Sample records for microscopic pore level

  1. Multiscale pore structure and its effect on gas transport in organic-rich shale

    NASA Astrophysics Data System (ADS)

    Wu, Tianhao; Li, Xiang; Zhao, Junliang; Zhang, Dongxiao

    2017-07-01

    A systematic investigation of multiscale pore structure in organic-rich shale by means of the combination of various imaging techniques is presented, including the state-of-the-art Helium-Ion-Microscope (HIM). The study achieves insight into the major features at each scale and suggests the affordable techniques for specific objectives from the aspects of resolution, dimension, and cost. The pores, which appear to be isolated, are connected by smaller pores resolved by higher-resolution imaging. This observation provides valuable information, from the microscopic perspective of pore structure, for understanding how gas accumulates and transports from where it is generated. A comprehensive workflow is proposed based on the characteristics acquired from the multiscale pore structure analysis to simulate the gas transport process. The simulations are completed with three levels: the microscopic mechanisms should be taken into consideration at level I; the spatial distribution features of organic matter, inorganic matter, and macropores constitute the major issue at level II; and the microfracture orientation and topological structure are dominant factors at level III. The results of apparent permeability from simulations agree well with the values acquired from experiments. By means of the workflow, the impact of various gas transport mechanisms at different scales can be investigated more individually and precisely than conventional experiments.

  2. Hydration level dependence of the microscopic dynamics of water adsorbed in ultramicroporous carbon

    DOE PAGES

    Mamontov, Eugene; Yue, Yanfeng; Bahadur, Jitendra; ...

    2016-10-20

    Even when not functionalized intentionally, most carbon materials are not hydrophobic and readily adsorb water molecules from atmospheric water vapor. We have equilibrated an ultramicroporous carbon at several levels of relative humidity, thereby attaining various hydration levels. The water molecules were adsorbed on the pore walls (but did not fill completely the pore volume) and thus could be better described as hydration, or surface, rather than confined, water. We used quasielastic neutron scattering to perform a detailed investigation of the dependence of microscopic dynamics of these adsorbed water species on the hydration level and temperature. The behavior of hydration watermore » in ultramicroporous carbon clearly demonstrates the same universal traits that characterize surface (hydration) water in other materials that are surface-hydrated. In addition, unless special treatment is intentionally applied to ultramicroporous carbon, the species filling its pores in various applications, ranging from hydrogen molecules to electrolytes, likely find themselves in contact with non-freezing water molecules characterized by rich microscopic dynamics.« less

  3. Rapid and precise scanning helium ion microscope milling of solid-state nanopores for biomolecule detection.

    PubMed

    Yang, Jijin; Ferranti, David C; Stern, Lewis A; Sanford, Colin A; Huang, Jason; Ren, Zheng; Qin, Lu-Chang; Hall, Adam R

    2011-07-15

    We report the formation of solid-state nanopores using a scanning helium ion microscope. The fabrication process offers the advantage of high sample throughput along with fine control over nanopore dimensions, producing single pores with diameters below 4 nm. Electronic noise associated with ion transport through the resultant pores is found to be comparable with levels measured on devices made with the established technique of transmission electron microscope milling. We demonstrate the utility of our nanopores for biomolecular analysis by measuring the passage of double-strand DNA.

  4. Enantioselectively controlled release of chiral drug (metoprolol) using chiral mesoporous silica materials

    NASA Astrophysics Data System (ADS)

    Guo, Zhen; Du, Yu; Liu, Xianbin; Ng, Siu-Choon; Chen, Yuan; Yang, Yanhui

    2010-04-01

    Chiral porous materials have attracted burgeoning attention on account of their potential applications in many areas, such as enantioseparation, chiral catalysis, chemical sensors and drug delivery. In this report, chiral mesoporous silica (CMS) materials with various pore sizes and structures were prepared using conventional achiral templates (other than chiral surfactant) and a chiral cobalt complex as co-template. The synthesized CMS materials were characterized by x-ray diffraction, nitrogen physisorption, scanning electron microscope and transmission electron microscope. These CMS materials, as carriers, were demonstrated to be able to control the enantioselective release of a representative chiral drug (metoprolol). The release kinetics, as modeled by the power law equation, suggested that the release profiles of metoprolol were remarkably dependent on the pore diameter and pore structure of CMS materials. More importantly, R- and S-enantiomers of metoprolol exhibited different release kinetics on CMS compared to the corresponding achiral mesoporous silica (ACMS), attributable to the existence of local chirality on the pore wall surface of CMS materials. The chirality of CMS materials on a molecular level was further substantiated by vibrational circular dichroism measurements.

  5. Effects of the soil pore network architecture on the soil's physical functionalities

    NASA Astrophysics Data System (ADS)

    Smet, Sarah; Beckers, Eléonore; Léonard, Angélique; Degré, Aurore

    2017-04-01

    The soil fluid movement's prediction is of major interest within an agricultural or environmental scope because many processes depend ultimately on the soil fluids dynamic. It is common knowledge that the soil microscopic pore network structure governs the inner-soil convective fluids flow. There isn't, however, a general methodthat consider the pore network structure as a variable in the prediction of thecore scale soil's physical functionalities. There are various possible representations of the microscopic pore network: sample scale averaged structural parameters, extrapolation of theoretic pore network, or use of all the information available by modeling within the observed pore network. Different representations implydifferent analyzing methodologies. To our knowledge, few studies have compared the micro-and macroscopic soil's characteristics for the same soil core sample. The objective of our study is to explore the relationship between macroscopic physical properties and microscopic pore network structure. The saturated hydraulic conductivity, the air permeability, the retention curve, and others classical physical parameters were measured for ten soil samples from an agricultural field. The pore network characteristics were quantified through the analyses of X-ray micro-computed tomographic images(micro-CT system Skyscan-1172) with a voxel size of 22 µm3. Some of the first results confirmed what others studies had reported. Then, the comparison between macroscopic properties and microscopic parameters suggested that the air movements depended mostly on the pore connectivity and tortuosity than on the total porosity volume. We have also found that the fractal dimension calculated from the X-ray images and the fractal dimension calculated from the retention curve were significantly different. Our communication will detailthose results and discuss the methodology: would the results be similar with a different voxel size? What are the calculated and measured parameters uncertainties? Sarah Smet, as a research fellow, acknowledges the support of the National Fund for Scientific Research (Brussels, Belgium).

  6. Paleokarst and reservoir porosity in the Ordovician Beekmantown Dolomite of the central Appalachian basin

    USGS Publications Warehouse

    Smosna, R.; Bruner, K.R.; Riley, R.A.

    2005-01-01

    A karst-unconformity play at the top of the Ordovician Beekmantown Dolomite is judged to have great petroleum potential in Ohio and adjacent states; wells have high ultimate reserves and large areas remain untested. To better understand the origin, development, and distribution of Beekmantown porosity, we conducted a petrologic-stratigraphic study of cores and thin sections from 15 oil and gas wells. The massive dolomite, characterized by a hypidiotopic-idiotopic texture, formed by the replacement of stacked peritidal carbonate cycles. Secondary porosity occurs at two scales: (1) mesoscopic - breccia porosity, solution-enlarged fractures, large vugs, and caverns, and (2) microscopic - intercrystalline, intracrystalline, molds, small vugs, and microfractures. Mesoscopic pores (providing the major storage capacity in this reservoir) were produced by intrastratal solution and collapse of carbonate layers, whereas microscopic pores (connecting the larger pores) generally formed by the leaching of individual carbonate grains and crystals. Most pore types developed during periods of subaerial exposure across the carbonate bank, tied to either the numerous, though brief falls of relative sea level during Beekmantown deposition or more importantly the prolonged Knox unconformity at the close of sedimentation. The distribution of reservoir-quality porosity is quite heterogeneous, being confined vertically to a zone immediately below the unconformity and best developed laterally beneath buried hills and noses of this erosion surface. The inferred, shallow flow of ground water in the Beekmantown karst, primarily below topographic highs and above a diagenetic base level close to the water table, led to this irregular distribution of porosity.

  7. The impact of calcium carbonate as pore forming agent and drug entrapment method towards drug dissolution mechanism of amoxicillin trihydrate encapsulated by chitosan-methyl cellulose semi-IPN hydrogel for floating drug delivery system

    NASA Astrophysics Data System (ADS)

    Dewantara, Fauzi; Budianto, Emil

    2018-04-01

    Chitosan-methyl cellulose semi-IPN hydrogel is used as floating drug delivery system, and calcium carbonate also added as pore forming agent. The hydrogel network arranged by not only using biopolymer chitosan and methyl cellulose, but also the crosslink agent that is glutaraldehyde. Amoxicillin trihydrate entrapped into the polymer network with two different method, in situ loading and post loading. Furthermore both method has been tested for drug entrapment efficiency along with drug dissolution test, and the result for drug entrapment efficiency is in situ loading method has highest value of 100%, compared to post loading method which has value only 71%. Moreover, at the final time of drug dissolution test shows in situ loading method has value of 96% for total accumulative of drug dissolution, meanwhile post loading method has 72%. The value of drug dissolution test from both method is used for analyzing drug dissolution mechanism of amoxicillin trihydrate from hydrogel network with four mathematical drug mechanism models as parameter. The polymer network encounter destructive degradation causes by acid solution which used as dissolution medium, and the level of degradation is observed with optical microscope. However the result shows that degradation of the polymer network doesn't affect drug dissolution mechanism directly. Although the pore forming agent causes the pore inside the hydrogel network create interconnection and it was quite influential to drug dissolution mechanism. Interconnected pore is observed with Scanning Electron Microscope (SEM) and shows that the amount and area of interconnected pore inside the hydrogel network is increasing as drug dissolution goes on.

  8. Modeling the Dynamics of Gel Electrophorresis in the High School Classroom

    ERIC Educational Resources Information Center

    Saucedo, Skyler R.

    2013-01-01

    Gel electrophoresis, used by geneticists and forensic experts alike, is an immensely popular technique that utilizes an electric field to separate molecules and proteins by size and charge. At the microscopic level, a dye or complex protein like DNA is passed through agarose, a gelatinous three-dimensional matrix of pores and nano-sized tunnels.…

  9. Synthesis and characterization of binary titania-silica mixed oxides

    NASA Astrophysics Data System (ADS)

    Budhi, Sridhar

    A series of binary titania-silica mixed oxides were synthesized by the sol-gel method at room temperature. The mixed oxides were prepared that involved the hydrolysis of titanium isopropoxide and tetraethylorthosilicate (TEOS) by co-solvent induced gelation usually in acidic media. The resulting gels were dried, calcined and then characterized by powder X-ray diffractometric studies, nitrogen sorption studies (at 77K), diffuse reflectance spectroscopy, Raman microscopy and transmission electron microscopic studies. The nitrogen sorption studies indicate that the specific surface areas, pore volume, pore diameter and pore size distribution of the mixed oxides were substantially enhanced when non-polar solvents such as toluene, p-xylene or mesitylene were added as co-solvents to the synthesis gel. Transmission electron microscopic (TEM) studies confirm the results obtained from the nitrogen sorption studies. Our results indicate that we can obtain binary metal oxides possessing high surface area and large pore volumes with tunable pore size distribution at room temperature. Photocatalytic evaluation of the mixed oxides is currently in progress.

  10. Multifunctional Poro-Vascular Composites for UAV Performance Enhancement

    DTIC Science & Technology

    2012-07-31

    structural “skin” materials with surface pores and internal vascular channels filled with an ionic- liquid whose height and shape at the pore exits is...2 V t e e q q          Intrinsic contact angle (zero voltage) Applied potential Interfacial tension (IFT) of ionic liquid Lippmann...Characterization flat plates  single (capillary) pore  PV pore arrays FTA 1000 Drop-Shape Characterization • Microscope lens : 0.5 to 12x magnification • Side

  11. Beneficial reuse of fly ashes in geotechnical engineering with physicochemical and electron microscopic methods.

    DOT National Transportation Integrated Search

    2013-06-01

    The sedimentation behavior of fine grained soil is largely dependent on its pore fluid chemistry. Physicochemical properties of the : pore fluid, such as ionic strength and pH, could greatly influence the micro structure of kaolinite which in turn in...

  12. Resizing metal-coated nanopores using a scanning electron microscope.

    PubMed

    Chansin, Guillaume A T; Hong, Jongin; Dusting, Jonathan; deMello, Andrew J; Albrecht, Tim; Edel, Joshua B

    2011-10-04

    Electron beam-induced shrinkage provides a convenient way of resizing solid-state nanopores in Si(3) N(4) membranes. Here, a scanning electron microscope (SEM) has been used to resize a range of different focussed ion beam-milled nanopores in Al-coated Si(3) N(4) membranes. Energy-dispersive X-ray spectra and SEM images acquired during resizing highlight that a time-variant carbon deposition process is the dominant mechanism of pore shrinkage, although granular structures on the membrane surface in the vicinity of the pores suggest that competing processes may occur. Shrinkage is observed on the Al side of the pore as well as on the Si(3) N(4) side, while the shrinkage rate is observed to be dependent on a variety of factors. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Influence of Pore Characteristics on Electrochemical and Biological Behavior of Ti Foams

    NASA Astrophysics Data System (ADS)

    Salehi, Akram; Barzegar, Faezeh; Amini Mashhadi, Hossein; Nokhasteh, Samira; Abravi, Mohammad Sadegh

    2017-08-01

    This study reports on titanium (Ti) foams produced using the powder metallurgy technique. During the investigation, the cross-sectional area and perimeter distributions of the pores within the foam were measured. Metallographic image processing analysis software combined with scanning electron microscopic images demonstrated that the pore size and circularity were affected by varying the volume percentage of the space-holder material. The corrosion resistance was investigated using electrochemical impedance spectroscopy and cyclic polarization tests. MG-63 osteoblast-like cells were used to study the biocompatibility and to evaluate the cell attachment, viability, and alkaline phosphatase activity. Analytical results indicated that 50 and 60 vol.% samples were suitable for biomedical applications. Because of the high degree of interconnectivity in the 60 and 70% porosity samples, the electrochemical parameters produced similar results. The corrosion rate of the porous samples showed that the amount of dissolved Ti was at an acceptable level that can be ejected by the body. Applying a fluoridated hydroxyapatite coating significantly increased the osteoblast cell functions on the porous surface.

  14. Pentaethylenehexamine-Loaded Hierarchically Porous Silica for CO2 Adsorption

    PubMed Central

    Ji, Changchun; Huang, Xin; Li, Lei; Xiao, Fukui; Zhao, Ning; Wei, Wei

    2016-01-01

    Recently, amine-functionalized materials as a prospective chemical sorbent for post combustion CO2 capture have gained great interest. However, the amine grafting for the traditional MCM-41, SBA-15, pore-expanded MCM-41 or SBA-15 supports can cause the pore volume and specific surface area of sorbents to decrease, significantly affecting the CO2 adsorption-desorption dynamics. To overcome this issue, hierarchical porous silica with interparticle macropores and long-range ordering mesopores was prepared and impregnated with pentaethylenehexamine. The pore structure and amino functional group content of the modified silicas were analyzed by scanning electron microscope, transmission electron microscope, N2 adsorption, X-ray powder diffraction, and Fourier transform infrared spectra. Moreover, the effects of the pore structure as well as the amount of PEHA loading of the samples on the CO2 adsorption capacity were investigated in a fixed-bed adsorption system. The CO2 adsorption capacity reached 4.5 mmol CO2/(g of adsorbent) for HPS−PEHA-70 at 75 °C. Further, the adsorption capacity for HPS-PEHA-70 was steady after a total of 15 adsorption-desorption cycles. PMID:28773956

  15. DNA translocation measurements in solid-state nanopores fabricated using helium-ion microscope

    NASA Astrophysics Data System (ADS)

    Liu, Liping; Miao, Wang; Huynh, Chuong; Liu, Quanjun; Ling, Xinsheng

    2012-02-01

    We report high-quality DNA translocation measurements in solid-state nanopores drilled in free-standing SiN membranes by using a helium-ion beam in a Zeiss helium-ion microscope (HIM). We show that the HIM nanopores have similar performance as the TEM-drilled pores.

  16. Direct Numerical Simulation of Low Capillary Number Pore Scale Flows

    NASA Astrophysics Data System (ADS)

    Esmaeilzadeh, S.; Soulaine, C.; Tchelepi, H.

    2017-12-01

    The arrangement of void spaces and the granular structure of a porous medium determines multiple macroscopic properties of the rock such as porosity, capillary pressure, and relative permeability. Therefore, it is important to study the microscopic structure of the reservoir pores and understand the dynamics of fluid displacements through them. One approach for doing this, is direct numerical simulation of pore-scale flow that requires a robust numerical tool for prediction of fluid dynamics and a detailed understanding of the physical processes occurring at the pore-scale. In pore scale flows with a low capillary number, Eulerian multiphase methods are well-known to produce additional vorticity close to the interface. This is mainly due to discretization errors which lead to an imbalance of capillary pressure and surface tension forces that causes unphysical spurious currents. At the pore scale, these spurious currents can become significantly stronger than the average velocity in the phases, and lead to unphysical displacement of the interface. In this work, we first investigate the capability of the algebraic Volume of Fluid (VOF) method in OpenFOAM for low capillary number pore scale flow simulations. Afterward, we compare VOF results with a Coupled Level-Set Volume of Fluid (CLSVOF) method and Iso-Advector method. It has been shown that the former one reduces the VOF's unphysical spurious currents in some cases, and both are known to capture interfaces sharper than VOF. As the conclusion, we will investigate that whether the use of CLSVOF or Iso-Advector will lead to less spurious velocities and more accurate results for capillary driven pore-scale multiphase flows or not. Keywords: Pore-scale multiphase flow, Capillary driven flows, Spurious currents, OpenFOAM

  17. Provenance study through analysis of microstructural characteristics using an optical microscope and scanning electron microscopy for Goryeo celadon excavated from the seabed.

    PubMed

    Min-su, Han

    2013-08-01

    This paper aims at identifying the provenance of Goryeo celadons by understanding its microstructural characteristics, such as particles, blisters, forms and amount of pores, and the presence of crystal formation, bodies, and glazes and its boundary, using an optical microscope and scanning electron microscopy (SEM). The analysis of the reproduced samples shows that the glazed layer of the sherd fired at higher temperatures has lower viscosity and therefore it encourages the blisters to be combined together and the layer to become more transparent. In addition, the result showed that the vitrification and melting process of clay minerals such as feldspars and quartzs on the bodies was accelerated for those samples. To factor such characteristics of the microstructure and apply it to the sherds, the samples could be divided into six categories based on status, such as small particles with many small pores or mainly large and small circular pores in the bodies, only a limited number of varied sized blisters in the glazes, and a few blisters and needle-shaped crystals on the boundary surface. In conclusion, the analysis of the microstructural characteristics using an optical microscope and SEM have proven to be useful as a categorizing reference factor in a provenance study on Goryeo celadons.

  18. Modeling the Dynamics of Gel Electrophorresis in the High School Classroom

    NASA Astrophysics Data System (ADS)

    Saucedo, Skyler R.

    2013-01-01

    Gel electrophoresis, used by geneticists and forensic experts alike, is an immensely popular technique that utilizes an electric field to separate molecules and proteins by size and charge. At the microscopic level, a dye or complex protein like DNA is passed through agarose, a gelatinous three-dimensional matrix of pores and nano-sized tunnels. When forced through a maze of holes, the molecule unravels, forming a long chain, slithering through the field of pores in a process colloquially coined "reputation." As a result, the smaller molecules travel farther through the gel when compared to molecules of larger molecular weight. This highly effective "molecular sieve" provides consistent data and allows scientists to compare similar sequences of DNA base pairs in a routine fashion.2 When performed at the high school level, gel electrophoresis provides students the opportunity to learn about a contemporary lab technique of great scientific relevance. Doing real science certainly excites students and motivates them to learn more.

  19. Biological hydrogels as selective diffusion barriers.

    PubMed

    Lieleg, Oliver; Ribbeck, Katharina

    2011-09-01

    The controlled exchange of molecules between organelles, cells, or organisms and their environment is crucial for life. Biological gels such as mucus, the extracellular matrix (ECM), and the biopolymer barrier within the nuclear pore are well suited to achieve such a selective exchange, allowing passage of particular molecules while rejecting many others. Although hydrogel-based filters are integral parts of biology, clear concepts of how their barrier function is controlled at a microscopic level are still missing. We summarize here our current understanding of how selective filtering is established by different biopolymer-based hydrogels. We ask if the modulation of microscopic particle transport in biological hydrogels is based on a generic filtering principle which employs biochemical/biophysical interactions with the filtered molecules rather than size-exclusion effects. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Dynamical and phase behavior of a phospholipid membrane altered by an antimicrobial peptide at low concentration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mamontov, Eugene; Tyagi, M.; Qian, Shuo

    Here we discuss that the mechanism of action of antimicrobial peptides is traditionally attributed to the formation of pores in the lipid cell membranes of pathogens, which requires a substantial peptide to lipid ratio. However, using incoherent neutron scattering, we show that even at a concentration too low for pore formation, an archetypal antimicrobial peptide, melittin, disrupts the regular phase behavior of the microscopic dynamics in a phospholipid membrane, dimyristoylphosphatidylcholine (DMPC). At the same time, another antimicrobial peptide, alamethicin, does not exert a similar effect on the DMPC microscopic dynamics. The melittin-altered lateral motion of DMPC at physiological temperature nomore » longer resembles the fluid-phase behavior characteristic of functional membranes of the living cells. The disruptive effect demonstrated by melittin even at low concentrations reveals a new mechanism of antimicrobial action relevant in more realistic scenarios, when peptide concentration is not as high as would be required for pore formation, which may facilitate treatment with antimicrobial peptides.« less

  1. Influence of humidity on performance and microscopic dynamics of an ionic liquid in supercapacitor

    NASA Astrophysics Data System (ADS)

    Osti, Naresh C.; Dyatkin, Boris; Thompson, Matthew W.; Tiet, Felix; Zhang, Pengfei; Dai, Sheng; Tyagi, Madhusudan; Cummings, Peter T.; Gogotsi, Yury; Wesolowski, David J.; Mamontov, Eugene

    2017-08-01

    We investigated the influence of water molecules on the diffusion, dynamics, and electrosorption of a room temperature ionic liquid (RTIL), [BMI m+] [T f2N-] , confined in carbide-derived carbon with a bimodal nanoporosity. Water molecules in pores improved power densities and rate handling abilities of these materials in supercapacitor electrode configurations. We measured the water-dependent microscopic dynamics of the RTIL cations using quasielastic neutron scatting (QENS). The ionic liquid demonstrated greater mobility with increasing water uptake, facilitated by the nanoporous carbon environment, up to a well-defined saturation point. We concluded that water molecules displaced RTIL ions attached to the pore surfaces and improved the diffusivity of the displaced cations. This effect consequently increased capacitance and rate handling of the electrolyte in water-containing pores. Our findings suggest the possible effect of immiscible co-solvents on energy and power densities of energy storage devices, as well as the operating viability of nonaqueous supercapacitor electrolytes in humid environments.

  2. Dynamical and phase behavior of a phospholipid membrane altered by an antimicrobial peptide at low concentration

    DOE PAGES

    Mamontov, Eugene; Tyagi, M.; Qian, Shuo; ...

    2016-05-27

    Here we discuss that the mechanism of action of antimicrobial peptides is traditionally attributed to the formation of pores in the lipid cell membranes of pathogens, which requires a substantial peptide to lipid ratio. However, using incoherent neutron scattering, we show that even at a concentration too low for pore formation, an archetypal antimicrobial peptide, melittin, disrupts the regular phase behavior of the microscopic dynamics in a phospholipid membrane, dimyristoylphosphatidylcholine (DMPC). At the same time, another antimicrobial peptide, alamethicin, does not exert a similar effect on the DMPC microscopic dynamics. The melittin-altered lateral motion of DMPC at physiological temperature nomore » longer resembles the fluid-phase behavior characteristic of functional membranes of the living cells. The disruptive effect demonstrated by melittin even at low concentrations reveals a new mechanism of antimicrobial action relevant in more realistic scenarios, when peptide concentration is not as high as would be required for pore formation, which may facilitate treatment with antimicrobial peptides.« less

  3. Pore-scale distribution of mucilage affecting water repellency in the rhizosphere

    NASA Astrophysics Data System (ADS)

    Benard, Pascal; Zarebanadkouki, Mohsen; Hedwig, Clemens; Holz, Maire; Ahmed, Mutez; Carminati, Andrea

    2017-04-01

    The hydraulic properties of the rhizosphere are altered by plants, fungi and microorganism. Plant roots release different compounds into the soil. One of these substances is mucilage, a gel which turns water repellent upon drying. We introduce a conceptual model of mucilage deposition during soil drying and its impact on the soil wettability. As the soil dries, water menisci recede and draw mucilage towards the contact region between particles where it is deposited. At high mucilage content, mucilage deposits expand into the open pore space and finally block water infiltration when a critical fraction of the pore space is blocked. To test this hypothesis, we mixed mucilage and particles of different grain size, we let them dry and measured the contact angle using the sessile drop method. Mucilage deposition was visualized by light microscopy imaging. Contact angle measurements showed a distinct threshold-like behavior with a sudden increase in apparent contact angle at high mucilage concentrations. Particle roughness induced a more uniform distribution of mucilage. The observed threshold corresponds to the concentration when mucilage deposition occupies a critical fraction of the pore space, as visualized with the microscope images. In conclusion, water repellency is critically affected by the distribution of mucilage on the pore-scale. This microscopic heterogeneity has to be taken into account in the description of macroscopic processes, like water infiltration or rewetting of water repellent soil.

  4. Upscaling soil saturated hydraulic conductivity from pore throat characteristics

    NASA Astrophysics Data System (ADS)

    Ghanbarian, Behzad; Hunt, Allen G.; Skaggs, Todd H.; Jarvis, Nicholas

    2017-06-01

    Upscaling and/or estimating saturated hydraulic conductivity Ksat at the core scale from microscopic/macroscopic soil characteristics has been actively under investigation in the hydrology and soil physics communities for several decades. Numerous models have been developed based on different approaches, such as the bundle of capillary tubes model, pedotransfer functions, etc. In this study, we apply concepts from critical path analysis, an upscaling technique first developed in the physics literature, to estimate saturated hydraulic conductivity at the core scale from microscopic pore throat characteristics reflected in capillary pressure data. With this new model, we find Ksat estimations to be within a factor of 3 of the average measured saturated hydraulic conductivities reported by Rawls et al. (1982) for the eleven USDA soil texture classes.

  5. Protein immobilization onto electrochemically synthesized CoFe nanowires

    PubMed Central

    Torati, Sri Ramulu; Reddy, Venu; Yoon, Seok Soo; Kim, CheolGi

    2015-01-01

    CoFe nanowires have been synthesized by the electrodeposition technique into the pores of a polycarbonate membrane with a nominal pore diameter of 50 nm, and the composition of CoFe nanowires varying by changing the source concentration of iron. The synthesized nanowire surfaces were functionalized with amine groups by treatment with aminopropyltriethoxysilane (APTES) linker, and then conjugated with streptavidin-Cy3 protein via ethyl (dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide coupling chemistry. The oxide surface of CoFe nanowire is easily modified with aminopropyltriethoxysilane to form an amine terminating group, which is covalently bonded to streptavidin-Cy3 protein. The physicochemical properties of the nanowires were analyzed through different characterization techniques such as scanning electron microscope, energy dispersive spectroscopy, and vibrating sample magnetometer. Fluorescence microscopic studies and Fourier transform infrared studies confirmed the immobilization of protein on the nanowire surface. In addition, the transmission electron microscope analysis reveals the thin protein layer which is around 12–15 nm on the nanowire surfaces. PMID:25609966

  6. Multiple Approaches to Characterizing Nano-Pore Structure of Barnett Shale

    NASA Astrophysics Data System (ADS)

    Hu, Q.; Gao, Z.; Ewing, R. P.; Dultz, S.; Kaufmann, J.; Hamamoto, S.; Webber, B.; Ding, M.

    2013-12-01

    Microscopic characteristics of porous media - pore shape, pore-size distribution, and pore connectivity - control fluid flow and mass transport. This presentation discusses various approaches to investigating nano-pore structure of Barnett shale, with its implications in gas production behavior. The innovative approaches include imbibition, tracer diffusion, edge-accessible porosity, porosimetry (mercury intrusion porosimetry, nitrogen and water vapor sorption isotherms, and nuclear magnetic resonance cyroporometry), and imaging (Wood's metal impregnation followed with laser ablation-inductively coupled plasma-mass spectrometry, focused ion beam/scanning electron microscopy, and small angle neutron scattering). Results show that the shale pores are predominantly in the nm size range, with measured median pore-throat diameters about 5 nm. But small pore size is not the major contributor to low gas recovery; rather, the low mass diffusivity appears to be caused by low pore connectivity of Barnett shale. Chemical diffusion in sparsely-connected pore spaces is not well described by classical Fickian behavior; anomalous behavior is suggested by percolation theory, and confirmed by results of imbibition and diffusion tests. Our evolving complementary approaches, with their several advantages and disadvantages, provide a rich toolbox for tackling the nano-pore structure characteristics of shales and other natural rocks.

  7. Fractal Characteristics of the Pore Network in Diatomites Using Mercury Porosimetry and Image Analysis

    NASA Astrophysics Data System (ADS)

    Stańczak, Grażyna; Rembiś, Marek; Figarska-Warchoł, Beata; Toboła, Tomasz

    The complex pore space considerably affects the unique properties of diatomite and its significant potential for many industrial applications. The pore network in the diatomite from the Lower Miocene strata of the Skole nappe (the Jawornik deposit, SE Poland) has been investigated using a fractal approach. The fractal dimension of the pore-space volume was calculated using the Menger sponge as a model of a porous body and the mercury porosimetry data in a pore-throat diameter range between 10,000 and 10 nm. Based on the digital analyses of the two-dimensional images from thin sections taken under a scanning electron microscope at the backscattered electron mode at different magnifications, the authors tried to quantify the pore spaces of the diatomites using the box counting method. The results derived from the analyses of the pore-throat diameter distribution using mercury porosimetry have revealed that the pore space of the diatomite has the bifractal structure in two separated ranges of the pore-throat diameters considerably smaller than the pore-throat sizes corresponding to threshold pressures. Assuming that the fractal dimensions identified for the ranges of the smaller pore-throat diameters characterize the overall pore-throat network in the Jawornik diatomite, we can set apart the distribution of the pore-throat volume (necks) and the pore volume from the distribution of the pore-space volume (pores and necks together).

  8. MORPH-I (Ver 1.0) a software package for the analysis of scanning electron micrograph (binary formatted) images for the assessment of the fractal dimension of enclosed pore surfaces

    USGS Publications Warehouse

    Mossotti, Victor G.; Eldeeb, A. Raouf; Oscarson, Robert

    1998-01-01

    MORPH-I is a set of C-language computer programs for the IBM PC and compatible minicomputers. The programs in MORPH-I are used for the fractal analysis of scanning electron microscope and electron microprobe images of pore profiles exposed in cross-section. The program isolates and traces the cross-sectional profiles of exposed pores and computes the Richardson fractal dimension for each pore. Other programs in the set provide for image calibration, display, and statistical analysis of the computed dimensions for highly complex porous materials. Requirements: IBM PC or compatible; minimum 640 K RAM; mathcoprocessor; SVGA graphics board providing mode 103 display.

  9. Multi-Scale Investigation of the Formation and Breakdown of Passive Films on Carbon Steel Rebar in Concrete

    NASA Astrophysics Data System (ADS)

    Ghods, Pouria

    The multi-scale investigation presented in this thesis was carried out to understand better the mechanisms of passivation and chloride-induced depassivation of carbon steel reinforcement in concrete. The study consisted of electrochemical experiments (electrochemical impedance spectroscopy, linear polarization resistance, free corrosion potential, anodic polarization), microscopic examinations (scanning electron microscopy, transmission electron microscopy, selected area diffraction, convergent beam electron diffraction), numerical modeling (finite element method), and spectroscopic studies (x-ray photoelectron, energy dispersed x-ray, electron energy loss). Electrochemical and microscopic studies showed that the composition of the pore solution and the surface conditions of the rebar affect the passivity and depassivation of carbon steel in concrete. It was demonstrated that crevices between mill scale and steel may become potential sites for depassivation and pit nucleation. The numerical investigation that was carried out to test this hypothesis confirmed that the ratio of chloride to hydroxide concentrations, Cl-/OH-, in crevices increased to levels higher than that of the bulk pore solution, making crevices more vulnerable to depassivation. Therefore, it was concluded that the variability associated with reported chloride thresholds might be attributed, at least in part, to the variability in mill scale properties resulting from the variability in manufacturing. The nano-scale microscopic and spectroscopic studies indicated the formation of 4-10 nm-thick passive oxide films on carbon steel in simulated concrete pore solutions, and these films consisted of two layers separated with an indistinct border. The inner layer was mainly composed of protective Fe2+-rich oxides that are in epitaxial relationship with the underlying steel surface; while the outer layer mostly consisted of (possibly porous) Fe3+-rich oxides, through which chlorides can penetrate. It was proposed that, in the presence of chlorides, Fe+2-rich oxides in the inner layer transform into Fe+3-rich oxides and potentially become un-protective. Although how this transformation occurs is still subject of future research, there are evidences showing that the process most likely leads to the formation of local anodic and cathodic sites on the steel surface.

  10. Anisotropy of permeability of reservoir rocks over Miaoli area, NW Taiwan.

    NASA Astrophysics Data System (ADS)

    Bo-Siang, Xiong; Loung-Yie, Tsai

    2013-04-01

    The amount of the CO2 has risen since the Industrial Evolution. In order to reduce the amount of CO2 in atmosphere, CO2 sequestration is considered to be the most effective way. In recent years, research about subsurface storage of CO2 into geological formations has increased rapidly. Assessment of storage capability is needed before selecting a site for sequestration. Porosity and permeability are important assessment factors for CO2 sequestration in reservoir rocks. In order to improve the assessment, reservoir rock properties are important and need to be evaluated in advance. Porosity of sandstone is controlled by texture and degree of cementation, whereas permeability is controlled by pore-throat size, pore types and connectivity of pore throat. Sandstones of Miocene to Pleistocene in Miaoli area, NW Taiwan, were collected in this study. YOKO2 porosity/permeability detector is used to measure their permeability perpendicular and parallel to bedding planes under 3 to 60MPa confining pressure with Helium as media. Optical microscope and scanning electron microscope (SEM) were then used to observe the mineral composition, lithology, texture and pore type of sandstones, so as to explore the influence of rock properties on porosity and anisotropy of permeability, as well as the storage potential for CO2 sequestration in the future. The experimental results show that most of the horizontal permeability exceeds the vertical permeability and the anisotropy increases with increasing confining pressure. Mineral composition of sandstones studied were mainly quartz and lithic with little feldspar content. The pore types were mainly primary pores and micropores in this study. The correlation between quantity of macropores and permeability were higher than total porosity and permeability, mainly due to total porosity contains micropores which contribute little to permeability.

  11. Pore structure characterization of Chang-7 tight sandstone using MICP combined with N2GA techniques and its geological control factors

    NASA Astrophysics Data System (ADS)

    Cao, Zhe; Liu, Guangdi; Zhan, Hongbin; Li, Chaozheng; You, Yuan; Yang, Chengyu; Jiang, Hang

    2016-11-01

    Understanding the pore networks of unconventional tight reservoirs such as tight sandstones and shales is crucial for extracting oil/gas from such reservoirs. Mercury injection capillary pressure (MICP) and N2 gas adsorption (N2GA) are performed to evaluate pore structure of Chang-7 tight sandstone. Thin section observation, scanning electron microscope, grain size analysis, mineral composition analysis, and porosity measurement are applied to investigate geological control factors of pore structure. Grain size is positively correlated with detrital mineral content and grain size standard deviation while negatively related to clay content. Detrital mineral content and grain size are positively correlated with porosity, pore throat radius and withdrawal efficiency and negatively related to capillary pressure and pore-to-throat size ratio; while interstitial material is negatively correlated with above mentioned factors. Well sorted sediments with high debris usually possess strong compaction resistance to preserve original pores. Although many inter-crystalline pores are produced in clay minerals, this type of pores is not the most important contributor to porosity. Besides this, pore shape determined by N2GA hysteresis loop is consistent with SEM observation on clay inter-crystalline pores while BJH pore volume is positively related with clay content, suggesting N2GA is suitable for describing clay inter-crystalline pores in tight sandstones.

  12. Pore structure characterization of Chang-7 tight sandstone using MICP combined with N2GA techniques and its geological control factors

    PubMed Central

    Cao, Zhe; Liu, Guangdi; Zhan, Hongbin; Li, Chaozheng; You, Yuan; Yang, Chengyu; Jiang, Hang

    2016-01-01

    Understanding the pore networks of unconventional tight reservoirs such as tight sandstones and shales is crucial for extracting oil/gas from such reservoirs. Mercury injection capillary pressure (MICP) and N2 gas adsorption (N2GA) are performed to evaluate pore structure of Chang-7 tight sandstone. Thin section observation, scanning electron microscope, grain size analysis, mineral composition analysis, and porosity measurement are applied to investigate geological control factors of pore structure. Grain size is positively correlated with detrital mineral content and grain size standard deviation while negatively related to clay content. Detrital mineral content and grain size are positively correlated with porosity, pore throat radius and withdrawal efficiency and negatively related to capillary pressure and pore-to-throat size ratio; while interstitial material is negatively correlated with above mentioned factors. Well sorted sediments with high debris usually possess strong compaction resistance to preserve original pores. Although many inter-crystalline pores are produced in clay minerals, this type of pores is not the most important contributor to porosity. Besides this, pore shape determined by N2GA hysteresis loop is consistent with SEM observation on clay inter-crystalline pores while BJH pore volume is positively related with clay content, suggesting N2GA is suitable for describing clay inter-crystalline pores in tight sandstones. PMID:27830731

  13. Validation of pore network simulations of ex-situ water distributions in a gas diffusion layer of proton exchange membrane fuel cells with X-ray tomographic images

    NASA Astrophysics Data System (ADS)

    Agaesse, Tristan; Lamibrac, Adrien; Büchi, Felix N.; Pauchet, Joel; Prat, Marc

    2016-11-01

    Understanding and modeling two-phase flows in the gas diffusion layer (GDL) of proton exchange membrane fuel cells are important in order to improve fuel cells performance. They are scientifically challenging because of the peculiarities of GDLs microstructures. In the present work, simulations on a pore network model are compared to X-ray tomographic images of water distributions during an ex-situ water invasion experiment. A method based on watershed segmentation was developed to extract a pore network from the 3D segmented image of the dry GDL. Pore network modeling and a full morphology model were then used to perform two-phase simulations and compared to the experimental data. The results show good agreement between experimental and simulated microscopic water distributions. Pore network extraction parameters were also benchmarked using the experimental data and results from full morphology simulations.

  14. Nanometer-Scale Pore Characteristics of Lacustrine Shale, Songliao Basin, NE China

    PubMed Central

    Wang, Min; Yang, Jinxiu; Wang, Zhiwei; Lu, Shuangfang

    2015-01-01

    In shale, liquid hydrocarbons are accumulated mainly in nanometer-scale pores or fractures, so the pore types and PSDs (pore size distributions) play a major role in the shale oil occurrence (free or absorbed state), amount of oil, and flow features. The pore types and PSDs of marine shale have been well studied; however, research on lacustrine shale is rare, especially for shale in the oil generation window, although lacustrine shale is deposited widely around the world. To investigate the relationship between nanometer-scale pores and oil occurrence in the lacustrine shale, 10 lacustrine shale core samples from Songliao Basin, NE China were analyzed. Analyses of these samples included geochemical measurements, SEM (scanning electron microscope) observations, low pressure CO2 and N2 adsorption, and high-pressure mercury injection experiments. Analysis results indicate that: (1) Pore types in the lacustrine shale include inter-matrix pores, intergranular pores, organic matter pores, and dissolution pores, and these pores are dominated by mesopores and micropores; (2) There is no apparent correlation between pore volumes and clay content, however, a weak negative correlation is present between total pore volume and carbonate content; (3) Pores in lacustrine shale are well developed when the organic matter maturity (Ro) is >1.0% and the pore volume is positively correlated with the TOC (total organic carbon) content. The statistical results suggest that oil in lacustrine shale mainly occurs in pores with diameters larger than 40 nm. However, more research is needed to determine whether this minimum pore diameter for oil occurrence in lacustrine shale is widely applicable. PMID:26285123

  15. Nanometer-Scale Pore Characteristics of Lacustrine Shale, Songliao Basin, NE China.

    PubMed

    Wang, Min; Yang, Jinxiu; Wang, Zhiwei; Lu, Shuangfang

    2015-01-01

    In shale, liquid hydrocarbons are accumulated mainly in nanometer-scale pores or fractures, so the pore types and PSDs (pore size distributions) play a major role in the shale oil occurrence (free or absorbed state), amount of oil, and flow features. The pore types and PSDs of marine shale have been well studied; however, research on lacustrine shale is rare, especially for shale in the oil generation window, although lacustrine shale is deposited widely around the world. To investigate the relationship between nanometer-scale pores and oil occurrence in the lacustrine shale, 10 lacustrine shale core samples from Songliao Basin, NE China were analyzed. Analyses of these samples included geochemical measurements, SEM (scanning electron microscope) observations, low pressure CO2 and N2 adsorption, and high-pressure mercury injection experiments. Analysis results indicate that: (1) Pore types in the lacustrine shale include inter-matrix pores, intergranular pores, organic matter pores, and dissolution pores, and these pores are dominated by mesopores and micropores; (2) There is no apparent correlation between pore volumes and clay content, however, a weak negative correlation is present between total pore volume and carbonate content; (3) Pores in lacustrine shale are well developed when the organic matter maturity (Ro) is >1.0% and the pore volume is positively correlated with the TOC (total organic carbon) content. The statistical results suggest that oil in lacustrine shale mainly occurs in pores with diameters larger than 40 nm. However, more research is needed to determine whether this minimum pore diameter for oil occurrence in lacustrine shale is widely applicable.

  16. GEOLOGIC ASPECTS OF TIGHT GAS RESERVOIRS IN THE ROCKY MOUNTAIN REGION.

    USGS Publications Warehouse

    Spencer, Charles W.

    1985-01-01

    The authors describe some geologic characteristics of tight gas reservoirs in the Rocky Mountain region. These reservoirs usually have an in-situ permeability to gas of 0. 1 md or less and can be classified into four general geologic and engineering categories: (1) marginal marine blanket, (2) lenticular, (3) chalk, and (4) marine blanket shallow. Microscopic study of pore/permeability relationships indicates the existence of two varieties of tight reservoirs. One variety is tight because of the fine grain size of the rock. The second variety is tight because the rock is relatively tightly cemented and the pores are poorly connected by small pore throats and capillaries.

  17. Influence of Two-Phase Thermocapillary Flow on Cryogenic Liquid Retention in Microscopic Pores

    NASA Technical Reports Server (NTRS)

    Schmidt, G. R.; Nadarajah, A.; Chung, T. J.; Karr, G. R.

    1994-01-01

    Previous experiments indicate that the bubble point pressure of spacecraft liquid hydrogen acquisition devices is reduced substantially when the ullage is pressurized with heated hydrogen vapor. The objective is to determine whether the two-phase thermocapillary convection arising from thermodynamic non-equilibrium along the porous surfaces of such devices could lead to this observed degradation in retention performance. We also examine why retention capability appears to be unaffected by pressurization with heated helium or direct heating through the porous structure. Computational assessments based on coupled solution of the flowfield and liquid free surface indicate that for highly wetting fluids in small pores, dynamic pressure and vapor recoil dictate surface morphology and drive meniscus deformation. With superheating, the two terms exert the same influence on curvature and promote mechanical equilibrium, but with subcooling, the pressure distribution produces a suction about the pore center-line that degrades retention. This result points to thermocapillary-induced deformation arising from condensation as the cause for retention loss. It also indicates that increasing the level of non-equilibrium by reducing accommodation coefficient restricts deformation and explains why retention failure does not occur with direct screen heating or helium pressurization.

  18. Pore Formation Process of Porous Ti3SiC2 Fabricated by Reactive Sintering

    PubMed Central

    Zhang, Huibin; Liu, Xinli; Jiang, Yao

    2017-01-01

    Porous Ti3SiC2 was fabricated with high purity, 99.4 vol %, through reactive sintering of titanium hydride (TiH2), silicon (Si) and graphite (C) elemental powders. The reaction procedures and the pore structure evolution during the sintering process were systematically studied by X-ray diffraction (XRD) and scanning electron microscope (SEM). Our results show that the formation of Ti3SiC2 from TiH2/Si/C powders experienced the following steps: firstly, TiH2 decomposed into Ti; secondly, TiC and Ti5Si3 intermediate phases were generated; finally, Ti3SiC2 was produced through the reaction of TiC, Ti5Si3 and Si. The pores formed in the synthesis procedure of porous Ti3SiC2 ceramics are derived from the following aspects: interstitial pores left during the pressing procedure; pores formed because of the TiH2 decomposition; pores formed through the reactions between Ti and Si and Ti and C powders; and the pores produced accompanying the final phase synthesized during the high temperature sintering process. PMID:28772515

  19. Experimental Study on Mechanical Properties and Porosity of Organic Microcapsules Based Self-Healing Cementitious Composite.

    PubMed

    Wang, Xianfeng; Sun, Peipei; Han, Ningxu; Xing, Feng

    2017-01-01

    Encapsulation of healing agents embedded in a material matrix has become one of the major approaches for achieving self-healing function in cementitious materials in recent years. A novel type of microcapsules based self-healing cementitious composite was developed in Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering, Shenzhen University. In this study, both macro performance and the microstructure of the composite are investigated. The macro performance was evaluated by employing the compressive strength and the dynamic modulus, whereas the microstructure was represented by the pore structure parameters such as porosity, cumulative-pore volume, and average-pore diameter, which are significantly correlated to the pore-size distribution and the compressive strength. The results showed that both the compressive strength and the dynamic modulus, as well as the pore structure parameters such as porosity, cumulative-pore volume, and average-pore diameter of the specimen decrease to some extent with the amount of microcapsules. However, the self-healing rate and the recovery rate of the specimen performance and the pore-structure parameters increase with the amount of microcapsules. The results should confirm the self-healing function of microcapsules in the cementitious composite from macroscopic and microscopic viewpoints.

  20. Experimental Study on Mechanical Properties and Porosity of Organic Microcapsules Based Self-Healing Cementitious Composite

    PubMed Central

    Wang, Xianfeng; Sun, Peipei; Han, Ningxu; Xing, Feng

    2017-01-01

    Encapsulation of healing agents embedded in a material matrix has become one of the major approaches for achieving self-healing function in cementitious materials in recent years. A novel type of microcapsules based self-healing cementitious composite was developed in Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering, Shenzhen University. In this study, both macro performance and the microstructure of the composite are investigated. The macro performance was evaluated by employing the compressive strength and the dynamic modulus, whereas the microstructure was represented by the pore structure parameters such as porosity, cumulative-pore volume, and average-pore diameter, which are significantly correlated to the pore-size distribution and the compressive strength. The results showed that both the compressive strength and the dynamic modulus, as well as the pore structure parameters such as porosity, cumulative-pore volume, and average-pore diameter of the specimen decrease to some extent with the amount of microcapsules. However, the self-healing rate and the recovery rate of the specimen performance and the pore-structure parameters increase with the amount of microcapsules. The results should confirm the self-healing function of microcapsules in the cementitious composite from macroscopic and microscopic viewpoints. PMID:28772382

  1. Soil fungi colony growth and community dynamics

    NASA Astrophysics Data System (ADS)

    Falconer, Ruth E.; Kravchenko, Alexandra; Otten, Wilfred

    2010-05-01

    Fungi are a major player in soil functioning, they contribute to soil structure formation and shaping of plant communities through their role in nutrient cycling, pathogenesis and symbiosis. Theoretical approaches which have emerged over the years and improved considerably our understanding of above ground plant communities are still lacking below ground. A theoretical framework is needed, such that links soil physics, fungal biology and mathematical biology in order to understand fungal community dynamics and diversity in undisturbed soils. Such a framework is essential if we are to understand how environmental change or soil manipulation impacts biodiversity. Different land use and management practices significantly affect soil environmental characteristics crucial for fungal communities by contributing different quantities and qualities of biomass inputs, generating different levels of soil disturbance, influencing soil temperature and moisture regimes, and affecting structure and geometry of soil pore space. Differences in pore structures generated by long-term differences in land use and management are reflected in notable changes in soil physical and hydraulic properties, including soil porosity, hydraulic conductivity and water retention (Brye and Pirani, 2005). Changes in numbers, shapes, and distributions of soil macropores have been often observed (e.g., Pachepsky et al., 1996; Giménez et al., 1997; Udawatta et al., 2008). However, specific implications of these differences in pore structure and geometries for ability of pathogenic as well as non-pathogenic fungi to colonize soil have not yet been addressed. Recent advances in computed tomography and microscopy facilitate detailed examination of the inner pore structures of undisturbed soil samples as well as visualization of fungal mycelia. Such tools together with modelling generate a new level of understanding of the mechanisms governing fungal behaviour at microscopic scales, and for the first time allow us to examine species interactions in a 3D soil environment.

  2. Numerical simulation on hydromechanical coupling in porous media adopting three-dimensional pore-scale model.

    PubMed

    Liu, Jianjun; Song, Rui; Cui, Mengmeng

    2014-01-01

    A novel approach of simulating hydromechanical coupling in pore-scale models of porous media is presented in this paper. Parameters of the sandstone samples, such as the stress-strain curve, Poisson's ratio, and permeability under different pore pressure and confining pressure, are tested in laboratory scale. The micro-CT scanner is employed to scan the samples for three-dimensional images, as input to construct the model. Accordingly, four physical models possessing the same pore and rock matrix characteristics as the natural sandstones are developed. Based on the micro-CT images, the three-dimensional finite element models of both rock matrix and pore space are established by MIMICS and ICEM software platform. Navier-Stokes equation and elastic constitutive equation are used as the mathematical model for simulation. A hydromechanical coupling analysis in pore-scale finite element model of porous media is simulated by ANSYS and CFX software. Hereby, permeability of sandstone samples under different pore pressure and confining pressure has been predicted. The simulation results agree well with the benchmark data. Through reproducing its stress state underground, the prediction accuracy of the porous rock permeability in pore-scale simulation is promoted. Consequently, the effects of pore pressure and confining pressure on permeability are revealed from the microscopic view.

  3. Numerical Simulation on Hydromechanical Coupling in Porous Media Adopting Three-Dimensional Pore-Scale Model

    PubMed Central

    Liu, Jianjun; Song, Rui; Cui, Mengmeng

    2014-01-01

    A novel approach of simulating hydromechanical coupling in pore-scale models of porous media is presented in this paper. Parameters of the sandstone samples, such as the stress-strain curve, Poisson's ratio, and permeability under different pore pressure and confining pressure, are tested in laboratory scale. The micro-CT scanner is employed to scan the samples for three-dimensional images, as input to construct the model. Accordingly, four physical models possessing the same pore and rock matrix characteristics as the natural sandstones are developed. Based on the micro-CT images, the three-dimensional finite element models of both rock matrix and pore space are established by MIMICS and ICEM software platform. Navier-Stokes equation and elastic constitutive equation are used as the mathematical model for simulation. A hydromechanical coupling analysis in pore-scale finite element model of porous media is simulated by ANSYS and CFX software. Hereby, permeability of sandstone samples under different pore pressure and confining pressure has been predicted. The simulation results agree well with the benchmark data. Through reproducing its stress state underground, the prediction accuracy of the porous rock permeability in pore-scale simulation is promoted. Consequently, the effects of pore pressure and confining pressure on permeability are revealed from the microscopic view. PMID:24955384

  4. Effects of Pore Distributions on Ductility of Thin-Walled High Pressure Die-Cast Magnesium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Kyoo Sil; Li, Dongsheng; Sun, Xin

    2013-06-01

    In this paper, a microstructure-based three-dimensional (3D) finite element modeling method is adopted to investigate the effects of porosity in thin-walled high pressure die-cast (HPDC) Magnesium alloys on their ductility. For this purpose, the cross-sections of AM60 casting samples are first examined using optical microscope and X-ray tomography to obtain the general information on the pore distribution features. The experimentally observed pore distribution features are then used to generate a series of synthetic microstructure-based 3D finite element models with different pore volume fractions and pore distribution features. Shear and ductile damage models are adopted in the finite element analyses tomore » induce the fracture by element removal, leading to the prediction of ductility. The results in this study show that the ductility monotonically decreases as the pore volume fraction increases and that the effect of ‘skin region’ on the ductility is noticeable under the condition of same local pore volume fraction in the center region of the sample and its existence can be beneficial for the improvement of ductility. The further synthetic microstructure-based 3D finite element analyses are planned to investigate the effects of pore size and pore size distribution.« less

  5. Microarc Oxidation Coating Combined with Surface Pore-Sealing Treatment Enhances Corrosion Fatigue Performance of 7075-T7351 Al Alloy in Different Media

    PubMed Central

    Yang, Hui-Hui; Wang, Xi-Shu; Wang, Ya-Ming; Wang, Yan-Ling; Zhang, Zhi-Hao

    2017-01-01

    Rotating bending fatigue tests have been performed to evaluate the corrosion fatigue performance and its influence factors of 7075-T7351 Al alloy in different media, namely air and a 5.0 wt % NaCl aqueous solution. All samples were coated by microarc oxidation (MAO) coating technology; some samples were followed by an epoxy resin pore-sealing treatment. Microscopic analyses of the surfaces and fracture cross-sections of samples were carried out. The results reveal that the sample with a MAO coating of 10 μm thickness and pore-sealing treatment by epoxy resin possesses optimal corrosion fatigue performance in the different media. The MAO coating with a pore-sealing treatment significantly improves the corrosion fatigue limit of 7075-T7351 Al alloy. PMID:28772970

  6. Lennard-Jones fluids in two-dimensional nano-pores. Multi-phase coexistence and fluid structure

    NASA Astrophysics Data System (ADS)

    Yatsyshin, Petr; Savva, Nikos; Kalliadasis, Serafim

    2014-03-01

    We present a number of fundamental findings on the wetting behaviour of nano-pores. A popular model for fluid confinement is a one-dimensional (1D) slit pore formed by two parallel planar walls and it exhibits capillary condensation (CC): a first-order phase transition from vapour to capillary-liquid (Kelvin shift). Capping such a pore at one end by a third orthogonal wall forms a prototypical two-dimensional (2D) pore. We show that 2D pores possess a wetting temperature such that below this temperature CC remains of first order, above it becomes a continuous phase transition manifested by a slab of capillary-liquid filling the pore from the capping wall. Continuous CC exhibits hysteresis and can be preceded by a first-order capillary prewetting transition. Additionally, liquid drops can form in the corners of the 2D pore (remnant of 2D wedge prewetting). The three fluid phases, vapour, capillary-liquid slab and corner drops, can coexist at the pore triple point. Our model is based on the statistical mechanics of fluids in the density functional formulation. The fluid-fluid and fluid-substrate interactions are dispersive. We analyze in detail the microscopic fluid structure, isotherms and full phase diagrams. Our findings also suggest novel ways to control wetting of nano-pores. We are grateful to the European Research Council via Advanced Grant No. 247031 for support.

  7. Pore-Scale Simulation and Sensitivity Analysis of Apparent Gas Permeability in Shale Matrix

    PubMed Central

    Zhang, Pengwei; Hu, Liming; Meegoda, Jay N.

    2017-01-01

    Extremely low permeability due to nano-scale pores is a distinctive feature of gas transport in a shale matrix. The permeability of shale depends on pore pressure, porosity, pore throat size and gas type. The pore network model is a practical way to explain the macro flow behavior of porous media from a microscopic point of view. In this research, gas flow in a shale matrix is simulated using a previously developed three-dimensional pore network model that includes typical bimodal pore size distribution, anisotropy and low connectivity of the pore structure in shale. The apparent gas permeability of shale matrix was calculated under different reservoir pressures corresponding to different gas exploitation stages. Results indicate that gas permeability is strongly related to reservoir gas pressure, and hence the apparent permeability is not a unique value during the shale gas exploitation, and simulations suggested that a constant permeability for continuum-scale simulation is not accurate. Hence, the reservoir pressures of different shale gas exploitations should be considered. In addition, a sensitivity analysis was also performed to determine the contributions to apparent permeability of a shale matrix from petro-physical properties of shale such as pore throat size and porosity. Finally, the impact of connectivity of nano-scale pores on shale gas flux was analyzed. These results would provide an insight into understanding nano/micro scale flows of shale gas in the shale matrix. PMID:28772465

  8. Pore-Scale Simulation and Sensitivity Analysis of Apparent Gas Permeability in Shale Matrix.

    PubMed

    Zhang, Pengwei; Hu, Liming; Meegoda, Jay N

    2017-01-25

    Extremely low permeability due to nano-scale pores is a distinctive feature of gas transport in a shale matrix. The permeability of shale depends on pore pressure, porosity, pore throat size and gas type. The pore network model is a practical way to explain the macro flow behavior of porous media from a microscopic point of view. In this research, gas flow in a shale matrix is simulated using a previously developed three-dimensional pore network model that includes typical bimodal pore size distribution, anisotropy and low connectivity of the pore structure in shale. The apparent gas permeability of shale matrix was calculated under different reservoir pressures corresponding to different gas exploitation stages. Results indicate that gas permeability is strongly related to reservoir gas pressure, and hence the apparent permeability is not a unique value during the shale gas exploitation, and simulations suggested that a constant permeability for continuum-scale simulation is not accurate. Hence, the reservoir pressures of different shale gas exploitations should be considered. In addition, a sensitivity analysis was also performed to determine the contributions to apparent permeability of a shale matrix from petro-physical properties of shale such as pore throat size and porosity. Finally, the impact of connectivity of nano-scale pores on shale gas flux was analyzed. These results would provide an insight into understanding nano/micro scale flows of shale gas in the shale matrix.

  9. Calculation of contact angles at triple phase boundary in solid oxide fuel cell anode using the level set method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xiaojun; Hasegawa, Yosuke; CREST, JST

    2014-10-15

    A level set method is applied to characterize the three dimensional structures of nickel, yttria stabilized zirconia and pore phases in solid oxide fuel cell anode reconstructed by focused ion beam-scanning electron microscope. A numerical algorithm is developed to evaluate the contact angles at the triple phase boundary based on interfacial normal vectors which can be calculated from the signed distance functions defined for each of the three phases. Furthermore, surface tension force is estimated from the contact angles by assuming the interfacial force balance at the triple phase boundary. The average contact angle values of nickel, yttria stabilized zirconiamore » and pore are found to be 143°–156°, 83°–138° and 82°–123°, respectively. The mean contact angles remained nearly unchanged after 100 hour operation. However, the contact angles just after reduction are different for the cells with different sintering temperatures. In addition, standard deviations of the contact angles are very large especially for yttria stabilized zirconia and pore phases. The calculated surface tension forces from mean contact angles were close to the experimental values found in the literature. Slight increase of surface tensions of nickel/pore and nickel/yttria stabilized zirconia were observed after operation. Present data are expected to be used not only for the understanding of the degradation mechanism, but also for the quantitative prediction of the microstructural temporal evolution of solid oxide fuel cell anode. - Highlights: • A level set method is applied to characterize the 3D structures of SOFC anode. • A numerical algorithm is developed to evaluate the contact angles at the TPB. • Surface tension force is estimated from the contact angles. • The average contact angle values are found to be 143o-156o, 83o-138o and 82o-123o. • Present data are expected to understand degradation and predict evolution of SOFC.« less

  10. Spatially resolved D-T(2) correlation NMR of porous media.

    PubMed

    Zhang, Yan; Blümich, Bernhard

    2014-05-01

    Within the past decade, 2D Laplace nuclear magnetic resonance (NMR) has been developed to analyze pore geometry and diffusion of fluids in porous media on the micrometer scale. Many objects like rocks and concrete are heterogeneous on the macroscopic scale, and an integral analysis of microscopic properties provides volume-averaged information. Magnetic resonance imaging (MRI) resolves this spatial average on the contrast scale set by the particular MRI technique. Desirable contrast parameters for studies of fluid transport in porous media derive from the pore-size distribution and the pore connectivity. These microscopic parameters are accessed by 1D and 2D Laplace NMR techniques. It is therefore desirable to combine MRI and 2D Laplace NMR to image functional information on fluid transport in porous media. Because 2D Laplace resolved MRI demands excessive measuring time, this study investigates the possibility to restrict the 2D Laplace analysis to the sum signals from low-resolution pixels, which correspond to pixels of similar amplitude in high-resolution images. In this exploratory study spatially resolved D-T2 correlation maps from glass beads and mortar are analyzed. Regions of similar contrast are first identified in high-resolution images to locate corresponding pixels in low-resolution images generated with D-T2 resolved MRI for subsequent pixel summation to improve the signal-to-noise ratio of contrast-specific D-T2 maps. This method is expected to contribute valuable information on correlated sample heterogeneity from the macroscopic and the microscopic scales in various types of porous materials including building materials and rock. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Transverse thermal conductivity of porous materials made from aligned nano- and microcylindrical pores

    NASA Astrophysics Data System (ADS)

    Prasher, Ravi

    2006-09-01

    Nanoporous and microporous materials made from aligned cylindrical pores play important roles in present technologies and will play even bigger roles in future technologies. The insight into the phonon thermal conductivity of these materials is important and relevant in many technologies and applications. Since the mean free path of phonons can be comparable to the pore size and interpore distance, diffusion-approximation based effective medium models cannot be used to predict the thermal conductivity of these materials. Strictly speaking, the Boltzmann transport equation (BTE) must be solved to capture the ballistic nature of thermal transport; however, solving BTE in such a complex network of pores is impractical. As an alternative, we propose an approximate ballistic-diffusive microscopic effective medium model for predicting the thermal conductivity of phonons in two-dimensional nanoporous and microporous materials made from aligned cylindrical pores. The model captures the size effects due to the pore diameter and the interpore distance and reduces to diffusion-approximation based models for macroporous materials. The results are in good agreement with experimental data.

  12. AFM-porosimetry: density and pore volume measurements of particulate materials.

    PubMed

    Sörensen, Malin H; Valle-Delgado, Juan J; Corkery, Robert W; Rutland, Mark W; Alberius, Peter C

    2008-06-01

    We introduced the novel technique of AFM-porosimetry and applied it to measure the total pore volume of porous particles with a spherical geometry. The methodology is based on using an atomic force microscope as a balance to measure masses of individual particles. Several particles within the same batch were measured, and by plotting particle mass versus particle volume, the bulk density of the sample can be extracted from the slope of the linear fit. The pore volume is then calculated from the densities of the bulk and matrix materials, respectively. In contrast to nitrogen sorption and mercury porosimetry, this method is capable of measuring the total pore volume regardless of pore size distribution and pore connectivity. In this study, three porous samples were investigated by AFM-porosimetry: one ordered mesoporous sample and two disordered foam structures. All samples were based on a matrix of amorphous silica templated by a block copolymer, Pluronic F127, swollen to various degrees with poly(propylene glycol). In addition, the density of silica spheres without a template was measured by two independent techniques: AFM and the Archimedes principle.

  13. Dissolution Front Instabilities in Reacting Porous Media

    NASA Astrophysics Data System (ADS)

    Raoof, Amir; Spiers, Chris; Hassanizadeh, Majid

    2013-04-01

    The main objective of this research is to gain a better understanding of the relation between regime of reaction and dissolution front instability, leading to formation of channels or wormholes. Potential applications are geological sequestration of CO2 and acid-gas injection during enhanced oil recovery. The microscopic pore space is modeled using a multi-directional pore network, allowing for a distribution of pore coordination number, together with distribution of pore sizes. In order to simulate transport of multi-component chemical species, mass balance equations are solved within each element of the network (i.e., pore body and pore throat). We have considered advective and diffusive transport processes within the pore spaces together with multi-component chemical reactions, including both equilibrium and kinetic reactions. Using dimensionless scaling groups (such as Damköhler number and Péclet-Damköhler number) we characterized the dissolution front behavior, and by averaging over the network domain we calculated the evolution of porosity and permeability as well as flux-averaged concentration breakthrough curves. We obtain constitutive relations linking porosity and permeability, under conditions relevant to geological storage of CO2. Effect of distribution of reactive minerals is also evaluated and regime of reaction is shown to play a key role.

  14. Positron studies in catalysis research

    NASA Astrophysics Data System (ADS)

    During the past eight months, the authors have made progress in several areas relevant to the eventual use of positron techniques in catalysis research. They have come closer to the completion of their positron microscope, and at the same time have performed several studies in their non-microscopic positron spectrometer which should ultimately be applicable to catalysis. The current status of the efforts in each of these areas is summarized in the following sections: Construction of the positron microscope (optical element construction, data collection software, and electronic sub-assemblies); Doppler broadening spectroscopy of metal silicide; Positron lifetime spectroscopy of glassy polymers; and Positron lifetime measurements of pore-sizes in zeolites.

  15. Finite element study of scaffold architecture design and culture conditions for tissue engineering.

    PubMed

    Olivares, Andy L; Marsal, Elia; Planell, Josep A; Lacroix, Damien

    2009-10-01

    Tissue engineering scaffolds provide temporary mechanical support for tissue regeneration and transfer global mechanical load to mechanical stimuli to cells through its architecture. In this study the interactions between scaffold pore morphology, mechanical stimuli developed at the cell microscopic level, and culture conditions applied at the macroscopic scale are studied on two regular scaffold structures. Gyroid and hexagonal scaffolds of 55% and 70% porosity were modeled in a finite element analysis and were submitted to an inlet fluid flow or compressive strain. A mechanoregulation theory based on scaffold shear strain and fluid shear stress was applied for determining the influence of each structures on the mechanical stimuli on initial conditions. Results indicate that the distribution of shear stress induced by fluid perfusion is very dependent on pore distribution within the scaffold. Gyroid architectures provide a better accessibility of the fluid than hexagonal structures. Based on the mechanoregulation theory, the differentiation process in these structures was more sensitive to inlet fluid flow than axial strain of the scaffold. This study provides a computational approach to determine the mechanical stimuli at the cellular level when cells are cultured in a bioreactor and to relate mechanical stimuli with cell differentiation.

  16. Nanopores: A journey towards DNA sequencing

    PubMed Central

    Wanunu, Meni

    2013-01-01

    Much more than ever, nucleic acids are recognized as key building blocks in many of life's processes, and the science of studying these molecular wonders at the single-molecule level is thriving. A new method of doing so has been introduced in the mid 1990's. This method is exceedingly simple: a nanoscale pore that spans across an impermeable thin membrane is placed between two chambers that contain an electrolyte, and voltage is applied across the membrane using two electrodes. These conditions lead to a steady stream of ion flow across the pore. Nucleic acid molecules in solution can be driven through the pore, and structural features of the biomolecules are observed as measurable changes in the trans-membrane ion current. In essence, a nanopore is a high-throughput ion microscope and a single-molecule force apparatus. Nanopores are taking center stage as a tool that promises to read a DNA sequence, and this promise has resulted in overwhelming academic, industrial, and national interest. Regardless of the fate of future nanopore applications, in the process of this 16-year-long exploration, many studies have validated the indispensability of nanopores in the toolkit of single-molecule biophysics. This review surveys past and current studies related to nucleic acid biophysics, and will hopefully provoke a discussion of immediate and future prospects for the field. PMID:22658507

  17. Upscaling soil saturated hydraulic conductivity from pore throat characteristics

    USDA-ARS?s Scientific Manuscript database

    Upscaling and/or estimating saturated hydraulic conductivity Ksat at the core scale from microscopic/macroscopic soil characteristics has been actively under investigation in the hydrology and soil physics communities for several decades. Numerous models have beendeveloped based on different approac...

  18. Fractal reaction kinetics.

    PubMed

    Kopelman, R

    1988-09-23

    Classical reaction kinetics has been found to be unsatisfactory when the reactants are spatially constrained on the microscopic level by either walls, phase boundaries, or force fields. Recently discovered theories of heterogeneous reaction kinetics have dramatic consequences, such as fractal orders for elementary reactions, self-ordering and self-unmixing of reactants, and rate coefficients with temporal "memories." The new theories were needed to explain the results of experiments and supercomputer simulations of reactions that were confined to low dimensions or fractal dimensions or both. Among the practical examples of "fractal-like kinetics" are chemical reactions in pores of membranes, excitation trapping in molecular aggregates, exciton fusion in composite materials, and charge recombination in colloids and clouds.

  19. Comparison of nitrogen adsorption and transmission electron microscopy analyses for structural characterization of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Abbaslou, Reza Malek; Vosoughi, Vahid; Dalai, Ajay K.

    2017-10-01

    Carbon nanotubes (CNTs) are different from other porous substrates such as activated carbon due to their high external surfaces. This structural feature can lead in some uncertainties in the results of nitrogen adsorption analysis for characterization of CNTs. In this paper, the results of microscopic analyses and nitrogen adsorption method for characterization of carbon nanotubes were compared. Five different types of CNTs with different structures were either synthesized or purchased. The CNT samples were characterized by high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM) and N2 adsorption analysis. The comparisons between the results from the microscopic analyses and N2 adsorption showed that the total pore volume and BET surface measurements include the internal and external porosity of CNTs. Therefore, the interpretation of N2 adsorption data required accurate TEM analysis. In addition, the evaluation of pore size distribution curves from all CNT samples in this study and several instances in the literature revealed the presence of a common peak in the range of 2-5 nm. This peak does not explain the inner pore size distribution. The presence of this common peak can be attributed to the strong adsorption of N2 on the junction of touched and crossed nanotubes.

  20. Microscopic motion of particles flowing through a porous medium

    NASA Astrophysics Data System (ADS)

    Lee, Jysoo; Koplik, Joel

    1999-01-01

    Stokesian dynamics simulations are used to study the microscopic motion of particles suspended in fluids passing through porous media. Model porous media with fixed spherical particles are constructed, and mobile ones move through this fixed bed under the action of an ambient velocity field. The pore scale motion of individual suspended particles at pore junctions are first considered. The relative particle flux into different possible directions exiting from a single pore, for two- and three-dimensional model porous media is found to approximately equal the corresponding fractional channel width or area. Next the waiting time distribution for particles which are delayed in a junction due to a stagnation point caused by a flow bifurcation is considered. The waiting times are found to be controlled by two-particle interactions, and the distributions take the same form in model porous media as in two-particle systems. A simple theoretical estimate of the waiting time is consistent with the simulations. It is found that perturbing such a slow-moving particle by another nearby one leads to rather complicated behavior. Finally, the stability of geometrically trapped particles is studied. For simple model traps, it is found that particles passing nearby can "relaunch" the trapped particle through its hydrodynamic interaction, although the conditions for relaunching depend sensitively on the details of the trap and its surroundings.

  1. Study of shale reservoir nanometer-sized pores in Member 1 of Shahejie Formation in JX area, Liaozhong sag

    NASA Astrophysics Data System (ADS)

    Cheng, Yong; Zhang, Yu; Wen, Yiming

    2018-02-01

    The microscopic pore structure is the key of the shale reservoir study; however, traditional Scanning Electron Microscopy (SEM) methods cannot identify the irregular morphology caused by mechanical polishing. In this work, Scanning Electron Microscopy combined argon ion polishing technology was taken to study the characteristics of shale reservoir pores of Member 1 of Shahejie Formation (E3s1) located in JX1-1 area of Liaozhong Sag. The results show that pores between clay platelets, intraplatelet pores within clay aggregates and organic-matter pores are very rich in the area and with good pore connectivity, so these types of pores are of great significance for oil-gas exporation. Pores between clay platelets are formed by directional or semi-directional contact between edge and surface, edge and edge or surface and surface of laminated clay minerals, whose shapes are linear, mesh, and irregular with the size of 500 nm to 5 μm. The intraplatelet pores within clay aggregates are formed in the process of the transformation and compaction of clay minerals, whose shapes are usually linear with the width of 30 to 500 nm and the length of 2 to 50 μm. The organic-matter pores are from the process of the conversion from organic matters to the hydrocarbon under thermal evolution, whose shapes are gneissic, irregular, pitted and elliptical with the size of 100 nm to 2 μm. This study is of certain guiding significance to selecting target zones, evaluating resource potential and exploring & developing of shale gas in this region.

  2. Intercomparison of 3D pore-scale flow and solute transport simulation methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiaofan; Mehmani, Yashar; Perkins, William A.

    2016-09-01

    Multiple numerical approaches have been developed to simulate porous media fluid flow and solute transport at the pore scale. These include methods that 1) explicitly model the three-dimensional geometry of pore spaces and 2) those that conceptualize the pore space as a topologically consistent set of stylized pore bodies and pore throats. In previous work we validated a model of class 1, based on direct numerical simulation using computational fluid dynamics (CFD) codes, against magnetic resonance velocimetry (MRV) measurements of pore-scale velocities. Here we expand that validation to include additional models of class 1 based on the immersed-boundary method (IMB),more » lattice Boltzmann method (LBM), smoothed particle hydrodynamics (SPH), as well as a model of class 2 (a pore-network model or PNM). The PNM approach used in the current study was recently improved and demonstrated to accurately simulate solute transport in a two-dimensional experiment. While the PNM approach is computationally much less demanding than direct numerical simulation methods, the effect of conceptualizing complex three-dimensional pore geometries on solute transport in the manner of PNMs has not been fully determined. We apply all four approaches (CFD, LBM, SPH and PNM) to simulate pore-scale velocity distributions and nonreactive solute transport, and intercompare the model results with previously reported experimental observations. Experimental observations are limited to measured pore-scale velocities, so solute transport comparisons are made only among the various models. Comparisons are drawn both in terms of macroscopic variables (e.g., permeability, solute breakthrough curves) and microscopic variables (e.g., local velocities and concentrations).« less

  3. Smooth DNA transport through a narrowed pore geometry.

    PubMed

    Carson, Spencer; Wilson, James; Aksimentiev, Aleksei; Wanunu, Meni

    2014-11-18

    Voltage-driven transport of double-stranded DNA through nanoscale pores holds much potential for applications in quantitative molecular biology and biotechnology, yet the microscopic details of translocation have proven to be challenging to decipher. Earlier experiments showed strong dependence of transport kinetics on pore size: fast regular transport in large pores (> 5 nm diameter), and slower yet heterogeneous transport time distributions in sub-5 nm pores, which imply a large positional uncertainty of the DNA in the pore as a function of the translocation time. In this work, we show that this anomalous transport is a result of DNA self-interaction, a phenomenon that is strictly pore-diameter dependent. We identify a regime in which DNA transport is regular, producing narrow and well-behaved dwell-time distributions that fit a simple drift-diffusion theory. Furthermore, a systematic study of the dependence of dwell time on DNA length reveals a single power-law scaling of 1.37 in the range of 35-20,000 bp. We highlight the resolution of our nanopore device by discriminating via single pulses 100 and 500 bp fragments in a mixture with >98% accuracy. When coupled to an appropriate sequence labeling method, our observation of smooth DNA translocation can pave the way for high-resolution DNA mapping and sizing applications in genomics.

  4. Can pore-clogging by ash explain post-fire runoff?

    USGS Publications Warehouse

    Stoof, Cathelijne R.; Gevaert, Anouk I.; Baver, Christine; Hassanpour, Bahareh; Morales, Veronica L.; Zhang, Wei; Martin, Deborah; Giri, Shree K.; Steenhuis, Tammo S.

    2016-01-01

    Ash plays an important role in controlling runoff and erosion processes after wildfire and has frequently been hypothesised to clog soil pores and reduce infiltration. Yet evidence for clogging is incomplete, as research has focussed on identifying the presence of ash in soil; the actual flow processes remain unknown. We conducted laboratory infiltration experiments coupled with microscope observations in pure sands, saturated hydraulic conductivity analysis, and interaction energy calculations, to test whether ash can clog pores (i.e. block pores such that infiltration is hampered and ponding occurs). Although results confirmed previous observations of ash washing into pores, clogging was not observed in the pure sands tested, nor were conditions found for which this does occur. Clogging by means of strong attachment of ash to sand was deemed unlikely given the negative surface charge of the two materials. Ponding due to washing in of ash was also considered improbable given the high saturated conductivity of pure ash and ash–sand mixtures. This first mechanistic step towards analysing ash transport and attachment processes in field soils therefore suggests that pore clogging by ash is unlikely to occur in sands. Discussion is provided on other mechanisms by which ash can affect post-fire hydrology.

  5. A study on modification of nanoporous rice husk silica for hydrophobic nano filter.

    PubMed

    Kim, Hee Jin; So, Soo Jeong; Han, Chong Soo

    2010-05-01

    Nanoporous rice husk silica (RHS) was modified with alkylsilylation reagents, hexamethyldisilazane, diethoxydiphenylsilane, dichlorodimethylsilane and n-octodecyltrimethoxysilane. The silica samples were characterized with Raman spectrometer, thermal gravimetric analyzer, scanning electron microscope, nitrogen adsorption measurement and solid state nuclear magnetic resonance spectrometer. Raman spectra of the modified silica showed growth of the peaks of C-H stretching and CH3 bending at approximateluy 3000 cm(-1) and approximately 1500 cm(-1), respectively. Weight losses of 3 approximately 5% were observed in thermo gravimetric profiles of the modified silica. The microscopic shape of RHS, approximately 20 nm primary particles and their aggregates was almost not changed by the modification but there were colligations of the silica particles in the sample treated with dichlorodimethylsilane or diethoxydiphenylsilane. BET adsorption experiment showed the modification significantly decreased the mean pore size of the silica from approximately 5 nm to approximately 4 nm as well as the pore volume from 0.5 cm3/g to 0.4 cm3/g except the case of treatment with n-octodecyltrimethoxysilane. 29Si Solid NMR Spectra of the silica samples showed that there were decrease in the relative intensities of Q2 and Q3 peaks and large increments in Q4 after the modification except for the case of bulky n-octodecyltrimethoxysilane. From the results, it was concluded that the alkylsilylation reagents reacted with hydroxyl groups on the silica particles as well as in the nano pores while the size of the reagent molecule affected its diffusion and reaction with the hydroxyl groups in the pores.

  6. Visualization and measurement of CO2 flooding in an artificial porous structure using micromodels

    NASA Astrophysics Data System (ADS)

    Park, Bogyeong; Wang, Sookyun; Um, Jeong-Gi; Lee, Minhee; Kim, Seon-Ok

    2015-04-01

    Geological CO2 sequestration is one of the most important technologies to mitigate greenhouse gas emission into the atmosphere by isolating great volumes of CO2 in deep geological formations. This novel storage option for CO2 involves injecting supercritical CO2 into porous formations saturated with pore fluid such as brine and initiate CO2 flooding with immiscible displacement. Despite of significant effects on macroscopic migration and distribution of injected CO2, however, only a limited information is available on wettability in microscopic scCO2-brine-mineral systems. In this study, a micromodel had been developed to improve our understanding of how CO2 flooding and residual characteristics of pore water are affected by the wettability in scCO2-water-glass bead systems. The micromodel (a transparent pore structure made of 1 mm diameter glass beads between two glass plates) in a high-pressure cell provided the opportunity to visualize spread of supercritical CO2 and displacement of pore water in high pressure and high temperature conditions. CO2 flooding followed by fingering migration and dewatering followed by formation of residual water were observed through a imaging system with a microscope. Measurement of contact angles of droplets of residual water on and between glass beads in a micromodel were conducted to estimate differential pressure between wetting and nonwetting fluids in a scCO2-water-glass bead system. The experimental observation results could provide important fundamental informations on capillary characteristics of reservoirs and caprocks for geological CO2 sequestration.

  7. Visualization of CO2 flooding in an artificial porous structure using micromodels

    NASA Astrophysics Data System (ADS)

    Park, B.; Wang, S.; Lee, M.; Um, J. G.

    2014-12-01

    Geological CO2 sequestration is one of the most important technologies to mitigate greenhouse gas emission into the atmosphere by isolating great volumes of CO2 in deep geological formations. This novel storage option for CO2 involves injecting supercritical CO2 into porous formations saturated with pore fluid such as brine and initiate CO2 flooding with immiscible displacement. Despite of significant effects on macroscopic migration and distribution of injected CO2, however, only a limited information is available on wettability in microscopic scCO2-brine-mineral systems. In this study, a micromodel had been developed to improve our understanding of how CO2 flooding and residual characteristics of pore water are affected by the wettability in scCO2-water-glass bead systems. The micromodel (a transparent pore structure made of 0.5 mm diameter glass beads between two glass plates) in a high-pressure cell provided the opportunity to visualize spread of supercritical CO2 and displacement of pore water in high pressure and high temperature conditions. CO2 flooding followed by fingering migration and dewatering followed by formation of residual water were observed through a imaging system with a microscope. Measurement of contact angles of droplets of residual water on and between glass beads in a micromodel were conducted to estimate differential pressure between wetting and nonwetting fluids in a scCO2-water-glass bead system. The experimental observation results could provide important fundamental informations on capillary characteristics of reservoirs and caprocks for geological CO2 sequestration.

  8. Taxonomy and pollen morphology of Ankyropetalum Fenzl (Caryophyllaceae) species in Türkiye.

    PubMed

    Muca, Belkis; Ozçelik, Hasan

    2014-04-01

    There are 4 species belong to Ankyropetalum Fenzl (Caryophyllaceae) genus and three of them (A. reuteri Boiss. and Hausskn, A. arsusianum Kotschy ex Boiss. and A. gypsophiloides Fenzl) are distributed in Turkey. There are doubts about taxonomical studies depending on only morphological characteristics. This study has been made to put forth that palinological studies also contribute taxonomical studies. Pollen morphology of the three species belong to Ankyropetalum Fenzl (Caryophyllaceae) genus distributed in Turkey examined with ray microscope and electron microscope in this study. Results evaluated according to Duncan's multiple range test using SPSS statistic program. Pollen's polar and ecvatoral seeming photographs were taken in preparates. Morphology of pollens examined with 50 repetition for each taxon and morphological assessments were made. The common trait of pollens can be summarized as they are circular, oblate and prolate spheroidal, periporate (pore numbers ranged between 20-33), operculum is granulated, annulus is distinct, the form of pollens are tectat. Definition of pollens are given for each taxon, diagnostic specifications recognized as important are used for making diagnosis key. The difference between species are as below: A. arsusianum's pollen shape is oblate-spheroidal, type of pollen is periporate, pore numbers are between 23-33, form of pollen is tectat, ornamentation is perforate. A. reuteri's pollen shape is prolate-spheroidal, type of pollen is periporate, pore numbers are between 20-33, form of pollen is tectat, ornamentation is from perforate to eureticulate A. gypsophiloides pollen shape is oblate-spheroidal, type of pollen is periporate, pore numbers are between 21-30, form of pollen is tectat, ornamentation is perforate.

  9. Microscopic character of marine sediment containing disseminated gas hydrate. Examples from the Blake Ridge and the Middle America Trench

    USGS Publications Warehouse

    Lorenson, T.D.

    2000-01-01

    The presence of disseminated gas hydrate was inferred based on pore fluid geochemistry and downhole logging data, but was rarely observed at Ocean Drilling Program (ODP) Leg 164 (Blake Ridge), and Leg 170 (Middle America Trench, offshore from Costa Rica) drilling sites. Gas hydrate nucleation is likely to occur first in larger voids rather than in constricted pore space, where capillary forces depress the temperature-pressure stability field for gas hydrate formation. Traditional macroscopic descriptions of sediment fail to detect the microscopic character of primary and secondary porosity in sediment hosting disseminated gas hydrate. Light transmission and scanning electron microscopy of sediments within and below the depth of gas hydrate occurrences reveal at least four general types of primary and secondary porosity: (1) microfossils (diatoms, foraminifera, and spicules) void of infilling sediment, but commonly containing small masses of pyrite framboids; (2) infauna burrows filled with unconsolidated sand and or microfossil debris; (3) irregularly shaped pods of nonconsolidated framboidial pyrite; and (4) nonlithified volcanic ash.

  10. Microwave-Assisted Preparation of Activated Carbon from Eupatorium Adenophorum: Effects of Preparation Parameters

    NASA Astrophysics Data System (ADS)

    Cheng, Song; Zhang, Shengzhou; Zhang, Libo; Xia, Hongying; Peng, Jinhui; Wang, Shixing

    2017-09-01

    Eupatorium adenophorum, global exotic weeds, was utilized as feedstock for preparation of activated carbon (AC) via microwave-induced KOH activation. Influences of the three vital process parameters - microwave power, activation time and impregnation ratio (IR) - have been assessed on the adsorption capacity and yield of AC. The process parameters were optimized utilizing the Design Expert software and were identified to be a microwave power of 700 W, an activation time of 15 min and an IR of 4, with the resultant iodine adsorption number and yield being 2,621 mg/g and 28.25 %, respectively. The key parameters that characterize the AC such as the brunauer emmett teller (BET) surface area, total pore volume and average pore diameter were estimated to be 3,918 m2/g, 2,383 ml/g and 2.43 nm, respectively, under the optimized process conditions. The surface characteristics of AC were characterized by Fourier transform infrared spectroscopy, scanning electron microscope and Transmission electron microscope.

