Sample records for microscopic pointed structures

  1. SPY: A new scission point model based on microscopic ingredients to predict fission fragments properties

    NASA Astrophysics Data System (ADS)

    Lemaître, J.-F.; Dubray, N.; Hilaire, S.; Panebianco, S.; Sida, J.-L.

    2013-12-01

    Our purpose is to determine fission fragments characteristics in a framework of a scission point model named SPY for Scission Point Yields. This approach can be considered as a theoretical laboratory to study fission mechanism since it gives access to the correlation between the fragments properties and their nuclear structure, such as shell correction, pairing, collective degrees of freedom, odd-even effects. Which ones are dominant in final state? What is the impact of compound nucleus structure? The SPY model consists in a statistical description of the fission process at the scission point where fragments are completely formed and well separated with fixed properties. The most important property of the model relies on the nuclear structure of the fragments which is derived from full quantum microscopic calculations. This approach allows computing the fission final state of extremely exotic nuclei which are inaccessible by most of the fission model available on the market.

  2. Quantification of microscopic surface features of single point diamond turned optics with subsequent chemical polishing

    NASA Astrophysics Data System (ADS)

    Cardenas, Nelson; Kyrish, Matthew; Taylor, Daniel; Fraelich, Margaret; Lechuga, Oscar; Claytor, Richard; Claytor, Nelson

    2015-03-01

    Electro-Chemical Polishing is routinely used in the anodizing industry to achieve specular surface finishes of various metals products prior to anodizing. Electro-Chemical polishing functions by leveling the microscopic peaks and valleys of the substrate, thereby increasing specularity and reducing light scattering. The rate of attack is dependent of the physical characteristics (height, depth, and width) of the microscopic structures that constitute the surface finish. To prepare the sample, mechanical polishing such as buffing or grinding is typically required before etching. This type of mechanical polishing produces random microscopic structures at varying depths and widths, thus the electropolishing parameters are determined in an ad hoc basis. Alternatively, single point diamond turning offers excellent repeatability and highly specific control of substrate polishing parameters. While polishing, the diamond tool leaves behind an associated tool mark, which is related to the diamond tool geometry and machining parameters. Machine parameters such as tool cutting depth, speed and step over can be changed in situ, thus providing control of the spatial frequency of the microscopic structures characteristic of the surface topography of the substrate. By combining single point diamond turning with subsequent electro-chemical etching, ultra smooth polishing of both rotationally symmetric and free form mirrors and molds is possible. Additionally, machining parameters can be set to optimize post polishing for increased surface quality and reduced processing times. In this work, we present a study of substrate surface finish based on diamond turning tool mark spatial frequency with subsequent electro-chemical polishing.

  3. FluoroSim: A Visual Problem-Solving Environment for Fluorescence Microscopy

    PubMed Central

    Quammen, Cory W.; Richardson, Alvin C.; Haase, Julian; Harrison, Benjamin D.; Taylor, Russell M.; Bloom, Kerry S.

    2010-01-01

    Fluorescence microscopy provides a powerful method for localization of structures in biological specimens. However, aspects of the image formation process such as noise and blur from the microscope's point-spread function combine to produce an unintuitive image transformation on the true structure of the fluorescing molecules in the specimen, hindering qualitative and quantitative analysis of even simple structures in unprocessed images. We introduce FluoroSim, an interactive fluorescence microscope simulator that can be used to train scientists who use fluorescence microscopy to understand the artifacts that arise from the image formation process, to determine the appropriateness of fluorescence microscopy as an imaging modality in an experiment, and to test and refine hypotheses of model specimens by comparing the output of the simulator to experimental data. FluoroSim renders synthetic fluorescence images from arbitrary geometric models represented as triangle meshes. We describe three rendering algorithms on graphics processing units for computing the convolution of the specimen model with a microscope's point-spread function and report on their performance. We also discuss several cases where the microscope simulator has been used to solve real problems in biology. PMID:20431698

  4. Development of the field of structural physiology

    PubMed Central

    FUJIYOSHI, Yoshinori

    2015-01-01

    Electron crystallography is especially useful for studying the structure and function of membrane proteins — key molecules with important functions in neural and other cells. Electron crystallography is now an established technique for analyzing the structures of membrane proteins in lipid bilayers that closely simulate their natural biological environment. Utilizing cryo-electron microscopes with helium-cooled specimen stages that were developed through a personal motivation to understand the functions of neural systems from a structural point of view, the structures of membrane proteins can be analyzed at a higher than 3 Å resolution. This review covers four objectives. First, I introduce the new research field of structural physiology. Second, I recount some of the struggles involved in developing cryo-electron microscopes. Third, I review the structural and functional analyses of membrane proteins mainly by electron crystallography using cryo-electron microscopes. Finally, I discuss multifunctional channels named “adhennels” based on structures analyzed using electron and X-ray crystallography. PMID:26560835

  5. Microscopy

    Treesearch

    Patricia A. Moss; Les Groom

    2001-01-01

    Microscopy is the study and interpretation of images produced by a microscope. "Interpretation" is the keyword, because the microscope enables one to see structures that are too small or too close together to be resolved by the unaided eye. (The human eye cannot separate two points or lines that are closer together than 0.1 mm.) it is important to...

  6. Insight into the microscopic structure of an AdS black hole from a thermodynamical phase transition.

    PubMed

    Wei, Shao-Wen; Liu, Yu-Xiao

    2015-09-11

    Comparing with an ordinary thermodynamic system, we investigate the possible microscopic structure of a charged anti-de Sitter black hole completely from the thermodynamic viewpoint. The number density of the black hole molecules is introduced to measure the microscopic degrees of freedom of the black hole. We found that the number density suffers a sudden change accompanied by a latent heat when the black hole system crosses the small-large black hole coexistence curve, while when the system passes the critical point, it encounters a second-order phase transition with a vanishing latent heat due to the continuous change of the number density. Moreover, the thermodynamic scalar curvature suggests that there is a weak attractive interaction between two black hole molecules. These phenomena might cast new insight into the underlying microscopic structure of a charged anti-de Sitter black hole.

  7. Imaging and engineering the nanoscale-domain structure of a Sr0.61Ba0.39Nb2O6 crystal using a scanning force microscope

    NASA Astrophysics Data System (ADS)

    Terabe, K.; Takekawa, S.; Nakamura, M.; Kitamura, K.; Higuchi, S.; Gotoh, Y.; Gruverman, A.

    2002-09-01

    We have investigated the ferroelectric domain structure formed in a Sr0.61Ba0.39Nb2O6 single crystal by cooling the crystal through the Curie point. Imaging the etched surface structure using a scanning force microscope (SFM) in both the topographic mode and the piezoresponse mode revealed that a multidomain structure of nanoscale islandlike domains was formed. The islandlike domains could be inverted by applying an appropriate voltage using a conductive SFM tip. Furthermore, a nanoscale periodically inverted-domain structure was artificially fabricated using the crystal which underwent poling treatment.

  8. Development of micro-four-point probe in a scanning tunneling microscope for in situ electrical transport measurement.

    PubMed

    Ge, Jian-Feng; Liu, Zhi-Long; Gao, Chun-Lei; Qian, Dong; Liu, Canhua; Jia, Jin-Feng

    2015-05-01

    Electrons at surface may behave differently from those in bulk of a material. Multi-functional tools are essential in comprehensive studies on a crystal surface. Here, we developed an in situ microscopic four-point probe (4PP) transport measurement system on the basis of a scanning tunneling microscope (STM). In particular, convenient replacement between STM tips and micro-4PPs enables systematic investigations of surface morphology, electronic structure, and electrical transport property of a same sample surface. Performances of the instrument are demonstrated with high-quality STM images, tunneling spectra, and low-noise electrical I-V characteristic curves of a single-layer FeSe film grown on a conductive SrTiO3 surface.

  9. Identification of four Aconitum species used as "Caowu" in herbal markets by 3D reconstruction and microstructural comparison.

    PubMed

    Liu, Chan-Chan; Cheng, Ming-En; Peng, Huasheng; Duan, Hai-Yan; Huang, Luqi

    2015-05-01

    Authentication is the first priority when evaluating the quality of Chinese herbal medicines, particularly highly toxic medicines. The most commonly used authentication methods are morphological identification and microscopic identification. Unfortunately, these methods could not effectively evaluate some herbs with complex interior structures, such as root of Aconitum species with a circular conical shape and an interior structure with successive changes. Defining the part that should be selected as the standard plays an essential role in accurate microscopic identification. In this study, we first present a visual 3D model of Aconitum carmichaeli Debx. constructed obtained from microscopic analysis of serial sections. Based on this model, we concluded that the point of largest root diameter should be used as the standard for comparison and identification. The interior structure at this point is reproducible and its shape and appearance can easily be used to distinguish among species. We also report details of the interior structures of parts not shown in the 3D model, such as stone cells and cortical thickness. To demonstrate the usefulness of the results from the 3D model, we have distinguished the microscopic structures, at their largest segments, of the other three Aconitum species used for local habitat species of Caowu. This work provides the basis for resolution of some debate regarding the microstructural differences among these species. Thus, we conclude that the 3D model composed of serial sections has enabled the selection of a standard cross-section that will enable the accurate identification of Aconitum species in Chinese medicine. © 2015 Wiley Periodicals, Inc.

  10. Transmission electron microscopic study of pyrochlore to defect-fluorite transition in rare-earth pyrohafnates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karthik, Chinnathambi, E-mail: Karthikchinnathambi@boisestate.edu; Center for Advanced Energy Studies, 995 University Blvd, Idaho Falls, ID 83415; Anderson, Thomas J.

    2012-10-15

    A structural transition in rare earth pyrohafnates, Ln{sub 2}Hf{sub 2}O{sub 7} (Ln=Y, La, Pr, Nd, Tb, Dy, Yb and Lu), has been identified. Neutron diffraction showed that the structure transforms from well-ordered pyrochloric to fully fluoritic through the lanthanide series from La to Lu with a corresponding increase in the position parameter x of the 48f (Fd3{sup Macron }m) oxygen site from 0.330 to 0.375. As evidenced by the selected area electron diffraction, La{sub 2}Hf{sub 2}O{sub 7}, Pr{sub 2}Hf{sub 2}O{sub 7} and Nd{sub 2}Hf{sub 2}O{sub 7} exhibited a well-ordered pyrocholoric structure with the presence of intense superlattice spots, which becamemore » weak and diffuse (in Dy{sub 2}Hf{sub 2}O{sub 7} and Tb{sub 2}Hf{sub 2}O{sub 7}) before disappearing completely as the series progressed towards the Lu end. High resolution electron microscopic studies showed the breakdown of the pyrochlore ordering in the form of antiphase domains resulting in diffused smoke-like superlattice spots in the case of Dy{sub 2}Hf{sub 2}O{sub 7} and Tb{sub 2}Hf{sub 2}O{sub 7}. - Graphical abstract: Transmission electron microscopic studies showed the ordered pyrochlore to defect fluorite transition in rare-earth pyrohafnates to occur via the formation of anti-phase domains to start with. Highlights: Black-Right-Pointing-Pointer Pyrochlore to fluorite structural transition in rare earth pyrohafnates. Black-Right-Pointing-Pointer La{sub 2}Hf{sub 2}O{sub 7}, Pr{sub 2}Hf{sub 2}O{sub 7} and Nd{sub 2}Hf{sub 2}O{sub 7} showed well ordered pyrochlore structure. Black-Right-Pointing-Pointer Short range ordering in Dy{sub 2}Hf{sub 2}O{sub 7} and Tb{sub 2}Hf{sub 2}O{sub 7}. Black-Right-Pointing-Pointer Break down of pyrochlore ordering due to antiphase boundaries. Black-Right-Pointing-Pointer Rest of the series showed fluoritic structure.« less

  11. Robotic autopositioning of the operating microscope.

    PubMed

    Oppenlander, Mark E; Chowdhry, Shakeel A; Merkl, Brandon; Hattendorf, Guido M; Nakaji, Peter; Spetzler, Robert F

    2014-06-01

    Use of the operating microscope has become pervasive since its introduction to the neurosurgical world. Neuronavigation fused with the operating microscope has allowed accurate correlation of the focal point of the microscope and its location on the downloaded imaging study. However, the robotic ability of the Pentero microscope has not been utilized to orient the angle of the microscope or to change its focal length to hone in on a predefined target. To report a novel technology that allows automatic positioning of the operating microscope onto a set target and utilization of a planned trajectory, either determined with the StealthStation S7 by using preoperative imaging or intraoperatively with the microscope. By utilizing the current motorized capabilities of the Zeiss OPMI Pentero microscope, a robotic autopositioning feature was developed in collaboration with Surgical Technologies, Medtronic, Inc. (StealthStation S7). The system is currently being tested at the Barrow Neurological Institute. Three options were developed for automatically positioning the microscope: AutoLock Current Point, Align Parallel to Plan, and Point to Plan Target. These options allow the microscope to pivot around the lesion, hover in a set plane parallel to the determined trajectory, or rotate and point to a set target point, respectively. Integration of automatic microscope positioning into the operative workflow has potential to increase operative efficacy and safety. This technology is best suited for precise trajectories and entry points into deep-seated lesions.

  12. High spatial resolution detection of low-energy electrons using an event-counting method, application to point projection microscopy

    NASA Astrophysics Data System (ADS)

    Salançon, Evelyne; Degiovanni, Alain; Lapena, Laurent; Morin, Roger

    2018-04-01

    An event-counting method using a two-microchannel plate stack in a low-energy electron point projection microscope is implemented. 15 μm detector spatial resolution, i.e., the distance between first-neighbor microchannels, is demonstrated. This leads to a 7 times better microscope resolution. Compared to previous work with neutrons [Tremsin et al., Nucl. Instrum. Methods Phys. Res., Sect. A 592, 374 (2008)], the large number of detection events achieved with electrons shows that the local response of the detector is mainly governed by the angle between the hexagonal structures of the two microchannel plates. Using this method in point projection microscopy offers the prospect of working with a greater source-object distance (350 nm instead of 50 nm), advancing toward atomic resolution.

  13. Microstructure of the regions on a plane copper electrode surface affected by a spark discharge in air in the point-plane gap

    NASA Astrophysics Data System (ADS)

    Tren'kin, A. A.; Karelin, V. I.; Shibitov, Yu. M.; Blinova, O. M.; Yasnikov, I. S.

    2017-09-01

    The microstructure of the regions affected by spark discharge on the surface of a plane copper electrode in atmospheric air in the point-plane gap has been studied using a scanning electron microscope for both the positive and negative polarity of the point electrode. It has been found that the affected regions have the shape of round spots or groups of spots with diameters of individual spots varying in the range of 20-200 μm. It has been revealed that the spots have an internal spatial structure in the form of an aggregate of concentric rings. These rings are aggregates of a large number of microscopic craters with diameters of 0.1-1.0 μm.

  14. Study of Fission Barrier Heights of Uranium Isotopes by the Macroscopic-Microscopic Method

    NASA Astrophysics Data System (ADS)

    Zhong, Chun-Lai; Fan, Tie-Shuan

    2014-09-01

    Potential energy surfaces of uranium nuclei in the range of mass numbers 229 through 244 are investigated in the framework of the macroscopic-microscopic model and the heights of static fission barriers are obtained in terms of a double-humped structure. The macroscopic part of the nuclear energy is calculated according to Lublin—Strasbourg-drop (LSD) model. Shell and pairing corrections as the microscopic part are calculated with a folded-Yukawa single-particle potential. The calculation is carried out in a five-dimensional parameter space of the generalized Lawrence shapes. In order to extract saddle points on the potential energy surface, a new algorithm which can effectively find an optimal fission path leading from the ground state to the scission point is developed. The comparison of our results with available experimental data and others' theoretical results confirms the reliability of our calculations.

  15. Stokes-Einstein relation of the liquid metal rubidium and its relationship to changes in the microscopic dynamics with increasing temperature

    NASA Astrophysics Data System (ADS)

    Demmel, F.; Tani, A.

    2018-06-01

    For liquid rubidium the Stokes-Einstein (SE) relation is well fulfilled near the melting point with an effective hydrodynamic diameter, which agrees well with a value from structural investigations. A wealth of thermodynamic and microscopic data exists for a wide range of temperatures for liquid rubidium and hence it represents a good test bed to challenge the SE relation with rising temperature from an experimental point of view. We performed classical molecular dynamics simulations to complement the existing experimental data using a pseudopotential, which describes perfectly the structure and dynamics of liquid rubidium. The derived SE relation from combining experimental shear viscosity data with simulated diffusion coefficients reveals a weak violation at about 1.3 Tmelting≈400 K. The microscopic relaxation dynamics on nearest neighbor distances from neutron spectroscopy demonstrate distinct changes in the amplitude with rising temperature. The derived average relaxation time for density fluctuations on this length scale shows a non-Arrhenius behavior, with a slope change around 1.5 Tmelting≈450 K. Combining the simulated macroscopic self-diffusion coefficient with that microscopic average relaxation time, a distinct violation of the SE relation in the same temperature range can be demonstrated. One can conclude that the changes in the collective dynamics, a mirror of the correlated movements of the particles, are at the origin for the violation of the SE relation. The changes in the dynamics can be understood as a transition from a more viscous liquid metal to a more fluid-like liquid above the crossover temperature range of 1.3-1.5 Tmelting. The decay of the amplitude of density fluctuations in liquid aluminium, lead, and rubidium demonstrates a remarkable agreement and points to a universal thermal crossover in the dynamics of liquid metals.

  16. Nanoscale characterization of local structures and defects in photonic crystals using synchrotron-based transmission soft X-ray microscopy

    PubMed Central

    Nho, Hyun Woo; Kalegowda, Yogesh; Shin, Hyun-Joon; Yoon, Tae Hyun

    2016-01-01

    For the structural characterization of the polystyrene (PS)-based photonic crystals (PCs), fast and direct imaging capabilities of full field transmission X-ray microscopy (TXM) were demonstrated at soft X-ray energy. PS-based PCs were prepared on an O2-plasma treated Si3N4 window and their local structures and defects were investigated using this label-free TXM technique with an image acquisition speed of ~10 sec/frame and marginal radiation damage. Micro-domains of face-centered cubic (FCC (111)) and hexagonal close-packed (HCP (0001)) structures were dominantly found in PS-based PCs, while point and line defects, FCC (100), and 12-fold symmetry structures were also identified as minor components. Additionally, in situ observation capability for hydrated samples and 3D tomographic reconstruction of TXM images were also demonstrated. This soft X-ray full field TXM technique with faster image acquisition speed, in situ observation, and 3D tomography capability can be complementally used with the other X-ray microscopic techniques (i.e., scanning transmission X-ray microscopy, STXM) as well as conventional characterization methods (e.g., electron microscopic and optical/fluorescence microscopic techniques) for clearer structure identification of self-assembled PCs and better understanding of the relationship between their structures and resultant optical properties. PMID:27087141

  17. An experimental investigation on the three-point bending behavior of composite laminate

    NASA Astrophysics Data System (ADS)

    A, Azzam; W, Li

    2014-08-01

    The response of composite laminate structure to three-point bending load was investigated by subjecting two types of stacking sequences of composite laminate structure by using electronic universal tester (Type: WDW-20) machine. Optical microscope was selected in order to characterize bending damage, delamination, and damage shapes in composite laminate structures. The results showed that the [0/90/-45/45]2s exhibits a brittle behavior, while other laminates exhibit a progressive failure mode consisting of fiber failure, debonding (splitting), and delamination. The [45/45/90/0]2s laminate has a highly nonlinear load- displacement curve due to compressive yielding.

  18. Microscopically derived potential energy surfaces from mostly structural considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ermamatov, M.J.; Institute of Nuclear Physics, Ulughbek, Tashkent 100214; Hess, Peter O., E-mail: hess@nucleares.unam.mx

    2016-08-15

    A simple procedure to estimate the quadrupole Potential-Energy-Surface (PES) is presented, using mainly structural information, namely the content of the shell model space and the Pauli exclusion principle. Further microscopic properties are implicitly contained through the use of results from the Möller and Nix tables or experimental information. A mapping to the geometric potential is performed yielding the PES. The General Collective Model is used in order to obtain an estimate on the spectrum and quadrupole transitions, adjusting only the mass parameter. First, we test the conjecture on known nuclei, deriving the PES and compare them to known data. Wemore » will see that the PES approximates very well the structure expected. Having acquired a certain confidence, we predict the PES of several chain of isotopes of heavy and super-heavy nuclei and at the end we investigate the structure of nuclei in the supposed island of stability. One of the main points to show is that simple assumptions can provide already important information on the structure of nuclei outside known regions and that spectra and electromagnetic transitions can be estimated without using involved calculations and assumptions. The procedure does not allow to calculate binding energies. The method presented can be viewed as a starting point for further improvements.« less

  19. Differential polarization nonlinear optical microscopy with adaptive optics controlled multiplexed beams.

    PubMed

    Samim, Masood; Sandkuijl, Daaf; Tretyakov, Ian; Cisek, Richard; Barzda, Virginijus

    2013-09-09

    Differential polarization nonlinear optical microscopy has the potential to become an indispensable tool for structural investigations of ordered biological assemblies and microcrystalline aggregates. Their microscopic organization can be probed through fast and sensitive measurements of nonlinear optical signal anisotropy, which can be achieved with microscopic spatial resolution by using time-multiplexed pulsed laser beams with perpendicular polarization orientations and photon-counting detection electronics for signal demultiplexing. In addition, deformable membrane mirrors can be used to correct for optical aberrations in the microscope and simultaneously optimize beam overlap using a genetic algorithm. The beam overlap can be achieved with better accuracy than diffraction limited point-spread function, which allows to perform polarization-resolved measurements on the pixel-by-pixel basis. We describe a newly developed differential polarization microscope and present applications of the differential microscopy technique for structural studies of collagen and cellulose. Both, second harmonic generation, and fluorescence-detected nonlinear absorption anisotropy are used in these investigations. It is shown that the orientation and structural properties of the fibers in biological tissue can be deduced and that the orientation of fluorescent molecules (Congo Red), which label the fibers, can be determined. Differential polarization microscopy sidesteps common issues such as photobleaching and sample movement. Due to tens of megahertz alternating polarization of excitation pulses fast data acquisition can be conveniently applied to measure changes in the nonlinear signal anisotropy in dynamically changing in vivo structures.

  20. Living Matter Observations with a Novel Hyperspectral Supercontinuum Confocal Microscope for VIS to Near-IR Reflectance Spectroscopy

    PubMed Central

    Bertani, Francesca R.; Ferrari, Luisa; Mussi, Valentina; Botti, Elisabetta; Costanzo, Antonio; Selci, Stefano

    2013-01-01

    A broad range hyper-spectroscopic microscope fed by a supercontinuum laser source and equipped with an almost achromatic optical layout is illustrated with detailed explanations of the design, implementation and data. The real novelty of this instrument, a confocal spectroscopic microscope capable of recording high resolution reflectance data in the VIS-IR spectral range from about 500 nm to 2.5 μm wavelengths, is the possibility of acquiring spectral data at every physical point as defined by lateral coordinates, X and Y, as well as at a depth coordinate, Z, as obtained by the confocal optical sectioning advantage. With this apparatus we collect each single scanning point as a whole spectrum by combining two linear spectral detector arrays, one CCD for the visible range, and one InGaAs infrared array, simultaneously available at the sensor output channel of the home made instrument. This microscope has been developed for biomedical analysis of human skin and other similar applications. Results are shown illustrating the technical performances of the instrument and the capability in extracting information about the composition and the structure of different parts or compartments in biological samples as well as in solid statematter. A complete spectroscopic fingerprinting of samples at microscopic level is shown possible by using statistical analysis on raw data or analytical reflectance models based on Abelés matrix transfer methods. PMID:24233077

  1. The maxillary molar endodontic access opening: A microscope-based approach

    PubMed Central

    Mamoun, John Sami

    2016-01-01

    This article reviews the basic clinical techniques of performing a maxillary molar endodontic access opening, starting from the initial access opening into the pulp chamber, to the point where a size #10 file has been advanced to the apices of all three or four (or more) canals. The article explains how the use of the dental surgical operating microscope or microscope-level loupes magnification of ×6–8 or greater, combined with head-mounted or coaxial illumination, improve the ability of a dentist to identify microscopic root canal orifices, which facilitates the efficient creation of conservative access openings with adequate straight-line access in maxillary molars. Magnified photos illustrate various microscopic anatomical structures or landmarks of the initial access opening. Techniques are explored for implementing an access opening for teeth with vital versus necrotic pulpal tissues. The article also explores the use of piezoelectric or ultrasonic instruments for revealing root canal orifices and for removing pulp stones or calcified pulpal tissue inside the pulp chamber. PMID:27403069

  2. SIL-STED microscopy technique enhancing super-resolution of fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Park, No-Cheol; Lim, Geon; Lee, Won-sup; Moon, Hyungbae; Choi, Guk-Jong; Park, Young-Pil

    2017-08-01

    We have characterized a new type STED microscope which combines a high numerical aperture (NA) optical head with a solid immersion lens (SIL), and we call it as SIL-STED microscope. The advantage of a SIL-STED microscope is that its high NA of the SIL makes it superior to a general STED microscope in lateral resolution, thus overcoming the optical diffraction limit at the macromolecular level and enabling advanced super-resolution imaging of cell surface or cell membrane structure and function Do. This study presents the first implementation of higher NA illumination in a STED microscope limiting the fluorescence lateral resolution to about 40 nm. The refractive index of the SIL which is made of material KTaO3 is about 2.23 and 2.20 at a wavelength of 633 nm and 780 nm which are used for excitation and depletion in STED imaging, respectively. Based on the vector diffraction theory, the electric field focused by the SILSTED microscope is numerically calculated so that the numerical results of the point dispersion function of the microscope and the expected resolution could be analyzed. For further investigation, fluorescence imaging of nano size fluorescent beads is fulfilled to show improved performance of the technique.

  3. Microscopic theory of linear light scattering from mesoscopic media and in near-field optics.

    PubMed

    Keller, Ole

    2005-08-01

    On the basis of quantum mechanical response theory a microscopic propagator theory of linear light scattering from mesoscopic systems is presented. The central integral equation problem is transferred to a matrix equation problem by discretization in transitions between pairs of (many-body) energy eigenstates. The local-field calculation which appears from this approach is valid down to the microscopic region. Previous theories based on the (macroscopic) dielectric constant concept make use of spatial (geometrical) discretization and cannot in general be trusted on the mesoscopic length scale. The present theory can be applied to light scattering studies in near-field optics. After a brief discussion of the macroscopic integral equation problem a microscopic potential description of the scattering process is established. In combination with the use of microscopic electromagnetic propagators the formalism allows one to make contact to the macroscopic theory of light scattering and to the spatial photon localization problem. The quantum structure of the microscopic conductivity response tensor enables one to establish a clear physical picture of the origin of local-field phenomena in mesoscopic and near-field optics. The Huygens scalar propagator formalism is revisited and its generality in microscopic physics pointed out.

  4. A simple and efficient alternative to implementing systematic random sampling in stereological designs without a motorized microscope stage.

    PubMed

    Melvin, Neal R; Poda, Daniel; Sutherland, Robert J

    2007-10-01

    When properly applied, stereology is a very robust and efficient method to quantify a variety of parameters from biological material. A common sampling strategy in stereology is systematic random sampling, which involves choosing a random sampling [corrected] start point outside the structure of interest, and sampling relevant objects at [corrected] sites that are placed at pre-determined, equidistant intervals. This has proven to be a very efficient sampling strategy, and is used widely in stereological designs. At the microscopic level, this is most often achieved through the use of a motorized stage that facilitates the systematic random stepping across the structure of interest. Here, we report a simple, precise and cost-effective software-based alternative to accomplishing systematic random sampling under the microscope. We believe that this approach will facilitate the use of stereological designs that employ systematic random sampling in laboratories that lack the resources to acquire costly, fully automated systems.

  5. Structured light optical microscopy for three-dimensional reconstruction of technical surfaces

    NASA Astrophysics Data System (ADS)

    Kettel, Johannes; Reinecke, Holger; Müller, Claas

    2016-04-01

    In microsystems technology quality control of micro structured surfaces with different surface properties is playing an ever more important role. The process of quality control incorporates three-dimensional (3D) reconstruction of specularand diffusive reflecting technical surfaces. Due to the demand on high measurement accuracy and data acquisition rates, structured light optical microscopy has become a valuable solution to solve this problem providing high vertical and lateral resolution. However, 3D reconstruction of specular reflecting technical surfaces still remains a challenge to optical measurement principles. In this paper we present a measurement principle based on structured light optical microscopy which enables 3D reconstruction of specular- and diffusive reflecting technical surfaces. It is realized using two light paths of a stereo microscope equipped with different magnification levels. The right optical path of the stereo microscope is used to project structured light onto the object surface. The left optical path is used to capture the structured illuminated object surface with a camera. Structured light patterns are generated by a Digital Light Processing (DLP) device in combination with a high power Light Emitting Diode (LED). Structured light patterns are realized as a matrix of discrete light spots to illuminate defined areas on the object surface. The introduced measurement principle is based on multiple and parallel processed point measurements. Analysis of the measured Point Spread Function (PSF) by pattern recognition and model fitting algorithms enables the precise calculation of 3D coordinates. Using exemplary technical surfaces we demonstrate the successful application of our measurement principle.

  6. Structure of exotic light nuclei: Z = 2, 3, 4

    NASA Astrophysics Data System (ADS)

    Fortune, H. T.

    2018-03-01

    I examine the history and current state of knowledge of the structure of so-called "exotic" light nuclei with Z=2-4, from 7He to 16Be . I review the available experimental information and the models that have been applied to these nuclei. I pay particular attention to the interplay among energies, widths (or strengths), and microscopic structure. Throughout the presentation, I focus on a unified description of these nuclei. I point out contradictions within the data, and I suggest experiments that are still needed.

  7. Edge-defined film-fed growth of thin silicon sheets

    NASA Technical Reports Server (NTRS)

    Ettouney, H. M.; Kalejs, J. P.

    1984-01-01

    Finite element analysis was used on two length scales to understand crystal growth of thin silicon sheets. Thermal-capillary models of entire ribbon growth systems were developed. Microscopic modeling of morphological structure of melt/solid interfaces beyond the point of linear instability was carried out. The application to silicon system is discussed.

  8. α clustering with a hollow structure: Geometrical structure of α clusters from platonic solids to fullerene shape

    NASA Astrophysics Data System (ADS)

    Tohsaki, Akihiro; Itagaki, Naoyuki

    2018-01-01

    We study α -cluster structure based on the geometric configurations with a microscopic framework, which takes full account of the Pauli principle, and which also employs an effective internucleon force including finite-range three-body terms suitable for microscopic α -cluster models. Here, special attention is focused upon the α clustering with a hollow structure; all the α clusters are put on the surface of a sphere. All the platonic solids (five regular polyhedra) and the fullerene-shaped polyhedron coming from icosahedral structure are considered. Furthermore, two configurations with dual polyhedra, hexahedron-octahedron and dodecahedron-icosahedron, are also scrutinized. When approaching each other from large distances with these symmetries, α clusters create certain local energy pockets. As a consequence, we insist on the possible existence of α clustering with a geometric shape and hollow structure, which is favored from Coulomb energy point of view. Especially, two configurations, that is, dual polyhedra of dodecahedron-icosahedron and fullerene, have a prominent hollow structure compared with the other six configurations.

  9. Characterization of grain boundary conductivity of spin-sprayed ferrites using scanning microwave microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, J.; Nicodemus, T.; Zhuang, Y., E-mail: yan.zhuang@wright.edu

    2014-05-07

    Grain boundary electrical conductivity of ferrite materials has been characterized using scanning microwave microscope. Structural, electrical, and magnetic properties of Fe{sub 3}O{sub 4} spin-sprayed thin films onto glass substrates for different length of growth times were investigated using a scanning microwave microscope, an atomic force microscope, a four-point probe measurement, and a made in house transmission line based magnetic permeameter. The real part of the magnetic permeability shows almost constant between 10 and 300 MHz. As the Fe{sub 3}O{sub 4} film thickness increases, the grain size becomes larger, leading to a higher DC conductivity. However, the loss in the Fe{sub 3}O{submore » 4} films at high frequency does not increase correspondingly. By measuring the reflection coefficient s{sub 11} from the scanning microwave microscope, it turns out that the grain boundaries of the Fe{sub 3}O{sub 4} films exhibit higher electric conductivity than the grains, which contributes loss at radio frequencies. This result will provide guidance for further improvement of low loss ferrite materials for high frequency applications.« less

  10. Microscopic structural change in a liquid Fe-C alloy of ~5 GPa

    DOE PAGES

    Shibazaki, Yuki; Kono, Yoshio; Fei, Yingwei

    2015-07-04

    The structure of a liquid Fe-3.5 wt% C alloy is examined for up to 7.2 GPa via multiangle energy-dispersive X-ray diffraction using a Paris-Edinburgh type large-volume press. X-ray diffraction data show clear changes in the pressure-dependent peak positions of structure factor and reduced pair distribution function at 5GPa. These results suggest that the liquid Fe-3.5wt%C alloys change structurally at approximately 5GPa. This finding serves as a microscopic explanation for the alloy’s previously observed density change at the same pressure. The pressure dependencies of the nearest and second neighbor distances of the liquid Fe-3.5 wt% C alloy are similar to thosemore » of liquid Fe which exhibits a structural change near the bcc-fcc-liquid triple point (5.2GPa and 1991 K). Here, similarities between Fe-3.5wt% C and Fe suggest that a density change also occurs in liquid Fe and that this structural change extends to other Fe-light element alloys.« less

  11. Direct observation of Sr vacancies in SrTiO 3 by quantitative scanning transmission electron microscopy

    DOE PAGES

    Kim, Honggyu; Zhang, Jack Y.; Raghavan, Santosh; ...

    2016-12-22

    Unveiling the identity, spatial configuration, and microscopic structure of point defects is one of the key challenges in materials science. Here, we demonstrate that quantitative scanning transmission electron microscopy (STEM) can be used to directly observe Sr vacancies in SrTiO 3 and to determine the atom column relaxations around them. By combining recent advances in quantitative STEM, including variableangle, high-angle annular dark-field imaging and rigid registration methods, with frozen phonon multislice image simulations, we identify which Sr columns contain vacancies and quantify the number of vacancies in them. Here, picometer precision measurements of the surrounding atom column positions show thatmore » the nearest-neighbor Ti atoms are displaced away from the Sr vacancies. The results open up a new methodology for studying the microscopic mechanisms by which point defects control materials properties.« less

  12. Direct observation of Sr vacancies in SrTiO 3 by quantitative scanning transmission electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Honggyu; Zhang, Jack Y.; Raghavan, Santosh

    Unveiling the identity, spatial configuration, and microscopic structure of point defects is one of the key challenges in materials science. Here, we demonstrate that quantitative scanning transmission electron microscopy (STEM) can be used to directly observe Sr vacancies in SrTiO 3 and to determine the atom column relaxations around them. By combining recent advances in quantitative STEM, including variableangle, high-angle annular dark-field imaging and rigid registration methods, with frozen phonon multislice image simulations, we identify which Sr columns contain vacancies and quantify the number of vacancies in them. Here, picometer precision measurements of the surrounding atom column positions show thatmore » the nearest-neighbor Ti atoms are displaced away from the Sr vacancies. The results open up a new methodology for studying the microscopic mechanisms by which point defects control materials properties.« less

  13. A Picture Is Worth a Thousand Questions

    ERIC Educational Resources Information Center

    Ribisi, Stephen, Jr.; Yu, Kristina; Lambertson, Lori

    2007-01-01

    The old adage that a picture is worth a thousand words also holds true in cell biology. Much of the knowledge that we have of the structures and functions of cells has been acquired by biologists peering through the eyepieces of microscopes. The point of this lesson is to provide an opportunity for students to observe cell biological data while…

  14. Experimental assessment and analysis of super-resolution in fluorescence microscopy based on multiple-point spread function fitting of spectrally demultiplexed images

    NASA Astrophysics Data System (ADS)

    Nishimura, Takahiro; Kimura, Hitoshi; Ogura, Yusuke; Tanida, Jun

    2018-06-01

    This paper presents an experimental assessment and analysis of super-resolution microscopy based on multiple-point spread function fitting of spectrally demultiplexed images using a designed DNA structure as a test target. For the purpose, a DNA structure was designed to have binding sites at a certain interval that is smaller than the diffraction limit. The structure was labeled with several types of quantum dots (QDs) to acquire their spatial information as spectrally encoded images. The obtained images are analyzed with a point spread function multifitting algorithm to determine the QD locations that indicate the binding site positions. The experimental results show that the labeled locations can be observed beyond the diffraction-limited resolution using three-colored fluorescence images that were obtained with a confocal fluorescence microscope. Numerical simulations show that labeling with eight types of QDs enables the positions aligned at 27.2-nm pitches on the DNA structure to be resolved with high accuracy.

  15. A nonlinear dynamical system approach for the yielding behaviour of a viscoplastic material.

    PubMed

    Burghelea, Teodor; Moyers-Gonzalez, Miguel; Sainudiin, Raazesh

    2017-03-08

    A nonlinear dynamical system model that approximates a microscopic Gibbs field model for the yielding of a viscoplastic material subjected to varying external stresses recently reported in R. Sainudiin, M. Moyers-Gonzalez and T. Burghelea, Soft Matter, 2015, 11(27), 5531-5545 is presented. The predictions of the model are in fair agreement with microscopic simulations and are in very good agreement with the micro-structural semi-empirical model reported in A. M. V. Putz and T. I. Burghelea, Rheol. Acta, 2009, 48, 673-689. With only two internal parameters, the nonlinear dynamical system model captures several key features of the solid-fluid transition observed in experiments: the effect of the interactions between microscopic constituents on the yield point, the abruptness of solid-fluid transition and the emergence of a hysteresis of the micro-structural states upon increasing/decreasing external forces. The scaling behaviour of the magnitude of the hysteresis with the degree of the steadiness of the flow is consistent with previous experimental observations. Finally, the practical usefulness of the approach is demonstrated by fitting a rheological data set measured with an elasto-viscoplastic material.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sato, Chikara, E-mail: ti-sato@aist.go.jp; Manaka, Sachie; Nakane, Daisuke

    Highlights: Black-Right-Pointing-Pointer Mycoplasma mobile was observed in buffer with the Atmospheric Scanning Electron Microscope. Black-Right-Pointing-Pointer Characteristic protein localizations were visualized using immuno-labeling. Black-Right-Pointing-Pointer M. mobile attached to sialic acid on the SiN film surface within minutes. Black-Right-Pointing-Pointer Cells were observed at low concentrations. Black-Right-Pointing-Pointer ASEM should promote study and early-stage diagnosis of mycoplasma. -- Abstract: Mycoplasma is a genus of bacterial pathogen that causes disease in vertebrates. In humans, the species Mycoplasma pneumoniae causes 15% or more of community-acquired pneumonia. Because this bacterium is tiny, corresponding in size to a large virus, diagnosis using optical microscopy is not easy. Inmore » current methods, chest X-rays are usually the first action, followed by serology, PCR amplification, and/or culture, but all of these are particularly difficult at an early stage of the disease. Using Mycoplasma mobile as a model species, we directly observed mycoplasma in buffer with the newly developed Atmospheric Scanning Electron Microscope (ASEM). This microscope features an open sample dish with a pressure-resistant thin film window in its base, through which the SEM beam scans samples in solution, from below. Because of its 2-3 {mu}m-deep scanning capability, it can observe the whole internal structure of mycoplasma cells stained with metal solutions. Characteristic protein localizations were visualized using immuno-labeling. Cells were observed at low concentrations, because suspended cells concentrate in the observable zone by attaching to sialic acid on the silicon nitride (SiN) film surface within minutes. These results suggest the applicability of the ASEM for the study of mycoplasmas as well as for early-stage mycoplasma infection diagnosis.« less

  17. A Review on Resistive Switching in High-k Dielectrics: A Nanoscale Point of View Using Conductive Atomic Force Microscope

    PubMed Central

    Lanza, Mario

    2014-01-01

    Metal-Insulator-Metal (MIM) structures have raised as the most promising configuration for next generation information storage, leading to great performance and fabrication-friendly Resistive Random Access Memories (RRAM). In these cells, the memory concept is no more based on the charge storage, but on tuning the electrical resistance of the insulating layer by applying electrical stresses to reach a high resistive state (HRS or “0”) and a low resistive state (LRS or “1”), which makes the memory point. Some high-k dielectrics show this unusual property and in the last years high-k based RRAM have been extensively analyzed, especially at the device level. However, as resistance switching (in the most promising cells) is a local phenomenon that takes place in areas of ~100 nm2, the use of characterization tools with high lateral spatial resolution is necessary. In this paper the status of resistive switching in high-k materials is reviewed from a nanoscale point of view by means of conductive atomic force microscope analyses. PMID:28788561

  18. Insight into the biological effects of acupuncture points by X-ray absorption fine structure.

    PubMed

    Liu, Chenglin; Liu, Qinghua; Zhang, Dongming; Liu, Wei; Yan, Xiaohui; Zhang, Xinyi; Oyanagi, Hiroyuki; Pan, Zhiyun; Hu, Fengchun; Wei, Shiqiang

    2018-06-02

    Exploration of the biological effects of transition metal ions in acupuncture points is essential to clarify the functional mechanism of acupuncture treatment. Here we show that in the SP6 acupuncture point (Sanyinjiao) the Fe ions are in a high-spin state of approximately t 2g 4.5 e g 1.5 in an Fe-N(O) octahedral crystal field. The Fe K-edge synchrotron radiation X-ray absorption fine structure results reveal that the Fe-N and Fe-O bond lengths in the SP6 acupuncture point are 2.05 and 2.13 Å, respectively, and are 0.05-0.10 Å longer than those in the surrounding tissue. The distorted atomic structure reduces the octahedral symmetry and weakens the crystal field around the Fe ions by approximately 0.3 eV, leading to the high-spin configuration of the Fe ions, which is favorable for strengthening the magnetotransport and oxygen transportation properties in the acupuncture point by the enhanced spin coherence. This finding might provide some insight into the microscopic effect of the atomic and electronic interactions of transition metal ions in the acupuncture point. Graphical Abstract ᅟ.

  19. All-plastic, miniature, digital fluorescence microscope for three part white blood cell differential measurements at the point of care

    PubMed Central

    Forcucci, Alessandra; Pawlowski, Michal E.; Majors, Catherine; Richards-Kortum, Rebecca; Tkaczyk, Tomasz S.

    2015-01-01

    Three-part differential white blood cell counts are used for disease diagnosis and monitoring at the point-of-care. A low-cost, miniature achromatic microscope was fabricated for identification of lymphocytes, monocytes, and granulocytes in samples of whole blood stained with acridine orange. The microscope was manufactured using rapid prototyping techniques of diamond turning and 3D printing and is intended for use at the point-of-care in low-resource settings. The custom-designed microscope requires no manual adjustment between samples and was successfully able to classify three white blood cell types (lymphocytes, granulocytes, and monocytes) using samples of peripheral whole blood stained with acridine orange. PMID:26601006

  20. Gel-like properties of MCM-41 material and its transformation to MCM-50 in a caustic alkaline surround

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saputra, Hens; Othman, Raihan, E-mail: raihan@iium.edu.my; Sutjipto, A.G.E.

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer MCM-41 material transforms gradually into MCM-50 lamellar gel upon controlled exposure to 6 M KOH. Black-Right-Pointing-Pointer The formation of MCM-50 ordered gel structure occurs at KOH weight content of 40-70 wt. %. Black-Right-Pointing-Pointer MCM gel phase shows pseudoplastic behavior and possesses homogeneous matrix texture. -- Abstract: MCM-41 material, prepared by sol-gel method, reveals gel-like properties in a caustic alkaline environment, i.e., 6 M potassium hydroxide (KOH) electrolyte. The gellation of MCM-41 starts at a KOH weight ratio of 40 wt.%. The structural change of the material is verified with X-Ray diffractograms and supported by observation using Scanning Electronmore » Microscope (SEM). As the KOH weight ratio increases, the MCM-41 hexagonal arrays structure gradually transforms into MCM-50 lamellar structure before disappearing completely at 80 wt.% KOH. The MCM gel phase is further characterized by rotational viscometry and texture analysis. The gel phase shows shear thinning or pseudoplastic behavior and possesses homogeneous matrix structure.« less

  1. Sub-diffraction nano manipulation using STED AFM.

    PubMed

    Chacko, Jenu Varghese; Canale, Claudio; Harke, Benjamin; Diaspro, Alberto

    2013-01-01

    In the last two decades, nano manipulation has been recognized as a potential tool of scientific interest especially in nanotechnology and nano-robotics. Contemporary optical microscopy (super resolution) techniques have also reached the nanometer scale resolution to visualize this and hence a combination of super resolution aided nano manipulation ineluctably gives a new perspective to the scenario. Here we demonstrate how specificity and rapid determination of structures provided by stimulated emission depletion (STED) microscope can aid another microscopic tool with capability of mechanical manoeuvring, like an atomic force microscope (AFM) to get topological information or to target nano scaled materials. We also give proof of principle on how high-resolution real time visualization can improve nano manipulation capability within a dense sample, and how STED-AFM is an optimal combination for this job. With these evidences, this article points to future precise nano dissections and maybe even to a nano-snooker game with an AFM tip and fluorospheres.

  2. Improved axial point spread function in a two-frequency laser scanning confocal fluorescence microscope

    NASA Astrophysics Data System (ADS)

    Wu, Jheng-Syong; Chung, Yung-Chin; Chien, Jun-Jei; Chou, Chien

    2018-01-01

    A two-frequency laser scanning confocal fluorescence microscope (TF-LSCFM) based on intensity modulated fluorescence signal detection was proposed. The specimen-induced spherical aberration and scattering effect were suppressed intrinsically, and high image contrast was presented due to heterodyne interference. An improved axial point spread function in a TF-LSCFM compared with a conventional laser scanning confocal fluorescence microscope was demonstrated and discussed.

  3. Nanoscale amorphization of GeTe nanowire with conductive atomic force microscope.

    PubMed

    Kim, JunHo

    2014-10-01

    We fabricated GeTe nanowires by using Au catalysis mediated vapor-liquid-solid method. The fabricated nanowires were confirmed by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. For a nanowire with - 150 nm diameter, we performed amorphization experiment with conductive atomic force microscope. We examined the structural change of the nanowire with several bias voltages from 0 V to 10 V. Above bias voltage of 6-7 V, some points of the nanowire showed transition to amorphous phase. The consumed energy for the amorphization was estimated to be 4-5 nJ, which was close to the other result of nanowire tested with a four probe device.

  4. Scanning electron microscopy of hepatic ultrastructure: secondary, backscattered, and transmitted electron imaging.

    PubMed

    Miyai, K; Abraham, J L; Linthicum, D S; Wagner, R M

    1976-10-01

    Several methods of tissue preparation and different modes of operation of the scanning electron microscope were used to study the ultrastructure of rat liver. Rat livers were perfusion fixed with buffered 2 per cent paraformaldehyde or a mixture of 1.5 per cent paraformaldehyde and 1 per cent glutaraldehyde and processed as follows. Tissue blocks were postfixed in buffered 2 per cent osmium tetroxide followed sequentially by the ligand-mediated osmium binding technique, dehydration and cryofracture in ethanol, and critical point drying. They were then examined without metal coating in the scanning electron microscope operating in the secondary electron and backscattered electron modes. Fifty-micrometer sections were cut with a tissue sectioner, stained with lead citrate, postfixed with osmium, dehydrated, critical point dried, and examined in the secondary electron and back-scattered electron modes. Frozen sections (0.25 to 0.75 mum. thick) were cut by the method of Tokuyasu (Toluyasu KT: J Cell Biol 57:551, 1973) and their scanning transmission electron microscope images were examined either with a scanning transmission electron microscope detector or with a conversion stub using the secondary electron detector. Secondary electron images of the liver prepared by ligand-mediated osmium binding and subsequent cryofracture revealed such intracellular structures as cisternae of the endoplasmic reticulum, lysosomes, mitochondria, lipid droplets, nucleolus and nuclear chromatin, as well as the usual surface morphology, Lipocytes in the perisinusoidal space were readily identified. Backscattered electron images. Unembedded frozen sections had little drying artifact and were virtually free of freezing damage. The scanning transmission electron microscope image revealed those organelles visualized by the secondary electron mode in the ligand-mediated osmium binding-treated tissue.

  5. Raman imaging of lignin and cellulose distribution in black spruce wood (Picea mariana) cell walls

    Treesearch

    Umesh P. Agarwal

    2005-01-01

    A detailed understanding of wood cell wall structure and organization is important from both fundamental and practical point of views. A state-of- the-art 633-nm laser based confocal Raman microscope was used in situ to investigate the cell wall organization of black spruce wood. Chemical information on lignin and cellulose from morphologically distinct cell wall...

  6. Imaging atomic-level random walk of a point defect in graphene

    NASA Astrophysics Data System (ADS)

    Kotakoski, Jani; Mangler, Clemens; Meyer, Jannik C.

    2014-05-01

    Deviations from the perfect atomic arrangements in crystals play an important role in affecting their properties. Similarly, diffusion of such deviations is behind many microstructural changes in solids. However, observation of point defect diffusion is hindered both by the difficulties related to direct imaging of non-periodic structures and by the timescales involved in the diffusion process. Here, instead of imaging thermal diffusion, we stimulate and follow the migration of a divacancy through graphene lattice using a scanning transmission electron microscope operated at 60 kV. The beam-activated process happens on a timescale that allows us to capture a significant part of the structural transformations and trajectory of the defect. The low voltage combined with ultra-high vacuum conditions ensure that the defect remains stable over long image sequences, which allows us for the first time to directly follow the diffusion of a point defect in a crystalline material.

  7. Structure of S-shaped growth in innovation diffusion

    NASA Astrophysics Data System (ADS)

    Shimogawa, Shinsuke; Shinno, Miyuki; Saito, Hiroshi

    2012-05-01

    A basic question on innovation diffusion is why the growth curve of the adopter population in a large society is often S shaped. From macroscopic, microscopic, and mesoscopic viewpoints, the growth of the adopter population is observed as the growth curve, individual adoptions, and differences among individual adoptions, respectively. The S shape can be explained if an empirical model of the growth curve can be deduced from models of microscopic and mesoscopic structures. However, even the structure of growth curve has not been revealed yet because long-term extrapolations by proposed models of S-shaped curves are unstable and it has been very difficult to predict the long-term growth and final adopter population. This paper studies the S-shaped growth from the viewpoint of social regularities. Simple methods to analyze power laws enable us to extract the structure of the growth curve directly from the growth data of recent basic telecommunication services. This empirical model of growth curve is singular at the inflection point and a logarithmic function of time after this point, which explains the unstable extrapolations obtained using previously proposed models and the difficulty in predicting the final adopter population. Because the empirical S curve can be expressed in terms of two power laws of the regularity found in social performances of individuals, we propose the hypothesis that the S shape represents the heterogeneity of the adopter population, and the heterogeneity parameter is distributed under the regularity in social performances of individuals. This hypothesis is so powerful as to yield models of microscopic and mesoscopic structures. In the microscopic model, each potential adopter adopts the innovation when the information accumulated by the learning about the innovation exceeds a threshold. The accumulation rate of information is heterogeneous among the adopter population, whereas the threshold is a constant, which is the opposite of previously proposed models. In the mesoscopic model, flows of innovation information incoming to individuals are organized as dimorphic and partially clustered. These microscopic and mesoscopic models yield the empirical model of the S curve and explain the S shape as representing the regularities of information flows generated through a social self-organization. To demonstrate the validity and importance of the hypothesis, the models of three level structures are applied to reveal the mechanism determining and differentiating diffusion speeds. The empirical model of S curves implies that the coefficient of variation of the flow rates determines the diffusion speed for later adopters. Based on this property, a model describing the inside of information flow clusters can be given, which provides a formula interconnecting the diffusion speed, cluster populations, and a network topological parameter of the flow clusters. For two recent basic telecommunication services in Japan, the formula represents the variety of speeds in different areas and enables us to explain speed gaps between urban and rural areas and between the two services. Furthermore, the formula provides a method to estimate the final adopter population.

  8. Modelling of Molecular Structures and Properties in Physical Chemistry and Biophysics, Forty-Fourth International Meeting (Modelisation des Structures et Proprietes Moleculaires en Chimie Physique et en Biophysique, Quarante- Quatrieme Reunion Internationale)

    DTIC Science & Technology

    1989-09-01

    pyridone).Previous work on, py/ridimum, pyrazinjumn or pyrimidi im salts Koon 2 -pyrimloone and 2 - pyrimidone salts [43j have shown that some...forces. Acct . r ~[U... •K;.i. LJ , ’ 0, ’’ .t_I ..- .It . ( :.. 2 A VIBRATIONAL MOLECULAR FORCE FIELD FOR .ACROMOLECULA-R MODELLI= Gerard VERGOTENi...microscopic point of view are (1) understanding, ( 2 ) interpretation of experimental results, (3) semiquantitative estimates of experimental results and (4

  9. A lab-on-phone instrument with varifocal microscope via a liquid-actuated aspheric lens (LAL)

    PubMed Central

    Fuh, Yiin-Kuen; Lai, Zheng-Hong; Kau, Li-Han; Huang, Hung-Jui

    2017-01-01

    In this paper, we introduce a novel concept of liquid-actuated aspheric lens (LAL) with a built-in aspheric polydimethylsiloxane lens (APL) to enable the design of compact optical systems with varifocal microscopic imaging. The varifocal lens module consists of a sandwiched structures such as 3d printed syringe pump functionally serves as liquid controller. Other key components include two acrylic cylinders, a rigid separator, a APL/membrane composite (APLMC) embedded PDMS membrane. In functional operation, the fluidic controller was driven to control the pressure difference and ALPMC deformation. The focal length can be changed through the pressure difference. This is achieved by the adjustment of volume change of injected liquid such that a widely tunable focal length. The proposed LAL can transform to 3 modes: microscopic mode (APLMC only), convex-concave mode and biconcave mode. It is noticeable that LAL in the operation of microscopic mode is tunable in focus via the actuation of APLMC (focal length is from 4.3 to 2.3 mm and magnification 50X) and can rival the images quality of commercial microscopes. A new lab-on-phone device is economically feasible and functionally versatile to offer a great potential in the point of care applications. PMID:28650971

  10. Investigation of laser-fired point contacts on KOH structured laser-crystallized silicon by conductive atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Gref, Orman; Weizman, Moshe; Rhein, Holger; Gabriel, Onno; Gernert, Ulrich; Schlatmann, Rutger; Boit, Christian; Friedrich, Felice

    2016-06-01

    A conductive atomic force microscope is used to study the local topography and conductivity of laser-fired aluminum contacts on KOH-structured multicrystalline silicon surfaces. A significant increase in conductivity is observed in the laser-affected area. The area size and spatial uniformity of this enhanced conductivity depends on the laser energy fluence. The laser-affected area shows three ring-shaped regimes of different conductance depending on the local aluminum and oxygen concentration. Finally, it was found that the topographic surface structure determined by the silicon grain orientation does not significantly affect the laser-firing process.

  11. Quasiparticle scattering in type-II Weyl semimetal MoTe2

    NASA Astrophysics Data System (ADS)

    Lin, Chun-Liang; Arafune, Ryuichi; Minamitani, Emi; Kawai, Maki; Takagi, Noriaki

    2018-03-01

    The electronic structure of type-II Weyl semimetal molybdenum ditelluride (MoTe2) is studied by using scanning tunneling microscopy and density functional theory calculations. Through measuring energy-dependent quasiparticle interference (QPI) patterns with a cryogenic scanning tunneling microscope, several characteristic features are found in the QPI patterns. Two of them arise from the Weyl semimetal nature; one is the topological Fermi arc surface state and the other can be assigned to be a Weyl point. The remaining structures are derived from the scatterings relevant to the bulk electronic states. The findings lead to further understanding of the topological electronic structure of type-II Weyl semimetal MoTe2.

  12. Quasiparticle scattering in type-II Weyl semimetal MoTe2.

    PubMed

    Lin, Chun-Liang; Arafune, Ryuichi; Minamitani, Emi; Kawai, Maki; Takagi, Noriaki

    2018-02-15

    The electronic structure of type-II Weyl semimetal molybdenum ditelluride (MoTe 2 ) is studied by using scanning tunneling microscopy and density functional theory calculations. Through measuring energy-dependent quasiparticle interference (QPI) patterns with a cryogenic scanning tunneling microscope, several characteristic features are found in the QPI patterns. Two of them arise from the Weyl semimetal nature; one is the topological Fermi arc surface state and the other can be assigned to be a Weyl point. The remaining structures are derived from the scatterings relevant to the bulk electronic states. The findings lead to further understanding of the topological electronic structure of type-II Weyl semimetal MoTe 2 .

  13. [On "early pathologic anatomy" and "anatomy of medical structure": continuity or point of epistemological rupture?].

    PubMed

    Lellouch, Alain

    2006-06-01

    The aim of this paper is to analyse the technical, conceptual and institutional changes from which, through macroscopic pathology, a new medical science (microscopic pathology) emerged. The "early" pathology was mainly implemented by the Ecole de Paris, at the beginning of the 19th century. After 1850, histo-pathology emerged, in German university institutes (which were separate buildings from the wards and from the dissecting rooms of the hospitals). The birth of histo-pathology is also linked with technical improvements in mass manufactured microscopes, with better techniques for fixing and staining histological samples and lastly, in (1848) withVirchow's cellular theory. Among French doctors, only one, the very famous physician Jean-Martin Charcot (1825-1893) was aware of these dramatic changes. Charcot wrote many texts which are testimonies of an epistemological rupture between two very different types of medicine, the old French "médecine d'hôpital" and the new "lab medicine", developed in German speaking countries and based on the microscope.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krumeich, F., E-mail: krumeich@inorg.chem.ethz.ch; Mueller, E.; Wepf, R.A.

    While HRTEM is the well-established method to characterize the structure of dodecagonal tantalum (vanadium) telluride quasicrystals and their periodic approximants, phase-contrast imaging performed on an aberration-corrected scanning transmission electron microscope (STEM) represents a favorable alternative. The (Ta,V){sub 151}Te{sub 74} clusters, the basic structural unit in all these phases, can be visualized with high resolution. A dependence of the image contrast on defocus and specimen thickness has been observed. In thin areas, the projected crystal potential is basically imaged with either dark or bright contrast at two defocus values close to Scherzer defocus as confirmed by image simulations utilizing the principlemore » of reciprocity. Models for square-triangle tilings describing the arrangement of the basic clusters can be derived from such images. - Graphical abstract: PC-STEM image of a (Ta,V){sub 151}Te{sub 74} cluster. Highlights: Black-Right-Pointing-Pointer C{sub s}-corrected STEM is applied for the characterization of dodecagonal quasicrystals. Black-Right-Pointing-Pointer The projected potential of the structure is mirrored in the images. Black-Right-Pointing-Pointer Phase-contrast STEM imaging depends on defocus and thickness. Black-Right-Pointing-Pointer For simulations of phase-contrast STEM images, the reciprocity theorem is applicable.« less

  15. Virtual tape measure for the operating microscope: system specifications and performance evaluation.

    PubMed

    Kim, M Y; Drake, J M; Milgram, P

    2000-01-01

    The Virtual Tape Measure for the Operating Microscope (VTMOM) was created to assist surgeons in making accurate 3D measurements of anatomical structures seen in the surgical field under the operating microscope. The VTMOM employs augmented reality techniques by combining stereoscopic video images with stereoscopic computer graphics, and functions by relying on an operator's ability to align a 3D graphic pointer, which serves as the end-point of the virtual tape measure, with designated locations on the anatomical structure being measured. The VTMOM was evaluated for its baseline and application performances as well as its application efficacy. Baseline performance was determined by measuring the mean error (bias) and standard deviation of error (imprecision) in measurements of non-anatomical objects. Application performance was determined by comparing the error in measuring the dimensions of aneurysm models with and without the VTMOM. Application efficacy was determined by comparing the error in selecting the appropriate aneurysm clip size with and without the VTMOM. Baseline performance indicated a bias of 0.3 mm and an imprecision of 0.6 mm. Application bias was 3.8 mm and imprecision was 2.8 mm for aneurysm diameter. The VTMOM did not improve aneurysm clip size selection accuracy. The VTMOM is a potentially accurate tool for use under the operating microscope. However, its performance when measuring anatomical objects is highly dependent on complex visual features of the object surfaces. Copyright 2000 Wiley-Liss, Inc.

  16. High fluence swift heavy ion structure modification of the SiO2/Si interface and gate insulator in 65 nm MOSFETs

    NASA Astrophysics Data System (ADS)

    Ma, Yao; Gao, Bo; Gong, Min; Willis, Maureen; Yang, Zhimei; Guan, Mingyue; Li, Yun

    2017-04-01

    In this work, a study of the structure modification, induced by high fluence swift heavy ion radiation, of the SiO2/Si structures and gate oxide interface in commercial 65 nm MOSFETs is performed. A key and novel point in this study is the specific use of the transmission electron microscopy (TEM) technique instead of the conventional atomic force microscope (AFM) or scanning electron microscope (SEM) techniques which are typically performed following the chemical etching of the sample to observe the changes in the structure. Using this method we show that after radiation, the appearance of a clearly visible thin layer between the SiO2 and Si is observed presenting as a variation in the TEM intensity at the interface of the two materials. Through measuring the EDX line scans we reveal that the Si:O ratio changed and that this change can be attributed to the migration of the Si towards interface after the Si-O bond is destroyed by the swift heavy ions. For the 65 nm MOSFET sample, the silicon substrate, the SiON insulator and the poly-silicon gate interfaces become blurred under the same irradiation conditions.

  17. Stereovision-based integrated system for point cloud reconstruction and simulated brain shift validation.

    PubMed

    Yang, Xiaochen; Clements, Logan W; Luo, Ma; Narasimhan, Saramati; Thompson, Reid C; Dawant, Benoit M; Miga, Michael I

    2017-07-01

    Intraoperative soft tissue deformation, referred to as brain shift, compromises the application of current image-guided surgery navigation systems in neurosurgery. A computational model driven by sparse data has been proposed as a cost-effective method to compensate for cortical surface and volumetric displacements. We present a mock environment developed to acquire stereoimages from a tracked operating microscope and to reconstruct three-dimensional point clouds from these images. A reconstruction error of 1 mm is estimated by using a phantom with a known geometry and independently measured deformation extent. The microscope is tracked via an attached tracking rigid body that facilitates the recording of the position of the microscope via a commercial optical tracking system as it moves during the procedure. Point clouds, reconstructed under different microscope positions, are registered into the same space to compute the feature displacements. Using our mock craniotomy device, realistic cortical deformations are generated. When comparing our tracked microscope stereo-pair measure of mock vessel displacements to that of the measurement determined by the independent optically tracked stylus marking, the displacement error was [Formula: see text] on average. These results demonstrate the practicality of using tracked stereoscopic microscope as an alternative to laser range scanners to collect sufficient intraoperative information for brain shift correction.

  18. Tomography experiment of an integrated circuit specimen using 3 MeV electrons in the transmission electron microscope.

    PubMed

    Zhang, Hai-Bo; Zhang, Xiang-Liang; Wang, Yong; Takaoka, Akio

    2007-01-01

    The possibility of utilizing high-energy electron tomography to characterize the micron-scale three dimensional (3D) structures of integrated circuits has been demonstrated experimentally. First, electron transmission through a tilted SiO(2) film was measured with an ultrahigh-voltage electron microscope (ultra-HVEM) and analyzed from the point of view of elastic scattering of electrons, showing that linear attenuation of the logarithmic electron transmission still holds valid for effective specimen thicknesses up to 5 microm under 2 MV accelerating voltages. Electron tomography of a micron-order thick integrated circuit specimen including the Cu/via interconnect was then tried with 3 MeV electrons in the ultra-HVEM. Serial projection images of the specimen tilted at different angles over the range of +/-90 degrees were acquired, and 3D reconstruction was performed with the images by means of the IMOD software package. Consequently, the 3D structures of the Cu lines, via and void, were revealed by cross sections and surface rendering.

  19. Constraints on Stress Components at the Internal Singular Point of an Elastic Compound Structure

    NASA Astrophysics Data System (ADS)

    Pestrenin, V. M.; Pestrenina, I. V.

    2017-03-01

    The classical analytical and numerical methods for investigating the stress-strain state (SSS) in the vicinity of a singular point consider the point as a mathematical one (having no linear dimensions). The reliability of the solution obtained by such methods is valid only outside a small vicinity of the singular point, because the macroscopic equations become incorrect and microscopic ones have to be used to describe the SSS in this vicinity. Also, it is impossible to set constraint or to formulate solutions in stress-strain terms for a mathematical point. These problems do not arise if the singular point is identified with the representative volume of material of the structure studied. In authors' opinion, this approach is consistent with the postulates of continuum mechanics. In this case, the formulation of constraints at a singular point and their investigation becomes an independent problem of mechanics for bodies with singularities. This method was used to explore constraints at an internal singular point (representative volume) of a compound wedge and a compound rib. It is shown that, in addition to the constraints given in the classical approach, there are also constraints depending on the macroscopic parameters of constituent materials. These constraints turn the problems of deformable bodies with an internal singular point into nonclassical ones. Combinations of material parameters determine the number of additional constraints and the critical stress state at the singular point. Results of this research can be used in the mechanics of composite materials and fracture mechanics and in studying stress concentrations in composite structural elements.

  20. Freezing point depression in model Lennard-Jones solutions

    NASA Astrophysics Data System (ADS)

    Koschke, Konstantin; Jörg Limbach, Hans; Kremer, Kurt; Donadio, Davide

    2015-09-01

    Crystallisation of liquid solutions is of uttermost importance in a wide variety of processes in materials, atmospheric and food science. Depending on the type and concentration of solutes the freezing point shifts, thus allowing control on the thermodynamics of complex fluids. Here we investigate the basic principles of solute-induced freezing point depression by computing the melting temperature of a Lennard-Jones fluid with low concentrations of solutes, by means of equilibrium molecular dynamics simulations. The effect of solvophilic and weakly solvophobic solutes at low concentrations is analysed, scanning systematically the size and the concentration. We identify the range of parameters that produce deviations from the linear dependence of the freezing point on the molal concentration of solutes, expected for ideal solutions. Our simulations allow us also to link the shifts in coexistence temperature to the microscopic structure of the solutions.

  1. Integrated system for point cloud reconstruction and simulated brain shift validation using tracked surgical microscope

    NASA Astrophysics Data System (ADS)

    Yang, Xiaochen; Clements, Logan W.; Luo, Ma; Narasimhan, Saramati; Thompson, Reid C.; Dawant, Benoit M.; Miga, Michael I.

    2017-03-01

    Intra-operative soft tissue deformation, referred to as brain shift, compromises the application of current imageguided surgery (IGS) navigation systems in neurosurgery. A computational model driven by sparse data has been used as a cost effective method to compensate for cortical surface and volumetric displacements. Stereoscopic microscopes and laser range scanners (LRS) are the two most investigated sparse intra-operative imaging modalities for driving these systems. However, integrating these devices in the clinical workflow to facilitate development and evaluation requires developing systems that easily permit data acquisition and processing. In this work we present a mock environment developed to acquire stereo images from a tracked operating microscope and to reconstruct 3D point clouds from these images. A reconstruction error of 1 mm is estimated by using a phantom with a known geometry and independently measured deformation extent. The microscope is tracked via an attached tracking rigid body that facilitates the recording of the position of the microscope via a commercial optical tracking system as it moves during the procedure. Point clouds, reconstructed under different microscope positions, are registered into the same space in order to compute the feature displacements. Using our mock craniotomy device, realistic cortical deformations are generated. Our experimental results report approximately 2mm average displacement error compared with the optical tracking system. These results demonstrate the practicality of using tracked stereoscopic microscope as an alternative to LRS to collect sufficient intraoperative information for brain shift correction.

  2. Cornea and ocular lens visualized with three-dimensional confocal microscopy

    NASA Astrophysics Data System (ADS)

    Masters, Barry R.

    1992-08-01

    This paper demonstrates the advantages of three-dimensional reconstruction of the cornea and the ocular crystalline lens by confocal microscopy and volume rendering computer techniques. The advantages of noninvasive observation of ocular structures in living, unstained, unfixed tissue include the following: the tissue is in a natural living state without the artifacts of fixation, mechanical sectioning, and staining; the three-dimensional structure can be observed from any view point and quantitatively analyzed; the dynamics of morphological changes can be studied; and the use of confocal microscopic observation results in a reduction of the number of animals required for ocular morphometric studies. The main advantage is that the dynamic morphology of ocular structures can be investigated in living ocular tissue. A laser scanning confocal microscope was used in the reflected light mode to obtain the two- dimensional images from the cornea and the ocular lens of a freshly enucleated rabbit eye. The light source was an argon ion laser with 488 nm wavelength. The microscope objective was a Leitz 25X, NA 0.6 water immersion lens. The 400 micron thick cornea was optically sectioned into 133, three micron sections. The semi-transparent cornea and the in-situ ocular lens was visualized as high resolution, high contrast two-dimensional images. The under sampling resulted in a three-dimensional visualization rendering in which the corneal thickness (z-axis) is compressed. The structures observed in the cornea include: superficial epithelial cells and their nuclei, basal epithelial cells and their `beaded' cell borders, basal lamina, nerve plexus, nerve fibers, free nerve endings in the basal epithelial cells, nuclei of stromal keratocytes, and endothelial cells. The structures observed in the in-situ ocular lens include: lens capsule, lens epithelial cells, and individual lens fibers.

