Glu240Lys ESBL-type substitution and TEM-151 had an Ala284Gly substitution. Functional analysis of TEM-151 and TEM-152 showed that both enzymes had hydrolytic activity against ceftazidime (kcat, 5 and 16 s-1, respectively). TEM-152 was more resistant than TEM-151 to the inhibitor clavulanic acid (50% inhibitory concentrations, 1 versus 0.17 microM). These results confirm the evolution of TEM-type enzymes toward complex enzymes harboring the two kinds of substitutions which confer an extended spectrum of action against beta-lactam antibiotics and resistance to inhibitors.
Major, L; Janusz, M; Lackner, J M; Kot, M; Dyner, M; Major, B
2017-10-01
Recently, to reduce the residual stress and increase the mechanical properties of a-C:H coatings, metallic nanoparticles have been implanted into their structure. In the present work, to improve the properties of the coating, metallic nanoparticles, including Cu, Nb, Ta, Zr, AgPt and Ag, were inserted into the a-C:H structure. The applied biological and mechanical analysis allowed the optimal biotribological parameters to be indicated for the potential application as protective coatings for metallic medical tools. Wear mechanisms operating at the small length of the designed biotribological coating, such as a-C:H implanted by Zr nanoparticles, were studied by means of transmission electron microscopy (TEM). The TEM analysis confirmed very good coating adhesion to the metallic substrate. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.
Revelation of graphene-Au for direct write deposition and characterization
NASA Astrophysics Data System (ADS)
Bhandari, Shweta; Deepa, Melepurath; Joshi, Amish G.; Saxena, Aditya P.; Srivastava, Avanish K.
2011-06-01
Graphene nanosheets were prepared using a modified Hummer's method, and Au-graphene nanocomposites were fabricated by in situ reduction of a gold salt. The as-produced graphene was characterized by X-ray photoelectron spectroscopy, ultraviolet-visible spectroscopy, scanning electron microscopy, and high-resolution transmission electron microscopy (HR-TEM). In particular, the HR-TEM demonstrated the layered crystallites of graphene with fringe spacing of about 0.32 nm in individual sheets and the ultrafine facetted structure of about 20 to 50 nm of Au particles in graphene composite. Scanning helium ion microscopy (HIM) technique was employed to demonstrate direct write deposition on graphene by lettering with gaps down to 7 nm within the chamber of the microscope. Bare graphene and graphene-gold nanocomposites were further characterized in terms of their composition and optical and electrical properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sulima, Iwona, E-mail: isulima@up.krakow.pl
Steel-8TiB{sub 2} composites were produced by two new sintering techniques, i.e. Spark Plasma Sintering (SPS) and High Pressure-High Temperature (HP-HT) sintering. This study discusses the impact of these sintering methods on the microstructure of steel composites reinforced with TiB{sub 2} particles. Scanning electron microscopy (SEM), wavelength dispersive spectroscopy (WDS), X-ray diffraction, electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) were used to analyze the microstructure evolution in steel matrix composites. The results of microscopic examinations revealed a close relationship between the composite microstructure and the methods and conditions of sintering. Substantial differences were observed in the grain size ofmore » materials sintered by HP-HT and SPS. It has been demonstrated that the composites sintered by HP-HT tend to form a chromium-iron-nickel phase in the steel matrix. In contrast, the microstructure of the composites sintered by SPS is characterized by the presence of complex borides and chromium-iron phase. - Highlights: •The steel-8TiB{sub 2} composites were fabricated by Spark Plasma Sintering (SPS) and High Pressure-High Temperature (HP-HT). •Sintering techniques has an important effect on changes in the microstructure of steel-8TiB{sub 2} composites. •New phases of different size and morphology were identified.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Häusler, I., E-mail: ines.haeusler@bam.de; Dörfel, I., E-mail: Ilona.doerfel@bam.de; Peplinski, B., E-mail: Burkhard.peplinski@bam.de
A model system was used to simulate the properties of tribofilms which form during automotive braking. The model system was prepared by ball milling of a blend of 70 vol.% iron oxides, 15 vol.% molybdenum disulfide and 15 vol.% graphite. The resulting mixture was characterized by X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and various transmission electron microscopic (TEM) methods, including energy dispersive X-ray spectroscopy (EDXS), high resolution investigations (HRTEM) with corresponding simulation of the HRTEM images, diffraction methods such as scanning nano-beam electron diffraction (SNBED) and selected area electron diffraction (SAED). It could be shown that the ballmore » milling caused a reduction of the grain size of the initial components to the nanometer range. Sometimes even amorphization or partial break-down of the crystal structure was observed for MoS{sub 2} and graphite. Moreover, chemical reactions lead to a formation of surface coverings of the nanoparticles by amorphous material, molybdenum oxides, and iron sulfates as derived from XPS. - Highlights: • Ball milling of iron oxides, MoS{sub 2}, and graphite to simulate a tribofilm • Increasing coefficient of friction after ball milling of the model blend • Drastically change of the diffraction pattern of the powder mixture • TEM & XPS showed the components of the milled mixture and the process during milling. • MoS{sub 2} and graphite suffered a loss in translation symmetry or became amorphous.« less
Toxicity of Engineered Nickel Oxide and Cobalt Oxide Nanoparticles to Artemia salina in seawater
Ates, Mehmet; Demir, Veysel; Arslan, Zikri; Camas, Mustafa; Celik, Fatih
2016-01-01
In this study, the effects of exposure to engineered nickel oxide (NiO 40–60 nm) and cobalt oxide (CoO <100 nm) nanoparticles (NP) were investigated on Artemia salina. Aggregation and stability of the aqueous NP suspensions were characterized by DLS and TEM. Acute exposure was conducted on nauplii (larvae) in seawater in a concentration range from 0.2 to 50 mg/L NPs for 24 h (short term) and 96 h (long term). The hydrodynamic diameters of NiO and CoO NPs in exposure medium were larger than those estimated by TEM. Accumulation rate of NiO NPs were found to be four times higher than that of CoO NPs under the same experimental conditions. Examinations under phase contrast microscope showed that the nanoparticles accumulated in the intestine of artemia, which increased with increasing exposure concentration. Differences were observed in the extent of dissolution of the NPs in the seawater. The CoO NPs dissolved significantly while NiO NPs were relatively more stable. Oxidative stress induced by the NP suspensions was measured by malondialdehyde assay. Suspensions of NiO NPs caused higher oxidative stress on nauplii than those of CoO NPs. The results imply that CoO and NiO NPs exhibit toxicity on artemia (e.g., zooplankton) that are an important source of food in aquatic food chain. PMID:27152058
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuladeep, Rajamudili; Dar, Mudasir H.; Rao, D. Narayana, E-mail: dnrsp@uohyd.ac.in, E-mail: dnr-laserlab@yahoo.com
2014-09-21
In this communication, we demonstrate the generation of laser-induced periodic sub-wavelength surface structures (LIPSS) or ripples on a bulk aluminum (Al) and Al nanoparticles (NPs) by femtosecond (fs) laser direct writing technique. Laser irradiation was performed on Al surface at normal incidence in air and by immersing in ethanol (C₂H₅OH) and water (H₂O) using linearly polarized Ti:sapphire fs laser pulses of ~110 fs pulse duration and ~800 nm wavelength. Field emission scanning electron microscope is utilized for imaging surface morphology of laser written structures and it reveals that the spatial periodicity as well as the surface morphology of the LIPSSmore » depends on the surrounding dielectric medium and also on the various laser irradiation parameters. The observed LIPSS have been classified as low spatial frequency LIPSS which are perpendicularly oriented to the laser polarization with a periodicity from 460 to 620 nm and high spatial frequency LIPSS which spectacles a periodicity less than 100 nm with the orientation parallel to the polarization of the incident laser beam. Fabricated colloidal solutions, which contain the Al NPs, were characterized by UV-Vis absorption spectroscopy and transmission electron microscopy (TEM). TEM results reveal the formation of internal cavities in Al NPs both in ethanol and water. Formation mechanism of LIPSS and cavities inside the nanoparticles are discussed in detail.« less
NASA Astrophysics Data System (ADS)
Gao, Fuping; Yan, Zixing; Zhou, Jing; Cai, Yuanyuan; Tang, Jintian
2012-10-01
There is significant interest in recent years in developing magnetic nanoparticles (MNPs) having multifunctional characteristics with complimentary roles. In this study, methotrexate (MTX) was conjugated on the iron oxide magnetic nanoparticles surface via a poly(ethyleneimine) self-assembled monolayer (MTX-MNPs). The novel platform combined cancer chemotherapy, hyperthermia and potential monitoring of the progression of disease through magnetic resonance imaging (MRI). The conjugation of MTX on the magnetite surface was confirmed by Fourier transform infrared spectroscopy and change of zeta potential. Transmission electron microscope (TEM) showed that MTX-MNPs were morphologically spherical. The average diameter of MTX-MNPs was 30.1 ± 5.2 nm determined by dynamic light scattering. Magnetic measurements revealed that the saturation magnetization of MTX-MNPs reached 68.8 emu/g and the nanoparticles were superparamagnetic. The MTX-MNPs had good heating properties in an alternating magnetic field. TEM results showed that a larger number of MTX-MNPs were internalized into the MCF-7 cellular cytoplasm compared with the MNPs. The MTX-MNPs demonstrated highly synergistic antiproliferative effects of simultaneous chemotherapy and hyperthermia in MCF-7 breast cancer cells. A significant negative contrast enhancement was observed with magnetic resonance phantom imaging for MCF-7 cells over L929cells, when both were cultured with the nanoconjugate. The MTX-MNPs with combined characteristics of thermochemotherapy and MRI could be of high clinical significance in the treatment of tumor.
Defocus and magnification dependent variation of TEM image astigmatism.
Yan, Rui; Li, Kunpeng; Jiang, Wen
2018-01-10
Daily alignment of the microscope is a prerequisite to reaching optimal lens conditions for high resolution imaging in cryo-EM. In this study, we have investigated how image astigmatism varies with the imaging conditions (e.g. defocus, magnification). We have found that the large change of defocus/magnification between visual correction of astigmatism and subsequent data collection tasks, or during data collection, will inevitably result in undesirable astigmatism in the final images. The dependence of astigmatism on the imaging conditions varies significantly from time to time, so that it cannot be reliably compensated by pre-calibration of the microscope. Based on these findings, we recommend that the same magnification and the median defocus of the intended defocus range for final data collection are used in the objective lens astigmatism correction task during microscope alignment and in the focus mode of the iterative low-dose imaging. It is also desirable to develop a fast, accurate method that can perform dynamic correction of the astigmatism for different intended defocuses during automated imaging. Our findings also suggest that the slope of astigmatism changes caused by varying defocuses can be used as a convenient measurement of objective lens rotation symmetry and potentially an acceptance test of new electron microscopes.
Fujii, Satoshi; Fujihara, Ayano; Natori, Kei; Abe, Anna; Kuboki, Yasutoshi; Higuchi, Youichi; Aizawa, Masaki; Kuwata, Takeshi; Kinoshita, Takahiro; Yasui, Wataru; Ochiai, Atsushi
2015-01-01
The cancer stroma, including cancer-associated fibroblasts (CAFs), is known to contribute to cancer cell progression and metastasis, suggesting that functional proteins expressed specifically in CAFs might be candidate molecular targets for cancer treatment. The purpose of the present study was to explore the possibility of using TEM1 (tumor endothelial marker 1), which is known to be expressed in several types of mesenchymal cells, as a molecular target by examining the impact of TEM1 expression on clinicopathological factors in gastric cancer patients. A total of 945 consecutive patients with gastric cancer who underwent surgery at the National Cancer Center Hospital East between January 2003 and July 2007 were examined using a tissue microarray approach. TEM1 expression in CAFs or vessel-associated cells was determined using immunohistochemical staining. Three items (CAF-TEM1-positivity, CAF-TEM1-intensity, and vessel-TEM1-intensity) were then examined to determine the correlations between the TEM1 expression status and the recurrence-free survival (RFS), overall survival (OS), cancer-related survival (COS), and other clinicopathological factors. Significant correlations between CAF-TEM1-positivity or CAF-TEM1-intensity and RFS, OS, or COS were observed (P < 0.001, Kaplan–Meier curves); however, no significant correlation between vessel-TEM1-intensity and RFS, OS, or COS was observed. A univariate analysis showed that CAF-TEM1-positivity and CAF-TEM1-intensity were each correlated with a scirrhous subtype, tumor depth, nodal status, distant metastasis, serosal invasion, lymphatic or venous vessel infiltrations, and pTMN stage. This study suggests that the inhibition of TEM1 expression specifically in the CAFs of gastric carcinoma might represent a new strategy for the treatment of gastric cancer. PMID:26336878
Tetraspanins and Transmembrane Adaptor Proteins As Plasma Membrane Organizers-Mast Cell Case.
Halova, Ivana; Draber, Petr
2016-01-01
The plasma membrane contains diverse and specialized membrane domains, which include tetraspanin-enriched domains (TEMs) and transmembrane adaptor protein (TRAP)-enriched domains. Recent biophysical, microscopic, and functional studies indicated that TEMs and TRAP-enriched domains are involved in compartmentalization of physicochemical events of such important processes as immunoreceptor signal transduction and chemotaxis. Moreover, there is evidence of a cross-talk between TEMs and TRAP-enriched domains. In this review we discuss the presence and function of such domains and their crosstalk using mast cells as a model. The combined data based on analysis of selected mast cell-expressed tetraspanins [cluster of differentiation (CD)9, CD53, CD63, CD81, CD151)] or TRAPs [linker for activation of T cells (LAT), non-T cell activation linker (NTAL), and phosphoprotein associated with glycosphingolipid-enriched membrane microdomains (PAG)] using knockout mice or specific antibodies point to a diversity within these two families and bring evidence of the important roles of these molecules in signaling events. An example of this diversity is physical separation of two TRAPs, LAT and NTAL, which are in many aspects similar but show plasma membrane location in different microdomains in both non-activated and activated cells. Although our understanding of TEMs and TRAP-enriched domains is far from complete, pharmaceutical applications of the knowledge about these domains are under way.
Correlative Fluorescence and Electron Microscopy in 3D-Scanning Electron Microscope Perspective.
Franks, Jonathan; Wallace, Callen T; Shibata, Masateru; Suga, Mitsuo; Erdman, Natasha; Stolz, Donna B; Watkins, Simon C
2017-04-03
The ability to correlate fluorescence microscopy (FM) and electron microscopy (EM) data obtained on biological (cell and tissue) specimens is essential to bridge the resolution gap between the data obtained by these different imaging techniques. In the past such correlations were limited to either EM navigation in two dimensions to the locations previously highlighted by fluorescence markers, or subsequent high-resolution acquisition of tomographic information using a TEM. We present a novel approach whereby a sample previously investigated by FM is embedded and subjected to sequential mechanical polishing and backscatter imaging by scanning electron microscope. The resulting three dimensional EM tomogram of the sample can be directly correlated to the FM data. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.
NASA Astrophysics Data System (ADS)
Granerød, Cecilie S.; Galeckas, Augustinas; Johansen, Klaus Magnus; Vines, Lasse; Prytz, Øystein
2018-04-01
The optical band gap of ZnO has been measured as a function of temperature using Electron Energy-Loss Spectroscopy (EELS) in a (Scanning) Transmission Electron Microscope ((S)TEM) from approximately 100 K up towards 1000 K. The band gap narrowing shows a close to linear dependency for temperatures above 250 K and is accurately described by Varshni, Bose-Einstein, Pässler and Manoogian-Woolley models. Additionally, the measured band gap is compared with both optical absorption measurements and photoluminescence data. STEM-EELS is here shown to be a viable technique to measure optical band gaps at elevated temperatures, with an available temperature range up to 1500 K and the benefit of superior spatial resolution.
Kabe, Ryota; Feng, Xinliang; Adachi, Chihaya; Müllen, Klaus
2014-11-01
A water-soluble surfactant consisting of hexa-peri-hexabenzocoronene (HBC) as hydrophobic aromatic core and hydrophilic carboxy substituents was synthesized. It exhibited a self-assembled nanofiber structure in the solid state. Profiting from the π interactions between the large aromatic core of HBC and graphene, the surfactant mediated the exfoliation of graphite into graphene in polar solvents, which was further stabilized by the bulky hydrophilic carboxylic groups. A graphene dispersion with a concentration as high as 1.1 mg L(-1) containing 2-6 multilayer nanosheets was obtained. The lateral size of the graphene sheets was in the range of 100-500 nm based on atomic force microscope (AFM) and transmission electron microscope (TEM) measurements. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A simple tool for stereological assessment of digital images: the STEPanizer.
Tschanz, S A; Burri, P H; Weibel, E R
2011-07-01
STEPanizer is an easy-to-use computer-based software tool for the stereological assessment of digitally captured images from all kinds of microscopical (LM, TEM, LSM) and macroscopical (radiology, tomography) imaging modalities. The program design focuses on providing the user a defined workflow adapted to most basic stereological tasks. The software is compact, that is user friendly without being bulky. STEPanizer comprises the creation of test systems, the appropriate display of digital images with superimposed test systems, a scaling facility, a counting module and an export function for the transfer of results to spreadsheet programs. Here we describe the major workflow of the tool illustrating the application on two examples from transmission electron microscopy and light microscopy, respectively. © 2011 The Authors Journal of Microscopy © 2011 Royal Microscopical Society.