  11. Fabrication of Subnanometer-Precision Nanopores in Hexagonal Boron Nitride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, S. Matt; Dunn, Gabriel; Azizi, Amin

    Here, we demonstrate the fabrication of individual nanopores in hexagonal boron nitride (h-BN) with atomically precise control of the pore shape and size. Previous methods of pore production in other 2D materials typically create pores with irregular geometry and imprecise diameters. In contrast, other studies have shown that with careful control of electron irradiation, defects in h-BN grow with pristine zig-zag edges at quantized triangular sizes, but they have failed to demonstrate production and control of isolated defects. In this work, we combine these techniques to yield a method in which we can create individual size-quantized triangular nanopores through anmore » h-BN sheet. The pores are created using the electron beam of a conventional transmission electron microscope; which can strip away multiple layers of h-BN exposing single-layer regions, introduce single vacancies, and preferentially grow vacancies only in the single-layer region. We further demonstrate how the geometry of these pores can be altered beyond triangular by changing beam conditions. Precisely size- and geometry-tuned nanopores could find application in molecular sensing, DNA sequencing, water desalination, and molecular separation.« less

  12. Fabrication of Subnanometer-Precision Nanopores in Hexagonal Boron Nitride

    DOE PAGES

    Gilbert, S. Matt; Dunn, Gabriel; Azizi, Amin; ...

    2017-11-08

    Here, we demonstrate the fabrication of individual nanopores in hexagonal boron nitride (h-BN) with atomically precise control of the pore shape and size. Previous methods of pore production in other 2D materials typically create pores with irregular geometry and imprecise diameters. In contrast, other studies have shown that with careful control of electron irradiation, defects in h-BN grow with pristine zig-zag edges at quantized triangular sizes, but they have failed to demonstrate production and control of isolated defects. In this work, we combine these techniques to yield a method in which we can create individual size-quantized triangular nanopores through anmore » h-BN sheet. The pores are created using the electron beam of a conventional transmission electron microscope; which can strip away multiple layers of h-BN exposing single-layer regions, introduce single vacancies, and preferentially grow vacancies only in the single-layer region. We further demonstrate how the geometry of these pores can be altered beyond triangular by changing beam conditions. Precisely size- and geometry-tuned nanopores could find application in molecular sensing, DNA sequencing, water desalination, and molecular separation.« less

  13. A fractal model of effective stress of porous media and the analysis of influence factors

    NASA Astrophysics Data System (ADS)

    Li, Wei; Zhao, Huan; Li, Siqi; Sun, Wenfeng; Wang, Lei; Li, Bing

    2018-03-01

    The basic concept of effective stress describes the characteristics of fluid and solid interaction in porous media. In this paper, based on the theory of fractal geometry, a fractal model was built to analyze the relationship between the microstructure and the effective stress of porous media. From the microscopic point of view, the influence of effective stress on pore structure of porous media was demonstrated. Theoretical analysis and experimental results show that: (i) the fractal model of effective stress can be used to describe the relationship between effective stress and the microstructure of porous media; (ii) a linear increase in the effective stress leads to exponential increases in fractal dimension, porosity and pore number of the porous media, and causes a decreasing trend in the average pore radius.

  14. Quasielastic neutron scattering study of water confined in carbon nanopores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mavila Chathoth, Suresh; Mamontov, Eugene; Kolesnikov, Alexander I

    2011-01-01

    Microscopic dynamics of water confined in nanometer and sub-nanometer pores of carbide-derived carbon (CDC) were investigated using quasielastic neutron scattering (QENS). The temperature dependence of the average relaxation time, {tau}, exhibits super-Arrhenius behavior that could be described by Vogel-Fulcher-Tammann (VFT) law in the range from 250 K to 190 K; below this temperature, {tau} follows Arrhenius temperature dependence. The temperature of the dynamic crossover between the two regimes in water confined in the CDC pores is similar to that observed for water in hydrophobic confinement of the larger size, such as 14 {angstrom} ordered mesoporous carbon (CMK) and 16 {angstrom}more » double-wall carbon nanotubes. Thus, the dynamical behavior of water remains qualitatively unchanged even in the very small hydrophobic pores.« less

  15. Single Nanopore Investigations with Ion Conductance Microscopy

    PubMed Central

    Chen, Chiao-Chen; Zhou, Yi; Baker, Lane A.

    2011-01-01

    A three-electrode scanning ion conductance microscope (SICM) was used to investigate the local current-voltage properties of a single nanopore. In this experimental configuration, the response measured is a function of changes in the resistances involved in the pathways of ion migration. Single nanopore membranes utilized in this study were prepared with an epoxy painting procedure to isolate a single nanopore from a track-etch multi-pore membrane. Current-voltage responses measured with the SICM probe in the vicinity of a single nanopore were investigated in detail and agreed well with equivalent circuit models proposed in this study. With this modified SICM, the current-voltage responses characterized for the case of a single cylindrical pore and a single conical pore exhibit distinct conductance properties that originate from the geometry of nanopores. PMID:21923184

  16. Early Diagenetic Changes of Sediment Pore Properties Beneath the Seafloor and Their Contributions to Gas Hydrate Concentration in the Eastern Margin of Japan Sea

    NASA Astrophysics Data System (ADS)

    Uchida, T.; Horiuchi, S.; Kato, Y.; Matsumoto, R.

    2014-12-01

    Recently many of the chimney-shape gas hydrate concentrated beneath the seafloor have been confirmed off Shimane and off Akita as well as off Joetsu in the eastern margin of Japan Sea, which are quite different from the occurrences of pore space hydrate filling the intergranular pore system of sands recognized in Nankai Trough, Mallik and other sites. Sediment samples below the seafloor were retrieved in 2010 up to 40 m long at the Umitaka Spur, Joetsu Channel, Toyama Trough, Japan Basin, Nishi Tsugaru and Okushiri Ridge areas. Small amounts of sandy sediment have been retrieved as thin intercalations in Pleistocene and Holocene muddy layers transported approximately around 3 to 30 ka according to the tephra ages, where supplying sediments might have not been abundant due to sea level fluctuation during the Pleistocene ice age. It is important to clarify the relationship between burial depths and absolute porosities of the argillaceous sediments in relation to early diagenesis. Macroscopic observations and descriptions, measurements of porosity and permeability, SEM (scanning electron microscope) observations, and X-ray diffraction analyses have been performed. They consist of silt- to clay-grained particles, and they sometimes contain very fine- to medium-grained thin sandy layers. Average porosities of these fine-grained sediments are 50 % in all study areas, which quickly reduce from 60% to less than 50% within 10 meters and gradually decrease to the depth. However, mean pore sizes in the Nishi Tsugaru are around 1000 nm while 100 nm in the other areas, which tend to decrease with depth. It is suggested that repacking of the muddy particles gradually advances by mechanical compaction, which may crucially influence permeability. They usually contain much opal-A, quartz, feldspar, illite and smectite that do not change definitely with depth. By optical and microscopic observations, diatom tests, foraminifers and framboidal pyrites are commonly observed, and, in particular, the shapes of diatom are usually various, dominantly fragmental and infrequently preserved. It is remarked that physical diagenesis proceeds first due to mechanical compaction, whereas chemical diagenesis advances very slowly in early diagenesis. This study was performed as a part of the MH21 Research Consortium on methane hydrate in Japan.

  17. Pore network quantification of sandstones under experimental CO2 injection using image analysis

    NASA Astrophysics Data System (ADS)

    Berrezueta, Edgar; González-Menéndez, Luís; Ordóñez-Casado, Berta; Olaya, Peter

    2015-04-01

    Automated-image identification and quantification of minerals, pores and textures together with petrographic analysis can be applied to improve pore system characterization in sedimentary rocks. Our case study is focused on the application of these techniques to study the evolution of rock pore network subjected to super critical CO2-injection. We have proposed a Digital Image Analysis (DIA) protocol that guarantees measurement reproducibility and reliability. This can be summarized in the following stages: (i) detailed description of mineralogy and texture (before and after CO2-injection) by optical and scanning electron microscopy (SEM) techniques using thin sections; (ii) adjustment and calibration of DIA tools; (iii) data acquisition protocol based on image capture with different polarization conditions (synchronized movement of polarizers); (iv) study and quantification by DIA that allow (a) identification and isolation of pixels that belong to the same category: minerals vs. pores in each sample and (b) measurement of changes in pore network, after the samples have been exposed to new conditions (in our case: SC-CO2-injection). Finally, interpretation of the petrography and the measured data by an automated approach were done. In our applied study, the DIA results highlight the changes observed by SEM and microscopic techniques, which consisted in a porosity increase when CO2 treatment occurs. Other additional changes were minor: variations in the roughness and roundness of pore edges, and pore aspect ratio, shown in the bigger pore population. Additionally, statistic tests of pore parameters measured were applied to verify that the differences observed between samples before and after CO2-injection were significant.

  18. Experimental study on nonmonotonicity of capillary desaturation curves in a 2-D pore-network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriquez de Castro, Antonio; Shokri, Nima; Karadimitriou, Nikolaos

    2015-10-28

    Immiscible displacement in a porous medium is important in many applications such as soil remediation and enhanced oil recovery. When gravitational forces are negligible, two-phase immiscible displacement at the pore level is controlled by capillary and viscous forces whose relative importance is quantified through the dimensionless capillary number Ca and the viscosity ratio M between liquid phases. Depending on the values of Ca and M, capillary fingering, viscous fingering, or stable displacement may be observed resulting in a variety of patterns affecting the phase entrapment. The Capillary Desaturation Curve (CDC), which represents the relationship between the residual oils saturation andmore » Ca, is an important relation to describe the phase entrapment at a given Ca. In the present study, we investigate the CDC as influenced by the viscosity ratio. A comprehensive series of experiments using a high-resolution microscope and state-of-the-art micromodels were conducted. The CDCs were calculated and the effects of Ca and M on phase entrapments were quantified. The results show that CDCs are not necessarily monotonic for all M.« less

  19. Pore Formation and Mobility Investigation video images

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Video images sent to the ground allow scientists to watch the behavior of the bubbles as they control the melting and freezing of the material during the Pore Formation and Mobility Investigation (PFMI) in the Microgravity Science Glovebox aboard the International Space Station. While the investigation studies the way that metals behave at the microscopic scale on Earth -- and how voids form -- the experiment uses a transparent material called succinonitrile that behaves like a metal to study this problem. The bubbles do not float to the top of the material in microgravity, so they can study their interactions.

  20. Three-dimensional real-time imaging of bi-phasic flow through porous media

    NASA Astrophysics Data System (ADS)

    Sharma, Prerna; Aswathi, P.; Sane, Anit; Ghosh, Shankar; Bhattacharya, S.

    2011-11-01

    We present a scanning laser-sheet video imaging technique to image bi-phasic flow in three-dimensional porous media in real time with pore-scale spatial resolution, i.e., 35 μm and 500 μm for directions parallel and perpendicular to the flow, respectively. The technique is illustrated for the case of viscous fingering. Using suitable image processing protocols, both the morphology and the movement of the two-fluid interface, were quantitatively estimated. Furthermore, a macroscopic parameter such as the displacement efficiency obtained from a microscopic (pore-scale) analysis demonstrates the versatility and usefulness of the method.

  1. Carbon nanotube scaffolds with controlled porosity as electromagnetic absorbing materials in the gigahertz range

    NASA Astrophysics Data System (ADS)

    González, M.; Crespo, M.; Baselga, J.; Pozuelo, J.

    2016-05-01

    Control of the microscopic structure of CNT nanocomposites allows modulation of the electromagnetic shielding in the gigahertz range. The porosity of CNT scaffolds has been controlled by two freezing protocols and a subsequent lyophilization step: fast freezing in liquid nitrogen and slow freezing at -20 °C. Mercury porosimetry shows that slowly frozen specimens present a more open pore size (100-150 μm) with a narrow distribution whereas specimens frozen rapidly show a smaller pore size and a heterogeneous distribution. 3D-scaffolds containing 3, 4, 6 and 7% CNT were infiltrated with epoxy and specimens with 2, 5 and 8 mm thicknesses were characterized in the GHz range. Samples with the highest pore size and porosity presented the lowest reflected power (about 30%) and the highest absorbed power (about 70%), which allows considering them as electromagnetic radiation absorbing materials.Control of the microscopic structure of CNT nanocomposites allows modulation of the electromagnetic shielding in the gigahertz range. The porosity of CNT scaffolds has been controlled by two freezing protocols and a subsequent lyophilization step: fast freezing in liquid nitrogen and slow freezing at -20 °C. Mercury porosimetry shows that slowly frozen specimens present a more open pore size (100-150 μm) with a narrow distribution whereas specimens frozen rapidly show a smaller pore size and a heterogeneous distribution. 3D-scaffolds containing 3, 4, 6 and 7% CNT were infiltrated with epoxy and specimens with 2, 5 and 8 mm thicknesses were characterized in the GHz range. Samples with the highest pore size and porosity presented the lowest reflected power (about 30%) and the highest absorbed power (about 70%), which allows considering them as electromagnetic radiation absorbing materials. Electronic supplementary information (ESI) available: Scheme of hydrogenated derivative of diglycidyl ether of bisphenol-A (HDGEBA) and m-xylylenediamine; X-ray diffractograms of pristine CNT and oxidized CNT; glass transition temperatures of composites; electromagnetic shielding analysis in the 1-18 GHz frequency range. See DOI: 10.1039/c6nr02133f

  2. Porosity characterization for heterogeneous shales using integrated multiscale microscopy

    NASA Astrophysics Data System (ADS)

    Rassouli, F.; Andrew, M.; Zoback, M. D.

    2016-12-01

    Pore size distribution analysis plays a critical role in gas storage capacity and fluid transport characterization of shales. Study of the diverse distribution of pore size and structure in such low permeably rocks is withheld by the lack of tools to visualize the microstructural properties of shale rocks. In this paper we try to use multiple techniques to investigate the full pore size range in different sample scales. Modern imaging techniques are combined with routine analytical investigations (x-ray diffraction, thin section analysis and mercury porosimetry) to describe pore size distribution of shale samples from Haynesville formation in East Texas to generate a more holistic understanding of the porosity structure in shales, ranging from standard core plug down to nm scales. Standard 1" diameter core plug samples were first imaged using a Versa 3D x-ray microscope at lower resolutions. Then we pick several regions of interest (ROIs) with various micro-features (such as micro-cracks and high organic matters) in the rock samples to run higher resolution CT scans using a non-destructive interior tomography scans. After this step, we cut the samples and drill 5 mm diameter cores out of the selected ROIs. Then we rescan the samples to measure porosity distribution of the 5 mm cores. We repeat this step for samples with diameter of 1 mm being cut out of the 5 mm cores using a laser cutting machine. After comparing the pore structure and distribution of the samples measured form micro-CT analysis, we move to nano-scale imaging to capture the ultra-fine pores within the shale samples. At this stage, the diameter of the 1 mm samples will be milled down to 70 microns using the laser beam. We scan these samples in a nano-CT Ultra x-ray microscope and calculate the porosity of the samples by image segmentation methods. Finally, we use images collected from focused ion beam scanning electron microscopy (FIB-SEM) to be able to compare the results of porosity measurements from all different imaging techniques. These multi-scale characterization techniques are then compared with traditional analytical techniques such as Mercury Porosimetry.

  3. High resolution masks for ion milling pores through substrates of biological interest

    NASA Technical Reports Server (NTRS)

    Donovan, S. S.

    1978-01-01

    The feasibility was investigated of electrochemically oxidizing vapor deposited aluminum coatings to produce porous aluminum oxide coatings with submicron pore diameters and with straight channels normal to the substrate surface. Porous aluminum oxide coatings were produced from vapor deposited aluminum coatings on thin stainless steel (304), copper, Teflon (FEP) and Kapton substrates and also on pure aluminum substrates. Scanning electron microscope examination indicated that porous oxide coatings can be produced with straight channels, appropriate pore diameters and none or minimal intervening residual aluminum. The oxide coatings on the copper and Kapton substrates had the straightest channels and in general were superior to those fabricated on the other substrate materials. For oxide coatings fabricated at 600 V and 300 V, pore diameters were 0.4-0.6, and 0.3 micron with center-to-center spacing of 0.7-0.8, and 0.4 micron, respectively. Estimated direct labor and materials costs to prepare an oxide mask is anticipated to be about $4-$6 per square foot.

  4. Slowing down single-molecule trafficking through a protein nanopore reveals intermediates for peptide translocation

    NASA Astrophysics Data System (ADS)

    Mereuta, Loredana; Roy, Mahua; Asandei, Alina; Lee, Jong Kook; Park, Yoonkyung; Andricioaei, Ioan; Luchian, Tudor

    2014-01-01

    The microscopic details of how peptides translocate one at a time through nanopores are crucial determinants for transport through membrane pores and important in developing nano-technologies. To date, the translocation process has been too fast relative to the resolution of the single molecule techniques that sought to detect its milestones. Using pH-tuned single-molecule electrophysiology and molecular dynamics simulations, we demonstrate how peptide passage through the α-hemolysin protein can be sufficiently slowed down to observe intermediate single-peptide sub-states associated to distinct structural milestones along the pore, and how to control residence time, direction and the sequence of spatio-temporal state-to-state dynamics of a single peptide. Molecular dynamics simulations of peptide translocation reveal the time- dependent ordering of intermediate structures of the translocating peptide inside the pore at atomic resolution. Calculations of the expected current ratios of the different pore-blocking microstates and their time sequencing are in accord with the recorded current traces.

  5. Novel structure formation at the bottom surface of porous anodic alumina fabricated by single step anodization process.

    PubMed

    Ali, Ghafar; Ahmad, Maqsood; Akhter, Javed Iqbal; Maqbool, Muhammad; Cho, Sung Oh

    2010-08-01

    A simple approach for the growth of long-range highly ordered nanoporous anodic alumina film in H(2)SO(4) electrolyte through a single step anodization without any additional pre-anodizing procedure is reported. Free-standing porous anodic alumina film of 180 microm thickness with through hole morphology was obtained. A simple and single step process was used for the detachment of alumina from aluminum substrate. The effect of anodizing conditions, such as anodizing voltage and time on the pore diameter and pore ordering is discussed. The metal/oxide and oxide/electrolyte interfaces were examined by high resolution scanning transmission electron microscope. The arrangement of pores on metal/oxide interface was well ordered with smaller diameters than that of the oxide/electrolyte interface. The inter-pore distance was larger in metal/oxide interface as compared to the oxide/electrolyte interface. The size of the ordered domain was found to depend strongly upon anodizing voltage and time. (c) 2010 Elsevier Ltd. All rights reserved.

  6. Microstructural and Microanalytical Study on Concrete Exposed to the Sulfate Environment

    NASA Astrophysics Data System (ADS)

    Qing, Fang; Beixing, Li; Jiangang, Yin; Xiaolu, Yuan

    2017-11-01

    Microstructural properties have been examined to investigate the effect of mineral admixtures on the sulfate resistance of concrete. Concrete and cement paste specimens made with ordinary Portland cement (OPC) or ordinary Portland cement incorporating 20% fly ash (FA) or 30% ground blast furnace slag (GBFS), were made and exposed to 250 cycles of the cyclic sulfate environment. Microstructural and Microanalytical study was conducted by means of x-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and mercury intrusion porosimetry (MIP). Results indicate that the pore structure of concrete after sulfate exposure possesses the fractal feature. The OPC concrete presents more complex pore internal surface, higher porosity and less micro-pores than the concrete incorporating fly ash and GBFS. Portlandite in OPC concrete and OPC-FA concrete is mainly converted to gypsum; while for OPC-GBFS concrete, both gypsum and ettringite are formed. In the cyclic sulfate environment, repeated hydration and dehydration of sulfates produce the expansive stress in pores, aggravating the demolishment of concrete structure.

  7. The effect of stress on limestone permeability and its effective stress behavior

    NASA Astrophysics Data System (ADS)

    Meng, F.; Baud, P.; Ge, H.; Wong, T. F.

    2017-12-01

    The evolution of permeability and its effective stress behavior is related to inelastic deformation and failure mode. This was investigated in Indiana and Purbeck limestones with porosities of 18% and 13%, respectively. Hydrostatic and triaxial compression tests were conducted at room temperature on water-saturated samples at pore pressure of 5 MPa and confining pressures up to 90 MPa. Permeability was measured using steady flow at different stages of deformation. For Indiana limestone, under hydrostatic loading pore collapse initiated at critical pressure P* 55 MPa with an accelerated reduction of permeability by 1/2. At a confinement of 35 MPa and above, shear-enhanced compaction initiated at critical stress C*, beyond which permeability reduction up to a factor of 3 was observed. At a confinement of 15 MPa and below, dilatancy initiated at critical stress C', beyond which permeability continued to decrease, with a negative correlation between porosity and permeability changes. Purbeck limestone showed similar evolution of permeability. Microstructural and mercury porosimetry data showed that pore size distribution in both Indiana and Purbeck limestones is bimodal, with significant proportions of macropores and micropores. The effective stress behaviour of a limestone with dual porosity is different from the prediction for a microscopically homogeneous assemblage, in that its effective stress coefficients for permeability and porosity change may attain values significantly >1. Indeed this was confirmed by our measurements (at confining pressures of 7-15 MPa and pore pressures of 1-3 MPa) in samples that had not been deformed inelastically. We also investigated the behavior in samples hydrostatically and triaxially compacted to beyond the critical stresses P* and C*, respectively. Experimental data for these samples consistently showed effective stress coefficients for both permeability and porosity change with values <1. Thus the effective stress behavior in an inelastically compacted sample is fundamentally different, with attributes akin to that of a microscopically homogeneous assemblage. This is likely related to compaction from pervasive collapse of macropores, which would effectively homogenize the initially bimodal pore size distribution.

  8. Effect drug loading process on dissolution mechanism of encapsulated amoxicillin trihydrate in hydrogel semi-IPN chitosan methyl cellulose with pore forming agent KHCO3 as a floating drug delivery system

    NASA Astrophysics Data System (ADS)

    Fithawati, Garnis; Budianto, Emil

    2018-04-01

    Common treatment for Helicobacter pylori by repeated oral consumption of amoxicillin trihydrate is not effective. Amoxicillin trihydrate has a very short residence time in stomach which leads into its ineffectiveness. Residence time of amoxicillin trihydrate can be improved by encapsulating amoxicillin trihydrate into a floating drug delivery system. In this study, amoxicillin trihydrate is encapsulated into hydrogel semi-IPN chitosan methyl cellulose matrix as a floating drug delivery system and then treated with 20% KHCO3 as pore forming agent. Drug loading process used are in-situ loading and post loading. In-situ loading process has higher efficiency percentage and dissolution percentage than post loading process. In-situ loading process resulted 100% efficiency with 92,70% dissolution percentage. Post loading process resulted 98,7% efficiency with 90,42% dissolution percentage. Mechanism of drug dissolution study by kinetics approach showed both in-situ loading process and post loading process are diffusion and degradation process (n=0,4913) and (n=0,4602) respectively. These results are supported by characterization data from optical microscope and scanning electron microscopy (SEM). Data from optical microscope showed both loading process resulted in coarser hydrogel surface. Characterization using SEM showed elongated pores in both loading process after dissolution test.

  9. Assembly mechanism of the oligomeric streptolysin O pore: the early membrane lesion is lined by a free edge of the lipid membrane and is extended gradually during oligomerization.

    PubMed

    Palmer, M; Harris, R; Freytag, C; Kehoe, M; Tranum-Jensen, J; Bhakdi, S

    1998-03-16

    Streptolysin O (SLO) is a bacterial exotoxin that binds to cell membranes containing cholesterol and then oligomerizes to form large pores. Along with rings, arc-shaped oligomers form on membranes. It has been suggested that each arc represents an incompletely assembled oligomer and constitutes a functional pore, faced on the opposite side by a free edge of the lipid membrane. We sought functional evidence in support of this idea by using an oligomerization-deficient, non-lytic mutant of SLO. This protein, which was created by chemical modification of a single mutant cysteine (T250C) with N-(iodoacetaminoethyl)-1-naphthylamine-5-sulfonic acid, formed hybrid oligomers with active SLO on membranes. However, incorporation of the modified T250C mutant inhibited subsequent oligomerization, so that the hybrid oligomers were reduced in size. These appeared as typical arc lesions in the electron microscope. They formed pores that permitted passage of NaCl and calcein but restricted permeation of large dextran molecules. The data indicate that the SLO pore is formed gradually during oligomerization, implying that pores lined by protein on one side and an edge of free lipid on the other may be created in the plasma membrane. Intentional manipulation of the pore size may extend the utility of SLO as a tool in cell biological experiments.

  10. Smooth DNA Transport through a Narrowed Pore Geometry

    PubMed Central

    Carson, Spencer; Wilson, James; Aksimentiev, Aleksei; Wanunu, Meni

    2014-01-01

    Voltage-driven transport of double-stranded DNA through nanoscale pores holds much potential for applications in quantitative molecular biology and biotechnology, yet the microscopic details of translocation have proven to be challenging to decipher. Earlier experiments showed strong dependence of transport kinetics on pore size: fast regular transport in large pores (> 5 nm diameter), and slower yet heterogeneous transport time distributions in sub-5 nm pores, which imply a large positional uncertainty of the DNA in the pore as a function of the translocation time. In this work, we show that this anomalous transport is a result of DNA self-interaction, a phenomenon that is strictly pore-diameter dependent. We identify a regime in which DNA transport is regular, producing narrow and well-behaved dwell-time distributions that fit a simple drift-diffusion theory. Furthermore, a systematic study of the dependence of dwell time on DNA length reveals a single power-law scaling of 1.37 in the range of 35–20,000 bp. We highlight the resolution of our nanopore device by discriminating via single pulses 100 and 500 bp fragments in a mixture with >98% accuracy. When coupled to an appropriate sequence labeling method, our observation of smooth DNA translocation can pave the way for high-resolution DNA mapping and sizing applications in genomics. PMID:25418307

  11. The Effect of Hydrofluoric Acid Etching Duration on the Surface Micromorphology, Roughness, and Wettability of Dental Ceramics

    PubMed Central

    Ramakrishnaiah, Ravikumar; Alkheraif, Abdulaziz A.; Divakar, Darshan Devang; Matinlinna, Jukka P.; Vallittu, Pekka K.

    2016-01-01

    The current laboratory study is evaluating the effect of hydrofluoric acid etching duration on the surface characteristics of five silica-based glass ceramics. Changes in the pore pattern, crystal structure, roughness, and wettability were compared and evaluated. Seventy-five rectangularly shaped specimens were cut from each material (IPS e-max™, Dentsply Celtra™, Vita Suprinity™, Vita mark II™, and Vita Suprinity FC™); the sectioned samples were finished, polished, and ultrasonically cleaned. Specimens were randomly assigned into study groups: control (no etching) and four experimental groups (20, 40, 80 and 160 s of etching). The etched surfaces’ microstructure including crystal structure, pore pattern, pore depth, and pore width was studied under a scanning electron microscope, and the surface roughness and wettability were analyzed using a non-contact surface profilometer and a contact angle measuring device, respectively. The results were statistically analyzed using one-way analysis of variance (ANOVA) and the post hoc Tukey’s test. The results showed a significant change in the pore number, pore pattern, crystal structure, surface roughness, and wettability with increased etching duration. Etching for a short time resulted in small pores, and etching for longer times resulted in wider, irregular grooves. A significant increase in the surface roughness and wettability was observed with an increase in the etching duration. The findings also suggested a strong association between the surface roughness and wettability. PMID:27240353

  12. Adsorption on Nanopores of Different Cross Sections Made by Electron Beam Nanolithography.

    PubMed

    Bruschi, Lorenzo; Mistura, Giampaolo; Prasetyo, Luisa; Do, Duong D; Dipalo, Michele; De Angelis, Francesco

    2018-01-09

    Adsorption on nanoporous matrices is characterized by a pronounced hysteresis loop in the adsorption isotherm, when the substrate is loaded and unloaded with adsorbate, the origin of which is a matter of immense debate in the literature. In this work, we report a study of argon adsorption at 85 K on nonconnecting nanopores with one end closed to the surrounding where the effects of different pore cross sections fabricated by electron beam lithography (EBL) are investigated. A polymethylmethacrylate (PMMA) resist is deposited on the electrodes of a sensitive quartz crystal microbalance without degradation of the resonance quality factor or the long-term and short-term stabilities of the device even at cryogenic temperatures. Four different pores' cross sections: circular, square, rectangular, and triangular, are produced from EBL, and the isotherms for these pore shapes exhibit pronounced hysteresis loops whose adsorption and desorption branches are nearly vertical and have almost the same slopes. No difference is observed in the hysteresis loops of the isotherms for the pores with triangular and square cross sections, whereas the hysteresis loop for the pore with circular cross sections is much narrower, suggesting that they are more regular than the other pores. All of these observations suggest that the hysteresis behavior resulted mainly from microscopic geometric irregularities present in these porous matrices.

  13. Quasielastic neutron scattering study of water confined in carbon nanopores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chathoth, S. M.; Mamontov, E.; Kolesnikov, A. I.

    2011-07-26

    Microscopic dynamics of water confined in nanometer and sub-nanometer pores of carbide-derived carbon (CDC) were investigated using quasielastic neutron scattering (QENS). The temperature dependence of the average relaxation time, ‹τ›, exhibits super-Arrhenius behavior that could be described by Vogel-Fulcher-Tammann (VFT) law in the range from 250 K to 190 K; below this temperature, ‹τ› follows Arrhenius temperature dependence. The temperature of the dynamic crossover between the two regimes in water confined in the CDC pores is similar to that observed for water in hydrophobic confinement of the larger size, such as 14 Å ordered mesoporous carbon (CMK) and 16 Åmore » double-wall carbon nanotubes. Thus, the dynamical behavior of water remains qualitatively unchanged even in the very small hydrophobic pores.« less

  14. Cellulose conjugated FITC-labelled mesoporous silica nanoparticles: intracellular accumulation and stimuli responsive doxorubicin release

    NASA Astrophysics Data System (ADS)

    Hakeem, Abdul; Zahid, Fouzia; Duan, Ruixue; Asif, Muhammad; Zhang, Tianchi; Zhang, Zhenyu; Cheng, Yong; Lou, Xiaoding; Xia, Fan

    2016-02-01

    Herein, we design novel cellulose conjugated mesoporous silica nanoparticle (CLS-MSP) based nanotherapeutics for stimuli responsive intracellular doxorubicin (DOX) delivery. DOX molecules are entrapped in pores of the fabricated mesoporous silica nanoparticles (MSPs) while cellulose is used as an encapsulating material through esterification on the outlet of the pores of the MSPs to avoid premature DOX release under physiological conditions. In in vitro studies, stimuli responsive DOX release is successfully achieved from DOX loaded cellulose conjugated mesoporous silica nanoparticles (DOX/CLS-MSPs) by pH and cellulase triggers. Intracellular accumulation of DOX/CLS-MSPs in human liver cancer cells (HepG2 cells) is investigated through confocal microscope magnification. Cell viability of HepG2 cells is determined as the percentage of the cells incubated with DOX/CLS-MSPs compared with that of non-incubated cells through an MTT assay.Herein, we design novel cellulose conjugated mesoporous silica nanoparticle (CLS-MSP) based nanotherapeutics for stimuli responsive intracellular doxorubicin (DOX) delivery. DOX molecules are entrapped in pores of the fabricated mesoporous silica nanoparticles (MSPs) while cellulose is used as an encapsulating material through esterification on the outlet of the pores of the MSPs to avoid premature DOX release under physiological conditions. In in vitro studies, stimuli responsive DOX release is successfully achieved from DOX loaded cellulose conjugated mesoporous silica nanoparticles (DOX/CLS-MSPs) by pH and cellulase triggers. Intracellular accumulation of DOX/CLS-MSPs in human liver cancer cells (HepG2 cells) is investigated through confocal microscope magnification. Cell viability of HepG2 cells is determined as the percentage of the cells incubated with DOX/CLS-MSPs compared with that of non-incubated cells through an MTT assay. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08753h

  15. Micro-CT based modelling for characterising injection-moulded porous titanium implants.

    PubMed

    Chen, Junning; Chen, Liangjian; Chang, Che-Cheng; Zhang, Zhongpu; Li, Wei; Swain, Michael V; Li, Qing

    2017-01-01

    Design of prosthetic implants to ensure rapid and stable osseointegration remains a significant challenge, and continuous efforts have been directed to new implant materials, structures and morphology. This paper aims to develop and characterise a porous titanium dental implant fabricated by metallic powder injection-moulding. The surface morphology of the specimens was first examined with a scanning electron microscope (SEM), followed by microscopic computerised tomography (μ-CT) scanning to capture its 3D microscopic features non-destructively. The nature of porosity and pore sizes were determined statistically. A homogenisation technique based on the Hills-energy theorem was adopted to evaluate its directional elastic moduli, and the conservation of mass theorem was employed to quantify the oxygen diffusivity for bio-transportation feature. This porous medium was found to have pore sizes varying from 50 to 400 µm and the average porosity of 46.90 ± 1.83%. The anisotropic principal elastic moduli were found fairly close to the upper range of cortical bone, and the directional diffusivities could potentially enable radial osseous tissue ingrowth and vascularisation. This porous titanium successfully reduces the elastic modulus mismatch between implant and bone for dental and orthopaedic applications, and provides improved capacity for transporting oxygen, nutrient and waste for pre-vascular network formation. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Development of a reactive burn model based on an explicit viscoplastic pore collapse model

    NASA Astrophysics Data System (ADS)

    Bouton, E.; Lefrançois, A.; Belmas, R.

    2017-01-01

    The aim of this study is to develop a reactive burn model based upon a microscopic hot spot model to compute the shock-initiation of pressed TATB high explosives. Such a model has been implemented in a lagrangian hydrodynamic code. In our calculations, 8 pore radii, ranging from 40 nm to 0.63 μm, have been taken into account and the porosity fraction associated to each void radius has been deduced from the Ultra-Small-Angle X-ray Scattering measurements (USAXS) for PBX-9502. The last parameter of our model is a burn rate that depends on three variables. The first two are the reaction progress variable and the lead shock pressure, the last one is the chemical reaction site number produced in the flow and calculated by the microscopic model. This burn rate has been calibrated by fitting pressure, velocity profiles and run distances to detonation. As the computed results are in close agreement with the measured ones, this model is able to perform a wide variety of numerical simulations including single, double shock waves and the desensitization phenomenon.

  17. Infiltrating sulfur into a highly porous carbon sphere as cathode material for lithium–sulfur batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Xiaohui; Kim, Dul-Sun; Ahn, Hyo-Jun

    2014-10-15

    Highlights: • A highly porous carbon (HPC) with regular spherical morphology was synthesized. • Sulfur/HPC composites were prepared by melt–diffusion method. • Sulfur/HPC composites showed improved cyclablity and long-term cycle life. - Abstract: Sulfur composite material with a highly porous carbon sphere as the conducting container was prepared. The highly porous carbon sphere was easily synthesized with resorcinol–formaldehyde precursor as the carbon source. The morphology of the carbon was observed with field emission scanning electron microscope and transmission electron microscope, which showed a well-defined spherical shape. Brunauer–Emmett–Teller analysis indicated that it possesses a high specific surface area of 1563 m{supmore » 2} g{sup −1} and a total pore volume of 2.66 cm{sup 3} g{sup −1} with a bimodal pore size distribution, which allow high sulfur loading and easy transportation of lithium ions. Sulfur carbon composites with varied sulfur contents were prepared by melt–diffusion method and lithium sulfur cells with the sulfur composites showed improved cyclablity and long-term cycle life.« less

  18. Intercomparison of 3D pore-scale flow and solute transport simulation methods

    DOE PAGES

    Mehmani, Yashar; Schoenherr, Martin; Pasquali, Andrea; ...

    2015-09-28

    Multiple numerical approaches have been developed to simulate porous media fluid flow and solute transport at the pore scale. These include 1) methods that explicitly model the three-dimensional geometry of pore spaces and 2) methods that conceptualize the pore space as a topologically consistent set of stylized pore bodies and pore throats. In previous work we validated a model of the first type, using computational fluid dynamics (CFD) codes employing a standard finite volume method (FVM), against magnetic resonance velocimetry (MRV) measurements of pore-scale velocities. Here we expand that validation to include additional models of the first type based onmore » the lattice Boltzmann method (LBM) and smoothed particle hydrodynamics (SPH), as well as a model of the second type, a pore-network model (PNM). The PNM approach used in the current study was recently improved and demonstrated to accurately simulate solute transport in a two-dimensional experiment. While the PNM approach is computationally much less demanding than direct numerical simulation methods, the effect of conceptualizing complex three-dimensional pore geometries on solute transport in the manner of PNMs has not been fully determined. We apply all four approaches (FVM-based CFD, LBM, SPH and PNM) to simulate pore-scale velocity distributions and (for capable codes) nonreactive solute transport, and intercompare the model results. Comparisons are drawn both in terms of macroscopic variables (e.g., permeability, solute breakthrough curves) and microscopic variables (e.g., local velocities and concentrations). Generally good agreement was achieved among the various approaches, but some differences were observed depending on the model context. The intercomparison work was challenging because of variable capabilities of the codes, and inspired some code enhancements to allow consistent comparison of flow and transport simulations across the full suite of methods. This paper provides support for confidence in a variety of pore-scale modeling methods and motivates further development and application of pore-scale simulation methods.« less

  19. Intercomparison of 3D pore-scale flow and solute transport simulation methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiaofan; Mehmani, Yashar; Perkins, William A.

    2016-09-01

    Multiple numerical approaches have been developed to simulate porous media fluid flow and solute transport at the pore scale. These include 1) methods that explicitly model the three-dimensional geometry of pore spaces and 2) methods that conceptualize the pore space as a topologically consistent set of stylized pore bodies and pore throats. In previous work we validated a model of the first type, using computational fluid dynamics (CFD) codes employing a standard finite volume method (FVM), against magnetic resonance velocimetry (MRV) measurements of pore-scale velocities. Here we expand that validation to include additional models of the first type based onmore » the lattice Boltzmann method (LBM) and smoothed particle hydrodynamics (SPH), as well as a model of the second type, a pore-network model (PNM). The PNM approach used in the current study was recently improved and demonstrated to accurately simulate solute transport in a two-dimensional experiment. While the PNM approach is computationally much less demanding than direct numerical simulation methods, the effect of conceptualizing complex three-dimensional pore geometries on solute transport in the manner of PNMs has not been fully determined. We apply all four approaches (FVM-based CFD, LBM, SPH and PNM) to simulate pore-scale velocity distributions and (for capable codes) nonreactive solute transport, and intercompare the model results. Comparisons are drawn both in terms of macroscopic variables (e.g., permeability, solute breakthrough curves) and microscopic variables (e.g., local velocities and concentrations). Generally good agreement was achieved among the various approaches, but some differences were observed depending on the model context. The intercomparison work was challenging because of variable capabilities of the codes, and inspired some code enhancements to allow consistent comparison of flow and transport simulations across the full suite of methods. This study provides support for confidence in a variety of pore-scale modeling methods and motivates further development and application of pore-scale simulation methods.« less

  20. Arsenic and antimony geochemistry of mine wastes, associated waters and sediments at the Giant Mine, Yellowknife, Northwest Territories, Canada

    USGS Publications Warehouse

    Fawcett, Skya E.; Jamieson, Heather E.; Nordstrom, D. Kirk; McCleskey, R. Blaine

    2015-01-01

    Elevated levels of arsenic (As) and antimony (Sb) in water and sediments are legacy residues found downstream from gold-mining activities at the Giant Mine in Yellowknife, Northwest Territories (NWT), Canada. To track the transport and fate of As and Sb, samples of mine-waste from the mill, and surface water, sediment, pore-water, and vegetation downstream of the mine were collected. Mine waste, pore-water, and sediment samples were analyzed for bulk chemistry, and aqueous and solid-state speciation. Sediment and vegetation chemistry were evaluated using scanning electron microscope imaging, synchrotron-based element mapping and electron microprobe analysis. The distributions of As and Sb in sediments were similar, yet their distributions in the corresponding pore-waters were mostly dissimilar, and the mobility of As was greater than that of Sb. Competition for sorption sites is the most likely cause of elevated Sb concentrations in relatively oxidized pore-water and surface water. The aqueous and solid-state speciation of As and Sb also differed. In pore-water, As(V) dominated in oxidizing environments and As(III) in reducing environments. In contrast, the Sb(V) species dominated in all but one pore-water sample, even under reducing conditions. Antimony(III) appears to preferentially precipitate or adsorb onto sulfides as evidenced by the prevalence of an Sb(III)-S secondary solid-phase and the lack of Sb(III)(aq) in the deeper zones. The As(V)–O solid phase became depleted with depth below the sediment–water interface, and the Sb(V)–O phase persisted under relatively reducing conditions. In the surficial zone at a site populated by Equisetum fluviatile (common horsetail), As and Sb were associated with organic material and appeared mobile in the root zone. In the zone below active plant growth, As and Sb were associated primarily with inorganic phases suggesting a release and reprecipitation of these elements upon plant death. The co-existence of reduced and oxidized As and Sb species, instability of some phases under changing redox conditions, and plant uptake and release pose challenges for remediation efforts at the mine.

  1. Gasification Reaction Characteristics of Ferro-Coke at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Zhang, Jian-liang; Gao, Bing

    2017-01-01

    In this paper, the effects of temperature and atmosphere on the gasification reaction of ferro-coke were investigated in consideration of the actual blast furnace conditions. Besides, the microstructure of the cokes was observed by scanning electron microscope (SEM). It is found that the weight loss of ferro-coke during the gasification reaction is significantly enhanced in the case of increasing either the reaction temperature or the CO2 concentration. Furthermore, compared with the normal type of metallurgical coke, ferro-coke exhibits a higher weight loss when they are gasified at the same temperature or under the same atmosphere. As to the microstructure, inside the reacted ferro-coke are a large amount of pores. Contrary to the normal coke, the proportions of the large-size pores and the through holes are greatly increased after gasification, giving rise to thinner pore walls and hence a degradation in coke strength after reaction (CSR).

  2. Carbon nanotube scaffolds with controlled porosity as electromagnetic absorbing materials in the gigahertz range.

    PubMed

    González, M; Crespo, M; Baselga, J; Pozuelo, J

    2016-05-19

    Control of the microscopic structure of CNT nanocomposites allows modulation of the electromagnetic shielding in the gigahertz range. The porosity of CNT scaffolds has been controlled by two freezing protocols and a subsequent lyophilization step: fast freezing in liquid nitrogen and slow freezing at -20 °C. Mercury porosimetry shows that slowly frozen specimens present a more open pore size (100-150 μm) with a narrow distribution whereas specimens frozen rapidly show a smaller pore size and a heterogeneous distribution. 3D-scaffolds containing 3, 4, 6 and 7% CNT were infiltrated with epoxy and specimens with 2, 5 and 8 mm thicknesses were characterized in the GHz range. Samples with the highest pore size and porosity presented the lowest reflected power (about 30%) and the highest absorbed power (about 70%), which allows considering them as electromagnetic radiation absorbing materials.

  3. Synthesis and characterization of MOF-aminated graphite oxide composites for CO2 capture

    NASA Astrophysics Data System (ADS)

    Zhao, Yunxia; Ding, Huiling; Zhong, Qin

    2013-11-01

    A kind of metal-organic frameworks (MOF-5) and aminated graphite oxide (AGO) composites were prepared for CO2 capture to mitigate global warming. MOF-5, MOF-5/GO (composite of MOF-5 and graphite oxide) and MOF-5/AGO samples were characterized by X-ray powder diffraction (XRD), infrared spectroscopy (IR), scanning electron microscope (SEM), nitrogen adsorption as well as thermogravimetric analysis to figure out their chemistry and structure information. Three types of samples with suitable specific surface area and pore diameter were chosen to test CO2 adsorption performance and stability under humidity conditions. The results indicate that high surface area and pore volume, pore similar in size to the size of gas adsorbate, and extra reactive sites modified in the composites contributes to the high CO2 capacity. Besides, the composites involved by GO or AGO show better anti-moisture performance than the parent MOF.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Chan Yi, E-mail: vicchanyiwei@hotmail.com; Ongkudon, Clarence M., E-mail: clarence@ums.edu.my; Kansil, Tamar, E-mail: tamarkansil87@gmail.com

    Modern day synthesis protocols of methacrylate monolithic polymer adsorbent are based on existing polymerization blueprint without a thorough understanding of the dynamics of pore structure and formation. This has resulted in unproductiveness of polymer adsorbent consequently affecting purity and recovery of final product, productivity, retention time and cost effectiveness of the whole process. The problems magnified in monolith scaling-up where internal heat buildup resulting from external heating and high exothermic polymerization reaction was reflected in cracking of the adsorbent. We believe that through careful and precise control of the polymerization kinetics and parameters, it is possible to prepare macroporous methacrylatemore » monolithic adsorbents with controlled pore structures despite being carried out in an unstirred mould. This research involved the study of the effect of scaling-up on pore morphology of monolith, in other words, porous polymethacrylate adsorbents that were prepared via bulk free radical polymerization process by imaging the porous morphology of polymethacrylate with scanning electron microscope.« less

  5. Microstructure and Properties of Zircon-Added Carbon Refractories for Blast Furnace

    NASA Astrophysics Data System (ADS)

    Zhu, Tianbin; Li, Yawei; Sang, Shaobai; Chen, Xilai; Zhao, Lei; Li, Yuanbing; Li, Shujing

    2012-11-01

    Microstructure and properties of zircon-added carbon refractory specimens for blast furnace (BF) were investigated with the aid of X-ray diffraction (XRD), a scanning electron microscope (SEM), energy-dispersive X-ray, mercury porosimetry, and a laser thermal conductivity (TC) meter. Additives could influence the matrix structures and improve the properties of specimens. With the increase of zircon powder content, the amount of SiC whiskers formed increased and their aspect ratio became larger, and the SiC whiskers tended to be distributed homogeneously. Zircon powder additions decreased the mean pore diameter and increased <1- μm pore volume by filling in pores via SiC, improved the TC and the cold crushing strength (CCS) due to the in-situ formation of the more well-developed SiC whiskers with high TC, and significantly reduced the molten iron attack to carbon specimens.

  6. Experimental study on microstructure characters of foamed lightweight soil

    NASA Astrophysics Data System (ADS)

    Qiu, Youqiang; Li, Yongliang; Li, Meixia; Liu, Yaofu; Zhang, Liujun

    2018-01-01

    In order to verify the microstructure of foamed lightweight soil and its characters of compressive strength, four foamed lightweight soil samples with different water-soild ratio were selected and the microstructure characters of these samples were scanned by electron microscope. At the same time, the characters of compressive strength of foamed lightweight soil were analyzed from the microstructure. The study results show that the water-soild ratio has a prominent effect on the microstructure and compressive strength of foamed lightweight soil, with the decrease of water-solid ratio, the amount and the perforation of pores would be reduced significantly, thus eventually forming a denser and fuller interior structure. Besides, the denser microstructure and solider pore-pore wall is benefit to greatly increase mechanical intensity of foamed lightweight soil. In addition, there are very few acicular ettringite crystals in the interior of foamed lightweight soil, its number is also reduced with the decrease in water-soild ratio.

  7. Mouthparts and their setae of the intertidal isopod Cirolana harfordi.

    PubMed

    Thomson, M

    2013-11-01

    The cirolanid isopod Cirolana harfordi is described as a scavenger and a predator that lives in the intertidal region. In order to understand the microanatomy of the mouthparts and the setae that allow this animal to handle and eat its food, a scanning electron microscopy study was conducted. C. harfordi displays a variety in the types of setae distributed on its mouthparts in a site-specific fashion, including complex setae placed on the medial edge of the maxilliped and maxilla. Terminal pores in some setae were found to contain a cupule, which is a hemispherical structure, housed in the concave recess of the pore, which demonstrates that the pore is more than merely a thinning of the cuticle as has been proposed. Future studies on setal morphology are needed for comparative microanatomy of cirolanid isopods. © 2013 The Author Journal of Microscopy © 2013 Royal Microscopical Society.

  8. The influence of alkalinity of portland cement on the absorption characteristics of superabsorbent polymers (SAP) for use in internally cured concrete

    NASA Astrophysics Data System (ADS)

    Tabares Tamayo, Juan D.

    The concrete industry increasingly emphasizes advances in novel materials that promote construction of more resilient infrastructure. Due to its potential to improve concrete durability, internal curing (IC) of concrete by means of superabsorbent polymers (SAP) has been identified as one of the most promising technologies of the 21st century. The addition of superabsorbent polymers into a cementitious system promotes further hydration of cement by providing internal moisture during the hardening and strength development periods, and thus limits self-desiccation, shrinkage, and cracking. This thesis presents the work performed on the series of cement pastes with varying alkalinity of their pore solutions to provide a better understanding of: (1) the influence of the chemistry of the pore solution (i.e. its level of alkalinity and the type of ionic species present) on the absorption capacity of SAP, and (2) the effectiveness of SAP with different absorption capacities as an internal curing agent. This research work was divided into three stages: (a) materials characterization, (b) measurement of absorption capacity of SAP in synthetic pore solutions, and (c) evaluation of the internal curing effectiveness of SAP. During the first stage (Materials Characterization), pore solutions were extracted from the fresh (5 minutes old) cement pastes prepared using cements with three different levels of alkalinity. The pH values of the extracted solutions were determined (using the pH meter) and their chemical analysis was performed by means of titration (concentration of hydroxyl), ion chromatography (sulfates and chlorides), atomic absorption (AA) and inductively coupled plasma optical emission spectrometry (ICP) (sodium, potassium and calcium). The commercial SAP adopted for this study was used with "as-supplied" gradation and with the finer gradation obtained by grinding the original polymer in the 6850 Cryomilling Freezer/Mill. The physical properties of these SAP's, such as the shape and size of the particles, were determined by optical microscopy combined with image analysis. The second stage, the absorption capacity of SAP's, involved determination of the swelling behavior and the absorption capacity of polymers exposed to artificial pore solutions with different levels of alkalinity. The swelling behavior was followed using the optical microscope while the absorption capacity was characterized using the tea bag method. It was found that changes in the chemical compositions of the pore solutions influence the adsorption kinetics and result in different absorption isotherms. In the third stage, the internal curing effects of inclusion of SAP in cement pastes were evaluated. Mixture proportions of pastes used in this stage of the study were selected based on the absorption capacity of the SAP determined in stage two. The testing of the pastes involved determination of their set times, heat of hydration, and autogenous shrinkage.

  9. Micromechanics investigation of expansive reactions in chemoelastic concrete.

    PubMed

    Lemarchand, Eric; Dormieux, Luc; Ulm, Franz-Josef

    2005-11-15

    Expansive reactions damage porous materials through the formation of reaction products of a volume in excess of the available space left by the reactants and the natural porosity of the material. This leads to pressurizing the pore space accessible to the reaction products, which differs when the chemical reaction is through-solution or topochemical or both in nature. This paper investigates expansive reactions from a micromechanical point of view, which allows bridging the scale from the local chemo-mechanical mechanisms to the macroscopically observable stress-free expansion. In particular, the study of the effect of morphology of the pore space, in which the chemical expansion occurs locally, on the macroscopically observable expansion is the main focus of this paper. The first part revisits the through-solution and the topochemical reaction mechanism within the framework of micro-macro-homogenization theories, and the effect of the microscopic geometry of pores and microcracks in the solid matrix on the macroscopic chemical expansion is examined. The second part deals with the transition from a topochemical to a through-solution-like mechanism that occurs in a solid matrix with inclusions (cracks, pores) of different morphology.

  10. Development of a reactive burn model based upon an explicit visco-plastic pore collapse model

    NASA Astrophysics Data System (ADS)

    Bouton, Eric; Lefrançois, Alexandre; Belmas, Robert

    2015-06-01

    Our aim in this study is to develop a reactive burn model based upon a microscopic hot spot model to compute the initiation and shock to detonation of pressed TATB explosives. For the sake of simplicity, the hot spots are supposed to result from the viscoplastic collapse of spherical micro-voids inside the composition. Such a model has been incorporated in a lagrangian hydrodynamic code. In our calculations, 8 different pore diameters, ranging from 100 nm to 1.2 μm, have been taken into account and the porosity associated to each pore size has been deduced from the PBX-9502 void distribution derived from the SAXS. The last ingredient of our model is the burn rate that depends on two main variables. The first one is the shock pressure as proposed by the developers of the CREST model. The second one is the number of effective chemical reaction sites calculated by the microscopic model. Furthermore, the function of the reaction progress variable of the burn rate is similar to that in the SURF model proposed by Menikoff. Our burn rate has been calibrated by using pressure profile, material velocities wave forms obtained with embedded particle velocity gauges and run distance to detonation. The comparison between the numerical and experimental results is really good and sufficient to perform a wide variety of simulations including single, double shock waves and the desensitization phenomenon. In conclusion, future works are described.

  11. Research on the porous flow of the mechanism of viscous-elastic fluids displacing residual oil droplets in micro pores

    NASA Astrophysics Data System (ADS)

    Dong, Guanyu

    2018-03-01

    In order to analyze the microscopic stress field acting on residual oil droplets in micro pores, calculate its deformation, and explore the hydrodynamic mechanism of viscous-elastic fluids displacing oil droplets, the viscous-elastic fluid flow equations in micro pores are established by choosing the Upper Convected Maxwell constitutive equation; the numerical solutions of the flow field are obtained by volume control and Alternate Direction Implicit methods. From the above, the velocity field and microscopic stress field; the forces acting on residual oil droplets; the deformations of residual oil droplets by various viscous-elastic displacing fluids and at various Wiesenberg numbers are calculated and analyzed. The result demonstrated that both the normal stress and horizontal force acting on the residual oil droplets by viscous-elastic fluids are much larger compared to that of inelastic fluid; the distribution of normal stress changes abruptly; under the condition of the same pressure gradient in the system under investigation, the ratio of the horizontal forces acting on the residual oil droplets by different displacing fluids is about 1:8:20, which means that under the above conditions, the driving force on a oil droplet is 20 times higher for a viscous-elastic fluid compared to that of a Newtonian Fluid. The conclusions are supportive of the mechanism that viscous-elastic driving fluids can increase the Displacement Efficiency. This should be of help in designing new chemicals and selecting Enhanced Oil Recovery systems.

  12. Comparative SEM and LM foliar epidermal and palyno-morphological studies of Amaranthaceae and its taxonomic implications.

    PubMed

    Hussain, Amara Noor; Zafar, Muhammad; Ahmad, Mushtaq; Khan, Raees; Yaseen, Ghulam; Khan, Muhammad Saleem; Nazir, Abdul; Khan, Amir Muhammad; Shaheen, Shabnum

    2018-05-01

    Palynological features as well as comparative foliar epidermal using light and scanning electron microscope (SEM) of 17 species (10genera) of Amaranthaceae have been studied for its taxonomic significance. Different foliar and palynological micro-morphological characters were examined to explain their value in resolving the difficulty in identification. All species were amphistomatic but stomata on abaxial surface were more abundant. Taxonomically significant epidermal character including stomata type, trichomes (unicellular, multicellular, and capitate) and epidermal cells shapes (polygonal and irregular) were also observed. Pollens of this family are Polypantoporate, pores large, spheroidal, mesoporous region is sparsely to scabrate, densely psilate, and spinulose. All these characters can be active at species level for identification purpose. This study indicates that at different taxonomic levels, LM and SEM pollen and epidermal morphology is explanatory and significant to identify species and genera. © 2018 Wiley Periodicals, Inc.

  13. Effects of pore forming agents on chitosan-graft-poly(N-vinylpyrrolidone) hydrogel properties for use as a matrix for floating drug delivery

    NASA Astrophysics Data System (ADS)

    Budianto, E.; Al-Shidqi, M. F.; Cahyana, A. H.

    2017-07-01

    Eradicating H. pylori-based infection by using conventional oral dosage form of amoxicillin trihydrate finds difficulties to overcome rapid gastric retention time. Encapsulating amoxicillin trihydrate in floating drug delivery system may solve the problem. In this research, the floating drug delivery system of amoxicillin trihydrate encapsulated in floating chitosan-graft-poly(N-vinyl pyrrolidone) hydrogels containing CaCO3 and NaHCO3 as pore forming agents has been successfully prepared. Pore forming agents used was varied with the ratio of 10 to 25% pore forming agents to total mass of the used materials. The hydrogel were characterizedusing FTIR spectrophotometer and stereo microscope. As pore forming agents compositions increased, the porosity (%) and floating properties increased but followed by decrease in drug entrapment efficiency. Most of the floating hydrogels possessed floating ability longer than 180 min and the highest porosity was found in hydrogel containing 25% NaHCO3. Hydrogel containing CaCO3 showed sustained drug release profile than hydrogel containing NaHCO3. However, the optimum formulation was achieved at composition of 10% NaHCO3 with 57% of drug entrapped within the hydrogel and 43% drug released. The results of these studies show that NaHCO3 is an effective pore forming agents for chitosan-graft-poly(N-vinyl pyrrolidone) hydrogel preparation as compare to CaCO3.

  14. Longitudinally Controlled Modification of Cylindrical and Conical Track-Etched Poly(ethylene terephthalate) Pores Using an Electrochemically Assisted Click Reaction

    DOE PAGES

    Coceancigh, Herman; Tran-Ba, Khanh-Hoa; Siepser, Natasha; ...

    2017-09-27

    Here in this study, the longitudinally controlled modification of the inner surfaces of poly(ethylene terephthalate) (PET) track-etched pores was explored using an electrochemically assisted Cu(I)-catalyzed azide–alkyne cycloaddition (CuAAC) click reaction. Cylindrical or conical PET track-etched pores were first decorated with ethynyl groups via the amidation of surface -COOH groups, filled with a solution containing Cu(II) and azide-tagged fluorescent dye, and then sandwiched between comb-shaped and planar gold electrodes. Cu(I) was produced at the comb-shaped working electrode by the reduction of Cu(II); it diffused along the pores toward the other electrode and catalyzed CuAAC between an azide-tagged fluorescent dye and amore » pore-tethered ethynyl group. The modification efficiency of cylindrical pores (ca. 1 μm in diameter) was assessed from planar and cross-sectional fluorescence microscope images of modified membranes. Planar images showed that pore modification took place only above the teeth of the comb-shaped electrode with a higher reaction yield for longer Cu(II) reduction times. Cross-sectional images revealed micrometer-scale gradient modification along the pore axis, which reflected a Cu(I) concentration profile within the pores, as supported by finite-element computer simulations. The reported approach was applicable to the asymmetric modification of cylindrical pores with two different fluorescent dyes in the opposite directions and also for the selective visualization of the tip and base openings of conical pores (ca. 3.5 μm in base diameter and ca. 1 μm in tip diameter). Lastly, the method based on electrochemically assisted CuAAC provides a controlled means to fabricate asymmetrically modified nanoporous membranes and, in the future, will be applicable for chemical separations and the development of sequential catalytic reactors.« less

  15. Longitudinally Controlled Modification of Cylindrical and Conical Track-Etched Poly(ethylene terephthalate) Pores Using an Electrochemically Assisted Click Reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coceancigh, Herman; Tran-Ba, Khanh-Hoa; Siepser, Natasha

    Here in this study, the longitudinally controlled modification of the inner surfaces of poly(ethylene terephthalate) (PET) track-etched pores was explored using an electrochemically assisted Cu(I)-catalyzed azide–alkyne cycloaddition (CuAAC) click reaction. Cylindrical or conical PET track-etched pores were first decorated with ethynyl groups via the amidation of surface -COOH groups, filled with a solution containing Cu(II) and azide-tagged fluorescent dye, and then sandwiched between comb-shaped and planar gold electrodes. Cu(I) was produced at the comb-shaped working electrode by the reduction of Cu(II); it diffused along the pores toward the other electrode and catalyzed CuAAC between an azide-tagged fluorescent dye and amore » pore-tethered ethynyl group. The modification efficiency of cylindrical pores (ca. 1 μm in diameter) was assessed from planar and cross-sectional fluorescence microscope images of modified membranes. Planar images showed that pore modification took place only above the teeth of the comb-shaped electrode with a higher reaction yield for longer Cu(II) reduction times. Cross-sectional images revealed micrometer-scale gradient modification along the pore axis, which reflected a Cu(I) concentration profile within the pores, as supported by finite-element computer simulations. The reported approach was applicable to the asymmetric modification of cylindrical pores with two different fluorescent dyes in the opposite directions and also for the selective visualization of the tip and base openings of conical pores (ca. 3.5 μm in base diameter and ca. 1 μm in tip diameter). Lastly, the method based on electrochemically assisted CuAAC provides a controlled means to fabricate asymmetrically modified nanoporous membranes and, in the future, will be applicable for chemical separations and the development of sequential catalytic reactors.« less

  16. Micrometer-Scale Membrane Transition of Supported Lipid Bilayer Membrane Reconstituted with Cytosol of Dictyostelium discoideum.

    PubMed

    Takahashi, Kei; Toyota, Taro

    2017-03-07

    The transformation of the supported lipid bilayer (SLB) membrane by extracted cytosol from living resources, has recently drawn much attention. It enables us to address the question of whether the purified phospholipid SLB membrane, including lipids related to amoeba locomotion, which was discussed in many previous studies, exhibits membrane deformation in the presence of cytosol extracted from amoeba; Methods: In this report, a method for reconstituting a supported lipid bilayer (SLB) membrane, composed of purified phospholipids and cytosol extracted from Dictyostelium discoideum , is described. This technique is a new reconstitution method combining the artificial constitution of membranes with the reconstitution using animate cytosol (without precise purification at a molecular level), contributing to membrane deformation analysis; Results: The morphology transition of a SLB membrane composed of phosphatidylcholines, after the addition of cytosolic extract, was traced using a confocal laser scanning fluorescence microscope. As a result, pore formation in the SLB membrane was observed and phosphatidylinositides incorporated into the SLB membrane tended to suppress pore formation and expansion; Conclusions: The current findings imply that phosphatidylinositides have the potential to control cytoplasm activity and bind to a phosphoinositide-containing SLB membrane.

  17. Looking at tardigrades in a new light: using epifluorescence to interpret structure.

    PubMed

    Perry, E S; Miller, W R; Lindsay, S

    2015-02-01

    The use of epifluorescence microscopy coupled with ultraviolet (UV) autofluorescence is suggested as a means to view and interpret tardigrade structures. Endogenous fluorochromes are a known component of tardigrade cuticle, claws and bucco-pharyngeal apparatus. By imaging the autofluorescence from tardigrades, it is possible to document these structures in detail, including the subdivisions and boundaries of echiniscid (heterotardigrade) plates and the nature and spatial relationships of the texture (pores, granules, papillae and tubercles) on the various plates. This allows the determination of taxonomic features not easily seen with other microscopic techniques. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  18. Characterization of Coal Porosity for Naturally Tectonically Stressed Coals in Huaibei Coal Field, China

    PubMed Central

    Li, Xiaoshi; Hou, Quanlin; Li, Zhuo; Wei, Mingming

    2014-01-01

    The enrichment of coalbed methane (CBM) and the outburst of gas in a coal mine are closely related to the nanopore structure of coal. The evolutionary characteristics of 12 coal nanopore structures under different natural deformational mechanisms (brittle and ductile deformation) are studied using a scanning electron microscope (SEM) and low-temperature nitrogen adsorption. The results indicate that there are mainly submicropores (2~5 nm) and supermicropores (<2 nm) in ductile deformed coal and mesopores (10~100 nm) and micropores (5~10 nm) in brittle deformed coal. The cumulative pore volume (V) and surface area (S) in brittle deformed coal are smaller than those in ductile deformed coal which indicates more adsorption space for gas. The coal with the smaller pores exhibits a large surface area, and coal with the larger pores exhibits a large volume for a given pore volume. We also found that the relationship between S and V turns from a positive correlation to a negative correlation when S > 4 m2/g, with pore sizes <5 nm in ductile deformed coal. The nanopore structure (<100 nm) and its distribution could be affected by macromolecular structure in two ways. Interconversion will occur among the different size nanopores especially in ductile deformed coal. PMID:25126601

  19. Stochasticity of Pores Interconnectivity in Li–O 2 Batteries and its Impact on the Variations in Electrochemical Performance

    DOE PAGES

    Torayev, Amangeldi; Rucci, Alexis J.; Magusin, Pieter C. M. M.; ...

    2018-01-17

    While large dispersions in electrochemical performance have been reported for lithium oxygen batteries in the literature, they have not been investigated in any depth. The variability in the results is often assumed to arise from differences in cell design, electrode structure, handling and cell preparation at different times. An accurate theoretical framework turns out to be needed to get a better insight into the mechanisms underneath and to interpreting experimental results. Here, we develop and use a pore network model to simulate the electrochemical performance of three-dimensionally resolved lithium-oxygen cathode mesostructures obtained from TXM nano-computed tomography images. Here, we applymore » this model to the 3D reconstructed object of a Super P carbon electrode and calculate discharge curves, using identical conditions, for four different zones in the electrode and their reversed configurations. The resulting galvanostatic discharge curves show some dispersion, (both in terms of capacity and overpotential) which we attribute to the way pores are connected with each other. Based on these results, we propose that the stochastic nature of pores interconnectivity and the microscopic arrangement of pores can lead, at least partially, to the variations in electrochemical results observed experimentally.« less

  20. Stochasticity of Pores Interconnectivity in Li–O 2 Batteries and its Impact on the Variations in Electrochemical Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torayev, Amangeldi; Rucci, Alexis J.; Magusin, Pieter C. M. M.

    While large dispersions in electrochemical performance have been reported for lithium oxygen batteries in the literature, they have not been investigated in any depth. The variability in the results is often assumed to arise from differences in cell design, electrode structure, handling and cell preparation at different times. An accurate theoretical framework turns out to be needed to get a better insight into the mechanisms underneath and to interpreting experimental results. Here, we develop and use a pore network model to simulate the electrochemical performance of three-dimensionally resolved lithium-oxygen cathode mesostructures obtained from TXM nano-computed tomography images. Here, we applymore » this model to the 3D reconstructed object of a Super P carbon electrode and calculate discharge curves, using identical conditions, for four different zones in the electrode and their reversed configurations. The resulting galvanostatic discharge curves show some dispersion, (both in terms of capacity and overpotential) which we attribute to the way pores are connected with each other. Based on these results, we propose that the stochastic nature of pores interconnectivity and the microscopic arrangement of pores can lead, at least partially, to the variations in electrochemical results observed experimentally.« less

  1. Temperature-sensitive gating of TRPV1 channel as probed by atomistic simulations of its trans- and juxtamembrane domains

    NASA Astrophysics Data System (ADS)

    Chugunov, Anton O.; Volynsky, Pavel E.; Krylov, Nikolay A.; Nolde, Dmitry E.; Efremov, Roman G.

    2016-09-01

    Heat-activated transient receptor potential channel TRPV1 is one of the most studied eukaryotic proteins involved in temperature sensation. Upon heating, it exhibits rapid reversible pore gating, which depolarizes neurons and generates action potentials. Underlying molecular details of such effects in the pore region of TRPV1 is of a crucial importance to control temperature responses of the organism. Despite the spatial structure of the channel in both open (O) and closed (C) states is known, microscopic nature of channel gating and mechanism of thermal sensitivity are still poorly understood. In this work, we used unrestrained atomistic molecular dynamics simulations of TRPV1 (without N- and C-terminal cytoplasmic domains) embedded into explicit lipid bilayer in its O- and C-states. We found that the pore domain with its neighboring loops undergoes large temperature-dependent conformational transitions in an asymmetric way, when fragments of only one monomer move with large amplitude, freeing the pore upon heating. Such an asymmetrical gating looks rather biologically relevant because it is faster and more reliable than traditionally proposed “iris-like” symmetric scheme of channel opening. Analysis of structural, dynamic, and hydrophobic organization of the pore domain revealed entropy growth upon TRPV1 gating, which is in line with current concepts of thermal sensitivity.

  2. Pore channel surface modification for enhancing anti-fouling membrane distillation

    NASA Astrophysics Data System (ADS)

    Qiu, Haoran; Peng, Yuelian; Ge, Lei; Villacorta Hernandez, Byron; Zhu, Zhonghua

    2018-06-01

    Membrane surface modification by forming a functional layer is an effective way to improve the anti-fouling properties of membranes; however, the additional layer and the potential blockage of bulk pores may increase the mass transfer resistance and reduce the permeability. In this study, we applied a novel method of preparing anti-fouling membranes for membrane distillation by dispersing graphene oxide (GO) on the channel surface of polyvinylidene fluoride membranes. The surface morphology and properties were characterized by scanning electron microscopy, atomic force microscope, and Fourier transform infrared spectrometry. Compared to the membrane surface modification by nanoparticles (e.g. SiO2), GO was mainly located on the pore surface of the membrane bulk, rather than being formed as an individual layer onto the membrane surface. The performance was evaluated via a direct-contact membrane distillation process with anionic and cationic surfactants as the foulants, separately. Compared to the pristine PVDF membrane, the anti-fouling behavior and distillate flux of the GO-modified membranes were improved, especially when using the anionic surfactant as the foulant. The enhanced anti-fouling performance can be attributed to the oxygen containing functional groups in GO and the healing of the membrane pore defects. This method may provide an effective route to manipulate membrane pore surface properties for anti-fouling separation without increasing mass transfer resistance.

  3. In-plane and through-plane non-uniform carbon corrosion of polymer electrolyte fuel cell cathode catalyst layer during extended potential cycles

    NASA Astrophysics Data System (ADS)

    Ghosh, Sourov; Ohashi, Hidenori; Tabata, Hiroshi; Hashimasa, Yoshiyuki; Yamaguchi, Takeo

    2017-09-01

    The impact of electrochemical carbon corrosion via potential cycling durability tests mimicking start-stop operation events on the microstructure of the cathode catalyst layer in polymer electrolyte fuel cells (PEFCs) is investigated using focused ion beam (FIB) fabrication without/with the pore-filling technique and subsequent scanning electron microscope (SEM) observations. FIB/SEM investigations without pore-filling reveals that the durability test induces non-uniform cathode shrinking across the in-plane direction; the thickness of the catalyst layer decreases more under the gas flow channel compared to the area under the rim of the flow field. Furthermore, FIB/SEM investigations with the pore-filling technique reveal that the durability test also induces non-uniform cathode shrinking in the through-plane direction; the pores in the area close to the membrane are more shrunken compared with those close to the microporous layer. In particular, a thin area (1-1.5 μm) close to the membrane is found to be severely damaged; it includes closed pores that hinder mass transport through the catalyst layer. It is suggested that uneven carbon corrosion and catalyst layer compaction are responsible for the performance loss during potential cycling operation of PEFCs.

  4. Contribution of Methane Accumulation and Pore Water Flow to Forming High Concentration of Gas Hydrate in Sandy Sediments

    NASA Astrophysics Data System (ADS)

    Uchida, T.; Waseda, A.; Fujii, T.

    2006-12-01

    The geological and geophysical evaluations have suggested worldwide methane contents in gas hydrate beneath deep sea floors as well as permafrost-related zones to about twice the total reserves of conventional and unconventional hydrocarbon. In 1998 and 2002 Mallik wells were drilled in the Canadian Arctic that clarified the characteristics of gas hydrate-concentrated sandy layers at depths from 890 to 1110 m beneath the permafrost zone. Continuous downhole well log data, anomalies of chloride contents in pore waters, core temperature depression as well as visible gas hydrates have confirmed the highly saturated pore-space hydrate as intergranular pore filling, whose saturations are evaluated higher than 80 percent in pore volume. In the Nankai Trough forearc basins and accretionary prisms developed and BSRs (bottom simulating reflectors) have been recognized widely, where the multiple wells were drilled in 2000 and 2004, and revealed the presence of pore-space hydrate in sandy layers. It is remarked that there are many similar features in appearance and characteristics between the Mallik and Nankai Trough areas with observations of well- interconnected and highly saturated pore-space hydrate. High concentration of gas hydrate may need original pore space large enough to occur within a host sandy sediment, and this appears to be a similar mode for conventional petroleum accumulations. The distribution of a porous and coarser-grained sandy sediments should be one of the most important factors controlling occurrences and distributions of gas hydrate, as well as physicochemical conditions. Supplying methane for forming deep marine gas hydrate is commonly attributed to microbial conversion of organic material within the zone of stability or to migration of methane-containing fluids from a deeper source area. Pore water flows are considered to a macroscopic migration through faults/fractures and a microscopic flow in intergranular pore systems of sediment. We should assess the influence of methane supply on observable features of hydrate occurrences.

  5. Micro-CT Pore Scale Study Of Flow In Porous Media: Effect Of Voxel Resolution

    NASA Astrophysics Data System (ADS)

    Shah, S.; Gray, F.; Crawshaw, J.; Boek, E.

    2014-12-01

    In the last few years, pore scale studies have become the key to understanding the complex fluid flow processes in the fields of groundwater remediation, hydrocarbon recovery and environmental issues related to carbon storage and capture. A pore scale study is often comprised of two key procedures: 3D pore scale imaging and numerical modelling techniques. The essence of a pore scale study is to test the physics implemented in a model of complicated fluid flow processes at one scale (microscopic) and then apply the model to solve the problems associated with water resources and oil recovery at other scales (macroscopic and field). However, the process of up-scaling from the pore scale to the macroscopic scale has encountered many challenges due to both pore scale imaging and modelling techniques. Due to the technical limitations in the imaging method, there is always a compromise between the spatial (voxel) resolution and the physical volume of the sample (field of view, FOV) to be scanned by the imaging methods, specifically X-ray micro-CT (XMT) in our case In this study, a careful analysis was done to understand the effect of voxel size, using XMT to image the 3D pore space of a variety of porous media from sandstones to carbonates scanned at different voxel resolution (4.5 μm, 6.2 μm, 8.3 μm and 10.2 μm) but keeping the scanned FOV constant for all the samples. We systematically segment the micro-CT images into three phases, the macro-pore phase, an intermediate phase (unresolved micro-pores + grains) and the grain phase and then study the effect of voxel size on the structure of the macro-pore and the intermediate phases and the fluid flow properties using lattice-Boltzmann (LB) and pore network (PN) modelling methods. We have also applied a numerical coarsening algorithm (up-scale method) to reduce the computational power and time required to accurately predict the flow properties using the LB and PN method.

  6. Electron microscopy of the nuclear membrane of Amoeba proteus.

    PubMed

    FRAJOLA, W J; GREIDER, M H; KOSTIR, W J

    1956-07-25

    An electron microscope study of the nuclear membrane of Amoeba proteus by thin sectioning techniques has revealed an ultrastructure in the outer layer of the membrane that is homologous to the pores and annuli observed in the nuclear membranes of many other cell types studied by these techniques. An inner honeycombed layer apparently unique to Amoeba proteus is also described.

  7. Analysis of Al2O3 Nanostructure Using Scanning Microscopy

    PubMed Central

    Kubica, Marek; Bara, Marek

    2018-01-01

    It has been reported that the size and shape of the pores depend on the structure of the base metal, the type of electrolyte, and the conditions of the anodizing process. The paper presents thin Al2O3 oxide layer formed under hard anodizing conditions on a plate made of EN AW-5251 aluminum alloy. The oxidation of the ceramic layer was carried out for 40–80 minutes in a three-component SAS electrolyte (aqueous solution of acids: sulphuric 33 ml/l, adipic 67 g/l, and oxalic 30 g/l) at a temperature of 293–313 K, and the current density was 200–400 A/m2. Presented images were taken by a scanning microscope. A computer analysis of the binary images of layers showed different shapes of pores. The structure of ceramic Al2O3 layers is one of the main factors determining mechanical properties. The resistance to wear of specimen-oxide coating layer depends on porosity, morphology, and roughness of the ceramic layer surface. A 3D oxide coating model, based on the computer analysis of images from a scanning electron microscope (Philips XL 30 ESEM/EDAX), was proposed. PMID:29861823

  8. In-situ microwave synthesis of graphene-TiO2 nanocomposites with enhanced photocatalytic properties for the degradation of organic pollutants.

    PubMed

    Shanmugam, Mahalingam; Alsalme, Ali; Alghamdi, Abdulaziz; Jayavel, Ramasamy

    2016-10-01

    Graphene-titanium oxide (G-TiO2) nanocomposites were synthesized by a novel surfactant free, environmentally friendly one-port in-situ microwave method. The structure of the nanocomposite was characterized by the X-ray diffraction analysis and the morphology by using scanning electron microscopic and transmission electron microscopic images. The functional groups and carbon band structures were identified using FTIR and Raman spectral analysis. TiO2 nanoparticles in the size range of 5-10nm were distributed on the graphene sheets. The surface area of pure TiO2 and G-TiO2 nanocomposite was measured to be 20.11 and 173.76m(2)/g respectively. The pore volume and pore size of TiO2 were 0.018cm(3)/g and 1.5266nm respectively. G-TiO2 composite possesses higher pore volume (0.259cm(3)/g) and pore size 3.2075nm. The binding states of C, O and Ti of nanocomposite were analyzed by X-ray photoelectron spectroscopy, which confirmed the chemical bonding between graphene-TiO2. The photocatalytic activity of pure TiO2 and G-TiO2 nanocomposite was studied under UV and visible light irradiation sources with methylene blue dye. It has been observed that the degradation was faster in G-TiO2 nanocomposite than pure TiO2 nanoparticles. The rate constant and half life time were calculated from the kinetic studies of the degradation. The highest degradation efficiency of 97% was achieved in UV light and 96% for visible light irradiation with G-TiO2 as a catalyst. The studies reveal that G-TiO2 nanocomposite can be an effective catalyst for industrial waste water treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. High-resolution x-ray imaging using a structured scintillator.

    PubMed

    Hormozan, Yashar; Sychugov, Ilya; Linnros, Jan

    2016-02-01

    In this study, the authors introduce a new generation of finely structured scintillators with a very high spatial resolution (a few micrometers) compared to conventional scintillators, yet maintaining a thick absorbing layer for improved detectivity. Their concept is based on a 2D array of high aspect ratio pores which are fabricated by ICP etching, with spacings (pitches) of a few micrometers, on silicon and oxidation of the pore walls. The pores were subsequently filled by melting of powdered CsI(Tl), as the scintillating agent. In order to couple the secondary emitted photons of the back of the scintillator array to a CCD device, having a larger pixel size than the pore pitch, an open optical microscope with adjustable magnification was designed and implemented. By imaging a sharp edge, the authors were able to calculate the modulation transfer function (MTF) of this finely structured scintillator. The x-ray images of individually resolved pores suggest that they have been almost uniformly filled, and the MTF measurements show the feasibility of a few microns spatial resolution imaging, as set by the scintillator pore size. Compared to existing techniques utilizing CsI needles as a structured scintillator, their results imply an almost sevenfold improvement in resolution. Finally, high resolution images, taken by their detector, are presented. The presented work successfully shows the functionality of their detector concept for high resolution imaging and further fabrication developments are most likely to result in higher quantum efficiencies.

  10. High-resolution x-ray imaging using a structured scintillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hormozan, Yashar, E-mail: hormozan@kth.se; Sychugov, Ilya; Linnros, Jan

    2016-02-15

    Purpose: In this study, the authors introduce a new generation of finely structured scintillators with a very high spatial resolution (a few micrometers) compared to conventional scintillators, yet maintaining a thick absorbing layer for improved detectivity. Methods: Their concept is based on a 2D array of high aspect ratio pores which are fabricated by ICP etching, with spacings (pitches) of a few micrometers, on silicon and oxidation of the pore walls. The pores were subsequently filled by melting of powdered CsI(Tl), as the scintillating agent. In order to couple the secondary emitted photons of the back of the scintillator arraymore » to a CCD device, having a larger pixel size than the pore pitch, an open optical microscope with adjustable magnification was designed and implemented. By imaging a sharp edge, the authors were able to calculate the modulation transfer function (MTF) of this finely structured scintillator. Results: The x-ray images of individually resolved pores suggest that they have been almost uniformly filled, and the MTF measurements show the feasibility of a few microns spatial resolution imaging, as set by the scintillator pore size. Compared to existing techniques utilizing CsI needles as a structured scintillator, their results imply an almost sevenfold improvement in resolution. Finally, high resolution images, taken by their detector, are presented. Conclusions: The presented work successfully shows the functionality of their detector concept for high resolution imaging and further fabrication developments are most likely to result in higher quantum efficiencies.« less

  11. Wettability effect on capillary trapping of supercritical CO2 at pore-scale: micromodel experiment and numerical modeling

    NASA Astrophysics Data System (ADS)

    Hu, R.; Wan, J.

    2015-12-01

    Wettability of reservoir minerals along pore surfaces plays a controlling role in capillary trapping of supercritical (sc) CO2 in geologic carbon sequestration. The mechanisms controlling scCO2 residual trapping are still not fully understood. We studied the effect of pore surface wettability on CO2 residual saturation at the pore-scale using engineered high pressure and high temperature micromodel (transparent pore networks) experiments and numerical modeling. Through chemical treatment of the micromodel pore surfaces, water-wet, intermediate-wet, and CO2-wet micromodels can be obtained. Both drainage and imbibition experiments were conducted at 8.5 MPa and 45 °C with controlled flow rate. Dynamic images of fluid-fluid displacement processes were recorded using a microscope with a CCD camera. Residual saturations were determined by analysis of late stage imbibition images of flow path structures. We performed direct numerical simulations of the full Navier-Stokes equations using a volume-of-fluid based finite-volume framework for the primary drainage and the followed imbibition for the micromodel experiments with different contact angles. The numerical simulations agreed well with our experimental observations. We found that more scCO2 can be trapped within the CO2-wet micromodel whereas lower residual scCO2 saturation occurred within the water-wet micromodels in both our experiments and the numerical simulations. These results provide direct and consistent evidence of the effect of wettability, and have important implications for scCO2 trapping in geologic carbon sequestration.

  12. Preparation and characterization of coating sodium trisilicate (Na2O.nSiO2) at calcium carbonate (CaCO3) for blowing agent in Mg alloy foam

    NASA Astrophysics Data System (ADS)

    Erryani, Aprilia; Lestari, Franciska Pramuji; Annur, Dhyah; Kartika, Ika

    2018-05-01

    The role of blowing agent in the manufacture of porous metal alloys is very important to produce the desired pore. The thermal stability and speed of foam formation have an effect on the resulting pore structure. In porous metal alloys, uniformity of size and pore deployment are the main determinants of the resulting alloys. The coating process of calcium carbonate (CaCO3) has been done using Sodium trisilicate solution by sol-gel method. Foaming agent was pretreated by coating SiO2 passive layer on the surface of CaCO3. This coating aims to produce a more stable blowing agent so that the foaming process can produce a more uniform pore size. The microstructure of the SiO2 passive was observed using Scanning Electron Microscope (SEM) equipped by Energy Dispersive X-Ray Spectrometer (EDS) mapping. The results showed coating CaCO3 using sodium trisilicate was successfully done creating a passive layer of SiO2 on the surface of CaCO3. By the coating process, the thermal stability of coated CaCO3 increased compared to uncoated CaCO3.

  13. Effect of heat bed temperature of 3D bioprinter to hardness and compressive strength of scaffold bovine hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Triyono, Joko; Pratama, Aditya; Sukanto, Heru; Nugroho, Yohanes; Wijayanta, Agung Tri

    2018-02-01

    This study aimed to investigate the effect of heat bed temperature of 3D bioprinter toward compressive strength and hardness bovine bone hydroxyapatite scaffold for bone filler applications. BHA-glycerin mixed with a ratio of 1:1, and keep it for 24 hours. After the homogenization process acquired, bio-Ink with shaped slurry will be used as a material for a 3D printer. The printing process with a temperature variation have performed by setting up heat bed temperature. After printing process was completed, the 3D scaffold was detained on the heat bed for 10 minutes before being picked up. The test results in this study had the lowest hardness value of 9.82±0.62 VHN and the highest number of 24.32±0.99 VHN. The compressive strength testing had the lowest value of 1.62±0.16 MPa with the highest number of 5.67±0.39 MPa. Pore observation using a scanning electron microscope. The result shows that the size of the pores were not much different, that was ±100-200 µm. This observation also indicated that the pore form was square pores.