  3. Experimental investigation on the microscopic structure of intrinsic paramagnetic point defects in amorphous silicon dioxide

    NASA Astrophysics Data System (ADS)

    Buscarino, G.

    2007-11-01

    In the present Ph.D. Thesis we report an experimental investigation on the effects of gamma- and beta-ray irradiation and of subsequent thermal treatment on many types of a-SiO2 materials, differing in the production methods, OH- and Al-content, and oxygen deficiencies. Our main objective is to gain further insight on the microscopic structures of the E'_gamma, E'_delta, E'_alpha and triplet paramagnetic centers, which are among the most important and studied class of radiation induced intrinsic point defects in a-SiO2. To pursue this objective, we use prevalently the EPR spectroscopy. In particular, our work is focused on the properties of the unpaired electrons wave functions involved in the defects, and this aspect is mainly investigated through the study of the EPR signals originating from the interaction of the unpaired electrons with 29Si magnetic nuclei (with nuclear spin I=1/2 and natural abundance 4.7 %). In addition, in some cases of interest, OA measurements are also performed with the aim to further characterize the electronic properties of the defects. Furthermore, due to its relevance for electronics application, the charge state of the defects is investigated by looking at the processes responsible for the generation of the defects of interest. Once these information were gained, the possible sites that can serve as precursors for defects formation are deduced, with the definitive purpose to obtain in the future more radiation resistant a-SiO2 materials in which the deleterious effects connected with the point defects are significantly reduced.

  4. Multi-scale quantum point contact model for filamentary conduction in resistive random access memories devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lian, Xiaojuan, E-mail: xjlian2005@gmail.com; Cartoixà, Xavier; Miranda, Enrique

    2014-06-28

    We depart from first-principle simulations of electron transport along paths of oxygen vacancies in HfO{sub 2} to reformulate the Quantum Point Contact (QPC) model in terms of a bundle of such vacancy paths. By doing this, the number of model parameters is reduced and a much clearer link between the microscopic structure of the conductive filament (CF) and its electrical properties can be provided. The new multi-scale QPC model is applied to two different HfO{sub 2}-based devices operated in the unipolar and bipolar resistive switching (RS) modes. Extraction of the QPC model parameters from a statistically significant number of CFsmore » allows revealing significant structural differences in the CF of these two types of devices and RS modes.« less

  5. Bending the Rules: Widefield Microscopy and the Abbe Limit of Resolution

    PubMed Central

    Verdaasdonk, Jolien S.; Stephens, Andrew D.; Haase, Julian; Bloom, Kerry

    2014-01-01

    One of the most fundamental concepts of microscopy is that of resolution–the ability to clearly distinguish two objects as separate. Recent advances such as structured illumination microscopy (SIM) and point localization techniques including photoactivated localization microscopy (PALM), and stochastic optical reconstruction microscopy (STORM) strive to overcome the inherent limits of resolution of the modern light microscope. These techniques, however, are not always feasible or optimal for live cell imaging. Thus, in this review, we explore three techniques for extracting high resolution data from images acquired on a widefield microscope–deconvolution, model convolution, and Gaussian fitting. Deconvolution is a powerful tool for restoring a blurred image using knowledge of the point spread function (PSF) describing the blurring of light by the microscope, although care must be taken to ensure accuracy of subsequent quantitative analysis. The process of model convolution also requires knowledge of the PSF to blur a simulated image which can then be compared to the experimentally acquired data to reach conclusions regarding its geometry and fluorophore distribution. Gaussian fitting is the basis for point localization microscopy, and can also be applied to tracking spot motion over time or measuring spot shape and size. All together, these three methods serve as powerful tools for high-resolution imaging using widefield microscopy. PMID:23893718

  6. Internal scanning method as unique imaging method of optical vortex scanning microscope

    NASA Astrophysics Data System (ADS)

    Popiołek-Masajada, Agnieszka; Masajada, Jan; Szatkowski, Mateusz

    2018-06-01

    The internal scanning method is specific for the optical vortex microscope. It allows to move the vortex point inside the focused vortex beam with nanometer resolution while the whole beam stays in place. Thus the sample illuminated by the focused vortex beam can be scanned just by the vortex point. We show that this method enables high resolution imaging. The paper presents the preliminary experimental results obtained with the first basic image recovery procedure. A prospect of developing more powerful tools for topography recovery with the optical vortex scanning microscope is discussed shortly.

  7. An improved approach for the segmentation of starch granules in microscopic images

    PubMed Central

    2010-01-01

    Background Starches are the main storage polysaccharides in plants and are distributed widely throughout plants including seeds, roots, tubers, leaves, stems and so on. Currently, microscopic observation is one of the most important ways to investigate and analyze the structure of starches. The position, shape, and size of the starch granules are the main measurements for quantitative analysis. In order to obtain these measurements, segmentation of starch granules from the background is very important. However, automatic segmentation of starch granules is still a challenging task because of the limitation of imaging condition and the complex scenarios of overlapping granules. Results We propose a novel method to segment starch granules in microscopic images. In the proposed method, we first separate starch granules from background using automatic thresholding and then roughly segment the image using watershed algorithm. In order to reduce the oversegmentation in watershed algorithm, we use the roundness of each segment, and analyze the gradient vector field to find the critical points so as to identify oversegments. After oversegments are found, we extract the features, such as the position and intensity of the oversegments, and use fuzzy c-means clustering to merge the oversegments to the objects with similar features. Experimental results demonstrate that the proposed method can alleviate oversegmentation of watershed segmentation algorithm successfully. Conclusions We present a new scheme for starch granules segmentation. The proposed scheme aims to alleviate the oversegmentation in watershed algorithm. We use the shape information and critical points of gradient vector flow (GVF) of starch granules to identify oversegments, and use fuzzy c-mean clustering based on prior knowledge to merge these oversegments to the objects. Experimental results on twenty microscopic starch images demonstrate the effectiveness of the proposed scheme. PMID:21047380

  8. Study of five-dimensional potential-energy surfaces for actinide isotopes by the macroscopic-microscopic method

    NASA Astrophysics Data System (ADS)

    Fan, T. S.; Wang, Z. M.; Zhu, X.; Zhu, W. J.; Zhong, C. L.

    2017-09-01

    In this work, the nuclear potential-energy of the deformed nuclei as a function of shape coordinates is calculated in a five-dimensional (5D) parameter space of the axially symmetric generalized Lawrence shapes, on the basis of the macroscopic-microscopic method. The liquid-drop part of the nuclear energy is calculated according to the Myers-Swiatecki model and the Lublin-Strasbourg-drop (LSD) formula. The Woods-Saxon and the folded-Yukawa potentials for deformed nuclei are used for the shell and pairing corrections of the Strutinsky-type. The pairing corrections are calculated at zero temperature, T, related to the excitation energy. The eigenvalues of Hamiltonians for protons and neutrons are found by expanding the eigen-functions in terms of harmonic-oscillator wave functions of a spheroid. Then the BCS pair is applied on the smeared-out single-particle spectrum. By comparing the results obtained by different models, the most favorable combination of the macroscopic-microscopic model is known as the LSD formula with the folded-Yukawa potential. Potential-energy landscapes for actinide isotopes are investigated based on a grid of more than 4,000,000 deformation points and the heights of static fission barriers are obtained in terms of a double-humped structure on the full 5D parameter space. In order to locate the ground state shapes, saddle points, scission points and optimal fission path on the calculated 5D potential-energy surface, the falling rain algorithm and immersion method are designed and implemented. The comparison of our results with available experimental data and others' theoretical results confirms the reliability of our calculations.

  9. Array microscopy technology and its application to digital detection of Mycobacterium tuberculosis

    NASA Astrophysics Data System (ADS)

    McCall, Brian P.

    Tuberculosis causes more deaths worldwide than any other curable infectious disease. This is the case despite tuberculosis appearing to be on the verge of eradication midway through the last century. Efforts at reversing the spread of tuberculosis have intensified since the early 1990s. Since then, microscopy has been the primary frontline diagnostic. In this dissertation, advances in clinical microscopy towards array microscopy for digital detection of Mycobacterium tuberculosis are presented. Digital array microscopy separates the tasks of microscope operation and pathogen detection and will reduce the specialization needed in order to operate the microscope. Distributing the work and reducing specialization will allow this technology to be deployed at the point of care, taking the front-line diagnostic for tuberculosis from the microscopy center to the community health center. By improving access to microscopy centers, hundreds of thousands of lives can be saved. For this dissertation, a lens was designed that can be manufactured as 4x6 array of microscopes. This lens design is diffraction limited, having less than 0.071 waves of aberration (root mean square) over the entire field of view. A total area imaged onto a full-frame digital image sensor is expected to be 3.94 mm2, which according to tuberculosis microscopy guidelines is more than sufficient for a sensitive diagnosis. The design is tolerant to single point diamond turning manufacturing errors, as found by tolerance analysis and by fabricating a prototype. Diamond micro-milling, a fabrication technique for lens array molds, was applied to plastic plano-concave and plano-convex lens arrays, and found to produce high quality optical surfaces. The micro-milling technique did not prove robust enough to produce bi-convex and meniscus lens arrays in a variety of lens shapes, however, and it required lengthy fabrication times. In order to rapidly prototype new lenses, a new diamond machining technique was developed called 4-axis single point diamond machining. This technique is 2-10x faster than micro-milling, depending on how advanced the micro-milling equipment is. With array microscope fabrication still in development, a single prototype of the lens designed for an array microscope was fabricated using single point diamond turning. The prototype microscope objective was validated in a pre-clinical trial. The prototype was compared with a standard clinical microscope objective in diagnostic tests. High concordance, a Fleiss's kappa of 0.88, was found between diagnoses made using the prototype and standard microscope objectives and a reference test. With the lens designed and validated and an advanced fabrication process developed, array microscopy technology is advanced to the point where it is feasible to rapidly prototype an array microscope for detection of tuberculosis and translate array microscope from an innovative concept to a device that can save lives.

  10. Mars Life? - Microscopic Tubular Structures

    NASA Image and Video Library

    1996-08-09

    This electron microscope image shows extremely tiny tubular structures that are possible microscopic fossils of bacteria-like organisms that may have lived on Mars more than 3.6 billion years ago. http://photojournal.jpl.nasa.gov/catalog/PIA00285

  11. Mars Life? - Microscopic Egg-shaped Structures

    NASA Image and Video Library

    1996-08-09

    This electron microscope image shows egg-shaped structures, some of which may be possible microscopic fossils of Martian origin as discussed by NASA research published in the Aug. 16, 1996. http://photojournal.jpl.nasa.gov/catalog/PIA00286

  12. Characterization and manipulation of individual defects in insulating hexagonal boron nitride using scanning tunnelling microscopy.

    PubMed

    Wong, Dillon; Velasco, Jairo; Ju, Long; Lee, Juwon; Kahn, Salman; Tsai, Hsin-Zon; Germany, Chad; Taniguchi, Takashi; Watanabe, Kenji; Zettl, Alex; Wang, Feng; Crommie, Michael F

    2015-11-01

    Defects play a key role in determining the properties and technological applications of nanoscale materials and, because they tend to be highly localized, characterizing them at the single-defect level is of particular importance. Scanning tunnelling microscopy has long been used to image the electronic structure of individual point defects in conductors, semiconductors and ultrathin films, but such single-defect electronic characterization remains an elusive goal for intrinsic bulk insulators. Here, we show that individual native defects in an intrinsic bulk hexagonal boron nitride insulator can be characterized and manipulated using a scanning tunnelling microscope. This would typically be impossible due to the lack of a conducting drain path for electrical current. We overcome this problem by using a graphene/boron nitride heterostructure, which exploits the atomically thin nature of graphene to allow the visualization of defect phenomena in the underlying bulk boron nitride. We observe three different defect structures that we attribute to defects within the bulk insulating boron nitride. Using scanning tunnelling spectroscopy we obtain charge and energy-level information for these boron nitride defect structures. We also show that it is possible to manipulate the defects through voltage pulses applied to the scanning tunnelling microscope tip.

  13. Adapting a compact confocal microscope system to a two-photon excitation fluorescence imaging architecture.

    PubMed

    Diaspro, A; Corosu, M; Ramoino, P; Robello, M

    1999-11-01

    Within the framework of a national National Institute of Physics of Matter (INFM) project, we have realised a two-photon excitation (TPE) fluorescence microscope based on a new generation commercial confocal scanning head. The core of the architecture is a mode-locked Ti:Sapphire laser (Tsunami 3960, Spectra Physics Inc., Mountain View, CA) pumped by a high-power (5 W, 532 nm) laser (Millennia V, Spectra Physics Inc.) and an ultracompact confocal scanning head, Nikon PCM2000 (Nikon Instruments, Florence, Italy) using a single-pinhole design. Three-dimensional point-spread function has been measured to define spatial resolution performances. The TPE microscope has been used with a wide range of excitable fluorescent molecules (DAPI, Fura-2, Indo-1, DiOC(6)(3), fluoresceine, Texas red) covering a single photon spectral range from UV to green. An example is reported on 3D imaging of the helical structure of the sperm head of the Octopus Eledone cirrhosa labelled with an UV excitable dye, i.e., DAPI. The system can be easily switched for operating both in conventional and two-photon mode. Copyright 1999 Wiley-Liss, Inc.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miranda, Adelaide; De Beule, Pieter A. A., E-mail: pieter.de-beule@inl.int; Martins, Marco

    Combined microscopy techniques offer the life science research community a powerful tool to investigate complex biological systems and their interactions. Here, we present a new combined microscopy platform based on fluorescence optical sectioning microscopy through aperture correlation microscopy with a Differential Spinning Disk (DSD) and nanomechanical mapping with an Atomic Force Microscope (AFM). The illumination scheme of the DSD microscope unit, contrary to standard single or multi-point confocal microscopes, provides a time-independent illumination of the AFM cantilever. This enables a distortion-free simultaneous operation of fluorescence optical sectioning microscopy and atomic force microscopy with standard probes. In this context, we discussmore » sample heating due to AFM cantilever illumination with fluorescence excitation light. Integration of a DSD fluorescence optical sectioning unit with an AFM platform requires mitigation of mechanical noise transfer of the spinning disk. We identify and present two solutions to almost annul this noise in the AFM measurement process. The new combined microscopy platform is applied to the characterization of a DOPC/DOPS (4:1) lipid structures labelled with a lipophilic cationic indocarbocyanine dye deposited on a mica substrate.« less

  15. In vivo time-serial multi-modality optical imaging in a mouse model of ovarian tumorigenesis

    PubMed Central

    Watson, Jennifer M; Marion, Samuel L; Rice, Photini F; Bentley, David L; Besselsen, David G; Utzinger, Urs; Hoyer, Patricia B; Barton, Jennifer K

    2014-01-01

    Identification of the early microscopic changes associated with ovarian cancer may lead to development of a diagnostic test for high-risk women. In this study we use optical coherence tomography (OCT) and multiphoton microscopy (MPM) (collecting both two photon excited fluorescence [TPEF] and second harmonic generation [SHG]) to image mouse ovaries in vivo at multiple time points. We demonstrate the feasibility of imaging mouse ovaries in vivo during a long-term survival study and identify microscopic changes associated with early tumor development. These changes include alterations in tissue microstructure, as seen by OCT, alterations in cellular fluorescence and morphology, as seen by TPEF, and remodeling of collagen structure, as seen by SHG. These results suggest that a combined OCT-MPM system may be useful for early detection of ovarian cancer. PMID:24145178

  16. Low-energy electron point projection microscopy/diffraction study of suspended graphene

    NASA Astrophysics Data System (ADS)

    Hsu, Wei-Hao; Chang, Wei-Tse; Lin, Chun-Yueh; Chang, Mu-Tung; Hsieh, Chia-Tso; Wang, Chang-Ran; Lee, Wei-Li; Hwang, Ing-Shouh

    2017-11-01

    In this work, we present our study of suspended graphene with low-energy electrons based on a point projection microscopic/diffractive imaging technique. Both exfoliated and chemical vapor deposition (CVD) graphene samples were studied in an ultra-high vacuum chamber. This method allows imaging of individual adsorbates at the nanometer scale and characterizing graphene layers, graphene lattice orientations, ripples on graphene membranes, etc. We found that long-duration exposure to low-energy electron beams induced aggregation of adsorbates on graphene when the electron dose rate was above a certain level. We also discuss the potential of this technique to conduct coherent diffractive imaging for determining the atomic structures of biological molecules adsorbed on suspended graphene.

  17. Dark-field imaging based on post-processed electron backscatter diffraction patterns of bulk crystalline materials in a scanning electron microscope.

    PubMed

    Brodusch, Nicolas; Demers, Hendrix; Gauvin, Raynald

    2015-01-01

    Dark-field (DF) images were acquired in the scanning electron microscope with an offline procedure based on electron backscatter diffraction (EBSD) patterns (EBSPs). These EBSD-DF images were generated by selecting a particular reflection on the electron backscatter diffraction pattern and by reporting the intensity of one or several pixels around this point at each pixel of the EBSD-DF image. Unlike previous studies, the diffraction information of the sample is the basis of the final image contrast with a pixel scale resolution at the EBSP providing DF imaging in the scanning electron microscope. The offline facility of this technique permits the selection of any diffraction condition available in the diffraction pattern and displaying the corresponding image. The high number of diffraction-based images available allows a better monitoring of deformation structures compared to electron channeling contrast imaging (ECCI) which is generally limited to a few images of the same area. This technique was applied to steel and iron specimens and showed its high capability in describing more rigorously the deformation structures around micro-hardness indents. Due to the offline relation between the reference EBSP and the EBSD-DF images, this new technique will undoubtedly greatly improve our knowledge of deformation mechanism and help to improve our understanding of the ECCI contrast mechanisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Endoscopy in neuro-otologic surgery.

    PubMed

    Wackym, Phillip A; King, Wesley A; Meyer, Glenn A; Poe, Dennis S

    2002-04-01

    Endoscopy offers several distinct advantages over the operating microscope during neuro-otologic surgery that make it an excellent adjunctive tool to the microscope or independent modality during cranial base surgery. The high magnification gives excellent definition of perforating blood vessels, cranial nerves, and neural structures, which in many cases is superior to that achieved with the microscope. Furthermore, the use of angled or flexible endoscopes allows one to look around corners and behind anatomic structures blocking the view seen via a 0 degree microscope. Endoscopy also has the theoretical advantage that a less invasive operative procedure is required, which should reduce the operative morbidity. Several notable disadvantages of endoscopy include the problems associated with blood soiling the endoscope, making visualization difficult or impossible, the lack of readily available instrumentation designed specifically for endoscopic neuro-otology, and the poor overview of the operative field. This last point is an important one because the endoscope is placed adjacent to the lesion and does not allow one to look backward to prevent [figure: see text] injury to structures next to the shaft of the telescope. Furthermore, the surgeon must be cognizant of potential thermal injury to structures caused by the heat generated by the light source. The present endoscopic technology limits the image that the surgeon sees to two dimensions, which results in certain unique problems when operating in a three-dimensional milieu. Because of this, there is a steep learning curve to acquire endoscopic dexterity and three-dimensional orientation. Finally, bimanual operation requires the use of an articulated endoscope holder or the commitment of the co-surgeon to hold the endoscope. One of the limitations of the operative microscope is that the angle of view is determined by the distance of the lens to the skull, retractor, or obstructing tissue, which is a function of the lens focal length; the longer the focal length, the narrower the viewing angle. During most microsurgical procedures, the focal distance varies between 200 and 400 mm. Using a previous analogy, if one looks through a door's keyhole at close range, nearly the entire room on the opposite side of the door can be seen, although nothing can be seen when the hole is viewed from a long distance. This is similar to what happens when using the endoscope with focal lengths ranging from 5 to 20 mm: a wider angle of view can be achieved. Based on their, experience the authors believe that endoscopes can be used safely during neuro-otologic surgery. As an adjunct to or substitution for the operative microscope, this modality does improve visualization of bony, neural, and vascular structures while minimizing cerebellar retraction.

  19. Molecular, mesoscopic and microscopic structure evolution during amylase digestion of extruded maize and high amylose maize starches.

    PubMed

    Shrestha, Ashok K; Blazek, Jaroslav; Flanagan, Bernadine M; Dhital, Sushil; Larroque, Oscar; Morell, Matthew K; Gilbert, Elliot P; Gidley, Michael J

    2015-03-15

    Extrusion processing of cereal starch granules with high (>50%) amylose content is a promising approach to create nutritionally desirable resistant starch, i.e. starch that escapes digestion in the small intestine. Whilst high amylose content seems to be required, the structural features responsible for the slow digestion of extrudates are not fully understood. We report the effects of partial enzyme digestion of extruded maize starches on amylopectin branch length profiles, double and single helix contents, crystallinity and lamellar periodicity. Comparing results for three extruded maize starches (27, 57, and 84% apparent amylose) that differ in amylase-sensitivity allows conclusions to be drawn concerning the rate-determining features operating under the digestion conditions used. Enzyme resistance is shown to originate from a combination of molecular and mesoscopic factors, including both recrystallization and an increase in very short branches during the digestion process. This is in contrast to the behaviour of the same starches in the granular form (Shrestha et al., 2012) where molecular and mesoscopic factors are secondary to microscopic structures in determining enzyme susceptibility. Based on the structure of residual material after long-time digestion (>8h), a model for resistant starch from processed high amylose maize starches is proposed based on a fringed micelle structure with lateral aggregation and enzyme susceptibility both limited by attached clusters of branch points. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. An ab initio study of the structure and atomic transport in bulk liquid Ag and its liquid-vapor interface

    NASA Astrophysics Data System (ADS)

    del Rio, Beatriz G.; González, David J.; González, Luis E.

    2016-10-01

    Several static and dynamic properties of bulk liquid Ag at a thermodynamic state near its triple point have been calculated by means of ab initio molecular dynamics simulations. The calculated static structure shows a very good agreement with the available experimental data. The dynamical structure reveals propagating excitations whose dispersion at long wavelengths is compatible with the experimental sound velocity. Results are also reported for other transport coefficients. Additional simulations have also been performed so as to study the structure of the free liquid surface. The calculated longitudinal ionic density profile shows an oscillatory behaviour, whose properties are analyzed through macroscopic and microscopic methods. The intrinsic X-ray reflectivity of the surface is predicted to show a layering peak associated to the interlayer distance.

  1. Development of a near-field/confocal polarization microscope for local measurements of anisotropy in organic films

    NASA Astrophysics Data System (ADS)

    Kosterin, Andrey Valentinovich

    2000-10-01

    Polarization microscopy is a powerful technique for imaging structure and stress distributions in many transparent materials, and has been particularly useful in morphology studies of polymer films. Recently the possibility of combining polarization imaging with near-field scanning optical microscopy (NSOM) has been demonstrated, offering new opportunities for studying molecular organization with better than 50 nm resolution. However, there are challenges associated with near-field polarization experiments on organic films: (1) the films are susceptible to damage by the near-field probe; (2) the phase shift or retardation (80) is small, often <0.1 rad; (3) interpretation of near-field images is complicated by topography and probe-sample coupling. To address these challenges, we have developed a new combined near-field/confocal polarization microscope and tested its sensitivity to linear birefringence in thin polymer films. For near-field imaging, the microscope employs a commercially available scanhead with cantilevered (bent) optical fiber probes. To study soft samples (point 1), we have modified the scanhead for tapping mode feedback, which eliminates probe-sample shear forces and prolongs the lifetime of the probe, while minimizing damage to the sample. To achieve sensitivity to small phase shifts (point 2), we have implemented the phase modulation (PM) technique in the optical path. Enhanced sensitivity relative to the standard crossed polarizers scheme is achieved because of the better signal-to-noise discrimination common to lock-in detection and because the detected first harmonic intensity, Io , is linearly proportional to deltatheta instead of (deltatheta) 2. To facilitate interpretation of near-field contrast (point 3), we have incorporated near-field and confocal channels in one instrument. This allows consecutive acquisition of both near-field and far-field images on the same sample area. Since the far-field images do not suffer from the same artifacts, they can be used as a source of independent information on sample optical properties. The combined near-field/confocal polarization microscope is discussed in this thesis as well as some of its applications. Specifically we consider the results of polyethylene oxide (PEO) and crosslinked polybutadiene (PB) thin film imaging.

  2. Microscopic Structure and Solubility Predictions of Multifunctional Solids in Supercritical Carbon Dioxide: A Molecular Simulation Study.

    PubMed

    Noroozi, Javad; Paluch, Andrew S

    2017-02-23

    Molecular dynamics simulations were employed to both estimate the solubility of nonelectrolyte solids, such as acetanilide, acetaminophen, phenacetin, methylparaben, and lidocaine, in supercritical carbon dioxide and understand the underlying molecular-level driving forces. The solubility calculations involve the estimation of the solute's limiting activity coefficient, which may be computed using conventional staged free-energy calculations. For the case of lidocaine, wherein the infinite dilution approximation is not appropriate, we demonstrate how the activity coefficient at finite concentrations may be estimated without additional effort using the dilute solution approximation and how this may be used to further understand the solvation process. Combining with experimental pure-solid properties, namely, the normal melting point and enthalpy of fusion, solubilities were estimated. The results are in good quantitative agreement with available experimental data, suggesting that molecular simulations may be a powerful tool for understanding supercritical processes and the design of carbon dioxide-philic molecular systems. Structural analyses were performed to shed light on the microscopic details of the solvation of different functional groups by carbon dioxide and the observed solubility trends.

  3. Microscopic solvent structure of subcritical and supercritical methanol from ultraviolet/visible absorption and fluorescence spectroscopies

    NASA Astrophysics Data System (ADS)

    Bulgarevich, Dmitry S.; Sako, Takeshi; Sugeta, Tsutomu; Otake, Katsuto; Takebayashi, Yoshihiro; Kamizawa, Chiyoshi; Uesugi, Masayuki; Kato, Masahiro

    1999-09-01

    Ultraviolet/visible absorption and fluorescence spectroscopies at different temperatures and pressures were applied to investigate the microscopic solvent structures of subcritical and supercritical methanol using 4-nitroanisole, ethyl-(4-dimethylamino)benzoate, Reichardt's dye, and anthracene as the probe molecules. It was found that at temperatures higher than 150 °C the long winding chains of sequentially hydrogen-bonded methanol molecules were probably broken, but the small hydrogen-bonded aggregates possibly existed in methanol even at higher temperature. It was also found that the solvation process of the anthracene molecule in the S0-ground state obeyed the Langmuir adsorption model. However, in the case of fluorescence measurements in supercritical methanol, we detected deviations from the simple Langmuir adsorption model. These deviations were explained in terms of preferential solvation of the solvent molecules around photoexcited anthracene. Judging from the experimental results, it was concluded that the local density augmentation of the supercritical methanol around the nonpolar solute was a short-ranged effect, which did not correspond directly to the large isothermal compressibility of fluid near the critical point.

  4. Identification and quantitative evaluation of the fiber structure in the pathological tissue using Mueller matrix microscope

    NASA Astrophysics Data System (ADS)

    Zhou, Jialing; He, Honghui; Wang, Ye; Ma, Hui

    2017-02-01

    Fiber structure changes in the various pathological processes, such as the increase of fibrosis in liver diseases, the derangement of fiber in cervical cancer and so on. Currently, clinical pathologic diagnosis is regarded as the golden criterion, but different doctors with discrepancy in knowledge and experience may obtain different conclusions. Up to a point, quantitative evaluation of the fiber structure in the pathological tissue can be of great service to quantitative diagnosis. Mueller matrix measurement is capable of probing comprehensive microstructural information of samples and different wavelength of lights can provide more information. In this paper, we use a Mueller matrix microscope with light sources in six different wavelength. We use unstained, dewaxing liver tissue slices in four stages and the pathological biopsy of the filtration channels from rabbit eyes as samples. We apply the Mueller matrix polar decomposition (MMPD) parameter δ which corresponds to retardance to liver slices. The mean value of abnormal region get bigger when the level of fibrosis get higher and light in short wavelength is more sensitive to the microstructure of fiber. On the other hand, we use the Mueller matrix transformation (MMT) parameter Φ which is associated to the angel of fast axis in the analysis of the slices of the filtration channels from rabbit eyes. The value of kurtosis and the value of skewness shows big difference between new born region and normal region and can reveal the arrangement of fiber. These results indicate that the Mueller matrix microscope has great potential in auxiliary diagnosis.

  5. A scanning tunneling microscope capable of imaging specified micron-scale small samples.

    PubMed

    Tao, Wei; Cao, Yufei; Wang, Huafeng; Wang, Kaiyou; Lu, Qingyou

    2012-12-01

    We present a home-built scanning tunneling microscope (STM) which allows us to precisely position the tip on any specified small sample or sample feature of micron scale. The core structure is a stand-alone soft junction mechanical loop (SJML), in which a small piezoelectric tube scanner is mounted on a sliding piece and a "U"-like soft spring strip has its one end fixed to the sliding piece and its opposite end holding the tip pointing to the sample on the scanner. Here, the tip can be precisely aligned to a specified small sample of micron scale by adjusting the position of the spring-clamped sample on the scanner in the field of view of an optical microscope. The aligned SJML can be transferred to a piezoelectric inertial motor for coarse approach, during which the U-spring is pushed towards the sample, causing the tip to approach the pre-aligned small sample. We have successfully approached a hand cut tip that was made from 0.1 mm thin Pt∕Ir wire to an isolated individual 32.5 × 32.5 μm(2) graphite flake. Good atomic resolution images and high quality tunneling current spectra for that specified tiny flake are obtained in ambient conditions with high repeatability within one month showing high and long term stability of the new STM structure. In addition, frequency spectra of the tunneling current signals do not show outstanding tip mount related resonant frequency (low frequency), which further confirms the stability of the STM structure.

  6. Microscopic heat pulses induce contraction of cardiomyocytes without calcium transients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oyama, Kotaro; Mizuno, Akari; Shintani, Seine A.

    Highlights: Black-Right-Pointing-Pointer Infra-red laser beam generates microscopic heat pulses. Black-Right-Pointing-Pointer Heat pulses induce contraction of cardiomyocytes. Black-Right-Pointing-Pointer Ca{sup 2+} transients during the contraction were not detected. Black-Right-Pointing-Pointer Skinned cardiomyocytes in free Ca{sup 2+} solution also contracted. Black-Right-Pointing-Pointer Heat pulses regulated the contractions without Ca{sup 2+} dynamics. -- Abstract: It was recently demonstrated that laser irradiation can control the beating of cardiomyocytes and hearts, however, the precise mechanism remains to be clarified. Among the effects induced by laser irradiation on biological tissues, temperature change is one possible effect which can alter physiological functions. Therefore, we investigated the mechanism by which heatmore » pulses, produced by infra-red laser light under an optical microscope, induce contractions of cardiomyocytes. Here we show that microscopic heat pulses induce contraction of rat adult cardiomyocytes. The temperature increase, {Delta}T, required for inducing contraction of cardiomyocytes was dependent upon the ambient temperature; that is, {Delta}T at physiological temperature was lower than that at room temperature. Ca{sup 2+} transients, which are usually coupled to contraction, were not detected. We confirmed that the contractions of skinned cardiomyocytes were induced by the heat pulses even in free Ca{sup 2+} solution. This heat pulse-induced Ca{sup 2+}-decoupled contraction technique has the potential to stimulate heart and skeletal muscles in a manner different from the conventional electrical stimulations.« less

  7. Defect-Enabled Electrical Current Leakage in Ultraviolet Light-Emitting Diodes

    DOE PAGES

    Moseley, Michael William; Allerman, Andrew A.; Crawford, Mary H.; ...

    2015-04-13

    The AlGaN materials system offers a tunable, ultra-wide bandgap that is exceptionally useful for high-power electronics and deep ultraviolet optoelectronics. Moseley et al. (pp. 723–726) investigate a structural defect known as an open-core threading dislocation or ''nanopipe'' that is particularly detrimental to devices that employ these materials. Furthermore, an AlGaN thin film was synthesized using metal-organic chemical-vapor deposition. Electrical current leakage is detected at a discrete point using a conductive atomic-force microscope (CAFM). However, no physical feature or abnormality at this location was visible by an optical microscope. The AlGaN thin film was then etched in hot phosphoric acid, andmore » the same location that was previously analyzed was revisited with the CAFM. The point that previously exhibited electrical current leakage had been decorated with a 1.1 μm wide hexagonal pit, which identified the site of electrical current leakage as a nanopipe and allows these defects to be easily observed by optical microscopy. Moreover, with this nanopipe identification and quantification strategy, the authors were able to correlate decreasing ultraviolet light-emitting diode optical output power with increasing nanopipe density.« less

  8. 3D image restoration for confocal microscopy: toward a wavelet deconvolution for the study of complex biological structures

    NASA Astrophysics Data System (ADS)

    Boutet de Monvel, Jacques; Le Calvez, Sophie; Ulfendahl, Mats

    2000-05-01

    Image restoration algorithms provide efficient tools for recovering part of the information lost in the imaging process of a microscope. We describe recent progress in the application of deconvolution to confocal microscopy. The point spread function of a Biorad-MRC1024 confocal microscope was measured under various imaging conditions, and used to process 3D-confocal images acquired in an intact preparation of the inner ear developed at Karolinska Institutet. Using these experiments we investigate the application of denoising methods based on wavelet analysis as a natural regularization of the deconvolution process. Within the Bayesian approach to image restoration, we compare wavelet denoising with the use of a maximum entropy constraint as another natural regularization method. Numerical experiments performed with test images show a clear advantage of the wavelet denoising approach, allowing to `cool down' the image with respect to the signal, while suppressing much of the fine-scale artifacts appearing during deconvolution due to the presence of noise, incomplete knowledge of the point spread function, or undersampling problems. We further describe a natural development of this approach, which consists of performing the Bayesian inference directly in the wavelet domain.

  9. Capillary electrophoresis of conidia from cultivated microscopic filamentous fungi.

    PubMed

    Horká, Marie; Růzicka, Filip; Kubesová, Anna; Holá, Veronika; Slais, Karel

    2009-05-15

    In immunocompromised people fungal agents are able to cause serious infections with high mortality rate. An early diagnosis can increase the chances of survival of the affected patients. Simultaneously, the fungi produce toxins and they are frequent cause of allergy. Currently, various methods are used for detection and identification of these pathogens. They use microscopic examination and growth characteristic of the fungi. New methods are based on the analysis of structural elements of the target microorganisms such as proteins, polysaccharides, glycoproteins, nucleic acids, etc. for the construction of antibodies, probes, and primers for detection. The above-mentioned methods are time-consuming and elaborate. Here hydrophobic conidia from the cultures of different strains of the filamentous fungi were focused and separated by capillary zone electrophoresis and capillary isoelectric focusing. The detection was optimized by dynamic modifying of conidia by the nonionogenic tenside on the basis of pyrenebutanoate. Down to 10 labeled conidia of the fungal strains were fluorometrically detected, and isoelectric points of conidia were determined. The observed isoelectric points were compared with those obtained from the separation of the cultured clinical samples, and they were found to be not host-specific.

  10. Large area fabrication of plasmonic nanoparticle grating structure by conventional scanning electron microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sudheer,, E-mail: sudheer@rrcat.gov.in; Tiwari, P.; Rai, V. N.

    Plasmonic nanoparticle grating (PNG) structure of different periods has been fabricated by electron beam lithography using silver halide based transmission electron microscope film as a substrate. Conventional scanning electron microscope is used as a fabrication tool for electron beam lithography. Optical microscope and energy dispersive spectroscopy (EDS) have been used for its morphological and elemental characterization. Optical characterization is performed by UV-Vis absorption spectroscopic technique.

  11. Mars Life? - Microscopic Structures

    NASA Image and Video Library

    1996-08-09

    In the center of this electron microscope image of a small chip from a meteorite are several tiny structures that are possible microscopic fossils of primitive, bacteria-like organisms that may have lived on Mars more than 3.6 billion years ago. http://photojournal.jpl.nasa.gov/catalog/PIA00283

  12. A Rhinocerotid Skull Cooked-to-Death in a 9.2 Ma-Old Ignimbrite Flow of Turkey

    PubMed Central

    Antoine, Pierre-Olivier; Orliac, Maeva J.; Atici, Gokhan; Ulusoy, Inan; Sen, Erdal; Çubukçu, H. Evren; Albayrak, Ebru; Oyal, Neşe; Aydar, Erkan; Sen, Sevket

    2012-01-01

    Background Preservation of fossil vertebrates in volcanic rocks is extremely rare. An articulated skull (cranium and mandible) of a rhinoceros was found in a 9.2±0.1 Ma-old ignimbrite of Cappadocia, Central Turkey. The unusual aspect of the preserved hard tissues of the skull (rough bone surface and brittle dentine) allows suspecting a peri-mortem exposure to a heating source. Methodology/Principal Findings Here we describe and identify the skull as belonging to the large two-horned rhinocerotine Ceratotherium neumayri, well-known in the late Miocene of the Eastern Mediterranean Province. Gross structural features and microscopic changes of hard tissues (bones and teeth) are then monitored and compared to the results of forensic and archaeological studies and experiments focusing on heating effects, in order to reconstruct the hypothetical peri-mortem conditions. Macroscopic and microscopic structural changes on compact bones (canaliculi and lamellae vanished), as well as partial dentine/cementum disintegration, drastic enamel-dentine disjunctions or microscopic cracks affecting all hard dental tissues (enamel, cementum, and dentine) point to continued exposures to temperatures around 400–450°C. Comparison to other cases of preservation of fossil vertebrates within volcanic rocks points unambiguously to some similarity with the 79 AD Plinian eruption of the Vesuvius, in Italy. Conclusions/Significance A 9.2±0.1 Ma-old pyroclastic density current, sourced from the Çardak caldera, likely provoked the instant death of the Karacaşar rhino, before the body of the latter experienced severe dehydration (leading to the wide and sustainable opening of the mouth), was then dismembered within the pyroclastic flow of subaerial origin, the skull being separated from the remnant body and baked under a temperature approximating 400°C, then transported northward, rolled, and trapped in disarray into that pyroclastic flow forming the pinkish Kavak-4 ignimbrite ∼30 km North from the upper Miocene vent. PMID:23185510

  13. The Relationship Between Microscopic Grain Surface Structure and the Dynamic Capillary-Driven Advance of Water Films over Individual Dry Natural Sand Grains

    NASA Astrophysics Data System (ADS)

    Kibbey, T. C. G.; Adegbule, A.; Yan, S.

    2017-12-01

    The movement of nonvolatile solutes in unsaturated porous media at low water contents depends on transport in surface-associated water films. The focus of the work described here was on studying solute movement in water films advancing by capillary forces over initially-dry grain surfaces, to understand how microscopic surface roughness features influence the initial velocity of water film advance. For this work, water containing a non-adsorbing conservative tracer was used to track the movement of advancing water films. A stainless steel capillary tube connected to an external reservoir a fixed distance below the grain surface was used to transmit solution to the grain surface under negative pressure (positive capillary pressure), consistent with conditions that might be expected in the unsaturated zone. The small internal diameter of the capillary prevents solution from draining out of the capillary back into the reservoir. When the capillary is contacted with a grain surface, capillary forces that result from contact between the fluid and the rough grain surface cause water films to wick across the grain surface. Multiple experiments were conducted on the same grain, rotating the grain and varying the capillary contact point around the circumference of the grain. Imaging was conducted at fixed intervals using an automated Extended Depth of Field (EDF) imaging system, and images were analyzed to determine initial velocity. Grain surfaces were then characterized through scanning electron microscope (SEM) imaging, using a hybrid stereoscopic reconstruction method designed to extract maximum detail in creating elevation maps of geologic surfaces from tilted pairs of SEM images. The resulting elevation maps were used to relate surface roughness profiles around the grain with initial velocities. Results suggest that velocity varies significant with contact point around an individual grain, and correlates quantitatively with the local grain surface structure. Preliminary simulation results will also be discussed.

  14. Mars Life? - Microscopic Tubular Structures

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This electron microscope image shows extremely tiny tubular structures that are possible microscopic fossils of bacteria-like organisms that may have lived on Mars more than 3.6 billion years ago. A two-year investigation by a NASA research team found organic molecules, mineral features characteristic of biological activity and possible microscopic fossils such as these inside of an ancient Martian rock that fell to Earth as a meteorite. The largest possible fossils are less than 1/100th the diameter of a human hair in size while most are ten times smaller. The fossil-like structures were found in carbonate minerals formed along pre-existing fractures in the meteorite in a fashion similar to the way fossils occur in limestone on Earth, although on a microscopic scale.

  15. Automated adaptive inference of phenomenological dynamical models.

    PubMed

    Daniels, Bryan C; Nemenman, Ilya

    2015-08-21

    Dynamics of complex systems is often driven by large and intricate networks of microscopic interactions, whose sheer size obfuscates understanding. With limited experimental data, many parameters of such dynamics are unknown, and thus detailed, mechanistic models risk overfitting and making faulty predictions. At the other extreme, simple ad hoc models often miss defining features of the underlying systems. Here we develop an approach that instead constructs phenomenological, coarse-grained models of network dynamics that automatically adapt their complexity to the available data. Such adaptive models produce accurate predictions even when microscopic details are unknown. The approach is computationally tractable, even for a relatively large number of dynamical variables. Using simulated data, it correctly infers the phase space structure for planetary motion, avoids overfitting in a biological signalling system and produces accurate predictions for yeast glycolysis with tens of data points and over half of the interacting species unobserved.

  16. Ordered Structure Formed by Biologically Related Molecules

    NASA Astrophysics Data System (ADS)

    Hatta, Ichiro; Nishino, Junichiro; Sumi, Akinori; Hibino, Masahiro

    1995-07-01

    The two-dimensional arrangement of biologically related molecules was studied by means of scanning probe microscopy. For monolayers of fatty acid molecules with a saturated hydrocarbon chain adsorbed on a graphite substrate, in the scanning tunneling microscope image, the position associated with the carbon atoms was clearly distinguished. In addition, based on the image for fatty acid molecules with an unsaturated hydrocarbon chain, at the position of a double bond, local electrical conductance was found to increase. Based on the images, it was pointed out that not the position of each carbon but the interaction between a graphite substrate and an alkyl chain plays an important role in imaging. On the other hand, for the surface of Langmuir-Blodgett films composed of phosphatidic acids with cations, the scanning force microscope image shows, for the first time, evidence of the methyl ends in the arrangement of phospholipid molecules.

  17. Exceptionally preserved Cambrian loriciferans and the early animal invasion of the meiobenthos.

    PubMed

    Harvey, Thomas H P; Butterfield, Nicholas J

    2017-01-30

    Microscopic animals that live among and between sediment grains (meiobenthic metazoans) are key constituents of modern aquatic ecosystems, but are effectively absent from the fossil record. We describe an assemblage of microscopic fossil loriciferans (Ecdysozoa, Loricifera) from the late Cambrian Deadwood Formation of western Canada. The fossils share a characteristic head structure and minute adult body size (~300 μm) with modern loriciferans, indicating the early evolution and subsequent conservation of an obligate, permanently meiobenthic lifestyle. The unsuspected fossilization potential of such small animals in marine mudstones offers a new search image for the earliest ecdysozoans and other animals, although the anatomical complexity of loriciferans points to their evolutionary miniaturization from a larger-bodied ancestor. The invasion of animals into ecospace that was previously monopolized by protists will have contributed considerably to the revolutionary geobiological feedbacks of the Proterozoic/Phanerozoic transition.

  18. A novel system for water soluble protein encapsulation with high efficiency: "micelles enhanced" polyelectrolyte capsules.

    PubMed

    Li, Xiaodong; Li, Xiaohui; Zhang, Jianxiang; Zhao, Shifang; Shen, Jiacong

    2008-06-01

    Novel "micelles enhanced" polyelectrolyte (PE) capsules based on functional templates of hybrid calcium carbonate were fabricated. Evidences suggested that the structure of capsule wall was different from that of conventional PE capsules, and the wall permeability of these PE capsules changed significantly. Lysozyme, a positively charged protein in neutral solution, was studied as a model protein to be encapsulated into the "micelles enhanced" PE capsules. Confocal laser scanning microscope was used to observe the entrapping process in real time, while UV-Vis spectroscope and scanning force microscope measurements suggested the high efficiency of encapsulation. In addition, the fluorescence recovery after photobleaching technique was employed to determine the existence form of deposited molecules. Further studies showed even negatively charged water-soluble peptides or proteins can be encapsulated into these hybrid capsules by modulating the pH value in bulk solution under its isoelectronic point as well. Copyright 2007 Wiley Periodicals, Inc.

  19. Automated adaptive inference of phenomenological dynamical models

    PubMed Central

    Daniels, Bryan C.; Nemenman, Ilya

    2015-01-01

    Dynamics of complex systems is often driven by large and intricate networks of microscopic interactions, whose sheer size obfuscates understanding. With limited experimental data, many parameters of such dynamics are unknown, and thus detailed, mechanistic models risk overfitting and making faulty predictions. At the other extreme, simple ad hoc models often miss defining features of the underlying systems. Here we develop an approach that instead constructs phenomenological, coarse-grained models of network dynamics that automatically adapt their complexity to the available data. Such adaptive models produce accurate predictions even when microscopic details are unknown. The approach is computationally tractable, even for a relatively large number of dynamical variables. Using simulated data, it correctly infers the phase space structure for planetary motion, avoids overfitting in a biological signalling system and produces accurate predictions for yeast glycolysis with tens of data points and over half of the interacting species unobserved. PMID:26293508

  20. Adaptive optical microscope for brain imaging in vivo

    NASA Astrophysics Data System (ADS)

    Wang, Kai

    2017-04-01

    The optical heterogeneity of biological tissue imposes a major limitation to acquire detailed structural and functional information deep in the biological specimens using conventional microscopes. To restore optimal imaging performance, we developed an adaptive optical microscope based on direct wavefront sensing technique. This microscope can reliably measure and correct biological samples induced aberration. We demonstrated its performance and application in structural and functional brain imaging in various animal models, including fruit fly, zebrafish and mouse.

  1. Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device.

    PubMed

    Hahn, Paul; Migacz, Justin; O'Donnell, Rachelle; Day, Shelley; Lee, Annie; Lin, Phoebe; Vann, Robin; Kuo, Anthony; Fekrat, Sharon; Mruthyunjaya, Prithvi; Postel, Eric A; Izatt, Joseph A; Toth, Cynthia A

    2013-01-01

    The authors have recently developed a high-resolution microscope-integrated spectral domain optical coherence tomography (MIOCT) device designed to enable OCT acquisition simultaneous with surgical maneuvers. The purpose of this report is to describe translation of this device from preclinical testing into human intraoperative imaging. Before human imaging, surgical conditions were fully simulated for extensive preclinical MIOCT evaluation in a custom model eye system. Microscope-integrated spectral domain OCT images were then acquired in normal human volunteers and during vitreoretinal surgery in patients who consented to participate in a prospective institutional review board-approved study. Microscope-integrated spectral domain OCT images were obtained before and at pauses in surgical maneuvers and were compared based on predetermined diagnostic criteria to images obtained with a high-resolution spectral domain research handheld OCT system (HHOCT; Bioptigen, Inc) at the same time point. Cohorts of five consecutive patients were imaged. Successful end points were predefined, including ≥80% correlation in identification of pathology between MIOCT and HHOCT in ≥80% of the patients. Microscope-integrated spectral domain OCT was favorably evaluated by study surgeons and scrub nurses, all of whom responded that they would consider participating in human intraoperative imaging trials. The preclinical evaluation identified significant improvements that were made before MIOCT use during human surgery. The MIOCT transition into clinical human research was smooth. Microscope-integrated spectral domain OCT imaging in normal human volunteers demonstrated high resolution comparable to tabletop scanners. In the operating room, after an initial learning curve, surgeons successfully acquired human macular MIOCT images before and after surgical maneuvers. Microscope-integrated spectral domain OCT imaging confirmed preoperative diagnoses, such as full-thickness macular hole and vitreomacular traction, and demonstrated postsurgical changes in retinal morphology. Two cohorts of five patients were imaged. In the second cohort, the predefined end points were exceeded with ≥80% correlation between microscope-mounted OCT and HHOCT imaging in 100% of the patients. This report describes high-resolution MIOCT imaging using the prototype device in human eyes during vitreoretinal surgery, with successful achievement of predefined end points for imaging. Further refinements and investigations will be directed toward fully integrating MIOCT with vitreoretinal and other ocular surgery to image surgical maneuvers in real time.

  2. Demonstration of a plenoptic microscope based on laser optical feedback imaging.

    PubMed

    Glastre, Wilfried; Hugon, Olivier; Jacquin, Olivier; Guillet de Chatellus, Hugues; Lacot, Eric

    2013-03-25

    A new kind of plenoptic imaging system based on Laser Optical Feedback Imaging (LOFI) is presented and is compared to another previously existing device based on microlens array. Improved photometric performances, resolution and depth of field are obtained at the price of a slow point by point scanning. Main properties of plenoptic microscopes such as numerical refocusing on any curved surface or aberrations compensation are both theoretically and experimentally demonstrated with a LOFI-based device.

  3. Mars Life? - Microscopic Tubular Structures

    NASA Image and Video Library

    1996-08-09

    This electron microscope image shows tubular structures of likely Martian origin. These structures are very similar in size and shape to extremely tiny microfossils found in some Earth rocks. http://photojournal.jpl.nasa.gov/catalog/PIA00287

  4. nth-Nearest-neighbor distribution functions of an interacting fluid from the pair correlation function: a hierarchical approach.

    PubMed

    Bhattacharjee, Biplab

    2003-04-01

    The paper presents a general formalism for the nth-nearest-neighbor distribution (NND) of identical interacting particles in a fluid confined in a nu-dimensional space. The nth-NND functions, W(n,r) (for n=1,2,3, em leader) in a fluid are obtained hierarchically in terms of the pair correlation function and W(n-1,r) alone. The radial distribution function (RDF) profiles obtained from the molecular dynamics (MD) simulation of Lennard-Jones (LJ) fluid is used to illustrate the results. It is demonstrated that the collective structural information contained in the maxima and minima of the RDF profiles being resolved in terms of individual NND functions may provide more insights about the microscopic neighborhood structure around a reference particle in a fluid. Representative comparison between the results obtained from the formalism and the MD simulation data shows good agreement. Apart from the quantities such as nth-NND functions and nth-nearest-neighbor distances, the average neighbor population number is defined. These quantities are evaluated for the LJ model system and interesting density dependence of the microscopic neighborhood shell structures are discussed in terms of them. The relevance of the NND functions in various phenomena is also pointed out.

  5. nth-nearest-neighbor distribution functions of an interacting fluid from the pair correlation function: A hierarchical approach

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Biplab

    2003-04-01

    The paper presents a general formalism for the nth-nearest-neighbor distribution (NND) of identical interacting particles in a fluid confined in a ν-dimensional space. The nth-NND functions, W(n,r¯) (for n=1,2,3,…) in a fluid are obtained hierarchically in terms of the pair correlation function and W(n-1,r¯) alone. The radial distribution function (RDF) profiles obtained from the molecular dynamics (MD) simulation of Lennard-Jones (LJ) fluid is used to illustrate the results. It is demonstrated that the collective structural information contained in the maxima and minima of the RDF profiles being resolved in terms of individual NND functions may provide more insights about the microscopic neighborhood structure around a reference particle in a fluid. Representative comparison between the results obtained from the formalism and the MD simulation data shows good agreement. Apart from the quantities such as nth-NND functions and nth-nearest-neighbor distances, the average neighbor population number is defined. These quantities are evaluated for the LJ model system and interesting density dependence of the microscopic neighborhood shell structures are discussed in terms of them. The relevance of the NND functions in various phenomena is also pointed out.

  6. Structure of electric double layers in capacitive systems and to what extent (classical) density functional theory describes it

    NASA Astrophysics Data System (ADS)

    Härtel, Andreas

    2017-10-01

    Ongoing scientific interest is aimed at the properties and structure of electric double layers (EDLs), which are crucial for capacitive energy storage, water treatment, and energy harvesting technologies like supercapacitors, desalination devices, blue engines, and thermocapacitive heat-to-current converters. A promising tool to describe their physics on a microscopic level is (classical) density functional theory (DFT), which can be applied in order to analyze pair correlations and charge ordering in the primitive model of charged hard spheres. This simple model captures the main properties of ionic liquids and solutions and it predicts many of the phenomena that occur in EDLs. The latter often lead to anomalous response in the differential capacitance of EDLs. This work constructively reviews the powerful theoretical framework of DFT and its recent developments regarding the description of EDLs. It explains to what extent current approaches in DFT describe structural ordering and in-plane transitions in EDLs, which occur when the corresponding electrodes are charged. Further, the review briefly summarizes the history of modeling EDLs, presents applications, and points out limitations and strengths in present theoretical approaches. It concludes that DFT as a sophisticated microscopic theory for ionic systems is expecting a challenging but promising future in both fundamental research and applications in supercapacitive technologies.

  7. Characterization of buried metal-molecule-metal junctions using Fourier transform infrared microspectroscopy

    NASA Astrophysics Data System (ADS)

    Babayco, Christopher B.; Land, Donald P.; Parikh, Atul N.; Kiehl, Richard A.

    2014-09-01

    We have devised an infrared spectromicroscopy based experimental configuration to enable structural characterization of buried molecular junctions. Our design utilizes a small mercury drop at the focal point of an infrared microscope to act as a mirror in studying metal-molecule-metal (MmM) junctions. An organic molecular monolayer is formed either directly on the mercury drop or on a thin, infrared (IR) semi-transparent layer of Au deposited onto an IR transparent, undoped silicon substrate. Following the formation of the monolayer, films on either metal can be examined independently using specular reflection spectroscopy. Furthermore, by bringing together the two monolayers, a buried molecular bilayer within the MmM junction can be characterized. Independent examination of each half of the junction prior to junction formation also allows probing any structural and/or conformational changes that occur as a result of forming the bilayer. Because our approach allows assembling and disassembling microscopic junctions by forming and withdrawing Hg drops onto the monolayer covered metal, spatial mapping of junctions can be performed simply by translating the location of the derivatized silicon wafer. Finally, the applicability of this technique for the longer-term studies of changes in molecular structure in the presence of electrical bias is discussed.

  8. Optical second harmonic images of 90 deg domain structure in BaTiO3 and periodically inverted antiparallel domains in LiTaO3

    NASA Astrophysics Data System (ADS)

    Uesu, Y.; Kurimura, S.; Yamamoto, Y.

    1995-04-01

    Applied is a microscope to observations of 90 deg ferroelectric domain structure in BaTiO3 and inverted periodically are ferroelectric domains in LiTaO3. It is founded that the second harmonic generation microscope gives information which cannot be obtained by ordinary optical microscopes. The developed nonlinear optical microscope builds two dimensional second harmonic image of a specimen with inhomogenous distribution of d(sub ijk) and applied the microscope to observations of inhomogeneity in some nonlinear-optical organic microcrystals.

  9. Ion photon emission microscope

    DOEpatents

    Doyle, Barney L.

    2003-04-22

    An ion beam analysis system that creates microscopic multidimensional image maps of the effects of high energy ions from an unfocussed source upon a sample by correlating the exact entry point of an ion into a sample by projection imaging of the ion-induced photons emitted at that point with a signal from a detector that measures the interaction of that ion within the sample. The emitted photons are collected in the lens system of a conventional optical microscope, and projected on the image plane of a high resolution single photon position sensitive detector. Position signals from this photon detector are then correlated in time with electrical effects, including the malfunction of digital circuits, detected within the sample that were caused by the individual ion that created these photons initially.

  10. Microscopy with multimode fibers

    NASA Astrophysics Data System (ADS)

    Moser, Christophe; Papadopoulos, Ioannis; Farahi, Salma; Psaltis, Demetri

    2013-04-01

    Microscopes are usually thought of comprising imaging elements such as objectives and eye-piece lenses. A different type of microscope, used for endoscopy, consists of waveguiding elements such as fiber bundles, where each fiber in the bundle transports the light corresponding to one pixel in the image. Recently a new type of microscope has emerged that exploits the large number of propagating modes in a single multimode fiber. We have successfully produced fluorescence images of neural cells with sub-micrometer resolution via a 200 micrometer core multimode fiber. The method for achieving imaging consists of using digital phase conjugation to reproduce a focal spot at the tip of the multimode fiber. The image is formed by scanning the focal spot digitally and collecting the fluorescence point by point.

  11. Chain end distribution of block copolymer in two-dimensional microphase-separated structure studied by scanning near-field optical microscopy.

    PubMed

    Sekine, Ryojun; Aoki, Hiroyuki; Ito, Shinzaburo

    2009-10-01

    The chain end distribution of a block copolymer in a two-dimensional microphase-separated structure was studied by scanning near-field optical microscopy (SNOM). In the monolayer of poly(octadecyl methacrylate)-block-poly(isobutyl methacrylate) (PODMA-b-PiBMA), the free end of the PiBMA subchain was directly observed by SNOM, and the spatial distributions of the whole block and the chain end are examined and compared with the convolution of the point spread function of the microscope and distribution function of the model structures. It was found that the chain end distribution of the block copolymer confined in two dimensions has a peak near the domain center, being concentrated in the narrower region, as compared with three-dimensional systems.

  12. Quasiparticle Scattering in Type-II Weyl semimetal MoTe2.

    PubMed

    Lin, Chun-Liang; Arafune, Ryuichi; Minamitani, Emi; Kawai, Maki; Takagi, Noriaki

    2018-01-30

    The electronic structure of type-II Weyl semimetal molybdenum ditelluride (MoTe<sub>2</sub>) is studied by using scanning tunneling microscopy and density functional theory calculations. Through measuring energy-dependent quasiparticle interference (QPI) patterns with a cryogenic scanning tunneling microscope, several characteristic features are found in the QPI patterns. Two of them arise from the Weyl semimetal nature; one is the topological Fermi arc surface state and the other can be assigned to be a Weyl point. The remaining structures are derived from the scatterings relevant to the bulk electronic states. The findings lead to thorough understanding of the topological electronic structure of type-II Weyl semimetal MoTe<sub>2</sub>. © 2018 IOP Publishing Ltd.

  13. Nano-biosilica from marine diatoms: A brand new material for photonic applications

    NASA Astrophysics Data System (ADS)

    De Stefano, L.; Maddalena, P.; Moretti, L.; Rea, I.; Rendina, I.; De Tommasi, E.; Mocella, V.; De Stefano, M.

    2009-07-01

    Several biological organisms, from some sea shells to butterflies, exhibit sophisticated optical systems, which have been developed during the evolution of each species. The diatoms are microscopic algae enclosed between two valves of hydrated amorphous silica. These intricate structures, called frustules, show quite symmetric patterns of micrometric and nanometric pores. Their strong similarity with man-made objects suggests to exploit the optical properties of the frustules in light guiding and optical transducing. We have found very interesting results, both from the experimental and numerical points of view.

  14. A New Technique for Preserving the Form of Artificially Inflated Endophalli of Bees.

    PubMed

    Dutra, A L; Oliveira, R

    2017-04-01

    We present a simple technique for keeping the form of artificially expanded endophalli in bees (Hymenoptera). Endophalli were inflated using the introduction of low melting-point agarose from a syringe inserted in the anterior opening of the metasoma. Under refrigeration, the endophalli kept their expanded shape for up to three days allowing the description of structure, morphometric analyses, and examination of the external sculpturing of the cuticle under scanning electron microscope. The technique provides new possibilities for the study of functional morphology, sexual selection, and reconstruction of bee phylogeny.

  15. Characterisation of a resolution enhancing image inversion interferometer.

    PubMed

    Wicker, Kai; Sindbert, Simon; Heintzmann, Rainer

    2009-08-31

    Image inversion interferometers have the potential to significantly enhance the lateral resolution and light efficiency of scanning fluorescence microscopes. Self-interference of a point source's coherent point spread function with its inverted copy leads to a reduction in the integrated signal for off-axis sources compared to sources on the inversion axis. This can be used to enhance the resolution in a confocal laser scanning microscope. We present a simple image inversion interferometer relying solely on reflections off planar surfaces. Measurements of the detection point spread function for several types of light sources confirm the predicted performance and suggest its usability for scanning confocal fluorescence microscopy.

  16. Perspective: Electronic systems of knowledge in the world of virtual microscopy.

    PubMed

    Maybury, Terrence; Farah, Camile S

    2009-09-01

    Across a broad range of medical disciplines, learning how to use an optical or light microscope has been a mandatory inclusion in the undergraduate curriculum. The development of virtual microscopy (VM) technology during the past 10 years has called into question the use of the optical microscope in educational contexts. VM allows slide specimens to be digitized, which, in turn, allows the computer to mimic the workings of the light microscope. This move from analog technology (the light microscope) to digital technology (the computer as microscope) is part of the many significant changes going on in education, a singular manifestation of the broader move from print-literate traditions of knowledge (requiring literacy) to an electronics-literate, or "electrate," mode (requiring "electracy"). VM is here used as an exemplar of this broad transition from literacy to electracy, some components of which include data deluge, a multimodal structure, and modularity. Understandably, this transition is important to clarify educationally, especially in a global context mediated via digital means. A related aspect of these educational changes is the move from teacher-directed learning to student-centered learning, or "user-led education," which points to a redefinition of "pedagogy" as "andragogy." The dissemination of the specific value of VM, then, is critical to both learners and teachers and to a more coherent understanding of electracy. A practical consequence of this clarity might be a better application of this knowledge in the evolving fields of computer simulation and telemedicine, areas in which today's medical students will need future expertise.

  17. Photon event distribution sampling: an image formation technique for scanning microscopes that permits tracking of sub-diffraction particles with high spatial and temporal resolutions.

    PubMed

    Larkin, J D; Publicover, N G; Sutko, J L

    2011-01-01

    In photon event distribution sampling, an image formation technique for scanning microscopes, the maximum likelihood position of origin of each detected photon is acquired as a data set rather than binning photons in pixels. Subsequently, an intensity-related probability density function describing the uncertainty associated with the photon position measurement is applied to each position and individual photon intensity distributions are summed to form an image. Compared to pixel-based images, photon event distribution sampling images exhibit increased signal-to-noise and comparable spatial resolution. Photon event distribution sampling is superior to pixel-based image formation in recognizing the presence of structured (non-random) photon distributions at low photon counts and permits use of non-raster scanning patterns. A photon event distribution sampling based method for localizing single particles derived from a multi-variate normal distribution is more precise than statistical (Gaussian) fitting to pixel-based images. Using the multi-variate normal distribution method, non-raster scanning and a typical confocal microscope, localizations with 8 nm precision were achieved at 10 ms sampling rates with acquisition of ~200 photons per frame. Single nanometre precision was obtained with a greater number of photons per frame. In summary, photon event distribution sampling provides an efficient way to form images when low numbers of photons are involved and permits particle tracking with confocal point-scanning microscopes with nanometre precision deep within specimens. © 2010 The Authors Journal of Microscopy © 2010 The Royal Microscopical Society.

  18. Size determination of Acipenser ruthenus spermatozoa in different types of electron microscopy.

    PubMed

    Psenicka, Martin; Tesarová, Martina; Tesitel, Jakub; Nebesárová, Jana

    2010-07-01

    In this study three types of scanning electron microscopes were used for the size determination of spermatozoa of sterlet Acipenser ruthenus - high vacuum scanning electron microscope (SEM, JEOL 6300), environmental scanning electron microscope (ESEM, Quanta 200 FEG), field emission scanning electron microscope (FESEM, JEOL 7401F) with cryoattachment Alto 2500 (Gatan) and transmission electron microscope (TEM, JEOL 1010). The use of particular microscopes was tied with different specimen preparation techniques. The aim of this study was to evaluate to what degree the type of used electron microscope can influence the size of different parts of spermatozoa. For high vacuum SEM the specimen was prepared using two slightly different procedures. After chemical fixation with 2.5% glutaraldehyde in 0.1M phosphate buffer and post-fixation by 1% osmium tetroxide, the specimen was dehydrated by acetone series and dried either by critical point method or by means of t-butylalcohol. For ESEM fresh, unfixed material was used, which was dropped on microscopic copper grids. In FESEM working in cryo-mode the specimen was observed in a frozen state. Ultrathin sections from chemically fixed and Epon embedded specimens were prepared for TEM observation. Distinct parts of sterlet spermatozoa were measured in each microscope and the data obtained was statistically processed. Results confirmed that the classical chemical procedure of specimen preparation for SEM including critical point drying method led to a significant contraction of all measured values, which could deviate up to 30% in comparison with values measured on the fresh chemically untreated specimen in ESEM. Surprisingly sperm dimensions determinated on ultrathin sections by TEM are comparable with values obtained in ESEM or FESEM. Copyright 2010 Elsevier Ltd. All rights reserved.

  19. Use of a Digital Camera To Document Student Observations in a Microbiology Laboratory Class.

    ERIC Educational Resources Information Center

    Mills, David A.; Kelley, Kevin; Jones, Michael

    2001-01-01

    Points out the lack of microscopic images of wine-related microbes. Uses a digital camera during a wine microbiology laboratory to capture student-generated microscope images. Discusses the advantages of using a digital camera in a teaching lab. (YDS)

  20. Scanning electron microscopic appearance of rat otocyst of the twelfth postcoital day: elaboration of a method.

    PubMed

    Marovitz, W F; Khan, K M

    1977-01-01

    A method for removal, fixation, microdissection, and drying of early rat otocyst for examination by the scanning electron microscope is elaborated. Tissues were dissected, fixed as for conventional transmission electron microscopy and dried by critical point evaporation using amylacetate as the transitional fluid and carbon dioxide as the pressure head. Otocysts were either dissected at the time of initial fixation, or subsequent to drying. The otocyst of the 12th postcoital day was used as a model system in this preliminary report. Critical point drying retained the overall configuration and the fine ultrastructural detail of the otocyst. The interior otocystic surface was visualized and cilia bearing cells of the luminal surface were identified. Most if not all of these cells had a comspicuous, but short kinocillum which terminated in an ovoid bulb. The scanning electron microscopic appearance was correlated to the transmission electron microscopic image seen in the second paper in this Supplement.

  1. Analysis of biological time-lapse microscopic experiment from the point of view of the information theory.

    PubMed

    Štys, Dalibor; Urban, Jan; Vaněk, Jan; Císař, Petr

    2011-06-01

    We report objective analysis of information in the microscopic image of the cell monolayer. The process of transfer of information about the cell by the microscope is analyzed in terms of the classical Shannon information transfer scheme. The information source is the biological object, the information transfer channel is the whole microscope including the camera chip. The destination is the model of biological system. The information contribution is analyzed as information carried by a point to overall information in the image. Subsequently we obtain information reflection of the biological object. This is transformed in the biological model which, in information terminology, is the destination. This, we propose, should be constructed as state transitions in individual cells modulated by information bonds between the cells. We show examples of detected cell states in multidimensional state space. This space is reflected as colour channel intensity phenomenological state space. We have also observed information bonds and show examples of them.

  2. Analysis of biological time-lapse microscopic experiment from the point of view of the information theory.

    PubMed

    Stys, Dalibor; Urban, Jan; Vanek, Jan; Císar, Petr

    2010-07-01

    We report objective analysis of information in the microscopic image of the cell monolayer. The process of transfer of information about the cell by the microscope is analyzed in terms of the classical Shannon information transfer scheme. The information source is the biological object, the information transfer channel is the whole microscope including the camera chip. The destination is the model of biological system. The information contribution is analyzed as information carried by a point to overall information in the image. Subsequently we obtain information reflection of the biological object. This is transformed in the biological model which, in information terminology, is the destination. This, we propose, should be constructed as state transitions in individual cells modulated by information bonds between the cells. We show examples of detected cell states in multidimensional state space reflected in space an colour channel intensity phenomenological state space. We have also observed information bonds and show examples of them. Copyright 2010 Elsevier Ltd. All rights reserved.

  3. Sensing mode atomic force microscope

    DOEpatents

    Hough, Paul V. C.; Wang, Chengpu

    2006-08-22

    An atomic force microscope is described having a cantilever comprising a base and a probe tip on an end opposite the base; a cantilever drive device connected to the base; a magnetic material coupled to the probe tip, such that when an incrementally increasing magnetic field is applied to the magnetic material an incrementally increasing force will be applied to the probe tip; a moveable specimen base; and a controller constructed to obtain a profile height of a specimen at a point based upon a contact between the probe tip and a specimen, and measure an adhesion force between the probe tip and the specimen by, under control of a program, incrementally increasing an amount of a magnetic field until a release force, sufficient to break the contact, is applied. An imaging method for atomic force microscopy involving measuring a specimen profile height and adhesion force at multiple points within an area and concurrently displaying the profile and adhesion force for each of the points is also described. A microscope controller is also described and is constructed to, for a group of points, calculate a specimen height at a point based upon a cantilever deflection, a cantilever base position and a specimen piezo position; calculate an adhesion force between a probe tip and a specimen at the point by causing an incrementally increasing force to be applied to the probe tip until the probe tip separates from a specimen; and move the probe tip to a new point in the group.

