Sample records for microscopic speciation studies

  1. Speciation and distribution of copper in a mining soil using multiple synchrotron-based bulk and microscopic techniques.

    PubMed

    Yang, Jianjun; Liu, Jin; Dynes, James J; Peak, Derek; Regier, Tom; Wang, Jian; Zhu, Shenhai; Shi, Jiyan; Tse, John S

    2014-02-01

    Molecular-level understanding of soil Cu speciation and distribution assists in management of Cu contamination in mining sites. In this study, one soil sample, collected from a mining site contaminated since 1950s, was characterized complementarily by multiple synchrotron-based bulk and spatially resolved techniques for the speciation and distribution of Cu as well as other related elements (Fe, Ca, Mn, K, Al, and Si). Bulk X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectroscopy revealed that soil Cu was predominantly associated with Fe oxides instead of soil organic matter. This agreed with the closest association of Cu to Fe by microscopic X-ray fluorescence (U-XRF) and scanning transmission X-ray microscopy (STXM) nanoanalysis, along with the non-occurrence of photoreduction of soil Cu(II) by quick Cu L3,2-edge XANES spectroscopy (Q-XANES) which often occurs when Cu organic complexes are present. Furthermore, bulk-EXAFS and STXM-coupled Fe L3,2-edge nano-XANES analysis revealed soil Cu adsorbed primarily to Fe(III) oxides by inner-sphere complexation. Additionally, Cu K-edge μ-XANES, L3,2-edge bulk-XANES, and successive Q-XANES results identified the presence of Cu2S rather than radiation-damage artifacts dominant in certain microsites of the mining soil. This study demonstrates the great benefits in use of multiple combined synchrotron-based techniques for comprehensive understanding of Cu speciation in heterogeneous soil matrix, which facilitates our prediction of Cu reactivity and environmental fate in the mining site.

  2. Finding the patterns in complex specimens by improving the acquisition and analysis of x-ray spectromicroscopy data

    NASA Astrophysics Data System (ADS)

    Lerotic, Mirna

    Soft x-ray spectromicroscopy provides spectral data on the chemical speciation of light elements at sub-100 nanometer spatial resolution. The high resolution imaging places a strong demand on the microscope stability and on the reproducibility of the scanned image field, and the volume of data necessitates the need for improved data analysis methods. This dissertation concerns two developments in extending the capability of soft x-ray transmission microscopes to carry out studies of chemical speciation at high spatial resolution. One development involves an improvement in x-ray microscope instrumentation: a new Stony Brook scanning transmission x-ray microscope which incorporates laser interferometer feedback in scanning stage positions. The interferometer is used to control the position between the sample and focusing optics, and thus improve the stability of the system. A second development concerns new analysis methods for the study of chemical speciation of complex specimens, such as those in biological and environmental science studies. When all chemical species in a specimen are known and separately characterized, existing approaches can be used to measure the concentration of each component at each pixel. In other cases (such as often occur in biology or environmental science), where the specimen may be too complicated or provide at least some unknown spectral signatures, other approaches must be used. We describe here an approach that uses principal component analysis (similar to factor analysis) to orthogonalize and noise-filter spectromicroscopy data. We then use cluster analysis (a form of unsupervised pattern matching) to classify pixels according to spectral similarity, to extract representative, cluster-averaged spectra with good signal-to-noise ratio, and to obtain gradations of concentration of these representative spectra at each pixel. The method is illustrated with a simulated data set of organic compounds, and a mixture of lutetium in hematite used to understand colloidal transport properties of radionuclides. Also, we describe here an extension of that work employing an angle distance measure; this measure provides better classification based on spectral signatures alone in specimens with significant thickness variations. The method is illustrated using simulated data, and also to examine sporulation in the bacterium Clostridium sp.

  3. Long-term effects of alum-treated litter, untreated litter and NH4NO3 application on phosphorus speciation, distribution and reactivity in soils using K-edge XANES and chemical fractionation

    USDA-ARS?s Scientific Manuscript database

    Whereas soil test information on the fertility and chemistry of soils has been important to elaborate safe and sound agricultural practices, microscopic information can give a whole extra dimension to understand the chemical processes occurring in soils. The objective of this study was to evaluate t...

  4. Soft X-ray spectromicroscopy for speciation, quantitation and nano-eco-toxicology of nanomaterials.

    PubMed

    Lawrence, J R; Swerhone, G D W; Dynes, J J; Korber, D R; Hitchcock, A P

    2016-02-01

    There is a critical need for methods that provide simultaneous detection, identification, quantitation and visualization of nanomaterials at their interface with biological and environmental systems. The approach should allow speciation as well as elemental analysis. Using the intrinsic X-ray absorption properties, soft X-ray scanning transmission X-ray spectromicroscopy (STXM) allows characterization and imaging of a broad range of nanomaterials, including metals, oxides and organic materials, and at the same time is able to provide detailed mapping of biological components. Thus, STXM offers considerable potential for application to research on nanomaterials in biology and the environment. The potential and limitations of STXM in this context are discussed using a range of examples, focusing on the interaction of nanomaterials with microbial cells, biofilms and extracellular polymers. The studies outlined include speciation and mapping of metal-containing nanomaterials (Ti, Ni, Cu) and carbon-based nanomaterials (multiwalled carbon nanotubes, C60 fullerene). The benefits of X-ray fluorescence detection in soft X-ray STXM are illustrated with a study of low levels of Ni in a natural river biofilm. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  5. Copper speciation in variably toxic sediments at the Ely Copper Mine, Vermont, United States

    USGS Publications Warehouse

    Kimball, Bryn E.; Foster, Andrea L.; Seal, Robert R.; Piatak, Nadine M.; Webb, Samuel M.; Hammarstrom, Jane M.

    2016-01-01

    At the Ely Copper Mine Superfund site, Cu concentrations exceed background values in both streamwater (160–1200 times) and sediments (15–79 times). Previously, these sediment samples were incubated with laboratory test organisms, and they exhibited variable toxicity for different stream sites. In this study we combined bulk- and microscale techniques to determine Cu speciation and distribution in these contaminated sediments on the basis of evidence from previous work that Cu was the most important stressor in this environment and that variable observed toxicity could have resulted from differences in Cu speciation. Copper speciation results were similar at microscopic and bulk scales. The major Cu species in the more toxic samples were sorbed or coprecipitated with secondary Mn (birnessite) and Fe minerals (jarosite and goethite), which together accounted for nearly 80% of the total Cu. The major Cu species in the less toxic samples were Cu sulfides (chalcopyrite and a covellite-like phase), making up about 80–95% of the total Cu, with minor amounts of Cu associated with jarosite or goethite. These Cu speciation results are consistent with the toxicity results, considering that Cu sorbed or coprecipitated with secondary phases at near-neutral pH is relatively less stable than Cu bound to sulfide at lower pH. The more toxic stream sediment sites were those that contained fewer detrital sulfides and were upstream of the major mine waste pile, suggesting that removal and consolidation of sulfide-bearing waste piles on site may not eliminate all sources of bioaccessible Cu.

  6. Immediate assessment of performance of medical laboratory scientists following a 10-day malaria microscopy training programme in Nigeria.

    PubMed

    Aiyenigba, Bolatito; Ojo, Abiodun; Aisiri, Adolor; Uzim, Justus; Adeusi, Oluwole; Mwenesi, Halima

    2017-01-01

    Rapid and precise diagnosis of malaria is an essential element in effective case management and control of malaria. Malaria microscopy is used as the gold standard for malaria diagnosis, however results remain poor as positivity rate in Nigeria is consistently over 90%. The United States President's Malaria Initiative (PMI) through the Malaria Action Program for States (MAPS) supported selected states in Nigeria to build capacity for malaria microscopy. This study demonstrates the effectiveness of in-service training on malaria microscopy amongst medical laboratory scientists. The training was based on the World Health Organization (WHO) basic microscopy training manual. The 10-day training utilized a series of didactic lectures and examination of teaching slides using a CX 21 Olympus binocular microscope. All 108 medical laboratory scientists trained from 2012 to 2015 across five states in Nigeria supported by PMI were included in the study. Evaluation of the training using a pre-and post-test method was based on written test questions; reading photographic slide images of malaria parasites; and prepared slides. There was a significant improvement in the mean written pre-and post-tests scores from 37.9% (95% CI 36.2-39.6%) to 70.7% (95% CI 68.4-73.1%) ( p  < 0.001). The mean counting post-test score improved significantly from 4.2% (95% CI 2.6-5.7%) to 27.9% (95% CI 25.3-30.5%) ( p  < 0.001). Mean post-test score for computer-based picture speciation test (63.0%) and picture detection test (89.2%) were significantly higher than the mean post-test score for slide reading speciation test (38.3%) and slide reading detection test (70.7%), p  < 0.001 in both cases. Parasite detection and speciation using enhanced visual imaging was significantly improved compared with using direct microscopy. Regular in-service training and provision of functional and high resolution microscopes are needed to ensure quality routine malaria microscopy.

  7. Combined use of optical and electron microscopic techniques for the measurement of hygroscopic property, chemical composition, and morphology of individual aerosol particles.

    PubMed

    Ahn, Kang-Ho; Kim, Sun-Man; Jung, Hae-Jin; Lee, Mi-Jung; Eom, Hyo-Jin; Maskey, Shila; Ro, Chul-Un

    2010-10-01

    In this work, an analytical method for the characterization of the hygroscopic property, chemical composition, and morphology of individual aerosol particles is introduced. The method, which is based on the combined use of optical and electron microscopic techniques, is simple and easy to apply. An optical microscopic technique was used to perform the visual observation of the phase transformation and hygroscopic growth of aerosol particles on a single particle level. A quantitative energy-dispersive electron probe X-ray microanalysis, named low-Z particle EPMA, was used to perform a quantitative chemical speciation of the same individual particles after the measurement of the hygroscopic property. To validate the analytical methodology, the hygroscopic properties of artificially generated NaCl, KCl, (NH(4))(2)SO(4), and Na(2)SO(4) aerosol particles of micrometer size were investigated. The practical applicability of the analytical method for studying the hygroscopic property, chemical composition, and morphology of ambient aerosol particles is demonstrated.

  8. Effect of carbonation on leachability, strength and microstructural characteristics of KMP binder stabilized Zn and Pb contaminated soils.