  14. Nanopore arrays in a silicon membrane for parallel single-molecule detection: DNA translocation

    NASA Astrophysics Data System (ADS)

    Zhang, Miao; Schmidt, Torsten; Jemt, Anders; Sahlén, Pelin; Sychugov, Ilya; Lundeberg, Joakim; Linnros, Jan

    2015-08-01

    Optical nanopore sensing offers great potential in single-molecule detection, genotyping, or DNA sequencing for high-throughput applications. However, one of the bottle-necks for fluorophore-based biomolecule sensing is the lack of an optically optimized membrane with a large array of nanopores, which has large pore-to-pore distance, small variation in pore size and low background photoluminescence (PL). Here, we demonstrate parallel detection of single-fluorophore-labeled DNA strands (450 bps) translocating through an array of silicon nanopores that fulfills the above-mentioned requirements for optical sensing. The nanopore array was fabricated using electron beam lithography and anisotropic etching followed by electrochemical etching resulting in pore diameters down to ∼7 nm. The DNA translocation measurements were performed in a conventional wide-field microscope tailored for effective background PL control. The individual nanopore diameter was found to have a substantial effect on the translocation velocity, where smaller openings slow the translocation enough for the event to be clearly detectable in the fluorescence. Our results demonstrate that a uniform silicon nanopore array combined with wide-field optical detection is a promising alternative with which to realize massively-parallel single-molecule detection.

  15. Effect of freezing temperature in thermally induced phase separation method in hydroxyapatite/chitosan-based bone scaffold biomaterial

    NASA Astrophysics Data System (ADS)

    Albab, Muh Fadhil; Yuwono, Akhmad Herman; Sofyan, Nofrijon; Ramahdita, Ghiska

    2017-02-01

    In the current study, hydroxyapatite (HA)/chitosan-based bone scaffold has been fabricated using Thermally Induced Phase Separation (TIPS) method under freezing temperature variation of -20, -30, -40 and -80 °C. The samples with weight percent ratio of 70% HA and 30% chitosan were homogeneously mixed and subsequently dissolved in 2% acetic acid. The synthesized samples were further characterized using Fourier transform infrared (FTIR), compressive test and scanning electron microscope (SEM). The investigation results showed that low freezing temperature reduced the pore size and increased the compressive strength of the scaffold. In the freezing temperature of -20 °C, the pore size was 133.93 µm with the compressive strength of 5.9 KPa, while for -80 °C, the pore size declined to 60.55 µm with the compressive strength 29.8 KPa. Considering the obtained characteristics, HA/chitosan obtained in this work has potential to be applied as a bone scaffold.

  16. Tissue Reaction to a Novel Bone Substitute Material Fabricated With Biodegradable Polymer-Calcium Phosphate Nanoparticle Composite.

    PubMed

    Shimizu, Hideo; Jinno, Yohei; Ayukawa, Yasunori; Atsuta, Ikiru; Arahira, Takaaki; Todo, Mitsugu; Koyano, Kiyoshi

    2016-10-01

    The aim of this study was to evaluate the effectiveness of a novel bone substitute material fabricated using a biodegradable polymer-calcium phosphate nanoparticle composite. Porous structured poly-L-lactic acid (PLLA) and hydroxyapatite (HA) nanoparticle composite, which was fabricated using solid-liquid phase separation and freeze-drying methods, was grafted into bone defects created in rat calvarium or tibia. Rats were killed 4 weeks after surgery, and histological analyses were performed to evaluate new bone formation. Scanning electron microscopic observation showed the interconnecting pores within the material and the pore diameter was approximately 100 to 300 μm. HA nanoparticles were observed to be embedded into the PLLA beams. In the calvarial implantation model, abundant blood vessels and fibroblastic cells were observed penetrating into pores, and in the tibia model, newly formed bone was present around and within the composite. The PLLA-HA nanoparticle composite bone substitute developed in this study showed biocompatibility, elasticity, and operability and thus has potential as a novel bone substitute.

  17. Solid-state nanopores of controlled geometry fabricated in a transmission electron microscope

    NASA Astrophysics Data System (ADS)

    Qian, Hui; Egerton, Ray F.

    2017-11-01

    Energy-filtered transmission electron microscopy and electron tomography were applied to in situ studies of the formation, shape, and diameter of nanopores formed in a silicon nitride membrane in a transmission electron microscope. The nanopore geometry was observed in three dimensions by electron tomography. Drilling conditions, such as probe current, beam convergence angle, and probe position, affect the formation rate and the geometry of the pores. With a beam convergence semi-angle of α = 22 mrad, a conical shaped nanopore is formed but at α = 45 mrad, double-cone (hourglass-shaped) nanopores were produced. Nanopores with an effective diameter between 10 nm and 1.8 nm were fabricated by controlling the drilling time.

  18. MORPH-II, a software package for the analysis of scanning-electron-micrograph images for the assessment of the fractal dimension of exposed stone surfaces

    USGS Publications Warehouse

    Mossotti, Victor G.; Eldeeb, A. Raouf

    2000-01-01

    Turcotte, 1997, and Barton and La Pointe, 1995, have identified many potential uses for the fractal dimension in physicochemical models of surface properties. The image-analysis program described in this report is an extension of the program set MORPH-I (Mossotti and others, 1998), which provided the fractal analysis of electron-microscope images of pore profiles (Mossotti and Eldeeb, 1992). MORPH-II, an integration of the modified kernel of the program MORPH-I with image calibration and editing facilities, was designed to measure the fractal dimension of the exposed surfaces of stone specimens as imaged in cross section in an electron microscope.

  19. Dynamic pore-scale network model (PNM) of water imbibition in porous media

    NASA Astrophysics Data System (ADS)

    Li, J.; McDougall, S. R.; Sorbie, K. S.

    2017-09-01

    A dynamic pore-scale network model is presented which simulates 2-phase oil/water displacement during water imbibition by explicitly modelling intra-pore dynamic bulk and film flows using a simple local model. A new dynamic switching parameter, λ, is proposed within this model which is able to simulate the competition between local capillary forces and viscous forces over a very wide range of flow conditions. This quantity (λ) determines the primary pore filling mechanism during imbibition; i.e. whether the dominant force is (i) piston-like displacement under viscous forces, (ii) film swelling/collapse and snap-off due to capillary forces, or (iii) some intermediate local combination of both mechanisms. A series of 2D dynamic pore network simulations is presented which shows that the λ-model can satisfactorily reproduce and explain different filling regimes of water imbibition over a wide range of capillary numbers (Ca) and viscosity ratios (M). These imbibition regimes are more complex than those presented under drainage by (Lenormand et al. (1983)), since they are determined by a wider group of control parameters. Our simulations show that there is a coupling between viscous and capillary forces that is much less important in drainage. The effects of viscosity ratio during imbibition are apparent even under conditions of very slow flow (low Ca)-displacements that would normally be expected to be completely capillary dominated. This occurs as a result of the wetting films having a much greater relative mobility in the higher M cases (e.g. M = 10) thus leading to a higher level of film swelling/snap-off, resulting in local oil cluster bypassing and trapping, and hence a poorer oil recovery. This deeper coupled viscous mechanism is the underlying reason why the microscopic displacement efficiency is lower for higher M cases in water imbibition processes. Additional results are presented from the dynamic model on the corresponding effluent fractional flows (fw) and global pressure drops (ΔP) as functions of capillary number and viscosity ratio. These results indicate that unsteady-state (USS) relatively permeabilities in imbibition should be inherently rate dependent.

  20. Relationship between pore size and reversible and irreversible immobilization of ionic liquid electrolytes in porous carbon under applied electric potential

    DOE PAGES

    Mahurin, Shannon M.; Mamontov, Eugene; Thompson, Matthew W.; ...

    2016-10-04

    Transport of electrolytes in nanoporous carbon-based electrodes largely defines the function and performance of energy storage devices. Here, using molecular dynamics simulation and quasielastic neutron scattering, we investigate the microscopic dynamics of a prototypical ionic liquid electrolyte, [emim][Tf 2N], under applied electric potential in carbon materials with 6.7 nm and 1.5 nm pores. The simulations demonstrate the formation of dense layers of counter-ions near the charged surfaces, which is reversible when the polarity is reversed. In the experiment, the ions immobilized near the surface manifest themselves in the elastic scattering signal. The experimentally observed ion immobilization near the wall ismore » fully reversible as a function of the applied electric potential in the 6.7 nm, but not in the 1.5 nm nanopores. In the latter case, remarkably, the first application of the electric potential leads to apparently irreversible immobilization of cations or anions, depending on the polarity, near the carbon pore walls. This unexpectedly demonstrates that in carbon electrode materials with the small pores, which are optimal for energy storage applications, the polarity of the electrical potential applied for the first time after the introduction of an ionic liquid electrolyte may define the decoration of the small pore walls with ions for prolonged periods of time and possibly for the lifetime of the electrode.« less

  1. SEM-induced shrinkage and site-selective modification of single-crystal silicon nanopores

    NASA Astrophysics Data System (ADS)

    Chen, Qi; Wang, Yifan; Deng, Tao; Liu, Zewen

    2017-07-01

    Solid-state nanopores with feature sizes around 5 nm play a critical role in bio-sensing fields, especially in single molecule detection and sequencing of DNA, RNA and proteins. In this paper we present a systematic study on shrinkage and site-selective modification of single-crystal silicon nanopores with a conventional scanning electron microscope (SEM). Square nanopores with measurable sizes as small as 8 nm × 8 nm and rectangle nanopores with feature sizes (the smaller one between length and width) down to 5 nm have been obtained, using the SEM-induced shrinkage technique. The analysis of energy dispersive x-ray spectroscopy and the recovery of the pore size and morphology reveal that the grown material along with the edge of the nanopore is the result of deposition of hydrocarbon compounds, without structural damage during the shrinking process. A simplified model for pore shrinkage has been developed based on observation of the cross-sectional morphology of the shrunk nanopore. The main factors impacting on the task of controllably shrinking the nanopores, such as the accelerating voltage, spot size, scanned area of e-beam, and the initial pore size have been discussed. It is found that single-crystal silicon nanopores shrink linearly with time under localized irradiation by SEM e-beam in all cases, and the pore shrinkage rate is inversely proportional to the initial equivalent diameter of the pore under the same e-beam conditions.

  2. Membranous glomerulopathy with spherules: an uncommon variant with obscure pathogenesis.

    PubMed

    Kowalewska, Jolanta; Smith, Kelly D; Hudkins, Kelly L; Chang, Anthony; Fogo, Agnes B; Houghton, Donald; Leslie, Deena; Aitchison, John; Nicosia, Roberto F; Alpers, Charles E

    2006-06-01

    Occasional case reports of membranous glomerulopathy described unique subepithelial accumulations of an unusual type of immune deposit composed of spherular structures. The identity of such structures as nuclear pores has been suggested, but not established. We identified a cohort of patients (n = 14, including 1 patient with disease recurrence in an allograft) who presented with nephrotic syndrome and had renal biopsy specimens with light and immunofluorescence microscopic findings characteristic of membranous glomerulopathy. These patients were distinguished by ultrastructural studies that showed glomerular capillary wall accumulations of subepithelial immune deposits composed of uniform spherular structures, while lacking the typical granular electron-dense deposits seen in membranous glomerulopathy. The molecular identity of these spherular structures as nuclear pores was tested by using immunofluorescence microscopy and immunohistochemistry with mouse monoclonal antinuclear pore antibodies (Covance, Princeton, NJ) and anti-Nuclear Pore-O-Linked Glycoprotein (Affinity BioReagents Inc, Golden, CO) antibodies. Measurement of spherular structures by using high-magnification electron microscopy showed an average diameter of 84.5 nm, which correlated well with accepted diameters of nuclear pores (80 to 120 nm). Immunofluorescence microscopy and immunoperoxidase staining with both antibodies showed characteristic beaded staining of nuclear membranes of multiple cell types within normal control kidney, but no staining of immune-type deposits within glomerular basement membranes. These cases form a rare, but distinctive, morphological subclass of membranous glomerulopathy. The antigenic specificity of immune deposits in these cases remains elusive.

  3. Rapid and selective adsorption of cationic dyes by a unique metal-organic framework with decorated pore surface

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Li, Fan; Sun, Qian

    2018-05-01

    Organic dye pollutants become a big headache due to their toxic nature to the environment, and it should be one of the best solutions if we can remove and separate them. Here, a metal-organic framework (MOF) (denoted as Zn-MOF) with carbonyl group based on fluorenone-2,7-dicarboxylate ligand, was directly synthesized without post-synthesis method and applied to selectively absorb cationic dyes such as MB, CV, RhB from aqueous solution, while anionic or neutral dyes were excluded. Characterization of the Zn-MOF was achieved by X-ray diffraction, scanning electron microscope, Fourier transform infrared spectrometry and elemental analysis. The Zn-MOF mainly possesses open pore channels, high surface area, big pore volume, and most important, the pore surface is furnished with carbonyl groups arising from the ligand and pointing toward the centers of the large chambers of the framework, which are benefit for the adsorption of the cationic dyes. The MB maximum adsorption capacities can attain 326 mg g-1, which is probably due to the suitable pore size, higher solvent-accessible void, and the prominent adsorption capacity of the mesoporous material. The dye adsorption process for the material is proven to be charge-selective and size-selective, and the adsorption isotherms, as well as kinetics characteristic of dye adsorption onto the Zn-MOF were also investigated.

  4. Elemental and topographical imaging of microscopic variations in deposition on NSTX-U and DIII-D samples

    NASA Astrophysics Data System (ADS)

    Skinner, C. H.; Kaita, R.; Koel, B. E.; Chrobak, C. P.; Wampler, W. R.

    2017-10-01

    Tokamak plasma facing components (PFCs) have surface roughness that can cause microscopic spatial variations in erosion and deposition and hence influence material migration. Previous RBS measurements showed indirect evidence for this but the spatial (0.5mm) resolution was insufficient for direct imaging. We will present elemental images at sub-micron resolution of deposition on NSTX-U and DiMES samples that show strong microscopic variations and correlate this with 3D topographical maps of surface irregularities. The elemental imaging is performed with a Scanning Auger Microprobe (SAM) that measures element-specific Auger electrons excited by an SEM electron beam. 3D topographical maps of the samples are performed with a Leica DCM 3D confocal light microscope and compared to the elemental deposition pattern. The initial results appear consistent with erosion at the downstream edges of the surface pores exposed to the incident ion flux, whereas the deeper regions are shadowed and serve as deposition traps. Support was provided through DOE Contract Numbers DE-AC02-09CH11466, DE-FC02-04ER54698 and DE-NA0003525.

  5. Development of High-Antifouling PPSU Ultrafiltration Membrane by Using Compound Additives: Preparation, Morphologies, and Filtration Resistant Properties

    PubMed Central

    Liu, Jie; Zhong, Zhencheng; Ma, Rui; Zhang, Weichen; Li, Jiding

    2016-01-01

    In this study, flat sheet asymmetric polyphenylsulfone (PPSU) ultrafiltration membranes with enhanced antifouling properties were prepared with a non-solvent induced phase separation (NIPS) method through compound additives containing a polymeric pore-forming agent, a small molecular non-solvent and a surfactant. The formation processes of the porous asymmetric membranes with different kinds of additives were studied in detail, and the microstructure controllable preparation of membrane was achieved by establishing a bridge between the membrane preparation parameters and separation performances. All prepared membranes were characterized by using a scanning electron microscope (SEM), contact angle analysis, porosity, maximum pore size, water and BSA solution permeability studies. The performance efficiency of the membrane was evaluated by using BSA as a model foulant in terms of permeability, solute rejection (R), Rm (membrane inherent resistance), Rc (cake layer resistance), and Rp (pore plugging resistance). The results showed that when the compound additives were used, the inter-connected pores were observed, maximum pore size, contact angle and membrane filtration resistance decreased, while the porosity increased. When PVP compound additives were added, the water flux increased from 80.4 to 148.1 L/(m2·h), the BSA rejection increased from 53.2% to 81.5%. A similar trend was observed for membranes with added PEG compound additives; the water flux and BSA rejection simultaneously increased. The filtration resistance decreased as a result of compound additives. The uniformity of membrane and the number of effective pores could be enhanced by adding compound additives through the cooperation of different additives. PMID:27338487

  6. Development of High-Antifouling PPSU Ultrafiltration Membrane by Using Compound Additives: Preparation, Morphologies, and Filtration Resistant Properties.

    PubMed

    Liu, Jie; Zhong, Zhencheng; Ma, Rui; Zhang, Weichen; Li, Jiding

    2016-06-21

    In this study, flat sheet asymmetric polyphenylsulfone (PPSU) ultrafiltration membranes with enhanced antifouling properties were prepared with a non-solvent induced phase separation (NIPS) method through compound additives containing a polymeric pore-forming agent, a small molecular non-solvent and a surfactant. The formation processes of the porous asymmetric membranes with different kinds of additives were studied in detail, and the microstructure controllable preparation of membrane was achieved by establishing a bridge between the membrane preparation parameters and separation performances. All prepared membranes were characterized by using a scanning electron microscope (SEM), contact angle analysis, porosity, maximum pore size, water and BSA solution permeability studies. The performance efficiency of the membrane was evaluated by using BSA as a model foulant in terms of permeability, solute rejection (R), Rm (membrane inherent resistance), Rc (cake layer resistance), and Rp (pore plugging resistance). The results showed that when the compound additives were used, the inter-connected pores were observed, maximum pore size, contact angle and membrane filtration resistance decreased, while the porosity increased. When PVP compound additives were added, the water flux increased from 80.4 to 148.1 L/(m²·h), the BSA rejection increased from 53.2% to 81.5%. A similar trend was observed for membranes with added PEG compound additives; the water flux and BSA rejection simultaneously increased. The filtration resistance decreased as a result of compound additives. The uniformity of membrane and the number of effective pores could be enhanced by adding compound additives through the cooperation of different additives.

  7. EXPERIMENTAL INVESTIGATION OF RELATIVE PERMEABILITY UPSCALING FROM THE MICRO-SCALE TO THE MACRO-SCALE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laura J. Pyrak-Nolte; Nicholas J. Giordano; David D. Nolte

    2004-03-01

    The principal challenge of upscaling techniques for multi-phase fluid dynamics in porous media is to determine which properties on the micro-scale can be used to predict macroscopic flow and spatial distribution of phases at core- and field-scales. The most notable outcome of recent theories is the identification of interfacial areas per volume for multiple phases as a fundamental parameter that determines much of the multi-phase properties of the porous medium. A formal program of experimental research was begun to directly test upscaling theories in fluid flow through porous media by comparing measurements of relative permeability and capillary-saturation with measurements ofmore » interfacial area per volume. This project on the experimental investigation of relative permeability upscaling has produced a unique combination of three quite different technical approaches to the upscaling problem of obtaining pore-related microscopic properties and using them to predict macroscopic behavior. Several important ''firsts'' have been achieved during the course of the project. (1) Optical coherence imaging, a laser-based ranging and imaging technique, has produced the first images of grain and pore structure up to 1 mm beneath the surface of the sandstone and in a laboratory borehole. (2) Woods metal injection has connected for the first time microscopic pore-scale geometric measurements with macroscopic saturation in real sandstone cores. (3) The micro-model technique has produced the first invertible relationship between saturation and capillary pressure--showing that interfacial area per volume (IAV) provides the linking parameter. IAV is a key element in upscaling theories, so this experimental finding may represent the most important result of this project, with wide ramifications for predictions of fluid behavior in porous media.« less

  8. Characterization of dextran-grafted hydrophobic charge-induction resins: Structural properties, protein adsorption and transport.

    PubMed

    Liu, Tao; Angelo, James M; Lin, Dong-Qiang; Lenhoff, Abraham M; Yao, Shan-Jing

    2017-09-29

    The structural and functional properties of a series of dextran-grafted and non-grafted hydrophobic charge-induction chromatographic (HCIC) agarose resins were characterized by macroscopic and microscopic techniques. The effects of dextran grafting and mobile phase conditions on the pore dimensions of the resins were investigated with inverse size exclusion chromatography (ISEC). A significantly lower pore radius (17.6nm) was found for dextran-grafted than non-grafted resins (29.5nm), but increased salt concentration would narrow the gap between the respective pore radii. Two proteins, human immunoglobulin G (hIgG) and bovine serum albumin (BSA), were used to examine the effect of protein characteristics. The results of adsorption isotherms showed that the dextran-grafted resin with high ligand density had substantially higher adsorption capacity and enhanced the salt-tolerance property for hIgG, but displayed a significantly smaller benefit for BSA adsorption. Confocal laser scanning microscopy (CLSM) showed that hIgG presented more diffuse and slower moving adsorption front compared to BSA during uptake into the resins because of the selective binding of multiple species from polyclonal IgG; polymer-grafting with high ligand density could enhance the rate of hIgG transport in the dextran-grafted resins without salt addition, but not for the case with high salt and BSA. The results indicate that microscopic analysis using ISEC and CLSM is useful to improve the mechanistic understanding of resin structure and of critical functional parameters involving protein adsorption and transport, which would guide the rational design of new resins and processes. Copyright © 2017. Published by Elsevier B.V.

  9. Cross-Scale Molecular Analysis of Chemical Heterogeneity in Shale Rocks

    DOE PAGES

    Hao, Zhao; Bechtel, Hans A.; Kneafsey, Timothy; ...

    2018-02-07

    The organic and mineralogical heterogeneity in shale at micrometer and nanometer spatial scales contributes to the quality of gas reserves, gas flow mechanisms and gas production. Here, we demonstrate two molecular imaging approaches based on infrared spectroscopy to obtain mineral and kerogen information at these mesoscale spatial resolutions in large-sized shale rock samples. The first method is a modified microscopic attenuated total reflectance measurement that utilizes a large germanium hemisphere combined with a focal plane array detector to rapidly capture chemical images of shale rock surfaces spanning hundreds of micrometers with micrometer spatial resolution. The second method, synchrotron infrared nano-spectroscopy,more » utilizes a metallic atomic force microscope tip to obtain chemical images of micrometer dimensions but with nanometer spatial resolution. This chemically "deconvoluted" imaging at the nano-pore scale is then used to build a machine learning model to generate a molecular distribution map across scales with a spatial span of 1000 times, which enables high-throughput geochemical characterization in greater details across the nano-pore and micro-grain scales and allows us to identify co-localization of mineral phases with chemically distinct organics and even with gas phase sorbents. Finally, this characterization is fundamental to understand mineral and organic compositions affecting the behavior of shales.« less

  10. Cross-Scale Molecular Analysis of Chemical Heterogeneity in Shale Rocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, Zhao; Bechtel, Hans A.; Kneafsey, Timothy

    The organic and mineralogical heterogeneity in shale at micrometer and nanometer spatial scales contributes to the quality of gas reserves, gas flow mechanisms and gas production. Here, we demonstrate two molecular imaging approaches based on infrared spectroscopy to obtain mineral and kerogen information at these mesoscale spatial resolutions in large-sized shale rock samples. The first method is a modified microscopic attenuated total reflectance measurement that utilizes a large germanium hemisphere combined with a focal plane array detector to rapidly capture chemical images of shale rock surfaces spanning hundreds of micrometers with micrometer spatial resolution. The second method, synchrotron infrared nano-spectroscopy,more » utilizes a metallic atomic force microscope tip to obtain chemical images of micrometer dimensions but with nanometer spatial resolution. This chemically "deconvoluted" imaging at the nano-pore scale is then used to build a machine learning model to generate a molecular distribution map across scales with a spatial span of 1000 times, which enables high-throughput geochemical characterization in greater details across the nano-pore and micro-grain scales and allows us to identify co-localization of mineral phases with chemically distinct organics and even with gas phase sorbents. Finally, this characterization is fundamental to understand mineral and organic compositions affecting the behavior of shales.« less

  11. Recent progress in the imaging of soil processes at the microscopic scale, and a look ahead

    NASA Astrophysics Data System (ADS)

    Garnier, Patricia; Baveye, Philippe C.; Pot, Valérie; Monga, Olivier; Portell, Xavier

    2016-04-01

    Over the last few years, tremendous progress has been achieved in the visualization of soil structures at the microscopic scale. Computed tomography, based on synchrotron X-ray beams or table-top equipment, allows the visualization of pore geometry at micrometric resolution. Chemical and microbiological information obtainable in 2D cuts through soils can now be interpolated, with the support of CT-data, to produce 3-dimensional maps. In parallel with these analytical advances, significant progress has also been achieved in the computer simulation and visualization of a range of physical, chemical, and microbiological processes taking place in soil pores. In terms of water distribution and transport in soils, for example, the use of Lattice-Boltzmann models as well as models based on geometric primitives has been shown recently to reproduce very faithfully observations made with synchrotron X-ray tomography. Coupling of these models with fungal and bacterial growth models allows the description of a range of microbiologically-mediated processes of great importance at the moment, for example in terms of carbon sequestration. In this talk, we shall review progress achieved to date in this field, indicate where questions remain unanswered, and point out areas where further advances are expected in the next few years.

  12. 4Pi microscopy of the nuclear pore complex.

    PubMed

    Kahms, Martin; Hüve, Jana; Peters, Reiner

    2015-01-01

    4Pi microscopy is a far-field fluorescence microscopy technique, in which the wave fronts of two opposing illuminating beams are adjusted to constructively interfere in a common focus. This yields a diffraction pattern in the direction of the optical axis, which essentially consists of a main focal spot accompanied by two smaller side lobes. At optimal conditions, the main peak of this so-called point spread function has a full width at half maximum: fixed phrase of 100 nm in the direction of the optical axis, and thus is 6-7-fold smaller than that of a confocal microscope. In this chapter, we describe the basic features of 4Pi microscopy and its application to cell biology using the example of the nuclear pore complex, a large protein assembly spanning the nuclear envelope.

  13. Micro-PIXE and micro-RBS characterization of micropores in porous silicon prepared using microwave-assisted hydrofluoric acid etching.

    PubMed

    Ahmad, Muthanna; Grime, Geoffrey W

    2013-04-01

    Porous silicon (PS) has been prepared using a microwave-assisted hydrofluoric acid (HF) etching method from a silicon wafer pre-implanted with 5 MeV Cu ions. The use of microbeam proton-induced X-ray emission (micro-PIXE) and microbeam Rutherford backscattering techniques reveals for the first time the capability of these techniques for studying the formation of micropores. The porous structures observed from micro-PIXE imaging results are compared to scanning electron microscope images. It was observed that the implanted copper accumulates in the same location as the pores and that at high implanted dose the pores form large-scale patterns of lines and concentric circles. This is the first work demonstrating the use of microwave-assisted HF etching in the formation of PS.

  14. Study on Surface Permeability of Concrete under Immersion

    PubMed Central

    Liu, Jun; Xing, Feng; Dong, Biqin; Ma, Hongyan; Pan, Dong

    2014-01-01

    In this paper, concrete specimens are immersed in ultrapure water, to study the evolutions of surface permeability, pore structure and paste microstructure following the prolonging of immersion period. According to the results, after 30-day immersion, the surface permeability of concrete becomes higher as compared with the value before immersion. However, further immersion makes the surface permeability decrease, so that the value measured after 150-day immersion is only half that measured after 30-day immersion. The early increase in surface permeability should be mainly attributed to the leaching of calcium hydroxide, while the later decrease to the refinement of pore structure due to hydration. The two effects work simultaneously and compete throughout the immersion period. The proposed mechanisms get support from microscopic measurements and observations. PMID:28788490

  15. Material Science

    NASA Image and Video Library

    2004-07-12

    This soldering iron has an evacuated copper capsule at the tip that contains a pellet of Bulk Metallic Glass (BMG) aboard the International Space Station (ISS). Prior to flight, researchers sealed a pellet of bulk metallic glass mixed with microscopic gas-generating particles into the copper ampoule under vacuum. Once heated in space, such as in this photograph, the particles generated gas and the BMG becomes a viscous liquid. The released gas made the sample foam within the capsule where each microscopic particle formed a gas-filled pore within the foam. The inset image shows the oxidation of the sample after several minutes of applying heat. Although hidden within the brass sleeve, the sample retained the foam shape when cooled, because the viscosity increased during cooling until it was solid.

  16. Immunity at Cauliflower Hydathodes Controls Systemic Infection by Xanthomonas campestris pv campestris1

    PubMed Central

    Cerutti, Aude; Jauneau, Alain; Auriac, Marie-Christine; Lauber, Emmanuelle; Martinez, Yves; Chiarenza, Serge

    2017-01-01

    Hydathodes are water pores found on leaves of a wide range of vascular plants and are the sites of guttation. We report here on the detailed anatomy of cauliflower (Brassica oleracea) and Arabidopsis (Arabidopsis thaliana) hydathodes. Hydathode surface presents pores resembling stomata giving access to large cavities. Beneath, the epithem is composed of a lacunar and highly vascularized parenchyma offering a direct connection between leaf surface and xylem vessels. Arabidopsis hydathode pores were responsive to ABA and light similar to stomata. The flg22 flagellin peptide, a well-characterized elicitor of plant basal immunity, did not induce closure of hydathode pores in contrast to stomata. Because hydathodes are natural infection routes for several pathogens, we investigated hydathode infection by the adapted vascular phytopathogenic bacterium Xanthomonas campestris pv campestris (Xcc), the causal agent of black rot disease of Brassicaceae. Microscopic observations of hydathodes six days postinoculation indicated a digestion of the epithem cells and a high bacterial multiplication. Postinvasive immunity was shown to limit pathogen growth in the epithem and is actively suppressed by the type III secretion system and its effector proteins. Altogether, these results give a detailed anatomic description of Brassicaceae hydathodes and highlight the efficient use of this tissue as an initial niche for subsequent vascular systemic dissemination of Xcc in distant plant tissues. PMID:28184011

  17. Mechanical instability and percolation of deformable particles through porous networks

    NASA Astrophysics Data System (ADS)

    Benet, Eduard; Lostec, Guillaume; Pellegrino, John; Vernerey, Franck

    2018-04-01

    The transport of micron-sized particles such as bacteria, cells, or synthetic lipid vesicles through porous spaces is a process relevant to drug delivery, separation systems, or sensors, to cite a few examples. Often, the motion of these particles depends on their ability to squeeze through small constrictions, making their capacity to deform an important factor for their permeation. However, it is still unclear how the mechanical behavior of these particles affects collective transport through porous networks. To address this issue, we present a method to reconcile the pore-scale mechanics of the particles with the Darcy scale to understand the motion of a deformable particle through a porous network. We first show that particle transport is governed by a mechanical instability occurring at the pore scale, which leads to a binary permeation response on each pore. Then, using the principles of directed bond percolation, we are able to link this microscopic behavior to the probability of permeating through a random porous network. We show that this instability, together with network uniformity, are key to understanding the nonlinear permeation of particles at a given pressure gradient. The results are then summarized by a phase diagram that predicts three distinct permeation regimes based on particle properties and the randomness of the pore network.

  18. Exopolymer alteration of physical properties of sea ice and implications for ice habitability and biogeochemistry in a warmer Arctic

    PubMed Central

    Krembs, Christopher; Eicken, Hajo; Deming, Jody W.

    2011-01-01

    The physical properties of Arctic sea ice determine its habitability. Whether ice-dwelling organisms can change those properties has rarely been addressed. Following discovery that sea ice contains an abundance of gelatinous extracellular polymeric substances (EPS), we examined the effects of algal EPS on the microstructure and salt retention of ice grown from saline solutions containing EPS from a culture of the sea-ice diatom, Melosira arctica. We also experimented with xanthan gum and with EPS from a culture of the cold-adapted bacterium Colwellia psychrerythraea strain 34H. Quantitative microscopic analyses of the artificial ice containing Melosira EPS revealed convoluted ice-pore morphologies of high fractal dimension, mimicking features found in EPS-rich coastal sea ice, whereas EPS-free (control) ice featured much simpler pore geometries. A heat-sensitive glycoprotein fraction of Melosira EPS accounted for complex pore morphologies. Although all tested forms of EPS increased bulk ice salinity (by 11–59%) above the controls, ice containing native Melosira EPS retained the most salt. EPS effects on ice and pore microstructure improve sea ice habitability, survivability, and potential for increased primary productivity, even as they may alter the persistence and biogeochemical imprint of sea ice on the surface ocean in a warming climate. PMID:21368216

  19. Exopolymer alteration of physical properties of sea ice and implications for ice habitability and biogeochemistry in a warmer Arctic.

    PubMed

    Krembs, Christopher; Eicken, Hajo; Deming, Jody W

    2011-03-01

    The physical properties of Arctic sea ice determine its habitability. Whether ice-dwelling organisms can change those properties has rarely been addressed. Following discovery that sea ice contains an abundance of gelatinous extracellular polymeric substances (EPS), we examined the effects of algal EPS on the microstructure and salt retention of ice grown from saline solutions containing EPS from a culture of the sea-ice diatom, Melosira arctica. We also experimented with xanthan gum and with EPS from a culture of the cold-adapted bacterium Colwellia psychrerythraea strain 34H. Quantitative microscopic analyses of the artificial ice containing Melosira EPS revealed convoluted ice-pore morphologies of high fractal dimension, mimicking features found in EPS-rich coastal sea ice, whereas EPS-free (control) ice featured much simpler pore geometries. A heat-sensitive glycoprotein fraction of Melosira EPS accounted for complex pore morphologies. Although all tested forms of EPS increased bulk ice salinity (by 11-59%) above the controls, ice containing native Melosira EPS retained the most salt. EPS effects on ice and pore microstructure improve sea ice habitability, survivability, and potential for increased primary productivity, even as they may alter the persistence and biogeochemical imprint of sea ice on the surface ocean in a warming climate.

  20. Performance evaluation of GDC-SrMoO4-YSZ SOFCs prepared with different pore formers

    NASA Astrophysics Data System (ADS)

    Hongxin, You; Lian, Peng; Xiaojuan, Wang; Cong, Zhao; Yajun, Guan; Tao, Yu; Lijun, Xu; Abuliti

    2018-04-01

    The paper aims to evaluate the performance of anodes prepared with different pore formers. Anodic precursor material SrMoO4 was prepared by hard template method. Gd0.2Ce0.8O1.9 (GDC) was introduced to the precursor to prepare composite anode material GDC-SrMoO4-YSZ by wet impregnation method. Cotton-fibers, graphite powder, flour and activated carbon fibers (ACF) were added as pore formers to the anode to prepare the corresponding solid oxide fuel cell (SOFC), respectively. The electrical performance testing was conducted under the methane environment at 800°C. The result showed that the single cell with 5wt% cotton-fibers as anode pore-former performed best with the maximum power density (464.49 mW.cm2). The cross section samples of the test cells indicated that the anode was left with a plenty of continuous long channels because of the burning of cotton-fibers. Thus, the influence of the amount of cotton-fibers (2wt%, 4wt%, 5wt%, 7wt%, 10wt%) of the anode on the performance of SOFC was tested and further analyzed by the scanning electron microscope (SEM). It was indicated that the optimum adding amount of cotton-fibers was 5wt%.

  1. A streamline splitting pore-network approach for computationally inexpensive and accurate simulation of transport in porous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehmani, Yashar; Oostrom, Martinus; Balhoff, Matthew

    2014-03-20

    Several approaches have been developed in the literature for solving flow and transport at the pore-scale. Some authors use a direct modeling approach where the fundamental flow and transport equations are solved on the actual pore-space geometry. Such direct modeling, while very accurate, comes at a great computational cost. Network models are computationally more efficient because the pore-space morphology is approximated. Typically, a mixed cell method (MCM) is employed for solving the flow and transport system which assumes pore-level perfect mixing. This assumption is invalid at moderate to high Peclet regimes. In this work, a novel Eulerian perspective on modelingmore » flow and transport at the pore-scale is developed. The new streamline splitting method (SSM) allows for circumventing the pore-level perfect mixing assumption, while maintaining the computational efficiency of pore-network models. SSM was verified with direct simulations and excellent matches were obtained against micromodel experiments across a wide range of pore-structure and fluid-flow parameters. The increase in the computational cost from MCM to SSM is shown to be minimal, while the accuracy of SSM is much higher than that of MCM and comparable to direct modeling approaches. Therefore, SSM can be regarded as an appropriate balance between incorporating detailed physics and controlling computational cost. The truly predictive capability of the model allows for the study of pore-level interactions of fluid flow and transport in different porous materials. In this paper, we apply SSM and MCM to study the effects of pore-level mixing on transverse dispersion in 3D disordered granular media.« less

  2. Multiscale pore networks and their effect on deformation and transport property alteration associated with hydraulic fracturing

    NASA Astrophysics Data System (ADS)

    Daigle, Hugh; Hayman, Nicholas; Jiang, Han; Tian, Xiao; Jiang, Chunbi

    2017-04-01

    Multiple lines of evidence indicate that, during a hydraulic fracture stimulation, the permeability of the unfractured matrix far from the main, induced tensile fracture increases by one to two orders of magnitude. This permeability enhancement is associated with pervasive shear failure in a large region surrounding the main induced fracture. We have performed low-pressure gas sorption, mercury intrusion, and nuclear magnetic resonance measurements along with high-resolution scanning electron microscope imaging on several preserved and unpreserved shale samples from North American basins before and after inducing failure in confined compressive strength tests. We have observed that the pore structure in intact samples exhibits multiscale behavior, with sub-micron-scale pores in organic matter connected in isolated, micron-scale clusters which themselves are connected to each other through a network of microcracks. The organic-hosted pore networks are poorly connected due to a significant number of dead-end pores within the organic matter. Following shear failure, we often observe an increase in pore volume in the sub-micron range, which appears to be related to the formation of microcracks that propagate along grain boundaries and other planes of mechanical strength contrast. This is consistent with other experimental and field evidence. In some cases these microcracks cross or terminate in organic matter, intersecting the organic-hosted pores. The induced microcrack networks typically have low connectivity and do not appreciably increase the connectivity of the overall pore network. However, in other cases the shear deformation results in an overall pore volume decrease; samples which exhibit this behavior tend to have more clay minerals. Our interpretation of these phenomena is as follows. As organic matter is converted to hydrocarbons, organic-hosted pores develop, and the hydrocarbons contained in these pores are overpressured. The disconnected nature of these clusters of organic-hosted pores prevents the overpressure from dissipating, resulting in localized overpressure at the micron scale. When the rock is subjected to a hydraulic fracture stimulation, the rock surrounding the main induced fracture experiences shear deformation. Those parts of the rock that contain overpressured fluids in the organic-hosted pores will be more likely to experience dilatancy in the form of brittle deformation; the portions of the rock lacking in organic-hosted pores will tend to experience compactive shear failure since the effective normal stresses are larger. The microcrack networks that propagate into the regions of organic-hosted porosity allow the hydrocarbons resident in those pores to migrate to the main induced tensile fractures. The disconnected nature of the microcrack networks causes only a slight increase in permeability, which is consistent with other observations. Our work illustrates how multiscale pore networks in shale interact with in situ stresses to affect the bulk shale rheology.

  3. Accounting for microbial habitats in modeling soil organic matter dynamics

    NASA Astrophysics Data System (ADS)

    Chenu, Claire; Garnier, Patricia; Nunan, Naoise; Pot, Valérie; Raynaud, Xavier; Vieublé, Laure; Otten, Wilfred; Falconer, Ruth; Monga, Olivier

    2017-04-01

    The extreme heterogeneity of soils constituents, architecture and inhabitants at the microscopic scale is increasingly recognized. Microbial communities exist and are active in a complex 3-D physical framework of mineral and organic particles defining pores of various sizes, more or less inter-connected. This results in a frequent spatial disconnection between soil carbon, energy sources and the decomposer organisms and a variety of microhabitats that are more or less suitable for microbial growth and activity. However, current biogeochemical models account for C dynamics at the macroscale (cm, m) and consider time- and spatially averaged relationships between microbial activity and soil characteristics. Different modelling approaches have intended to account for this microscale heterogeneity, based either on considering aggregates as surrogates for microbial habitats, or pores. Innovative modelling approaches are based on an explicit representation of soil structure at the fine scale, i.e. at µm to mm scales: pore architecture and their saturation with water, localization of organic resources and of microorganisms. Three recent models are presented here, that describe the heterotrophic activity of either bacteria or fungi and are based upon different strategies to represent the complex soil pore system (Mosaic, LBios and µFun). These models allow to hierarchize factors of microbial activity in soil's heterogeneous architecture. Present limits of these approaches and challenges are presented, regarding the extensive information required on soils at the microscale and to up-scale microbial functioning from the pore to the core scale.

  4. Dispersion in 2D network: Effects of mixing rule at nodes and molecular diffusion

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Tao, Q.; Li, M.

    2017-12-01

    We simulate solute transport in 2D network backbone characterized by pore connectivity and pore heterogeneity by particle-tracking method. In order to ensure the dispersion coefficient reaching an asymptotic value, we upscale dispersion from pore-scale to meter-scale by using periodic boundary condition. As comparison, two different flow mechanisms without or with dispersion in a capillary tube, namely mean flow and Taylor-Aris dispersion, are introduced to investigate the evolution of solute spreading. The longitudinal dispersion coefficient DLM without dispersion in a pipe can roughly be regarded as a parameter to quantify the impact of microscopic structure of porous media on solute spreading, which is smaller than that value DL of Taylor-Aris dispersion. The difference between them decreases with the enhancement of the disorder. The mixing rule at nodes has a minor effect on longitudinal spreading, but has a significant effect on transverse spreading, especially for the nearly homogeneous media. An increase of the disorder in network achieved by increasing pore size heterogeneity or/and decreasing pore connectivity diminishes the difference between two mixing rules. Besides, the evolution of longitudinal dispersion coefficient over diffusion presents three different patterns at different velocities for homogenous media, such as monotonically increasing trend, decreasing first and then increasing trend and monotonically decreasing trend. But all are replaced by power law for a high disorder. The simulation results also accurately predict the experimental dependence of the longitudinal coefficient on Peclet number Pe.

  5. In situ TEM observation of electrochemical lithiation of sulfur confined within inner cylindrical pores of carbon nanotubes

    DOE PAGES

    Kim, Hyea; Lee, Jung Tae; Magasinski, Alexandre; ...

    2015-10-26

    Lithium insertion into sulfur confined within 200 nm cylindrical inner pores of individual carbon nanotubes (CNTs) was monitored in-situ in a transmission electron microscope (TEM). This electrochemical reaction was initiated at one end of the S-filled CNTs. The material expansion during lithiation was accommodated by the expansion into the remaining empty pore volume and no fracture of the CNT walls was detected. A sharp interface between the initial and lithiated S was observed. The reaction front was flat, oriented perpendicular to the confined S cylinder and propagated along the cylinder length. Lithiation of S in the proximity of conductive carbonmore » proceeded at the same rate as the one in the center of the pore, suggesting the presence of electron pathways at the Li 2S/S interface. Density of states (DOS) calculations further confirmed this hypothesis. In-situ electron diffraction showed a direct phase transformation of S into nanocrystalline Li 2S without detectable formation of any intermediates, such as polysulfides and LiS. These important insights may elucidate some of the reaction mechanisms and guide the improvements in the design of C-S nanocomposites for high specific energy Li-S batteries. As a result, the proposed use of conductive CNTs with tunable pore diameter as cylindrical reaction vessels for in-situ TEM studies of electrochemical reactions proved to be highly advantageous and may help to resolve the on-going problems in battery technology.« less

  6. Local electrostatic interactions determine the diameter of fusion pores

    PubMed Central

    Guček, Alenka; Jorgačevski, Jernej; Górska, Urszula; Rituper, Boštjan; Kreft, Marko; Zorec, Robert

    2015-01-01

    In regulated exocytosis vesicular and plasma membranes merge to form a fusion pore in response to stimulation. The nonselective cation HCN channels are involved in the regulation of unitary exocytotic events by at least 2 mechanisms. They can affect SNARE-dependent exocytotic activity indirectly, via the modulation of free intracellular calcium; and/or directly, by altering local cation concentration, which affects fusion pore geometry likely via electrostatic interactions. By monitoring membrane capacitance, we investigated how extracellular cation concentration affects fusion pore diameter in pituitary cells and astrocytes. At low extracellular divalent cation levels predominantly transient fusion events with widely open fusion pores were detected. However, fusion events with predominately narrow fusion pores were present at elevated levels of extracellular trivalent cations. These results show that electrostatic interactions likely help determine the stability of discrete fusion pore states by affecting fusion pore membrane composition. PMID:25835258

  7. A light and scanning electron microscopic evaluation of electro-discharge-compacted porous titanium implants in rabbit tibia.

    PubMed

    Drummond, J F; Dominici, J T; Sammon, P J; Okazaki, K; Geissler, R; Lifland, M I; Anderson, S A; Renshaw, W

    1995-01-01

    This study used light and scanning electron microscopic (SEM) histomorphometric methods to quantitate the rate of osseointegration of totally porous titanium alloy (Ti-6Al-4V) implants prepared by a novel fabrication technique--electrodischarge compaction (EDC). EDC was used to fuse 150-250-micrometer spherical titanium alloy beads into 4 X 6 mm cylindrical implants through application of a 300-microsecond pulse of high-voltage/high-current density. Two sterilized implants were surgically placed into each tibia of 20 New Zealand white rabbits and left in situ for periods corresponding to 2, 4, 8, 12, and 24 weeks. At each time point, 4 rabbits were humanely killed, and the implants with surrounding bone were removed, fixed, and sectioned for light and SEM studies. The degree of osseointegration was quantitated by means of a True Grid Digitizing Pad and Jandel Scan Version 3.9 software on an IBM PS/2 computer. The total pore area occupied by bone was divided by the total pore area available for bone ingrowth, and a Bone Ingrowth Factor (BIF) was calculated as a percent. The light microscopic results showed BIFs of 4% at week 2, 47% at week 4, 62% at week 8, 84% at week 12, and greater than 90% at week 24. The SEM results showed BIFs of 5% at week 2, 34% at week 4, 69% at week 8, 75% at week 12, and in excess of 90% at week 24. The results of this study show that EDC implants are biocompatible and support rapid osseointegration in the rabbit tibia and suggest that, after additional studies, they may be suitable for use as dental implants in humans.

  8. The morphological study of porous silicon formed by electrochemical anodization method

    NASA Astrophysics Data System (ADS)

    Suryana, R.; Sandi, D. K.; Nakatsuka, O.

    2018-03-01

    Due to its good physical and chemical properties, porous silicon (PSi) is very attractive to study. In this research, PSi has been fabricated on n-type Si (100) by the electrochemical anodization method. The electrolyte solution used was a mixture of HF (40%), ethanol (99%) and aquadest with volume ratio of 1:1:2, respectively. It was anodized on Si(100) surface at different current densities of 10 mA/cm2 and 20 mA/cm2 with the anodization time at each current density for 10 min, 20 min, and 30 min. The Scanning Electron Microscope (SEM) images showed that the PSi surfaces have inhomogeneous sized pores in the range of 95.00 nm–1.46 μm. The PSi layers with current density and anodization time of 10 mA/cm2 (10 min), 10mA/cm2 (20 min), and 20mA/cm2 (10 min) have spherical shaped pores while the others have some uncommon (cross sectional) shaped pores on surfaces. It is considered that the cross sectional shaped maybe caused by unstable the current during the electrochemical anodization process.

  9. Microstructural aspects in steel fiber reinforced acrylic emulsion polymer modified concrete

    NASA Astrophysics Data System (ADS)

    Hazimmah, Dayang; Ayob, Afizah; Sie Yee, Lau; Chee Cung, Wong

    2018-03-01

    Scanning electron microscope observations of polymer-free and polymer-modified cements have shown that the polymer particles are partitioned between the inside of hydrates and the surface of anhydrous cement grains. For optimum dosage of acrylic emulsion polymer with 2.5%, the C-S-H gel in this structure is finer and more acicular. Some polymer adheres or deposit on the surface of the C-S-H gel. The presence of acrylic emulsion polymer confines the ionic diffusion so that the Ca(OH)2 crystallized locally to form fine crystals. The void in the structures seems to be smaller but no polymer films appears to be bridging the walls of pores although many polymer bonds or C-S-H spread into the pore spaces. In addition to porosity reduction, acrylic emulsion polymer modified the hydration products in the steel fiber -matrix ITZ. The hydration product C-S-H appeared as a needle like shape. The needle-shaped C-S-H increases and gradually formed the gel, with needles growing into the pore space. The phenomenon is more obvious as curing age increased.

  10. Clinical and Histological Evaluations of Enlarged Facial Skin Pores After Low Energy Level Treatments With Fractional Carbon Dioxide Laser in Korean Patients.

    PubMed

    Kwon, Hyuck Hoon; Choi, Sun Chul; Lee, Won-Yong; Jung, Jae Yoon; Park, Gyeong-Hun

    2018-03-01

    Enlarged facial pores can be an early manifestation of skin aging and they are a common aesthetic concern for Asians. However, studies of improving the appearance of enlarged pores have been limited. The authors aimed to study the application of CO2 fractional laser treatment in patients with enlarged facial pores. A total of 32 patients with dilated facial pores completed 3 consecutive sessions of low energy level treatments with a fractional CO2 laser at 4-week intervals. Image analysis was performed to calculate the number of enlarged pores before each treatment session and 12 weeks after the final treatment. After application of laser treatments, there was a significant decrease in the number of enlarged pores. The mean number of enlarged pores was decreased by 28.8% after the second session and by 54.5% at post-treatment evaluation. Post-treatment side effects were mild and transitory. Histological and immunohistochemical analyses demonstrated clear increases in the number of collagen fibers and the expression of transforming growth factor-β1. The short-term results showed that treatment with low energy level CO2 fractional laser therapy could be a safe and effective option for patients with Fitzpatrick skin Types III and IV who are concerned with enlarged pores.

  11. Effective stress law for the permeability and deformation of four porous limestones

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Meng, F.; Wang, X.; Baud, P.; Wong, T. F.

    2017-12-01

    The effective stress behavior of a rock is related to the geometric of its pore space. In a microscopically homogeneous assemblage, effective stress coefficients for permeability, volumetric strain and porosity change are predicted to be equal to or less than unity. Experimental measurements are in basic agreement with this prediction, with exceptions particularly in clay-rich sandstones, for which effective stress coefficient for permeability up to 7 was documented. Little is known about carbonates, but Ghabezloo et al. [2009] studied the permeability of an oolitic limestone (from Nimes, France) with 17% porosity and reported effective stress coefficients up to 2.4. We investigated this phenomenon in Indiana, Leitha, Purbeck, and Thala limestones with porosities of 13-30%. Measurements were made at room temperature on water-saturated samples at confining and pore pressures of 7-15 MPa and 1-3 MPa, respectively. Unlike previous studies limited to the permeability, we also determined the effective stress coefficients for volumetric strain and porosity change. Indiana limestone is oolitic, and not surprisingly its behaviour was similar to Nimes limestone, with an effective stress coefficient for permeability of 2.5. Our Indiana limestone data showed that whereas the effective stress coefficient for volumetric strain was <1, that for porosity change was >1. Measurements on Purbeck and Thala limestones are consistent with these inequalities, with effective stress coefficients for permeability and porosity change >1 and that for volumetric strain <1. Even though Purbeck and Thala limestones are micritic with appreciable amount of quartz and dolomite, microstructural and mercury porosimetry data showed that their pore spaces are similar to the oolitic limestones, in that the pore size distribution is bimodal with significant fractions of both macropores and micropores. Berryman [1992] analyzed theoretically a rock made up of two porous constituents. Our new data are in agreement with inequalities he derived for these effective stress coefficients. For comparison, we also studied Leitha limestone predominately made up of macropores. Our measurements showed that in this case all three effective stress coefficients were <1, as predicted for a microscopically homogeneous assemblage.

  12. Analysis of Soil Structure Turnover with Garnet Particles and X-Ray Microtomography

    PubMed Central

    Vogel, Hans-Jörg

    2016-01-01

    Matter turnover in soil is tightly linked to soil structure which governs the heterogeneous distribution of habitats, reaction sites and pathways in soil. Thereby, the temporal dynamics of soil structure alteration is deemed to be important for essential ecosystem functions of soil but very little is known about it. A major reason for this knowledge gap is the lack of methods to study soil structure turnover directly at microscopic scales. Here we devise a conceptual approach and an image processing workflow to study soil structure turnover by labeling some initial state of soil structure with small garnet particles and tracking their fate with X-ray microtomography. The particles adhere to aggregate boundaries at the beginning of the experiment but gradually change their position relative to the nearest pore as structure formation progresses and pores are destructed or newly formed. A new metric based on the contact distances between particles and pores is proposed that allows for a direct quantification of soil structure turnover rates. The methodology is tested for a case study about soil compaction of a silty loam soil during stepwise increase of bulk density (ρ = {1.1, 1.3, 1.5} g/cm3). We demonstrate that the analysis of mean contact distances provides genuinely new insights about changing diffusion pathways that cannot be inferred neither from conventional pore space attributes (porosity, mean pore size, pore connectivity) nor from deformation analysis with digital image correlation. This structure labeling approach to quantify soil structure turnover provides a direct analogy to stable isotope labeling for the analysis of matter turnover and can be readily combined with each other. PMID:27453995

  13. Herediatary anhidrotic ectodermal dysplasia. Studies in a Nigerian famil.

    PubMed

    Familusi, J B; Jaiyesimi, F; Ojo, C O; Attah, E B

    1975-08-01

    Studies in a Nigerian family with hereditary anhidrous ectodermal dysplasia are reported. Microscopical examinations of finger tips for sweat pores were diagnostic in phenotypes, and it is suggested that this simple nonsurgical procedure is a preferred alternative to skin biopsies in the diagnosis of the syndrome. The clinical implications of a tropical environment for the syndrome, as well as the factors that may favour maintenance of the gene in such an environment are discussed.

  14. Color image analysis of contaminants and bacteria transport in porous media

    NASA Astrophysics Data System (ADS)

    Rashidi, Mehdi; Dehmeshki, Jamshid; Daemi, Mohammad F.; Cole, Larry; Dickenson, Eric

    1997-10-01

    Transport of contaminants and bacteria in aqueous heterogeneous saturated porous systems have been studied experimentally using a novel fluorescent microscopic imaging technique. The approach involves color visualization and quantification of bacterium and contaminant distributions within a transparent porous column. By introducing stained bacteria and an organic dye as a contaminant into the column and illuminating the porous regions with a planar sheet of laser beam, contaminant and bacterial transport processes through the porous medium can be observed and measured microscopically. A computer controlled color CCD camera is used to record the fluorescent images as a function of time. These images are recorded by a frame accurate high resolution VCR and are then analyzed using a color image analysis code written in our laboratories. The color images are digitized this way and simultaneous concentration and velocity distributions of both contaminant and bacterium are evaluated as a function of time and pore characteristics. The approach provides a unique dynamic probe to observe these transport processes microscopically. These results are extremely valuable in in-situ bioremediation problems since microscopic particle-contaminant- bacterium interactions are the key to understanding and optimization of these processes.

  15. Effects of Coke Calcination Level on Pore Structure in Carbon Anodes

    NASA Astrophysics Data System (ADS)

    Fang, Ning; Xue, Jilai; Lang, Guanghui; Bao, Chongai; Gao, Shoulei

    2016-02-01

    Effects of coke calcination levels on pore structure of carbon anodes have been investigated. Bench anodes were prepared by 3 types of cokes with 4 calcination temperatures (800°C, 900°C, 1000°C and 1100°C). The cokes and anodes were characterized using hydrostatic method, air permeability determination, mercury porosimetry, image analysis and confocal microscopy (CSLM). The cokes with different calcination levels are almost the same in LC values (19-20 Å) and real density (1.967-1.985 g/cm3), while the anode containing coke calcined at 900°C has the lowest open porosity and air permeability. Pore size distribution (represented by Anode H sample) can be roughly divided into two ranges: small and medium pores in diameter of 10-400 μm and large pores of 400-580 μm. For the anode containing coke calcined at 800°C, a number of long, narrow pores in the pore size range of 400-580 μm are presented among cokes particles. Formation of these elongated pores may be attributed to coke shrinkages during the anode baking process, which may develop cracking in the anode under cell operations. More small or medium rounded pores with pore size range of 10-400 μm emerge in the anodes with coke calcination temperatures of 900°C, 1000°C and 1100°C, which may be generated due to release of volatiles from the carbon anode during baking. For the anode containing coke calcined at 1100°C, it is found that many rounded pores often closely surround large coke particles, which have potential to form elongated, narrow pores.

  16. Porosity inside a metal casting

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Pores and voids often form in metal castings on Earth (above) making them useless. A transparent material that behaves at a large scale in microgravity the way that metals behave at the microscopic scale on Earth, will help show how voids form and learn how to prevent them. Scientists are using the microgravity environment on the International Space Station to study how these bubbles form, move and interact. The Pore Formation and Mobility Investigation (PFMI) in the Microgravity Science Glovebox aboard the International Space Station uses a transparent material called succinonitrile that behaves like a metal to study this problem. Video images sent to the ground allow scientists to watch the behavior of the bubbles as they control the melting and freezing of the material. The bubbles do not float to the top of the material in microgravity, so they can study their interactions.

  17. Direct, concurrent measurements of the forces and currents affecting DNA in a nanopore with comparable topography.

    PubMed

    Nelson, Edward M; Li, Hui; Timp, Gregory

    2014-06-24

    We report direct, concurrent measurements of the forces and currents associated with the translocation of a single-stranded DNA molecule tethered to the tip of an atomic force microscope (AFM) cantilever through synthetic pores with topagraphies comparable to the DNA. These measurements were performed to gauge the signal available for sequencing and the electric force required to impel a single molecule through synthetic nanopores ranging from 1.0 to 3.5 nm in diameter in silicon nitride membranes 6-10 nm thick. The measurements revealed that a molecule can slide relatively frictionlessly through a pore, but regular fluctuations are observed intermittently in the force (and the current) every 0.35-0.72 nm, which are attributed to individual nucleotides translating through the nanopore in a turnstile-like motion.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Checco, A.; Hofmann, T.; DiMasi, E.

    The details of air nanobubble trapping at the interface between water and a nanostructured hydrophobic silicon surface are investigated using X-ray scattering and contact angle measurements. Large-area silicon surfaces containing hexagonally packed, 20 nm wide hydrophobic cavities provide ideal model surfaces for studying the morphology of air nanobubbles trapped inside cavities and its dependence on the cavity depth. Transmission small-angle X-ray scattering measurements show stable trapping of air inside the cavities with a partial water penetration of 5-10 nm into the pores, independent of their large depth variation. This behavior is explained by consideration of capillary effects and the cavitymore » geometry. For parabolic cavities, the liquid can reach a thermodynamically stable configuration - a nearly planar nanobubble meniscus - by partially penetrating into the pores. This microscopic information correlates very well with the macroscopic surface wetting behavior.« less

  19. Material Science

    NASA Image and Video Library

    2003-01-22

    Pores and voids often form in metal castings on Earth (above) making them useless. A transparent material that behaves at a large scale in microgravity the way that metals behave at the microscopic scale on Earth, will help show how voids form and learn how to prevent them. Scientists are using the microgravity environment on the International Space Station to study how these bubbles form, move and interact. The Pore Formation and Mobility Investigation (PFMI) in the Microgravity Science Glovebox aboard the International Space Station uses a transparent material called succinonitrile that behaves like a metal to study this problem. Video images sent to the ground allow scientists to watch the behavior of the bubbles as they control the melting and freezing of the material. The bubbles do not float to the top of the material in microgravity, so they can study their interactions.

  20. Identification of sandstone core damage using scanning electron microscopy

    NASA Astrophysics Data System (ADS)

    Ismail, Abdul Razak; Jaafar, Mohd Zaidi; Sulaiman, Wan Rosli Wan; Ismail, Issham; Shiunn, Ng Yinn

    2017-12-01

    Particles and fluids invasion into the pore spaces causes serious damage to the formation, resulting reduction in petroleum production. In order to prevent permeability damage for a well effectively, the damage mechanisms should be identified. In this study, water-based drilling fluid was compared to oil-based drilling fluids based on microscopic observation. The cores were damaged by several drilling fluid systems. Scanning electron microscope (SEM) was used to observe the damage mechanism caused by the drilling fluids. Results showed that the ester based drilling fluid system caused the most serious damage followed by synthetic oil based system and KCI-polymer system. Fine solids and filtrate migration and emulsion blockage are believed to be the major mechanisms controlling the changes in flow properties for the sandstone samples.

  1. Foamed Bulk Metallic Glass (Foam) Investigation

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This soldering iron has an evacuated copper capsule at the tip that contains a pellet of Bulk Metallic Glass (BMG) aboard the International Space Station (ISS). Prior to flight, researchers sealed a pellet of bulk metallic glass mixed with microscopic gas-generating particles into the copper ampoule under vacuum. Once heated in space, such as in this photograph, the particles generated gas and the BMG becomes a viscous liquid. The released gas made the sample foam within the capsule where each microscopic particle formed a gas-filled pore within the foam. The inset image shows the oxidation of the sample after several minutes of applying heat. Although hidden within the brass sleeve, the sample retained the foam shape when cooled, because the viscosity increased during cooling until it was solid.

  2. Capillary filling rules and displacement mechanisms for spontaneous imbibition of CO2 for carbon storage and EOR using micro-model experiments and pore scale simulation

    NASA Astrophysics Data System (ADS)

    Chapman, E.; Yang, J.; Crawshaw, J.; Boek, E. S.

    2012-04-01

    In the 1980s, Lenormand et al. carried out their pioneering work on displacement mechanisms of fluids in etched networks [1]. Here we further examine displacement mechanisms in relation to capillary filling rules for spontaneous imbibition. Understanding the role of spontaneous imbibition in fluid displacement is essential for refining pore network models. Generally, pore network models use simple capillary filling rules and here we examine the validity of these rules for spontaneous imbibition. Improvement of pore network models is vital for the process of 'up-scaling' to the field scale for both enhanced oil recovery (EOR) and carbon sequestration. In this work, we present our experimental microfluidic research into the displacement of both supercritical CO2/deionised water (DI) systems and analogous n-decane/air - where supercritical CO2 and n-decane are the respective wetting fluids - controlled by imbibition at the pore scale. We conducted our experiments in etched PMMA and silicon/glass micro-fluidic hydrophobic chips. We first investigate displacement in single etched pore junctions, followed by displacement in complex network designs representing actual rock thin sections, i.e. Berea sandstone and Sucrosic dolomite. The n-decane/air experiments were conducted under ambient conditions, whereas the supercritical CO2/DI water experiments were conducted under high temperature and pressure in order to replicate reservoir conditions. Fluid displacement in all experiments was captured via a high speed video microscope. The direction and type of displacement the imbibing fluid takes when it enters a junction is dependent on the number of possible channels in which the wetting fluid can imbibe, i.e. I1, I2 and I3 [1]. Depending on the experiment conducted, the micro-models were initially filled with either DI water or air before the wetting fluid was injected. We found that the imbibition of the wetting fluid through a single pore is primarily controlled by the geometry of the pore body rather than the downstream pore throat sizes, contrary to the established capillary filling rules as used in current pore network models. Our experimental observations are confirmed by detailed lattice-Boltzmann pore scale computer simulations of fluid displacement in the same geometries. This suggests that capillary filling rules for imbibition as used in pore network models may need to be revised. [1] G. Lenormand, C. Zarcone and A. Sarr, J. Fluid Mech. 135 , 337-353 (1983).

  3. Characterizing 3-D flow velocity in evolving pore networks driven by CaCO3 precipitation and dissolution

    NASA Astrophysics Data System (ADS)

    Chojnicki, K. N.; Yoon, H.; Martinez, M. J.

    2015-12-01

    Understanding reactive flow in geomaterials is important for optimizing geologic carbon storage practices, such as using pore space efficiently. Flow paths can be complex in large degrees of geologic heterogeneities across scales. In addition, local heterogeneity can evolve as reactive transport processes alter the pore-scale morphology. For example, dissolved carbon dioxide may react with minerals in fractured rocks, confined aquifers, or faults, resulting in heterogeneous cementation (and/or dissolution) and evolving flow conditions. Both path and flow complexities are important and poorly characterized, making it difficult to determine their evolution with traditional 2-D transport models. Here we characterize the development of 3-D pore-scale flow with an evolving pore configuration due to calcium carbonate (CaCO3) precipitation and dissolution. A simple pattern of a microfluidic pore network is used initially and pore structures will become more complex due to precipitation and dissolution processes. At several stages of precipitation and dissolution, we directly visualize 3-D velocity vectors using micro particle image velocimetry and a laser scanning confocal microscope. Measured 3-D velocity vectors are then compared to 3-D simulated flow fields which will be used to simulate reactive transport. Our findings will highlight the importance of the 3-D flow dynamics and its impact on estimating reactive surface area over time. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This material is based upon work supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114.

  4. Three-Dimensional Quantification of Pore Space in Flocculated Sediments

    NASA Astrophysics Data System (ADS)

    Lawrence, Tom; Spencer, Kate; Bushby, Andy; Manning, Andrew

    2017-04-01

    Flocculated sediment structure plays a vital role in determining sediment dynamics within the water column in fresh and saline water bodies. The porosity of flocs contributes to their specific density and therefore their settling characteristics, and can also affect settling characteristics via through-flow. The process of settling and resuspension of flocculated material causes the formation of larger and more complex individual flocs, about which little is known quantitatively of the internal micro-structure and therefore porosity. Hydrological and sedimentological modelling software currently uses estimations of porosity, because it is difficult to capture and analyse flocs. To combat this, we use a novel microscopy method usually performed on biological material to scan the flocs, the output of which can be used to quantify the dimensions and arrangement of pores. This involves capturing flocculated sediment, staining the sample with heavy metal elements to highlight organic content in the Scanning Electron Microscope later, and finally setting the sample in resin. The overall research aim is to quantitatively characterise the dimensions and distribution of pore space in flocs in three dimensions. In order to gather data, Scanning Electron Microscopy and micro-Computed Tomography have been utilised to produce the necessary images to identify and quantify the pore space. The first objective is to determine the dimensional limits of pores in the structure (i.e. what area do they encapsulate? Are they interconnected or discreet?). This requires a repeatable definition to be established, so that all floc pore spaces can be quantified using the same parameters. The LabSFLOC settling column and dyes will be used as one possible method of determining the outer limits of the discreet pore space. LabSFLOC is a sediment settling column that uses a camera to record the flocs, enabling analysis of settling characteristics. The second objective is to develop a reliable method for quantifying the dimensions of the pores. The dimensions to be quantified are the long- and short-axis lengths, measured using ImageJ. The third objective will be to quantify the distribution of the pore space within the structure, utilising point-to-point measurements and distance from centre of the floc, again utilising software capable of providing accurate measurements between the centres of each pore within the structure. Preliminary data demonstrating pore dimensional limits and quantification will be presented. This will establish a definition of pore space based on limits of interaction between pore water and the water column, including experimental data from LabSFLOC, and visual representations of pore outer limits. Further to this, I will include some investigational data from ImageJ relating to the dimensions being measured for sub-aim 2. This information is vital in providing accurate and reliable information for hydrological and sedimentological model input, ultimately increasing the value of the outputs.

  5. Extremely thin layer plastification for focused-ion beam scanning electron microscopy: an improved method to study cell surfaces and organelles of cultured cells.

    PubMed

    VAN Donselaar, E G; Dorresteijn, B; Popov-Čeleketić, D; VAN DE Wetering, W J; Verrips, T C; Boekhout, T; Schneijdenberg, C T W M; Xenaki, A T; VAN DER Krift, T P; Müller, W H

    2018-03-25

    Since the recent boost in the usage of electron microscopy in life-science research, there is a great need for new methods. Recently minimal resin embedding methods have been successfully introduced in the sample preparation for focused-ion beam scanning electron microscopy (FIB-SEM). In these methods several possibilities are given to remove as much resin as possible from the surface of cultured cells or multicellular organisms. Here we introduce an alternative way in the minimal resin embedding method to remove excess of resin from two widely different cell types by the use of Mascotte filter paper. Our goal in correlative light and electron microscopic studies of immunogold-labelled breast cancer SKBR3 cells was to visualise gold-labelled HER2 plasma membrane proteins as well as the intracellular structures of flat and round cells. We found a significant difference (p < 0.001) in the number of gold particles of selected cells per 0.6 μm 2 cell surface: on average a flat cell contained 2.46 ± 1.98 gold particles, and a round cell 5.66 ± 2.92 gold particles. Moreover, there was a clear difference in the subcellular organisation of these two cells. The round SKBR3 cell contained many organelles, such as mitochondria, Golgi and endoplasmic reticulum, when compared with flat SKBR3 cells. Our next goal was to visualise crosswall associated organelles, septal pore caps, of Rhizoctonia solani fungal cells by the combined use of a heavy metal staining and our extremely thin layer plastification (ETLP) method. At low magnifications this resulted into easily finding septa which appeared as bright crosswalls in the back-scattered electron mode in the scanning electron microscope. Then, a septum was selected for FIB-SEM. Cross-sectioned views clearly revealed the perforate septal pore cap of R. solani next to other structures, such as mitochondria, endoplasmic reticulum, lipid bodies, dolipore septum, and the pore channel. As the ETLP method was applied on two widely different cell types, the use of the ETLP method will be beneficial to correlative studies of other cell model systems and multicellular organisms. © 2018 The Authors. Journal of Microscopy published by JohnWiley & Sons Ltd on behalf of Royal Microscopical Society.

  6. Can ash clog soil pores?

    NASA Astrophysics Data System (ADS)

    Stoof, Cathelijne; Stoof, Cathelijne; Gevaert, Anouk; Gevaert, Anouk; Baver, Christine; Baver, Christine; Hassanpour, Bahareh; Hassanpour, Bahareh; Morales, Veronica; Morales, Veronica; Zhang, Wei; Zhang, Wei; Martin, Deborah; Martin, Deborah; Steenhuis, Tammo; Steenhuis, Tammo

    2015-04-01

    Wildfire can greatly increase a landscape's vulnerability to flooding and erosion events, and ash is thought to play a large role in controlling runoff and erosion processes after wildfire. Although ash can store rainfall and thereby reduce runoff and erosion for a limited period after wildfires, it has also been hypothesized to clog soil pores and reduce infiltration. Several researchers have attributed the commonly observed increase in runoff and erosion after fire to the potential pore-clogging effect of ash. Evidence is however incomplete, as to date, research has solely focused on identifying the presence of ash in the soil, with the actual flow processes associated with the infiltration and pore-clogging of ash remaining a major unknown. In several laboratory experiments, we tested the hypothesis that ash causes pore clogging to the point that infiltration is hampered and ponding occurs. We first visualized and quantified pore-scale infiltration of water and ash in sand of a range of textures and at various infiltration rates, using a digital bright field microscope capturing both photo and video. While these visualization experiments confirm field and lab observation of ash washing into soil pores, we did not observe any clogging of pores, and have not been able to create conditions for which this does occur. Additional electrochemical analysis and measurement of saturated hydraulic conductivity indicate that pore clogging by ash is not plausible. Electrochemical analysis showed that ash and sand are both negatively charged, showing that attachment of ash to sand and any resulting clogging is unlikely. Ash also had quite high saturated conductivity, and systems where ash was mixed in or lying on top of sand had similarly high hydraulic conductivity. Based on these various experiments, we cannot confirm the hypothesis that pore clogging by ash contributes to the frequently observed increase in post-fire runoff, at least for the medium to coarse sands evaluated here. Infiltration reductions and increases in runoff in these systems are more likely caused by the hydrologic effects of the textural interface between ash and soil, or by other fire-induced changes such as vegetation removal, decrease in roughness, and changes in soil water repellency. This is important information for determining the desired focus of post-fire management activities.

  7. Visualizing and Quantifying Pore Scale Fluid Flow Processes With X-ray Microtomography

    NASA Astrophysics Data System (ADS)

    Wildenschild, D.; Hopmans, J. W.; Vaz, C. M.; Rivers, M. L.

    2001-05-01

    When using mathematical models based on Darcy's law it is often necessary to simplify geometry, physics or both and the capillary bundle-of-tubes approach neglects a fundamentally important characteristic of porous solids, namely interconnectedness of the pore space. New approaches to pore-scale modeling that arrange capillary tubes in two- or three-dimensional pore space have been and are still under development: Network models generally represent the pore space by spheres while the pore throats are usually represented by cylinders or conical shapes. Lattice Boltzmann approaches numerically solve the Navier-Stokes equations in a realistic microscopically disordered geometry, which offers the ability to study the microphysical basis of macroscopic flow without the need for a simplified geometry or physics. In addition to these developments in numerical modeling techniques, new theories have proposed that interfacial area should be considered as a primary variable in modeling of a multi-phase flow system. In the wake of this progress emerges an increasing need for new ways of evaluating pore-scale models, and for techniques that can resolve and quantify phase interfaces in porous media. The mechanisms operating at the pore-scale cannot be measured with traditional experimental techniques, however x-ray computerized microtomography (CMT) provides non-invasive observation of, for instance, changing fluid phase content and distribution on the pore scale. Interfacial areas have thus far been measured indirectly, but with the advances in high-resolution imaging using CMT it is possible to track interfacial area and curvature as a function of phase saturation or capillary pressure. We present results obtained at the synchrotron-based microtomography facility (GSECARS, sector 13) at the Advanced Photon Source at Argonne National Laboratory. Cylindrical sand samples of either 6 or 1.5 mm diameter were scanned at different stages of drainage and for varying boundary conditions. A significant difference in fluid saturation and phase distribution was observed for different drainage conditions, clearly showing preferential flow and a dependence on the applied flow rate. For the 1.5 mm sample individual pores and water/air interfaces could be resolved and quantified using image analysis techniques. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Basic Energy Sciences, Office of Science, under Contract No. W-31-109-Eng-38.

  8. Experimental study on nonmonotonicity of Capillary Desaturation Curves in a 2-D pore network

    NASA Astrophysics Data System (ADS)

    Rodríguez de Castro, Antonio; Shokri, Nima; Karadimitriou, Nikolaos; Oostrom, Mart; Joekar-Niasar, Vahid

    2015-10-01

    Immiscible displacement in porous media is important in many applications such as soil remediation and enhanced oil recovery. When gravitational forces are negligible, two-phase immiscible displacement at the pore level is controlled by capillary and viscous forces whose relative importance is quantified through the dimensionless capillary number Ca and the viscosity ratio M between liquid phases. Depending on the values of Ca and M, capillary fingering, viscous fingering, or stable displacement may be observed resulting in a variety of patterns affecting the phase entrapment. The Capillary Desaturation Curve (CDC), which represents the relationship between the residual oil saturation and Ca, is an important relation to describe the phase entrapment at a given Ca. In the present study, we investigated the CDC as influenced by the viscosity ratio. To do so, we have conducted a comprehensive series of experiments using a high-resolution microscope and state-of-art micromodels to investigate the dynamics and patterns of phase entrapment at different Ca and M. By postprocessing of the experimental high-resolution images, we calculated the CDC and quantified the effects of the Ca and M on the phase entrapment and number of blobs trapped in the micromodel and their size distributions during immiscible two-phase flow. Our results show that CDCs are not necessarily monotonic for all M, and the physical mechanisms causing this nonmonotonic behavior are discussed.

  9. Comparative ultrastructure of vallate, foliate and fungiform taste buds of golden Syrian hamster.

    PubMed

    Miller, R L; Chaudhry, A P

    1976-01-01

    A fine-structure study of the hamster fungiform, foliate and vallate taste buds was undertaken for comparative purposes. All three taste bud types shared in common composition of the dark cells, light cells, basal cells, nerve fibers and nerve endings and undifferentiated peripheral cells, but morphological difference existed among them. The foliate and vallate taste buds were quite similar in their ultrastructural morphology. Their dark cells displayed long apical necks, long apical microvilli, apical osmiophilic secretory granules and an abundant rough endoplasmic reticulum. The dark cells of the fungiform taste buds, however, showed no neck formation and lacked apical osmiophilic granules. They had short apical microvilli and relatively scant rough endoplasmic reticulum. There was no difference in the fine structure features of the light cells, basal cells and neural elements of different types of taste buds. Both light and dark cells were much more readily distinguishable in foliate and vallate buds than in fungiform buds at both light-and electron-microscopic levels. Foliate and vallate buds demonstrated homogeneous dense substance within the taste pores while fungiform pores were frequently empty. It is speculated that the differences in taste bud morphology may be due to their different lingual locations and/or may be a reflection of the differences in the inductive influences from different nerves. Furthermore, structural differences may be responsible for varying thresholds to different taste modalities.

  10. A facile approach to prepare porous cup-stacked carbon nanotube with high performance in adsorption of methylene blue.

    PubMed

    Gong, Jiang; Liu, Jie; Jiang, Zhiwei; Wen, Xin; Mijowska, Ewa; Tang, Tao; Chen, Xuecheng

    2015-05-01

    Novel porous cup-stacked carbon nanotube (P-CSCNT) with special stacked morphology consisting of many truncated conical graphene layers was synthesized by KOH activating CSCNT from polypropylene. The morphology, microstructure, textural property, phase structure, surface element composition and thermal stability of P-CSCNT were investigated by field-emission scanning electron microscope, transmission electron microscope (TEM), high-resolution TEM, N2 sorption, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy and thermal gravimetric analysis. A part of oblique graphitic layers were etched by KOH, and many holes with a diameter of several to a doze of nanometers connecting inner tube with outside were formed, which endowed P-CSCNT with high specific surface area (558.7 m(2)/g), large pore volume (1.993 cm(3)/g) and abundant surface functional groups. Subsequently, P-CSCNT was used for adsorption of methylene blue (MB) from wastewater. Langmuir model closely fitted the adsorption results, and the maximum adsorption capacity of P-CSCNT was as high as 319.1mg/g. This was ascribed to multiple adsorption mechanisms including pore filling, hydrogen bonding, π-π and electrostatic interactions. Pseudo second-order kinetic model was more valid to describe the adsorption behavior. Besides, P-CSCNT showed good recyclablity and reusability. These results demonstrated that P-CSCNT had potential application in wastewater treatment. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Microscopic Study of Carbon Surfaces Interacting with High Carbon Ferromanganese Slag

    NASA Astrophysics Data System (ADS)

    Safarian, Jafar; Kolbeinsen, Leiv

    2015-02-01

    The interaction of carbon materials with molten slags occurs in many pyro-metallurgical processes. In the production of high carbon ferromanganese in submerged arc furnace, the carbothermic reduction of MnO-containing silicate slags yields the metal product. In order to study the interaction of carbon with MnO-containing slags, sessile drop wettability technique is employed in this study to reduce MnO from a molten slag drop by carbon substrates. The interfacial area on the carbon substrate before and after reaction with slag is studied by scanning electron microscope. It is indicated that no Mn metal particles are found at the interface through the reduction of the MnO slag. Moreover, the reduction of MnO occurs through the contribution of Boudouard reaction and it causes carbon consumption in particular active sites at the interface, which generate carbon degradation and open pore growth at the interface. It is shown that the slag is fragmented to many micro-droplets at the reaction interface, potentially due to the effect on the interfacial energies of a provisional liquid Mn thin film. The rapid reduction of these slag micro-droplets affects the carbon surface with making deep micro-pores. A mechanism for the formation of slag micro-droplets is proposed, which is based on the formation of provisional micro thin films of liquid Mn at the interface.

  12. Direct Numerical Simulations of Microstructure Effects During High-Rate Loading of Additively Manufactured Metals

    NASA Astrophysics Data System (ADS)

    Battaile, Corbett; Owen, Steven; Moore, Nathan

    2017-06-01

    The properties of most engineering materials depend on the characteristics of internal microstructures and defects. In additively manufactured (AM) metals, these can include polycrystalline grains, impurities, phases, and significant porosity that qualitatively differ from conventional engineering materials. The microscopic details of the interactions between these internal defects, and the propagation of applied loads through the body, act in concert to dictate macro-observable properties like strength and compressibility. In this work, we used Sandia's ALEGRA finite element software to simulate the high-strain-rate loading of AM metals from laser engineered net shaping (LENS) and thermal spraying. The microstructural details of the material were represented explicitly, such that internal features like second phases and pores are captured and meshed as individual entities in the computational domain. We will discuss the dependence of the high-strain-rate mechanical properties on microstructural characteristics such as the shapes, sizes, and volume fractions of second phases and pores. In addition, we will examine how the details of the microstructural representation affect the microscopic material response to dynamic loads, and the effects of using ``stair-step'' versus conformal interfaces smoothed via the SCULPT tool in Sandia's CUBIT software. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the US DOE NNSA under contract DE-AC04-94AL85000.

  13. Reversible switch between the nanoporous and the nonporous state of amphiphilic block copolymer films regulated by selective swelling.

    PubMed

    Yan, Nina; Wang, Yong

    2015-09-21

    Switchable nanoporous films, which can repeatedly alternate their porosities, are of great interest in a diversity of fields. Currently these intelligent materials are mostly based on polyelectrolytes and their porosities can change only in relatively narrow ranges, typically under wet conditions, severely limiting their applications. Here we develop a new system, which is capable of reversibly switching between a highly porous state and a nonporous state dozens of times regulated simply by exposure to selective solvents. In this system nanopores are created or reversibly eliminated in films of a block copolymer, polystyrene-block-poly(2-vinyl pyridine) (PS-b-P2VP), by exposing the films to P2VP-selective or PS-selective solvents, respectively. The mechanism of the switch is based on the selective swelling of the constituent blocks in corresponding solvents, which is a nondestructive and easily controllable process enabling the repeatable and ample switch between the open and the closed state. Systematic microscopic and ellipsometric characterization methods are performed to elucidate the pore-closing course induced by nonsolvents and the cycling between the pore-open and the pore-closed state up to 20 times. The affinity of the solvent for PS blocks is found to play a dominating role in determining the pore-closing process and the porosities of the pore-open films increase with the cycling numbers as a result of loose packing conditions of the polymer chains. We finally demonstrate the potential applications of these films as intelligent antireflection coatings and drug carriers.

  14. Macroscopic modeling of heat and water vapor transfer with phase change in dry snow based on an upscaling method: Influence of air convection

    NASA Astrophysics Data System (ADS)

    Calonne, N.; Geindreau, C.; Flin, F.

    2015-12-01

    At the microscopic scale, i.e., pore scale, dry snow metamorphism is mainly driven by the heat and water vapor transfer and the sublimation-deposition process at the ice-air interface. Up to now, the description of these phenomena at the macroscopic scale, i.e., snow layer scale, in the snowpack models has been proposed in a phenomenological way. Here we used an upscaling method, namely, the homogenization of multiple-scale expansions, to derive theoretically the macroscopic equivalent modeling of heat and vapor transfer through a snow layer from the physics at the pore scale. The physical phenomena under consideration are steady state air flow, heat transfer by conduction and convection, water vapor transfer by diffusion and convection, and phase change (sublimation and deposition). We derived three different macroscopic models depending on the intensity of the air flow considered at the pore scale, i.e., on the order of magnitude of the pore Reynolds number and the Péclet numbers: (A) pure diffusion, (B) diffusion and moderate convection (Darcy's law), and (C) strong convection (nonlinear flow). The formulation of the models includes the exact expression of the macroscopic properties (effective thermal conductivity, effective vapor diffusion coefficient, and intrinsic permeability) and of the macroscopic source terms of heat and vapor arising from the phase change at the pore scale. Such definitions can be used to compute macroscopic snow properties from 3-D descriptions of snow microstructures. Finally, we illustrated the precision and the robustness of the proposed macroscopic models through 2-D numerical simulations.

  15. Immunity at Cauliflower Hydathodes Controls Systemic Infection by Xanthomonas campestris pv campestris.

    PubMed

    Cerutti, Aude; Jauneau, Alain; Auriac, Marie-Christine; Lauber, Emmanuelle; Martinez, Yves; Chiarenza, Serge; Leonhardt, Nathalie; Berthomé, Richard; Noël, Laurent D

    2017-06-01

    Hydathodes are water pores found on leaves of a wide range of vascular plants and are the sites of guttation. We report here on the detailed anatomy of cauliflower ( Brassica oleracea ) and Arabidopsis ( Arabidopsis thaliana ) hydathodes. Hydathode surface presents pores resembling stomata giving access to large cavities. Beneath, the epithem is composed of a lacunar and highly vascularized parenchyma offering a direct connection between leaf surface and xylem vessels. Arabidopsis hydathode pores were responsive to ABA and light similar to stomata. The flg22 flagellin peptide, a well-characterized elicitor of plant basal immunity, did not induce closure of hydathode pores in contrast to stomata. Because hydathodes are natural infection routes for several pathogens, we investigated hydathode infection by the adapted vascular phytopathogenic bacterium Xanthomonas campestris pv campestris ( Xcc ), the causal agent of black rot disease of Brassicaceae. Microscopic observations of hydathodes six days postinoculation indicated a digestion of the epithem cells and a high bacterial multiplication. Postinvasive immunity was shown to limit pathogen growth in the epithem and is actively suppressed by the type III secretion system and its effector proteins. Altogether, these results give a detailed anatomic description of Brassicaceae hydathodes and highlight the efficient use of this tissue as an initial niche for subsequent vascular systemic dissemination of Xcc in distant plant tissues. © 2017 American Society of Plant Biologists. All Rights Reserved.