  4. Sensing mode atomic force microscope

    DOEpatents

    Hough, Paul V.; Wang, Chengpu

    2004-11-16

    An atomic force microscope is described having a cantilever comprising a base and a probe tip on an end opposite the base; a cantilever drive device connected to the base; a magnetic material coupled to the probe tip, such that when an incrementally increasing magnetic field is applied to the magnetic material an incrementally increasing force will be applied to the probe tip; a moveable specimen base; and a controller constructed to obtain a profile height of a specimen at a point based upon a contact between the probe tip and a specimen, and measure an adhesion force between the probe tip and the specimen by, under control of a program, incrementally increasing an amount of a magnetic field until a release force, sufficient to break the contact, is applied. An imaging method for atomic force microscopy involving measuring a specimen profile height and adhesion force at multiple points within an area and concurrently displaying the profile and adhesion force for each of the points is also described. A microscope controller is also described and is constructed to, for a group of points, calculate a specimen height at a point based upon a cantilever deflection, a cantilever base position and a specimen piezo position; calculate an adhesion force between a probe tip and a specimen at the point by causing an incrementally increasing force to be applied to the probe tip until the probe tip separates from a specimen; and move the probe tip to a new point in the group.

  5. Local structure controls the nonaffine shear and bulk moduli of disordered solids

    NASA Astrophysics Data System (ADS)

    Schlegel, M.; Brujic, J.; Terentjev, E. M.; Zaccone, A.

    2016-01-01

    Paradigmatic model systems, which are used to study the mechanical response of matter, are random networks of point-atoms, random sphere packings, or simple crystal lattices; all of these models assume central-force interactions between particles/atoms. Each of these models differs in the spatial arrangement and the correlations among particles. In turn, this is reflected in the widely different behaviours of the shear (G) and compression (K) elastic moduli. The relation between the macroscopic elasticity as encoded in G, K and their ratio, and the microscopic lattice structure/order, is not understood. We provide a quantitative analytical connection between the local orientational order and the elasticity in model amorphous solids with different internal microstructure, focusing on the two opposite limits of packings (strong excluded-volume) and networks (no excluded-volume). The theory predicts that, in packings, the local orientational order due to excluded-volume causes less nonaffinity (less softness or larger stiffness) under compression than under shear. This leads to lower values of G/K, a well-documented phenomenon which was lacking a microscopic explanation. The theory also provides an excellent one-parameter description of the elasticity of compressed emulsions in comparison with experimental data over a broad range of packing fractions.

  6. Q ‑ Φ criticality and microstructure of charged AdS black holes in f(R) gravity

    NASA Astrophysics Data System (ADS)

    Deng, Gao-Ming; Huang, Yong-Chang

    2017-12-01

    The phase transition and critical behaviors of charged AdS black holes in f(R) gravity with a conformally invariant Maxwell (CIM) source and constant curvature are further investigated. As a highlight, this research is carried out by employing new state parameters (T,Q, Φ) and contributes to deeper understanding of the thermodynamics and phase structure of black holes. Our analyses manifest that the charged f(R)-CIM AdS black hole undergoes a first-order small-large black hole phase transition, and the critical behaviors qualitatively behave like a Van der Waals liquid-vapor system. However, differing from the case in Einstein’s gravity, phase structures of the black holes in f(R) theory exhibit an interesting dependence on gravity modification parameters. Moreover, we adopt the thermodynamic geometry to probe the black hole microscopic properties. The results show that, on the one hand, both the Ruppeiner curvature and heat capacity diverge exactly at the critical point, on the other hand, the f(R)-CIM AdS black hole possesses the property as ideal Fermi gases. Of special interest, we discover a microscopic similarity between the black holes and a Van der Waals liquid-vapor system.

  7. Science 101: How Does an Electron Microscope Work?

    ERIC Educational Resources Information Center

    Robertson, Bill

    2013-01-01

    Contrary to popular opinion, electron microscopes are not used to look at electrons. They are used to look for structure in things that are too small to observe with an optical microscope, or to obtain images that are magnified much more than is obtainable with an optical microscope. To understand how electron microscopes work, it will help to go…

  8. Theory of a Quantum Scanning Microscope for Cold Atoms

    NASA Astrophysics Data System (ADS)

    Yang, D.; Laflamme, C.; Vasilyev, D. V.; Baranov, M. A.; Zoller, P.

    2018-03-01

    We propose and analyze a scanning microscope to monitor "live" the quantum dynamics of cold atoms in a cavity QED setup. The microscope measures the atomic density with subwavelength resolution via dispersive couplings to a cavity and homodyne detection within the framework of continuous measurement theory. We analyze two modes of operation. First, for a fixed focal point the microscope records the wave packet dynamics of atoms with time resolution set by the cavity lifetime. Second, a spatial scan of the microscope acts to map out the spatial density of stationary quantum states. Remarkably, in the latter case, for a good cavity limit, the microscope becomes an effective quantum nondemolition device, such that the spatial distribution of motional eigenstates can be measured backaction free in single scans, as an emergent quantum nondemolition measurement.

  9. Theory of a Quantum Scanning Microscope for Cold Atoms.

    PubMed

    Yang, D; Laflamme, C; Vasilyev, D V; Baranov, M A; Zoller, P

    2018-03-30

    We propose and analyze a scanning microscope to monitor "live" the quantum dynamics of cold atoms in a cavity QED setup. The microscope measures the atomic density with subwavelength resolution via dispersive couplings to a cavity and homodyne detection within the framework of continuous measurement theory. We analyze two modes of operation. First, for a fixed focal point the microscope records the wave packet dynamics of atoms with time resolution set by the cavity lifetime. Second, a spatial scan of the microscope acts to map out the spatial density of stationary quantum states. Remarkably, in the latter case, for a good cavity limit, the microscope becomes an effective quantum nondemolition device, such that the spatial distribution of motional eigenstates can be measured backaction free in single scans, as an emergent quantum nondemolition measurement.

  10. Small Animal Retinal Imaging

    NASA Astrophysics Data System (ADS)

    Choi, WooJhon; Drexler, Wolfgang; Fujimoto, James G.

    Developing and validating new techniques and methods for small animal imaging is an important research area because there are many small animal models of retinal diseases such as diabetic retinopathy, age-related macular degeneration, and glaucoma [1-6]. Because the retina is a multilayered structure with distinct abnormalities occurring in different intraretinal layers at different stages of disease progression, there is a need for imaging techniques that enable visualization of these layers individually at different time points. Although postmortem histology and ultrastructural analysis can be performed for investigating microscopic changes in the retina in small animal models, this requires sacrificing animals, which makes repeated assessment of the same animal at different time points impossible and increases the number of animals required. Furthermore, some retinal processes such as neurovascular coupling cannot be fully characterized postmortem.

  11. High-speed, random-access fluorescence microscopy: I. High-resolution optical recording with voltage-sensitive dyes and ion indicators.

    PubMed

    Bullen, A; Patel, S S; Saggau, P

    1997-07-01

    The design and implementation of a high-speed, random-access, laser-scanning fluorescence microscope configured to record fast physiological signals from small neuronal structures with high spatiotemporal resolution is presented. The laser-scanning capability of this nonimaging microscope is provided by two orthogonal acousto-optic deflectors under computer control. Each scanning point can be randomly accessed and has a positioning time of 3-5 microseconds. Sampling time is also computer-controlled and can be varied to maximize the signal-to-noise ratio. Acquisition rates up to 200k samples/s at 16-bit digitizing resolution are possible. The spatial resolution of this instrument is determined by the minimal spot size at the level of the preparation (i.e., 2-7 microns). Scanning points are selected interactively from a reference image collected with differential interference contrast optics and a video camera. Frame rates up to 5 kHz are easily attainable. Intrinsic variations in laser light intensity and scanning spot brightness are overcome by an on-line signal-processing scheme. Representative records obtained with this instrument by using voltage-sensitive dyes and calcium indicators demonstrate the ability to make fast, high-fidelity measurements of membrane potential and intracellular calcium at high spatial resolution (2 microns) without any temporal averaging.

  12. High-speed, random-access fluorescence microscopy: I. High-resolution optical recording with voltage-sensitive dyes and ion indicators.

    PubMed Central

    Bullen, A; Patel, S S; Saggau, P

    1997-01-01

    The design and implementation of a high-speed, random-access, laser-scanning fluorescence microscope configured to record fast physiological signals from small neuronal structures with high spatiotemporal resolution is presented. The laser-scanning capability of this nonimaging microscope is provided by two orthogonal acousto-optic deflectors under computer control. Each scanning point can be randomly accessed and has a positioning time of 3-5 microseconds. Sampling time is also computer-controlled and can be varied to maximize the signal-to-noise ratio. Acquisition rates up to 200k samples/s at 16-bit digitizing resolution are possible. The spatial resolution of this instrument is determined by the minimal spot size at the level of the preparation (i.e., 2-7 microns). Scanning points are selected interactively from a reference image collected with differential interference contrast optics and a video camera. Frame rates up to 5 kHz are easily attainable. Intrinsic variations in laser light intensity and scanning spot brightness are overcome by an on-line signal-processing scheme. Representative records obtained with this instrument by using voltage-sensitive dyes and calcium indicators demonstrate the ability to make fast, high-fidelity measurements of membrane potential and intracellular calcium at high spatial resolution (2 microns) without any temporal averaging. Images FIGURE 6 PMID:9199810

  13. Mars Life? - Microscopic Egg-shaped Structures

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This electron microscope image shows egg-shaped structures, some of which may be possible microscopic fossils of Martian origin as discussed by NASA research published in the Aug. 16, 1996, issue of the journal Science. A two-year investigation found organic molecules, mineral features characteristic of biological activity and possible microscopic fossils such as these inside of an ancient Martian rock that fell to Earth as a meteorite. The largest possible fossils are less than 1/100th the diameter of a human hair in size while most are ten times smaller.

  14. Artificial testing targets with controllable blur for adaptive optics microscopes

    NASA Astrophysics Data System (ADS)

    Hattori, Masayuki; Tamada, Yosuke; Murata, Takashi; Oya, Shin; Hasebe, Mitsuyasu; Hayano, Yutaka; Kamei, Yasuhiro

    2017-08-01

    This letter proposes a method of configuring a testing target to evaluate the performance of adaptive optics microscopes. In this method, a testing slide with fluorescent beads is used to simultaneously determine the point spread function and the field of view. The point spread function is reproduced to simulate actual biological samples by etching a microstructure on the cover glass. The fabrication process is simplified to facilitate an onsite preparation. The artificial tissue consists of solid materials and silicone oil and is stable for use in repetitive experiments.

  15. Light Microscopy Microscope Experiment

    NASA Image and Video Library

    2016-02-04

    Ground testing for the first confocal Light Microscopy Microscope (LMM) Experiment. Procter and Gamble is working with NASA Glenn scientists to prepare for a study that examines product stabilizers in a microgravity environment. The particles in the tube glow orange because they have been fluorescently tagged with a dye that reacts to green laser lights to allow construction of a 3D image point by point. The experiment, which will be sent to the ISS later this year, will help P&G develop improved product stabilizers to extend shelf life and develop more environmentally friendly packaging.

  16. Excitations in confined helium

    NASA Astrophysics Data System (ADS)

    Apaja, V.; Krotscheck, E.

    2003-05-01

    We design models for helium in matrices such as aerogel, Vycor, or Geltech from a manifestly microscopic point of view. For that purpose, we calculate the dynamic structure function of 4He on Si substrates and between two Si walls as a function of energy, momentum transfer, and the scattering angle. The angle-averaged results are in good agreement with the neutron scattering data; the remaining differences can be attributed to the simplified model used here for the complex pore structure of the materials. A focus of the present work is the detailed identification of coexisting layer modes and bulklike excitations, and, in the case of thick films, ripplon excitations. Involving essentially two-dimensional motion of atoms, the layer modes are sensitive to the scattering angle.

  17. A Scanning Quantum Cryogenic Atom Microscope

    NASA Astrophysics Data System (ADS)

    Lev, Benjamin

    Microscopic imaging of local magnetic fields provides a window into the organizing principles of complex and technologically relevant condensed matter materials. However, a wide variety of intriguing strongly correlated and topologically nontrivial materials exhibit poorly understood phenomena outside the detection capability of state-of-the-art high-sensitivity, high-resolution scanning probe magnetometers. We introduce a quantum-noise-limited scanning probe magnetometer that can operate from room-to-cryogenic temperatures with unprecedented DC-field sensitivity and micron-scale resolution. The Scanning Quantum Cryogenic Atom Microscope (SQCRAMscope) employs a magnetically levitated atomic Bose-Einstein condensate (BEC), thereby providing immunity to conductive and blackbody radiative heating. The SQCRAMscope has a field sensitivity of 1.4 nT per resolution-limited point (2 um), or 6 nT / Hz1 / 2 per point at its duty cycle. Compared to point-by-point sensors, the long length of the BEC provides a naturally parallel measurement, allowing one to measure nearly one-hundred points with an effective field sensitivity of 600 pT / Hz1 / 2 each point during the same time as a point-by-point scanner would measure these points sequentially. Moreover, it has a noise floor of 300 pT and provides nearly two orders of magnitude improvement in magnetic flux sensitivity (down to 10- 6 Phi0 / Hz1 / 2) over previous atomic probe magnetometers capable of scanning near samples. These capabilities are for the first time carefully benchmarked by imaging magnetic fields arising from microfabricated wire patterns and done so using samples that may be scanned, cryogenically cooled, and easily exchanged. We anticipate the SQCRAMscope will provide charge transport images at temperatures from room to \\x9D4K in unconventional superconductors and topologically nontrivial materials.

  18. Scanning Quantum Cryogenic Atom Microscope

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Kollár, Alicia J.; Taylor, Stephen F.; Turner, Richard W.; Lev, Benjamin L.

    2017-03-01

    Microscopic imaging of local magnetic fields provides a window into the organizing principles of complex and technologically relevant condensed-matter materials. However, a wide variety of intriguing strongly correlated and topologically nontrivial materials exhibit poorly understood phenomena outside the detection capability of state-of-the-art high-sensitivity high-resolution scanning probe magnetometers. We introduce a quantum-noise-limited scanning probe magnetometer that can operate from room-to-cryogenic temperatures with unprecedented dc-field sensitivity and micron-scale resolution. The Scanning Quantum Cryogenic Atom Microscope (SQCRAMscope) employs a magnetically levitated atomic Bose-Einstein condensate (BEC), thereby providing immunity to conductive and blackbody radiative heating. The SQCRAMscope has a field sensitivity of 1.4 nT per resolution-limited point (approximately 2 μ m ) or 6 nT /√{Hz } per point at its duty cycle. Compared to point-by-point sensors, the long length of the BEC provides a naturally parallel measurement, allowing one to measure nearly 100 points with an effective field sensitivity of 600 pT /√{Hz } for each point during the same time as a point-by-point scanner measures these points sequentially. Moreover, it has a noise floor of 300 pT and provides nearly 2 orders of magnitude improvement in magnetic flux sensitivity (down to 10-6 Φ0/√{Hz } ) over previous atomic probe magnetometers capable of scanning near samples. These capabilities are carefully benchmarked by imaging magnetic fields arising from microfabricated wire patterns in a system where samples may be scanned, cryogenically cooled, and easily exchanged. We anticipate the SQCRAMscope will provide charge-transport images at temperatures from room temperature to 4 K in unconventional superconductors and topologically nontrivial materials.

  19. Automatic analysis for neuron by confocal laser scanning microscope

    NASA Astrophysics Data System (ADS)

    Satou, Kouhei; Aoki, Yoshimitsu; Mataga, Nobuko; Hensh, Takao K.; Taki, Katuhiko

    2005-12-01

    The aim of this study is to develop a system that recognizes both the macro- and microscopic configurations of nerve cells and automatically performs the necessary 3-D measurements and functional classification of spines. The acquisition of 3-D images of cranial nerves has been enabled by the use of a confocal laser scanning microscope, although the highly accurate 3-D measurements of the microscopic structures of cranial nerves and their classification based on their configurations have not yet been accomplished. In this study, in order to obtain highly accurate measurements of the microscopic structures of cranial nerves, existing positions of spines were predicted by the 2-D image processing of tomographic images. Next, based on the positions that were predicted on the 2-D images, the positions and configurations of the spines were determined more accurately by 3-D image processing of the volume data. We report the successful construction of an automatic analysis system that uses a coarse-to-fine technique to analyze the microscopic structures of cranial nerves with high speed and accuracy by combining 2-D and 3-D image analyses.

  20. Atomic Structure of Interface States in Silicon Heterojunction Solar Cells

    NASA Astrophysics Data System (ADS)

    George, B. M.; Behrends, J.; Schnegg, A.; Schulze, T. F.; Fehr, M.; Korte, L.; Rech, B.; Lips, K.; Rohrmüller, M.; Rauls, E.; Schmidt, W. G.; Gerstmann, U.

    2013-03-01

    Combining orientation dependent electrically detected magnetic resonance and g tensor calculations based on density functional theory we assign microscopic structures to paramagnetic states involved in spin-dependent recombination at the interface of hydrogenated amorphous silicon crystalline silicon (a-Si:H/c-Si) heterojunction solar cells. We find that (i) the interface exhibits microscopic roughness, (ii) the electronic structure of the interface defects is mainly determined by c-Si, (iii) we identify the microscopic origin of the conduction band tail state in the a-Si:H layer, and (iv) present a detailed recombination mechanism.

  1. Innovative Strategies for Clinical Microscopy Instruction: Virtual Versus Light Microscopy.

    PubMed

    McDaniel, M Jane; Russell, Gregory B; Crandall, Sonia J

    2018-06-01

    The purpose of the study was to compare virtual microscopy with light microscopy to determine differences in learning outcomes and learner attitudes in teaching clinical microscopy to physician assistant (PA) students. A prospective, randomized, crossover design study was conducted with a convenience sample of 67 first-year PA students randomized to 2 groups. One group used light microscopes to find microscopic structures, whereas the other group used instructor-directed video streaming of microscopic elements. At the midpoint of the study, the groups switched instructional strategies. Learning outcomes were assessed via posttest after each section of the study, with comparison of final practical examination results to previous cohorts. Attitudes about the 2 educational strategies were assessed through a postcourse questionnaire with a Likert scale. Analysis of the first posttest demonstrated that students in the video-streamed group had significantly better learning outcomes than those in the light microscopy group (P = .004; Cohen's d = 0.74). Analysis of the posttest after crossover showed no differences between the 2 groups (P = .48). Between the 2 posttests, students first assigned to the light microscopy group scored a 6.6 mean point increase (±10.4 SD; p = .0011), whereas students first assigned to the virtual microscopy group scored a 1.3 mean point increase (±7.1 SD; p = .29). The light microscopy group improved more than the virtual microscopy group (P = .019). Analysis of practical examination data revealed higher scores for the study group compared with 5 previous cohorts of first-year students (P < .0001; Cohen's d = 0.66). Students preferred virtual microscopy to traditional light microscopy. Virtual microscopy is an effective educational strategy, and students prefer this method when learning to interpret images of clinical specimens.

  2. Quantification of Estrogen Receptor-Alpha Expression in Human Breast Carcinomas With a Miniaturized, Low-Cost Digital Microscope: A Comparison with a High-End Whole Slide-Scanner

    PubMed Central

    Holmström, Oscar; Linder, Nina; Lundin, Mikael; Moilanen, Hannu; Suutala, Antti; Turkki, Riku; Joensuu, Heikki; Isola, Jorma; Diwan, Vinod; Lundin, Johan

    2015-01-01

    Introduction A significant barrier to medical diagnostics in low-resource environments is the lack of medical care and equipment. Here we present a low-cost, cloud-connected digital microscope for applications at the point-of-care. We evaluate the performance of the device in the digital assessment of estrogen receptor-alpha (ER) expression in breast cancer samples. Studies suggest computer-assisted analysis of tumor samples digitized with whole slide-scanners may be comparable to manual scoring, here we study whether similar results can be obtained with the device presented. Materials and Methods A total of 170 samples of human breast carcinoma, immunostained for ER expression, were digitized with a high-end slide-scanner and the point-of-care microscope. Corresponding regions from the samples were extracted, and ER status was determined visually and digitally. Samples were classified as ER negative (<1% ER positivity) or positive, and further into weakly (1–10% positivity) and strongly positive. Interobserver agreement (Cohen’s kappa) was measured and correlation coefficients (Pearson’s product-momentum) were calculated for comparison of the methods. Results Correlation and interobserver agreement (r = 0.98, p < 0.001, kappa = 0.84, CI95% = 0.75–0.94) were strong in the results from both devices. Concordance of the point-of-care microscope and the manual scoring was good (r = 0.94, p < 0.001, kappa = 0.71, CI95% = 0.61–0.80), and comparable to the concordance between the slide scanner and manual scoring (r = 0.93, p < 0.001, kappa = 0.69, CI95% = 0.60–0.78). Fourteen (8%) discrepant cases between manual and device-based scoring were present with the slide scanner, and 16 (9%) with the point-of-care microscope, all representing samples of low ER expression. Conclusions Tumor ER status can be accurately quantified with a low-cost imaging device and digital image-analysis, with results comparable to conventional computer-assisted or manual scoring. This technology could potentially be expanded for other histopathological applications at the point-of-care. PMID:26659386

  3. Molecular engineering of colloidal liquid crystals using DNA origami

    NASA Astrophysics Data System (ADS)

    Siavashpouri, Mahsa; Wachauf, Christian; Zakhary, Mark; Praetorius, Florian; Dietz, Hendrik; Dogic, Zvonimir

    Understanding the microscopic origin of cholesteric phase remains a foundational, yet unresolved problem in the field of liquid crystals. Lack of experimental model system that allows for the systematic control of the microscopic chiral structure makes it difficult to investigate this problem for several years. Here, using DNA origami technology, we systematically vary the chirality of the colloidal particles with molecular precision and establish a quantitative relationship between the microscopic structure of particles and the macroscopic cholesteric pitch. Our study presents a new methodology for predicting bulk behavior of diverse phases based on the microscopic architectures of the constituent molecules.

  4. Spectral confocal reflection microscopy using a white light source

    NASA Astrophysics Data System (ADS)

    Booth, M.; Juškaitis, R.; Wilson, T.

    2008-08-01

    We present a reflection confocal microscope incorporating a white light supercontinuum source and spectral detection. The microscope provides images resolved spatially in three-dimensions, in addition to spectral resolution covering the wavelength range 450-650nm. Images and reflection spectra of artificial and natural specimens are presented, showing features that are not normally revealed in conventional microscopes or confocal microscopes using discrete line lasers. The specimens include thin film structures on semiconductor chips, iridescent structures in Papilio blumei butterfly scales, nacre from abalone shells and opal gemstones. Quantitative size and refractive index measurements of transparent beads are derived from spectral interference bands.

  5. Mars Life? - Microscopic Structures

    NASA Technical Reports Server (NTRS)

    1996-01-01

    In the center of this electron microscope image of a small chip from a meteorite are several tiny structures that are possible microscopic fossils of primitive, bacteria-like organisms that may have lived on Mars more than 3.6 billion years ago. A two-year investigation by a NASA research team found organic molecules, mineral features characteristic of biological activity and possible microscopic fossils such as these inside of an ancient Martian rock that fell to Earth as a meteorite. The largest possible fossils are less than 1/100th the diameter of a human hair in size while most are ten times smaller.

  6. Pupil engineering for a confocal reflectance line-scanning microscope

    NASA Astrophysics Data System (ADS)

    Patel, Yogesh G.; Rajadhyaksha, Milind; DiMarzio, Charles A.

    2011-03-01

    Confocal reflectance microscopy may enable screening and diagnosis of skin cancers noninvasively and in real-time, as an adjunct to biopsy and pathology. Current confocal point-scanning systems are large, complex, and expensive. A confocal line-scanning microscope, utilizing a of linear array detector can be simpler, smaller, less expensive, and may accelerate the translation of confocal microscopy in clinical and surgical dermatology. A line scanner may be implemented with a divided-pupil, half used for transmission and half for detection, or with a full-pupil using a beamsplitter. The premise is that a confocal line-scanner with either a divided-pupil or a full-pupil will provide high resolution and optical sectioning that would be competitive to that of the standard confocal point-scanner. We have developed a confocal line-scanner that combines both divided-pupil and full-pupil configurations. This combined-pupil prototype is being evaluated to determine the advantages and limitations of each configuration for imaging skin, and comparison of performance to that of commercially available standard confocal point-scanning microscopes. With the combined configuration, experimental evaluation of line spread functions (LSFs), contrast, signal-to-noise ratio, and imaging performance is in progress under identical optical and skin conditions. Experimental comparisons between divided-pupil and full-pupil LSFs will be used to determine imaging performance. Both results will be compared to theoretical calculations using our previously reported Fourier analysis model and to the confocal point spread function (PSF). These results may lead to a simpler class of confocal reflectance scanning microscopes for clinical and surgical dermatology.

  7. Heavy-ion damage of an amorphous metallic alloy

    NASA Astrophysics Data System (ADS)

    Chaki, T. K.; Li, J. C. M.

    1986-09-01

    A Ni base amorphous alloy BN12 (Ni 69.2Cr 6.6Si 13.7B 7.9Fe 2.6 supplied by Allied Corporation), with its shiny surface polished and covered with a 20-30 nm Al film to avoid contamination and sputtering, was irradiated with 70 MeV Ni +6 ions at a dose of about {10 16}/{cm 2}. The Al film was removed by 2 g NaOH dissolved in 1 liter water solution. A Dektak surface profilometer showed surface swelling of the irradiated spot by about 200 nm surrounded by higher ridges. Optical and scanning electron microscopic observations revealed considerable roughness within the irradiated spot. Annealing for 3 h at each 50 K. increment of temperature between 500 and 800 K did not remove the swelling. However, transmission electron microscopic studies gave no indication of voids. It seems that swelling may not associate with structural damage. This important possibility is discussed in the light of generation and disappearance of point defects.

  8. Chemical and microscopic characterization of outer seed coats of fossil and extant water plants

    NASA Astrophysics Data System (ADS)

    van Bergen, P. F.; Goñi, M.; Collinson, M. E.; Barrie, P. J.; Damsté, J. S. Sinninghe; De Leeuw, J. W.

    1994-09-01

    Sclerotic outer seed coat layers (testae) of three fossil and two extant water plant species were analyzed using scanning electron and light microscopy in addition to Curie-point pyrolysis, solid state 13C NMR, and CuO oxidation. Comparison between the chemical results from the fossil and extant samples reveals that the original resistant constituents in the sclerotic testae are native lignin-celluloses which are transformed to polyphenol macromolecules recognized in the fossil samples. The combination of microscopic and chemical data provides new insights regarding the early diagenetic processes by which lignin-cellulose-containing plant remains may have been transformed. In particular, the unaltered morphology in combination with major chemical modifications is used as the basis to postulate the timing and nature of lignin transformations. The combination of pyrolysis, solid state 13C NMR, and CuO oxidation is shown to be a powerful tool to characterize the chemical structure of testae of fossil and extant water plants.

  9. An Antique Microscope Slide Brings the Thrill of Discovery into a Contemporary Biology Classroom

    ERIC Educational Resources Information Center

    Reiser, Frank

    2012-01-01

    The discovery of a Victorian-era microscope slide titled "Grouped Flower Seeds" began an investigation into the scientific and historical background of the antique slide to develop its usefulness as a multidisciplinary tool for PowerPoint presentations usable in contemporary biology classrooms, particularly large-enrollment sections. The resultant…

  10. Correlative imaging across microscopy platforms using the fast and accurate relocation of microscopic experimental regions (FARMER) method

    NASA Astrophysics Data System (ADS)

    Huynh, Toan; Daddysman, Matthew K.; Bao, Ying; Selewa, Alan; Kuznetsov, Andrey; Philipson, Louis H.; Scherer, Norbert F.

    2017-05-01

    Imaging specific regions of interest (ROIs) of nanomaterials or biological samples with different imaging modalities (e.g., light and electron microscopy) or at subsequent time points (e.g., before and after off-microscope procedures) requires relocating the ROIs. Unfortunately, relocation is typically difficult and very time consuming to achieve. Previously developed techniques involve the fabrication of arrays of features, the procedures for which are complex, and the added features can interfere with imaging the ROIs. We report the Fast and Accurate Relocation of Microscopic Experimental Regions (FARMER) method, which only requires determining the coordinates of 3 (or more) conspicuous reference points (REFs) and employs an algorithm based on geometric operators to relocate ROIs in subsequent imaging sessions. The 3 REFs can be quickly added to various regions of a sample using simple tools (e.g., permanent markers or conductive pens) and do not interfere with the ROIs. The coordinates of the REFs and the ROIs are obtained in the first imaging session (on a particular microscope platform) using an accurate and precise encoded motorized stage. In subsequent imaging sessions, the FARMER algorithm finds the new coordinates of the ROIs (on the same or different platforms), using the coordinates of the manually located REFs and the previously recorded coordinates. FARMER is convenient, fast (3-15 min/session, at least 10-fold faster than manual searches), accurate (4.4 μm average error on a microscope with a 100x objective), and precise (almost all errors are <8 μm), even with deliberate rotating and tilting of the sample well beyond normal repositioning accuracy. We demonstrate this versatility by imaging and re-imaging a diverse set of samples and imaging methods: live mammalian cells at different time points; fixed bacterial cells on two microscopes with different imaging modalities; and nanostructures on optical and electron microscopes. FARMER can be readily adapted to any imaging system with an encoded motorized stage and can facilitate multi-session and multi-platform imaging experiments in biology, materials science, photonics, and nanoscience.

  11. Polarimetry of Pinctada fucata nacre indicates myostracal layer interrupts nacre structure.

    PubMed

    Metzler, Rebecca A; Jones, Joshua A; D'Addario, Anthony J; Galvez, Enrique J

    2017-02-01

    The inner layer of many bivalve and gastropod molluscs consists of iridescent nacre, a material that is structured like a brick wall with bricks consisting of crystalline aragonite and mortar of organic molecules. Myostracal layers formed during shell growth at the point of muscle attachment to the shell can be found interspersed within the nacre structure. Little has been done to examine the effect the myostracal layer has on subsequent nacre structure. Here we present data on the structure of the myostracal and nacre layers from a bivalve mollusc, Pinctada fucata . Scanning electron microscope imaging shows the myostracal layer consists of regular crystalline blocks. The nacre before the layer consists of tablets approximately 400 nm thick, while after the myostracal layer the tablets are approximately 500 nm thick. A new technique, imaging polarimetry, indicates that the aragonite crystals within the nacre following the myostracal layer have greater orientation uniformity than before the myostracal layer. The results presented here suggest a possible interaction between the myostracal layer and subsequent shell growth.

  12. Polarimetry of Pinctada fucata nacre indicates myostracal layer interrupts nacre structure

    NASA Astrophysics Data System (ADS)

    Metzler, Rebecca A.; Jones, Joshua A.; D'Addario, Anthony J.; Galvez, Enrique J.

    2017-02-01

    The inner layer of many bivalve and gastropod molluscs consists of iridescent nacre, a material that is structured like a brick wall with bricks consisting of crystalline aragonite and mortar of organic molecules. Myostracal layers formed during shell growth at the point of muscle attachment to the shell can be found interspersed within the nacre structure. Little has been done to examine the effect the myostracal layer has on subsequent nacre structure. Here we present data on the structure of the myostracal and nacre layers from a bivalve mollusc, Pinctada fucata. Scanning electron microscope imaging shows the myostracal layer consists of regular crystalline blocks. The nacre before the layer consists of tablets approximately 400 nm thick, while after the myostracal layer the tablets are approximately 500 nm thick. A new technique, imaging polarimetry, indicates that the aragonite crystals within the nacre following the myostracal layer have greater orientation uniformity than before the myostracal layer. The results presented here suggest a possible interaction between the myostracal layer and subsequent shell growth.

  13. Hierarchical structure and biomineralization in cricket teeth

    NASA Astrophysics Data System (ADS)

    Xing, Xue-Qing; Gong, Yu; Cai, Quan; Mo, Guang; Du, Rong; Chen, Zhong-Jun; Wu, Zhong-Hua

    2013-02-01

    The cricket is a truculent insect with stiff and sharp teeth as a fighting weapon. The structure and possible biomineralization of cricket teeth are always interesting. Synchrotron radiation X-ray fluorescence, X-ray diffraction, and small angle X-ray scattering techniques were used to probe the element distribution, possible crystalline structures and size distribution of scatterers in cricket teeth. A scanning electron microscope was used to observe the nanoscaled structure. The results demonstrate that Zn is the main heavy element in cricket teeth. The surface of a cricket tooth has a crystalline compound like ZnFe2(AsO4)2(OH)2(H2O)4. The interior of the tooth has a crystalline compound like ZnCl2, which is from the biomineralization. The ZnCl2-like biomineral forms nanoscaled microfibrils and their axial direction points towards the top of the tooth cusp. The microfibrils aggregate randomly into intermediate filaments, forming a hierarchical structure. A sketch map of the cricket tooth cusp is proposed and a detailed discussion is given in this paper.

  14. Non Destructive 3D X-Ray Imaging of Nano Structures & Composites at Sub-30 NM Resolution, With a Novel Lab Based X-Ray Microscope

    DTIC Science & Technology

    2006-11-01

    NON DESTRUCTIVE 3D X-RAY IMAGING OF NANO STRUCTURES & COMPOSITES AT SUB-30 NM RESOLUTION, WITH A NOVEL LAB BASED X- RAY MICROSCOPE S H Lau...article we describe a 3D x-ray microscope based on a laboratory x-ray source operating at 2.7, 5.4 or 8.0 keV hard x-ray energies. X-ray computed...tomography (XCT) is used to obtain detailed 3D structural information inside optically opaque materials with sub-30 nm resolution. Applications include

  15. Imaging and three-dimensional reconstruction of chemical groups inside a protein complex using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Kim, Duckhoe; Sahin, Ozgur

    2015-03-01

    Scanning probe microscopes can be used to image and chemically characterize surfaces down to the atomic scale. However, the localized tip-sample interactions in scanning probe microscopes limit high-resolution images to the topmost atomic layer of surfaces, and characterizing the inner structures of materials and biomolecules is a challenge for such instruments. Here, we show that an atomic force microscope can be used to image and three-dimensionally reconstruct chemical groups inside a protein complex. We use short single-stranded DNAs as imaging labels that are linked to target regions inside a protein complex, and T-shaped atomic force microscope cantilevers functionalized with complementary probe DNAs allow the labels to be located with sequence specificity and subnanometre resolution. After measuring pairwise distances between labels, we reconstruct the three-dimensional structure formed by the target chemical groups within the protein complex using simple geometric calculations. Experiments with the biotin-streptavidin complex show that the predicted three-dimensional loci of the carboxylic acid groups of biotins are within 2 Å of their respective loci in the corresponding crystal structure, suggesting that scanning probe microscopes could complement existing structural biological techniques in solving structures that are difficult to study due to their size and complexity.

  16. Development of an ultrasound microscope combined with optical microscope for multiparametric characterization of a single cell.

    PubMed

    Arakawa, Mototaka; Shikama, Joe; Yoshida, Koki; Nagaoka, Ryo; Kobayashi, Kazuto; Saijo, Yoshifumi

    2015-09-01

    Biomechanics of the cell has been gathering much attention because it affects the pathological status in atherosclerosis and cancer. In the present study, an ultrasound microscope system combined with optical microscope for characterization of a single cell with multiple ultrasound parameters was developed. The central frequency of the transducer was 375 MHz and the scan area was 80 × 80 μm with up to 200 × 200 sampling points. An inverted optical microscope was incorporated in the design of the system, allowing for simultaneous optical observations of cultured cells. Two-dimensional mapping of multiple ultrasound parameters, such as sound speed, attenuation, and acoustic impedance, as well as the thickness, density, and bulk modulus of specimen/cell under investigation, etc., was realized by the system. Sound speed and thickness of a 3T3-L1 fibroblast cell were successfully obtained by the system. The ultrasound microscope system combined with optical microscope further enhances our understanding of cellular biomechanics.

  17. The Homemade Microscope.

    ERIC Educational Resources Information Center

    Baker, Roger C., Jr.

    1991-01-01

    Directions for the building of a pocket microscope that will make visible the details of insect structure and living bacteria are described. Background information on the history of microscopes and lenses is provided. The procedures for producing various types of lenses are included. (KR)

  18. Closed loop adaptive optics for microscopy without a wavefront sensor.

    PubMed

    Kner, Peter; Winoto, Lukman; Agard, David A; Sedat, John W

    2010-02-24

    A three-dimensional wide-field image of a small fluorescent bead contains more than enough information to accurately calculate the wavefront in the microscope objective back pupil plane using the phase retrieval technique. The phase-retrieved wavefront can then be used to set a deformable mirror to correct the point-spread function (PSF) of the microscope without the use of a wavefront sensor. This technique will be useful for aligning the deformable mirror in a widefield microscope with adaptive optics and could potentially be used to correct aberrations in samples where small fluorescent beads or other point sources are used as reference beacons. Another advantage is the high resolution of the retrieved wavefont as compared with current Shack-Hartmann wavefront sensors. Here we demonstrate effective correction of the PSF in 3 iterations. Starting from a severely aberrated system, we achieve a Strehl ratio of 0.78 and a greater than 10-fold increase in maximum intensity.

  19. The Effects of Kinetic Structure on Knowledge About and Performance of a Psychomotor Skill: Teaching Students to Use the Compound Microscope

    ERIC Educational Resources Information Center

    Simmons, Ellen Stephanie

    1977-01-01

    Investigates effects of method of presentation and structure on secondary student's acquisition of knowledge and psychomotor skills in teaching use of the compound microscope. Psychomotor skills and knowledge acquisitions were both found to be directly related to high structure and separated presentations. (SL)

  20. Parameter optimization and stretch enhancement of AISI 316 sheet using rapid prototyping technique

    NASA Astrophysics Data System (ADS)

    Moayedfar, M.; Rani, A. M.; Hanaei, H.; Ahmad, A.; Tale, A.

    2017-10-01

    Incremental sheet forming is a flexible manufacturing process which uses the indenter point-to-point force to shape the sheet metal workpiece into manufactured parts in batch production series. However, the problem sometimes arising from this process is the low plastic point in the stress-strain diagram of the material which leads the low stretching amount before ultra-tensile strain point. Hence, a set of experiments is designed to find the optimum forming parameters in this process for optimum sheet thickness distribution while both sides of the sheet are considered for the surface quality improvement. A five-axis high-speed CNC milling machine is employed to deliver the proper motion based on the programming system while the clamping system for holding the sheet metal was a blank mould. Finally, an electron microscope and roughness machine are utilized to evaluate the surface structure of final parts, illustrate any defect may cause during the forming process and examine the roughness of the final part surface accordingly. The best interaction between parameters is obtained with the optimum values which lead the maximum sheet thickness distribution of 4.211e-01 logarithmic elongation when the depth was 24mm with respect to the design. This study demonstrates that this rapid forming method offers an alternative solution for surface quality improvement of 65% avoiding the low probability of cracks and low probability of crystal structure changes.

  1. 4D atlas of the mouse embryo for precise morphological staging.

    PubMed

    Wong, Michael D; van Eede, Matthijs C; Spring, Shoshana; Jevtic, Stefan; Boughner, Julia C; Lerch, Jason P; Henkelman, R Mark

    2015-10-15

    After more than a century of research, the mouse remains the gold-standard model system, for it recapitulates human development and disease and is quickly and highly tractable to genetic manipulations. Fundamental to the power and success of using a mouse model is the ability to stage embryonic mouse development accurately. Past staging systems were limited by the technologies of the day, such that only surface features, visible with a light microscope, could be recognized and used to define stages. With the advent of high-throughput 3D imaging tools that capture embryo morphology in microscopic detail, we now present the first 4D atlas staging system for mouse embryonic development using optical projection tomography and image registration methods. By tracking 3D trajectories of every anatomical point in the mouse embryo from E11.5 to E14.0, we established the first 4D atlas compiled from ex vivo 3D mouse embryo reference images. The resulting 4D atlas comprises 51 interpolated 3D images in this gestational range, resulting in a temporal resolution of 72 min. From this 4D atlas, any mouse embryo image can be subsequently compared and staged at the global, voxel and/or structural level. Assigning an embryonic stage to each point in anatomy allows for unprecedented quantitative analysis of developmental asynchrony among different anatomical structures in the same mouse embryo. This comprehensive developmental data set offers developmental biologists a new, powerful staging system that can identify and compare differences in developmental timing in wild-type embryos and shows promise for localizing deviations in mutant development. © 2015. Published by The Company of Biologists Ltd.

  2. Atomic electron tomography: 3D structures without crystals

    DOE PAGES

    Miao, Jianwei; Ercius, Peter; Billinge, S. J. L.

    2016-09-23

    Crystallography has been fundamental to the development of many fields of science over the last century. However, much of our modern science and technology relies on materials with defects and disorders, and their three-dimensional (3D) atomic structures are not accessible to crystallography. One method capable of addressing this major challenge is atomic electron tomography. By combining advanced electron microscopes and detectors with powerful data analysis and tomographic reconstruction algorithms, it is now possible to determine the 3D atomic structure of crystal defects such as grain boundaries, stacking faults, dislocations, and point defects, as well as to precisely localize the 3Dmore » coordinates of individual atoms in materials without assuming crystallinity. In this work, we review the recent advances and the interdisciplinary science enabled by this methodology. We also outline further research needed for atomic electron tomography to address long-standing unresolved problems in the physical sciences.« less

  3. Structural and mechanical characterization of hybrid metallic-inorganic nanosprings

    NASA Astrophysics Data System (ADS)

    Habtoun, Sabrina; Houmadi, Said; Reig, Benjamin; Pouget, Emilie; Dedovets, Dmytro; Delville, Marie-Hélène; Oda, Reiko; Cristiano, Fuccio; Bergaud, Christian

    2017-10-01

    Silica nanosprings (NS) are fabricated by a sol-gel deposition of silica precursors onto a template made of self-assembled organic chiral nanostructures. They are deposited and assembled on microstructured silicon substrates, and then metallized and clamped in a single lithography-free step using a focused ion beam (FIB). The resulting suspended hybrid metallic/inorganic NS are then characterized with high-resolution transmission electron microscopy (HRTEM) and scanning TEM/energy-dispersive X-ray spectroscopy (STEM/EDX), showing the atomic structure of the metallic layer. Three-point bending tests are also carried out using an atomic force microscope (AFM) and supported by finite element method (FEM) simulation with COMSOL Multiphysics allowing the characterization of the mechanical behavior and the estimation of the stiffness of the resulting NS. The information obtained on the structural and mechanical properties of the NS is discussed for future nano-electro-mechanical system (NEMS) applications.

  4. New views of the Toxoplasma gondii parasitophorous vacuole as revealed by Helium Ion Microscopy (HIM).

    PubMed

    de Souza, Wanderley; Attias, Marcia

    2015-07-01

    The Helium Ion Microscope (HIM) is a new technology that uses a highly focused helium ion beam to scan and interact with the sample, which is not coated. The images have resolution and depth of field superior to field emission scanning electron microscopes. In this paper, we used HIM to study LLC-MK2 cells infected with Toxoplasma gondii. These samples were chemically fixed and, after critical point drying, were scraped with adhesive tape to expose the inner structure of the cell and parasitophorous vacuoles. We confirmed some of the previous findings made by field emission-scanning electron microscopy and showed that the surface of the parasite is rich in structures suggestive of secretion, that the nanotubules of the intravacuolar network (IVN) are not always straight, and that bifurcations are less frequent than previously thought. Fusion of the tubules with the parasite membrane or the parasitophorous vacuole membrane (PVM) was also infrequent. Tiny adhesive links were observed for the first time connecting the IVN tubules. The PVM showed openings of various sizes that even allowed the observation of endoplasmic reticulum membranes in the cytoplasm of the host cell. These findings are discussed in relation to current knowledge on the cell biology of T. gondii. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Micro axial tomography: A miniaturized, versatile stage device to overcome resolution anisotropy in fluorescence light microscopy

    NASA Astrophysics Data System (ADS)

    Staier, Florian; Eipel, Heinz; Matula, Petr; Evsikov, Alexei V.; Kozubek, Michal; Cremer, Christoph; Hausmann, Michael

    2011-09-01

    With the development of novel fluorescence techniques, high resolution light microscopy has become a challenging technique for investigations of the three-dimensional (3D) micro-cosmos in cells and sub-cellular components. So far, all fluorescence microscopes applied for 3D imaging in biosciences show a spatially anisotropic point spread function resulting in an anisotropic optical resolution or point localization precision. To overcome this shortcoming, micro axial tomography was suggested which allows object tilting on the microscopic stage and leads to an improvement in localization precision and spatial resolution. Here, we present a miniaturized device which can be implemented in a motor driven microscope stage. The footprint of this device corresponds to a standard microscope slide. A special glass fiber can manually be adjusted in the object space of the microscope lens. A stepwise fiber rotation can be controlled by a miniaturized stepping motor incorporated into the device. By means of a special mounting device, test particles were fixed onto glass fibers, optically localized with high precision, and automatically rotated to obtain views from different perspective angles under which distances of corresponding pairs of objects were determined. From these angle dependent distance values, the real 3D distance was calculated with a precision in the ten nanometer range (corresponding here to an optical resolution of 10-30 nm) using standard microscopic equipment. As a proof of concept, the spindle apparatus of a mature mouse oocyte was imaged during metaphase II meiotic arrest under different perspectives. Only very few images registered under different rotation angles are sufficient for full 3D reconstruction. The results indicate the principal advantage of the micro axial tomography approach for many microscopic setups therein and also those of improved resolutions as obtained by high precision localization determination.

  6. Trends in the Electron Microscopy Data Bank (EMDB).

    PubMed

    Patwardhan, Ardan

    2017-06-01

    Recent technological advances, such as the introduction of the direct electron detector, have transformed the field of cryo-EM and the landscape of molecular and cellular structural biology. This study analyses these trends from the vantage point of the Electron Microscopy Data Bank (EMDB), the public archive for three-dimensional EM reconstructions. Over 1000 entries were released in 2016, representing almost a quarter of the total number of entries (4431). Structures at better than 6 Å resolution now represent one of the fastest-growing categories, while the share of annually released tomography-related structures is approaching 20%. The use of direct electron detectors is growing very rapidly: they were used for 70% of the structures released in 2016, in contrast to none before 2011. Microscopes from FEI have an overwhelming lead in terms of usage, and the use of the RELION software package continues to grow rapidly after having attained a leading position in the field. China is rapidly emerging as a major player in the field, supplementing the US, Germany and the UK as the big four. Similarly, Tsinghua University ranks only second to the MRC Laboratory for Molecular Biology in terms of involvement in publications associated with cryo-EM structures at better than 4 Å resolution. Overall, the numbers point to a rapid democratization of the field, with more countries and institutes becoming involved.

  7. Trends in the Electron Microscopy Data Bank (EMDB)

    PubMed Central

    Patwardhan, Ardan

    2017-01-01

    Recent technological advances, such as the introduction of the direct electron detector, have transformed the field of cryo-EM and the landscape of molecular and cellular structural biology. This study analyses these trends from the vantage point of the Electron Microscopy Data Bank (EMDB), the public archive for three-dimensional EM reconstructions. Over 1000 entries were released in 2016, representing almost a quarter of the total number of entries (4431). Structures at better than 6 Å resolution now represent one of the fastest-growing categories, while the share of annually released tomography-related structures is approaching 20%. The use of direct electron detectors is growing very rapidly: they were used for 70% of the structures released in 2016, in contrast to none before 2011. Microscopes from FEI have an overwhelming lead in terms of usage, and the use of the RELION software package continues to grow rapidly after having attained a leading position in the field. China is rapidly emerging as a major player in the field, supplementing the US, Germany and the UK as the big four. Similarly, Tsinghua University ranks only second to the MRC Laboratory for Molecular Biology in terms of involvement in publications associated with cryo-EM structures at better than 4 Å resolution. Overall, the numbers point to a rapid democratization of the field, with more countries and institutes becoming involved. PMID:28580912

  8. Entropic measures of individual mobility patterns

    NASA Astrophysics Data System (ADS)

    Gallotti, Riccardo; Bazzani, Armando; Degli Esposti, Mirko; Rambaldi, Sandro

    2013-10-01

    Understanding human mobility from a microscopic point of view may represent a fundamental breakthrough for the development of a statistical physics for cognitive systems and it can shed light on the applicability of macroscopic statistical laws for social systems. Even if the complexity of individual behaviors prevents a true microscopic approach, the introduction of mesoscopic models allows the study of the dynamical properties for the non-stationary states of the considered system. We propose to compute various entropy measures of the individual mobility patterns obtained from GPS data that record the movements of private vehicles in the Florence district, in order to point out new features of human mobility related to the use of time and space and to define the dynamical properties of a stochastic model that could generate similar patterns. Moreover, we can relate the predictability properties of human mobility to the distribution of time passed between two successive trips. Our analysis suggests the existence of a hierarchical structure in the mobility patterns which divides the performed activities into three different categories, according to the time cost, with different information contents. We show that a Markov process defined by using the individual mobility network is not able to reproduce this hierarchy, which seems the consequence of different strategies in the activity choice. Our results could contribute to the development of governance policies for a sustainable mobility in modern cities.

  9. An innovative approach in microscopic endodontics

    PubMed Central

    Mittal, Sunandan; Kumar, Tarun; Sharma, Jyotika; Mittal, Shifali

    2014-01-01

    The introduction of the dental operating microscope was a turning point in the history of dentistry. It triggered a rapid transition from the conventional world of macro-dentistry to the precise, detailed world of micro-dentistry. However, working at these higher-power magnifications brings the clinician into the realm where even slight hand movements are disruptive. Physiologic hand tremor is a problem resulting in difficulty in mouth mirror placement. Hence, in this paper, a new instrument was designed to overcome the drawback of hand tremors during microscopic endodontics. PMID:24944459

  10. Physically motivated global alignment method for electron tomography

    DOE PAGES

    Sanders, Toby; Prange, Micah; Akatay, Cem; ...

    2015-04-08

    Electron tomography is widely used for nanoscale determination of 3-D structures in many areas of science. Determining the 3-D structure of a sample from electron tomography involves three major steps: acquisition of sequence of 2-D projection images of the sample with the electron microscope, alignment of the images to a common coordinate system, and 3-D reconstruction and segmentation of the sample from the aligned image data. The resolution of the 3-D reconstruction is directly influenced by the accuracy of the alignment, and therefore, it is crucial to have a robust and dependable alignment method. In this paper, we develop amore » new alignment method which avoids the use of markers and instead traces the computed paths of many identifiable ‘local’ center-of-mass points as the sample is rotated. Compared with traditional correlation schemes, the alignment method presented here is resistant to cumulative error observed from correlation techniques, has very rigorous mathematical justification, and is very robust since many points and paths are used, all of which inevitably improves the quality of the reconstruction and confidence in the scientific results.« less

  11. Long working distance interference microscope

    DOEpatents

    Sinclair, Michael B.; DeBoer, Maarten P.; Smith, Norman F.

    2004-04-13

    Disclosed is a long working distance interference microscope suitable for three-dimensional imaging and metrology of MEMS devices and test structures on a standard microelectronics probe station. The long working distance of 10-30 mm allows standard probes or probe cards to be used. This enables nanometer-scale 3-D height profiles of MEMS test structures to be acquired across an entire wafer. A well-matched pair of reference/sample objectives is not required, significantly reducing the cost of this microscope, as compared to a Linnik microinterferometer.

  12. Fabrication of large area plasmonic nanoparticle grating structure on silver halide based transmission electron microscope film and its application as a surface enhanced Raman spectroscopy substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sudheer,, E-mail: sudheer@rrcat.gov.in; Tiwari, P.; Singh, M. N.

    The plasmonic responses of silver nanoparticle grating structures of different periods made on silver halide based electron microscope film are investigated. Raster scan of the conventional scanning electron microscope (SEM) is used to carry out electron beam lithography for fabricating the plasmonic nanoparticle grating (PNG) structures. Morphological characterization of the PNG structures, carried out by the SEM and the atomic force microscope, indicates that the depth of the groove decreases with a decrease in the grating period. Elemental characterization performed by the energy dispersive spectroscopy and the x-ray diffraction shows the presence of nanoparticles of silver in the PNG grating.more » The optical characterization of the gratings shows that the localized surface plasmon resonance peak shifts from 366 to 378 nm and broadens with a decrease in grating period from 10 to 2.5 μm. The surface enhanced Raman spectroscopy of the Rhodamine-6G dye coated PNG structure shows the maximum enhancement by two orders of magnitude in comparison to the randomly distributed silver nanoparticles having similar size and shape as the PNG structure.« less

  13. Electron holography study of magnetization behavior in the writer pole of a perpendicular magnetic recording head by a 1 MV transmission electron microscope.

    PubMed

    Hirata, Kei; Ishida, Yoichi; Akashi, Tetsuya; Shindo, Daisuke; Tonomura, Akira

    2012-01-01

    The magnetic domain structure of the writer poles of perpendicular magnetic recording heads was studied using electron holography. Although the domain structure of a 100-nm-thick writer pole could be observed with a 300 kV transmission electron microscope, that of the 250-nm-thick writer pole could not be analyzed due to the limited transmission capability of the instrument. On the other hand, the detailed domain structure of the 250-nm-thick writer pole was successfully analyzed by a 1 MV electron microscope using its high transmission capability. The thickness and material dependency of the domain structure of a writer pole were discussed.

  14. Macroscopic and microscopic findings in avascular necrosis of the femoral head.

    PubMed

    Kamal, Diana; Alexandru, D O; Kamal, C K; Streba, C T; Grecu, D; Mogoantă, L

    2012-01-01

    The avascular necrosis of the femoral head is an illness induced by the cutoff of blood flow to the femoral head and it affects mostly young adults between the ages of 30 and 50 years, raising therapeutic and diagnostic issues. Many risk factors are incriminated in the development of avascular necrosis of the femoral head like: trauma, chronic alcohol consumption, smoking, administration of corticosteroid drugs, most of the cases are considered to be idiopathic. The main goal of our paper is to describe the macroscopic and microscopic variations of the bone structure, which occur in patients with avascular necrosis of the femoral head. The biological material needed for our study was obtained following hip arthroplasty surgery in 26 patients between the ages of 29 and 59 years, which previously were diagnosed with avascular necrosis of the femoral head and admitted in the Orthopedics Department of the Emergency County Hospital of Craiova (Romania) between 2010 and 2011. From a macroscopic point of view, we found well defined areas of necrosis, most of which were neatly demarcated of the adjacent viable tissue by hyperemic areas, loss of shape and contour of the femoral head and transformations of the articular cartilage above the area of necrosis. When examined under the microscope, we found vast areas of fibrosis, narrow bone trabeculae, obstructed blood vessels or blood vessels with clots inside, hypertrophic fat cells, bone sequestration but also small cells and pyknotic nuclei. The microscopic and macroscopic findings on the femoral head sections varied with the patients and the stage of the disease.

  15. Mars Life? - Microscopic Tubular Structures

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This electron microscope image shows tubular structures of likely Martian origin. These structures are very similar in size and shape to extremely tiny microfossils found in some Earth rocks. This photograph is part of a report by a NASA research team published in the Aug. 16, 1996, issue of the journal Science. A two-year investigation by the team found organic molecules, mineral features characteristic of biological activity and possible microscopic fossils such as these inside of an ancient Martian rock that fell to Earth as a meteorite. The largest possible fossils are less than 1/100th the diameter of a human hair in size while most are ten times smaller.

  16. Fluorescence correlation spectroscopy, Raster image correlation spectroscopy and Number & Brightness on a commercial confocal laser scanning microscope with analog detectors (Nikon C1)

    PubMed Central

    Moens, Pierre D.J.; Gratton, Enrico; Salvemini, Iyrri L.

    2010-01-01

    Fluorescence correlation spectroscopy (FCS) was developed in 1972 by Magde, Elson and Webb (Magde et al., 1972). Photon counting detectors and avalanche photodiodes have become standards in FCS to the point that there is a widespread belief that these detectors are essential to perform FCS experiments, despite the fact that FCS was developed using analog detectors. Spatial and temporal intensity fluctuation correlations using analog detection on a commercial Olympus Fluoview 300 microscope has been reported by Brown et al. (2008). However, each analog instrument has its own idiosyncrasies that need to be understood before using the instrument for FCS. In this work we explore the capabilities of the Nikon C1, a low cost confocal microscope, to obtain single point FCS, Raster-scan Image Correlation Spectroscopy (RICS) and Number & Brightness data both in solution and incorporated into the membrane of Giant Unilamellar Vesicles (GUVs). We show that it is possible to obtain dynamic information about fluorescent molecules from single point FCS, RICS and Number & Brightness using the Nikon C1. We highlighted the fact that care should be taken in selecting the acquisition parameters in order to avoid possible artifacts due to the detector noise. However, due to relatively large errors in determining the distribution of digital levels for a given microscope setting, the system is probably only adequate for determining relative brightness within the same image. PMID:20734406

  17. Smartphone confocal microscopy for imaging cellular structures in human skin in vivo.

    PubMed

    Freeman, Esther E; Semeere, Aggrey; Osman, Hany; Peterson, Gary; Rajadhyaksha, Milind; González, Salvador; Martin, Jeffery N; Anderson, R Rox; Tearney, Guillermo J; Kang, Dongkyun

    2018-04-01

    We report development of a low-cost smartphone confocal microscope and its first demonstration of in vivo human skin imaging. The smartphone confocal microscope uses a slit aperture and diffraction grating to conduct two-dimensional confocal imaging without using any beam scanning devices. Lateral and axial resolutions of the smartphone confocal microscope were measured as 2 and 5 µm, respectively. In vivo confocal images of human skin revealed characteristic cellular structures, including spinous and basal keratinocytes and papillary dermis. Results suggest that the smartphone confocal microscope has a potential to examine cellular details in vivo and may help disease diagnosis in resource-poor settings, where conducting standard histopathologic analysis is challenging.

  18. Smartphone confocal microscopy for imaging cellular structures in human skin in vivo

    PubMed Central

    Freeman, Esther E.; Semeere, Aggrey; Osman, Hany; Peterson, Gary; Rajadhyaksha, Milind; González, Salvador; Martin, Jeffery N.; Anderson, R. Rox; Tearney, Guillermo J.; Kang, Dongkyun

    2018-01-01

    We report development of a low-cost smartphone confocal microscope and its first demonstration of in vivo human skin imaging. The smartphone confocal microscope uses a slit aperture and diffraction grating to conduct two-dimensional confocal imaging without using any beam scanning devices. Lateral and axial resolutions of the smartphone confocal microscope were measured as 2 and 5 µm, respectively. In vivo confocal images of human skin revealed characteristic cellular structures, including spinous and basal keratinocytes and papillary dermis. Results suggest that the smartphone confocal microscope has a potential to examine cellular details in vivo and may help disease diagnosis in resource-poor settings, where conducting standard histopathologic analysis is challenging. PMID:29675328

  19. Mars Life? - Microscopic Tube-like Structures

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This electron microscope image is a close-up of the center part of photo number S96-12301. While the exact nature of these tube-like structures is not known, one interpretation is that they may be microscopic fossils of primitive, bacteria-like organisms that may have lived on Mars more than 3.6 billion years ago. A two-year investigation by a NASA research team found organic molecules, mineral features characteristic of biological activity and possible microscopic fossils such as these inside of an ancient Martian rock that fell to Earth as a meteorite. The largest possible fossils are less than 1/100th the diameter of a human hair in size while most are ten times smaller.

  20. Electron spin relaxation in two polymorphic structures of GaN

    NASA Astrophysics Data System (ADS)

    Kang, Nam Lyong

    2015-03-01

    The relaxation process of electron spin in systems of electrons interacting with piezoelectric deformation phonons that are mediated through spin-orbit interactions was interpreted from a microscopic point of view using the formula for the electron spin relaxation times derived by a projection-reduction method. The electron spin relaxation times in two polymorphic structures of GaN were calculated. The piezoelectric material constant for the wurtzite structure obtained by a comparison with a previously reported experimental result was {{P}pe}=1.5 × {{10}29} eV {{m}-1}. The temperature and magnetic field dependence of the relaxation times for both wurtzite and zinc-blende structures were similar, but the relaxation times in zinc-blende GaN were smaller and decreased more rapidly with increasing temperature and magnetic field than that in wurtzite GaN. This study also showed that the electron spin relaxation for wurtzite GaN at low density could be explained by the Elliot-Yafet process but not for zinc-blende GaN in the metallic regime.

  1. Structural Stability of Diffusion Barriers in Cu/Ru/MgO/Ta/Si

    PubMed Central

    Hsieh, Shu-Huei; Chen, Wen Jauh; Chien, Chu-Mo

    2015-01-01

    Various structures of Cu (50 nm)/Ru (2 nm)/MgO (0.5–3 nm)/Ta (2 nm)/Si were prepared by sputtering and electroplating techniques, in which the ultra-thin trilayer of Ru (2 nm)/MgO (0.5–3 nm)/Ta (2 nm) is used as the diffusion barrier against the interdiffusion between Cu film and Si substrate. The various structures of Cu/Ru/MgO/Ta/Si were characterized by four-point probes for their sheet resistances, by X-ray diffractometers for their crystal structures, by scanning electron microscopes for their surface morphologies, and by transmission electron microscopes for their cross-section and high resolution views. The results showed that the ultra-thin tri-layer of Ru (2 nm)/MgO (0.5–3 nm)/Ta (2 nm) is an effective diffusion barrier against the interdiffusion between Cu film and Si substrate. The MgO, and Ta layers as deposited are amorphous. The mechanism for the failure of the diffusion barrier is that the Ru layer first became discontinuous at a high temperature and the Ta layer sequentially become discontinuous at a higher temperature, the Cu atoms then diffuse through the MgO layer and to the substrate at the discontinuities, and the Cu3Si phases finally form. The maximum temperature at which the structures of Cu (50 nm)/Ru (2 nm)/MgO (0.5–3 nm)/Ta (2 nm)/Si are annealed and still have low sheet resistance is from 550 to 750 °C for the annealing time of 5 min and from 500 to 700 °C for the annealing time of 30 min. PMID:28347099

  2. Measurement of dew droplets in initial deposition at dew point by using a phase-shift interference microscope

    NASA Astrophysics Data System (ADS)

    Matsumoto, Shigeaki; Toyooka, Satoru; Hoshino, Mitsuo

    2002-09-01

    In order to measure the total mass per unit area of dew droplets deposited on a metal plate in the dew-point hygrometer, the shape of a dew droplet deposited on a copper plate was measured accurately by using an interference microscope that employed a phase-shift technique. The microscope was constructed by adding a piezoelectric transducer to an usual interference microscope. A simple method that uses a conventional speaker horn and an optical fiber cable was introduced to depress speckle noise. The shape of a dew droplet deposited on the copper plate surface with 0.1 μm in average roughness was measured with an accuracy of +/-3nm. The mass of a dew droplet could be calculated numerically from the volume of its shape and was of the order of 10-9 g. The total mass of dew droplets deposited per unit area and the deposition velocity were obtained under a gentle wind. The total mass was the order of 10-5 g/cm2 at the beginning of deposition and the deposition velocity was ranged from 2x10-6 to 6x10-5 g/cm2.min.

  3. The measurement of tiny dew droplets at the initial deposition stage and dew point using a phase-shift interference microscope

    NASA Astrophysics Data System (ADS)

    Shigeaki, Matsumoto

    2003-12-01

    The shape of a dew droplet deposited on the mirror surface of a copper plate was measured accurately using an interference microscope that employed a phase-shift technique. The microscope was constructed by adding a piezoelectric transducer to an interference microscope. A simple method that uses a conventional speaker horn and an optical fibre cable was used to depress any speckle noise. The shape of a dew droplet deposited at dew point on the plate surface with average roughness of 0.1 µm was measured with an accuracy of ± 3 nm. The mass of a tiny dew droplet could be determined from the volume of its shape and was of the order of 10-9 g. The total mass of a dew droplet deposited per unit area and the deposition velocity under a gentle wind were also obtained in a similar way. The total mass was of the order of 10-5 g cm-2 at the beginning of deposition and the deposition velocity ranged from 1 × 10-5 to 6 × 10-5 g cm-2 min-1 at room temperature.

  4. Enhanced fluorescence microscope and its application

    NASA Astrophysics Data System (ADS)

    Wang, Susheng; Li, Qin; Yu, Xin

    1997-12-01

    A high gain fluorescence microscope is developed to meet the needs in medical and biological research. By the help of an image intensifier with luminance gain of 4 by 104 the sensitivity of the system can achieve 10-6 1x level and be 104 times higher than ordinary fluorescence microscope. Ultra-weak fluorescence image can be detected by it. The concentration of fluorescent label and emitting light intensity of the system are decreased as much as possible, therefore, the natural environment of the detected call can be kept. The CCD image acquisition set-up controlled by computer obtains the quantitative data of each point according to the gray scale. The relation between luminous intensity and output of CCD is obtained by using a wide range weak photometry. So the system not only shows the image of ultra-weak fluorescence distribution but also gives the intensity of fluorescence of each point. Using this system, we obtained the images of distribution of hypocrellin A (HA) in Hela cell, the images of Hela cell being protected by antioxidant reagent Vit. E, SF and BHT. The images show that the digitized ultra-sensitive fluorescence microscope is a useful tool for medical and biological research.

  5. Lithography-Free Fabrication of Core-Shell GaAs Nanowire Tunnel Diodes.

    PubMed

    Darbandi, A; Kavanagh, K L; Watkins, S P

    2015-08-12

    GaAs core-shell p-n junction tunnel diodes were demonstrated by combining vapor-liquid-solid growth with gallium oxide deposition by atomic layer deposition for electrical isolation. The characterization of an ensemble of core-shell structures was enabled by the use of a tungsten probe in a scanning electron microscope without the need for lithographic processing. Radial tunneling transport was observed, exhibiting negative differential resistance behavior with peak-to-valley current ratios of up to 3.1. Peak current densities of up to 2.1 kA/cm(2) point the way to applications in core-shell photovoltaics and tunnel field effect transistors.

  6. Hysteresis phenomena of the intelligent driver model for traffic flow

    NASA Astrophysics Data System (ADS)

    Dahui, Wang; Ziqiang, Wei; Ying, Fan

    2007-07-01

    We present hysteresis phenomena of the intelligent driver model for traffic flow in a circular one-lane roadway. We show that the microscopic structure of traffic flow is dependent on its initial state by plotting the fraction of congested vehicles over the density, which shows a typical hysteresis loop, and by investigating the trajectories of vehicles on the velocity-over-headway plane. We find that the trajectories of vehicles on the velocity-over-headway plane, which usually show a hysteresis loop, include multiple loops. We also point out the relations between these hysteresis loops and the congested jams or high-density clusters in traffic flow.

  7. Vertically aligned nanostructure scanning probe microscope tips

    DOEpatents

    Guillorn, Michael A.; Ilic, Bojan; Melechko, Anatoli V.; Merkulov, Vladimir I.; Lowndes, Douglas H.; Simpson, Michael L.

    2006-12-19

    Methods and apparatus are described for cantilever structures that include a vertically aligned nanostructure, especially vertically aligned carbon nanofiber scanning probe microscope tips. An apparatus includes a cantilever structure including a substrate including a cantilever body, that optionally includes a doped layer, and a vertically aligned nanostructure coupled to the cantilever body.

  8. Mars Life? - Microscopic Tube-like Structures

    NASA Image and Video Library

    1996-08-09

    This high-resolution scanning electron microscope image shows an unusual tube-like structural form that is less than 1/100th the width of a human hair in size found in meteorite ALH84001, a meteorite believed to be of Martian origin. http://photojournal.jpl.nasa.gov/catalog/PIA00288

  9. Atmospheric scanning electron microscope observes cells and tissues in open medium through silicon nitride film.

    PubMed

    Nishiyama, Hidetoshi; Suga, Mitsuo; Ogura, Toshihiko; Maruyama, Yuusuke; Koizumi, Mitsuru; Mio, Kazuhiro; Kitamura, Shinichi; Sato, Chikara

    2010-03-01

    Direct observation of subcellular structures and their characterization is essential for understanding their physiological functions. To observe them in open environment, we have developed an inverted scanning electron microscope with a detachable, open-culture dish, capable of 8 nm resolution, and combined with a fluorescence microscope quasi-simultaneously observing the same area from the top. For scanning electron microscopy from the bottom, a silicon nitride film window in the base of the dish maintains a vacuum between electron gun and open sample dish while allowing electrons to pass through. Electrons are backscattered from the sample and captured by a detector under the dish. Cells cultured on the open dish can be externally manipulated under optical microscopy, fixed, and observed using scanning electron microscopy. Once fine structures have been revealed by scanning electron microscopy, their component proteins may be identified by comparison with separately prepared fluorescence-labeled optical microscopic images of the candidate proteins, with their heavy-metal-labeled or stained ASEM images. Furthermore, cell nuclei in a tissue block stained with platinum-blue were successfully observed without thin-sectioning, which suggests the applicability of this inverted scanning electron microscope to cancer diagnosis. This microscope visualizes mesoscopic-scale structures, and is also applicable to non-bioscience fields including polymer chemistry. (c) 2010 Elsevier Inc. All rights reserved.