    PubMed

    Du, Yan-Jun; Wei, Ming-Li; Reddy, Krishna R; Wu, Hao-liang

    2016-02-01

    This study presents a systematic investigation of effects of carbonation on the contaminant leachability and unconfined compressive strength of KMP stabilized contaminated soils. A field soil spiked with Zn and Pb individually and together is stabilized using a new KMP additive under standard curing conditions and also with carbonation. The KMP additive is composed of oxalic acid-activated phosphate rock, monopotassium phosphate and reactive magnesia. The stabilized soils are tested for acid neutralization capacity, toxic characteristics leaching characteristics, contaminant speciation and unconfined compression strength. X-ray diffraction, scanning electron microscope and energy dispersive spectroscopy analyses are performed to assess reaction products. The results demonstrate that carbonation increases both acid buffer capacity index and unconfined compressive strength, but decreases leachability of KMP stabilized soils. These results are interpreted based on the changes in chemical speciation of Zn and Pb and also stability and solubility of the reaction products (metal phosphates and carbonates) formed in the soils. Overall, this study demonstrates that carbonation has positive effects on leachability and strength of the KMP stabilized soils. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Foliar or root exposures to smelter particles: consequences for lead compartmentalization and speciation in plant leaves.

    PubMed

    Schreck, Eva; Dappe, Vincent; Sarret, Géraldine; Sobanska, Sophie; Nowak, Dorota; Nowak, Jakub; Stefaniak, Elżbieta Anna; Magnin, Valérie; Ranieri, Vincent; Dumat, Camille

    2014-04-01

    In urban areas with high fallout of airborne particles, metal uptake by plants mainly occurs by foliar pathways and can strongly impact crop quality. However, there is a lack of knowledge on metal localization and speciation in plants after pollution exposure, especially in the case of foliar uptake. In this study, two contrasting crops, lettuce (Lactuca sativa L.) and rye-grass (Lolium perenne L.), were exposed to Pb-rich particles emitted by a Pb-recycling factory via either atmospheric or soil application. Pb accumulation in plant leaves was observed for both ways of exposure. The mechanisms involved in Pb uptake were investigated using a combination of microscopic and spectroscopic techniques (electron microscopy, laser ablation, Raman microspectroscopy, and X-ray absorption spectroscopy). The results show that Pb localization and speciation are strongly influenced by the type of exposure (root or shoot pathway) and the plant species. Foliar exposure is the main pathway of uptake, involving the highest concentrations in plant tissues. Under atmospheric fallouts, Pb-rich particles were strongly adsorbed on the leaf surface of both plant species. In lettuce, stomata contained Pb-rich particles in their apertures, with some deformations of guard cells. In addition to PbO and PbSO4, chemical forms that were also observed in pristine particles, new species were identified: organic compounds (minimum 20%) and hexagonal platy crystals of PbCO3. In rye-grass, the changes in Pb speciation were even more egregious: Pb-cell wall and Pb-organic acid complexes were the major species observed. For root exposure, identified here as a minor pathway of Pb transfer compared to foliar uptake, another secondary species, pyromorphite, was identified in rye-grass leaves. Finally, combining bulk and spatially resolved spectroscopic techniques permitted both the overall speciation and the minor but possibly highly reactive lead species to be determined in order to better assess the health risks involved. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Advances in the detection of as in environmental samples using low energy X-ray fluorescence in a scanning transmission X-ray microscope: arsenic immobilization by an Fe(II)-oxidizing freshwater bacteria.

    PubMed

    Hitchcock, A P; Obst, M; Wang, J; Lu, Y S; Tyliszczak, T

    2012-03-06

    Speciation and quantitative mapping of elements, organic and inorganic compounds, and mineral phases in environmental samples at high spatial resolution is needed in many areas of geobiochemistry and environmental science. Scanning transmission X-ray microscopes (STXMs) provide a focused beam which can interrogate samples at a fine spatial scale. Quantitative chemical information can be extracted using the transmitted and energy-resolved X-ray fluorescence channels simultaneously. Here we compare the relative merits of transmission and low-energy X-ray fluorescence detection of X-ray absorption for speciation and quantitative analysis of the spatial distribution of arsenic(V) within cell-mineral aggregates formed by Acidovorax sp. strain BoFeN1, an anaerobic nitrate-reducing Fe(II)-oxidizing β-proteobacteria isolated from the sediments of Lake Constance. This species is noted to be highly tolerant to high levels of As(V). Related, As-tolerant Acidovorax-strains have been found in As-contaminated groundwater wells in Bangladesh and Cambodia wherein they might influence the mobility of As by providing sorption sites which might have different properties as compared to chemically formed Fe-minerals. In addition to demonstrating the lower detection limits that are achieved with X-ray fluorescence relative to transmission detection in STXM, this study helps to gain insights into the mechanisms of As immobilization by biogenic Fe-mineral formation and to further the understanding of As-resistance of anaerobic Fe(II)-oxidizing bacteria.

  11. Adding to the Mercury Speciation Toolbox

    NASA Astrophysics Data System (ADS)

    Fitts, J. P.; Northrup, P. A.; Chidambaram, D.; Kalb, P. D.

    2007-12-01

    Mercury was used to separate lithium-6 isotope for weapons production at the Y-12 Plant in Oak Ridge, TN in the 1950s and 1960s. A large portion of the waste Hg entered the environment and continues to move throughout the sub-surface and surface waters in the area. Environmental management of Hg contamination within this complex hydrologic system, where Hg speciation and the mobile fraction have been found to vary widely, will require ongoing characterization and predictive modeling of Hg speciation. State-of-the-art spectroscopic tools that can directly probe Hg speciation in preserved aqueous and sediment samples with greater sensitivity, however, are required to determine rates and mechanisms of biogeochemical reactions. We will present the first results demonstrating the use of x-ray absorption spectroscopy (XAS) at the Hg M5 edge (2295 eV) to fingerprint Hg species. Heavy-metal M5 absorption edges can have very sharp features due to local electron transitions, and therefore, we are developing this edge as a tool for quantitative measurement of Hg species. In addition, sulfur speciation using the sulfur K absorption edge, which is at a similar energy (2472 eV), can be measured in the same scan as the Hg M5 edge. Potentially important organic and inorganic sulfur species (sulfide, disulfide, elemental sulfur, sulfite and sulfate) are readily differentiated, and thereby, provides an independent method for monitoring the redox state of the system along with changes in S-Hg bonding. We will also present x-ray microprobe 2-D concentration maps of Hg and other elements at the grain and pore scales to identify its microscopic distribution and chemical associations. When used in combination with established sequential extraction and direct spectroscopic methods, the addition of XAS at the Hg M5 edge should provide a significant advancement in the determination of Hg speciation in complex biogeochemical environments.

  12. Bacteria–zinc co-localization implicates enhanced synthesis of cysteine-rich peptides in zinc detoxification when Brassica juncea is inoculated with Rhizobium leguminosarum

    PubMed Central

    Adediran, Gbotemi A; Ngwenya, Bryne T; Mosselmans, J Frederick W; Heal, Kate V

    2016-01-01

    Some plant growth promoting bacteria (PGPB) are enigmatic in enhancing plant growth in the face of increased metal accumulation in plants. Since most PGPB colonize the plant root epidermis, we hypothesized that PGPB confer tolerance to metals through changes in speciation at the root epidermis. We employed a novel combination of fluorophore-based confocal laser scanning microscopic imaging and synchrotron based microscopic X-ray fluorescence mapping with X-ray absorption spectroscopy to characterize bacterial localization, zinc (Zn) distribution and speciation in the roots of Brassica juncea grown in Zn contaminated media (400 mg kg−1 Zn) with the endophytic Pseudomonas brassicacearum and rhizospheric Rhizobium leguminosarum. PGPB enhanced epidermal Zn sequestration relative to PGBP-free controls while the extent of endophytic accumulation depended on the colonization mode of each PGBP. Increased root accumulation of Zn and increased tolerance to Zn was associated predominantly with R. leguminosarum and was likely due to the coordination of Zn with cysteine-rich peptides in the root endodermis, suggesting enhanced synthesis of phytochelatins or glutathione. Our mechanistic model of enhanced Zn accumulation and detoxification in plants inoculated with R. leguminosarum has particular relevance to PGPB enhanced phytoremediation of soils contaminated through mining and oxidation of sulphur-bearing Zn minerals or engineered nanomaterials such as ZnS. PMID:26263508

  13. The heavy metal partition in size-fractions of the fine particles in agricultural soils contaminated by waste water and smelter dust.

    PubMed

    Zhang, Haibo; Luo, Yongming; Makino, Tomoyuki; Wu, Longhua; Nanzyo, Masami

    2013-03-15

    The partitioning of pollutant in the size-fractions of fine particles is particularly important to its migration and bioavailability in soil environment. However, the impact of pollution sources on the partitioning was seldom addressed in the previous studies. In this study, the method of continuous flow ultra-centrifugation was developed to separate three size fractions (<1 μm, <0.6 μm and <0.2 μm) of the submicron particles from the soil polluted by wastewater and smelter dust respectively. The mineralogy and physicochemical properties of each size-fraction were characterized by X-ray diffraction, transmission electron microscope etc. Total content of the polluted metals and their chemical speciation were measured. A higher enrichment factor of the metals in the fractions of <1 μm or less were observed in the soil contaminated by wastewater than by smelter dust. The organic substance in the wastewater and calcite from lime application were assumed to play an important role in the metal accumulation in the fine particles of the wastewater polluted soil. While the metal accumulation in the fine particles of the smelter dust polluted soil is mainly associated with Mn oxides. Cadmium speciation in both soils is dominated by dilute acid soluble form and lead speciation in the smelter dust polluted soil is dominated by reducible form in all particles. This implied that the polluted soils might be a high risk to human health and ecosystem due to the high bioaccessibility of the metals as well as the mobility of the fine particles in soil. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Chemical Imaging Analysis of Environmental Particles Using the Focused Ion Beam/Scanning Electron Microscopy Technique. Microanalysis Insights into Atmospheric Chemistry of Fly Ash

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Haihan; Grassian, Vicki H.; Saraf, Laxmikant V.