Manipulator for rotating and translating a sample holder
van de Water, Jeroen [Breugel, NL; van den Oetelaar, Johannes [Eindhoven, NL; Wagner, Raymond [Gorinchem, NL; Slingerland, Hendrik Nicolaas [Venlo, NL; Bruggers, Jan Willem [Eindhoven, NL; Ottevanger, Adriaan Huibert Dirk [Malden, NL; Schmid, Andreas [Berkeley, CA; Olson, Eric A [Champaign, IL; Petrov, Ivan G [Champaign, IL; Donchev, Todor I [Urbana, IL; Duden, Thomas [Kensington, CA
2011-02-08
A manipulator for use in e.g. a Transmission Electron Microscope (TEM) is described, said manipulator capable of rotating and translating a sample holder (4). The manipulator clasps the round sample holder between two members (3A, 3B), said members mounted on actuators (2A, 2B). Moving the actuators in the same direction results in a translation of the sample holder, while moving the actuators in opposite directions results in a rotation of the sample holder.
1975-11-01
by acceptors such as hydrogen ion (H+) to form hydrogen gas. These microscopic batter- ies on the surface of a corroding metal are called local...session on Effects of EMP on Cable Sys- tems. Mr. I. Kolodny, General Cable, was Chairman of the session. Awards were presented by the symposium co... the conductor and on the outside of the insulation and these measurements were
The dynamic response and shock-recovery of porcine skeletal muscle tissue
NASA Astrophysics Data System (ADS)
Wilgeroth, James Michael; Hazell, Paul; Appleby-Thomas, Gareth James
2012-03-01
A soft-capture system allowing for one-dimensional shock loading and release of soft tissues via the plate-impact technique has been developed. In addition, we present the numerical simulation of a shock-recovery experiment involving porcine skeletal muscle and further investigate the effects of the transient wave on the structure of the tissue via transmission electron microscope (TEM). This paper forms part of an ongoing research programme on the dynamic behaviour of skeletal muscle tissue.
Gong, Jiang; Liu, Jie; Jiang, Zhiwei; Wen, Xin; Mijowska, Ewa; Tang, Tao; Chen, Xuecheng
2015-05-01
Novel porous cup-stacked carbon nanotube (P-CSCNT) with special stacked morphology consisting of many truncated conical graphene layers was synthesized by KOH activating CSCNT from polypropylene. The morphology, microstructure, textural property, phase structure, surface element composition and thermal stability of P-CSCNT were investigated by field-emission scanning electron microscope, transmission electron microscope (TEM), high-resolution TEM, N2 sorption, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy and thermal gravimetric analysis. A part of oblique graphitic layers were etched by KOH, and many holes with a diameter of several to a doze of nanometers connecting inner tube with outside were formed, which endowed P-CSCNT with high specific surface area (558.7 m(2)/g), large pore volume (1.993 cm(3)/g) and abundant surface functional groups. Subsequently, P-CSCNT was used for adsorption of methylene blue (MB) from wastewater. Langmuir model closely fitted the adsorption results, and the maximum adsorption capacity of P-CSCNT was as high as 319.1mg/g. This was ascribed to multiple adsorption mechanisms including pore filling, hydrogen bonding, π-π and electrostatic interactions. Pseudo second-order kinetic model was more valid to describe the adsorption behavior. Besides, P-CSCNT showed good recyclablity and reusability. These results demonstrated that P-CSCNT had potential application in wastewater treatment. Copyright © 2015 Elsevier Inc. All rights reserved.
Three-dimensional imaging of adherent cells using FIB/SEM and STEM.
Villinger, Clarissa; Schauflinger, Martin; Gregorius, Heiko; Kranz, Christine; Höhn, Katharina; Nafeey, Soufi; Walther, Paul
2014-01-01
In this chapter we describe three different approaches for three-dimensional imaging of electron microscopic samples: serial sectioning transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM) tomography, and focused ion beam/scanning electron microscopy (FIB/SEM) tomography. With these methods, relatively large volumes of resin-embedded biological structures can be analyzed at resolutions of a few nm within a reasonable expenditure of time. The traditional method is serial sectioning and imaging the same area in all sections. Another method is TEM tomography that involves tilting a section in the electron beam and then reconstruction of the volume by back projection of the images. When the scanning transmission (STEM) mode is used, thicker sections (up to 1 μm) can be analyzed. The third approach presented here is focused ion beam/scanning electron microscopy (FIB/SEM) tomography, in which a sample is repeatedly milled with a focused ion beam (FIB) and each newly produced block face is imaged with the scanning electron microscope (SEM). This process can be repeated ad libitum in arbitrary small increments allowing 3D analysis of relatively large volumes such as eukaryotic cells. We show that resolution of this approach is considerably improved when the secondary electron signal is used. However, the most important prerequisite for three-dimensional imaging is good specimen preparation. For all three imaging methods, cryo-fixed (high-pressure frozen) and freeze-substituted samples have been used.
NASA Astrophysics Data System (ADS)
Lintang, H. O.; Jalani, M. A.; Yuliati, L.; Salleh, M. M.
2017-05-01
Herein we reported that by introducing a one-dimensional (1D) substrate with a porous structure such as anodic aluminum oxide (AAO) membrane, mesoporous silica/alumina hybrid nanocomposites were successfully fabricated by using amphiphilic triphenylene (TPC10TEG) as a template in sol-gel synthesis (TPC10TEG/silicahex). For the optical study of the nanocomposites, TPC10TEG/silicahex showed absorption peak at 264 nm due to the ordered and long-range π-π stacking of the disc-like aromatic triphenylene core. Moreover, the hexagonal arrangement of TPC10TEG/silicahex was proven based on their diffraction peaks of d 100 and d 200 at 2θ = 2.52° and 5.04° and images of transmission electron microscopy (TEM), respectively. For fabrication of mesoporous silica/alumina hybrid membrane, TPC10TEG/silicahex was drop-casted onto AAO membrane for penetration into the porous structure via gravity. X-ray diffraction (XRD) analysis on the resulted hybrid nanocomposites showed that the diffraction peaks of d 100 and d 200 of TPC10TEG/silicahex were still preserved, indicating that the hexagonal arrangements of mesoporous silica were maintained even on AAO substrate. The morphology study on the hybrid nanocomposites using TEM, scanning electron microscope (SEM) and field emission scanning electron microscope (FE-SEM) showed the successful filling of most AAO channels with the TPC10TEG/silicahex nanocomposites.
Preparation and Application of Hollow Silica/magnetic Nanocomposite Particle
NASA Astrophysics Data System (ADS)
Wang, Cheng-Chien; Lin, Jing-Mo; Lin, Chun-Rong; Wang, Sheng-Chang
The hollow silica/cobalt ferrite (CoFe2O4) magnetic microsphere with amino-groups were successfully prepared via several steps, including preparing the chelating copolymer microparticles as template by soap-free emulsion polymerization, manufacturing the hollow cobalt ferrite magnetic microsphere by in-situ chemical co-precipitation following calcinations, and surface modifying of the hollow magnetic microsphere by 3-aminopropyltrime- thoxysilane via the sol-gel method. The average diameter of polymer microspheres was ca. 200 nm from transmission electron microscope (TEM) measurement. The structure of the hollow magnetic microsphere was characterized by using TEM and scanning electron microscope (SEM). The spinel-type lattice of CoFe2O4 shell layer was identified by using XRD measurement. The diameter of CoFe2O4 crystalline grains ranged from 54.1 nm to 8.5 nm which was estimated by Scherrer's equation. Additionally, the hollow silica/cobalt ferrite microsphere possesses superparamagnetic property after VSM measurement. The result of BET measurement reveals the hollow magnetic microsphere which has large surface areas (123.4m2/g). After glutaraldehyde modified, the maximum value of BSA immobilization capacity of the hollow magnetic microsphere was 33.8 mg/g at pH 5.0 buffer solution. For microwave absorption, when the hollow magnetic microsphere was compounded within epoxy resin, the maximum reflection loss of epoxy resins could reach -35dB at 5.4 GHz with 1.9 mm thickness.
Local sample thickness determination via scanning transmission electron microscopy defocus series.
Beyer, A; Straubinger, R; Belz, J; Volz, K
2016-05-01
The usable aperture sizes in (scanning) transmission electron microscopy ((S)TEM) have significantly increased in the past decade due to the introduction of aberration correction. In parallel with the consequent increase of convergence angle the depth of focus has decreased severely and optical sectioning in the STEM became feasible. Here we apply STEM defocus series to derive the local sample thickness of a TEM sample. To this end experimental as well as simulated defocus series of thin Si foils were acquired. The systematic blurring of high resolution high angle annular dark field images is quantified by evaluating the standard deviation of the image intensity for each image of a defocus series. The derived dependencies exhibit a pronounced maximum at the optimum defocus and drop to a background value for higher or lower values. The full width half maximum (FWHM) of the curve is equal to the sample thickness above a minimum thickness given by the size of the used aperture and the chromatic aberration of the microscope. The thicknesses obtained from experimental defocus series applying the proposed method are in good agreement with the values derived from other established methods. The key advantages of this method compared to others are its high spatial resolution and that it does not involve any time consuming simulations. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
[Novel CHST6 compound heterozygous mutations cause macular corneal dystrophy in a Chinese family].
Qi, Yan-hua; Dang, Xiu-hong; Su, Hong; Zhou, Nan; Liang, Ting; Wang, Zheng; Huang, Shang-zhi
2010-02-01
The aim of this study was to identify mutations of CHST6 gene in a Chinese family with macular corneal dystrophy (MCD) and to investigate the histopathological changes of MCD. Corneal button of the proband was obtained from penetrating keratoplasty for the treatment of severe corneal dystrophy. The sections and ultrathin sections of this specimen were examined under light microscope and transmission electron microscope (TEM). Genomic DNA was extracted from leukocytes in peripheral blood from the family members. The coding region of CHST6 was amplified by polymerase chain reaction (PCR). The PCR products were analyzed by direct sequencing and restriction enzyme digestion. Histochemical study revealed positive results of colloidal iron stain. TEM revealed enlargement of smooth endoplasmic reticulum and the presence of intracytoplasmic vacuoles. Two mutations, Q298X Y358H, were identified in exon 3 of CHST6. Three patients were compound heterozygotes of these two mutations. The C892T transversion occurred at codon 298 turned the codon of glutamine to a stop codon; the T1072C transversion occurred at codon 358 caused a missense mutation, tyrosine to histidine. All six unaffected family members were heterozygotes. These two mutations were not detected in any of the 100 control subjects. The novel compound heterozygous mutation results in loss of CHST6 function and causes the occurrence of MCD. This is the first report of this gene mutation.
Fan, Xiangshan; Zhang, Dongsheng; Zheng, Jie; Gu, Ning; Ding, Anwei; Jia, Xiupeng; Qing, Hongyun; Jin, Liqiang; Wan, Meiling; Li, Qunhui
2006-08-01
Mn0.5Zn0.5Fe2O4 nano-particles were prepared by the chemical co-precipitation, their characteristics were observed with transmission electron microscope (TEM), X-ray diffractometer (XRD) and thermal analysis system, and etc. The temperature changes of the nano-particles of Mn0.5Zn0.5Fe2O4 and its magnetic fluid explored in radiofrequency(RF,200 KHz, 4 KW) were measured. The proliferation ratio of L929 cells cultured in soak of Mn0.5Zn0.5Fe2O4 nano-particles were observed. The experiment indicates that the magnetic particles were about 40 nm diameter in average, round, had strong magnetism, and were proved to be consistent with the standard data of chart of XRD. Its magnetic fluid exposed to RF could be heated up to temperature range from 40 degrees C to 51 degrees C due to the amount of the magnetic nano-particles and intensity of the alternating magnetic field. Magnetic nano-particles were found to have no obvious cytotoxicity to L929 cells.
CTAB-assisted hydrothermal synthesis of YVO 4:Eu 3+ powders in a wide pH range
NASA Astrophysics Data System (ADS)
Wang, Juan; Hojamberdiev, Mirabbos; Xu, Yunhua
2012-01-01
Rhombus-, rod-, soya bean- and aggregated soya bean-like YVO 4:Eu 3+ micro- and nanostructures were synthesized by a cetyltrimethylammonium bromide (CTAB)-assisted hydrothermal method at 180 °C for 24 h in a wide pH range. The as-synthesized powders were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and photoluminescence spectroscopy (PL). The XRD results confirmed the formation of phase-pure YVO 4:Eu 3+ powders with tetragonal structure under hydrothermal process in a wide pH range. Electron microscopic observations evidenced the morphological transformation of YVO 4:Eu 3+ powders from rhombus-like microstructure to rod-, soya bean, and aggregated soya bean-like nanostructures with an increase in the pH of the synthesis solution. The results from the PL measurements revealed that the intensities of PL emission peaks were significantly affected by the morphologies and crystallinity of samples due to the absence of an inversion symmetry at the Eu 3+ lattice site, and the highest luminescence intensity was observed for rod-like YVO 4:Eu 3+ powders.
Liquid-Like, Self-Healing Aluminum Oxide during Deformation at Room Temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yang; Kushima, Akihiro; Han, Weizhong
Effective protection from environmental degradation relies on the integrity of oxide as diffusion barriers. Ideally, the passivation layer can repair its own breaches quickly under deformation. While studies suggest that the native aluminum oxide may manifest such properties, it has yet to be experimentally proven because direct observations of the air-environmental deformation of aluminum oxide and its initial formation at room temperature are challenging. In this letter, we report in situ experiments to stretch pure aluminum nanotips under O 2 gas environments in a transmission electron microscope (TEM). We discovered that aluminum oxide indeed deforms like liquid and can matchmore » the deformation of Al without any cracks/spallation at moderate strain rate. At higher strain rate, we exposed fresh metal surface, and visualized the self-healing process of aluminum oxide at atomic resolution. Unlike traditional thin-film growth or nanoglass consolidation processes, we observe seamless coalescence of new oxide islands without forming any glass–glass interface or surface grooves, indicating greatly accelerated glass kinetics at the surface compared to the bulk.« less
Liquid-Like, Self-Healing Aluminum Oxide during Deformation at Room Temperature
Yang, Yang; Kushima, Akihiro; Han, Weizhong; ...
2018-02-28
Effective protection from environmental degradation relies on the integrity of oxide as diffusion barriers. Ideally, the passivation layer can repair its own breaches quickly under deformation. While studies suggest that the native aluminum oxide may manifest such properties, it has yet to be experimentally proven because direct observations of the air-environmental deformation of aluminum oxide and its initial formation at room temperature are challenging. In this letter, we report in situ experiments to stretch pure aluminum nanotips under O 2 gas environments in a transmission electron microscope (TEM). We discovered that aluminum oxide indeed deforms like liquid and can matchmore » the deformation of Al without any cracks/spallation at moderate strain rate. At higher strain rate, we exposed fresh metal surface, and visualized the self-healing process of aluminum oxide at atomic resolution. Unlike traditional thin-film growth or nanoglass consolidation processes, we observe seamless coalescence of new oxide islands without forming any glass–glass interface or surface grooves, indicating greatly accelerated glass kinetics at the surface compared to the bulk.« less
NASA Astrophysics Data System (ADS)
Maaz, K.; Karim, S.; Mumtaz, A.; Hasanain, S. K.; Liu, J.; Duan, J. L.
2009-06-01
Magnetic nanoparticles of nickel ferrite (NiFe 2O 4) have been synthesized by co-precipitation route using stable ferric and nickel salts with sodium hydroxide as the precipitating agent and oleic acid as the surfactant. X-ray diffraction (XRD) and transmission electron microscope (TEM) analyses confirmed the formation of single-phase nickel ferrite nanoparticles in the range 8-28 nm depending upon the annealing temperature of the samples during the synthesis. The size of the particles ( d) was observed to be increasing linearly with annealing temperature of the sample while the coercivity with particle size goes through a maximum, peaking at ˜11 nm and then decreases for larger particles. Typical blocking effects were observed below ˜225 K for all the prepared samples. The superparamagnetic blocking temperature ( T B) was found to be increasing with increasing particle size that has been attributed to the increased effective anisotropy energy of the nanoparticles. The saturation moment of all the samples was found much below the bulk value of nickel ferrite that has been attributed to the disordered surface spins or dead/inert layer in these nanoparticles.
2012-01-01
Background The transmission electron microscope (TEM) is used for the first time to study the development of book gills in the horseshoe crab. Near the end of the nineteenth century the hypothesis was presented for homology and a common ancestry for horseshoe crab book gills and arachnid book lungs. The present developmental study and the author's recent ones of book gills (SEM) and scorpion book lungs (TEM) are intended to clarify early histological work and provide new ultrastructural details for further research and for hypotheses about evolutionary history and relationships. Results The observations herein are in agreement with earlier reports that the book gill lamellae are formed by proliferation and evagination of epithelial cells posterior to opisthosomal branchial appendages. A cartilage-like endoskeleton is produced in the base of the opisthosomal appendages. The lamellar precursor cells in the appendage base proliferate, migrate outward and secrete the lamellar cuticle from their apical surface. A series of external, posteriorly-directed lamellae is formed, with each lamella having a central channel for hemolymph and pillar-type space holders formed from cells of the opposed walls. This repeated, page-like pattern results also in water channels (without space holders) between the sac-like hemolymph lamellae. Conclusions The developmental observations herein and in an earlier study (TEM) of scorpion book lungs show that the lamellae in book gills and book lungs result from some similar activities and features of the precursor epithelial cells: proliferation, migration, alignment and apical/basal polarity with secretion of cuticle from the apical surface and the basal surface in contact with hemolymph. These cellular similarities and the resulting book-like structure suggest a common ancestry, but there are also substantial developmental differences in producing these organs for gas exchange in the different environments, aqueous and terrestrial. For scorpion book lungs, the invaginated precursor cells align in rows and secrete rows of cell fragments that are the basis for the internal, anterior-directed air sacs. The hemolymph sacs of book gills are formed by epithelial evagination or outfolding from the posterior surface of the branchial appendages. PMID:22433580
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moeglein, W. A.; Griswold, R.; Mehdi, B. L.