  16. Three-dimensional imaging of porous media using confocal laser scanning microscopy.

    PubMed

    Shah, S M; Crawshaw, J P; Boek, E S

    2017-02-01

    In the last decade, imaging techniques capable of reconstructing three-dimensional (3-D) pore-scale model have played a pivotal role in the study of fluid flow through complex porous media. In this study, we present advances in the application of confocal laser scanning microscopy (CLSM) to image, reconstruct and characterize complex porous geological materials with hydrocarbon reservoir and CO 2 storage potential. CLSM has a unique capability of producing 3-D thin optical sections of a material, with a wide field of view and submicron resolution in the lateral and axial planes. However, CLSM is limited in the depth (z-dimension) that can be imaged in porous materials. In this study, we introduce a 'grind and slice' technique to overcome this limitation. We discuss the practical and technical aspects of the confocal imaging technique with application to complex rock samples including Mt. Gambier and Ketton carbonates. We then describe the complete workflow of image processing to filtering and segmenting the raw 3-D confocal volumetric data into pores and grains. Finally, we use the resulting 3-D pore-scale binarized confocal data obtained to quantitatively determine petrophysical pore-scale properties such as total porosity, macro- and microporosity and single-phase permeability using lattice Boltzmann (LB) simulations, validated by experiments. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  17. [Preparation of nano-nacre artificial bone].

    PubMed

    Chen, Jian-ting; Tang, Yong-zhi; Zhang, Jian-gang; Wang, Jian-jun; Xiao, Ying

    2008-12-01

    To assess the improvements in the properties of nano-nacre artificial bone prepared on the basis of nacre/polylactide acid composite artificial bone and its potential for clinical use. The compound of nano-scale nacre powder and poly-D, L-lactide acid (PDLLA) was used to prepare the cylindrical hollow artificial bone, whose properties including raw material powder scale, pore size, porosity and biomechanical characteristics were compared with another artificial bone made of micron-scale nacre powder and PDLLA. Scanning electron microscope showed that the average particle size of the nano-nacre powder was 50.4-/+12.4 nm, and the average pore size of the artificial bone prepared using nano-nacre powder was 215.7-/+77.5 microm, as compared with the particle size of the micron-scale nacre powder of 5.0-/+3.0 microm and the pore size of the resultant artificial bone of 205.1-/+72.0 microm. The porosities of nano-nacre artificial bone and the micron-nacre artificial bone were (65.4-/+2.9)% and (53.4-/+2.2)%, respectively, and the two artificial bones had comparable compressive strength and Young's modulus, but the flexural strength of the nano-nacre artificial bone was lower than that of the micro-nacre artificial bone. The nano-nacre artificial bone allows better biodegradability and possesses appropriate pore size, porosity and biomechanical properties for use as a promising material in bone tissue engineering.

  18. Autonomous buckling of micrometer-sized lipid-protein membrane patches constructed by Dictyostelium discoideum.

    PubMed

    Takahashi, Kei; Toyota, Taro

    2015-01-01

    The cytosol of amoeba cells controls the membrane deformation during their motion in vivo. To investigate such ability of the cytosol of amoeba cell, Dictyostelium discoideum (Dictyostelium), in vitro, we used lipids extracted from Dictyostelium and commercially available phospholipids, and prepared substrate-supported lipid membrane patches on the micrometer scale by spin coating. We found that the spin coater holder, which has pores (pore size = 3.1 mm) of negative pressure to hold the cover glass induced the concave surface of the cover glass. The membrane lipid patches were formed at each position in the vicinity of the holder pores and their sizes were in the range of 2.7 to 3.2 × 10(4) μm(2). After addition of the cytosol extracted from Dictyostelium to the lipid membrane patches, through time-lapse observation with a confocal laser scanning fluorescence microscope, we observed an autonomous buckling of the Dictyostelium lipid patches and localized behaviours of proteins found within. The current method serves as the novel technique for the preparation of film patches in which the positions of patches are controlled by the holder pores without fabricating, modifying, and arranging the chemical properties of the solution components of lipids. The findings imply that lipid-binding proteins in the cytosol were adsorbed and accumulated within the Dictyostelium lipid patches, inducing the transformation of the cell-sized patch.

  19. Colon targeted delivery systems of metronidazole based on osmotic technology: development and evaluation.

    PubMed

    Kumar, Pramod; Singh, Sanjay; Mishra, Brahmeshwar

    2008-09-01

    Colon targeted delivery systems of metronidazole (MTZ) based on osmotic technology were developed. The developed systems consisted of osmotic core (drug, osmotic agent and wicking agent), coated with semipermeable membrane (SPM) containing guar gum as pore former, coated core were then further coated with enteric coating to protect the system from acidic environment of stomach. The effect of various formulation variables namely the level of wicking agent (sodium lauryl sulphate), osmotic agent in the osmotic core, the level of pore former (guar gum) in SPM, and the thickness of SPM, were studied on physical parameters and drug release characteristics of developed formulations. MTZ release was inversely proportional to SPM thickness, but directly related to the level of pore former, wicking agent and osmotic agent. On the other hand burst strength of the exhausted shells was decreased with the increase in level of pore former in the membrane but increased with the increase in the thickness of SPM. The drug release from the developed formulations was independent of pH, and agitation intensity, but dependent on the osmotic pressure of the release media. The thickness of enteric coating could prevent formation of delivery pores before contact with simulated colonic fluid, but had no effect on drug release. Result of SEM studies showed the formation of in-situ delivery pores in the membrane from where the drug release occurred, and the number of pores formed were directly related to the initial level of pore former (guar gum) in SPM. The manufacturing procedure was found to be reproducible and formulations were found to be stable during 3 months of accelerated stability studies.

  20. Investigation of a new pH-responsive nanoparticulate pore former for controlled release enteric coating with improved processability and stability.

    PubMed

    Chen, Kuan; Chang, Hao Han R; Shalviri, Alireza; Li, Jason; Lugtu-Pe, Jamie Anne; Kane, Anil; Wu, Xiao Yu

    2017-11-01

    Water-soluble polymers are often used as pore formers to tailor permeability of film-forming hydrophobic polymers on coated dosage forms. However, their addition to a coating formulation could significantly increase the viscosity thus making the coating process difficult. Moreover, the dissolution of pore formers after oral administration could compromise film integrity resulting in undesirable, inconsistent release profiles. Therefore, a non-leaching, pH-responsive nanoparticulate pore former is proposed herein to preserve film integrity and maintain pH-dependent permeability. Poly(methacrylic acid)-polysorbate 80-grafted-starch terpolymer nanoparticles (TPNs) were incorporated within an ethylcellulose (EC) film (TPN-EC) by casting or spray coating. TPNs at 10%wt (pore former level) only increased viscosity of EC coating suspension slightly while conventional pore formers increased the viscosity by 490-11,700%. Negligible leaching of TPNs led to superior mechanical properties of TPN-EC films compared to Eudragit® L-EC films. As pH increased from 1.2 to 6.8, TPN-EC films with 10% pore former level exhibited an 8-fold higher diltiazem permeability compared to Eudragit® L-EC films. The pH-dependent drug release kinetics of diltiazem HCl beads coated with TPN-EC films was tunable by adjusting the pore former level. These results suggest that the TPNs are promising pH-sensitive nanoparticulate pore formers in EC-coated dosage forms. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Effects of porosity on weld-joint tensile strength of aluminum alloys

    NASA Technical Reports Server (NTRS)

    Lovoy, C. V.

    1974-01-01

    Tensile properties in defect-free weldments of aluminum alloys 2014-T6 and 2219-T87 (sheet and plate) are shown to be related to the level or concentration of induced simulated porosity. The scatter diagram shows that the ultimate tensile strength of the weldments displays the most pronounced linear relationship with the level of porosity. The relationships between yield strength or elongation and porosity are either trivial or inconsequential in the lower and intermediate levels of porosity content. In highly concentrated levels of porosity, both yield strength and elongation values decrease markedly. Correlation coefficients were obtained by simple straight line regression analysis between the variables of ultimate tensile strength and pore level. The coefficients were greater, indicating a better correlation, using a pore area accumulation concept or pore volume accumulation than the accumulation of the pore diameters. These relationships provide a useful tool for assessing the existing aerospace radiographic acceptance standards with respect to permissible porosity. In addition, these relationships, in combination with known design load requirements, will serve as an engineering guideline in determining when a weld repair is necessary based on accumulative pore level as detected by radiographic techniques.

  2. Changes in Pore Water Quality After Peatland Restoration: Assessment of a Large-Scale, Replicated Before-After-Control-Impact Study in Finland

    NASA Astrophysics Data System (ADS)

    Menberu, Meseret Walle; Marttila, Hannu; Tahvanainen, Teemu; Kotiaho, Janne S.; Hokkanen, Reijo; Kløve, Bjørn; Ronkanen, Anna-Kaisa

    2017-10-01

    Drainage is known to affect peatland natural hydrology and water quality, but peatland restoration is considered to ameliorate peatland degradation. Using a replicated BACIPS (Before-After-Control-Impact Paired Series) design, we investigated 24 peatlands, all drained for forestry and subsequently restored, and 19 pristine control boreal peatlands with high temporal and spatial resolution data on hydroclimate and pore water quality. In drained conditions, total nitrogen (Ntot), total phosphorus (Ptot), and dissolved organic carbon (DOC) in pore water were several-fold higher than observed at pristine control sites, highlighting the impacts of long-term drainage on pore water quality. In general, pore water DOC and Ntot decreased after restoration measures but still remained significantly higher than at pristine control sites, indicating long time lags in restoration effects. Different peatland classes and trophic levels (vegetation gradient) responded differently to restoration, primarily due to altered hydrology and varying acidity levels. Sites that were hydrologically overrestored (inundated) showed higher Ptot, Ntot, and DOC than well-restored or insufficiently restored sites, indicating the need to optimize natural-like hydrological regimes when restoring peatlands drained for forestry. Rich fens (median pH 6.2-6.6) showed lower pore water Ptot, Ntot, and DOC than intermediate and poor peats (pH 4.0-4.6) both before and after restoration. Nutrients and DOC in pore water increased in the first year postrestoration but decreased thereafter. The most important variables related to pore water quality were trophic level, peatland class, water table level, and soil and air temperature.

  3. Ultra-structural hair alterations in Friedreich's ataxia: A scanning electron microscopic investigation.

    PubMed

    Turkmenoglu, F Pinar; Kasirga, U Baran; Celik, H Hamdi

    2015-08-01

    Friedreich's ataxia (FRDA) is an autosomal recessive inherited disorder involving progressive damage to the central and peripheral nervous systems and cardiomyopathy. FRDA is caused by the silencing of the FXN gene and reduced levels of the encoded protein, frataxin. Frataxin is a mitochondrial protein that functions primarily in iron-sulfur cluster synthesis. Skin disorders including hair abnormalities have previously been reported in patients with mitochondrial disorders. However, to our knowledge, ultra-structural hair alterations in FRDA were not demonstrated. The purpose of this study was to determine ultra-structural alterations in the hairs of FRDA patients as well as carriers. Hair specimen from four patients, who are in different stages of the disease, and two carriers were examined by scanning electron microscope. Thin and weak hair follicles with absence of homogeneities on the cuticular surface, local damages of the cuticular layer, cuticular fractures were detected in both carriers and patients, but these alterations were much more prominent in the hair follicles of patients. In addition, erosions on the surface of the cuticle and local deep cavities just under the cuticular level were observed only in patients. Indistinct cuticular pattern, pores on the cuticular surface, and presence of concavities on the hair follicle were also detected in patients in later stages of the disease. According to our results, progression of the disease increased the alterations on hair structure. We suggest that ultra-structural alterations observed in hair samples might be due to oxidative stress caused by deficient frataxin expression in mitochondria. © 2015 Wiley Periodicals, Inc.

  4. Preparation of fast response superabsorbent hydrogels by radiation polymerization and crosslinking of N-isopropylacrylamide in solution

    NASA Astrophysics Data System (ADS)

    Abd El-Mohdy, H. L.; Safrany, Agnes

    2008-03-01

    Macroporous temperature-responsive poly( N-isopropylacrylamide) (PNIPAAm) hydrogels with high equilibrium swelling and fast response rates were obtained by a 60Co γ- and electron beam (EB) irradiation of aqueous N-isopropylacrylamide (NIPAAm) monomer solutions. The effect of irradiation temperatures, the dose, the addition of a pore-forming agent on the swelling ratio, and the kinetics of swelling and shrinking of the PNIPAAm gels was studied. The gels synthesized above the LCST exhibited the highest equilibrium swelling (300-400) and fastest response rate measured by minutes. Scanning electron microscope (SEM) pictures revealed that the gels synthesized above the LCST have larger pores than those prepared at temperatures below the LCST. The gels showed a reversible response to cyclical changes in temperature and might be used in a pulsed drug delivery device. The gels synthesized above the LCST exhibited the highest testosterone propionate release.

  5. Evaluation of a bonded particle cartridge filtration system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, W.; Krug, H.P.; Dopp, V.

    1996-10-01

    Metal cleanliness is a major issue in today`s aluminum casthouse, especially in the production of critical products such as canstock, litho sheet and foil. Bonded particle cartridge filters are widely regarded as the most effective means available for inclusion removal from critical production items. V.A.W. and Foseco have carried out a joint program of evaluation of a cartridge filter system in conjunction with ceramic foam filters and an in-line degassing unit--in various configurations. The ceramic foam filters ranged from standard, coarse pore types to new generation all-ceramic bonded, fine pore types. Metal cleanliness was assessed using LiMCA, PoDFA, and LAISmore » sampling techniques, as well as metallographic and scanning electron microscope examinations. This paper outlines the findings of this work which was carried out a V.A.W.`s full scale experimental D.C. slab casting unit as Neuss in Germany.« less

  6. Micro-PIV Study of Supercritical CO2-Water Interactions in Porous Micromodels

    NASA Astrophysics Data System (ADS)

    Kazemifar, Farzan; Blois, Gianluca; Christensen, Kenneth T.

    2015-11-01

    Multiphase flow of immiscible fluids in porous media is encountered in numerous natural systems and engineering applications such as enhanced oil recovery (EOR), and CO2 sequestration among others. Geological sequestration of CO2 in saline aquifers has emerged as a viable option for reducing CO2 emissions, and thus it has been the subject of numerous studies in recent years. A key objective is improving the accuracy of numerical models used for field-scale simulations by incorporation/better representation of the pore-scale flow physics. This necessitates experimental data for developing, testing and validating such models. We have studied drainage and imbibition processes in a homogeneous, two-dimensional porous micromodel with CO2 and water at reservoir-relevant conditions. Microscopic particle image velocimetry (micro-PIV) technique was applied to obtain spatially- and temporally-resolved velocity vector fields in the aqueous phase. The results provide new insight into the flow processes at the pore scale.

  7. Separation and Concentration without Clogging Using a High-Throughput Tunable Filter

    NASA Astrophysics Data System (ADS)

    Mossige, E. J.; Jensen, A.; Mielnik, M. M.

    2018-05-01

    We present a detailed experimental study of a hydrodynamic filtration microchip and show how chip performance can be tuned and clogging avoided by adjusting the flow rates. We demonstrate concentration and separation of microspheres at throughputs as high as 29 ml /min and with 96% pureness. Results of streakline visualizations show that the thickness of a tunable filtration layer dictates the cutoff size and that two different concentration mechanisms exist. Particles larger than pores are concentrated by low-velocity rolling over the filtration pillars, while particles smaller than pores are concentrated by lateral drift across the filtration layer. Results of microscopic particle image velocimetry and particle-tracking velocimetry show that the degree of lateral migration can be quantified by the slip velocity between the particle and the surrounding fluid. Finally, by utilizing differences in inertia and separation mode, we demonstrate size-based separation of particles in a mixture.

  8. Mechanical instabilities in periodic porous elasto-plastic solids.

    NASA Astrophysics Data System (ADS)

    Singamaneni, Srikanth; Bertoldi, Katia; Chang, Sehoon; Jang, Ji-Hyun; Young, Seth; Thomas, Edwin; Boyce, Mary; Tsukruk, Vladimir

    2009-03-01

    We describe the transformation of the periodic microporous structures fabricated by interference lithography followed by their freezing below glass transition. Periodic porous microstructures subjected to internal compressive stresses can undergo sudden structural transformation at a critical strain. The pattern transformation of collapsed pores is caused by the stresses originated during the polymerization of acrylic acid (rubbery component) inside of cylindrical pores and the subsequent solvent evaporation in the organized microporous structure. The results of a non-linear numerical investigation confirm the critical role of the bifurcation of the periodic solid under compressive stresses. In striking contrast to the earlier observations of elastic instabilities in porous elastomeric solids, the elastic-plastic nature of the crosslinked periodic microstructure studied here provides for the ability to lock in the transformed pattern with complete relaxation of the internal stresses. By confining the polymerization of acrylic acid to localized porous areas complex microscopic periodic structures are obtained.

  9. Synthesis of Zinc Oxide Nanoparticles and Their Effect on the Compressive Strength and Setting Time of Self-Compacted Concrete Paste as Cementitious Composites

    PubMed Central

    Arefi, Mohammad Reza; Rezaei-Zarchi, Saeed

    2012-01-01

    In the present study, the mechanical properties of self-compacting concrete were investigated after the addition of different amounts of ZnO nanoparticles. The zinc oxide nanoparticles, with an average particle size of about 30 nm, were synthesized and their properties studied with the help of a scanning electron microscope (SEM) and X-ray diffraction. The prepared nanoparticles were partially added to self-compacting concrete at different concentrations (0.05, 0.1, 0.2, 0.5 and 1.0%), and the mechanical (flexural and split tensile) strength of the specimens measured after 7, 14, 21 and 28 days, respectively. The present results have shown that the ZnO nanoparticles were able to improve the flexural strength of self-compacting concrete. The increased ZnO content of more than 0.2% could increase the flexural strength, and the maximum flexural and split tensile strength was observed after the addition of 0.5% nanoparticles. Finally, ZnO nanoparticles could improve the pore structure of the self-compacted concrete and shift the distributed pores to harmless and less-harmful pores, while increasing mechanical strength. PMID:22605981

  10. Synthesis of zinc oxide nanoparticles and their effect on the compressive strength and setting time of self-compacted concrete paste as cementitious composites.

    PubMed

    Arefi, Mohammad Reza; Rezaei-Zarchi, Saeed

    2012-01-01

    In the present study, the mechanical properties of self-compacting concrete were investigated after the addition of different amounts of ZnO nanoparticles. The zinc oxide nanoparticles, with an average particle size of about 30 nm, were synthesized and their properties studied with the help of a scanning electron microscope (SEM) and X-ray diffraction. The prepared nanoparticles were partially added to self-compacting concrete at different concentrations (0.05, 0.1, 0.2, 0.5 and 1.0%), and the mechanical (flexural and split tensile) strength of the specimens measured after 7, 14, 21 and 28 days, respectively. The present results have shown that the ZnO nanoparticles were able to improve the flexural strength of self-compacting concrete. The increased ZnO content of more than 0.2% could increase the flexural strength, and the maximum flexural and split tensile strength was observed after the addition of 0.5% nanoparticles. Finally, ZnO nanoparticles could improve the pore structure of the self-compacted concrete and shift the distributed pores to harmless and less-harmful pores, while increasing mechanical strength.

  11. Nanoporous structures on ZnO thin films

    NASA Astrophysics Data System (ADS)

    Gür, Emre; Kılıç, Bayram; Coşkun, C.; Tüzemen, S.; Bayrakçeken, Fatma

    2010-01-01

    Porous structures were formed on ZnO thin films which were grown by an electrochemical deposition (ECD) method. The growth processes were carried out in a solution of dimethylsulfoxide (DMSO) zinc perchlorate, Zn(ClO 4) 2, at 120 ∘C on indium tin oxide (ITO) substrates. Optical and structural characterizations of electrochemically grown ZnO thin films have shown that the films possess high (0002) c-axis orientation, high nucleation, high intensity and low FWHM of UV emission at the band edge region and a sharp UV absorption edge. Nanoporous structures were formed via self-assembled monolayers (SAMs) of hexanethiol (C 6SH) and dodecanethiol (C 12SH). Scanning electron microscope (SEM) measurements showed that while a nanoporous structure (pore radius 20 nm) is formed on the ZnO thin films by hexanathiol solution, a macroporous structure (pore radius 360 nm) is formed by dodecanethiol solution. No significant variation is observed in X-ray diffraction (XRD) measurements on the ZnO thin films after pore formation. However, photoluminescence (PL) measurements showed that green emission is observed as the dominant emission for the macroporous structures, while no variation is observed for the thin film nanoporous ZnO sample.

  12. Impurity effects on ionic-liquid-based supercapacitors

    NASA Astrophysics Data System (ADS)

    Liu, Kun; Lian, Cheng; Henderson, Douglas; Wu, Jianzhong

    2017-02-01

    Small amounts of an impurity may affect the key properties of an ionic liquid and such effects can be dramatically amplified when the electrolyte is under confinement. Here the classical density functional theory is employed to investigate the impurity effects on the microscopic structure and the performance of ionic-liquid-based electrical double-layer capacitors, also known as supercapacitors. Using a primitive model for ionic species, we study the effects of an impurity on the double layer structure and the integral capacitance of a room temperature ionic liquid in model electrode pores and find that an impurity strongly binding to the surface of a porous electrode can significantly alter the electric double layer structure and dampen the oscillatory dependence of the capacitance with the pore size of the electrode. Meanwhile, a strong affinity of the impurity with the ionic species affects the dependence of the integral capacitance on the pore size. Up to 30% increase in the integral capacitance can be achieved even at a very low impurity bulk concentration. By comparing with an ionic liquid mixture containing modified ionic species, we find that the cooperative effect of the bounded impurities is mainly responsible for the significant enhancement of the supercapacitor performance.

  13. 3D reconstruction of the porous microstructure of Al2O3-coatings based on sequentially revealed surface data

    NASA Astrophysics Data System (ADS)

    Loftfield, Nina; Kästner, Markus; Reithmeier, Eduard

    2018-06-01

    Local and global liquid transport properties correlate strongly with the morphology of porous materials. Therefore, by characterizing the porous network information is indirectly gained on the materials properties. Properties like the open-porosity are easily accessible with techniques like mercury porosimetry. However, the 3D image reconstruction, destructive or non-destructive, holds advantages like an accurate spatially resolved representation of the investigated material. Common 3D data acquisition is done by x-ray microtomography or a combination of focused ion beam based milling and scanning electron microscopy. In this work a reconstruction approach similar to the latter one is implemented. The porous network is reconstructed based on an alternating process of milling the surface by fly cutting and measuring the surface data with a confocal laser scanning microscope. This has the benefit of reconstructing the pore network on the basis of surface height data, measuring the structure boundaries directly. The stack of milled surface height data needs to be registered and the pore structure to be segmented. The segmented pore structure is connected throughout each height layer and afterwards meshed. The investigated materials are porous surface coatings of aluminum oxide for the usage in tribological pairings.

  14. Blanching of paint and varnish layers in easel paintings: contribution to the understanding of the alteration

    NASA Astrophysics Data System (ADS)

    Genty-Vincent, Anaïs; Eveno, Myriam; Nowik, Witold; Bastian, Gilles; Ravaud, Elisabeth; Cabillic, Isabelle; Uziel, Jacques; Lubin-Germain, Nadège; Menu, Michel

    2015-11-01

    The blanching of easel paintings can affect the varnish layer and also the paint layer with a blurring effect. The understanding of the physicochemical and optical phenomena involved in the whitening process remains an important challenge for the painting conservation. A set of ca. 50 microsamples from French, Flemish, and Italian blanched oil paintings, from sixteenth to nineteenth century, have been collected for in deep investigations. In parallel, the reproduction of the alteration was achieved by preparing some paint layers according to historical treatises and altering them in a climatic chamber in a humid environment or directly by immersing in ultrapure water. The observation of raw samples with a field-emission gun scanning electron microscope revealed for the first time that the altered layers have an unexpected highly porous structure with a pore size ranging from ca. 40 nm to 2 μm. The formation mechanism of these pores should mostly be physical as the supplementary analyses (Fourier transform infrared spectroscopy, gas chromatography-mass spectrometry) do not reveal any noticeable molecular modification. Considering the tiny size of the pores, the alteration can be explained by the Rayleigh or Mie light scattering.

  15. Efficient biocatalyst by encapsulating lipase into nanoporous gold

    PubMed Central

    2013-01-01

    Lipases are one of the most important biocatalysts for biotechnological applications. Immobilization is an efficient method to increase the stability and reusability of lipases. In this study, nanoporous gold (NPG), a new kind of nanoporous material with tunable porosity and excellent biocompatibility, was employed as an effective support for lipase immobilization. The pore size of NPG and adsorption time played key roles in the construction of lipase-NPG biocomposites. The morphology and composition of NPG before and after lipase loading are verified using a scanning electron microscope, equipped with an energy-dispersive X-ray spectrometer. The resulting lipase-NPG biocomposites exhibited excellent catalytic activity and remarkable reusability. The catalytic activity of the lipase-NPG biocomposite with a pore size of 35 nm had no decrease after ten recycles. Besides, the lipase-NPG biocomposite exhibited high catalytic activity in a broader pH range and higher temperature than that of free lipase. In addition, the leaching of lipase from NPG could be prevented by matching the protein’s diameter and pore size. Thus, the encapsulation of enzymes within NPG is quite useful for establishing new functions and will have wide applications for different chemical processes. PMID:23601503

  16. A Mass Diffusion Model for Dry Snow Utilizing a Fabric Tensor to Characterize Anisotropy

    NASA Astrophysics Data System (ADS)

    Shertzer, Richard H.; Adams, Edward E.

    2018-03-01

    A homogenization algorithm for randomly distributed microstructures is applied to develop a mass diffusion model for dry snow. Homogenization is a multiscale approach linking constituent behavior at the microscopic level—among ice and air—to the macroscopic material—snow. Principles of continuum mechanics at the microscopic scale describe water vapor diffusion across an ice grain's surface to the air-filled pore space. Volume averaging and a localization assumption scale up and down, respectively, between microscopic and macroscopic scales. The model yields a mass diffusivity expression at the macroscopic scale that is, in general, a second-order tensor parameterized by both bulk and microstructural variables. The model predicts a mass diffusivity of water vapor through snow that is less than that through air. Mass diffusivity is expected to decrease linearly with ice volume fraction. Potential anisotropy in snow's mass diffusivity is captured due to the tensor representation. The tensor is built from directional data assigned to specific, idealized microstructural features. Such anisotropy has been observed in the field and laboratories in snow morphologies of interest such as weak layers of depth hoar and near-surface facets.

  17. [In vitro comparison of epidural bacteria filters permeability and screening scanning electron microscopy].

    PubMed

    Sener, Aysin; Erkin, Yuksel; Sener, Alper; Tasdogen, Aydin; Dokumaci, Esra; Elar, Zahide

    2015-01-01

    Epidural catheter bacteria filters are barriers in the patient-controlled analgesia/anaesthesia for preventing contamination at the epidural insertion site. The efficiency of these filters varies according to pore sizes and materials. The bacterial adhesion capability of the two filters was measured in vitro experiment. Adhesion capacities for standard Staphylococcus aureus (ATCC 25923) and Pseudomonas aeruginosa (ATCC 27853) strains of the two different filters (Portex and Rusch) which have the same pore size were examined. Bacterial suspension of 0.5 Mc Farland was placed in the patient-controlled analgesia pump, was filtered at a speed of 5mL/h. in continuous infusion for 48h and accumulated in bottle. The two filters were compared with colony counts of bacteria in the filters and bottles. At the same time, the filters and adhered bacteria were monitored by scanning electron microscope. Electron microscopic examination of filters showed that the Portex filter had a granular and the Rusch filter fibrillary structure. Colony counting from the catheter and bottle showed that both of the filters have significant bacterial adhesion capability (p<0.001). After the bacteria suspension infusion, colony countings showed that the Portex filter was more efficient (p<0.001). There was not any difference between S. aureus and P. aeruginosa bacteria adhesion. In the SEM monitoring after the infusion, it was physically shown that the bacteria were adhered efficiently by both of the filters. The granular structured filter was found statistically and significantly more successful than the fibrial. Although the pore sizes of the filters were same - of which structural differences shown by SEM were the same - it would not be right to attribute the changes in the efficiencies to only structural differences. Using microbiological and physical proofs with regard to efficiency at the same time has been another important aspect of this experiment. Copyright © 2013 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  18. In vitro comparison of epidural bacteria filters permeability and screening scanning electron microscopy.

    PubMed

    Sener, Aysin; Erkin, Yuksel; Sener, Alper; Tasdogen, Aydin; Dokumaci, Esra; Elar, Zahide

    2015-01-01

    Epidural catheter bacteria filters are barriers in the patient-controlled analgesia/anaesthesia for preventing contamination at the epidural insertion site. The efficiency of these filters varies according to pore sizes and materials. The bacterial adhesion capability of the two filters was measured in vitro experiment. Adhesion capacities for standard Staphylococcus aureus (ATCC 25923) and Pseudomonas aeruginosa (ATCC 27853) strains of the two different filters (Portex and Rusch) which have the same pore size were examined. Bacterial suspension of 0.5 Mc Farland was placed in the patient-controlled analgesia pump, was filtered at a speed of 5 mL/h. in continuous infusion for 48 h and accumulated in bottle. The two filters were compared with colony counts of bacteria in the filters and bottles. At the same time, the filters and adhered bacteria were monitored by scanning electron microscope. Electron microscopic examination of filters showed that the Portex filter had a granular and the Rusch filter fibrillary structure. Colony counting from the catheter and bottle showed that both of the filters have significant bacterial adhesion capability (p<0.001). After the bacteria suspension infusion, colony countings showed that the Portex filter was more efficient (p<0.001). There was not any difference between S. aureus and P. aeruginosa bacteria adhesion. In the SEM monitoring after the infusion, it was physically shown that the bacteria were adhered efficiently by both of the filters. The granular structured filter was found statistically and significantly more successful than the fibrial. Although the pore sizes of the filters were same - of which structural differences shown by SEM were the same - it would not be right to attribute the changes in the efficiencies to only structural differences. Using microbiological and physical proofs with regard to efficiency at the same time has been another important aspect of this experiment. Copyright © 2013 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.

  19. Influence of Ultrasonic Surface Rolling on Microstructure and Wear Behavior of Selective Laser Melted Ti-6Al-4V Alloy

    PubMed Central

    Wang, Zhen; Xiao, Zhiyu; Huang, Chuanshou; Wen, Liping; Zhang, Weiwen

    2017-01-01

    The present article studied the effect of ultrasonic surface rolling process (USRP) on the microstructure and wear behavior of a selective laser melted Ti-6Al-4V alloy. Surface characteristics were investigated using optical microscope, nano-indentation, scanning electron microscope, transmission electron microscope and laser scanning confocal microscope. Results indicated that the thickness of pore-free surfaces increased to 100~200 μm with the increasing ultrasonic surface rolling numbers. Severe work hardening occurred in the densified layer, resulting in the formation of refined grains, dislocation walls and deformation twins. After 1000 N 6 passes, about 15.5% and 14.1% increment in surficial Nano-hardness and Vickers-hardness was obtained, respectively. The hardness decreased gradually from the top surface to the substrate. Wear tests revealed that the friction coefficient declined from 0.74 (polished surface) to 0.64 (USRP treated surface) and the wear volume reduced from 0.205 mm−3 to 0.195 mm−3. The difference in wear volume between USRP treated and polished samples increased with sliding time. The enhanced wear resistance was concluded to be associated with the improvement of hardness and shear resistance and also the inhibition of delamination initiation. PMID:29048344

  20. Multiscale Simulation of Porous Ceramics Based on Movable Cellular Automaton Method

    NASA Astrophysics Data System (ADS)

    Smolin, A.; Smolin, I.; Eremina, G.; Smolina, I.

    2017-10-01

    The paper presents a model for simulating mechanical behaviour of multiscale porous ceramics based on movable cellular automaton method, which is a novel particle method in computational mechanics of solid. The initial scale of the proposed approach corresponds to the characteristic size of the smallest pores in the ceramics. At this scale, we model uniaxial compression of several representative samples with an explicit account of pores of the same size but with the random unique position in space. As a result, we get the average values of Young’s modulus and strength, as well as the parameters of the Weibull distribution of these properties at the current scale level. These data allow us to describe the material behaviour at the next scale level were only the larger pores are considered explicitly, while the influence of small pores is included via the effective properties determined at the previous scale level. If the pore size distribution function of the material has N maxima we need to perform computations for N - 1 levels in order to get the properties from the lowest scale up to the macroscale step by step. The proposed approach was applied to modelling zirconia ceramics with bimodal pore size distribution. The obtained results show correct behaviour of the model sample at the macroscale.

  1. Modeling the relaxation dynamics of fluids in nanoporous materials

    NASA Astrophysics Data System (ADS)

    Edison, John R.

    Mesoporous materials are being widely used in the chemical industry in various environmentally friendly separation processes and as catalysts. Our research can be broadly described as an effort to understand the behavior of fluids confined in such materials. More specifically we try to understand the influence of state variables like temperature and pore variables like size, shape, connectivity and structural heterogeneity on both the dynamic and equilibrium behavior of confined fluids. The dynamic processes associated with the approach to equilibrium are largely unexplored. It is important to look into the dynamic behavior for two reasons. First, confined fluids experience enhanced metastabilities and large equilibration times in certain classes of mesoporous materials, and the approach to the metastable/stable equilibrium is of tremendous interest. Secondly, understanding the transport resistances in a microscopic scale will help better engineer heterogeneous catalysts and separation processes. Here we present some of our preliminary studies on dynamics of fluids in ideal pore geometries. The tool that we have used extensively to investigate the relaxation dynamics of fluids in pores is the dynamic mean field theory (DMFT) as developed by Monson [P. A. Monson, J. Chem. Phys., 128, 084701 (2008)]. The theory is based on a lattice gas model of the system and can be viewed as a highly computationally efficient approximation to the dynamics averaged over an ensemble of Kawasaki dynamics Monte Carlo trajectories of the system. It provides a theory of the dynamics of the system consistent with the thermodynamics in mean field theory. The nucleation mechanisms associated with confined fluid phase transitions are emergent features in the calculations. We begin by describing the details of the theory and then present several applications of DMFT. First we present applications to three model pore networks (a) a network of slit pores with a single pore width; (b) a network of slit pores with two pore widths arranged in intersecting channels with a single pore width in each channel; (c) a network of slit pores with two pore widths forming an array of ink-bottles. The results illustrate the effects of pore connectivity upon the dynamics of vapor liquid phase transformations as well as on the mass transfer resistances to equilibration. We then present an application to a case where the solid-fluid interactions lead to partial wetting on a planar surface. The pore filling process in such systems features an asymmetric density distribution where a liquid droplet appears on one of the walls. We also present studies on systems where there is partial drying or drying associated with weakly attractive or repulsive interactions between the fluid and the pore walls. We describe the symmetries exhibited by the lattice model between pore filling for wetting states and pore emptying for drying states, for both the thermodynamics and dynamics. We then present an extension of DMFT to mixtures and present some examples that illustrate the utility of the approach. Finally we present an assessment the accuracy of the DMFT through comparisons with a higher order approximation based on the path probability method as well as Kawasaki dynamics.

  2. Water Displacement in Oil-Wet Tight Reservoirs by Dynamic Network Simulation

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Li, M.; Chen, M.

    2017-12-01

    Pore network simulation is an effective tool for studying the multiphase flow in porous media. Based on the topological information and pore-throat size distribution obtained from the analysis of Scanning Electron Microscope (SEM) and constant-rate mercury injection (CRMI) for tight cores (composed by micro-nano scale throats and micro scale pores), a simple cubic (SC) pore-throat network was built with equilateral triangular cross-section throats and cubic bodies. Rules for oil and water movement and redistribution were devised in accordance with the physics process at pore-throat scale. Water flooding from oil-saturated under irreducible water were simulated by considering the changing displacement rate and viscosity ratio at the slightly oil-wet condition (the static contact angle ranges between π/2 to 2π/3). Different from the double pressure field algorithm, a single pressure field which solved by using successive over relaxation method was used with the flow of irreducible water in corners was ignored while its swilling was take into consideration. Dynamic of displacement fronts, relative permeability curves and residual oil saturation were obtained. It showed that there were obviously snap-off at low capillary number (Nc<10-5) and fingering at high capillary number (Nc<10-4) even at a favorable viscosity ratio (M=1). The magnitude of viscosity ratio effect on relative permeability depended largely on the capillary number, which the effect wasn't noticeable for a high capillary number. For residual oil saturation Sor, it showed that Sor decreased with the increase of capillary number at different viscosity ratio. Changing of residual oil saturation from simulation was in good agreement with the experimental results in a certain range, which indicated that this network model could be used to character the water flooding in tight reservoirs.

  3. Synthesis of flower-like Boehmite (γ-AlOOH) via a one-step ionic liquid-assisted hydrothermal route

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Zhe, E-mail: tangzhe1983@163.com; Liang, Jilei, E-mail: liangjilei_httplan@126.com; Li, Xuehui, E-mail: lxhhmx@163.com

    A simple and novel synthesis process, one-step ionic liquid-assisted hydrothermal synthesis route, has been developed in the work to synthesize Bohemithe (γ-AlOOH) with flower-like structure. The samples were characterized by X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR) and Scanning Electron Microscope (SEM). Ionic liquid [Omim]{sup +}Cl{sup −}, as a template, plays an important role in the morphology and pore structure of the products due to its strong interactions with reaction particles. With the increase in the dosage of ionic liquid [Omim]{sup +}Cl{sup −}, the morphology of the γ-AlOOH was changed from initial bundles of nanosheets (without ionic liquid) intomore » final well-developed monodispersed 3D flower-like architectures ([Omim]{sup +}Cl{sup −}=72 mmol). The pore structure was also altered gradually from initial disordered slit-like pore into final relatively ordered ink-bottle pore. Furthermore, the proposed formation mechanism and other influencing factors such as reaction temperature and urea on formation and morphology of the γ-AlOOH have also been investigated. - Graphical abstract: The flower-like γ-AlOOH architectures composed by nanosheets with narrow size distribution (1.6–2.2 μm) and uniform pore size (6.92 nm) have been synthesized via a one-step ionic liquid-assisted hydrothermal route. - Highlights: • The γ-AlOOH microflowers were synthesized via an ionic liquid-assisted hydrothermal route. • Ionic liquid plays an important role on the morphology and porous structure of the products. • Ionic liquid can be easily removed from the products and reused in recycling experiments. • A “aggregation–recrystallization–Ostwald Ripening“formation mechanism may occur.« less

  4. In vitro degradation and release characteristics of spin coated thin films of PLGA with a “breath figure” morphology

    PubMed Central

    Ponnusamy, Thiruselvam; Lawson, Louise B.; Freytag, Lucy C.; Blake, Diane A.; Ayyala, Ramesh S.; John, Vijay T.

    2012-01-01

    Poly (lactic-co-glycolic acid) (PLGA) coatings on implant materials are widely used in controlled drug delivery applications. Typically, such coatings are made with non-porous films. Here, we have synthesized a thin PLGA film coating with a highly ordered microporous structure using a simple and inexpensive water templating “breath figure” technique. A single stage process combining spin coating and breath figure process was used to obtain drug incorporated porous thin films. The films were characterized by scanning electron microscope (SEM) to observe the surface and bulk features of porosity and also, degradation pattern of the films. Moreover, the effect of addition of small amount of poly (ethylene glycol) (PEG) into PLGA was characterized. SEM analysis revealed an ordered array of ~2 µm sized pores on the surface with the average film thickness measured to be 20 µm. The incorporation of hydrophilic poly (ethylene glycol) (PEG) enhances pore structure uniformity and facilitates ingress of water into the structure. A five week in vitro degradation study showed a gradual deterioration of the breath figure pores. During the course of degradation, the surface pore structure deteriorates to initially flatten the surface. This is followed by the formation of new pinprick pores that eventually grow into a macroporous film prior to film breakup. Salicylic acid (highly water soluble) and Ibuprofen (sparingly water soluble) were chosen as model drug compounds to characterize release rates, which are higher in films of the breath figure morphology rather than in non-porous films. The results are of significance in the design of biodegradable films used as coatings to modulate delivery. PMID:23507805

  5. Confinement properties of 2D porous molecular networks on metal surfaces

    NASA Astrophysics Data System (ADS)

    Müller, Kathrin; Enache, Mihaela; Stöhr, Meike

    2016-04-01

    Quantum effects that arise from confinement of electronic states have been extensively studied for the surface states of noble metals. Utilizing small artificial structures for confinement allows tailoring of the surface properties and offers unique opportunities for applications. So far, examples of surface state confinement include thin films, artificial nanoscale structures, vacancy and adatom islands, self-assembled 1D chains, vicinal surfaces, quantum dots and quantum corrals. In this review we summarize recent achievements in changing the electronic structure of surfaces by adsorption of nanoporous networks whose design principles are based on the concepts of supramolecular chemistry. Already in 1993, it was shown that quantum corrals made from Fe atoms on a Cu(1 1 1) surface using single atom manipulation with a scanning tunnelling microscope confine the Shockley surface state. However, since the atom manipulation technique for the construction of corral structures is a relatively time consuming process, the fabrication of periodic two-dimensional (2D) corral structures is practically impossible. On the other side, by using molecular self-assembly extended 2D porous structures can be achieved in a parallel process, i.e. all pores are formed at the same time. The molecular building blocks are usually held together by non-covalent interactions like hydrogen bonding, metal coordination or dipolar coupling. Due to the reversibility of the bond formation defect-free and long-range ordered networks can be achieved. However, recently also examples of porous networks formed by covalent coupling on the surface have been reported. By the choice of the molecular building blocks, the dimensions of the network (pore size and pore to pore distance) can be controlled. In this way, the confinement properties of the individual pores can be tuned. In addition, the effect of the confined state on the hosting properties of the pores will be discussed in this review article.

  6. Confinement properties of 2D porous molecular networks on metal surfaces.

    PubMed

    Müller, Kathrin; Enache, Mihaela; Stöhr, Meike

    2016-04-20

    Quantum effects that arise from confinement of electronic states have been extensively studied for the surface states of noble metals. Utilizing small artificial structures for confinement allows tailoring of the surface properties and offers unique opportunities for applications. So far, examples of surface state confinement include thin films, artificial nanoscale structures, vacancy and adatom islands, self-assembled 1D chains, vicinal surfaces, quantum dots and quantum corrals. In this review we summarize recent achievements in changing the electronic structure of surfaces by adsorption of nanoporous networks whose design principles are based on the concepts of supramolecular chemistry. Already in 1993, it was shown that quantum corrals made from Fe atoms on a Cu(1 1 1) surface using single atom manipulation with a scanning tunnelling microscope confine the Shockley surface state. However, since the atom manipulation technique for the construction of corral structures is a relatively time consuming process, the fabrication of periodic two-dimensional (2D) corral structures is practically impossible. On the other side, by using molecular self-assembly extended 2D porous structures can be achieved in a parallel process, i.e. all pores are formed at the same time. The molecular building blocks are usually held together by non-covalent interactions like hydrogen bonding, metal coordination or dipolar coupling. Due to the reversibility of the bond formation defect-free and long-range ordered networks can be achieved. However, recently also examples of porous networks formed by covalent coupling on the surface have been reported. By the choice of the molecular building blocks, the dimensions of the network (pore size and pore to pore distance) can be controlled. In this way, the confinement properties of the individual pores can be tuned. In addition, the effect of the confined state on the hosting properties of the pores will be discussed in this review article.

  7. Laboratory experiments simulating poroelastic stress changes associated with depletion and injection in low-porosity sedimentary rocks

    NASA Astrophysics Data System (ADS)

    Ma, Xiaodong; Zoback, Mark D.

    2017-04-01

    We characterized the poroelastic deformation of six cores from three formations associated with the Bakken play in the Williston Basin (the Lodgepole, Middle Bakken, and Three Forks formations). All are low-porosity, low-permeability formations, but vary considerably in clay, kerogen, and carbonate content. The experimental program simulated reservoir stress changes associated with depletion and injection via cycling both the confining pressure (Pc) and pore pressure (Pp). We measured volumetric strain, derived the corresponding bulk modulus, and calculated the Biot coefficient (α). We found α, which generally ranges between 0.3 and 0.9, to vary systematically with Pc and Pp for each of the specimens tested. The effect of pore pressure on α is much larger at low simple effective stress (σ = Pc-Pp) during depletion than injection. The α decreases with σ for all pore pressures. For the same Pc and Pp, the Biot coefficient is consistently higher during injection than during depletion. Given the observed variations of α with Pc and Pp, the modeling of reservoir stress changes using a constant α could be problematic as poroelastic stress changes during depletion and injection are not likely to follow the same path. Scanning electron microscope examination of microstructures suggests that the variations of the bulk modulus and the Biot coefficient can be attributed to the abundance of compliant components (pores, microcracks, clays, and organic matter) and how they are distributed throughout the rock matrix.

  8. Physico-chemo-mechanical coupling mechanisms in soil behavior

    NASA Astrophysics Data System (ADS)

    Hu, Liangbo

    Many processes in geomechanics or geotechnical/geomechanical system engineering involve phenomena that are physical and/or chemical in nature, the understanding of which is crucial to modeling the mechanical responses of soils to various loads. Such physico-chemo-mechanical coupling mechanisms are prevalent in two different types of geomechanical processes studied in this dissertation: long-term soil/sediments compaction & desiccation cracking. Most commonly the underlying physical and chemical phenomena are explained, formulated and quantified at microscopic level. In addition to the necessity of capturing the coupling mechanisms, another common thread that emerges in formulating their respective mathematical model is the necessity of linking phenomena occurring at different scales with a theory to be formulated at a macroscopic continuum level. Part I of this dissertation is focused on the subject of long-term compaction behavior of soils and sediments. The interest in this subject arises from the need to evaluate reservoir compaction and land subsidence that may result from oil/gas extraction in petroleum engineering. First, a damage-enhanced reactive chemo-plasticity model is developed to simulate creep of saturated geomaterials, a long-term strain developed at constant stress. Both open and closed systems are studied. The deformation at a constant load in a closed system exhibits most of the characteristics of the classical creep. Primary, secondary and tertiary creep can be interpreted in terms of dominant mechanisms in each phase, emphasizing the role of the rates of dissolution and precipitation, variable reaction areas and chemical softening intensity. The rest of Part I is devoted to the study of soil aging, an effect of a localized mineral dissolution related creep strain and subsequent material stiffening. A three-scale mathematical model is developed to numerically simulate the scenarios proposed based on macroscopic experiments and geochemical evidence. These scale are: micro-scale for intra-grain dissolution, meso-scale for processes within grain assembly and macro-scale of a granular continuum. This model makes it possible to predict the porosity evolution starting from a very simple grain assembly under different pressures at the rneso-scale and evaluate the evolution of the stiffness as a function of the aging duration and the associated stress at the macro-scale. The results are qualitative but reproduce well the main phenomena and tendencies. Subsequently, this model is further examined to study the feedback mechanisms in multi-scale phenomena of sediment compaction and their role in chemo-hydro-geomechanical modeling. Part II of this dissertation deals with desiccation cracking of soils. Presence of cracks is a major cause for the deteriorated and compromised engineering properties of soils in earth works, such as dramatical increase in permeability or decrease of strength. Desiccation cracking is first addressed in an experimental study of shrinkage and cracking of a soil slab with water removed by isothermal drying. This study is followed by a numerical simulation of a solid phase continuum based on hygro-elastic theory. The experiments confirm that a substantial part of shrinkage occurs in the saturated phase and the kinematic boundary constraints play the crucial role in generating tensile stress and eventually cracks. Subsequently a novel experimental parametric study is performed using different liquids for the pore fluids in our experiment to further investigate the role of solid-fluid-gas interaction. Biot's theory is employed to perform a numerical parametric study. The amount of shrinkage depends mainly on the soil compressibility, on the other hand, the rate of fluid removal and rate of shrinkage are found to be controlled by evaporative and permeability properties. Additionally, microscopic experimental and phenomenological study is also performed to link the engineering properties and macroscopic variables to the phenomena occurring at the pore scale. Mercury Intrusion Porosimetry (MIP) technique is used to reveal the evolution of the pore sizes. The large pores are found to be mainly responsible for the shrinking deformation. A microscopic model is developed to simulate the possible scenarios during the entire desaturated phase. A possible quantitative comparison with MIP results and macroscopic experiments is made with using the averaging method to upscale the variables obtained at the micro-scale. The main characteristics of shrinkage behavior observed in macroscopic experiments are generally reproduced.

  9. Nonaqueous Phase Liquid Dissolution in Porous Media: Multi-Scale Effects of Multi-Component Dissolution Kinetics on Cleanup Time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNab, W; Ezzedine, S; Detwiler, R

    2007-02-26

    Industrial organic solvents such as trichloroethylene (TCE) and tetrachloroethylene (PCE) constitute a principal class of groundwater contaminants. Cleanup of groundwater plume source areas associated with these compounds is problematic, in part, because the compounds often exist in the subsurface as dense nonaqueous phase liquids (DNAPLs). Ganglia (or 'blobs') of DNAPL serve as persistent sources of contaminants that are difficult to locate and remediate (e.g. Fenwick and Blunt, 1998). Current understanding of the physical and chemical processes associated with dissolution of DNAPLs in the subsurface is incomplete and yet is critical for evaluating long-term behavior of contaminant migration, groundwater cleanup, andmore » the efficacy of source area cleanup technologies. As such, a goal of this project has been to contribute to this critical understanding by investigating the multi-phase, multi-component physics of DNAPL dissolution using state-of-the-art experimental and computational techniques. Through this research, we have explored efficient and accurate conceptual and numerical models for source area contaminant transport that can be used to better inform the modeling of source area contaminants, including those at the LLNL Superfund sites, to re-evaluate existing remediation technologies, and to inspire or develop new remediation strategies. The problem of DNAPL dissolution in natural porous media must be viewed in the context of several scales (Khachikian and Harmon, 2000), including the microscopic level at which capillary forces, viscous forces, and gravity/buoyancy forces are manifested at the scale of individual pores (Wilson and Conrad, 1984; Chatzis et al., 1988), the mesoscale where dissolution rates are strongly influenced by the local hydrodynamics, and the field-scale. Historically, the physico-chemical processes associated with DNAPL dissolution have been addressed through the use of lumped mass transfer coefficients which attempt to quantify the dissolution rate in response to local dissolved-phase concentrations distributed across the source area using a volume-averaging approach (Figure 1). The fundamental problem with the lumped mass transfer parameter is that its value is typically derived empirically through column-scale experiments that combine the effects of pore-scale flow, diffusion, and pore-scale geometry in a manner that does not provide a robust theoretical basis for upscaling. In our view, upscaling processes from the pore-scale to the field-scale requires new computational approaches (Held and Celia, 2001) that are directly linked to experimental studies of dissolution at the pore scale. As such, our investigation has been multi-pronged, combining theory, experiments, numerical modeling, new data analysis approaches, and a synthesis of previous studies (e.g. Glass et al, 2001; Keller et al., 2002) aimed at quantifying how the mechanisms controlling dissolution at the pore-scale control the long-term dissolution of source areas at larger scales.« less

  10. A level set method for determining critical curvatures for drainage and imbibition.

    PubMed

    Prodanović, Masa; Bryant, Steven L

    2006-12-15

    An accurate description of the mechanics of pore level displacement of immiscible fluids could significantly improve the predictions from pore network models of capillary pressure-saturation curves, interfacial areas and relative permeability in real porous media. If we assume quasi-static displacement, at constant pressure and surface tension, pore scale interfaces are modeled as constant mean curvature surfaces, which are not easy to calculate. Moreover, the extremely irregular geometry of natural porous media makes it difficult to evaluate surface curvature values and corresponding geometric configurations of two fluids. Finally, accounting for the topological changes of the interface, such as splitting or merging, is nontrivial. We apply the level set method for tracking and propagating interfaces in order to robustly handle topological changes and to obtain geometrically correct interfaces. We describe a simple but robust model for determining critical curvatures for throat drainage and pore imbibition. The model is set up for quasi-static displacements but it nevertheless captures both reversible and irreversible behavior (Haines jump, pore body imbibition). The pore scale grain boundary conditions are extracted from model porous media and from imaged geometries in real rocks. The method gives quantitative agreement with measurements and with other theories and computational approaches.

  11. Multiscale modeling of porous ceramics using movable cellular automaton method

    NASA Astrophysics Data System (ADS)

    Smolin, Alexey Yu.; Smolin, Igor Yu.; Smolina, Irina Yu.

    2017-10-01

    The paper presents a multiscale model for porous ceramics based on movable cellular automaton method, which is a particle method in novel computational mechanics of solid. The initial scale of the proposed approach corresponds to the characteristic size of the smallest pores in the ceramics. At this scale, we model uniaxial compression of several representative samples with an explicit account of pores of the same size but with the unique position in space. As a result, we get the average values of Young's modulus and strength, as well as the parameters of the Weibull distribution of these properties at the current scale level. These data allow us to describe the material behavior at the next scale level were only the larger pores are considered explicitly, while the influence of small pores is included via effective properties determined earliar. If the pore size distribution function of the material has N maxima we need to perform computations for N-1 levels in order to get the properties step by step from the lowest scale up to the macroscale. The proposed approach was applied to modeling zirconia ceramics with bimodal pore size distribution. The obtained results show correct behavior of the model sample at the macroscale.

  12. Architecture and reservoir quality of low-permeable Eocene lacustrine turbidite sandstone from the Dongying Depression, East China

    NASA Astrophysics Data System (ADS)

    Munawar, Muhammad Jawad; Lin, Chengyan; Chunmei, Dong; Zhang, Xianguo; Zhao, Haiyan; Xiao, Shuming; Azeem, Tahir; Zahid, Muhammad Aleem; Ma, Cunfei

    2018-05-01

    The architecture and quality of lacustrine turbidites that act as petroleum reservoirs are less well documented. Reservoir architecture and multiscale heterogeneity in turbidites represent serious challenges to production performance. Additionally, establishing a hierarchy profile to delineate heterogeneity is a challenging task in lacustrine turbidite deposits. Here, we report on the turbidites in the middle third member of the Eocene Shahejie Formation (Es3), which was deposited during extensive Middle to Late Eocene rifting in the Dongying Depression. Seismic records, wireline log responses, and core observations were integrated to describe the reservoir heterogeneity by delineating the architectural elements, sequence stratigraphic framework and lithofacies assemblage. A petrographic approach was adopted to constrain microscopic heterogeneity using an optical microscope, routine core analyses and X-ray diffraction (XRD) analyses. The Es3m member is interpreted as a sequence set composed of four composite sequences: CS1, CS2, CS3 and CS4. A total of forty-five sequences were identified within these four composite sequences. Sand bodies were mainly deposited as channels, levees, overbank splays, lobes and lobe fringes. The combination of fining-upward and coarsening-upward lithofacies patterns in the architectural elements produces highly complex composite flow units. Microscopic heterogeneity is produced by diagenetic alteration processes (i.e., feldspar dissolution, authigenic clay formation and quartz cementation). The widespread kaolinization of feldspar and mobilization of materials enhanced the quality of the reservoir by producing secondary enlarged pores. In contrast, the formation of pore-filling authigenic illite and illite/smectite clays reduced its permeability. Recovery rates are higher in the axial areas and smaller in the marginal areas of architectural elements. This study represents a significant insight into the reservoir architecture and heterogeneity of lacustrine turbidites, and the understanding of compartmentalization and distribution of high-quality sand reservoirs can be applied to improve primary and secondary production in these fields.

  13. Effect of drug loading method against drug dissolution mechanism of encapsulated amoxicillin trihydrate in matrix of semi-IPN chitosan-poly(N-vinylpyrrolidone) hydrogel with KHCO3 as pore forming agent in floating drug delivery system

    NASA Astrophysics Data System (ADS)

    Fimantari, Khansa; Budianto, Emil

    2018-04-01

    Helicobacterpylori infection can be treated using trihydrate amoxicillin. However, this treatment is not effective enough, as the conventional dosage treatment has a relatively short retention time in the human stomach. In the present study, the amoxicillin trihydrate drug will be encapsulated into a semi-IPN K-PNVP hydrogel matrix with 7,5% KHCO3 as a pore-forming agent. The encapsulated drug is tested with in vitro method to see the efficiency of its encapsulation and dissolution. The hydrogel in situ loading produces an encapsulation efficiency value. The values of the encapsulation efficiency are 95% and 98%, while post loading hydrogel yields an encapsulation efficiency value is 77% and the dissolution is 84%. The study of drug dissolution mechanism was done by using mathematical equation model to know its kinetics and its mechanism of dissolution. The post loading hydrogel was done by using thefirst-order model, while hydrogel in situ loading used Higuchi model. The Korsmeyer-Peppas model shows that post loading hydrogel dissolution mechanism is a mixture of diffusion and erosion, and in situ loading hydrogel in the form of diffusion. It is supported by the results of hydrogel characterization, before and after dissolution test with an optical microscope. The results of the optical microscope show that the hydrogel surface before and after the dissolution tested for both methods shows the change becomes rougher.

  14. Control of pore geometry in soil microcosms and its effect on the growth and spread of Pseudomonas and Bacillus sp.

    NASA Astrophysics Data System (ADS)

    Otten, Wilfred; Juyal, Archana; Eickhorst, Thilo; Falconer, Ruth; Spiers, Andrew; Baveye, Philippe

    2017-04-01

    The way micro-organisms access C and interact with each other in heterogeneous environments is key to our understanding of soil processes. Growth and mobility of bacteria is crucial aspect of these processes in particular how this is affected by complicated pathways of water and air-filled pores. Simplified experimental systems, often referred to with the term microcosms, have played a central role in the development of modern ecological thinking ranging from competitive exclusion to examination of spatial resources and competitive mechanisms, with important model driven insights to the field. However, in the majority of cases these do not include detailed description of the soil physical conditions and hence there is still little insight in how soil structure affects these processes. Recent advances in the use of Xray CT now allow for a different approach to this as we can obtain quantitative insight in to the pathways of interaction and how these are controlled in microcosms. In the current presentation we therefor ask the following questions: - To what extent can we control the pore geometry in microcosm studies through manipulation of common variables such as density and aggregate size? Are replicated microcosms really replicated at the microscale? - What is the effect of pore geometry on the growth dynamics of bacteria following introduction into soil? - What is the effect of pore geometry on the rate and extent of spread of bacteria in soil? We focus on Pseudomonas sp. and Bacillus sp. Both species are abundantly present in the rhizosphere and bulk-soil, frequently studied for their growth promoting ability, yet there is still very little knowledge available on how the growth and spread is affected by soil physical conditions such as pore geometry and wetness. We show how pore geometry, connectivity and interface areas are affected by the way soil is packed into microcosms and how this affects growth and spread of both species. We emphasize that microscopic heterogeneity has significant impact on bacterial dynamics and that soil physical conditions need to be considered in greater detail in microcosm studies to ensure generalisation of results.

  15. Porotic paradox: distribution of cortical bone pore sizes at nano- and micro-levels in healthy vs. fragile human bone.

    PubMed

    Milovanovic, Petar; Vukovic, Zorica; Antonijevic, Djordje; Djonic, Danijela; Zivkovic, Vladimir; Nikolic, Slobodan; Djuric, Marija

    2017-05-01

    Bone is a remarkable biological nanocomposite material showing peculiar hierarchical organization from smaller (nano, micro) to larger (macro) length scales. Increased material porosity is considered as the main feature of fragile bone at larger length-scales. However, there is a shortage of quantitative information on bone porosity at smaller length-scales, as well as on the distribution of pore sizes in healthy vs. fragile bone. Therefore, here we investigated how healthy and fragile bones differ in pore volume and pore size distribution patterns, considering a wide range of mostly neglected pore sizes from nano to micron-length scales (7.5 to 15000 nm). Cortical bone specimens from four young healthy women (age: 35 ± 6 years) and five women with bone fracture (age: 82 ± 5 years) were analyzed by mercury porosimetry. Our findings showed that, surprisingly, fragile bone demonstrated lower pore volume at the measured scales. Furtnermore, pore size distribution showed differential patterns between healthy and fragile bones, where healthy bone showed especially high proportion of pores between 200 and 15000 nm. Therefore, although fragile bones are known for increased porosity at macroscopic level and level of tens or hundreds of microns as firmly established in the literature, our study with a unique assessment range of nano-to micron-sized pores reveal that osteoporosis does not imply increased porosity at all length scales. Our thorough assessment of bone porosity reveals a specific distribution of porosities at smaller length-scales and contributes to proper understanding of bone structure which is important for designing new biomimetic bone substitute materials.

  16. Resolution doubling in fluorescence microscopy with confocal spinning-disk image scanning microscopy.

    PubMed

    Schulz, Olaf; Pieper, Christoph; Clever, Michaela; Pfaff, Janine; Ruhlandt, Aike; Kehlenbach, Ralph H; Wouters, Fred S; Großhans, Jörg; Bunt, Gertrude; Enderlein, Jörg

    2013-12-24

    We demonstrate how a conventional confocal spinning-disk (CSD) microscope can be converted into a doubly resolving image scanning microscopy (ISM) system without changing any part of its optical or mechanical elements. Making use of the intrinsic properties of a CSD microscope, we illuminate stroboscopically, generating an array of excitation foci that are moved across the sample by varying the phase between stroboscopic excitation and rotation of the spinning disk. ISM then generates an image with nearly doubled resolution. Using conventional fluorophores, we have imaged single nuclear pore complexes in the nuclear membrane and aggregates of GFP-conjugated Tau protein in three dimensions. Multicolor ISM was shown on cytoskeletal-associated structural proteins and on 3D four-color images including MitoTracker and Hoechst staining. The simple adaptation of conventional CSD equipment allows superresolution investigations of a broad variety of cell biological questions.

  17. Resolution doubling in fluorescence microscopy with confocal spinning-disk image scanning microscopy

    PubMed Central

    Schulz, Olaf; Pieper, Christoph; Clever, Michaela; Pfaff, Janine; Ruhlandt, Aike; Kehlenbach, Ralph H.; Wouters, Fred S.; Großhans, Jörg; Bunt, Gertrude; Enderlein, Jörg

    2013-01-01

    We demonstrate how a conventional confocal spinning-disk (CSD) microscope can be converted into a doubly resolving image scanning microscopy (ISM) system without changing any part of its optical or mechanical elements. Making use of the intrinsic properties of a CSD microscope, we illuminate stroboscopically, generating an array of excitation foci that are moved across the sample by varying the phase between stroboscopic excitation and rotation of the spinning disk. ISM then generates an image with nearly doubled resolution. Using conventional fluorophores, we have imaged single nuclear pore complexes in the nuclear membrane and aggregates of GFP-conjugated Tau protein in three dimensions. Multicolor ISM was shown on cytoskeletal-associated structural proteins and on 3D four-color images including MitoTracker and Hoechst staining. The simple adaptation of conventional CSD equipment allows superresolution investigations of a broad variety of cell biological questions. PMID:24324140

  18. Microscopic Structural Changes in Paddy Straw Pretreated with Trichoderma reesei MTCC 164 and Coriolus versicolor MTCC 138.

    PubMed

    Phutela, Urmila Gupta; Sahni, Nidhi

    2013-06-01

    The present study reports the pretreatment of paddy straw by Trichoderma reesei MTCC 164 and Coriolus versicolor MTCC 138 to observe the changes in chemical composition and its correlation with change of surface structure, morphology and porosity of paddy straw. Compared with untreated straw, cellulose decreased by 15.9 and 19.3 % in T. reesei MTCC 164 and C. versicolor MTCC 138 pretreated paddy straw respectively. Lignin content increased by 41.4 % in T. reesei pretreated paddy straw whereas decreased by 19.1 % in C. versicolor pretreated straw. The microscopic structural changes were examined by scanning electron microscopy under reasonable conditions. Results showed that digestibility of paddy straw are increased by treating paddy straw with both the cultures. Both surface area and pore size of treated straw were increased partially due to solubilization of silica components.

  19. Bio-templated synthesis of highly ordered macro-mesoporous silica material for sustained drug delivery

    NASA Astrophysics Data System (ADS)

    Qu, Fengyu; Lin, Huiming; Wu, Xiang; Li, Xiaofeng; Qiu, Shilun; Zhu, Guangshan

    2010-05-01

    The bimodal porous structured silica materials consisting of macropores with the diameter of 5-20 μm and framework-like mesopores with the diameter of 4.7-6.0 nm were prepared using natural Manchurian ash and mango linin as macropored hard templates and P123 as mesopore soft templates, respectively. The macroporous structures of Manchurian ash and mango linin were replicated with the walls containing highly ordered mesoporous silica as well. As-synthesized dual porous silica was characterized by scanning electron microscope (SEM), powder X-ray diffraction (XRD), transmission electron microscope (TEM) and nitrogen adsorption/desorption, fourier transform IR (FTIR) spectroscopy, and thermo-gravimetric analyzer (TGA). Ibuprofen (Ibu) was employed as a model drug and the release profiles showed that the dual porous material had a sustained drug delivery capability. And such highly ordered dual pore silica materials may have potential applications for bimolecular adsorption/separation and tissue repairing.

  20. A pore-level scenario for the development of mixed-wettability in oil reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovscek, A.R.; Wong, H.; Radke, C.J.

    Understanding the role of thin films in porous media is vital if wettability is to be elucidated at the pore level. The type and thickness of films coating pore walls determines reservoir wettability and whether or not reservoir rock can be altered from its initial state of wettability. Pore shape, especially pore wall curvature, is an important factor in determining wetting-film thicknesses. Yet, pore shape and the physics of thin wetting films are generally neglected in models of flow in porous rocks. This paper incorporates thin-film forces into a collection of star-shaped capillary tubes model to describe the geological developmentmore » of mixed-wettability in reservoir rock. Here, mixed-wettability refers to continuous and distinct oil and water-wetting surfaces coexisting in the porous medium. The proposed model emphasizes the remarkable role of thin films. New pore-level fluid configurations arise that are quite unexpected. For example, efficient water displacement of oil (i.e, low residual oil saturation) characteristic of mixed-wettability porous media is ascribed to interconnected oil lenses or rivulets which bridge the walls adjacent to a pore corner. Predicted residual oil saturations are approximately 35 % less in mixed-wet rock compared to completely water-wet rock. Calculated capillary pressure curves mimic those of mixed-wet porous media in the primary drainage of water, imbibition of water, and secondary drainage modes. Amott-Harvey indices range from {minus}0.18 to 0.36 also in good agreement with experimental values. (Morrow et al, 1986; Judhunandan and Morrow, 1991).« less

  1. A triaxial supramolecular weave

    NASA Astrophysics Data System (ADS)

    Lewandowska, Urszula; Zajaczkowski, Wojciech; Corra, Stefano; Tanabe, Junki; Borrmann, Ruediger; Benetti, Edmondo M.; Stappert, Sebastian; Watanabe, Kohei; Ochs, Nellie A. K.; Schaeublin, Robin; Li, Chen; Yashima, Eiji; Pisula, Wojciech; Müllen, Klaus; Wennemers, Helma

    2017-11-01

    Despite recent advances in the synthesis of increasingly complex topologies at the molecular level, nano- and microscopic weaves have remained difficult to achieve. Only a few diaxial molecular weaves exist—these were achieved by templation with metals. Here, we present an extended triaxial supramolecular weave that consists of self-assembled organic threads. Each thread is formed by the self-assembly of a building block comprising a rigid oligoproline segment with two perylene-monoimide chromophores spaced at 18 Å. Upon π stacking of the chromophores, threads form that feature alternating up- and down-facing voids at regular distances. These voids accommodate incoming building blocks and establish crossing points through CH-π interactions on further assembly of the threads into a triaxial woven superstructure. The resulting micrometre-scale supramolecular weave proved to be more robust than non-woven self-assemblies of the same building block. The uniform hexagonal pores of the interwoven network were able to host iridium nanoparticles, which may be of interest for practical applications.

  2. Effects of endogenous small molecular compounds on the rheological properties, texture and microstructure of soymilk coagulum: Removal of phytate using ultrafiltration.

    PubMed

    Wang, Ruican; Guo, Shuntang

    2016-11-15

    This study aims to clarify the roles played by endogenous small molecular components in soymilk coagulation process and the properties of gels. Soymilk samples with decreasing levels of small molecules were prepared by ultrafiltration, to reduce the amount of phytate and salts. CaSO4-induced coagulation process was analyzed using rheological methods. Results showed that removal of free small molecules decreased the activation energy of protein coagulation, resulting in accelerated reaction and increased gel strength. However, too fast a reaction led to the drop in storage modulus (G'). Microscopic observation suggested that accelerated coagulation generated a coarse and non-uniform gel network with large pores. This network could not hold much water, leading to serious syneresis. Endogenous small molecules in soymilk were vital in the fine gel structure. Coagulation rate could be controlled by adjusting the amount of small molecules to obtain tofu products with the optimal texture. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. New three-dimensional modeling technique for studying porous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quiblier, J.A.

    A great deal of research has been done on the relationships between the structure of porous media on the microscopic level and their overall properties. A short bibliographic survey is attempted, with special attention being paid to the use of models. The limitations of such research are outlined. A three-dimensional simulation process is proposed. On the basis of measurements of characteristics using thin sections of porous media, the aim is to simulate, through a random process, a porous medium which is at the same time geometrically realistic and fully determined (i.e., the coordinates of a point in the medium fullymore » determine whether this point belongs to the matrix or to the pores). Simulation opens the way to further studies of the porous medium, some of which are outlined. It is clear that a good deal of research remains to be done in this field, and some ideas are suggested for this research. 78 references.« less

  4. Interaction of Porosity with a Planar Solid/Liquid Interface

    NASA Technical Reports Server (NTRS)

    Catalina, Adrian V.; Stefanescu, Doru M.; Sen, Subhayu; Kaukler, William F.

    2004-01-01

    In this article, an investigation of the interaction between gas porosity and a planar solid/liquid (SL) interface is reported. A two-dimensional numerical model able to accurately track sharp SL interfaces during solidification of pure metals and alloys is proposed. The finite-difference method and a rectangular undeformed grid are used for computation. The SL interface is described through the points of intersection with the grid lines. Its motion is determined by the thermal and solute gradients at each particular point. Changes of the interface temperature because of capillarity or solute redistribution as well as any perturbation of the thermal and solute field produced by the presence of non-metallic inclusions can be computed. To validate the model, the dynamics of the interaction between a gas pore and a solidification front in metal alloys was observed using a state of the art X-ray transmission microscope (XTM). The experiments included observation of the distortion of the SL interface near a pore, real-time measurements of the growth rate, and the change in shape of the porosity during interaction with the SL interface in pure Al and Al-0.25 wt pct Au alloy. In addition, porosity-induced solute segregation patterns surrounding a pore were also quantified.

  5. Impurity effects on ionic-liquid-based supercapacitors

    DOE PAGES

    Liu, Kun; Lian, Cheng; Henderson, Douglas; ...

    2016-12-27

    Small amounts of an impurity may affect the key properties of an ionic liquid and such effects can be dramatically amplified when the electrolyte is under confinement. Here the classical density functional theory is employed to investigate the impurity effects on the microscopic structure and the performance of ionic-liquid-based electrical double-layer capacitors, also known as supercapacitors. Using a primitive model for ionic species, we study the effects of an impurity on the double layer structure and the integral capacitance of a room temperature ionic liquid in model electrode pores and find that an impurity strongly binding to the surface ofmore » a porous electrode can significantly alter the electric double layer structure and dampen the oscillatory dependence of the capacitance with the pore size of the electrode. Meanwhile, a strong affinity of the impurity with the ionic species affects the dependence of the integral capacitance on the pore size. Up to 30% increase in the integral capacitance can be achieved even at a very low impurity bulk concentration. As a result, by comparing with an ionic liquid mixture containing modified ionic species, we find that the cooperative effect of the bounded impurities is mainly responsible for the significant enhancement of the supercapacitor performance.« less

  6. Stomata Prioritize Their Responses to Multiple Biotic and Abiotic Signal Inputs

    PubMed Central

    Chen, Peilei; Qiu, Muqing; Jiang, Kun; Wang, Genxuan

    2014-01-01

    Stomata are microscopic pores in leaf epidermis that regulate gas exchange between plants and the environment. Being natural openings on the leaf surface, stomata also serve as ports for the invasion of foliar pathogenic bacteria. Each stomatal pore is enclosed by a pair of guard cells that are able to sense a wide spectrum of biotic and abiotic stresses and respond by precisely adjusting the pore width. However, it is not clear whether stomatal responses to simultaneously imposed biotic and abiotic signals are mutually dependent on each other. Here we show that a genetically engineered Escherichia coli strain DH5α could trigger stomatal closure in Vicia faba, an innate immune response that might depend on NADPH oxidase-mediated ROS burst. DH5α-induced stomatal closure could be abolished or disguised under certain environmental conditions like low [CO2], darkness, and drought, etc. Foliar spraying of high concentrations of ABA could reduce stomatal aperture in high humidity-treated faba bean plants. Consistently, the aggressive multiplication of DH5α bacteria in Vicia faba leaves under high humidity could be alleviated by exogenous application of ABA. Our data suggest that a successful colonization of bacteria on the leaf surface is correlated with stomatal aperture regulation by a specific set of environmental factors. PMID:25003527

  7. Modeling Mass and Thermal Transport in Thin Porous Media of PEM Fuel Cells

    NASA Astrophysics Data System (ADS)

    Konduru, Vinaykumar

    Water transport in the Porous Transport Layer (PTL) plays an important role in the efficient operation of polymer electrolyte membrane fuel cells (PEMFC). Excessive water content as well as dry operating conditions are unfavorable for efficient and reliable operation of the fuel cell. The effect of thermal conductivity and porosity on water management are investigated by simulating two-phase flow in the PTL of the fuel cell using a network model. In the model, the PTL consists of a pore-phase and a solid-phase. Different models of the PTLs are generated using independent Weibull distributions for the pore-phase and the solid-phase. The specific arrangement of the pores and solid elements is varied to obtain different PTL realizations for the same Weibull parameters. The properties of PTL are varied by changing the porosity and thermal conductivity. The parameters affecting operating conditions include the temperature, relative humidity in the flow channel and voltage and current density. In addition, a novel high-speed capable Surface Plasmon Resonance (SPR) microscope was built based on Kretschmann's configuration utilizing a collimated Kohler illumination. The SPR allows thin film characterization in a thickness of approximately 0-200nm by measuring the changes in the refractive index. Various independent experiments were run to measure film thickness during droplet coalescence during condensation.

  8. A Nanoporous Carbon/Exfoliated Graphite Composite For Supercapacitor Electrodes

    NASA Astrophysics Data System (ADS)

    Rosi, Memoria; Ekaputra, Muhamad P.; Iskandar, Ferry; Abdullah, Mikrajuddin; Khairurrijal

    2010-12-01

    Nanoporous carbon was prepared from coconut shells using a simple heating method. The nanoporous carbon is subjected to different treatments: without activation, activation with polyethylene glycol (PEG), and activation with sodium hydroxide (NaOH)-PEG. The exfoliated graphite was synthesized from graphite powder oxidized with zinc acetate (ZnAc) and intercalated with polyvinyl alcohol (PVA) and NaOH. A composite was made by mixing the nanoporous carbon with NaOH-PEG activation, the exfoliated graphite and a binder of PVA solution, grinding the mixture, and annealing it using ultrasonic bath for 1 hour. All of as-synthesized materials were characterized by employing a scanning electron microscope (SEM), a MATLAB's image processing toolbox, and an x-ray diffractometer (XRD). It was confirmed that the composite is crystalline with (002) and (004) orientations. In addition, it was also found that the composite has a high surface area, a high distribution of pore sizes less than 40 nm, and a high porosity (67%). Noting that the pore sizes less than 20 nm are significant for ionic species storage and those in the range of 20 to 40 nm are very accessible for ionic clusters mobility across the pores, the composite is a promising material for the application as supercapacitor electrodes.

  9. Macroscopic modeling for heat and water vapor transfer in dry snow by homogenization.

    PubMed

    Calonne, Neige; Geindreau, Christian; Flin, Frédéric

    2014-11-26

    Dry snow metamorphism, involved in several topics related to cryospheric sciences, is mainly linked to heat and water vapor transfers through snow including sublimation and deposition at the ice-pore interface. In this paper, the macroscopic equivalent modeling of heat and water vapor transfers through a snow layer was derived from the physics at the pore scale using the homogenization of multiple scale expansions. The microscopic phenomena under consideration are heat conduction, vapor diffusion, sublimation, and deposition. The obtained macroscopic equivalent model is described by two coupled transient diffusion equations including a source term arising from phase change at the pore scale. By dimensional analysis, it was shown that the influence of such source terms on the overall transfers can generally not be neglected, except typically under small temperature gradients. The precision and the robustness of the proposed macroscopic modeling were illustrated through 2D numerical simulations. Finally, the effective vapor diffusion tensor arising in the macroscopic modeling was computed on 3D images of snow. The self-consistent formula offers a good estimate of the effective diffusion coefficient with respect to the snow density, within an average relative error of 10%. Our results confirm recent work that the effective vapor diffusion is not enhanced in snow.

  10. Nondestructive assessment of pore size in foam-based hybrid composite materials

    NASA Astrophysics Data System (ADS)

    Chen, M. Y.; Ko, R. T.

    2012-05-01

    In-situ non-destructive evaluation (NDE) during processing of high temperature polymer based hybrids offers great potential to gain close control and achieve the desired level of pore size, with low overall development cost. During the polymer curing cycle, close control over the evolution of volatiles would be beneficial to avoid the presence of pores or at least control their sizes. Traditional NDE methods cannot realistically be expected to evaluate individual pores in such components, as each pore evolves and grows during curing. However, NDE techniques offer the potential to detect and quantify the macroscopic response of many pores that are undesirable or intentionally introduced into these advanced materials. In this paper, preliminary results will be presented for nondestructive assessment of pore size in foam-based hybrid composite materials using ultrasonic techniques. Pore size was evaluated through the frequency content of the ultrasonic signal. The effects of pore size on the attenuation of ultrasound were studied. Feasibility of this method was demonstrated on two types of foams with various pore sizes.

  11. Nano-biosilica from marine diatoms: A brand new material for photonic applications

    NASA Astrophysics Data System (ADS)

    De Stefano, L.; Maddalena, P.; Moretti, L.; Rea, I.; Rendina, I.; De Tommasi, E.; Mocella, V.; De Stefano, M.

    2009-07-01

    Several biological organisms, from some sea shells to butterflies, exhibit sophisticated optical systems, which have been developed during the evolution of each species. The diatoms are microscopic algae enclosed between two valves of hydrated amorphous silica. These intricate structures, called frustules, show quite symmetric patterns of micrometric and nanometric pores. Their strong similarity with man-made objects suggests to exploit the optical properties of the frustules in light guiding and optical transducing. We have found very interesting results, both from the experimental and numerical points of view.

  12. Herediatary anhidrotic ectodermal dysplasia. Studies in a Nigerian famil.

    PubMed Central

    Familusi, J B; Jaiyesimi, F; Ojo, C O; Attah, E B

    1975-01-01

    Studies in a Nigerian family with hereditary anhidrous ectodermal dysplasia are reported. Microscopical examinations of finger tips for sweat pores were diagnostic in phenotypes, and it is suggested that this simple nonsurgical procedure is a preferred alternative to skin biopsies in the diagnosis of the syndrome. The clinical implications of a tropical environment for the syndrome, as well as the factors that may favour maintenance of the gene in such an environment are discussed. Images FIG. 1 FIG. 2 FIG. 4 FIG. 5 FIG. 6 PMID:1200681

  13. A Single-Site Platinum CO Oxidation Catalyst in Zeolite KLTL: Microscopic and Spectroscopic Determination of the Locations of the Platinum Atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kistler, Joseph D.; Chotigkrai, Nutchapon; Xu, Pinghong

    2014-07-01

    A stable site-isolated mononuclear platinum catalyst with a well-defined structure is presented. Platinum complexes supported in zeolite KLTL were synthesized from [Pt(NH 3) 4](NO 3) 2, oxidized at 633 K, and used to catalyze CO oxidation. Finally, IR and X-ray absorption spectra and electron micrographs determine the structures and locations of the platinum complexes in the zeolite pores, demonstrate the platinum-support bonding, and show that the platinum remained site isolated after oxidation and catalysis.

  14. Material Science

    NASA Image and Video Library

    2003-01-22

    Video images sent to the ground allow scientists to watch the behavior of the bubbles as they control the melting and freezing of the material during the Pore Formation and Mobility Investigation (PFMI) in the Microgravity Science Glovebox aboard the International Space Station. While the investigation studies the way that metals behave at the microscopic scale on Earth -- and how voids form -- the experiment uses a transparent material called succinonitrile that behaves like a metal to study this problem. The bubbles do not float to the top of the material in microgravity, so they can study their interactions.

  15. Micromechanics of root development in soil.

    PubMed

    Dupuy, L X; Mimault, M; Patko, D; Ladmiral, V; Ameduri, B; MacDonald, M P; Ptashnyk, M

    2018-04-16

    Our understanding of how roots develop in soil may be at the eve of significant transformations. The formidable expansion of imaging technologies enables live observations of the rhizosphere micro-pore architecture at unprecedented resolution. Granular matter physics provides ways to understand the microscopic fluctuations of forces in soils, and the increasing knowledge of plant mechanobiology may shed new lights on how roots perceive soil heterogeneity. This opinion paper exposes how recent scientific achievements may contribute to refresh our views on root growth in heterogeneous environments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Fabrication of complete titania nanoporous structures via electrochemical anodization of Ti

    PubMed Central

    2011-01-01

    We present a novel method to fabricate complete and highly oriented anodic titanium oxide (ATO) nano-porous structures with uniform and parallel nanochannels. ATO nano-porous structures are fabricated by anodizing a Ti-foil in two different organic viscous electrolytes at room temperature using a two-step anodizing method. TiO2 nanotubes covered with a few nanometer thin nano-porous layer is produced when the first and the second anodization are carried out in the same electrolyte. However, a complete titania nano-porous (TNP) structures are obtained when the second anodization is conducted in a viscous electrolyte when compared to the first one. TNP structure was attributed to the suppression of F-rich layer dissolution between the cell boundaries in the viscous electrolyte. The structural morphologies were examined by field emission scanning electron microscope. The average pore diameter is approximately 70 nm, while the average inter-pore distance is approximately 130 nm. These TNP structures are useful to fabricate other nanostructure materials and nanodevices. PMID:21711844

  17. Water droplet evaporation from sticky superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Lee, Moonchan; Kim, Wuseok; Lee, Sanghee; Baek, Seunghyeon; Yong, Kijung; Jeon, Sangmin

    2017-07-01

    The evaporation dynamics of water from sticky superhydrophobic surfaces was investigated using a quartz crystal microresonator and an optical microscope. Anodic aluminum oxide (AAO) layers with different pore sizes were directly fabricated onto quartz crystal substrates and hydrophobized via chemical modification. The resulting AAO layers exhibited hydrophobic or superhydrophobic characteristics with strong adhesion to water due to the presence of sealed air pockets inside the nanopores. After placing a water droplet on the AAO membranes, variations in the resonance frequency and Q-factor were measured throughout the evaporation process, which were related to changes in mass and viscous damping, respectively. It was found that droplet evaporation from a sticky superhydrophobic surface followed a constant contact radius (CCR) mode in the early stage of evaporation and a combination of CCR and constant contact angle modes without a Cassie-Wenzel transition in the final stage. Furthermore, AAO membranes with larger pore sizes exhibited longer evaporation times, which were attributed to evaporative cooling at the droplet interface.

  18. Experimental Study on Clogging of Fine Particles in Sand Sediments

    NASA Astrophysics Data System (ADS)

    Hirabayashi, S.

    2015-12-01

    In the methane hydrate development from the sand sediment beneath the seafloor, it is anticipated that the migrating fine particles may block the pore and consequently reduces the permeability near the production well. Although this phenomenon is known as skin formation, its microscopic mechanism is still unknown. As a part of a Japanese National hydrate research program (MH21, funded by METI), we carried out an experiment on the clogging of fine particles in sand sediments. A transparent core holder was newly developed to directly visualize the behavior of fine particles in the pore of frame sands and formation of skin. It was observed that there seems to be an induction time before the clogging starts to occur. Once clogging occurs, the upstream fine particles cannot move downstream anymore and the skin is formed. It was found that the rate of skin formation is related to the total volume of injected fine particles while the flow velocity has something to do with the length of the induction time.

  19. Cucullanid nematodes (Nematoda: Cucullanidae) from deep-sea marine fishes off New Caledonia, including Dichelyne etelidis n. sp.