    2012-11-08

    Airborne fly ash from coal combustion may represent a source of bioavailable iron (Fe) in the open ocean. However, few studies have been made focusing on Fe speciation and distribution in coal fly ash. In this study, chemical imaging of fly ash has been performed using a dual-beam FIB/SEM (focused ion beam/scanning electron microscope) system for a better understanding of how simulated atmospheric processing modify the morphology, chemical compositions and element distributions of individual particles. A novel approach has been applied for cross-sectioning of fly ash specimen with a FIB in order to explore element distribution within the interior ofmore » individual particles. Our results indicate that simulated atmospheric processing causes disintegration of aluminosilicate glass, a dominant material in fly ash particles. Aluminosilicate-phase Fe in the inner core of fly ash particles is more easily mobilized compared with oxide-phase Fe present as surface aggregates on fly ash spheres. Fe release behavior depends strongly on Fe speciation in aerosol particles. The approach for preparation of cross-sectioned specimen described here opens new opportunities for particle microanalysis, particular with respect to inorganic refractive materials like fly ash and mineral dust.« less

  15. Chromated copper arsenate-treated fence posts in the agronomic landscape: soil properties controlling arsenic speciation and spatial distribution.

    PubMed

    Schwer Iii, Donald R; McNear, David H

    2011-01-01

    Soils adjacent to chromated copper arsenate (CCA)-treated fence posts along a fence line transecting different soil series, parent material, drainage classes, and slope were used to determine which soil properties had the most influence on As spatial distribution and speciation. Metal distribution was evaluated at macroscopic (total metal concentration contour maps) and microscopic scales (micro-synchrotron X-ray fluorescence maps), As speciation was determined using extended X-ray absorption fine structure spectroscopy, and redox status and a myriad of other basic soil properties were elucidated. All geochemical parameters measured point to a condition in which the mobilization of As becomes more favorable moving down the topographic gradient, likely resulting through competition (Meh-P, SOM), neutral or slightly basic pH, and redox conditions that are favorable for As mobilization (higher Fe(II) and total-Fe concentrations in water extracts). On the landscape scale, with hundreds of kilometers of fence, the arsenic loading into the soil can be substantial (∼8-12 kg km). Although a significant amount of the As is stable, extended use of CCA-treated wood has resulted in elevated As concentrations in the local environment, increasing the risk of exposure and ecosystem perturbation. Therefore, a move toward arsenic-free alternatives in agricultural applications for which it is currently permitted should be considered. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  16. Dissolved and labile concentrations of Cd, Cu, Pb, and Zn in the South Fork Coeur d'Alene River, Idaho: Comparisons among chemical equilibrium models and implications for biotic ligand models

    USGS Publications Warehouse

    Balistrieri, L.S.; Blank, R.G.

    2008-01-01

    In order to evaluate thermodynamic speciation calculations inherent in biotic ligand models, the speciation of dissolved Cd, Cu, Pb, and Zn in aquatic systems influenced by historical mining activities is examined using equilibrium computer models and the diffusive gradients in thin films (DGT) technique. Several metal/organic-matter complexation models, including WHAM VI, NICA-Donnan, and Stockholm Humic model (SHM), are used in combination with inorganic speciation models to calculate the thermodynamic speciation of dissolved metals and concentrations of metal associated with biotic ligands (e.g., fish gills). Maximum dynamic metal concentrations, determined from total dissolved metal concentrations and thermodynamic speciation calculations, are compared with labile metal concentrations measured by DGT to assess which metal/organic-matter complexation model best describes metal speciation and, thereby, biotic ligand speciation, in the studied systems. Results indicate that the choice of model that defines metal/organic-matter interactions does not affect calculated concentrations of Cd and Zn associated with biotic ligands for geochemical conditions in the study area, whereas concentrations of Cu and Pb associated with biotic ligands depend on whether the speciation calculations use WHAM VI, NICA-Donnan, or SHM. Agreement between labile metal concentrations and dynamic metal concentrations occurs when WHAM VI is used to calculate Cu speciation and SHM is used to calculate Pb speciation. Additional work in systems that contain wide ranges in concentrations of multiple metals should incorporate analytical speciation methods, such as DGT, to constrain the speciation component of biotic ligand models. ?? 2008 Elsevier Ltd.

  17. Divergence with gene flow across a speciation continuum of Heliconius butterflies.

    PubMed

    Supple, Megan A; Papa, Riccardo; Hines, Heather M; McMillan, W Owen; Counterman, Brian A

    2015-09-24

    A key to understanding the origins of species is determining the evolutionary processes that drive the patterns of genomic divergence during speciation. New genomic technologies enable the study of high-resolution genomic patterns of divergence across natural speciation continua, where taxa pairs with different levels of reproductive isolation can be used as proxies for different stages of speciation. Empirical studies of these speciation continua can provide valuable insights into how genomes diverge during speciation. We examine variation across a handful of genomic regions in parapatric and allopatric populations of Heliconius butterflies with varying levels of reproductive isolation. Genome sequences were mapped to 2.2-Mb of the H. erato genome, including 1-Mb across the red color pattern locus and multiple regions unlinked to color pattern variation. Phylogenetic analyses reveal a speciation continuum of pairs of hybridizing races and incipient species in the Heliconius erato clade. Comparisons of hybridizing pairs of divergently colored races and incipient species reveal that genomic divergence increases with ecological and reproductive isolation, not only across the locus responsible for adaptive variation in red wing coloration, but also at genomic regions unlinked to color pattern. We observe high levels of divergence between the incipient species H. erato and H. himera, suggesting that divergence may accumulate early in the speciation process. Comparisons of genomic divergence between the incipient species and allopatric races suggest that limited gene flow cannot account for the observed high levels of divergence between the incipient species. Our results provide a reconstruction of the speciation continuum across the H. erato clade and provide insights into the processes that drive genomic divergence during speciation, establishing the H. erato clade as a powerful framework for the study of speciation.

  18. The flotation tailings of the former Pb-Zn mine of Touiref (NW Tunisia): mineralogy, mine drainage prediction, base-metal speciation assessment and geochemical modeling.

    PubMed

    Othmani, Mohamed Ali; Souissi, Fouad; Bouzahzah, Hassan; Bussière, Bruno; da Silva, Eduardo Ferreira; Benzaazoua, Mostafa

    2015-02-01

    The underground extraction of Pb-Zn mineralization in the Touiref area stopped in 1958. A large volume of flotation tailings (more than 500 Mt) containing sulfides were deposited in a tailings impoundment. The goals of this study are to evaluate the neutralization capacity of the unoxidized and oxidized tailings, to assess the speciation of metals between the different components of the tailings material, and to assess the mobility of metals and the secondary minerals' precipitation in pore waters using geochemical modeling. To accomplish these objectives, representative samples from both fresh and oxidized zones were collected along a vertical profile through the tailings pile. Physical, chemical (ICP-MS), and mineralogical characterization (X-ray diffraction (XRD), reflected light microscopy, scanning electron microscope (SEM)) of these samples was performed. Grain size analysis shows that the tailings are dominated by silt- to sand-sized fractions. The microscopic observation highlights the presence of pyrite, marcasite, galena, and sphalerite as primary minerals in a carbonated matrix. The study reveals also the presence of secondary minerals represented by cerussite, smithsonite, anglesite, and Fe oxi-hydroxides as important scavengers for trace elements. The static tests show that the presence of calcite in the tailing samples ensures acid-neutralizing capacity (ANC), which is significantly greater than the acidity potential (PA). The geochemical characterization of the unoxidized samples shows higher Cd, Pb, and Zn concentrations than the oxidized samples containing the highest values for Fe and SO4. Sequential extraction tests show that significant percentages of metals are distributed between the acid-soluble fractions (Cd, Pb, and Zn) and the reducible one (Zn). Pore water analysis indicates that Ca is the dominant cation (8,170 and 6,200 mg L(-1), respectively), whereas sulfate is the principal anion (6,900 and 5,100 mg L(-1), respectively). Saturation index (SI) calculations of minerals in pore water extracted from both the oxidized and unoxidized samples are indicative of gypsum (SI >0) and Fe(III) oxides (SI ≫0) precipitation. The latter controls the Fe concentration in solution.

  19. Cold Temperature Effects on Speciated VOC Emissions from modern GDI Light Duty Truck

    EPA Science Inventory

    Although gasoline direct injection (GDI) vehicles represent nearly half of the light-duty vehicle market share, few studies have reported speciated volatile organic compounds (VOCs) in GDI vehicle exhaust emissions. In this study, speciated VOC emissions were characterized from t...

  20. Effect of iron oxide reductive dissolution on the transformation and immobilization of arsenic in soils: New insights from X-ray photoelectron and X-ray absorption spectroscopy.

    PubMed

    Fan, Jian-Xin; Wang, Yu-Jun; Liu, Cun; Wang, Li-Hua; Yang, Ke; Zhou, Dong-Mei; Li, Wei; Sparks, Donald L

    2014-08-30

    The geochemical behavior and speciation of arsenic (As) in paddy soils is strongly controlled by soil redox conditions and the sequestration by soil iron oxyhydroxides. Hence, the effects of iron oxide reductive dissolution on the adsorption, transformation and precipitation of As(III) and As(V) in soils were investigated using batch experiments and synchrotron based techniques to gain a deeper understanding at both macroscopic and microscopic scales. The results of batch sorption experiments revealed that the sorption capacity of As(V) on anoxic soil was much higher than that on control soil. Synchrotron based X-ray fluorescence (μ-XRF) mapping studies indicated that As was heterogeneously distributed and was mainly associated with iron in the soil. X-ray absorption near edge structure (XANES), micro-X-ray absorption near edge structure (μ-XANES) and X-ray photoelectron spectroscopy (XPS) analyses revealed that the primary speciation of As in the soil is As(V). These results further suggested that, when As(V) was introduced into the anoxic soil, the rapid coprecipitation of As(V) with ferric/ferrous ion prevented its reduction to As(III), and was the main mechanism controlling the immobilization of As. This research could improve the current understanding of soil As chemistry in paddy and wetland soils. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Size-separated particle fractions of stainless steel welding fume particles - A multi-analytical characterization focusing on surface oxide speciation and release of hexavalent chromium.