In-situ (scanning) transmission electron microscopy (S/TEM) is being developed for numerous applications in the study of nucleation and growth under electrochemical driving forces. For this type of experiment, one of the key parameters is to identify when nucleation initiates. Typically the process of identifying the moment that crystals begin to form is a manual process requiring the user to perform an observation and respond accordingly (adjust focus, magnification, translate the stage etc.). However, as the speed of the cameras being used to perform these observations increases, the ability of a user to “catch” the important initial stage of nucleation decreasesmore » (there is more information that is available in the first few milliseconds of the process). Here we show that video shot boundary detection (SBD) can automatically detect frames where a change in the image occurs. We show that this method can be applied to quickly and accurately identify points of change during crystal growth. This technique allows for automated segmentation of a digital stream for further analysis and the assignment of arbitrary time stamps for the initiation of processes that are independent of the user’s ability to observe and react.« less
NASA Astrophysics Data System (ADS)
Piasecki, Patryk; Piasecki, Ashley; Pan, Zhengda; Mu, Richard; Morgan, Steven H.
2010-12-01
Tb3+ and Ag co-doped glass nano-composites were synthesized in a glass matrix Li2O-LaF3-Al2O3-SiO2 (LLAS) by a melt-quench technique. The growth of Ag nanoparticles (NPs) was controlled by a thermal annealing process. A broad absorption band peaking at about 420 nm was observed due to surface plasmon resonance (SPR) of Ag NPs. The intensity of this band grows with increasing annealing time. The transmission electron microscopic image (TEM) reveals the formation of Ag NPs in glass matrix. Photoluminescence (PL) emission and excitation spectra were measured for glass samples with different Ag concentrations and different annealing times. Plasmon enhanced Tb3+ luminescence was observed at certain excitation wavelength regions. Luminescence quenching was also observed for samples with high Ag concentration and longer annealing time. Our luminescence results suggest that there are two competitive effects, enhancement and quenching, acting on Tb3+ luminescence in the presence of Ag NPs. The enhancement of Tb3+ luminescence is mainly attributed to local field effects due to SPR. The quenching of luminescence suggests an energy transfer from Tb3+ ions to Ag NPs.
Sood, Ankur; Arora, Varun; Shah, Jyoti; Kotnala, R K; Jain, Tapan K
2017-11-01
In this paper we report synthesis of aqueous based gold coated iron oxide nanoparticles to integrate the localized surface plasma resonance (SPR) properties of gold and magnetic properties of iron oxide in a single system. Iron oxide-gold core shell nanoparticles were stabilized by attachment of thiolated sodium alginate to the surface of nanoparticles. Transmission electron microscope (TEM) micrograph presents an average elementary particle size of 8.1±2.1nm. High resolution TEM (HR-TEM) and X-ray photon spectroscopy further confirms the presence of gold shell around iron oxide core. Gold coating is responsible for reducing saturation magnetization (M s ) value from ~41emu/g to ~24emu/g - in thiolated sodium alginate stabilized gold coated iron oxide core-shell nanoparticles. The drug (curcumin) loading efficiency for the prepared nanocomposites was estimated to be around 7.2wt% (72μgdrug/mg nanoparticles) with encapsulation efficiency of 72.8%. Gold-coated iron oxide core-shell nanoparticles could be of immense importance in the field of targeted drug delivery along with capability to be used as contrast agent for MRI & CT. Copyright © 2017 Elsevier B.V. All rights reserved.
The ultrastructural features of the premalignant oral lesions.
Olinici, Doiniţa; Cotrutz, Carmen Elena; Mihali, Ciprian Valentin; Grecu, Vasile Bogdan; Botez, Emanuela Ana; Stoica, Laura; Onofrei, Pavel; Condurache, Oana; Dimitriu, Daniela Cristina
2018-01-01
Premalignant oral lesions are among the most important risk factors for the development of oral squamocellular carcinoma. Recent population studies indicate a significant rise in the prevalence of leukoplakia, erythroplakia/erythroleukoplakia, actinic cheilitis, submucous fibrosis and erosive lichen planus. Since standard histopathological examination has numerous limitations regarding the accurate appreciation of potential malignant transformation, the present study aims to aid these evaluations using the transmission electron microscopy (TEM) technique, which emphasizes ultrastructural changes pertaining to this pathology. Oral mucosa fragments collected from 43 patients that were clinically and histopathologically diagnosed with leukoplakia, erosive actinic cheilitis and erosive lichen planus have been processed through the classic technique for the examination using TEM and were examined using a Philips CM100 transmission electron microscope. The electron microscopy study has confirmed the histopathological diagnosis of the tissue samples examined using photonic microscopy and has furthermore revealed a series of ultrastructural details that on the one hand indicate the tendency for malignant transformation, and on the other reveal characteristic features of tumor development. All the details furnished by TEM complete the overall picture of morphological changes, specific to these lesions, indicating the importance of using these techniques in establishing both a correct diagnosis and prognosis.
Thermal stability of helium bubble superlattice in Mo under TEM in-situ heating
NASA Astrophysics Data System (ADS)
Gan, Jian; Sun, Cheng; He, Lingfeng; Zhang, Yongfeng; Jiang, Chao; Gao, Yipeng
2018-07-01
Although the temperature window of helium ion irradiation for gas bubble superlattice (GBS) formation was found to be in the range of approximately 0.15-0.35 melting point in literature, the thermal stability of He GBS has not been fully investigated. This work reports the experiment using an in-situ heating holder in a transmission electron microscope (TEM). A 3.0 mm TEM disc sample of Mo (99.95% pure) was irradiated with 40 keV He ions at 300 °C to a fluence of 1.0E+17 ions/cm2, corresponding to a peak He concentration of approximately 10 at.%, in order to introduce He GBS. In-situ heating was conducted with a ramp rate of ∼25 °C/min, hold time of ∼30 min, and temperature step of ∼100 °C up to 850 °C (0.39Tm homologous temperature). The result shows good thermal stability of He GBS in Mo with no noticeable change on GBS lattice constant and ordering. The implication of this unique and stable ordered microstructure on mechanistic understanding of GBS and its advanced application are discussed.
A novel binary Pt 3Te x/C nanocatalyst for ethanol electro-oxidation
NASA Astrophysics Data System (ADS)
Huang, Meihua; Wang, Fei; Li, Lirong; Guo, Yonglang
The Pt 3Te x/C nanocatalyst was prepared and its catalytic performance for ethanol oxidation was investigated for the first time. The Pt 3Te/C nanoparticles were characterized by an X-ray diffractometer (XRD), transmission electron microscope (TEM) and energy dispersive X-ray spectroscopy equipped with TEM (TEM-EDX). The Pt 3Te/C catalyst has a typical fcc structure of platinum alloys with the presence of Te. Its particle size is about 2.8 nm. Among the synthesized catalysts with different atomic ratios, the Pt 3Te/C catalyst has the highest anodic peak current density. The cyclic voltammograms (CV) show that the anodic peak current density for the Pt 3Te/C, commercial PtRu/C and Pt/C catalysts reaches 1002, 832 and 533 A g -1, respectively. On the current-time curve, the anodic current on the Pt 3Te/C catalyst was higher than those for the catalysts reported. So, these findings show that the Pt 3Te/C catalyst has uniform nanoparticles and the best activity among the synthesized catalysts, and it is better than commercial PtRu/C and Pt/C catalysts for ethanol oxidation at room temperature.
NASA Astrophysics Data System (ADS)
Baruah, Prahlad K.; Sharma, Ashwini K.; Khare, Alika
2018-04-01
The effect of incident laser energy on the surface plasmon resonance (SPR) and size of silver nanoparticles synthesized via pulsed laser ablation of silver immersed in distilled water is reported in this paper. The broadening in the plasmonic bandwidth of the synthesized nanoparticles with the increase in the laser energy incident onto the silver target indicates the reduction in size of the nanoparticles. This is confirmed by the transmission electron microscope (TEM) images which show a decrease in the average particle size of the nanoparticles from approximately 15 to 10 nm with the increase in incident laser energy from 30 to 70 mJ, respectively. The structural features as revealed by the selected area electron diffraction and ultra-high resolution TEM studies confirmed the formation of both silver as well as silver oxide nanoparticles.
NASA Astrophysics Data System (ADS)
Singh, Tej; Shekhawat, Dharmender Singh; Jyoti, Kumari
2018-05-01
The synthesis of silver nanoparticles (SNPs) by chemical and physical methods produce harmful products which may cause various environmental problems, thus, there is an increasing demand to use ecofriendly methods. Therefore, biosynthesis of SNPs using Justicia adhatoda flower extract is demonstrated in the present study. The biosynthesized SNPs were characterized by UV-visible spectroscopy, Fourier transform-infrared spectroscopy (FTIR), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and atomic force microscopy (AFM) analysis. The result of UV-visible spectroscopy peaked at 417 nm corresponding to the plasmon absorbance of SNPs. The TEM and SAED result reveals the crystalline nature of SNPs. FTIR spectroscopy used to identify the possible biomolecules responsible for the conversion of silver ions to SNPs. The study concluded that Justicia adhatoda flower extract act as an excellent reducing agent and the green synthesized SNPs are safer to the environment.
GaN epitaxial layers grown on multilayer graphene by MOCVD
NASA Astrophysics Data System (ADS)
Li, Tianbao; Liu, Chenyang; Zhang, Zhe; Yu, Bin; Dong, Hailiang; Jia, Wei; Jia, Zhigang; Yu, Chunyan; Gan, Lin; Xu, Bingshe
2018-04-01
In this study, GaN epitaxial layers were successfully deposited on a multilayer graphene (MLG) by using metal-organic chemical vapor deposition (MOCVD). Highly crystalline orientations of the GaN films were confirmed through electron backscatter diffraction (EBSD). An epitaxial relationship between GaN films and MLG is unambiguously established by transmission electron microscope (TEM) analysis. The Raman spectra was used to analyze the internal stress of GaN films, and the spectrum shows residual tensile stress in the GaN films. Moreover, the results of the TEM analysis and Raman spectra indicate that the high quality of the MLG substrate is maintained even after the growth of the GaN film. This high-quality MLG makes it possible to easily remove epitaxial layers from the supporting substrate by micro-mechanical exfoliation technology. This work can aid in the development of transferable devices using GaN films.
Antimicrobial activity of silver nanoparticles impregnated wound dressing
NASA Astrophysics Data System (ADS)
Shinde, V. V.; Jadhav, P. R.; Patil, P. S.
2013-06-01
In this work, silver nanoparticles were synthesized by simple wet chemical reduction method. The silver nitrate was reduced by Sodium borohydride used as reducing agent and Poly (vinyl pyrrolidone) (PVP) as stabilizing agent. The formation of silver nanoparticles was evaluated by UV-visible spectroscope and transmission electron microscope (TEM). Absorption spectrum consist two plasmon peaks at 410 and 668 nm revels the formation of anisotropic nanoparticles confirmed by TEM. The formation of silver nanoparticles was also evidenced by dynamic light scattering (DLS) study. DLS showed polydisperse silver nanoparticles with hydrodynamic size 32 nm. Protecting mechanism of PVP was manifested by FT-Raman study. Silver nanoparticles were impregnated into wound dressing by sonochemical method. The Kirby-Bauer disc diffusion methods were used for antimicrobial susceptibility testing. The antimicrobial activity of the samples has been tested against gram-negative bacterium Escherichia coli and gram-positive bacterium Staphylococcus aureus.
Tamilselvan, Selvaraj; Ashokkumar, Thirunavukkarasu; Govindaraju, Kasivelu
2017-04-01
In the present investigation, silver nanoparticles (AgNPs) interactions with Bombyx mori Nuclear Polyhedrosis virus (BmNPV) were characterized using High-Resolution Scanning Electron Microscopy (HR-SEM), Energy Dispersive X-ray Analysis (EDAX), Transmission Electron Microscopy (TEM), Atomic Force Microcopy (AFM) and Confocal Microscope (CM). HR-SEM study reveals that the biosynthesized AgNPs have interacted with BmNPV and were found on the surface. TEM micrographs of normal and viral polyhedra treated with AgNPs showed that the nanoparticles were accumulated in the membrane and it was noted that some of the AgNPs successfully penetrated the membrane by reaching the capsid of BmNPV. AFM and confocal microscopy studies reveal that the disruption in the shell membrane tends to lose its stability due to exposure of AgNPs to BmNPV. Copyright © 2017 Elsevier B.V. All rights reserved.
Preparation and characterization of silver nanoparticles homogenous thin films
NASA Astrophysics Data System (ADS)
Hegazy, Maroof A.; Borham, E.
2018-06-01
The wet chemical method by metal salt reduction has been widely used to synthesize nanoparticles. Accordingly the silver nitrate used as silver precursor and sodium borohydrate as reduction agent. The silver nanoparticles were characterized by different characterization techniques including UV-VIS spectrometry, Transmission electron microscope (TEM), and Zeta potential technique. Thin films of the colloidal solution were fabricated using direct precipitation technique on ITO glass, silicon substrate and commercial glass substrate and characterized by imaging technique. The absorption peak of the silver nanoparticles colloidal solution was around 400 nm. The TEM images indicate that the silver nanoparticles had spherical shape and their sizes were from 10 to 17 nm. The particle size of the silver nanoparticles was confirmed by Zeta potential technique. The imaging technique indicated that the homogeneous distribution of the colloidal silver solution thin film on the silicon substrate was stronger than the ITO glass and inhomogeneous film was emerged on the commercial glass.
Artefacts in geometric phase analysis of compound materials.
Peters, Jonathan J P; Beanland, Richard; Alexe, Marin; Cockburn, John W; Revin, Dmitry G; Zhang, Shiyong Y; Sanchez, Ana M
2015-10-01
The geometric phase analysis (GPA) algorithm is known as a robust and straightforward technique that can be used to measure lattice strains in high resolution transmission electron microscope (TEM) images. It is also attractive for analysis of aberration-corrected scanning TEM (ac-STEM) images that resolve every atom column, since it uses Fourier transforms and does not require real-space peak detection and assignment to appropriate sublattices. Here it is demonstrated that, in ac-STEM images of compound materials with compositionally distinct atom columns, an additional geometric phase is present in the Fourier transform. If the structure changes from one area to another in the image (e.g. across an interface), the change in this additional phase will appear as a strain in conventional GPA, even if there is no lattice strain. Strategies to avoid this pitfall are outlined. Copyright © 2015 Elsevier B.V. All rights reserved.
Glenn, Jolene A.; Emmenegger, Eveline J.; Grady, Courtney A.; Roon, Sean R.; Gregg, Jacob L.; Conway, Carla M.; Winton, James R.; Hershberger, Paul K.
2012-01-01
Viral erythrocytic necrosis (VEN) is a condition that affects marine and anadromous fish species, including herrings and salmonids, in the Atlantic and Pacific oceans. Infection is frequently associated with severe anemia and causes episodic mortality among wild and hatchery fish when accompanied by additional stressors; VEN can be presumptively diagnosed by (1) light microscopic identification of a single characteristic—a round, magenta-colored, 0.8-μm-diameter inclusion body (IB) within the cytoplasm of erythrocytes and their precursors on Giemsa-stained blood films; or (2) observation (via transmission electron microscopy [TEM]) of the causative iridovirus, erythrocytic necrosis virus (ENV), within erythrocytes or their precursors. To better understand the kinetics of VEN, specific-pathogen-free Pacific herring Clupea pallasii were infected with ENV by intraperitoneal injection. At 1, 4, 7, 10, 14, 21, and 28 d postexposure, samples of blood, spleen, and kidney were collected and assessed (1) via light microscopy for the number of intracytoplasmic IBs in blood smears and (2) via TEM for the number of virions within erythrocytes. The mean prevalence of intracytoplasmic IBs in the blood cells increased from 0% at 0–4 d postexposure to 94% at 28 d postexposure. Viral load within circulating red blood cells peaked at 7 d postexposure, fell slightly, and then reached a plateau. However, blood cells observed within the kidney and spleen tissues demonstrated high levels of ENV between 14 and 28 d postexposure. The results indicate that the viral load within erythrocytes does not correlate well with IB prevalence and that the virus can persist in infected fish for more than 28 d.
The W alloying effect on thermal stability and hardening of nanostructured Cu-W alloyed thin films.
Zhao, J T; Zhang, J Y; Hou, Z Q; Wu, K; Feng, X B; Liu, G; Sun, J
2018-05-11
In order to achieve desired mechanical properties of alloys by manipulating grain boundaries (GBs) via solute decoration, it is of great significance to understand the underlying mechanisms of microstructural evolution and plastic deformation. In this work, nanocrystalline (NC) Cu-W alloyed films with W concentrations spanning from 0 to 40 at% were prepared by using magnetron sputtering. Thermal stability (within the temperature range of 200 °C-600 °C) and hardness of the films were investigated by using the x-ray diffraction, transmission electron microscope (TEM) and nanoindentation, respectively. The NC pure Cu film exhibited substantial grain growth upon all annealing temperatures. The Cu-W alloyed films, however, displayed distinct microstructural evolution that depended not only on the W concentration but also on the annealing temperature. At a low temperature of 200 °C, all the Cu-W alloyed films were highly stable, with unconspicuous change in grain sizes. At high temperatures of 400 °C and 600 °C, the microstructural evolution was greatly controlled by the W concentrations. The Cu-W films with low W concentration manifested abnormal grain growth (AGG), while the ones with high W concentrations showed phase separation. TEM observations unveiled that the AGG in the Cu-W alloyed thin films was rationalized by GB migration. Nanoindentation results showed that, although the hardness of both the as-deposited and annealed Cu-W alloyed thin films monotonically increased with W concentrations, a transition from annealing hardening to annealing softening was interestingly observed at the critical W addition of ∼25 at%. It was further revealed that an enhanced GB segregation associated with detwinning was responsible for the annealing hardening, while a reduced solid solution hardening for the annealing softening.