    PubMed

    Moravec, František; Justine, Jean-Lou

    2011-02-01

    Three nematode species of the family Cucullanidae, intestinal parasites of marine perciform fishes, are reported from off New Caledonia: Cucullanus bourdini Petter & Le Bel, 1992 from the crimson jobfish Pristipomoides filamentosus (Valenciennes) and the goldflag jobfish Pristipomoides auricilla (Jordan, Evermann & Tanaka) (new host record) (both Lutjanidae); Dichelyne etelidis n. sp. from the deep-water red snapper Etelis carbunculus Cuvier (type-host) and the deep-water longtail red snapper Etelis coruscans Valenciennes (both Lutjanidae); and Dichelyne sp. (only one female) from the trumpet emperor Lethrinus miniatus (Forster) (Lethrinidae). Detailed light and electron microscopical studies revealed in C. bourdini some taxonomically important, previously unreported features, such as the location of the excretory pore, nature of the vulva and the size of fully-developed eggs. The new species, D. etelidis, is characterised mainly by the length of the spicules (462-748 μm), a single intestinal caecum, the location of the deirids and excretory pore, the arrangement of the genital papillae and the host group.

  20. Volume change measurements of rice by environmental scanning electron microscopy and stereoscopy.

    PubMed

    Tang, Xiaohu; De Rooij, Mario; De Jong, Liesbeth

    2007-01-01

    The measurement of volume change, which is induced by changing the relative humidity, is performed on rice by using environmental scanning electron microscope (ESEM) and stereoscopy techniques. The typical DeltaV% approximately RH curve of rice in both sorption and desorption can be categorized into three regions: low, intermediate, and high dependence on relative humidity from low- to high-relative humidity. The volume changes faster for rice samples with lower crystallinity, which is because the amorphous component is easier to absorb moisture than the crystalline component. The volume change behavior in various relative humidity environments is comparable with rice isotherm curve in sorption process though discrepancies exist in desorption, which are thought to be the presence of small pores and microstructure changes at high relative humidity. The volume in the desorption branch is less than that in the sorption branch at the same relative humidity, which can be attributed to the collapse of interior structures, existence of small pores, surface topography loss, and amylose leach.

  1. Airborne Fungi in Sahara Dust Aerosols Reaching the Eastern Caribbean: I. Taxonomic Characterization by Morphological Features

    NASA Astrophysics Data System (ADS)

    Rivera-Denizard, O.; Betancourt, C.; Armstrong, R. A.; Detres, Y.

    2003-12-01

    A wide variety of microorganisms are dispersed into the Caribbean region due to the input of Saharan dust aerosols during the summer months. These microorganisms can cause diseases in plants and animals, and might be responsible for an increase incidence of asthma and respiratory diseases in this region. A PM 2.5 air sampling station was installed in Castle Bruce, Dominica from March through July of 2002. Fourteen filters were obtained by running the air sampler continuously for 24 hour periods. The samples were collected in sterile Teflon filters (47 mm in diameter, 0.2 um pore size), inoculated in Malt Extract Agar (MEA) with lactic acid and incubated at 29° C. Colonies were counted, isolated and cultured on separate Petri dishes. Fungal classification to the genus level used macroscopic features and microscopic evaluation. The Nomarski light microscopy technique was used for identification of reproductive structures. A total of 105 colonies were isolated. Six genera including Aspergillus, Penicillium, Cladosporium, Fusarium, Curvularia,and Nigrospora were identified. The protocol for the molecular characterization to species level is presented as the second part of this work.

  2. Fluorogenic Green-Inside Red-Outside (GIRO) Labeling Approach Reveals Adenylyl Cyclase-Dependent Control of BKα Surface Expression

    PubMed Central

    2015-01-01

    The regulation of surface levels of protein is critical for proper cell function and influences properties including cell adhesion, ion channel contributions to current flux, and the sensitivity of surface receptors to ligands. Here we demonstrate a two-color labeling system in live cells using a single fluorogen activating peptide (FAP) based fusion tag, which enables the rapid and simultaneous quantification of surface and internal proteins. In the nervous system, BK channels can regulate neural excitability and neurotransmitter release, and the surface trafficking of BK channels can be modulated by signaling cascades and assembly with accessory proteins. Using this labeling approach, we examine the dynamics of BK channel surface expression in HEK293 cells. Surface pools of the pore-forming BKα subunit were stable, exhibiting a plasma membrane half-life of >10 h. Long-term activation of adenylyl cyclase by forskolin reduced BKα surface levels by 30%, an effect that could not be attributed to increased bulk endocytosis of plasma membrane proteins. This labeling approach is compatible with microscopic imaging and flow cytometry, providing a solid platform for examining protein trafficking in living cells. PMID:26301573

  3. Direct numerical simulation of transport and electrochemical reaction in battery and fuel cell electrodes

    NASA Astrophysics Data System (ADS)

    Wang, Guoqing

    Batteries and fuel cells are widely used to generate electrical energy, especially in recent applications to electric and hybrid vehicles. To simulate a porous electrode for batteries and fuel cells, macro-homogeneous models are often employed in which the actual morphology of the electrode is ignored, thereby making computations much easier. However, such models are based on the volume-averaging technique, which smears the microscopically complex interfacial structures and has to invoke empirical correlations for describing the effective transport properties in a multiphase system. In this work, a methodology is developed to achieve the description on the pore level based on direct numerical simulation (DNS) method. The DNS solves the accurate point-wise conservation equations on a real micro-structure of the porous electrode and hence utilizes the intrinsic transport properties for each phase. To demonstrate the DNS method, an idealized morphology and further a random microstructure are constructed to represent all the phases composing the porous electrode. A single set of conservation equations of charge and species valid in all phases are developed and numerically solved using a finite volume technique. The present DNS model is first applied to simulate the behavior of an intercalative carbon electrode in the widely used lithium-ion cell. The concentration and potential distributions in both solid and electrolyte phases at the pore level are obtained across the electrode during the discharge. The species and charge transport processes, as well as the electrochemical reactions, are computationally visualized when discharging the electrode. In addition, empirical correlations in porous electrode theory, which describe the dependency of effective properties (diffusion coefficient, conductivity, etc.) on the porosity, are corroborated using the fundamental DNS data. Then the discharge processes of a full lithium ion cell at various rates are simulated with DNS approach and verified by the experimental data. In the application to the cathode catalyst layer of PEM fuel cells, DNS is employed to identify three characteristic voltage losses: kinetics losses, ohmic losses and O2 transport losses. On a constructed random microstructure, DNS is also utilized to optimize the inlet air humidity and the composition design and hence achieve the minimum voltage loss during operation. In summary, the newly developed DNS method has provided an effective method to simulate behavior of thin porous electrodes with microscopically complicated geometries and the fundamentals insight into structure-performance relationships of porous electrodes for the first time.

  4. Effects of pore forming agents of potassium bicarbonate and drug loading method against dissolution mechanisms of amoxicillin drugs encapsulated in hydrogel full-Ipn chitosan-poly(N-vinylcaprolactam) as a floating drug delivery system

    NASA Astrophysics Data System (ADS)

    Aini, Nurul; Rahayu, Dyah Utami Cahyaning; Budianto, Emil

    2018-04-01

    The limitation of amoxicillin trihydrate in the treatment of H. pylori bacteria is relatively short retention time in the stomach. The FDDS (Floating Drug Delivery System) amoxicillin trihydrate into a chitosan-poly(N-vinylcaprolactam) full-Ipn hydrogel matrix using a pore-forming agent KHCO3 is expected to overcome these limitations. The pore-forming agent to be used is 15% KHCO3 compound. Chemical kinetics approach is performed to determine the dissolution mechanism of amoxicillin trihydrate from K-PNVCL hydrogel in vitro on gastric pH and characterization using SEM performed to confirm the dissolution mechanism. Hydrogels with the addition of pore-forming agents will be loading in situ loading and post loading. Fourier Transform Infra Red (FTIR) spectroscopy was used to characterize K-PNVCL and UV-Vis hydrogels used to calculate the efficiency of encapsulation and drug dissolution rate in K-PNVCL hydrogel. Hydrogel K-PNVCL / KHCO3 that encapsulated by in situ loading method resulted in an encapsulation efficiency of 93.5% and dissolution of 93.4%. While the Hydrogel K-PNVCL / KHCO3 which is drug encapsulation resulted in an encapsulation efficiency of 87.2% with dissolution of 81.5%. Chemical kinetics approach to in situ encapsulation of loading and post loading shows the dissolution mechanism occurring in the K-PNVCL / KHCO3 hydrogel matrix occurs by diffusion. Observation using optical microscope and SEM showed the mechanism of drug dissolution in Hydrogel K-PNVCL occurred by diffusion.

  5. Biocompatibility of Synthetic Poly(ester urethane)/Polyhedral Oligomeric Silsesquioxane Matrices with Embryonic Stem Cell Proliferation and Differentiation

    PubMed Central

    Guo, Yan-Lin; Wang, Wenshou; Otaigbe, Joshua U.

    2010-01-01

    Incorporation of polyhedral oligomeric silsesquioxanes (POSS) into poly (ester urethane)s (PEU) as a building block results in a PEU/POSS hybrid polymer with increased mechanical strength and thermostability. An attractive feature of the new polymer is that it forms a porous matrix when cast in the form of a thin film, making it potentially useful in tissue engineering. In this study, we present detailed microscopic analysis of the PEU/POSS matrix and demonstrate its biocompatibility with cell culture. The PEU/POSS polymer forms a continuous porous matrix with open pores and interconnected grooves. From SEM image analysis, it is calculated that there are about 950 pores per mm2 of the matrix area with pore size ranging from 1 to 15 μm in diameter. The area occupied by the pores represents approximately 7.6 % of matrix area. Using mouse embryonic stem cells (ESCs), we demonstrate that the PEU/POSS matrix provides excellent support for cell proliferation and differentiation. Under the cell culture condition optimized to maintain self-renewal, ESCs grown on a PEU/POSS matrix exhibit undifferentiated morphology, express pluripotency markers, and have similar growth rate to cells grown on gelatin. When induced for differentiation, ESCs underwent dramatic morphological change, characterized by the loss of clonogenecity and increased cell size with well-expanded cytoskeleton networks. Differentiated cells are able to form a continuous monolayer that is closely embedded on the matrix. The excellent compatibility between the PEU/POSS matrix and ESC proliferation/differentiation demonstrates the potential of using PEU/POSS polymers in future ESC-based tissue engineering. PMID:20213627

  6. Monitoring oil displacement processes with k-t accelerated spin echo SPI.

    PubMed

    Li, Ming; Xiao, Dan; Romero-Zerón, Laura; Balcom, Bruce J

    2016-03-01

    Magnetic resonance imaging (MRI) is a robust tool to monitor oil displacement processes in porous media. Conventional MRI measurement times can be lengthy, which hinders monitoring time-dependent displacements. Knowledge of the oil and water microscopic distribution is important because their pore scale behavior reflects the oil trapping mechanisms. The oil and water pore scale distribution is reflected in the magnetic resonance T2 signal lifetime distribution. In this work, a pure phase-encoding MRI technique, spin echo SPI (SE-SPI), was employed to monitor oil displacement during water flooding and polymer flooding. A k-t acceleration method, with low-rank matrix completion, was employed to improve the temporal resolution of the SE-SPI MRI measurements. Comparison to conventional SE-SPI T2 mapping measurements revealed that the k-t accelerated measurement was more sensitive and provided higher-quality results. It was demonstrated that the k-t acceleration decreased the average measurement time from 66.7 to 20.3 min in this work. A perfluorinated oil, containing no (1) H, and H2 O brine were employed to distinguish oil and water phases in model flooding experiments. High-quality 1D water saturation profiles were acquired from the k-t accelerated SE-SPI measurements. Spatially and temporally resolved T2 distributions were extracted from the profile data. The shift in the (1) H T2 distribution of water in the pore space to longer lifetimes during water flooding and polymer flooding is consistent with increased water content in the pore space. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  7. Immunocytochemical localization of the major polypeptides of the nuclear pore complex-lamina fraction. Interphase and mitotic distribution

    PubMed Central

    1978-01-01

    This laboratory has previously isolated a fraction from rat liver nuclei consisting of nuclear pore complexes associated with the proteinaceous lamina which underlies the inner nuclear membrane. Using protein eluted from sodium dodecyl sulfate (SDS) gels, we have prepared antibodies in chickens to each of the three predominant pore complex- lamina bands. Ouchterlony double diffusion analysis shows that each of these individual bands cross-reacts strongly with all three antisera. In immunofluorescence localization performed on tissue culture cells with these antibodies, we obtain a pattern of intense staining at the periphery of the interphase nucleus, with little or no cytoplasmic reaction. Electron microscope immunoperoxidase staining of rat liver nuclei with these antibodies labels exclusively the nuclear periphery. Furthermore, reaction occurs in areas which contain the lamina, but not at the pore complexes. While our isolation procedure extracts the internal contents of nuclei completely, semiquantitative Ouchterlony analysis shows that it releases negligible amounts of these lamina antigens. Considered together, our results indicate that these three bands represent major components of a peripheral nuclear lamina, and are not structural elements of an internal "nuclear protein matrix." Fluorescence microscopy shows that the perinuclear interphase localization of these lamina proteins undergoes dramatic changes during mitosis. Concomitant with nuclear envelope disassembly in prophase, these antigens assume a diffuse localization throughout the cell. This distribution persists until telophase, when the antigens become progressively and completely localized at the surface of the daughter chromosome masses. We propose that the lamina is a biological polymer which can undergo reversible disassembly during mitosis. PMID:102651

  8. Localized reactive flow in carbonate rocks: Core-flood experiments and network simulations

    NASA Astrophysics Data System (ADS)

    Wang, Haoyue; Bernabé, Yves; Mok, Ulrich; Evans, Brian

    2016-11-01

    We conducted four core-flood experiments on samples of a micritic, reef limestone from Abu Dhabi under conditions of constant flow rate. The pore fluid was water in equilibrium with CO2, which, because of its lowered pH, is chemically reactive with the limestone. Flow rates were between 0.03 and 0.1 mL/min. The difference between up and downstream pore pressures dropped to final values ≪1 MPa over periods of 3-18 h. Scanning electron microscope and microtomography imaging of the starting material showed that the limestone is mostly calcite and lacks connected macroporosity and that the prevailing pores are few microns large. During each experiment, a wormhole formed by localized dissolution, an observation consistent with the decreases in pressure head between the up and downstream reservoirs. Moreover, we numerically modeled the changes in permeability during the experiments. We devised a network approach that separated the pore space into competing subnetworks of pipes. Thus, the problem was framed as a competition of flow of the reactive fluid among the adversary subnetworks. The precondition for localization within certain time is that the leading subnetwork rapidly becomes more transmissible than its competitors. This novel model successfully simulated features of the shape of the wormhole as it grew from few to about 100 µm, matched the pressure history patterns, and yielded the correct order of magnitude of the breakthrough time. Finally, we systematically studied the impact of changing the statistical parameters of the subnetworks. Larger mean radius and spatial correlation of the leading subnetwork led to faster localization.

  9. Understanding the origins of metal-organic framework/polymer compatibility.

    PubMed

    Semino, R; Moreton, J C; Ramsahye, N A; Cohen, S M; Maurin, G

    2018-01-14

    The microscopic interfacial structures for a series of metal-organic framework/polymer composites consisting of the Zr-based UiO-66 coupled with different polymers are systematically explored by applying a computational methodology that integrates density functional theory calculations and force field-based molecular dynamics simulations. These predictions are correlated with experimental findings to unravel the structure-compatibility relationship of the MOF/polymer pairs. The relative contributions of the intermolecular MOF/polymer interactions and the flexibility/rigidity of the polymer with respect to the microscopic structure of the interface are rationalized, and their impact on the compatibility of the two components in the resulting composite is discussed. The most compatible pairs among those investigated involve more flexible polymers, i.e. polyvinylidene fluoride (PVDF) and polyethylene glycol (PEG). These polymers exhibit an enhanced contact surface, due to a better adaptation of their configuration to the MOF surface. In these cases, the irregularities at the MOF surface are filled by the polymer, and even some penetration of the terminal groups of the polymer into the pores of the MOF can be observed. As a result, the affinity between the MOF and the polymer is very high; however, the pores of the MOF may be sterically blocked due to the strong MOF/polymer interactions, as evidenced by UiO-66/PEG composites. In contrast, composites involving polymers that exhibit higher rigidity, such as the polymer of intrinsic microporosity-1 (PIM-1) or polystyrene (PS), present interfacial microvoids that contribute to a decrease in the contact surface between the two components, thus reducing the MOF/polymer affinity.

  10. Generalized network modeling of capillary-dominated two-phase flow

    NASA Astrophysics Data System (ADS)

    Raeini, Ali Q.; Bijeljic, Branko; Blunt, Martin J.

    2018-02-01

    We present a generalized network model for simulating capillary-dominated two-phase flow through porous media at the pore scale. Three-dimensional images of the pore space are discretized using a generalized network—described in a companion paper [A. Q. Raeini, B. Bijeljic, and M. J. Blunt, Phys. Rev. E 96, 013312 (2017), 10.1103/PhysRevE.96.013312]—which comprises pores that are divided into smaller elements called half-throats and subsequently into corners. Half-throats define the connectivity of the network at the coarsest level, connecting each pore to half-throats of its neighboring pores from their narrower ends, while corners define the connectivity of pore crevices. The corners are discretized at different levels for accurate calculation of entry pressures, fluid volumes, and flow conductivities that are obtained using direct simulation of flow on the underlying image. This paper discusses the two-phase flow model that is used to compute the averaged flow properties of the generalized network, including relative permeability and capillary pressure. We validate the model using direct finite-volume two-phase flow simulations on synthetic geometries, and then present a comparison of the model predictions with a conventional pore-network model and experimental measurements of relative permeability in the literature.

  11. An Engineered Membrane to Measure Electroporation: Effect of Tethers and Bioelectronic Interface

    PubMed Central

    Hoiles, William; Krishnamurthy, Vikram; Cranfield, Charles G.; Cornell, Bruce

    2014-01-01

    This article reports on the construction and predictive models for a platform comprised of an engineered tethered membrane. The platform provides a controllable and physiologically relevant environment for the study of the electroporation process. The mixed self-assembled membrane is formed via a rapid solvent exchange technique. The membrane is tethered to the gold electrode and includes an ionic reservoir separating the membrane and gold surface. Above the membrane, there is an electrolyte solution, and a gold counterelectrode. A voltage is applied between the gold electrodes and the current measured. The current is dependent on the energy required to form aqueous pores and the conductance of each pore. A two-level predictive model, consisting of a macroscopic and a continuum model, is developed to relate the pore dynamics to the measured current. The macroscopic model consists of an equivalent circuit model of the tethered membrane, and asymptotic approximations to the Smoluchowski-Einstein equation of electroporation that is dependent on the pore conductance and the energy required to form aqueous pores. The continuum model is a generalized Poisson-Nernst-Planck (GPNP) system where an activity coefficient to account for steric effects of ions is added to the standard PNP system. The GPNP is used to evaluate the conductance of aqueous pores, and the electrical energy required to form the pores. As an outcome of the setup of the device and the two-level model, biologically important variables can be estimated from experimental measurements. To validate the accuracy of the two-level model, the predicted current is compared with experimentally measured current for different tethering densities. PMID:25229142

  12. Preventing Mesh Pore Collapse by Designing Mesh Pores With Auxetic Geometries: A Comprehensive Evaluation Via Computational Modeling.

    PubMed

    Knight, Katrina M; Moalli, Pamela A; Abramowitch, Steven D

    2018-05-01

    Pelvic organ prolapse (POP) meshes are exposed to predominately tensile loading conditions in vivo that can lead to pore collapse by 70-90%, decreasing overall porosity and providing a plausible mechanism for the contraction/shrinkage of mesh observed following implantation. To prevent pore collapse, we proposed to design synthetic meshes with a macrostructure that results in auxetic behavior, the pores expand laterally, instead of contracting when loaded. Such behavior can be achieved with a range of auxetic structures/geometries. This study utilized finite element analysis (FEA) to assess the behavior of mesh models with eight auxetic pore geometries subjected to uniaxial loading to evaluate their potential to allow for pore expansion while simultaneously providing resistance to tensile loading. Overall, substituting auxetic geometries for standard pore geometries yielded more pore expansion, but often at the expense of increased model elongation, with two of the eight auxetics not able to maintain pore expansion at higher levels of tension. Meshes with stable pore geometries that remain open with loading will afford the ingrowth of host tissue into the pores and improved integration of the mesh. Given the demonstrated ability of auxetic geometries to allow for pore size maintenance (and pore expansion), auxetically designed meshes have the potential to significantly impact surgical outcomes and decrease the likelihood of major mesh-related complications.

  13. The flotation tailings of the former Pb-Zn mine of Touiref (NW Tunisia): mineralogy, mine drainage prediction, base-metal speciation assessment and geochemical modeling.

    PubMed

    Othmani, Mohamed Ali; Souissi, Fouad; Bouzahzah, Hassan; Bussière, Bruno; da Silva, Eduardo Ferreira; Benzaazoua, Mostafa

    2015-02-01

    The underground extraction of Pb-Zn mineralization in the Touiref area stopped in 1958. A large volume of flotation tailings (more than 500 Mt) containing sulfides were deposited in a tailings impoundment. The goals of this study are to evaluate the neutralization capacity of the unoxidized and oxidized tailings, to assess the speciation of metals between the different components of the tailings material, and to assess the mobility of metals and the secondary minerals' precipitation in pore waters using geochemical modeling. To accomplish these objectives, representative samples from both fresh and oxidized zones were collected along a vertical profile through the tailings pile. Physical, chemical (ICP-MS), and mineralogical characterization (X-ray diffraction (XRD), reflected light microscopy, scanning electron microscope (SEM)) of these samples was performed. Grain size analysis shows that the tailings are dominated by silt- to sand-sized fractions. The microscopic observation highlights the presence of pyrite, marcasite, galena, and sphalerite as primary minerals in a carbonated matrix. The study reveals also the presence of secondary minerals represented by cerussite, smithsonite, anglesite, and Fe oxi-hydroxides as important scavengers for trace elements. The static tests show that the presence of calcite in the tailing samples ensures acid-neutralizing capacity (ANC), which is significantly greater than the acidity potential (PA). The geochemical characterization of the unoxidized samples shows higher Cd, Pb, and Zn concentrations than the oxidized samples containing the highest values for Fe and SO4. Sequential extraction tests show that significant percentages of metals are distributed between the acid-soluble fractions (Cd, Pb, and Zn) and the reducible one (Zn). Pore water analysis indicates that Ca is the dominant cation (8,170 and 6,200 mg L(-1), respectively), whereas sulfate is the principal anion (6,900 and 5,100 mg L(-1), respectively). Saturation index (SI) calculations of minerals in pore water extracted from both the oxidized and unoxidized samples are indicative of gypsum (SI >0) and Fe(III) oxides (SI ≫0) precipitation. The latter controls the Fe concentration in solution.

  14. DNA-assisted oligomerization of pore-forming toxin monomers into precisely-controlled protein channels

    PubMed Central

    Knechtel, Johann

    2017-01-01

    Abstract We have developed a novel approach for creating membrane-spanning protein-based pores. The construction principle is based on using well-defined, circular DNA nanostructures to arrange a precise number of pore-forming protein toxin monomers. We can thereby obtain, for the first time, protein pores with specifically set diameters. We demonstrate this principle by constructing artificial alpha-hemolysin (αHL) pores. The DNA/αHL hybrid nanopores composed of twelve, twenty or twenty-six monomers show stable insertions into lipid bilayers during electrical recordings, along with steady, pore size-dependent current levels. Our approach successfully advances the applicability of nanopores, in particular towards label-free studies of single molecules in large nanoscaled biological structures. PMID:29088457

  15. Methods for pore water extraction from unsaturated zone tuff, Yucca Mountain, Nevada

    USGS Publications Warehouse

    Scofield, K.M.

    2006-01-01

    Assessing the performance of the proposed high-level radioactive waste repository at Yucca Mountain, Nevada, requires an understanding of the chemistry of the water that moves through the host rock. The uniaxial compression method used to extract pore water from samples of tuffaceous borehole core was successful only for nonwelded tuff. An ultracentrifugation method was adopted to extract pore water from samples of the densely welded tuff of the proposed repository horizon. Tests were performed using both methods to determine the efficiency of pore water extraction and the potential effects on pore water chemistry. Test results indicate that uniaxial compression is most efficient for extracting pore water from nonwelded tuff, while ultracentrifugation is more successful in extracting pore water from densely welded tuff. Pore water splits collected from a single nonwelded tuff core during uniaxial compression tests have shown changes in pore water chemistry with increasing pressure for calcium, chloride, sulfate, and nitrate. Pore water samples collected from the intermediate pressure ranges should prevent the influence of re-dissolved, evaporative salts and the addition of ion-deficient water from clays and zeolites. Chemistry of pore water splits from welded and nonwelded tuffs using ultracentrifugation indicates that there is no substantial fractionation of solutes.

  16. Pore-level mechanics of foam generation and coalescence in the presence of oil.

    PubMed

    Almajid, Muhammad M; Kovscek, Anthony R

    2016-07-01

    The stability of foam in porous media is extremely important for realizing the advantages of foamed gas on gas mobility reduction. Foam texture (i.e., bubbles per volume of gas) achieved is dictated by foam generation and coalescence processes occurring at the pore-level. For foam injection to be widely applied during gas injection projects, we need to understand these pore-scale events that lead to foam stability/instability so that they are modeled accurately. Foam flow has been studied for decades, but most efforts focused on studying foam generation and coalescence in the absence of oil. Here, the extensive existing literature is reviewed and analyzed to identify open questions. Then, we use etched-silicon micromodels to observe foam generation and coalescence processes at the pore-level. Special emphasis is placed on foam coalescence in the presence of oil. For the first time, lamella pinch-off as described by Myers and Radke [40] is observed in porous media and documented. Additionally, a new mechanism coined "hindered generation" is found. Hindered generation refers to the role oil plays in preventing the successful formation of a lamella following snap-off near a pore throat. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Slip-flow in complex porous media as determined by a multi-relaxation-time lattice Boltzmann model

    NASA Astrophysics Data System (ADS)

    Landry, C. J.; Prodanovic, M.; Eichhubl, P.

    2014-12-01

    The pores and throats of shales and mudrocks are predominantly found within a range of 1-100 nm, within this size range the flow of gas at reservoir conditions will fall within the slip-flow and low transition-flow regime (0.001 < Kn < 0.5). Currently, the study of slip-flows is for the most part limited to simple tube and channel geometries, however, the geometry of mudrock pores is often sponge-like (organic matter) and/or platy (clays). Molecular dynamics (MD) simulations can be used to predict slip-flow in complex geometries, but due to prohibitive computational demand are generally limited to small volumes (one to several pores). Here we present a multi-relaxation-time lattice Boltzmann model (LBM) parameterized for slip-flow (Guo et al. 2008) and adapted here to complex geometries. LBMs are inherently parallelizable, such that flow in complex geometries of significant (near REV-scale) volumes can be readily simulated at a fraction of the computational cost of MD simulations. At the macroscopic-scale the LBM is parameterized with local effective viscosities at each node to capture the variance of the mean-free-path of gas molecules in a bounded system. The corrected mean-free-path for each lattice node is determined using the mean distance of the node to the pore-wall and Stop's correction for mean-free-paths in an infinite parallel-plate geometry. At the microscopic-scale, a combined bounce-back specular-reflection boundary condition is applied to the pore-wall nodes to capture Maxwellian-slip. The LBM simulation results are first validated in simple tube and channel geometries, where good agreement is found for Knudsen numbers below 0.1, and fair agreement is found for Knudsen numbers between 0.1 and 0.5. More complex geometries are then examined including triangular-ducts and ellipsoid-ducts, both with constant and tapering/expanding cross-sections, as well as a clay pore-network imaged from a hydrocarbon producing shale by sequential focused ion-beam scanning electron microscopy. These results are analyzed to determine grid-independent resolutions, and used to explore the relationship between effective permeability and Knudsen number in complex geometries.

  18. Assessing the utility of FIB-SEM images for shale digital rock physics

    NASA Astrophysics Data System (ADS)

    Kelly, Shaina; El-Sobky, Hesham; Torres-Verdín, Carlos; Balhoff, Matthew T.

    2016-09-01

    Shales and other unconventional or low permeability (tight) reservoirs house vast quantities of hydrocarbons, often demonstrate considerable water uptake, and are potential repositories for fluid sequestration. The pore-scale topology and fluid transport mechanisms within these nanoporous sedimentary rocks remain to be fully understood. Image-informed pore-scale models are useful tools for studying porous media: a debated question in shale pore-scale petrophysics is whether there is a representative elementary volume (REV) for shale models? Furthermore, if an REV exists, how does it differ among petrophysical properties? We obtain three dimensional (3D) models of the topology of microscale shale volumes from image analysis of focused ion beam-scanning electron microscope (FIB-SEM) image stacks and investigate the utility of these models as a potential REV for shale. The scope of data used in this work includes multiple local groups of neighboring FIB-SEM images of different microscale sizes, corresponding core-scale (milli- and centimeters) laboratory data, and, for comparison, series of two-dimensional (2D) cross sections from broad ion beam SEM images (BIB-SEM), which capture a larger microscale field of view than the FIB-SEM images; this array of data is larger than the majority of investigations with FIB-SEM-derived microscale models of shale. Properties such as porosity, organic matter content, and pore connectivity are extracted from each model. Assessments of permeability with single phase, pressure-driven flow simulations are performed in the connected pore space of the models using the lattice-Boltzmann method. Calculated petrophysical properties are compared to those of neighboring FIB-SEM images and to core-scale measurements of the sample associated with the FIB-SEM sites. Results indicate that FIB-SEM images below ∼5000 μm3 volume (the largest volume analyzed) are not a suitable REV for shale permeability and pore-scale networks; i.e. field of view is compromised at the expense of detailed, but often unconnected, nanopore morphology. Further, we find that it is necessary to acquire several local FIB-SEM or BIB-SEM images and correlate their extracted geometric properties to improve the likelihood of achieving representative values of porosity and organic matter volume. Our work indicates that FIB-SEM images of microscale volumes of shale are a qualitative tool for petrophysical and transport analysis. Finally, we offer alternatives for quantitative pore-scale assessments of shale.

  19. Possibilities of CT Scanning as Analysis Method in Laser Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Karme, Aleksis; Kallonen, Aki; Matilainen, Ville-Pekka; Piili, Heidi; Salminen, Antti

    Laser additive manufacturing is an established and constantly developing technique. Structural assessment should be a key component to ensure directed evolution towards higher level of manufacturing. The macroscopic properties of metallic structures are determined by their internal microscopic features, which are difficult to assess using conventional surface measuring methodologies. X-ray microtomography (CT) is a promising technique for three-dimensional non-destructive probing of internal composition and build of various materials. Aim of this study is to define the possibilities of using CT scanning as quality control method in LAM fabricated parts. Since the parts fabricated with LAM are very often used in high quality and accuracy demanding applications in various industries such as medical and aerospace, it is important to be able to define the accuracy of the build parts. The tubular stainless steel test specimens were 3D modelled, manufactured with a modified research AM equipment and imaged after manufacturing with a high-power, high-resolution CT scanner. 3D properties, such as surface texture and the amount and distribution of internal pores, were also evaluated in this study. Surface roughness was higher on the interior wall of the tube, and deviation from the model was systematically directed towards the central axis. Pore distribution showed clear organization and divided into two populations; one following the polygon model seams along both rims, and the other being associated with the concentric and equidistant movement path of the laser. Assessment of samples can enhance the fabrication by guiding the improvement of both modelling and manufacturing process.

  20. On the predictivity of pore-scale simulations: Estimating uncertainties with multilevel Monte Carlo

    NASA Astrophysics Data System (ADS)

    Icardi, Matteo; Boccardo, Gianluca; Tempone, Raúl

    2016-09-01

    A fast method with tunable accuracy is proposed to estimate errors and uncertainties in pore-scale and Digital Rock Physics (DRP) problems. The overall predictivity of these studies can be, in fact, hindered by many factors including sample heterogeneity, computational and imaging limitations, model inadequacy and not perfectly known physical parameters. The typical objective of pore-scale studies is the estimation of macroscopic effective parameters such as permeability, effective diffusivity and hydrodynamic dispersion. However, these are often non-deterministic quantities (i.e., results obtained for specific pore-scale sample and setup are not totally reproducible by another ;equivalent; sample and setup). The stochastic nature can arise due to the multi-scale heterogeneity, the computational and experimental limitations in considering large samples, and the complexity of the physical models. These approximations, in fact, introduce an error that, being dependent on a large number of complex factors, can be modeled as random. We propose a general simulation tool, based on multilevel Monte Carlo, that can reduce drastically the computational cost needed for computing accurate statistics of effective parameters and other quantities of interest, under any of these random errors. This is, to our knowledge, the first attempt to include Uncertainty Quantification (UQ) in pore-scale physics and simulation. The method can also provide estimates of the discretization error and it is tested on three-dimensional transport problems in heterogeneous materials, where the sampling procedure is done by generation algorithms able to reproduce realistic consolidated and unconsolidated random sphere and ellipsoid packings and arrangements. A totally automatic workflow is developed in an open-source code [1], that include rigid body physics and random packing algorithms, unstructured mesh discretization, finite volume solvers, extrapolation and post-processing techniques. The proposed method can be efficiently used in many porous media applications for problems such as stochastic homogenization/upscaling, propagation of uncertainty from microscopic fluid and rock properties to macro-scale parameters, robust estimation of Representative Elementary Volume size for arbitrary physics.

  1. Digital Rock Simulation of Flow in Carbonate Samples

    NASA Astrophysics Data System (ADS)

    Klemin, D.; Andersen, M.

    2014-12-01

    Reservoir engineering has becomes more complex to deal with current challenges, so core analysts must understand and model pore geometries and fluid behaviors at pores scales more rapidly and realistically. We introduce an industry-unique direct hydrodynamic pore flow simulator that operates on pore geometries from digital rock models obtained using microCT or 3D scanning electron microscope (SEM) images. The PVT and rheological models used in the simulator represent real reservoir fluids. Fluid-solid interactions are introduced using distributed micro-scale wetting properties. The simulator uses density functional approach applied for hydrodynamics of complex systems. This talk covers selected applications of the simulator. We performed microCT scanning of six different carbonate rock samples from homogeneous limestones to vuggy carbonates. From these, we constructed digital rock models representing pore geometries for the simulator. We simulated nonreactive tracer flow in all six digital models using a digital fluid description that included a passive tracer solution. During the simulation, we evaluated the composition of the effluent. Results of tracer flow simulations corresponded well with experimental data of nonreactive tracer floods for the same carbonate rock types. This simulation data of the non-reactive tracer flow can be used to calculate the volume of the rock accessible by the fluid, which can be further used to predict response of a porous medium to a reactive fluid. The described digital core analysis workflow provides a basis for a wide variety of activities, including input to design acidizing jobs and evaluating treatment efficiency and EOR economics. Digital rock multiphase flow simulations of a scanned carbonate rock evaluated the effect of wettability on flow properties. Various wetting properties were tested: slightly oil wet, slightly water wet, and water wet. Steady-state relative permeability simulations yielded curves for all three ranges of wetting properties. The wetting variation affected phase mobility and residual phase saturations for primary oil flood and floods with varying ratios of oil and water.

  2. Numerical Simulation of Electrical Properties of Carbonate Reservoir Rocks Using µCT Images

    NASA Astrophysics Data System (ADS)

    Colgin, J.; Niu, Q.; Zhang, C.; Zhang, F.

    2017-12-01

    Digital rock physics involves the modern microscopic imaging of geomaterials, digitalization of the microstructure, and numerical simulation of physical properties of rocks. This physics-based approach can give important insight into understanding properties of reservoir rocks, and help reveal the link between intrinsic rock properties and macroscopic geophysical responses. The focus of this study is the simulation of the complex conductivity of carbonate reservoir rocks using reconstructed 3D rock structures from high-resolution X-ray micro computed tomography (µCT). Carbonate core samples with varying lithofacies and pore structures from the Cambro-Ordovician Arbuckle Group and the Upper Pennsylvanian Lansing-Kansas City Group in Kansas are used in this study. The wide variations in pore geometry and connectivity of these samples were imaged using µCT. A two-phase segmentation method was used to reconstruct a digital rock of solid particles and pores. We then calculate the effective electrical conductivity of the digital rock volume using a pore-scale numerical approach. The complex conductivity of geomaterials is influenced by the electrical properties and geometry of each phase, i.e., the solid and fluid phases. In addition, the electrical double layer that forms between the solid and fluid phases can also affect the effective conductivity of the material. In the numerical modeling, the influence of the electrical double layer is quantified by a complex surface conductance and converted to an apparent volumetric complex conductivity of either solid particles or pore fluid. The effective complex conductivity resulting from numerical simulations based on µCT images will be compared to results from laboratory experiments on equivalent rock samples. The imaging and digital segmentation method, assumptions in the numerical simulation, and trends as compared to laboratory results will be discussed. This study will help us understand how microscale physics affects macroscale electrical conductivity in porous media.

  3. Lateral line pore diameters correlate with the development of gas bubble trauma signs in several Columbia River fishes

    USGS Publications Warehouse

    Morris, R.G.; Beeman, J.W.; VanderKooi, S.P.; Maule, A.G.

    2003-01-01

    Gas bubble trauma (GBT) caused by gas supersaturation of river water continues to be a problem in the Columbia River Basin. A common indicator of GBT is the percent of the lateral line occluded with gas bubbles; however, this effect has never been examined in relation to lateral line morphology. The effects of 115, 125 and 130% total dissolved gas levels were evaluated on five fish species common to the upper Columbia River. Trunk lateral line pore diameters differed significantly (P<0.0001) among species (longnose sucker>largescale sucker>northern pikeminnow≥chinook salmon≥redside shiner). At all supersaturation levels evaluated, percent of lateral line occlusion exhibited an inverse correlation to pore size but was not generally related to total dissolved gas level or time of exposure. This study suggests that the differences in lateral line pore diameters between species should be considered when using lateral line occlusion as an indicator of gas bubble trauma.

  4. Intrinsically disordered proteins aggregate at fungal cell-to-cell channels and regulate intercellular connectivity.

    PubMed

    Lai, Julian; Koh, Chuan Hock; Tjota, Monika; Pieuchot, Laurent; Raman, Vignesh; Chandrababu, Karthik Balakrishna; Yang, Daiwen; Wong, Limsoon; Jedd, Gregory

    2012-09-25

    Like animals and plants, multicellular fungi possess cell-to-cell channels (septal pores) that allow intercellular communication and transport. Here, using a combination of MS of Woronin body-associated proteins and a bioinformatics approach that identifies related proteins based on composition and character, we identify 17 septal pore-associated (SPA) proteins that localize to the septal pore in rings and pore-centered foci. SPA proteins are not homologous at the primary sequence level but share overall physical properties with intrinsically disordered proteins. Some SPA proteins form aggregates at the septal pore, and in vitro assembly assays suggest aggregation through a nonamyloidal mechanism involving mainly α-helical and disordered structures. SPA loss-of-function phenotypes include excessive septation, septal pore degeneration, and uncontrolled Woronin body activation. Together, our data identify the septal pore as a complex subcellular compartment and focal point for the assembly of unstructured proteins controlling diverse aspects of intercellular connectivity.

  5. Investigation of MeV-Cu implantation and channeling effects into porous silicon formation

    NASA Astrophysics Data System (ADS)

    Ahmad, M.; Naddaf, M.

    2011-11-01

    P-type (1 1 1) silicon wafers were implanted by copper ions (2.5 MeV) in channeling and random directions using ion beam accelerator of the Atomic Energy Commission of Syria (AECS). The effect of implantation direction on formation process of porous silicon (PS) using electrochemical etching method has been investigated using scanning electron microscope (SEM) and photoluminescence (PL) techniques. SEM observations revealed that the size, shape and density of the formed pores are highly affected by the direction of beam implantation. This in turn is seen to influence the PL behavior of the PS.

  6. Synthesis of mesoporous silica materials (MCM-41) from iron ore tailings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu Honghao, E-mail: honghaoyu@hotmail.com; College of Material Science and Engineering, Shenyang Ligong University, Shenyang, 110168; Xue Xiangxin

    2009-11-15

    Highly ordered mesoporous materials were successfully synthesized by using the iron ore tailings as the silica source and n-hexadecyltrimethyl ammonium bromide as the template. The samples were detail characterized by powder X-ray diffraction, scanning electron microscope, high-resolution transmission electron microscopy and N{sub 2} physisorption. The as-synthesized materials had high surface area of 527 m{sup 2} g{sup -1} and the mean pore diameter of 2.65 nm with a well-ordered two-dimensional hexagonal structure. It is feasible to prepare mesoporous MCM-41 materials using the iron ore tailings as precursor.

  7. Compaction of North-sea chalk by pore-failure and pressure solution in a producing reservoir

    NASA Astrophysics Data System (ADS)

    Keszthelyi, Daniel; Dysthe, Dag; Jamtveit, Bjorn

    2016-02-01

    The Ekofisk field, Norwegian North sea,is an example of compacting chalk reservoir with considerable subsequent seafloor subsidence due to petroleum production. Previously, a number of models were created to predict the compaction using different phenomenological approaches. Here we present a different approach, we use a new creep model based on microscopic mechanisms with no fitting parameters to predict strain rate at core scale and at reservoir scale. The model is able to reproduce creep experiments and the magnitude of the observed subsidence making it the first microstructural model which can explain the Ekofisk compaction.

  8. Impact of S fertilizers on pore-water Cu dynamics and transformation in a contaminated paddy soil with various flooding periods.

    PubMed

    Yang, Jianjun; Zhu, Shenhai; Zheng, Cuiqing; Sun, Lijuan; Liu, Jin; Shi, Jiyan

    2015-04-09

    Impact of S fertilization on Cu mobility and transformation in contaminated paddy soils has been little reported. In this study, we investigated the dynamics and transformation of dissolved and colloidal Cu in the pore water of a contaminated paddy soil after applying ammonium sulphate (AS) and sulfur coated urea (SCU) with various flooding periods (1, 7 and 60 days). Compared to the control soil, the AS-treated soil released more colloidal and dissolved Cu over the entire flooding period, while the SCU-treated soil had lower colloidal Cu after 7-day flooding but higher colloidal and dissolved Cu after 60-day flooding. Microscopic X-ray fluorescence (μ-XRF) analysis found a close relationship between Fe and Cu distribution on soil colloids after 60-day flooding, implying the formation of colloidal Fe/Cu sulphide coprecipitates. Cu K-edge X-ray absorption near-edge structure (XANES) spectroscopy directly revealed the transformation of outer-sphere complexed Cu(II) species to Cu(II) sulphide and reduced Cu2O in the colloids of S-treated soils after 60-day flooding. These results demonstrated the great influence of S fertilization on pore-water Cu mobility by forming Cu sulphide under flooding conditions, which facilitated our understanding and control of Cu loss in contaminated paddy soils under S fertilization. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Microstructural and associated chemical changes during the composting of a high temperature biochar: Mechanisms for nitrate, phosphate and other nutrient retention and release.

    PubMed

    Joseph, Stephen; Kammann, Claudia I; Shepherd, Jessica G; Conte, Pellegrino; Schmidt, Hans-Peter; Hagemann, Nikolas; Rich, Anne M; Marjo, Christopher E; Allen, Jessica; Munroe, Paul; Mitchell, David R G; Donne, Scott; Spokas, Kurt; Graber, Ellen R

    2018-03-15

    Recent studies have demonstrated the importance of the nutrient status of biochar and soils prior to its inclusion in particular agricultural systems. Pre-treatment of nutrient-reactive biochar, where nutrients are loaded into pores and onto surfaces, gives improved yield outcomes compared to untreated biochar. In this study we have used a wide selection of spectroscopic and microscopic techniques to investigate the mechanisms of nutrient retention in a high temperature wood biochar, which had negative effects on Chenopodium quinoa above ground biomass yield when applied to the system without prior nutrient loading, but positive effects when applied after composting. We have compared non-composted biochar (BC) with composted biochar (BCC) to elucidate the differences which may have led to these results. The results of our investigation provide evidence for a complex series of reactions during composting, where dissolved nutrients are first taken up into biochar pores along a concentration gradient and through capillary action, followed by surface sorption and retention processes which block biochar pores and result in deposition of a nutrient-rich organomineral (plaque) layer. The lack of such pretreatment in the BC samples would render it reactive towards nutrients in a soil-fertilizer system, making it a competitor for, rather than provider of, nutrients for plant growth. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Does the 'old bag' make a good 'wind bag'?: Comparison of four fabrics commonly used as exclusion bags in studies of pollination and reproductive biology.

    PubMed

    Neal, Paul R; Anderson, Gregory J

    2004-05-01

    Fabrics used in pollination bags may exclude pollen carried by biotic vectors, but have varying degrees of permeability to wind-borne pollen. The permeability of bags to wind-borne pollen may have important consequences in studies of pollination and reproductive biology. The permeability of four fabrics commonly used in the construction of pollination bags was examined. Deposition of wind-borne pollen on horizontally and vertically oriented microscope slides was assessed on slides enclosed in pollination bags, as well as on control slides. It was found that the permeability of fabrics to wind-borne pollen, as measured by deposition on both horizontally and vertically oriented slides, decreased with pore size. However, deposition on horizontal slides was always greater than on vertical slides for a given fabric; this could manifest itself as differential success of pollination of flowers in bags-dependent on flower orientation. Obviously, bags with mesh size smaller than most pollen grains are impermeable to pollen. However, material for such bags is very expensive. In addition, it was also observed that bags with even moderately small pore size, such as pores (approx. 200 microm) in twisted fibre cotton muslin, offered highly significant barriers to passage of wind-borne pollen. Such bags are sufficiently effective in most large-sample-size reproductive biology studies.

  11. Reduction of the capillary water absorption of foamed concrete by using the porous aggregate

    NASA Astrophysics Data System (ADS)

    Namsone, E.; Sahmenko, G.; Namsone, E.; Korjakins, A.

    2017-10-01

    The article reports on the research of reduction of the capillary water absorption of foamed concrete (FC) by using the porous aggregate such as the granules of expanded glass (EG) and the cenospheres (CS). The EG granular aggregate is produced by using recycled glass and blowing agents, melted down in high temperature. The unique structure of the EG granules is obtained where the air is kept closed inside the pellet. The use of the porous aggregate in the preparation process of the FC samples provides an opportunity to improve some physical and mechanical properties of the FC, classifying it as a product of high-performance. In this research the FC samples were produced by adding the EG granules and the CS. The capillary water absorption of hardened samples has been verified. The pore size distribution has been determined by microscope. It is a very important characteristic, specifically in the cold climate territories-where temperature often falls below zero degrees. It is necessary to prevent forming of the micro sized pores in the final structure of the material as it reduces its water absorption capacity. In addition, at a below zero temperature water inside these micro sized pores can increase them by expanding the stress on their walls during the freezing process. Research of the capillary water absorption kinetics can be practical for prevision of the FC durability.

  12. Optical waveguiding properties into porous gallium nitride structures investigated by prism coupling technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alshehri, Bandar; Dogheche, Elhadj, E-mail: elhadj.dogheche@univ-valenciennes.fr; Lee, Seung-Min

    2014-08-04

    In order to modulate the refractive index and the birefringence of Gallium Nitride (GaN), we have developed a chemical etching method to perform porous structures. The aim of this research is to demonstrate that optical properties of GaN can be tuned by controlling the pores density. GaN films are prepared on sapphire by metal organic chemical vapor deposition and the microstructure is characterized by transmission electron microscopy, and scanning electron microscope analysis. Optical waveguide experiment is demonstrated here to determine the key properties as the ordinary (n{sub 0}) and extraordinary (n{sub e}) refractive indices of etched structures. We report heremore » the dispersion of refractive index for porous GaN and compare it to the bulk material. We observe that the refractive index decreases when the porous density p is increased: results obtained at 0.975 μm have shown that the ordinary index n{sub 0} is 2.293 for a bulk layer and n{sub 0} is 2.285 for a pores density of 20%. This value corresponds to GaN layer with a pore size of 30 nm and inter-distance of 100 nm. The control of the refractive index into GaN is therefore fundamental for the design of active and passive optical devices.« less

  13. Spectro-microscopic study of the formation of supramolecular networks

    NASA Astrophysics Data System (ADS)

    Sadowski, Jerzy T.

    2015-03-01

    Metal-organic frameworks (MOFs) are emerging as a new class of materials for CO2 capture. There are many fundamental questions, including the optimum pore size and arrangement of the molecules in the structure to achieve highest CO2 uptake. As only the surface is of interest for potential applications such as heterogeneous catalysis, nano-templating, and sensing, 2D analogs of MOFs can serve as good model systems. Utilizing capabilities of LEEM/PEEM for non-destructive interrogation of the real-time molecular self-assembly, we investigated supramolecular systems based on carboxylic acid-metal complexes, such as trimesic and mellitic acid, doped with transition metals. Such 2D networks act as host systems for transition-metal phthalocyanines (MPc; M = Fe, Ti, Sc) and the electrostatic interactions of CO2 molecules with transition metal ions, can be tuned by controlling the type of TM ion and the size of the pore in the host network. The understanding of directed self-assembly by controlling the molecule-substrate interaction can enable us to engineer the pore size and density, and thus tune the host's chemical activity. Research carried out at the Center for Functional Nanomaterials and National Synchrotron Light Source, Brookhaven National Laboratory, which are supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10.

  14. Immobilizing of catalyst using Bayah's natural zeolite to reduce the chemical oxygen demand (COD) and total organic carbon (TOC)

    NASA Astrophysics Data System (ADS)

    Jayanudin, Kustiningsih, Indar; Sari, Denni Kartika

    2017-05-01

    Indonesia is rich of natural minerals, many of which had not been widely used. One potential natural mineral is zeolite from Bayah Banten that can be used to support catalyst in the process of waste degradation. The purpose of this research is to characterize the Bayah's zeolite and to figure out the effectiveness of the zeolite as supporting agent to the Fe catalyst in the process of phenol degradation, with the main purposes are to reduce the Chemical Oxygen Demand (COD) and Total Organic Carbon (TOC). This research consists of three steps, activation of natural zeolite using 1M, 2M, and 3M NaOH solution, impregnation process with 0.025M, 0.05 M and 0.075M Fe(NO3)3.9H2O solution, and calcination at 500°C. Bayah's natural zeolite was characterize using Brauner-Emmet-Teller (BET) for its pore area, X-ray Fluorescence (XRF) for analyzing zeolite's component before and after activation process and after impregnation process, and Scanning Electron Microscope (SEM) for analyzing zeolite's morphology. The result showed that the highest pore area was 9Å, Fe metal from Fe(NO3)3.9H2O 0,075 M solution remained in zeolite pore was 7,73%, the reduction of COD and TOC was yielded at H2O2: phenol ratio of 1 : 6.

  15. Influence of compaction on the interfacial transition zone and the permeability of concrete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leemann, Andreas; Muench, Beat; Gasser, Philippe

    2006-08-15

    The interfacial transition zone (ITZ) is regarded as a key feature for the transport properties and the durability of concrete. In this study one self-compacting concrete (SCC) mixture and two conventionally vibrated concrete (CVC) mixtures are studied in order to determine the influence of compaction on the porosity of the ITZ. Additionally oxygen permeability and water conductivity were measured in vertical and horizontal direction. The quantitative analysis of images made with an optical microscope and an environmental scanning electron microscope shows a significantly increased porosity and width of the ITZ in CVC compared to SCC. At the same time oxygenmore » permeability and water conductivity of CVC are increased in comparison to SCC. Moreover, considerable differences in the porosity of the lower, lateral and upper ITZ are observed in both types of concrete. The anisotropic distribution of pores in the ITZ does not necessarily cause anisotropy in oxygen permeability and water conductivity though.« less

  16. Understanding the interacted mechanism between carbonation and chloride aerosol attack in ordinary Portland cement concrete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jun; Qiu, Qiwen; Chen, Xiaochi

    An experimental study is carried out with the aim to understand the interacted mechanism between carbonation and chloride aerosol attack in ordinary Portland cement (OPC) concrete. Effects of carbonation on the chloride profile, the chloride binding capacity and the chloride diffusion coefficient are evaluated. Besides, effect of chloride aerosol attack on the carbonation rate is investigated. Concrete specimens with three water-to-cement ratios (0.38, 0.47 and 0.53) are fabricated in this work. Tested results demonstrate that carbonation remarkably affects the chloride profile, reduces the chloride binding capacity, and also accelerates the rate of chloride ion diffusion of concrete. Besides, the presencemore » of chloride aerosol can lead to lower the carbonation depth and increase the pH value of carbonated concrete. Microscopic properties such as morphology, porosity, and pore size distribution for the contaminated concretes are explored by scanning electron microscope and mercury intrusion porosimetry, which provide strong evidence to these research findings.« less

  17. In vitro characterizations of mesoporous hydroxyapatite as a controlled release delivery device for VEGF in orthopedic applications.

    PubMed

    Poh, Chye Khoon; Ng, Suxiu; Lim, Tee Yong; Tan, Hark Chuan; Loo, Joachim; Wang, Wilson

    2012-11-01

    Following bone implant surgery, prolonged ischemic conditions at the implant site often result in postsurgical complications like failure of osseointegration at the bone-implant interface which can lead to implant failure. Thus, restoration of the vascular supply is paramount to the proper development of the bone. High surface area mesostructured materials have been shown to be attractive candidates for bone regeneration to enhance cell adhesion and cell proliferation. This study uses hydroxyapatite, a naturally occurring mineral in the bone, fabricated to a range of suitable pore sizes, infused with vascular endothelial growth factor (VEGF), to be progressively released to stimulate revascularization. In this study, several characterizations including nitrogen adsorption analysis, Fourier-transformed infrared spectroscopy, X-ray diffraction, field emission scanning electron microscope, and transmission electron microscope were used to evaluate the synthesized mesoporous hydroxyapatite (MHA). The results showed that MHA can gradually release VEGF for enhancing revascularization, which is beneficial for orthopedic applications. Copyright © 2012 Wiley Periodicals, Inc.

  18. Facile approach to prepare drug-loading film from hemicelluloses and chitosan.

    PubMed

    Guan, Ying; Qi, Xian-Ming; Chen, Ge-Gu; Peng, Feng; Sun, Run-Cang

    2016-11-20

    This study introduces a facile and green route to fabricate film from bio-based polymers. The film has been prepared by the cross-linking reaction of quaternized hemicelluloses (QH) and chitosan (CHO) with epichlorohydrin (ECH) as crosslinker. It exhibits an excellently mechanical performance as a result of its high tensile strength (up to 37MPa). Importantly, the roughness of film was 2-5nm in the area of 400nm, and smooth surface with pores were presented on the film based on the results of scanning electron microscope (SEM) and atomic force microscope (AFM). Ciprofloxacin was utilized as a mode compound to investigate the loading behavior of the film, and the highest loading concentration was about 18%. The drug release was about 20% in film1 in comparison to only 15% in film3 within 48h. Furthermore, the results of a 293T cell viability assay indicated its good biocompatibility and non-toxicity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Isolated pores dissected from human two-pore channel 2 are functional

    PubMed Central

    Penny, Christopher J.; Rahman, Taufiq; Sula, Altin; Miles, Andrew J.; Wallace, B. A.; Patel, Sandip

    2016-01-01

    Multi-domain voltage-gated ion channels appear to have evolved through sequential rounds of intragenic duplication from a primordial one-domain precursor. Whereas modularity within one-domain symmetrical channels is established, little is known about the roles of individual regions within more complex asymmetrical channels where the domains have undergone substantial divergence. Here we isolated and characterised both of the divergent pore regions from human TPC2, a two-domain channel that holds a key intermediate position in the evolution of voltage-gated ion channels. In HeLa cells, each pore localised to the ER and caused Ca2+ depletion, whereas an ER-targeted pore mutated at a residue that inactivates full-length TPC2 did not. Additionally, one of the pores expressed at high levels in E. coli. When purified, it formed a stable, folded tetramer. Liposomes reconstituted with the pore supported Ca2+ and Na+ uptake that was inhibited by known blockers of full-length channels. Computational modelling of the pore corroborated cationic permeability and drug interaction. Therefore, despite divergence, both pores are constitutively active in the absence of their partners and retain several properties of the wild-type pore. Such symmetrical ‘pore-only’ proteins derived from divergent channel domains may therefore provide tractable tools for probing the functional architecture of complex ion channels. PMID:27941820

  20. Isolated pores dissected from human two-pore channel 2 are functional.

    PubMed

    Penny, Christopher J; Rahman, Taufiq; Sula, Altin; Miles, Andrew J; Wallace, B A; Patel, Sandip

    2016-12-12

    Multi-domain voltage-gated ion channels appear to have evolved through sequential rounds of intragenic duplication from a primordial one-domain precursor. Whereas modularity within one-domain symmetrical channels is established, little is known about the roles of individual regions within more complex asymmetrical channels where the domains have undergone substantial divergence. Here we isolated and characterised both of the divergent pore regions from human TPC2, a two-domain channel that holds a key intermediate position in the evolution of voltage-gated ion channels. In HeLa cells, each pore localised to the ER and caused Ca 2+ depletion, whereas an ER-targeted pore mutated at a residue that inactivates full-length TPC2 did not. Additionally, one of the pores expressed at high levels in E. coli. When purified, it formed a stable, folded tetramer. Liposomes reconstituted with the pore supported Ca 2+ and Na + uptake that was inhibited by known blockers of full-length channels. Computational modelling of the pore corroborated cationic permeability and drug interaction. Therefore, despite divergence, both pores are constitutively active in the absence of their partners and retain several properties of the wild-type pore. Such symmetrical 'pore-only' proteins derived from divergent channel domains may therefore provide tractable tools for probing the functional architecture of complex ion channels.

  1. Effects of Pouring Temperature and Electromagnetic Stirring on Porosity and Mechanical Properties of A357 Aluminum Alloy Rheo-Diecasting

    NASA Astrophysics Data System (ADS)

    Guo, An; Zhao, Junwen; Xu, Chao; Li, Hu; Han, Jing; Zhang, Xu

    2018-05-01

    Semisolid slurry of A357 aluminum alloy was prepared using a temperature-controllable electromagnetic stirrer and rheo-diecast at different temperatures. The effects of pouring temperature and electromagnetic stirring (EMS) on the porosity in rheo-diecast samples, as well as the relation between porosity and mechanical properties, were investigated. The results show that pouring temperature and EMS had minor influences on rheo-diecast microstructure but marked influence on the porosity. With decreasing slurry pouring temperature, the porosity decreased first and then increased, whereas the maximum pore ratio (ratio of shape factor to diameter of the largest pore) increased first and then decreased. The maximum pore ratio determines the level of tensile strength and elongation, and higher mechanical properties can be obtained with smaller and rounder pores in samples. The mechanical properties of the rheo-diecast samples increased linearly with increasing maximum pore ratio. The maximum pore ratio was 1.43 µm-1, and the minimum porosity level was 0.37% under EMS condition for the rheo-diecast samples obtained at a pouring temperature of 608 °C. With this porosity condition, the maximum tensile strength and elongation were achieved at 274 MPa and 4.9%, respectively. It was also revealed that EMS improves mechanical properties by reduction in porosity and an increase in maximum pore ratio.

  2. Fluid Absorption and Release of Nonwovens and their Response to Compression

    NASA Astrophysics Data System (ADS)

    Bateny, Fatemeh

    Fluid handling is a key property in one of the major nonwoven applications in absorbent product such as wipes, hygiene products, and baby diapers. These products are subjected to various levels of compression in real-use. The aim of this study was to investigate the liquid absorption and release properties of nonwovens to establish the absorption structure-property relationship at various compression levels. A comprehensive methodology, considering various flow directions, was employed to establish the relationship by decoupling the effect of structural parameters and material properties in two phases of this study respectively. In the first phase, the mechanism of absorption by pore structure was investigated through considering various fiber cross-sectional size and shape, as well as heterogeneous layered structures having a pore size reduction and expansion. In the second phase, the mechanism of absorption by fiber and consequent swelling was evaluated in view of fluid diffusion into the rayon fibers in samples having different percentages of PET fiber (non-absorbent) and rayon fiber (absorbent). The analysis of absorption and release properties through the entire dissertation was based on the pore characteristics of the nonwovens by measuring the average pore sizes, pore size distribution, and solidity. The investigation revealed that the absorption and release properties of nonwovens are governed by their pore characteristics. In homogeneous non-layered nonwoven fabrics, maximum absorption is mainly governed by the available pore volume. Absorbency rate is determined according to pore size and the maximum rate of absorption is achieved at a specific range of pore sizes. This indicates that an in-depth understanding of the absorption and release properties brings about valuable information for the absorbent product engineering.

  3. Pore scale modelling of electrical and hydraulic properties of a semi-consolidated sandstone under unsaturated conditions

    NASA Astrophysics Data System (ADS)

    Cassiani, G.; dalla, E.; Brovelli, A.; Pitea, D.; Binley, A. M.

    2003-04-01

    The development of reliable constitutive laws to translate geophysical properties into hydrological ones is the fundamental step for successful applications of hydrogeophysical techniques. Many such laws have been proposed and applied, particularly with regard to two types of relationships: (a) between moisture content and dielectric properties, and (b) between electrical resistivity, rock structure and water saturation. The classical Archie's law belongs to this latter category. Archie's relationship has been widely used, starting from borehole logs applications, to translate geoelectrical measurements into estimates of saturation. However, in spite of its popularity, it remains an empirical relationship, the parameters of which must be calibrated case by case, e.g. on laboratory data. Pore-scale models have been recently recognized and used as powerful tools to investigate the constitutive relations of multiphase soils from a pore-scale point of view, because they bridge the microscopic and macroscopic scales. In this project, we develop and validate a three-dimensional pore-scale method to compute electrical properties of unsaturated and saturated porous media. First we simulate a random packing of spheres [1] that obeys the grain-size distribution and porosity of an experimental porous medium system; then we simulate primary drainage with a morphological approach [2]; finally, for each state of saturation during the drainage process, we solve the electrical conduction equation within the grain structure with a new numerical model and compute the apparent electrical resistivity of the porous medium. We apply the new method to a semi-consolidated Permo-Triassic Sandstone from the UK (Sherwood Sandstone) for which both pressure-saturation (Van Genuchten) and Archie's law parameters have been measured on laboratory samples. A comparison between simulated and measured relationships has been performed.

  4. The Effect of CO2 Activation on the Electrochemical Performance of Coke-Based Activated Carbons for Supercapacitors.

    PubMed

    Lee, Hye-Min; Kim, Hong-Gun; An, Kay-Hyeok; Kim, Byung-Joo

    2015-11-01

    The present study developed electrode materials for supercapacitors by activating coke-based activated carbons with CO2. For the activation reaction, after setting the temperature at 1,000 degrees C, four types of activated carbons were produced, over an activation time of 0-90 minutes and with an interval of 30 minutes as the unit. The electrochemical performance of the activated carbons produced was evaluated to examine the effect of CO2 activation. The surface structure of the porous carbons activated through CO2 activation was observed using a scanning electron microscope (SEM). To determine the N2/77 K isothermal adsorption characteristics, the Brunauer-Emmett-Teller (BET) equation and the Barrett-Joyner-Halenda (BJH) equation were used to analyze the pore characteristics. In addition, charge and discharge tests and cyclic voltammetry (CV) were used to analyze the electrochemical characteristics of the changed pore structure. According to the results of the experiments, the N2 adsorption isotherm curves of the porous carbons produced belonged to Type IV in the International Union of Pore and Applied Chemistry (IUPAC) classification and consisted of micropores and mesopores, and, as the activation of CO2 progressed, micropores decreased and mesopores developed. The specific surface area of the porous carbons activated by CO2 was 1,090-1,180 m2/g and thus showed little change, but those of mesopores were 0.43-0.85 cm3/g, thus increasing considerably. In addition, when the electrochemical characteristics were analyzed, the specific capacity was confirmed to have increased from 13.9 F/g to 18.3 F/g. From these results, the pore characteristics of coke-based activated carbons changed considerably because of CO2 activation, and it was therefore possible to increase the electrochemical characteristics.

  5. Hybrid MD-Nernst Planck Model of Alpha-hemolysin Conductance Properties

    NASA Technical Reports Server (NTRS)

    Cozmuta, Ioana; O'Keefer, James T.; Bose, Deepak; Stolc, Viktor

    2006-01-01

    Motivated by experiments in which an applied electric field translocates polynucleotides through an alpha-hemolysin protein channel causing ionic current transient blockade, a hybrid simulation model is proposed to predict the conductance properties of the open channel. Time scales corresponding to ion permeation processes are reached using the Poisson-Nemst-Planck (PNP) electro-diffusion model in which both solvent and local ion concentrations are represented as a continuum. The diffusion coefficients of the ions (K(+) and Cl(-)) input in the PNP model are, however, calculated from all-atom molecular dynamics (MD). In the MD simulations, a reduced representation of the channel is used. The channel is solvated in a 1 M KCI solution, and an external electric field is applied. The pore specific diffusion coefficients for both ionic species are reduced 5-7 times in comparison to bulk values. Significant statistical variations (17-45%) of the pore-ions diffusivities are observed. Within the statistics, the ionic diffusivities remain invariable for a range of external applied voltages between 30 and 240mV. In the 2D-PNP calculations, the pore stem is approximated by a smooth cylinder of radius approx. 9A with two constriction blocks where the radius is reduced to approx. 6A. The electrostatic potential includes the contribution from the atomistic charges. The MD-PNP model shows that the atomic charges are responsible for the rectifying behaviour and for the slight anion selectivity of the a-hemolysin pore. Independent of the hierarchy between the anion and cation diffusivities, the anionic contribution to the total ionic current will dominate. The predictions of the MD-PNP model are in good agreement with experimental data and give confidence in the present approach of bridging time scales by combining a microscopic and macroscopic model.

  6. Interpretation of changes in water level accompanying fault creep and implications for earthquake prediction.

    USGS Publications Warehouse

    Wesson, R.L.

    1981-01-01

    Quantitative calculations for the effect of a fault creep event on observations of changes in water level in wells provide an approach to the tectonic interpretation of these phenomena. For the pore pressure field associated with an idealized creep event having an exponential displacement versus time curve, an analytic expression has been obtained in terms of exponential-integral functions. The pore pressure versus time curves for observation points near the fault are pulselike; a sharp pressure increase (or decrease, depending on the direction of propagation) is followed by more gradual decay to the normal level after the creep event. The time function of the water level change may be obtained by applying the filter - derived by A.G.Johnson and others to determine the influence of atmospheric pressure on water level - to the analytic pore pressure versus time curves. The resulting water level curves show a fairly rapid increase (or decrease) and then a very gradual return to normal. The results of this analytic model do not reproduce the steplike changes in water level observed by Johnson and others. If the procedure used to obtain the water level from the pore pressure is correct, these results suggest that steplike changes in water level are not produced by smoothly propagating creep events but by creep events that propagate discontinuously, by changes in the bulk properties of the region around the well, or by some other mechanism.-Author

  7. Disposable, Autonomic, Energy-Converting Ion Channel Sensor Materials

    DTIC Science & Technology

    2018-07-02

    variant forms well-defined pores _____________________________ 26 4.2. Another pore-forming peptide, Ceratotoxin A, displays alamethicin-like activity ...bilayer recordings to examine the activity of these compounds on the single-pore level. We plan to use modified CtxA for targeted cell killing...strongly dependent on entropy of activation . Tethering is one strategy towards achieving this goal. A manuscript regarding this work is currently in

  8. Visualization of DNA molecules in time during electrophoresis

    NASA Technical Reports Server (NTRS)

    Lubega, Seth

    1991-01-01

    For several years individual DNA molecules have been observed and photographed during agarose gel electrophoresis. The DNA molecule is clearly the largest molecule known. Nevertheless, the largest molecule is still too small to be seen using a microscope. A technique developed by Morikawa and Yanagida has made it possible to visualize individual DNA molecules. When these long molecules are labeled with appropriate fluorescence dyes and observed under a fluorescence microscope, although it is not possible to directly visualize the local ultrastructure of the molecules, yet because they are long light emitting chains, their microscopic dynamical behavior can be observed. This visualization works in the same principle that enables one to observe a star through a telescope because it emits light against a dark background. The dynamics of individual DNA molecules migrating through agarose matrix during electrophoresis have been described by Smith et al. (1989), Schwartz and Koval (1989), and Bustamante et al. (1990). DNA molecules during agarose gel electrophoresis advance lengthwise thorough the gel in an extended configuration. They display an extension-contraction motion and tend to bunch up in their leading ends as the 'heads' find new pores through the gel. From time to time they get hooked on obstacles in the gel to form U-shaped configurations before they resume their linear configuration.

  9. Sebum, acne, skin elasticity, and gender difference - which is the major influencing factor for facial pores?

    PubMed

    Kim, B Y; Choi, J W; Park, K C; Youn, S W

    2013-02-01

    Enlarged facial pores have been esthetic problems and have become a matter of cosmetic concern. Several factors are supposed to be related to the enlargement of facial pores, although scientific evaluations were not performed yet. To assess the correlation between facial pores and possible relating factors such as age, gender, sebum secretion, skin elasticity, and the presence of acne, using objective bioengineering instruments. Sixty volunteers, 30 males and 30 females, participated in this study. Various parameters of facial pores were assessed using the Robo Skin Analyzer. The facial sebum secretion and skin elasticity were measured using the Sebumeter and the Cutometer, respectively. These data were compared and correlated to examine the possible relationship between facial pores and age, sebum secretion and skin elasticity, according to gender and the presence of acne. Male gender and the existence of acne were correlated with higher number of facial pores. Sebum secretion levels showed positive correlation with facial pores. The R7 parameter of skin elasticity was negatively correlated with facial pores, suggesting increased facial pores with decreased skin elasticity. However, the age and the severity of acne did not show a definite relationship with facial pores. Male, increased sebum and decreased skin elasticity were mostly correlated with facial pore development. Further studies on population with various demographic profiles and more severe acne may be helpful to elucidate the potential effect of aging and acne severity on facial pores. © 2011 John Wiley & Sons A/S.

  10. Parametric study of thin film evaporation from nanoporous membranes

    NASA Astrophysics Data System (ADS)

    Wilke, Kyle L.; Barabadi, Banafsheh; Lu, Zhengmao; Zhang, TieJun; Wang, Evelyn N.

    2017-10-01

    The performance and lifetime of advanced electronics are often dictated by the ability to dissipate heat generated within the device. Thin film evaporation from nanoporous membranes is a promising thermal management approach, which reduces the thermal transport distance across the liquid film while also providing passive capillary pumping of liquid to the evaporating interface. In this work, we investigated the dependence of thin film evaporation from nanoporous membranes on a variety of geometric parameters. Anodic aluminum oxide membranes were used as experimental templates, where pore radii of 28-75 nm, porosities of 0.1-0.35, and meniscus locations down to 1 μm within the pore were tested. We demonstrated different heat transfer regimes and observed more than an order of magnitude increase in dissipated heat flux by operating in the pore-level evaporation regime. The pore diameter had little effect on pore-level evaporation performance due to the negligible conduction resistance from the pore wall to the evaporating interface. The dissipated heat flux scaled with porosity as the evaporative area increased. Furthermore, moving the meniscus as little as 1 μm into the pore decreased the dissipated heat flux by more than a factor of two due to the added resistance to vapor escaping the pore. The experimental results elucidate thin film evaporation from nanopores and confirm findings of recent modeling efforts. This work also provides guidance for the design of future thin film evaporation devices for advanced thermal management. Furthermore, evaporation from nanopores is relevant to water purification, chemical separations, microfluidics, and natural processes such as transpiration.

  11. Permeability changes induced by microfissure closure and opening in tectonized materials. Effect on slope pore pressure regime.

    NASA Astrophysics Data System (ADS)

    De la Fuente, Maria; Vaunat, Jean; Pedone, Giuseppe; Cotecchia, Federica; Sollecito, Francesca; Casini, Francesca

    2015-04-01

    Tectonized clays are complex materials characterized by several levels of structures that may evolve during load and wetting/drying processes. Some microstructural patterns, as microfissures, have a particular influence on the value of permeability which is one of the main factors controlling pore pressure regime in slopes. In this work, the pore pressure regime measured in a real slope of tectonized clay in Southern Italy is analyzed by a numerical model that considers changes in permeability induced by microfissure closure and opening during the wetting and drying processes resulting from climatic actions. Permeability model accounts for the changes in Pore Size Distribution observed by Microscopy Intrusion Porosimetry. MIP tests are performed on representative samples of ground in initial conditions ("in situ" conditions) and final conditions (deformed sample after applying a wetting path that aims to reproduce the saturation of the soil under heavy rains). The resulting measurements allow for the characterization at microstructural level of the soil, identifying the distribution of dominant families pores in the sample and its evolution under external actions. Moreover, comparison of pore size density functions allows defining a microstructural parameter that depends on void ratio and degree of saturation and controls the variation of permeability. Model has been implemented in a thermo-hydro-mechanical code provided with a special boundary condition for climatic actions. Tool is used to analyze pore pressure measurements obtained in the tectonized clay slope. Results are analyzed at the light of the effect that permeability changes during wetting and drying have on the pore pressure regime.

  12. Numerical simulation of pore pressure changes in levee under flood conditions

    NASA Astrophysics Data System (ADS)

    Stanisz, Jacek; Borecka, Aleksandra; Pilecki, Zenon; Kaczmarczyk, Robert

    2017-11-01

    The article discusses the potential for using numerical simulation to assess the development of deformation and pore pressure changes in a levee as a result of the increase and decrease of the flood wave. The simulation made in FLAC 2D did not take into account the filter-erosion deformation associated with seepage in the levee. The simulations were carried out for a field experimental storage consisting of two combined levees, which was constructed with the help of homogeneous cohesive materials with different filtration coefficients. Calculated and measured pore pressure changes were analysed at 4 monitoring points. The water level was increased to 4 m in 96 hours and decreased in 120 hours. The characteristics of the calculated and measured pore pressure changes over time were similar. The maximum values of the calculated and measured pore pressure were almost identical. The only differences were the greater delay of the experimental levee response to changes in water level increase compared to the response of the numerical model. These differences were probably related to filtering-erosion effects during seepage in the levee.

  13. An efficient adsorption of indigo carmine dye from aqueous solution on mesoporous Mg/Fe layered double hydroxide nanoparticles prepared by controlled sol-gel route.

    PubMed

    Ahmed, M A; Brick, A A; Mohamed, A A

    2017-05-01

    A new approach for removal of indigo carmine blue (IC) dye which is extensively used in jeans manufacture was successfully performed on novel mesoporous [LDH] nanoparticles prepared by sol-gel route using CTAB as shape and pore directing agent. The physicochemical features were monitored by X-ray diffraction (XRD), Fourier transformer infra-red (FTIR), N 2 adsorption-desorption isotherm, Field emission electron microscope (FESEM) and high resolution transmission electron microscope (HRTEM). The influence of reaction parameters affecting dye adsorption including contact time, initial dye concentration, pH and temperature were investigated. Textural analysis and HRTEM images indicate the existence of mesoporous spherical nanoparticles of size = 26 nm connected to each other's and embedded large numbers of mesopores of average pore radius = 43.5 Å. A successful adsorption of IC on LDH nanoparticles of surface area = 85.6 m 2 /g at various pH with maximum adsorption capacity = 62.8 mg/g at pH = 9.5. Langmuir model is more favorable to describe the adsorption of IC rather than Freundlich model which reflecting the preferential formation of monolayer on the surface of LDH. Both film diffusion and the intraparticle diffusion affect the dye adsorption. The values of enthalpy change (ΔH) for and (ΔS) are + 28.18 and + 0.118 kJ/mol, respectively indicating that the removal process is endothermic. The results indicated that LDH nanoparticles conserved a good activity even after five consecutive cycles of reuse. Our results suggest that mesoporous LDH nanoparticles are considered a potential novel adsorbent for remediation of wastewater containing IC. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Carbon nanotube embedded PVDF membranes: Effect of solvent composition on the structural morphology for membrane distillation

    NASA Astrophysics Data System (ADS)

    Mapunda, Edgar C.; Mamba, Bhekie B.; Msagati, Titus A. M.

    2017-08-01

    Rapid population increase, growth in industrial and agricultural sectors and global climate change have added significant pressure on conventional freshwater resources. Tapping freshwater from non-conventional water sources such as desalination and wastewater recycling is considered as sustainable alternative to the fundamental challenges of water scarcity. However, affordable and sustainable technologies need to be applied for the communities to benefit from the treatment of non-conventional water source. Membrane distillation is a potential desalination technology which can be used sustainably for this purpose. In this work multi-walled carbon nanotube embedded polyvinylidene fluoride membranes for application in membrane distillation desalination were prepared via non-solvent induced phase separation method. The casting solution was prepared using mixed solvents (N, N-dimethylacetamide and triethyl phosphate) at varying ratios to study the effect of solvent composition on membrane morphological structures. Membrane morphological features were studied using a number of techniques including scanning electron microscope, atomic force microscope, SAXSpace tensile strength analysis, membrane thickness, porosity and contact angle measurements. It was revealed that membrane hydrophobicity, thickness, tensile strength and surface roughness were increasing as the composition of N, N-dimethylacetamide in the solvent was increasing with maximum values obtained between 40 and 60% N, N-dimethylacetamide. Internal morphological structures were changing from cellular structures to short finger-like and sponge-like pores and finally to large macro void type of pores when the amount of N, N-dimethylacetamide in the solvent was changed from low to high respectively. Multi-walled carbon nanotube embedded polyvinylidene fluoride membranes of desired morphological structures and physical properties can be synthesized by regulating the composition of solvents used to prepare the casting solution.

  15. Development and evaluation of controlled porosity osmotic pump for Nifedipine and Metoprolol combination

    PubMed Central

    2011-01-01

    Background A system that can deliver multi-drug at a prolonged rate is very important for the treatment of various chronic diseases such as diabetes, asthma and heart disease. Controlled porosity osmotic pump tablet (CPOP) system was designed to deliver Nifedipine (NP) and Metoprolol (MP) in a controlled manner up to 12 h. It was prepared by incorporating drugs in the core and coated with various types (PVP, PEG-400 and HPMC) and levels (30, 40 and 50% w/w of polymer) of pore former at a weight gain of 8, 12 & 15%. Results Formulation variables like type and level of pore former and percent weight gain of membrane was found to affect the drug release from the developed formulations. Drug release was inversely proportional to the membrane weight but directly related to the level of pore former. Burst strength of the exhausted shell was inversely proportional to the level of pore former, but directly affected by the membrane weight. Results of scanning electron microscopy (SEM) studies showed the formation of pores in the membrane from where the drug release occurred. Dissolution models were applied to drug release data in order to establish the mechanism of drug release kinetics. In vitro release kinetics was subjected to superposition method to predict in vivo performance of the developed formulation. Conclusion The developed osmotic system is effective in the multi-drug therapy of hypertension by delivering both drugs in a controlled manner. PMID:21477386

  16. Using SEM Analysis on Ion-Milled Shale Surface to Determine Shale-Fracturing Fluid Interaction

    NASA Astrophysics Data System (ADS)

    Lu, J.; Mickler, P. J.; Nicot, J. P.

    2014-12-01

    It is important to document and assess shale-fluid interaction during hydraulic fracturing (HF) in order to understand its impact on flowback water chemistry and rock property. A series of autoclave experiments were conducted to react shale samples from major oil and gas shales with synthetic HF containing various additives. To better determine mineral dissolution and precipitation at the rock-fluid interface, ion-milling technique was applied to create extremely flat rock surfaces that were examined before and after the autoclave experiments using a scanning electron microscope (SEM) coupled with energy dispersive spectroscopy (EDS) detectors. This method is able to reveal a level of detail not observable on broken surface or mechanically polished surface. It allows direct comparison of the same mineral and organic matter particles before and after the reaction experiments. Minerals undergone dissolution and newly precipitated materials are readily determined by comparing to the exact locations before reaction. The dissolution porosity and the thickness of precipitates can be quantified by tracing and measuring the geometry of the pores and precipitates. Changes in porosity and permeability were confirmed by mercury intrusion capillary tests.

  17. Acoustic properties of polymer foam composites blended with different percentage loadings of natural fiber

    NASA Astrophysics Data System (ADS)

    Azahari, M. Shafiq M.; Rus, Anika Zafiah M.; Kormin, Shaharuddin; Taufiq Zaliran, M.

    2017-09-01

    This study investigates the acoustic properties of polymer foam composites (FC) filled with natural fiber. The FC were produced based on crosslinking of polyol, with flexible isocyanates and wood filler. The percentages of wood filler loading are 10, 15, and 20 wt% ratio of polyol. The FC also has a thickness of 10, 20 and 30 mm. The acoustic properties of the FC were determined by using Impedance Tube test, Optical Microscope (OM) and Mettler Toledo Density Kit test. The results revealed that FC20 with 30 mm in thickness gives the highest sound absorption coefficient (α) with 0.970 and 0.999, at low and high frequency respectively. FC20 also shows smallest pores structures size with 134.86 μm and biggest density with 868.5 kg/m3 which helps in absorbing sound. In this study, FC with different percentage loading of wood filler and different foam thickness shows the ability to contribute the absorption coefficient of polymeric foam at different frequency levels. Lastly, this type of FC is suitable for any type of sound absorption applications material.

  18. Sodium Aluminate Concentration Effects on Microstructure and Corrosion Behavior of the Plasma Electrolytic Oxidation Coatings on Pure Titanium

    NASA Astrophysics Data System (ADS)

    Molaei, Maryam; Fattah-Alhosseini, Arash; Gashti, Seyed Omid

    2018-01-01

    Sodium aluminate (NaAlO2) concentration was varied in order to understand the influence of the chemical composition of electrolyte on the spark characteristics, microstructure, and corrosion behavior of plasma electrolytic oxidation (PEO) coatings. For this purpose, PEO coatings were formed on the pure titanium substrate surface using solutions of four diverse sodium aluminate concentrations (6, 8, 10, and 12 g/L). The PEO process was carried out at constant time and voltage (180 seconds and 420 V). Studying the microstructures of samples by scanning electron microscope (SEM) and their corrosion behavior in 3.5 wt pct NaCl solutions indicated that the increase in NaAlO2 concentration (up to 10 g/L) led to an increase in uniformity and compactness, thus decreasing the size of micro-pores and increment of corrosion resistance. However, at a certain level of NaAlO2 concentration (12 g/L), large and severe sparks were created on the surface of the sample during the process, worsening the corrosion resistance and microstructure of coating.

  19. Characterization and Quantification of the Pore Structures of the Shale Oil Reservoir Formations in Multiscale

    NASA Astrophysics Data System (ADS)

    Liu, K.; Ostadhassan, M.

    2016-12-01

    Due to the fast development of hydraulic fracturing and horizontal drilling, shale formations now are one important resource of energy in North America. Characterizing the pore structure of these shale formations is of critical importance in understanding the original oil/gas in place and also the flow properties of the rock matrix. Pore with different properties such as pore size and pore shape can impact the physical, mechanical and chemical properties including strength, elastic modulus, permeability and conductivity. Nowadays, image analysis has been a robust method to quantify the pore information from the porous medium.SEM has been one of the most useful tools to study the pore microstructures due to its high depth of focus which can provide detailed topographical information about the surface. The suitable difference between solid matrix and pores due to the different gray level pixels can be used to study the pore structures.In this paper, we characterized and quantified the pore structures of rock samples from Middle Bakken Formation which is a typical unconventional reservoir in North America. High resolution SEM images of five samples we chose based on the gamma logs were derived after sample preparation. After determining the threshold of the images, we extracted the pore spaces. Then we analyzed the pore structures properties such as pore size distributions and pore shape distributions of the five samples and compared based on their mineral compositions. After that, we analyzed their heterogeneity and isotropy properties which have been identified as an important factor affecting reservoir productivity. Finally, we studied the impact of scale effect on the pore structures characterization.

  20. Substantial Expansion of Detectable Size Range in Ionic Current Sensing through Pores by Using a Microfluidic Bridge Circuit.

    PubMed

    Yasaki, Hirotoshi; Yasui, Takao; Yanagida, Takeshi; Kaji, Noritada; Kanai, Masaki; Nagashima, Kazuki; Kawai, Tomoji; Baba, Yoshinobu

    2017-10-11

    Measuring ionic currents passing through nano- or micropores has shown great promise for the electrical discrimination of various biomolecules, cells, bacteria, and viruses. However, conventional measurements have shown there is an inherent limitation to the detectable particle volume (1% of the pore volume), which critically hinders applications to real mixtures of biomolecule samples with a wide size range of suspended particles. Here we propose a rational methodology that can detect samples with the detectable particle volume of 0.01% of the pore volume by measuring a transient current generated from the potential differences in a microfluidic bridge circuit. Our method substantially suppresses the background ionic current from the μA level to the pA level, which essentially lowers the detectable particle volume limit even for relatively large pore structures. Indeed, utilizing a microscale long pore structure (volume of 5.6 × 10 4 aL; height and width of 2.0 × 2.0 μm; length of 14 μm), we successfully detected various samples including polystyrene nanoparticles (volume: 4 aL), bacteria, cancer cells, and DNA molecules. Our method will expand the applicability of ionic current sensing systems for various mixed biomolecule samples with a wide size range, which have been difficult to measure by previously existing pore technologies.