  10. Bimetallic iron and cobalt incorporated MFI/MCM-41 composite and its catalytic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Baoshan, E-mail: bsli@mail.buct.edu.cn; Xu, Junqing; Li, Xiao

    2012-05-15

    Graphical abstract: The formation of FeCo-MFI/MCM-41 composite is based on two steps, the first step of synthesizing the MFI-type proto-zeolite unites under hydrothermal conditions. The second step of assembling these zeolite fragment together new silica and heteroatom source on the CTAB surfactant micelle to synthesize the mesoporous product with hexagonal structure. Highlights: Black-Right-Pointing-Pointer Bimetallic iron and cobalt incorporated MFI/MCM-41 composite was prepared using templating method. Black-Right-Pointing-Pointer FeCo-MFI/MCM-41 composite simultaneously possessed two kinds of meso- and micro-porous structures. Black-Right-Pointing-Pointer Iron and cobalt ions incorporated into the silica framework with tetrahedral coordination. -- Abstract: The MFI/MCM-41 composite material with bimetallic Fe andmore » Co incorporation was prepared using templating method via a two-step hydrothermal crystallization procedure. The obtained products were characterized by a series of techniques including powder X-ray diffraction, N{sub 2} sorption, transmission electron microscopy, scanning electron microscope, H{sub 2} temperature programmed reduction, thermal analyses, and X-ray absorption fine structure spectroscopy of the Fe and Co K-edge. The catalytic properties of the products were investigated by residual oil hydrocracking reactions. Characterization results showed that the FeCo-MFI/MCM-41 composite simultaneously possessed two kinds of stable meso- and micro-porous structures. Iron and cobalt ions were incorporated into the silicon framework, which was confirmed by H{sub 2} temperature programmed reduction and X-ray absorption fine structure spectroscopy. This composite presented excellent activities in hydrocracking of residual oil, which was superior to the pure materials of silicate-1/MCM-41.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merkle, K. L.; Csencsits, R.; Rynes, K. L.

    In the absence of high-order aberrations, the lattice fringe technique should allow measurement of grain boundary rigid-body displacements to accuracies about an order of magnitude better than the point-to-point resolution of the transmission electron microscope. The three-fold astigmatism, however, introduces shifts of the lattice fringe pattern that depend on the orientation of the lattice relative to the direction of the three-fold astigmatism and thus produces an apparent shift between the two grains bordering the grain boundary. By image simulation of grain boundary model structures, the present paper explores the effect of these extraneous shifts on grain boundary volume expansion measurements.more » It is found that the shifts depend, among others, on zone axis direction and the magnitude of the lattice parameter. For many grain boundaries of interest, three-fold astigmatism correction to better than 100 nm appears necessary to achieve the desired accuracies.« less

  12. Guided self-assembly of magnetic beads for biomedical applications

    NASA Astrophysics Data System (ADS)

    Gusenbauer, Markus; Nguyen, Ha; Reichel, Franz; Exl, Lukas; Bance, Simon; Fischbacher, Johann; Özelt, Harald; Kovacs, Alexander; Brandl, Martin; Schrefl, Thomas

    2014-02-01

    Micromagnetic beads are widely used in biomedical applications for cell separation, drug delivery, and hyperthermia cancer treatment. Here we propose to use self-organized magnetic bead structures which accumulate on fixed magnetic seeding points to isolate circulating tumor cells. The analysis of circulating tumor cells is an emerging tool for cancer biology research and clinical cancer management including the detection, diagnosis and monitoring of cancer. Microfluidic chips for isolating circulating tumor cells use either affinity, size or density capturing methods. We combine multiphysics simulation techniques to understand the microscopic behavior of magnetic beads interacting with soft magnetic accumulation points used in lab-on-chip technologies. Our proposed chip technology offers the possibility to combine affinity and size capturing with special antibody-coated bead arrangements using a magnetic gradient field created by Neodymium Iron Boron permanent magnets. The multiscale simulation environment combines magnetic field computation, fluid dynamics and discrete particle dynamics.

  13. The optics of microscope image formation.

    PubMed

    Wolf, David E

    2013-01-01

    Although geometric optics gives a good understanding of how the microscope works, it fails in one critical area, which is explaining the origin of microscope resolution. To accomplish this, one must consider the microscope from the viewpoint of physical optics. This chapter describes the theory of the microscope-relating resolution to the highest spatial frequency that a microscope can collect. The chapter illustrates how Huygens' principle or construction can be used to explain the propagation of a plane wave. It is shown that this limit increases with increasing numerical aperture (NA). As a corollary to this, resolution increases with decreasing wavelength because of how NA depends on wavelength. The resolution is higher for blue light than red light. Resolution is dependent on contrast, and the higher the contrast, the higher the resolution. This last point relates to issues of signal-to-noise and dynamic range. The use of video and new digital cameras has necessitated redefining classical limits such as those of Rayleigh's criterion. Copyright © 2007 Elsevier Inc. All rights reserved.

  14. Unified treatment of microscopic boundary conditions and efficient algorithms for estimating tangent operators of the homogenized behavior in the computational homogenization method

    NASA Astrophysics Data System (ADS)

    Nguyen, Van-Dung; Wu, Ling; Noels, Ludovic

    2017-03-01

    This work provides a unified treatment of arbitrary kinds of microscopic boundary conditions usually considered in the multi-scale computational homogenization method for nonlinear multi-physics problems. An efficient procedure is developed to enforce the multi-point linear constraints arising from the microscopic boundary condition either by the direct constraint elimination or by the Lagrange multiplier elimination methods. The macroscopic tangent operators are computed in an efficient way from a multiple right hand sides linear system whose left hand side matrix is the stiffness matrix of the microscopic linearized system at the converged solution. The number of vectors at the right hand side is equal to the number of the macroscopic kinematic variables used to formulate the microscopic boundary condition. As the resolution of the microscopic linearized system often follows a direct factorization procedure, the computation of the macroscopic tangent operators is then performed using this factorized matrix at a reduced computational time.

  15. Quantitative characterization of semiconductor structures with a scanning microwave microscope.

    PubMed

    Korolyov, S A; Reznik, A N

    2018-02-01

    In this work, our earlier method for measuring resistance R sh of semiconductor films with a near-field scanning microwave microscope [A. N. Reznik and S. A. Korolyov, J. Appl. Phys. 119, 094504 (2016)] is studied in a 0.1 kΩ/sq < R sh < 15 kΩ/sq range. The method is based on a microscope model in the form of a monopole or dipole antenna interacting with an arbitrary layered structure. The model fitting parameters are determined from the data yielded by calibration measurements on a system of etalon samples. The performance of the method was analyzed experimentally, using strip-probe and coaxial-probe microscopes in the frequency range of 1-3 GHz. For test structures, we used doped GaN films on the Al 2 O 3 substrate and also transistor structures based on the AlGaN/GaN heterojunction and AlGaAs/GaAs/InGaAs/GaAs/AlGaAs quantum well with a conducting channel. The obtained microwave microscope data were compared with the results of measurements by the van der Pauw method. At the first stage of the experiment, the calibration etalons were bulk homogeneous samples with different permittivity/conductivity values. In this case, satisfactory agreement between the microscope and the van der Pauw data was obtained with a strip probe on all tested samples in the entire range of R sh . With a coaxial probe, such accordance was observed only in high-ohmic samples with R sh > 1 kΩ/sq. The use of GaN film structures as a calibration system helped to increase the accuracy of the coaxial-probe-aided measurement of R sh to a level of ∼10%.

  16. Quantitative characterization of semiconductor structures with a scanning microwave microscope

    NASA Astrophysics Data System (ADS)

    Korolyov, S. A.; Reznik, A. N.

    2018-02-01

    In this work, our earlier method for measuring resistance Rsh of semiconductor films with a near-field scanning microwave microscope [A. N. Reznik and S. A. Korolyov, J. Appl. Phys. 119, 094504 (2016)] is studied in a 0.1 kΩ/sq < Rsh < 15 kΩ/sq range. The method is based on a microscope model in the form of a monopole or dipole antenna interacting with an arbitrary layered structure. The model fitting parameters are determined from the data yielded by calibration measurements on a system of etalon samples. The performance of the method was analyzed experimentally, using strip-probe and coaxial-probe microscopes in the frequency range of 1-3 GHz. For test structures, we used doped GaN films on the Al2O3 substrate and also transistor structures based on the AlGaN/GaN heterojunction and AlGaAs/GaAs/InGaAs/GaAs/AlGaAs quantum well with a conducting channel. The obtained microwave microscope data were compared with the results of measurements by the van der Pauw method. At the first stage of the experiment, the calibration etalons were bulk homogeneous samples with different permittivity/conductivity values. In this case, satisfactory agreement between the microscope and the van der Pauw data was obtained with a strip probe on all tested samples in the entire range of Rsh. With a coaxial probe, such accordance was observed only in high-ohmic samples with Rsh > 1 kΩ/sq. The use of GaN film structures as a calibration system helped to increase the accuracy of the coaxial-probe-aided measurement of Rsh to a level of ˜10%.

  17. Examination of silicon solar cells by means of the Scanning Laser Acoustic Microscope (SLAM)

    NASA Technical Reports Server (NTRS)

    Vorres, C.; Yuhas, D. E.

    1981-01-01

    The Scanning Laser Acoustic Microscope produces images of internal structure in materials. The acoustic microscope is an imaging system based upon acoustic rather than electromagnetic waves. Variations in the elastic propertis are primarily responsible for structure visualized in acoustic micrographs. The instrument used in these investigations is the SONOMICROSCOPE 100 which can be operated at ultrasonic frequencies of from 30 MHz to 500 MHz. The examination of the silicon solar cells was made at 100 MHz. Data are presented in the form of photomicrographs.

  18. Visualizing Morphological Changes of Abscission Zone Cells in Arabidopsis by Scanning Electron Microscope.

    PubMed

    Shi, Chun-Lin; Butenko, Melinka A

    2018-01-01

    Scanning electron microscope (SEM) is a type of electron microscope which produces detailed images of surface structures. It has been widely used in plants and animals to study cellular structures. Here, we describe a detailed protocol to prepare samples of floral abscission zones (AZs) for SEM, as well as further image analysis. We show that it is a powerful tool to detect morphologic changes at the cellular level during the course of abscission in wild-type plants and to establish the details of phenotypic alteration in abscission mutants.

  19. Variations in local elastic modulus along the length of the aorta as observed by use of a scanning haptic microscope (SHM).

    PubMed

    Moriwaki, Takeshi; Oie, Tomonori; Takamizawa, Keiichi; Murayama, Yoshinobu; Fukuda, Toru; Omata, Sadao; Kanda, Keiichi; Nakayama, Yasuhide

    2011-12-01

    Variations in microscopic elastic structures along the entire length of canine aorta were evaluated by use of a scanning haptic microscope (SHM). The total aorta from the aortic arch to the abdominal aorta was divided into 6 approximately equal segments. After embedding the aorta in agar, it was cut into horizontal circumferential segments to obtain disk-like agar portions containing ring-like samples of aorta with flat surfaces (thickness, approximately 1 mm). The elastic modulus and topography of the samples under no-load conditions were simultaneously measured along the entire thickness of the wall by SHM by using a probe with a diameter of 5 μm and a spatial resolution of 2 μm at a rate of 0.3 s/point. The elastic modulus of the wall was the highest on the side of the luminal surface and decreased gradually toward the adventitial side. This tendency was similar to that of the change in the elastin fiber content. During the evaluation of the mid-portion of each tunica media segment, the highest elastic modulus (40.8 ± 3.5 kPa) was identified at the thoracic section of the aorta that had the highest density of elastic fibers. Under no-load conditions, portions of the aorta with high elastin density have a high elastic modulus.

  20. Implementing digital technology to enhance student learning of pathology.

    PubMed

    Farah, C S; Maybury, T

    2009-08-01

    The introduction of digital technologies into the dental curriculum is an ongoing feature of broader changes going on in tertiary education. This report examines the introduction of digital virtual microscopy technology into the curriculum of the School of Dentistry at the University of Queensland (UQ) in Brisbane, Australia. Sixty students studying a course in pathology in 2005 were introduced to virtual microscopy technology alongside the more traditional light microscope and then asked to evaluate their own learning outcomes from this technology via a structured 5-point LIKART survey. A wide variety of questions dealing the pedagogic implications of the introduction of virtual microscopy into pathology were asked of students with the overall result being that it positively enhanced their learning of pathology via digital microscopic means. The success of virtual microscopy in dentistry at UQ is then discussed in the larger context of changes going on in tertiary education. In particular, the change from the print-literate tradition to the electronic one, that is from 'literacy to electracy'. Virtual microscopy is designated as a component of this transformation to electracy. Whilst traditional microscopic skills may still be valued in dental curricula, the move to virtual microscopy and computer-assisted, student-centred learning of pathology appears to enhance the learning experience in relation to its effectiveness in helping students engage and interact with the course material.

  1. Three-dimensional structural imaging of starch granules by second-harmonic generation circular dichroism.

    PubMed

    Zhuo, G-Y; Lee, H; Hsu, K-J; Huttunen, M J; Kauranen, M; Lin, Y-Y; Chu, S-W

    2014-03-01

    Chirality is one of the most fundamental and essential structural properties of biological molecules. Many important biological molecules including amino acids and polysaccharides are intrinsically chiral. Conventionally, chiral species can be distinguished by interaction with circularly polarized light, and circular dichroism is one of the best-known approaches for chirality detection. As a linear optical process, circular dichroism suffers from very low signal contrast and lack of spatial resolution in the axial direction. It has been demonstrated that by incorporating nonlinear interaction with circularly polarized excitation, second-harmonic generation circular dichroism can provide much higher signal contrast. However, previous circular dichroism and second-harmonic generation circular dichroism studies are mostly limited to probe chiralities at surfaces and interfaces. It is known that second-harmonic generation, as a second-order nonlinear optical effect, provides excellent optical sectioning capability when combined with a laser-scanning microscope. In this work, we combine the axial resolving power of second-harmonic generation and chiral sensitivity of second-harmonic generation circular dichroism to realize three-dimensional chiral detection in biological tissues. Within the point spread function of a tight focus, second-harmonic generation circular dichroism could arise from the macroscopic supramolecular packing as well as the microscopic intramolecular chirality, so our aim is to clarify the origins of second-harmonic generation circular dichroism response in complicated three-dimensional biological systems. The sample we use is starch granules whose second-harmonic generation-active molecules are amylopectin with both microscopic chirality due to its helical structure and macroscopic chirality due to its crystallized packing. We found that in a starch granule, the second-harmonic generation for right-handed circularly polarized excitation is significantly different from second-harmonic generation for left-handed one, offering excellent second-harmonic generation circular dichroism contrast that approaches 100%. In addition, three-dimensional visualization of second-harmonic generation circular dichroism distribution with sub-micrometer spatial resolution is realized. We observed second-harmonic generation circular dichroism sign change across the starch granules, and the result suggests that in thick biological tissue, second-harmonic generation circular dichroism arises from macroscopic molecular packing. Our result provides a new method to visualize the organization of three-dimensional structures of starch granules. The second-harmonic generation circular dichroism imaging method expands the horizon of nonlinear chiroptical studies from simplified surface/solution environments to complicated biological tissues. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  2. Method for nanoscale spatial registration of scanning probes with substrates and surfaces

    NASA Technical Reports Server (NTRS)

    Wade, Lawrence A. (Inventor)

    2010-01-01

    Embodiments in accordance with the present invention relate to methods and apparatuses for aligning a scanning probe used to pattern a substrate, by comparing the position of the probe to a reference location or spot on the substrate. A first light beam is focused on a surface of the substrate as a spatial reference point. A second light beam then illuminates the scanning probe being used for patterning. An optical microscope images both the focused light beam, and a diffraction pattern, shadow, or light backscattered by the illuminated scanning probe tip of a scanning probe microscope (SPM), which is typically the tip of the scanning probe on an atomic force microscope (AFM). Alignment of the scanning probe tip relative to the mark is then determined by visual observation of the microscope image. This alignment process may be repeated to allow for modification or changing of the scanning probe microscope tip.

  3. Martian Microscope

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The microscopic imager (circular device in center) is in clear view above the surface at Meridiani Planum, Mars, in this approximate true-color image taken by the panoramic camera on the Mars Exploration Rover Opportunity. The image was taken on the 9th sol of the rover's journey. The microscopic imager is located on the rover's instrument deployment device, or arm. The arrow is pointing to the lens of the instrument. Note the dust cover, which flips out to the left of the lens, is open. This approximated color image was created using the camera's violet and infrared filters as blue and red.

  4. Comprehensive optical and data management infrastructure for high-throughput light-sheet microscopy of whole mouse brains.

    PubMed

    Müllenbroich, M Caroline; Silvestri, Ludovico; Onofri, Leonardo; Costantini, Irene; Hoff, Marcel Van't; Sacconi, Leonardo; Iannello, Giulio; Pavone, Francesco S

    2015-10-01

    Comprehensive mapping and quantification of neuronal projections in the central nervous system requires high-throughput imaging of large volumes with microscopic resolution. To this end, we have developed a confocal light-sheet microscope that has been optimized for three-dimensional (3-D) imaging of structurally intact clarified whole-mount mouse brains. We describe the optical and electromechanical arrangement of the microscope and give details on the organization of the microscope management software. The software orchestrates all components of the microscope, coordinates critical timing and synchronization, and has been written in a versatile and modular structure using the LabVIEW language. It can easily be adapted and integrated to other microscope systems and has been made freely available to the light-sheet community. The tremendous amount of data routinely generated by light-sheet microscopy further requires novel strategies for data handling and storage. To complete the full imaging pipeline of our high-throughput microscope, we further elaborate on big data management from streaming of raw images up to stitching of 3-D datasets. The mesoscale neuroanatomy imaged at micron-scale resolution in those datasets allows characterization and quantification of neuronal projections in unsectioned mouse brains.

  5. Structural Investigation of Biological and Semiconductor Nanostructures with Nonlinear Multicontrast Microscopy

    NASA Astrophysics Data System (ADS)

    Cisek, Richard

    Physical and functional properties of advanced nano-composite materials and biological structures are determined by self-organized atoms and molecules into nanostructures and in turn by microscopic organization of the nanostructures into assemblies of higher structural complexity. Therefore, microscopes are indispensable tools for structural investigations at various levels of organization. In this work, novel nonlinear optical microscopy methods were developed to non-invasively study structural organization at the nanoscopic and microscopic levels. Atomic organization of semiconductor nanowires, molecular organization of amylose biocrystallites in starch granules, and microscopic organization of several photosynthetic organisms was elucidated. The structure of ZnSe nanowires, key components in many modern nanodevices, was investigated using polarization harmonic generation microscopy. Based on nonlinear optical properties of the different crystal lattices, zinc blende and wurtzite nanowires were differentiated, and the three-dimensional orientation of the zinc blende nanowires could be found. The structure of starch granules, a model biocrystal, important in food as well as health sciences, was also investigated using polarization harmonic microscopy. The study was combined with ab initio calculations using the crystal structures of amylose A and B, revealing that second harmonic signals originate from the hydroxide and hydrogen bonds in the starch granules. Visualization of several photosynthetic organisms including the green algae, Chlamydomonas reinhardtii, two species of cyanobacteria, Leptolyngbya sp. and Anabaena sp., aggregates of light-harvesting pigment-protein complexes as well as chloroplasts from green plants were also explored, revealing that future nonlinear microscopy applications could include structural studies of cell walls, the Chlamydomonas eyespot, and photosynthetic membranes. In this study, several nonlinear optical microscopy modalities were developed for quantitative structural investigations of nano and micro-sized architectures. Non-invasive extraction of crystallographic information in microscopic samples will have a number of potential benefits, for example, in clinical applications, allowing observations of disease states inside tissues without the need for biopsy. Industrial nanotechnology will benefit from fast determination of nanostructures with nonlinear microscopy that will improve quality of nanodevices.

  6. On the Concept "Microscope": Biology Student Teachers' Cognitive Structure

    ERIC Educational Resources Information Center

    Kurt, Hakan; Ekici, Gulay; Aktas, Murat; Aksu, Ozlem

    2013-01-01

    The purpose of the current study is to determine biology student teachers' cognitive structures on the concept of microscope. Qualitative research methodology has been applied in the study. The data were collected from biology student teachers. Free word association test and drawing-writing test were used to collect data. The data collected were…

  7. The Microscope: I--Structure. Health Occupations Education Module.

    ERIC Educational Resources Information Center

    Temple Univ., Philadelphia, PA. Div. of Vocational Education.

    This module on the structure of the microscope is one of 17 modules designed for individualized instruction in health occupations education programs at both the secondary and postsecondary levels. This module consists of an introduction to the module topic, a list of resources needed, and two learning experiences. Each learning experience contains…

  8. Naval Research Laboratory Major Facilities 2008

    DTIC Science & Technology

    2008-10-01

    Development Laboratory • Secure Supercomputing Facility • CBD/Tilghman Island IR Field Evaluation Facility • Ultra-Short-Pulse Laser Effects Research...EMI Test Facility • Proximity Operations Testbed GENERAL INFORMATION • Maps EX EC U TI V E D IR EC TO RA TE Code 1100 – Institute for Nanoscience...facility: atomic force microscope (AFM); benchtop transmission electron microscope (TEM); cascade probe station; critical point dryer ; dual beam focused

  9. A method of PSF generation for 3D brightfield deconvolution.

    PubMed

    Tadrous, P J

    2010-02-01

    This paper addresses the problem of 3D deconvolution of through focus widefield microscope datasets (Z-stacks). One of the most difficult stages in brightfield deconvolution is finding the point spread function. A theoretically calculated point spread function (called a 'synthetic PSF' in this paper) requires foreknowledge of many system parameters and still gives only approximate results. A point spread function measured from a sub-resolution bead suffers from low signal-to-noise ratio, compounded in the brightfield setting (by contrast to fluorescence) by absorptive, refractive and dispersal effects. This paper describes a method of point spread function estimation based on measurements of a Z-stack through a thin sample. This Z-stack is deconvolved by an idealized point spread function derived from the same Z-stack to yield a point spread function of high signal-to-noise ratio that is also inherently tailored to the imaging system. The theory is validated by a practical experiment comparing the non-blind 3D deconvolution of the yeast Saccharomyces cerevisiae with the point spread function generated using the method presented in this paper (called the 'extracted PSF') to a synthetic point spread function. Restoration of both high- and low-contrast brightfield structures is achieved with fewer artefacts using the extracted point spread function obtained with this method. Furthermore the deconvolution progresses further (more iterations are allowed before the error function reaches its nadir) with the extracted point spread function compared to the synthetic point spread function indicating that the extracted point spread function is a better fit to the brightfield deconvolution model than the synthetic point spread function.

  10. Fundamental Physics with Electroweak Probes of Nuclei

    NASA Astrophysics Data System (ADS)

    Pastore, Saori

    2018-02-01

    The past decade has witnessed tremendous progress in the theoretical and computational tools that produce our understanding of nuclei. A number of microscopic calculations of nuclear electroweak structure and reactions have successfully explained the available experimental data, yielding a complex picture of the way nuclei interact with electroweak probes. This achievement is of great interest from the pure nuclear-physics point of view. But it is of much broader interest too, because the level of accuracy and confidence reached by these calculations opens up the concrete possibility of using nuclei to address open questions in other sub-fields of physics, such as, understanding the fundamental properties of neutrinos, or the particle nature of dark matter. In this talk, I will review recent progress in microscopic calculations of electroweak properties of light nuclei, including electromagnetic moments, form factors and transitions in between lowlying nuclear states along with preliminary studies for single- and double-beta decay rates. I will illustrate the key dynamical features required to explain the available experimental data, and, if time permits, present a novel framework to calculate neutrino-nucleus cross sections for A > 12 nuclei.

  11. Closed loop adaptive optics for microscopy without a wavefront sensor

    PubMed Central

    Kner, Peter; Winoto, Lukman; Agard, David A.; Sedat, John W.

    2013-01-01

    A three-dimensional wide-field image of a small fluorescent bead contains more than enough information to accurately calculate the wavefront in the microscope objective back pupil plane using the phase retrieval technique. The phase-retrieved wavefront can then be used to set a deformable mirror to correct the point-spread function (PSF) of the microscope without the use of a wavefront sensor. This technique will be useful for aligning the deformable mirror in a widefield microscope with adaptive optics and could potentially be used to correct aberrations in samples where small fluorescent beads or other point sources are used as reference beacons. Another advantage is the high resolution of the retrieved wavefont as compared with current Shack-Hartmann wavefront sensors. Here we demonstrate effective correction of the PSF in 3 iterations. Starting from a severely aberrated system, we achieve a Strehl ratio of 0.78 and a greater than 10-fold increase in maximum intensity. PMID:24392198

  12. Inspection with Robotic Microscopic Imaging

    NASA Technical Reports Server (NTRS)

    Pedersen, Liam; Deans, Matthew; Kunz, Clay; Sargent, Randy; Chen, Alan; Mungas, Greg

    2005-01-01

    Future Mars rover missions will require more advanced onboard autonomy for increased scientific productivity and reduced mission operations cost. One such form of autonomy can be achieved by targeting precise science measurements to be made in a single command uplink cycle. In this paper we present an overview of our solution to the subproblems of navigating a rover into place for microscopic imaging, mapping an instrument target point selected by an operator using far away science camera images to close up hazard camera images, verifying the safety of placing a contact instrument on a sample or finding nearby safe points, and analyzing the data that comes back from the rover. The system developed includes portions used in the Multiple Target Single Cycle Instrument Placement demonstration at NASA Ames in October 2004, and portions of the MI Toolkit delivered to the Athena Microscopic Imager Instrument Team for the MER mission still operating on Mars today. Some of the component technologies are also under consideration for MSL mission infusion.

  13. Tailoring bulk mechanical properties of 3D printed objects of polylactic acid varying internal micro-architecture

    NASA Astrophysics Data System (ADS)

    Malinauskas, Mangirdas; Skliutas, Edvinas; Jonušauskas, Linas; Mizeras, Deividas; Šešok, Andžela; Piskarskas, Algis

    2015-05-01

    Herein we present 3D Printing (3DP) fabrication of structures having internal microarchitecture and characterization of their mechanical properties. Depending on the material, geometry and fill factor, the manufactured objects mechanical performance can be tailored from "hard" to "soft." In this work we employ low-cost fused filament fabrication 3D printer enabling point-by-point structuring of poly(lactic acid) (PLA) with~̴400 µm feature spatial resolution. The chosen architectures are defined as woodpiles (BCC, FCC and 60 deg rotating). The period is chosen to be of 1200 µm corresponding to 800 µm pores. The produced objects structural quality is characterized using scanning electron microscope, their mechanical properties such as flexural modulus, elastic modulus and stiffness are evaluated by measured experimentally using universal TIRAtest2300 machine. Within the limitation of the carried out study we show that the mechanical properties of 3D printed objects can be tuned at least 3 times by only changing the woodpile geometry arrangement, yet keeping the same filling factor and periodicity of the logs. Additionally, we demonstrate custom 3D printed µ-fluidic elements which can serve as cheap, biocompatible and environmentally biodegradable platforms for integrated Lab-On-Chip (LOC) devices.

  14. [Remote Slit Lamp Microscope Consultation System Based on Web].

    PubMed

    Chen, Junfa; Zhuo, Yong; Liu, Zuguo; Chen, Yanping

    2015-11-01

    To realize the remote operation of the slit lamp microscope for department of ophthalmology consultation, and visual display the real-time status of remote slit lamp microscope, a remote slit lamp microscope consultation system based on B/S structure is designed and implemented. Through framing the slit lamp microscope on the website system, the realtime acquisition and transmission of remote control and image data is realized. The three dimensional model of the slit lamp microscope is established and rendered on the web by using WebGL technology. The practical application results can well show the real-time interactive of the remote consultation system.

  15. Remote Histology Learning from Static versus Dynamic Microscopic Images

    ERIC Educational Resources Information Center

    Mione, Sylvia; Valcke, Martin; Cornelissen, Maria

    2016-01-01

    Histology is the study of microscopic structures in normal tissue sections. Curriculum redesign in medicine has led to a decrease in the use of optical microscopes during practical classes. Other imaging solutions have been implemented to facilitate remote learning. With advancements in imaging technologies, learning material can now be digitized.…

  16. Imaging of Norway spruce early somatic embryos with the ESEM, Cryo-SEM and laser scanning microscope.

    PubMed

    Neděla, Vilém; Hřib, Jiří; Havel, Ladislav; Hudec, Jiří; Runštuk, Jiří

    2016-05-01

    This article describes the surface structure of Norway spruce early somatic embryos (ESEs) as a typical culture with asynchronous development. The microstructure of extracellular matrix covering ESEs were observed using the environmental scanning electron microscope as a primary tool and using the scanning electron microscope with cryo attachment and laser electron microscope as a complementary tool allowing our results to be proven independently. The fresh samples were observed in conditions of the air environment of the environmental scanning electron microscope (ESEM) with the pressure from 550Pa to 690Pa and the low temperature of the sample from -18°C to -22°C. The samples were studied using two different types of detector to allow studying either the thin surface structure or material composition. The scanning electron microscope with cryo attachment was used for imaging frozen extracellular matrix microstructure with higher resolution. The combination of both electron microscopy methods was suitable for observation of "native" plant samples, allowing correct evaluation of our results, free of error and artifacts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Mirrored pyramidal wells for simultaneous multiple vantage point microscopy.

    PubMed

    Seale, K T; Reiserer, R S; Markov, D A; Ges, I A; Wright, C; Janetopoulos, C; Wikswo, J P

    2008-10-01

    We report a novel method for obtaining simultaneous images from multiple vantage points of a microscopic specimen using size-matched microscopic mirrors created from anisotropically etched silicon. The resulting pyramidal wells enable bright-field and fluorescent side-view images, and when combined with z-sectioning, provide additional information for 3D reconstructions of the specimen. We have demonstrated the 3D localization and tracking over time of the centrosome of a live Dictyostelium discoideum. The simultaneous acquisition of images from multiple perspectives also provides a five-fold increase in the theoretical collection efficiency of emitted photons, a property which may be useful for low-light imaging modalities such as bioluminescence, or low abundance surface-marker labelling.

  18. Atomic resolution ultrafast scanning tunneling microscope with scan rate breaking the resonant frequency of a quartz tuning fork resonator.

    PubMed

    Li, Quanfeng; Lu, Qingyou

    2011-05-01

    We present an ultra-fast scanning tunneling microscope with atomic resolution at 26 kHz scan rate which surpasses the resonant frequency of the quartz tuning fork resonator used as the fast scan actuator. The main improvements employed in achieving this new record are (1) fully low voltage design (2) independent scan control and data acquisition, where the tuning fork (carrying a tip) is blindly driven to scan by a function generator with the scan voltage and tunneling current (I(T)) being measured as image data (this is unlike the traditional point-by-point move and measure method where data acquisition and scan control are switched many times).

  19. Polarimetry of Pinctada fucata nacre indicates myostracal layer interrupts nacre structure

    PubMed Central

    Jones, Joshua A.; D'Addario, Anthony J.; Galvez, Enrique J.

    2017-01-01

    The inner layer of many bivalve and gastropod molluscs consists of iridescent nacre, a material that is structured like a brick wall with bricks consisting of crystalline aragonite and mortar of organic molecules. Myostracal layers formed during shell growth at the point of muscle attachment to the shell can be found interspersed within the nacre structure. Little has been done to examine the effect the myostracal layer has on subsequent nacre structure. Here we present data on the structure of the myostracal and nacre layers from a bivalve mollusc, Pinctada fucata. Scanning electron microscope imaging shows the myostracal layer consists of regular crystalline blocks. The nacre before the layer consists of tablets approximately 400 nm thick, while after the myostracal layer the tablets are approximately 500 nm thick. A new technique, imaging polarimetry, indicates that the aragonite crystals within the nacre following the myostracal layer have greater orientation uniformity than before the myostracal layer. The results presented here suggest a possible interaction between the myostracal layer and subsequent shell growth. PMID:28386442

  20. Super-Resolution Scanning Laser Microscopy Based on Virtually Structured Detection

    PubMed Central

    Zhi, Yanan; Wang, Benquan; Yao, Xincheng

    2016-01-01

    Light microscopy plays a key role in biological studies and medical diagnosis. The spatial resolution of conventional optical microscopes is limited to approximately half the wavelength of the illumination light as a result of the diffraction limit. Several approaches—including confocal microscopy, stimulated emission depletion microscopy, stochastic optical reconstruction microscopy, photoactivated localization microscopy, and structured illumination microscopy—have been established to achieve super-resolution imaging. However, none of these methods is suitable for the super-resolution ophthalmoscopy of retinal structures because of laser safety issues and inevitable eye movements. We recently experimentally validated virtually structured detection (VSD) as an alternative strategy to extend the diffraction limit. Without the complexity of structured illumination, VSD provides an easy, low-cost, and phase artifact–free strategy to achieve super-resolution in scanning laser microscopy. In this article we summarize the basic principles of the VSD method, review our demonstrated single-point and line-scan super-resolution systems, and discuss both technical challenges and the potential of VSD-based instrumentation for super-resolution ophthalmoscopy of the retina. PMID:27480461

  1. Reprint of: Atmospheric scanning electron microscope observes cells and tissues in open medium through silicon nitride film.

    PubMed

    Nishiyama, Hidetoshi; Suga, Mitsuo; Ogura, Toshihiko; Maruyama, Yuusuke; Koizumi, Mitsuru; Mio, Kazuhiro; Kitamura, Shinichi; Sato, Chikara

    2010-11-01

    Direct observation of subcellular structures and their characterization is essential for understanding their physiological functions. To observe them in open environment, we have developed an inverted scanning electron microscope with a detachable, open-culture dish, capable of 8 nm resolution, and combined with a fluorescence microscope quasi-simultaneously observing the same area from the top. For scanning electron microscopy from the bottom, a silicon nitride film window in the base of the dish maintains a vacuum between electron gun and open sample dish while allowing electrons to pass through. Electrons are backscattered from the sample and captured by a detector under the dish. Cells cultured on the open dish can be externally manipulated under optical microscopy, fixed, and observed using scanning electron microscopy. Once fine structures have been revealed by scanning electron microscopy, their component proteins may be identified by comparison with separately prepared fluorescence-labeled optical microscopic images of the candidate proteins, with their heavy-metal-labeled or stained ASEM images. Furthermore, cell nuclei in a tissue block stained with platinum-blue were successfully observed without thin-sectioning, which suggests the applicability of this inverted scanning electron microscope to cancer diagnosis. This microscope visualizes mesoscopic-scale structures, and is also applicable to non-bioscience fields including polymer chemistry. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Universality of emergent states in diverse physical systems

    NASA Astrophysics Data System (ADS)

    Guidry, Mike

    2017-12-01

    Our physics textbooks are dominated by examples of simple weakly-interacting microscopic states, but most of the real world around us is most effectively described in terms of emergent states that have no clear connection to simple textbook states. Emergent states are strongly-correlated and dominated by properties that emerge as a consequence of interactions and are not part of the description of the corresponding weakly-interacting system. This paper proposes a connection of weakly-interacting textbook states and realistic emergent states through fermion dynamical symmetries having fully-microscopic generators of the emergent states. These imply unique truncation of the Hilbert space for the weakly-interacting system to a collective subspace where the emergent states live. Universality arises because the possible symmetries under commutation of generators, which transcend the microscopic structure of the generators, are highly restricted in character and determine the basic structure of the emergent state, with the microscopic structure of the generators influencing emergent state only parametrically. In support of this idea we show explicit evidence that high-temperature superconductors, collective states in heavy atomic nuclei, and graphene quantum Hall states in strong magnetic fields exhibit a near-universal emergent behavior in their microscopically-computed total energy surfaces, even though these systems share essentially nothing in common at the microscopic level and their emergent states are characterized by fundamentally different order parameters.

  3. Expansion Mini-Microscopy: An Enabling Alternative in Point-of-Care Diagnostics

    PubMed Central

    Zhang, Yu Shrike; Santiago, Grissel Trujillo-de; Alvarez, Mario Moisés; Schiff, Steven J.; Boyden, Edward S.; Khademhosseini, Ali

    2017-01-01

    Diagnostics play a significant role in health care. In the developing world and low-resource regions the utility for point-of-care (POC) diagnostics becomes even greater. This need has long been recognized, and diagnostic technology has seen tremendous progress with the development of portable instrumentation such as miniature imagers featuring low complexity and cost. However, such inexpensive devices have not been able to achieve a resolution sufficient for POC detection of pathogens at very small scales, such as single-cell parasites, bacteria, fungi, and viruses. To this end, expansion microscopy (ExM) is a recently developed technique that, by physically expanding preserved biological specimens through a chemical process, enables super-resolution imaging on conventional microscopes and improves imaging resolution of a given microscope without the need to modify the existing microscope hardware. Here we review recent advances in ExM and portable imagers, respectively, and discuss the rational combination of the two technologies, that we term expansion mini-microscopy (ExMM). In ExMM, the physical expansion of a biological sample followed by imaging on a mini-microscope achieves a resolution as high as that attainable by conventional high-end microscopes imaging non-expanded samples, at significant reduction in cost. We believe that this newly developed ExMM technique is likely to find widespread applications in POC diagnostics in resource-limited and remote regions by expanded-scale imaging of biological specimens that are otherwise not resolvable using low-cost imagers. PMID:29062977

  4. Wide field video-rate two-photon imaging by using spinning disk beam scanner

    NASA Astrophysics Data System (ADS)

    Maeda, Yasuhiro; Kurokawa, Kazuo; Ito, Yoko; Wada, Satoshi; Nakano, Akihiko

    2018-02-01

    The microscope technology with wider view field, deeper penetration depth, higher spatial resolution and higher imaging speed are required to investigate the intercellular dynamics or interactions of molecules and organs in cells or a tissue in more detail. The two-photon microscope with a near infrared (NIR) femtosecond laser is one of the technique to improve the penetration depth and spatial resolution. However, the video-rate or high-speed imaging with wide view field is difficult to perform with the conventional two-photon microscope. Because point-to-point scanning method is used in conventional one, so it's difficult to achieve video-rate imaging. In this study, we developed a two-photon microscope with spinning disk beam scanner and femtosecond NIR fiber laser with around 10 W average power for the microscope system to achieve above requirements. The laser is consisted of an oscillator based on mode-locked Yb fiber laser, a two-stage pre-amplifier, a main amplifier based on a Yb-doped photonic crystal fiber (PCF), and a pulse compressor with a pair of gratings. The laser generates a beam with maximally 10 W average power, 300 fs pulse width and 72 MHz repetition rate. And the beam incident to a spinning beam scanner (Yokogawa Electric) optimized for two-photon imaging. By using this system, we achieved to obtain the 3D images with over 1mm-penetration depth and video-rate image with 350 x 350 um view field from the root of Arabidopsis thaliana.

  5. Rheological and structural properties of sea cucumber Stichopus japonicus during heat treatment

    NASA Astrophysics Data System (ADS)

    Gao, Xin; Xue, Dongmei; Zhang, Zhaohui; Xu, Jiachao; Xue, Changhu

    2005-07-01

    Changes in tissue structure, rheological properties and water content of raw and heated sea cucumber meat were studied. Sea cucumber Stichopus japonicus was heated at 25°C , 70°C and 100°C water for 5 min. The structural changes were observed using a light microscope and the rheological parameters (rupture strength, adhesive strength and deformation) determined using a texture meter. Microscopic photograph revealed that the structural change of heated meat was greater than that of raw meat. The rupture strength, adhesive strength and deformation of raw meat were smaller than those of the heated meat. Meanwhile, rheological parameters showed positive correlation with heating temperature. These changes are mainly caused by thermal denaturation and gelatinization of collagen during heating. These changes were also evidenced in observations using a light microscope and differential scanning calorimetry.

  6. A microscopic study investigating the structure of SnSe surfaces

    NASA Astrophysics Data System (ADS)

    Kim, Sang-ui; Duong, Anh-Tuan; Cho, Sunglae; Rhim, S. H.; Kim, Jungdae

    2016-09-01

    SnSe has been widely studied due to its many potential applications that take advantage of its excellent thermoelectric, photovoltaic, and optoelectronic properties. However, experimental investigations into the microscopic structure of SnSe remain largely unexplored. Herein, for the first time, the atomic and electronic structures of SnSe surfaces are studied by a home-built low temperature scanning tunneling microscope (STM) and density functional theory (DFT) calculations. The cleaved surface of SnSe is comprised of covalently bonded Se and Sn atoms in zigzag patterns. However, rectangular periodicity was observed in the atomic images of SnSe surfaces for filled and empty state probing. Detailed atomic structures are analyzed by DFT calculations, indicating that the bright extrusions of both filled and empty state images are mostly located at the positions of Sn atoms.

  7. Preparing and Restoring Composite Resin Restorations. The Advantage of High Magnification Loupes or the Dental Surgical Operating Microscope.

    PubMed

    Mamoun, John

    2015-01-01

    Use of magnification, such as 6x to 8x binocular surgical loupes or the surgical operating microscope, combined with co-axial illumination, may facilitate the creation of stable composite resin restorations that are less likely to develop caries, cracks or margin stains over years of service. Microscopes facilitate observation of clinically relevant microscopic visual details, such as microscopic amounts of demineralization or caries at preparation margins; microscopic areas of soft, decayed tooth structure; microscopic amounts of moisture contamination of the preparation during bonding; or microscopic marginal gaps in the composite. Preventing microscope-level errors in composite fabrication can result in a composite restoration that, at initial placement, appears perfect when viewed under 6x to 8x magnification and which also is free of secondary caries, marginal staining or cracks at multi-year follow-up visits.

  8. A versatile localization system for microscopic multiparametric analysis of cells.

    PubMed

    Thaw, H H; Rundquist, I; Johansson, U; Svensson, I; Collins, V P

    1983-03-01

    A new, simple and relatively inexpensive electronic digital position readout (DPRO) system which can be applied to the rapid localization and recovery of microscopic material is described. It is based upon a commercially available digital position readout system which is routinely utilized by industry for small machine tools and measuring equipment. This has been mounted onto the stage of various microscopic instrumentation to provide X and Y coordinates relative to an arbitrary reference point. The integration of small computers interfaced to scanning interferometric, microdensitometric and fluorescence microscopes were used to demonstrate the reliability, versatility and ease of application of this system to problems of multiparametric measurements and analysis of cultured cells. The system may be expanded and applied to clinical material to obtain automatized, multiparametric measurements of cells in haematology and clinical cytology.

  9. Theory of point contact spectroscopy in correlated materials

    DOE PAGES

    Lee, Wei-Cheng; Park, Wan Kyu; Arham, Hamood Z.; ...

    2015-01-05

    Here, we developed a microscopic theory for the point-contact conductance between a metallic electrode and a strongly correlated material using the nonequilibrium Schwinger-Kadanoff-Baym-Keldysh formalism. We explicitly show that, in the classical limit, contact size shorter than the scattering length of the system, the microscopic model can be reduced to an effective model with transfer matrix elements that conserve in-plane momentum. We found that the conductance dI/dV is proportional to the effective density of states, that is, the integrated single-particle spectral function A(ω = eV) over the whole Brillouin zone. From this conclusion, we are able to establish the conditions undermore » which a non-Fermi liquid metal exhibits a zero-bias peak in the conductance. Lastly, this finding is discussed in the context of recent point-contact spectroscopy on the iron pnictides and chalcogenides, which has exhibited a zero-bias conductance peak.« less

  10. New deconvolution method for microscopic images based on the continuous Gaussian radial basis function interpolation model.

    PubMed

    Chen, Zhaoxue; Chen, Hao

    2014-01-01

    A deconvolution method based on the Gaussian radial basis function (GRBF) interpolation is proposed. Both the original image and Gaussian point spread function are expressed as the same continuous GRBF model, thus image degradation is simplified as convolution of two continuous Gaussian functions, and image deconvolution is converted to calculate the weighted coefficients of two-dimensional control points. Compared with Wiener filter and Lucy-Richardson algorithm, the GRBF method has an obvious advantage in the quality of restored images. In order to overcome such a defect of long-time computing, the method of graphic processing unit multithreading or increasing space interval of control points is adopted, respectively, to speed up the implementation of GRBF method. The experiments show that based on the continuous GRBF model, the image deconvolution can be efficiently implemented by the method, which also has a considerable reference value for the study of three-dimensional microscopic image deconvolution.

  11. Imaging the microscopic structure of shear thinning and thickening colloidal suspensions.

    PubMed

    Cheng, Xiang; McCoy, Jonathan H; Israelachvili, Jacob N; Cohen, Itai

    2011-09-02

    The viscosity of colloidal suspensions varies with shear rate, an important effect encountered in many natural and industrial processes. Although this non-Newtonian behavior is believed to arise from the arrangement of suspended particles and their mutual interactions, microscopic particle dynamics are difficult to measure. By combining fast confocal microscopy with simultaneous force measurements, we systematically investigate a suspension's structure as it transitions through regimes of different flow signatures. Our measurements of the microscopic single-particle dynamics show that shear thinning results from the decreased relative contribution of entropic forces and that shear thickening arises from particle clustering induced by hydrodynamic lubrication forces. This combination of techniques illustrates an approach that complements current methods for determining the microscopic origins of non-Newtonian flow behavior in complex fluids.

  12. Secondary electron imaging of monolayer materials inside a transmission electron microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cretu, Ovidiu, E-mail: cretu.ovidiu@nims.go.jp; Lin, Yung-Chang; Suenaga, Kazutomo

    2015-08-10

    A scanning transmission electron microscope equipped with a backscattered and secondary electron detector is shown capable to image graphene and hexagonal boron nitride monolayers. Secondary electron contrasts of the two lightest monolayer materials are clearly distinguished from the vacuum level. A signal difference between these two materials is attributed to electronic structure differences, which will influence the escape probabilities of the secondary electrons. Our results show that the secondary electron signal can be used to distinguish between the electronic structures of materials with atomic layer sensitivity, enhancing its applicability as a complementary signal in the analytical microscope.

  13. Hyperspectral imaging with laser-scanning sum-frequency generation microscopy

    PubMed Central

    Hanninen, Adam; Shu, Ming Wai; Potma, Eric O.

    2017-01-01

    Vibrationally sensitive sum-frequency generation (SFG) microscopy is a chemically selective imaging technique sensitive to non-centrosymmetric molecular arrangements in biological samples. The routine use of SFG microscopy has been hampered by the difficulty of integrating the required mid-infrared excitation light into a conventional, laser-scanning nonlinear optical (NLO) microscope. In this work, we describe minor modifications to a regular laser-scanning microscope to accommodate SFG microscopy as an imaging modality. We achieve vibrationally sensitive SFG imaging of biological samples with sub-μm resolution at image acquisition rates of 1 frame/s, almost two orders of magnitude faster than attained with previous point-scanning SFG microscopes. Using the fast scanning capability, we demonstrate hyperspectral SFG imaging in the CH-stretching vibrational range and point out its use in the study of molecular orientation and arrangement in biologically relevant samples. We also show multimodal imaging by combining SFG microscopy with second-harmonic generation (SHG) and coherent anti-Stokes Raman scattering (CARS) on the same imaging platfrom. This development underlines that SFG microscopy is a unique modality with a spatial resolution and image acquisition time comparable to that of other NLO imaging techniques, making point-scanning SFG microscopy a valuable member of the NLO imaging family. PMID:28966861

  14. Microstructure and Properties of the Ti6Al4V/Inconel 625 Bimetal Obtained by Explosive Joining

    NASA Astrophysics Data System (ADS)

    Topolski, Krzysztof; Szulc, Zygmunt; Garbacz, Halina

    2016-08-01

    The study is concerned with the bimetallic plate composed of the Ti6Al4V and Inconel 625 alloys. The alloys were joined together using the explosive method with the aim to produce a bimetallic joint. The structure and the mechanical properties of the as-received raw Ti6Al4V and Inconel 625 alloys, the Ti6Al4V/Inconel 625 joint, and the joint after annealing (600 °C for 1 h) were examined. The samples observations were performed using a light microscope and a scanning electron microscope. The mechanical properties were estimated by microhardness measurements, tensile tests, and three-point bending tests. Moreover, the deformation strengthening of the metals and the strength of the joint were analyzed. The explosive process resulted in a good quality bimetallic joint. Both sheets were deformed plastically and the joint surface between the alloys had a wavy shape. In the area of the joint surface, the hardness was increased. For example, the annealing at 600 °C for 1 h resulted in changes of the microhardness in the entire volume of the samples and in changes of the morphology of the joint surface. In three-point bending tests, the samples were examined in two opposite positions (Ti6Al4V on the top or Inconel 625 on the top). The results indicated to depend on the position in which the sample was tested.

  15. Improved resolution in practical light microscopy by means of a glass-fiber 2 π-tilting device

    NASA Astrophysics Data System (ADS)

    Bradl, Joachim; Rinke, Bernd; Schneider, Bernhard; Hausmann, Michael; Cremer, Christoph G.

    1996-01-01

    The spatial resolution of a conventional light microscope or a confocal laser scanning microscope can be determined by calculating the point spread function for the objective used. Normally, ideal conditions are assumed for these calculations. Such conditions, however, are often not fulfilled in biological applications especially in those cases where biochemical requirements (e.g. buffer conditions) influence the specimen preparation on the microscope slide (i.e. 'practical' light microscopy). It has been shown that the problem of a reduced z- resolution in 3D-microscopy (optical sectioning) can be overcome by a capillary in a 2(pi) - tilting device that allows object rotation into an optimal perspective. The application of the glass capillary instead of a standard slide has an additional influence on the imaging properties of the microscope. Therefore, another 2(pi) -tilting device was developed, using a glass fiber for object fixation and rotation. Such a fiber could be covered by standard cover glasses. To estimate the resolution of this setup, point spread functions were measured under different conditions using fluorescent microspheres of subwavelength dimensions. Results obtained from standard slide setups were compared to the glass fiber setup. These results showed that in practice rotation leads to an overall 3D-resolution improvement.

  16. LIPS database with LIPService: a microscopic image database of intracellular structures in Arabidopsis guard cells.

    PubMed

    Higaki, Takumi; Kutsuna, Natsumaro; Hasezawa, Seiichiro

    2013-05-16

    Intracellular configuration is an important feature of cell status. Recent advances in microscopic imaging techniques allow us to easily obtain a large number of microscopic images of intracellular structures. In this circumstance, automated microscopic image recognition techniques are of extreme importance to future phenomics/visible screening approaches. However, there was no benchmark microscopic image dataset for intracellular organelles in a specified plant cell type. We previously established the Live Images of Plant Stomata (LIPS) database, a publicly available collection of optical-section images of various intracellular structures of plant guard cells, as a model system of environmental signal perception and transduction. Here we report recent updates to the LIPS database and the establishment of a database table, LIPService. We updated the LIPS dataset and established a new interface named LIPService to promote efficient inspection of intracellular structure configurations. Cell nuclei, microtubules, actin microfilaments, mitochondria, chloroplasts, endoplasmic reticulum, peroxisomes, endosomes, Golgi bodies, and vacuoles can be filtered using probe names or morphometric parameters such as stomatal aperture. In addition to the serial optical sectional images of the original LIPS database, new volume-rendering data for easy web browsing of three-dimensional intracellular structures have been released to allow easy inspection of their configurations or relationships with cell status/morphology. We also demonstrated the utility of the new LIPS image database for automated organelle recognition of images from another plant cell image database with image clustering analyses. The updated LIPS database provides a benchmark image dataset for representative intracellular structures in Arabidopsis guard cells. The newly released LIPService allows users to inspect the relationship between organellar three-dimensional configurations and morphometrical parameters.

  17. Surface imaging microscope

    NASA Astrophysics Data System (ADS)

    Rogala, Eric W.; Bankman, Isaac N.

    2008-04-01

    The three-dimensional shapes of microscopic objects are becoming increasingly important for battlespace CBRNE sensing. Potential applications of microscopic 3D shape observations include characterization of biological weapon particles and manufacturing of micromechanical components. Aerosol signatures of stand-off lidar systems, using elastic backscatter or polarization, are dictated by the aerosol particle shapes and sizes that must be well characterized in the lab. A low-cost, fast instrument for 3D surface shape microscopy will be a valuable point sensor for biological particle sensing applications. Both the cost and imaging durations of traditional techniques such as confocal microscopes, atomic force microscopes, and electron scanning microscopes are too high. We investigated the feasibility of a low-cost, fast interferometric technique for imaging the 3D surface shape of microscopic objects at frame rates limited only by the camera in the system. The system operates at two laser wavelengths producing two fringe images collected simultaneously by a digital camera, and a specialized algorithm we developed reconstructs the surface map of the microscopic object. The current implementation assembled to test the concept and develop the new 3D reconstruction algorithm has 0.25 micron resolution in the x and y directions, and about 0.1 micron accuracy in the z direction, as tested on a microscopic glass test object manufactured with etching techniques. We describe the interferometric instrument, present the reconstruction algorithm, and discuss further development.

  18. Phase-shifting interference microscope with extendable field of measurement

    NASA Astrophysics Data System (ADS)

    Lin, Shyh-Tsong; Hsu, Wei-Feng; Wang, Ming-Shiang

    2018-04-01

    An innovative phase-shifting interference microscope aimed at extending the field of measurement is proposed in this paper. The microscope comprises a light source module, a phase modulation module, and an interferometric module, which reconstructs the micro-structure contours of samples using the five-step phase-shifting algorithm. This paper discusses the measurement theory and outlines the configuration, experimental setup, and experimental results obtained using the proposed interference microscope. The results confirm the efficacy of the microscope, achieving a standard deviation of 2.4 nm from a step height of 86.2 nm in multiple examinations.

  19. Refined tip preparation by electrochemical etching and ultrahigh vacuum treatment to obtain atomically sharp tips for scanning tunneling microscope and atomic force microscope.

    PubMed

    Hagedorn, Till; El Ouali, Mehdi; Paul, William; Oliver, David; Miyahara, Yoichi; Grütter, Peter

    2011-11-01

    A modification of the common electrochemical etching setup is presented. The described method reproducibly yields sharp tungsten tips for usage in the scanning tunneling microscope and tuning fork atomic force microscope. In situ treatment under ultrahigh vacuum (p ≤10(-10) mbar) conditions for cleaning and fine sharpening with minimal blunting is described. The structure of the microscopic apex of these tips is atomically resolved with field ion microscopy and cross checked with field emission. © 2011 American Institute of Physics

  20. Confocal Fluorescence Microscopy of Mung Beanleaves

    NASA Astrophysics Data System (ADS)

    Chen, Zhiwei; Liu, Dongwu

    Recently, confocal microscope has become a routine technique and indispensable tool for cell biological studies and molecular investigations. The light emitted from the point out-of-focus is blocked by the pinhole and can not reach the detector, which is one of the critical features of the confocal microscope. In present studies, the probes acridine orange (AO) and rhodamine-123 were used to research stoma and mitochondria of mung bean leaves, respectively. The results indicated that the stomatal guard cells and mitochondria were clearly seen in epidermic tissue of mung bean leaves. Taken together, it is a good method to research plant cells with confocal microscope and fluorescence probes.

  1. Optimizing the performance of dual-axis confocal microscopes via Monte-Carlo scattering simulations and diffraction theory.

    PubMed

    Chen, Ye; Liu, Jonathan T C

    2013-06-01

    Dual-axis confocal (DAC) microscopy has been found to exhibit superior rejection of out-of-focus and multiply scattered background light compared to conventional single-axis confocal microscopy. DAC microscopes rely on the use of separated illumination and collection beam paths that focus and intersect at a single focal volume (voxel) within tissue. While it is generally recognized that the resolution and contrast of a DAC microscope depends on both the crossing angle of the DAC beams, 2θ, and the focusing numerical aperture of the individual beams, α, a detailed study to investigate these dependencies has not been performed. Contrast and resolution are considered as two main criteria to assess the performance of a point-scanned DAC microscope (DAC-PS) and a line-scanned DAC microscope (DAC-LS) as a function of θ and α. The contrast and resolution of these designs are evaluated by Monte-Carlo scattering simulations and diffraction theory calculations, respectively. These results can be used for guiding the optimal designs of DAC-PS and DAC-LS microscopes.

  2. A frameless stereotaxic operating microscope for neurosurgery.

    PubMed

    Friets, E M; Strohbehn, J W; Hatch, J F; Roberts, D W

    1989-06-01

    A new system, which we call the frameless stereotaxic operating microscope, is discussed. Its purpose is to display CT or other image data in the operating microscope in the correct scale, orientation, and position without the use of a stereotaxic frame. A nonimaging ultrasonic rangefinder allows the position of the operating microscope and the position of the patient to be determined. Discrete fiducial points on the patient's external anatomy are located in both image space and operating room space, linking the image data and the operating room. Physician-selected image information, e.g., tumor contours or guidance to predetermined targets, is projected through the optics of the operating microscope using a miniature cathode ray tube and a beam splitter. Projected images superpose the surgical field, reconstructed from image data to match the focal plane of the operating microscope. The algorithms on which the system is based are described, and the sources and effects of errors are discussed. The system's performance is simulated, providing an estimate of accuracy. Two phantoms are used to measure accuracy experimentally. Clinical results and observations are given.

  3. Real-Time X-Ray Microscopy of Al-Cu Eutectic Solidification

    NASA Technical Reports Server (NTRS)

    Kaukler, William F.; Curreri, Peter A.; Sen, Subhayu

    1998-01-01

    Recent improvements in the resolution of the X-ray Transmission Microscope (XTM) for Solidification Studies provide microstructure feature detectability down to 5 micrometers during solidification. This presentation will show the recent results from observations made in real-time of the solid-liquid interfacial morphologies of the Al-CuAI2 eutectic alloy. Lamellar dimensions and spacings, transitions of morphology caused by growth rate changes, and eutectic grain structures are open to measurements. A unique vantage point viewing the face of the interface isotherm is possible for the first time with the XTM due to its infinite depth of field. A video of the solid-liquid interfaces seen in-situ and in real-time will be shown.

  4. Density Functional Calculations for the Neutron Star Matter at Subnormal Density

    NASA Astrophysics Data System (ADS)

    Kashiwaba, Yu; Nakatsukasa, Takashi

    The pasta phases of nuclear matter, whose existence is suggested at low density, may influence observable properties of neutron stars. In order to investigate properties of the neutron star matter, we calculate self-consistent solutions for the ground states of slab-like phase using the microscopic density functional theory with Bloch wave functions. The calculations are performed at each point of fixed average density and proton fraction (\\bar{ρ },Yp), varying the lattice constant of the unit cell. For small Yp values, the dripped neutrons emerge in the ground state, while the protons constitute the slab (crystallized) structure. The shell effect of protons affects the thickness of the slab nuclei.

  5. Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging

    NASA Astrophysics Data System (ADS)

    Wang, Feifei; Liu, Lianqing; Yu, Haibo; Wen, Yangdong; Yu, Peng; Liu, Zhu; Wang, Yuechao; Li, Wen Jung

    2016-12-01

    Nanoscale correlation of structural information acquisition with specific-molecule identification provides new insight for studying rare subcellular events. To achieve this correlation, scanning electron microscopy has been combined with super-resolution fluorescent microscopy, despite its destructivity when acquiring biological structure information. Here we propose time-efficient non-invasive microsphere-based scanning superlens microscopy that enables the large-area observation of live-cell morphology or sub-membrane structures with sub-diffraction-limited resolution and is demonstrated by observing biological and non-biological objects. This microscopy operates in both non-invasive and contact modes with ~200 times the acquisition efficiency of atomic force microscopy, which is achieved by replacing the point of an atomic force microscope tip with an imaging area of microspheres and stitching the areas recorded during scanning, enabling sub-diffraction-limited resolution. Our method marks a possible path to non-invasive cell imaging and simultaneous tracking of specific molecules with nanoscale resolution, facilitating the study of subcellular events over a total cell period.

  6. Interrelated structures of the transport shock and collisional relaxation layer in a multitemperature, multilevel ionized gas

    NASA Technical Reports Server (NTRS)

    Vinolo, A. R.; Clarke, J. H.

    1973-01-01

    The gas dynamic structures of the transport shock and the downstream collisional relaxation layer are evaluated for partially ionized monatomic gases. Elastic and inelastic collisional nonequilibrium effects are taken into consideration. In the microscopic model of the atom, three electronic levels are accounted for. By using an asymptotic technique, the shock morphology is found on a continuum flow basis. This procedure gives two distinct layers in which the nonequilibrium effects to be considered are different. A transport shock appears as the inner solution to an outer collisional relaxation layer. The results show four main interesting points: (1) on structuring the transport shock, ionization and excitation rates must be included in the formulation, since the flow is not frozen with respect to the population of the different electronic levels; (2) an electron temperature precursor appears at the beginning of the transport shock; (3) the collisional layer is rationally reduced to quadrature for special initial conditions, which (4) are obtained from new Rankine-Hugoniot relations for the inner shock.

  7. Au crystal growth on natural occurring Au-Ag aggregate elucidated by means of precession electron diffraction (PED)

    NASA Astrophysics Data System (ADS)

    Roqué Rosell, Josep; Portillo Serra, Joaquim; Aiglsperger, Thomas; Plana-Ruiz, Sergi; Trifonov, Trifon; Proenza, Joaquín A.

    2018-02-01

    In the present work, a lamella from an Au-Ag aggregate found in Ni-laterites has been examined using Transmission Electron Microscope to produce a series of Precision Electron Diffraction (PED) patterns. The analysis of the structural data obtained, coupled with Energy Dispersive X-ray microanalysis, made it possible to determine the orientation of twinned native gold growing on the Au-Ag aggregate. The native Au crystal domains are found to have grown at the outermost part of the aggregate whereas the inner core of the aggregate is an Au-Ag alloy (∼4 wt% Ag). The submicron structural study of the natural occurring Au aggregate points to the mobilization and precipitation of gold in laterites and provides insights on Au aggregates development at supergene conditions. This manuscript demonstrates the great potential of electron crystallographic analysis, and in particular, PED to study submicron structural features of micron sized mineral aggregates by using the example of a gold grain found in a Ni-laterite deposits.

  8. Diffusion and viscosity of liquid tin: Green-Kubo relationship-based calculations from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Mouas, Mohamed; Gasser, Jean-Georges; Hellal, Slimane; Grosdidier, Benoît; Makradi, Ahmed; Belouettar, Salim

    2012-03-01

    Molecular dynamics (MD) simulations of liquid tin between its melting point and 1600 °C have been performed in order to interpret and discuss the ionic structure. The interactions between ions are described by a new accurate pair potential built within the pseudopotential formalism and the linear response theory. The calculated structure factor that reflects the main information on the local atomic order in liquids is compared to diffraction measurements. Having some confidence in the ability of this pair potential to give a good representation of the atomic structure, we then focused our attention on the investigation of the atomic transport properties through the MD computations of the velocity autocorrelation function and stress autocorrelation function. Using the Green-Kubo formula (for the first time to our knowledge for liquid tin) we determine the macroscopic transport properties from the corresponding microscopic time autocorrelation functions. The selfdiffusion coefficient and the shear viscosity as functions of temperature are found to be in good agreement with the experimental data.

  9. Thermodynamics of Small Alkali Metal Halide Cluster Ions: Comparison of Classical Molecular Simulations with Experiment and Quantum Chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlcek, Lukas; Uhlik, Filip; Moucka, Filip

    We evaluate the ability of selected classical molecular models to describe the thermodynamic and structural aspects of gas-phase hydration of alkali halide ions and the formation of small water clusters. To understand the effect of many-body interactions (polarization) and charge penetration effects on the accuracy of a force field, we perform Monte Carlo simulations with three rigid water models using different functional forms to account for these effects: (i) point charge non-polarizable SPC/E, (ii) Drude point charge polarizable SWM4- DP, and (iii) Drude Gaussian charge polarizable BK3. Model predictions are compared with experimental Gibbs free energies and enthalpies of ionmore » hydration, and with microscopic structural properties obtained from quantum DFT calculations. We find that all three models provide comparable predictions for pure water clusters and cation hydration, but differ significantly in their description of anion hydration. None of the investigated classical force fields can consistently and quantitatively reproduce the experimental gas phase hydration thermodynamics. The outcome of this study highlights the relation between the functional form that describes the effective intermolecular interactions and the accuracy of the resulting ion hydration properties.« less

  10. Strong enhancement of s -wave superconductivity near a quantum critical point of Ca 3 Ir 4 Sn 13

    DOE PAGES

    Biswas, P. K.; Guguchia, Z.; Khasanov, R.; ...

    2015-11-11

    We repormore » t microscopic studies by muon spin rotation/relaxation as a function of pressure of the Ca 3 Ir 4 Sn 13 and Sr 3Ir 4Sn 13 system displaying superconductivity and a structural phase transition associated with the formation of a charge density wave (CDW). Our findings show a strong enhancement of the superfluid density and a dramatic increase of the pairing strength above a pressure of ≈ 1.6 GPa giving direct evidence of the presence of a quantum critical point separating a superconducting phase coexisting with CDW from a pure superconducting phase. The superconducting order parameter in both phases has the same s-wave symmetry. In spite of the conventional phonon-mediated BCS character of the weakly correlated (Ca 1-xSr x) 3Ir 4Sn 13 system the dependence of the effective superfluid density on the critical temperature puts this compound in the “Uemura” plot close to unconventional superconductors. This system exemplifies that conventional BCS superconductors in the presence of competing orders or multi-band structure can also display characteristics of unconventional superconductors.« less

  11. The Potential Protective Effects of 2-aminoethyl Diphenylborinate against Inner Ear Acoustic Trauma: Experimental Study Using Transmission and Scanning Electron Microscopy.

    PubMed

    Kaymakçı, Mustafa; Acar, Mustafa; Burukoglu, Dilek; Kutlu, Hatice Mehtap; Shojaolsadati, Paria; Cingi, Cemal; Bayar Muluk, Nuray

    2015-04-01

    In this prospective experimental study, we investigated the preventive effects of 2-aminoethyl diphenylborinate (2-APB) in rats exposed to acoustic trauma (AT). Light microscopic, transmission electron microscopic (TEM), and scanning electron microscopic (SEM) examinations were performed. Eighteen healthy Wistar albino rats were divided into the following three groups: groups 1 (control), 2 (AT), and 3 (AT+APB). The rats in groups 2 and 3 were exposed to AT; in group 3 rats, 2-APB at 2 mg/kg was also administered, initially transperitoneally, after 10 min. During the light microscopic, TEM, and SEM examinations, the structures of the cochlear hair cells, stereocilia, and Deiter's cells were normal in the control group. In the AT group, the organ of Corti and proximate structures were damaged according to the light microscopic examination. During the TEM examination, intense cellular damage and stereocilia loss were detected, while during the SEM examination, extensive damage and stereocilia loss were observed. Decreased damage with preserved cochlear structure was detected during the light microscopic examination in the AT+APB group than in the AT group. During the TEM and SEM examinations, although stereocilia loss occurred in the AT+APB group, near-normal cell, cilia, and tectorial membrane structures were also observed in the AT+APB group compared with the AT group. 2-APB may have protective effects against AT damage of the cochlea. The main mechanism underlying this effect is the inhibition of the vasoconstriction of the cochlear spiral modiolar artery, thereby improving cochlear blood flow. We conclude that 2-APB may also be effective if used immediately following AT.

  12. The evolution of structured illumination microscopy in studies of HIV.

    PubMed

    Marno, Kelly; Al'Zoubi, Lara; Pearson, Matthew; Posch, Markus; McKnight, Áine; Wheeler, Ann P

    2015-10-15

    The resolution limit of conventional light microscopy has proven to be limiting for many biological structures such as viruses including Human immunodeficiency virus (HIV). Individual HIV virions are impossible to study using confocal microscopy as they are well below the 200 nm resolution limit of conventional light microscopes. Structured illumination microscopy (SIM) allows a twofold enhancement in image resolution compared to standard widefield illumination and so provides an excellent tool for study of HIV. Viral capsids (CAs) vary between 110 and 146 nm so this study challenges the performance of SIM microscopes. SIM microscopy was first developed in 2000, commercialised in 2007 and rapidly developed. Here we present the changes in capabilities of the SIM microscopes for study of HIV localisation as the instrumentation for structured illumination microscopy has evolved over the past 8 years. Copyright © 2015. Published by Elsevier Inc.

  13. Characterization of a subwavelength-scale 3D void structure using the FDTD-based confocal laser scanning microscopic image mapping technique.

    PubMed

    Choi, Kyongsik; Chon, James W; Gu, Min; Lee, Byoungho

    2007-08-20

    In this paper, a simple confocal laser scanning microscopic (CLSM) image mapping technique based on the finite-difference time domain (FDTD) calculation has been proposed and evaluated for characterization of a subwavelength-scale three-dimensional (3D) void structure fabricated inside polymer matrix. The FDTD simulation method adopts a focused Gaussian beam incident wave, Berenger's perfectly matched layer absorbing boundary condition, and the angular spectrum analysis method. Through the well matched simulation and experimental results of the xz-scanned 3D void structure, we first characterize the exact position and the topological shape factor of the subwavelength-scale void structure, which was fabricated by a tightly focused ultrashort pulse laser. The proposed CLSM image mapping technique based on the FDTD can be widely applied from the 3D near-field microscopic imaging, optical trapping, and evanescent wave phenomenon to the state-of-the-art bio- and nanophotonics.

  14. A variable-temperature nanostencil compatible with a low-temperature scanning tunneling microscope/atomic force microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steurer, Wolfram, E-mail: wst@zurich.ibm.com; Gross, Leo; Schlittler, Reto R.