    PubMed

    Mei, N; Belleville, L; Cha, Y; Olofsson, U; Odnevall Wallinder, I; Persson, K-A; Hedberg, Y S

    2018-01-15

    Welding fume of stainless steels is potentially health hazardous. The aim of this study was to investigate the manganese (Mn) and chromium (Cr) speciation of welding fume particles and their extent of metal release relevant for an inhalation scenario, as a function of particle size, welding method (manual metal arc welding, metal arc welding using an active shielding gas), different electrodes (solid wires and flux-cored wires) and shielding gases, and base alloy (austenitic AISI 304L and duplex stainless steel LDX2101). Metal release investigations were performed in phosphate buffered saline (PBS), pH 7.3, 37°, 24h. The particles were characterized by means of microscopic, spectroscopic, and electroanalytical methods. Cr was predominantly released from particles of the welding fume when exposed in PBS [3-96% of the total amount of Cr, of which up to 70% as Cr(VI)], followed by Mn, nickel, and iron. Duplex stainless steel welded with a flux-cored wire generated a welding fume that released most Cr(VI). Nano-sized particles released a significantly higher amount of nickel compared with micron-sized particle fractions. The welding fume did not contain any solitary known chromate compounds, but multi-elemental highly oxidized oxide(s) (iron, Cr, and Mn, possibly bismuth and silicon). Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Self-consistent approach for neutral community models with speciation

    NASA Astrophysics Data System (ADS)

    Haegeman, Bart; Etienne, Rampal S.

    2010-03-01

    Hubbell’s neutral model provides a rich theoretical framework to study ecological communities. By incorporating both ecological and evolutionary time scales, it allows us to investigate how communities are shaped by speciation processes. The speciation model in the basic neutral model is particularly simple, describing speciation as a point-mutation event in a birth of a single individual. The stationary species abundance distribution of the basic model, which can be solved exactly, fits empirical data of distributions of species’ abundances surprisingly well. More realistic speciation models have been proposed such as the random-fission model in which new species appear by splitting up existing species. However, no analytical solution is available for these models, impeding quantitative comparison with data. Here, we present a self-consistent approximation method for neutral community models with various speciation modes, including random fission. We derive explicit formulas for the stationary species abundance distribution, which agree very well with simulations. We expect that our approximation method will be useful to study other speciation processes in neutral community models as well.

  3. A comparative analysis of island floras challenges taxonomy-based biogeographical models of speciation.

    PubMed

    Igea, Javier; Bogarín, Diego; Papadopulos, Alexander S T; Savolainen, Vincent

    2015-02-01

    Speciation on islands, and particularly the divergence of species in situ, has long been debated. Here, we present one of the first, complete assessments of the geographic modes of speciation for the flora of a small oceanic island. Cocos Island (Costa Rica) is pristine; it is located 550 km off the Pacific coast of Central America. It harbors 189 native plant species, 33 of which are endemic. Using phylogenetic data from insular and mainland congeneric species, we show that all of the endemic species are derived from independent colonization events rather than in situ speciation. This is in sharp contrast to the results of a study carried out in a comparable system, Lord Howe Island (Australia), where as much as 8.2% of the plant species were the product of sympatric speciation. Differences in physiography and age between the islands may be responsible for the contrasting patterns of speciation observed. Importantly, comparing phylogenetic assessments of the modes of speciation with taxonomy-based measures shows that widely used island biogeography approaches overestimate rates of in situ speciation. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  4. Layer speciation and electronic structure investigation of freestanding hexagonal boron nitride nanosheets

    NASA Astrophysics Data System (ADS)

    WangEqual Contribution To This Work., Jian; Wang, Zhiqiang; Cho, Hyunjin; Kim, Myung Jong; Sham, T. K.; Sun, Xuhui

    2015-01-01

    Chemical imaging, thickness mapping, layer speciation and polarization dependence have been performed on single and multilayered (up to three layers and trilayered nanosheets overlapping to form 6 and 9 layers) hexagonal boron nitride (hBN) nanosheets by scanning transmission X-ray microscopy. Spatially-resolved XANES directly from freestanding regions of different layers has been extracted and compared with sample normal and 30° tilted configurations. Notably a double feature σ* excitonic state and a stable high energy σ* state were observed at the boron site in addition to the intense π* excitonic state. The boron projected σ* DOS, especially the first σ* exciton, is sensitive to surface modification, particularly in the single layered hBN nanosheet which shows more significant detectable contaminants and defects such as tri-coordinated boron/nitrogen oxide. The nitrogen site has shown very weak or no excitonic character. The distinct excitonic effect on boron and nitrogen was interpreted to the partly ionic state of hBN. Bulk XANES of hBN nanosheets was also measured to confirm the spectro-microscopic STXM result. Finally, the unoccupied electronic structures of hBN and graphene were compared.Chemical imaging, thickness mapping, layer speciation and polarization dependence have been performed on single and multilayered (up to three layers and trilayered nanosheets overlapping to form 6 and 9 layers) hexagonal boron nitride (hBN) nanosheets by scanning transmission X-ray microscopy. Spatially-resolved XANES directly from freestanding regions of different layers has been extracted and compared with sample normal and 30° tilted configurations. Notably a double feature σ* excitonic state and a stable high energy σ* state were observed at the boron site in addition to the intense π* excitonic state. The boron projected σ* DOS, especially the first σ* exciton, is sensitive to surface modification, particularly in the single layered hBN nanosheet which shows more significant detectable contaminants and defects such as tri-coordinated boron/nitrogen oxide. The nitrogen site has shown very weak or no excitonic character. The distinct excitonic effect on boron and nitrogen was interpreted to the partly ionic state of hBN. Bulk XANES of hBN nanosheets was also measured to confirm the spectro-microscopic STXM result. Finally, the unoccupied electronic structures of hBN and graphene were compared. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr04445b

  5. Ecological speciation in the tropics: insights from comparative genetic studies in Amazonia

    PubMed Central

    Beheregaray, Luciano B.; Cooke, Georgina M.; Chao, Ning L.; Landguth, Erin L.

    2015-01-01

    Evolution creates and sustains biodiversity via adaptive changes in ecologically relevant traits. Ecologically mediated selection contributes to genetic divergence both in the presence or absence of geographic isolation between populations, and is considered an important driver of speciation. Indeed, the genetics of ecological speciation is becoming increasingly studied across a variety of taxa and environments. In this paper we review the literature of ecological speciation in the tropics. We report on low research productivity in tropical ecosystems and discuss reasons accounting for the rarity of studies. We argue for research programs that simultaneously address biogeographical and taxonomic questions in the tropics, while effectively assessing relationships between reproductive isolation and ecological divergence. To contribute toward this goal, we propose a new framework for ecological speciation that integrates information from phylogenetics, phylogeography, population genomics, and simulations in evolutionary landscape genetics (ELG). We introduce components of the framework, describe ELG simulations (a largely unexplored approach in ecological speciation), and discuss design and experimental feasibility within the context of tropical research. We then use published genetic datasets from populations of five codistributed Amazonian fish species to assess the performance of the framework in studies of tropical speciation. We suggest that these approaches can assist in distinguishing the relative contribution of natural selection from biogeographic history in the origin of biodiversity, even in complex ecosystems such as Amazonia. We also discuss on how to assess ecological speciation using ELG simulations that include selection. These integrative frameworks have considerable potential to enhance conservation management in biodiversity rich ecosystems and to complement historical biogeographic and evolutionary studies of tropical biotas. PMID:25653668

  6. Invasive species and biodiversity crises: testing the link in the late devonian.

    PubMed

    Stigall, Alycia L

    2010-12-29

    During the Late Devonian Biodiversity Crisis, the primary driver of biodiversity decline was the dramatic reduction in speciation rates, not elevated extinction rates; however, the causes of speciation decline have been previously unstudied. Speciation, the formation of new species from ancestral populations, occurs by two primary allopatric mechanisms: vicariance, where the ancestral population is passively divided into two large subpopulations that later diverge and form two daughter species, and dispersal, in which a small subset of the ancestral population actively migrates then diverges to form a new species. Studies of modern and fossil clades typically document speciation by vicariance in much higher frequencies than speciation by dispersal. To assess the mechanism behind Late Devonian speciation reduction, speciation rates were calculated within stratigraphically constrained species-level phylogenetic hypotheses for three representative clades and mode of speciation at cladogenetic events was assessed across four clades in three phyla: Arthropoda, Brachiopoda, and Mollusca. In all cases, Devonian taxa exhibited a congruent reduction in speciation rate between the Middle Devonian pre-crisis interval and the Late Devonian crisis interval. Furthermore, speciation via vicariance is almost entirely absent during the crisis interval; most episodes of speciation during this time were due to dispersal. The shutdown of speciation by vicariance during this interval was related to widespread interbasinal species invasions. The lack of Late Devonian vicariance is diametrically opposed to the pattern observed in other geologic intervals, which suggests the loss of vicariant speciation attributable to species invasions during the Late Devonian was a causal factor in the biodiversity crisis. Similarly, modern ecosystems, in which invasive species are rampant, may be expected to exhibit similar shutdown of speciation by vicariance as an outcome of the modern biodiversity crisis.

  7. Speciation in birds: genes, geography, and sexual selection.

    PubMed

    Edwards, Scott V; Kingan, Sarah B; Calkins, Jennifer D; Balakrishnan, Christopher N; Jennings, W Bryan; Swanson, Willie J; Sorenson, Michael D

    2005-05-03

    Molecular studies of speciation in birds over the last three decades have been dominated by a focus on the geography, ecology, and timing of speciation, a tradition traceable to Mayr's Systematics and the Origin of Species. However, in the recent years, interest in the behavioral and molecular mechanisms of speciation in birds has increased, building in part on the older traditions and observations from domesticated species. The result is that many of the same mechanisms proffered for model lineages such as Drosophila--mechanisms such as genetic incompatibilities, reinforcement, and sexual selection--are now being seriously entertained for birds, albeit with much lower resolution. The recent completion of a draft sequence of the chicken genome, and an abundance of single-nucleotide polymorphisms on the autosomes and sex chromosomes, will dramatically accelerate research on the molecular mechanisms of avian speciation over the next few years. The challenge for ornithologists is now to inform well studied examples of speciation in nature with increased molecular resolution-to clone speciation genes if they exist--and thereby evaluate the relative roles of extrinsic, intrinsic, deterministic, and stochastic causes for avian diversification.

  8. Magnetic solid phase extraction coupled with inductively coupled plasma mass spectrometry for the speciation of mercury in environmental water and human hair samples.