Koli, Sunil H; Mohite, Bhavana V; Suryawanshi, Rahul K; Borase, Hemant P; Patil, Satish V
2018-05-01
The development of a safe and eco-friendly method for metal nanoparticle synthesis has an increasing demand, due to emerging environmental and biological harms of hazardous chemicals used in existing nanosynthesis methods. The present investigation reports a rapid one-step, eco-friendly and green approach for the formation of nanosized silver particles (AgNPs) using extracellular non-toxic-colored fungal metabolites (Monascus pigments-MPs). The formation of nanosized silver particles utilizing Monascus pigments was confirmed after exposure of reaction mixture to sunlight, by visually color change and further established by spectrophotometric analysis. The size, shape, and topography of synthesized MPs-AgNPs were well-defined using different microscopic and spectroscopic techniques, i.e., FE-SEM, HR-TEM, and DLS. The average size of MPs-AgNPs was found to be 10-40 nm with a spherical shape which was highly stable and dispersed in the solution. HR-TEM and XRD confirmed crystalline nature of MPs-AgNPs. The biocidal potential of MPs-AgNPs was evaluated against three bacterial pathogens such as Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus and it was observed that the MPs-AgNPs significantly inhibited the growth of all three bacterial pathogens. The anti-biofilm activity of MPs-AgNPs was recorded against antibiotic-resistant P. aeruginosa. Besides, the colorimetric metal sensing using MPs-AgNPs was studied. Among the metals tested, the selective Hg 2+ -sensing potential at micromolar concentration was observed. In conclusion, this is the rapid one-step (within 12-15 min), environment-friendly method for synthesis of AgNPs and synthesized MPs-AgNPs could be used as a potential antibacterial agent against antibiotic-resistant bacterial pathogens.
Gola, Deepak; Malik, Anushree; Namburath, Maneesh; Ahammad, Shaikh Ziauddin
2017-10-01
Presence of industrial dyes and heavy metal as a contaminant in environment poses a great risk to human health. In order to develop a potential technology for remediation of dyes (Reactive remazol red, Yellow 3RS, Indanthrene blue and Vat novatic grey) and heavy metal [Cu(II), Ni(II), Cd(II), Zn(II), Cr(VI) and Pb(II)] contamination, present study was performed with entomopathogenic fungi, Beauveria bassiana (MTCC no. 4580). High dye removal (88-97%) was observed during the growth of B. bassiana while removal percentage for heavy metals ranged from 58 to 75%. Further, detailed investigations were performed with Pb(II) in terms of growth kinetics, effect of process parameters and mechanism of removal. Growth rate decreased from 0.118 h -1 (control) to 0.031 h -1 , showing 28% reduction in biomass at 30 mg L -1 Pb(II) with 58.4% metal removal. Maximum Pb(II) removal was observed at 30 °C, neutral pH and 30 mg L -1 initial metal concentration. FTIR analysis indicated the changes induced by Pb(II) in functional groups on biomass surface. Further, microscopic analysis (SEM and atomic force microscopy (AFM)) was performed to understand the changes in cell surface morphology of the fungal cell. SEM micrograph showed a clear deformation of fungal hyphae, whereas AFM studies proved the increase in surface roughness (RSM) in comparison to control cell. Homogenous bioaccumulation of Pb(II) inside the fungal cell was clearly depicted by TEM-high-angle annular dark field coupled with EDX. Present study provides an insight into the mechanism of Pb(II) bioremediation and strengthens the significance of using entomopathogenic fungus such as B. bassiana for metal and dye removal.
The W alloying effect on thermal stability and hardening of nanostructured Cu–W alloyed thin films
NASA Astrophysics Data System (ADS)
Zhao, J. T.; Zhang, J. Y.; Hou, Z. Q.; Wu, K.; Feng, X. B.; Liu, G.; Sun, J.
2018-05-01
In order to achieve desired mechanical properties of alloys by manipulating grain boundaries (GBs) via solute decoration, it is of great significance to understand the underlying mechanisms of microstructural evolution and plastic deformation. In this work, nanocrystalline (NC) Cu–W alloyed films with W concentrations spanning from 0 to 40 at% were prepared by using magnetron sputtering. Thermal stability (within the temperature range of 200 °C–600 °C) and hardness of the films were investigated by using the x-ray diffraction, transmission electron microscope (TEM) and nanoindentation, respectively. The NC pure Cu film exhibited substantial grain growth upon all annealing temperatures. The Cu–W alloyed films, however, displayed distinct microstructural evolution that depended not only on the W concentration but also on the annealing temperature. At a low temperature of 200 °C, all the Cu–W alloyed films were highly stable, with unconspicuous change in grain sizes. At high temperatures of 400 °C and 600 °C, the microstructural evolution was greatly controlled by the W concentrations. The Cu–W films with low W concentration manifested abnormal grain growth (AGG), while the ones with high W concentrations showed phase separation. TEM observations unveiled that the AGG in the Cu–W alloyed thin films was rationalized by GB migration. Nanoindentation results showed that, although the hardness of both the as-deposited and annealed Cu–W alloyed thin films monotonically increased with W concentrations, a transition from annealing hardening to annealing softening was interestingly observed at the critical W addition of ∼25 at%. It was further revealed that an enhanced GB segregation associated with detwinning was responsible for the annealing hardening, while a reduced solid solution hardening for the annealing softening.
Yamasaki, Jun; Kawai, Tomoyuki; Tanaka, Nobuo
2004-01-01
Spherical aberration (C(S))-corrected transmission electron microscopy (TEM) and annular dark-field scanning TEM (ADF-STEM) are applied to high-resolution observation of stacking faults in Si(1 - x)Ge(x) alloy films prepared on a Si(100) buffer layer by the chemical vapor deposition method. Both of the images clarify the individual nature of stacking faults from their directly interpretable image contrast and also by using image simulation in the case of the C(S)-corrected TEM. Positions of the atomic columns obtained in the ADF-STEM images almost agree with a projection of the theoretical model studied by Chou et al. (Phys. Rev. B 32(1985): 7979). Comparison between the C(S)-corrected TEM and ADF-STEM images shows that their resolution is at a similar level, but directly interpretable image contrast is obtained in ultrathin samples for C(S)-corrected TEM and in slightly thicker samples for ADF-STEM.
Phase control of austenitic chrome-nickel steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korkh, M. K., E-mail: KorkhMK@imp.uran.ru; Davidov, D. I., E-mail: davidov@imp.uran.ru; Korkh, J. V., E-mail: Korkh@imp.uran.ru
2015-10-27
The paper presents the results of the comparative study of the possibilities of different structural and magnetic methods for detection and visualization of the strain-induced martensitic phase in low carbon austenitic chromium-nickel steel. Results of TEM, SEM, optical microscopy, atomic and magnetic force microscopy, and magnetic measurements are presented. Amount of the magnetic strain-induced martensite was estimated. We pioneered magnetic force microscopic images of the single domain cluster distribution of the strain-induced martensite in austenite-ferrite materials.
Growth and Electronic Structure of Heusler Compounds for Use in Electron Spin Based Devices
2015-06-01
either Co– or MnSi– initiated films on c(4x4) GaAs. Studies using x - ray photoemission spectroscopy (XPS), STM/STS, and transmission electron microscopy...Co– or MnSi– initiated films on c(4x4) GaAs. Studies using x - ray photoemission spectroscopy (XPS), STM/STS, and transmission electron microscopy (TEM...diagram of the Palmstrøm lab in-situ growth and char- acterization setup, with 6 MBE growth chambers, 3 scanning probe microscopes, an x - ray
NASA Astrophysics Data System (ADS)
Jia, Yulong; Wan, Hongqi; Chen, Lei; Zhou, Huidi; Chen, Jianmin
2016-09-01
Influence of nanometer lanthanum fluoride (nano-LaF3) on the tribological behaviors of polytetrafluoroethylene (PTFE) bonded solid lubricating coatings were investigated using a ring-on-block friction-wear tester under dry friction and RP-3 jet fuel lubrication conditions. The worn surfaces and transfer films formed on the counterpart steel rings were observed by scanning electron microscope (SEM) and optical microscope (OM), respectively. The microstructures of the nano-LaF3 modified coatings and the distribution states of nano-LaF3 were studied by field-emission scanning electron microscope (FESEM) and transmission electron microscopy (TEM), respectively. The results show that incorporation of nano-LaF3 improves the microhardness and the friction-reduced and anti-wear abilities of PTFE bonded solid lubricating coatings. The wear life of the modified coating is about 6 times longer than that of the coating without nano-LaF3 filler at a relatively low applied load (200 N) and rotary speed (1000 rev/min) under dry friction condition. The friction coefficient and wear life of the modified coating decrease with increase of applied load under dry friction, but the friction coefficient has hardly any variation and wear life decreases under RP-3 jet fuel lubrication condition. In addition, the friction coefficient of the modified coating reduces with the rotary speed increasing under dry sliding but has little change under RP-3 lubrication, the wear life increases firstly and then decreases. The results indicated that the wear failure mechanism is dominated by applied load, which plays an important role in guidance of application of nano-LaF3 modified PTFE bonded coating under different working environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rather, Sami ullah, E-mail: rathersami@gmail.com
2014-12-15
Graphical abstract: X-ray diffraction (XRD) pattern of magnesium nanoparticles synthesized by solution reduction method with and without TOPO. - Highlights: • Simple and convenient method of preparing Mg nanoparticles. • Characterized by XRD, SEM, FESEM and TEM. • Trioctylphosphine oxide offers a greater control over the size of the particles. • Hydrogen uptake of samples at different temperatures and pressure of 4.5 MPa. - Abstract: Facile and simple, surfactant-mediated solution reduction method was used to synthesize monodisperse magnesium nanoparticles. Little amount of magnesium oxide nanoparticles were also formed due to the presence of TOPO and easy oxidation of magnesium, eventhough,more » all precautions were taken to avoid oxidation of the sample. Precise size control of particles was achieved by carefully varying the concentration ratio of two different types of surfactants, – trioctylphosphine oxide and hexadecylamine. Recrystallized magnesium nanoparticle samples with and without TOPO were analyzed by X-ray diffraction, scanning electron microscope, field emission scanning electron microscope, and transmission electron microscope. The peak diameters of particles were estimated from size distribution analysis of the morphological data. The particles synthesized in the presence and absence of TOPO found to have diameters 46.5 and 34.8 nm, respectively. This observed dependence of particle size on the presence of TOPO offers a convenient method to control the particle size by simply using appropriate surfactant concentrations. Exceptional enhancement in hydrogen uptake and kinetics in synthesized magnesium nanoparticles as compared to commercial magnesium sample was due to the smaller particle size and improved morphology. Overall hydrogen uptake not affected by the little variation in particle size with and without TOPO.« less
Kim, Jin-wook; Furukawa, Yoko; Daulton, Tyrone L.; Lavoie, Dawn L.; Newell, Steven W.
2003-01-01
Microstructural changes induced by the microbial reduction of Fe(III) in nontronite by Shewanella oneidensis were studied using environmental cell (EC)-transmission electron microscopy (TEM), conventional TEM, and X-ray powder diffraction (XRD). Direct observations of clays by EC-TEM in their hydrated state allowed for the first time an accurate and unambiguous TEM measurement of basal layer spacings and the contraction of layer spacing caused by microbial effects, most likely those of Fe(III) reduction. Non-reduced and Fe(III)-reduced nontronite, observed by EC-TEM, exhibited fringes with mean d001 spacings of 1.50 nm (standard deviation, σ = 0.08 nm) and 1.26 nm (σ = 0.10 nm), respectively. In comparison, the same samples embedded with Nanoplast resin, sectioned by microtome, and observed using conventional TEM, displayed layer spacings of 1.0–1.1 nm (non-reduced) and 1.0 nm (reduced). The results from Nanoplast-embedded samples are typical of conventional TEM studies, which have measured nearly identical layer spacings regardless of Fe oxidation state. Following Fe(III) reduction, both EC- and conventional TEM showed an increase in the order of nontronite selected area electron diffraction patterns while the images exhibited fewer wavy fringes and fewer layer terminations. An increase in stacking order in reduced nontronite was also suggested by XRD measurements. In particular, the ratio of the valley to peak intensity (v/p) of the 1.7 nm basal 001 peak of ethylene glycolated nontronite was measured at 0.65 (non-reduced) and 0.85 (microbially reduced).
Polat, Irmak; Suludere, Zekiye; Candan, Selami
2017-02-01
The morphology and ultrastructure of the rectum in Poecilimon cervus Karabağ, 1950 (Orthoptera, Tettigoniidae) were analyzed by light microscope, scanning (SEM) and transmission electron microscopes (TEM). The rectum is the final part of the digestive tract that plays an important role in water reabsorption in insects and so provides osmoregulation. In the transverse sections, six rectal pads and columnar epithelium can be distinguished. The cuticular intima lines the lumen at the apical side of the epithelium. In the cytoplasm, there are numerous mitochondria, some endocytic vesicles, secreting vesicles whose sizes differ according to the area in the cell, and a nucleus with globular in shape. With this study, we aimed to demonstrate the ultrastructure of the rectum of P. cervus and differences or similarities of with other species. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Wang, Xingrui; Zhao, Yang; Liu, Jie; Chen, Jie; Li, Tongbao; Cheng, Xinbin
2016-09-01
One-dimensional multilayer gratings were prepared by four steps. A periodic Si/SiO2 multilayer was firstly deposited on Si substrate using a magnetron sputtering coating process. Then, the multilayer was been bonded and split into small pieces by diamond wire cutting. The side-wall of the cut sample was subsequently grinded and polished until the surface roughness was less than 1nm. Finally, the SiO2 layers were selective etched using hydrofluoric acid to form the grating structure. In the above steps, special attentions were given to optimize the etching processes to achieve a uniform and smooth grating pattern. Transmission electron microscope (TEM) was used to characterize the multilayer gratings. The pitch size of the grating was evaluated by an offline image analysis algorithm and optimized processes are discussed.
Carbide and nitride precipitation during laser cladding of Inconel 718 alloy coatings
NASA Astrophysics Data System (ADS)
Zhang, Yaocheng; Li, Zhuguo; Nie, Pulin; Wu, Yixiong
2013-11-01
The microstructure of the laser clad Inconel 718 alloy coating was observed by scanning electron microscope (SEM). The chemical composition of precipitation phases was investigated by energy dispersive spectrometer (EDS) and solid phase microextraction (SPME). The crystal structure and lattice constants of precipitation are determined by transmission electron microscope (TEM). Vickers hardness of the coatings and the nanohardness of the interstitial phases were measured. The insular carbide (MC) and the tetragonal nitride (MN) with face-centered cubic (FCC) structure are rich in Ti and Nb but depleted in Ni, Fe and Cr due to the interdiffusion and redistribution of alloying elements between MC and MN and supersaturated matrix. MC and MN were precipitated in the forms of (Nb0.12Ti0.88)C1.5 and (Nb0.88Ti0.12)N1.5, and the Gibbs free energies of formation can be expressed as Δ G [ (Nb0.12Ti0.88)C1.5 ] 0 = - 122.654 - 3.1332 T (kJ /mol) and Δ G [ (Nb0.88Ti0.12)N1.5 ] 0 = - 157.814 - 3.0251 T (kJ /mol). The nanohardness and Young's modulus of the MC and MN were much higher than the matrix, and the plastic deformation energy of interstitial phases was lower than the matrix. The precipitation of MC and MN is beneficial to the mechanical properties of coating.
Bagchi, Sharmistha; Lalla, N P
2008-06-11
The present study reports the cross-sectional transmission electron microscopic investigations of swift heavy ion-irradiation induced nano-size recrystallization of Ni in a nearly immiscible W/Ni multilayer structure. Multilayer structures (MLS) of [W(25 Å)/Ni(25 Å)](10BL) were grown on Si-(100) substrate by the ion-beam sputtering technique. The as-synthesized MLS were subjected to 120 MeV-Au(9+) ion-irradiation to a fluence of ∼5 × 10(13) ions cm(-2). Wide-angle x-ray diffraction studies of pristine as well as irradiated W/Ni multilayers show deterioration of the superlattice structure, whereas x-ray reflectivity (XRR) measurement reveals a nearly unaffected microstructure after irradiation. Analysis of the XRR data using 'Parratt's formalism' does show a significant increase of W/Ni interface roughness. Cross-sectional transmission electron microscopy (TEM) studies carried out in diffraction and imaging modes (including bright-field and dark-field imaging), show that at high irradiation dose the intralayer microstructure of Ni becomes nano-crystalline (1-2 nm). During these irradiation induced changes of the intralayer microstructure, the interlayer definition of the W and Ni layers still remains intact. The observed nano-recrystallization of Ni has been attributed to competition between low miscibility of the W/Ni interface and the ion-beam induced mixing kinetics.
Ding, Chaofan; Li, Yue; Wang, Yanhui; Li, Jianbo; Sun, Yuanling; Lin, Yanna; Sun, Weiyan; Luo, Chuannan
2018-02-01
Magnetic hydroxyethyl cellulose/ionic liquid (MHEC/IL) materials were fabricated through a facile and fast process and their application as excellent adsorbents for hydroquinone was also demonstrated. The thermal stability, chemical structure and magnetic property of the MHEC/IL were characterized by the Scanning electron microscope (SEM), Transmission Electron Microscope (TEM), Fourier transform infrared spectrometer (FT-IR) and X-ray diffraction (XRD), respectively. The adsorbents were used for the removal of hydroquinone from simulated wastewater with a fast solid-liquid separation in the presence of external magnetic field. The influence of various analytical parameters on the adsorption of hydroquinone such as pH, contact time and initial ion concentration were studied in detail. The results showed that the maximum adsorption capacity was 335.68mgg -1 , observed at pH 5 and temperature 30°C. Equilibrium adsorption was achieved within 30min. The kinetic data, obtained at the optimum pH 5, could be fitted with a pseudo-second order equation. Adsorption process could be well described by Freundlich adsorption isotherms. The obtained results indicated that the impregnation of the room temperature IL significantly enhances the removal efficiency of hydroquinone. The MHEC/IL may be suitable materials in phenols pollution cleanup if they are synthesized in largescale and at low price in near future. Copyright © 2017 Elsevier B.V. All rights reserved.