    2014-02-15

    We describe a nanostencil lithography tool capable of operating at variable temperatures down to 30 K. The setup is compatible with a combined low-temperature scanning tunneling microscope/atomic force microscope located within the same ultra-high-vacuum apparatus. The lateral movement capability of the mask allows the patterning of complex structures. To demonstrate operational functionality of the tool and estimate temperature drift and blurring, we fabricated LiF and NaCl nanostructures on Cu(111) at 77 K.

  15. A variable-temperature nanostencil compatible with a low-temperature scanning tunneling microscope/atomic force microscope.

    PubMed

    Steurer, Wolfram; Gross, Leo; Schlittler, Reto R; Meyer, Gerhard

    2014-02-01

    We describe a nanostencil lithography tool capable of operating at variable temperatures down to 30 K. The setup is compatible with a combined low-temperature scanning tunneling microscope/atomic force microscope located within the same ultra-high-vacuum apparatus. The lateral movement capability of the mask allows the patterning of complex structures. To demonstrate operational functionality of the tool and estimate temperature drift and blurring, we fabricated LiF and NaCl nanostructures on Cu(111) at 77 K.

  16. On microscopic structure of the QCD vacuum

    NASA Astrophysics Data System (ADS)

    Pak, D. G.; Lee, Bum-Hoon; Kim, Youngman; Tsukioka, Takuya; Zhang, P. M.

    2018-05-01

    We propose a new class of regular stationary axially symmetric solutions in a pure QCD which correspond to monopole-antimonopole pairs at macroscopic scale. The solutions represent vacuum field configurations which are locally stable against quantum gluon fluctuations in any small space-time vicinity. This implies that the monopole-antimonopole pair can serve as a structural element in microscopic description of QCD vacuum formation.

  17. Characterization of aeroallergen of Texas panhandle using scanning and fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Ghosh, Nabarun; Whiteside, Mandy; Ridner, Chris; Celik, Yasemin; Saadeh, C.; Bennert, Jeff

    2010-06-01

    Aeroallergens cause serious allergic and asthmatic reactions. Characterizing the aeroallergen provides information regarding the onset, duration, and severity of the pollen season that clinicians use to guide allergen selection for skin testing and treatment. Fluorescence Microscopy has useful approaches to understand the structure and function of the microscopic objects. Prepared slides from the pollen were observed under an Olympus BX40 microscope equipped with FITC and TRITC fluorescent filters, a mercury lamp source, an Olympus DP-70 digital camera connected to the computer with Image Pro 6.0 software. Aeroallergens were viewed, recorded and analyzed with DP Manager using the Image Pro 6.0 software. Photographs were taken at bright field, the fluorescein-isothiocyanate (FITC) filter, and the tetramethylrhodamine (TRITC) filter settings at 40X. A high pressure mercury lamp or UV source was used to excite the storage molecules or proteins which exhibited autofluorescence. The FITC filter reveals the green fluorescent proteins (GFP and EGFP), and the TRITC filter for red fluorescent proteins (DsRed). SEM proved to be useful for observing ultra-structural details like pores, colpi, sulci and ornamentations on the pollen surface. Samples were examined with an SEM (TM-1000) after gold coating and Critical Point Drying. Pollen grains were measured using the TM-1000 imaging software that revealed the specific information on the size of colpi or sulci and the distance between the micro-structures. This information can be used for classification and circumscription in Angiosperm taxonomy. Data were correlated clinical studies established at Allergy A.R.T.S. Clinical Research Laboratory.

  18. 21 CFR 184.1375 - Iron, elemental.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... microscope, it appears as an amorphous powder free from particles having a crystalline structure. It is... pentacarbonyl. It occurs as a dark gray powder. When viewed under a microscope, it appears as spheres built up...

  19. Structural Properties of a Sheared Dense Emulsion

    NASA Astrophysics Data System (ADS)

    Dutta, S. K.; Knowlton, E. D.; Blair, D. L.

    2011-03-01

    The flow of a compressed emulsion above its yield point can be described by a velocity profile in addition to a rearrangement of individual droplets on top of this time averaged motion. Using a confocal microscope, we have tracked the droplets of an oil-in-water emulsion as they are sheared in a rheometer. When the applied stress is large, the velocity profile shows a nearly affine deformation, while there is strong strain localization close to yield. The crossover between these two behaviors occurs at higher shear rates as the volume fraction of the droplets is increased. At shorter length scales, rearrangement events are heterogeneously distributed, reflecting the disordered packing of the emulsion droplets. This characterization is a step towards linking bulk viscoelastic properties to local structural relaxation as the system leaves the jammed state. This work is funded by the NSF through Grant DMR 0847490.

  20. Dynamics of a Two-Dimensional System of Quantum Dipoles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazzanti, F.; Astrakharchik, G. E.; Boronat, J.

    2009-03-20

    A detailed microscopic analysis of the dynamic structure function S(k,{omega}) of a two-dimensional Bose system of dipoles polarized along the direction perpendicular to the plane is presented and discussed. Starting from ground-state quantities obtained using a quantum diffusion Monte Carlo algorithm, the density-density response is evaluated in the context of the correlated basis functions (CBF) theory. CBF predicts a sharp peak and a multiexcitation component at higher energies produced by the decay of excitations. We discuss the structure of the phonon-roton peak and show that the Feynman and Bogoliubov predictions depart from the CBF result already at low densities. Wemore » finally discuss the emergence of a roton in the spectrum, but find the roton energy not low enough to make the system unstable under density fluctuations up to the highest density considered that is close to the freezing point.« less

  1. Changes in structure and geometric properties of human hair by aging.

    PubMed

    Nagase, Shinobu; Kajiura, Yoshio; Mamada, Akira; Abe, Hiroko; Shibuichi, Satoshi; Satoh, Naoki; Itou, Takashi; Shinohara, Yuya; Amemiya, Yoshiyuki

    2009-01-01

    To clarify hair changes by aging, the effect of age on hair properties was investigated from macro- to microscopic view points. Sensory hair luster tests were performed on 230 Japanese females from 10 to 70 years of age, revealing that hair luster decreases with age. The age dependence of the hair diameter and the ellipticity of the hair cross section could not explain luster reduction by aging. It has been determined that an irregular increase in fiber curvature occurs with age and is a cause of luster reduction with aging. A detailed structural analysis by synchrotron radiation microbeam X-ray diffraction revealed that the inhomogeneity in the lateral distribution of the hair microstructure increased with age and relates to the irregular increase in curvature. Such an increase in curvature is one of the important factors that leads to a poor alignment of hairs and luster reduction, and is related to the appearance of aging hair.

  2. Chemical reactivation of quenched fluorescent protein molecules enables resin-embedded fluorescence microimaging

    PubMed Central

    Xiong, Hanqing; Zhou, Zhenqiao; Zhu, Mingqiang; Lv, Xiaohua; Li, Anan; Li, Shiwei; Li, Longhui; Yang, Tao; Wang, Siming; Yang, Zhongqin; Xu, Tonghui; Luo, Qingming; Gong, Hui; Zeng, Shaoqun

    2014-01-01

    Resin embedding is a well-established technique to prepare biological specimens for microscopic imaging. However, it is not compatible with modern green-fluorescent protein (GFP) fluorescent-labelling technique because it significantly quenches the fluorescence of GFP and its variants. Previous empirical optimization efforts are good for thin tissue but not successful on macroscopic tissue blocks as the quenching mechanism remains uncertain. Here we show most of the quenched GFP molecules are structurally preserved and not denatured after routine embedding in resin, and can be chemically reactivated to a fluorescent state by alkaline buffer during imaging. We observe up to 98% preservation in yellow-fluorescent protein case, and improve the fluorescence intensity 11.8-fold compared with unprocessed samples. We demonstrate fluorescence microimaging of resin-embedded EGFP/EYFP-labelled tissue block without noticeable loss of labelled structures. This work provides a turning point for the imaging of fluorescent protein-labelled specimens after resin embedding. PMID:24886825

  3. Social structure of Facebook networks

    NASA Astrophysics Data System (ADS)

    Traud, Amanda L.; Mucha, Peter J.; Porter, Mason A.

    2012-08-01

    We study the social structure of Facebook “friendship” networks at one hundred American colleges and universities at a single point in time, and we examine the roles of user attributes-gender, class year, major, high school, and residence-at these institutions. We investigate the influence of common attributes at the dyad level in terms of assortativity coefficients and regression models. We then examine larger-scale groupings by detecting communities algorithmically and comparing them to network partitions based on user characteristics. We thereby examine the relative importance of different characteristics at different institutions, finding for example that common high school is more important to the social organization of large institutions and that the importance of common major varies significantly between institutions. Our calculations illustrate how microscopic and macroscopic perspectives give complementary insights on the social organization at universities and suggest future studies to investigate such phenomena further.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao, Jianwei; Ercius, Peter; Billinge, S. J. L.

    Crystallography has been fundamental to the development of many fields of science over the last century. However, much of our modern science and technology relies on materials with defects and disorders, and their three-dimensional (3D) atomic structures are not accessible to crystallography. One method capable of addressing this major challenge is atomic electron tomography. By combining advanced electron microscopes and detectors with powerful data analysis and tomographic reconstruction algorithms, it is now possible to determine the 3D atomic structure of crystal defects such as grain boundaries, stacking faults, dislocations, and point defects, as well as to precisely localize the 3Dmore » coordinates of individual atoms in materials without assuming crystallinity. In this work, we review the recent advances and the interdisciplinary science enabled by this methodology. We also outline further research needed for atomic electron tomography to address long-standing unresolved problems in the physical sciences.« less

  5. Atomic force microscopic imaging of Acanthamoeba castellanii and Balamuthia mandrillaris trophozoites and cysts.

    PubMed

    Aqeel, Yousuf; Siddiqui, Ruqaiyyah; Ateeq, Muhammad; Raza Shah, Muhammad; Kulsoom, Huma; Khan, Naveed Ahmed

    2015-01-01

    Light microscopy and electron microscopy have been successfully used in the study of microbes, as well as free-living protists. Unlike light microscopy, which enables us to observe living organisms or the electron microscope which provides a two-dimensional image, atomic force microscopy provides a three-dimensional surface profile. Here, we observed two free-living amoebae, Acanthamoeba castellanii and Balamuthia mandrillaris under the phase contrast inverted microscope, transmission electron microscope and atomic force microscope. Although light microscopy was of lower magnification, it revealed functional biology of live amoebae such as motility and osmoregulation using contractile vacuoles of the trophozoite stage, but it is of limited value in defining the cyst stage. In contrast, transmission electron microscopy showed significantly greater magnification and resolution to reveal the ultra-structural features of trophozoites and cysts including intracellular organelles and cyst wall characteristics but it only produced a snapshot in time of a dead amoeba cell. Atomic force microscopy produced three-dimensional images providing detailed topographic description of shape and surface, phase imaging measuring boundary stiffness, and amplitude measurements including width, height and length of A. castellanii and B. mandrillaris trophozoites and cysts. These results demonstrate the importance of the application of various microscopic methods in the biological and structural characterization of the whole cell, ultra-structural features, as well as surface components and cytoskeleton of protist pathogens. © 2014 The Author(s) Journal of Eukaryotic Microbiology © 2014 International Society of Protistologists.

  6. Nonlinear field equations for aligning self-propelled rods.

    PubMed

    Peshkov, Anton; Aranson, Igor S; Bertin, Eric; Chaté, Hugues; Ginelli, Francesco

    2012-12-28

    We derive a set of minimal and well-behaved nonlinear field equations describing the collective properties of self-propelled rods from a simple microscopic starting point, the Vicsek model with nematic alignment. Analysis of their linear and nonlinear dynamics shows good agreement with the original microscopic model. In particular, we derive an explicit expression for density-segregated, banded solutions, allowing us to develop a more complete analytic picture of the problem at the nonlinear level.

  7. On exponentially suppressed corrections to BMPV black hole entropy

    NASA Astrophysics Data System (ADS)

    Lal, Shailesh; Narayan, Prithvi

    2018-05-01

    The microscopic formula for the degeneracy of BMPV black hole microstates contains a series of exponentially suppressed corrections to the leading Bekenstein Hawking expression. We identify saddle points of the quantum entropy function for the BMPV black hole which are natural counterparts to these corrections and discuss the matching of leading and next-to-leading terms from the microscopic and macroscopic sides in a limit where the black hole charges are large.

  8. Freeze-fracture of infected plant leaves in ethanol for scanning electron microscopic study of fungal pathogens.

    PubMed

    Moore, Jayma A; Payne, Scott A

    2012-01-01

    Fungi often are found within plant tissues where they cannot be visualized with the scanning electron microscope (SEM). We present a simple way to reveal cell interiors while avoiding many common causes of artifact. Freeze-fracture of leaf tissue using liquid nitrogen during the 100% ethanol step of the dehydration process just before critical point drying is useful in exposing intracellular fungi to the SEM.

  9. High-resolution, cryogenic, side-entry type specimen stage

    DOEpatents

    King, Wayne E.; Merkle, Karl L.

    1979-01-01

    A high-resolution, cryogenic side-entry type specimen stage includes a copper block within which a specimen can be positioned in the electron beam of an electron microscope, one end of the copper block constituting a specimen heat exchanger, means for directing a flow of helium at cryogenic temperature into the heat exchanger, and electrical leads running from the specimen to the exterior of the microscope for four point D.C. electrical resistivity measurements.

  10. Mirrored pyramidal wells for simultaneous multiple vantage point microscopy

    PubMed Central

    Seale, K.T.; Reiserer, R.S.; Markov, D.A.; Ges, I.A.; Wright, C.; Janetopoulos, C.; Wikswo, J.P.

    2013-01-01

    Summary We report a novel method for obtaining simultaneous images from multiple vantage points of a microscopic specimen using size-matched microscopic mirrors created from anisotropically etched silicon. The resulting pyramidal wells enable bright-field and fluorescent side-view images, and when combined with z-sectioning, provide additional information for 3D reconstructions of the specimen. We have demonstrated the 3D localization and tracking over time of the centrosome of a live Dictyostelium discoideum. The simultaneous acquisition of images from multiple perspectives also provides a five-fold increase in the theoretical collection efficiency of emitted photons, a property which may be useful for low-light imaging modalities such as bioluminescence, or low abundance surface-marker labelling. PMID:19017196

  11. Resolution enhancement in a double-helix phase engineered scanning microscope (RESCH microscope) (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Jesacher, Alexander; Ritsch-Marte, Monika; Piestun, Rafael

    2015-08-01

    Recently we introduced RESCH microscopy [1] - a scanning microscope that allows slightly refocusing the sample after the acquisition has been performed, solely by performing appropriate data post-processing. The microscope features a double-helix phase-engineered emission point spread function in combination with camera-based detection. Based on the principle of transverse resolution enhancement in Image Scanning Microscopy [2,3], we demonstrate similar resolution improvement in RESCH. Furthermore, we outline a pathway for how the collected 3D sample information can be used to construct sharper optical sections. [1] A. Jesacher, M. Ritsch-Marte and R. Piestun, accepted for Optica. [2] C.J.R. Sheppard, "Super-resolution in Confocal imaging," Optik, 80, 53-54 (1988). [3] C.B. Müller and J. Enderlein "Image Scanning Microscopy," Phys. Rev. Lett. 104, 198101 (2010).

  12. Intraoperative Fluorescence Cerebral Angiography by Laser Surgical Microscopy: Comparison With Xenon Microscopy and Simultaneous Observation of Cerebral Blood Flow and Surrounding Structures.

    PubMed

    Ito, Yuhei; Suzuki, Kyouichi; Ichikawa, Tsuyoshi; Watanabe, Yoichi; Sato, Taku; Sakuma, Jun; Saito, Kiyoshi

    2018-06-12

    Laser surgical microscopes should enable uniform illumination of the operative field, and require less luminous energy compared with existing xenon surgical microscopes. To examine the utility of laser illumination in fluorescence cerebral angiography. Fluorescein sodium (fluorescein) was used as a fluorescent dye. We first compared the clarity of cerebral blood flow images collected by fluorescence angiography between the laser illumination and xenon illumination methods. We then assessed use of the laser illuminator for simultaneous observation of blood flow and surrounding structures during fluorescence angiography. Furthermore, the study was designed to evaluate usefulness of the thus determined excitation light in clinical cases. Fluorescence angiography using blue light laser for excitation provided higher clarity and contrast blood flow images compared with using blue light generated from a xenon lamp. Further, illumination with excitation light consisting of a combination of 3 types of laser (higher level of blue light, no green light, and lower level of red light) enabled both blood flow and surrounding structures to be observed through the microscope directly by the surgeon. Laser-illuminated fluorescence angiography provides high clarity and contrast images of cerebral blood flow. Further, a laser providing strong blue light and weak red light for excitation light enables simultaneous visual observation of fluorescent blood flow and surrounding structures by the surgeon using a surgical microscope. Overall, these data suggest that laser surgical microscopes are useful for both ordinary operative manipulations and fluorescence angiography.

  13. Fabrication and electric measurements of nanostructures inside transmission electron microscope.

    PubMed

    Chen, Qing; Peng, Lian-Mao

    2011-06-01

    Using manipulation holders specially designed for transmission electron microscope (TEM), nanostructures can be characterized, measured, modified and even fabricated in-situ. In-situ TEM techniques not only enable real-time study of structure-property relationships of materials at atomic scale, but also provide the ability to control and manipulate materials and structures at nanoscale. This review highlights in-situ electric measurements and in-situ fabrication and structure modification using manipulation holder inside TEM. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Robust procedure for creating and characterizing the atomic structure of scanning tunneling microscope tips.

    PubMed

    Tewari, Sumit; Bastiaans, Koen M; Allan, Milan P; van Ruitenbeek, Jan M

    2017-01-01

    Scanning tunneling microscopes (STM) are used extensively for studying and manipulating matter at the atomic scale. In spite of the critical role of the STM tip, procedures for controlling the atomic-scale shape of STM tips have not been rigorously justified. Here, we present a method for preparing tips in situ while ensuring the crystalline structure and a reproducibly prepared tip structure up to the second atomic layer. We demonstrate a controlled evolution of such tips starting from undefined tip shapes.

  15. Electronic structure and microscopic model of V(2)GeO(4)F(2)-a quantum spin system with S = 1.

    PubMed

    Rahaman, Badiur; Saha-Dasgupta, T

    2007-07-25

    We present first-principles density functional calculations and downfolding studies of the electronic and magnetic properties of the oxide-fluoride quantum spin system V(2)GeO(4)F(2). We discuss explicitly the nature of the exchange paths and provide quantitative estimates of magnetic exchange couplings. A microscopic modelling based on analysis of the electronic structure of this systems puts it in the interesting class of weakly coupled alternating chain S = 1 systems. Based on the microscopic model, we make inferrences about its spin excitation spectra, which needs to be tested by rigorous experimental study.

  16. Enhancing microscopic cascading contributions to higher-order nonlinear-optical responses through forced geometric constraints

    NASA Astrophysics Data System (ADS)

    Dawson, Nathan J.; Andrews, James H.; Crescimanno, Michael

    2012-10-01

    We review a model that was developed to take into account all possible microscopic cascading schemes in a single species system out to the fifth order using a self-consistent field approach. This model was designed to study the effects of boundaries in mesoscopic systems with constrained boundaries. These geometric constraints on the macroscopic structure show how the higher-ordered susceptibilities are manipulated by increasing the surface to volume ratio, while the microscopic structure influences the local field from all other molecules in the system. In addition to the review, we discuss methods of modeling real systems of molecules, where efforts are currently underway.

  17. Correction of image drift and distortion in a scanning electron microscopy.

    PubMed

    Jin, P; Li, X

    2015-12-01

    Continuous research on small-scale mechanical structures and systems has attracted strong demand for ultrafine deformation and strain measurements. Conventional optical microscope cannot meet such requirements owing to its lower spatial resolution. Therefore, high-resolution scanning electron microscope has become the preferred system for high spatial resolution imaging and measurements. However, scanning electron microscope usually is contaminated by distortion and drift aberrations which cause serious errors to precise imaging and measurements of tiny structures. This paper develops a new method to correct drift and distortion aberrations of scanning electron microscope images, and evaluates the effect of correction by comparing corrected images with scanning electron microscope image of a standard sample. The drift correction is based on the interpolation scheme, where a series of images are captured at one location of the sample and perform image correlation between the first image and the consequent images to interpolate the drift-time relationship of scanning electron microscope images. The distortion correction employs the axial symmetry model of charged particle imaging theory to two images sharing with the same location of one object under different imaging fields of view. The difference apart from rigid displacement between the mentioned two images will give distortion parameters. Three-order precision is considered in the model and experiment shows that one pixel maximum correction is obtained for the employed high-resolution electron microscopic system. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  18. Atomic force microscopy of biological samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doktycz, Mitchel John

    2010-01-01

    The ability to evaluate structural-functional relationships in real time has allowed scanning probe microscopy (SPM) to assume a prominent role in post genomic biological research. In this mini-review, we highlight the development of imaging and ancillary techniques that have allowed SPM to permeate many key areas of contemporary research. We begin by examining the invention of the scanning tunneling microscope (STM) by Binnig and Rohrer in 1982 and discuss how it served to team biologists with physicists to integrate high-resolution microscopy into biological science. We point to the problems of imaging nonconductive biological samples with the STM and relate howmore » this led to the evolution of the atomic force microscope (AFM) developed by Binnig, Quate, and Gerber, in 1986. Commercialization in the late 1980s established SPM as a powerful research tool in the biological research community. Contact mode AFM imaging was soon complemented by the development of non-contact imaging modes. These non-contact modes eventually became the primary focus for further new applications including the development of fast scanning methods. The extreme sensitivity of the AFM cantilever was recognized and has been developed into applications for measuring forces required for indenting biological surfaces and breaking bonds between biomolecules. Further functional augmentation to the cantilever tip allowed development of new and emerging techniques including scanning ion-conductance microscopy (SICM), scanning electrochemical microscope (SECM), Kelvin force microscopy (KFM) and scanning near field ultrasonic holography (SNFUH).« less

  19. Hyperspectral microscopic imaging by multiplex coherent anti-Stokes Raman scattering (CARS)

    NASA Astrophysics Data System (ADS)

    Khmaladze, Alexander; Jasensky, Joshua; Zhang, Chi; Han, Xiaofeng; Ding, Jun; Seeley, Emily; Liu, Xinran; Smith, Gary D.; Chen, Zhan

    2011-10-01

    Coherent anti-Stokes Raman scattering (CARS) microscopy is a powerful technique to image the chemical composition of complex samples in biophysics, biology and materials science. CARS is a four-wave mixing process. The application of a spectrally narrow pump beam and a spectrally wide Stokes beam excites multiple Raman transitions, which are probed by a probe beam. This generates a coherent directional CARS signal with several orders of magnitude higher intensity relative to spontaneous Raman scattering. Recent advances in the development of ultrafast lasers, as well as photonic crystal fibers (PCF), enable multiplex CARS. In this study, we employed two scanning imaging methods. In one, the detection is performed by a photo-multiplier tube (PMT) attached to the spectrometer. The acquisition of a series of images, while tuning the wavelengths between images, allows for subsequent reconstruction of spectra at each image point. The second method detects CARS spectrum in each point by a cooled coupled charged detector (CCD) camera. Coupled with point-by-point scanning, it allows for a hyperspectral microscopic imaging. We applied this CARS imaging system to study biological samples such as oocytes.

  20. Study of Te Inclusion and Related Point Defects in THM-Growth CdMnTe Crystal

    NASA Astrophysics Data System (ADS)

    Mao, Yifei; Zhang, Jijun; Min, Jiahua; Liang, Xiaoyan; Huang, Jian; Tang, Ke; Ling, Liwen; Li, Ming; Zhang, Ying; Wang, Linjun

    2018-02-01

    This study establishes a model for describing the interaction between Te inclusions, dislocations and point defects in CdMnTe crystals. The role of the complex environment surrounding the formation of Te inclusions was analyzed. Images of Te inclusions captured by scanning electron microscope and infrared microscope were used to observe the morphology of Te inclusions. The morphology of Te inclusions is discussed in light of crystallography, from the crystal growth temperature at 900°C to the melting temperature of Te inclusions using the traveling heater method. The dislocation nets around Te inclusions were calculated by counting lattice mismatches between the Te inclusions and the bulk CdMnTe at 470°C. The point defects of Te antisites were found to be gathered around Te inclusions, with dislocation climb during the cooling phase of crystal growth from 470°C to room temperature. The Te inclusions, dislocation nets and surrounding point defects are considered to be an entirety for evaluating the effect of Te inclusions on CdMnTe detector performance, and an effective mobility-lifetime product (μτ) was obtained.

  1. Single shot, three-dimensional fluorescence microscopy with a spatially rotating point spread function

    PubMed Central

    Wang, Zhaojun; Cai, Yanan; Liang, Yansheng; Zhou, Xing; Yan, Shaohui; Dan, Dan; Bianco, Piero R.; Lei, Ming; Yao, Baoli

    2017-01-01

    A wide-field fluorescence microscope with a double-helix point spread function (PSF) is constructed to obtain the specimen’s three-dimensional distribution with a single snapshot. Spiral-phase-based computer-generated holograms (CGHs) are adopted to make the depth-of-field of the microscope adjustable. The impact of system aberrations on the double-helix PSF at high numerical aperture is analyzed to reveal the necessity of the aberration correction. A modified cepstrum-based reconstruction scheme is promoted in accordance with properties of the new double-helix PSF. The extended depth-of-field images and the corresponding depth maps for both a simulated sample and a tilted section slice of bovine pulmonary artery endothelial (BPAE) cells are recovered, respectively, verifying that the depth-of-field is properly extended and the depth of the specimen can be estimated at a precision of 23.4nm. This three-dimensional fluorescence microscope with a framerate-rank time resolution is suitable for studying the fast developing process of thin and sparsely distributed micron-scale cells in extended depth-of-field. PMID:29296483

  2. Effect of double layers on magnetosphere-ionosphere coupling

    NASA Technical Reports Server (NTRS)

    Lysak, Robert L.; Hudson, Mary K.

    1987-01-01

    The Earth's auroral zone contains dynamic processes occurring on scales from the length of an auroral zone field line which characterizes Alfven wave propagation to the scale of microscopic processes which occur over a few Debye lengths. These processes interact in a time-dependent fashion since the current carried by the Alfven waves can excite microscopic turbulence which can in turn provide dissipation of the Alfven wave energy. This review will first describe the dynamic aspects of auroral current structures with emphasis on consequences for models of microscopic turbulence. A number of models of microscopic turbulence will be introduced into a large-scale model of Alfven wave propagation to determine the effect of various models on the overall structure of auroral currents. In particular, the effects of a double layer electric field which scales with the plasma temperature and Debye length is compared with the effect of anomalous resistivity due to electrostatic ion cyclotron turbulence in which the electric field scales with the magnetic field strength. It is found that the double layer model is less diffusive than in the resistive model leading to the possibility of narrow, intense current structures.

  3. Ionic channels in Langmuir-Blodgett films imaged by a scanning tunneling microscope.

    PubMed Central

    Kolomytkin, O V; Golubok, A O; Davydov, D N; Timofeev, V A; Vinogradova, S A; Tipisev SYa

    1991-01-01

    The molecular structure of channels formed by gramicidin A in a lipid membrane was imaged by a scanning tunneling microscope operating in air. The mono- and bimolecular films of lipid with gramicidin A were deposited onto a highly oriented pyrolitic graphite substrate by the Langmuir-Blodgett technique. It has been shown that under high concentration gramicidin A molecules can form in lipid films a quasi-regular, densely packed structure. Single gramicidin A molecules were imaged for the first time as well. The cavity of 0.4 +/- 0.05 nm in halfwidth was found on the scanning tunneling microscopy image of the gramicidin A molecule. The results of direct observation obtained by means of scanning tunneling microscope are in good agreement with the known molecular model of gramicidin A. It was shown that gramicidin A molecules can exist in a lipid monolayer as individual molecules or combined into clusters. The results demonstrate that scanning tunneling microscope can be used for high spatial resolution study of ionic channel structure. Images FIGURE 1 FIGURE 2 FIGURE 4 FIGURE 5 PMID:1712239

  4. Evaluation of a miniature microscope objective designed for fluorescence array microscopy detection of Mycobacterium tuberculosis.

    PubMed

    McCall, Brian; Olsen, Randall J; Nelles, Nicole J; Williams, Dawn L; Jackson, Kevin; Richards-Kortum, Rebecca; Graviss, Edward A; Tkaczyk, Tomasz S

    2014-03-01

    A prototype miniature objective that was designed for a point-of-care diagnostic array microscope for detection of Mycobacterium tuberculosis and previously fabricated and presented in a proof of concept is evaluated for its effectiveness in detecting acid-fast bacteria. To evaluate the ability of the microscope to resolve submicron features and details in the image of acid-fast microorganisms stained with a fluorescent dye, and to evaluate the accuracy of clinical diagnoses made with digital images acquired with the objective. The lens prescription data for the microscope design are presented. A test platform is built by combining parts of a standard microscope, a prototype objective, and a digital single-lens reflex camera. Counts of acid-fast bacteria made with the prototype objective are compared to counts obtained with a standard microscope over matched fields of view. Two sets of 20 smears, positive and negative, are diagnosed by 2 pathologists as sputum smear positive or sputum smear negative, using both a standard clinical microscope and the prototype objective under evaluation. The results are compared to a reference diagnosis of the same sample. More bacteria are counted in matched fields of view in digital images taken with the prototype objective than with the standard clinical microscope. All diagnostic results are found to be highly concordant. An array microscope built with this miniature lens design will be able to detect M tuberculosis with high sensitivity and specificity.

  5. Adaptive Localization of Focus Point Regions via Random Patch Probabilistic Density from Whole-Slide, Ki-67-Stained Brain Tumor Tissue

    PubMed Central

    Alomari, Yazan M.; MdZin, Reena Rahayu

    2015-01-01

    Analysis of whole-slide tissue for digital pathology images has been clinically approved to provide a second opinion to pathologists. Localization of focus points from Ki-67-stained histopathology whole-slide tissue microscopic images is considered the first step in the process of proliferation rate estimation. Pathologists use eye pooling or eagle-view techniques to localize the highly stained cell-concentrated regions from the whole slide under microscope, which is called focus-point regions. This procedure leads to a high variety of interpersonal observations and time consuming, tedious work and causes inaccurate findings. The localization of focus-point regions can be addressed as a clustering problem. This paper aims to automate the localization of focus-point regions from whole-slide images using the random patch probabilistic density method. Unlike other clustering methods, random patch probabilistic density method can adaptively localize focus-point regions without predetermining the number of clusters. The proposed method was compared with the k-means and fuzzy c-means clustering methods. Our proposed method achieves a good performance, when the results were evaluated by three expert pathologists. The proposed method achieves an average false-positive rate of 0.84% for the focus-point region localization error. Moreover, regarding RPPD used to localize tissue from whole-slide images, 228 whole-slide images have been tested; 97.3% localization accuracy was achieved. PMID:25793010

  6. Mars Life? - Microscopic Tube-like Structures

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This high-resolution scanning electron microscope image shows an unusual tube-like structural form that is less than 1/100th the width of a human hair in size found in meteorite ALH84001, a meteorite believed to be of Martian origin. Although this structure is not part of the research published in the Aug. 16 issue of the journal Science, it is located in a similar carbonate glob in the meteorite. This structure will be the subject of future investigations that could confirm whether or not it is fossil evidence of primitive life on Mars 3.6 billion years ago.

  7. To boldly glow ... applications of laser scanning confocal microscopy in developmental biology.

    PubMed

    Paddock, S W

    1994-05-01

    The laser scanning confocal microscope (LSCM) is now established as an invaluable tool in developmental biology for improved light microscope imaging of fluorescently labelled eggs, embryos and developing tissues. The universal application of the LSCM in biomedical research has stimulated improvements to the microscopes themselves and the synthesis of novel probes for imaging biological structures and physiological processes. Moreover the ability of the LSCM to produce an optical series in perfect register has made computer 3-D reconstruction and analysis of light microscope images a practical option.

  8. Application of differential interference contrast with inverted microscopes to the in vitro perfused nephron.

    PubMed

    Horster, M; Gundlach, H

    1979-12-01

    The study of in vitro perfused individual nephron segments requires a microscope which provides: (1) easy access to the specimen for measurement of cellular solute flux and voltage; (2) an image with high resolution and contrast; (3) optical sectioning of the object at different levels; and (4) rapid recording of the morphological phenomena. This paper describes an example of commercially available apparatus meeting the above requirements, and illustrates its efficiency. The microscope is of the inverted type (Zeiss IM 35) equipped with differential-interference-contrast (DIC) with a long working distance, and an automatically controlled camera system. The microscopic image exhibits cellular and intercellular details in the unstained transporting mammalian nephron segments despite their tubular structure and great thickness and makes obvious function-structure correlations (e.g. cell volume changes); luminal and contraluminal cell borders are well resolved for controlled microelectrode impalement.

  9. Erythritol: crystal growth from the melt.

    PubMed

    Lopes Jesus, A J; Nunes, Sandra C C; Ramos Silva, M; Matos Beja, A; Redinha, J S

    2010-03-30

    The structural changes occurring on erythritol as it is cooled from the melt to low temperature, and then heated up to the melting point have been investigated by differential scanning calorimetry (DSC), polarized light thermal microscopy (PLTM), X-ray powder diffraction (PXRD) and Fourier transform infrared spectroscopy (FTIR). By DSC, it was possible to set up the conditions to obtain an amorphous solid, a crystalline solid, or a mixture of both materials in different proportions. Two crystalline forms have been identified: a stable and a metastable one with melting points of 117 and 104 degrees C, respectively. The fusion curve decomposition of the stable form revealed the existence of three conformational structures. The main paths of the crystallization from the melt were followed by PLTM. The texture and colour changes allowed the characterization of the different phases and transitions in which they are involved on cooling as well as on heating processes. The type of crystallization front and its velocity were also followed by microscopic observation. These observations, together with the data provided by PXRD, allowed elucidating the transition of the metastable form into the stable one. The structural changes occurring upon the cooling and subsequent heating processes, namely those arising from intermolecular hydrogen bonds, were also accompanied by infrared spectroscopy. Particular attention was given to the spectral changes occurring in the OH stretching region. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  10. Combination of hand-held probe and microscopy for fluorescence guided surgery in the brain tumor marginal zone.

    PubMed

    Richter, Johan C O; Haj-Hosseini, Neda; Hallbeck, Martin; Wårdell, Karin

    2017-06-01

    Visualization of the tumor is crucial for differentiating malignant tissue from healthy brain during surgery, especially in the tumor marginal zone. The aim of the study was to introduce a fluorescence spectroscopy-based hand-held probe (HHF-probe) for tumor identification in combination with the fluorescence guided resection surgical microscope (FGR-microscope), and evaluate them in terms of diagnostic performance and practical aspects of fluorescence detection. Eighteen operations were performed on 16 patients with suspected high-grade glioma. The HHF-probe and the FGR-microscope were used for detection of protoporphyrin (PpIX) fluorescence induced by 5-aminolevulinic acid (5-ALA) and evaluated against histopathological analysis and visual grading done through the FGR-microscope by the surgeon. A ratio of PpIX fluorescence intensity to the autofluorescence intensity (fluorescence ratio) was used to quantify the spectra detected by the probe. Fluorescence ratio medians (range 0 - 40) measured by the probe were related to the intensity of the fluorescence in the FGR-microscope, categorized as "none" (0.3, n=131), "weak" (1.6, n=34) and "strong" (5.4, n=28). Of 131 "none" points in the FGR-microscope, 88 (67%) exhibited fluorescence with the HHF-probe. For the tumor marginal zone, the area under the receiver operator characteristics (ROC) curve was 0.49 for the FGR-microscope and 0.65 for the HHF-probe. The probe was integrated in the established routine of tumor resection using the FGR-microscope. The HHF-probe was superior to the FGR-microscope in sensitivity; it detected tumor remnants after debulking under the FGR-microscope. The combination of the HHF-probe and the FGR-microscope was beneficial especially in the tumor marginal zone. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Basic features of slime mould motility

    NASA Astrophysics Data System (ADS)

    Shirakawa, Tomohiro

    2015-03-01

    The plasmodium of Physarum polycephalum is a unicellular and multi-nuclear giant amoeba that is formed by fusions of myriads of uninucleate microscopic amoebae at a point in the life cycle of the organism. The very large unicellular form of the plasmodium is very uncommon in nature; on the contrary, almost all of the other higher organisms have multi-cellular bodies. Therefore, the plasmodium has an exceptional property: although the plasmodium is a unicellular organism, the size of the amoeba is variable. The smallest plasmodium consists of the fusion of two amoebae, so the smallest size is twice that of a usual amoeba. There is no upper limit to the largest size of the plasmodium, in principle. There is a record of very large plasmodium of more than a few metres. A more interesting point is that despite the variety in the size, the plasmodium can move, feed and form complex structures and adapt itself to the environment in an intelligent manner...

  12. Diffusion tensor driven contour closing for cell microinjection targeting.

    PubMed

    Becattini, Gabriele; Mattos, Leonardo S; Caldwell, Darwin G

    2010-01-01

    This article introduces a novel approach to robust automatic detection of unstained living cells in bright-field (BF) microscope images with the goal of producing a target list for an automated microinjection system. The overall image analysis process is described and includes: preprocessing, ridge enhancement, image segmentation, shape analysis and injection point definition. The developed algorithm implements a new version of anisotropic contour completion (ACC) based on the partial differential equation (PDE) for heat diffusion which improves the cell segmentation process by elongating the edges only along their tangent direction. The developed ACC algorithm is equivalent to a dilation of the binary edge image with a continuous elliptic structural element that takes into account local orientation of the contours preventing extension towards normal direction. Experiments carried out on real images of 10 to 50 microm CHO-K1 adherent cells show a remarkable reliability in the algorithm along with up to 85% success for cell detection and injection point definition.

  13. Synthesis and Characterization of Chitosan-p-t-Butylcalix[4]arene acid

    NASA Astrophysics Data System (ADS)

    Handayani, D. S.; Frimadasi, W.; Kusumaningsih, T.; Pranoto

    2018-03-01

    The synthesis of chitosan-p-t-butylcalix[4]arene acid was done with DIC (N, N’-diisopropylcarbodiimide) as the coupling agent. The structural analysis of the chitosan-p-t-butylcalix[4]arene acid was conducted by spectrophotometer Fourier Transform Infra Red (FTIR) and X-Ray Diffraction (XRD). Meanwhile, the surface area was investigated by Surface Area Analysis, the Scanning Electrone Microscope (SEM) analysed the surface morphology, and also the melting point temperature was determined. FTIR analysis on Chitosan-p-t-butylcalix[4]arene provides an overlapped absorption of -OH and -NH groups at 3438.26 cm-1. Meanwhile, a C = C aromatic bond present at 1480.43 cm-1. XRD analysis shows some broaden peaks due to the amorphous phase of the prepared material. The prepared material is a brownish yellow solid, odorless and porous. The melting point, surface area, and the average pore radius are above 300 °C, 9.42 m2 / g, and 52.5938 Å, respectively.

  14. HVOF coatings of Diamalloy 2002 and Diamalloy 4010 onto steel: Tensile and bending response of coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Shehri, Y. A.; Hashmi, M. S. J.; Yilbas, B. S.

    HVOF coating of Diamalloy 2002 powders and Diamalloy 4010 powders as well as two-layered coatings consisting of these powders is carried out. In the two-layered structure, Diamalloy 4010 is sprayed at the substrate surface while Diamalloy 2002 is sprayed on the top of Diamalloy 4010 coating. The mechanical properties of the coatings are examined through tensile and three-point bending tests. The coating microstructure and morphology are examined using the Scanning Electron Microscope (SEM), Energy Dispersive Spectroscopy (EDS) and X-ray diffraction (XRD). It is found that the coating produced is free from defects including voids and cracks. The failure mechanism ofmore » coating during tensile and three-point bending tests is mainly crack formation and propagation in the coating. The elastic modulus of coating produced from Diamalloy 2002 is higher than that of Diamalloy 4010 coating, which is due to the presence of 12% WC in the coating.« less

  15. Spectro-microscopic Characterization of Physical Properties and Phase Separations in Individual Atmospheric Particles

    NASA Astrophysics Data System (ADS)

    OBrien, R. E.; Wang, B.; Neu, A.; Kelly, S. T.; Lundt, N.; Epstein, S. A.; MacMillan, A.; You, Y.; Laskin, A.; Nizkorodov, S.; Bertram, A. K.; Moffet, R.; Gilles, M.

    2013-12-01

    The phase state and liquid-liquid phase separations of ambient and laboratory generated aerosol particles were investigated using (1) scanning transmission x-ray microscopy/near-edge x-ray absorption fine structure spectroscopy (STXM/NEXAFS) coupled to a relative humidity (RH) controlled in-situ chamber and (2) environmental scanning electron microscopy (ESEM). The phase states of the particles were determined from measurements of their size and optical density. A comparison is made between the observed phase states of ambient samples and of laboratory generated aerosols to determine how well laboratory samples represent the phase of ambient samples. In addition, liquid-liquid phase separations in laboratory generated particles were investigated. Preliminary results showing that liquid-liquid phase separations occur at RH's between the deliquescence and efflorescence points and that the organic phase surrounds the inorganic phase will be presented. The STXM/NEXAFS technique provides insight into the degree of mixing at the deliquescence point and the degree of phase separation for particles of atmospherically relevant sizes.

  16. Dynamical Interplay between Awareness and Epidemic Spreading in Multiplex Networks

    NASA Astrophysics Data System (ADS)

    Granell, Clara; Gómez, Sergio; Arenas, Alex

    2013-09-01

    We present the analysis of the interrelation between two processes accounting for the spreading of an epidemic, and the information awareness to prevent its infection, on top of multiplex networks. This scenario is representative of an epidemic process spreading on a network of persistent real contacts, and a cyclic information awareness process diffusing in the network of virtual social contacts between the same individuals. The topology corresponds to a multiplex network where two diffusive processes are interacting affecting each other. The analysis using a microscopic Markov chain approach reveals the phase diagram of the incidence of the epidemics and allows us to capture the evolution of the epidemic threshold depending on the topological structure of the multiplex and the interrelation with the awareness process. Interestingly, the critical point for the onset of the epidemics has a critical value (metacritical point) defined by the awareness dynamics and the topology of the virtual network, from which the onset increases and the epidemics incidence decreases.

  17. Dynamical interplay between awareness and epidemic spreading in multiplex networks.

    PubMed

    Granell, Clara; Gómez, Sergio; Arenas, Alex

    2013-09-20

    We present the analysis of the interrelation between two processes accounting for the spreading of an epidemic, and the information awareness to prevent its infection, on top of multiplex networks. This scenario is representative of an epidemic process spreading on a network of persistent real contacts, and a cyclic information awareness process diffusing in the network of virtual social contacts between the same individuals. The topology corresponds to a multiplex network where two diffusive processes are interacting affecting each other. The analysis using a microscopic Markov chain approach reveals the phase diagram of the incidence of the epidemics and allows us to capture the evolution of the epidemic threshold depending on the topological structure of the multiplex and the interrelation with the awareness process. Interestingly, the critical point for the onset of the epidemics has a critical value (metacritical point) defined by the awareness dynamics and the topology of the virtual network, from which the onset increases and the epidemics incidence decreases.

  18. New three-dimensional modeling technique for studying porous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quiblier, J.A.

    A great deal of research has been done on the relationships between the structure of porous media on the microscopic level and their overall properties. A short bibliographic survey is attempted, with special attention being paid to the use of models. The limitations of such research are outlined. A three-dimensional simulation process is proposed. On the basis of measurements of characteristics using thin sections of porous media, the aim is to simulate, through a random process, a porous medium which is at the same time geometrically realistic and fully determined (i.e., the coordinates of a point in the medium fullymore » determine whether this point belongs to the matrix or to the pores). Simulation opens the way to further studies of the porous medium, some of which are outlined. It is clear that a good deal of research remains to be done in this field, and some ideas are suggested for this research. 78 references.« less

  19. Magnetic study of the low temperature anomalies in the magnetodielectric terbium iron garnet

    NASA Astrophysics Data System (ADS)

    Lahoubi, Mahieddine

    2018-05-01

    The anomalous magnetic properties at low temperatures of terbium iron garnet (TbIG) are analyzed and summarized using neutron powder diffraction (NPD) experiments together with high field magnetization, magnetostriction and specific heat measurements performed on single crystals. Reliable information at both microscopic and macroscopic levels is provided about the significant change of the double umbrella structure observed in the NPD results near 54 K. The positions of the observed maxima at 55-65 K in the paraprocess magnetic susceptibility along the three mean directions and paraprocess of the forced magnetostriction along the easy axis of magnetization 〈111〉 agree with the manifestations of the "low-temperature point" TB predicted by Belov at 58 K. However, the pronounced maximum at 57 K in the excess of specific heat in zero magnetic fields reveals that the Schottky effect causes anomaly at temperature close the TB point. The results are discussed and compared with previous magnetic, magneto-optical and magnetodielectric reports.

  20. Testing microscopically derived descriptions of nuclear collectivity: Coulomb excitation of 22Mg

    NASA Astrophysics Data System (ADS)

    Henderson, J.; Hackman, G.; Ruotsalainen, P.; Stroberg, S. R.; Launey, K. D.; Holt, J. D.; Ali, F. A.; Bernier, N.; Bentley, M. A.; Bowry, M.; Caballero-Folch, R.; Evitts, L. J.; Frederick, R.; Garnsworthy, A. B.; Garrett, P. E.; Jigmeddorj, B.; Kilic, A. I.; Lassen, J.; Measures, J.; Muecher, D.; Olaizola, B.; O'Sullivan, E.; Paetkau, O.; Park, J.; Smallcombe, J.; Svensson, C. E.; Wadsworth, R.; Wu, C. Y.

    2018-07-01

    Many-body nuclear theory utilizing microscopic or chiral potentials has developed to the point that collectivity might be studied within a microscopic or ab initio framework without the use of effective charges; for example with the proper evolution of the E2 operator, or alternatively, through the use of an appropriate and manageable subset of particle-hole excitations. We present a precise determination of E2 strength in 22Mg and its mirror 22Ne by Coulomb excitation, allowing for rigorous comparisons with theory. No-core symplectic shell-model calculations were performed and agree with the new B (E 2) values while in-medium similarity-renormalization-group calculations consistently underpredict the absolute strength, with the missing strength found to have both isoscalar and isovector components. The discrepancy between two microscopic models demonstrates the sensitivity of E2 strength to the choice of many-body approximation employed.

  1. Microscopic neural image registration based on the structure of mitochondria

    NASA Astrophysics Data System (ADS)

    Cao, Huiwen; Han, Hua; Rao, Qiang; Xiao, Chi; Chen, Xi

    2017-02-01

    Microscopic image registration is a key component of the neural structure reconstruction with serial sections of neural tissue. The goal of microscopic neural image registration is to recover the 3D continuity and geometrical properties of specimen. During image registration, various distortions need to be corrected, including image rotation, translation, tissue deformation et.al, which come from the procedure of sample cutting, staining and imaging. Furthermore, there is only certain similarity between adjacent sections, and the degree of similarity depends on local structure of the tissue and the thickness of the sections. These factors make the microscopic neural image registration a challenging problem. To tackle the difficulty of corresponding landmarks extraction, we introduce a novel image registration method for Scanning Electron Microscopy (SEM) images of serial neural tissue sections based on the structure of mitochondria. The ellipsoidal shape of mitochondria ensures that the same mitochondria has similar shape between adjacent sections, and its characteristic of broad distribution in the neural tissue guarantees that landmarks based on the mitochondria distributed widely in the image. The proposed image registration method contains three parts: landmarks extraction between adjacent sections, corresponding landmarks matching and image deformation based on the correspondences. We demonstrate the performance of our method with SEM images of drosophila brain.

  2. Method to deterministically study photonic nanostructures in different experimental instruments.

    PubMed

    Husken, B H; Woldering, L A; Blum, C; Vos, W L

    2009-01-01

    We describe an experimental method to recover a single, deterministically fabricated nanostructure in various experimental instruments without the use of artificially fabricated markers, with the aim to study photonic structures. Therefore, a detailed map of the spatial surroundings of the nanostructure is made during the fabrication of the structure. These maps are made using a series of micrographs with successively decreasing magnifications. The graphs reveal intrinsic and characteristic geometric features that can subsequently be used in different setups to act as markers. As an illustration, we probe surface cavities with radii of 65 nm on a silica opal photonic crystal with various setups: a focused ion beam workstation; a scanning electron microscope (SEM); a wide field optical microscope and a confocal microscope. We use cross-correlation techniques to recover a small area imaged with the SEM in a large area photographed with the optical microscope, which provides a possible avenue to automatic searching. We show how both structural and optical reflectivity data can be obtained from one and the same nanostructure. Since our approach does not use artificial grids or markers, it is of particular interest for samples whose structure is not known a priori, like samples created solely by self-assembly. In addition, our method is not restricted to conducting samples.

  3. Imaging Schwarzschild multilayer X-ray microscope

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Baker, Phillip C.; Shealy, David L.; Core, David B.; Walker, Arthur B. C., Jr.; Barbee, Troy W., Jr.; Kerstetter, Ted

    1993-01-01

    We have designed, analyzed, fabricated, and tested Schwarzschild multilayer X-ray microscopes. These instruments use flow-polished Zerodur mirror substrates which have been coated with multilayers optimized for maximum reflectivity at normal incidence at 135 A. They are being developed as prototypes for the Water Window Imaging X-Ray Microscope. Ultrasmooth mirror sets of hemlite grade sapphire have been fabricated and they are now being coated with multilayers to reflect soft X-rays at 38 A, within the biologically important 'water window'. In this paper, we discuss the fabrication of the microscope optics and structural components as well as the mounting of the optics and assembly of the microscopes. We also describe the optical alignment, interferometric and visible light testing of the microscopes, present interferometrically measured performance data, and provide the first results of optical imaging tests.

  4. Field-Portable Pixel Super-Resolution Colour Microscope

    PubMed Central

    Greenbaum, Alon; Akbari, Najva; Feizi, Alborz; Luo, Wei; Ozcan, Aydogan

    2013-01-01

    Based on partially-coherent digital in-line holography, we report a field-portable microscope that can render lensfree colour images over a wide field-of-view of e.g., >20 mm2. This computational holographic microscope weighs less than 145 grams with dimensions smaller than 17×6×5 cm, making it especially suitable for field settings and point-of-care use. In this lensfree imaging design, we merged a colorization algorithm with a source shifting based multi-height pixel super-resolution technique to mitigate ‘rainbow’ like colour artefacts that are typical in holographic imaging. This image processing scheme is based on transforming the colour components of an RGB image into YUV colour space, which separates colour information from brightness component of an image. The resolution of our super-resolution colour microscope was characterized using a USAF test chart to confirm sub-micron spatial resolution, even for reconstructions that employ multi-height phase recovery to handle dense and connected objects. To further demonstrate the performance of this colour microscope Papanicolaou (Pap) smears were also successfully imaged. This field-portable and wide-field computational colour microscope could be useful for tele-medicine applications in resource poor settings. PMID:24086742

  5. Field-portable pixel super-resolution colour microscope.

    PubMed

    Greenbaum, Alon; Akbari, Najva; Feizi, Alborz; Luo, Wei; Ozcan, Aydogan

    2013-01-01

    Based on partially-coherent digital in-line holography, we report a field-portable microscope that can render lensfree colour images over a wide field-of-view of e.g., >20 mm(2). This computational holographic microscope weighs less than 145 grams with dimensions smaller than 17×6×5 cm, making it especially suitable for field settings and point-of-care use. In this lensfree imaging design, we merged a colorization algorithm with a source shifting based multi-height pixel super-resolution technique to mitigate 'rainbow' like colour artefacts that are typical in holographic imaging. This image processing scheme is based on transforming the colour components of an RGB image into YUV colour space, which separates colour information from brightness component of an image. The resolution of our super-resolution colour microscope was characterized using a USAF test chart to confirm sub-micron spatial resolution, even for reconstructions that employ multi-height phase recovery to handle dense and connected objects. To further demonstrate the performance of this colour microscope Papanicolaou (Pap) smears were also successfully imaged. This field-portable and wide-field computational colour microscope could be useful for tele-medicine applications in resource poor settings.

  6. Multiwalled carbon nanotubes and dispersed nanodiamond novel hybrids: Microscopic structure evolution, physical properties, and radiation resilience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, S.; Farmer, J.

    2011-01-01

    We report the structure and physical properties of novel hybrids of multiwalled carbon nanotubes (MWCNTs) and ultradispersed diamond (UDD) forming nanocomposite ensemble that were subjected to 50, 100, and 10{sup 3} kGy gamma ray doses and characterized using various analytical tools to investigate hierarchical defects evolution. This work is prompted by recent work on single-walled CNTs and UDD ensemble [Gupta et al., J. Appl. Phys. 107, 104308 (2010)] where radiation-induced microscopic defects seem to be stabilized by UDD. The present experiments show similar effects where these hybrids display only a minimal structural modification under the maximum dose. Quantitative analyses ofmore » multiwavelength Raman spectra revealed lattice defects induced by irradiation assessed through the variation in prominent D, G, and 2D bands. A minimal change in the position of D, G, and 2D bands and a marginal increase in intensity of the defect-induced double resonant Raman scattered D and 2D bands are some of the implications suggesting the radiation coupling. The in-plane correlation length (L{sub a}) was also determined following Tunistra-Koenig relation from the ratio of D to G band (I{sub D}/I{sub G}) besides microscopic stress. However, we also suggest the following taking into account of intrinsic defects of the constituents: (a) charge transfer arising at the interface due to the difference in electronegativity of MWCNT C sp{sup 2} and UDD core (C sp{sup 3}) leading to phonon and electron energy renormalization; (b) misorientation of C sp{sup 2} at the interface of MWCNT and UDD shell (C sp{sup 2}) resulting in structural disorder; (c) softening or violation of the q{approx}0 selection rule leading to D band broadening and a minimal change in G band intensity; and (d) normalized intensity of D and G bands with 2D band help to distinguish defect-induced double resonance phenomena. The MWCNT when combined with nanodiamond showed a slight decrease in their conductance further affected by irradiation pointing at relatively good interfacial contact. Furthermore, owing to high thermal and electrical conductivity properties, they can facilitate potentially efficient heat-transfer applications and some results deduced using Nielsen's model is provided.« less

  7. Contribution of a new generation field-emission scanning electron microscope in the understanding of a 2099 Al-Li alloy.

    PubMed

    Brodusch, Nicolas; Trudeau, Michel; Michaud, Pierre; Rodrigue, Lisa; Boselli, Julien; Gauvin, Raynald

    2012-12-01

    Aluminum-lithium alloys are widespread in the aerospace industry. The new 2099 and 2199 alloys provide improved properties, but their microstructure and texture are not well known. This article describes how state-of-the-art field-emission scanning electron microscopy (FE-SEM) can contribute to the characterization of the 2099 aluminum-lithium alloy and metallic alloys in general. Investigations were carried out on bulk and thinned samples. Backscattered electron imaging at 3 kV and scanning transmission electron microscope imaging at 30 kV along with highly efficient microanalysis permitted correlation of experimental and expected structures. Although our results confirm previous studies, this work points out possible substitutions of Mg and Zn with Li, Al, and Cu in the T1 precipitates. Zinc and magnesium are also present in "rice grain"-shaped precipitates at the grain boundaries. The versatility of the FE-SEM is highlighted as it provides information in the macro- and microscales with relevant details. Its ability to probe the distribution of precipitates from nano- to microsizes throughout the matrix makes FE-SEM an essential technique for the characterization of metallic alloys.

  8. An omics perspective to the molecular mechanisms of anticancer metallo-drugs in the computational microscope era.

    PubMed

    Spinello, Angelo; Magistrato, Alessandra

    2017-08-01

    Metallo-drugs have attracted enormous interest for cancer treatment. The achievements of this drug-type are summarized by the success story of cisplatin. That being said, there have been many drawbacks with its clinical use, which prompted decades worth of research efforts to move towards safer and more effective agents, either containing platinum or different metals. Areas covered: In this review, the authors provide an atomistic picture of the molecular mechanisms involving selected metallo-drugs from structural and molecular simulation studies. They also provide an omics perspective, pointing out many unsettled aspects of the most relevant families of metallo-drugs at an epigenetic level. Expert opinion: Molecular simulations are able to provide detailed information at atomistic and temporal (ps) resolutions that are rarely accessible to experiments. The increasing accuracy of computational methods and the growing performance of computational platforms, allow us to mirror wet lab experiments in silico. Consequently, the molecular mechanisms of drugs action/failure can be directly viewed on a computer screen, like a 'computational microscope', allowing us to harness this knowledge for the design of the next-generation of metallo-drugs.

  9. Microscopic theory of optical absorption in graphene enhanced by lattices of plasmonic nanoparticles

    NASA Astrophysics Data System (ADS)

    Mueller, Niclas S.; Reich, Stephanie

    2018-06-01

    We present a microscopic description of plasmon-enhanced optical absorption in graphene, which is based on perturbation theory. We consider the interaction of graphene with a lattice of plasmonic nanoparticles, as was previously realized experimentally. By using tight-binding wave functions for the electronic states of graphene and the dipole approximation for the plasmon, we obtain analytic expressions for the coupling matrix element and enhanced optical absorption. The plasmonic nanostructure induces nonvertical optical transitions in the band structure of graphene with selection rules for the momentum transfer that depend on the periodicity of the plasmonic lattice. The plasmon-mediated optical absorption leads to an anisotropic carrier population around the K point in phase space, which depends on the polarization pattern of the plasmonic near field in the graphene plane. Using Fourier optics, we draw a connection to a macroscopic approach, which is independent from graphene-specific parameters. Each Fourier component of the plasmonic near field corresponds to the momentum transfer of an optical transition. Both approaches lead to the same expression for the integrated optical absorption enhancement, which is relevant for the photocurrent enhancement in graphene-based optoelectronic devices.

  10. A high-resolution combined scanning laser and widefield polarizing microscope for imaging at temperatures from 4 K to 300 K.

    PubMed

    Lange, M; Guénon, S; Lever, F; Kleiner, R; Koelle, D

    2017-12-01

    Polarized light microscopy, as a contrast-enhancing technique for optically anisotropic materials, is a method well suited for the investigation of a wide variety of effects in solid-state physics, as, for example, birefringence in crystals or the magneto-optical Kerr effect (MOKE). We present a microscopy setup that combines a widefield microscope and a confocal scanning laser microscope with polarization-sensitive detectors. By using a high numerical aperture objective, a spatial resolution of about 240 nm at a wavelength of 405 nm is achieved. The sample is mounted on a 4 He continuous flow cryostat providing a temperature range between 4 K and 300 K, and electromagnets are used to apply magnetic fields of up to 800 mT with variable in-plane orientation and 20 mT with out-of-plane orientation. Typical applications of the polarizing microscope are the imaging of the in-plane and out-of-plane magnetization via the longitudinal and polar MOKE, imaging of magnetic flux structures in superconductors covered with a magneto-optical indicator film via the Faraday effect, or imaging of structural features, such as twin-walls in tetragonal SrTiO 3 . The scanning laser microscope furthermore offers the possibility to gain local information on electric transport properties of a sample by detecting the beam-induced voltage change across a current-biased sample. This combination of magnetic, structural, and electric imaging capabilities makes the microscope a viable tool for research in the fields of oxide electronics, spintronics, magnetism, and superconductivity.

  11. A high-resolution combined scanning laser and widefield polarizing microscope for imaging at temperatures from 4 K to 300 K

    NASA Astrophysics Data System (ADS)

    Lange, M.; Guénon, S.; Lever, F.; Kleiner, R.; Koelle, D.

    2017-12-01

    Polarized light microscopy, as a contrast-enhancing technique for optically anisotropic materials, is a method well suited for the investigation of a wide variety of effects in solid-state physics, as, for example, birefringence in crystals or the magneto-optical Kerr effect (MOKE). We present a microscopy setup that combines a widefield microscope and a confocal scanning laser microscope with polarization-sensitive detectors. By using a high numerical aperture objective, a spatial resolution of about 240 nm at a wavelength of 405 nm is achieved. The sample is mounted on a 4He continuous flow cryostat providing a temperature range between 4 K and 300 K, and electromagnets are used to apply magnetic fields of up to 800 mT with variable in-plane orientation and 20 mT with out-of-plane orientation. Typical applications of the polarizing microscope are the imaging of the in-plane and out-of-plane magnetization via the longitudinal and polar MOKE, imaging of magnetic flux structures in superconductors covered with a magneto-optical indicator film via the Faraday effect, or imaging of structural features, such as twin-walls in tetragonal SrTiO3. The scanning laser microscope furthermore offers the possibility to gain local information on electric transport properties of a sample by detecting the beam-induced voltage change across a current-biased sample. This combination of magnetic, structural, and electric imaging capabilities makes the microscope a viable tool for research in the fields of oxide electronics, spintronics, magnetism, and superconductivity.

  12. Computer-controlled impalement of cells in retinal wholemounts visualized by infrared CCD imaging on an inverted microscope.

    PubMed

    Reitsamer, H; Groiss, H P; Franz, M; Pflug, R

    2000-01-31

    We present a computer-guided microelectrode positioning system that is routinely used in our laboratory for intracellular electrophysiology and functional staining of retinal neurons. Wholemount preparations of isolated retina are kept in a superfusion chamber on the stage of an inverted microscope. Cells and layers of the retina are visualized by Nomarski interference contrast using infrared light in combination with a CCD camera system. After five-point calibration has been performed the electrode can be guided to any point inside the calibrated volume without moving the retina. Electrode deviations from target cells can be corrected by the software further improving the precision of this system. The good visibility of cells avoids prelabeling with fluorescent dyes and makes it possible to work under completely dark adapted conditions.

  13. [Forensic medical evaluation of stab-incised wounds caused by knives with point defects].

    PubMed

    Krupin, K N; Leonov, S V

    2011-01-01

    The present experimental study allowed to characterize specific signs of stab-incised wounds caused by knives with operational point defects. Diagnostic coefficients calculated for these macro- and microscopic features facilitate differential diagnostics of the injuries and make it possible to identify a concrete stabbing/cutting weapon with which the wound was inflicted..

  14. Semantic Integrative Digital Pathology: Insights into Microsemiological Semantics and Image Analysis Scalability.

    PubMed

    Racoceanu, Daniel; Capron, Frédérique

    2016-01-01

    Being able to provide a traceable and dynamic second opinion has become an ethical priority for patients and health care professionals in modern computer-aided medicine. In this perspective, a semantic cognitive virtual microscopy approach has been recently initiated, the MICO project, by focusing on cognitive digital pathology. This approach supports the elaboration of pathology-compliant daily protocols dedicated to breast cancer grading, in particular mitotic counts and nuclear atypia. A proof of concept has thus been elaborated, and an extension of these approaches is now underway in a collaborative digital pathology framework, the FlexMIm project. As important milestones on the way to routine digital pathology, a series of pioneer international benchmarking initiatives have been launched for mitosis detection (MITOS), nuclear atypia grading (MITOS-ATYPIA) and glandular structure detection (GlaS), some of the fundamental grading components in diagnosis and prognosis. These initiatives allow envisaging a consolidated validation referential database for digital pathology in the very near future. This reference database will need coordinated efforts from all major teams working in this area worldwide, and it will certainly represent a critical bottleneck for the acceptance of all future imaging modules in clinical practice. In line with recent advances in molecular imaging and genetics, keeping the microscopic modality at the core of future digital systems in pathology is fundamental to insure the acceptance of these new technologies, as well as for a deeper systemic, structured comprehension of the pathologies. After all, at the scale of routine whole-slide imaging (WSI; ∼0.22 µm/pixel), the microscopic image represents a structured 'genomic cluster', enabling a naturally structured support for integrative digital pathology approaches. In order to accelerate and structure the integration of this heterogeneous information, a major effort is and will continue to be devoted to morphological microsemiology (microscopic morphology semantics). Besides insuring the traceability of the results (second opinion) and supporting the orchestration of high-content image analysis modules, the role of semantics will be crucial for the correlation between digital pathology and noninvasive medical imaging modalities. In addition, semantics has an important role in modelling the links between traditional microscopy and recent label-free technologies. The massive amount of visual data is challenging and represents a characteristic intrinsic to digital pathology. The design of an operational integrative microscopy framework needs to focus on scalable multiscale imaging formalism. In this sense, we prospectively consider some of the most recent scalable methodologies adapted to digital pathology as marked point processes for nuclear atypia and point-set mathematical morphology for architecture grading. To orchestrate this scalable framework, semantics-based WSI management (analysis, exploration, indexing, retrieval and report generation support) represents an important means towards approaches to integrating big data into biomedicine. This insight reflects our vision through an instantiation of essential bricks of this type of architecture. The generic approach introduced here is applicable to a number of challenges related to molecular imaging, high-content image management and, more generally, bioinformatics. © 2016 S. Karger AG, Basel.

  15. Differentiating characteristic microstructural features of cancerous tissues using Mueller matrix microscope.

    PubMed

    Wang, Ye; He, Honghui; Chang, Jintao; Zeng, Nan; Liu, Shaoxiong; Li, Migao; Ma, Hui

    2015-12-01

    Polarized light imaging can provide rich microstructural information of samples, and has been applied to the detections of various abnormal tissues. In this paper, we report a polarized light microscope based on Mueller matrix imaging by adding the polarization state generator and analyzer (PSG and PSA) to a commercial transmission optical microscope. The maximum errors for the absolute values of Mueller matrix elements are reduced to 0.01 after calibration. This Mueller matrix microscope has been used to examine human cervical and liver cancerous tissues with fibrosis. Images of the transformed Mueller matrix parameters provide quantitative assessment on the characteristic features of the pathological tissues. Contrast mechanism of the experimental results are backed up by Monte Carlo simulations based on the sphere-cylinder birefringence model, which reveal the relationship between the pathological features in the cancerous tissues at the cellular level and the polarization parameters. Both the experimental and simulated data indicate that the microscopic transformed Mueller matrix parameters can distinguish the breaking down of birefringent normal tissues for cervical cancer, or the formation of birefringent surrounding structures accompanying the inflammatory reaction for liver cancer. With its simple structure, fast measurement and high precision, polarized light microscope based on Mueller matrix shows a good diagnosis application prospect. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Dynamic and static structure studies of colloidal suspensions with XPCS, SAXS and XNFS

    NASA Astrophysics Data System (ADS)

    Lu, Xinhui

    In the first project, I studied the onset of structural arrest and glass formation in a suspension of silica nanoparticles in a water-lutidine binary mixture near its consolute point using X-ray Photon Correlation Spectroscopy (XPCS) and Small Angle X-ray Scattering (SAXS). I obtained the temperature evolution of the static and dynamic structure, revealing that glass transitions occur both on cooling and on heating, and an unusual logarithmic relaxation within the intermediate liquid between the two glasses, as predicted by mode-coupling theory. In another project, I implemented and exploited the recently-introduced, coherence-based technique of X-ray Near-Field Speckle (XNFS) to characterize the structure and dynamics of micrometer-sized particles. In XNFS, the measured speckles originate from the interference between the incident and scattered beams, and enable truly ultra-small angle x-ray scattering measurements with a simple setup. We built a micrometer-resolution XNFS detector with a high numerical aperture microscope objective and demonstrated its capability of studying static structures and dynamics in longer length scale than traditional far field x-ray techniques by measuring dilute silica and polystyrene samples. We also discussed the limitation of this technique.

  17. Microscopic vision modeling method by direct mapping analysis for micro-gripping system with stereo light microscope.

    PubMed

    Wang, Yuezong; Zhao, Zhizhong; Wang, Junshuai

    2016-04-01

    We present a novel and high-precision microscopic vision modeling method, which can be used for 3D data reconstruction in micro-gripping system with stereo light microscope. This method consists of four parts: image distortion correction, disparity distortion correction, initial vision model and residual compensation model. First, the method of image distortion correction is proposed. Image data required by image distortion correction comes from stereo images of calibration sample. The geometric features of image distortions can be predicted though the shape deformation of lines constructed by grid points in stereo images. Linear and polynomial fitting methods are applied to correct image distortions. Second, shape deformation features of disparity distribution are discussed. The method of disparity distortion correction is proposed. Polynomial fitting method is applied to correct disparity distortion. Third, a microscopic vision model is derived, which consists of two models, i.e., initial vision model and residual compensation model. We derive initial vision model by the analysis of direct mapping relationship between object and image points. Residual compensation model is derived based on the residual analysis of initial vision model. The results show that with maximum reconstruction distance of 4.1mm in X direction, 2.9mm in Y direction and 2.25mm in Z direction, our model achieves a precision of 0.01mm in X and Y directions and 0.015mm in Z direction. Comparison of our model with traditional pinhole camera model shows that two kinds of models have a similar reconstruction precision of X coordinates. However, traditional pinhole camera model has a lower precision of Y and Z coordinates than our model. The method proposed in this paper is very helpful for the micro-gripping system based on SLM microscopic vision. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Local Order-Disorder Transition Driving by Structural Heterogeneity in a Benzyl Functionalized Ionic Liquid.