  1. Size effects of pore density and solute size on water osmosis through nanoporous membrane.

    PubMed

    Zhao, Kuiwen; Wu, Huiying

    2012-11-15

    Understanding the behavior of osmotic transport across nanoporous membranes at molecular level is critical to their design and applications, and it is also beneficial to the comprehension of the mechanism of biological transmembrane transport processes. Pore density is an important parameter for nanoporous membranes. To better understand the influence of pore density on osmotic transport, we have performed systematic molecular dynamics simulations on water osmosis across nanoporous membranes with different pore densities (i.e., number of pores per unit area of membrane). The simulation results reveal that significant size effects occur when the pore density is so high that the center-to-center distance between neighboring nanopores is comparable to the solute size. The size effects are independent of the pore diameter and solute concentration. A simple quantitative correlation between pore density, solute size, and osmotic flux has been established. The results are excellently consistent with the theoretical predictions. It is also shown that solute hydration plays an important role in real osmotic processes. Solute hydration strengthens the size effects of pore density on osmotic processes due to the enlarged effective solute size induced by hydration. The influence of pore density, solute size, and solute hydration on water osmosis through nanoporous membranes can be introduced to eliminate the deviations of real osmotic processes from ideal behavior.

  2. Enhancement of Phloem Exudation from Fraxinus uhdei Wenz. (Evergreen Ash) using Ethylenediaminetetraacetic Acid 1

    PubMed Central

    Costello, L. R.; Bassham, James A.; Calvin, Melvin

    1982-01-01

    Ethylenediaminetetraacetic acid (EDTA) enhanced the exudation of 14C-labeled assimilates from excised leaflets and whole plant specimens of Fraxinus uhdei Wenz. A 2 millimolar EDTA concentration was found to be most effective in promoting exudation from excised leaflets, while 10 millimolar EDTA was most effective in whole plants experiments. Exudation rate reached a maximum after 24 hours in both experiments. The continuous presence of EDTA throughout the treatment period was required for maximum exudation from excised leaflets. Stachyose, raffinose, verbascose, and sucrose were the principal compounds found to occur in exudate samples. These compounds are typically transported in sieve elements of various Fraxinus species suggesting the exudate was of phloem origin. Electron microscope studies of petiolule sieve plate pores from excised leaflets showed substantially less callose appearing after treatment with EDTA than after H2O treatment. It is suggested that EDTA enhances phloem exudation by inhibiting or reducing callose formation in sieve plate pores. The exudation enhancement technique described for whole plant specimens is suggested as a useful means of collecting phloem sap and studying translocation in woody plants. Images PMID:16662189

  3. Development of activated carbon derived from banana peel for CO2 removal

    NASA Astrophysics Data System (ADS)

    Borhan, Azry; Thangamuthu, Subhashini; Taha, Mohd Faisal; Ramdan, Amira Nurain

    2015-08-01

    This research work highlights on the constraints involved in the preparation of the banana peel bio-sorbent, such as impregnation ratio, activation temperature and period of activation for reducing carbon dioxide (CO2) in the atmosphere. Micromeritics ASAP 2020 and Field Emission Scanning Electron Microscope (FESEM) were used in identifying the best sample preparation method with the largest surface area which directly contributes to the effectiveness of adsorbent in removing CO2. Sample A10 was identified to yield activated carbon with the largest surface area (260.3841 m2/g), total pore volume (0.01638 cm3/g) and pore diameter (0.2508 nm). Through nitrogen adsorption-desorption isotherm analysis, the existence of sub-micropores was proven when a combination of Type-I and Type-II isotherms were exhibited by the activated carbon produced. The results from the final adsorption test found that the material synthesized from the above mentioned parameter is capable of removing up to 1.65% wt of CO2 through adsorption at 25°C, suggesting that it can be effectively used as an adsorption material.

  4. Morphological evolution of TiO2 nanotube arrays with lotus-root-shaped nanostructure

    NASA Astrophysics Data System (ADS)

    Yu, Dongliang; Song, Ye; Zhu, Xufei; Yang, Ruiquan; Han, Aijun

    2013-07-01

    TiO2 nanotube arrays (TNAs) with lotus-root-shaped nanostructure have been fabricated by a modified two-step electrochemical anodization method. In the present work, different morphologies formed under different anodizing voltages are investigated in detail by field-emission scanning electron microscope. The results show that the concaves left by the first-step anodization can guide the uniform growth of TNAs in some degree as the second-step anodizing voltage is the same with that in the first step, however, when lower voltages are adopted in the second-step anodization, no guidance can be achieved, and different morphological TNAs with lotus-root-shaped nanostructure are fabricated. And we find that the nanotube diameters are directly proportional to the applied voltage in the second-step anodization. Furthermore, a possible mechanism for the growth of the TiO2 nanotubes with the special morphology is proposed for the first time, which depends on both the oxygen bubble mold and the viscous flow of the barrier oxide from the pore base to the pore wall.

  5. a Fractal Analysis for Net Present Value of Multi-Stage Hydraulic Fractured Horizontal Well

    NASA Astrophysics Data System (ADS)

    Lu, Hong-Lin; Zhang, Ji-Jun; Tan, Xiao-Hua; Li, Xiao-Ping; Zhao, Jia-Hui

    Because of the low permeability, multi-stage hydraulic fractured horizontal wells (MHFHWs) occupy a dominant position among production wells in tight gas reservoir. However, net present value (NPV) estimation method for MHFHW in tight gas reservoirs often ignores the effect of heterogeneity in microscopic pore structure. Apart from that, a new fractal model is presented for NPV of MHFHW, based on the fractal expressions of formation parameters. First, with the aid of apparent permeability model, a pseudo pressure expression considering both reservoir fractal features and slippage effect is derived, contributing to establish the productivity model. Secondly, economic assessment method is built based on the fractal productivity model, in order to obtain the NPV of MHFHW. Thirdly, the type curves are illustrated and the influences of different fractal parameters are discussed. The pore fractal dimensions Df and the capillary tortuosity fractal dimensions DT have significant effects on the NPV of an MHFHW. Finally, the proposed model in this paper provides a new methodology for analyzing and predicting the NPV of an MHFHW and may be conducive to a better understanding of the optimal design of MHFHW.

  6. Calcium leaching behavior of cementitious materials in hydrochloric acid solution.

    PubMed

    Yang, Huashan; Che, Yujun; Leng, Faguang

    2018-06-11

    The calcium leaching behavior of cement paste and silica fume modified calcium hydroxide paste, exposed to hydrochloric acid solution, is reported in this paper. The kinetic of degradation was assessed by the changes of pH of hydrochloric acid solution with time. The changes of compressive strength of specimens in hydrochloric acid with time were tested. Hydration products of leached specimens were also analyzed by X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric (TG), and atomic force microscope (AFM). Tests results show that there is a dynamic equilibrium in the supply and consumption of calcium hydroxide in hydrochloric acid solution, which govern the stability of hydration products such as calcium silicate hydrate (C-S-H). The decrease of compressive strength indicates that C-S-H are decomposed due to the lower concentration of calcium hydroxide in the pore solution than the equilibrium concentration of the hydration products. Furthermore, the hydration of unhydrated clinker delayed the decomposition of C-S-H in hydrochloric acid solution due to the increase of calcium hydroxide in pore solution of cementitious materials.

  7. Characterization of Calcite Mineral Precipitation Process by EICP in Porous Media

    NASA Astrophysics Data System (ADS)

    Kim, D.; Mahabadi, N.; Hall, C.; Jang, J.; van Paassen, L. A.

    2017-12-01

    One of the most prevalent ground improvement techniques is injection of synthetic materials, such as cement grout or silicates into the pore space to create cementing bonds between soil particles. Besides these traditional ground improvement methods, several biological processes have been developed to improve soil properties. Enzyme induced carbonate precipitation (EICP) is a biological process in which urea hydrolyzes into ammonia and inorganic carbon, and promotes carbonate mineral precipitation. Different morphologies and patterns of calcite mineral precipitation, such as particle surface coating, pore filling, and soil particles bonding, have been observed in the previous studies. Most of the researches have detected precipitated minerals after the completion of the treatment using SEM (Scanning Electron Microscope) imaging and XRD (X-ray Diffractometer) structural analysis. In this research, an EICP reaction medium is injected into a microfluidic chip to observe the entire process of carbonate precipitation through several cycles of EICP treatment in the porous medium. Once the process of mineral precipitation is completed, water is injected into the microfluidic chip with different flow rates to evaluate the stability of carbonates during fluid flow injection.

  8. Intrinsically disordered proteins aggregate at fungal cell-to-cell channels and regulate intercellular connectivity

    PubMed Central

    Lai, Julian; Koh, Chuan Hock; Tjota, Monika; Pieuchot, Laurent; Raman, Vignesh; Chandrababu, Karthik Balakrishna; Yang, Daiwen; Wong, Limsoon; Jedd, Gregory

    2012-01-01

    Like animals and plants, multicellular fungi possess cell-to-cell channels (septal pores) that allow intercellular communication and transport. Here, using a combination of MS of Woronin body-associated proteins and a bioinformatics approach that identifies related proteins based on composition and character, we identify 17 septal pore-associated (SPA) proteins that localize to the septal pore in rings and pore-centered foci. SPA proteins are not homologous at the primary sequence level but share overall physical properties with intrinsically disordered proteins. Some SPA proteins form aggregates at the septal pore, and in vitro assembly assays suggest aggregation through a nonamyloidal mechanism involving mainly α-helical and disordered structures. SPA loss-of-function phenotypes include excessive septation, septal pore degeneration, and uncontrolled Woronin body activation. Together, our data identify the septal pore as a complex subcellular compartment and focal point for the assembly of unstructured proteins controlling diverse aspects of intercellular connectivity. PMID:22955885

  9. Indirect Reconstruction of Pore Morphology for Parametric Computational Characterization of Unidirectional Porous Iron.

    PubMed

    Kovačič, Aljaž; Borovinšek, Matej; Vesenjak, Matej; Ren, Zoran

    2018-01-26

    This paper addresses the problem of reconstructing realistic, irregular pore geometries of lotus-type porous iron for computer models that allow for simple porosity and pore size variation in computational characterization of their mechanical properties. The presented methodology uses image-recognition algorithms for the statistical analysis of pore morphology in real material specimens, from which a unique fingerprint of pore morphology at a certain porosity level is derived. The representative morphology parameter is introduced and used for the indirect reconstruction of realistic and statistically representative pore morphologies, which can be used for the generation of computational models with an arbitrary porosity. Such models were subjected to parametric computer simulations to characterize the dependence of engineering elastic modulus on the porosity of lotus-type porous iron. The computational results are in excellent agreement with experimental observations, which confirms the suitability of the presented methodology of indirect pore geometry reconstruction for computational simulations of similar porous materials.

  10. The effect of learning multimedia on students’ understanding of macroscopic, sub-microscopic, and symbolic levels in electrolyte and nonelectrolyte

    NASA Astrophysics Data System (ADS)

    Eliyawati; Rohman, I.; Kadarohman, A.

    2018-05-01

    This research aims to investigate the effect of learning multimedia on students’ understanding of macroscopic, sub-microscopic, and symbolic levels in electrolyte and nonelectrolyte topic. The quasi-experimental with one group pre-test post-test design was used. Thirty-five students were experimental class and another thirty-five were control class. The instrument was used is three representation levels. The t-test was performed on average level of 95% to identify the significant difference between experimental class and control class. The results show that the normalized gain average of experimental class is 0.75 (high) and the normalized gain average of control class is 0.45 (moderate). There is significant difference in students’ understanding in sub-microscopic and symbolic levels and there is not significant difference of students’ understanding in macroscopic level between experimental class and control class. The normalized gain of students’ understanding of macroscopic, sub-microscopic and symbolic in experimental class are 0.6 (moderate), 0.75 (high), and 0.64 (moderate), while the normalized gain of students’ understanding of macroscopic, sub-microscopic and symbolic in control class are 0.49 (moderate), 0.39 (high), and 0.3 (moderate). Therefore, it can be concluded that learning multimedia can help in improving students’ understanding especially in sub-microscopic and symbolic levels.

  11. Pore-scale supercritical CO 2 dissolution and mass transfer under drainage conditions

    DOE PAGES

    Chang, Chun; Zhou, Quanlin; Oostrom, Mart; ...

    2016-12-05

    Recently, both core- and pore-scale imbibition experiments have shown non-equilibrium dissolution of supercritical CO 2 (scCO 2) and a prolonged depletion of residual scCO 2. In this paper, pore-scale scCO 2 dissolution and mass transfer under drainage conditions were investigated using a two-dimensional heterogeneous micromodel and a novel fluorescent water dye with a sensitive pH range between 3.7 and 6.5. Drainage experiments were conducted at 9 MPa and 40 °C by injecting scCO 2 into the sandstone-analogue pore network initially saturated by water without dissolved CO 2 (dsCO 2). During the experiments, time-lapse images of dye intensity, reflecting water pH,more » were obtained. These images show non-uniform pH in individual pores and pore clusters, with average pH levels gradually decreasing with time. Further analysis on selected pores and pore clusters shows that (1) rate-limited mass transfer prevails with slowly decreasing pH over time when the scCO 2-water interface area is low with respect to the volume of water-filled pores and pore clusters, (2) fast scCO 2 dissolution and phase equilibrium occurs when scCO 2 bubbles invade into water-filled pores, significantly enhancing the area-to-volume ratio, and (3) a transition from rate-limited to diffusion-limited mass transfer occurs in a single pore when a medium area-to-volume ratio is prevalent. The analysis also shows that two fundamental processes – scCO 2 dissolution at phase interfaces and diffusion of dsCO 2 at the pore scale (10–100 µm) observed after scCO 2 bubble invasion into water-filled pores without pore throat constraints – are relatively fast. The overall slow dissolution of scCO 2 in the millimeter-scale micromodel can be attributed to the small area-to-volume ratios that represent pore-throat configurations and characteristics of phase interfaces. Finally, this finding is applicable for the behavior of dissolution at pore, core, and field scales when water-filled pores and pore clusters of varying size are surrounded by scCO 2 at narrow pore throats.« less

  12. Pore-scale supercritical CO 2 dissolution and mass transfer under drainage conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Chun; Zhou, Quanlin; Oostrom, Mart

    Recently, both core- and pore-scale imbibition experiments have shown non-equilibrium dissolution of supercritical CO 2 (scCO 2) and a prolonged depletion of residual scCO 2. In this paper, pore-scale scCO 2 dissolution and mass transfer under drainage conditions were investigated using a two-dimensional heterogeneous micromodel and a novel fluorescent water dye with a sensitive pH range between 3.7 and 6.5. Drainage experiments were conducted at 9 MPa and 40 °C by injecting scCO 2 into the sandstone-analogue pore network initially saturated by water without dissolved CO 2 (dsCO 2). During the experiments, time-lapse images of dye intensity, reflecting water pH,more » were obtained. These images show non-uniform pH in individual pores and pore clusters, with average pH levels gradually decreasing with time. Further analysis on selected pores and pore clusters shows that (1) rate-limited mass transfer prevails with slowly decreasing pH over time when the scCO 2-water interface area is low with respect to the volume of water-filled pores and pore clusters, (2) fast scCO 2 dissolution and phase equilibrium occurs when scCO 2 bubbles invade into water-filled pores, significantly enhancing the area-to-volume ratio, and (3) a transition from rate-limited to diffusion-limited mass transfer occurs in a single pore when a medium area-to-volume ratio is prevalent. The analysis also shows that two fundamental processes – scCO 2 dissolution at phase interfaces and diffusion of dsCO 2 at the pore scale (10–100 µm) observed after scCO 2 bubble invasion into water-filled pores without pore throat constraints – are relatively fast. The overall slow dissolution of scCO 2 in the millimeter-scale micromodel can be attributed to the small area-to-volume ratios that represent pore-throat configurations and characteristics of phase interfaces. Finally, this finding is applicable for the behavior of dissolution at pore, core, and field scales when water-filled pores and pore clusters of varying size are surrounded by scCO 2 at narrow pore throats.« less

  13. Pore-scale supercritical CO 2 dissolution and mass transfer under drainage conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Chun; Zhou, Quanlin; Oostrom, Mart

    Abstract: Recently, both core- and pore-scale imbibition experiments have shown non-equilibrium dissolution of supercritical CO 2 (scCO 2) and a prolonged depletion of residual scCO 2. In this study, pore-scale scCO 2 dissolution and mass transfer under drainage conditions were investigated using a two-dimensional heterogeneous micromodel and a novel fluorescent water dye with a sensitive pH range between 3.7 and 6.5. Drainage experiments were conducted at 9 MPa and 40 °C by injecting scCO 2 into the sandstone-analogue pore network initially saturated by water without dissolved CO 2 (dsCO 2). During the experiments, time-lapse images of dye intensity, reflecting watermore » pH, were obtained. These images show non-uniform pH in individual pores and pore clusters, with average pH levels gradually decreasing with time. Further analysis on selected pores and pore clusters shows that (1) rate-limited mass transfer prevails with slowly decreasing pH over time when the scCO 2-water interface area is low with respect to the volume of water-filled pores and pore clusters, (2) fast scCO 2 dissolution and phase equilibrium occurs when scCO 2 bubbles invade into water-filled pores, significantly enhancing the area-to-volume ratio, and (3) a transition from rate-limited to diffusion-limited mass transfer occurs in a single pore when a medium area-to-volume ratio is prevalent. The analysis also shows that two fundamental processes – scCO 2 dissolution at phase interfaces and diffusion of dsCO 2 at the pore scale (10-100 µm) observed after scCO 2 bubble invasion into water-filled pores without pore throat constraints – are relatively fast. The overall slow dissolution of scCO 2 in the millimeter-scale micromodel can be attributed to the small area-to-volume ratios that represent pore-throat configurations and characteristics of phase interfaces. This finding is applicable for the behavior of dissolution at pore, core, and field scales when water-filled pores and pore clusters of varying size are surrounded by scCO 2 at narrow pore throats.« less

  14. Continuously Adjustable, Molecular-Sieving “Gate” on 5A Zeolite for Distinguishing Small Organic Molecules by Size

    PubMed Central

    Song, Zhuonan; Huang, Yi; Xu, Weiwei L.; Wang, Lei; Bao, Yu; Li, Shiguang; Yu, Miao

    2015-01-01

    Zeolites/molecular sieves with uniform, molecular-sized pores are important for many adsorption-based separation processes. Pore size gaps, however, exist in the current zeolite family. This leads to a great challenge of separating molecules with size differences at ~0.01 nm level. Here, we report a novel concept, pore misalignment, to form a continuously adjustable, molecular-sieving “gate” at the 5A zeolite pore entrance without sacrificing the internal capacity. Misalignment of the micropores of the alumina coating with the 5A zeolite pores was related with and facilely adjusted by the coating thickness. For the first time, organic molecules with sub-0.01 nm size differences were effectively distinguished via appropriate misalignment. This novel concept may have great potential to fill the pore size gaps of the zeolite family and realize size-selective adsorption separation. PMID:26358480

  15. Continuously adjustable, molecular-sieving “gate” on 5A zeolite for distinguishing small organic molecules by size

    DOE PAGES

    Song, Zhuonan; Huang, Yi; Xu, Weiwei L.; ...

    2015-09-11

    Zeolites/molecular sieves with uniform, molecular-sized pores are important for many adsorption-based separation processes. Pore size gaps, however, exist in the current zeolite family. This leads to a great challenge of separating molecules with size differences at ~0.01 nm level. Here, we report a novel concept, pore misalignment, to form a continuously adjustable, molecular-sieving “gate” at the 5A zeolite pore entrance without sacrificing the internal capacity. Misalignment of the micropores of the alumina coating with the 5A zeolite pores was related with and facilely adjusted by the coating thickness. For the first time, organic molecules with sub-0.01 nm size differences weremore » effectively distinguished via appropriate misalignment. Lastly, this novel concept may have great potential to fill the pore size gaps of the zeolite family and realize size-selective adsorption separation.« less

  16. Analytical modeling of mercury injection in high-rank coalbed methane reservoirs based on pores and microfractures: a case study of the upper carboniferous Taiyuan Formation in the Heshun block of the Qinshui Basin, central China

    NASA Astrophysics Data System (ADS)

    Gu, Yang; Ding, Wenlong; Yin, Shuai; Wang, Ruyue; Mei, Yonggui; Liu, Jianjun

    2017-03-01

    The coalbed gas reservoirs in the Qinshui Basin in central China are highly heterogeneous; thus, the reservoir characteristics are difficult to assess. Research on the pore structure of a reservoir can provide a basis for understanding the occurrence and seepage mechanisms of coal reservoirs, rock physics modeling and the formulation of rational development plans. Therefore, the pore structure characteristics of the coalbed gas reservoirs in the high rank bituminous coal in the No. 15 coal seam of the Carboniferous Taiyuan Group in the Heshun coalbed methane (CBM) blocks in the northeastern Qinshui Basin were analyzed based on pressure mercury and scanning electron microscopy data. The results showed that the effective porosity system of the coal reservoir was mainly composed of pores and microfractures and that the pore throat configuration of the coal reservoir was composed of pores and microthroats. A model was developed based on the porosity and microfractures of the high rank coal rock and the mercury injection and drainage curves. The mercury injection curve model and the coal permeability are well correlated and were more reliable for the analysis of coal and rock pore system connectivity than the mercury drainage curve model. Coal rocks with developed microfractures are highly permeable; the production levels are often high during the initial drainage stages, but they decrease rapidly. A significant portion of the natural gas remains in the strata and cannot be exploited; therefore, the ultimate recovery is rather low. Coal samples with underdeveloped microfractures have lower permeabilities. While the initial production levels are lower, the production cycle is longer, and the ultimate recovery is higher. Therefore, the initial production levels of coal reservoirs with poorly developed microfractures in some regions of China may be low. However, over the long term, due to their higher ultimate recoveries and longer production cycles, the total gas production levels will increase. This understanding can provide an important reference for developing appropriate CBM development plans.

  17. Intrinsic property measurement of surfactant-templated mesoporous silica films using time-resolved single-molecule imaging.

    PubMed

    Kennard, Raymond; DeSisto, William J; Giririjan, Thanu Praba; Mason, Michael D

    2008-04-07

    Mesoporous silica membranes fabricated by the surfactant-templated sol-gel process have received attention because of the potential to prepare membranes with a narrow pore size distribution and ordering of the interconnected pores. Potential applications include ultrafiltration, biological separations and drug delivery, and separators in lithium-ion batteries. Despite advancements in synthesis and characterization of these membranes, a quantitative description of the membrane microstructure remains a challenge. Currently the membrane microstructure is characterized by the combination of results from several techniques, i.e., gas permeance testing, x-ray diffraction scanning electron microscopy, transmission electron microscopy, and permporometry. The results from these ensemble methods are then compiled and the data fitted to a particular flow model. Although these methods are very effective in determining membrane performance, general pore size distribution, and defect concentration, they are unable to monitor molecular paths through the membrane and quantitatively measure molecular interactions between the molecular specie and pore network. Single-molecule imaging techniques enable optical measurements that probe materials on nanometer length scales through observation of individual molecules without the influence of averaging. Using single-molecule imaging spectroscopy, we can quantitatively characterize the interaction between the probe molecule and the interior of the pore within mesoporous silica membranes. This approach is radically different from typical membrane characterization methods in that it has the potential to spatially sample the underlying pore structure distribution, the surface energy, and the transport properties. Our hope is that this new fundamental knowledge can be quantitatively linked to both the preparation and the performance of membranes, leading to the advancement of membrane science and technology. Fluorescent molecules, 1,1-dioctadecyl-3,3,3,3-tetramethylindo-carbocyanine perchlorate, used to interrogate the available free volume in their vicinity, were loaded into the mesoporous silica membranes at subnanomolar concentrations. The mesoporous silica films were prepared using a nonionic ethylene oxide-propylene oxide-ethylene oxide triblock copolymer surfactant, Pluronic P123, on single crystal silicon substrates using dip coating of a silica sol. Membranes were prepared resulting in an average pore diameter of approximately 5 nm as measured by helium, nitrogen permeance, and porosimetry. Fluorescent images and time transient experiments were recorded using a custom built single-molecule scanning confocal microscope at differing temperatures (10, 20, 30, 40, and 50 degrees C). Time-dependent polarization anisotropy was used to obtain the enthalpy of adsorption and Henry's law constant of the probe molecule.

  18. Intrinsic property measurement of surfactant-templated mesoporous silica films using time-resolved single-molecule imaging

    NASA Astrophysics Data System (ADS)

    Kennard, Raymond; DeSisto, William J.; Giririjan, Thanu Praba; Mason, Michael D.

    2008-04-01

    Mesoporous silica membranes fabricated by the surfactant-templated sol-gel process have received attention because of the potential to prepare membranes with a narrow pore size distribution and ordering of the interconnected pores. Potential applications include ultrafiltration, biological separations and drug delivery, and separators in lithium-ion batteries. Despite advancements in synthesis and characterization of these membranes, a quantitative description of the membrane microstructure remains a challenge. Currently the membrane microstructure is characterized by the combination of results from several techniques, i.e., gas permeance testing, x-ray diffraction scanning electron microscopy, transmission electron microscopy, and permporometry. The results from these ensemble methods are then compiled and the data fitted to a particular flow model. Although these methods are very effective in determining membrane performance, general pore size distribution, and defect concentration, they are unable to monitor molecular paths through the membrane and quantitatively measure molecular interactions between the molecular specie and pore network. Single-molecule imaging techniques enable optical measurements that probe materials on nanometer length scales through observation of individual molecules without the influence of averaging. Using single-molecule imaging spectroscopy, we can quantitatively characterize the interaction between the probe molecule and the interior of the pore within mesoporous silica membranes. This approach is radically different from typical membrane characterization methods in that it has the potential to spatially sample the underlying pore structure distribution, the surface energy, and the transport properties. Our hope is that this new fundamental knowledge can be quantitatively linked to both the preparation and the performance of membranes, leading to the advancement of membrane science and technology. Fluorescent molecules, 1,1-dioctadecyl-3,3,3,3-tetramethylindo-carbocyanine perchlorate, used to interrogate the available free volume in their vicinity, were loaded into the mesoporous silica membranes at subnanomolar concentrations. The mesoporous silica films were prepared using a nonionic ethylene oxide-propylene oxide-ethylene oxide triblock copolymer surfactant, Pluronic P123, on single crystal silicon substrates using dip coating of a silica sol. Membranes were prepared resulting in an average pore diameter of approximately 5nm as measured by helium, nitrogen permeance, and porosimetry. Fluorescent images and time transient experiments were recorded using a custom built single-molecule scanning confocal microscope at differing temperatures (10, 20, 30, 40, and 50°C). Time-dependent polarization anisotropy was used to obtain the enthalpy of adsorption and Henry's law constant of the probe molecule.

  19. Pre-activation of aerosol particles by ice preserved in pores

    NASA Astrophysics Data System (ADS)

    Marcolli, Claudia

    2017-02-01

    Pre-activation denotes the capability of particles or materials to nucleate ice at lower relative humidities or higher temperatures compared to their intrinsic ice nucleation efficiency after having experienced an ice nucleation event or low temperature before. This review presumes that ice preserved in pores is responsible for pre-activation and analyses pre-activation under this presumption. Idealized trajectories of air parcels are used to discuss the pore characteristics needed for ice to persist in pores and to induce macroscopic ice growth out of the pores. The pore width needed to keep pores filled with water decreases with decreasing relative humidity as described by the inverse Kelvin equation. Thus, narrow pores remain filled with ice well below ice saturation. However, the smaller the pore width, the larger the melting and freezing point depressions within the pores. Therefore, pre-activation due to pore ice is constrained by the melting of ice in narrow pores and the sublimation of ice from wide pores imposing restrictions on the temperature and relative humidity range of pre-activation for cylindrical pores. Ice is better protected in ink-bottle-shaped pores with a narrow opening leading to a large cavity. However, whether pre-activation is efficient also depends on the capability of ice to grow macroscopically, i.e. out of the pore. A strong effect of pre-activation is expected for swelling pores, because at low relative humidity (RH) their openings narrow and protect the ice within them against sublimation. At high relative humidities, they open up and the ice can grow to macroscopic size and form an ice crystal. Similarly, ice protected in pockets is perfectly sheltered against sublimation but needs the dissolution of the surrounding matrix to be effective. Pores partially filled with condensable material may also show pre-activation. In this case, complete filling occurs at lower RH than for empty pores and freezing shifts to lower temperatures.Pre-activation experiments confirm that materials susceptible to pre-activation are indeed porous. Pre-activation was observed for clay minerals like illite, kaolinite, and montmorillonite with inherent porosity. The largest effect was observed for the swelling clay mineral montmorillonite. Some materials may acquire porosity, depending on the formation and processing conditions. Particles of CaCO3, meteoritic material, and volcanic ash showed pre-activation for some samples or in some studies but not in other ones. Quartz and silver iodide were not susceptible to pre-activation.Atmospheric relevance of pre-activation by ice preserved in pores may not be generally given but depend on the atmospheric scenario. Lower-level cloud seeding by pre-activated particles released from high-level clouds crucially depends on the ability of pores to retain ice at the relative humidities and temperatures of the air masses they pass through. Porous particles that are recycled in wave clouds may show pre-activation with subsequent ice growth as soon as ice saturation is exceeded after having passed a first cloud event. Volcanic ash particles and meteoritic material likely influence ice cloud formation by pre-activation. Therefore, the possibility of pre-activation should be considered when ice crystal number densities in clouds exceed the number of ice-nucleating particles measured at the cloud forming temperature.

  20. Physical and chemical properties and adsorption type of activated carbon prepared from plum kernels by NaOH activation.

    PubMed

    Tseng, Ru-Ling

    2007-08-25

    Activated carbon was prepared from plum kernels by NaOH activation at six different NaOH/char ratios. The physical properties including the BET surface area, the total pore volume, the micropore ratio, the pore diameter, the burn-off, and the scanning electron microscope (SEM) observation as well as the chemical properties, namely elemental analysis and temperature programmed desorption (TPD), were measured. The results revealed a two-stage activation process: stage 1 activated carbons were obtained at NaOH/char ratios of 0-1, surface pyrolysis being the main reaction; stage 2 activated carbons were obtained at NaOH/char ratios of 2-4, etching and swelling being the main reactions. The physical properties of stage 2 activated carbons were similar, and specific area was from 1478 to 1887m(2)g(-1). The results of reaction mechanism of NaOH activation revealed that it was apparently because of the loss ratio of elements C, H, and O in the activated carbon, and the variations in the surface functional groups and the physical properties. The adsorption of the above activated carbons on phenol and three kinds of dyes (MB, BB1, and AB74) were used for an isotherm equilibrium adsorption study. The data fitted the Langmuir isotherm equation. Various kinds of adsorbents showed different adsorption types; separation factor (R(L)) was used to determine the level of favorability of the adsorption type. In this work, activated carbons prepared by NaOH activation were evaluated in terms of their physical properties, chemical properties, and adsorption type; and activated carbon PKN2 was found to have most application potential.

  1. Characterization and enhanced nonlinear optical limiting response in carbon nanodots dispersed in solid-state hybrid organically modified silica gel glasses

    NASA Astrophysics Data System (ADS)

    Huang, Li; Zheng, Chan; Guo, Qiaohang; Huang, Dongdong; Wu, Xiukai; Chen, Ling

    2018-02-01

    Freely dispersed carbon nanodots (CNDs) were introduced into a 3-glycidoxy-propyltrimethoxysilane modified silicate gel glass (i.e. an organically modified silica or ORMOSIL) by a highly efficient and simple sol-gel process, which could be easily extended to prepare functional molecules/nanoparticles solid state optoelectronic devices. Scanning electron microscope imaging, Fourier transform infrared spectroscopy, pore structure measurements, ultraviolet-visible spectroscopy, and fluorescence spectroscopy were used to investigate the surface characteristics, structure, texture, and linear optical properties of the CND/SiO2 ORMOSIL gel glasses. Images and UV/Vis spectra confirmed the successful dispersion of CNDs in the ORMOSIL gel glass. The surface characteristics and pore structure of the host SiO2 matrix were markedly changed through the introduction of the CNDs. The linear optical properties of the guest CNDs were also affected by the sol-gel procedure. The nonlinear optical (NLO) properties of the CNDs were investigated by a nanosecond open-aperture Z-scan technique at 532 nm both in liquid and solid matrices. We found that the NLO response of the CNDs was considerably improved after their incorporation into the ORMOSIL gel glasses. Possible enhancement mechanisms were also explored. The nonlinear extinction coefficient gradually increased while the optical limiting (OL) threshold decreased as the CND doping level was increased. This result suggests that the NLO and OL properties of the composite gel glasses can be optimized by tuning the concentration of CNDs in the gel glass matrix. Our findings show that CND/SiO2 ORMOSIL gel glasses are promising candidates for optical limiters to protect sensitive instruments and human eyes from damage caused by high power lasers.

  2. [Study on spectroscopic characterization and property of PES/ micro-nano cellulose composite membrane material].

    PubMed

    Tang, Huan-Wei; Zhang, Li-Ping; Li, Shuai; Zhao, Guang-Jie; Qin, Zhu; Sun, Su-Qin

    2010-03-01

    In the present paper, the functional groups of PES/micro-nano cellulose composite membrane materials were characterized by Fourier transform infrared spectroscopy (FTIR). Also, changes in crystallinity in composite membrane materials were analyzed using X-ray diffraction (XRD). The effects of micro-nano cellulose content on hydrophilic property of composite membrane material were studied by measuring hydrophilic angle. The images of support layer structure of pure PES membrane material and composite membrane material were showed with scanning electron microscope (SEM). These results indicated that in the infrared spectrogram, the composite membrane material had characteristic peaks of both PES and micro-nano cellulose without appearance of other new characteristics peaks. It revealed that there were no new functional groups in the composite membrane material, and the level of molecular compatibility was achieved, which was based on the existence of inter-molecular hydrogen bond association between PES and micro-nano cellulose. Due to the existence of micro-nano cellulose, the crystallinity of composite membrane material was increased from 37.7% to 47.9%. The more the increase in micro-nano cellulose mass fraction, the better the van de Waal force and hydrogen bond force between composite membrane material and water were enhanced. The hydrophilic angle of composite membrane material was decreased from 55.8 degrees to 45.8 degrees and the surface energy was raised from 113.7 to 123.5 mN x m(-2). Consequently, the hydrophilic property of composite membrane material was improved. The number of pores in the support layer of composite membrane material was lager than that of pure PES membrane. Apparently, pores were more uniformly distributed.

  3. Stability of micro-Cassie states on rough substrates

    NASA Astrophysics Data System (ADS)

    Guo, Zhenjiang; Liu, Yawei; Lohse, Detlef; Zhang, Xuehua; Zhang, Xianren

    2015-06-01

    We numerically study different forms of nanoscale gaseous domains on a model for rough surfaces. Our calculations based on the constrained lattice density functional theory show that the inter-connectivity of pores surrounded by neighboring nanoposts, which model the surface roughness, leads to the formation of stable microscopic Cassie states. We investigate the dependence of the stability of the micro-Cassie states on substrate roughness, fluid-solid interaction, and chemical potential and then address the differences between the origin of the micro-Cassie states and that of surface nanobubbles within similar models. Finally, we show that the micro-Cassie states share some features with experimentally observed micropancakes at solid-water interfaces.

  4. Fabrication of gradient optical filter containing anisotropic Bragg nanostructure.

    PubMed

    Cho, Bomin; Um, Sungyong; Woo, Hee-Gweon; Sohn, Honglae

    2011-08-01

    New gradient optical filters containing asymmetric Bragg structure were prepared from the distributed Bragg reflector (DBR) porous silicon (PSi). Anisotropic DBR PSi displaying a rainbow-colored reflection was generated by using an asymmetric etching configuration. Flexible anisotropic DBR PSi composite films were obtained by casting of polymer solution onto anisotropic DBR PSi thin films. The surface and cross-sectional images images of anisotropic DBR PSi composite films obtained with cold field emission scanning electron microscope indicated that the average pore size and the thickness of porous layer decreased as the lateral distance increased. As lateral distance increased, the reflection resonance shifted to shorter wavelength.

  5. Characterization of Nanoencapsulated Centella asiatica and Zingiber officinale Extract Using Combination of Malto Dextrin and Gum Arabic as Matrix

    NASA Astrophysics Data System (ADS)

    Meliana, Y.; Harmami, S. B.; Restu, W. K.

    2017-02-01

    This research investigated nanoencapsulation of Centella asiatica and Zingiber officinale extract. The encapsulated extract was used as a complex matrix of multi-layered interfacial membranes between malto dextrin and gum Arabic. Characterization of nanoencapsulation using Transmission Electron Microscope (TEM), Fourier Transform Infrared Spectroscopy (FTIR) and BET surface area (SA) showed the morphology, functional group and cumulative adsorption in the surface area of pores. The TEM image of the nanoencapsulated powders of Centella asiatica and Zingiber officinale extract showed a nearly spherical shape with the particle size of 664 nm from its average radius.

  6. Probing the Dynamics of Biomineralization at the Pore Scale Using X-ray Computed Tomography

    NASA Astrophysics Data System (ADS)

    Armstrong, R. T.; Ajo Franklin, J. B.

    2009-12-01

    Biomineralization is a natural subsurface process that upon stimulation can dramatically affect soil mechanics and hydraulics. This work presents the results of a study where synchrotron based X-Ray Computed Microtomography (CMT) is used to investigate temporal cementation dynamics and the spatial distribution of biogenic CaCO3 at the pore-scale, thus, shedding light on pore clogging and contact cementation. To facilitate these studies we have developed a family of flow-through bioreactors (ID 8 mm) which can be scanned continuously during precipitation experiments. The reactor is also equipped with differential pressure transducers to allow measurement of sample permeability. Porosity permeability correlations, cementation morphology, CaCO3 spatial distribution, and bulk cementation are addressed herein. Sporosarcina pasteurii (formally Bacillus pasteurii), our model organism, is a prevalent aerobic, motile, soil microbe with a very active urease enzyme. Hydrolysis of urea by the urease enzyme generates carbonate ions, ammonium and an increase in pH which favors carbonate precipitation if appropriate metal cations (e.g. Ca2+) are available. Brightfield microscope results show that precipitation occurs within close proximity of the cell membrane reducing microbial motility and forming a CaCO3 precipitate with a "fluffy" appearance. Besides providing an aqueous environment favorable for mineralization S. pasteurii also provides nucleation sites on its cell membrane. Since this microbe is very effective at inducing carbonate precipitation over a relativity short time span (2-3 days), it was used exclusively in our experiments. Prior to CMT imaging the feasibility of temporal imaging was investigated. Viable cell counts taken before and after imaging showed that a considerable amount of bacteria survived the monochromatic (30 KeV) X-ray exposure. Cementation experiments initiated with inoculation of the CMT column with microbes and urea media, cells were allowed to attach to particle surfaces, then subjected to sequential cementation treatments of urea media and calcium chloride. Current results indicate a morphological difference in formed CaCO3 depending on microbial acclimation to the system (i.e. surface attached or free floating microbes) and CaCO3 spatial arrangements within the porous matrix (i.e. pore necks or pore bodies). Our initial studies indicate that synchrotron CMT will be a powerful tool for pore-scale monitoring of biomineralization, a process relevant to geological carbon sequestration, bioremediation, enhanced oil recovery, slope stability and etc.

  7. Soil Pore Characteristics, an Underappreciated Regulatory Factor in GHGs Emission and C Stabilization

    NASA Astrophysics Data System (ADS)

    Toosi, E. R.; Yu, J.; Doane, T. A.; Guber, A.; Rivers, M. L.; Marsh, T. L.; Ali, K.; Kravchenko, A. N.

    2015-12-01

    Enduring challenges in understanding soil organic matter (SOM) stability and emission of greenhouse gases (GHGs) from soil stem from complexities of soil processes, many of which occur at micro-scales. The goal of this study is to evaluate the interactive effects soil pore characteristics, soil moisture levels, inherent SOM levels and properties, and substrate quality, on GHGs emission, and accelerated decomposition of native SOM following addition of fresh substrate i.e. priming. Our core hypothesis is that soil pore characteristics play a major role as a mediator in (i) the decomposition of organic matter regardless of its source (i.e. litter vs. native SOM) or substrate quality, as well as in (ii) GHGs emissions. Samples with prevalence of small (<10 μm) vs. large (>30 μm) pores were prepared from soils with similar properties but under long-term contrasting management. The samples were incubated (110 d) at low and optimum soil moisture conditions after addition of high quality (13C-soybean) and low quality (13C-corn) substrate. Headspace gas was analyzed for 13C-CO2 and GHGs on a regularly basis (day 1, 3, 7, 14, 24, 36, 48, 60, 72, 90, and 110). Selected samples were scanned at the early stage of decomposition (7, 14, 24 d) at 2-6 μm resolutions using X-ray computed μ tomography in order to: (1) quantify soil pore characteristics; (2) visualize and quantify distribution of soil moisture within samples of different pore characteristics; and (3) to visualize and measure losses of decomposing plant residue. Initial findings indicate that, consistent with our hypotheses, pore characteristics influenced GHGs emission, and intensity and pattern of plant residue decomposition. The importance of pores was highly pronounced in presence of added plant residue where greater N2O emission occurred in samples with dominant large pores, in contrast to CO2. Further findings will be discussed upon completion of the study and analysis of the results.

  8. A thermodynamic approach to alamethicin pore formation.

    PubMed

    Rahaman, Asif; Lazaridis, Themis

    2014-01-01

    The structure and energetics of alamethicin Rf30 monomer to nonamer in cylindrical pores of 5 to 11Å radius are investigated using molecular dynamics simulations in an implicit membrane model that includes the free energy cost of acyl chain hydrophobic area exposure. Stable, low energy pores are obtained for certain combinations of radius and oligomeric number. The trimer and the tetramer formed 6Å pores that appear closed while the larger oligomers formed open pores at their optimal radius. The hexamer in an 8Å pore and the octamer in an 11Å pore give the lowest effective energy per monomer. However, all oligomers beyond the pentamer have comparable energies, consistent with the observation of multiple conductance levels. The results are consistent with the widely accepted "barrel-stave" model. The N terminal portion of the molecule exhibits smaller tilt with respect to the membrane normal than the C terminal portion, resulting in a pore shape that is a hybrid between a funnel and an hourglass. Transmembrane voltage has little effect on the structure of the oligomers but enhances or decreases their stability depending on its orientation. Antiparallel bundles are lower in energy than the commonly accepted parallel ones and could be present under certain experimental conditions. Dry aggregates (without an aqueous pore) have lower average effective energy than the corresponding aggregates in a pore, suggesting that alamethicin pores may be excited states that are stabilized in part by voltage and in part by the ion flow itself. © 2013.

  9. New method for characterizing paper coating structures using argon ion beam milling and field emission scanning electron microscopy.

    PubMed

    Dahlström, C; Allem, R; Uesaka, T

    2011-02-01

    We have developed a new method for characterizing microstructures of paper coating using argon ion beam milling technique and field emission scanning electron microscopy. The combination of these two techniques produces extremely high-quality images with very few artefacts, which are particularly suited for quantitative analyses of coating structures. A new evaluation method has been developed by using marker-controlled watershed segmentation technique of the secondary electron images. The high-quality secondary electron images with well-defined pores makes it possible to use this semi-automatic segmentation method. One advantage of using secondary electron images instead of backscattered electron images is being able to avoid possible overestimation of the porosity because of the signal depth. A comparison was made between the new method and the conventional method using greyscale histogram thresholding of backscattered electron images. The results showed that the conventional method overestimated the pore area by 20% and detected around 5% more pores than the new method. As examples of the application of the new method, we have investigated the distributions of coating binders, and the relationship between local coating porosity and base sheet structures. The technique revealed, for the first time with direct evidence, the long-suspected coating non-uniformity, i.e. binder migration, and the correlation between coating porosity versus base sheet mass density, in a straightforward way. © 2010 The Authors Journal compilation © 2010 The Royal Microscopical Society.

  10. Improved plaque materials for aerospace nickel-cadmium cells

    NASA Technical Reports Server (NTRS)

    Luksha, E.; Gordy, D. J.

    1971-01-01

    Improved cadmium electrode substrates with precisely controlled microstructures for possible use in aerospace nickel-cadmium cells were prepared. The preparative technique was a powder metallurgical process in which a fugitive pore-former and a nickel powder were blended, then isostatically compacted, and subsequently sintered. Cadmium electrodes prepared from such substrates were cycle tested using an accelerated tortuous test regime. It was discovered that plaques of 60% or 80% porosity prepared with a 25 micron pore-former were better than state-of-the-art electrodes in terms of efficienty and/or mechanical strength. The 60% structures were particularly outstanding in this respect in that they had efficiencies only 5-10 percentage points lower than state-of-the-art electrodes and vastly superior mechanical properties. This added strength was observed to eliminate cracking and physical degradation of the electrodes during processing and cycling. The cadmium electrodes prepared from the 80% porous substrates proved to be the best electrodes made during the course of the work from the point of view of highest efficiency. Three-point bend tests were used to measure mechanical properties of the plaques produced and also as a general characterization tool. In addition, the BET surface areas of selected specimens was determined. The SEM was used for judging microscopic uniformity and quantitatively determining the induced pore size and various other fine structures in the substrates. The technique of X-ray radiography was used to follow the bulk uniformity of the substrates at various stages of their processing.

  11. Edge contact angle and modified Kelvin equation for condensation in open pores.

    PubMed

    Malijevský, Alexandr; Parry, Andrew O; Pospíšil, Martin

    2017-08-01

    We consider capillary condensation transitions occurring in open slits of width L and finite height H immersed in a reservoir of vapor. In this case the pressure at which condensation occurs is closer to saturation compared to that occurring in an infinite slit (H=∞) due to the presence of two menisci that are pinned near the open ends. Using macroscopic arguments, we derive a modified Kelvin equation for the pressure p_{cc}(L;H) at which condensation occurs and show that the two menisci are characterized by an edge contact angle θ_{e} that is always larger than the equilibrium contact angle θ, only equal to it in the limit of macroscopic H. For walls that are completely wet (θ=0) the edge contact angle depends only on the aspect ratio of the capillary and is well described by θ_{e}≈sqrt[πL/2H] for large H. Similar results apply for condensation in cylindrical pores of finite length. We test these predictions against numerical results obtained using a microscopic density-functional model where the presence of an edge contact angle characterizing the shape of the menisci is clearly visible from the density profiles. Below the wetting temperature T_{w} we find very good agreement for slit pores of widths of just a few tens of molecular diameters, while above T_{w} the modified Kelvin equation only becomes accurate for much larger systems.

  12. Deposition of phosphate coatings on titanium within scaffold structure.

    PubMed

    Trybuś, Bartłomiej; Zieliński, Andrzej; Beutner, Rene; Seramak, Tomasz; Scharnweber, Dieter

    2017-01-01

    Existing knowledge about the appearance, thickness, and chemical composition of phosphate coatings on titanium inside porous structures is insufficient. Such knowledge is important for the design and fabrication of porous implants. Metallic scaffolds were fabricated by selective laser melting of 316L stainless steel powder. Phosphate coatings were deposited on Ti sensors placed either outside the scaffolds or in the holes in the scaffolds. The electrochemically-assisted cathodic deposition of phosphate coatings was performed under galvanostatic conditions in an electrolyte containing the calcium and phosphate ions. The phosphate deposits were microscopically investigated; this included the performance of mass weight measurements and chemical analyses of the content of Ca2+ and  24 PO ions after the dissolution of deposits. The thicknesses of the calcium phosphate coatings were about 140 and 200 nm for isolated titanium sensors and 170 and 300 nm for titanium sensors placed inside pores. Deposition of calcium phosphate occurred inside the pores up to 150 mm below the scaffold surface. The deposits were rich in Ca, with a Ca/P ratio ranging from 2 to 2.5. Calcium phosphate coatings can be successfully deposited on a Ti surface inside a model scaffold. An increase in cathodic current results in an increase in coating thickness. Any decrease in the cathodic current inside the porous structure is slight. The calcium phosphate inside the pores has a much higher Ca/P ratio than that of stoichiometric HAp, likely due to a gradual increase in Ca fraction with distance from the surface.

  13. Cytotoxicity investigation of a new hydroxyapatite scaffold with improved structural design.

    PubMed

    Sjerobabin, Nikola; Čolović, Božana; Petrović, Milan; Marković, Dejan; Živković, Slavoljub; Jokanović, Vukoman

    2016-01-01

    Biodegradable porous scaffolds are found to be very promising bone substitutes, acting as a temporary physical support to guide new tissue regeneration, until the entire scaffold is totally degraded and replaced by the new tissue. The aim of this study was to investigate cytotoxicity of a synthesized calcium hydroxyapatitebased scaffold, named ALBO-OS, with high porosity and optimal topology. The ALBO-OS scaffold was synthesized by the method of polymer foam template. The analysis of pore geometry and scaffold walls’ topography was made by scanning electron microscope (SEM). The biological investigations assumed the examinations of ALBO-OS cytotoxicity to mouse L929 fibroblasts, using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromidefor (MTT) and lactate dehydrogenase (LDH) tests and inverse phase microscopy. The SEM analysis showed high porosity with fair pore distribution and interesting morphology from the biological standpoint. The biological investigations showed that the material is not cytotoxic to L929 cells. Comparison of ALBO-OS with Bio-Oss, as the global gold standard as a bone substitute, showed similar results in MTT test, while LDH test showed significantly higher rate of cell multiplication with ALBO-OS. The scaffold design from the aspect of pore size, distribution, and topology seems to be very convenient for cell adhesion and occupation, which makes it a promising material as a bone substitute. The results of biological assays proved that ALBO-OS is not cytotoxic for L929 fibroblasts. In comparison with Bio-Oss, similar or even better results were obtained.

  14. Does the ‘Old Bag’ Make a Good ‘Wind Bag’?: Comparison of Four Fabrics Commonly Used as Exclusion Bags in Studies of Pollination and Reproductive Biology

    PubMed Central

    NEAL, PAUL R.; ANDERSON, GREGORY J.

    2004-01-01

    • Background and Aims Fabrics used in pollination bags may exclude pollen carried by biotic vectors, but have varying degrees of permeability to wind‐borne pollen. The permeability of bags to wind‐borne pollen may have important consequences in studies of pollination and reproductive biology. The permeability of four fabrics commonly used in the construction of pollination bags was examined. • Methods Deposition of wind‐borne pollen on horizontally and vertically oriented microscope slides was assessed on slides enclosed in pollination bags, as well as on control slides. • Key Results It was found that the permeability of fabrics to wind‐borne pollen, as measured by deposition on both horizontally and vertically oriented slides, decreased with pore size. However, deposition on horizontal slides was always greater than on vertical slides for a given fabric; this could manifest itself as differential success of pollination of flowers in bags—dependent on flower orientation. • Conclusions Obviously, bags with mesh size smaller than most pollen grains are impermeable to pollen. However, material for such bags is very expensive. In addition, it was also observed that bags with even moderately small pore size, such as pores (approx. 200 µm) in twisted fibre cotton muslin, offered highly significant barriers to passage of wind‐borne pollen. Such bags are sufficiently effective in most large‐sample‐size reproductive biology studies. PMID:15037446

  15. Laboratory characterization of shale pores

    NASA Astrophysics Data System (ADS)

    Nur Listiyowati, Lina

    2018-02-01

    To estimate the potential of shale gas reservoir, one needs to understand the characteristics of pore structures. Characterization of shale gas reservoir microstructure is still a challenge due to ultra-fine grained micro-fabric and micro level heterogeneity of these sedimentary rocks. The sample used in the analysis is a small portion of any reservoir. Thus, each measurement technique has a different result. It raises the question which methods are suitable for characterizing pore shale. The goal of this paper is to summarize some of the microstructure analysis tools of shale rock to get near-real results. The two analyzing pore structure methods are indirect measurement (MIP, He, NMR, LTNA) and direct observation (SEM, TEM, Xray CT). Shale rocks have a high heterogeneity; thus, it needs multiscale quantification techniques to understand their pore structures. To describe the complex pore system of shale, several measurement techniques are needed to characterize the surface area and pore size distribution (LTNA, MIP), shapes, size and distribution of pore (FIB-SEM, TEM, Xray CT), and total porosity (He pycnometer, NMR). The choice of techniques and methods should take into account the purpose of the analysis and also the time and budget.

  16. Refining Students' Explanations of an Unfamiliar Physical Phenomenon-Microscopic Friction

    NASA Astrophysics Data System (ADS)

    Corpuz, Edgar De Guzman; Rebello, N. Sanjay

    2017-08-01

    The first phase of this multiphase study involves modeling of college students' thinking of friction at the microscopic level. Diagnostic interviews were conducted with 11 students with different levels of physics backgrounds. A phenomenographic approach of data analysis was used to generate categories of responses which subsequently were used to generate a model of explanation. Most of the students interviewed consistently used mechanical interactions in explaining microscopic friction. According to these students, friction is due to the interlocking or rubbing of atoms. Our data suggest that students' explanations of microscopic friction are predominantly influenced by their macroscopic experiences. In the second phase of the research, teaching experiment was conducted with 18 college students to investigate how students' explanations of microscopic friction can be refined by a series of model-building activities. Data were analyzed using Redish's two-level transfer framework. Our results show that through sequences of hands-on and minds-on activities, including cognitive dissonance and resolution, it is possible to facilitate the refinement of students' explanations of microscopic friction. The activities seemed to be productive in helping students activate associations that refine their ideas about microscopic friction.

  17. Multiple pore conformations driven by asynchronous movements of voltage sensors in a eukaryotic sodium channel

    PubMed Central

    Goldschen-Ohm, Marcel P.; Capes, Deborah L.; Oelstrom, Kevin M.; Chanda, Baron

    2013-01-01

    Voltage-dependent Na+ channels are crucial for electrical signalling in excitable cells. Membrane depolarization initiates asynchronous movements in four non-identical voltage-sensing domains of the Na+ channel. It remains unclear to what extent this structural asymmetry influences pore gating as compared with outwardly rectifying K+ channels, where channel opening results from a final concerted transition of symmetric pore gates. Here we combine single channel recordings, cysteine accessibility and voltage clamp fluorimetry to probe the relationships between voltage sensors and pore conformations in an inactivation deficient Nav1.4 channel. We observe three distinct conductance levels such that DI-III voltage sensor activation is kinetically correlated with formation of a fully open pore, whereas DIV voltage sensor movement underlies formation of a distinct subconducting pore conformation preceding inactivation in wild-type channels. Our experiments reveal that pore gating in sodium channels involves multiple transitions driven by asynchronous movements of voltage sensors. These findings shed new light on the mechanism of coupling between activation and fast inactivation in voltage-gated sodium channels. PMID:23322038

  18. [Preparation of sodium alginate-nanohydroxyapatite composite material for bone repair and its biocompatibility].

    PubMed

    Wang, Yanmei; He, Jiacai; Li, Quanli; Shen, Jijia

    2014-02-01

    To prepare sodium alginate-nanohydroxyapatite composite material and to explore its feasibility as a bone repair material. Sodium alginate-nanohydroxyapatite composite material was prepared using chemical cross-linking and freeze-drying technology. The composite was characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM) and its porosity was measured by liquid displacement method. The fifth passage of bone marrow stromal stem cells (BMSCs) were incubated on the composite material and then growth was observed by inverted microscope and SEM. BMSCs were cultured with liquid extracts of the material, methyl thiazolyl tetrazolium (MTT) assay was used to calculate the relative growth rate (RGR) on 1, 3, 5 d and to evaluate the cytotoxicity. Fresh dog blood was added into the liquid extracts to conduct hemolysis test, the spectrophotometer was used to determine the optical density (OD) and to calculate the hemolysis rate. Sodium alginate-nanohydroxyapatite composite material displayed porosity, the porous pore rate was (88.6 +/- 4.5)%. BMSCs showed full stretching and vigorous growth under inverted microscope and SEM. BMSCs cultured with liquid extracts of the material had good activities. The toxicity of composite material was graded as 1. Hemolysis test results showed that the hemolysis rate of the composite material was 1.28%, thus meeting the requirement of medical biomaterials. The composite material fabricated in this study has high porosity and good biocompatibility.

  19. A multi-level pore-water sampler for permeable sediments

    USGS Publications Warehouse

    Martin, J.B.; Hartl, K.M.; Corbett, D.R.; Swarzenski, P.W.; Cable, J.E.

    2003-01-01

    The construction and operation of a multi-level piezometer (multisampler) designed to collect pore water from permeable sediments up to 230 cm below the sediment-water interface is described. Multisamplers are constructed from 1 1/2 inch schedule 80 PVC pipe. One-quarter-inch flexible PVC tubing leads from eight ports at variable depths to a 1 1/2 inch tee fitting at the top of the PVC pipe. Multisamplers are driven into the sediments using standard fence-post drivers. Water is pumped from the PVC tubing with a peristaltic pump. Field tests in Banana River Lagoon, Florida, demonstrate the utility of multisamplers. These tests include collection of multiple samples from the permeable sediments and reveal mixing between shallow pore water and overlying lagoon water.

  20. Ultrastructure and morphology of antennal sensilla of the adult diving beetle Cybister japonicus Sharp

    PubMed Central

    Huang, Jian-Ping; Zhu, Fang; Jiang, Xiang; Zhang, Shan-Gan; Ban, Li-Ping

    2017-01-01

    The morphology and distribution of the antennal sensilla of adult diving beetle Cybister japonicus Sharp (Dytiscidae, Coleoptera), have been examined. Five types of sensilla on the antennae were identified by scanning electron microscope (SEM) and transmission electron microscope (TEM). Sensilla placodea and elongated s. placodea are the most abundant types of sensilla, distributing only on the flagellum. Both these types of sensilla carry multiple pore systems with a typical function as chemoreceptors. Three types of s. coeloconica (Type I–III) were also identified, with the characterization of the pit-in-pit style, and carrying pegs externally different from each other. Our data indicated that both type I and type II of s. coleconica contain two bipolar neurons, while the type III of s. coleconica contains three dendrites in the peg. Two sensory dendrites in the former two sensilla are tightly embedded inside the dendrite sheath, with no space left for sensilla lymph. There are no specific morphological differences in the antennal sensilla observed between males and females, except that the males have longer antennae and more sensilla than the females. PMID:28358865

  1. Optical, Magnetic and Photocatalytic Activity Studies of Li, Mg and Sr Doped and Undoped Zinc Oxide Nanoparticles.

    PubMed

    Shanthi, S I; Poovaragan, S; Arularasu, M V; Nithya, S; Sundaram, R; Magdalane, C Maria; Kaviyarasu, K; Maaza, M

    2018-08-01

    Nanoparticles of Li, Mg and Sr doped and undoped zinc oxide was prepared by simple precipitation method. The structural, optical, and magnetic properties of the samples were investigated by the Powder X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), Fourier Transform Infrared (FTIR) spectroscopy, Ultra-violet Visible spectroscopy (UV-vis) spectra, Photoluminescence (PL) and Vibrational Sample Magnetometer (VSM). The Powder X-ray diffraction data confirm the formation of hexagonal wurtzite structure of all doped and undoped ZnO. The SEM photograph reveals that the pores availability and particles size in the range of 10 nm-50 nm. FTIR and UV-Visible spectra results confirm the incorporation of the dopant into the ZnO lattice nanostructure. The UV-Visible spectra indicate that the shift of blue region (lower wavelength) due to bandgap widening. Photoluminescence intensity varies with doping due to the increase of oxygen vacancies in prepared ZnO. The pure ZnO exist paramagnetic while doped (Li, Mg and Sr) ZnO exist ferromagnetic property. The photocatalytic activity of the prepared sample also carried out in detail.

  2. Precise fabrication of a 5 nm graphene nanopore with a helium ion microscope for biomolecule detection

    NASA Astrophysics Data System (ADS)

    Deng, Yunsheng; Huang, Qimeng; Zhao, Yue; Zhou, Daming; Ying, Cuifeng; Wang, Deqiang

    2017-01-01

    We report a scalable method to fabricate high-quality graphene nanopores for biomolecule detection using a helium ion microscope (HIM). HIM milling shows promising capabilities for precisely controlling the size and shape, and may allow for the potential production of nanopores at wafer scale. Nanopores could be fabricated at different sizes ranging from 5 to 30 nm in diameter in few minutes. Compared with the current solid-state nanopore fabrication techniques, e.g. transmission electron microscopy, HIM is fast. Furthermore, we investigated the exposure-time dependence of graphene nanopore formation: the rate of pore expansion did not follow a simple linear relationship with exposure time, but a fast expansion rate at short exposure time and a slow rate at long exposure time. In addition, we performed biomolecule detection with our patterned graphene nanopore. The ionic current signals induced by 20-base single-stranded DNA homopolymers could be used as a basis for homopolymer differentiation. However, the charge interaction of homopolymer chains with graphene nanopores, and the conformations of homopolymer chains need to be further considered to improve the accuracy of discrimination.

  3. The importance of dehydration in determining ion transport in narrow pores.

    PubMed

    Richards, Laura A; Schäfer, Andrea I; Richards, Bryce S; Corry, Ben

    2012-06-11

    The transport of hydrated ions through narrow pores is important for a number of processes such as the desalination and filtration of water and the conductance of ions through biological channels. Here, molecular dynamics simulations are used to systematically examine the transport of anionic drinking water contaminants (fluoride, chloride, nitrate, and nitrite) through pores ranging in effective radius from 2.8 to 6.5 Å to elucidate the role of hydration in excluding these species during nanofiltration. Bulk hydration properties (hydrated size and coordination number) are determined for comparison with the situations inside the pores. Free energy profiles for ion transport through the pores show energy barriers depend on pore size, ion type, and membrane surface charge and that the selectivity sequence can change depending on the pore size. Ion coordination numbers along the trajectory showed that partial dehydration of the transported ion is the main contribution to the energy barriers. Ion transport is greatly hindered when the effective pore radius is smaller than the hydrated radius, as the ion has to lose some associated water molecules to enter the pore. Small energy barriers are still observed when pore sizes are larger than the hydrated radius due to re-orientation of the hydration shell or the loss of more distant water. These results demonstrate the importance of ion dehydration in transport through narrow pores, which increases the current level of mechanistic understanding of membrane-based desalination and transport in biological channels. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. The Effect of Boron on the Low Cycle Fatigue Behavior of Disk Alloy KM4

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy; Gayda, John; Sweeney, Joseph

    2000-01-01

    The durability of powder metallurgy nickel base superalloys employed as compressor and turbine disks is often limited by low cycle fatigue (LCF) crack initiation and crack growth from highly stressed surface locations (corners, holes, etc.). Crack growth induced by dwells at high stresses during aerospace engine operation can be particularly severe. Supersolvus solution heat treatments can be used to produce coarse grain sizes approaching ASTM 6 for improved resistance to dwell fatigue crack growth. However, the coarse grain sizes reduce yield strength, which can lower LCF initiation life. These high temperature heat treatments also can encourage pores to form. In the advanced General Electric disk superalloy KM4, such pores can initiate fatigue cracks that limit LCF initiation life. Hot isostatic pressing (HIP) during the supersolvus solution heat treatment has been shown to improve LCF initiation life in KM4, as the HIP pressure minimizes formation of the pores. Reduction of boron levels in KM4 has also been shown to increase LCF initiation life after a conventional supersolvus heat treatment, again possibly due to effects on the formation tendencies of these pores. However, the effects of reduced boron levels on microstructure, pore characteristics, and LCF failure modes in KM4 still need to be fully quantified. The objective of this study was to determine the effect of boron level on the microstructure, porosity, LCF behavior, and failure modes of supersolvus heat treated KM4.

  5. Hydromechanics of the Koyna-Warna Region, India

    NASA Astrophysics Data System (ADS)

    Durá-Gómez, Inmaculada; Talwani, Pradeep

    2010-02-01

    Continuous reservoir-induced seismicity has been observed in the Koyna-Warna region in western India following the beginning of impoundment of Koyna and Warna Reservoirs in 1961 and 1985, respectively. This seismicity includes 19 events with M ≥ 5.0 which occurred in 7 episodes (I-VII) between 1967 and 2005 at non-repeating hypocentral locations. In this study, we examined the first six episodes. The seismicity occurs by diffusion of pore pressures from the reservoirs to hypocentral locations along a saturated, critically stressed network of NE trending faults and NW trending fractures. We used the daily lake levels in the two reservoirs, from impoundment to 2000, to calculate the time history of the diffused pore pressures and their daily rate of change at the hypocentral locations. The results of our analysis indicate that Episodes I and IV are primarily associated with the initial filling of the two reservoirs. The diffused pore pressures are generated by the large (20-45 m) annual fluctuations of lake levels. We interpret that critical excess pore pressures >~300 kPa and >~600 kPa were needed to induce Episodes I-III and Episodes IV-VI, respectively, suggesting the presence of stronger faults in the region. The exceedance of the previous water level maxima (stress memory) was found to be the most important, although not determining factor in inducing the episodes. The annual rise of 40 m or more, rapid filling rates and elevated d p/d t values over a filling cycle, contributed to the rapid increase in pore pressure.

  6. Virtual Laboratory in the Role of Dynamic Visualisation for Better Understanding of Chemistry in Primary School

    ERIC Educational Resources Information Center

    Herga, Nataša Rizman; Cagran, Branka; Dinevski, Dejan

    2016-01-01

    Understanding chemistry includes the ability to think on three levels: the macroscopic level, the symbolic level, and the level of particles--sub-microscopic level. Pupils have the most difficulty when trying to understand the sub-microscopic level because it is outside their range of experience. A virtual laboratory enables a simultaneous…

  7. Nuclear shape evolution based on microscopic level densities

    DOE PAGES

    Ward, D. E.; Carlsson, B. G.; Døssing, T.; ...

    2017-02-27

    Here, by combining microscopically calculated level densities with the Metropolis walk method, we develop a consistent framework for treating the energy and angular-momentum dependence of the nuclear shape evolution in the fission process. For each nucleus under consideration, the level density is calculated microscopically for each of more than five million shapes with a recently developed combinatorial method. The method employs the same single-particle levels as those used for the extraction of the pairing and shell contributions to the macroscopic-microscopic deformation-energy surface. Containing no new parameters, the treatment is suitable for elucidating the energy dependence of the dynamics of warmmore » nuclei on pairing and shell effects. It is illustrated for the fission fragment mass distribution for several uranium and plutonium isotopes of particular interest.« less

  8. Shrunken Pore Syndrome is associated with a sharp rise in mortality in patients undergoing elective coronary artery bypass grafting.

    PubMed

    Dardashti, Alain; Nozohoor, Shahab; Grubb, Anders; Bjursten, Henrik

    2016-01-01

    Shrunken Pore Syndrome was recently suggested for the pathophysiologic state in patients characterized by an estimation of their glomerular filtration rate (GFR) based upon cystatin  C, which is lower or equal to 60% of their estimated GFR based upon creatinine, i.e. when eGFR cystatin  C ≤ 60% of eGFR creatinine. Not only the cystatin C level, but also the levels of other low molecular mass proteins are increased in this condition. The preoperative plasma levels of cystatin C and creatinine were measured in 1638 patients undergoing elective coronary artery bypass grafting. eGFR cystatin C and eGFR creatinine were calculated using two pairs of estimating equations, CAPA and LMrev, and CKD-EPI cystatin  C and CKD-EPI creatinine, respectively. The Shrunken Pore Syndrome was present in 2.1% of the patients as defined by the CAPA and LMrev equations and in 5.7% of the patients as defined by the CKD-EPI cystatin C and CKD-EPI creatinine equations. The patients were studied over a median follow-up time of 3.5 years (2.0-5.0 years) and the mortality determined. Shrunken Pore Syndrome defined by both pairs of equations was a strong, independent, predictor of long-term mortality as evaluated by Cox analysis and as illustrated by Kaplan-Meier curves. Increased mortality was observed also for the subgroups of patients with GFR above or below 60 mL/min/1.73 m(2). Changing the cut-off level from 60 to 70% for the CAPA and LMrev equations increased the number of patients with Shrunken Pore Syndrome to 6.5%, still displaying increased mortality.

  9. Multiscale modeling of fluid flow and mass transport

    NASA Astrophysics Data System (ADS)

    Masuoka, K.; Yamamoto, H.; Bijeljic, B.; Lin, Q.; Blunt, M. J.

    2017-12-01

    In recent years, there are some reports on a simulation of fluid flow in pore spaces of rocks using Navier-Stokes equations. These studies mostly adopt a X-ray CT to create 3-D numerical grids of the pores in micro-scale. However, results may be of low accuracy when the rock has a large pore size distribution, because pores, whose size is smaller than resolution of the X-ray CT may be neglected. We recently found out by tracer tests in a laboratory using a brine saturated Ryukyu limestone and inject fresh water that a decrease of chloride concentration took longer time. This phenomenon can be explained due to weak connectivity of the porous networks. Therefore, it is important to simulate entire pore spaces even those of very small sizes in which diffusion is dominant. We have developed a new methodology for multi-level modeling for pore scale fluid flow in porous media. The approach is to combine pore-scale analysis with Darcy-flow analysis using two types of X-ray CT images in different resolutions. Results of the numerical simulations showed a close match with the experimental results. The proposed methodology is an enhancement for analyzing mass transport and flow phenomena in rocks with complicated pore structure.

  10. Modeling failure in brittle porous ceramics

    NASA Astrophysics Data System (ADS)

    Keles, Ozgur

    Brittle porous materials (BPMs) are used for battery, fuel cell, catalyst, membrane, filter, bone graft, and pharmacy applications due to the multi-functionality of their underlying porosity. However, in spite of its technological benefits the effects of porosity on BPM fracture strength and Weibull statistics are not fully understood--limiting a wider use. In this context, classical fracture mechanics was combined with two-dimensional finite element simulations not only to account for pore-pore stress interactions, but also to numerically quantify the relationship between the local pore volume fraction and fracture statistics. Simulations show that even the microstructures with the same porosity level and size of pores differ substantially in fracture strength. The maximum reliability of BPMs was shown to be limited by the underlying pore--pore interactions. Fracture strength of BMPs decreases at a faster rate under biaxial loading than under uniaxial loading. Three different types of deviation from classic Weibull behavior are identified: P-type corresponding to a positive lower tail deviation, N-type corresponding to a negative lower tail deviation, and S-type corresponding to both positive upper and lower tail deviations. Pore-pore interactions result in either P-type or N-type deviation in the limit of low porosity, whereas S-type behavior occurs when clusters of low and high fracture strengths coexist in a fracture data.

  11. Effects of Wood Pollution on Pore-Water Sulfide Levels and Eelgrass Germination

    NASA Astrophysics Data System (ADS)

    Ekelem, C.

    2016-02-01

    Historically, sawmills released wood waste onto coastal shorelines throughout the Pacific Northwest of the USA, enriching marine sediments with organic material. The increase in organic carbon boosts the bacterial reduction of sulfate and results in the production of a toxic metabolite, hydrogen sulfide. Hydrogen sulfide is a phytotoxin and can decrease the growth and survival of eelgrass. This is a critical issue since eelgrass, Zostera marina, forms habitat for many species, stabilizes sediment, and plays a role in nutrient cycling and sediment chemistry. The objective of our study was to determine the effects of wood debris on sediment pore-water hydrogen sulfide concentrations and eelgrass germination. To test the impact of wood inputs on sulfide production and seed germination, we conducted a laboratory mesocosm experiment, adding sawdust to marine sediments and measuring the sulfide levels weekly. We subsequently planted seeds in the mesocosms and measured germination rates. Higher concentrations of sawdust led to higher levels of pore-water hydrogen sulfide and drastically slower eelgrass germination rates. Treatments with greater than 10% wood enrichment developed free sulfide concentrations of 0.815 (± 0.427) mM after 118 days, suggesting sediments with greater than 10% wood pollution may have threateningly high pore-water hydrogen sulfide levels. These results can be used to set thresholds for remediation efforts and guide seed distribution in wood polluted areas.

  12. Gas composition of sludge residue profiles in a sludge treatment reed bed between loadings.

    PubMed

    Larsen, Julie D; Nielsen, Steen M; Scheutz, Charlotte

    2017-11-01

    Treatment of sludge in sludge treatment reed bed systems includes dewatering and mineralization. The mineralization process, which is driven by microorganisms, produces different gas species as by-products. The pore space composition of the gas species provides useful information on the biological processes occurring in the sludge residue. In this study, we measured the change in composition of gas species in the pore space at different depth levels in vertical sludge residue profiles during a resting period of 32 days. The gas composition of the pore space in the sludge residue changed during the resting period. As the resting period proceeded, atmospheric air re-entered the pore space at all depth levels. The methane (CH 4 ) concentration was at its highest during the first part of the resting period, and then declined as the sludge residue became more dewatered and thereby aerated. In the pore space, the concentration of CH 4 often exceeded the concentration of carbon dioxide (CO 2 ). However, the total emission of CO 2 from the surface of the sludge residue exceeded the total emission of CH 4 , suggesting that CO 2 was mainly produced in the layer of newly applied sludge and/or that CO 2 was emitted from the sludge residue more readily compared to CH 4 .

  13. Insights into the role of wettability in cathode catalyst layer of proton exchange membrane fuel cell; pore scale immiscible flow and transport processes

    NASA Astrophysics Data System (ADS)

    Fathi, H.; Raoof, A.; Mansouri, S. H.

    2017-05-01

    The production of liquid water in cathode catalyst layer, CCL, is a significant barrier to increase the efficiency of proton exchange membrane fuel cell. Here we present, for the first time, a direct three-dimensional pore-scale modelling to look at the complex immiscible two-phase flow in CCL. After production of the liquid water at the surface of CCL agglomerates due to the electrochemical reactions, water spatial distribution affects transport of oxygen through the CCL as well as the rate of reaction at the agglomerate surfaces. To explore the wettability effects, we apply hydrophilic and hydrophobic properties using different surface contact angles. Effective diffusivity is calculated under several water saturation levels. Results indicate larger diffusive transport values for hydrophilic domain compared to the hydrophobic media where the liquid water preferentially floods the larger pores. However, hydrophobic domain showed more available surface area and higher oxygen consumption rate at the reaction sites under various saturation levels, which is explained by the effect of wettability on pore-scale distribution of water. Hydrophobic domain, with a contact angle of 150, reveals efficient water removal where only 28% of the pore space stays saturated. This condition contributes to the enhanced available reaction surface area and oxygen diffusivity.

  14. Preparation of PVDF/SiO2 composite membrane for salty oil emulsion separation: Physicochemical properties changes and its impact on fouling propensity

    NASA Astrophysics Data System (ADS)

    Ngang, H. P.; Ahmad, A. L.; Low, S. C.; Ooi, B. S.

    2017-06-01

    In this study, polyvinylidene fluoride (PVDF)/silica (SiO2) composite membranes were prepared by diffusion induced phase separation through direct blending method. The roles of SiO2 particles concentration on membrane physicochemical properties were evaluated through oil emulsion separation under high ionic strength environment whereby hydrophobic interaction is prevalent. Membranes were characterized using field emission scanning electron microscope (FESEM), atomic force microscopy (AFM), contact angle measurement, membrane porosity and pore size distribution. It was expected that by adding the monodispersed SiO2, it will render the membrane with hydrophilic characteristic. However, it is concomitantly changing the physical properties of the membrane. Addition of SiO2 caused the changes to the physicochemical properties of the composite membrane and its effects on the fouling propensity were evaluated. It was found that the mean pore size of the membranes increased with the increase of SiO2 concentration. The addition of hydrophilic SiO2 had accelerated the precipitation of the membrane dope solution resulting in changes of membrane cross section morphology. FESEM images showed the membrane cross-section morphology of PVDF/SiO2 composite membrane had gradually changed from finger-like to macrovoid-like structure with the increased of SiO2 concentration. The hydrophilicity of the PVDF/SiO2 composite membrane was enhanced which is a desired property for water purification. However, the changes in physical properties (pore size, porosity, and surface roughness) had played more dominant role in the oil emulsion fouling behaviour rather than hydrophilicity enhancement. Due to the salting out effect under high ionic strength environment, hydrophobic interaction played an important role in the oil adsorption. The increment in membrane pore size, porosity, and surface roughness after incorporation of SiO2 particles had encountered more serious relative flux reduction and lower flux recovery ratio.

  15. Wettability Control on Fluid-Fluid Displacements in Patterned Microfluidics

    NASA Astrophysics Data System (ADS)

    Zhao, B.; Trojer, M.; Cueto-Felgueroso, L.; Juanes, R.

    2014-12-01

    Two-phase flow in porous media is important in many natural and industrial processes like geologic CO2 sequestration, enhanced oil recovery, and water infiltration in soil. While it is well known that the wetting properties of porous media can vary drastically depending on the type of media and the pore fluids, the effect of wettability on fluid displacement continues to challenge our microscopic and macroscopic descriptions. Here we study this problem experimentally, starting with the classic experiment of two-phase flow in a capillary tube. We image the shape of the meniscus and measure the associated capillary pressure for a wide range of capillary numbers. We confirm that wettability exerts a fundamental control on meniscus deformation, and synthesize new observations on the dependence of the dynamic capillary pressure on wetting properties (contact angle) and flow conditions (viscosity contrast and capillary number). We compare our experiments to a macroscopic phase-field model of two-phase flow. We use the insights gained from the capillary tube experiments to explore the viscous fingering instability in the Hele-Shaw geometry in the partial-wetting regime. A key difference between a Hele-Shaw cell and a porous medium is the existence of micro-structures (i.e. pores and pore throats). To investigate how these micro-structrues impact fluid-fluid displacement, we conduct experiments on a planar microfluidic device patterned with vertical posts. We track the evolution of the fluid-fluid interface and elucidate the impact of wetting on the cooperative nature of fluid displacement during pore invasion events. We use the insights gained from the capillary tube and patterned microfluidics experiments to elucidate the effect of wetting properties on viscous fingering and capillary fingering in a Hele-Shaw cell filled with glass beads, where we observe a contact-angle-dependent stabilizing behavior for the emerging flow instabilities, as the system transitions from drainage to imbibition.

  16. The Passive Film Growth Mechanism of New Corrosion-Resistant Steel Rebar in Simulated Concrete Pore Solution: Nanometer Structure and Electrochemical Study

    PubMed Central

    Jiang, Jin-yang; Wang, Danqian; Chu, Hong-yan; Ma, Han; Liu, Yao; Gao, Yun; Shi, Jinjie; Sun, Wei

    2017-01-01

    An elaborative study was carried out on the growth mechanism and properties of the passive film for a new kind of alloyed corrosion-resistant steel (CR steel). The passive film naturally formed in simulated concrete pore solutions (pH = 13.3). The corrosion resistance was evaluated by various methods including open circuit potential (OCP), linear polarization resistance (LPR) measurements, and electrochemical impedance spectroscopy (EIS). Meanwhile, the 2205 duplex stainless steel (SS steel) was evaluated for comparison. Moreover, the passive film with CR steel was studied by means of X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), Atomic Force Microscope (AFM), and the Mott‑Schottky approach. The results showed that the excellent passivity of CR steel could be detected in a high alkaline environment. The grain boundaries between the fine passive film particles lead to increasing Cr oxide content in the later passivation stage. The filling of cation vacancies in the later passivation stage as well as the orderly crystalized inner layer contributed to the excellent corrosion resistance of CR steel. A passive film growth model for CR steel was proposed. PMID:28772772

  17. Development of activated carbon derived from banana peel for CO{sub 2} removal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borhan, Azry; Thangamuthu, Subhashini; Ramdan, Amira Nurain

    This research work highlights on the constraints involved in the preparation of the banana peel bio-sorbent, such as impregnation ratio, activation temperature and period of activation for reducing carbon dioxide (CO{sub 2}) in the atmosphere. Micromeritics ASAP 2020 and Field Emission Scanning Electron Microscope (FESEM) were used in identifying the best sample preparation method with the largest surface area which directly contributes to the effectiveness of adsorbent in removing CO{sub 2}. Sample A10 was identified to yield activated carbon with the largest surface area (260.3841 m{sup 2}/g), total pore volume (0.01638 cm{sup 3}/g) and pore diameter (0.2508 nm). Through nitrogen adsorption-desorption isothermmore » analysis, the existence of sub-micropores was proven when a combination of Type-I and Type-II isotherms were exhibited by the activated carbon produced. The results from the final adsorption test found that the material synthesized from the above mentioned parameter is capable of removing up to 1.65% wt of CO{sub 2} through adsorption at 25°C, suggesting that it can be effectively used as an adsorption material.« less

  18. Wettability control on fluid-fluid displacements in patterned microfluidics

    NASA Astrophysics Data System (ADS)

    Zhao, Benzhong; MacMinn, Christopher; Juanes, Ruben

    2015-11-01

    Two-phase flow in porous media is important in many natural and industrial processes. While it is well known the wetting properties of porous media can vary drastically depending on the media and the pore fluids, their effect continues to challenge our microscopic and macroscopic descriptions. We conduct experiments via radial displacement of silicone oil by water in microfluidic devices patterned with vertical posts. These devices allow for flow visualization in a complex but well-defined microstructure. Additionally, the surface energy of the devices can be tuned over a wide range of contact angles. We perform injection experiments with highly unfavorable mobility contrast at rates over four orders of magnitude. We focus on three wetting conditions: drainage θ = 120°, weak imbibition θ = 60°, and strong imbibition θ = 7°. In drainage, we see a transition from viscous fingering at high capillary numbers to a morphology that differs from capillary fingering. In weak imbibition, we observe stabilization of flow due to cooperative invasion at the pore scale. In strong imbibition, we find the flow is heavily influenced by a precursor front that emanates from the main imbibition front. Our work shows the important, yet intricate, impact of wettability on immiscible flow in porous media.

  19. Influence of the heat treatment condition of alloy AlCu4Mg1 on the microstructure and properties of anodic oxide layers

    NASA Astrophysics Data System (ADS)

    Morgenstern, R.; Dietrich, D.; Sieber, M.; Lampke, T.

    2017-03-01

    Due to their outstanding specific mechanical properties, high-strength, age-hardenable aluminum alloys offer a high potential for lightweight security-related applications. However, the use of copper-alloyed aluminum is limited because of their susceptibility to selective corrosion and their low wear resistance. These restrictions can be overcome and new applications can be opened up by the generation of protective anodic aluminum oxide layers. In contrast to the anodic oxidation of unalloyed aluminum, oxide layers produced on copper-rich alloys exhibit a significantly more complex pore structure. It is the aim of the investigation to identify the influence of microstructural parameters such as size and distribution of the strengthening precipitations on the coating microstructure. The aluminum alloy EN AW-2024 (AlCu4Mg1) in different heat treatment conditions serves as substrate material. The influence of the strengthening precipitations’ size and distribution on the development of the pore structure is investigated by the use of high-resolution scanning electron microscopy. Integral coating properties are characterized by non-destructive and light-microscopic thickness measurements and instrumented indentation tests.

  20. Surface morphology of taste buds in catfish barbels.

    PubMed

    Ovalle, W K; Shinn, S L

    1977-03-16

    External taste buds abound on barbels of the adult catfish Corydoras arcuatus. When examined by scanning electron microscopy, they are visualized as a series of punctate, conical elevations projecting from the general surface epithelium. All taste buds were found to be of one type. Both their external and internal surface features could be clearly elucidated on intact barbels and in barbels fractured transversely at various positions along their length. An extensive nerve terminal network penetrates the base of each taste bud. Two populations of elongated cells bearing prominent microvilli project through the central pore at the tip of each bud. One set of microvilli is thicker, longer and more club-shaped than its counterpart. While both are randomly distributed within each central pore, the small, short microvilli appear to outnumber the larger ones. A third population of cells, devoid of any apical microvilli, was also seen in some of the taste buds examined internally. These cells do not project to the external surface and are interpreted as "basal" cells described in previous light and transmission electron microscope studies of taste buds in other vertebrate species. The functional significance of some of these morphological findings is discussed.

  1. A study on chloride induced depassivation of Fe-P-C-Si and Fe-P-C-Si-N steels in simulated concrete pore solution

    NASA Astrophysics Data System (ADS)

    Mehta, Yashwant; Chaudhari, Gajanan P.; Dabhade, Vikram V.

    2018-03-01

    The corrosion behaviour of high phosphorous steels containing varying amounts of silicon and nitrogen was studied by potentiodynamic polarization, linear polarization resistance (LPR) and electrochemical impedance spectroscopy (EIS) measurements. The morphology of a steel specimen tested in chloride containing concrete pore solution was studied using scanning electron microscope (SEM) and the elemental distribution at the pitting corrosion area was investigated using electron dispersive spectroscopy (EDS). The results showed that the capacitance increased and resistance declined with immersion time in Ca(OH)2 solution containing 0.1% chloride for plain carbon steel. The opposite was observed in the case of the high phosphorous steels. The potentiodynamic polarization and LPR results complement the EIS findings. Corrosion behaviour could be described with an equivalent circuit having two time constants. The creation, expansion and degradation of the passive layer were discussed with the help of the equivalent circuit elements. The SEM-EDS studies revealed that MnS inclusions at the surface could have a role in the initiation and growth of pits and that phosphorous was present at the pit free surface of the steel.