Chemically stabilized reduced graphene oxide/zirconia nanocomposite: synthesis and characterization
NASA Astrophysics Data System (ADS)
Sagadevan, Suresh; Zaman Chowdhury, Zaira; Enamul Hoque, Md; Podder, Jiban
2017-11-01
In this research, chemical method was used to fabricate reduced graphene oxide/zirconia (rGO/ZrO2) nanocomposite. X-ray Diffraction analysis (XRD) was carried out to examine the crystalline structure of the nanocomposites. The nanocomposite prepared here has average crystallite size of 14 nm. The surface morphology was observed using scanning electron microscopic analysis (SEM) coupled with electron dispersion spectroscopy (EDS) to detect the chemical element over the surface of the nanocomposites. High-resolution Transmission electron microscopic analysis (HR-TEM) was carried out to determine the particle size and shape of the nanocomposites. The optical property of the prepared samples was determined using UV-visible absorption spectrum. The functional groups were identified using FTIR and Raman spectroscopic analysis. Efficient, cost effective and properly optimized synthesis process of rGO/ZrO2 nanocomposite can ensure the presence of infiltrating graphene network inside the ZrO2 matrix to enhance the electrical properties of the hybrid composites up to a greater scale. Thus the dielectric constant, dielectric loss and AC conductivity of the prepared sample was measured at various frequencies and temperatures. The analytical results obtained here confirmed the homogeneous dispersion of ZrO2 nanostructures over the surface of reduced graphene oxide nanosheets. Overall, the research demonstrated that the rGO/ZrO2 nano-hybrid structure fabricated here can be considered as a promising candidate for applications in nanoelectronics and optoelectronics.
Technical Evaluation Motor No. 7 (TEM-7)
NASA Technical Reports Server (NTRS)
Hughes, Phil
1991-01-01
The Technical Evaluation Motor No. 7 (TEM-7) test was a full-scale, full duration static test firing of a high performance motor-configuration solid rocket motor with nozzle vectoring. The final test report documents the procedures, performance, and results of the static test firing of TEM-7. All observations, discussions, conclusions, and recommendations included in the report are complete and final except for the TEM-7 fixed housing unbond investigation. A presentation and discussion of TEM-7 performance, anomalies, and test result concurrence with the objectives outlined in CTP-0107, Rev A, Space Shuttle Technical Evaluation Motor No. 7 (TEM-7) Static Fire Test Plan are included.
Cross section TEM characterization of high-energy-Xe-irradiated U-Mo
Ye, B.; Jamison, L.; Miao, Y.; ...
2017-03-09
U-Mo alloys irradiated with 84 MeV Xe ions to various doses were characterized with transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) techniques. The TEM thin foils were prepared perpendicular to the irradiated surface to allow a direct observation of the entire region modified by ions. Furthermore, depth-selective microstructural information was revealed. Varied irradiation-induced phenomena such as gas bubble formation, phase reversal, and recrystallization were observed at different ion penetration depths in U-Mo.
Simple route to (NH4)xWO3 nanorods for near infrared absorption
NASA Astrophysics Data System (ADS)
Guo, Chongshen; Yin, Shu; Dong, Qiang; Sato, Tsugio
2012-05-01
Described here is how to synthesize one-dimensional ammonium tungsten bronze ((NH4)xWO3) by a facile solvothermal approach in which ethylene glycol and acetic acid were employed as solvents and ammonium paratungstate was used as a starting material, as well as how to develop the near infrared absorption properties of (NH4)xWO3 nanorods for application as a solar light control filter. The as-obtained product was characterized by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermogravimetry (TG), atomic force microscope (AFM) and UV-Vis-NIR spectra. The SEM and TEM images clearly revealed that the obtained sample possessed rod/fiber-like morphologies with diameters around 120 nm. As determined by UV-Vis-NIR optical measurement, the thin film consisted of (NH4)xWO3 nanoparticles, which can selectively transmit most visible lights, but strongly absorb the near-infrared (NIR) lights and ultraviolet rays. These interesting optical properties make the (NH4)xWO3 nanorods suitable for the solar control windows.Described here is how to synthesize one-dimensional ammonium tungsten bronze ((NH4)xWO3) by a facile solvothermal approach in which ethylene glycol and acetic acid were employed as solvents and ammonium paratungstate was used as a starting material, as well as how to develop the near infrared absorption properties of (NH4)xWO3 nanorods for application as a solar light control filter. The as-obtained product was characterized by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermogravimetry (TG), atomic force microscope (AFM) and UV-Vis-NIR spectra. The SEM and TEM images clearly revealed that the obtained sample possessed rod/fiber-like morphologies with diameters around 120 nm. As determined by UV-Vis-NIR optical measurement, the thin film consisted of (NH4)xWO3 nanoparticles, which can selectively transmit most visible lights, but strongly absorb the near-infrared (NIR) lights and ultraviolet rays. These interesting optical properties make the (NH4)xWO3 nanorods suitable for the solar control windows. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr30612c
Technical Evaluation Motor No. 10 (TEM-10)
NASA Technical Reports Server (NTRS)
1993-01-01
Technical Evaluation Motor No. 10 (TEM-10) was static fired on 27 Apr. 1993 at the Thiokol Corporation full-scale motor static test bay, T-24. This final test report documents the procedures, performance, and results of the static test firing of TEM-10. All observations, discussions, conclusions, and recommendations contained are final. Included is a presentation and discussion of TEM-10 performance, anomalies, and test results in concurrence with the objectives outlined in CTP-0110, Revision D, Space Shuttle Technical Evaluation Motor No. 10 (TEM-10) Static Fire Test Plan.
Adams, Claire; Burke, Valerie; Beilin, Lawrie J
2002-04-01
The Busselton Survey is a population survey that is held about every three years. In 1994-1995 a re-survey was held of all past participants and 8,502 attended. Financial constraints precluded employing staff for data collection for blood pressure and anthropometry, these therefore were collected by unpaid lay volunteers. Quality control by a health professional was critical to the assessment and maintenance of accuracy in these measurements. For blood pressure three readings were taken simultaneously by a quality control person and the volunteer using a dual stethoscope. Duplicate anthropometric measurements were taken by a criterion anthropometrist and the volunteer. Inter and intra-observer technical errors of measurement (TEM) were calculated. Sixty-two volunteers were trained to take BP measurements; of these, 38 collected data, and 63 were trained in anthropometry; of these, 30 were suitable as measurers. Training was conducted on a group and individual basis by the quality assurance person for the study both in the Perth metropolitan area and rural Busselton. The TEM for SBP was 1.6 mm Hg (SD 1.0 mm Hg) and 1.5 mm Hg (SD 0.8) for DBP. For skin-folds intra-observer TEM ranged from 0.6 mm to 1.0 mm. Between-observer TEM ranged from 2.1 mm to 5.4 mm. For limb and waist circumferences, intra-observer TEM ranged from 0.3 cm to 1.6 cm. Between-observer TEM for circumferences ranged from 0.5 cm to 1.9 cm. Unpaid volunteer measurers can, if carefully trained and supervised, provide acceptable blood pressure data and anthropometry in large population surveys.
Chen, Wei; Liu, Yongxia; Zhang, Limei; Gu, Xiaolong; Liu, Gang; Shahid, Muhammad; Gao, Jian; Ali, Tariq; Han, Bo
2017-01-01
Nocardia is one of the causing agents of bovine mastitis and increasing prevalence of nocardial mastitis in shape of serious outbreaks has been reported from many countries. However, the mechanisms by which this pathogen damages the bovine mammary epithelial cells (bMECs) is not yet studied. Therefore, this study was designed with the aim to evaluate the apoptotic effects elicited by Nocardia and to investigate the pathway by which the Nocardia induce apoptosis in bMECs. Clinical Nocardia cyriacigeorgica strain from bovine mastitis was used to infect the bMECs for different time intervals, viz . 1, 3, 6, 12, and 18 h, and then the induced effects on bMECs were studied using adhesion and invasion assays, release of lactate dehydrogenase (LDH), apoptosis analysis by annexin V and propidium iodide (PI) double staining, morphological, and ultrastructural observations under scanning electron microscope (SEM) and transmission electron microscope (TEM), mitochondrial transmembrane potential (ΔΨm) assay using flow cytometry, and the protein quantification of mitochondrial cytochrome c and caspase-9 and caspase-3 by western blotting. The results of this study showed that N. cyriacigeorgica possessed the abilities of adhesion and invasion to bMECs. N. cyriacigeorgica was found to collapse mitochondrial transmembrane potential, significantly ( p < 0.05) release mitochondrial cytochrome c and ultimately induce cell apoptosis. Additionally, it promoted casepase-9 ( p < 0.01) and casepase-3 ( p < 0.05) levels, significantly ( p < 0.01) increased the release of LDH and promoted DNA fragmentation which further confirmed the apoptosis. Furthermore, N. cyriacigeorgica induced apoptosis/necrosis manifested specific ultrastructure features under TEM, such as swollen endoplasmic reticulum, cristae degeneration, and swelling of mitochondria, vesicle formation on the cell surface, rupturing of cell membrane and nuclear membrane, clumping, fragmentation, and margination of chromatin. The present study is the first comprehensive insight into patho-morphological ultrastructural features of apoptosis/necrosis induced by N. cyriacigeorgica , which concluded that the clinical N. cyriacigeorgica induced apoptotic changes in the bMECs through mitochondrial-caspase dependent apoptotic pathway.
NASA Astrophysics Data System (ADS)
Anderson, L. M.; Halary, S.; Lechaire, J.; Frébourg, G.; Boudier, T.; Zbinden, M.; Laval, J.; Marco, S.; Gaill, F.
2007-12-01
The chemical and temperature conditions around deep sea hydrothermal vents are both dynamic and extreme, yet the shrimp Rimicaris exoculata flourishes around these environments on the Mid--Atlantic Ridge (MAR). Epibiotic bacteria and minerals found within the branchial chamber (BC) of the shrimp are of great interest in the search for a chemical model for the Rainbow MAR hydrothermal vent site. Here we examine the close, three-- dimensional (3D) relationship between bacteria (on the inner surface of the BC wall) and the minerals that surround them. The morphology and chemistry of the minerals were analysed by Energy filtering Transmission Electron Microscopy (EFTEM, on a LEO--912 microscope) and X-ray Nano-analysis (EDXN, on a JEOL--2010 FEG microscope) respectively, and the 3D organization was determined by Transmission Electron Tomography (TET) and EFTET. Consecutive thin and semi--thin sections of 50--80nm (for EFTEM and EDXN) and 200--250nm (for TEM and EFTET) were cut through the BC cuticle and mounted on standard microscope grids. Sections were observed initially for morphology, to find broad relationships between bacteria and minerals. EFTET series acquisition was performed under cryo-conditions (-175°C) using a LEO-912 microscope. At each position of interest four tilt series were taken at two degree increments between -55° and +55° at various energy--losses: 1) zero--loss (ref); 2) 720 eV, 3) 690 eV and 4) 670 eV, to reconstruct the 3D location of iron. Tilted series were obtained using the ESIvision program (Soft--Imaging Software, Münster, Germany) with additional in--house scripts for automated acquisition. The 3D EFTET reconstruction volume was produced from the four tilted series using recently developed EFTET--J software (http://www.snv.jussieu.fr/~wboudier/softs.html). In many cases the observed minerals exhibit a sharp boundary against the bacteria, often with a substantial void between bacterial membrane/cell wall and mineral boundary. Mineral layering and zoning are also present. Our findings highlight the potential importance of iron as an energy source for Rimicaris exoculata epibionts at Rainbow, from their close association. The results from this study are contributing to the formulation of a chemical model for the Rainbow hydrothermal vent site (MAR).
Design of poly(mPEGMA-co-MAA) hydrogel-based mPEG-b-PCL nanoparticles for oral meloxicam delivery.
Shi, Yongli; Liu, Zhaomin; Yang, Yaxing; Xu, Xiaojie; Li, Yan; Li, Tong
2017-07-01
To enhance the therapeutic effects of meloxicam (MLX), we developed an oral MLX-loaded poly(ethylene glycol)-b-poly(ε-caprolactone) nanoparticles@hydrogel (MLX-NPs@hydrogel) preparation. The MLX-NPs were fabricated via a solvent evaporation method, and their morphologies were observed by a JEM-1011 transmission electron microscope (TEM). The poly(mPEGMA-co-MAA) hydrogels were synthesized, and studies on their pH sensibilities were carried out in pH1.2, 6.8, and 7.4 buffers. The final MLX-NPs@hydrogel preparation was obtained by immersing the hydrogels in the MLX-NPs suspensions (pH7.4) for 48h. The thermodynamic properties and cytotoxicity of the MLX-NPs@hydrogel preparation were also studied. TEM images illustrated that mPEG-b-PCL NPs had a uniform size distribution. The poly(mPEGMA-co-MAA) hydrogels showed an excellent pH-sensibility. Thermal gravity analysis (TGA) data suggested that the protection of hydrogels improved the stability of mPEG-b-PCL NPs. The release studies revealed that MLX-NPs@hydrogel could deliver the MLX-NPs into alkalescent environment (e.g. intestinal tract). Then, the medicated NPs released MLX at a sustained release profile. Such preparation could overcome the drawbacks of oral MLX, and enhance its therapeutic effects. Therefore, the NPs@hydrogel was a promising sustained-controlled release matrix. Copyright © 2017 Elsevier B.V. All rights reserved.
Inhibition effect of engineered silver nanoparticles to bloom forming cyanobacteria
NASA Astrophysics Data System (ADS)
Thuy Duong, Thi; Son Le, Thanh; Thu Huong Tran, Thi; Kien Nguyen, Trung; Ho, Cuong Tu; Hien Dao, Trong; Phuong Quynh Le, Thi; Chau Nguyen, Hoai; Dang, Dinh Kim; Thu Huong Le, Thi; Thu Ha, Phuong
2016-09-01
Silver nanoparticle (AgNP) has a wide range antibacterial effect and is extensively used in different aspects of medicine, food storage, household products, disinfectants, biomonitoring and environmental remediation etc. In the present study, we examined the growth inhibition effect of engineered silver nanoparticles against bloom forming cyanobacterial M. aeruginosa strain. AgNPs were synthesized by a chemical reduction method at room temperature and UV-Vis spectroscopy, scanning electron microscopy (SEM), transmission electron microscope (TEM) showed that they presented a maximum absorption at 410 nm and size range between 10 and 18 nm. M. aeruginosa cells exposed during 10 d to AgNPs to a range of concentrations from 0 to 1 mg l-1. The changes in cell density and morphology were used to measure the responses of the M. aeruginosa to AgNPs. The control and treatment units had a significant difference in terms of cell density and growth inhibition (p < 0.05). Increasing the concentration of AgNPs, a reduction of the cell growths in all treatment was observed. The inhibition efficiency was reached 98.7% at higher concentration of AgNPs nanoparticles. The term half maximal effective concentration (EC50) based on the cell growth measured by absorbance at 680 nm (A680) was 0.0075 mg l-1. The inhibition efficiency was 98.7% at high concentration of AgNPs (1 mg l-1). Image of SEM and TEM reflected a shrunk and damaged cell wall indicating toxicity of silver nanoparticles toward M. aeruginosa.
Measurement of fatigue accumulation in high-strength steels by microstructural examination
NASA Astrophysics Data System (ADS)
Nakagawa, Y. G.; Yoshizawa, H.; Lapides, M. E.
1990-07-01
Fatigue test bars fabricated from an SA508 class 3 low-carbon steel plate were cyclically deformed at 300 °C (constant low-cycle fatigue, total strain range Δɛ = 0.78 pct and 0.48 pct) to crack initiation (100 pct cumulative damage, CD) and to the factors 75, 50, and 25 pct CD. The test bars were cut perpendicular to the stress axis at the center of the gage length. The X-ray diffraction line-broadening (XRD) was performed on the cross sections created by the cuts. Thin foils (˜0.1-μm thick) were prepared from each cross section and used for the transmission electron microscope (TEM) and selected area diffraction (SAD) study. The half-value line breadth change measured by the XRD increased with the CD increase up to 50 pct, beyond which a significant reduction was observed for the 75 and 100 pct CD sample regardless of the incident X-ray beam angle. By the TEM, the undamaged material (0 pct CD) was characterized by high-angle boundaries, small carbide precipitates, and dislocation cell networks in grains. These characteristics did not show any appreciable changes in all of the samples with fatigue damage of the respective levels. Micro-orientation changes of the dislocation cells studied by the SAD of the foils and a statistical data analysis clearly demonstrated that the mean orientation difference in the cells and its standard deviation increased gradually as the CD increased.
The critical role of quercetin in autophagy and apoptosis in HeLa cells.