    PubMed

    Faria, Luiz F O; Paschoal, Vitor H; Lima, Thamires A; Ferreira, Fabio F; Freitas, Rafael S; Ribeiro, Mauro C C

    2017-10-26

    A local order-disorder transition has been disclosed in the thermophysical behavior of the ionic liquid 1-benzyl-3-methylimidazolium dicyanamide, [Bzmim][N(CN) 2 ], and its microscopic nature revealed by spectroscopic techniques. Differential scanning calorimetry and specific heat measurements show a thermal event of small enthalpy variation taking place in the range 250-260 K, which is not due to crystallization or melting. Molecular dynamic simulations and X-ray diffraction measurements have been used to discuss the segregation of domains in the liquid structure of [Bzmim][N(CN) 2 ]. Raman and NMR spectroscopy measurements as a function of temperature indicate that the microscopic origin of the event observed in the calorimetric measurements comes from structural rearrangement involving the benzyl group. The results indicate that the characteristic structural heterogeneity allow for rearrangements within local domains implying the good glass-forming ability for the low viscosity ionic liquid [Bzmim][N(CN) 2 ]. This work sheds light on our understanding of the microscopic origin behind complex thermal behavior of ionic liquids.

  19. Optical sectioning microscopes with no moving parts using a micro-stripe array light emitting diode.

    PubMed

    Poher, V; Zhang, H X; Kennedy, G T; Griffin, C; Oddos, S; Gu, E; Elson, D S; Girkin, M; French, P M W; Dawson, M D; Neil, M A

    2007-09-03

    We describe an optical sectioning microscopy system with no moving parts based on a micro-structured stripe-array light emitting diode (LED). By projecting arbitrary line or grid patterns onto the object, we are able to implement a variety of optical sectioning microscopy techniques such as grid-projection structured illumination and line scanning confocal microscopy, switching from one imaging technique to another without modifying the microscope setup. The micro-structured LED and driver are detailed and depth discrimination capabilities are measured and calculated.

  20. A scanning electron microscopy study of the macro-crystalline structure of 2-(2,4-dinitrobenzyl) pyridine

    NASA Technical Reports Server (NTRS)

    Ware, Jacqueline; Hammond, Ernest C., Jr.

    1989-01-01

    The compound, 2-(2,4-dinitrobenzyl) pyridine, was synthesized in the laboratory; an introductory level electron microscopy study of the macro-crystalline structure was conducted using the scanning electron microscope (SEM). The structure of these crystals was compared with the macrostructure of the crystal of 2-(2,4-dinitrobenzyl) pyridinium bromide, the hydrobromic salt of the compound which was also synthesized in the laboratory. A scanning electron microscopy crystal study was combined with a study of the principle of the electron microscope.

  1. On soft clipping of Zernike moments for deblurring and enhancement of optical point spread functions

    NASA Astrophysics Data System (ADS)

    Becherer, Nico; Jödicke, Hanna; Schlosser, Gregor; Hesser, Jürgen; Zeilfelder, Frank; Männer, Reinhard

    2006-02-01

    Blur and noise originating from the physical imaging processes degrade the microscope data. Accurate deblurring techniques require, however, an accurate estimation of the underlying point-spread function (PSF). A good representation of PSFs can be achieved by Zernike Polynomials since they offer a compact representation where low-order coefficients represent typical aberrations of optical wavefronts while noise is represented in higher order coefficients. A quantitative description of the noise distribution (Gaussian) over the Zernike moments of various orders is given which is the basis for the new soft clipping approach for denoising of PSFs. Instead of discarding moments beyond a certain order, those Zernike moments that are more sensitive to noise are dampened according to the measured distribution and the present noise model. Further, a new scheme to combine experimental and theoretical PSFs in Zernike space is presented. According to our experimental reconstructions, using the new improved PSF the correlation between reconstructed and original volume is raised by 15% on average cases and up to 85% in the case of thin fibre structures, compared to reconstructions where a non improved PSF was used. Finally, we demonstrate the advantages of our approach on 3D images of confocal microscopes by generating visually improved volumes. Additionally, we are presenting a method to render the reconstructed results using a new volume rendering method that is almost artifact-free. The new approach is based on a Shear-Warp technique, wavelet data encoding techniques and a recent approach to approximate the gray value distribution by a Super spline model.

  2. Characterization of some biological specimens using TEM and SEM

    NASA Astrophysics Data System (ADS)

    Ghosh, Nabarun; Smith, Don W.

    2009-05-01

    The advent of novel techniques using the Transmission and Scanning Electron Microscopes improved observation on various biological specimens to characterize them. We studied some biological specimens using Transmission and Scanning Electron Microscopes. We followed negative staining technique with Phosphotungstic acid using bacterial culture of Bacillus subtilis. Negative staining is very convenient technique to view the structural morphology of different samples including bacteria, phage viruses and filaments in a cell. We could observe the bacterial cell wall and flagellum very well when trapped the negative stained biofilm from bacterial culture on a TEM grid. We cut ultra thin sections from the fixed root tips of Pisum sativum (Garden pea). Root tips were pre fixed with osmium tetroxide and post fixed with uranium acetate and placed in the BEEM capsule for block making. The ultrathin sections on the grid under TEM showed the granular chromatin in the nucleus. The protein bodies and large vacuoles with the storage materials were conspicuous. We followed fixation, critical point drying and sputter coating with gold to view the tissues with SEM after placing on stubs. SEM view of the leaf surface of a dangerous weed Tragia hispida showed the surface trichomes. These trichomes when break on touching releases poisonous content causing skin irritation. The cultured tissue from in vitro culture of Albizia lebbeck, a tree revealed the regenerative structures including leaf buds and stomata on the tissue surface. SEM and TEM allow investigating the minute details characteristic morphological features that can be used for classroom teaching.

  3. Improving axial resolution in confocal microscopy with new high refractive index mounting media.

    PubMed

    Fouquet, Coralie; Gilles, Jean-François; Heck, Nicolas; Dos Santos, Marc; Schwartzmann, Richard; Cannaya, Vidjeacoumary; Morel, Marie-Pierre; Davidson, Robert Stephen; Trembleau, Alain; Bolte, Susanne

    2015-01-01

    Resolution, high signal intensity and elevated signal to noise ratio (SNR) are key issues for biologists who aim at studying the localisation of biological structures at the cellular and subcellular levels using confocal microscopy. The resolution required to separate sub-cellular biological structures is often near to the resolving power of the microscope. When optimally used, confocal microscopes may reach resolutions of 180 nm laterally and 500 nm axially, however, axial resolution in depth is often impaired by spherical aberration that may occur due to refractive index mismatches. Spherical aberration results in broadening of the point-spread function (PSF), a decrease in peak signal intensity when imaging in depth and a focal shift that leads to the distortion of the image along the z-axis and thus in a scaling error. In this study, we use the novel mounting medium CFM3 (Citifluor Ltd., UK) with a refractive index of 1.518 to minimize the effects of spherical aberration. This mounting medium is compatible with most common fluorochromes and fluorescent proteins. We compare its performance with established mounting media, harbouring refractive indices below 1.500, by estimating lateral and axial resolution with sub-resolution fluorescent beads. We show furthermore that the use of the high refractive index media renders the tissue transparent and improves considerably the axial resolution and imaging depth in immuno-labelled or fluorescent protein labelled fixed mouse brain tissue. We thus propose to use those novel high refractive index mounting media, whenever optimal axial resolution is required.

  4. Macro- and microscopic properties of strontium doped indium oxide

    NASA Astrophysics Data System (ADS)

    Nikolaenko, Y. M.; Kuzovlev, Y. E.; Medvedev, Y. V.; Mezin, N. I.; Fasel, C.; Gurlo, A.; Schlicker, L.; Bayer, T. J. M.; Genenko, Y. A.

    2014-07-01

    Solid state synthesis and physical mechanisms of electrical conductivity variation in polycrystalline, strontium doped indium oxide In2O3:(SrO)x were investigated for materials with different doping levels at different temperatures (T = 20-300 °C) and ambient atmosphere content including humidity and low pressure. Gas sensing ability of these compounds as well as the sample resistance appeared to increase by 4 and 8 orders of the magnitude, respectively, with the doping level increase from zero up to x = 10%. The conductance variation due to doping is explained by two mechanisms: acceptor-like electrical activity of Sr as a point defect and appearance of an additional phase of SrIn2O4. An unusual property of high level (x = 10%) doped samples is a possibility of extraordinarily large and fast oxygen exchange with ambient atmosphere at not very high temperatures (100-200 °C). This peculiarity is explained by friable structure of crystallite surface. Friable structure provides relatively fast transition of samples from high to low resistive state at the expense of high conductance of the near surface layer of the grains. Microscopic study of the electro-diffusion process at the surface of oxygen deficient samples allowed estimation of the diffusion coefficient of oxygen vacancies in the friable surface layer at room temperature as 3 × 10-13 cm2/s, which is by one order of the magnitude smaller than that known for amorphous indium oxide films.

  5. JOVE NASA-FIT program: Microgravity and aeronomy projects

    NASA Technical Reports Server (NTRS)

    Patterson, James D.; Mantovani, James G.; Rassoul, Hamid K.

    1994-01-01

    This semi-annual status report is divided into two sections: Scanning Tunneling Microscopy Lab and Aeronomy Lab. The Scanning Tunneling Microscopy (STM) research involves studying solar cell materials using the STM built at Florida Tech using a portion of our initial Jove equipment funding. One result of the participation in the FSEC project will be to design and build an STM system which is portable. This could serve as a prototype STM system which might be used on the Space Shuttle during a Spacelab mission, or onboard the proposed Space Station. The scanning tunneling microscope is only able to image the surface structure of electrically conductive crystals; by building an atomic force microscope (AFM) the surface structure of any sample, regardless of its conductivity, will be able to be imaged. With regards to the Aeronomy Lab, a total of four different mesospheric oxygen emission codes were created to calculate the intensity along the line of sight of the shuttle observations for 2972A, Herzberg I, Herzberg II, and Chamberlain bands. The thermosphere-ionosphere coupling project was completed with two major accomplishments: collection of 500 data points on modulation of neutral wind with geophysical variables, and establishment of constraints on behavior of the height of the ionosphere as a result of interaction between geophysical and geometrical factors. The magnetotail plasma project has been centered around familiarization with the subject in the form of a literature search and preprocessing of IMP-8 data.

  6. Leaf Dimorphism Of Microgramma Squamulosa (Polypodiaceae): a qualitative and quantitative analysis focusing on adaptations to epiphytism.

    PubMed

    Rocha, Ledyane Dalgallo; Droste, Annette; Gehlen, Günther; Schmitt, Jairo Lizandro

    2013-03-01

    The epiphytic fern Microgramma squamulosa occurs in the Neotropics and shows dimorphic sterile and fertile leaves. The present study aimed to describe and compare qualitatively and quantitatively macroscopic and microscopic structural characteristics of the dimorphic leaves of M. squamulosa, to point more precisely those characteristics which may contribute to epiphytic adaptations. In June 2009, six isolated host trees covered by M squamulosa were selected close to the edge of a semi-deciduous seasonal forest fragment in the municipality of Novo Hamburgo, State of Rio Grande do Sul, Brazil. Macroscopic and microscopic analyzes were performed from 192 samples for each leaf type, and permanent and semi-permanent slides were prepared. Sections were observed under light microscopy using image capture software to produce illustrations and scales, as well as to perform quantitative analyses. Fertile and sterile leaves had no qualitative structural differences, being hypostomatous and presenting uniseriate epidermis, homogeneous chlorenchyma, amphicribal vascular bundle, and hypodermis. The presence of hypodermal tissue and the occurrence of stomata at the abaxial face are typical characteristics ofxeromorphic leaves. Sterile leaves showed significantly larger areas (14.80cm2), higher sclerophylly index (0.13g/cm2) and higher stomatal density (27.75stomata/mm2) than fertile leaves. The higher sclerophylly index and the higher stomatal density observed in sterile leaves are features that make these leaves more xeromorphic, enhancing their efficiency to deal with limited water availability in the epiphytic environment, compared to fertile leaves.

  7. Ultrasoft magnetic films investigated with Lorentz tranmission electron microscopy and electron holography.

    PubMed

    De Hosson, Jeff Th M; Chechenin, Nicolai G; Alsem, Daan-Hein; Vystavel, Tomas; Kooi, Bart J; Chezan, Antoni R; Boerma, Dik O

    2002-08-01

    As a tribute to the scientific work of Professor Gareth Thomas in the field of structure-property relationships this paper delineates a new possibility of Lorentz transmission electron microscopy (LTEM) to study the magnetic properties of soft magnetic films. We show that in contrast to the traditional point of view, not only does the direction of the magnetization vector in nano-crystalline films make a correlated small-angle wiggling, but also the magnitude of the magnetization modulus fluctuates. This fluctuation produces a rapid modulation in the LTEM image. A novel analysis of the ripple structure in nano-crystalline Fe-Zr-N film corresponds to an amplitude of the transversal component of the magnetization deltaMy of 23 mT and a longitudinal fluctuation of the magnetization of the order of deltaMx = 30 mT. The nano-crystalline (Fe99Zr1)1-xNx films have been prepared by DC magnetron reactive sputtering with a thickness between 50 and 1000 nm. The grain size decreased monotonically with N content from typically 100 nm in the case of N-free films to less than 10 nm for films containing 8 at%. The specimens were examined with a JEOL 2010F 200 kV transmission electron microscope equipped with a post column energy filter (GIF 2000 Gatan Imaging Filter). For holography, the microscope is mounted with a biprism (JEOL biprism with a 0.6 microm diameter platinum wire).

  8. On the difficulties in characterizing ZnO nanowires.

    PubMed

    Schlenker, E; Bakin, A; Weimann, T; Hinze, P; Weber, D H; Gölzhäuser, A; Wehmann, H-H; Waag, A

    2008-09-10

    The electrical properties of single ZnO nanowires grown by vapor phase transport were investigated. While some samples were contacted by Ti/Au electrodes, another set of samples was investigated using a manipulator tip in a low energy electron point-source microscope. The deduced resistivities range from 1 to 10(3) Ωcm. Additionally, the resistivities of nanowires from multiple publications were brought together and compared to the values obtained from our measurements. The overview of all data shows enormous differences (10(-3)-10(5) Ωcm) in the measured resistivities. In order to reveal the origin of the discrepancies, the influence of growth parameters, measuring methods, contact resistances, crystal structures and ambient conditions are investigated and discussed in detail.

  9. Monolayer of Hydrazine Facilitates the Direct Covalent Attachment of C60 Fullerene to a Silicon Surface.

    PubMed

    Gao, Fei; Teplyakov, Andrew V

    2017-09-05

    The development of oxygen-free organic-inorganic interfaces has led to new schemes for the functionalization of silicon surfaces with nitrogen-based chemical groups. However, building layers of large structures directly on this functionalized surface has remained elusive. This work confirms the path to form a stable interface between silicon and buckminsterfullerene C 60 based on covalent chemical bonds. The starting point for this modification is the hydrazine-reacted Si(111) surface with the diamine functionality, which is further reacted directly with the C 60 molecules. The chemistry of this process is confirmed spectroscopically and microscopically and can be used to form organic-inorganic interfaces separated by a single layer of nitrogen.

  10. Electrochromic NiO thin films prepared by spin coating

    NASA Astrophysics Data System (ADS)

    Özütok, F.; Demiri, S.; Özbek, E.

    2017-02-01

    Recently, smart windows are very important because they are often being used in smart buildings and car glasses (windows). At this point, producing effective electrochromic materials is so necessary. In this study, we produced NiO thin films by using spin coating technique on In-doped SnO2 (ITO) substrate. Nickel proportions of these nickel oxide (NiO) films are 3, 5 and 7 %. Nickel acetate tetrahydrate is the initial solution and solvents are ethylene gl ycol and n-hexzane. Structural properties and surface images are investigated by using x-ray diffactometer (XRD) and scanning electron microscope (SEM) device, respectively. In addition, electrochemical behavior is investigated by cyclic voltammetry. A correlation between surface morphology and electrochromic performance was observed as well.

  11. Twisted ribbon structure of paired helical filaments revealed by atomic force microscopy.

    PubMed Central

    Pollanen, M. S.; Markiewicz, P.; Bergeron, C.; Goh, M. C.

    1994-01-01

    Progressive deposition of phosphorylated tau into the paired helical filaments (PHF) that compose neurofibrillary tangles, dystrophic neurites, and neuropil threads is an obligate feature of Alzheimer's disease. The standard model of PHF structure, derived from electron microscopic studies, suggests that two 8- to 10-nm filaments each composed of three to four protofilaments are wound into a helix with a maximal diameter of -20 nm and a half period of 65 to 80 nm. However, recent vertical platinum-carbon replicas of PHF more closely resemble a thin helical ribbon without constitutive protofilaments. Here we report that native PHF imaged with an atomic force microscope appear as twisted ribbons rather than the generally accepted structure derived from electron microscopic studies. These data imply that the assembly of PHF is not due to the twisting of pair-wise filaments but rather the helical winding of self-associated tau molecules arranged into a flattened structure. Future structural models of PHF should be based on quantitative data obtained from imaging techniques, such as scanning probe microscopy, which do not require harsh specimen preparation procedures. Images Figure 1 PMID:8178938

  12. Twisted ribbon structure of paired helical filaments revealed by atomic force microscopy.

    PubMed

    Pollanen, M S; Markiewicz, P; Bergeron, C; Goh, M C

    1994-05-01

    Progressive deposition of phosphorylated tau into the paired helical filaments (PHF) that compose neurofibrillary tangles, dystrophic neurites, and neuropil threads is an obligate feature of Alzheimer's disease. The standard model of PHF structure, derived from electron microscopic studies, suggests that two 8- to 10-nm filaments each composed of three to four protofilaments are wound into a helix with a maximal diameter of -20 nm and a half period of 65 to 80 nm. However, recent vertical platinum-carbon replicas of PHF more closely resemble a thin helical ribbon without constitutive protofilaments. Here we report that native PHF imaged with an atomic force microscope appear as twisted ribbons rather than the generally accepted structure derived from electron microscopic studies. These data imply that the assembly of PHF is not due to the twisting of pair-wise filaments but rather the helical winding of self-associated tau molecules arranged into a flattened structure. Future structural models of PHF should be based on quantitative data obtained from imaging techniques, such as scanning probe microscopy, which do not require harsh specimen preparation procedures.

  13. A handheld MEMS-based line-scanned dual-axis confocal microscope for early cancer detection and surgical guidance (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Chen, Ye; Yin, Chengbo; Wei, Linpeng; Glaser, Adam K.; Abeytunge, Sanjee; Peterson, Gary; Mandella, Michael J.; Sanai, Nader; Rajadhyaksha, Milind; Liu, Jonathan T.

    2017-02-01

    Considerable efforts have been recently undertaken to develop miniature optical-sectioning microscopes for in vivo microendoscopy and point-of-care pathology. These devices enable in vivo interrogation of disease as a real-time and noninvasive alternative to gold-standard histopathology, and therefore could have a transformative impact for the early detection of cancer as well as for guiding tumor-resection procedures. Regardless of the specific modality, various trade-offs in size, speed, field of view, resolution, contrast, and sensitivity are necessary to optimize a device for a particular application. Here, a miniature MEMS-based line-scanned dual-axis confocal (LS-DAC) microscope, with a 12-mm diameter distal tip, has been developed for point-of-care pathology. The dual-axis architecture has demonstrated superior rejection of out-of-focus and multiply scattered photons compared to a conventional single-axis confocal configuration. The use of line scanning enables fast frame rates (≥15 frames/sec), which mitigates motion artifacts of a handheld device during clinical use. We have developed a method to actively align the illumination and collection beams in this miniature LS-DAC microscope through the use of a pair of rotatable alignment mirrors. Incorporation of a custom objective lens, with a small form factor for in vivo application, enables the device to achieve an axial and lateral resolution of 2.0 and 1.1 microns, respectively. Validation measurements with reflective targets, as well as in vivo and ex vivo images of tissues, demonstrate that this high-speed LS-DAC microscope can achieve high-contrast imaging of fluorescently labeled tissues with sufficient sensitivity for applications such as oral cancer detection and guiding brain-tumor resections.

  14. Miniature in vivo MEMS-based line-scanned dual-axis confocal microscope for point-of-care pathology

    PubMed Central

    Yin, C.; Glaser, A.K.; Leigh, S. Y.; Chen, Y.; Wei, L.; Pillai, P. C. S.; Rosenberg, M. C.; Abeytunge, S.; Peterson, G.; Glazowski, C.; Sanai, N.; Mandella, M. J.; Rajadhyaksha, M.; Liu, J. T. C.

    2016-01-01

    There is a need for miniature optical-sectioning microscopes to enable in vivo interrogation of tissues as a real-time and noninvasive alternative to gold-standard histopathology. Such devices could have a transformative impact for the early detection of cancer as well as for guiding tumor-resection procedures. Miniature confocal microscopes have been developed by various researchers and corporations to enable optical sectioning of highly scattering tissues, all of which have necessitated various trade-offs in size, speed, depth selectivity, field of view, resolution, image contrast, and sensitivity. In this study, a miniature line-scanned (LS) dual-axis confocal (DAC) microscope, with a 12-mm diameter distal tip, has been developed for clinical point-of-care pathology. The dual-axis architecture has demonstrated an advantage over the conventional single-axis confocal configuration for reducing background noise from out-of-focus and multiply scattered light. The use of line scanning enables fast frame rates (16 frames/sec is demonstrated here, but faster rates are possible), which mitigates motion artifacts of a hand-held device during clinical use. We have developed a method to actively align the illumination and collection beams in a DAC microscope through the use of a pair of rotatable alignment mirrors. Incorporation of a custom objective lens, with a small form factor for in vivo clinical use, enables our device to achieve an optical-sectioning thickness and lateral resolution of 2.0 and 1.1 microns respectively. Validation measurements with reflective targets, as well as in vivo and ex vivo images of tissues, demonstrate the clinical potential of this high-speed optical-sectioning microscopy device. PMID:26977337

  15. Gravitational collapse of colloidal gels: Origins of the tipping point

    NASA Astrophysics Data System (ADS)

    Padmanabhan, Poornima; Zia, Roseanna

    2016-11-01

    Reversible colloidal gels are soft viscoelastic solids in which durable but reversible bonds permit on-demand transition from solidlike to liquidlike behavior; these O(kT) bonds also lead to ongoing coarsening and age stiffening, making their rheology inherently time dependent. To wit, such gels may remain stable for an extended time, but then suddenly collapse, sedimenting to the bottom of the container (or creaming to the top) and eliminating any intended functionality of the material. Although this phenomenon has been studied extensively in the experimental literature, the microscopic mechanism underlying the collapse is not well understood. Effects of gel age, interparticle attraction strength, and wall effects all have been shown to affect collapse behavior, but the microstructural transformations underlying the 'tipping point' remain murky. To study this behavior, we conduct large-scale dynamic simulation to model the structural and rheological evolution of colloidal gels subjected to various gravitational stresses, examining the detailed micromechanics in three temporal regimes: slow sedimentation prior to collapse; the tipping point leading to the onset of rapid collapse; and the subsequent compaction of the material as it approaches its final bed height. Acknowledgment for funding and support from the Office of Naval Research; the National Science Foundation; and NSF XSEDE.

  16. Interactions of Small-Scale Physical Mixing Processes with the Structure, Morphology and Bloom Dynamics and Optics of Non-Spheroid Phytoplankton

    DTIC Science & Technology

    2001-09-30

    microscopic imaging techniques, and microscopic video- cinematography protocols for both phytoplankton and zooplankton for use in current laboratory...phytoplankton, zooplankton and bioluminescence papers, and examined data/figures for layered structures. Imaging and Cinematography : Off-the-shelf...to preview it as a work-in-progress, email me (jrines@gso.uri.edu), and I will provide you with a temporary URL. Imaging and Cinematography

  17. Bone structure of the temporo-mandibular joint in the individuals aged 18-25.

    PubMed

    Parafiniuk, M; Gutsch-Trepka, A; Trepka, S; Sycz, K; Wolski, S; Parafiniuk, W

    1998-01-01

    Osteohistometric studies were performed in 15 female and 15 male cadavers aged 18-25. Condyloid process and right and left acetabulum of the temporo-mandibular joint have been studied. Density has been investigated using monitor screen linked with microscope (magnification 80x). Density in the spongy part of the condyloid process was 26.67-26.77%; in the subchondrial layer--72.13-72.72%, and in the acetabular wall 75.03-75.91%. Microscopic structure of the bones of the temporo-mandibular joint revealed no differences when compared with images of compact and cancellous bone shown in the histology textbooks. Sex and the side of the body had no influence on microscopic image and proportional bone density. Isles of chondrocytes in the trabeculae of the spongy structure of the condyloid process were found in 4 cases and isles of the condensed bone resembling the compact pattern in 7 cases.

  18. A dark-field microscope for background-free detection of resonance fluorescence from single semiconductor quantum dots operating in a set-and-forget mode

    NASA Astrophysics Data System (ADS)

    Kuhlmann, Andreas V.; Houel, Julien; Brunner, Daniel; Ludwig, Arne; Reuter, Dirk; Wieck, Andreas D.; Warburton, Richard J.

    2013-07-01

    Optically active quantum dots, for instance self-assembled InGaAs quantum dots, are potentially excellent single photon sources. The fidelity of the single photons is much improved using resonant rather than non-resonant excitation. With resonant excitation, the challenge is to distinguish between resonance fluorescence and scattered laser light. We have met this challenge by creating a polarization-based dark-field microscope to measure the resonance fluorescence from a single quantum dot at low temperature. We achieve a suppression of the scattered laser exceeding a factor of 107 and background-free detection of resonance fluorescence. The same optical setup operates over the entire quantum dot emission range (920-980 nm) and also in high magnetic fields. The major development is the outstanding long-term stability: once the dark-field point has been established, the microscope operates for days without alignment. The mechanical and optical designs of the microscope are presented, as well as exemplary resonance fluorescence spectroscopy results on individual quantum dots to underline the microscope's excellent performance.

  19. Ethnic Distribution of Microscopic Colitis in the United States.

    PubMed

    Turner, Kevin; Genta, Robert M; Sonnenberg, Amnon

    2015-11-01

    A large electronic database of histopathology reports was used to study the ethnic distribution of microscopic colitis in the United States. Miraca Life Sciences is a nation-wide pathology laboratory that receives biopsy specimens submitted by 1500 gastroenterologists distributed throughout the United States. In a case-control study, the prevalence of microscopic colitis in 4 ethnic groups (East Asians, Indians, Hispanics, and Jews) was compared with that of all other ethnic groups (composed of American Caucasians and African Americans), serving as reference group. A total of 11,706 patients with microscopic colitis were included in the analysis. In all ethnic groups alike, microscopic colitis was more common in women than men (78% versus 22%, odds ratio = 3.40, 95% confidence interval = 3.26-3.55). In all ethnic groups, the prevalence of microscopic colitis showed a continuous age-dependent rise. Hispanic patients with microscopic colitis were on average younger than the reference group (59.4 ± 16.2 years versus 64.2 ± 13.8 years, P < 0.001). Jewish patients with microscopic colitis were slightly older than the reference group (65.6 ± 13.4 years, P = 0.015). Compared with the reference group (prevalence = 1.20%), microscopic colitis was significantly less common among patients of Indian (prevalence = 0.28%, odds ratio = 0.32, 95% confidence interval = 0.13-0.65), East Asian (0.22%, 0.19, 0.14-0.26), or Hispanic decent (0.48%, 0.40, 0.36-0.45) and significantly more common among Jewish patients (1.30%, 1.10, 1.01-1.21). Microscopic colitis shows striking variations of its occurrence among different ethnic groups. Such variations could point at differences in the exposure to environmental risk factors.

  20. Influence of muscle-tendon complex geometrical parameters on modeling passive stretch behavior with the Discrete Element Method.

    PubMed

    Roux, A; Laporte, S; Lecompte, J; Gras, L-L; Iordanoff, I

    2016-01-25

    The muscle-tendon complex (MTC) is a multi-scale, anisotropic, non-homogeneous structure. It is composed of fascicles, gathered together in a conjunctive aponeurosis. Fibers are oriented into the MTC with a pennation angle. Many MTC models use the Finite Element Method (FEM) to simulate the behavior of the MTC as a hyper-viscoelastic material. The Discrete Element Method (DEM) could be adapted to model fibrous materials, such as the MTC. DEM could capture the complex behavior of a material with a simple discretization scheme and help in understanding the influence of the orientation of fibers on the MTC׳s behavior. The aims of this study were to model the MTC in DEM at the macroscopic scale and to obtain the force/displacement curve during a non-destructive passive tensile test. Another aim was to highlight the influence of the geometrical parameters of the MTC on the global mechanical behavior. A geometrical construction of the MTC was done using discrete element linked by springs. Young׳s modulus values of the MTC׳s components were retrieved from the literature to model the microscopic stiffness of each spring. Alignment and re-orientation of all of the muscle׳s fibers with the tensile axis were observed numerically. The hyper-elastic behavior of the MTC was pointed out. The structure׳s effects, added to the geometrical parameters, highlight the MTC׳s mechanical behavior. It is also highlighted by the heterogeneity of the strain of the MTC׳s components. DEM seems to be a promising method to model the hyper-elastic macroscopic behavior of the MTC with simple elastic microscopic elements. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Improved plaque materials for aerospace nickel-cadmium cells

    NASA Technical Reports Server (NTRS)

    Luksha, E.; Gordy, D. J.

    1971-01-01

    Improved cadmium electrode substrates with precisely controlled microstructures for possible use in aerospace nickel-cadmium cells were prepared. The preparative technique was a powder metallurgical process in which a fugitive pore-former and a nickel powder were blended, then isostatically compacted, and subsequently sintered. Cadmium electrodes prepared from such substrates were cycle tested using an accelerated tortuous test regime. It was discovered that plaques of 60% or 80% porosity prepared with a 25 micron pore-former were better than state-of-the-art electrodes in terms of efficienty and/or mechanical strength. The 60% structures were particularly outstanding in this respect in that they had efficiencies only 5-10 percentage points lower than state-of-the-art electrodes and vastly superior mechanical properties. This added strength was observed to eliminate cracking and physical degradation of the electrodes during processing and cycling. The cadmium electrodes prepared from the 80% porous substrates proved to be the best electrodes made during the course of the work from the point of view of highest efficiency. Three-point bend tests were used to measure mechanical properties of the plaques produced and also as a general characterization tool. In addition, the BET surface areas of selected specimens was determined. The SEM was used for judging microscopic uniformity and quantitatively determining the induced pore size and various other fine structures in the substrates. The technique of X-ray radiography was used to follow the bulk uniformity of the substrates at various stages of their processing.

  2. WHO Melting-Point Reference Substances

    PubMed Central

    Bervenmark, H.; Diding, N. Å.; Öhrner, B.

    1963-01-01

    Batches of 13 highly purified chemicals, intended for use as reference substances in the calibration of apparatus for melting-point determinations, have been subjected to a collaborative assay by 15 laboratories in 13 countries. All the laboratories performed melting-point determinations by the capillary methods described in the proposed text for the second edition of the Pharmacopoea Internationalis and some, in addition, carried out determinations by the microscope hot stage (Kofler) method, using both the “going-through” and the “equilibrium” technique. Statistical analysis of the data obtained by the capillary method showed that the within-laboratory variation was small and that the between-laboratory variation, though constituting the greatest part of the whole variance, was not such as to warrant the exclusion of any laboratory from the evaluation of the results. The average values of the melting-points obtained by the laboratories can therefore be used as constants for the substances in question, which have accordingly been established as WHO Melting-Point Reference Substances and included in the WHO collection of authentic chemical substances. As to the microscope hot stage method, analysis of the results indicated that the values obtained by the “going-through” technique did not differ significantly from those obtained by the capillary method, but the values obtained by the “equilibrium” technique were mostly significantly lower. PMID:20604137

  3. Improved phase sensitivity in spectral domain phase microscopy using line-field illumination and self phase-referencing

    PubMed Central

    Yaqoob, Zahid; Choi, Wonshik; Oh, Seungeun; Lue, Niyom; Park, Yongkeun; Fang-Yen, Christopher; Dasari, Ramachandra R.; Badizadegan, Kamran; Feld, Michael S.

    2010-01-01

    We report a quantitative phase microscope based on spectral domain optical coherence tomography and line-field illumination. The line illumination allows self phase-referencing method to reject common-mode phase noise. The quantitative phase microscope also features a separate reference arm, permitting the use of high numerical aperture (NA > 1) microscope objectives for high resolution phase measurement at multiple points along the line of illumination. We demonstrate that the path-length sensitivity of the instrument can be as good as 41 pm/Hz, which makes it suitable for nanometer scale study of cell motility. We present the detection of natural motions of cell surface and two-dimensional surface profiling of a HeLa cell. PMID:19550464

  4. Microscopic particle-rotor model for the low-lying spectrum of Λ hypernuclei

    NASA Astrophysics Data System (ADS)

    Mei, H.; Hagino, K.; Yao, J. M.; Motoba, T.

    2014-12-01

    We propose a novel method for low-lying states of hypernuclei based on the particle-rotor model, in which hypernuclear states are constructed by coupling the hyperon to low-lying states of the core nucleus. In contrast to the conventional particle-rotor model, we employ a microscopic approach for the core states; that is, the generator coordinate method (GCM) with the particle number and angular momentum projections. We apply this microscopic particle-rotor model to Λ9Be as an example employing a point-coupling version of the relativistic mean-field Lagrangian. A reasonable agreement with the experimental data for the low-spin spectrum is achieved using the Λ N coupling strengths determined to reproduce the binding energy of the Λ particle.

  5. The Compact Microimaging Spectrometer (CMIS): A New Tool for In-Situ Planetary Science

    NASA Technical Reports Server (NTRS)

    Armstrong, J. C.; Sellar, R. G.

    2004-01-01

    In-situ identification of trace minerals, ices, or organics in planetary samples may be difficult with panchromatic microscopic imagery and spot spectroscopy. The panchromatic imagery acquired by a microscopic imager provides morphological information and albedo, but these are generally insufficient for unambiguous identification. The spatially-averaged spectra acquired by a nonimaging ( point- or spot- ) spectrometer may enable identification of the major components but identification of unknown trace components is difficult at best. With our Compact Micro-Imaging Spectrometer (CMIS), however, we acquire spectroscopic data in an imaging format at microscopic scales. The distinct spectra of individual grains, provided by our approach, make detection and identification possible even for trace components in regolith or heterogeneous samples.

  6. Nonlinear Polarimetric Microscopy for Biomedical Imaging

    NASA Astrophysics Data System (ADS)

    Samim, Masood

    A framework for the nonlinear optical polarimetry and polarimetric microscopy is developed. Mathematical equations are derived in terms of linear and nonlinear Stokes Mueller formalism, which comprehensively characterize the polarization properties of the incoming and outgoing radiations, and provide structural information about the organization of the investigated materials. The algebraic formalism developed in this thesis simplifies many predictions for a nonlinear polarimetry study and provides an intuitive understanding of various polarization properties for radiations and the intervening medium. For polarimetric microscopy experiments, a custom fast-scanning differential polarization microscope is developed, which is also capable of real-time three-dimensional imaging. The setup is equipped with a pair of high-speed resonant and galvanometric scanning mirrors, and supplemented by advanced adaptive optics and data acquisition modules. The scanning mirrors when combined with the adaptive optics deformable mirror enable fast 3D imaging. Deformable membrane mirrors and genetic algorithm optimization routines are employed to improve the imaging conditions including correcting the optical aberrations, maximizing signal intensities, and minimizing point-spread-functions of the focal volume. A field-programmable-gate array (FPGA) chip is exploited to rapidly acquire and process the multidimensional data. Using the nonlinear optical polarimetry framework and the home-built polarization microscope, a few biologically important tissues are measured and analyzed to gain insight as to their structure and dynamics. The structure and distribution of muscle sarcomere myosins, connective tissue collagen, carbohydrate-rich starch, and fruit fly eye retinal molecules are characterized with revealing polarization studies. In each case, using the theoretical framework, polarization sensitive data are analyzed to decipher the molecular orientations and nonlinear optical susceptibilities. The developed nonlinear optical polarimetric microscopy is applicable to a wide variety of structural studies on ordered materials, and provides a non-invasive possibility to study the structural organization and dynamics within biological samples. For example, the technique is well suited for studies of a muscle contraction, histopathology of collagen structure for cancer tissue diagnostics, investigations of the polysacharide structural organization within a starch granule of a plant, or developmental study of the retina in an eye, among other applications.

  7. Sparsity-Based Super Resolution for SEM Images.

    PubMed

    Tsiper, Shahar; Dicker, Or; Kaizerman, Idan; Zohar, Zeev; Segev, Mordechai; Eldar, Yonina C

    2017-09-13

    The scanning electron microscope (SEM) is an electron microscope that produces an image of a sample by scanning it with a focused beam of electrons. The electrons interact with the atoms in the sample, which emit secondary electrons that contain information about the surface topography and composition. The sample is scanned by the electron beam point by point, until an image of the surface is formed. Since its invention in 1942, the capabilities of SEMs have become paramount in the discovery and understanding of the nanometer world, and today it is extensively used for both research and in industry. In principle, SEMs can achieve resolution better than one nanometer. However, for many applications, working at subnanometer resolution implies an exceedingly large number of scanning points. For exactly this reason, the SEM diagnostics of microelectronic chips is performed either at high resolution (HR) over a small area or at low resolution (LR) while capturing a larger portion of the chip. Here, we employ sparse coding and dictionary learning to algorithmically enhance low-resolution SEM images of microelectronic chips-up to the level of the HR images acquired by slow SEM scans, while considerably reducing the noise. Our methodology consists of two steps: an offline stage of learning a joint dictionary from a sequence of LR and HR images of the same region in the chip, followed by a fast-online super-resolution step where the resolution of a new LR image is enhanced. We provide several examples with typical chips used in the microelectronics industry, as well as a statistical study on arbitrary images with characteristic structural features. Conceptually, our method works well when the images have similar characteristics, as microelectronics chips do. This work demonstrates that employing sparsity concepts can greatly improve the performance of SEM, thereby considerably increasing the scanning throughput without compromising on analysis quality and resolution.

  8. An Investigation on the Thermophysical Properties of a Binary Molten Salt System Containing Both Aluminum Oxide and Titanium Oxide Nanoparticle Suspensions

    NASA Astrophysics Data System (ADS)

    Giridhar, Kunal

    Molten salts are showing great potential to replace current heat transfer and thermal energy storage fluids in concentrated solar plants because of their capability to maximize thermal energy storage, greater stability, cost effectiveness and significant thermal properties. However one of the major drawbacks of using molten salt as heat transfer fluid is that they are in solid state at room temperature and they have a high freezing point. Hence, significant resources would be required to maintain it in liquid form. If molten salt freezes while in operation, it would eventually damage piping network due to its volume shrinkage along with rendering the entire plant inoperable. It is long known that addition of nanoparticle suspensions has led to significant changes in thermal properties of fluids. In this investigation, aluminum oxide and titanium oxide nanoparticles of varying concentrations are added to molten salt/solar salt system consisting of 60% sodium nitrate and 40% potassium nitrate. Using differential scanning calorimeter, an attempt will be made to investigate changes in heat capacity of system, depression in freezing point and changes in latent heat of fusion. Scanning electron microscope will be used to take images of samples to study changes in micro-structure of mixture, ensure uniform distribution of nanoparticle in system and verify authenticity of materials used for experimentation. Due to enormous magnitude of CSP plant, actual implementation of molten salt system is on a large scale. With this investigation, even microscopic enhancement in heat capacity and slight lowering of freezing point will lead to greater benefits in terms of efficiency and cost of operation of plant. These results will further the argument for viability of molten salt as a heat transfer fluid and thermal storage system in CSP. One of the objective of this experimentation is to also collect experimental data which can be used for establishing relation between concentration of nanoparticles and change in thermophysical properties of molten salt for various types of nanoparticles.

  9. Microscope Resolution.

    ERIC Educational Resources Information Center

    Higbie, J.

    1981-01-01

    Describes problems using the Jenkins and White approach and standard diffraction theory when dealing with the topic of finite conjugate, point-source resolution and how they may be resolved using the relatively obscure Abbe's sine theorem. (JN)

  10. Total internal reflection and dynamic light scattering microscopy of gels

    NASA Astrophysics Data System (ADS)

    Gregor, Brian F.

    Two different techniques which apply optical microscopy in novel ways to the study of biological systems and materials were built and applied to several samples. The first is a system for adapting the well-known technique of dynamic light scattering (DLS) to an optical microscope. This can detect and scatter light from very small volumes, as compared to standard DLS which studies light scattering from volumes 1000x larger. The small scattering volume also allows for the observation of nonergodic dynamics in appropriate samples. Porcine gastric mucin (PGM) forms a gel at low pH which lines the epithelial cell layer and acts as a protective barrier against the acidic stomach environment. The dynamics and microscopic viscosity of PGM at different pH levels is studied using polystyrene microspheres as tracer particles. The microscopic viscosity and microrheological properties of the commercial basement membrane Matrigel are also studied with this instrument. Matrigel is frequently used to culture cells and its properties remain poorly determined. Well-characterized and purely synthetic Matrigel substitutes will need to have the correct rheological and morphological characteristics. The second instrument designed and built is a microscope which uses an interferometry technique to achieve an improvement in resolution 2.5x better in one dimension than the Abbe diffraction limit. The technique is based upon the interference of the evanescent field generated on the surface of a prism by a laser in a total internal reflection geometry. The enhanced resolution is demonstrated with fluorescent samples. Additionally. Raman imaging microscopy is demonstrated using the evanescent field in resonant and non-resonant samples, although attempts at applying the enhanced resolution technique to the Raman images were ultimately unsuccessful. Applications of this instrument include high resolution imaging of cell membranes and macroscopic structures in gels and proteins. Finally, a third section incorporating previous research on simulations of complex fluids is included. Two dimensional simulations of oil, water, and surfactant mixtures were computed with a lattice gas method. The simulated systems were randomly mixed and then the temperature was quenched to a predetermined point. Spontaneous micellization is observed for a narrow range of temperature quenches, and the overall growth rate of macroscopic structure is found to follow a Vogel-Fulcher growth law.

  11. A pragmatic guide to multiphoton microscope design

    PubMed Central

    Young, Michael D.; Field, Jeffrey J.; Sheetz, Kraig E.; Bartels, Randy A.; Squier, Jeff

    2016-01-01

    Multiphoton microscopy has emerged as a ubiquitous tool for studying microscopic structure and function across a broad range of disciplines. As such, the intent of this paper is to present a comprehensive resource for the construction and performance evaluation of a multiphoton microscope that will be understandable to the broad range of scientific fields that presently exploit, or wish to begin exploiting, this powerful technology. With this in mind, we have developed a guide to aid in the design of a multiphoton microscope. We discuss source selection, optical management of dispersion, image-relay systems with scan optics, objective-lens selection, single-element light-collection theory, photon-counting detection, image rendering, and finally, an illustrated guide for building an example microscope. PMID:27182429

  12. Structural characterization of Bacillus licheniformis Dahb1 exopolysaccharide-antimicrobial potential and larvicidal activity on malaria and Zika virus mosquito vectors.

    PubMed

    Abinaya, Muthukumar; Vaseeharan, Baskaralingam; Divya, Mani; Vijayakumar, Sekar; Govindarajan, Marimuthu; Alharbi, Naiyf S; Khaled, Jamal M; Al-Anbr, Mohammed N; Benelli, Giovanni

    2018-04-27

    Microbial polysaccharides produced by marine species play a key role in food and cosmetic industry, as they are nontoxic and biodegradable polymers. This investigation reports the isolation of exopolysaccharide from Bacillus licheniformis Dahb1 and its biomedical applications. Bacillus licheniformis Dahb1 exopolysaccharide (Bl-EPS) was extracted using the ethanol precipitation method and structurally characterized. FTIR and 1 H-NMR pointed out the presence of various functional groups and primary aromatic compounds, respectively. Bl-EPS exhibited strong antioxidant potential confirmed via DPPH radical, reducing power and superoxide anion scavenging assays. Microscopic analysis revealed that the antibiofilm activity of Bl-EPS (75 μg/ml) was higher against Gram-negative (Pseudomonas aeruginosa and Proteus vulgaris) bacteria over Gram-positive species (Bacillus subtilis and Bacillus pumilus). Bl-EPS led to biofilm inhibition against Candida albicans when tested at 75 μg/ml. The hemolytic assay showed low cytotoxicity of Bl-EPS at 5 mg/ml. Besides, Bl-EPS achieved LC 50 values < 80 μg/ml against larvae of mosquito vectors Anopheles stephensi and Aedes aegypti. Overall, our findings pointed out the multipurpose bioactivity of Bl-EPS, which deserves further consideration for pharmaceutical, environmental and entomological applications.

  13. [Strategy of molecular design of drugs: the unification of macro-properties and micro-structures of a molecule].

    PubMed

    Guo, Zong-Ru

    2008-03-01

    The interaction of a drug with the organism involves both the disposition of a drug by the organism and the action of a drug on the organism. The disposition of various exogenous substances, including drugs, complies with general rules. The underlying physical and chemical changes to different drugs in view of time and space, i. e. pharmacokinetics, share common characteristics, that is the tout ensemble of a molecule and its macroscopic properties convey direct effect on the pharmacokinetic behavior as the tendency and consequence of biological evolution. The action of a drug on the organism, on the other hand, implicates the physico-chemical binding of a drug molecule to the target protein, which induces pharmacological and toxicological effects. The biological reactions, no matter beneficial or adverse, are all specific and individual manifestation of the drug molecule and determined by the interactive binding between definitive atoms or groups of the drug molecule and the macromolecular target in three-dimension. Such critical atoms, groups, or fragments responsible for the interaction reflect the microscopic structures of drug molecules and are called pharmacophore. In this context, a drug molecule is presumed as an assembly of macroscopic property and microscopic structure, with the macroscopic properties determining the absorption, distribution, metabolism and elimination of drugs and the microscopic structure coining pharmacological action. The knowledge of the internal relationship between macroscopy/microscopy and PK/PD conduces to comprehension of drug action and guides molecular drug design, because this conception facilitates the identification of structural features necessary for biological response, and the determination of factors modulating the physico-chemical and pharmacokinetic properties. The factors determining macro-properties include molecular weight, solubility, charge, lipophilicity (partition), and polar surface area, etc., which are destined by molecular scaffolds and/or side chain(s) apart from pharmacophore. The features of micro-structures contributing to specific activity contain hydrogen bonding donor and acceptor, positive and negative charge centers, hydrophobic centers and centers of aromatic rings. Different combinations and spacial arrangements of these features determine the distinct activity presented. The macro-property and micro-structure are integrated into a single molecule, and are inseparable. The macro-property reflects overall contribution of atoms and groups in the micro-structure. On the other hand, structural changes aimed to adjust macroscopic property usually alter the relative position of the microscopic structure. The goal of molecular drug design is to integrate the macroscopic and microscopic factors in optimized manner. In the early stage of molecular design, both macroscopic property and microscopic structure should be considered to make pharmacodynamics, pharmacokinetics, and physico-chemical properties in optimal match. Therefore, it required the existence of structural overlapping among acceptable pharmacokinetics, visible developing potential and specific pharmacodynamics. The larger the scope of overlapping, the higher the possibility to be a drug.

  14. Morphology-controllable of Sn doped ZnO nanorods prepared by spray pyrolysis for transparent electrode application

    NASA Astrophysics Data System (ADS)

    Hameed, M. Shahul; Princice, J. Joseph; Babu, N. Ramesh; Zahirullah, S. Syed; Deshmukh, Sampat G.; Arunachalam, A.

    2018-05-01

    Transparent conductive Sn doped ZnO nanorods have been deposited at various doping level by spray pyrolysis technique on glass substrate. The structural, surface morphological and optical properties of these films have been investigated with the help of X-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscope (AFM) and UV-Vis spectrophotometer respectively. XRD patterns revealed a successful high quality growth of single crystal ZnO nanorods with hexagonal wurtzite structure having (002) preferred orientation. The scanning electron microscope (SEM) image of the prepared films exposed the uniform distribution of Sn doped ZnO nanorod shaped grains. All these films were highly transparent in the visible region with average transmittance of 90%.

  15. Detection of fungal hyphae using smartphone and pocket magnifier: going cellular.

    PubMed

    Agarwal, Tushar; Bandivadekar, Pooja; Satpathy, Gita; Sharma, Namrata; Titiyal, Jeewan S

    2015-03-01

    The aim of this study was to detect fungal hyphae in a corneal scraping sample using a cost-effective assembly of smartphone and pocket magnifier. In this case report, a tissue sample was obtained by conventional corneal scraping from a clinically suspicious case of mycotic keratitis. The smear was stained with Gram stain, and a 10% potassium hydroxide mount was prepared. It was imaged using a smartphone coupled with a compact pocket magnifier and integrated light-emitting diode assembly at point-of-care. Photographs of multiple sections of slides were viewed using smartphone screen and pinch-to-zoom function. The same slides were subsequently screened under a light microscope by an experienced microbiologist. The scraping from the ulcer was also inoculated on blood agar and Sabouraud dextrose agar. Smartphone-based digital imaging revealed the presence of gram-positive organism with hyphae. Examination under a light microscope also yielded similar findings. Fusarium was cultured from the corneal scraping, confirming the diagnosis of mycotic keratitis. The patient responded to topical 5% natamycin therapy, with resolution of the ulcer after 4 weeks. Smartphones can be successfully used as novel point-of-care, cost-effective, reliable microscopic screening tools.

  16. Alteration of the mode of antibacterial action of a defensin by the amino-terminal loop substitution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Bin; Zhu, Shunyi, E-mail: Zhusy@ioz.ac.cn

    Highlights: Black-Right-Pointing-Pointer Al-M is an engineered fungal defensin with the n-loop of an insect defensin. Black-Right-Pointing-Pointer Al-M adopts a native defensin-like structure with high antibacterial potency. Black-Right-Pointing-Pointer Al-M kills bacteria through a membrane disruptive mechanism. Black-Right-Pointing-Pointer This work sheds light on the functional evolution of CS{alpha}{beta}-type defensins. -- Abstract: Ancient invertebrate-type and classical insect-type defensins (AITDs and CITDs) are two groups of evolutionarily related antimicrobial peptides (AMPs) that adopt a conserved cysteine-stabilized {alpha}-helical and {beta}-sheet (CS{alpha}{beta}) fold with a different amino-terminal loop (n-loop) size and diverse modes of antibacterial action. Although they both are identified as inhibitors of cell wallmore » biosynthesis, only CITDs evolved membrane disruptive ability by peptide oligomerization to form pores. To understand how this occurred, we modified micasin, a fungus-derived AITDs with a non-membrane disruptive mechanism, by substituting its n-loop with that of an insect-derived CITDs. After air oxidization, the synthetic hybrid defensin (termed Al-M) was structurally identified by circular dichroism (CD) and functionally evaluated by antibacterial and membrane permeability assays and electronic microscopic observation. Results showed that Al-M folded into a native-like defensin structure, as determined by its CD spectrum that is similar to that of micasin. Al-M was highly efficacious against the Gram-positive bacterium Bacillus megaterium with a lethal concentration of 1.76 {mu}M. As expected, in contrast to micasin, Al-M killed the bacteria through a membrane disruptive mechanism of action. The alteration in modes of action supports a key role of the n-loop extension in assembling functional surface of CITDs for membrane disruption. Our work provides mechanical evidence for evolutionary relationship between AITDs and CITDs.« less

  17. Direct sectioning of unembedded cartilage: a simple method for microscopical and histochemical studies on chondrocytes and extracellular matrix.

    PubMed

    Stockert, J C; Del Castillo, P

    1990-01-01

    On account of the rigidity and compact structure of the hyaline cartilage, unfixed or formaldehyde fixed samples of this tissue can be directly sectioned by using a conventional ultramicrotome and a glass knife. This simple method allows to obtain microscopical sections from unembedded cartilage blocks, which show a well preserved histological structure and are very suitable to carry out morphological and histochemical studies on chondrocytes and cartilaginous matrix.

  18. Method and apparatus for fringe-scanning chromosome analysis

    DOEpatents

    Norgren, R.M.; Gray, J.W.; Hirschfeld, T.B.

    1983-08-31

    Apparatus and method are provided for analyzing sub-micron-sized features of microscopic particles. Two central features of the invention are (1) constraining microscopic particles to flow with substantially constant orientation through a predetermined interference fringe pattern, and (2) estimating particle structure by analyzing its fringe profile. The invention allows nearly an order of magnitude higher resolution of chromosome structure than possible with currently available flow system techniques. The invention allows rapid and accurate flow karyotyping of chromosomes.

  19. A landmark-based 3D calibration strategy for SPM

    NASA Astrophysics Data System (ADS)

    Ritter, Martin; Dziomba, Thorsten; Kranzmann, Axel; Koenders, Ludger

    2007-02-01

    We present a new method for the complete three-dimensional (3D) calibration of scanning probe microscopes (SPM) and other high-resolution microscopes, e.g., scanning electron microscopes (SEM) and confocal laser scanning microscopes (CLSM), by applying a 3D micrometre-sized reference structure with the shape of a cascade slope-step pyramid. The 3D reference structure was produced by focused ion beam induced metal deposition. In contrast to pitch featured calibration procedures that require separate lateral and vertical reference standards such as gratings and step height structures, the new method includes the use of landmarks, which are well established in calibration and measurement tasks on a larger scale. However, the landmarks applied to the new 3D reference structures are of sub-micrometre size, the so-called 'nanomarkers'. The nanomarker coordinates are used for a geometrical calibration of the scanning process of SPM as well as of other instrument types such as SEM and CLSM. For that purpose, a parameter estimation routine involving three scale factors and three coupling factors has been developed that allows lateral and vertical calibration in only one sampling step. With this new calibration strategy, we are able to detect deviations of SPM lateral scaling errors as well as coupling effects causing, e.g., a lateral coordinate shift depending on the measured height position of the probe.

  20. Development of critical dimension measurement scanning electron microscope for ULSI (S-8000 series)

    NASA Astrophysics Data System (ADS)

    Ezumi, Makoto; Otaka, Tadashi; Mori, Hiroyoshi; Todokoro, Hideo; Ose, Yoichi

    1996-05-01

    The semiconductor industry is moving from half-micron to quarter-micron design rules. To support this evolution, Hitachi has developed a new critical dimension measurement scanning electron microscope (CD-SEM), the model S-8800 series, for quality control of quarter- micron process lines. The new CD-SEM provides detailed examination of process conditions with 5 nm resolution and 5 nm repeatability (3 sigma) at accelerating voltage 800 V using secondary electron imaging. In addition, a newly developed load-lock system has a capability of achieving a high sample throughput of 20 wafers/hour (5 point measurements per wafer) under continuous operation. To support user friendliness, the system incorporates a graphical user interface (GUI), an automated pattern recognition system which helps locating measurement points, both manual and semi-automated operation, and user-programmable operating parameters.

  1. Research on the relationship of the probe system for the swing arm profilometer based on the point source microscope

    NASA Astrophysics Data System (ADS)

    Gao, Mingxing; Jing, Hongwei; Cao, Xuedong; Chen, Lin; Yang, Jie

    2015-08-01

    When using the swing arm profilometer (SAP) to measure the aspheric mirror and the off-axis aspheric mirror, the error of the effective arm length of the SAP has an obvious influence on the measurement result. In order to reduce the influence of the effective arm length and increase the measurement accuracy of the SAP, the laser tracker is adopted to measure the effective arm length. Because the space position relationship of the probe system for the SAP is needed to measured before using the laser tracker, the point source microscope (PSM) is used to measure the space positional relationship. The measurement principle of the PSM and other applications are introduced; the accuracy and repeatability of this technology are analysed; the advantages and disadvantages of this technology are summarized.

  2. Microgap Evaluation of Novel Hydrophilic and Hydrophobic Obturating System: A Scanning Electron Microscope Study.

    PubMed

    Hegde, Vibha; Murkey, Laxmi Suresh

    2017-05-01

    The purpose of an endodontic obturation is to obtain a fluid tight hermetic seal of the entire root canal system. There has been an evolution of different materials and techniques to achieve this desired gap free fluid tight seal due to presence of anatomic complexity of the root canal system. To compare the microgap occurring in root canals obturated with hydrophilic versus hydrophobic systems using scanning electron microscope. Sixty extracted human single-rooted premolars were decoronated, instrumented using NiTi rotary instruments. The samples (n=20) were divided into three groups and obturated with Group A - (control group) gutta-percha with AH Plus, Group B - C-point with Smartpaste Bio and Group C - gutta-percha with guttaflow 2. The samples were split longitudinally into two halves and microgap was observed under scanning electron microscope in the apical 3 mm of the root canal. Group A (control) showed a mean difference of 8.54 as compared to 5.76 in group C. Group B showed the lowest mean difference of 0.83 suggesting that the hydrophilic system (C-point/Smartpaste Bio) produced least microgap as compared to the hydrophobic groups. Novel hydrophilic obturating system (C-points/ Smart-paste Bio) showed better seal and least microgap as compared to gutta-percha/guttaflow 2 and gutta-percha/ AH plus which showed gap at the sealer dentin interface due to less penetration and bonding of these hydrophobic obturating system.

  3. Langevin model of low-energy fission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sierk, Arnold John

    Since the earliest days of fission, stochastic models have been used to describe and model the process. For a quarter century, numerical solutions of Langevin equations have been used to model fission of highly excited nuclei, where microscopic potential-energy effects have been neglected. In this paper I present a Langevin model for the fission of nuclei with low to medium excitation energies, for which microscopic effects in the potential energy cannot be ignored. I solve Langevin equations in a five-dimensional space of nuclear deformations. The macroscopic-microscopic potential energy from a global nuclear structure model well benchmarked to nuclear masses ismore » tabulated on a mesh of approximately 10 7 points in this deformation space. The potential is defined continuously inside the mesh boundaries by use of a moving five-dimensional cubic spline approximation. Because of reflection symmetry, the effective mesh is nearly twice this size. For the inertia, I use a (possibly scaled) approximation to the inertia tensor defined by irrotational flow. A phenomenological dissipation tensor related to one-body dissipation is used. A normal-mode analysis of the dynamical system at the saddle point and the assumption of quasiequilibrium provide distributions of initial conditions appropriate to low excitation energies, and are extended to model spontaneous fission. A dynamical model of postscission fragment motion including dynamical deformations and separation allows the calculation of final mass and kinetic-energy distributions, along with other interesting quantities. The model makes quantitative predictions for fragment mass and kinetic-energy yields, some of which are very close to measured ones. Varying the energy of the incident neutron for induced fission allows the prediction of energy dependencies of fragment yields and average kinetic energies. With a simple approximation for spontaneous fission starting conditions, quantitative predictions are made for some observables which are close to measurements. In conclusion, this model is able to reproduce several mass and energy yield observables with a small number of physical parameters, some of which do not need to be varied after benchmarking to 235U (n, f) to predict results for other fissioning isotopes.« less

  4. Langevin model of low-energy fission

    DOE PAGES

    Sierk, Arnold John

    2017-09-05

    Since the earliest days of fission, stochastic models have been used to describe and model the process. For a quarter century, numerical solutions of Langevin equations have been used to model fission of highly excited nuclei, where microscopic potential-energy effects have been neglected. In this paper I present a Langevin model for the fission of nuclei with low to medium excitation energies, for which microscopic effects in the potential energy cannot be ignored. I solve Langevin equations in a five-dimensional space of nuclear deformations. The macroscopic-microscopic potential energy from a global nuclear structure model well benchmarked to nuclear masses ismore » tabulated on a mesh of approximately 10 7 points in this deformation space. The potential is defined continuously inside the mesh boundaries by use of a moving five-dimensional cubic spline approximation. Because of reflection symmetry, the effective mesh is nearly twice this size. For the inertia, I use a (possibly scaled) approximation to the inertia tensor defined by irrotational flow. A phenomenological dissipation tensor related to one-body dissipation is used. A normal-mode analysis of the dynamical system at the saddle point and the assumption of quasiequilibrium provide distributions of initial conditions appropriate to low excitation energies, and are extended to model spontaneous fission. A dynamical model of postscission fragment motion including dynamical deformations and separation allows the calculation of final mass and kinetic-energy distributions, along with other interesting quantities. The model makes quantitative predictions for fragment mass and kinetic-energy yields, some of which are very close to measured ones. Varying the energy of the incident neutron for induced fission allows the prediction of energy dependencies of fragment yields and average kinetic energies. With a simple approximation for spontaneous fission starting conditions, quantitative predictions are made for some observables which are close to measurements. In conclusion, this model is able to reproduce several mass and energy yield observables with a small number of physical parameters, some of which do not need to be varied after benchmarking to 235U (n, f) to predict results for other fissioning isotopes.« less

  5. Structural properties of glucose-dimethylsulfoxide solutions probed by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Paolantoni, Marco; Gallina, Maria Elena; Sassi, Paola; Morresi, Assunta

    2009-04-01

    Raman spectroscopy was employed to achieve a molecular level description of solvation properties in glucose-dimethylsulfoxide (DMSO) solutions. The analysis of Raman spectra confirms the importance of the dipole-dipole interaction in determining structural properties of pure DMSO; the overall intermolecular structure is maintained in the whole 20-75 °C temperature range investigated. The blueshift of the CH stretching modes observed at higher temperatures points out that CH3⋯O contacts contribute to the cohesive energy of the DMSO liquid system. The addition of glucose perturbs the intermolecular ordering of DMSO owing to the formation of stable solute-solvent hydrogen bonds. The average number of OH⋯OS contacts (3.2±0.3) and their corresponding energy (˜20 kJ/mol) were estimated. Besides, the concentration dependence of the CH stretching bands and the behavior of the noncoincidence effect on the SO band, suggest that the dipole-dipole and CH3⋯O interactions among DMSO molecules are disfavored within the glucose solvation layer. These findings contribute to improve our understanding about the microscopic origin of solvent properties of DMSO toward more complex biomolecular systems.

  6. A modified carbothermal reduction method for preparation of high-performance nano-scale core/shell Cu 6Sn 5 alloy anodes in Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Cui, Wangjun; Wang, Fei; Wang, Jie; Liu, Haijing; Wang, Congxiao; Xia, Yongyao

    Core-shell structured, carbon-coated, nano-scale Cu 6Sn 5 has been prepared by a modified carbothermal reduction method using polymer coated mixed oxides of CuO and SnO 2 as precursors. On heat treatment, the mixture oxides were converted into Cu 6Sn 5 alloy by carbothermal reduction. Simultaneously, the remnants carbon was coated on the surface of the Cu 6Sn 5 particles to form a core-shell structure. Transmission electron microscope (TEM) images demonstrate that the well-coated carbon layer effectively prevents the encapsulated, low melting point alloy from out flowing in a high-temperature treatment process. Core-shell structured, carbon coated Cu 6Sn 5 delivers a reversible capacity of 420 mAh g -1 with capacity retention of 80% after 50 cycles. The improvement in the cycling ability can be attributed to the fact that the carbon-shell prevents aggregation and pulverization of nano-sized tin-based alloy particles during charge/discharge cycling.

  7. Formative Assessment Probes: Representing Microscopic Life

    ERIC Educational Resources Information Center

    Keeley, Page

    2011-01-01

    This column focuses on promoting learning through assessment. The author discusses the formative assessment probe "Pond Water," which reveals how elementary children will often apply what they know about animal structures to newly discovered microscopic organisms, connecting their knowledge of the familiar to the unfamiliar through…

  8. Electronic structure, dielectric response, and surface charge distribution of RGD (1FUV) peptide.

    PubMed

    Adhikari, Puja; Wen, Amy M; French, Roger H; Parsegian, V Adrian; Steinmetz, Nicole F; Podgornik, Rudolf; Ching, Wai-Yim

    2014-07-08

    Long and short range molecular interactions govern molecular recognition and self-assembly of biological macromolecules. Microscopic parameters in the theories of these molecular interactions are either phenomenological or need to be calculated within a microscopic theory. We report a unified methodology for the ab initio quantum mechanical (QM) calculation that yields all the microscopic parameters, namely the partial charges as well as the frequency-dependent dielectric response function, that can then be taken as input for macroscopic theories of electrostatic, polar, and van der Waals-London dispersion intermolecular forces. We apply this methodology to obtain the electronic structure of the cyclic tripeptide RGD-4C (1FUV). This ab initio unified methodology yields the relevant parameters entering the long range interactions of biological macromolecules, providing accurate data for the partial charge distribution and the frequency-dependent dielectric response function of this peptide. These microscopic parameters determine the range and strength of the intricate intermolecular interactions between potential docking sites of the RGD-4C ligand and its integrin receptor.

  9. DNA attachment to support structures

    DOEpatents

    Balhorn, Rodney L.; Barry, Christopher H.

    2002-01-01

    Microscopic beads or other structures are attached to nucleic acids (DNA) using a terminal transferase. The transferase adds labeled dideoxy nucleotide bases to the ends of linear strands of DNA. The labels, such as the antigens digoxigenin and biotin, bind to the antibody compounds or other appropriate complementary ligands, which are bound to the microscopic beads or other support structures. The method does not require the synthesis of a synthetic oligonucleotide probe. The method can be used to tag or label DNA even when the DNA has an unknown sequence, has blunt ends, or is a very large fragment (e.g., >500 kilobase pairs).

  10. An automatic system to study sperm motility and energetics

    PubMed Central

    Nascimento, Jaclyn M.; Chandsawangbhuwana, Charlie; Botvinick, Elliot L.; Berns, Michael W.

    2012-01-01

    An integrated robotic laser and microscope system has been developed to automatically analyze individual sperm motility and energetics. The custom-designed optical system directs near-infrared laser light into an inverted microscope to create a single-point 3-D gradient laser trap at the focal spot of the microscope objective. A two-level computer structure is described that quantifies the sperm motility (in terms of swimming speed and swimming force) and energetics (measuring mid-piece membrane potential) using real-time tracking (done by the upper-level system) and fluorescent ratio imaging (done by the lower-level system). The communication between these two systems is achieved by a gigabit network. The custom-built image processing algorithm identifies the sperm swimming trajectory in real-time using phase contrast images, and then subsequently traps the sperm by automatically moving the microscope stage to relocate the sperm to the laser trap focal plane. Once the sperm is stably trapped (determined by the algorithm), the algorithm can also gradually reduce the laser power by rotating the polarizer in the laser path to measure the trapping power at which the sperm is capable of escaping the trap. To monitor the membrane potential of the mitochondria located in a sperm’s mid-piece, the sperm is treated with a ratiometrically-encoded fluorescent probe. The proposed algorithm can relocate the sperm to the center of the ratio imaging camera and the average ratio value can be measured in real-time. The three parameters, sperm escape power, sperm swimming speed and ratio values of the mid-piece membrane potential of individual sperm can be compared with respect to time. This two-level automatic system to study individual sperm motility and energetics has not only increased experimental throughput by an order of magnitude but also has allowed us to monitor sperm energetics prior to and after exposure to the laser trap. This system should have application in both the human fertility clinic and in animal husbandry. PMID:18299996

  11. An automatic system to study sperm motility and energetics.

    PubMed

    Shi, Linda Z; Nascimento, Jaclyn M; Chandsawangbhuwana, Charlie; Botvinick, Elliot L; Berns, Michael W

    2008-08-01

    An integrated robotic laser and microscope system has been developed to automatically analyze individual sperm motility and energetics. The custom-designed optical system directs near-infrared laser light into an inverted microscope to create a single-point 3-D gradient laser trap at the focal spot of the microscope objective. A two-level computer structure is described that quantifies the sperm motility (in terms of swimming speed and swimming force) and energetics (measuring mid-piece membrane potential) using real-time tracking (done by the upper-level system) and fluorescent ratio imaging (done by the lower-level system). The communication between these two systems is achieved by a gigabit network. The custom-built image processing algorithm identifies the sperm swimming trajectory in real-time using phase contrast images, and then subsequently traps the sperm by automatically moving the microscope stage to relocate the sperm to the laser trap focal plane. Once the sperm is stably trapped (determined by the algorithm), the algorithm can also gradually reduce the laser power by rotating the polarizer in the laser path to measure the trapping power at which the sperm is capable of escaping the trap. To monitor the membrane potential of the mitochondria located in a sperm's mid-piece, the sperm is treated with a ratiometrically-encoded fluorescent probe. The proposed algorithm can relocate the sperm to the center of the ratio imaging camera and the average ratio value can be measured in real-time. The three parameters, sperm escape power, sperm swimming speed and ratio values of the mid-piece membrane potential of individual sperm can be compared with respect to time. This two-level automatic system to study individual sperm motility and energetics has not only increased experimental throughput by an order of magnitude but also has allowed us to monitor sperm energetics prior to and after exposure to the laser trap. This system should have application in both the human fertility clinic and in animal husbandry.