  2. Dynamic Heterogeneous Multiscale Filtration Model: Probing Micro- and Macroscopic Filtration Characteristics of Gasoline Particulate Filters.

    PubMed

    Gong, Jian; Viswanathan, Sandeep; Rothamer, David A; Foster, David E; Rutland, Christopher J

    2017-10-03

    Motivated by high filtration efficiency (mass- and number-based) and low pressure drop requirements for gasoline particulate filters (GPFs), a previously developed heterogeneous multiscale filtration (HMF) model is extended to simulate dynamic filtration characteristics of GPFs. This dynamic HMF model is based on a probability density function (PDF) description of the pore size distribution and classical filtration theory. The microstructure of the porous substrate in a GPF is resolved and included in the model. Fundamental particulate filtration experiments were conducted using an exhaust filtration analysis (EFA) system for model validation. The particulate in the filtration experiments was sampled from a spark-ignition direct-injection (SIDI) gasoline engine. With the dynamic HMF model, evolution of the microscopic characteristics of the substrate (pore size distribution, porosity, permeability, and deposited particulate inside the porous substrate) during filtration can be probed. Also, predicted macroscopic filtration characteristics including particle number concentration and normalized pressure drop show good agreement with the experimental data. The resulting dynamic HMF model can be used to study the dynamic particulate filtration process in GPFs with distinct microstructures, serving as a powerful tool for GPF design and optimization.

  3. The Passive Film Growth Mechanism of New Corrosion-Resistant Steel Rebar in Simulated Concrete Pore Solution: Nanometer Structure and Electrochemical Study.

    PubMed

    Jiang, Jin-Yang; Wang, Danqian; Chu, Hong-Yan; Ma, Han; Liu, Yao; Gao, Yun; Shi, Jinjie; Sun, Wei

    2017-04-14

    An elaborative study was carried out on the growth mechanism and properties of the passive film for a new kind of alloyed corrosion-resistant steel (CR steel). The passive film naturally formed in simulated concrete pore solutions (pH = 13.3). The corrosion resistance was evaluated by various methods including open circuit potential (OCP), linear polarization resistance (LPR) measurements, and electrochemical impedance spectroscopy (EIS). Meanwhile, the 2205 duplex stainless steel (SS steel) was evaluated for comparison. Moreover, the passive film with CR steel was studied by means of X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), Atomic Force Microscope (AFM), and the Mott‑Schottky approach. The results showed that the excellent passivity of CR steel could be detected in a high alkaline environment. The grain boundaries between the fine passive film particles lead to increasing Cr oxide content in the later passivation stage. The filling of cation vacancies in the later passivation stage as well as the orderly crystalized inner layer contributed to the excellent corrosion resistance of CR steel. A passive film growth model for CR steel was proposed.

  4. Boosting the Performance of Ionic-Liquid-Based Supercapacitors with Polar Additives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Kun; Wu, Jianzhong

    Recent years have witnessed growing interests in both the fundamentals and applications of electric double layer capacitors (EDLCs), also known as supercapacitors. A number of strategies have been explored to optimize the device performance in terms of both the energy and power densities. Because the properties of electric double layers (EDL) are sensitive to ion distributions in the close vicinity of the electrode surfaces, the supercapacitor performance is sensitive to both the electrode pore structure and the electrolyte composition. In this paper, we study the effects of polar additives on EDLC capacitance using the classical density functional theory within themore » framework of a coarse-grained model for the microscopic structure of the porous electrodes and room-temperature ionic liquids. The theoretical results indicate that a highly polar, low-molecular-weight additive is able to drastically increase the EDLC capacitance at low bulk concentration. Additionally, the additive is able to dampen the oscillatory dependence of the capacitance on the pore size, thereby boosting the performance of amorphous electrode materials. Finally, the theoretical predictions are directly testable with experiments and provide new insights into the additive effects on EDL properties.« less

  5. The effect of porosity on the mechanical properties of porous titanium scaffolds: comparative study on experimental and analytical values

    NASA Astrophysics Data System (ADS)

    Khodaei, Mohammad; Fathi, Mohammadhossein; Meratian, Mahmood; Savabi, Omid

    2018-05-01

    Reducing the elastic modulus and also improving biological fixation to the bone is possible by using porous scaffolds. In the present study, porous titanium scaffolds containing different porosities were fabricated using the space holder method. Pore distribution, formed phases and mechanical properties of titanium scaffolds were studied by Scanning Electron Microscope (SEM), x-ray diffraction (XRD) and cold compression test. Then the results of compression test were compared to the Gibson-Ashby model. Both experimentally measured and analytically calculated elastic modulus of porous titanium scaffolds decreased by porosity increment. The compliance between experimentally measured and analytically calculated elastic modulus of titanium scaffolds are also increased by porosity increment.

  6. Super-microporous solid base MgO-ZrO2 composite and their application in biodiesel production

    NASA Astrophysics Data System (ADS)

    Su, Jiaojiao; Li, Yongfeng; Wang, Huigang; Yan, Xiaoliang; Pan, Dahai; Fan, Binbin; Li, Ruifeng

    2016-10-01

    The super-microporous microcrystalline MgO-ZrO2 nanomaterials (pore size 1-2 nm) was prepared successfully via a facile one-pot evaporation-induced self-assembly (EISA) method and employed in the transesterification of soybean oil and methanol. X-ray diffraction, transmission electron microscope, temperature programmed desorption of CO2, and N2 adsorption porosimetry were employed to characterize the nanocomposites. Nitrogen sorption isotherms revealed that these materials had large surface areas of more than 200 m2/g. Moreover, the sample with a Mg/Zr molar ratio of 0.5 and calcined at 400 °C showed high biodiesel yield (around 99% at 150 °C).

  7. Effect of [gamma]-irradiation on latent tracks of polyethylene terephthalate (PET) film

    NASA Astrophysics Data System (ADS)

    Hiroki, A.; Asano, M.; Yamaki, T.; Yoshida, M.

    2005-04-01

    The pre-treatment effect of γ-irradiation on latent tracks of polyethylene terephthalate (PET) films bombarded with swift heavy ions was investigated by electric conductometry and scanning electron microscope (SEM) observation. The Xe-ion bombarded PET films were etched for 6 h in 0.2 M NaOH aqueous solution at 70 °C to prepare track-etched membranes. As γ-irradiation doses increased in the range of 0-160 kGy, the surface pore diameter obtained by SEM observation decreased while that obtained by conductometry became large. This inconsistent result between the two methods was due to an increase in the crosslinked region in the latent tracks caused by γ-irradiation.

  8. Visualization of gas flow and diffusion in porous media

    PubMed Central

    Kaiser, Lana G.; Meersmann, Thomas; Logan, John W.; Pines, Alexander

    2000-01-01

    The transport of gases in porous materials is a crucial component of many important processes in science and technology. In the present work, we demonstrate how magnetic resonance microscopy with continuous flow laser-polarized noble gases makes it possible to “light up” and thereby visualize, with unprecedented sensitivity and resolution, the dynamics of gases in samples of silica aerogels and zeolite molecular sieve particles. The “polarization-weighted” images of gas transport in aerogel fragments are correlated to the diffusion coefficient of xenon obtained from NMR pulsed-field gradient experiments. The technique provides a unique means of studying the combined effects of flow and diffusion in systems with macroscopic dimensions and microscopic internal pore structure. PMID:10706617

  9. A Comparison of Coarse-Grained and Continuum Models for Membrane Bending in Lipid Bilayer Fusion Pores

    PubMed Central

    Yoo, Jejoong; Jackson, Meyer B.; Cui, Qiang

    2013-01-01

    To establish the validity of continuum mechanics models quantitatively for the analysis of membrane remodeling processes, we compare the shape and energies of the membrane fusion pore predicted by coarse-grained (MARTINI) and continuum mechanics models. The results at these distinct levels of resolution give surprisingly consistent descriptions for the shape of the fusion pore, and the deviation between the continuum and coarse-grained models becomes notable only when the radius of curvature approaches the thickness of a monolayer. Although slow relaxation beyond microseconds is observed in different perturbative simulations, the key structural features (e.g., dimension and shape of the fusion pore near the pore center) are consistent among independent simulations. These observations provide solid support for the use of coarse-grained and continuum models in the analysis of membrane remodeling. The combined coarse-grained and continuum analysis confirms the recent prediction of continuum models that the fusion pore is a metastable structure and that its optimal shape is neither toroidal nor catenoidal. Moreover, our results help reveal a new, to our knowledge, bowing feature in which the bilayers close to the pore axis separate more from one another than those at greater distances from the pore axis; bowing helps reduce the curvature and therefore stabilizes the fusion pore structure. The spread of the bilayer deformations over distances of hundreds of nanometers and the substantial reduction in energy of fusion pore formation provided by this spread indicate that membrane fusion can be enhanced by allowing a larger area of membrane to participate and be deformed. PMID:23442963

  10. Investigating Dissolution and Precipitation Phenomena with a Smartphone Microscope

    ERIC Educational Resources Information Center

    Lumetta, Gregg J.; Arcia, Edgar

    2016-01-01

    A novel smartphone microscope can be used to observe the dissolution and crystallization of sodium chloride at a microscopic level. Observation of these seemingly simple phenomena through the microscope at 100× magnification can actually reveal some surprising behavior. These experiments offer the opportunity to discuss some basic concepts such as…

  11. Modeling Stokes flow in real pore geometries derived by high resolution micro CT imaging

    NASA Astrophysics Data System (ADS)

    Halisch, M.; Müller, C.

    2012-04-01

    Meanwhile, numerical modeling of rock properties forms an important part of modern petrophysics. Substantially, equivalent rock models are used to describe and assess specific properties and phenomena, like fluid transport or complex electrical properties. In recent years, non-destructive computed X-ray tomography got more and more important - not only to take a quick and three dimensional look into rock samples but also to get access to in-situ sample information for highly accurate modeling purposes. Due to - by now - very high resolution of the 3D CT data sets (micron- to submicron range) also very small structures and sample features - e.g. micro porosity - can be visualized and used for numerical models of very high accuracy. Special demands even arise before numerical modeling can take place. Inappropriate filter applications (e.g. improper type of filter, wrong kernel, etc.) may lead to a significant corruption of spatial sample structure and / or even sample or void space volume. Because of these difficulties, especially small scale mineral- and pore space textures are very often lost and valuable in-situ information is erased. Segmentation of important sample features - porosity as well as rock matrix - based upon grayscale values strongly depends upon the scan quality and upon the experience of the application engineer, respectively. If the threshold for matrix-porosity separation is set too low, porosity can be quickly (and even more, due to restrictions of scanning resolution) underestimated. Contrary to this, a too high threshold over-determines porosity and small void space features as well as interfaces are changed and falsified. Image based phase separation in close combination with "conventional" analytics, as scanning electron microscopy or thin sectioning, greatly increase the reliability of this preliminary work. For segmentation and quantification purposes, a special CT imaging and processing software (Avizo Fire) has been used. By using this tool, 3D rock data can be assessed and interpreted by petrophysical means. Furthermore, pore structures can be directly segmented and hence could be used for so called image based modeling approach. The special XLabHydro module grants a finite volume solver for the direct assessment of Stokes flow (incompressible fluid, constant dynamic viscosity, stationary conditions and laminar flow) in real pore geometries. Nevertheless, also pore network extraction and numerical modeling with standard FE or lattice Boltzmann solvers is possible. By using the achieved voxel resolution as smallest node distance, fluid flow properties can be analyzed even in very small sample structures and hence with very high accuracy, especially with interaction to bigger parts of the pore network. The so derived results in combination with a direct 3D visualization within the structures offer great new insights and understanding in range of meso- and microscopic pore space phenomena.

  12. Tantalum coating of porous carbon scaffold supplemented with autologous bone marrow stromal stem cells for bone regeneration in vitro and in vivo.

    PubMed

    Wei, Xiaowei; Zhao, Dewei; Wang, Benjie; Wang, Wei; Kang, Kai; Xie, Hui; Liu, Baoyi; Zhang, Xiuzhi; Zhang, Jinsong; Yang, Zhenming

    2016-03-01

    Porous tantalum metal with low elastic modulus is similar to cancellous bone. Reticulated vitreous carbon (RVC) can provide three-dimensional pore structure and serves as the ideal scaffold of tantalum coating. In this study, the biocompatibility of domestic porous tantalum was first successfully tested with bone marrow stromal stem cells (BMSCs) in vitro and for bone tissue repair in vivo. We evaluated cytotoxicity of RVC scaffold and tantalum coating using BMSCs. The morphology, adhesion, and proliferation of BMSCs were observed via laser scanning confocal microscope and scanning electron microscopy. In addition, porous tantalum rods with or without autologous BMSCs were implanted on hind legs in dogs, respectively. The osteogenic potential was observed by hard tissue slice examination. At three weeks and six weeks following implantation, new osteoblasts and new bone were observed at the tantalum-host bone interface and pores. At 12 weeks postporous tantalum with autologous BMSCs implantation, regenerated trabecular equivalent to mature bone was found in the pore of tantalum rods. Our results suggested that domestic porous tantalum had excellent biocompatibility and could promote new bone formation in vivo. Meanwhile, the osteogenesis of porous tantalum associated with autologous BMSCs was more excellent than only tantalum implantation. Future clinical studies are warranted to verify the clinical efficacy of combined implantation of this domestic porous tantalum associated with autologous BMSCs implantation and compare their efficacy with conventional autologous bone grafting carrying blood vessel in patients needing bone repairing. © 2016 by the Society for Experimental Biology and Medicine.

  13. Effect of particle size on hydroxyapatite crystal-induced tumor necrosis factor alpha secretion by macrophages.

    PubMed

    Nadra, Imad; Boccaccini, Aldo R; Philippidis, Pandelis; Whelan, Linda C; McCarthy, Geraldine M; Haskard, Dorian O; Landis, R Clive

    2008-01-01

    Macrophages may promote a vicious cycle of inflammation and calcification in the vessel wall by ingesting neointimal calcific deposits (predominantly hydroxyapatite) and secreting tumor necrosis factor (TNF)alpha, itself a vascular calcifying agent. Here we have investigated whether particle size affects the proinflammatory potential of hydroxyapatite crystals in vitro and whether the nuclear factor (NF)-kappaB pathway plays a role in the macrophage TNFalpha response. The particle size and nano-topography of nine different crystal preparations was analyzed by X-ray diffraction, Raman spectroscopy, scanning electron microscopy and gas sorbtion analysis. Macrophage TNFalpha secretion was inversely related to hydroxyapatite particle size (P=0.011, Spearman rank correlation test) and surface pore size (P=0.014). A necessary role for the NF-kappaB pathway was demonstrated by time-dependent I kappaB alpha degradation and sensitivity to inhibitors of I kappaB alpha degradation. To test whether smaller particles were intrinsically more bioactive, their mitogenic activity on fibroblast proliferation was examined. This showed close correlation between TNFalpha secretion and crystal-induced fibroblast proliferation (P=0.007). In conclusion, the ability of hydroxyapatite crystals to stimulate macrophage TNFalpha secretion depends on NF-kappaB activation and is inversely related to particle and pore size, with crystals of 1-2 microm diameter and pore size of 10-50 A the most bioactive. Microscopic calcific deposits in early stages of atherosclerosis may therefore pose a greater inflammatory risk to the plaque than macroscopically or radiologically visible deposits in more advanced lesions.

  14. Synthesis, characterization, and morphology study of poly(acrylamide-co-acrylic acid)-grafted-poly(styrene-co-methyl methacrylate) "raspberry"-shape like structure microgels by pre-emulsified semi-batch emulsion polymerization.

    PubMed

    Ramli, Ros Azlinawati; Hashim, Shahrir; Laftah, Waham Ashaier

    2013-02-01

    A novel microgels were polymerized using styrene (St), methyl methacrylate (MMA), acrylamide (AAm), and acrylic acid (AAc) monomers in the presence of N,N'-methylenebisacrylamide (MBA) cross-linker. Pre-emulsified monomer was first prepared followed by polymerizing monomers using semi-batch emulsion polymerization. Fourier Transform Infrared Spectroscopy (FTIR) and (1)H Nuclear Magnetic Resonance (NMR) were used to determine the chemical structure and to indentify the related functional group. Grafting and cross-linking of poly(acrylamide-co-acrilic acid)-grafted-poly(styrene-co-methyl methacrylate) [poly(AAm-co-AAc)-g-poly(St-co-MMA)] microgels are approved by the disappearance of band at 1300 cm(-1), 1200 cm(-1) and 1163 cm(-1) of FTIR spectrum and the appearance of CH peaks at 5.5-5.7 ppm in (1)H NMR spectrum. Scanning Electron Microscope (SEM) images indicated that poly(St-co-MMA) particle was lobed morphology coated by cross-linked poly(AAm-co-AAc) shell. Furthermore, SEM results revealed that poly(AAm-co-AAc)-g-poly(St-co-MMA) is composite particle that consist of "raspberry"-shape like structure core. Internal structures of the microgels showed homogeneous network of pores, an extensive interconnection among pores, thicker pore walls, and open network structures. Water absorbency test indicated that the sample with particle size 0.43 μm had lower equilibrium water content, % than the sample with particle size 7.39 μm. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Effect of quartz overgrowth precipitation on the multiscale porosity of sandstone: A (U)SANS and imaging analysis

    DOE PAGES

    Anovitz, Lawrence M.; Cole, David R.; Jackson, Andrew J.; ...

    2015-06-01

    We have performed a series of experiments to understand the effects of quartz overgrowths on nanometer to centimeter scale pore structures of sandstones. Blocks from two samples of St. Peter Sandstone with different initial porosities (5.8 and 18.3%) were reacted from 3 days to 7.5 months at 100 and 200 °C in aqueous solutions supersaturated with respect to quartz by reaction with amorphous silica. Porosity in the resultant samples was analyzed using small and ultrasmall angle neutron scattering and scanning electron microscope/backscattered electron (SEM/BSE)-based image-scale processing techniques.Significant changes were observed in the multiscale pore structures. By three days much ofmore » the overgrowth in the low-porosity sample dissolved away. The reason for this is uncertain, but the overgrowths can be clearly distinguished from the original core grains in the BSE images. At longer times the larger pores are observed to fill with plate-like precipitates. As with the unreacted sandstones, porosity is a step function of size. Grain boundaries are typically fractal, but no evidence of mass fractal or fuzzy interface behavior was observed suggesting a structural difference between chemical and clastic sediments. After the initial loss of the overgrowths, image scale porosity (>~1 cm) decreases with time. Submicron porosity (typically ~25% of the total) is relatively constant or slightly decreasing in absolute terms, but the percent change is significant. Fractal dimensions decrease at larger scales, and increase at smaller scales with increased precipitation.« less

  16. Tantalum coating of porous carbon scaffold supplemented with autologous bone marrow stromal stem cells for bone regeneration in vitro and in vivo

    PubMed Central

    Wei, Xiaowei; Wang, Benjie; Wang, Wei; Kang, Kai; Xie, Hui; Liu, Baoyi; Zhang, Xiuzhi; Zhang, Jinsong; Yang, Zhenming

    2016-01-01

    Porous tantalum metal with low elastic modulus is similar to cancellous bone. Reticulated vitreous carbon (RVC) can provide three-dimensional pore structure and serves as the ideal scaffold of tantalum coating. In this study, the biocompatibility of domestic porous tantalum was first successfully tested with bone marrow stromal stem cells (BMSCs) in vitro and for bone tissue repair in vivo. We evaluated cytotoxicity of RVC scaffold and tantalum coating using BMSCs. The morphology, adhesion, and proliferation of BMSCs were observed via laser scanning confocal microscope and scanning electron microscopy. In addition, porous tantalum rods with or without autologous BMSCs were implanted on hind legs in dogs, respectively. The osteogenic potential was observed by hard tissue slice examination. At three weeks and six weeks following implantation, new osteoblasts and new bone were observed at the tantalum–host bone interface and pores. At 12 weeks postporous tantalum with autologous BMSCs implantation, regenerated trabecular equivalent to mature bone was found in the pore of tantalum rods. Our results suggested that domestic porous tantalum had excellent biocompatibility and could promote new bone formation in vivo. Meanwhile, the osteogenesis of porous tantalum associated with autologous BMSCs was more excellent than only tantalum implantation. Future clinical studies are warranted to verify the clinical efficacy of combined implantation of this domestic porous tantalum associated with autologous BMSCs implantation and compare their efficacy with conventional autologous bone grafting carrying blood vessel in patients needing bone repairing. PMID:26843518

  17. Ceramic membrane defouling (cleaning) by air Nano Bubbles.

    PubMed

    Ghadimkhani, Aliasghar; Zhang, Wen; Marhaba, Taha

    2016-03-01

    Ceramic membranes are among the most promising technologies for membrane applications, owing to their excellent resistance to mechanical, chemical, and thermal stresses. However, membrane fouling is still an issue that hampers the applications at large scales. Air Nano Bubbles (NBs), due to high mass transfer efficiency, could potentially prevent fouling of ceramic membrane filtration processes. In this study, bench and pilot scale ceramic membrane filtration was performed with air NBs to resist fouling. To simulate fouling, humic acid, as an organic foulant, was applied to the membrane flat sheet surface. Complete membrane clogging was achieved in less than 6 h. Membrane defouling (cleaning) was performed by directly feeding of air NBs to the membrane cells. The surface of the ceramic membrane was superbly cleaned by air NBs, as revealed by atomic force microscope (AFM) images before and after the treatment. The permeate flux recovered to its initial level (e.g., 26.7 × 10(-9) m(3)/m(2)/s at applied pressure of 275.8 kPa), which indicated that NBs successfully unclogged the pores of the membrane. The integrated ceramic membrane and air NBs system holds potential as an innovative sustainable technology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Microscopic Theory of Supercapacitors

    NASA Astrophysics Data System (ADS)

    Skinner, Brian Joseph

    As new energy technologies are designed and implemented, there is a rising demand for improved energy storage devices. At present the most promising class of these devices is the electric double-layer capacitor (EDLC), also known as the supercapacitor. A number of recently created supercapacitors have been shown to produce remarkably large capacitance, but the microscopic mechanisms that underlie their operation remain largely mysterious. In this thesis we present an analytical, microscopic-level theory of supercapacitors, and we explain how such large capacitance can result. Specifically, we focus on four types of devices that have been shown to produce large capacitance. The first is a capacitor composed of a clean, low-temperature two-dimensional electron gas adjacent to a metal gate electrode. Recent experiments have shown that such a device can produce capacitance as much as 40% larger than that of a conventional plane capacitor. We show that this enhanced capacitance can be understood as the result of positional correlations between electrons and screening by the gate electrode in the form of image charges. Thus, the enhancement of the capacitance can be understood primarily as a classical, electrostatic phenomenon. Accounting for the quantum mechanical properties of the electron gas provides corrections to the classical theory, and these are discussed. We also present a detailed numerical calculation of the capacitance of the system based on a calculation of the system's ground state energy using the variational principle. The variational technique that we develop is broadly applicable, and we use it here to make an accurate comparison to experiment and to discuss quantitatively the behavior of the electrons' correlation function. The second device discussed in this thesis is a simple EDLC composed of an ionic liquid between two metal electrodes. We adopt a simple description of the ionic liquid and show that for realistic parameter values the capacitance can be as much as three times larger than that of a plane capacitor with thickness equal to the ion diameter. As in the previous system, this large capacitance is the result of image charge formation in the metal electrode and positional correlations between discrete ions that comprise the electric double-layer. We show that the maximum capacitance scales with the temperature to the power -1/3, and that at moderately large voltage the capacitance also decays as the inverse one third power of voltage. These results are confirmed by a Monte Carlo simulation. The third type of device we consider is that of a porous supercapacitor, where the electrode is made from a conducting material with a dense arrangement of narrow, planar pores into which ionic liquid can enter when a voltage is applied. In this case we show that when the electrode is metallic the narrow pores aggressively screen the interaction between neighboring ions in a pore, leading to an interaction energy between ions that decays exponentially. This exponential interaction between ions allows the capacitance to be nearly an order of magnitude larger than what is predicted by mean-field theories. This result is confirmed by a Monte Carlo simulation. We also present a theory for the capacitance when the electrode is not a perfect metal, but has a finite electronic screening radius. When this screening radius is larger than the distance between pores, ions begin to interact across multiple pores and the capacitance is determined by the Yukawa-like interaction of a three-dimensional, correlated arrangement of ions. Finally, we consider the case of supercapacitor electrodes made from a stack of graphene sheets with randomly-inserted "spacer" molecules. For such devices, experiments have produced very large capacitance despite the small density of states of the electrode material, which would seem to imply poor screening of the ionic charge. We show that these large capacitance values can be understood as the result of collective entrance of ions into the graphene stack (GS) and the renormalization of the ionic charge produced by nonlinear screening. The collective behavior of ions results from the strong elastic energy associated with intercalated ions deforming the GS, which creates an effective attraction between them. The result is the formation of "disks" of charge that enter the electrode collectively and have their charge renormalized by the strong, nonlinear screening of the surrounding graphene layers. This renormalization leads to a capacitance that at small voltages increases linearly with voltage and is enhanced over mean-field predictions by a large factor proportional to the number of ions within the disk to the power 9/4. At large voltages, the capacitance is dictated by the physics of graphite intercalation compounds and is proportional to the voltage raised to the power -4/5. We also examine theoretically the case where the effective fine structure constant of the GS is a small parameter, and we uncover a wealth of scaling regimes.

  19. Early diagenesis of travertine deposits from the Tibetan Plateau - implications for 230Th/234U dating and palaeoenvironmental reconstruction

    NASA Astrophysics Data System (ADS)

    Wang, Zhijun; Meyer, Michael; Hoffmann, Dirk; Spötl, Christoph; Aldenderfer, Mark; Sanders, Diethard

    2014-05-01

    Travertine is calcium carbonate precipitated from hydrothermal springs. These terrestrial carbonate deposits can be used as high-resolution archives for reconstructing palaeoclimatic and palaeoenvironmental change and are also suitable for uranium-series disequilibrium (230Th/234U) dating. In many instances such spring deposits are associated with archaeological remains (e.g. stone artifacts and other traces of prehistoric human activity) and are therefore of interest for palaeoclimatologists and archaeologists alike. However, travertines are often affected by early diagenesis that can impact on the closed-system U-series behavior and on their geochemical signature. Hence, careful evaluation of the travertine microfabrics is required before these types of hot spring deposits can be accurately dated and used for paleoenviromental reconstruction. The Tibetan plateau hosts numerous hydrothermal spring deposits that occur along neotectonic faults. In this study, samples were collected from two archaeological travertine sites, i.e. Chusang and Tirthapuri, located in southern and western Tibet, respectively. Microscopic analysis of thin sections reveals a wide variety of crystal fabrics, including micrite, microspar and sparite, the latter can be composed of columnar or mosaic crystals, respectively. Areas where dendritic crystals are preserved are identified in our micrographs as well. Many of the Chusang and Tirthapuri travertine samples are porous. Drusy sparite is rimming most of the pore walls and a complex succession of secondary calcite phases precipitated in these pore spaces as well. The different generations of pore cement comprise micrite and sparite that can be laminated or fibrous in character and show sometimes evidence of an aragonite precursor. Detrital material like quartz, feldspar and other grains as well as humic and fulvic acids have been washed into the travertine pores too. Based on our microscopic analysis a complex growth history can be reconstructed for these Tibetan travertine samples with evidence for early diagenetic alteration. In particular the dendritic calcite is known to form under hydrothermal conditions and can thus be regarded as a primary hydrothermal fabric. However, this fabric is preserved as a relict in some samples only, suggestive of widespread early diagenesis. In other samples primary - biologically mediated - calcite precipitation can be inferred from microfabrics; however, recrystallization to mosaic sparite took place soon after deposition for most of them, too. Here we combine detailed petrographic investigations with XRD, microprobe as well as stable isotope analysis and a systematic 230Th/234U dating approach. We show that certain fabrics act as closed system with respect to radiogenic isotopes and are thus suitable for U-series dating. For the majority of fabrics encountered in our Tibetan samples, however, early diagenesis can be inferred and these fabrics also suffer from open-system behavior, hence, require and 'isochron' dating approach. Guidelines are established for identifying early diagenesis in these Tibetan travertine samples and implications for palaeoenvironmental reconstruction are discussed.

  20. Densely packed beta-structure at the protein-lipid interface of porin is revealed by high-resolution cryo-electron microscopy.

    PubMed

    Sass, H J; Büldt, G; Beckmann, E; Zemlin, F; van Heel, M; Zeitler, E; Rosenbusch, J P; Dorset, D L; Massalski, A

    1989-09-05

    Porin is an integral membrane protein that forms channels across the outer membrane of Escherichia coli. Electron microscopic studies of negatively stained two-dimensional porin crystals have shown three stain accumulations per porin trimer, revealing the locations of pores spanning the membrane. In this study, reconstituted porin lattices embedded in glucose were investigated using the low-dose technique on a cryo-electron microscope equipped with a helium-cooled superconducting objective lens. The specimen temperature was maintained at 5 K to yield an improved microscopic and specimen stability. Under these conditions, we obtained for the first time electron diffraction patterns from porin lattices to a resolution of 3.2 A and images showing optical diffraction up to a resolution of 4.9 A. Applying correlation averaging techniques to the digitized micrographs, we were able to reconstruct projected images of the porin trimer to a resolution of up to 3.5 A. In the final projection maps, amplitudes from electron diffraction and phases from these images were combined. The predominant feature is a high-density narrow band (about 6 A in thickness) that delineates the outer perimeter of the trimer. Since the molecule consists of almost exclusively beta-sheet structure, as revealed by spectroscopic data, we conclude that this band is a cylindrical beta-pleated sheet crossing the membrane nearly perpendicularly to its plane. Another intriguing finding is a low-density area (about 70 A2) situated in the centre of the trimer.

  1. Effects on radionuclide concentrations by cement/ground-water interactions in support of performance assessment of low-level radioactive waste disposal facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krupka, K.M.; Serne, R.J.

    The US Nuclear Regulatory Commission is developing a technical position document that provides guidance regarding the performance assessment of low-level radioactive waste disposal facilities. This guidance considers the effects that the chemistry of the vault disposal system may have on radionuclide release. The geochemistry of pore waters buffered by cementitious materials in the disposal system will be different from the local ground water. Therefore, the cement-buffered environment needs to be considered within the source term calculations if credit is taken for solubility limits and/or sorption of dissolved radionuclides within disposal units. A literature review was conducted on methods to modelmore » pore-water compositions resulting from reactions with cement, experimental studies of cement/water systems, natural analogue studies of cement and concrete, and radionuclide solubilities experimentally determined in cement pore waters. Based on this review, geochemical modeling was used to calculate maximum concentrations for americium, neptunium, nickel, plutonium, radium, strontium, thorium, and uranium for pore-water compositions buffered by cement and local ground-water. Another literature review was completed on radionuclide sorption behavior onto fresh cement/concrete where the pore water pH will be greater than or equal 10. Based on this review, a database was developed of preferred minimum distribution coefficient values for these radionuclides in cement/concrete environments.« less

  2. Ultrasonic Inspection and Fatigue Evaluation of Critical Pore Size in Welds.

    DTIC Science & Technology

    1981-09-01

    Boiler and Pressure Vessel Code ) 20...Five porosity levels were produced that parallelled ASME boiler and pressure vessel code specification (Section VIII). Appendix IV of the pressure...Figure 2 shows porosity charts (ASME Boiler and Pressure Vessel Code ) which classify and designate the number and size of pores in any six inch length

  3. Reasoning about Magnetism at the Microscopic Level

    ERIC Educational Resources Information Center

    Cheng, Meng-Fei; Cheng, Yufang; Hung, Shuo-Hsien

    2014-01-01

    Based on our experience of teaching physics in middle and senior secondary school, we have found that students have difficulty in reasoning at the microscopic level. Their reasoning is limited to the observational level so they have problems in developing scientific models of magnetism. Here, we suggest several practical activities and the use of…

  4. Compaction bands in porous rocks: localization analysis using breakage mechanics

    NASA Astrophysics Data System (ADS)

    Das, Arghya; Nguyen, Giang; Einav, Itai

    2010-05-01

    It has been observed in fields and laboratory studies that compaction bands are formed within porous rocks and crushable granular materials (Mollema and Antonellini, 1996; Wong et al., 2001). These localization zones are oriented at high angles to the compressive maximum principal stress direction. Grain crushing and pore collapse are the integral parts of the compaction band formation; the lower porosity and increased tortuosity within such bands tend to reduce their permeability compared to the outer rock mass. Compaction bands may thereafter act as flow barriers, which can hamper the extraction or injection of fluid into the rocks. The study of compaction bands is therefore not only interesting from a geological viewpoint but has great economic importance to the extraction of oil or natural gas in the industry. In this paper, we study the formation of pure compaction bands (i.e. purely perpendicular to the principal stress direction) or shear-enhanced compaction bands (i.e. with angles close to the perpendicular) in high-porosity rocks using both numerical and analytical methods. A model based on the breakage mechanics theory (Einav, 2007a, b) is employed for the present analysis. The main aspect of this theory is that it enables to take into account the effect that changes in grain size distribution has on the constitutive stress-strain behaviour of granular materials at the microscopic level due to grain crushing. This microscopic phenomenon of grain crushing is explicitly linked with a macroscopic internal variable, called Breakage, so that the evolving grain size distribution can be continuously monitored at macro scale during the process of deformation. Through the inclusion of an appropriate parameter the model is also able to capture the effects of pore collapse on the macroscopic response. Its possession of few physically identifiable parameters is another important feature which minimises the effort of their recalibration, since those become less sensitive to the state of the matter (e.g. the initial porosity and grain size distribution). In our previous work (Nguyen and Einav, 2009) we showed that the breakage mechanics model is capable of capturing the experimentally observed stress-strain behaviour of sandstones under conventional triaxial loading, along with the associated evolving grain size distribution. Here, these predictions are further improved through the inclusion of the additional pore-collapse parameter. Furthermore, localization analysis that is based on the loss of positive definiteness of the determinant of the acoustic tensor (Issen and Rudnicki, 2000) is performed to determine the onset of compaction localization, as an indication of material failure. This analysis results in the prediction of the possible range of compaction band orientations. The behaviour and onset of compaction localization of different sandstones are numerically predicted in well accordance with published experimental observations. A parametric study is also carried out to emphasize the complementary effects of grain crushing and pore-collapse on the formation of compaction bands. References Einav, I. (2007a), Breakage mechanics-Part I: Theory, J. Mechan. Phys. Sol. 55(6), 1274-1297. Einav, I. (2007b), Breakage mechanics-Part II: Modelling granular materials, J. Mech. Phys. Sol. 55(6), 1298- 1320. Issen, K.A., Rudnicki, J.W. (2000), Conditions for compaction bands in porous rocks, J. Geophys. Res. Lett., 105, 21,529-21,536. Mollema, P.N., Antonellini, M.A. (1996), Compaction bands: a structural analog for anti-mode I cracks in aeolian sandstone, Tectonophysics 267:209-228. Nguyen, G.D., Einav, I. (2009), The energetics of cataclasis based on breakage mechanics, Pure Appl. Geophys., 166(10), 1693 - 1724. Wong, T-F, Baud, P., Klein, E. (2001), Localized failure modes in a compactant porous rock, J. Geophys. Res. Lett., 28, 2521-2524.

  5. The pore-forming bacterial effector, VopQ, halts autophagic turnover.

    PubMed

    Sreelatha, Anju; Orth, Kim; Starai, Vincent J

    2013-12-01

    Vibrio parahemolyticus Type III effector VopQ is both necessary and sufficient to induce autophagy within one hour of infection. We demonstrated that VopQ interacts with the Vo domain of the conserved vacuolar H(+)-ATPase. Membrane-associated VopQ subsequently forms pores in the membranes of acidic compartments, resulting in immediate release of protons without concomitant release of lumenal protein contents. These studies show how a bacterial pathogen can compromise host ion potentials using a gated pore-forming effector to equilibrate levels of small molecules found in endolysosomal compartments and disrupt cellular processes such as autophagy.

  6. Improved transfer of graphene for gated Schottky-junction, vertical, organic, field-effect transistors.

    PubMed

    Lemaitre, Maxime G; Donoghue, Evan P; McCarthy, Mitchell A; Liu, Bo; Tongay, Sefaattin; Gila, Brent; Kumar, Purushottam; Singh, Rajiv K; Appleton, Bill R; Rinzler, Andrew G

    2012-10-23

    An improved process for graphene transfer was used to demonstrate high performance graphene enabled vertical organic field effect transistors (G-VFETs). The process reduces disorder and eliminates the polymeric residue that typically plagues transferred films. The method also allows for purposely creating pores in the graphene of a controlled areal density. Transconductance observed in G-VFETs fabricated with a continuous (pore-free) graphene source electrode is attributed to modulation of the contact barrier height between the graphene and organic semiconductor due to a gate field induced Fermi level shift in the low density of electronic-states graphene electrode. Pores introduced in the graphene source electrode are shown to boost the G-VFET performance, which scales with the areal pore density taking advantage of both barrier height lowering and tunnel barrier thinning. Devices with areal pore densities of 20% exhibit on/off ratios and output current densities exceeding 10(6) and 200 mA/cm(2), respectively, at drain voltages below 5 V.

  7. Use of transgenic GFP reporter strains of the nematode Caenorhabditis elegans to investigate the patterns of stress responses induced by pesticides and by organic extracts from agricultural soils.

    PubMed

    Anbalagan, Charumathi; Lafayette, Ivan; Antoniou-Kourounioti, Melissa; Gutierrez, Carmen; Martin, Jose Rodriguez; Chowdhuri, Debapratim K; De Pomerai, David I

    2013-01-01

    As a free-living nematode, C. elegans is exposed to various pesticides used in agriculture, as well as to persistent organic residues which may contaminate the soil for long periods. Following on from our previous study of metal effects on 24 GFP-reporter strains representing four different stress-response pathways in C. elegans (Anbalagan et al. Ecotoxicology 21:439-455, 2012), we now present parallel data on the responses of these same strains to several commonly used pesticides. Some of these, like dichlorvos, induced multiple stress genes in a concentration-dependent manner. Unusually, endosulfan induced only one gene (cyp-34A9) to very high levels (8-10-fold) even at the lowest test concentration, with a clear plateau at higher doses. Other pesticides, like diuron, did not alter reporter gene expression detectably even at the highest test concentration attainable, while others (such as glyphosate) did so only at very high concentrations. We have also used five responsive GFP reporters to investigate the toxicity of soil pore water from two agricultural sites in south-east Spain, designated P74 (used for cauliflower production, but significantly metal contaminated) and P73 (used for growing lettuce, but with only background levels of metals). Both soil pore water samples induced all five test genes to varying extents, yet artificial mixtures containing all major metals present had essentially no effect on these same transgenes. Soluble organic contaminants present in the pore water were extracted with acetone and dichloromethane, then after evaporation of the solvents, the organic residues were redissolved in ultrapure water to reconstitute the soluble organic components of the original soil pore water. These organic extracts induced transgene expression at similar or higher levels than the original pore water. Addition of the corresponding metal mixtures had either no effect, or reduced transgene expression towards the levels seen with soil pore water only. We conclude that the main toxicants present in these soil pore water samples are organic rather than metallic in nature. Organic extracts from a control standard soil (Lufa 2.2) had negligible effects on expression of these genes, and similarly several pesticides had little effect on the expression of a constitutive myo-3::GFP transgene. Both the P73 and P74 sites have been treated regularly with (undisclosed) pesticides, as permitted under EU regulations, though other (e.g. industrial) organic residues may also be present.

  8. Greenland ice-sheet contribution to sea-level rise buffered by meltwater storage in firn.

    PubMed

    Harper, J; Humphrey, N; Pfeffer, W T; Brown, J; Fettweis, X

    2012-11-08

    Surface melt on the Greenland ice sheet has shown increasing trends in areal extent and duration since the beginning of the satellite era. Records for melt were broken in 2005, 2007, 2010 and 2012. Much of the increased surface melt is occurring in the percolation zone, a region of the accumulation area that is perennially covered by snow and firn (partly compacted snow). The fate of melt water in the percolation zone is poorly constrained: some may travel away from its point of origin and eventually influence the ice sheet's flow dynamics and mass balance and the global sea level, whereas some may simply infiltrate into cold snow or firn and refreeze with none of these effects. Here we quantify the existing water storage capacity of the percolation zone of the Greenland ice sheet and show the potential for hundreds of gigatonnes of meltwater storage. We collected in situ observations of firn structure and meltwater retention along a roughly 85-kilometre-long transect of the melting accumulation area. Our data show that repeated infiltration events in which melt water penetrates deeply (more than 10 metres) eventually fill all pore space with water. As future surface melt intensifies under Arctic warming, a fraction of melt water that would otherwise contribute to sea-level rise will fill existing pore space of the percolation zone. We estimate the lower and upper bounds of this storage sink to be 322 ± 44 gigatonnes and  1,289(+388)(-252) gigatonnes, respectively. Furthermore, we find that decades are required to fill this pore space under a range of plausible future climate conditions. Hence, routing of surface melt water into filling the pore space of the firn column will delay expansion of the area contributing to sea-level rise, although once the pore space is filled it cannot quickly be regenerated.

  9. Aromatic–aromatic interactions between residues in KCa3.1 pore helix and S5 transmembrane segment control the channel gating process

    PubMed Central

    Garneau, Line; Klein, Hélène; Lavoie, Marie-France; Brochiero, Emmanuelle; Parent, Lucie

    2014-01-01

    The Ca2+-activated potassium channel KCa3.1 is emerging as a therapeutic target for a large variety of health disorders. One distinguishing feature of KCa3.1 is that the channel open probability at saturating Ca2+ concentrations (Pomax) is low, typically 0.1–0.2 for KCa3.1 wild type. This observation argues for the binding of Ca2+ to the calmodulin (CaM)–KCa3.1 complex, promoting the formation of a preopen closed-state configuration leading to channel opening. We have previously shown that the KCa3.1 active gate is most likely located at the level of the selectivity filter. As Ca2+-dependent gating of KCa3.1 originates from the binding of Ca2+ to CaM in the C terminus, the hypothesis of a gate located at the level of the selectivity filter requires that the conformational change initiated in the C terminus be transmitted to the S5 and S6 transmembrane helices, with a resulting effect on the channel pore helix directly connected to the selectivity filter. A study was thus undertaken to determine to what extent the interactions between the channel pore helix with the S5 and S6 transmembrane segments contribute to KCa3.1 gating. Molecular dynamics simulations first revealed that the largest contact area between the pore helix and the S5 plus S6 transmembrane helices involves residue F248 at the C-terminal end of the pore helix. Unitary current recordings next confirmed that modulating aromatic–aromatic interactions between F248 and W216 of the S5 transmembrane helical segment and/or perturbing the interactions between F248 and residues in S6 surrounding the glycine hinge G274 cause important changes in Pomax. This work thus provides the first evidence for a key contribution of the pore helix in setting Pomax by stabilizing the channel closed configuration through aromatic–aromatic interactions involving F248 of the pore helix. We propose that the interface pore helix/S5 constitutes a promising site for designing KCa3.1 potentiators. PMID:24470490

  10. Microtextured metals for stray-light suppression in the Clementine startracker

    NASA Technical Reports Server (NTRS)

    Johnson, E. A.

    1993-01-01

    Anodized blacks for suppressing stray light in optical systems can now be replaced by microscopically textured metal surfaces. An application of these black surfaces to the Clementine star-tracker navigational system, which will be launched in early 1994 to examine the Moon, en route to intercept an asteroid, is detailed. Rugged black surfaces with Lambertian BRDF less than 10(exp -2) srad(sup -1) are critical for suppressing stray light in the star-tracker optical train. Previously available materials spall under launch vibrations to contaminate mirrors and lenses. Microtextured aluminum is nearly as dark, but much less fragile. It is made by differential ion beam sputtering, which generates light-trapping pores and cones slightly smaller than the wavelength to be absorbed. This leaves a sturdy but light-absorbing surface that can survive challenging conditions without generating debris or contaminants. Both seeded ion beams and plasma immersion (from ECR plasmas) extraction can produce these microscopic textures without fragile interfaces. Process parameters control feature size, spacing, and optical effects (THR, BRDF). Both broad and narrow absorption bands can be engineered with tuning for specific wavelengths and applications. Examples are presented characterized by FTIR in reflection librators (0.95 normal emissivity), heat rejection, and enhanced nucleate boiling.

  11. Quantitative characterization of the carbon/carbon composites components based on video of polarized light microscope.

    PubMed

    Li, Yixian; Qi, Lehua; Song, Yongshan; Chao, Xujiang

    2017-06-01

    The components of carbon/carbon (C/C) composites have significant influence on the thermal and mechanical properties, so a quantitative characterization of component is necessary to study the microstructure of C/C composites, and further to improve the macroscopic properties of C/C composites. Considering the extinction crosses of the pyrocarbon matrix have significant moving features, the polarized light microscope (PLM) video is used to characterize C/C composites quantitatively because it contains sufficiently dynamic and structure information. Then the optical flow method is introduced to compute the optical flow field between the adjacent frames, and segment the components of C/C composites from PLM image by image processing. Meanwhile the matrix with different textures is re-segmented by the length difference of motion vectors, and then the component fraction of each component and extinction angle of pyrocarbon matrix are calculated directly. Finally, the C/C composites are successfully characterized from three aspects of carbon fiber, pyrocarbon, and pores by a series of image processing operators based on PLM video, and the errors of component fractions are less than 15%. © 2017 Wiley Periodicals, Inc.

  12. Investigation of Structure and Property of Indian Cocos nucifera L. Fibre

    NASA Astrophysics Data System (ADS)

    Basu, Gautam; Mishra, Leena; Samanta, Ashis Kumar

    2017-12-01

    Structure and physico-mechanical properties of Cocos nucifera L. fibre from a specific agro-climatic region of India, was thoroughly studied. Fine structure of the fibre was examined by Fourier Transform Infra-Red (FTIR) spectroscopy, Thermo-Gravimetric Analysis (TGA), X-Ray Diffraction (XRD), component analysis, Scanning Electron Microscope (SEM) and optical microscope. SEM shows prominent longitudinal cracks and micro-pores on the surface. XRD shows a low degree of crystallinity (45%), bigger crystallite size, and even the presence of appreciable amount of non-cellulose matter. FTIR reveals presence of large quantities of hydroxyl, phenolic and aldehyde groups. Component and thermal analyses indicates presence of cellulose and lignin as major components. Physical parameters reveal that, fibres are highly variable in length (range 44-305 mm), and diameter (range 100-795 µm). Mechanical properties of the fibre viz. breaking tenacity, breaking extensibility, specific work of rupture, and coefficient of friction were measured. Microbial decomposition test under soil reveals excellent durability of coconut fibre which makes it appropriate for the application in geotextiles. Mass specific electrical resistance of 4 Ω-kg/m2 indicates its enhanced insulation as compared to the jute.

  13. Bilayer lipid composition modulates the activity of dermaseptins, polycationic antimicrobial peptides.

    PubMed

    Duclohier, Hervé

    2006-05-01

    The primary targets of defense peptides are plasma membranes, and the induced irreversible depolarization is sufficient to exert antimicrobial activity although secondary modes of action might be at work. Channels or pores underlying membrane permeabilization are usually quite large with single-channel conductances two orders of magnitude higher than those exhibited by physiological channels involved, e.g., in excitability. Accordingly, the ion specificity and selectivity are quite low. Whereas, e.g., peptaibols favor cation transport, polycationic or basic peptides tend to form anion-specific pores. With dermaseptin B2, a 33 residue long and mostly alpha-helical peptide isolated from the skin of the South American frog Phyllomedusa bicolor, we found that the ion specificity of its pores induced in bilayers is modulated by phospholipid-charged headgroups. This suggests mixed lipid-peptide pore lining instead of the more classical barrel-stave model. Macroscopic conductance is nearly voltage independent, and concentration dependence suggests that the pores are mainly formed by dermaseptin tetramers. The two most probable single-channel events are well resolved at 200 and 500 pS (in 150 mM NaCl) with occasional other equally spaced higher or lower levels. In contrast to previous molecular dynamics previsions, this study demonstrates that dermaseptins are able to form pores, although a related analog (B6) failed to induce any significant conductance. Finally, the model of the pore we present accounts for phospholipid headgroups intercalated between peptide helices lining the pore and for one of the most probable single-channel conductance.

  14. Molecular mechanism for lipid flip-flops.

    PubMed

    Gurtovenko, Andrey A; Vattulainen, Ilpo

    2007-12-06

    Transmembrane lipid translocation (flip-flop) processes are involved in a variety of properties and functions of cell membranes, such as membrane asymmetry and programmed cell death. Yet, flip-flops are one of the least understood dynamical processes in membranes. In this work, we elucidate the molecular mechanism of pore-mediated transmembrane lipid translocation (flip-flop) acquired from extensive atomistic molecular dynamics simulations. On the basis of 50 successful flip-flop events resolved in atomic detail, we demonstrate that lipid flip-flops may spontaneously occur in protein-free phospholipid membranes under physiological conditions through transient water pores on a time scale of tens of nanoseconds. While the formation of a water pore is induced here by a transmembrane ion density gradient, the particular way by which the pore is formed is irrelevant for the reported flip-flop mechanism: the appearance of a transient pore (defect) in the membrane inevitably leads to diffusive translocation of lipids through the pore, which is driven by thermal fluctuations. Our findings strongly support the idea that the formation of membrane defects in terms of water pores is the rate-limiting step in the process of transmembrane lipid flip-flop, which, on average, requires several hours. The findings are consistent with available experimental and computational data and provide a view to interpret experimental observations. For example, the simulation results provide a molecular-level explanation in terms of pores for the experimentally observed fact that the exposure of lipid membranes to electric field pulses considerably reduces the time required for lipid flip-flops.

  15. Neutron Scattering Measurements of Carbon Dioxide Adsorption in Pores within the Marcellus Shale: Implications for Sequestration.

    PubMed

    Stefanopoulos, Konstantinos L; Youngs, Tristan G A; Sakurovs, Richard; Ruppert, Leslie F; Bahadur, Jitendra; Melnichenko, Yuri B

    2017-06-06

    Shale is an increasingly viable source of natural gas and a potential candidate for geologic CO 2 sequestration. Understanding the gas adsorption behavior on shale is necessary for the design of optimal gas recovery and sequestration projects. In the present study neutron diffraction and small-angle neutron scattering measurements of adsorbed CO 2 in Marcellus Shale samples were conducted on the Near and InterMediate Range Order Diffractometer (NIMROD) at the ISIS Pulsed Neutron and Muon Source, STFC Rutherford Appleton Laboratory along an adsorption isotherm of 22 °C and pressures of 25 and 40 bar. Additional measurements were conducted at approximately 22 and 60 °C at the same pressures on the General-Purpose Small-Angle Neutron Scattering (GP-SANS) instrument at Oak Ridge National Laboratory. The structures investigated (pores) for CO 2 adsorption range in size from Å level to ∼50 nm. The results indicate that, using the conditions investigated densification or condensation effects occurred in all accessible pores. The data suggest that at 22 °C the CO 2 has liquid-like properties when confined in pores of around 1 nm radius at pressures as low as 25 bar. Many of the 2.5 nm pores, 70% of 2 nm pores, most of the <1 nm pores, and all pores <0.25 nm, are inaccessible or closed to CO 2 , suggesting that despite the vast numbers of micropores in shale, the micropores will be unavailable for storage for geologic CO 2 sequestration.

  16. Geochemistry of surface and pore water at USGS coring sites in wetlands of South Florida, 1994 and 1995

    USGS Publications Warehouse

    Orem, William H.; Lerch, Harry E.; Rawlik, Peter

    2002-01-01

    In this report, we present preliminary data on surface and pore water geochemistry from 22 sites in south Florida sampled during 1994 and 1995. These results are part of a larger study designed to evaluate the role of biogeochemical processes in sediments in the cycling of carbon, nitrogen, phosphorus, and sulfur in the south Florida ecosystem. The data are briefly discussed in regard to regional trends in the concentrations of chemical species, and general diagenetic processes in sediments. These results are part of a larger study designed to evaluate the role of biogeochemical processes in sediments in the cycling of carbon, nitrogen, phosphorus, and sulfur in the south Florida ecosystem. These elements play a crucial role in regulating organic sedimentation, nutrient dynamics, redox conditions, and the biogeochemistry of mercury in the threatened wetlands of south Florida. Pore water samples for chemical analyis were obtained using a piston corer/squeezer designed to avoid compression of the sediment and avoid oxidation and contamination of the pore water samples. Results show distinct regional trends in both surface water and pore water geochemistry. Most chemical species in surface and pore water show peak concentrations in Water Conservation Area 2A, with diminishing concentrations to the south and west into Water Conservation Area 3A, and Everglades National Park. The largest differences observed were for phosphate and sulfide, with concentrations in pore waters in Water Conservation Area 2A up to 500x higher than concentrations observed in freshwater marsh areas of Water Conservation Area 3A and Everglades National Park. Sites near the Hillsboro Canal in Water Conservation Area 2A are heavily contaminated with both phosphorus and sulfur. Pore water profiles for dissolved reactive phosphate suggest that recycling of phosphorus at these contaminated sites occurs primarily in the upper 20 cm of sediment. High levels of sulfide in pore water in Water Conservation Area 2A may inhibit mercury methylation here. At sites in Water Conservation Area 3A south of Alligator Alley, sulfide levels are much lower and sulfate reduction in the sediments here may be conducive to methyl mercury formation. Concentration versus depth profiles of biogeochemically important chemical species in pore water at most sites are smoth curves amenable to modelling using standard diagenetic equations. This should allow prediction of rates of biogeochemical processes in these sediments for incorporation in ecosystem models.

  17. Ultrastructural study of the human neurohypophysis. III. Vascular and perivascular structures.

    PubMed

    Seyama, S; Pearl, G S; Takei, Y

    1980-01-01

    The vascular and perivascular regions of the human neurohypophysis were studied electron microscopically. The abluminal basement membrane, perivascular space, luminal basement membrane and endothelium are interposed between the neural parenchyma and the blood stream. The capillaries are fenestrated, with pores measuring 30 to 50 nm in diameter. The perivascular and intercellular spaces form prominent networks that penetrate between rows of neurohypophysial parenchymal cells. The perivascular space contains pericytes, histiocytes, fibroblasts and mast cells, with ultrastructural features typical of each cell type. No transitional forms between histiocytes and pericytes were observed. A schema for the extracellular flow of neurohypophysial hormones through the sinusoidal and perivascular spaces is proposed, suggesting an important role for the pituicytes and their intercellular junctions in the control of hormone release.

  18. Structure and properties of semi-interpenetrating network hydrogel based on starch.

    PubMed

    Zhu, Baodong; Ma, Dongzhuo; Wang, Jian; Zhang, Shuang

    2015-11-20

    Starch-g-P(acrylic acid-co-acrylamide)/PVA semi-interpenetrating network (semi-IPN) hydrogels were prepared by aqueous solution polymerization method. Starch grafting copolymerization reaction, semi-IPN structure and crystal morphology were characterized by Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The PVA in the form of partial crystallization distributing in the gel matrix uniformly were observed by Field emission scanning electron microscope (FESEM). The space network structure, finer microstructure and pore size in the interior of hydrogel were presented by biomicroscope. The results demonstrated that absorption ratio of water and salt generated different degree changes with the effect of PVA. In addition, the mechanical strength of hydrogel was improved. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Adsorption properties of biomass-based activated carbon prepared with spent coffee grounds and pomelo skin by phosphoric acid activation

    NASA Astrophysics Data System (ADS)

    Ma, Xiaodong; Ouyang, Feng

    2013-03-01

    Activated carbon prepared from spent coffee grounds and pomelo skin by phosphoric acid activation had been employed as the adsorbent for ethylene and n-butane at room temperature. Prepared activated carbon was characterized by means of nitrogen adsorption-desorption, X-ray powder diffraction, scanning electron microscope and Fourier transform infrared spectroscope. It was confirmed that pore structure played an important role during the adsorption testes. Adsorption isotherms of ethylene and n-butane fitted well with Langmuir equation. The prepared samples owned better adsorption capacity for n-butane than commercial activated carbon. Isosteric heats of adsorptions at different coverage were calculated through Clausius-Clapeyron equation. Micropore filling effect was explained in a thermodynamic way.

  20. Excitations in confined helium

    NASA Astrophysics Data System (ADS)

    Apaja, V.; Krotscheck, E.

    2003-05-01

    We design models for helium in matrices such as aerogel, Vycor, or Geltech from a manifestly microscopic point of view. For that purpose, we calculate the dynamic structure function of 4He on Si substrates and between two Si walls as a function of energy, momentum transfer, and the scattering angle. The angle-averaged results are in good agreement with the neutron scattering data; the remaining differences can be attributed to the simplified model used here for the complex pore structure of the materials. A focus of the present work is the detailed identification of coexisting layer modes and bulklike excitations, and, in the case of thick films, ripplon excitations. Involving essentially two-dimensional motion of atoms, the layer modes are sensitive to the scattering angle.

  1. Bilevel thresholding of sliced image of sludge floc.

    PubMed

    Chu, C P; Lee, D J

    2004-02-15

    This work examined the feasibility of employing various thresholding algorithms to determining the optimal bilevel thresholding value for estimating the geometric parameters of sludge flocs from the microtome sliced images and from the confocal laser scanning microscope images. Morphological information extracted from images depends on the bilevel thresholding value. According to the evaluation on the luminescence-inverted images and fractal curves (quadric Koch curve and Sierpinski carpet), Otsu's method yields more stable performance than other histogram-based algorithms and is chosen to obtain the porosity. The maximum convex perimeter method, however, can probe the shapes and spatial distribution of the pores among the biomass granules in real sludge flocs. A combined algorithm is recommended for probing the sludge floc structure.

  2. A novel antibacterial and antifungal phenolic compound from the endophytic fungus Pestalotiopsis mangiferae.

    PubMed

    Subban, Kamalraj; Subramani, Ramesh; Johnpaul, Muthumary

    2013-01-01

    A novel phenolic compound, 4-(2,4,7-trioxa-bicyclo[4.1.0]heptan-3-yl) phenol (1), was isolated from Pestalotiopsis mangiferae, an endophytic fungus associated with Mangifera indica Linn. The structure of the compound was elucidated on the basis of comprehensive spectral analysis (UV, IR, ¹H-, ¹³C- and 2D-NMR, as well as HRESI-MS). Compound (1) shows potent antibacterial and antifungal activity against Bacillus subtilis, Klebsiella pneumoniae, Escherichia coli, Micrococcus luteus, Pseudomonas aeruginosa and Candida albicans. The transmission electron microscope study for the mode of inhibition of compound (1) on bacterial pathogens revealed the destruction of bacterial cells by cytoplasm agglutination with the formation of pores in cell wall membranes.

  3. Windblown 'Whymper'

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Annotated image of PIA04193 Windblown 'Whymper'

    NASA's Spirit rover took this mosaic of the undisturbed soil deposit 'Whymper' on martian day, or sol 588 (August 29, 2005), using its microscopic imager. A well-defined impression about 3 centimeters (1.2 inches) wide was created when the rover's Moessbauer spectrometer faceplate was gently pushed into the soil. Note that the surface of the soil has been modified into wind streaks.

    The ability of the soil to make fine molds of the faceplate suggests the material is a mix of sand and dust. The dust is pushed into the pores of the sand and keeps the material from collapsing. This allows for very detailed impressions of the faceplate.

  4. Structural Insights into the Atomistic Mechanisms of Action of Small Molecule Inhibitors Targeting the KCa3.1 Channel Pore

    PubMed Central

    Nguyen, Hai M.; Singh, Vikrant; Pressly, Brandon; Jenkins, David Paul

    2017-01-01

    The intermediate-conductance Ca2+-activated K+ channel (KCa3.1) constitutes an attractive pharmacological target for immunosuppression, fibroproliferative disorders, atherosclerosis, and stroke. However, there currently is no available crystal structure of this medically relevant channel that could be used for structure-assisted drug design. Using the Rosetta molecular modeling suite we generated a molecular model of the KCa3.1 pore and tested the model by first confirming previously mapped binding sites and visualizing the mechanism of TRAM-34 (1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole), senicapoc (2,2-bis-(4-fluorophenyl)-2-phenylacetamide), and NS6180 (4-[[3-(trifluoromethyl)phenyl]methyl]-2H-1,4-benzothiazin-3(4H)-one) inhibition at the atomistic level. All three compounds block ion conduction directly by fully or partially occupying the site that would normally be occupied by K+ before it enters the selectivity filter. We then challenged the model to predict the receptor sites and mechanisms of action of the dihydropyridine nifedipine and an isosteric 4-phenyl-pyran. Rosetta predicted receptor sites for nifedipine in the fenestration region and for the 4-phenyl-pyran in the pore lumen, which could both be confirmed by site-directed mutagenesis and electrophysiology. While nifedipine is thus not a pore blocker and might be stabilizing the channel in a nonconducting conformation or interfere with gating, the 4-phenyl-pyran was found to be a classical pore blocker that directly inhibits ion conduction similar to the triarylmethanes TRAM-34 and senicapoc. The Rosetta KCa3.1 pore model explains the mechanism of action of several KCa3.1 blockers at the molecular level and could be used for structure-assisted drug design. PMID:28126850

  5. Tunable sustained intravitreal drug delivery system for daunorubicin using oxidized porous silicon

    PubMed Central

    Hou, Huiyuan; Nieto, Alejandra; Ma, Feiyan; Freeman, William R.; Sailor, Michael J.; Cheng, Lingyun

    2014-01-01

    Daunorubicin (DNR) is an effective inhibitor of an array of proteins involved in neovascularization, including VEGF and PDGF. These growth factors are directly related to retina scar formation in many devastating retinal diseases. Due to the short vitreous half-life and narrow therapeutic window, ocular application of DNR is limited. It has been shown that a porous silicon (pSi) based delivery system can extend DNR vitreous residence from a few days to 3 months. In this study we investigated the feasibility of altering the pore size of the silicon particles to regulate the payload release. Modulation of the etching parameters allowed control of the nano-pore size from 15 nm to 95 nm. In vitro studies showed that degradation of pSi O2 increased with increasing pore size and the degradation of pSi O2 was approximately constant for a given particle type. The degradation of pSi O2 with 43 nm pores was significantly greater than the other two particles with smaller pores, judged by observed and normalized mean Si concentration of the dissolution samples (44.2±8.9 vs 25.7±5.6 or 21.2±4.2 µg/mL, p<0.0001). In vitro dynamic DNR release revealed that pSiO2-CO2H:DNR (Porous silicon dioxide with covalent loading of daunorubicin) with large pores (43 nm) yielded a significantly higher DNR level than particles with 15 or 26 nm pores (13.5±6.9 ng/mL vs. 2.3±1.6 ng/mL and 1.1±0.9 ng/mL, p<0.0001). After two months of in vitro dynamic release, 54% of the pSiO2-CO2H:DNR particles still remained in the dissolution chamber by weight. In vivo drug release study demonstrated that free DNR in vitreous at post-injection day 14 was 66.52 ng/mL for 95 nm pore size pSiO2-CO2H:DNR, 10.76 ng/mL for 43 nm pSi O2-CO2 H:DNR, and only 1.05 ng/mL for 15 nm pSi O2-CO2 H:DNR. Pore expansion from 15 nm to 95 nm led to a 63 folds increase of DNR release (p<0.0001) and a direct correlation between the pore size and the drug levels in the living eye vitreous was confirmed. The present study demonstrates the feasibility of regulating DNR release from pSi O2 covalently loaded with DNR by engineering the nano-pore size of pSi. PMID:24424270

  6. Tunable sustained intravitreal drug delivery system for daunorubicin using oxidized porous silicon.

    PubMed

    Hou, Huiyuan; Nieto, Alejandra; Ma, Feiyan; Freeman, William R; Sailor, Michael J; Cheng, Lingyun

    2014-03-28

    Daunorubicin (DNR) is an effective inhibitor of an array of proteins involved in neovascularization, including VEGF and PDGF. These growth factors are directly related to retina scar formation in many devastating retinal diseases. Due to the short vitreous half-life and narrow therapeutic window, ocular application of DNR is limited. It has been shown that a porous silicon (pSi) based delivery system can extend DNR vitreous residence from a few days to 3months. In this study we investigated the feasibility of altering the pore size of the silicon particles to regulate the payload release. Modulation of the etching parameters allowed control of the nano-pore size from 15nm to 95nm. In vitro studies showed that degradation of pSiO2 increased with increasing pore size and the degradation of pSiO2 was approximately constant for a given particle type. The degradation of pSiO2 with 43nm pores was significantly greater than the other two particles with smaller pores, judged by observed and normalized mean Si concentration of the dissolution samples (44.2±8.9 vs 25.7±5.6 or 21.2±4.2μg/mL, p<0.0001). In vitro dynamic DNR release revealed that pSiO2-CO2H:DNR (porous silicon dioxide with covalent loading of daunorubicin) with large pores (43nm) yielded a significantly higher DNR level than particles with 15 or 26nm pores (13.5±6.9ng/mL vs. 2.3±1.6ng/mL and 1.1±0.9ng/mL, p<0.0001). After two months of in vitro dynamic release, 54% of the pSiO2-CO2H:DNR particles still remained in the dissolution chamber by weight. In vivo drug release study demonstrated that free DNR in the vitreous at post-injection day 14 was 66.52ng/mL for 95nm pore size pSiO2-CO2H:DNR, 10.76ng/mL for 43nm pSiO2-CO2H:DNR, and only 1.05ng/mL for 15nm pSiO2-CO2H:DNR. Pore expansion from 15nm to 95nm led to a 63 fold increase of DNR release (p<0.0001) and a direct correlation between the pore size and the drug levels in the living eye vitreous was confirmed. The present study demonstrates the feasibility of regulating DNR release from pSiO2 covalently loaded with DNR by engineering the nano-pore size of pSi. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Hyperspectral microscope imaging methods to classify gram-positive and gram-negative foodborne pathogenic bacteria

    USDA-ARS?s Scientific Manuscript database

    An acousto-optic tunable filter-based hyperspectral microscope imaging method has potential for identification of foodborne pathogenic bacteria from microcolony rapidly with a single cell level. We have successfully developed the method to acquire quality hyperspectral microscopic images from variou...

  8. Study on analysis of waste edible oil with deterioration and removal of acid value, carbonyl value, and free fatty acid by a food additive (calcium silicate).

    PubMed

    Ogata, Fumihiko; Tanaka, Yuko; Tominaga, Hisato; Kangawa, Moe; Inoue, Kenji; Ueda, Ayaka; Iwata, Yuka; Kawasaki, Naohito

    2013-01-01

    This study investigated the regeneration of waste edible oil using a food additive (calcium silicate, CAS). Waste edible oil was prepared by combined heat and aeration treatment. Moreover, the deterioration of edible oil by combined heat and aeration treatment was greater than that by heat treatment alone. The acid value (AV) and carbonyl value (CV) increased with increasing deterioration; conversely, the tocopherol concentration decreased with increasing deterioration. The specific surface area, pore volume, and mean pore diameter of the 3 CAS formulations used (CAS30, CAS60, and CAS90) were evaluated, and scanning electron microscopic images were taken. The specific surface area increased in the order of CAS30 (115.54 m(2)/g) < CAS60 (163.93 m(2)/g) < CAS90 (187.47 m(2)/g). The mean pore diameter increased in the order of CAS90 (170.59 Å) < CAS60 (211.60 Å) < CAS30 (249.70 Å). The regeneration of waste edible oil was possible with CAS treatment. The AV reduced by 15.2%, 10.8%, and 23.1% by CAS30, CAS60, and CAS90 treatment, respectively, and the CV was reduced by 35.6%, 29.8%, and 31.3% by these 3 treatments, respectively. Moreover, the concentrations of tocopherol and free fatty acids did not change with CAS treatment. The characteristics of CAS were not related to the degree of change of AV and CV. However, the adsorption mechanism of polar and non-polar compounds generated in waste edible oil by CAS was related with the presence of silica gel molecules in CAS. The findings indicated that CAS was useful for the regeneration of waste edible oil.

  9. Comparison of removal torques between laser-etched and modified sandblasted acid-etched Ti implant surfaces in rabbit tibias

    PubMed Central

    Al Awamleh, Abdel Ghani Ibrahim

    2018-01-01

    PURPOSE The purpose of this study was to analyze the effects of two different implant surface treatments on initial bone connection by comparing the Removal Torque Values (RTQs) at 7 and 10 days after chemically modified, sandblasted, large-grit and acid-etched (modSLA), and Laser-etched (LE) Ti implant placements. MATERIALS AND METHODS Twenty modSLA and 20 LE implants were installed on the left and right tibias of 20 adult rabbits. RTQs were measured after 7 and 10 days in 10 rabbits each. Scanning electron microscope (SEM) photographs of the two implants were observed by using Quanta FEG 650 from the FEI company (Hillsboro, OR, USA). Analyses of surface elements and components were conducted using energy dispersive spectroscopy (EDS, Horiba, Kyoto, Japan). RESULTS The mean RTQs were 12.29 ± 0.830 and 12.19 ± 0.713 Ncm after 7 days (P=.928) and 16.47 ± 1.324 and 16.17 ± 1.165 Ncm after 10 days (P=.867) for LE and modSLA, respectively, indicating no significant inter-group differences. Pore sizes in the LE were 40 µm and consisted of numerous small pores, whereas pore sizes in the modSLA were 5 µm. In the EDS analysis, Ti, O, and C were the only three elements found in the LE surfaces. Na, Ca, Cl, and K were also observed in modSLA, in addition to Ti, O, and C. CONCLUSION The implants showed no significant difference in biomechanical bond strength to bone in early-stage osseointegration. LE implant can be considered an excellent surface treatment method in addition to the modSLA implant and can be applied to the early loading of the prosthesis clinically. PMID:29503717

  10. Comparison of removal torques between laser-treated and SLA-treated implant surfaces in rabbit tibiae

    PubMed Central

    Kang, Nam-Seok; Li, Lin-Jie

    2014-01-01

    PURPOSE The purpose of this study was to compare removal torques and surface topography between laser treated and sandblasted, large-grit, acid-etched (SLA) treated implants. MATERIALS AND METHODS Laser-treated implants (experimental group) and SLA-treated implants (control group) 8 mm in length and 3.4 mm in diameter were inserted into both sides of the tibiae of 12 rabbits. Surface analysis was accomplished using a field emission scanning electron microscope (FE-SEM; Hitachi S-4800; Japan) under ×25, ×150 and ×1,000 magnification. Surface components were analyzed using energy dispersive spectroscopy (EDS). Rabbits were sacrificed after a 6-week healing period. The removal torque was measured using the MGT-12 digital torque meter (Mark-10 Co., Copiague, NY, USA). RESULTS In the experimental group, the surface analysis showed uniform porous structures under ×25, ×150 and ×1,000 magnification. Pore sizes in the experimental group were 20-40 mm and consisted of numerous small pores, whereas pore sizes in the control group were 0.5-2.0 mm. EDS analysis showed no significant difference between the two groups. The mean removal torque in the laser-treated and the SLA-treated implant groups were 79.4 Ncm (SD = 20.4; range 34.6-104.3 Ncm) and 52.7 Ncm (SD = 17.2; range 18.7-73.8 Ncm), respectively. The removal torque in the laser-treated surface implant group was significantly higher than that in the control group (P=.004). CONCLUSION In this study, removal torque values were significantly higher for laser-treated surface implants than for SLA-treated surface implants. PMID:25177474

  11. The influence of mesoscale porosity on cortical bone anisotropy. Investigations via asymptotic homogenization

    PubMed Central

    Parnell, William J; Grimal, Quentin

    2008-01-01

    Recently, the mesoscale of cortical bone has been given particular attention in association with novel experimental techniques such as nanoindentation, micro-computed X-ray tomography and quantitative scanning acoustic microscopy (SAM). A need has emerged for reliable mathematical models to interpret the related microscopic and mesoscopic data in terms of effective elastic properties. In this work, a new model of cortical bone elasticity is developed and used to assess the influence of mesoscale porosity on the induced anisotropy of the material. Only the largest pores (Haversian canals and resorption cavities), characteristic of the mesoscale, are considered. The input parameters of the model are derived from typical mesoscale experimental data (e.g. SAM data). We use the method of asymptotic homogenization to determine the local effective elastic properties by modelling the propagation of low-frequency elastic waves through an idealized material that models the local mesostructure. We use a novel solution of the cell problem developed by Parnell & Abrahams. This solution is stable for the physiological range of variation of mesoscopic porosity and elasticity found in bone. Results are computed efficiently (in seconds) and the solutions can be implemented easily by other workers. Parametric studies are performed in order to assess the influence of mesoscopic porosity, the assumptions regarding the material inside the mesoscale pores (drained or undrained bone) and the shape of pores. Results are shown to be in good qualitative agreement with existing schemes and we describe the potential of the scheme for future use in modelling more complex microstructures for cortical bone. In particular, the scheme is shown to be a useful tool with which to predict the qualitative changes in anisotropy due to variations in the structure at the mesoscale. PMID:18628200

  12. Rock anelasticity due to patchy saturation and fabric heterogeneity: A double double-porosity model of wave propagation

    NASA Astrophysics Data System (ADS)

    Ba, Jing; Xu, Wenhao; Fu, Li-Yun; Carcione, José M.; Zhang, Lin

    2017-03-01

    Heterogeneity of rock's fabric can induce heterogeneous distribution of immiscible fluids in natural reservoirs, since the lithological variations (mainly permeability) may affect fluid migration in geological time scales, resulting in patchy saturation of fluids. Therefore, fabric and saturation inhomogeneities both affect wave propagation. To model the wave effects (attenuation and velocity dispersion), we introduce a double double-porosity model, where pores saturated with two different fluids overlap with pores having dissimilar compressibilities. The governing equations are derived by using Hamilton's principle based on the potential energy, kinetic energy, and dissipation functions, and the stiffness coefficients are determined by gedanken experiments, yielding one fast P wave and four slow Biot waves. Three examples are given, namely, muddy siltstones, clean dolomites, and tight sandstones, where fabric heterogeneities at three different spatial scales are analyzed in comparison with experimental data. In muddy siltstones, where intrapore clay and intergranular pores constitute a submicroscopic double-porosity structure, wave anelasticity mainly occurs in the frequency range (104-107 Hz), while in pure dolomites with microscopic heterogeneity of grain contacts and tight sandstones with mesoscopic heterogeneity of less consolidated sands, it occurs at 103-107 Hz and 101-103 Hz (seismic band), respectively. The predicted maximum quality factor of the fast compressional wave for the sandstone is the lowest (approximately 8), and that of the dolomite is the highest. The results of the diffusive slow waves are affected by the strong friction effects between solids and fluids. The model describes wave propagation in patchy-saturated rocks with fabric heterogeneity at different scales, and the relevant theoretical predictions agree well with the experimental data in fully and partially saturated rocks.

  13. The Effects of Air-Cooled Blast Furnace Slag (ACBFS) Aggregate on the Chemistry of Pore Solution and the Interfacial Transition Zone

    NASA Astrophysics Data System (ADS)

    Panchmatia, Parth

    Numerous laboratory and field studies have demonstrated that concrete incorporating air cooled blast furnace slag (ACBFS) aggregate showed a higher degree of infilling of voids with ettringite as opposed to concrete prepared using naturally mined carbonate aggregates when exposed to similar environmental conditions. This observation prompted some to link the deterioration observed in the ACBFS aggregate concrete structures to the compromised freeze-thaw resistance due to infilling of air voids. Concerns about the release of sulfur from ACBFS aggregate into the pore solution of concrete had been presented as the reason for the observed ettringite deposits in the air voids. However, literature quantifying the influence of ACBFS aggregate on the chemistry of the pore solution of concrete is absent. Therefore, the main purpose of this research was to quantify the effects of ACBFS aggregate on the chemistry of the pore solution of mortars incorporating them. Coarse and crushed ACBFS aggregates were submerged in artificial pore solutions (APSs) representing pore solutions of 3-day, 7-day, and 28-day hydrated plain, binary, and ternary paste systems. The change in the chemistry of these artificial pore solutions was recorded to quantify the chemical contribution of ACBFS aggregate to the pore solution of concrete. It was observed that the sulfate concentration of all APSs increased once they were in contact with either coarse or crushed ACBFS aggregate. After 28 days of contact, the increase in sulfate concentration of the APSs ranged from 4.85 - 12.23 mmol/L and 14.21 - 16.87 mmol/L for contact with coarse and crushed ACBFS aggregate, respectively. More than 40% of the total sulfate that was released by the ACBFS aggregate occurred during the first 72 hours (3 days) of its contact with the APSs. There was little or no difference in the amount of sulfate released from ACBFS aggregate in the different types of APSs. In other words, the type of binder solution from which pore solution was extracted had no effect on the amount of sulfate that was released when it was in contact with ACBFS aggregate. The relatively quick release of sulfur from ACBFS aggregate into the APSs prompted investigation of the chemical composition of the pore solution of mortar (at early stages of hydration) incorporating ACBFS aggregate. The chemical composition of the pore solutions obtained from mortars prepared using ACBFS aggregate and plain and binary paste matrices was compared those of mortars prepared using Ottawa sand and plain and binary paste matrices. After 7 days of hydration, the sulfur (S) concentration of the pore solution extracted from mortars prepared using ACBFS aggregate was 3.4 - 5.6 times greater than that obtained from corresponding mortars (i.e. mortars with the same paste matrix) prepared using Ottawa sand. Binary mortars containing fly ash (FA) showed the lowest S content after 7 days of hydration amongst all mortars prepared using ACBFS aggregate. On the other hand, binary mortars prepared using slag cement (SC) and ACBFS aggregate had the highest S concentration after 7 days of hydration. These effects on the S concentration in the pore solutions can be explained by the difference in the chemical makeup of the binders, and not because of different rate of release of S from ACBFS into the pore solution. In addition, TGA analysis of 7-day hydrated mortars revealed that the ettringite, monosulfate, and calcium hydroxide content was lower in mortars prepared using ACBFS aggregate as opposed to those prepared using Ottawa sand. This could be because of the low degree of hydration in mortars with ACBFS aggregate because of the high sulfate concentration in its pore solution. The properties of the interfacial transition zone (ITZ), i.e. the zone in the vicinity of the aggregate surface, depends on the property of the aggregate such as its porosity and texture. Therefore, it is expected that the properties of ITZ around the ACBFS particle, which is porous and proven to contribute sulfate, be different from the ITZ around the naturally mined siliceous aggregate. Image analysis conducted on backscattered images obtained using scanning electron microscope revealed that the ITZ of naturally mined siliceous aggregate was more porous compared to the ITZ of ACBFS aggregate. In addition, calcium hydroxide deposits were more frequent and larger in size in the ITZ around siliceous sand than in the case of the ITZ around the ACBFS aggregate.

  14. An investigation into preserving spatially-distinct pore systems in multi-component rocks using a fossiliferous limestone example

    NASA Astrophysics Data System (ADS)

    Jiang, Zeyun; Couples, Gary D.; Lewis, Helen; Mangione, Alessandro

    2018-07-01

    Limestones containing abundant disc-shaped fossil Nummulites can form significant hydrocarbon reservoirs but they have a distinctly heterogeneous distribution of pore shapes, sizes and connectivities, which make it particularly difficult to calculate petrophysical properties and consequent flow outcomes. The severity of the problem rests on the wide length-scale range from the millimetre scale of the fossil's pore space to the micron scale of rock matrix pores. This work develops a technique to incorporate multi-scale void systems into a pore network, which is used to calculate the petrophysical properties for subsequent flow simulations at different stages in the limestone's petrophysical evolution. While rock pore size, shape and connectivity can be determined, with varying levels of fidelity, using techniques such as X-ray computed tomography (CT) or scanning electron microscopy (SEM), this work represents a more challenging class where the rock of interest is insufficiently sampled or, as here, has been overprinted by extensive chemical diagenesis. The main challenge is integrating multi-scale void structures derived from both SEM and CT images, into a single model or a pore-scale network while still honouring the nature of the connections across these length scales. Pore network flow simulations are used to illustrate the technique but of equal importance, to demonstrate how supportable earlier-stage petrophysical property distributions can be used to assess the viability of several potential geological event sequences. The results of our flow simulations on generated models highlight the requirement for correct determination of the dominant pore scales (one plus of nm, μm, mm, cm), the spatial correlation and the cross-scale connections.

  15. Individual pore and interconnection size analysis of macroporous ceramic scaffolds using high-resolution X-ray tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jerban, Saeed, E-mail: saeed.jerban@usherbrooke.ca

    2016-08-15

    The pore interconnection size of β-tricalcium phosphate scaffolds plays an essential role in the bone repair process. Although, the μCT technique is widely used in the biomaterial community, it is rarely used to measure the interconnection size because of the lack of algorithms. In addition, discrete nature of the μCT introduces large systematic errors due to the convex geometry of interconnections. We proposed, verified and validated a novel pore-level algorithm to accurately characterize the individual pores and interconnections. Specifically, pores and interconnections were isolated, labeled, and individually analyzed with high accuracy. The technique was verified thoroughly by visually inspecting andmore » verifying over 3474 properties of randomly selected pores. This extensive verification process has passed a one-percent accuracy criterion. Scanning errors inherent in the discretization, which lead to both dummy and significantly overestimated interconnections, have been examined using computer-based simulations and additional high-resolution scanning. Then accurate correction charts were developed and used to reduce the scanning errors. Only after the corrections, both the μCT and SEM-based results converged, and the novel algorithm was validated. Material scientists with access to all geometrical properties of individual pores and interconnections, using the novel algorithm, will have a more-detailed and accurate description of the substitute architecture and a potentially deeper understanding of the link between the geometric and biological interaction. - Highlights: •An algorithm is developed to analyze individually all pores and interconnections. •After pore isolating, the discretization errors in interconnections were corrected. •Dummy interconnections and overestimated sizes were due to thin material walls. •The isolating algorithm was verified through visual inspection (99% accurate). •After correcting for the systematic errors, algorithm was validated successfully.« less

  16. Side chain flexibility and the pore dimensions in the GABAA receptor

    NASA Astrophysics Data System (ADS)

    Rossokhin, Alexey V.; Zhorov, Boris S.

    2016-07-01

    Permeation of ions through open channels and their accessibility to pore-targeting drugs depend on the pore cross-sectional dimensions, which are known only for static X-ray and cryo-EM structures. Here, we have built homology models of the closed, open and desensitized α1β2γ2 GABAA receptor (GABAAR). The models are based, respectively, on the X-ray structure of α3 glycine receptor (α3 GlyR), cryo-EM structure of α1 GlyR and X-ray structure of β3 GABAAR. We employed Monte Carlo energy minimizations to explore how the pore lumen may increase due to repulsions of flexible side chains from a variable-diameter electroneutral atom (an expanding sphere) pulled through the pore. The expanding sphere computations predicted that the pore diameter averaged along the permeation pathway is larger by approximately 3 Å than that computed for the models with fixed sidechains. Our models predict three major pore constrictions located at the levels of -2', 9' and 20' residues. Residues around the -2' and 9' rings are known to form the desensitization and activation gates of GABAAR. Our computations predict that the 20' ring may also serve as GABAAR gate whose physiological role is unclear. The side chain flexibility of residues -2', 9' and 20' and hence the dimensions of the constrictions depend on the GABAAR functional state.

  17. Prediction of porosity of food materials during drying: Current challenges and directions.

    PubMed

    Joardder, Mohammad U H; Kumar, C; Karim, M A

    2017-07-18

    Pore formation in food samples is a common physical phenomenon observed during dehydration processes. The pore evolution during drying significantly affects the physical properties and quality of dried foods. Therefore, it should be taken into consideration when predicting transport processes in the drying sample. Characteristics of pore formation depend on the drying process parameters, product properties and processing time. Understanding the physics of pore formation and evolution during drying will assist in accurately predicting the drying kinetics and quality of food materials. Researchers have been trying to develop mathematical models to describe the pore formation and evolution during drying. In this study, existing porosity models are critically analysed and limitations are identified. Better insight into the factors affecting porosity is provided, and suggestions are proposed to overcome the limitations. These include considerations of process parameters such as glass transition temperature, sample temperature, and variable material properties in the porosity models. Several researchers have proposed models for porosity prediction of food materials during drying. However, these models are either very simplistic or empirical in nature and failed to consider relevant significant factors that influence porosity. In-depth understanding of characteristics of the pore is required for developing a generic model of porosity. A micro-level analysis of pore formation is presented for better understanding, which will help in developing an accurate and generic porosity model.