Wang, Yijun; Zhang, Wei; Lv, Qiongying; Zhang, Juan; Zhu, Dingjun
2016-01-01
In recent years, the effects of quercetin on autophagy and apoptosis of cancer cells have been widely reported, while effects on HeLa cells are still unclear. Here, HeLa cells were subjected to quercetin treatment, and then proliferation, apoptosis, and autophagy were evaluated using MTT, flow cytometry, and MDC staining, respectively. The LC3-I/II, Beclin 1, active caspase-3, and S6K1 phosphorylation were detected using Western blot assay. The ultrastructure of HeLa was observed via transmission electron microscope (TEM). Our findings showed that quercetin can dose-dependently inhibit the growth of HeLa cells. The MDC fluorescence was enhanced with increased concentration of quercetin and hit a plateau at 50 μmol/l. Western blot assay revealed that LC3-I/II ratio, Beclin 1, and active caspase-3 protein were enforced in a dose-dependent method. However, the phosphorylation of S6K1 gradually decreased, concomitant with an increase of autophagy. In addition, TEM revealed that the number of autophagic vacuoles was peaked at 50 μmol/l of quercetin. Besides, interference of autophagy with 3-MA led to proliferation inhibition and increased apoptosis in HeLa cells, accompanied by the decreased LC3-I/II conversion and the increased active caspase-3. In conclusion, quercetin can inhibit HeLa cell proliferation and induce protective autophagy at low concentrations; thus, 3-MA plus quercetin would suppress autophagy and effectively increased apoptosis.
Spherulitic (c-axis) Growth for Terrestrial (Mauna Kea, Hawaii) and Martian Hematite "blueberries"
NASA Technical Reports Server (NTRS)
Golden, D. C.; Ming, D. W.; Morris, R. V.
2006-01-01
Hematite concentrations observed by Thermal Emission Spectrometer (TES) onboard Mars Global Surveyor were considered a possible indicator for aqueous processes on Mars. Observations made by Opportunity show that the hematite at Meridiani Planum is present as spherules ( blueberries) and their fragments. The internal structure of the hematite spherules is not discernable at the resolution limit (approx.30 m/pixel) of Opportunity s Microscopic Imager (MI). A terrestrial analog for martian hematite spherules are spherules from hydrothermally altered and sulfate-rich tephra from the summit region of Mauna Kea volcano, Hawaii. The objective of this study is to determine the crystal growth fabric of the Mauna Kea hematite spherules using transmission electron microscopy (TEM) techniques and to relate that crystalline fabric to the observed TES signature of Meridiani Planum "blueberries." TEM analysis of Mauna Kea spherules exhibited a radial growth pattern consisting of "fibrous" hematite with the c-axis of hematite particles aligned along the elongation direction of the hematite fibers. The individual fibers appear to be made of coalesced nano-particles of hematite arranged with their c-axis oriented radially to form a spherical structure. Lattice fringes suggest long-range order across particles and along fibers. According to interpretations of thermal emission spectra for Meridian Planum hematite, the absence of a band at approx. 390/cm implies a geometry where c-face emission dominates. Because the c-face is perpendicular to the c-axis, this is precisely the geometry for the Mauna Kea spherules because the c-axis is aligned parallel to their radial growth direction. Therefore, we conclude as a working hypothesis that the martian spherules also have radial, c-axis growth pattern on a scale that is too small to be detected by the MER MI. Furthermore, by analogy with the Mauna Kea spherules, the martian blueberries could have formed during hydrothermal alteration of basaltic precursors under acid-sulfate conditions.
NASA Astrophysics Data System (ADS)
Danaie, Mohsen
The main focus of this thesis is the characterization of defects and microstructure in high-energy ball milled magnesium hydride powder and magnesium-based multilayered composites. Enhancement in kinetics of hydrogen cycling in magnesium can be achieved by applying severe plastic deformation. A literature survey reveals that, due to extreme instability of alpha-MgH 2 in transmission electron microscope (TEM), the physical parameters that researchers have studied are limited to particle size and grain size. By utilizing a cryogenic TEM sample holder, we extended the stability time of the hydride phase during TEM characterization. Milling for only 30 minutes resulted in a significant enhancement in desorption kinetics. A subsequent annealing cycle under pressurized hydrogen reverted the kinetics to its initial sluggish state. Cryo-TEM analysis of the milled hydride revealed that mechanical milling induces deformation twinning in the hydride microstructure. Milling did not alter the thermodynamics of desorption. Twins can enhance the kinetics by acting as preferential locations for the heterogeneous nucleation of metallic magnesium. We also looked at the phase transformation characteristics of desorption in MgH2. By using energy-filtered TEM, we investigated the morphology of the phases in a partially desorbed state. Our observations prove that desorption phase transformation in MgH2 is of "nucleation and growth" type, with a substantial energy barrier for nucleation. This is contrary to the generally assumed "core-shell" structure in most of the simulation models for this system. We also tested the hydrogen storage cycling behavior of bulk centimeter-scale Mg-Ti and Mg-SS multilayer composites synthesized by accumulative roll-bonding. Addition of either phase (Ti or SS) allows the reversible hydrogen sorption at 350°C, whereas identically roll-bonded pure magnesium cannot be absorbed. In the composites the first cycle of absorption (also called "activation") kinetics improve with increased number of fold and roll (FR) operations. With increasing FR operations the distribution of the Ti phase is progressively refined, and the shape of the absorption curve no longer remains sigmoidal. Up to a point, increasing the loading amount of the second phase also accelerates the kinetics. Microscopy analysis performed on 1--2 wt.% hydrogen absorbed composites demonstrates that MgH 2 formed exclusively on various heterogeneous nucleation sites. During activation, MgH2 nucleation occurred at the Mg-hard phase interfaces. On the subsequent absorption cycles, heterogeneous nucleation primarily occurred in the vicinity of "internal" free surfaces such as cracks.
2012-01-01
Introduction Post-traumatic stress disorder (PTSD) is an anxiety disorder that develops after exposure to a life-threatening traumatic experience. Meta-analyses of the brainstem showed that midsagittal area of the pons was significantly reduced in patients with PTSD, suggesting a potential apoptosis in dorsal raphe nucleus after single-prolonged stress (SPS). The aim of this study is to investigate whether SPS induces apoptosis in dorsal raphe nucleus in PTSD rats, which may be a possible mechanism of reduced volume of pons and density of gray matter. Methods In this study, rats were randomly divided into 1d, 7d and 14d groups after SPS along with the control group. The apoptosis rate was determined using annexin V-FITC/PI double-labeled flow cytometry (FCM). Levels of Cytochrome c (Cyt-C) was examined by Western blotting. Expression of Cyt-C on mitochondria in the dorsal raphe nucleus neuron was determined by enzymohistochemistry under transmission electron microscopy (TEM). The change of thiamine monophosphatase (TMP) levels was assessed by enzymohistochemistry under light microscope and TEM. Morphological changes of the ultrastructure of the dorsal raphe nucleus neuron were determined by TEM. Results Apoptotic morphological alterations were observed in dorsal raphe nucleus neuron for all SPS-stimulate groups of rats. The apoptosis rates were significantly increased in dorsal raphe nucleus neuron of SPS rats, along with increased release of cytochrome c from the mitochondria into the cytoplasm, increased expression of Cyt-C and TMP levels in the cytoplasm, which reached to the peak of increase 7 days of SPS. Conclusions The results indicate that SPS induced Cyt-C released from mitochondria into cytosol and apoptosis in dorsal raphe nucleus neuron of rats. Increased TMP in cytoplasm facilitated the clearance of apoptotic cells. We propose that this presents one of the mechanisms that lead to reduced volume of pons and gray matter associated with PTSD. PMID:23181934
Fang, Qing; Yan, Xu; Li, Shaowu; Sun, Yilin; Xu, Lixin; Shi, Zhongfang; Wu, Min; Lu, Yi; Dong, Liping; Liu, Ran; Yuan, Fang; Yang, Shao-Hua
2016-01-01
The neuroprotective effect of methylene blue (MB) has been identified against various brain disorders, including ischemic stroke. In the present study, we evaluated the effects of MB on postischemic brain edema using magnetic resonance imaging (MRI) and transmission electron microscopy (TEM). Adult male rats were subjected to transient focal cerebral ischemia induced by 1 h middle cerebral artery occlusion (MCAO), followed by reperfusion. MB was infused intravenously immediately after reperfusion (3 mg/kg) and again at 3 h post-occlusion (1.5 mg/kg). Normal saline was administered as vehicle control. Sequential MRIs, including apparent diffusion coefficient (ADC) and T2-weighted imaging (T2WI), were obtained at 0.5, 2.5, and 48 h after the onset of stroke. Separated groups of animals were sacrificed at 2.5 and 48 h after stroke for ultrastructural analysis by TEM. In addition, final lesion volumes were analyzed by triphenyltetrazolium chloride (TTC) staining at 48 h after stroke. Ischemic stroke induced ADC lesion volume at 0.5 h during MCAOs that were temporally recovered at 1.5 h after reperfusion. No significant difference in ADC-defined lesion was observed between vehicle and MB treatment groups. At 48 h after stroke, MB significantly reduced ADC lesion and T2WI lesion volume and attenuated cerebral swelling. Consistently, MB treatment significantly decreased TTC-defined lesion volume at 48 h after stroke. TEM revealed remarkable swollen astrocytes, astrocytic perivascular end-feet, and concurrent shrunken neurons in the penumbra at 2.5 and 48 h after MCAO. MB treatment attenuated astrocyte swelling, the perivascular astrocytic foot process, and endothelium and also alleviated neuron degeneration. This study demonstrated that MB could decrease postischemic brain edema and provided additional evidence that future clinical investigation of MB for the treatment of ischemic stroke is warrented.
Matteini, Paolo; Rossi, Francesca; Menabuoni, Luca; Pini, Roberto
2007-08-01
Laser welding of corneal tissue that employs diode lasers (810 nm) at low power densities (12-20 W/cm(2)) in association with Indocyanine Green staining of the wound is a technique proposed as an alternative to conventional suturing procedures. The aim of this study is to evaluate, by means of light (LM) and transmission electron microscopy (TEM) analyses, the structural modifications induced in laser-welded corneal stroma. Experiments were carried out in 20 freshly enucleated pig eyes. A 3.5 mm in length full-thickness cut was produced in the cornea, and was then closed by laser welding. Birefringence modifications in samples stained with picrosirius red dye were analyzed by polarized LM to assess heat damage. TEM analysis was performed on ultra-thin slices, contrasted with uranyl acetate and lead citrate, in order to assess organization and size of type I collagen fibrils after laser welding. LM evidenced bridges of collagen bundles between the wound edges, with a loss of regular lamellar organization at the welded site. Polarized LM indicated that birefringence properties were mostly preserved after laser treatment. TEM examinations revealed the presence of quasi-ordered groups of fibrils across the wound edges preserving their interfibrillar spacing. These fibrils appeared morphologically comparable to those in the control tissue, indicating that type I collagen was not denatured during the diode laser corneal welding. The preservation of substantially intact, undenatured collagen fibrils in laser-welded corneal wounds supported the thermodynamic studies that we carried out recently, which indicated temperatures below 66 degrees C at the weld site under laser irradiation. This observation enabled us to hypothesize that the mechanism, proposed in the literature, of unwinding of collagen triple helixes followed by fibrils "interdigitation" is not likely to occur in the welding process that we set up for the corneal suturing.
Li, Ge; Huang, Jian-ming; Aoki, Hideki; Li, Yan; Zhang, Rong; Deng, Bi-fang
2007-09-01
To study the influence of a discrete nano-hydroxyapatite crystal (nano-HAp) on lymphatic leukemia P388 behavior by in vivo techniques. A nano-HAp was prepared by a neutralization reaction of 0.1 mol calcium hydroxide suspension and 0.06 mol phosphoric acid solutions at room temperature over pH7. The various doses of the nano-HAp only and the nano-HAp mixture with cyclophosphamide (CY) were injected into mice inoculated with solid tumor lymphatic leukemia P388 and dispersed into PRMI 1640 media harvested the leukemia P388 cells. Sixty P388 BALB/C mice were randomly grouped; 36 of them were used as nano-HAp treated groups and 24 mice as the control groups. The leukemia growth in the mice was examined morphologically, histopathologically and under a transmission electron microscope (TEM). The nano-HAp was identified as a hydroxyapatite by an X-ray diffractometry (XRD) and a Fourier transform infrared spectroscopy (FTIR). The morphology and sizes were observed under a TEM. The tissue growth inhibition ratio (weight%) of solid lymphatic leukemia P388 bearing mice treated with nano-HAp at doses 35 mg/kg, 53 mg/kg and nano-HAp (53 mg/kg) combined with CY (35 mg/kg) in 3 consecutive days via intraperitineal injections were 14.95%, 32.67% and 60.45% respectively. Apoptosis of P388 cell cocultured with nano-HAp was confirmed by TEM. The tissue growth restriction of solid tumor lymphatic leukemia P388 was greater after an injection of nano-HAp only or nano-HAp mixed with CY than that obtained after injection with physiological saline solution as a control (P < 0.01), and the tissue growth restriction of solid tumor after an injection of nano-HAp combined with CY was greater than that obtained after nano-HAp or CY injection only (P < 0.01).
NASA Technical Reports Server (NTRS)
Christoffersen, R.; Rahman, Z.; Keller, L. P.
2012-01-01
As regions of the lunar regolith undergo space weathering, their component grains develop compositionally and microstructurally complex outer coatings or "rims" ranging in thickness from a few 10 s to a few 100's of nm. Rims on grains in the finest size fractions (e.g., <20 m) of mature lunar regoliths contain optically-active concentrations of nm size metallic Fe spherules, or "nanophase Fe(sup o)" that redden and attenuate optical reflectance spectral features important in lunar remote sensing. Understanding the mechanisms for rim formation is therefore a key part of connecting the drivers of mineralogical and chemical changes in the lunar regolith with how lunar terrains are observed to become space weathered from a remotely-sensed point of view. As interpreted based on analytical transmission electron microscope (TEM) studies, rims are produced from varying relative contributions from: 1) direct solar ion irradiation effects that amorphize or otherwise modify the outer surface of the original host grain, and 2) nanoscale, layer-like, deposition of extrinsic material processed from the surrounding soil. This extrinsic/deposited material is the dominant physical host for nanophase Fe(sup o) in the rims. An important lingering uncertainty is whether this deposited material condensed from regolith components locally vaporized in micrometeorite or larger impacts, or whether it formed as solar wind ions sputtered exposed soil and re-deposited the sputtered ions on less exposed areas. Deciding which of these mechanisms is dominant, or possibility exclusive, has been hampered because there is an insufficient library of chemical and microstructural "fingerprints" to distinguish deposits produced by the two processes. Experimental sputter deposition / characterization studies relevant to rim formation have particularly lagged since the early post-Apollo experiments of Hapke and others, especially with regard to application of TEM-based characterization techniques. Here we report on a novel design for simulating solar ion sputter deposition in the lunar regolith, with characterization of the resulting sputter deposits by an array of advanced analytical TEM techniques.
NASA Astrophysics Data System (ADS)
Guo, Yonghong; Zhai, Gang; Ru, Yu; Wu, Chuyu; Jia, Xiaowei; Sun, Yaping; Yu, Jiawen; Kang, Zhizhong; Sun, Baomin
2018-03-01
The Flame pyrolysis method used to synthesize carbon nanotubes was studied in this work. In order to improve the quality of synthesized carbon nanotubes, it is important to change the corresponding natures of the catalyst. Two catalyst preparation methods, namely, the sol-gel method and the impregnation method, were compared in this experiment. The properties of the catalyst are analyzed in depth by energy dispersive spectrometer (EDS), x-ray diffraction (XRD), temperature program reduction (TPR). The generation of carbon nanotubes was systematically analysed through scanning electron microscope (SEM), molecule dynamics (MD), raman spectroscopy and transmission electron microscope (TEM). The results show that the catalysts prepared by the impregnation method are stickier, dispersed and easier to dip onto the probe or substrate, which is beneficial for the large-scale production of carbon tubes. The specific surface area of alumina is larger and the iron and molybdenum oxide are more evenly dispersed on the surface of alumina. The carbon nanotubes produced by the catalysts prepared by impregnation method are flatter and have less impurities. The ratio of ID/IG+ is 29.7% lower than that of the sol-gel method in the Raman spectra. The TEM statistics show that the average diameter of the carbon tubes decreases by 23.3%. Therefore, the impregnation method can improve the quality of carbon nanotubes in the case of a similar degree of difficulty in the preparation of the catalyst.
NASA Astrophysics Data System (ADS)
Osuntokun, Jejenija; Ajibade, Peter A.
2016-09-01
Zn(II) and Cd(II) metal complexes of 1-cyano-1-carboethoxyethylene-2,2-dithiolato-κS,S'-bis(N,N-dimethylthiourea-κS) have been synthesized and characterized with analytical and spectroscopic techniques. The complexes were thermolysed in hexadecylamine at 200 °C to prepare ZnS and CdS nanoparticles. The nanoparticles were characterized with scanning electron microscope (SEM), transmission electron microscope (TEM), and powder X-ray diffraction (p-XRD). TEM images showed spherically shaped nanoparticles, whose sizes are in the range 4.33-7.21 nm for ZnS and 4.95-7.7 nm CdS respectively and XRD confirmed cubic crystalline phases for the nanoparticles. The optical band gap energy evaluated from the absorption spectra are 2.88 eV (430 nm) and 2.81 eV (440 nm) for the ZnS and CdS nanoparticles respectively. The as-prepared metal sulfide nanoparticles were further incorporated into polyvinyl alcohol (PVA) to give ZnS/PVA and CdS/PVA composites. The polymer nanocomposites were studied to investigate their morphology and thermal properties relative to the pure PVA. XRD diffractions indicated that the crystalline phases of the nanoparticles and the sizes in PVA matrices remained unaltered. Infra-red spectra studies revealed interactions between the PVA and the metal sulfide nanoparticles and TGA studies show that the ZnS/PVA and CdS/PVA nanocomposites exhibit better thermal stability than the pure PVA.
SEM and TEM characterization of the microstructure of post-compressed TiB2/2024Al composite.