    PubMed

    Ma, Shishuai; He, Man; Chen, Beibei; Deng, Wenchao; Zheng, Qi; Hu, Bin

    2016-01-01

    In this work, γ-mercaptopropyltrimethoxysilane (γ-MPTS) modified Fe3O4@SiO2 magnetic nanoparticles (MNPs) was successfully prepared, and characterized by Fourier transform infrared spectrometer (FT-IR), Transmission electron microscope (TEM) and Vibrating sample magnetometer (VSM). The sorption performance of the prepared Fe3O4@SiO2@γ-MPTS MNPs towards methylmercury (CH3Hg(+)) and inorganic mercury (Hg(2+)) was investigated. It was found that CH3Hg(+) and Hg(2+) could be simultaneously retained on the prepared Fe3O4@SiO2@γ-MPTS MNPs, and the quantitative elution of CH3Hg(+) and total mercury (THg) was achieved by using 1.5 mol L(-1) HCl containing 0.01% and 3% thiourea (m/v), respectively. And the levels of Hg(2+) were obtained by subtracting CH3Hg(+) from THg. Based on the above facts, a method of magnetic solid phase extraction (MSPE) combined with inductively coupled plasma mass spectrometry (ICP-MS) was developed for the speciation of CH3Hg(+) and Hg(2+). Various experimental parameters affecting MSPE of CH3Hg(+) and Hg(2+) such as pH, eluent, sample volume, and co-existing ions have been studied. Under the optimized conditions, the limits of detection (LODs) for CH3Hg(+) and THg were 1.6 and 1.9 ng L(-1), respectively. The accuracy of the proposed method was validated by analysis of a Certified Reference Material NRCC DORM-2 dogfish muscle, and the determined values are in good agreement with the certified values. The proposed method has also been successfully applied for the speciation of CH3Hg(+) and Hg(2+) in environmental water and human hair samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Frequency-dependent selection predicts patterns of radiations and biodiversity.

    PubMed

    Melián, Carlos J; Alonso, David; Vázquez, Diego P; Regetz, James; Allesina, Stefano

    2010-08-26

    Most empirical studies support a decline in speciation rates through time, although evidence for constant speciation rates also exists. Declining rates have been explained by invoking pre-existing niches, whereas constant rates have been attributed to non-adaptive processes such as sexual selection and mutation. Trends in speciation rate and the processes underlying it remain unclear, representing a critical information gap in understanding patterns of global diversity. Here we show that the temporal trend in the speciation rate can also be explained by frequency-dependent selection. We construct a frequency-dependent and DNA sequence-based model of speciation. We compare our model to empirical diversity patterns observed for cichlid fish and Darwin's finches, two classic systems for which speciation rates and richness data exist. Negative frequency-dependent selection predicts well both the declining speciation rate found in cichlid fish and explains their species richness. For groups like the Darwin's finches, in which speciation rates are constant and diversity is lower, speciation rate is better explained by a model without frequency-dependent selection. Our analysis shows that differences in diversity may be driven by incipient species abundance with frequency-dependent selection. Our results demonstrate that genetic-distance-based speciation and frequency-dependent selection are sufficient to explain the high diversity observed in natural systems and, importantly, predict decay through time in speciation rate in the absence of pre-existing niches.

  10. Speciation has a spatial scale that depends on levels of gene flow.

    PubMed

    Kisel, Yael; Barraclough, Timothy G

    2010-03-01

    Area is generally assumed to affect speciation rates, but work on the spatial context of speciation has focused mostly on patterns of range overlap between emerging species rather than on questions of geographical scale. A variety of geographical theories of speciation predict that the probability of speciation occurring within a given region should (1) increase with the size of the region and (2) increase as the spatial extent of intraspecific gene flow becomes smaller. Using a survey of speciation events on isolated oceanic islands for a broad range of taxa, we find evidence for both predictions. The probability of in situ speciation scales with island area in bats, carnivorous mammals, birds, flowering plants, lizards, butterflies and moths, and snails. Ferns are an exception to these findings, but they exhibit high frequencies of polyploid and hybrid speciation, which are expected to be scale independent. Furthermore, the minimum island size for speciation correlates across groups with the strength of intraspecific gene flow, as is estimated from a meta-analysis of published population genetic studies. These results indicate a general geographical model of speciation rates that are dependent on both area and gene flow. The spatial scale of population divergence is an important but neglected determinant of broad-scale diversity patterns.

  11. Pollinator-driven ecological speciation in plants: new evidence and future perspectives

    PubMed Central

    Van der Niet, Timotheüs; Peakall, Rod; Johnson, Steven D.

    2014-01-01

    Background The hypothesis that pollinators have been important drivers of angiosperm diversity dates back to Darwin, and remains an important research topic today. Mounting evidence indicates that pollinators have the potential to drive diversification at several different stages of the evolutionary process. Microevolutionary studies have provided evidence for pollinator-mediated floral adaptation, while macroevolutionary evidence supports a general pattern of pollinator-driven diversification of angiosperms. However, the overarching issue of whether, and how, shifts in pollination system drive plant speciation represents a critical gap in knowledge. Bridging this gap is crucial to fully understand whether pollinator-driven microevolution accounts for the observed macroevolutionary patterns. Testable predictions about pollinator-driven speciation can be derived from the theory of ecological speciation, according to which adaptation (microevolution) and speciation (macroevolution) are directly linked. This theory is a particularly suitable framework for evaluating evidence for the processes underlying shifts in pollination systems and their potential consequences for the evolution of reproductive isolation and speciation. Scope This Viewpoint paper focuses on evidence for the four components of ecological speciation in the context of plant-pollinator interactions, namely (1) the role of pollinators as selective agents, (2) floral trait divergence, including the evolution of ‘pollination ecotypes‘, (3) the geographical context of selection on floral traits, and (4) the role of pollinators in the evolution of reproductive isolation. This Viewpoint also serves as the introduction to a Special Issue on Pollinator-Driven Speciation in Plants. The 13 papers in this Special Issue range from microevolutionary studies of ecotypes to macroevolutionary studies of historical ecological shifts, and span a wide range of geographical areas and plant families. These studies further illustrate innovative experimental approaches, and they employ modern tools in genetics and floral trait quantification. Future advances to the field require better quantification of selection through male fitness and pollinator isolation, for instance by exploiting next-generation sequencing technologies. By combining these new tools with strategically chosen study systems, and smart experimental design, we predict that examples of pollinator-driven speciation will be among the most widespread and compelling of all cases of ecological speciation. PMID:24418954

  12. Characterization of typical heavy metals in pyrolysis MSWI fly ash.

    PubMed

    Xu, Tengtun; Wang, Li'ao; Zeng, Yunmin; Zhao, Xue; Wang, Lei; Zhan, Xinyuan; Li, Tong; Yang, Lu

    2018-06-07

    Thermal treatment methods are used extensively in the process of municipal solid waste incineration fly ash. However, the characterization of heavy metals during this process should be understood more clearly in order to control secondary pollution. In this paper, the content, speciation and leaching toxicity of mercury (Hg), plumbum (Pb), cadmium (Cd) and zinc (Zn) in fly ash treated under different temperatures and time were firstly analysed as pre-tests. Later, pilot-scale pyrolysis equipment was used to explore the concentration and speciation changes in the heavy metals of fly ash. Finally, the phase constitution and microstructure changes in fly ash were compared before and after pyrolysis using X-ray diffraction (XRD) and scanning electron microscope (SEM), respectively. The results showed that (a) The appropriate processing temperature was between 400°C and 450°C, and the processing time should be 1 h. (b) The stability of heavy metals in fly ash increased after pyrolysis. (c) XRD and SEM results indicated that phase constitution changed a little, but the microstructure varied to a porous structure similar to that of a coral reef after pyrolysis. These results suggest that pyrolysis could be an effective method in controlling heavy metal pollution in fly ash.

  13. Speciation in fungal and oomycete plant pathogens

    USDA-ARS?s Scientific Manuscript database

    The process of speciation by definition involves evolution of one or more reproductive isolating mechanisms that split a single species into two that can no longer interbreed. Determination of which processes are responsible for speciation is important yet challenging. Several studies have proposed ...

  14. A STUDY OF GAS-PHASE MERCURY SPECIATION USING DETAILED CHEMICAL KINETICS

    EPA Science Inventory

    Mercury (Hg) speciation in combustion-generated flue gas is modeled using a detailed chemical mechanism consisting of 60 reactions and 21 species. This speciation model accounts for chlorination and oxidation of key flue-gas components, including elemental mercury. Results indica...

  15. The development of exhaust speciation profiles for commercial jet engines.

    DOT National Transportation Integrated Search

    2007-10-01

    This study reports the emissions of CO, CO2, NOx, Particulate Matter (PM) mass, : speciated PM and speciated hydrocarbons at six thrust settings: 4%, 7%, 30%, 40%, 65% : and 85%, measured from both engines on four parked 737 aircraft at the Oakland :...

  16. Speciation by Symbiosis: the Microbiome and Behavior

    PubMed Central

    Shropshire, J. Dylan

    2016-01-01

    ABSTRACT Species are fundamental units of comparison in biology. The newly discovered importance and ubiquity of host-associated microorganisms are now stimulating work on the roles that microbes can play in animal speciation. We previously synthesized the literature and advanced concepts of speciation by symbiosis with notable attention to hybrid sterility and lethality. Here, we review recent studies and relevant data on microbes as players in host behavior and behavioral isolation, emphasizing the patterns seen in these analyses and highlighting areas worthy of additional exploration. We conclude that the role of microbial symbionts in behavior and speciation is gaining exciting traction and that the holobiont and hologenome concepts afford an evolving intellectual framework to promote research and intellectual exchange between disciplines such as behavior, microbiology, genetics, symbiosis, and speciation. Given the increasing centrality of microbiology in macroscopic life, microbial symbiosis is arguably the most neglected aspect of animal and plant speciation, and studying it should yield a better understanding of the origin of species. PMID:27034284

  17. Speciation by Symbiosis: the Microbiome and Behavior.

    PubMed

    Shropshire, J Dylan; Bordenstein, Seth R

    2016-03-31

    Species are fundamental units of comparison in biology. The newly discovered importance and ubiquity of host-associated microorganisms are now stimulating work on the roles that microbes can play in animal speciation. We previously synthesized the literature and advanced concepts of speciation by symbiosis with notable attention to hybrid sterility and lethality. Here, we review recent studies and relevant data on microbes as players in host behavior and behavioral isolation, emphasizing the patterns seen in these analyses and highlighting areas worthy of additional exploration. We conclude that the role of microbial symbionts in behavior and speciation is gaining exciting traction and that the holobiont and hologenome concepts afford an evolving intellectual framework to promote research and intellectual exchange between disciplines such as behavior, microbiology, genetics, symbiosis, and speciation. Given the increasing centrality of microbiology in macroscopic life, microbial symbiosis is arguably the most neglected aspect of animal and plant speciation, and studying it should yield a better understanding of the origin of species. Copyright © 2016 Shropshire and Bordenstein.