  18. A Novel Hyperspectral Microscopic Imaging System for Evaluating Fresh Degree of Pork.

    PubMed

    Xu, Yi; Chen, Quansheng; Liu, Yan; Sun, Xin; Huang, Qiping; Ouyang, Qin; Zhao, Jiewen

    2018-04-01

    This study proposed a rapid microscopic examination method for pork freshness evaluation by using the self-assembled hyperspectral microscopic imaging (HMI) system with the help of feature extraction algorithm and pattern recognition methods. Pork samples were stored for different days ranging from 0 to 5 days and the freshness of samples was divided into three levels which were determined by total volatile basic nitrogen (TVB-N) content. Meanwhile, hyperspectral microscopic images of samples were acquired by HMI system and processed by the following steps for the further analysis. Firstly, characteristic hyperspectral microscopic images were extracted by using principal component analysis (PCA) and then texture features were selected based on the gray level co-occurrence matrix (GLCM). Next, features data were reduced dimensionality by fisher discriminant analysis (FDA) for further building classification model. Finally, compared with linear discriminant analysis (LDA) model and support vector machine (SVM) model, good back propagation artificial neural network (BP-ANN) model obtained the best freshness classification with a 100 % accuracy rating based on the extracted data. The results confirm that the fabricated HMI system combined with multivariate algorithms has ability to evaluate the fresh degree of pork accurately in the microscopic level, which plays an important role in animal food quality control.

  19. A Novel Hyperspectral Microscopic Imaging System for Evaluating Fresh Degree of Pork

    PubMed Central

    Xu, Yi; Chen, Quansheng; Liu, Yan; Sun, Xin; Huang, Qiping; Ouyang, Qin; Zhao, Jiewen

    2018-01-01

    Abstract This study proposed a rapid microscopic examination method for pork freshness evaluation by using the self-assembled hyperspectral microscopic imaging (HMI) system with the help of feature extraction algorithm and pattern recognition methods. Pork samples were stored for different days ranging from 0 to 5 days and the freshness of samples was divided into three levels which were determined by total volatile basic nitrogen (TVB-N) content. Meanwhile, hyperspectral microscopic images of samples were acquired by HMI system and processed by the following steps for the further analysis. Firstly, characteristic hyperspectral microscopic images were extracted by using principal component analysis (PCA) and then texture features were selected based on the gray level co-occurrence matrix (GLCM). Next, features data were reduced dimensionality by fisher discriminant analysis (FDA) for further building classification model. Finally, compared with linear discriminant analysis (LDA) model and support vector machine (SVM) model, good back propagation artificial neural network (BP-ANN) model obtained the best freshness classification with a 100 % accuracy rating based on the extracted data. The results confirm that the fabricated HMI system combined with multivariate algorithms has ability to evaluate the fresh degree of pork accurately in the microscopic level, which plays an important role in animal food quality control. PMID:29805285

  20. Improving sound absorption property of polyurethane foams doped with natural fiber

    NASA Astrophysics Data System (ADS)

    Azahari, M. Shafiq M.; Rus, Anika Zafiah M.; Taufiq Zaliran, M.; Kormin, Shaharuddin

    2017-08-01

    This study investigates the acoustics behavior of wood fibre filler of Red Meranti - filled polyurethane foam as a sound absorbing material. Three different thicknesses have been selected which is 10 mm, 20 mm and 30 mm. By choosing percentage loading of Red Meranti (RM) wood fibre of 5%, 10%, 15% and 20% added with polymer foam is namely as polymer foam (PF) composites of PF5%, PF10%, PF15% and PF20%. The sound absorption coefficient (α) and pore structure of the foam samples have been examined by using Impedance Tube test and Scanning Electron Microscopy (SEM). The results revealed that the highest thickness of highest filler loading (PF20%) gives higher sound absorption coefficient (α). The absorption frequency level is observed at 0.9922 and 0.99889 which contributed from low and high frequency absorption level respectively. The smallest pores size structure was observed with highest filler loading of PF. The higher the thickness and the higher the percentage loading of wood filler gives smaller pore structure, consequently, increased the sound absorption coefficient level.

  1. A study on the cytotoxicity of carbon-based materials

    DOE PAGES

    Saha, Dipendu; Heldt, Caryn L.; Gencoglu, Maria F.; ...

    2016-05-25

    With an aim to understand the origin and key contributing factors towards carboninduced cytotoxicity, we have studied five different carbon samples with diverse surface area, pore width, shape and size, conductivity and surface functionality. All the carbon materials were characterized with surface area and pore size distribution, x-ray photoelectron spectroscopy (XPS) and electron microscopic imaging. We performed cytotoxicity study in Caco-2 cells by colorimetric assay, oxidative stress analysis by reactive oxygen species (ROX) detection, cellular metabolic activity measurement by adenosine triphosphate (ATP) depletion and visualization of cellular internalization by TEM imaging. The carbon materials demonstrated a varying degree of cytotoxicitymore » in contact with Caco-2 cells. The lowest cell survival rate was observed for nanographene, which possessed the minimal size amongst all the carbon samples under study. None of the carbons induced oxidative stress to the cells as indicated by the ROX generation results. Cellular metabolic activity study revealed that the carbon materials caused ATP depletion in cells and nanographene caused the highest depletion. Visual observation by TEM imaging indicated the cellular internalization of nanographene. This study confirmed that the size is the key cause of carbon-induced cytotoxicity and it is probably caused by the ATP depletion within the cell.« less

  2. Effect of Steam Activation on Development of Light Weight Biomorphic Porous SiC from Pine Wood Precursor

    NASA Astrophysics Data System (ADS)

    Manocha, Satish M.; Patel, Hemang; Manocha, L. M.

    2013-02-01

    Biomorphic SiC materials with tailor-made microstructure and properties similar to ceramic materials manufactured by conventional method are a new class of materials derived from natural biopolymeric cellulose templates (wood). Porous silicon carbide (SiC) ceramics with wood-like microstructure have been prepared by carbothermal reduction of charcoal/silica composites at 1300-1600 °C in inert Ar atmosphere. The C/SiO2 composites were fabricated by infiltrating silica sol into porous activated biocarbon template. Silica in the charcoal/silica composite, preferentially in the cellular pores, was found to get transformed in forms of fibers and rods due to shrinkage during drying. The changes in the morphology of resulting porous SiC ceramics after heat treatment to 1600 °C, as well as the conversion mechanism of wood to activated carbon and then to porous SiC ceramic have been investigated using scanning electron microscope, x-ray diffraction, thermogravimetric analysis, and differential scanning calorimetry. Activation of carbon prior to silica infiltration has been found to enhance conversion of charcoal to SiC. The pore structure is found to be uniform in these materials than in those made from as-such charcoal/silica composites. This provides a low-cost and eco-friendly route to advanced ceramic materials, with near-net shape potential.

  3. Fabrication of honeycomb-structured poly(ethylene glycol)-block-poly(lactic acid) porous films and biomedical applications for cell growth

    NASA Astrophysics Data System (ADS)

    Yao, Bingjian; Zhu, Qingzeng; Yao, Linli; Hao, Jingcheng

    2015-03-01

    A series of poly(ethylene glycol)-block-poly(lactic acid) (PEG-PLA) copolymers with a hydrophobic PLA block of different molecular weights and a fixed length hydrophilic PEG were synthesized successfully and characterized. These amphiphilic block copolymers were used to fabricate honeycomb-structured porous films using the breath figure (BF) templating technique. The surface topology and composition of the highly ordered pattern film were further characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and fluorescence microscopy. The results indicated that the PEG-to-PLA block molecular weight ratio influenced the BF film surface topology. The film with the best ordered pores was obtained with a PEG-to-PLA ratio of 2.0 × 103:3.0 × 104. The self-organization of the hydrophilic PEG chains within the pores was confirmed by XPS and fluorescence labeled PEG. A model is proposed to elucidate the stabilization process of the amphiphilic PEG-PLA aggregated architecture on the water droplet-based templates. In addition, GFP-U87 cell viability has been investigated by MTS test and the cell morphology on the honeycomb-structured PEG-PLA porous film has been evaluated using phase-contrast microscope. This porous film is shown to be suitable as a matrix for cell growth.

  4. The Ingestion of Fluorescent, Magnetic Nanoparticles for Determining Fluid-uptake Abilities in Insects

    DOE PAGES

    Lehnert, Matthew S.; Reiter, Kristen E.; Bennett, Andrew; ...

    2017-01-01

    Here, fluid-feeding insects ingest a variety of liquids, which are present in the environment as pools, films, or confined to small pores. Studies of liquid acquisition require assessing mouthpart structure and function relationships; however, fluid uptake mechanisms are historically inferred from observations of structural architecture, sometimes unaccompanied with experimental evidence. Here, we report a novel method for assessing fluid-uptake abilities with butterflies (Lepidoptera) and flies (Diptera) using small amounts of liquids. Insects are fed with a 20% sucrose solution mixed with fluorescent, magnetic nanoparticles from filter papers of specific pore sizes. The crop (internal structure used for storing fluids) ismore » removed from the insect and placed on a confocal microscope. A magnet is waved by the crop to determine the presence of nanoparticles, which indicate if the insects are able to ingest fluids. This methodology is used to reveal a widespread feeding mechanism (capillary action and liquid bridge formation) that is potentially shared among Lepidoptera and Diptera when feeding from porous surfaces. In addition, this method can be used for studies of feeding mechanisms among a variety of fluid-feeding insects, including those important in disease transmission and biomimetics, and potentially other studies that involve nano- or micro-sized conduits where liquid transport requires verification.« less

  5. Pyrolysis of ground pine chip and ground pellet particles

    DOE PAGES

    Rezaei, Hamid; Yazdanpanah, Fahimeh; Lim, C. Jim; ...

    2016-08-04

    In addition to particle size, biomass density influences heat and mass transfer rates during the thermal treatment processes. In this research, thermal behaviour of ground pine chip particles and ground pine pellet particles in the range of 0.25–5 mm was investigated. A single particle from ground pellets was almost 3 to 4 times denser than a single particle from ground chips at a similar size and volume of particle. Temperature was ramped up from room temperature (~25 °C) to 600 °C with heating rates of 10, 20, 30, and 50 °C/min. Pellet particles took 25–88 % longer time to drymore » than the chip particles. Microscopic examination of 3 mm and larger chip particles showed cracks during drying. No cracks were observed for pellet particles. The mass loss due to treatment at temperatures higher than 200 °C was about 80% both for chip and pellet particles. It took 4 min for chip and pellet particles to lose roughly 63% of their dry mass at a heating rate of 50 °C/min. The SEM structural analysis showed enlarged pores and cracks in cell walls of the pyrolyzed wood chips. As a result, these pores were not observed in pyrolyzed pellet particles.« less

  6. The Ingestion of Fluorescent, Magnetic Nanoparticles for Determining Fluid-uptake Abilities in Insects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehnert, Matthew S.; Reiter, Kristen E.; Bennett, Andrew

    Here, fluid-feeding insects ingest a variety of liquids, which are present in the environment as pools, films, or confined to small pores. Studies of liquid acquisition require assessing mouthpart structure and function relationships; however, fluid uptake mechanisms are historically inferred from observations of structural architecture, sometimes unaccompanied with experimental evidence. Here, we report a novel method for assessing fluid-uptake abilities with butterflies (Lepidoptera) and flies (Diptera) using small amounts of liquids. Insects are fed with a 20% sucrose solution mixed with fluorescent, magnetic nanoparticles from filter papers of specific pore sizes. The crop (internal structure used for storing fluids) ismore » removed from the insect and placed on a confocal microscope. A magnet is waved by the crop to determine the presence of nanoparticles, which indicate if the insects are able to ingest fluids. This methodology is used to reveal a widespread feeding mechanism (capillary action and liquid bridge formation) that is potentially shared among Lepidoptera and Diptera when feeding from porous surfaces. In addition, this method can be used for studies of feeding mechanisms among a variety of fluid-feeding insects, including those important in disease transmission and biomimetics, and potentially other studies that involve nano- or micro-sized conduits where liquid transport requires verification.« less

  7. [Preparation of titanium dioxide particles and properties for flue gas desulfurization].

    PubMed

    Luo, Yonggang; Li, Daji; Huang, Zhen

    2003-01-01

    Under different sintering temperatures(340 degrees C, 440 degrees C, 540 degrees C, 640 degrees C), four TiO2 particles were prepared. The crystal types of all four samples were found to possess anatase structures by XRD. It was obtained by N2 experimental adsorption at low temperature (77K) that their surface areas and average pore size were between 79 and 124 m2/g, 56.8 and 254.8 A respectively. The pore structure of TiO2 particles was characterized by scanning electron microscope (SEM). The tests of adsorption dynamics for FGD and the performance of SO2 removal were investigated in a fixed-bed system for different samples. The results show that SG540 sample which made at 540 degrees C sintering temperature had the most quality among the four samples. It can adsorb SO2 of 38.9 mg for one gram SG540 sample. Different operating conditions for SG540 such as adsorption temperature, SO2 concentration in flue gas and the superficial velocity of flue gas were investigated. TiO2 particles for FGD had more efficiency than other physical sorbents such as active carbon and zeolite. The mechanism for SO2 removal was demonstrated by infrared (IR) spectroscopy and desorption test results to be mainly physical adsorption.

  8. Guard cells elongate: relationship of volume and surface area during stomatal movement.

    PubMed

    Meckel, Tobias; Gall, Lars; Semrau, Stefan; Homann, Ulrike; Thiel, Gerhard

    2007-02-01

    Stomata in the epidermis of photosynthetically active plant organs are formed by pairs of guard cells, which create a pore, to facilitate CO2 and water exchange with the environment. To control this gas exchange, guard cells actively change their volume and, consequently, surface area to alter the aperture of the stomatal pore. Due to the limited elasticity of the plasma membrane, such changes in surface area require an exocytic addition or endocytic retrieval of membrane during stomatal movement. Using confocal microscopic data, we have reconstructed detailed three-dimensional models of open and closed stomata to precisely quantify the necessary area to be exo- and endocytosed by the guard cells. Images were obtained under a strong emphasis on a precise calibration of the method and by avoiding unphysiological osmotical imbalance, and hence osmocytosis. The data reveal that guard cells of Vicia faba L., whose aperture increases by 111.89+/-22.39%, increase in volume and surface area by 24.82+/-6.26% and 14.99+/-2.62%, respectively. In addition, the precise volume to surface area relationship allows quantitative modeling of the three-dimensional changes. While the major volume change is caused by a slight increase in the cross section of the cells, an elongation of the guard cells achieves the main aperture change.

  9. The structure-directed effect of Al-based metal–organic frameworks on fabrication of alumina by thermal treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Dandan, E-mail: liudandan_upc@126.com; Dai, Fangna, E-mail: fndai@upc.edu.cn; Collage of Science, China University of Petroleum

    2015-05-15

    Highlights: • We use Al-MOFs as precursor in the fabrication process of mesoporous alumina by thermal treatment. • The obtained mesoporous alumina has dual pore system and five-fold aluminum. • The aluminum building units in the precursor show structure-directed effect on the formation of alumina. - Abstract: In this work, the block-shaped Al-based metal–organic frameworks (Al-MOFs) MIL-53 have been synthesized by hydrothermal method. To detect the correlation between the structure of Al-MOFs and the formation of alumina, the ligands are eliminated by thermal treatment. MIL-53 and the calcination products were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR),more » scanning electron microscope (SEM), transmission electron microscopy (TEM), nitrogen adsorption–desorption and solid-state {sup 27}Al nuclear magnetic resonance ({sup 27}Al NMR). It was found that after calcination, the block-shaped Al-MOFs precursor turns into high-crystallinity mesoporous alumina nanosheets, and the thermal treatment product γ-alumina possesses a dual pore system and a large surface area (146 m{sup 2}/g), with five-fold aluminum. During the thermal treatment process, the structure of MIL-53 and its secondary building units have structure-directed effect in the formation of alumina.« less

  10. An atomic force microscopy study on fouling characteristics of modified PES membrane in submerged membrane bioreactor for domestic wastewater treatment

    NASA Astrophysics Data System (ADS)

    Liu, Shuo; Han, Hongjun; Liu, Yanping; Wang, Baozhen

    2008-10-01

    To investigate the fouling characteristics of modified PES membrane in submerged Membrane Bioreactor (MBR) for domestic wastewater treatment, Atomic Force Microscope (AFM) study was conducted to analyze the microstructure characteristics of PES membrane. Surface roughness and section analysis of both virgin and fouled membrane were achieved by software of NanoScope 6.12. Compared to the virgin membrane, the average roughness (Ra), square average roughness (Rms) and ten points average roughness (Rz) of fouled membrane were increased by 100.6nm, 133.7nm and 330.7nm respectively. The section analysis results indicated that the cake layer formed and membrane pore blocked were the main causes for the increase of TMP. Micro-filtration resistance analysis was conducted to support the results of AFM analysis. It is showed that membrane resistance, cake resistance, pore blocking and irreversible fouling resistance is 0.755, 1.721 and 1.386 respectively, which contributed 20%, 44%, and 36%, respectively, to total resistance of submerged MBR (at MLSS 6000mg/L and flux 21.9L/m2Â.h). The results proved that AFM could be used to properly describe the fouling characteristics of modified PES membrane in submerged MBR through roughness and section analysis.

  11. UiO-66-NH₂/GO Composite: Synthesis, Characterization and CO₂ Adsorption Performance.

    PubMed

    Cao, Yan; Zhang, Hongmei; Song, Fujiao; Huang, Tao; Ji, Jiayu; Zhong, Qin; Chu, Wei; Xu, Qi

    2018-04-11

    In this work, a new composite materials of graphene oxide (GO)-incorporated metal-organic framework (MOF)(UiO-66-NH₂/GO) were in-situ synthesized, and were found to exhibit enhanced high performances for CO₂ capture. X-ray diffraction (XRD), scanning electron microscope (SEM), N₂ physical adsorption, and thermogravimetric analysis (TGA) were applied to investigate the crystalline structure, pore structure, thermal stability, and the exterior morphology of the composite. We aimed to investigate the influence of the introduction of GO on the stability of the crystal skeleton and pore structure. Water, acid, and alkali resistances were tested for physical and chemical properties of the new composites. CO₂ adsorption isotherms of UiO-66, UiO-66-NH₂, UiO-66/GO, and UiO-66-NH₂/GO were measured at 273 K, 298 K, and 318 K. The composite UiO-66-NH₂/GO exhibited better optimized CO₂ uptake of 6.41 mmol/g at 273 K, which was 5.1% higher than that of UiO-66/GO (6.10 mmol/g). CO₂ adsorption heat and CO₂/N₂ selectivity were then calculated to further evaluate the CO₂ adsorption performance. The results indicated that UiO-66-NH₂/GO composites have a potential application in CO₂ capture technologies to alleviate the increase in temperature of the earth's atmosphere.

  12. Determination of phenanthrene bioavailability by using a self-dying reporter bacterium: test with model solids and soil.

    PubMed

    Shin, Doyun; Nam, Kyoungphile

    2012-02-20

    The present study was conducted to investigate the performance and feasibility of a self-dying reporter bacterium to visualize and quantify phenanthrene bioavailability in soil. The self-dying reporter bacterium was designed to die on the initiation of phenanthrene biodegradation. The viability of the reporter bacterium was determined by a fluorescence live/dead cell staining method and visualized by confocal laser scanning microscopic observation. Phenanthrene was spiked into four types of model solids and a sandy loam. The bioavailability of phenanthrene to the reporter bacterium was remarkably declined with the hydrophobicity of the model solids: essentially no phenanthrene was biodegraded in the presence of 9-nm pores and about 35.8% of initial phenanthrene was biodegraded without pores. Decrease in bioavailability was not evident in the nonporous hydrophilic bead, but a small decrease was observed in the porous hydrophilic bead at 1000 mg/kg of phenanthrene. The fluorescence intensity was commensurate with the extent of phenanthrene biodegradation by the reporter bacterium at the concentration range from 50 to 500 mg/kg. Such a quantitative relationship was also confirmed with a sandy loam spiked up to 1000 mg/kg of phenanthrene. This reporter bacterium may be a useful means to determine phenanthrene bioavailability in soil. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Soft-Template-Synthesized Mesoporous Carbon for Oral Drug Delivery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saha, Dipendu; Warren, Kaitlyn E; Naskar, Amit K

    Template-synthesized mesoporous carbons were successfully used in in vitro investigations of controlled delivery of three model drugs, captopril, furosemide, and ranitidine hydrochloride. Captopril and furosemide exhibited desorption kinetics over 30 40 h, and ranitidine HCl had a complete release time of 5 10 h. As evident from the slow release kinetics, we contend that our mesoporous carbon is an improved drug-delivery medium compared to state-of-the-art porous silica-based substrates. The mesoporous carbons, synthesized from phloroglucinol and lignin, a synthetic and a sustainable precursor, respectively, exhibit BET surface area of 200 400 m2 g-1 and pore volume of 0.2 0.6 cm3 g-1.more » The phloroglucinol-based carbon has narrower pore widths and higher pore volume than the lignin-derived counterpart and maintains a longer release time. Numerical modeling of the release kinetics data reveals that the diffusivities of all the drugs from lignin-based carbon media are of equivalent magnitude (10-22 to 10-24 m2 s-1). However, a tailored reduction of pore width in the sorbent reduces the diffusivity of smaller drug molecules (captopril) by an order of magnitude. Thus, engineered pore morphology in our synthesized carbon sorbent, along with its potential to tailor the chemistry of its interaction with sorbet, can be exploited for optimal delivery system of a preferred drug within its therapeutic level and below the level of toxicity.« less

  14. Influence of the doping type and level on the morphology of porous Si formed by galvanic etching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pyatilova, O. V., E-mail: 5ilova87@gmail.com; Gavrilov, S. A.; Shilyaeva, Yu. I.

    The formation of porous silicon (por-Si) layers by the galvanic etching of single-crystal Si samples (doped with boron or phosphorus) in an HF/C{sub 2}H{sub 5}OH/H{sub 2}O{sub 2} solution is investigated. The por-Si layers are analyzed by the capillary condensation of nitrogen and scanning electron microscopy (SEM). The dependences of the morphological characteristics of por-Si (pore diameter, specific surface area, pore volume, and thickness of the pore walls), which determine the por-Si combustion kinetics, on the dopant type and initial wafer resistivity are established.

  15. Molecular Imaging of Kerogen and Minerals in Shale Rocks across Micro- and Nano- Scales

    NASA Astrophysics Data System (ADS)

    Hao, Z.; Bechtel, H.; Sannibale, F.; Kneafsey, T. J.; Gilbert, B.; Nico, P. S.

    2016-12-01

    Fourier transform infrared (FTIR) spectroscopy is a reliable and non-destructive quantitative method to evaluate mineralogy and kerogen content / maturity of shale rocks, although it is traditionally difficult to assess the organic and mineralogical heterogeneity at micrometer and nanometer scales due to the diffraction limit of the infrared light. However, it is truly at these scales that the kerogen and mineral content and their formation in share rocks determines the quality of shale gas reserve, the gas flow mechanisms and the gas production. Therefore, it's necessary to develop new approaches which can image across both micro- and nano- scales. In this presentation, we will describe two new molecular imaging approaches to obtain kerogen and mineral information in shale rocks at the unprecedented high spatial resolution, and a cross-scale quantitative multivariate analysis method to provide rapid geochemical characterization of large size samples. The two imaging approaches are enhanced at nearfield respectively by a Ge-hemisphere (GE) and by a metallic scanning probe (SINS). The GE method is a modified microscopic attenuated total reflectance (ATR) method which rapidly captures a chemical image of the shale rock surface at 1 to 5 micrometer resolution with a large field of view of 600 X 600 micrometer, while the SINS probes the surface at 20 nm resolution which provides a chemically "deconvoluted" map at the nano-pore level. The detailed geochemical distribution at nanoscale is then used to build a machine learning model to generate self-calibrated chemical distribution map at micrometer scale with the input of the GE images. A number of geochemical contents across these two important scales are observed and analyzed, including the minerals (oxides, carbonates, sulphides), the organics (carbohydrates, aromatics), and the absorbed gases. These approaches are self-calibrated, optics friendly and non-destructive, so they hold the potential to monitor shale gas flow at real time inside the micro- or nano- pore network, which is of great interest for optimizing the shale gas extraction.

  16. Nanoscale Structure of Organic Matter Could Explain Litter Decomposition

    NASA Astrophysics Data System (ADS)

    Papa, G.; Adani, F.

    2014-12-01

    According to the literature biochemical catalyses are limited in their actions because of the complex macroscopic and, above all, microscopic structures of cell wall that limit mass transportation (i.e. 3D structure). Our study on energy crop showed that plant digestibility increased by modifying the 3D cell wall microstructure. Results obtained were ascribed to the enlargement, such as effectively measured, of the pore spaces between cellulose fibrils. Therefore we postulated that 3 D structure of plant residues drives degradability in soil determining its recalcitrance in short time. Here we focused on the drivers of short-term decomposition of organic matter (plant residues) in soils evaluating the architecture of plant tissues, captured via measurements of the microporosiy of the cell walls. Decomposition rates of a wide variety of biomass types were studied conducting experiments in both aerobic and anaerobic environments. Different analytical approaches were applied in order to characterize biomass at both chemical and physical level. Combined statistical approaches were used to examine the relationships between carbon mineralization and chemical/physical characteristics. The results revealed that degradation was significantly and negatively correlated with the micro-porosity surface (MiS) (surface of pores of 0.3-1.5 nm of diameter). The multiple regressions performed by using partial least square model enabled describing biomass biodegradability under either aerobic and anaerobic condition by using micro-porosity and aromatic-C content (assumed to be representative of lignin) as independent variables (R2 =0.97, R2cv =0.95 for aerobic condition; R2 =0.99, R2cv =0.98 for anaerobic condition, respectively). These results corroborate the hypothesis that plant tissues are physically protected from enzymatic attack by a microporous "sheath" that limit penetration into cell wall, and demonstrate the key role played by aromatic carbon, because of its chemical protection of the other cell wall polymers and its contribution to the three-dimensional (3D) cell wall structure.

  17. Complexity theory, time series analysis and Tsallis q-entropy principle part one: theoretical aspects

    NASA Astrophysics Data System (ADS)

    Pavlos, George P.

    2017-12-01

    In this study, we present the highlights of complexity theory (Part I) and significant experimental verifications (Part II) and we try to give a synoptic description of complexity theory both at the microscopic and at the macroscopic level of the physical reality. Also, we propose that the self-organization observed macroscopically is a phenomenon that reveals the strong unifying character of the complex dynamics which includes thermodynamical and dynamical characteristics in all levels of the physical reality. From this point of view, macroscopical deterministic and stochastic processes are closely related to the microscopical chaos and self-organization. The scientific work of scientists such as Wilson, Nicolis, Prigogine, Hooft, Nottale, El Naschie, Castro, Tsallis, Chang and others is used for the development of a unified physical comprehension of complex dynamics from the microscopic to the macroscopic level. Finally, we provide a comprehensive description of the novel concepts included in the complexity theory from microscopic to macroscopic level. Some of the modern concepts that can be used for a unified description of complex systems and for the understanding of modern complexity theory, as it is manifested at the macroscopic and the microscopic level, are the fractal geometry and fractal space-time, scale invariance and scale relativity, phase transition and self-organization, path integral amplitudes, renormalization group theory, stochastic and chaotic quantization and E-infinite theory, etc.

  18. Apparent and microscopic dynamic contact angles in confined flows

    NASA Astrophysics Data System (ADS)

    Omori, Takeshi; Kajishima, Takeo

    2017-11-01

    An abundance of empirical correlations between a dynamic contact angle and a capillary number representing a translational velocity of a contact line have been provided for the last decades. The experimentally obtained dynamic contact angles are inevitably apparent contact angles but often undistinguished from microscopic contact angles formed right on the wall. As Bonn et al. ["Wetting and spreading," Rev. Mod. Phys. 81, 739-805 (2009)] pointed out, however, most of the experimental studies simply report values of angles recorded at some length scale which is quantitatively unknown. It is therefore hard to evaluate or judge the physical validity and the generality of the empirical correlations. The present study is an attempt to clear this clutter regarding the dynamic contact angle by measuring both the apparent and the microscopic dynamic contact angles from the identical data sets in a well-controlled manner, by means of numerical simulation. The numerical method was constructed so that it reproduced the fine details of the flow with a moving contact line predicted by molecular dynamics simulations [T. Qian, X. Wang, and P. Sheng, "Molecular hydrodynamics of the moving contact line in two-phase immiscible flows," Commun. Comput. Phys. 1, 1-52 (2006)]. We show that the microscopic contact angle as a function of the capillary number has the same form as Blake's molecular-kinetic model [T. Blake and J. Haynes, "Kinetics of liquid/liquid displacement," J. Colloid Interface Sci. 30, 421-423 (1969)], regardless of the way the flow is driven, the channel width, the mechanical properties of the receding fluid, and the value of the equilibrium contact angle under the conditions where the Reynolds and capillary numbers are small. We have also found that the apparent contact angle obtained by the arc-fitting of the interface behaves surprisingly universally as claimed in experimental studies in the literature [e.g., X. Li et al., "An experimental study on dynamic pore wettability," Chem. Eng. Sci. 104, 988-997 (2013)], although the angle deviates significantly from the microscopic contact angle. It leads to a practically important point that it suffices to measure arc-fitted contact angles to make formulae to predict flow rates in capillary tubes.

  19. Neutron scattering measurements of carbon dioxide adsorption in pores within the Marcellus Shale: Implications for sequestration

    USGS Publications Warehouse

    Stefanopoulos, Konstantinos L.; Youngs, Tristan G. A.; Sakurovs, Richard; Ruppert, Leslie F.; Bahadur, Jitendra; Melnichenko, Yuri B.

    2017-01-01

    Shale is an increasingly viable source of natural gas and a potential candidate for geologic CO2sequestration. Understanding the gas adsorption behavior on shale is necessary for the design of optimal gas recovery and sequestration projects. In the present study neutron diffraction and small-angle neutron scattering measurements of adsorbed CO2 in Marcellus Shale samples were conducted on the Near and InterMediate Range Order Diffractometer (NIMROD) at the ISIS Pulsed Neutron and Muon Source, STFC Rutherford Appleton Laboratory along an adsorption isotherm of 22 °C and pressures of 25 and 40 bar. Additional measurements were conducted at approximately 22 and 60 °C at the same pressures on the General-Purpose Small-Angle Neutron Scattering (GP-SANS) instrument at Oak Ridge National Laboratory. The structures investigated (pores) for CO2 adsorption range in size from Å level to ∼50 nm. The results indicate that, using the conditions investigated densification or condensation effects occurred in all accessible pores. The data suggest that at 22 °C the CO2 has liquid-like properties when confined in pores of around 1 nm radius at pressures as low as 25 bar. Many of the 2.5 nm pores, 70% of 2 nm pores, most of the <1 nm pores, and all pores <0.25 nm, are inaccessible or closed to CO2, suggesting that despite the vast numbers of micropores in shale, the micropores will be unavailable for storage for geologic CO2 sequestration.

  20. Fission Dynamics with Microscopic Level Densities

    DOE PAGES

    Ward, D.; Carlsson, B. G.; Dossing, Th.; ...

    2017-01-01

    We present a consistent framework for treating the energy and angularmomentum dependence of the shape evolution in the nuclear fission. It combines microscopically calculated level densities with the Metropolis-walk method, has no new parameters, and can elucidate the energy-dependent influence of pairing and shell effects on the dynamics of warm nuclei.

  1. Preparing and Restoring Composite Resin Restorations. The Advantage of High Magnification Loupes or the Dental Surgical Operating Microscope.

    PubMed

    Mamoun, John

    2015-01-01

    Use of magnification, such as 6x to 8x binocular surgical loupes or the surgical operating microscope, combined with co-axial illumination, may facilitate the creation of stable composite resin restorations that are less likely to develop caries, cracks or margin stains over years of service. Microscopes facilitate observation of clinically relevant microscopic visual details, such as microscopic amounts of demineralization or caries at preparation margins; microscopic areas of soft, decayed tooth structure; microscopic amounts of moisture contamination of the preparation during bonding; or microscopic marginal gaps in the composite. Preventing microscope-level errors in composite fabrication can result in a composite restoration that, at initial placement, appears perfect when viewed under 6x to 8x magnification and which also is free of secondary caries, marginal staining or cracks at multi-year follow-up visits.

  2. Determination of size distribution and encapsulation efficiency of liposome-encapsulated hemoglobin blood substitutes using asymmetric flow field-flow fractionation coupled with multi-angle static light scattering.

    PubMed

    Arifin, Dian R; Palmer, Andre F

    2003-01-01

    In this study, we investigated the size distribution, encapsulation efficiency, and oxygen affinity of liposome-encapsulated tetrameric hemoglobin (LEHb) dispersions and correlated the data with the variation in extruder membrane pore size, ionic strength of the extrusion buffer, and hemoglobin (Hb) concentration. Asymmetric flow field-flow fractionation (AFFF) in series with multi-angle static light scattering (MASLS) was used to study the LEHb size distribution. We also introduced a novel method to measure the encapsulation efficiency using a differential interferometric refractive index (DIR) detector coupled to the AFFF-MASLS system. This technique was nondestructive toward the sample and easy to implement. LEHbs were prepared by extrusion using a lipid combination of dimyristoyl-phosphatidylcholine, cholesterol, and dimyristoyl-phosphatidylglycerol in a 10:9:1 molar ratio. Five initial Hb concentrations (50, 100, 150, 200, and 300 mg Hb per mL of buffer) extruded through five different membrane pore diameters (400, 200, 100, 80, and 50 nm) were studied. Phosphate buffered saline (PBS) and phosphate buffer (PB) both at pH 7.3 were used as extrusion buffers. Despite the variation, extrusion through 400-nm pore diameter membranes produced LEHbs smaller than the pore size, extrusion through 200-nm membranes produced LEHbs with diameters close to the pore diameter, and extrusion through 100-, 80-, and 50-nm membranes produced LEHbs larger than the pore sizes. We found that the choice of extrusion buffer had the greatest effect on the LEHb size distribution compared to either Hb concentration or extruder membrane pore size. Extrusion in PBS produced larger LEHbs and more monodisperse LEHb dispersions. However, LEHbs extruded in PB generally had higher Hb encapsulation efficiencies and lower methemoglobin (metHb) levels. The choice of extrusion buffer also affected how the encapsulation efficiency correlated with Hb concentration, extruder pore size, and the metHb level. The most optimum encapsulation efficiency and amount of Hb entrapped were achieved at the highest Hb concentration and the largest pore size for both extrusion buffers (62.38% and 187.14 mg Hb/mL of LEHb dispersion extruded in PBS, and 69.98% and 209.94 mg Hb/mL of LEHb dispersion extruded in PB). All LEHbs displayed good oxygen-carrying properties as indicated by their P(50) and cooperativity coefficients. LEHbs extruded in PB had an average P(50) of 23.04 mmHg and an average Hill number of 2.29, and those extruded in PBS had average values of 27.25 mmHg and 2.49. These oxygen-binding properties indicate that LEHbs possess strong potential as artificial blood substitutes. In addition, the metHb levels in PB-LEHb dispersions are significantly low even in the absence of antioxidants such as N-acetyl-L-cysteine.

  3. Investigating Dissolution and Precipitation Phenomena with a Smartphone Microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumetta, Gregg J.; Arcia, Edgar

    A novel smartphone microscope can be used to observe the dissolution and crystallization of sodium chloride at a microscopic level. Observation of these seemingly simple phenomena through the microscope at 100× magnification can actually reveal some surprising behavior. These experiments offer the opportunity to discuss some basic concepts such as how the morphological features of the crystals dictates how the dissolution process proceeds, and how materials can be purified by re-crystallization techniques.

  4. Theoretical Analysis of Pore Pressure Diffusion in Some Basic Rock Mechanics Experiments

    NASA Astrophysics Data System (ADS)

    Braun, Philipp; Ghabezloo, Siavash; Delage, Pierre; Sulem, Jean; Conil, Nathalie

    2018-05-01

    Non-homogeneity of the pore pressure field in a specimen is an issue for characterization of the thermo-poromechanical behaviour of low-permeability geomaterials, as in the case of the Callovo-Oxfordian claystone ( k < 10-20 m2), a possible host rock for deep radioactive waste disposal in France. In tests with drained boundary conditions, excess pore pressure can result in significant errors in the measurement of material parameters. Analytical solutions are presented for the change in time of the pore pressure field in a specimen submitted to various loading paths and different rates. The pore pressure field in mechanical and thermal undrained tests is simulated with a 1D finite difference model taking into account the dead volume of the drainage system of the triaxial cell connected to the specimen. These solutions provide a simple and efficient tool for the estimation of the conditions that must hold for reliable determination of material parameters and for optimization of various test conditions to minimize the experimental duration, while keeping the measurement errors at an acceptable level.

  5. Promoter- and RNA polymerase II–dependent hsp-16 gene association with nuclear pores in Caenorhabditis elegans

    PubMed Central

    Rohner, Sabine; Kalck, Veronique; Wang, Xuefei; Ikegami, Kohta; Lieb, Jason D.; Meister, Peter

    2013-01-01

    Some inducible yeast genes relocate to nuclear pores upon activation, but the general relevance of this phenomenon has remained largely unexplored. Here we show that the bidirectional hsp-16.2/41 promoter interacts with the nuclear pore complex upon activation by heat shock in the nematode Caenorhabditis elegans. Direct pore association was confirmed by both super-resolution microscopy and chromatin immunoprecipitation. The hsp-16.2 promoter was sufficient to mediate perinuclear positioning under basal level conditions of expression, both in integrated transgenes carrying from 1 to 74 copies of the promoter and in a single-copy genomic insertion. Perinuclear localization of the uninduced gene depended on promoter elements essential for induction and required the heat-shock transcription factor HSF-1, RNA polymerase II, and ENY-2, a factor that binds both SAGA and the THO/TREX mRNA export complex. After induction, colocalization with nuclear pores increased significantly at the promoter and along the coding sequence, dependent on the same promoter-associated factors, including active RNA polymerase II, and correlated with nascent transcripts. PMID:23460676

  6. MONITORING OF PORE WATER PRESSURE AND WATER CONTENT AROUND A HORIZONTAL DRIFT THROUGH EXCAVATION - MEASUREMENT AT THE 140m GALLERY IN THE HORONOBE URL -

    NASA Astrophysics Data System (ADS)

    Yabuuchi, Satoshi; Kunimaru, Takanori; Kishi, Atsuyasu; Komatsu, Mitsuru

    Japan Atomic Energy Agency has been conducting the Horonobe Underground Research Laboratory (URL) project in Horonobe, Hokkaido, as a part of the research and development program on geological disposal of high-level radioactive waste. Pore water pressure and water content around a horizontal drift in the URL have been monitored for over 18 months since before the drift excavation was started. During the drift excavation, both pore water pressure and water content were decreasing. Pore water pressure has been still positive though it continued to decrease with its gradient gradually smaller after excavation, while water content turned to increase about 6 months after the completion of the excavation. It turned to fall again about 5 months later. An unsaturated zone containing gases which were dissolved in groundwater may have been formed around the horizontal drift.

  7. Molecular mechanisms of decomposition of hydrated Na+Cl- ion pairs under planar nanopore conditions

    NASA Astrophysics Data System (ADS)

    Shevkunov, S. V.

    2017-02-01

    The decomposition of Na+Cl- ion pairs under the conditions of a nanoscopic planar pore with structureless walls in a material contact with water vapor at 298 K is simulated by Monte Carlo method. The transition from the state of a contact ion pair (CIP) to the state of solvent-separated ion pair (SSIP) is shown to occur as a result of an increase in the vapor pressure over a pore after exceeding the threshold number of molecules in a hydrate shell. It is found that the planar form of a molecular cluster under the conditions of a narrow pore does not level an abrupt structural transition and the formation of hydrogen bonds in the hydrate shell starts after three molecules are added. The hydrogen bond length under pore conditions is found to be resistant to variations in the hydrate shell size and coincides with that in water under normal conditions.

  8. Bio-inspired Murray materials for mass transfer and activity

    NASA Astrophysics Data System (ADS)

    Zheng, Xianfeng; Shen, Guofang; Wang, Chao; Li, Yu; Dunphy, Darren; Hasan, Tawfique; Brinker, C. Jeffrey; Su, Bao-Lian

    2017-04-01

    Both plants and animals possess analogous tissues containing hierarchical networks of pores, with pore size ratios that have evolved to maximize mass transport and rates of reactions. The underlying physical principles of this optimized hierarchical design are embodied in Murray's law. However, we are yet to realize the benefit of mimicking nature's Murray networks in synthetic materials due to the challenges in fabricating vascularized structures. Here we emulate optimum natural systems following Murray's law using a bottom-up approach. Such bio-inspired materials, whose pore sizes decrease across multiple scales and finally terminate in size-invariant units like plant stems, leaf veins and vascular and respiratory systems provide hierarchical branching and precise diameter ratios for connecting multi-scale pores from macro to micro levels. Our Murray material mimics enable highly enhanced mass exchange and transfer in liquid-solid, gas-solid and electrochemical reactions and exhibit enhanced performance in photocatalysis, gas sensing and as Li-ion battery electrodes.

  9. Conformational Heterogeneity of Bax Helix 9 Dimer for Apoptotic Pore Formation

    NASA Astrophysics Data System (ADS)

    Liao, Chenyi; Zhang, Zhi; Kale, Justin; Andrews, David W.; Lin, Jialing; Li, Jianing

    2016-07-01

    Helix α9 of Bax protein can dimerize in the mitochondrial outer membrane (MOM) and lead to apoptotic pores. However, it remains unclear how different conformations of the dimer contribute to the pore formation on the molecular level. Thus we have investigated various conformational states of the α9 dimer in a MOM model — using computer simulations supplemented with site-specific mutagenesis and crosslinking of the α9 helices. Our data not only confirmed the critical membrane environment for the α9 stability and dimerization, but also revealed the distinct lipid-binding preference of the dimer in different conformational states. In our proposed pathway, a crucial iso-parallel dimer that mediates the conformational transition was discovered computationally and validated experimentally. The corroborating evidence from simulations and experiments suggests that, helix α9 assists Bax activation via the dimer heterogeneity and interactions with specific MOM lipids, which eventually facilitate proteolipidic pore formation in apoptosis regulation.

  10. What transmission electron microscopes can visualize now and in the future.

    PubMed

    Müller, Shirley A; Aebi, Ueli; Engel, Andreas

    2008-09-01

    Our review concentrates on the progress made in high-resolution transmission electron microscopy (TEM) in the past decade. This includes significant improvements in sample preparation by quick-freezing aimed at preserving the specimen in a close-to-native state in the high vacuum of the microscope. Following advances in cold stage and TEM vacuum technology systems, the observation of native, frozen hydrated specimens has become a widely used approach. It fostered the development of computer guided, fully automated low-dose data acquisition systems allowing matched pairs of images and diffraction patterns to be recorded for electron crystallography, and the collection of entire tilt-series for electron tomography. To achieve optimal information transfer to atomic resolution, field emission electron guns combined with acceleration voltages of 200-300 kV are now routinely used. The outcome of these advances is illustrated by the atomic structure of mammalian aquaporin-O and by the pore-forming bacterial cytotoxin ClyA resolved to 12 A. Further, the Yersinia injectisome needle, a bacterial pseudopilus and the binding of phalloidin to muscle actin filaments were chosen to document the advantage of the high contrast offered by dedicated scanning transmission electron microscopy (STEM) and/or the STEM's ability to measure the mass of protein complexes and directly link this to their shape. Continued progress emerging from leading research laboratories and microscope manufacturers will eventually enable us to determine the proteome of a single cell by electron tomography, and to more routinely solve the atomic structure of membrane proteins by electron crystallography.

  11. Density-dependent changes of the pore properties of the P2X2 receptor channel

    PubMed Central

    Fujiwara, Yuichiro; Kubo, Yoshihiro

    2004-01-01

    Ligand-gated ion channels underlie and play important roles in synaptic transmission, and it is generally accepted that the ion channel pores have a rigid structure that enables strict regulation of ion permeation. One exception is the P2X ATP-gated channel. After application of ATP, the ion selectivity of the P2X2 channel time-dependently changes, i.e. permeability to large cations gradually increases, and there is significant cell-to-cell variation in the intensity of inward rectification. Here we show P2X2 channel properties are correlated with the expression level: increasing P2X2 expression level in oocytes increases permeability to large cations, decreases inward rectification and increases ligand sensitivity. We also observed that the inward rectification changed in a dose-dependent manner, i.e. when low concentration of ATP was applied to an oocyte with a high expression level, the intensity of inward rectification of the evoked current was weak. Taken together, these results show that the pore properties of P2X2 channel are not static but change dynamically depending on the open channel density. Furthermore, we identified by mutagenesis study that Ile328 located at the outer mouth of the pore is critical for the density-dependent changes of P2X2. Our findings suggest synaptic transmission can be modulated by the local density-dependent changes of channel properties caused, for example, by the presence of clustering molecules. PMID:15107474

  12. Evaluating the Global Precipitation Measurement mission with NOAA/NSSL Multi-Radar Multisensor: current status and future directions.

    NASA Astrophysics Data System (ADS)

    Kirstetter, P. E.; Petersen, W. A.; Gourley, J. J.; Kummerow, C. D.; Huffman, G. J.; Turk, J.; Tanelli, S.; Maggioni, V.; Anagnostou, E. N.; Hong, Y.; Schwaller, M.

    2016-12-01

    Natural gas production via hydraulic fracturing of shale has proliferated on a global scale, yet recovery factors remain low because production strategies are not based on the physics of flow in shale reservoirs. In particular, the physical mechanisms and time scales of depletion from the matrix into the simulated fracture network are not well understood, limiting the potential to optimize operations and reduce environmental impacts. Studying matrix flow is challenging because shale is heterogeneous and has porosity from the μm- to nm-scale. Characterizing nm-scale flow paths requires electron microscopy but the limited field of view does not capture the connectivity and heterogeneity observed at the mm-scale. Therefore, pore-scale models must link to larger volumes to simulate flow on the reservoir-scale. Upscaled models must honor the physics of flow, but at present there is a gap between cm-scale experiments and μm-scale simulations based on ex situ image data. To address this gap, we developed a synchrotron X-ray microscope with an in situ cell to simultaneously visualize and measure flow. We perform coupled flow and microtomography experiments on mm-scale samples from the Barnett, Eagle Ford and Marcellus reservoirs. We measure permeability at various pressures via the pulse-decay method to quantify effective stress dependence and the relative contributions of advective and diffusive mechanisms. Images at each pressure step document how microfractures, interparticle pores, and organic matter change with effective stress. Linking changes in the pore network to flow measurements motivates a physical model for depletion. To directly visualize flow, we measure imbibition rates using inert, high atomic number gases and image periodically with monochromatic beam. By imaging above/below X-ray adsorption edges, we magnify the signal of gas saturation in μm-scale porosity and nm-scale, sub-voxel features. Comparing vacuumed and saturated states yields image-based measurements of the distribution and time scales of imbibition. We also characterize nm-scale structure via focused ion beam tomography to quantify sub-voxel porosity and connectivity. The multi-scale image and flow data is used to develop a framework to upscale and benchmark pore-scale models.

  13. Visualizing and measuring flow in shale matrix using in situ synchrotron X-ray microtomography

    NASA Astrophysics Data System (ADS)

    Kohli, A. H.; Kiss, A. M.; Kovscek, A. R.; Bargar, J.

    2017-12-01

    Natural gas production via hydraulic fracturing of shale has proliferated on a global scale, yet recovery factors remain low because production strategies are not based on the physics of flow in shale reservoirs. In particular, the physical mechanisms and time scales of depletion from the matrix into the simulated fracture network are not well understood, limiting the potential to optimize operations and reduce environmental impacts. Studying matrix flow is challenging because shale is heterogeneous and has porosity from the μm- to nm-scale. Characterizing nm-scale flow paths requires electron microscopy but the limited field of view does not capture the connectivity and heterogeneity observed at the mm-scale. Therefore, pore-scale models must link to larger volumes to simulate flow on the reservoir-scale. Upscaled models must honor the physics of flow, but at present there is a gap between cm-scale experiments and μm-scale simulations based on ex situ image data. To address this gap, we developed a synchrotron X-ray microscope with an in situ cell to simultaneously visualize and measure flow. We perform coupled flow and microtomography experiments on mm-scale samples from the Barnett, Eagle Ford and Marcellus reservoirs. We measure permeability at various pressures via the pulse-decay method to quantify effective stress dependence and the relative contributions of advective and diffusive mechanisms. Images at each pressure step document how microfractures, interparticle pores, and organic matter change with effective stress. Linking changes in the pore network to flow measurements motivates a physical model for depletion. To directly visualize flow, we measure imbibition rates using inert, high atomic number gases and image periodically with monochromatic beam. By imaging above/below X-ray adsorption edges, we magnify the signal of gas saturation in μm-scale porosity and nm-scale, sub-voxel features. Comparing vacuumed and saturated states yields image-based measurements of the distribution and time scales of imbibition. We also characterize nm-scale structure via focused ion beam tomography to quantify sub-voxel porosity and connectivity. The multi-scale image and flow data is used to develop a framework to upscale and benchmark pore-scale models.

  14. The biomechanical, chemical and physiological adaptations of the eggs of two Australian megapodes to their nesting strategies and their implications for extinct titanosaur dinosaurs.

    PubMed

    Grellet-Tinner, G; Lindsay, S; Thompson, M B

    2017-08-01

    Megapodes are galliform birds endemic to Australasia and unusual among modern birds in that they bury their eggs for incubation in diverse substrates and using various strategies. Alectura lathami and Leipoa ocellata are Australian megapodes that build and nest in mounds of soil and organic matter. Such unusual nesting behaviours have resulted in particular evolutionary adaptations of their eggs and eggshells. We used a combination of scanning electron microscopy, including electron backscatter diffraction and energy-dispersive X-ray spectroscopy, to determine the fine structure of the eggshells and micro-CT scanning to map the structure of pores. We discovered that the surface of the eggshell of A. lathami displays nodes similar to those of extinct titanosaur dinosaurs from Transylvania and Auca Mahuevo egg layer #4. We propose that this pronounced nodular ornamentation is an adaptation to an environment rich in organic acids from their nest mound, protecting the egg surface from chemical etching and leaving the eggshell thickness intact. By contrast, L. ocellata nests in mounds of sand with less organic matter in semiarid environments and has eggshells with weakly defined nodes, like those of extinct titanosaurs from AM L#3 that also lived in a semiarid environment. We suggest the internode spaces in both megapode and titanosaur species act as funnels, which concentrate the condensed water vapour between the nodes. This water funnelling in megapodes through the layer of calcium phosphate reduces the likelihood of bacterial infection by creating a barrier to microbial invasion. In addition, the accessory layer of both species possesses sulphur, which reinforces the calcium phosphate barrier to bacterial and fungal contamination. Like titanosaurs, pores through the eggshell are Y-shaped in both species, but A. lathami displays unique mid-shell connections tangential to the eggshell surface and that connect some adjacent pores, like the eggshells of titanosaur of AM L#4 and Transylvania. The function of these interconnections is not known, but likely helps the diffusion of gases in eggs buried in environments where occlusion of pores is possible. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  15. Evolution of strength and physical properties of carbonate and ultramafic rocks under hydrothermal conditions

    NASA Astrophysics Data System (ADS)

    Lisabeth, Harrison Paul

    Interaction of rocks with fluids can significantly change mineral assemblage and structure. This so-called hydrothermal alteration is ubiquitous in the Earth's crust. Though the behavior of hydrothermally altered rocks can have planet-scale consequences, such as facilitating oceanic spreading along slow ridge segments and recycling volatiles into the mantle at subduction zones, the mechanisms involved in the hydrothermal alteration are often microscopic. Fluid-rock interactions take place where the fluid and rock meet. Fluid distribution, flux rate and reactive surface area control the efficiency and extent of hydrothermal alteration. Fluid-rock interactions, such as dissolution, precipitation and fluid mediated fracture and frictional sliding lead to changes in porosity and pore structure that feed back into the hydraulic and mechanical behavior of the bulk rock. Examining the nature of this highly coupled system involves coordinating observations of the mineralogy and structure of naturally altered rocks and laboratory investigation of the fine scale mechanisms of transformation under controlled conditions. In this study, I focus on fluid-rock interactions involving two common lithologies, carbonates and ultramafics, in order to elucidate the coupling between mechanical, hydraulic and chemical processes in these rocks. I perform constant strain-rate triaxial deformation and constant-stress creep tests on several suites of samples while monitoring the evolution of sample strain, permeability and physical properties. Subsequent microstructures are analyzed using optical and scanning electron microscopy. This work yields laboratory-based constraints on the extent and mechanisms of water weakening in carbonates and carbonation reactions in ultramafic rocks. I find that inundation with pore fluid thereby reducing permeability. This effect is sensitive to pore fluid saturation with respect to calcium carbonate. Fluid inundation weakens dunites as well. The addition of carbon dioxide to pore fluid enhances compaction and partial recovery of strength compared to pure water samples. Enhanced compaction in CO2-rich fluid samples is not accompanied by enhanced permeability reduction. Analysis of sample microstructures indicates that precipitation of carbonates along fracture surfaces is responsible for the partial restrengthening and channelized dissolution of olivine is responsible for permeability maintenance.

  16. Pore Geometry Optimization of Titanium (Ti6Al4V) Alloy, for Its Application in the Fabrication of Customized Hip Implants

    PubMed Central

    Roy, Sandipan; Panda, Debojyoti; Khutia, Niloy; Chowdhury, Amit Roy

    2014-01-01

    The present study investigates the mechanical response of representative volume elements of porous Ti-6Al-4V alloy, to arrive at a desired range of pore geometries that would optimize the reduction in stiffness necessary for biocompatibility with the stress concentration arising around the pore periphery, under physiological loading conditions with respect to orthopedic hip implants. A comparative study of the two is performed with the aid of a newly defined optimizing parameter called pore efficiency that takes into consideration both the stiffness quantity and the stress localization around pores. To perform a detailed analysis of the response of the porous structure over the entire spectrum of loading conditions that a hip implant is subjected to in vivo, the mechanical responses of 3D finite element models of cubic and rectangular parallelepiped geometries, with porosities varying over a range of 10% to 60%, are simulated under representative compressive, flexural as well as combined loading conditions. The results that are obtained are used to suggest a range of pore diameters that lower the effective stiffness and modulus of the implant to around 60% of the stiffness and modulus of dense solid implants while keeping the stress levels within permissible limits. PMID:25400663

  17. Blocking of Single α-Hemolysin Pore by Rhodamine Derivatives.

    PubMed

    Rokitskaya, Tatyana I; Nazarov, Pavel A; Golovin, Andrey V; Antonenko, Yuri N

    2017-06-06

    Measurements of ion conductance through α-hemolysin pore in a bilayer lipid membrane revealed blocking of the ion channel by a series of rhodamine 19 and rhodamine B esters. The longest dwell closed time of the blocking was observed with rhodamine 19 butyl ester (C4R1), whereas the octyl ester (C8R1) was of poor effect. Voltage asymmetry in the binding kinetics indicated that rhodamine derivatives bound to the stem part of the aqueous pore lumen. The binding frequency was proportional to a quadratic function of rhodamine concentrations, thereby showing that the dominant binding species were rhodamine dimers. Two levels of the pore conductance and two dwell closed times of the pore were found. The dwell closed times lengthened as the voltage increased, suggesting impermeability of the channel for the ligands. Molecular docking analysis revealed two distinct binding sites within the lumen of the stem of the α-hemolysin pore for the C4R1 dimer, but only one binding site for the C8R1 dimer. The blocking of the α-hemolysin nanopore by rhodamines could be utilized in DNA sequencing as additional optical sensing owing to bright fluorescence of rhodamines if used for DNA labeling. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  18. Catalytic conversion in nanoporous materials: Concentration oscillations and spatial correlations due to inhibited transport and intermolecular interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, Andres; Evans, James W.

    2016-11-03

    We show that steady-state catalytic conversion in nanoporous materials can occur in a quasi-counter-diffusion mode with the reactant (product) concentration strongly decaying (growing) into the pore, but also with oscillations in the total concentration. These oscillations reflect the response of the fluid to the transition from an extended to a confined environment near the pore opening. We focus on the regime of strongly inhibited transport in narrow pores corresponding to single-file diffusion. Here, limited penetration of the reactant into the pores and the associated low reaction yield is impacted by strong spatial correlations induced by both reaction (non-equilibrium correlations) andmore » also by intermolecular interactions (thermodynamic correlations). We develop a generalized hydrodynamic formulation to effectively describe inhibited transport accounting for the effect of these correlations, and incorporate this description of transport into appropriate reaction-diffusion equations. These equations accurately describe both shorter-range concentration oscillations near the pore opening and the longer-range mesoscale variation of concentration profiles in the pore (and thus also describe reaction yield). Success of the analytic theory is validated by comparison with a precise kinetic Monte Carlo simulation of an appropriate molecular-level stochastic reaction-diffusion model. As a result, this work elucidates unconventional chemical kinetics in interacting confined systems.« less

  19. Construction of pore network models for Berea and Fontainebleau sandstones using non-linear programing and optimization techniques

    NASA Astrophysics Data System (ADS)

    Sharqawy, Mostafa H.

    2016-12-01

    Pore network models (PNM) of Berea and Fontainebleau sandstones were constructed using nonlinear programming (NLP) and optimization methods. The constructed PNMs are considered as a digital representation of the rock samples which were based on matching the macroscopic properties of the porous media and used to conduct fluid transport simulations including single and two-phase flow. The PNMs consisted of cubic networks of randomly distributed pores and throats sizes and with various connectivity levels. The networks were optimized such that the upper and lower bounds of the pore sizes are determined using the capillary tube bundle model and the Nelder-Mead method instead of guessing them, which reduces the optimization computational time significantly. An open-source PNM framework was employed to conduct transport and percolation simulations such as invasion percolation and Darcian flow. The PNM model was subsequently used to compute the macroscopic properties; porosity, absolute permeability, specific surface area, breakthrough capillary pressure, and primary drainage curve. The pore networks were optimized to allow for the simulation results of the macroscopic properties to be in excellent agreement with the experimental measurements. This study demonstrates that non-linear programming and optimization methods provide a promising method for pore network modeling when computed tomography imaging may not be readily available.

  20. Two-pore channels: Regulation by NAADP and customized roles in triggering calcium signals

    PubMed Central

    Patel, Sandip; Marchant, Jonathan; Brailoiu, Eugen

    2010-01-01

    NAADP is a potent regulator of cytosolic calcium levels. Much evidence suggests that NAADP activates a novel channel located on an acidic (lysosomal-like) calcium store, the mobilisation of which results in further calcium release from the endoplasmic reticulum. Here, we discuss the recent identification of a family of poorly characterized ion channels (the two-pore channels) as endo-lysosomal NAADP receptors. The generation of calcium signals by these channels is likened to those evoked by depolarisation during excitation-contraction coupling in muscle. We discuss the idea that two pore-channels can mediate a trigger release of calcium which is then amplified by calcium-induced calcium release from the endoplasmic reticulum. This is similar to the activation of voltage-sensitive calcium channels and subsequent mobilisation of sarcoplasmic reticulum calcium stores in cardiac tissue. We suggest that two-pore channels may physically interact with ryanodine receptors to account for more direct release of calcium from the endoplasmic reticulum in analogy with the conformational coupling of voltage-sensitive calcium channels and ryanodine receptors in skeletal muscle. Interaction of two-pore channels with other calcium release channels likely occurs between stores “trans-chatter” and possibly within the same store “cis-chatter”. We also speculate that trafficking of two-pore channels through the endolysosomal system facilitates interactions with calcium entry channels. Strategic placing of two-pore channels thus provides a versatile means of generating spatiotemporally complex cellular calcium signals. PMID:20621760

  1. A mathematical multiscale model of bone remodeling, accounting for pore space-specific mechanosensation.

    PubMed

    Pastrama, Maria-Ioana; Scheiner, Stefan; Pivonka, Peter; Hellmich, Christian

    2018-02-01

    While bone tissue is a hierarchically organized material, mathematical formulations of bone remodeling are often defined on the level of a millimeter-sized representative volume element (RVE), "smeared" over all types of bone microstructures seen at lower observation scales. Thus, there is no explicit consideration of the fact that the biological cells and biochemical factors driving bone remodeling are actually located in differently sized pore spaces: active osteoblasts and osteoclasts can be found in the vascular pores, whereas the lacunar pores host osteocytes - bone cells originating from former osteoblasts which were then "buried" in newly deposited extracellular bone matrix. We here propose a mathematical description which considers size and shape of the pore spaces where the biological and biochemical events take place. In particular, a previously published systems biology formulation, accounting for biochemical regulatory mechanisms such as the rank-rankl-opg pathway, is cast into a multiscale framework coupled to a poromicromechanical model. The latter gives access to the vascular and lacunar pore pressures arising from macroscopic loading. Extensive experimental data on the biological consequences of this loading strongly suggest that the aforementioned pore pressures, together with the loading frequency, are essential drivers of bone remodeling. The novel approach presented here allows for satisfactory simulation of the evolution of bone tissue under various loading conditions, and for different species; including scenarios such as mechanical dis- and overuse of murine and human bone, or in osteocyte-free bone. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Guest–host interactions of a rigid organic molecule in porous silica frameworks

    PubMed Central

    Wu, Di; Hwang, Son-Jong; Zones, Stacey I.; Navrotsky, Alexandra

    2014-01-01

    Molecular-level interactions at organic–inorganic interfaces play crucial roles in many fields including catalysis, drug delivery, and geological mineral precipitation in the presence of organic matter. To seek insights into organic–inorganic interactions in porous framework materials, we investigated the phase evolution and energetics of confinement of a rigid organic guest, N,N,N-trimethyl-1-adamantammonium iodide (TMAAI), in inorganic porous silica frameworks (SSZ-24, MCM-41, and SBA-15) as a function of pore size (0.8 nm to 20.0 nm). We used hydrofluoric acid solution calorimetry to obtain the enthalpies of interaction between silica framework materials and TMAAI, and the values range from −56 to −177 kJ per mole of TMAAI. The phase evolution as a function of pore size was investigated by X-ray diffraction, IR, thermogravimetric differential scanning calorimetry, and solid-state NMR. The results suggest the existence of three types of inclusion depending on the pore size of the framework: single-molecule confinement in a small pore, multiple-molecule confinement/adsorption of an amorphous and possibly mobile assemblage of molecules near the pore walls, and nanocrystal confinement in the pore interior. These changes in structure probably represent equilibrium and minimize the free energy of the system for each pore size, as indicated by trends in the enthalpy of interaction and differential scanning calorimetry profiles, as well as the reversible changes in structure and mobility seen by variable temperature NMR. PMID:24449886

  3. Pore Interconnectivity Influences Growth Factor-Mediated Vascularization in Sphere-Templated Hydrogels

    PubMed Central

    Somo, Sami I.; Akar, Banu; Bayrak, Elif S.; Larson, Jeffery C.; Appel, Alyssa A.; Mehdizadeh, Hamidreza; Cinar, Ali

    2015-01-01

    Rapid and controlled vascularization within biomaterials is essential for many applications in regenerative medicine. The extent of vascularization is influenced by a number of factors, including scaffold architecture. While properties such as pore size and total porosity have been studied extensively, the importance of controlling the interconnectivity of pores has received less attention. A sintering method was used to generate hydrogel scaffolds with controlled pore interconnectivity. Poly(methyl methacrylate) microspheres were used as a sacrificial agent to generate porous poly(ethylene glycol) diacrylate hydrogels with interconnectivity varying based on microsphere sintering conditions. Interconnectivity levels increased with sintering time and temperature with resultant hydrogel structure showing agreement with template structure. Porous hydrogels with a narrow pore size distribution (130–150 μm) and varying interconnectivity were investigated for their ability to influence vascularization in response to gradients of platelet-derived growth factor-BB (PDGF-BB). A rodent subcutaneous model was used to evaluate vascularized tissue formation in the hydrogels in vivo. Vascularized tissue invasion varied with interconnectivity. At week 3, higher interconnectivity hydrogels had completely vascularized with twice as much invasion. Interconnectivity also influenced PDGF-BB transport within the scaffolds. An agent-based model was used to explore the relative roles of steric and transport effects on the observed results. In conclusion, a technique for the preparation of hydrogels with controlled pore interconnectivity has been developed and evaluated. This method has been used to show that pore interconnectivity can independently influence vascularization of biomaterials. PMID:25603533

  4. Impact of natural organic matter on uranium transport through saturated geologic materials: from molecular to column scale.

    PubMed

    Yang, Yu; Saiers, James E; Xu, Na; Minasian, Stefan G; Tyliszczak, Tolek; Kozimor, Stosh A; Shuh, David K; Barnett, Mark O

    2012-06-05

    The risk stemming from human exposure to actinides via the groundwater track has motivated numerous studies on the transport of radionuclides within geologic environments; however, the effects of waterborne organic matter on radionuclide mobility are still poorly understood. In this study, we compared the abilities of three humic acids (HAs) (obtained through sequential extraction of a peat soil) to cotransport hexavalent uranium (U) within water-saturated sand columns. Relative breakthrough concentrations of U measured upon elution of 18 pore volumes increased from undetectable levels (<0.001) in an experiment without HAs to 0.17 to 0.55 in experiments with HAs. The strength of the HA effect on U mobility was positively correlated with the hydrophobicity of organic matter and NMR-detected content of alkyl carbon, which indicates the possible importance of hydrophobic organic matter in facilitating U transport. Carbon and uranium elemental maps collected with a scanning transmission X-ray microscope (STXM) revealed uneven microscale distribution of U. Such molecular- and column-scale data provide evidence for a critical role of hydrophobic organic matter in the association and cotransport of U by HAs. Therefore, evaluations of radionuclide transport within subsurface environments should consider the chemical characteristics of waterborne organic substances, especially hydrophobic organic matter.

  5. Design and performance of a beetle-type double-tip scanning tunneling microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaschinsky, Philipp; Coenen, Peter; Pirug, Gerhard

    2006-09-15

    A combination of a double-tip scanning tunneling microscope with a scanning electron microscope in ultrahigh vacuum environment is presented. The compact beetle-type design made it possible to integrate two independently driven scanning tunneling microscopes in a small space. Moreover, an additional level for coarse movement allows the decoupling of the translation and approach of the tunneling tip. The position of the two tips can be controlled from the millimeter scale down to 50 nm with the help of an add-on electron microscope. The instrument is capable of atomic resolution imaging with each tip.

  6. Intra- and interspecific diversity of ultrastructural markers in Scedosporium.

    PubMed

    Stepanova, Amaliya A; de Hoog, G Sybren; Vasilyeva, Nataliya V

    2016-02-01

    Ultrastructural features of conidia, lateral walls of aerial and submerged hyphal cells, and of septal pore apparatus of Scedosporium apiospermum, S. boydii, Pseudallescheria angusta and Scedosporium aurantiacum were studied. Submerged hyphal cells possessed a thick extracellular matrix. Crystalline satellites accessory to the septal pore apparatus were revealed. Fundamental ultrastructural features appeared to be heterogeneous at low taxonomic levels. The closely interrelated members of the S. apiospermum complex showed quantitative ultrastructural variability, but the unambiguously different species S. aurantiacum deviated qualitatively by markers of conidial wall structure, Woronin bodies morphology and presence/absence of crystalline satellites of the septal pore apparatus. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  7. Impact of monovalent cations on soil structure. Part I. Results of an Iranian soil

    NASA Astrophysics Data System (ADS)

    Farahani, Elham; Emami, Hojat; Keller, Thomas; Fotovat, Amir; Khorassani, Reza

    2018-01-01

    This study investigated the impact of monovalent cations on clay dispersion, aggregate stability, soil pore size distribution, and saturated hydraulic conductivity on agricultural soil in Iran. The soil was incubated with treatment solutions containing different concentrations (0-54.4 mmol l-1) of potassium and sodium cations. The treatment solutions included two levels of electrical conductivity (EC=3 or 6 dS m-1) and six K:Na ratios per electrical conductivity level. At both electrical conductivity levels, spontaneously dispersible clay increased with increasing K concentration, and with increasing K:Na ratio. A negative linear relationship between percentage of water-stable aggregates and spontaneously dispersible clay was observed. Clay dispersion generally reduced the mean pore size, presumably due to clogging of pores, resulting in increased water retention. At both electrical conductivity levels, hydraulic conductivity increased with increasing exchangeable potassium percentage at low exchangeable potassium percentage values, but decreased with further increases in exchangeable potassium percentage at higher exchangeable potassium percentage. This is in agreement with earlier studies, but seems in conflict with our data showing increasing spontaneously dispersible clay with increasing exchangeable potassium percentage. Our findings show that clay dispersion increased with increasing K concentration and increasing K:Na ratio, demonstrating that K can have negative impacts on soil structure.

  8. Lithography-based fabrication of nanopore arrays in freestanding SiN and graphene membranes

    NASA Astrophysics Data System (ADS)

    Verschueren, Daniel V.; Yang, Wayne; Dekker, Cees

    2018-04-01

    We report a simple and scalable technique for the fabrication of nanopore arrays on freestanding SiN and graphene membranes based on electron-beam lithography and reactive ion etching. By controlling the dose of the single-shot electron-beam exposure, circular nanopores of any size down to 16 nm in diameter can be fabricated in both materials at high accuracy and precision. We demonstrate the sensing capabilities of these nanopores by translocating dsDNA through pores fabricated using this method, and find signal-to-noise characteristics on par with transmission-electron-microscope-drilled nanopores. This versatile lithography-based approach allows for the high-throughput manufacturing of nanopores and can in principle be used on any substrate, in particular membranes made out of transferable two-dimensional materials.

  9. Microscopic Analysis of Current and Mechanical Properties of Nafion® Studied by Atomic Force Microscopy

    PubMed Central

    Hiesgen, Renate; Helmly, Stefan; Galm, Ines; Morawietz, Tobias; Handl, Michael; Friedrich, K. Andreas

    2012-01-01

    The conductivity of fuel cell membranes as well as their mechanical properties at the nanometer scale were characterized using advanced tapping mode atomic force microscopy (AFM) techniques. AFM produces high-resolution images under continuous current flow of the conductive structure at the membrane surface and provides some insight into the bulk conducting network in Nafion membranes. The correlation of conductivity with other mechanical properties, such as adhesion force, deformation and stiffness, were simultaneously measured with the current and provided an indication of subsurface phase separations and phase distribution at the surface of the membrane. The distribution of conductive pores at the surface was identified by the formation of water droplets. A comparison of nanostructure models with high-resolution current images is discussed in detail. PMID:24958429

  10. Pretreatment of rapeseed straw by sodium hydroxide.

    PubMed

    Kang, Kyeong Eop; Jeong, Gwi-Taek; Park, Don-Hee

    2012-06-01

    Pretreatment method for rapeseed straw by sodium hydroxide was investigated for production of bioethanol and biobutanol. Various pretreatment parameters, including temperature, time, and sodium hydroxide concentration were optimized using a statistical method which is a central composite design of response surface methodology. In the case of sodium hydroxide pretreatment, optimal pretreatment conditions were found to be 7.9% sodium hydroxide concentration, 5.5 h of reaction time, and 68.4 °C of reaction temperature. The maximum glucose yield which can be recovered by enzymatic hydrolysis at the optimum conditions was 95.7% and the experimental result was 94.0 ± 4.8%. This experimental result was in agreement with the model prediction. An increase of surface area and pore size in pretreated rapeseed straw by sodium hydroxide pretreatment was observed by scanning electron microscope.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jin; Fan, Cuncai; Ding, Jie

    High energy particle radiations induce severe microstructural damage in metallic materials. Nanoporous materials with a giant surface-to-volume ratio may alleviate radiation damage in irradiated metallic materials as free surface are defect sinks. We show, by using in situ Kr ion irradiation in a transmission electron microscope at room temperature, that nanoporous Au indeed has significantly improved radiation tolerance comparing with coarse-grained, fully dense Au. In situ studies show that nanopores can absorb and eliminate a large number of radiation-induced defect clusters. Meanwhile, nanopores shrink (self-heal) during radiation, and their shrinkage rate is pore size dependent. Furthermore, the in situ studiesmore » show dose-rate-dependent diffusivity of defect clusters. Our study sheds light on the design of radiation-tolerant nanoporous metallic materials for advanced nuclear reactor applications.« less

  12. Light driven mesoscale assembly of a coordination polymeric gelator into flowers and stars with distinct properties† †Electronic supplementary information (ESI) available: Text, figures, and tables depicting different synthetic procedures, detailed experimental procedures, characterisation data including FT-IR, microscopic analyses, TGA, EDAX and SAED analyses, pore size distribution. See DOI: 10.1039/c5sc02233a Click here for additional data file.

    PubMed Central

    Mukhopadhyay, Rahul Dev; Praveen, Vakayil K.; Hazra, Arpan; Maji, Tapas Kumar

    2015-01-01

    Control over the self-assembly process of porous organic–inorganic hybrids often leads to unprecedented polymorphism and properties. Herein we demonstrate how light can be a powerful tool to intervene in the kinetically controlled mesoscale self-assembly of a coordination polymeric gelator. Ultraviolet light induced coordination modulation via photoisomerisation of an azobenzene based dicarboxylate linker followed by aggregation mediated crystal growth resulted in two distinct morphological forms (flowers and stars), which show subtle differences in their physical properties. PMID:28757961

  13. The tungsten powder study of the dispenser cathode

    NASA Astrophysics Data System (ADS)

    Bao, Ji-xiu; Wan, Bao-fei

    2006-06-01

    The intercorrelation of tungsten powder properties, such as grain size, distribution and morphology, and porous matrix parameters with electron emission capability and longevity of Ba dispenser cathodes has been investigated for the different grain morphologies. It is shown that a fully cleaning step of the tungsten powder is so necessary that the tungsten powder will be reduction of oxide in hydrogen atmosphere above 700 °C. The porosity of the tungsten matrix distributes more even and the closed pore is fewer, the average granule size of the tungsten powder distributes more convergent. The porosity of the tungsten matrix and the evaporation of the activator are bigger and the pulse of the cathode is smaller when the granularity is bigger by the analysis of the electronic microscope and diode experiment.

  14. Mechanical Properties of Organized Microcomposites Fabricated by Interference Lithography

    NASA Astrophysics Data System (ADS)

    Singamaneni, Srikanth; Chang, Sehoon; Jang, Ji-Hyun; Davis, Whitney; Thomas, Edwin; Tsukruk, Vladimir

    2009-03-01

    We demonstrate that organized, porous, polymer microstructures with continuous open nanoscale pores and sub-micron spacings obtained via interference lithography can be successfully utilized in a highly non-traditional field of ordered microcomposites. Organized microcomposite structures are fabricated by employing two independent strategies, namely, capillary infiltration and in situ polymerization of the rubbery component into the porous glassy microframes. The mechanical properties and ultimate fracture behavior of the single and bicomponent microframes are investigated at different length scales. The ordered single and bi-component microstructures with high degree of control over the microscopic organization of the polymeric phases result in excellent mechanical properties. Combining hard and soft polymer components provides multifunctional materials and coatings with synergetic properties and is frequently utilized for design of advanced polymeric composites.

  15. Optical absorption and photoluminescence studies of gold nanoparticles deposited on porous silicon

    PubMed Central

    2013-01-01

    We present an investigation on a coupled system consists of gold nanoparticles and silicon nanocrystals. Gold nanoparticles (AuNPs) embedded into porous silicon (PSi) were prepared using the electrochemical deposition method. Scanning electron microscope images and energy-dispersive X-ray results indicated that the growth of AuNPs on PSi varies with current density. X-ray diffraction analysis showed the presence of cubic gold phases with crystallite sizes around 40 to 58 nm. Size dependence on the plasmon absorption was studied from nanoparticles with various sizes. Comparison with the reference sample, PSi without AuNP deposition, showed a significant blueshift with decreasing AuNP size which was explained in terms of optical coupling between PSi and AuNPs within the pores featuring localized plasmon resonances. PMID:23331761

  16. PBO Borehole Strainmeters and Pore Pressure Sensors: Recording Hydrological Strain Signals

    NASA Astrophysics Data System (ADS)

    Gottlieb, M. H.; Hodgkinson, K. M.; Mencin, D.; Henderson, D. B.; Johnson, W.; Van Boskirk, E.; Pyatt, C.; Mattioli, G. S.

    2017-12-01

    UNAVCO operates a network of 75 borehole strainmeters along the west coast of the United States and Vancouver Island, Canada as part of the Plate Boundary Observatory (PBO), the geodetic component of the NSF-funded Earthscope program. Borehole strainmeters are designed to detect variations in the strain field at the nanostrain level and can easily detect transient strains caused by aseismic creep events, Episodic Tremor and Slip (ETS) events and seismically induced co- and post-seimic signals. In 2016, one strainmeter was installed in an Oklahoma oil field to characterize in-situ deformation during CO2 injection. Twenty-three strainmeter sites also have pore pressure sensors to measure fluctuations in groundwater pressure. Both the strainmeter network and the pore pressure sensors provide unique data against which those using water-level measurements, GPS time-series or InSAR data can compare possible subsidence signals caused by groundwater withdrawal or fluid re-injection. Operating for 12 years, the PBO strainmeter and pore pressure network provides a long-term, continuous, 1-sps record of deformation. PBO deploys GTSM21 tensor strainmeters from GTSM Technologies, which consist of four horizontal strain gauges stacked vertically, at different orientations, within a single 2 m-long instrument. The strainmeters are typically installed at depths of 200 to 250 m and grouted into the bottom of 15 cm diameter boreholes. The pore pressure sensors are Digiquartz Depth Sensors from Paros Scientific. These sensors are installed in 2" PVC, sampling groundwater through a screened section 15 m above the co-located strainmeter. These sensors are also recording at 1-sps with a resolution in the hundredths of hPa. High-rate local barometric pressure data and low-rate rainfall data also available at all locations. PBO Strainmeter and pore pressure data are available in SEED, SAC-ASCII and time-stamped ASCII format from the IRIS Data Managements Center. Strainmeter data are available at 2-hour latency while the pore pressure data are available in real-time. Links for data access, instrument and borehole information and station histories are available from UNAVCO's Borehole Data web page (https://www.unavco.org/data/strain-seismic/bsm-data/bsm-data.html ).

  17. On the mechanism of polypropylene fibres in preventing fire spalling in self-compacting and high-performance cement paste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, X.; Magnel Laboratory for Concrete Research, Department of Structural Engineering, Ghent University, Technologiepark-Zwijnaarde 904 B-9052, Ghent; Ye, G.

    2008-04-15

    With the increasing application of self-compacting concrete (SCC) in construction and infrastructure, the fire spalling behavior of SCC has been attracting due attention. In high performance concrete (HPC), addition of polypropylene fibers (PP fibers) is widely used as an effective method to prevent explosive spalling. Hence, it would be useful to investigate whether the PP fibers are also efficient in SCC to avoid explosive spalling. However, no universal agreement exists concerning the fundamental mechanism of reducing the spalling risk by adding PP fiber. For SCC, the reduction of flowability should be considered when adding a significant amount of fibres. Inmore » this investigation, both the micro-level and macro-level properties of pastes with different fiber contents were studied in order to investigate the role of PP fiber at elevated temperature in self-compacting cement paste samples. The micro properties were studied by backscattering electron microscopy (BSE) and mercury intrusion porosimetry (MIP) tests. The modification of the pore structure at elevated temperature was investigated as well as the morphology of the PP fibers. Some macro properties were measured, such as the gas permeability of self-compacting cement paste after heating at different temperatures. The factors influencing gas permeability were analyzed. It is shown that with the melting of PP fiber, no significant increase in total pore volume is obtained. However, the connectivity of isolated pores increases, leading to an increase of gas permeability. With the increase of temperature, the addition of PP fibers reduces the damage of cement pastes, as seen from the total pore volume and the threshold pore diameter changes. From this investigation, it is concluded that the connectivity of pores as well as the creation of micro cracks are the major factors which determine the gas permeability after exposure to high temperatures. Furthermore, the connectivity of the pores acts as a dominant factor for temperatures below 300 deg. C. For higher temperatures micro cracks are becoming the major factor which influences the gas permeability.« less

  18. The influence of sulphate deposition on the seasonal variation of peat pore water methyl Hg in a boreal mire.

    PubMed

    Bergman, Inger; Bishop, Kevin; Tu, Qiang; Frech, Wolfgang; Åkerblom, Staffan; Nilsson, Mats

    2012-01-01

    In this paper we investigate the hypothesis that long-term sulphate (SO(4) (2-)) deposition has made peatlands a larger source of methyl mercury (MeHg) to remote boreal lakes. This was done on experimental plots at a boreal, low sedge mire where the effect of long-term addition of SO(4) (2-) on peat pore water MeHg concentrations was observed weekly throughout the snow-free portion of 1999. The additions of SO(4) (2-) started in 1995. The seasonal mean of the pore water MeHg concentrations on the plots with 17 kg ha(-1) yr(-1) of sulphur (S) addition (1.3±0.08 ng L(-1), SE; n = 44) was significantly (p<0.0001) higher than the mean MeHg concentration on the plots with 3 kg ha(-1) yr(-1) of ambient S deposition (0.6±0.02 ng L(-1), SE; n = 44). The temporal variation in pore water MeHg concentrations during the snow free season was larger in the S-addition plots, with an amplitude of >2 ng L(-1) compared to +/-0.5 ng L(-1) in the ambient S deposition plots. The concentrations of pore water MeHg in the S-addition plots were positively correlated (r(2) = 0.21; p = 0.001) to the groundwater level, with the lowest concentrations of MeHg during the period with the lowest groundwater levels. The pore water MeHg concentrations were not correlated to total Hg, DOC concentration or pH. The results from this study indicate that the persistently higher pore water concentrations of MeHg in the S-addition plots are caused by the long-term additions of SO(4) (2-) to the mire surface. Since these waters are an important source of runoff, the results support the hypothesis that SO(4) (2-) deposition has increased the contribution of peatlands to MeHg in downstream aquatic systems. This would mean that the increased deposition of SO(4) (2-) in acid rain has contributed to the modern increase in the MeHg burdens of remote lakes hydrologically connected to peatlands.

  19. Pore level visualization of foam flow in a silicon micromodel. SUPRI TR 100

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woody, F.; Blunt, M.; Castanier, L.

    This paper is concerned with the behavior of foam in porous media at the pore level. Identical, heterogeneous silicon micromodels, two dimensionally etched to replicate flow in Berea Sandstone, were used. The models, already saturated with varying concentrations of surfactant and, at times, oil were invaded with air. Visual observations were made of these air displacement events in an effort to determine foam flow characteristics with varying surfactant concentrations, and differing surfactants in the presence of oil. These displacement events were recorded on video tape. These tapes are available at the Stanford University Petroleum Research Institute, Stanford, California. The observedmore » air flow characteristics can be broadly classified into two: continuous and discontinuous. Continuous air flow was observed in two phase runs when the micromodel contained no aqueous surfactant solution. Air followed a tortuous path to the outlet, splitting and reconnecting around grains, isolating water located in dead-end or circumvented pores, all without breaking and forming bubbles. No foam was created. Discontinuous air flow occurred in runs containing surfactant - with smaller bubble sizes appearing with higher surfactant concentrations. Air moved through the medium by way of modified bubble train flow where bubbles travel through pore throats and tend to reside more statically in larger pore bodies until enough force is applied to move them along. The lamellae were stable, and breaking and reforming events by liquid drainage and corner flow were observed in higher surfactant concentrations. However, the classic snap-off process, as described by Roof (1973) was not seen at all.« less

  20. Elucidating the mechanical effects of pore water pressure increase on the stability of unsaturated soil slopes

    NASA Astrophysics Data System (ADS)

    Buscarnera, G.

    2012-12-01

    The increase of the pore water pressure due to rain infiltration can be a dominant component in the activation of slope failures. This paper shows an application of the theory of material stability to the triggering analysis of this important class of natural hazards. The goal is to identify the mechanisms through which the process of suction removal promotes the initiation of mechanical instabilities. The interplay between increase in pore water pressure, and failure mechanisms is investigated at material point level. In order to account for multiple failure mechanisms, the second-order work criterion is used and different stability indices are devised. The paper shows that the theory of material stability can assess the risk of shear failure and static liquefaction in both saturated and unsaturated contexts. It is shown that the combined use of an enhanced definition of second-order work for unsaturated porous media and a hydro-mechanical constitutive framework enables to retrieve bifurcation conditions for water-infiltration processes in unsaturated deposits. This finding discloses the importance of the coupling terms that incorporate the interaction between the solid skeleton and the pore fluids. As a consequence, these theoretical results suggest that some material properties that are not directly associated with the shearing resistance (e.g., the potential for wetting compaction) can play an important role in the initiation of slope failures. According to the proposed interpretation, the process of pore pressure increase can be understood as a trigger of uncontrolled strains, which at material point level are reflected by the onset of bifurcation conditions.

Top