Guo, Q; Jiang, L T; Chen, G Q; Feng, D; Sun, D L; Wu, G H
2012-02-01
In the present work, 55 vol.% TiB(2)/2024Al composites were obtained by pressure infiltration method. Compressive properties of 55 vol.% TiB(2)/2024Al composite under the strain rates of 10(-3) and 1S(-1) at different temperature were measured and microstructure of post-compressed TiB(2)/2024Al composite was characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM). No trace of Al(3)Ti compound flake was found. TiB(2)-Al interface was smooth without significant reaction products, and orientation relationships ( [Formula: see text] and [Formula: see text] ) were revealed by HRTEM. Compressive strength of TiB(2)/2024Al composites decreased with temperature regardless of strain rates. The strain-rate-sensitivity of TiB(2)/2024Al composites increased with the increasing temperature. Fracture surface of specimens compressed at 25 and 250°C under 10(-3)S(-1) were characterized by furrow. Under 10(-3)S(-1), high density dislocations were formed in Al matrix when compressed at 25°C and dynamic recrystallization occurred at 250°C. Segregation of Mg and Cu on the subgrain boundary was also revealed at 550°C. Dislocations, whose density increased with temperature, were formed in TiB(2) particles under 1S(-1). Deformation of composites is affected by matrix, reinforcement and strain rate. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hazarika, Deepshikha; Karak, Niranjan
2016-07-01
In the present study, a novel, simple and green method was developed to synthesize highly luminescent nitrogen containing carbon dot (CD) using carbon resources like bio-based citric acid and glycerol in the presence of cost free cow urine. The as-synthesized CD showed exciting wavelength dependent down- and up-conversion flourescence properties. To utilize the advantage of up-conversion flourescence, a nanohybrid (CD@TiO2) was synthesized from the above carbon resources and titanium butoxide through a facile one pot single step hydrothermal protocol. Nanomaterials like bare TiO2 and nanohybrid of TiO2 in presence of CD (CD/TiO2) were also synthesized for comparison purpose. The optical properties and structural characteristics of the prepared CD, bare TiO2, CD@TiO2 and CD/TiO2 were examined by Fourier transform infrared (FTIR), UV-vis and fluorescence spectroscopic, scanning electron microscopic (SEM), transmission electron microscopic (TEM) and X-ray diffraction (XRD) studies. The elemental compositions of bare CD and CD@TiO2 nanohybrid were obtained from EDX analyses. The poor crystalline nature and narrow distribution of spherical CD and anatase form of TiO2 were confirmed from XRD and TEM studies. Amongst the studied nanomaterials, CD@TiO2 exhibited the most promising photocatalytic degradation of organic pollutants like benzene and phenol as well as an anthrogenic pesticide under sunlight.
NASA Astrophysics Data System (ADS)
Zheng, Dongdong; Qiang, Yujie; Xu, Shenying; Li, Wenpo; Yu, Shanshan; Zhang, Shengtao
2017-02-01
Metal oxides have emerged as one kind of important supercapacitor electrode materials. Herein, we report hierarchical MnO2 nanosheets prepared of indium tin oxide (ITO) coated glass substrates via a hybrid two-step protocol, including a cathodic electrodeposition technique and a hydrothermal process. The samples are characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM) with energy dispersive X-ray spectroscopy (EDX), and transmission electron microscope (TEM). SEM and TEM images show that the as-synthesized MnO2 nanosheets are hierarchical and porous, which could increase the active surface and short paths for fast ion diffusion. The results of nitrogen adsorption-desorption analysis indicate that the BET surface area of the MnO2 nanosheets is 53.031 m2 g-1. Furthermore, the electrochemical properties of the MnO2 are elucidated by cyclic voltammograms (CV), galvanostatic charge-discharge (GCD) tests, and electrochemical impedance spectroscopy (EIS) in 0.1 M Na2SO4 electrolyte. The electrochemical results demonstrate that the as-grown MnO2 nanosheet exhibits an excellent specific capacitance of 335 F g-1 at 0.5 A g-1 when it is applied as a potential electrode material for an electrochemical supercapacitor. Additionally, the MnO2 nanosheet electrode also presents high rate capability and good cycling stability with 91.8% retention after 1000 cycles. These excellent properties indicate that the hierarchical MnO2 nanosheets are a potential electrode material for electrochemical supercapacitors.
NASA Technical Reports Server (NTRS)
Ozaki, T.; Tsuda, H.; Halbig, M. C.; Singh, M.; Hasegawa, Y.; Mori, S.; Asthana R.
2016-01-01
Silicon Carbide (SiC) is a promising material for thermo-structural applications due to its excellent high-temperature mechanical properties, oxidation resistance, and thermal stability. However, joining and integration technologies are indispensable for this material in order to fabricate large size and complex shape components with desired functionalities. Although diffusion bonding techniques using metallic interlayers have been commonly utilized to bond various SiC ceramics, detailed microstructural observation by Transmission Electron Microscopy (TEM) of the bonded area has not been carried out due to difficulty in preparing TEM samples. In this study, we tried to prepare TEM samples from joints of diffusion bonded SiC ceramics by Focused Ion Beam (FIB) system and carefully investigated the interfacial microstructure by TEM analysis. The samples used in this study were SiC fiber bonded ceramics (SA-Tyrannohex: SA-THX) diffusion bonded with metallic interlayers such as Ti, TiMo, and Mo-B. In this presentation, the result of microstructural analysis obtained by TEM observations and the influence of metallic interlayers and fiber orientation of SA-THX on the joint microstructure will be discussed.
TEM Analysis of Diffusion-Bonded Silicon Carbide Ceramics Joined Using Metallic Interlayers
NASA Technical Reports Server (NTRS)
Ozaki, T.; Tsuda, H.; Halbig, M. C.; Singh, M.; Hasegawa, Y; Mori, S.; Asthana, R.
2017-01-01
Silicon Carbide (SiC) is a promising material for thermostructural applications due to its excellent high-temperature mechanical properties, oxidation resistance, and thermal stability. However, joining and integration technologies are indispensable for this material in order to fabricate large size and complex shape components with desired functionalities. Although diffusion bonding techniques using metallic interlayers have been commonly utilized to bond various SiC ceramics, detailed microstructural observation by Transmission Electron Microscopy (TEM) of the bonded area has not been carried out due to difficulty in preparing TEM samples. In this study, we tried to prepare TEM samples from joints of diffusion bonded SiC ceramics by Focused Ion Beam (FIB) system and carefully investigated the interfacial microstructure by TEM analysis. The samples used in this study were SiC fiber bonded ceramics (SA-Tyrannohex: SA-THX) diffusion bonded with metallic interlayers such as Ti, TiMo, Mo-B and TiCu. In this presentation, we report the microstructure of diffusion bonded SA-THX mainly with TiCu interlayers obtained by TEM observations, and the influence of metallic interlayers on the joint microstructure and microhardness will be discussed.
Laser beam shaping for biomedical microscopy techniques
NASA Astrophysics Data System (ADS)
Laskin, Alexander; Kaiser, Peter; Laskin, Vadim; Ostrun, Aleksei
2016-04-01
Uniform illumination of a working field is very important in optical systems of confocal microscopy and various implementations of fluorescence microscopy like TIR, SSIM, STORM, PALM to enhance performance of these laser-based research techniques. Widely used TEM00 laser sources are characterized by essentially non-uniform Gaussian intensity profile which leads usually to non-uniform intensity distribution in a microscope working field or in a field of microlenses array of a confocal microscope optical system, this non-uniform illumination results in instability of measuring procedure and reducing precision of quantitative measurements. Therefore transformation of typical Gaussian distribution of a TEM00 laser to flat-top (top hat) profile is an actual technical task, it is solved by applying beam shaping optics. Due to high demands to optical image quality the mentioned techniques have specific requirements to a uniform laser beam: flatness of phase front and extended depth of field, - from this point of view the microscopy techniques are similar to holography and interferometry. There are different refractive and diffractive beam shaping approaches used in laser industrial and scientific applications, but only few of them are capable to fulfil the optimum conditions for beam quality required in discussed microscopy techniques. We suggest applying refractive field mapping beam shapers πShaper, which operational principle presumes almost lossless transformation of Gaussian to flat-top beam with flatness of output wavefront, conserving of beam consistency, providing collimated low divergent output beam, high transmittance, extended depth of field, negligible wave aberration, and achromatic design provides capability to work with several lasers with different wavelengths simultaneously. The main function of a beam shaper is transformation of laser intensity profile, further beam transformation to provide optimum for a particular technique spot size and shape has to be realized by an imaging optical system which can include microscope objectives and tube lenses. This paper will describe design basics of refractive beam shapers and optical layouts of their applying in microscopy systems. Examples of real implementations and experimental results will be presented as well.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seki, Hirofumi, E-mail: Hirofumi-Seki@trc.toray.co.jp; Hashimoto, Hideki; Ozaki, Yukihiro
Microscopic Fourier-transform infrared (FT-IR) spectra are measured for a Cu/low-k interconnect structure using polarized IR light for different widths of low-k spaces and Cu lines, and for different heights of Cu lines, on Si substrates. Although the widths of the Cu line and the low-k space are 70 nm each, considerably smaller than the wavelength of the IR light, the FT-IR spectra of the low-k film were obtained for the Cu/low-k interconnect structure. A suitable method was established for measuring the process-induced damage in a low-k film that was not detected by the TEM-EELS (Transmission Electron Microscope-Electron Energy-Loss Spectroscopy) using microscopicmore » IR polarized light. Based on the IR results, it was presumed that the FT-IR spectra mainly reflect the structural changes in the sidewalls of the low-k films for Cu/low-k interconnect structures, and the mechanism of generating process-induced damage involves the generation of Si-OH groups in the low-k film when the Si-CH{sub 3} bonds break during the fabrication processes. The Si-OH groups attract moisture and the OH peak intensity increases. It was concluded that the increase in the OH groups in the low-k film is a sensitive indicator of low-k damage. We achieved the characterization of the process-induced damage that was not detected by the TEM-EELS and speculated that the proposed method is applicable to interconnects with line and space widths of 70 nm/70 nm and on shorter scales of leading edge devices. The location of process-induced damage and its mechanism for the Cu/low-k interconnect structure were revealed via the measurement method.« less
Structure and growth of the mesoscopic surfactant/silica thin films
NASA Astrophysics Data System (ADS)
Zhou, Linbo
1999-10-01
We report the study of the structure and the growth of the mesoscopic surfactant/silica thin films. We use X-ray diffraction coupled with Scanning Electron Microscope (SEM), Atomic Force Microscope (AFM), Transmission Electron Microscope (TEM) and light scattering techniques to study the structure, lattice strain and the drying effect of the thin films as well as the growth kinetics and mechanism. The surfactant/silica materials are synthesized using the supramolecular assemblies of the surfactant molecules to template the condensation of the inorganic species. The subsequent calcination yields the mesoporous silica materials, which have many application properties such as unusual electronic, optical, magnetic and elastic characteristics. The films are grown on mica, graphite and silicon substrates in an acidic CTAC (Cetyltrimethyl Ammonium Chloride)/TEOS (Tetraethyl Orthosilicate) solution and are found to consist of the hexagonally packed tubules. The substrate plays an important role in the epitaxial arrangement of the film. We use the light scattering and cryo TEM to study the micelle morphology and aggregation in the solution and use synchrotron radiation X-ray diffraction to study the growth of the film at the solid/liquid interfaces in-situ. An induction time is found followed by the growth of the film at a nonlinear growth rate. The induction time depends on the ratio of the concentrations of CTAC to TEOS in the high CTAC concentration regime. The growth kinetics and mechanism are elucidated in a context of a growth model. For the technological application, Micromolding in Capillaries (MIMIC) technique and the field guided growth are used to process the patterned mesoscopic surfactant/silica thin films and align the nanotubules into the desired orientation. X-ray diffraction characterization has been performed to study the structure and orientation of the thin films. The combined influence of the electric field and the confinement of the mold allows the synthesis of the surfactant/silica thin films with the controlled orientation.
NASA Astrophysics Data System (ADS)
Kaboli, S.; Burnley, P. C.
2017-12-01
Imaging and characterization of defects in crystalline materials is of significant importance in various disciplines including geoscience, materials science, and applied physics. Linear defects such as dislocations and planar defects such as twins and stacking faults, strongly influence many of the properties of crystalline materials and also reflect the conditions and degree of deformation. Dislocations have been conventionally imaged in thin foils in a transmission electron microscope (TEM). Since the development of field emission scanning electron microscopes (FE-SEM) with high gun brightness and small spot size, extensive efforts have been dedicated to the imaging and characterization of dislocations in semi-conductors using electron channeling contrast imaging (ECCI) in the SEM. The obvious advantages of using SEM over TEM include easier and non-destructive sample preparation and a large field of view enabling statistical examination of the density and distribution of dislocations and other defects. In this contribution, we extend this technique to geological materials and introduce the Real Space Crystallography methodology for imaging and complete characterization of dislocations based on bend contour contrast obtained by ECCI in FE-SEM. Bend contours map out the distortion in the crystal lattice across a deformed grain. The contrast of dislocations is maximum in the vicinity of bend contours where crystal planes diffract at small and positive deviations from the Bragg positions (as defined by Bragg's law of electron diffraction). Imaging is performed in a commercial FE-SEM equipped with a standard silicon photodiode backscattered (BSE) detector and an electron backscatter diffraction (EBSD) system for crystal orientation measurements. We demonstrate the practice of this technique in characterization of a number of geological materials in particular quartz, forsterite olivine and corundum, experimentally deformed at high pressure-temperature conditions. This new approach in microstructure characterization of deformed geologic materials in FE-SEM, without the use of etching or decoration techniques, has valuable applications to both experimentally deformed and naturally deformed specimens.
Markov Random Field Based Automatic Image Alignment for ElectronTomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moussavi, Farshid; Amat, Fernando; Comolli, Luis R.
2007-11-30
Cryo electron tomography (cryo-ET) is the primary method for obtaining 3D reconstructions of intact bacteria, viruses, and complex molecular machines ([7],[2]). It first flash freezes a specimen in a thin layer of ice, and then rotates the ice sheet in a transmission electron microscope (TEM) recording images of different projections through the sample. The resulting images are aligned and then back projected to form the desired 3-D model. The typical resolution of biological electron microscope is on the order of 1 nm per pixel which means that small imprecision in the microscope's stage or lenses can cause large alignment errors.more » To enable a high precision alignment, biologists add a small number of spherical gold beads to the sample before it is frozen. These beads generate high contrast dots in the image that can be tracked across projections. Each gold bead can be seen as a marker with a fixed location in 3D, which provides the reference points to bring all the images to a common frame as in the classical structure from motion problem. A high accuracy alignment is critical to obtain a high resolution tomogram (usually on the order of 5-15nm resolution). While some methods try to automate the task of tracking markers and aligning the images ([8],[4]), they require user intervention if the SNR of the image becomes too low. Unfortunately, cryogenic electron tomography (or cryo-ET) often has poor SNR, since the samples are relatively thick (for TEM) and the restricted electron dose usually results in projections with SNR under 0 dB. This paper shows that formulating this problem as a most-likely estimation task yields an approach that is able to automatically align with high precision cryo-ET datasets using inference in graphical models. This approach has been packaged into a publicly available software called RAPTOR-Robust Alignment and Projection estimation for Tomographic Reconstruction.« less
NASA Astrophysics Data System (ADS)
Suresh, Joghee; Pradheesh, Ganeshan; Alexramani, Vincent; Sundrarajan, Mahalingam; Hong, Sun Ig
2018-03-01
In this work we aim to synthesize biocompatible ZnO nanoparticles from the zinc nitrate via green process using leaf extracts of the Costus pictus D. Don medicinal plant. FTIR studies confirm the presence of biomolecules and metal oxides. X-ray diffraction (XRD) structural analysis reveals the formation of pure hexagonal phase structures of ZnO nanoparticles. The surface morphologies of ZnO nanoparticles observed under a scanning electron microscope (SEM) suggest that most ZnO crystallites are hexagonal. EDX analysis confirms the presence of primarily zinc and oxygen. TEM images show that biosynthesized zinc oxide nanoparticles are hexagonal and spherical. The plausible formation mechanisms of zinc oxide nanoparticles are also predicted. The biosynthesized zinc oxide nanoparticles exhibit strong antimicrobial behavior against bacterial and fungal species when employing the agar diffusion method. Synthesized ZnO nanoparticles exhibit anticancer activity against Daltons lymphoma ascites (DLA) cells as well as antimicrobial activity against some bacterial and fungal strains.
NASA Astrophysics Data System (ADS)
Nguyen, Chuong L.; Preston, Andrew; Tran, Anh T. T.; Dickinson, Michelle; Metson, James B.
2016-07-01
Aluminum casting alloys have excellent castability, high strength and good corrosion resistance. However, the presence of silicon in these alloys prevents surface finishing with conventional methods such as anodizing. Hard coating with titanium nitride can provide wear and corrosion resistances, as well as the aesthetic finish. A critical factor for a durable hard coating is its bonding with the underlying substrate. In this study, a titanium nitride layer was coated on LM25 casting alloy and a reference high purity aluminum substrate using Ion Assisted Deposition. Characterization of the coating and the critical interface was carried out by a range of complementing techniques, including SIMS, XPS, TEM, SEM/EDS and nano-indentation. It was observed that the coating on the aluminum alloy is stronger compared to that on the pure aluminum counterpart. Silicon particles in the alloy offers the reinforcement though mechanical interlocking at microscopic level, even with nano-scale height difference. This reinforcement overcomes the adverse effect caused by surface segregation of magnesium in aluminum casting alloys.