  18. X-ray Microprobe Investigations of Elemental Distributions and Concentrations at Mineral-Microbe Interfaces

    NASA Astrophysics Data System (ADS)

    Kemner, K. M.; Kelly, S. D.; O'Loughlin, E. J.; Lai, B.; Maser, J.; Cai, Z.; Londer, Y.; Schiffer, M.; Nealson, K.

    2003-12-01

    Understanding the fate of heavy-metal contaminants in the environment is of fundamental importance in the development and evaluation of effective remediation and sequestration strategies. Bacteria and the extracellular material associated with them are thought to play a key role in determining a contaminant's speciation and thus its mobility in the environment. Additionally, the metabolism and surface properties of bacteria can be quite different depending upon whether the bacteria exhibit a planktonic (free-floating) or biofilm (surface adhered) habit. The microenvironment at and adjacent to actively metabolizing cells also can be significantly different from the bulk environment. Thus, to understand the microscopic physical, geological, chemical, and biological interfaces that determine a contaminant's macroscopic fate, the spatial distribution and chemical speciation of contaminants and elements that are key to biological processes must be characterized at micron and submicron lengthscales for bacteria in both planktonic and adhered states. Hard x-ray microimaging is a powerful technique for the element-specific investigation of complex environmental samples at the needed micron and submicron resolution. An important advantage of these techniques results from the large penetration depth of hard x-rays in water. This advantage minimizes the requirements for sample preparation and allows the detailed study of hydrated samples. The objectives of the studies to be presented are (1) to determine the spatial distribution, concentration, and chemical speciation of metals at, in, and near bacteria and bacteria-geosurface interfaces, (2) to use this information to identify the metabolic processes occurring within the microbes, and (3) to identify the interactions occurring near these interfaces among the metals, mineral surfaces, and bacteria under a variety of conditions. We have used x-ray fluorescence microscopy to investigate the spatial distribution of 3d elements in Pseudomonas fluorescens cells in both planktonic and surface-adhered states. We have used x-ray fluorescence spectromicroscopy to investigate the chemical speciation and distribution of Cr that was introduced to these cells as Cr(VI). Additionally, we have used these techniques to identify the distribution of an over expressed cytochrome c7 in individual E. coli. Finally, we have used x-ray fluorescence microscopy to investigate Shewanella oneidensis MR-1 cells adhered to iron oxyhydroxide thin films. The zone plate used in these microscopy experiments produced a focused beam with a cross section (and hence spatial resolution) of 100-300 nanometers. Results from x-ray fluorescence imaging experiments indicate that the distribution of P, S, Cl, Ca, Fe, Ni, Cu, and Zn can define the location of the microbe. Additionally, quantitative elemental analysis of individual microbes identified significant changes in concentration of 3d transition elements depending on the age of the culture and the type of electron acceptor presented to the microbes. These results and a discussion of the use of this technique for identifying metabolic states of individual microbes within communities and the chemical speciation of metal contaminants at the mineral-microbe interface will be presented.

  19. A complex speciation–richness relationship in a simple neutral model

    PubMed Central

    Desjardins-Proulx, Philippe; Gravel, Dominique

    2012-01-01

    Speciation is the “elephant in the room” of community ecology. As the ultimate source of biodiversity, its integration in ecology's theoretical corpus is necessary to understand community assembly. Yet, speciation is often completely ignored or stripped of its spatial dimension. Recent approaches based on network theory have allowed ecologists to effectively model complex landscapes. In this study, we use this framework to model allopatric and parapatric speciation in networks of communities. We focus on the relationship between speciation, richness, and the spatial structure of communities. We find a strong opposition between speciation and local richness, with speciation being more common in isolated communities and local richness being higher in more connected communities. Unlike previous models, we also find a transition to a positive relationship between speciation and local richness when dispersal is low and the number of communities is small. We use several measures of centrality to characterize the effect of network structure on diversity. The degree, the simplest measure of centrality, is the best predictor of local richness and speciation, although it loses some of its predictive power as connectivity grows. Our framework shows how a simple neutral model can be combined with network theory to reveal complex relationships between speciation, richness, and the spatial organization of populations. PMID:22957181

  20. Ecological Impacts of Reverse Speciation in Threespine Stickleback.

    PubMed

    Rudman, Seth M; Schluter, Dolph

    2016-02-22

    Young species are highly prone to extinction via increased gene flow after human-caused environmental changes. This mechanism of biodiversity loss, often termed reverse speciation or introgressive extinction, is of exceptional interest because the parent species are typically highly differentiated ecologically. Reverse speciation events are potentially powerful case studies for the role of evolution in driving ecological changes, as the phenotypic shifts associated with introgressive extinction can be large and they occur over particularly short timescales. Furthermore, reverse speciation can lead to novel phenotypes, which may in turn produce novel ecological effects. Here we investigate the ecological shift associated with reverse speciation in threespine stickleback fish using a field study and a replicated experiment. We find that an instance of introgressive extinction had cascading ecological consequences that altered the abundance of both aquatic prey and the pupating aquatic insects that emerged into the terrestrial ecosystem. The community and ecosystem impacts of reverse speciation were novel, and yet they were also predictable based on ecological and morphological considerations. The study suggests that knowledge about the community ecology and changes in functional morphology of a dominant species may lead to some predictive power for the ecological effects of evolutionary change. Moreover, the rapid nature and resultant ecological impacts associated with reverse speciation demonstrates the interplay between biodiversity, evolutionary change, and ecosystem function. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Speciation in Drosophila: from phenotypes to molecules.

    PubMed

    Orr, H Allen; Masly, J P; Phadnis, Nitin

    2007-01-01

    Study of the genetics of speciation--and especially of the genetics of intrinsic postzygotic isolation-has enjoyed remarkable progress over the last 2 decades. Indeed progress has been so rapid that one might be tempted to ask if the genetics of postzygotic isolation is now wrapped up. Here we argue that the genetics of speciation is far from complete. In particular, we review 2 topics where recent work has revealed major surprises: 1) the role of meiotic drive in hybrid sterility and 2) the role of gene transposition in speciation. These surprises, and others like them, suggest that evolutionary biologists may understand less about the genetic basis of speciation than seemed likely a few years ago.

  2. A Novel Permeable Reactive Barrier (PRB) for Simultaneous and Rapid Removal of Heavy Metal and Organic Matter - A Systematic Chemical Speciation Approach on Sustainable Technique for Pallikarani Marshland Remediation

    NASA Astrophysics Data System (ADS)

    Selvaraj, A.; Nambi, I. M.

    2014-12-01

    In this study, an innovative technique of ZVI mediated 'coupling of Fenton like oxidation of phenol and Cr(VI) reduction technique' was attempted. The hypothesis is that Fe3+ generated from Cr(VI) reduction process acts as electron acceptor and catalyst for Fenton's Phenol oxidation process. The Fe2+ formed from Fenton reactions can be reused for Cr(VI) reduction. Thus iron can be made to recycle between two reactions, changing back and forth between Fe2+ and Fe3+ forms, makes treatment sustainable.(Fig 1) This approach advances current Fenton like oxidation process by (i)single system removal of heavy metal and organic matter (ii)recycling of iron species; hence no additional iron required (iii)more contaminant removal to ZVI ratio (iv)eliminating sludge related issues. Preliminary batch studies were conducted at different modes i) concurrent removal ii) sequential removal. The sequential removal was found better for in-situ PRB applications. PRB was designed based on kinetic rate slope and half-life time, obtained from primary column study. This PRB has two segments (i)ZVI segment[Cr(VI)] (ii)iron species segment[phenol]. This makes treatment sustainable by (i) having no iron ions in outlet stream (ii)meeting hypothesis and elongates the life span of PRB. Sequential removal of contaminates were tested in pilot scale PRB(Fig 2) and its life span was calculated based on the exhaustion of filling material. Aqueous, sand and iron aliquots were collected at various segments of PRB and analyzed for precipitation and chemical speciation thoroughly (UV spectrometer, XRD, FTIR, electron microscope). Chemical speciation profile eliminates the uncertainties over in-situ PRB's long term performance. Based on the pilot scale PRB study, 'field level PRB wall construction' was suggested to remove heavy metal and organic compounds from Pallikaranai marshland(Fig 3)., which is contaminated with leachate coming from nearby Perungudi dumpsite. This research provides (i)deeper insight into the environmental friendly, accelerated, sustainable technique for combined removal of organic matter and heavy metal (ii)evaluation of the novel technique in PRB, which resulted in PRB's increased life span (iii)designing of PRB to remediate the marshland and its ecosystem, thus save the habitats related to it.

  3. Role of natural nanoparticles on the speciation of Ni in andosols of la Reunion

    NASA Astrophysics Data System (ADS)

    Levard, Clément; Doelsch, Emmanuel; Rose, Jérôme; Masion, Armand; Basile-Doelsch, Isabelle; Proux, Olivier; Hazemann, Jean-Louis; Borschneck, Daniel; Bottero, Jean-Yves

    2009-08-01

    Andosols on the island of Réunion have high nickel (Ni) concentrations due to the natural pedo-geochemical background. Enhanced knowledge of Ni speciation is necessary to predict the bioavailability and potential toxicity of this element. Ni speciation in these andosols, marked by the presence of high amounts of natural aluminosilicate nanoparticles, was investigated in two complementary systems: (i) In a soil sample—densimetric fractionation was first performed in order to separate the potential bearing phases, prior to Ni speciation characterization. (ii) In a synthetic sample—Ni reactivity with synthetic aluminosilicate nanoparticle analogs were studied. In both cases, Ni speciation was determined using X-ray absorption spectroscopy (XAS). The results revealed that Ni had the same local environment in both systems (natural and synthetic systems), and Ni was chemically linked to natural short-range ordered aluminosilicates or analogs. This complex represented about 75% of the total Ni in the studied soil.