  12. Scanning SQUID microscope with an in-situ magnetization/demagnetization field for geological samples

    NASA Astrophysics Data System (ADS)

    Du, Junwei; Liu, Xiaohong; Qin, Huafeng; Wei, Zhao; Kong, Xiangyang; Liu, Qingsong; Song, Tao

    2018-04-01

    Magnetic properties of rocks are crucial for paleo-, rock-, environmental-magnetism, and magnetic material sciences. Conventional rock magnetometers deal with bulk properties of samples, whereas scanning microscope can map the distribution of remanent magnetization. In this study, a new scanning microscope based on a low-temperature DC superconducting quantum interference device (SQUID) equipped with an in-situ magnetization/demagnetization device was developed. To realize the combination of sensitive instrument as SQUID with high magnetizing/demagnetizing fields, the pick-up coil, the magnetization/demagnetization coils and the measurement mode of the system were optimized. The new microscope has a field sensitivity of 250 pT/√Hz at a coil-to-sample spacing of ∼350 μm, and high magnetization (0-1 T)/ demagnetization (0-300 mT, 400 Hz) functions. With this microscope, isothermal remanent magnetization (IRM) acquisition and the according alternating field (AF) demagnetization curves can be obtained for each point without transferring samples between different procedures, which could result in position deviation, waste of time, and other interferences. The newly-designed SQUID microscope, thus, can be used to investigate the rock magnetic properties of samples at a micro-area scale, and has a great potential to be an efficient tool in paleomagnetism, rock magnetism, and magnetic material studies.

  13. AccessScope project: Accessible light microscope for users with upper limb mobility or visual impairments.

    PubMed

    Mansoor, Awais; Ahmed, Wamiq M; Samarapungavan, Ala; Cirillo, John; Schwarte, David; Robinson, J Paul; Duerstock, Bradley S

    2010-01-01

    A web-based application was developed to remotely view slide specimens and control all functions of a research-level light microscopy workstation, called AccessScope. Students and scientists with upper limb mobility and visual impairments are often unable to use a light microscope by themselves and must depend on others in its operation. Users with upper limb mobility impairments and low vision were recruited to assist in the design process of the AccessScope personal computer (PC) user interface. Participants with these disabilities were evaluated in their ability to use AccessScope to perform microscopical tasks. AccessScope usage was compared with inspecting prescanned slide images by grading participants' identification and understanding of histological features and knowledge of microscope operation. With AccessScope subjects were able to independently perform common light microscopy functions through an Internet browser by employing different PC pointing devices or accessibility software according to individual abilities. Subjects answered more histology and microscope usage questions correctly after first participating in an AccessScope test session. AccessScope allowed users with upper limb or visual impairments to successfully perform light microscopy without assistance. This unprecedented capability is crucial for students and scientists with disabilities to perform laboratory coursework or microscope-based research and pursue science, technology, engineering, and mathematics fields.

  14. Scanning Microscopes Using X Rays and Microchannels

    NASA Technical Reports Server (NTRS)

    Wang, Yu

    2003-01-01

    Scanning microscopes that would be based on microchannel filters and advanced electronic image sensors and that utilize x-ray illumination have been proposed. Because the finest resolution attainable in a microscope is determined by the wavelength of the illumination, the xray illumination in the proposed microscopes would make it possible, in principle, to achieve resolutions of the order of nanometers about a thousand times as fine as the resolution of a visible-light microscope. Heretofore, it has been necessary to use scanning electron microscopes to obtain such fine resolution. In comparison with scanning electron microscopes, the proposed microscopes would likely be smaller, less massive, and less expensive. Moreover, unlike in scanning electron microscopes, it would not be necessary to place specimens under vacuum. The proposed microscopes are closely related to the ones described in several prior NASA Tech Briefs articles; namely, Miniature Microscope Without Lenses (NPO-20218), NASA Tech Briefs, Vol. 22, No. 8 (August 1998), page 43; and Reflective Variants of Miniature Microscope Without Lenses (NPO-20610), NASA Tech Briefs, Vol. 26, No. 9 (September 2002) page 6a. In all of these microscopes, the basic principle of design and operation is the same: The focusing optics of a conventional visible-light microscope are replaced by a combination of a microchannel filter and a charge-coupled-device (CCD) image detector. A microchannel plate containing parallel, microscopic-cross-section holes much longer than they are wide is placed between a specimen and an image sensor, which is typically the CCD. The microchannel plate must be made of a material that absorbs the illuminating radiation reflected or scattered from the specimen. The microchannels must be positioned and dimensioned so that each one is registered with a pixel on the image sensor. Because most of the radiation incident on the microchannel walls becomes absorbed, the radiation that reaches the image sensor consists predominantly of radiation that was launched along the longitudinal direction of the microchannels. Therefore, most of the radiation arriving at each pixel on the sensor must have traveled along a straight line from a corresponding location on the specimen. Thus, there is a one-to-one mapping from a point on a specimen to a pixel in the image sensor, so that the output of the image sensor contains image information equivalent to that from a microscope.

  15. The structure and function of fungal cells

    NASA Technical Reports Server (NTRS)

    Nozawa, Y.

    1984-01-01

    The structure and function of fungal cell walls were studied with particular emphasis on dermatophytes. Extraction, isolation, analysis, and observation of the cell wall structure and function were performed. The structure is described microscopically and chemically.

  16. The Tunneling Microscope: A New Look at the Atomic World.

    ERIC Educational Resources Information Center

    Golovchenko, J. A.

    1986-01-01

    A new instrument called the tunneling microscope has recently been developed that is capable of generating real-space images of surfaces showing atomic structure. Discusses current capabilities, limitations, and the physics involved in the technique. Includes results from a study of silicon crystal surfaces. (JN)

  17. Ultrastructural Study of Some Pollen Grains of Prairie Flowers

    ERIC Educational Resources Information Center

    Kozar, Frank

    1973-01-01

    Discusses the importance of the electron microscope, and in particular the scanning electron microscope, in studying the surface topography, sectional substructures, and patterns of development of pollen grains. The production, dispersal methods, and structure of pollen grains are described and illustrated with numerous electron micrographs. (JR)

  18. National Plant Diagnostic Network, Taxonomic training videos: Aphids under the microscope - overview

    USDA-ARS?s Scientific Manuscript database

    Training is a critical part of aphid (Hemiptera: Aphididae) identification. This training video provides provides an overview of general aphid morphology by using a compound microscope. The narrator discusses and highlights structures on the aphid that are important to make a species identification....

  19. National Plant Diagnostic Network, Taxonomic training videos: Aphids under the microscope - Cerataphis brasiliensis

    USDA-ARS?s Scientific Manuscript database

    Training is a critical part of aphid (Hemiptera: Aphididae) identification. This video provides provides training to identify the palm aphid, Cerataphis brasiliensis, using a compound microscope and an electronic identification key called “LUCID.” The video demonstrates key morphological structures...

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heo, Yooun; Lee, Jin Hong; Xie, Lin

    Enhanced properties in modern functional materials can often be found at structural transition regions, such as morphotropic phase boundaries (MPB), owing to the coexistence of multiple phases with nearly equivalent energies. Strain-engineered MPBs have emerged in epitaxially grown BiFeO 3 (BFO) thin films by precisely tailoring a compressive misfit strain, leading to numerous intriguing phenomena, such as a massive piezoelectric response, magnetoelectric coupling, interfacial magnetism and electronic conduction. Recently, an orthorhombic–rhombohedral (O–R) phase boundary has also been found in tensile-strained BFO. In this study, we characterise the crystal structure and electronic properties of the two competing O and R phasesmore » using X-ray diffraction, scanning probe microscope and scanning transmission electron microscopy (STEM). We observe the temperature evolution of R and O domains and find that the domain boundaries are highly conductive. Temperature-dependent measurements reveal that the conductivity is thermally activated for R–O boundaries. STEM observations point to structurally wide boundaries, significantly wider than in other systems. Furthermore, we reveal a strong correlation between the highly conductive domain boundaries and structural material properties. These findings provide a pathway to use phase boundaries in this system for novel nanoelectronic applications.« less

  1. Refinement of the crystal structures of biomimetic weddellites produced by microscopic fungus Aspergillus niger

    NASA Astrophysics Data System (ADS)

    Rusakov, A. V.; Frank-Kamenetskaya, O. V.; Gurzhiy, V. V.; Zelenskaya, M. S.; Izatulina, A. R.; Sazanova, K. V.

    2014-05-01

    The single-crystal structures of four biomimetic weddellites CaC2O4 · (2 + x)H2O with different contents of zeolitic water ( x = 0.10-0.24 formula units) produced by the microscopic fungus Aspergillus niger were refined from X-ray diffraction data ( R = 0.029-0.038). The effect of zeolitic water content on the structural stability of weddellite was analyzed. The parameter a was shown to increase with increasing x due to the increase in the distance between water molecules along this direction. The water content and structural parameters of the synthesized weddellites are similar to those of weddellites from biofilms and kidney stones.

  2. Microscopic modeling of nitride intersubband absorbance

    NASA Astrophysics Data System (ADS)

    Montano, Ines; Allerman, A. A.; Wierer, J. J.; Moseley, M.; Skogen, E. J.; Tauke-Pedretti, A.; Vawter, G. A.

    III-nitride intersubband structures have recently attracted much interest because of their potential for a wide variety of applications ranging from electro-optical modulators to terahertz quantum cascade lasers. To overcome present simulation limitations we have developed a microscopic absorbance simulator for nitride intersubband devices. Our simulator calculates the band structure of nitride intersubband systems using a fully coupled 8x8 k.p Hamiltonian and determines the material response of a single period in a density-matrix-formalism by solving the Heisenberg equation including many-body and dephasing contributions. After calculating the polarization due to intersubband transitions in a single period, the resulting absorbance of a superlattice structure including radiative coupling between the different periods is determined using a non-local Green's-function formalism. As a result our simulator allows us to predict intersubband absorbance of superlattice structures with microscopically determined lineshapes and linewidths accounting for both many-body and correlation contributions. This work is funded by Sandia National Laboratories Laboratory Directed Research and Development program. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin.

  3. Agent-based model with multi-level herding for complex financial systems

    NASA Astrophysics Data System (ADS)

    Chen, Jun-Jie; Tan, Lei; Zheng, Bo

    2015-02-01

    In complex financial systems, the sector structure and volatility clustering are respectively important features of the spatial and temporal correlations. However, the microscopic generation mechanism of the sector structure is not yet understood. Especially, how to produce these two features in one model remains challenging. We introduce a novel interaction mechanism, i.e., the multi-level herding, in constructing an agent-based model to investigate the sector structure combined with volatility clustering. According to the previous market performance, agents trade in groups, and their herding behavior comprises the herding at stock, sector and market levels. Further, we propose methods to determine the key model parameters from historical market data, rather than from statistical fitting of the results. From the simulation, we obtain the sector structure and volatility clustering, as well as the eigenvalue distribution of the cross-correlation matrix, for the New York and Hong Kong stock exchanges. These properties are in agreement with the empirical ones. Our results quantitatively reveal that the multi-level herding is the microscopic generation mechanism of the sector structure, and provide new insight into the spatio-temporal interactions in financial systems at the microscopic level.

  4. Agent-based model with multi-level herding for complex financial systems

    PubMed Central

    Chen, Jun-Jie; Tan, Lei; Zheng, Bo

    2015-01-01

    In complex financial systems, the sector structure and volatility clustering are respectively important features of the spatial and temporal correlations. However, the microscopic generation mechanism of the sector structure is not yet understood. Especially, how to produce these two features in one model remains challenging. We introduce a novel interaction mechanism, i.e., the multi-level herding, in constructing an agent-based model to investigate the sector structure combined with volatility clustering. According to the previous market performance, agents trade in groups, and their herding behavior comprises the herding at stock, sector and market levels. Further, we propose methods to determine the key model parameters from historical market data, rather than from statistical fitting of the results. From the simulation, we obtain the sector structure and volatility clustering, as well as the eigenvalue distribution of the cross-correlation matrix, for the New York and Hong Kong stock exchanges. These properties are in agreement with the empirical ones. Our results quantitatively reveal that the multi-level herding is the microscopic generation mechanism of the sector structure, and provide new insight into the spatio-temporal interactions in financial systems at the microscopic level. PMID:25669427

  5. Investigation of Optical Cavity Modes and Ultrafast Carrier Dynamics in Zinc Oxide Rods Using Second-Harmonic Generation and Transient Absorption Pump-Probe Microscopy

    NASA Astrophysics Data System (ADS)

    Mehl, Brian Peter

    The polydispersity intrinsic to nanoscale and microscale semiconductor materials poses a major challenge to using individual objects as building blocks for device applications. The ability to manipulate the shape of ZnO structures is enormous, making it an ideal material for studying shape-dependent phenomena. We have built a nonlinear microscope used to directly image optical cavity modes in ZnO rods using second-harmonic generation. Images of second-harmonic generation in needle-shaped ZnO rods obtained from individual structures show areas of enhanced second-harmonic intensity along the longitudinal axis of the rod that are periodically distributed and symmetrically situated relative to the rod midpoint. The spatial modulation is a direct consequence of the fundamental optical field coupling into standing wave resonator modes of the ZnO structure, leading to an enhanced backscattered second-harmonic condition that cannot be achieved in bulk ZnO. A more complicated second-harmonic image is observed when excitation is below the band gap, which is attributed to whispering gallery modes. Additionally, the nonlinear microscope was combined with transient absorption pump-probe to follow the electron-hole recombination dynamics at different points within individual needle-shaped ZnO rods to characterize spatial differences in dynamical behavior. The results from pump-probe experiments are correlated with spatially resolved ultrafast emission measurements, and scanning electron microscopy provides structural details. Dramatically different electron-hole recombination dynamics are observed in the narrow tips compared to the interior, with the ends exhibiting a greater propensity for electron-hole plasma formation and faster recombination of carriers across the band gap that stem from a physical confinement of the charge carriers. In the interior of the rod, a greater fraction of the electron-hole recombination is trap-mediated and occurs on a significantly longer time scale.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhlmann, Andreas V.; Houel, Julien; Warburton, Richard J.

    Optically active quantum dots, for instance self-assembled InGaAs quantum dots, are potentially excellent single photon sources. The fidelity of the single photons is much improved using resonant rather than non-resonant excitation. With resonant excitation, the challenge is to distinguish between resonance fluorescence and scattered laser light. We have met this challenge by creating a polarization-based dark-field microscope to measure the resonance fluorescence from a single quantum dot at low temperature. We achieve a suppression of the scattered laser exceeding a factor of 10{sup 7} and background-free detection of resonance fluorescence. The same optical setup operates over the entire quantum dotmore » emission range (920–980 nm) and also in high magnetic fields. The major development is the outstanding long-term stability: once the dark-field point has been established, the microscope operates for days without alignment. The mechanical and optical designs of the microscope are presented, as well as exemplary resonance fluorescence spectroscopy results on individual quantum dots to underline the microscope's excellent performance.« less

  7. Sharp Tips on the Atomic Force Microscope

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image shows the eight sharp tips of the NASA's Phoenix Mars Lander's Atomic Force Microscope, or AFM. The AFM is part of Phoenix's Microscopy, Electrochemistry, and Conductivity Analyzer, or MECA.

    The microscope maps the shape of particles in three dimensions by scanning them with one of the tips at the end of a beam. For the AFM image taken, the tip at the end of the upper right beam was used. The tip pointing up in the enlarged image is the size of a smoke particle at its base, or 2 microns. This image was taken with a scanning electron microscope before Phoenix launched on August 4, 2007.

    The AFM was developed by a Swiss-led consortium in collaboration with Imperial College London.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  8. Electronic structure and microscopic model of CoNb2O6

    NASA Astrophysics Data System (ADS)

    Molla, Kaimujjaman; Rahaman, Badiur

    2018-05-01

    We present the first principle density functional calculations to figure out the underlying spin model of CoNb2O6. The first principles calculations define the main paths of superexchange interaction between Co spins in this compound. We discuss the nature of the exchange paths and provide quantitative estimates of magnetic exchange couplings. A microscopic modeling based on analysis of the electronic structure of this system puts it in the interesting class of weakly couple geometrically frustrated isosceles triangular Ising antiferromagnet.

  9. Measurement of Strain and Stress Distributions in Structural Materials by Electron Moiré Method

    NASA Astrophysics Data System (ADS)

    Kishimoto, Satoshi; Xing, Yougming; Tanaka, Yoshihisa; Kagawa, Yutaka

    A method for measuring the strain and stress distributions in structural materials has been introduced. Fine model grids were fabricated by electron beam lithography, and an electron beam scan by a scanning electron microscope (SEM) was used as the master grid. Exposure of the electron beam scan onto the model grid in an SEM produced the electron beam moiré fringes of bright and dark parts caused by the different amounts of the secondary electrons per a primary electron. For demonstration, the micro-creep deformation of pure copper was observed. The creep strain distribution and the grain boundary sliding were analyzed. The residual strain and stress at the interface between a fiber and a matrix of a fiber reinforced plastic (FRP) were measured using the pushing-out test and this electron moiré method. Also, a non-uniform deformation around the boundary of 3-point bended laminated steel was observed and the strain distribution analyzed.

  10. [Pathomorphologic and ultrastructural characteristics of endocardial Cysticercus cellulosae].

    PubMed

    Grozdev, L J; Kaftandziev, D; Roganovic, D; Colanceski, V

    1980-01-01

    A case is presented of a solitary endocardial cysticercus of cellulose discovered at a biopsy in the left auricula of the heart, got by a 36-year old patient at the operation who had a mitral and aortal defect caused by a reumatic endocarditis. The cisticercus is implanted on the surface of an intact endothelium and the fibroelastic structure of the superficial part of the endocardium is preserved. Inflammation of the endocardium and the myocardium is presented by a perivascular infiltrates eosinophile granulocytes, plasms cells and lymphocytes, suggesting an allergic nature of inflammation. In histological preparates stained by selective methods of fungus according to Gridley and Crocott on the wall of the membrane of the cyst polymorphal Yeast-like elements are discovered at a size of 2-12 mil. mic. which ultrastructurally show degenerative forms of membranous structures suspected as immature primitive proglotids. In this paper, the objective difficulties are pointed out at the microscopic diagnosis of the cisticercus in the pathological material.

  11. Systematics of nuclear ground state properties in 78-100Sr by laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Buchinger, F.; Ramsay, E. B.; Arnold, E.; Neu, W.; Neugart, R.; Wendt, K.; Silverans, R. E.; Lievens, P.; Vermeeren, L.; Berdichevsky, D.; Fleming, R.; Sprung, D. W. L.; Ulm, G.

    1990-06-01

    Hyperfine structures and isotope shifts of strontium isotopes with A=78 to A=98 and A=100 were measured by collinear fast beam laser spectroscopy. Nuclear spins, moments and changes in mean square charge radii are extracted from the data. The spins and moments of most of the odd isotopes are explained in the framework of the single particle model. The changes in mean square charge radii are compared with predictions of the droplet model and of Hartree-Fock-plus-BCS calculations. For the isotopes in the transitional regions below and above the N=50 shell closure, the inclusion of quadrupole zero point motion in the Droplet model describes part of the observed shell effect. An additional change in the surface region of the charge distribution at spherical shape is suggested by the microscopic model. Furthermore, we propose that the isotopes 78Sr and 80Sr may show an unusual shape-sharing structure, with different mean deformations in the ground and 2+1 excited states.

  12. Studies of mechanisms of decay and recovery in organic dye-doped polymers using spatially resolved white light interferometry

    NASA Astrophysics Data System (ADS)

    Anderson, Benjamin; Bernhardt, Elizabeth; Kuzyk, Mark

    2012-10-01

    Several organic dyes have been shown to self heal when doped in a polymer matrix. Most measurements to date use optical absorbance, amplified spontaneous emission, or digital imaging as a probe. Each method determines a subset of the relevant parameters. We have constructed a white light interferometric microscope, which measures the absorption spectrum and change in refractive index during decay and recovery simultaneously at multiple points in the material. We report on preliminary measurements and results concerning the microscopes spatial resolution.

  13. 4Pi Microscopy.

    PubMed

    Schmidt, Roman; Engelhardt, Johann; Lang, Marion

    2013-01-01

    Optical microscopy has become a key technology in the life sciences today. Its noninvasive nature provides access to the interior of intact and even living cells, where specific molecules can be precisely localized by fluorescent tagging. However, the attainable 3D resolution of an optical microscope has long been hampered by a comparatively poor resolution along the optic axis. By coherent focusing through two objective lenses, 4Pi microscopy improves the axial resolution by three- to fivefold. This primer is intended as a starting point for the design and operation of a 4Pi microscope of type A.

  14. Ultra compact multitip scanning tunneling microscope with a diameter of 50 mm.

    PubMed

    Cherepanov, Vasily; Zubkov, Evgeny; Junker, Hubertus; Korte, Stefan; Blab, Marcus; Coenen, Peter; Voigtländer, Bert

    2012-03-01

    We present a multitip scanning tunneling microscope (STM) where four independent STM units are integrated on a diameter of 50 mm. The coarse positioning of the tips is done under the control of an optical microscope or scanning electron microscopy in vacuum. The heart of this STM is a new type of piezoelectric coarse approach called KoalaDrive. The compactness of the KoalaDrive allows building a four-tip STM as small as a single-tip STM with a drift of less than 0.2 nm/min at room temperature and lowest resonance frequencies of 2.5 kHz (xy) and 5.5 kHz (z). We present as examples of the performance of the multitip STM four point measurements of silicide nanowires and graphene.

  15. Efficient and accurate two-scale FE-FFT-based prediction of the effective material behavior of elasto-viscoplastic polycrystals

    NASA Astrophysics Data System (ADS)

    Kochmann, Julian; Wulfinghoff, Stephan; Ehle, Lisa; Mayer, Joachim; Svendsen, Bob; Reese, Stefanie

    2018-06-01

    Recently, two-scale FE-FFT-based methods (e.g., Spahn et al. in Comput Methods Appl Mech Eng 268:871-883, 2014; Kochmann et al. in Comput Methods Appl Mech Eng 305:89-110, 2016) have been proposed to predict the microscopic and overall mechanical behavior of heterogeneous materials. The purpose of this work is the extension to elasto-viscoplastic polycrystals, efficient and robust Fourier solvers and the prediction of micromechanical fields during macroscopic deformation processes. Assuming scale separation, the macroscopic problem is solved using the finite element method. The solution of the microscopic problem, which is embedded as a periodic unit cell (UC) in each macroscopic integration point, is found by employing fast Fourier transforms, fixed-point and Newton-Krylov methods. The overall material behavior is defined by the mean UC response. In order to ensure spatially converged micromechanical fields as well as feasible overall CPU times, an efficient but simple solution strategy for two-scale simulations is proposed. As an example, the constitutive behavior of 42CrMo4 steel is predicted during macroscopic three-point bending tests.

  16. Efficient and accurate two-scale FE-FFT-based prediction of the effective material behavior of elasto-viscoplastic polycrystals

    NASA Astrophysics Data System (ADS)

    Kochmann, Julian; Wulfinghoff, Stephan; Ehle, Lisa; Mayer, Joachim; Svendsen, Bob; Reese, Stefanie

    2017-09-01

    Recently, two-scale FE-FFT-based methods (e.g., Spahn et al. in Comput Methods Appl Mech Eng 268:871-883, 2014; Kochmann et al. in Comput Methods Appl Mech Eng 305:89-110, 2016) have been proposed to predict the microscopic and overall mechanical behavior of heterogeneous materials. The purpose of this work is the extension to elasto-viscoplastic polycrystals, efficient and robust Fourier solvers and the prediction of micromechanical fields during macroscopic deformation processes. Assuming scale separation, the macroscopic problem is solved using the finite element method. The solution of the microscopic problem, which is embedded as a periodic unit cell (UC) in each macroscopic integration point, is found by employing fast Fourier transforms, fixed-point and Newton-Krylov methods. The overall material behavior is defined by the mean UC response. In order to ensure spatially converged micromechanical fields as well as feasible overall CPU times, an efficient but simple solution strategy for two-scale simulations is proposed. As an example, the constitutive behavior of 42CrMo4 steel is predicted during macroscopic three-point bending tests.

  17. Universality away from critical points in a thermostatistical model

    NASA Astrophysics Data System (ADS)

    Lapilli, C. M.; Wexler, C.; Pfeifer, P.

    Nature uses phase transitions as powerful regulators of processes ranging from climate to the alteration of phase behavior of cell membranes to protect cells from cold, building on the fact that thermodynamic properties of a solid, liquid, or gas are sensitive fingerprints of intermolecular interactions. The only known exceptions from this sensitivity are critical points. At a critical point, two phases become indistinguishable and thermodynamic properties exhibit universal behavior: systems with widely different intermolecular interactions behave identically. Here we report a major counterexample. We show that different members of a family of two-dimensional systems —the discrete p-state clock model— with different Hamiltonians describing different microscopic interactions between molecules or spins, may exhibit identical thermodynamic behavior over a wide range of temperatures. The results generate a comprehensive map of the phase diagram of the model and, by virtue of the discrete rotors behaving like continuous rotors, an emergent symmetry, not present in the Hamiltonian. This symmetry, or many-to-one map of intermolecular interactions onto thermodynamic states, demonstrates previously unknown limits for macroscopic distinguishability of different microscopic interactions.

  18. Catalytic dimer nanomotors: continuum theory and microscopic dynamics.

    PubMed

    Reigh, Shang Yik; Kapral, Raymond

    2015-04-28

    Synthetic chemically-powered motors with various geometries have potentially new applications involving dynamics on very small scales. Self-generated concentration and fluid flow fields, which depend on geometry, play essential roles in motor dynamics. Sphere-dimer motors, comprising linked catalytic and noncatalytic spheres, display more complex versions of such fields, compared to the often-studied spherical Janus motors. By making use of analytical continuum theory and particle-based simulations we determine the concentration fields, and both the complex structure of the near-field and point-force dipole nature of the far-field behavior of the solvent velocity field that are important for studies of collective motor motion. We derive the dependence of motor velocity on geometric factors such as sphere size and dimer bond length and, thus, show how to construct motors with specific characteristics.

  19. [Subtype classification of ceftriaxone sodium and its influence on the quality of product].

    PubMed

    Xue, Jing; Jia, Yan-Hua; Li, Jin; Yin, Li-Hui; Hu, Chang-Qin

    2014-07-01

    Powder X-ray diffraction (PXRD) technology combined with cluster analysis method was used to classify 75 batches of crystalline ceftriaxone sodium into subtypes, the crystalline characteristics of each subtype were measured with scanning electron microscope (SEM). By comparing some parameters of these subtypes correlated to crystallization process of ceftriaxone sodium, such as salification rate, water content in different subtypes, as well as by studying different lattice stabilities, different compatibilities with rubber closures during accelerated stability tests, the key point to improve the quality of domestic ceftriaxone sodium was disclosed. The results of this paper indicated that the fine structure of the products could be controlled well by improving the salification and crystallization process. As a result, the subtype II of ceftriaxone sodium with high stability can be produced.

  20. A fractal model of effective stress of porous media and the analysis of influence factors

    NASA Astrophysics Data System (ADS)

    Li, Wei; Zhao, Huan; Li, Siqi; Sun, Wenfeng; Wang, Lei; Li, Bing

    2018-03-01

    The basic concept of effective stress describes the characteristics of fluid and solid interaction in porous media. In this paper, based on the theory of fractal geometry, a fractal model was built to analyze the relationship between the microstructure and the effective stress of porous media. From the microscopic point of view, the influence of effective stress on pore structure of porous media was demonstrated. Theoretical analysis and experimental results show that: (i) the fractal model of effective stress can be used to describe the relationship between effective stress and the microstructure of porous media; (ii) a linear increase in the effective stress leads to exponential increases in fractal dimension, porosity and pore number of the porous media, and causes a decreasing trend in the average pore radius.

  1. Tunable charge donation and spin polarization of metal adsorbates on graphene using an applied electric field

    NASA Astrophysics Data System (ADS)

    Parq, Jae-Hyeon; Yu, Jaejun; Kwon, Young-Kyun; Kim, Gunn

    2010-11-01

    Metal atoms on graphene, when ionized, can act as a point-charge impurity to probe a charge response of graphene with the Dirac cone band structure. To understand the microscopic physics of the metal-atom-induced charge and spin polarization in graphene, we present scanning tunneling spectroscopy (STS) simulations based on density-functional theory calculations. We find that a Cs atom on graphene is fully ionized with a significant band-bending feature in the STS whereas the charge and magnetic states of Ba and La atoms on graphene appear to be complicated due to orbital hybridization and Coulomb interaction. By applying external electric field, we observe changes in charge donations and spin magnetic moments of the metal adsorbates on graphene.

  2. Ex situ investigation of the step bunching on crystal surfaces by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Krasinski, Mariusz J.

    1997-07-01

    We are describing ex situ observation of step bunching on the surfaces of solution grown potassium dihydrogen phosphate (KDP) and sodium chlorate monocrystals. The measurements have been done with the use of atomic force microscope. The use of this equipment allowed us to see directly the structure of macrosteps. Observation confirmed the existence of step pinning which is one of the proposed mechanisms of step bunching. Despite the very high resolution of AFM it was not possible to determine the nature of pinning point. The monatomic steps on KDP and sodium chlorate crystal surfaces are mainly one unit cell high what seems to be the result of the steps pairing. The origin of observed step pattern is discussed in frames of existing theories.

  3. National Plant Diagnostic Network, Taxonomic training videos: Aphids under the microscope - Myzus persicae

    USDA-ARS?s Scientific Manuscript database

    Training is a critical part of aphid (Hemiptera: Aphididae) identification. This video provides provides training to identify the green peach aphid, Myzus persicae, using a compound microscope and an electronic identification key called “LUCID.” The video demonstrates key morphological structures t...

  4. National Plant Diagnostic Network, Taxonomic training videos: Aphids under the microscope - Aphis gossypii

    USDA-ARS?s Scientific Manuscript database

    Training is a critical part of aphid (Hemiptera: Aphididae) identification. This video provides provides training to identify the cotton aphid, Aphis gossypii, using a compound microscope and an electronic identification key called “LUCID.” The video demonstrates key morphological structures that ca...

  5. Integration of Histology Lectures and Practical Teaching in China

    ERIC Educational Resources Information Center

    Lu, Xiaoye; Cheng, Xin; Li, Ke; Lee, Kenneth Ka Ho; Yang, Xuesong

    2016-01-01

    Objectives: Human histology is a discipline concerning the study of microscopic structures of human tissues and organs--with the aid of light or electron microscopes. Traditional teaching of histology is composed of two separated components, theory and practice. The main disadvantage with traditional histology teaching is the detachment of theory…

  6. Lensless digital holographic microscopy and its applications in biomedicine and environmental monitoring.

    PubMed

    Wu, Yichen; Ozcan, Aydogan

    2018-03-01

    Optical compound microscope has been a major tool in biomedical imaging for centuries. Its performance relies on relatively complicated, bulky and expensive lenses and alignment mechanics. In contrast, the lensless microscope digitally reconstructs microscopic images of specimens without using any lenses, as a result of which it can be made much smaller, lighter and lower-cost. Furthermore, the limited space-bandwidth product of objective lenses in a conventional microscope can be significantly surpassed by a lensless microscope. Such lensless imaging designs have enabled high-resolution and high-throughput imaging of specimens using compact, portable and cost-effective devices to potentially address various point-of-care, global-health and telemedicine related challenges. In this review, we discuss the operation principles and the methods behind lensless digital holographic on-chip microscopy. We also go over various applications that are enabled by cost-effective and compact implementations of lensless microscopy, including some recent work on air quality monitoring, which utilized machine learning for high-throughput and accurate quantification of particulate matter in air. Finally, we conclude with a brief future outlook of this computational imaging technology. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Fabrication and Characterization of Dense Zirconia and Zirconia-Silica Ceramic Nanofibers

    PubMed Central

    Guo, Guangqing; Fan, Yuwei

    2011-01-01

    The objective of this study was to prepare dense zirconia-yttria (ZY), zirconia-silica (ZS) and zirconia-yttria-silica (ZYS) nanofibers as reinforcing elements for dental composites. Zirconium (IV) propoxide, yttrium nitrate hexahydrate, and tetraethyl orthosilicate (TEOS) were used as precursors for the preparation of zirconia, yttria, and silica sols. A small amount (1–1.5 wt%) of polyethylene oxide (PEO) was used as a carry polymer. The sols were preheated at 70 °C before electrospinning and their viscosity was measured with a viscometer at different heating time. The gel point was determined by viscosity–time (η–t) curve. The ZY, ZS and ZYS gel nanofibers were prepared using a special reactive electrospinning device under the conditions near the gel point. The as-prepared gel nanofibers had diameters between 200 and 400 nm. Dense (nonporous) ceramic nanofibers of zirconia-yttria (96/4), zirconia-silica (80/20) and zirconia-yttria-silica (76.8/3.2/20) with diameter of 100–300 nm were obtained by subsequent calcinations at different temperatures. The gel and ceramic nanofibers obtained were characterized by scanning electron microscope (SEM), high-resolution field-emission scanning electron microscope (FE-SEM), thermogravimetric analyzer (TGA), differential scanning calorimeter (DSC), Fourier transform infrared spectrometer (FT-IR), and X-ray diffraction (XRD). SEM micrograph revealed that ceramic ZY nanofibers had grained structure, while ceramic ZS and ZYS nanofibers had smooth surfaces, both showing no visible porosity under FE-SEM. Complete removal of the polymer PEO was confirmed by TGA/DSC and FT-IR. The formation of tetragonal phase of zirconia and amorphous silica was proved by XRD. In conclusion, dense zirconia-based ceramic nanofibers can be fabricated using the new reactive sol–gel electrospinning technology with minimum organic polymer additives. PMID:21133090

  8. Effect of heat treatment procedure on magnetic and magnetocaloric properties of Ni43Mn46In11 melt spun ribbons

    NASA Astrophysics Data System (ADS)

    Kaya, M.; Elerman, Y.; Dincer, I.

    2018-07-01

    The effect of heat treatment on the structural, magnetic and magnetocaloric properties of Ni43Mn46In11 melt-spun ribbons was systematically investigated using X-ray powder diffraction (XRD), scanning electron microscope (SEM), atomic force microscope (AFM), magnetic force microscope (MFM) and magnetic measurements. From the XRD studies, tetragonal and cubic phases were detected at room temperature for as-spun, quenched and slow-cooled ribbons. Furthermore, it was observed, upon annealing martensite transition temperatures increased when compared to the as-spun ribbon. To avoid magnetic hysteresis losses in the vicinity of the structural transition region, the magnetic entropy changes-ΔS m of the investigated ribbons were evaluated from temperature-dependent magnetisation-M(T) curves on cooling for different applied magnetic fields. The maximum ΔS m value was found to be 6.79 J kg-1 K-1 for the quenched ribbon in the vicinity of structural transition region for a magnetic field change of 50 kOe.

  9. Definitive diagnosis of early enamel and dentin cracks based on microscopic evaluation.

    PubMed

    Clark, David J; Sheets, Cherilyn G; Paquette, Jacinthe M

    2003-01-01

    The diagnoses of cracked teeth and incomplete coronal fracture have historically been symptom based. The dental operating microscope at 16x magnification can fundamentally change a clinician's ability to diagnose such conditions. Clinicians have been observing cracks under extreme magnification for nearly a decade. Patterns have become clear that can lead to appropriate treatment prior to symptoms or to devastation to tooth structure. Conversely, many cracks are not structural and can lead to misdiagnosis and overtreatment. Methodic microscopic examination, an understanding of crack progression, and an appreciation of the types of cracks will guide a doctor to make appropriate decisions. Teeth can have structural cracks in various stages. To date, diagnosis and treatment are very often at end stage of crack development. This article gives new guidelines for recognition, visualization, classification, and treatment of cracked teeth based on the routine use of 16x magnification. The significance of enamel cracks as they relate to dentinal cracks is detailed.

  10. Surprises in low dimensional spin 1/2 magnets - from crystal chemistry to microscopic magnetic models of complex oxides

    NASA Astrophysics Data System (ADS)

    Rosner, Helge

    2011-03-01

    A microscopic understanding of the structure-properties relation in crystalline materials is a main goal of modern solid state chemistry and physics. Due to their peculiar magnetism, low dimensional spin 1/2 systems are often highly sensitive to structural details. Seemingly unimportant structural details can be crucial for the magnetic ground state of a compound, especially in the case of competing interactions, frustration and near-degeneracy. Here, we present for selected, complex Cu 2+ systems that a first principles based approach can reliably provide the correct magnetic model, especially in cases where the interpretation of experimental data meets serious difficulties or fails. We demonstrate that the magnetism of low dimensional insulators crucially depends on the magnetically active orbitals which are determined by details of the ligand field of the magnetic cation. Our theoretical results are in very good agreement with thermodynamic and spectroscopic data and provide deep microscopic insight into topical low dimensional magnets.

  11. Intracellular localisation of dengue-2 RNA in mosquito cell culture using electron microscopic in situ hybridisation.

    PubMed

    Grief, C; Galler, R; Côrtes, L M; Barth, O M

    1997-01-01

    Non-isotopic in situ hybridisation was used at the electron microscope level to determine the localisation of viral RNA in dengue-2 infected mosquito cells at 14, 24, 48 and 72 h post-infection. In situ hybridisation was carried out on sections of dengue-2 infected mosquito cells using a digoxigenin-labelled DNA probe to the envelope protein gene sequence of the virus. Viral RNA was consistently localised over the rough endoplasmic reticulum and the virus-induced smooth membrane structures which form within the endoplasmic reticulum. During the later stages of infection electron-dense areas were observed to develop in close proximity to the smooth membrane structures. Electron microscopic in situ hybridisation showed that these denser areas contained both viral RNA and virus particles. Our results show that in dengue-2 infected mosquito cells the smooth membrane structures are an important site for the concentration of dengue viral RNA and its possible subsequent encapsidation into virus particles.

  12. Starting points for the study of non-Fermi liquid-like properties of FeCrAs

    NASA Astrophysics Data System (ADS)

    O'Brien, Patrick James

    FeCrAs exhibits non-Fermi liquid-like behavior because of its odd combination of thermodynamic, transport, and magnetic properties. In particular, the resistivity of FeCrAs is not characteristic of a metal or an insulator and so remains a mystery. In this thesis, we seek a model to describe its properties. In FeCrAs, local moments reside on the Cr sites, and there is some conduction. We study the simplest possible model on the kagome lattice that features local moments and itinerant electrons, the kagome Kondo Lattice Model. We present the phase diagram of this model, which features a host of complex spin orders, one of which is the √3 x √3, the experimentally observed magnetic ground state in FeCrAs. The kagome Kondo Lattice Model, having one itinerant d-orbital band on the kagome lattice, does not fully capture the microscopic physics of FeCrAs. The kagome Kondo Lattice Model also will not de- scribe the mutilation of the Fermi surface. To investigate the microscopic properties, we calculated LDA and LDA+U results. These results and GGA results from another group all exhibit high d-orbital density of states at the Fermi energy as well as low p-orbital density of states at the Fermi energy. The DFT results motivated us to construct a model based on the chemistry and full geometry of the FeCrAs crystal. The model we construct is an effective hopping model consisting of only d-orbital operators that we call the Optimal Overlap Hopping Model (OOHM). We calculate the band structure that results from the OOHM, and this band structure can be compared to ARPES measurements. As an example of how one can use the OOHM, we calculate a dynamic spin structure factor from within the OOHM, and we compare it to neutron scattering data. We consider both the OOHM and the Kondo Lattice Model on the kagome lattice as starting points from which we can launch studies of FeCrAs, and we present the existing theories for FeCrAs on a metallicity spectrum to illustrate the various perspectives from which FeCrAs is studied.

  13. Evaluation of a completely robotized neurosurgical operating microscope.

    PubMed

    Kantelhardt, Sven R; Finke, Markus; Schweikard, Achim; Giese, Alf

    2013-01-01

    Operating microscopes are essential for most neurosurgical procedures. Modern robot-assisted controls offer new possibilities, combining the advantages of conventional and automated systems. We evaluated the prototype of a completely robotized operating microscope with an integrated optical coherence tomography module. A standard operating microscope was fitted with motors and control instruments, with the manual control mode and balance preserved. In the robot mode, the microscope was steered by a remote control that could be fixed to a surgical instrument. External encoders and accelerometers tracked microscope movements. The microscope was additionally fitted with an optical coherence tomography-scanning module. The robotized microscope was tested on model systems. It could be freely positioned, without forcing the surgeon to take the hands from the instruments or avert the eyes from the oculars. Positioning error was about 1 mm, and vibration faded in 1 second. Tracking of microscope movements, combined with an autofocus function, allowed determination of the focus position within the 3-dimensional space. This constituted a second loop of navigation independent from conventional infrared reflector-based techniques. In the robot mode, automated optical coherence tomography scanning of large surface areas was feasible. The prototype of a robotized optical coherence tomography-integrated operating microscope combines the advantages of a conventional manually controlled operating microscope with a remote-controlled positioning aid and a self-navigating microscope system that performs automated positioning tasks such as surface scans. This demonstrates that, in the future, operating microscopes may be used to acquire intraoperative spatial data, volume changes, and structural data of brain or brain tumor tissue.

  14. When the fl# Is Not the fl#.

    ERIC Educational Resources Information Center

    Biermann, Mark L.; Biermann, Lois A. A.

    1996-01-01

    Discusses descriptions of the way in which an optical system controls the quantity of light that reaches a point on the image plane, a basic feature of optical imaging systems such as cameras, telescopes, and microscopes. (JRH)

  15. From bosonic topological transition to symmetric fermion mass generation

    NASA Astrophysics Data System (ADS)

    You, Yi-Zhuang; He, Yin-Chen; Vishwanath, Ashvin; Xu, Cenke

    2018-03-01

    A bosonic topological transition (BTT) is a quantum critical point between the bosonic symmetry-protected topological phase and the trivial phase. In this work, we investigate such a transition in a (2+1)-dimensional lattice model with the maximal microscopic symmetry: an internal SO (4 ) symmetry. We derive a description for this transition in terms of compact quantum electrodynamics (QED) with four fermion flavors (Nf=4 ). Within a systematic renormalization group analysis, we identify the critical point with the desired O (4 ) emergent symmetry and all expected deformations. By lowering the microscopic symmetry, we recover the previous Nf=2 noncompact QED description of the BTT. Finally, by merging two BTTs we recover a previously discussed theory of symmetric mass generation, as an SU (2 ) quantum chromodynamics-Higgs theory with Nf=4 flavors of SU (2 ) fundamental fermions and one SU (2 ) fundamental Higgs boson. This provides a consistency check on both theories.

  16. Automated thin-film analyses of hydrated interplanetary dust particles in the analytical electron microscope

    NASA Technical Reports Server (NTRS)

    Germani, M. S.; Bradley, J. P.; Brownlee, D. E.

    1990-01-01

    A 200 keV electron microscope was used to obtain elemental analyses from over 4000 points on thin sections of eight 'layer silicate' class interplanetary dust particles (IDPs). Major and minor element abundances from a volume approaching that of a cylinder 50 nm in diameter were observed. Mineral phases and their relative abundances in the thin sections were identified and petrographic characteristics were determined. Three of the particles contained smectite (1.0-1.2 nm basal spacing) and two contained serpentine (0.7 nm basal spacing). The point count analyses and Mg-Si-Fe ternary diagrams show that one of the serpentine-containing IDPs is similar to CI and CM chondritic meteorites. The IDPs exhibit evidence of aqueous processing, but they have typically experienced only short range, submicrometer scale alteration. The IDPs may provide a broad sampling of the asteroid belt.

  17. Electrical conduction of organic ultrathin films evaluated by an independently driven double-tip scanning tunneling microscope.

    PubMed

    Takami, K; Tsuruta, S; Miyake, Y; Akai-Kasaya, M; Saito, A; Aono, M; Kuwahara, Y

    2011-11-02

    The electrical transport properties of organic thin films within the micrometer scale have been evaluated by a laboratory-built independently driven double-tip scanning tunneling microscope, operating under ambient conditions. The two tips were used as point contact electrodes, and current in the range from 0.1 pA to 100 nA flowing between the two tips through the material can be detected. We demonstrated two-dimensional contour mapping of the electrical resistance on a poly(3-octylthiophene) thin films as shown below. The obtained contour map clearly provided an image of two-dimensional electrical conductance between two point electrodes on the poly(3-octylthiophene) thin film. The conductivity of the thin film was estimated to be (1-8) × 10(-6) S cm(-1). Future prospects and the desired development of multiprobe STMs are also discussed.

  18. Improving Axial Resolution in Confocal Microscopy with New High Refractive Index Mounting Media

    PubMed Central

    Fouquet, Coralie; Gilles, Jean-François; Heck, Nicolas; Dos Santos, Marc; Schwartzmann, Richard; Cannaya, Vidjeacoumary; Morel, Marie-Pierre; Davidson, Robert Stephen; Trembleau, Alain; Bolte, Susanne

    2015-01-01

    Resolution, high signal intensity and elevated signal to noise ratio (SNR) are key issues for biologists who aim at studying the localisation of biological structures at the cellular and subcellular levels using confocal microscopy. The resolution required to separate sub-cellular biological structures is often near to the resolving power of the microscope. When optimally used, confocal microscopes may reach resolutions of 180 nm laterally and 500 nm axially, however, axial resolution in depth is often impaired by spherical aberration that may occur due to refractive index mismatches. Spherical aberration results in broadening of the point-spread function (PSF), a decrease in peak signal intensity when imaging in depth and a focal shift that leads to the distortion of the image along the z-axis and thus in a scaling error. In this study, we use the novel mounting medium CFM3 (Citifluor Ltd., UK) with a refractive index of 1.518 to minimize the effects of spherical aberration. This mounting medium is compatible with most common fluorochromes and fluorescent proteins. We compare its performance with established mounting media, harbouring refractive indices below 1.500, by estimating lateral and axial resolution with sub-resolution fluorescent beads. We show furthermore that the use of the high refractive index media renders the tissue transparent and improves considerably the axial resolution and imaging depth in immuno-labelled or fluorescent protein labelled fixed mouse brain tissue. We thus propose to use those novel high refractive index mounting media, whenever optimal axial resolution is required. PMID:25822785

  19. Isolation and Structural Studies of Mitochondria from Pea Roots.

    PubMed

    Vishwakarma, Abhaypratap; Gupta, Kapuganti Jagadis

    2017-01-01

    For structural and respiratory studies, isolation of intact and active mitochondria is essential. Here, we describe an isolation method which gave good yield and intact mitochondria from 2-week-old pea (Pisum sativum) roots grown hydroponically under standard growth conditions. We used Percoll gradient centrifugation for this isolation procedure. The yield of purified mitochondria was 50 μg/g FW. Isolated mitochondria maintained their structure which was observed by using MitoTracker green in confocal microscope and scanning electron microscopy (SEM). Intact mitochondria are clearly visible in SCM images. Taken together this isolation method can be used for physiological and microscopic studies on mitochondria.

  20. Athermalization in atomic force microscope based force spectroscopy using matched microstructure coupling.

    PubMed

    Torun, H; Finkler, O; Degertekin, F L

    2009-07-01

    The authors describe a method for athermalization in atomic force microscope (AFM) based force spectroscopy applications using microstructures that thermomechanically match the AFM probes. The method uses a setup where the AFM probe is coupled with the matched structure and the displacements of both structures are read out simultaneously. The matched structure displaces with the AFM probe as temperature changes, thus the force applied to the sample can be kept constant without the need for a separate feedback loop for thermal drift compensation, and the differential signal can be used to cancel the shift in zero-force level of the AFM.

  1. Looking at tardigrades in a new light: using epifluorescence to interpret structure.

    PubMed

    Perry, E S; Miller, W R; Lindsay, S

    2015-02-01

    The use of epifluorescence microscopy coupled with ultraviolet (UV) autofluorescence is suggested as a means to view and interpret tardigrade structures. Endogenous fluorochromes are a known component of tardigrade cuticle, claws and bucco-pharyngeal apparatus. By imaging the autofluorescence from tardigrades, it is possible to document these structures in detail, including the subdivisions and boundaries of echiniscid (heterotardigrade) plates and the nature and spatial relationships of the texture (pores, granules, papillae and tubercles) on the various plates. This allows the determination of taxonomic features not easily seen with other microscopic techniques. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  2. Electron transport in stepped Bi2Se3 thin films

    NASA Astrophysics Data System (ADS)

    Bauer, S.; Bobisch, C. A.

    2017-08-01

    We analyse the electron transport in a 16 quintuple layer thick stepped Bi2Se3 film grown on Si(1 1 1) by means of scanning tunnelling potentiometry (STP) and multi-point probe measurements. Scanning tunnelling microscopy images reveal that the local structure of the Bi2Se3 film is dominated by terrace steps and domain boundaries. From a microscopic study on the nm scale by STP, we find a mostly linear gradient of the voltage on the Bi2Se3 terraces which is interrupted by voltage drops at the position of the domain boundaries. The voltage drops indicate that the domain boundaries are scatterers for the electron transport. Macroscopic resistance measurements (2PP and in-line 4PP measurement) on the µm scale support the microscopic results. An additional rotational square 4PP measurement shows an electrical anisotropy of the sheet conductance parallel and perpendicular to the Bi2Se3 steps of about 10%. This is a result of the anisotropic step distribution at the stepped Bi2Se3 surface while domain boundaries are distributed isotropically. The determined value of the conductivity of the Bi2Se3 steps of about 1000 S cm-1 verifies the value of an earlier STP study.

  3. Recent progress in the imaging of soil processes at the microscopic scale, and a look ahead

    NASA Astrophysics Data System (ADS)

    Garnier, Patricia; Baveye, Philippe C.; Pot, Valérie; Monga, Olivier; Portell, Xavier

    2016-04-01

    Over the last few years, tremendous progress has been achieved in the visualization of soil structures at the microscopic scale. Computed tomography, based on synchrotron X-ray beams or table-top equipment, allows the visualization of pore geometry at micrometric resolution. Chemical and microbiological information obtainable in 2D cuts through soils can now be interpolated, with the support of CT-data, to produce 3-dimensional maps. In parallel with these analytical advances, significant progress has also been achieved in the computer simulation and visualization of a range of physical, chemical, and microbiological processes taking place in soil pores. In terms of water distribution and transport in soils, for example, the use of Lattice-Boltzmann models as well as models based on geometric primitives has been shown recently to reproduce very faithfully observations made with synchrotron X-ray tomography. Coupling of these models with fungal and bacterial growth models allows the description of a range of microbiologically-mediated processes of great importance at the moment, for example in terms of carbon sequestration. In this talk, we shall review progress achieved to date in this field, indicate where questions remain unanswered, and point out areas where further advances are expected in the next few years.

  4. Computation of the influence of scanning probe microscope (SPM) on quantum dot eigenstates and 2DEG potential

    NASA Astrophysics Data System (ADS)

    Stopa, Michael

    2005-03-01

    We calculate the electronic structure of GaAs-AlGaAs two-dimensional electron gas (2DEG) devices, such as quantum dots and quantum point contacts (QPCs) in the presence of a tip of a scanning probe microscope at some distance above the surface. The calculation employs standard density functional theory with exchange and correlation treated in the local density approximation. The position and voltage on the tip are varied and the conditions for depletion of the 2DEG are shown to compare favorably to experiment [1]. We show that the size of the depletion region created (by a negative tip voltage) is unexpectedly small due to focusing of the potential lines by the higher dielectric. We study the interaction of the tip with an isolated quantum dot that contains one or two electrons. The raster pattern of the difference between single particle energies reveals that the tip distorts the shape of the confining potential and suggests that excited state properties, if they can be measured experimentally, can contribute to the resolution of spatial information. [1] M.A. Topinka, R.M. Westervelt, E.J. Heller, ``http://meso.deas.harvard.edu/papers/Topinka, PT 56 12 (2003)'' (Imaging Electron Flow), Physics Today 56, 12 (2003).

  5. Toxicological effects and recovery of the corneal epithelium in Cyprinus carpio communis Linn. exposed to monocrotophos: an scanning electron microscope study.

    PubMed

    Uppal, Ravneet Kaur; Johal, Mohinder Singh; Sharma, Madan Lal

    2015-05-01

    This study was conducted based on the evidence of fish habitats in North India being affected by organophosphate pesticides draining from agricultural fields into bodies of water, especially during the rainy season. Various tissues of fish such as scales, gills ovaries, kidney, and liver have been studied from the toxicological point of view, but the toxicological effects of aquatic pollutants on fish cornea have not been investigated to date. We conducted comparative toxicological studies on the cornea of Cyprinus carpio communis using two sublethal (0.038 and 0.126 ppm) concentrations of monocrotophos pesticide for 30 days. Corneas from all the groups were evaluated by a scanning electron microscope. The fish exposed to the monocrotophos pesticide developed corneal necrosis due to the formation of crystalloid-like structures, thinning and shrinkage of microridges on the corneal epithelium. After 30 days, fish from the monocrotophos-treated tank were transferred to normal environmental conditions. After 60 days under natural condition, epithelial cells did not fully recover. In conclusion, exposure to monocrotophos induces irreversible changes in the cornea of C. carpio communis. As fish and mammalian visual systems share many similarities, the reported finding may offer useful insights for further toxicological and ophthalmological studies in humans. © 2013 American College of Veterinary Ophthalmologists.

  6. Visual neuroscience before the neuron.

    PubMed

    Wade, Nicholas J

    2004-01-01

    Visual neuroscience is considered to be a contemporary concern, based in large part on relating characteristics of neural functioning to visual experience. It presupposes a detailed knowledge of neural activity for which the neuron doctrine is a fundamental tenet. However, long before either the neuron doctrine had been advanced or the nerve cell had been described, attempts were made to estimate the dimensions of nerve fibres from measures of visual resolution. In the seventeenth century, the microscopes of Hooke and van Leeuwenhoek were unable to resolve structures as small as nerves adequately. However, it was not Hooke's microscope that led to an estimate of the dimensions of nerve fibres but his experiments on the limits of visual resolution. Hooke determined that a separation of one minute of arc was the minimum that could normally be seen. Descartes had earlier speculated that the retina consisted of the terminations of fibres of the optic nerve, and that their size defined the limits of what could be seen. Estimates of the diameters of nerve fibres were made on the basis of human visual acuity by Porterfield in 1738; he calculated the diameters of nerve fibres in the retina as one 7200th part of an inch (0.0035 mm), based on the resolution of one minute of arc as the minimum visible. In the same year, Jurin questioned the reliability of such estimates because of variations in visual resolution with different stimuli. The measurement of visual acuity was refined by Mayer in 1755, with dots, gratings, and grids used as stimuli. In the 1830s, Treviranus fused the microscopic and acuity approaches to determine the dimensions of nerve fibres. His indirect estimates of the dimensions of retinal fibres were close to those derived from microscopic observation. However, the suggestion that the retina consisted of terminations of nerve fibres influenced his detailed illustrations of its microscopic structure. Contrary to the situation that obtained after the microscopic structure of the retina had been established, a function of vision (acuity) was used to determine the dimensions of the structures (retinal elements) that were thought to mediate it.

  7. History, anatomical nomenclature, comparative anatomy and functions of the hippocampal formation.

    PubMed

    El-Falougy, H; Benuska, J

    2006-01-01

    The complex structures in the cerebral hemispheres is included under one term, the limbic system. Our conception of this system and its special functions rises from the comparative neuroanatomical and neurophysiological studies. The components of the limbic system are the hippocampus, gyrus parahippocampalis, gyrus dentatus, gyrus cinguli, corpus amygdaloideum, nuclei anteriores thalami, hypothalamus and gyrus paraterminalis Because of its unique macroscopic and microscopic structure, the hippocampus is a conspicuous part of the limbic system. During phylogenetic development, the hippocampus developed from a simple cortical plate in amphibians into complex three-dimensional convoluted structure in mammals. In the last few decades, structures of the limbic system were extensively studied. Attention was directed to the physiological functions and pathological changes of the hippocampus. Experimental studies proved that the hippocampus has a very important role in the process of learning and memory. Another important functions of the hippocampus as a part of the limbic system is its role in regulation of sexual and emotional behaviour. The term "hippocampal formation" is defined as the complex of six structures: gyrus dentatus, hippocampus proprius, subiculum proprium, presubiculum, parasubiculum and area entorhinalis In this work we attempt to present a brief review of knowledge about the hippocampus from the point of view of history, anatomical nomenclature, comparative anatomy and functions (Tab. 1, Fig. 2, Ref. 33).

  8. Path integral Monte Carlo study on the structure and absorption spectra of alkali atoms (Li, Na, K) attached to superfluid helium clusters

    NASA Astrophysics Data System (ADS)

    Nakayama, Akira; Yamashita, Koichi

    2001-01-01

    Path integral Monte Carlo calculations have been performed to investigate the microscopic structure and thermodynamic properties of the AkṡHeN (Ak=Li, Na, K,N⩽300) clusters at T=0.5 K. Absorption spectra which correspond to the 2P←2S transitions of alkali atoms are also calculated within a pairwise additive model, which employs diatomic Ak-He potential energy curves. The size dependences of the cluster structure and absorption spectra that show the influence of the helium cluster environment are examined in detail. It is found that alkali atoms are trapped in a dimple on the helium cluster's surface and that, from the asymptotic behavior, the AkṡHe300 cluster, at least semiquantitatively, mimics the local structure of experimentally produced large helium clusters in the vicinity of alkali atoms. We have successfully reproduced the overall shapes of the spectra and explained their features from a static and structural point of view. The positions, relative intensities, and line widths of the absorption maxima are calculated to be in moderate agreement with experiments [F. Stienkemeier, J. Higgins, C. Callegari, S. I. Kanorsky, W. E. Ernst, and G. Scoles, Z. Phys. D 38, 253 (1996)].

  9. The application of polyethylene glycol (PEG) to electron microscopy

    PubMed Central

    1980-01-01

    The cytoplasm of cells from a variety of tissues has been viewed in sections (0.25-1 micrometers) devoid of any embedding resin. Glutaraldehyde- and osmium tetroxide-fixed tissues were infiltrated and embedded in a water-miscible wax, polyethylene glycol (PEG), and subsequently sectioned on dry glass or diamond knives. The PEG matrix was removed and the sections were placed on Formvarcarbon-polylysine- coated grids, dehydrated, dried by the critical-point method, and observed in either the high- or low-voltage electron microscope. Stereoscopic views of cells devoid of embedding resin present an image of cell utrastructure unobscured by electron-scattering resins similar to the image of whole, unembedded critical-point-dried or freeze-dried cultured cells observed by transmission electron microscopy. All organelles, including the cytoskeletal structures, are identified and appear not to have been damaged during processing, although membrane components appear somewhat less distinct. The absence of an embedding matrix eliminates the need for additional staining to increase contrast, unlike the situation with specimens embedded in standard electron-scattering resins. The PEG technique thus appears to be a valuable adjunct to conventional methods for ultrastructural analysis. PMID:7400222

  10. The application of polyethylene glycol (PEG) to electron microscopy.

    PubMed

    Wolosewick, J J

    1980-08-01

    The cytoplasm of cells from a variety of tissues has been viewed in sections (0.25-1 micrometers) devoid of any embedding resin. Glutaraldehyde- and osmium tetroxide-fixed tissues were infiltrated and embedded in a water-miscible wax, polyethylene glycol (PEG), and subsequently sectioned on dry glass or diamond knives. The PEG matrix was removed and the sections were placed on Formvarcarbon-polylysine-coated grids, dehydrated, dried by the critical-point method, and observed in either the high- or low-voltage electron microscope. Stereoscopic views of cells devoid of embedding resin present an image of cell utrastructure unobscured by electron-scattering resins similar to the image of whole, unembedded critical-point-dried or freeze-dried cultured cells observed by transmission electron microscopy. All organelles, including the cytoskeletal structures, are identified and appear not to have been damaged during processing, although membrane components appear somewhat less distinct. The absence of an embedding matrix eliminates the need for additional staining to increase contrast, unlike the situation with specimens embedded in standard electron-scattering resins. The PEG technique thus appears to be a valuable adjunct to conventional methods for ultrastructural analysis.

  11. Examination of toxicity and collagen linearity after the administration of the protein cross-linker genipin in equine tendon and dermis: a pilot study.

    PubMed

    Bellefeuille, M; Peters, D F; Nolin, M; Slusarewicz, P; Telgenhoff, D

    2017-05-01

    Collagen cross-linking is an attractive therapeutic route aimed at supplementing natural collagen stabilisation. In this study the toxicity of the cross-linker genipin (GP) was examined in avascular (tendon) and vascular (dermis) tissue. High doses of GP were injected intratendinously into three yearling horses and evaluated at various time points up to 30 days. A second group of three yearlings were injected into the dermis and evaluated at various time points up to 1 year. Metrics used included lameness, circumferential swelling, ultrasound evaluation, microscopic morphology, collagen production and systemic effect on blood parameters. The tendon injection sites exhibited mild lameness and swelling with no apparent systemic toxicity or stabilisation defects. Treated tendons exhibited increased linear collagen microscopically. Dermal injections showed similar results, with mild swelling at the injection site. Microscopic morphology resulted in a decrease in dermal collagen at 30 days post-injection. Dermis injected at the high dose of 355 mmol/L examined 1 year post-treatment appeared similar to the untreated biopsies; however, there was an increase in mature collagen. GP injection appeared to be well tolerated, with transient lameness and mild circumferential swelling when injected into the tendon and local tissue swelling when injected into the dermis. No systemic hypersensitivities or toxicities were observed. Microscopically, GP resulted in increased linear collagen in tendons at 30 days post-injection and overall increased collagen in dermal tissue when evaluated 1 year post-injection. © 2017 Australian Veterinary Association.

  12. Scatter of fatigue data owing to material microscopic effects

    NASA Astrophysics Data System (ADS)

    Tang, XueSong

    2014-01-01

    A common phenomenon of fatigue test data reported in the open literature such as S-N curves exhibits the scatter of points for a group of same specimens under the same loading condition. The reason is well known that the microstructure is different from specimen to specimen even in the same group. Specifically, a fatigue failure process is a multi-scale problem so that a fatigue failure model should have the ability to take the microscopic effect into account. A physically-based trans-scale crack model is established and the analytical solution is obtained by coupling the micro- and macro-scale. Obtained is the trans-scale stress intensity factor as well as the trans-scale strain energy density (SED) factor. By taking this trans-scale SEDF as a key controlling parameter for the fatigue crack propagation from micro- to macro-scale, a trans-scale fatigue crack growth model is proposed in this work which can reflect the microscopic effect and scale transition in a fatigue process. The fatigue test data of aluminum alloy LY12 plate specimens is chosen to check the model. Two S-N experimental curves for cyclic stress ratio R=0.02 and R=0.6 are selected. The scattering test data points and two S-N curves for both R=0.02 and R=0.6 are exactly re-produced by application of the proposed model. It is demonstrated that the proposed model is able to reflect the multiscaling effect in a fatigue process. The result also shows that the microscopic effect has a pronounced influence on the fatigue life of specimens.

  13. Comparison between point-of-care dermatophyte test medium and mycology laboratory culture for diagnosis of dermatophytosis in dogs and cats.

    PubMed

    Kaufmann, Ronnie; Blum, Shlomo E; Elad, Daniel; Zur, Gila

    2016-08-01

    Point-of-care Dermatophyte Test Medium (PoC-DTM) is a diagnostic procedure to rule in/rule out dermatophytosis in veterinary clinics. To evaluate the performance of PoC-DTM in the clinic compared to DTM plate culture in a mycology laboratory and to compare results obtained by general practitioners and referral clinicians. Hair samples were collected from 47 cats and 54 dogs with suspected dermatophytosis and from nine healthy controls (seven cats and two dogs). This was a multicentre blinded study. In one group (65 suspected cases, 9 healthy controls), PoC-DTM results were evaluated by clinicians in a referral clinic (SP group) who examined the colony morphology macroscopically and microscopically. In the other group (36 suspected cases) PoC-DTM results were evaluated by clinicians from general practice for colour change only, with no macroscopic or microscopic examination (GP group). All hair samples were also cultured on DTM plates in a mycology laboratory. Laboratory culture was considered the gold standard for comparison. Agreements between tests were 97% (two false positive; κ = 0.839) and 80.6% (five false positives and two false negatives; κ = 0.466) in the SP and GP groups, respectively. This difference between groups was significant (P = 0.024). When applying macroscopic and microscopic evaluation of the colony, PoC-DTM is accurate for diagnosing dermatophytes with only a 3% chance of error. However, when macroscopic and microscopic examination is not included there is significant (19.4%) chance for an incorrect diagnosis. © 2016 ESVD and ACVD.

  14. Design, Fabrication and Testing of Multilayer Coated X-Ray Optics for the Water Window Imaging X-Ray Microscope

    NASA Technical Reports Server (NTRS)

    Spencer, Dwight C.

    1996-01-01

    Hoover et. al. built and tested two imaging Schwarzschild multilayer microscopes. These instruments were constructed as prototypes for the "Water Window Imaging X-Ray Microscope," which is a doubly reflecting, multilayer x-ray microscope configured to operate within the "water window." The "water window" is the narrow region of the x-ray spectrum between the K absorption edges of oxygen (lamda = 23.3 Angstroms) and of carbon (lamda = 43.62 Angstroms), where water is relatively highly transmissive and carbon is highly absorptive. This property of these materials, thus permits the use of high resolution multilayer x-ray microscopes for producing high contrast images of carbon-based structures within the aqueous physiological environments of living cells. We report the design, fabrication and testing of multilayer optics that operate in this regime.

  15. Electronic structure of polycrystalline CVD-graphene revealed by Nano-ARPES

    NASA Astrophysics Data System (ADS)

    Chen, Chaoyu; Avila, José; Asensio, Maria C.

    2017-06-01

    The ability to explore electronic structure and their role in determining material’s macroscopic behaviour is essential to explain and engineer functions of material and device. Since its debut in 2004, graphene has attracted global research interest due to its unique properties. Chemical vapor deposition (CVD) has emerged as an important method for the massive preparation and production of graphene for various applications. Here by employing angle-resolved photoemission spectroscopy with nanoscale spatial resolution ˜ 100 nm (Nano-ARPES), we describe the approach to measure the electronic structure of polycrystalline graphene on copper foils, demonstrating the power of Nano-ARPES to detect the electronic structure of microscopic single crystalline domains, being fully compatible with conventional ARPES. Similar analysis could be employed to other microscopic materials

  16. Fundamental quantum noise mapping with tunnelling microscopes tested at surface structures of subatomic lateral size.

    PubMed

    Herz, Markus; Bouvron, Samuel; Ćavar, Elizabeta; Fonin, Mikhail; Belzig, Wolfgang; Scheer, Elke

    2013-10-21

    We present a measurement scheme that enables quantitative detection of the shot noise in a scanning tunnelling microscope while scanning the sample. As test objects we study defect structures produced on an iridium single crystal at low temperatures. The defect structures appear in the constant current images as protrusions with curvature radii well below the atomic diameter. The measured power spectral density of the noise is very near to the quantum limit with Fano factor F = 1. While the constant current images show detailed structures expected for tunnelling involving d-atomic orbitals of Ir, we find the current noise to be without pronounced spatial variation as expected for shot noise arising from statistically independent events.

  17. Stumping for the Project

    NASA Technical Reports Server (NTRS)

    Ginty, Carol

    2003-01-01

    Advocating research is a little trickier than selling other projects at NASA. You can point to a satellite. You can point to a rocket you can see the Shuttle and the International Space Station . But it's different on the research side . How do you display Computational Fluid Dynamics? How do you get someone to understand the value of composite materials or Nano-tubes that they can't even see without a microscope?

  18. Giant electrocaloric response in the prototypical Pb(Mg,Nb)O3 relaxor ferroelectric from atomistic simulations

    NASA Astrophysics Data System (ADS)

    Jiang, Zhijun; Nahas, Y.; Prokhorenko, S.; Prosandeev, S.; Wang, D.; Íñiguez, Jorge; Bellaiche, L.

    2018-03-01

    An atomistic effective Hamiltonian is used to investigate electrocaloric (EC) effects of Pb (Mg1 /3Nb2 /3) O3 relaxor ferroelectrics in its ergodic regime, and subject to electric fields applied along the pseudocubic [111] direction. Such a Hamiltonian qualitatively reproduces (i) the electric field-versus-temperature phase diagram, including the existence of a critical point where first-order and second-order transitions meet each other; and (ii) a giant EC response near such a critical point. It also reveals that such giant response around this critical point is microscopically induced by field-induced percolation of polar nanoregions. Moreover, it is also found that, for any temperature above the critical point, the EC coefficient-versus-electric-field curve adopts a maximum (and thus larger electrocaloric response too), that can be well described by the general Landau-like model proposed by Jiang et al., [Phys. Rev. B 96, 014114 (2017)], 10.1103/PhysRevB.96.014114, and that is further correlated with specific microscopic features related to dipoles lying along different rhombohedral directions. Furthermore, for temperatures being at least 40 K higher than the critical temperature, the (electric field, temperature) line associated with this maximal EC coefficient is below both the Widom line and the line representing percolation of polar nanoregions.

  19. Optimal pupil design for confocal microscopy

    NASA Astrophysics Data System (ADS)

    Patel, Yogesh G.; Rajadhyaksha, Milind; DiMarzio, Charles A.