Microstructure of RERTR DU-Alloys Irradiated with Krypton Ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Gan; D. Keiser; D. Wachs
2009-11-01
Fuel development for reduced enrichment research and test reactor (RERTR) program is tasked with the development of new low enrichment uranium fuels that can be employed to replace existing high enrichment uranium fuels currently used in many research and test reactors worldwide. Radiation stability of the interaction product formed at fuel-matrix interface has a strong impact on fuel performance. Three depleted uranium alloys are cast that consist of the following 5 phases of interest to be investigated: U(Si,Al)3, (U,Mo)(Si,Al)3, UMo2Al20, U6Mo4Al43 and UAl4. Irradiation of TEM disc samples with 500 keV Kr ions at 200?C to high doses up tomore » ~100 dpa were conducted using an intermediate voltage electron microscope equipped with an ion accelerator. The irradiated microstructure of the 5 phases is characterized using transmission electron microscopy. The results will be presented and the implication of the observed irradiated microstructure on the fuel performance will be discussed.« less
NASA Astrophysics Data System (ADS)
Ali, Sardar; Zabidi, Noor Asmawati Mohd; Subbarao, Duvvuri
2014-10-01
Catalysts were prepared via a wet impregnation method. Different physicochemical properties of the samples were revealed by transmission electron microscope (TEM), temperature programmed reduction (H2-TPR) and carbon dioxide desorption (CO2-desorption). Fischer-Tropsch reaction (FTS) was carried out in a fixed-bed microreactor at 220°C and 1 atm, with H2/ CO = 2v / v and space velocity, SV of 12L/g.h for 5 h. Various characterization techniques revealed that there was a stronger interaction between Co and Al2O3 support compared to that of CNTs support. CNTs support increased the reducibility and decreased Co particle size. A significant increase in % CO conversion and FTS reaction rate was observed over CNTs support compared to that of Co / Al2O3. Co/CNTs resulted in higher C5+ hydrocarbons selectivity compared to that of Co / Al2O3 catalyst. CNTs are a better support for Co compared to Al2O3.
Zhong, Shuangling; Cui, Xuejun; Tian, Fangyuan
2015-01-01
Redox-responsive magnetic protein microcapsules with Fe3O4 magnetic nanoparticles (MNPs) encapsulated inside have been obtained using a facile, cost-effective and fast sonochemical method from hen egg white proteins. Such prepared redox-responsive magnetic hen egg white protein microcapsules (MHEWPMCs) could be easily manipulated to do magnetic-guided targeting delivery. The synchronous loading of the hydrophobic dye Coumarin 6 as a model of drug into MHEWPMCs was readily achieved during the fabrication of MHEWPMCs by dissolving them into the oil phase before ultrasonication. TEM images indicated that Fe3O4 MNPs were encapsulated in MHEWPMCs. Confocal laser scanning microscopic images indicated that the dye was distributed evenly in the MHEWPMCs and no leakage of dye from the MHEWPMCs was observed due to the protection of protein shells. The MHEWPMCs are potential candidates as attractive carriers for drug targeting delivery and stimuli-responsive release due to their magnetic and redox responsiveness of the disulfide in the microcapsule shells.
Advanced Microstructural Study of Suspension Plasma Sprayed Hydroxyapatite Coatings
NASA Astrophysics Data System (ADS)
Podlesak, Harry; Pawlowski, Lech; D'Haese, Romain; Laureyns, Jacky; Lampke, Thomas; Bellayer, Severine
2010-03-01
Fine, home-synthesized, hydroxyapatite powder was formulated with water and alcohol to obtain a suspension used to plasma spray coatings onto a titanium substrate. The deposition process was optimized using statistical design of 2 n experiments with two variables: spray distance and electric power input to plasma. X-ray diffraction (XRD) was used to determine quantitatively the phase composition of obtained deposits. Raman microscopy and electron probe microanalysis (EPMA) enabled localization of the phases in different positions of the coating cross sections. Transmission electron microscopic (TEM) study associated with energy-dispersive x-ray spectroscopy (EDS) enabled visualization and analysis of a two-zone microstructure. One zone contained crystals of hydroxyapatite, tetracalcium phosphate, and a phase rich in calcium oxide. This zone included lamellas, usually observed in thermally sprayed coatings. The other zone contained fine hydroxyapatite grains that correspond to nanometric and submicrometric solids from the suspension that were agglomerated and sintered in the cold regions of plasma jet and on the substrate.
Alteration of Rock Fragments from Columbia River Basalt Microcosms
NASA Technical Reports Server (NTRS)
Wentworth, Susan J.; Thomas-Keprta, Kathie L.; Velbel, Michael A.; McKay, David S.; Stevens, Todd O.
1999-01-01
During an earlier study, microorganisms were grown microcosms consisting of sterilized chips of Columbia River Basalt (CRB) and natural CRB ground water with its natural microflora; environmental conditions simulated a deep subsurface, anaerobic, dark environment. Subsequent scanning and transmission electron microscope (SEM and TEM) studies revealed the presence of several types of bacteria and biofilm, some of which were mineralized. Some of these biological features are very similar to possible biogenic features found in two meteorites from Mars, ALH84001 (found in Antarctica) and Nakhla (observed to fall in Egypt). Both ALH84001 and Nakhla contain traces of low-temperature aqueous alteration of silicates, oxides, and sulfides. The goals of this study are to use high-resolution field-emission SEM (FE-SEM) to examine the CRB samples for evidence of alteration features similar to those in the martian meteorites, to determine the extent of alteration during the CRB microcosm experiments, and to determine whether effects of biological activity can be distinguished from inorganic effects.
NASA Astrophysics Data System (ADS)
Chen, Yu-Te; Lee, Sheng-Long; Bor, Hui-Yun; Lin, Jing-Chie
2013-06-01
This research investigates the effects of natural aging and cold working prior to artificial aging on microstructures and mechanical properties of Al-4.6Cu-0.5Mg-0.5Ag alloy. Mechanical properties relative to microstructure variations were elucidated by the observations of the optical microscope (OM), differential scanning calorimeter (DSC), electrical conductivity meter (pct IACS), and transmission electron microscopy (TEM). The results showed that natural aging treatment has little noticeable benefit on the quantity of precipitation strengthening phases and mechanical properties, but it increases the precipitation strengthening rate at the initial stage of artificial aging. Cold working brings more lattice defects which suppress Al-Cu (GP zone) and Mg-Ag clustering, and therefore the precipitation of Ω phase decreases. Furthermore, more dislocations are formed, leading to precipitate the more heterogeneous nucleation of θ' phase. The above-mentioned precipitation phenomena and strain hardening effect are more obvious with higher degrees of cold working.
Jebri, Sihem; Hmaied, Fatma; Yahya, Mariem; Ben Ammar, Aouatef; Hamdi, Moktar
This study was conducted to isolate phages in treated sewage collected from wastewater treatment plant, and explore their morphological diversity by transmission electron microscopy (TEM). Fates of total bacteriophages and their reduction by biological treatment were also assayed. Phages were isolated using the plaque assay then negatively stained and observed by electron microscope. Electron micrographs showed different types of phages with different shapes and sizes. The majority of viruses found in treated sewage ranged from 30 to 100 nm in capsid diameter. Many of them were tailed, belonging to Siphoviridae, Myoviridae and Podoviridae families. Non-tailed phage particles were also found at a low rate, presumably belonging to Leviviridae or Microviridae families. This study shows the diversity and the abundance of bacteriophages in wastewater after biological treatment. Their persistence in wastewater reused in agriculture should raise concerns about their potential role in controlling bacterial populations in the environment. They should be also included in water treatment quality controlling guidelines as fecal and viral indicators.
Antibacterial activity and mechanism of berberine against Streptococcus agalactiae
Peng, Lianci; Kang, Shuai; Yin, Zhongqiong; Jia, Renyong; Song, Xu; Li, Li; Li, Zhengwen; Zou, Yuanfeng; Liang, Xiaoxia; Li, Lixia; He, Changliang; Ye, Gang; Yin, Lizi; Shi, Fei; Lv, Cheng; Jing, Bo
2015-01-01
The antibacterial activity and mechanism of berberine against Streptococcus agalactiae were investigated in this study by analyzing the growth, morphology and protein of the S. agalactiae cells treated with berberine. The antibacterial susceptibility test result indicated minimum inhibition concentration (MIC) of berberine against Streptococcus agalactiae was 78 μg/mL and the time-kill curves showed the correlation of concentration-time. After the bacteria was exposed to 78 μg/mL berberine, the fragmentary cell membrane and cells unequal division were observed by the transmission electron microscopy (TEM), indicating the bacterial cells were severely damaged. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) study demonstrated that berberine could damage bacterial cells through destroying cellular proteins. Meanwhile, Fluorescence microscope revealed that berberine could affect the synthesis of DNA. In conclusion, these results strongly suggested that berberine may damage the structure of bacterial cell membrane and inhibit synthesis of protein and DNA, which cause Streptococcus agalactiae bacteria to die eventually. PMID:26191220
Antibacterial activity and mechanism of berberine against Streptococcus agalactiae.
Peng, Lianci; Kang, Shuai; Yin, Zhongqiong; Jia, Renyong; Song, Xu; Li, Li; Li, Zhengwen; Zou, Yuanfeng; Liang, Xiaoxia; Li, Lixia; He, Changliang; Ye, Gang; Yin, Lizi; Shi, Fei; Lv, Cheng; Jing, Bo
2015-01-01
The antibacterial activity and mechanism of berberine against Streptococcus agalactiae were investigated in this study by analyzing the growth, morphology and protein of the S. agalactiae cells treated with berberine. The antibacterial susceptibility test result indicated minimum inhibition concentration (MIC) of berberine against Streptococcus agalactiae was 78 μg/mL and the time-kill curves showed the correlation of concentration-time. After the bacteria was exposed to 78 μg/mL berberine, the fragmentary cell membrane and cells unequal division were observed by the transmission electron microscopy (TEM), indicating the bacterial cells were severely damaged. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) study demonstrated that berberine could damage bacterial cells through destroying cellular proteins. Meanwhile, Fluorescence microscope revealed that berberine could affect the synthesis of DNA. In conclusion, these results strongly suggested that berberine may damage the structure of bacterial cell membrane and inhibit synthesis of protein and DNA, which cause Streptococcus agalactiae bacteria to die eventually.
Effects of Zr Addition on Strengthening Mechanisms of Al-Alloyed High-Cr ODS Steels.
Ren, Jian; Yu, Liming; Liu, Yongchang; Liu, Chenxi; Li, Huijun; Wu, Jiefeng
2018-01-12
Oxide dispersion strengthened (ODS) steels with different contents of zirconium (denoted as 16Cr ODS, 16Cr-0.3Zr ODS and 16Cr-0.6Zr ODS) were fabricated to investigate the effects of Zr on strengthening mechanism of Al-alloyed 16Cr ODS steel. Electron backscatter diffraction (EBSD) results show that the mean grain size of ODS steels could be decreased by Zr addition. Transmission electron microscope (TEM) results indicate that Zr addition could increase the number density but decrease the mean diameter and inter-particle spacing of oxide particles. Furthermore, it is also found that in addition to Y-Al-O nanoparticles, Y-Zr-O oxides with finer size were observed in 16Cr-0.3Zr ODS and 16Cr-0.6Zr ODS steels. These changes in microstructure significantly increase the yield strength (YS) and ultimate tensile strength (UTS) of ODS steels through mechanisms of grain boundary strengthening and dispersion strengthening.
In situ study of heavy ion irradiation response of immiscible Cu/Fe multilayers
Chen, Youxing; Li, Nan; Bufford, Daniel Charles; ...
2016-04-09
By providing active defect sinks that capture and annihilate radiation induced defect clusters immiscible metallic multilayers with incoherent interfaces can effectively reduce defect density in ion irradiated metals. Although it is anticipated that defect density within the layers should vary as a function of distance to the layer interface, there is, to date, little in situ TEM evidence to validate this hypothesis. In our study monolithic Cu films and Cu/Fe multilayers with individual layer thickness, h, of 100 and 5 nm were subjected to in situ Cu ion irradiation at room temperature to nominally 1 displacement-per-atom inside a transmission electronmore » microscope. Rapid formation and propagation of defect clusters were observed in monolithic Cu, whereas fewer defects with smaller dimensions were generated in Cu/Fe multilayers with smaller h. Moreover, in situ video shows that the cumulative defect density in Cu/Fe 100 nm multilayers indeed varies, as a function of distance to the layer interfaces, supporting a long postulated hypothesis.« less
Effect of Crystallizable Solvent on Phase Separation and Charge Transport in Polymer-fullerene Films
NASA Astrophysics Data System (ADS)
Kaewprajak, A.; Lohawet, K.; Wutikhun, T.; Meemuk, B.; Kumnorkaew, P.; Sagawa, T.
2017-09-01
The effect of 1,3,5-trichlorobenzene (TCB) as crystallizable solvent on poly[N-9‧-heptadecanyl-2,7-carbazole-alt-5,5-(4‧,7‧-di-2-thienyl-2‧,1‧,3‧-benzothiadiazole)] (PCDTBT) and [6,6]-phenyl C71 butyric acid methyl ester (PC71BM) bulk heterojunction (BHJ) was investigated. We found that phase separation of PCDTBT and PC71BM and formation of the condensed network of polymers were appropriately regulated by addition of TCB in the BHJ films, which were confirmed by optical microscopic, AFM, and TEM observations in addition to current-voltage analyses. Through the formation of a good continuous pathway for carrier transport by the addition of TCB, 2.5 times enhancement of the hole mobility in the BHJ film was attained from 5.82 × 10-5 cm2 V-1 s-1 without TCB to 1.48 × 10-4 cm2 V-1 s-1 with 20 mg ml-1 of TCB.
Texture and Tempered Condition Combined Effects on Fatigue Behavior in an Al-Cu-Li Alloy
NASA Astrophysics Data System (ADS)
Wang, An; Liu, Zhiyi; Liu, Meng; Wu, Wenting; Bai, Song; Yang, Rongxian
2017-05-01
Texture and tempered condition combined effects on fatigue behavior in an Al-Cu-Li alloy have been investigated using tensile testing, cyclic loading testing, scanning electron microscope (SEM), transmission electron microscopy (TEM) and texture analysis. Results showed that in near-threshold region, T4-tempered samples possessed the lowest fatigue crack propagation (FCP) rate. In Paris regime, T4-tempered sample had similar FCP rate with T6-tempered sample. T83-tempered sample exhibited the greatest FCP rate among the three tempered conditions. 3% pre-stretching in T83-tempered sample resulted in a reducing intensity of Goss texture and facilitated T1 precipitation. SEM results showed that less crack deflection was observed in T83-tempered sample, as compared to other two tempered samples. It was the combined effects of a lower intensity of Goss texture and T1 precipitates retarding the reversible dislocation slipping in the plastic zone ahead the crack tip.
Effects of Zr Addition on Strengthening Mechanisms of Al-Alloyed High-Cr ODS Steels
Ren, Jian; Yu, Liming; Liu, Yongchang; Liu, Chenxi; Li, Huijun; Wu, Jiefeng
2018-01-01
Oxide dispersion strengthened (ODS) steels with different contents of zirconium (denoted as 16Cr ODS, 16Cr-0.3Zr ODS and 16Cr-0.6Zr ODS) were fabricated to investigate the effects of Zr on strengthening mechanism of Al-alloyed 16Cr ODS steel. Electron backscatter diffraction (EBSD) results show that the mean grain size of ODS steels could be decreased by Zr addition. Transmission electron microscope (TEM) results indicate that Zr addition could increase the number density but decrease the mean diameter and inter-particle spacing of oxide particles. Furthermore, it is also found that in addition to Y-Al-O nanoparticles, Y-Zr-O oxides with finer size were observed in 16Cr-0.3Zr ODS and 16Cr-0.6Zr ODS steels. These changes in microstructure significantly increase the yield strength (YS) and ultimate tensile strength (UTS) of ODS steels through mechanisms of grain boundary strengthening and dispersion strengthening. PMID:29329260
NASA Astrophysics Data System (ADS)
Karnan, Thenmozhi; Selvakumar, Stanly Arul Samuel
2016-12-01
In the present study, describes the synthesis of ZnO nanoparticles from rambutan (Nephelium lappaceumL.) peel extract via bio synthesis method and developed a new low cost technology to prepare ZnO nanoparticles. During the synthesis, fruit peel extract act as a natural ligation agent. The successfully prepared product was analyzed with some standard characterization studies like X-Ray Diffraction (XRD), UV-VIS Diffuse reflectance spectra (UV-Vis DRS), Field Emission Scanning Electron Microscope (FESEM), High resolution transmittance electron microscope (HR-TEM), N2 adsorption-desorption isotherm and UV-Vis absorption Spectroscopy. The photocatalytic activity of ZnO nanoparticles was evaluated by photodegradation of methyl orange (MO) dye under UV light and the result depicts around 83.99% decolorisation efficiency at 120 min of illumination. In addition with photodecolorisation, mineralization was also achieved. The mineralization has been confirmed by measuring Chemical Oxygen Demand (COD) values.
Graphene Nanoribbons Fabricated by Helium Ion microscope
NASA Astrophysics Data System (ADS)
Pickard, D.; Oezyilmaz, B.; Thong, J.; Loh, K. P.; Viswanathan, V.; Zhongkai, A.; Mathew, S.; Kundu, T.; Park, C.; Yi, Z.; Xu, X.; Zhang, K.; Tat, T. C.; Wang, H.; Venkatesan, T.; Botton, G.; Couillard, M.
2010-03-01
Graphene, a monolayer graphitic lattice of carbon atoms has tremendous promise for a variety of applications on account of the zero mass of electrons, high mobility and the sensitivity of transport to perturbations at the interface. Patterning graphene is an obvious challenge and mesoscopic devices based on graphene require high spatial resolution patterning that will induce as little damage as possible. We use a helium ion microscope with its 0.4nm spot size beam to directly write patterns on free standing graphene films. TEM images of the patterns reveal holes as small as 4 nm and ribbons with line widths as narrow as 3 nm. The images show recovery of the graphene lattice at a distance of about a nm from the patterned edge. The linewidths of the ribbon can be varied considerably in a controllable fashion over ribbon lengths of the order of microns. . .