  4. Pyogranulomatous pleuropneumonia and mediastinitis in ferrets (Mustela putorius furo) associated with Pseudomonas luteola Infection.

    PubMed

    Martínez, J; Martorell, J; Abarca, M L; Olvera, A; Ramis, A; Woods, L; Cheville, N; Juan-Sallés, C; Moya, A; Riera, A; Soto, S

    2012-01-01

    Between 2008 and 2009, three pet ferrets from different sources presented with acute episode of dyspnoea. Cytological examination of pleural exudates revealed severe purulent inflammation with abundant clusters of rod-shaped microorganisms with a clear surrounding halo. Treatment was ineffective and the ferrets died 2-5 days later. Two ferrets were subjected to necropsy examination, which revealed pyothorax, mediastinal lymphadenopathy and multiple white nodules (1-2mm) in the lungs. Microscopical examination showed multifocal necrotizing-pyogranulomatous pleuropneumonia and lymphadenitis with aggregates of encapsulated microorganisms, some of which were positively stained by periodic acid-Schiff and alcian blue. In-situ hybridization for Pneumocystis spp., Ziehl-Neelsen staining and immunohistochemistry for distemper, coronavirus and influenza antigen were negative in all cases. Electron microscopically, the bacteria were 2-3 μm long with a thick electron-lucent capsule. Microbiology from one ferret yielded a pure culture of gram-negative bacteria identified phenotypically as Pseudomonas luteola. This speciation was later confirmed by 16S RNA gene amplification. Copyright © 2011. Published by Elsevier Ltd.

  5. Secondary sympatry caused by range expansion informs on the dynamics of microendemism in a biodiversity hotspot.

    PubMed

    Nattier, Romain; Grandcolas, Philippe; Elias, Marianne; Desutter-Grandcolas, Laure; Jourdan, Hervé; Couloux, Arnaud; Robillard, Tony

    2012-01-01

    Islands are bounded areas where high endemism is explained either by allopatric speciation through the fragmentation of the limited amount of space available, or by sympatric speciation and accumulation of daughter species. Most empirical evidence point out the dominant action of allopatric speciation. We evaluate this general view by looking at a case study where sympatric speciation is suspected. We analyse the mode, tempo and geography of speciation in Agnotecous, a cricket genus endemic to New Caledonia showing a generalized pattern of sympatry between species making sympatric speciation plausible. We obtained five mitochondrial and five nuclear markers (6.8 kb) from 37 taxa corresponding to 17 of the 21 known extant species of Agnotecous, and including several localities per species, and we conducted phylogenetic and dating analyses. Our results suggest that the diversification of Agnotecous occurred mostly through allopatric speciation in the last 10 Myr. Highly microendemic species are the most recent ones (<2 Myr) and current sympatry is due to secondary range expansion after allopatric speciation. Species distribution should then be viewed as a highly dynamic process and extreme microendemism only as a temporary situation. We discuss these results considering the influence of climatic changes combined with intricate soil diversity and mountain topography. A complex interplay between these factors could have permitted repeated speciation events and range expansion.

  6. Selenium Metabolism in Cancer Cells: The Combined Application of XAS and XFM Techniques to the Problem of Selenium Speciation in Biological Systems

    PubMed Central

    Weekley, Claire M.; Aitken, Jade B.; Finney, Lydia; Vogt, Stefan; Witting, Paul K.; Harris, Hugh H.

    2013-01-01

    Determining the speciation of selenium in vivo is crucial to understanding the biological activity of this essential element, which is a popular dietary supplement due to its anti-cancer properties. Hyphenated techniques that combine separation and detection methods are traditionally and effectively used in selenium speciation analysis, but require extensive sample preparation that may affect speciation. Synchrotron-based X-ray absorption and fluorescence techniques offer an alternative approach to selenium speciation analysis that requires minimal sample preparation. We present a brief summary of some key HPLC-ICP-MS and ESI-MS/MS studies of the speciation of selenium in cells and rat tissues. We review the results of a top-down approach to selenium speciation in human lung cancer cells that aims to link the speciation and distribution of selenium to its biological activity using a combination of X-ray absorption spectroscopy (XAS) and X-ray fluorescence microscopy (XFM). The results of this approach highlight the distinct fates of selenomethionine, methylselenocysteine and selenite in terms of their speciation and distribution within cells: organic selenium metabolites were widely distributed throughout the cells, whereas inorganic selenium metabolites were compartmentalized and associated with copper. New data from the XFM mapping of electrophoretically-separated cell lysates show the distribution of selenium in the proteins of selenomethionine-treated cells. Future applications of this top-down approach are discussed. PMID:23698165

  7. Speciation and amphotericin B sensitivity studies on blood isolates of Candida from burned patients

    PubMed Central

    Stieritz, Donald D.; Law, Edward J.; Holder, Ian Alan

    1973-01-01

    Methods of speciating Candida isolates from clinical specimens are described and the necessity of speciation is emphasized. Differences in susceptibility of C. albicans and C. tropicalis to amphotericin B were observed and the implications of this in relation to treatment with amphotericin B and the development of resistance are discussed. PMID:4578160

  8. SPECIATE 4.3: Addendum to SPECIATE 4.2--Speciation database development documentation

    EPA Science Inventory

    SPECIATE is the U.S. Environmental Protection Agency's (EPA) repository of volatile organic gas and particulate matter (PM) speciation profiles of air pollution sources. Among the many uses of speciation data, these source profiles are used to: (1) create speciated emissions inve...

  9. SPECIATE 4.0: SPECIATION DATABASE DEVELOPMENT DOCUMENTATION--FINAL REPORT

    EPA Science Inventory

    SPECIATE is the U.S. EPA's repository of total organic compounds (TOC) and particulate matter (PM) speciation profiles of air pollution sources. This report documents how EPA developed the SPECIATE 4.0 database that replaces the prior version, SPECIATE 3.2. SPECIATE 4.0 includes ...

  10. Extensive range overlap between heliconiine sister species: evidence for sympatric speciation in butterflies?

    PubMed

    Rosser, Neil; Kozak, Krzysztof M; Phillimore, Albert B; Mallet, James

    2015-06-30

    Sympatric speciation is today generally viewed as plausible, and some well-supported examples exist, but its relative contribution to biodiversity remains to be established. We here quantify geographic overlap of sister species of heliconiine butterflies, and use age-range correlations and spatial simulations of the geography of speciation to infer the frequency of sympatric speciation. We also test whether shifts in mimetic wing colour pattern, host plant use and climate niche play a role in speciation, and whether such shifts are associated with sympatry. Approximately a third of all heliconiine sister species pairs exhibit near complete range overlap, and analyses of the observed patterns of range overlap suggest that sympatric speciation contributes 32%-95% of speciation events. Müllerian mimicry colour patterns and host plant choice are highly labile traits that seem to be associated with speciation, but we find no association between shifts in these traits and range overlap. In contrast, climatic niches of sister species are more conserved. Unlike birds and mammals, sister species of heliconiines are often sympatric and our inferences using the most recent comparative methods suggest that sympatric speciation is common. However, if sister species spread rapidly into sympatry (e.g. due to their similar climatic niches), then assumptions underlying our methods would be violated. Furthermore, although we find some evidence for the role of ecology in speciation, ecological shifts did not show the associations with range overlap expected under sympatric speciation. We delimit species of heliconiines in three different ways, based on "strict and " "relaxed" biological species concepts (BSC), as well as on a surrogate for the widely-used "diagnostic" version of the phylogenetic species concept (PSC). We show that one reason why more sympatric speciation is inferred in heliconiines than in birds may be due to a different culture of species delimitation in the two groups. To establish whether heliconiines are exceptional will require biogeographic comparative studies for a wider range of animal taxa including many more invertebrates.

  11. Tracking niche variation over millennial timescales in sympatric killer whale lineages

    PubMed Central

    Foote, Andrew D.; Newton, Jason; Ávila-Arcos, María C.; Kampmann, Marie-Louise; Samaniego, Jose A.; Post, Klaas; Rosing-Asvid, Aqqalu; Sinding, Mikkel-Holger S.; Gilbert, M. Thomas P.

    2013-01-01

    Niche variation owing to individual differences in ecology has been hypothesized to be an early stage of sympatric speciation. Yet to date, no study has tracked niche width over more than a few generations. In this study, we show the presence of isotopic niche variation over millennial timescales and investigate the evolutionary outcomes. Isotopic ratios were measured from tissue samples of sympatric killer whale Orcinus orca lineages from the North Sea, spanning over 10 000 years. Isotopic ratios spanned a range similar to the difference in isotopic values of two known prey items, herring Clupea harengus and harbour seal Phoca vitulina. Two proxies of the stage of speciation, lineage sorting of mitogenomes and genotypic clustering, were both weak to intermediate indicating that speciation has made little progress. Thus, our study confirms that even with the necessary ecological conditions, i.e. among-individual variation in ecology, it is difficult for sympatric speciation to progress in the face of gene flow. In contrast to some theoretical models, our empirical results suggest that sympatric speciation driven by among-individual differences in ecological niche is a slow process and may not reach completion. We argue that sympatric speciation is constrained in this system owing to the plastic nature of the behavioural traits under selection when hunting either mammals or fish. PMID:23945688

  12. Tracking niche variation over millennial timescales in sympatric killer whale lineages.

    PubMed

    Foote, Andrew D; Newton, Jason; Ávila-Arcos, María C; Kampmann, Marie-Louise; Samaniego, Jose A; Post, Klaas; Rosing-Asvid, Aqqalu; Sinding, Mikkel-Holger S; Gilbert, M Thomas P

    2013-10-07

    Niche variation owing to individual differences in ecology has been hypothesized to be an early stage of sympatric speciation. Yet to date, no study has tracked niche width over more than a few generations. In this study, we show the presence of isotopic niche variation over millennial timescales and investigate the evolutionary outcomes. Isotopic ratios were measured from tissue samples of sympatric killer whale Orcinus orca lineages from the North Sea, spanning over 10 000 years. Isotopic ratios spanned a range similar to the difference in isotopic values of two known prey items, herring Clupea harengus and harbour seal Phoca vitulina. Two proxies of the stage of speciation, lineage sorting of mitogenomes and genotypic clustering, were both weak to intermediate indicating that speciation has made little progress. Thus, our study confirms that even with the necessary ecological conditions, i.e. among-individual variation in ecology, it is difficult for sympatric speciation to progress in the face of gene flow. In contrast to some theoretical models, our empirical results suggest that sympatric speciation driven by among-individual differences in ecological niche is a slow process and may not reach completion. We argue that sympatric speciation is constrained in this system owing to the plastic nature of the behavioural traits under selection when hunting either mammals or fish.