    2010-02-01

    Confocal reflectance microscopy may enable screening and diagnosis of skin cancers noninvasively and in real-time, as an adjunct to biopsy and pathology. Current instruments are large, complex, and expensive. A simpler, confocal line-scanning microscope may accelerate the translation of confocal microscopy in clinical and surgical dermatology. A confocal reflectance microscope may use a beamsplitter, transmitting and detecting through the pupil, or a divided pupil, or theta configuration, with half used for transmission and half for detection. The divided pupil may offer better sectioning and contrast. We present a Fourier optics model and compare the on-axis irradiance of a confocal point-scanning microscope in both pupil configurations, optimizing the profile of a Gaussian beam in a circular or semicircular aperture. We repeat both calculations with a cylindrical lens which focuses the source to a line. The variable parameter is the fillfactor, h, the ratio of the 1/e2 diameter of the Gaussian beam to the diameter of the full aperture. The optimal values of h, for point scanning are 0.90 (full) and 0.66 for the half-aperture. For line-scanning, the fill-factors are 1.02 (full) and 0.52 (half). Additional parameters to consider are the optimal location of the point-source beam in the divided-pupil configuration, the optimal line width for the line-source, and the width of the aperture in the divided-pupil configuration. Additional figures of merit are field-of-view and sectioning. Use of optimal designs is critical in comparing the experimental performance of the different configurations.

  20. SPY: a new scission-point model based on microscopic inputs to predict fission fragment properties

    NASA Astrophysics Data System (ADS)

    Panebianco, Stefano; Dubray, Nöel; Goriely, Stéphane; Hilaire, Stéphane; Lemaître, Jean-François; Sida, Jean-Luc

    2014-04-01

    Despite the difficulty in describing the whole fission dynamics, the main fragment characteristics can be determined in a static approach based on a so-called scission-point model. Within this framework, a new Scission-Point model for the calculations of fission fragment Yields (SPY) has been developed. This model, initially based on the approach developed by Wilkins in the late seventies, consists in performing a static energy balance at scission, where the two fragments are supposed to be completely separated so that their macroscopic properties (mass and charge) can be considered as fixed. Given the knowledge of the system state density, averaged quantities such as mass and charge yields, mean kinetic and excitation energy can then be extracted in the framework of a microcanonical statistical description. The main advantage of the SPY model is the introduction of one of the most up-to-date microscopic descriptions of the nucleus for the individual energy of each fragment and, in the future, for their state density. These quantities are obtained in the framework of HFB calculations using the Gogny nucleon-nucleon interaction, ensuring an overall coherence of the model. Starting from a description of the SPY model and its main features, a comparison between the SPY predictions and experimental data will be discussed for some specific cases, from light nuclei around mercury to major actinides. Moreover, extensive predictions over the whole chart of nuclides will be discussed, with particular attention to their implication in stellar nucleosynthesis. Finally, future developments, mainly concerning the introduction of microscopic state densities, will be briefly discussed.

  1. A step towards standardization: A method for end-point titer determination by fluorescence index of an automated microscope. End-point titer determination by fluorescence index.

    PubMed

    Carbone, Teresa; Gilio, Michele; Padula, Maria Carmela; Tramontano, Giuseppina; D'Angelo, Salvatore; Pafundi, Vito

    2018-05-01

    Indirect Immunofluorescence (IIF) is widely considered the Gold Standard for Antinuclear Antibody (ANA) screening. However, the high inter-reader variability remains the major disadvantage associated with ANA testing and the main reason for the increasing demand of the computer-aided immunofluorescence microscope. Previous studies proposed the quantification of the fluorescence intensity as an alternative for the classical end-point titer evaluation. However, the different distribution of bright/dark light linked to the nature of the self-antigen and its location in the cells result in different mean fluorescence intensities. The aim of the present study was to correlate Fluorescence Index (F.I.) with end-point titers for each well-defined ANA pattern. Routine serum samples were screened for ANA testing on HEp-2000 cells using Immuno Concepts Image Navigator System, and positive samples were serially diluted to assign the end-point titer. A comparison between F.I. and end-point titers related to 10 different staining patterns was made. According to our analysis, good technical performance of F.I. (97% sensitivity and 94% specificity) was found. A significant correlation between quantitative reading of F.I. and end-point titer groups was observed using Spearman's test and regression analysis. A conversion scale of F.I. in end-point titers for each recognized ANA-pattern was obtained. The Image Navigator offers the opportunity to improve worldwide harmonization of ANA test results. In particular, digital F.I. allows quantifying ANA titers by using just one sample dilution. It could represent a valuable support for the routine laboratory and an effective tool to reduce inter- and intra-laboratory variability. Copyright © 2018. Published by Elsevier B.V.

  2. Lateral resolution testing of a novel developed confocal microscopic imaging system

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Zhang, Yunhai; Chang, Jian; Huang, Wei; Xue, Xiaojun; Xiao, Yun

    2015-10-01

    Laser scanning confocal microscope has been widely used in biology, medicine and material science owing to its advantages of high resolution and tomographic imaging. Based on a set of confirmatory experiments and system design, a novel confocal microscopic imaging system is developed. The system is composed of a conventional fluorescence microscope and a confocal scanning unit. In the scanning unit a laser beam coupling module provides four different wavelengths 405nm 488nm 561nm and 638nm which can excite a variety of dyes. The system works in spot-to-spot scanning mode with a two-dimensional galvanometer. A 50 microns pinhole is used to guarantee that stray light is blocked and only the fluorescence signal from the focal point can be received . The three-channel spectral splitter is used to perform fluorescence imaging at three different working wavelengths simultaneously. The rat kidney tissue slice is imaged using the developed confocal microscopic imaging system. Nucleues labeled by DAPI and kidney spherule curved pipe labeled by Alexa Fluor 488 can be imaged clearly and respectively, realizing the distinction between the different components of mouse kidney tissue. The three-dimensional tomographic imaging of mouse kidney tissue is reconstructed by several two-dimensional images obtained in different depths. At last the resolution of the confocal microscopic imaging system is tested quantitatively. The experimental result shows that the system can achieve lateral resolution priority to 230nm.

  3. Chemical imaging of cotton fibers using an infrared microscope and a focal-plane array detector

    USDA-ARS?s Scientific Manuscript database

    In this presentation, the chemical imaging of cotton fibers with an infrared microscope and a Focal-Plane Array (FPA) detector will be discussed. Infrared spectroscopy can provide us with information on the structure and quality of cotton fibers. In addition, FPA detectors allow for simultaneous spe...

  4. Examination of cotton fibers and common contaminants using an infrared microscope and a focal-plane array detector

    USDA-ARS?s Scientific Manuscript database

    The chemical imaging of cotton fibers and common contaminants in fibers is presented. Chemical imaging was performed with an infrared microscope equipped with a Focal-Plane Array (FPA) detector. Infrared spectroscopy can provide us with information on the structure and quality of cotton fibers. In a...

  5. Overview of nanoscale NEXAFS performed with soft X-ray microscopes.

    PubMed

    Guttmann, Peter; Bittencourt, Carla

    2015-01-01

    Today, in material science nanoscale structures are becoming more and more important. Not only for the further miniaturization of semiconductor devices like carbon nanotube based transistors, but also for newly developed efficient energy storage devices, gas sensors or catalytic systems nanoscale and functionalized materials have to be analysed. Therefore, analytical tools like near-edge X-ray absorption fine structure (NEXAFS) spectroscopy has to be applied on single nanostructures. Scanning transmission X-ray microscopes (STXM) as well as full-field transmission X-ray microscopes (TXM) allow the required spatial resolution to study individual nanostructures. In the soft X-ray energy range only STXM was used so far for NEXAFS studies. Due to its unique setup, the TXM operated by the Helmholtz-Zentrum Berlin (HZB) at the electron storage ring BESSY II is the first one in the soft X-ray range which can be used for NEXAFS spectroscopy studies which will be shown in this review. Here we will give an overview of the different microscopes used for NEXAFS studies and describe their advantages and disadvantages for different samples.

  6. Electronic Structure, Dielectric Response, and Surface Charge Distribution of RGD (1FUV) Peptide

    PubMed Central

    Adhikari, Puja; Wen, Amy M.; French, Roger H.; Parsegian, V. Adrian; Steinmetz, Nicole F.; Podgornik, Rudolf; Ching, Wai-Yim

    2014-01-01

    Long and short range molecular interactions govern molecular recognition and self-assembly of biological macromolecules. Microscopic parameters in the theories of these molecular interactions are either phenomenological or need to be calculated within a microscopic theory. We report a unified methodology for the ab initio quantum mechanical (QM) calculation that yields all the microscopic parameters, namely the partial charges as well as the frequency-dependent dielectric response function, that can then be taken as input for macroscopic theories of electrostatic, polar, and van der Waals-London dispersion intermolecular forces. We apply this methodology to obtain the electronic structure of the cyclic tripeptide RGD-4C (1FUV). This ab initio unified methodology yields the relevant parameters entering the long range interactions of biological macromolecules, providing accurate data for the partial charge distribution and the frequency-dependent dielectric response function of this peptide. These microscopic parameters determine the range and strength of the intricate intermolecular interactions between potential docking sites of the RGD-4C ligand and its integrin receptor. PMID:25001596

  7. Nonlocal effects in nonisothermal hydrodynamics from the perspective of beyond-equilibrium thermodynamics.

    PubMed

    Hütter, Markus; Brader, Joseph M

    2009-06-07

    We examine the origins of nonlocality in a nonisothermal hydrodynamic formulation of a one-component fluid of particles that exhibit long-range correlations, e.g., due to a spherically symmetric, long-range interaction potential. In order to furnish the continuum modeling with physical understanding of the microscopic interactions and dynamics, we make use of systematic coarse graining from the microscopic to the continuum level. We thus arrive at a thermodynamically admissible and closed set of evolution equations for the densities of momentum, mass, and internal energy. From the consideration of an illustrative special case, the following main conclusions emerge. There are two different source terms in the momentum balance. The first is a body force, which in special circumstances can be related to the functional derivative of a nonlocal Helmholtz free energy density with respect to the mass density. The second source term is proportional to the temperature gradient, multiplied by the nonlocal entropy density. These two source terms combine into a pressure gradient only in the absence of long-range effects. In the irreversible contributions to the time evolution, the nonlocal contributions arise since the self-correlations of the stress tensor and heat flux, respectively, are nonlocal as a result of the microscopic nonlocal correlations. Finally, we point out specific points that warrant further discussions.

  8. Nanoimaging using soft X-ray and EUV laser-plasma sources

    NASA Astrophysics Data System (ADS)

    Wachulak, Przemyslaw; Torrisi, Alfio; Ayele, Mesfin; Bartnik, Andrzej; Czwartos, Joanna; Węgrzyński, Łukasz; Fok, Tomasz; Fiedorowicz, Henryk

    2018-01-01

    In this work we present three experimental, compact desk-top imaging systems: SXR and EUV full field microscopes and the SXR contact microscope. The systems are based on laser-plasma EUV and SXR sources based on a double stream gas puff target. The EUV and SXR full field microscopes, operating at 13.8 nm and 2.88 nm wavelengths are capable of imaging nanostructures with a sub-50 nm spatial resolution and short (seconds) exposure times. The SXR contact microscope operates in the "water-window" spectral range and produces an imprint of the internal structure of the imaged sample in a thin layer of SXR sensitive photoresist. Applications of such desk-top EUV and SXR microscopes, mostly for biological samples (CT26 fibroblast cells and Keratinocytes) are also presented. Details about the sources, the microscopes as well as the imaging results for various objects will be presented and discussed. The development of such compact imaging systems may be important to the new research related to biological, material science and nanotechnology applications.

  9. Chemical imaging of structured SAMs with a novel SFG microscope

    NASA Astrophysics Data System (ADS)

    Hoffmann, Dominik M. P.; Kuhnke, Klaus; Kern, Klaus

    2002-11-01

    We present a newly developed microscope for sum frequency generation (SFG) imaging of opaque and reflecting interfaces. The sample is viewed at an angle of 60° with respect to the surface normal in order to increase the collected SFG intensity. Our setup is designed to keep the whole field of view (FOV) in focus and to compensate for the distortion usually related to oblique imaging by means of a blazed grating. The separation of the SFG intensity and the reflected visible beam is accomplished by a suitable combination of spectral filters. The sum frequency microscope (SFM) is capable of in-situ chemically selective imaging by tuning the IR-beam to vibrational transitions of the respective molecules. The SFM is applied to imaging of structured self-assembled monolayers (SAM) of thiol molecules on a gold surface.

  10. Comparative study viruses with computer-aided phase microscope AIRYSCAN

    NASA Astrophysics Data System (ADS)

    Tychinsky, Vladimir P.; Koufal, Georgy E.; Perevedentseva, Elena V.; Vyshenskaia, Tatiana V.

    1996-12-01

    Traditionally viruses are studied with scanning electron microscopy (SEM) after complicated procedure of sample preparation without the possibility to study it under natural conditions. We obtained images of viruses (Vaccinia virus, Rotavirus) and rickettsias (Rickettsia provazekii, Coxiella burnetti) in native state with computer-aided phase microscope airyscan -- the interference microscope of Linnik layout with phase modulation of the reference wave with dissector image tube as coordinate-sensitive photodetector and computer processing of phase image. A light source was the He-Ne laser. The main result is coincidence of dimensions and shape of phase images with available information concerning their morphology obtained with SEM and other methods. The fine structure of surface and nuclei is observed. This method may be applied for virus recognition and express identification, investigation of virus structure and the analysis of cell-virus interaction.

  11. Nanocarpets for Trapping Microscopic Particles

    NASA Technical Reports Server (NTRS)

    Noca, Flavio; Chen, Fei; Hunt, Brian; Bronikowski, Michael; Hoenk, Michael; Kowalczyk, Robert; Choi, Daniel

    2004-01-01

    Nanocarpets that is, carpets of carbon nanotubes are undergoing development as means of trapping microscopic particles for scientific analysis. Examples of such particles include inorganic particles, pollen, bacteria, and spores. Nanocarpets can be characterized as scaled-down versions of ordinary macroscopic floor carpets, which trap dust and other particulate matter, albeit not purposefully. Nanocarpets can also be characterized as mimicking both the structure and the particle-trapping behavior of ciliated lung epithelia, the carbon nanotubes being analogous to cilia. Carbon nanotubes can easily be chemically functionalized for selective trapping of specific particles of interest. One could, alternatively, use such other three-dimensionally-structured materials as aerogels and activated carbon for the purposeful trapping of microscopic particles. However, nanocarpets offer important advantages over these alternative materials: (1) Nanocarpets are amenable to nonintrusive probing by optical means; and (2) Nanocarpets offer greater surface-to-volume ratios.

  12. Sheet-scanned dual-axis confocal microscopy using Richardson-Lucy deconvolution.

    PubMed

    Wang, D; Meza, D; Wang, Y; Gao, L; Liu, J T C

    2014-09-15

    We have previously developed a line-scanned dual-axis confocal (LS-DAC) microscope with subcellular resolution suitable for high-frame-rate diagnostic imaging at shallow depths. Due to the loss of confocality along one dimension, the contrast (signal-to-background ratio) of a LS-DAC microscope is deteriorated compared to a point-scanned DAC microscope. However, by using a sCMOS camera for detection, a short oblique light-sheet is imaged at each scanned position. Therefore, by scanning the light sheet in only one dimension, a thin 3D volume is imaged. Both sequential two-dimensional deconvolution and three-dimensional deconvolution are performed on the thin image volume to improve the resolution and contrast of one en face confocal image section at the center of the volume, a technique we call sheet-scanned dual-axis confocal (SS-DAC) microscopy.

  13. [Studies on macroscopic and microscopic identification of Cordyceps sinensis and its counterfeits].

    PubMed

    Chan, Siutsau; Liu, Baoling; Zhao, Zhongzhen; Lam, Markin; Law, Kwokwai; Chen, Hubiao

    2011-05-01

    To provide a rapid, simple, accurate and reproducible identification method from which Cordyceps sinensis can be distinguished from other species. To observe the larva and stroma of Cordyceps family with macroscopic identification method, and with powder microscopic identification method. For macroscopic, only stroma of C. sinensis is mostly non-inflated, and un-obtuse at the tip, the caterpillar annulations of C. sinensis and the C. gracilis is distinct, about 20-30, and feet of above two are 8 pairs, 4 of 8 pairs are relatively distinct. The above appearance shows its unique characteristic. For microscopic identification, only C. sinensis exists microtrichia, the tip is pointed. The arranging order of stubby setae is irregular, the tip is blunt while the basal is gradually broader; the top of some setae bends slightly like a hook.

  14. Transformation of the θ-phase in Mg-Li-Al alloys: a density functional theory study.

    PubMed

    Zhang, Caili; Han, Peide; Zhang, Zhuxia; Dong, Minghui; Zhang, Lili; Gu, Xiangyang; Yang, Yanqing; Xu, Bingshe

    2012-03-01

    In Mg-Li-Al alloys, θ-phase MgAlLi(2) is a strengthening and metastable phase which is liable to be transformed to the equilibrium phase AlLi on overaging. While the structural details of the θ-phase MgAlLi(2) and the microscopic transformation are still unknown. In this paper, the structure of MgAlLi(2) unit cell was determined through X-ray powder diffraction simulation. Microscopic transformation process of θ-phase MgAlLi(2) was discussed in detail using first principles method.

  15. Mechanical design of a precision linear flexural stage for 3D x-ray diffraction microscope at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Shu, D.; Liu, W.; Kearney, S.; Anton, J.; Tischler, J. Z.

    2015-09-01

    The 3-D X-ray diffraction microscope is a new nondestructive tool for the three-dimensional characterization of mesoscopic materials structure. A flexural-pivot-based precision linear stage has been designed to perform a wire scan as a differential aperture for the 3-D diffraction microscope at the Advanced Photon Source, Argonne National Laboratory. The mechanical design and finite element analyses of the flexural stage, as well as its initial mechanical test results with laser interferometer are described in this paper.

  16. A combined scanning tunnelling microscope and x-ray interferometer

    NASA Astrophysics Data System (ADS)

    Yacoot, Andrew; Kuetgens, Ulrich; Koenders, Ludger; Weimann, Thomas

    2001-10-01

    A monolithic x-ray interferometer made from silicon and a scanning tunnelling microscope have been combined and used to calibrate grating structures with periodicities of 100 nm or less. The x-ray interferometer is used as a translation stage which moves in discrete steps of 0.192 nm, the lattice spacing of the silicon (220) planes. Hence, movements are traceable to the definition of the metre and the nonlinearity associated with the optical interferometers used to measure displacement in more conventional metrological scanning probe microscopes (MSPMs) removed.

  17. Thermophysical ESEM and TEM Characterization of Carbon Fibers CTE, Spectroscopy and Roughness Studies at High Temperatures

    NASA Technical Reports Server (NTRS)

    Ochoa, Ozden O.

    2004-01-01

    Accurate determination of the transverse properties of carbon fibers is important for assessment and prediction of local material as well as global structural response of composite components. However the measurements are extremely difficult due to the very small diameters of the fibers (few microns only) and must be conducted within a microscope. In this work, environmental scanning electron microscope (ESEM) and transmission electron microscope (TEM) are used to determine the transverse coefficient of thermal expansion of different carbon fibers as a function of temperature.

  18. Comparison of two viewing methods for estimating largemouth bass and walleye ages from sectioned otoliths and dorsal spines

    USGS Publications Warehouse

    Wegleitner, Eric J.; Isermann, Daniel A.

    2017-01-01

    Many biologists use digital images for estimating ages of fish, but the use of images could lead to differences in age estimates and precision because image capture can produce changes in light and clarity compared to directly viewing structures through a microscope. We used sectioned sagittal otoliths from 132 Largemouth Bass Micropterus salmoides and sectioned dorsal spines and otoliths from 157 Walleyes Sander vitreus to determine whether age estimates and among‐reader precision were similar when annuli were enumerated directly through a microscope or from digital images. Agreement of ages between viewing methods for three readers were highest for Largemouth Bass otoliths (75–89% among readers), followed by Walleye otoliths (63–70%) and Walleye dorsal spines (47–64%). Most discrepancies (72–96%) were ±1 year, and differences were more prevalent for age‐5 and older fish. With few exceptions, mean ages estimated from digital images were similar to ages estimated via directly viewing the structures through the microscope, and among‐reader precision did not vary between viewing methods for each structure. However, the number of disagreements we observed suggests that biologists should assess potential differences in age structure that could arise if images of calcified structures are used in the age estimation process.

  19. Multiscale pore structure and its effect on gas transport in organic-rich shale

    NASA Astrophysics Data System (ADS)

    Wu, Tianhao; Li, Xiang; Zhao, Junliang; Zhang, Dongxiao

    2017-07-01

    A systematic investigation of multiscale pore structure in organic-rich shale by means of the combination of various imaging techniques is presented, including the state-of-the-art Helium-Ion-Microscope (HIM). The study achieves insight into the major features at each scale and suggests the affordable techniques for specific objectives from the aspects of resolution, dimension, and cost. The pores, which appear to be isolated, are connected by smaller pores resolved by higher-resolution imaging. This observation provides valuable information, from the microscopic perspective of pore structure, for understanding how gas accumulates and transports from where it is generated. A comprehensive workflow is proposed based on the characteristics acquired from the multiscale pore structure analysis to simulate the gas transport process. The simulations are completed with three levels: the microscopic mechanisms should be taken into consideration at level I; the spatial distribution features of organic matter, inorganic matter, and macropores constitute the major issue at level II; and the microfracture orientation and topological structure are dominant factors at level III. The results of apparent permeability from simulations agree well with the values acquired from experiments. By means of the workflow, the impact of various gas transport mechanisms at different scales can be investigated more individually and precisely than conventional experiments.

  20. Lattice relations and solidification of the complex regular eutectic (Cr,Fe)-(Cr,Fe)23C6

    NASA Astrophysics Data System (ADS)

    Lai, Hsuan-Han; Hsieh, Chih-Chun; Lin, Chi-Ming; Wu, Weite

    2017-05-01

    The eutectic (Cr,Fe)-(Cr,Fe)23C6 showed a triaxial fishbone structure and could be categorized as a "complex regular structure". In this study, the lattice relations of the fishbone (Cr,Fe)23C6 were examined and the solidification process was observed using a transmission electron microscope and a confocal laser scanning microscope. For one of the three fish bones in a eutectic cell, parallel (Cr,Fe)23C6 lamellas at one side of the spine had the same lattice direction, as did those in the (Cr,Fe) phase. The lattices of neighboring (Cr,Fe)23C6 and (Cr,Fe) phases were not coherent. Lamellar (Cr,Fe)23C6 on opposite sides of a spine had different lattice directions, and their lattice boundary was in the spine. By using the confocal laser scanning microscope, the solidification of lamellar eutectic structure could be observed. At the low cooling rate of 5 o C·min-1, parallel lamellas would grow thick blocks instead of thin plates. To obtain a thin lamellar eutectic structure, the cooling rate should be higher, like the rate in welding.

  1. Ultrahigh resolution multicolor colocalization of single fluorescent probes

    DOEpatents

    Weiss, Shimon; Michalet, Xavier; Lacoste, Thilo D.

    2005-01-18

    A novel optical ruler based on ultrahigh-resolution colocalization of single fluorescent probes is described. Two unique families of fluorophores are used, namely energy-transfer fluorescent beads and semiconductor nanocrystal (NC) quantum dots, that can be excited by a single laser wavelength but emit at different wavelengths. A novel multicolor sample-scanning confocal microscope was constructed which allows one to image each fluorescent light emitter, free of chromatic aberrations, by scanning the sample with nanometer scale steps using a piezo-scanner. The resulting spots are accurately localized by fitting them to the known shape of the excitation point-spread-function of the microscope.

  2. Characterization of microscopic deformation through two-point spatial correlation functions

    NASA Astrophysics Data System (ADS)

    Huang, Guan-Rong; Wu, Bin; Wang, Yangyang; Chen, Wei-Ren

    2018-01-01

    The molecular rearrangements of most fluids under flow and deformation do not directly follow the macroscopic strain field. In this work, we describe a phenomenological method for characterizing such nonaffine deformation via the anisotropic pair distribution function (PDF). We demonstrate how the microscopic strain can be calculated in both simple shear and uniaxial extension, by perturbation expansion of anisotropic PDF in terms of real spherical harmonics. Our results, given in the real as well as the reciprocal space, can be applied in spectrum analysis of small-angle scattering experiments and nonequilibrium molecular dynamics simulations of soft matter under flow.

  3. Coordinate metrology using scanning probe microscopes

    NASA Astrophysics Data System (ADS)

    Marinello, F.; Savio, E.; Bariani, P.; Carmignato, S.

    2009-08-01

    New positioning, probing and measuring strategies in coordinate metrology are needed for the accomplishment of true three-dimensional characterization of microstructures, with uncertainties in the nanometre range. In the present work, the implementation of scanning probe microscopes (SPMs) as systems for coordinate metrology is discussed. A new non-raster measurement approach is proposed, where the probe is moved to sense points along free paths on the sample surface, with no loss of accuracy with respect to traditional raster scanning and scan time reduction. Furthermore, new probes featuring long tips with innovative geometries suitable for coordinate metrology through SPMs are examined and reported.

  4. Characterization of microscopic deformation through two-point spatial correlation functions.

    PubMed

    Huang, Guan-Rong; Wu, Bin; Wang, Yangyang; Chen, Wei-Ren

    2018-01-01

    The molecular rearrangements of most fluids under flow and deformation do not directly follow the macroscopic strain field. In this work, we describe a phenomenological method for characterizing such nonaffine deformation via the anisotropic pair distribution function (PDF). We demonstrate how the microscopic strain can be calculated in both simple shear and uniaxial extension, by perturbation expansion of anisotropic PDF in terms of real spherical harmonics. Our results, given in the real as well as the reciprocal space, can be applied in spectrum analysis of small-angle scattering experiments and nonequilibrium molecular dynamics simulations of soft matter under flow.

  5. Optimal model-based sensorless adaptive optics for epifluorescence microscopy.

    PubMed

    Pozzi, Paolo; Soloviev, Oleg; Wilding, Dean; Vdovin, Gleb; Verhaegen, Michel

    2018-01-01

    We report on a universal sample-independent sensorless adaptive optics method, based on modal optimization of the second moment of the fluorescence emission from a point-like excitation. Our method employs a sample-independent precalibration, performed only once for the particular system, to establish the direct relation between the image quality and the aberration. The method is potentially applicable to any form of microscopy with epifluorescence detection, including the practically important case of incoherent fluorescence emission from a three dimensional object, through minor hardware modifications. We have applied the technique successfully to a widefield epifluorescence microscope and to a multiaperture confocal microscope.

  6. Generic Features of Tertiary Chromatin Structure as Detected in Natural Chromosomes

    PubMed Central

    Müller, Waltraud G.; Rieder, Dietmar; Kreth, Gregor; Cremer, Christoph; Trajanoski, Zlatko; McNally, James G.

    2004-01-01

    Knowledge of tertiary chromatin structure in mammalian interphase chromosomes is largely derived from artificial tandem arrays. In these model systems, light microscope images reveal fibers or beaded fibers after high-density targeting of transactivators to insertional domains spanning several megabases. These images of fibers have lent support to chromonema fiber models of tertiary structure. To assess the relevance of these studies to natural mammalian chromatin, we identified two different ∼400-kb regions on human chromosomes 6 and 22 and then examined light microscope images of interphase tertiary chromatin structure when the regions were transcriptionally active and inactive. When transcriptionally active, these natural chromosomal regions elongated, yielding images characterized by a series of adjacent puncta or “beads”, referred to hereafter as beaded images. These elongated structures required transcription for their maintenance. Thus, despite marked differences in the density and the mode of transactivation, the natural and artificial systems showed similarities, suggesting that beaded images are generic features of transcriptionally active tertiary chromatin. We show here, however, that these images do not necessarily favor chromonema fiber models but can also be explained by a radial-loop model or even a simple nucleosome affinity, random-chain model. Thus, light microscope images of tertiary structure cannot distinguish among competing models, although they do impose key constraints: chromatin must be clustered to yield beaded images and then packaged within each cluster to enable decondensation into adjacent clusters. PMID:15485905

  7. Slow Noncollinear Coulomb Scattering in the Vicinity of the Dirac Point in Graphene.

    PubMed

    König-Otto, J C; Mittendorff, M; Winzer, T; Kadi, F; Malic, E; Knorr, A; Berger, C; de Heer, W A; Pashkin, A; Schneider, H; Helm, M; Winnerl, S

    2016-08-19

    The Coulomb scattering dynamics in graphene in energetic proximity to the Dirac point is investigated by polarization resolved pump-probe spectroscopy and microscopic theory. Collinear Coulomb scattering rapidly thermalizes the carrier distribution in k directions pointing radially away from the Dirac point. Our study reveals, however, that, in almost intrinsic graphene, full thermalization in all directions relying on noncollinear scattering is much slower. For low photon energies, carrier-optical-phonon processes are strongly suppressed and Coulomb mediated noncollinear scattering is remarkably slow, namely on a ps time scale. This effect is very promising for infrared and THz devices based on hot carrier effects.

  8. Filling Knowledge Gaps for Mimivirus Entry, Uncoating, and Morphogenesis

    PubMed Central

    Andrade, Ana Cláudia dos Santos Pereira; Rodrigues, Rodrigo Araújo Lima; Oliveira, Graziele Pereira; Andrade, Kétyllen Reis; Bonjardim, Cláudio Antônio; La Scola, Bernard; Kroon, Erna Geessien

    2017-01-01

    ABSTRACT Since the discovery of mimivirus, its unusual structural and genomic features have raised great interest in the study of its biology; however, many aspects concerning its replication cycle remain uncertain. In this study, extensive analyses of electron microscope images, as well as biological assay results, shed light on unclear points concerning the mimivirus replication cycle. We found that treatment with cytochalasin, a phagocytosis inhibitor, negatively impacted the incorporation of mimivirus particles by Acanthamoeba castellanii, causing a negative effect on viral growth in amoeba monolayers. Treatment of amoebas with bafilomicin significantly impacted mimivirus uncoating and replication. In conjunction with microscopic analyses, these data suggest that mimiviruses indeed depend on phagocytosis for entry into amoebas, and particle uncoating (and stargate opening) appears to be dependent on phagosome acidification. In-depth analyses of particle morphogenesis suggest that the mimivirus capsids are assembled from growing lamellar structures. Despite proposals from previous studies that genome acquisition occurs before the acquisition of fibrils, our results clearly demonstrate that the genome and fibrils can be acquired simultaneously. Our data suggest the existence of a specific area surrounding the core of the viral factory where particles acquire the surface fibrils. Furthermore, we reinforce the concept that defective particles can be formed even in the absence of virophages. Our work provides new information about unexplored steps in the life cycle of mimivirus. IMPORTANCE Investigating the viral life cycle is essential to a better understanding of virus biology. The combination of biological assays and microscopic images allows a clear view of the biological features of viruses. Since the discovery of mimivirus, many studies have been conducted to characterize its replication cycle, but many knowledge gaps remain to be filled. In this study, we conducted a new examination of the replication cycle of mimivirus and provide new evidence concerning some stages of the cycle which were previously unclear, mainly entry, uncoating, and morphogenesis. Furthermore, we demonstrate that atypical virion morphologies can occur even in the absence of virophages. Our results, along with previous data, allow us to present an ultimate model for the mimivirus replication cycle. PMID:28878069

  9. Filling Knowledge Gaps for Mimivirus Entry, Uncoating, and Morphogenesis.

    PubMed

    Andrade, Ana Cláudia Dos Santos Pereira; Rodrigues, Rodrigo Araújo Lima; Oliveira, Graziele Pereira; Andrade, Kétyllen Reis; Bonjardim, Cláudio Antônio; La Scola, Bernard; Kroon, Erna Geessien; Abrahão, Jônatas Santos

    2017-11-15

    Since the discovery of mimivirus, its unusual structural and genomic features have raised great interest in the study of its biology; however, many aspects concerning its replication cycle remain uncertain. In this study, extensive analyses of electron microscope images, as well as biological assay results, shed light on unclear points concerning the mimivirus replication cycle. We found that treatment with cytochalasin, a phagocytosis inhibitor, negatively impacted the incorporation of mimivirus particles by Acanthamoeba castellanii , causing a negative effect on viral growth in amoeba monolayers. Treatment of amoebas with bafilomicin significantly impacted mimivirus uncoating and replication. In conjunction with microscopic analyses, these data suggest that mimiviruses indeed depend on phagocytosis for entry into amoebas, and particle uncoating (and stargate opening) appears to be dependent on phagosome acidification. In-depth analyses of particle morphogenesis suggest that the mimivirus capsids are assembled from growing lamellar structures. Despite proposals from previous studies that genome acquisition occurs before the acquisition of fibrils, our results clearly demonstrate that the genome and fibrils can be acquired simultaneously. Our data suggest the existence of a specific area surrounding the core of the viral factory where particles acquire the surface fibrils. Furthermore, we reinforce the concept that defective particles can be formed even in the absence of virophages. Our work provides new information about unexplored steps in the life cycle of mimivirus. IMPORTANCE Investigating the viral life cycle is essential to a better understanding of virus biology. The combination of biological assays and microscopic images allows a clear view of the biological features of viruses. Since the discovery of mimivirus, many studies have been conducted to characterize its replication cycle, but many knowledge gaps remain to be filled. In this study, we conducted a new examination of the replication cycle of mimivirus and provide new evidence concerning some stages of the cycle which were previously unclear, mainly entry, uncoating, and morphogenesis. Furthermore, we demonstrate that atypical virion morphologies can occur even in the absence of virophages. Our results, along with previous data, allow us to present an ultimate model for the mimivirus replication cycle. Copyright © 2017 American Society for Microbiology.

  10. Large image microscope array for the compilation of multimodality whole organ image databases.

    PubMed

    Namati, Eman; De Ryk, Jessica; Thiesse, Jacqueline; Towfic, Zaid; Hoffman, Eric; Mclennan, Geoffrey

    2007-11-01

    Three-dimensional, structural and functional digital image databases have many applications in education, research, and clinical medicine. However, to date, apart from cryosectioning, there have been no reliable means to obtain whole-organ, spatially conserving histology. Our aim was to generate a system capable of acquiring high-resolution images, featuring microscopic detail that could still be spatially correlated to the whole organ. To fulfill these objectives required the construction of a system physically capable of creating very fine whole-organ sections and collecting high-magnification and resolution digital images. We therefore designed a large image microscope array (LIMA) to serially section and image entire unembedded organs while maintaining the structural integrity of the tissue. The LIMA consists of several integrated components: a novel large-blade vibrating microtome, a 1.3 megapixel peltier cooled charge-coupled device camera, a high-magnification microscope, and a three axis gantry above the microtome. A custom control program was developed to automate the entire sectioning and automated raster-scan imaging sequence. The system is capable of sectioning unembedded soft tissue down to a thickness of 40 microm at specimen dimensions of 200 x 300 mm to a total depth of 350 mm. The LIMA system has been tested on fixed lung from sheep and mice, resulting in large high-quality image data sets, with minimal distinguishable disturbance in the delicate alveolar structures. Copyright 2007 Wiley-Liss, Inc.

  11. Resolution improvement by nonconfocal theta microscopy.

    PubMed

    Lindek, S; Stelzer, E H

    1999-11-01

    We present a novel scanning fluorescence microscopy technique, nonconfocal theta microscopy (NCTM), that provides almost isotropic resolution. In NCTM, multiphoton absorption from two orthogonal illumination directions is used to induce fluorescence emission. Therefore the point-spread function of the microscope is described by the product of illumination point-spread functions with reduced spatial overlap, which provides the resolution improvement and the more isotropic observation volume. We discuss the technical details of this new method.

  12. The HVAC Challenges of Upgrading an Old Lab for High-end Light Microscopes

    PubMed Central

    Richard, R.; Martone, P.; Callahan, L.M.

    2014-01-01

    The University of Rochester Medical Center forms the centerpiece of the University of Rochester's health research, teaching, patient care, and community outreach missions. Within this large facility of over 5 million square feet, demolition and remodeling of existing spaces is a constant activity. With more than $145 million in federal research funding, lab space is frequently repurposed and renovated to support this work. The URMC Medical Center Facilities Organization supporting small to medium space renovations is constantly challenged and constrained by the existing mechanical infrastructure and budgets to deliver a renovated space that functions within the equipment environmental parameters. One recent project, sponsored by the URMC Shared Resources Laboratory, demonstrates these points. The URMC Light Microscopy Shared Resource Laboratory requested renovation of a 121 sq. ft. room in a 40 year old building which would enable placement of a laser capture microdissection microscope and a Pascal 5 laser scanning confocal microscope with the instruments separated by a blackout curtain. This poster discusses the engineering approach implemented to bring an older lab into the environmental specifications needed for the proper operation of the high-end light microscopes.

  13. Invasive vulvar carcinoma and the question of the surgical margin.

    PubMed

    Palaia, Innocenza; Bellati, Filippo; Calcagno, Marco; Musella, Angela; Perniola, Giorgia; Panici, Pierluigi B

    2011-08-01

    To assess the discrepancy between width of surgical margin measured with the naked eye/ruler by a surgeon before removing an invasive vulvar carcinoma, and width of margin measured under microscope by pathologist after fixation of the resected lesion with formalin. Potential relationships between discrepancy and disease recurrence were also investigated. This prospective study was conducted with resected lesions from 86 women who underwent surgery for primary/recurrent invasive vulvar carcinoma. After the surgeon removed the lesions surrounded by 1-2-cm margins, the pathologist determined margin width at the 4 cardinal points of 86 lesions (for a total of 344 margin assessments), first macroscopically and then under the microscope. A safety margin of 0.8 cm on microscopic view was achieved in 83% of cases (112 of 135) when the macroscopic measurement was 1cm, in 91% of cases (58 of 64) when it was 1.5 cm, and 98% of cases (105 of 107) when it was 2 cm. There was a small discrepancy between the surgeon's intent and the microscopic margin measurement, mostly related to tissue shrinkage. A 1-cm surgical margin corresponded to a 0.8-cm margin in microscopic view (the "safe margin") in most cases. Copyright © 2011 International Federation of Gynecology and Obstetrics. Published by Elsevier Ireland Ltd. All rights reserved.

  14. Shear viscosity in monatomic liquids: a simple mode-coupling approach

    NASA Astrophysics Data System (ADS)

    Balucani, Umberto

    The value of the shear-viscosity coefficient in fluids is controlled by the dynamical processes affecting the time decay of the associated Green-Kubo integrand, the stress autocorrelation function (SACF). These processes are investigated in monatomic liquids by means of a microscopic approach with a minimum use of phenomenological assumptions. In particular, mode-coupling effects (responsible for the presence in the SACF of a long-lasting 'tail') are accounted for by a simplified approach where the only requirement is knowledge of the structural properties. The theory readily yields quantitative predictions in its domain of validity, which comprises ordinary and moderately supercooled 'simple' liquids. The framework is applied to liquid Ar and Rb near their melting points, and quite satisfactory agreement with the simulation data is found for both the details of the SACF and the value of the shear-viscosity coefficient.

  15. Protein patterning in polycarbonate microfluidic channels

    NASA Astrophysics Data System (ADS)

    Thomson, David A.; Hayes, Jason P.; Thissen, Helmut

    2004-03-01

    In this work protein patterning has been achieved within a polycarbonate microfluidic device. Channel structures were first coated with plasma polymerized allylamine (ALAPP) followed by the "cloud point" deposition of polyethylene oxide (PEO), a protein repellent molecule. Excimer laser micromachining was used to pattern the PEO to control protein localization. Subsequent removal of a sacrificial layer of polycarbonate resulted in the patterned polymer coating only in the channels of a simple fluidic device. Following a final diffusion bonding fabrication step the devices were filled with a buffer containing Streptavidin conjugated with fluorescein, and visualized under a confocal fluorescent microscope. This confirmed that protein adhesion occurred only in laser patterned areas. The ability to control protein adhesion in microfludic channels leads to the possibility of generating arrays of proteins or cells within polymer microfludics for cheap automated biosensors and synthesis systems.

  16. Widom Delta of Supercritical Gas-Liquid Coexistence.

    PubMed

    Ha, Min Young; Yoon, Tae Jun; Tlusty, Tsvi; Jho, Yongseok; Lee, Won Bo

    2018-04-05

    Density fluctuations and the Widom line are of great importance in understanding the critical phenomena and the behaviors of supercritical fluids (SCFs). We report on the direct classification of liquid-like and gas-like molecules coexisting in the SCF, identified by machine learning analysis on simulation data. The deltoid coexistence region encloses the Widom line and may therefore be termed the Widom delta. Number fractions of gas-like and liquid-like particles are found to undergo continuous transition across the delta, following a simplified two-state model. These fractions are closely related to the magnitude of supercritical anomaly, which originates from the fluctuation between the two types. This suggests a microscopic view of the SCF as a mixture of liquid-like and gas-like structures, providing an integrative explanation to the anomalous behaviors near the critical point and the Widom line.

  17. A mechanistic model of tau amyloid aggregation based on direct observation of oligomers

    NASA Astrophysics Data System (ADS)

    Shammas, Sarah L.; Garcia, Gonzalo A.; Kumar, Satish; Kjaergaard, Magnus; Horrocks, Mathew H.; Shivji, Nadia; Mandelkow, Eva; Knowles, Tuomas P. J.; Mandelkow, Eckhard; Klenerman, David

    2015-04-01

    Protein aggregation plays a key role in neurodegenerative disease, giving rise to small oligomers that may become cytotoxic to cells. The fundamental microscopic reactions taking place during aggregation, and their rate constants, have been difficult to determine due to lack of suitable methods to identify and follow the low concentration of oligomers over time. Here we use single-molecule fluorescence to study the aggregation of the repeat domain of tau (K18), and two mutant forms linked with familial frontotemporal dementia, the deletion mutant ΔK280 and the point mutant P301L. Our kinetic analysis reveals that aggregation proceeds via monomeric assembly into small oligomers, and a subsequent slow structural conversion step before fibril formation. Using this approach, we have been able to quantitatively determine how these mutations alter the aggregation energy landscape.

  18. Single molecule imaging of RNA polymerase II using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Rhodin, Thor; Fu, Jianhua; Umemura, Kazuo; Gad, Mohammed; Jarvis, Suzi; Ishikawa, Mitsuru

    2003-03-01

    An atomic force microscopy (AFM) study of the shape, orientation and surface topology of RNA polymerase II supported on silanized freshly cleaved mica was made. The overall aim is to define the molecular topology of RNA polymerase II in appropriate fluids to help clarify the relationship of conformational features to biofunctionality. A Nanoscope III atomic force microscope was used in the tapping mode with oxide-sharpened (8-10 nm) Si 3N 4 probes in aqueous zinc chloride buffer. The main structural features observed by AFM were compared to those derived from electron-density plots based on X-ray crystallographic studies. The conformational features included a bilobal silhouette with an inverted umbrella-shaped crater connected to a reaction site. These studies provide a starting point for constructing a 3D-AFM profiling analysis of proteins such as RNA polymerase complexes.

  19. Direct Determination of the Base-Pair Force Constant of DNA from the Acoustic Phonon Dispersion of the Double Helix

    NASA Astrophysics Data System (ADS)

    van Eijck, L.; Merzel, F.; Rols, S.; Ollivier, J.; Forsyth, V. T.; Johnson, M. R.

    2011-08-01

    Quantifying the molecular elasticity of DNA is fundamental to our understanding of its biological functions. Recently different groups, through experiments on tailored DNA samples and numerical models, have reported a range of stretching force constants (0.3 to 3N/m). However, the most direct, microscopic measurement of DNA stiffness is obtained from the dispersion of its vibrations. A new neutron scattering spectrometer and aligned, wet spun samples have enabled such measurements, which provide the first data of collective excitations of DNA and yield a force constant of 83N/m. Structural and dynamic order persists unchanged to within 15 K of the melting point of the sample, precluding the formation of bubbles. These findings are supported by large scale phonon and molecular dynamics calculations, which reconcile hard and soft force constants.

  20. Cathodoluminescence microscopy and petrographic image analysis of aggregates in concrete pavements affected by alkali-silica reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stastna, A., E-mail: astastna@gmail.com; Sachlova, S.; Pertold, Z.

    2012-03-15

    Various microscopic techniques (cathodoluminescence, polarizing and electron microscopy) were combined with image analysis with the aim to determine a) the modal composition and degradation features within concrete, and b) the petrographic characteristics and the geological types (rocks, and their provenance) of the aggregates. Concrete samples were taken from five different portions of Highway Nos. D1, D11, and D5 (the Czech Republic). Coarse and fine aggregates were found to be primarily composed of volcanic, plutonic, metamorphic and sedimentary rocks, as well as of quartz and feldspar aggregates of variable origins. The alkali-silica reaction was observed to be the main degradation mechanism,more » based upon the presence of microcracks and alkali-silica gels in the concrete. Use of cathodoluminescence enabled the identification of the source materials of the quartz aggregates, based upon their CL characteristics (i.e., color, intensity, microfractures, deformation, and zoning), which is difficult to distinguish only employing polarizing and electron microscopy. - Highlights: Black-Right-Pointing-Pointer ASR in concrete pavements on the Highways Nos. D1, D5 and D11 (Czech Republic). Black-Right-Pointing-Pointer Cathodoluminescence was combined with various microscopic techniques and image analysis. Black-Right-Pointing-Pointer ASR was attributed to aggregates. Black-Right-Pointing-Pointer Source materials of aggregates were identified based on cathodoluminescence characteristics. Black-Right-Pointing-Pointer Quartz comes from different volcanic, plutonic and metamorphic parent rocks.« less

  1. A densitometric analysis of commercial 35mm films

    NASA Technical Reports Server (NTRS)

    Hammond, Ernest C., Jr.; Ruffin, Christopher, III

    1989-01-01

    IIaO films have been subjected to various sensitometric tests. The have included thermal and aging effects and reciprocity failure studies. In order to compare the special IIaO film with popular brands of 35 mm films and their possible use in astrophotography, Agfa, Fuji and Kodak print and slide formats, as well as black and white and color formats, were subjected to sensitometric, as well as densitometric analysis. A scanning electron microscope was used to analyze grain structure size, and shape as a function of both speed and brand. Preliminary analysis of the grain structure using an ISI-SS40 scanning electron microscope indicates that the grain sizes for darker densities are much larger than the grain size for lighter densities. Researchers analyze the scanning electron microscope findings of the various grains versus densities as well as enhancement of the grains, using the IP-8500 Digital Image Processor.

  2. Microscopic properties of ionic liquid/organic semiconductor interfaces revealed by molecular dynamics simulations.

    PubMed

    Yokota, Yasuyuki; Miyamoto, Hiroo; Imanishi, Akihito; Takeya, Jun; Inagaki, Kouji; Morikawa, Yoshitada; Fukui, Ken-Ichi

    2018-05-09

    Electric double-layer transistors based on ionic liquid/organic semiconductor interfaces have been extensively studied during the past decade because of their high carrier densities at low operation voltages. Microscopic structures and the dynamics of ionic liquids likely determine the device performance; however, knowledge of these is limited by a lack of appropriate experimental tools. In this study, we investigated ionic liquid/organic semiconductor interfaces using molecular dynamics to reveal the microscopic properties of ionic liquids. The organic semiconductors include pentacene, rubrene, fullerene, and 7,7,8,8-tetracyanoquinodimethane (TCNQ). While ionic liquids close to the substrate always form the specific layered structures, the surface properties of organic semiconductors drastically alter the ionic dynamics. Ionic liquids at the fullerene interface behave as a two-dimensional ionic crystal because of the energy gain derived from the favorable electrostatic interaction on the corrugated periodic substrate.

  3. Effective concentration as a tool for quantitatively addressing preorganization in multicomponent assemblies: application to the selective complexation of lanthanide cations.

    PubMed

    Canard, Gabriel; Koeller, Sylvain; Bernardinelli, Gérald; Piguet, Claude

    2008-01-23

    The beneficial entropic effect, which may be expected from the connection of three tridentate binding units to a strain-free covalent tripod for complexing nine-coordinate cations (Mz+ = Ca2+, La3+, Eu3+, Lu3+), is quantitatively analyzed by using a simple thermodynamic additive model. The switch from pure intermolecular binding processes, characterizing the formation of the triple-helical complexes [M(L2)3]z+, to a combination of inter- and intramolecular complexation events in [M(L8)]z+ shows that the ideal structural fit observed in [M(L8)]z+ indeed masks large energetic constraints. This limitation is evidenced by the faint effective concentrations, ceff, which control the intramolecular ring-closing reactions operating in [M(L8)]z+. This predominence of the thermodynamic approach over the usual structural analysis agrees with the hierarchical relationships linking energetics and structures. Its simple estimation by using a single microscopic parameter, ceff, opens novel perspectives for the molecular tuning of specific receptors for the recognition of large cations, a crucial point for the programming of heterometallic f-f complexes under thermodynamic control.

  4. Mining spatiotemporal patterns of urban dwellers from taxi trajectory data

    NASA Astrophysics Data System (ADS)

    Mao, Feng; Ji, Minhe; Liu, Ting

    2016-06-01

    With the widespread adoption of locationaware technology, obtaining long-sequence, massive and high-accuracy spatiotemporal trajectory data of individuals has become increasingly popular in various geographic studies. Trajectory data of taxis, one of the most widely used inner-city travel modes, contain rich information about both road network traffic and travel behavior of passengers. Such data can be used to study the microscopic activity patterns of individuals as well as the macro system of urban spatial structures. This paper focuses on trajectories obtained from GPS-enabled taxis and their applications for mining urban commuting patterns. A novel approach is proposed to discover spatiotemporal patterns of household travel from the taxi trajectory dataset with a large number of point locations. The approach involves three critical steps: spatial clustering of taxi origin-destination (OD) based on urban traffic grids to discover potentially meaningful places, identifying threshold values from statistics of the OD clusters to extract urban jobs-housing structures, and visualization of analytic results to understand the spatial distribution and temporal trends of the revealed urban structures and implied household commuting behavior. A case study with a taxi trajectory dataset in Shanghai, China is presented to demonstrate and evaluate the proposed method.

  5. Cluster self-organization of nanotubes in a nematic phase: The percolation behavior and appearance of optical singularities

    NASA Astrophysics Data System (ADS)

    Ponevchinsky, V. V.; Goncharuk, A. I.; Vasil'Ev, V. I.; Lebovka, N. I.; Soskin, M. S.

    2010-03-01

    The structural features, as well as the optical and electrophysical properties of a 5CB nematic liquid crystal with additions of multilayer carbon nanotubes, have been investigated in the concentration range C = 0.0025-0.1 wt %. The self-aggregation of nanotubes into clusters with a fractal structure occurs in the liquid crystal. At 0.025 wt %, the clusters are merged, initiating the percolation transition of the composite to a state with a high electric conductivity. The strong interaction of 5CB molecules with the surface of nanotube clusters is responsible for the formation of micron surface liquid crystal layers with an irregular field of elastic stresses and a complex structure of birefringence. They are easily observed in a polarization microscope and visualize directly invisible submicron nanotube aggregates. Their transverse size increases when an electric field is applied to the liquid crystal cell. Two mechanisms of the generation of optical singularities in the passing laser beam have been revealed. Optical vortices appear in the speckle fields of laser radiation scattered at the indented boundaries of the nanotube clusters, whereas the birefringence of the beam in surface liquid-crystal layers is accompanied by the appearance of polarization C points.

  6. First-principles study of hydrogen-bonded molecular conductor κ -H3(Cat-EDT-TTF/ST)2

    NASA Astrophysics Data System (ADS)

    Tsumuraya, Takao; Seo, Hitoshi; Kato, Reizo; Miyazaki, Tsuyoshi

    2015-07-01

    We theoretically study hydrogen-bonded molecular conductors synthesized recently, κ -H3(Cat-EDT-TTF) 2 and its diselena analog, κ -H3(Cat-EDT-ST) 2, by first-principles density functional theory calculations. In these crystals, two H(Cat-EDT-TTF/ST) units share a hydrogen atom with a short O-H-O hydrogen bond. The calculated band structure near the Fermi level shows a quasi-two-dimensional character with a rather large interlayer dispersion due to the absence of insulating layers, in contrast with conventional molecular conductors. We discuss effective low-energy models based on H(Cat-EDT-TTF/ST) units and its dimers, respectively, where the microscopic character of the orbitals composing them are analyzed. Furthermore, we find a stable structure which is different from the experimentally determined structure, where the shared hydrogen atom becomes localized to one of the oxygen atoms, in which charge disproportionation between the two types of H(Cat-EDT-TTF) units is associated. The calculated potential energy surface for the H atom is very shallow near the minimum points; therefore the probability of the H atom can be delocalized between the two O atoms.

  7. Microgravity Foam Structure and Rheology

    NASA Technical Reports Server (NTRS)

    Durian, Douglas J.

    1997-01-01

    To exploit rheological and multiple-light scattering techniques, and ultimately microgravity conditions, in order to quantify and elucidate the unusual elastic character of foams in terms of their underlying microscopic structure and dynamics. Special interest is in determining how this elastic character vanishes, i.e. how the foam melts into a simple viscous liquid, as a function of both increasing liquid content and shear strain rate. The unusual elastic character of foams will be quantified macroscopically by measurement of the shear stress as a function of static shear strain, shear strain rate, and time following a step strain; such data will be analyzed in terms of a yield stress, a static shear modulus, and dynamical time scales. Microscopic information about bubble packing and rearrangement dynamics, from which these macroscopic non-Newtonian properties presumably arise, will be obtained non-invasively by novel multiple-light scattering diagnostics such as Diffusing-Wave Spectroscopy (DWS). Quantitative trends with materials parameters, such as average bubble size, and liquid content, will be sought in order to elucidate the fundamental connection between the microscopic structure and dynamics and the macroscopic rheology.

  8. Fabrication of core-shell micro/nanoparticles for programmable dual drug release by emulsion electrospraying

    NASA Astrophysics Data System (ADS)

    Wang, Yazhou; Zhang, Yiqiong; Wang, Bochu; Cao, Yang; Yu, Qingsong; Yin, Tieying

    2013-06-01

    The study aimed at constructing a novel drug delivery system for programmable multiple drug release controlled with core-shell structure. The core-shell structure consisted of chitosan nanoparticles as core and polyvinylpyrrolidone micro/nanocoating as shell to form core-shell micro/nanoparticles, which was fabricated by ionic gelation and emulsion electrospray methods. As model drug agents, Naproxen and rhodamine B were encapsulated in the core and shell regions, respectively. The core-shell micro/nanoparticles thus fabricated were characterized and confirmed by scanning electron microscope, transmission electron microscope, and fluorescence optical microscope. The core-shell micro/nanoparticles showed good release controllability through drug release experiment in vitro. It was noted that a programmable release pattern for dual drug agents was also achieved by adjusting their loading regions in the core-shell structures. The results indicate that emulsion electrospraying technology is a promising approach in fabrication of core-shell micro/nanoparticles for programmable dual drug release. Such a novel multi-drug delivery system has a potential application for the clinical treatment of cancer, tuberculosis, and tissue engineering.

  9. An estimate of biofilm properties using an acoustic microscope.

    PubMed

    Good, Morris S; Wend, Christopher F; Bond, Leonard J; Mclean, Jeffrey S; Panetta, Paul D; Ahmed, Salahuddin; Crawford, Susan L; Daly, Don S

    2006-09-01

    Noninvasive measurements over a biofilm, a three-dimensional (3-D) community of microorganisms immobilized at a substratum, were made using an acoustic microscope operating at frequencies up to 70 MHz. The microscope scanned a 2.5-mm by 2.5-mm region of a living biofilm having a nominal thickness of 100 microm. Spatial variation of surface heterogeneity, thickness, interior structure, and biomass were estimated. Thickness was estimated as the product of the speed of sound of the medium and the interim between the highest signal peak and that of the substratum plane without biofilm. The thickest portions of biofilm were 145 microm; however, slender structures attributed as streamers extended above, with one obtaining a 274-microm height above the substratum. Three-dimensional iso-contours of amplitude were used to estimate the internal structure of the biofilm. Backscatter amplitude was examined at five zones of increasing height from the substratum to examine biomass distribution. Ultrasound-based estimates of thickness were corroborated with optical microscopy. The experimental acoustic and optical systems, methods used to estimate biofilm properties, and potential applications for the resulting data are discussed.

  10. Towards a microscopic description of the free-energy landscape of water.

    PubMed

    Prada-Gracia, Diego; Shevchuk, Roman; Hamm, Peter; Rao, Francesco

    2012-10-14

    Free-energy landscape theory is often used to describe complex molecular systems. Here, a microscopic description of water structure and dynamics based on configuration-space-networks and molecular dynamics simulations of the TIP4P/2005 model is applied to investigate the free-energy landscape of water. The latter is built on top of a large set of water microstates describing the kinetic stability of local hydrogen-bond arrangements up to the second solvation shell. In temperature space, the landscape displays three different regimes. At around ambient conditions, the free-energy surface is characterized by many short-lived basins of attraction which are structurally well-defined (inhomogeneous regime). At lower temperatures instead, the liquid rapidly becomes homogeneous. In this regime, the free energy is funneled-like, with fully coordinated water arrangements at the bottom of the funnel. Finally, a third regime develops below the temperature of maximal compressibility (Widom line) where the funnel becomes steeper with few interconversions between microstates other than the fully coordinated ones. Our results present a way to manage the complexity of water structure and dynamics, connecting microscopic properties to its ensemble behavior.

  11. Determination of scattering structures from spatial coherence measurements.

    PubMed

    Zarubin, A M

    1996-03-01

    A new method of structure determination and microscopic imaging with short-wavelength radiations (charged particles, X-rays, neutrons), based on measurements of the modulus and the phase of the degree of spatial coherence of the scattered radiation, is developed. The underlying principle of the method--transfer of structural information about the scattering potential via spatial coherence of the secondary (scattering) source of radiation formed by this potential--is expressed by the generalization of the van Cittert-Zernike theorem to wave and particle scattering [A.M. Zarubin, Opt. Commun. 100 (1993) 491; Opt. Commun. 102 (1993) 543]. Shearing interferometric techniques are proposed for implementing the above measurements; the limits of spatial resolution attainable by reconstruction of the absolute square of a 3D scattering potential and its 2D projections from the measurements are analyzed. It is shown theoretically that 3D imaging with atomic resolution can be realized in a "synthetic aperture" electron or ion microscope and that a 3D resolution of about 6 nm can be obtained with a "synthetic aperture" X-ray microscope. A proof-of-principle optical experiment is presented.

  12. Subsurface Growth Of Silicide Structures In Silicon

    NASA Technical Reports Server (NTRS)

    Fathauer, Robert W.; George, Thomas; Pike, William T.; Schowalter, Leo

    1993-01-01

    Technique shows promise for fabrication of novel electronic, optoelectronic, and electro-optical devices. Experiments demonstrated feasibility of growing microscopic single-crystal CoSi2 structures beneath surfaces of Si substrates.

  13. Soft x-ray imaging with incoherent sources

    NASA Astrophysics Data System (ADS)

    Wachulak, P.; Torrisi, A.; Ayele, M.; Bartnik, A.; Czwartos, J.; Wegrzyński, Ł.; Fok, T.; Parkman, T.; Vondrová, Š.; Turnová, J.; Odstrcil, M.; Fiedorowicz, H.

    2017-05-01

    In this work we present experimental, compact desk-top SXR microscope, the EUV microscope which is at this stage a technology demonstrator, and finally, the SXR contact microscope. The systems are based on laser-plasma EUV and SXR sources, employing a double stream gas puff target. The EUV and SXR full field microscopes, operating at 13.8 nm and 2.88 nm wavelengths, respectively, are capable of imaging nanostructures with a sub-50 nm spatial resolution with relatively short (seconds) exposure times. The SXR contact microscope operates in the "water-window" spectral range, to produce an imprint of the internal structure of the sample in a thin layer of SXR light sensitive photoresist. Applications of such desk-top EUV and SXR microscopes for studies of variety of different samples - test objects for resolution assessment and other objects such as carbon membranes, DNA plasmid samples, organic and inorganic thin layers, diatoms, algae and carcinoma cells, are also presented. Details about the sources, the microscopes as well as the imaging results for various objects will be presented and discussed. The development of such compact imaging systems may be important to the new research related to biological, material science and nanotechnology applications.

  14. Water window imaging x ray microscope

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B. (Inventor)

    1992-01-01

    A high resolution x ray microscope for imaging microscopic structures within biological specimens has an optical system including a highly polished primary and secondary mirror coated with identical multilayer coatings, the mirrors acting at normal incidence. The coatings have a high reflectivity in the narrow wave bandpass between 23.3 and 43.7 angstroms and have low reflectivity outside of this range. The primary mirror has a spherical concave surface and the secondary mirror has a spherical convex surface. The radii of the mirrors are concentric about a common center of curvature on the optical axis of the microscope extending from the object focal plane to the image focal plane. The primary mirror has an annular configuration with a central aperture and the secondary mirror is positioned between the primary mirror and the center of curvature for reflecting radiation through the aperture to a detector. An x ray filter is mounted at the stage end of the microscope, and film sensitive to x rays in the desired band width is mounted in a camera at the image plane of the optical system. The microscope is mounted within a vacuum chamber for minimizing the absorption of x rays in air from a source through the microscope.

  15. Scanning transmission x-ray microscope for materials science spectromicroscopy at the ALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warwick, T.; Seal, S.; Shin, H.

    1997-04-01

    The brightness of the Advanced Light Source will be exploited by several new instruments for materials science spectromicroscopy over the next year or so. The first of these to become operational is a scanning transmission x-ray microscope with which near edge x-ray absorption spectra (NEXAFS) can be measured on spatial features of sub-micron size. Here the authors describe the instrument as it is presently implemented, its capabilities, some studies made to date and the developments to come. The Scanning Transmission X-ray Microscope makes use of a zone plate lens to produce a small x-ray spot with which to perform absorptionmore » spectroscopy through thin samples. The x-ray beam from ALS undulator beamline 7.0 emerges into the microscope vessel through a silicon nitride vacuum window 160nm thick and 300{mu}m square. The vessel is filled with helium at atmospheric pressure. The zone plate lens is illuminated 1mm downstream from the vacuum window and forms an image in first order of a pinhole which is 3m upstream in the beamline. An order sorting aperture passes the first order converging light and blocks the unfocused zero order. The sample is at the focus a few mm downstream of the zone plate and mounted from a scanning piezo stage which rasters in x and y so that an image is formed, pixel by pixel, by an intensity detector behind the sample. Absorption spectra are measured point-by-point as the photon energy is scanned by rotating the diffraction grating in the monochromator and changing the undulator gap.« less

  16. Detection of nuclei in 4D Nomarski DIC microscope images of early Caenorhabditis elegans embryos using local image entropy and object tracking

    PubMed Central

    Hamahashi, Shugo; Onami, Shuichi; Kitano, Hiroaki

    2005-01-01

    Background The ability to detect nuclei in embryos is essential for studying the development of multicellular organisms. A system of automated nuclear detection has already been tested on a set of four-dimensional (4D) Nomarski differential interference contrast (DIC) microscope images of Caenorhabditis elegans embryos. However, the system needed laborious hand-tuning of its parameters every time a new image set was used. It could not detect nuclei in the process of cell division, and could detect nuclei only from the two- to eight-cell stages. Results We developed a system that automates the detection of nuclei in a set of 4D DIC microscope images of C. elegans embryos. Local image entropy is used to produce regions of the images that have the image texture of the nucleus. From these regions, those that actually detect nuclei are manually selected at the first and last time points of the image set, and an object-tracking algorithm then selects regions that detect nuclei in between the first and last time points. The use of local image entropy makes the system applicable to multiple image sets without the need to change its parameter values. The use of an object-tracking algorithm enables the system to detect nuclei in the process of cell division. The system detected nuclei with high sensitivity and specificity from the one- to 24-cell stages. Conclusion A combination of local image entropy and an object-tracking algorithm enabled highly objective and productive detection of nuclei in a set of 4D DIC microscope images of C. elegans embryos. The system will facilitate genomic and computational analyses of C. elegans embryos. PMID:15910690

  17. A fiber-optic fluorescence microscope using a consumer-grade digital camera for in vivo cellular imaging.

    PubMed

    Shin, Dongsuk; Pierce, Mark C; Gillenwater, Ann M; Williams, Michelle D; Richards-Kortum, Rebecca R

    2010-06-23

    Early detection is an essential component of cancer management. Unfortunately, visual examination can often be unreliable, and many settings lack the financial capital and infrastructure to operate PET, CT, and MRI systems. Moreover, the infrastructure and expense associated with surgical biopsy and microscopy are a challenge to establishing cancer screening/early detection programs in low-resource settings. Improvements in performance and declining costs have led to the availability of optoelectronic components, which can be used to develop low-cost diagnostic imaging devices for use at the point-of-care. Here, we demonstrate a fiber-optic fluorescence microscope using a consumer-grade camera for in vivo cellular imaging. The fiber-optic fluorescence microscope includes an LED light, an objective lens, a fiber-optic bundle, and a consumer-grade digital camera. The system was used to image an oral cancer cell line labeled with 0.01% proflavine. A human tissue specimen was imaged following surgical resection, enabling dysplastic and cancerous regions to be evaluated. The oral mucosa of a healthy human subject was imaged in vivo, following topical application of 0.01% proflavine. The fiber-optic microscope resolved individual nuclei in all specimens and tissues imaged. This capability allowed qualitative and quantitative differences between normal and precancerous or cancerous tissues to be identified. The optical efficiency of the system permitted imaging of the human oral mucosa in real time. Our results indicate this device as a useful tool to assist in the identification of early neoplastic changes in epithelial tissues. This portable, inexpensive unit may be particularly appropriate for use at the point-of-care in low-resource settings.

  18. Enhanced conductivity at orthorhombic–rhombohedral phase boundaries in BiFeO 3 thin films

    DOE PAGES

    Heo, Yooun; Lee, Jin Hong; Xie, Lin; ...

    2016-08-26

    Enhanced properties in modern functional materials can often be found at structural transition regions, such as morphotropic phase boundaries (MPB), owing to the coexistence of multiple phases with nearly equivalent energies. Strain-engineered MPBs have emerged in epitaxially grown BiFeO 3 (BFO) thin films by precisely tailoring a compressive misfit strain, leading to numerous intriguing phenomena, such as a massive piezoelectric response, magnetoelectric coupling, interfacial magnetism and electronic conduction. Recently, an orthorhombic–rhombohedral (O–R) phase boundary has also been found in tensile-strained BFO. In this study, we characterise the crystal structure and electronic properties of the two competing O and R phasesmore » using X-ray diffraction, scanning probe microscope and scanning transmission electron microscopy (STEM). We observe the temperature evolution of R and O domains and find that the domain boundaries are highly conductive. Temperature-dependent measurements reveal that the conductivity is thermally activated for R–O boundaries. STEM observations point to structurally wide boundaries, significantly wider than in other systems. Furthermore, we reveal a strong correlation between the highly conductive domain boundaries and structural material properties. These findings provide a pathway to use phase boundaries in this system for novel nanoelectronic applications.« less

  19. Structural, electrical and mechanical properties of selenium doped thallium based high-temperature superconductors

    NASA Astrophysics Data System (ADS)

    Cavdar, S.; Kol, N.; Koralay, H.; Ozturk, O.; Asikuzun, E.; Tasci, A. T.

    2016-01-01

    In this study, highly-refined chemical powders were synthesized by having them ready in appropriate stoichiometric proportions with conventional solid state reaction method so that they would produce the superconductor TlPb0.3Sr2Ca1-xSexCu2Oy (x = 0; 0.4; 0.6; 1.0). This study aims to understand effect of the selenium doping on the superconducting, structural and mechanical properties of the aforementioned superconducting material. The effect of the doping rates on the structural and electrical properties of the sample has been identified. Electrical characteristics of the TlPb0.3Sr2Ca1-xSexCu2Oy material were measured using standard four point probe method. Structural characteristics were examined with the powder X-ray diffractometer (XRD) and scanning electron microscope (SEM). Mechanical properties were analyzed with Vickers microhardness measurements on the sample surface. According to the results, it was observed that the reflection comes from the (00l) and parallel planes increased with Se doping. Particle size increases with increasing doping ratio. According to results of the mechanical measurements, all samples exhibit indentation size effect (ISE) behavior. Comparing the obtained results with theoretical studies, it was understood that Hays Kendall approach is the best method in determination of mechanical properties and analyzing microhardness of the materials.

  20. Probabilistic analysis of the behavior of polymer matrix composite materials reinforced by different types of fibers

    NASA Astrophysics Data System (ADS)

    Harb, N.; Bezzazi, B.; Mehraz, S.; Hamitouche, K.; Dilmi, H.

    2017-11-01

    The requests of lightening of the structures and gains in performance lead to search for new materials and the associated processes for aeronautical and space applications. Long-fiber composites have been used for many years for these applications; they make it possible to reduce the mass of the structures because of their excellent compromise of mass/rigidity / resistance. The materials in general contain defects which are essentially due to their nature and their mode of elaboration. To this purpuse, we carried out a probabilistic analysis of the mechanical behavior in three-point bending of composite materials with a thermosetting matrix in order to highlight the influence of the number of folds of the fibers and the nature of the fibers on the dispersion of the defects in the stratified structures fiberglass, carbon fiber laminates and hybrid (carbon / glass) laminates. From the results obtained, the dispersion of the defects is lower in the laminates of greater number of plies of the fibers and the hybrid laminates; the more the number of folds increases the more the mechanical characteristics increase; the hybrid laminates exhibit better mechanical properties compared to laminates of the same type of fiber. Finally, a morphological analysis of fracture structures and facies was investigated by scanning electron microscope (SEM) observations.

Top