  13. Demographic modelling with whole-genome data reveals parallel origin of similar Pundamilia cichlid species after hybridization.

    PubMed

    Meier, Joana I; Sousa, Vitor C; Marques, David A; Selz, Oliver M; Wagner, Catherine E; Excoffier, Laurent; Seehausen, Ole

    2017-01-01

    Modes and mechanisms of speciation are best studied in young species pairs. In older taxa, it is increasingly difficult to distinguish what happened during speciation from what happened after speciation. Lake Victoria cichlids in the genus Pundamilia encompass a complex of young species and polymorphic populations. One Pundamilia species pair, P. pundamilia and P. nyererei, is particularly well suited to study speciation because sympatric population pairs occur with different levels of phenotypic differentiation and reproductive isolation at different rocky islands within the lake. Genetic distances between allopatric island populations of the same nominal species often exceed those between the sympatric species. It thus remained unresolved whether speciation into P. nyererei and P. pundamilia occurred once, followed by geographical range expansion and interspecific gene flow in local sympatry, or if the species pair arose repeatedly by parallel speciation. Here, we use genomic data and demographic modelling to test these alternative evolutionary scenarios. We demonstrate that gene flow plays a strong role in shaping the observed patterns of genetic similarity, including both gene flow between sympatric species and gene flow between allopatric populations, as well as recent and early gene flow. The best supported model for the origin of P. pundamilia and P. nyererei population pairs at two different islands is one where speciation happened twice, whereby the second speciation event follows shortly after introgression from an allopatric P. nyererei population that arose earlier. Our findings support the hypothesis that very similar species may arise repeatedly, potentially facilitated by introgressed genetic variation. © 2016 John Wiley & Sons Ltd.

  14. Refining the conditions for sympatric ecological speciation.

    PubMed

    Débarre, F

    2012-12-01

    Can speciation occur in a single population when different types of resources are available, in the absence of any geographical isolation, or any spatial or temporal variation in selection? The controversial topics of sympatric speciation and ecological speciation have already stimulated many theoretical studies, most of them agreeing on the fact that mechanisms generating disruptive selection, some level of assortment, and enough heterogeneity in the available resources, are critical for sympatric speciation to occur. Few studies, however, have combined the three factors and investigated their interactions. In this article, I analytically derive conditions for sympatric speciation in a general model where the distribution of resources can be uni- or bimodal, and where a parameter controls the range of resources that an individual can exploit. This approach bridges the gap between models of a unimodal continuum of resources and Levene-type models with discrete resources. I then test these conditions against simulation results from a recently published article (Thibert-Plante & Hendry, 2011, J. Evol. Biol. 24: 2186-2196) and confirm that sympatric ecological speciation is favoured when (i) selection is disruptive (i.e. individuals with an intermediate trait are at a local fitness minimum), (ii) resources are differentiated enough and (iii) mating is assortative. I also discuss the role of mating preference functions and the need (or lack thereof) for bimodality in resource distributions for diversification. © 2012 The Author. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.

  15. Potentiometric titration of metal ions in ethanol.

    PubMed

    Gibson, Graham T T; Mohamed, Mark F; Neverov, Alexei A; Brown, R S

    2006-09-18

    The potentiometric titrations of Zn2+, Cu2+ and 12 Ln3+ metal ions were obtained in ethanol to determine the titration constants (defined as the at which the [-OEt]/[Mx+]t ratios are 0.5, 1.5, and 2.5) and in two cases (La3+ and Zn2+) a complete speciation diagram. Several simple monobasic acids and aminium ions were also titrated to test the validity of experimental titration measurements and to establish new constants in this medium that will be useful for the preparation of buffers and standard solutions. The dependence of the titration constants on the concentration and type of metal ion and specific counterion effects is discussed. In selected cases, the titration profiles were analyzed using a commercially available fitting program to obtain information about the species present in solution, including La3+ for which a dimer model is proposed. The fitting provides the microscopic values for deprotonation of one to four metal-bound ethanol molecules. Kinetics for the La3+-catalyzed ethanolysis of paraoxon as a function of are presented and analyzed in terms of La3+ speciation as determined by the analysis of potentiometric titration curves. The stability constants for the formation of Zn2+ and Cu2+ complexes with 1,5,9-triazacyclododecane as determined by potentiometric titration are presented.

  16. Comparative study of adaptive radiations with an example using parasitic flatworms (Platyhelminthes): Cercomeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brooks, D.R.; McLennan, D.A.

    1993-11-01

    Studies of adaptive radiations require robust phylogenies, estimates of species numbers for monophyletic groups within clades, assessments of the adaptive value of putative key innovations, and estimates of the frequency of speciation modes. Four criteria are necessary to identify an adaptive radiation within the parasitic platyhelminths: (1) a group contains significantly more species than its sister group, (2) species richness is apomorphic, (3) apomorphic traits enhance the potential for adaptively driven modes of speciation (sympatric speciation and speciation by peripheral isolation via host switching), and (4) the frequency of adaptively driven speciation modes is high within the group when comparedmore » with data from free-living groups. Only the species-rich Monogenea fulfill all four criteria. The Digenea and Eucestoda also are more species rich than their sister groups, their species richness is derived, and they possess unique characters that increase the potential for host switching to occur. However, because there is not enough information to determine whether the frequency of adaptive modes of speciation is high for those groups, we cannot yet assert that their radiations have been adaptive. 102 refs., 3 figs., 1 tab.« less

  17. The reality and importance of founder speciation in evolution.

    PubMed

    Templeton, Alan R

    2008-05-01

    A founder event occurs when a new population is established from a small number of individuals drawn from a large ancestral population. Mayr proposed that genetic drift in an isolated founder population could alter the selective forces in an epistatic system, an observation supported by recent studies. Carson argued that a period of relaxed selection could occur when a founder population is in an open ecological niche, allowing rapid population growth after the founder event. Selectable genetic variation can actually increase during this founder-flush phase due to recombination, enhanced survival of advantageous mutations, and the conversion of non-additive genetic variance into additive variance in an epistatic system, another empirically confirmed prediction. Templeton combined the theories of Mayr and Carson with population genetic models to predict the conditions under which founder events can contribute to speciation, and these predictions are strongly confirmed by the empirical literature. Much of the criticism of founder speciation is based upon equating founder speciation to an adaptive peak shift opposed by selection. However, Mayr, Carson and Templeton all modeled a positive interaction of selection and drift, and Templeton showed that founder speciation is incompatible with peak-shift conditions. Although rare, founder speciation can have a disproportionate importance in adaptive innovation and radiation, and examples are given to show that "rare" does not mean "unimportant" in evolution. Founder speciation also interacts with other speciation mechanisms such that a speciation event is not a one-dimensional process due to either selection alone or drift alone. (c) 2008 Wiley Periodicals, Inc.

  18. In Vitro Model To Assess Arsenic Bioaccessibility and Speciation in Cooked Shrimp.

    PubMed

    Chi, Haifeng; Zhang, Youchi; Williams, Paul N; Lin, Shanna; Hou, Yanwei; Cai, Chao

    2018-05-09

    Shrimp, a popular and readily consumed seafood, contains high concentrations of arsenic. However, few studies have focused on whether arsenic in the shrimp could be transformed during the cooking process and gastrointestinal digestion. In this study, a combined in vitro model [Unified Bioaccessibility Research Group of Europe (BARGE) Method-Simulator of Human Intestinal Microbial Ecosystem (UBM-SHIME)] was used to investigate arsenic bioaccessibility and its speciation in raw and cooked shrimps. The results showed that the cooking practices had little effect on the arsenic content and speciation. Bioaccessibility of arsenic in raw shrimp was at a high level, averaging 76.9 ± 4.28 and 86.7 ± 3.74% in gastric and small intestinal phases, respectively. Arsenic speciation was stable in all of the shrimp digestions, with nontoxic arsenobetaine (AsB) being the dominated speciation. The cooking practice significantly increased the bioaccessibility of arsenate ( p < 0.05) in shrimp digests, indicating the increase of the potential health risks.

  19. Genomic islands of divergence are not affected by geography of speciation in sunflowers.

    PubMed

    Renaut, S; Grassa, C J; Yeaman, S; Moyers, B T; Lai, Z; Kane, N C; Bowers, J E; Burke, J M; Rieseberg, L H

    2013-01-01

    Genomic studies of speciation often report the presence of highly differentiated genomic regions interspersed within a milieu of weakly diverged loci. The formation of these speciation islands is generally attributed to reduced inter-population gene flow near loci under divergent selection, but few studies have critically evaluated this hypothesis. Here, we report on transcriptome scans among four recently diverged pairs of sunflower (Helianthus) species that vary in the geographical context of speciation. We find that genetic divergence is lower in sympatric and parapatric comparisons, consistent with a role for gene flow in eroding neutral differences. However, genomic islands of divergence are numerous and small in all comparisons, and contrary to expectations, island number and size are not significantly affected by levels of interspecific gene flow. Rather, island formation is strongly associated with reduced recombination rates. Overall, our results indicate that the functional architecture of genomes plays a larger role in shaping genomic divergence than does the geography of speciation.

  20. SPECIATE and using the Speciation Tool to prepare VOC and PM chemical speciation profiles for air quality modeling

    EPA Science Inventory

    This product provides training to air pollution inventory and modeling professionals to understand the US EPA's SPECIATE database base and Speciation Tool and their use to develop speciated emission inventories.

  1. SPECIATE's VOC and PM Speciation Profiles and Their use to Prepare for Air quality Modeling (2017 EIC)

    EPA Pesticide Factsheets

    This training provides general concepts on chemical speciation, the SPECIATE database and browser, and how to use the Speciation Tool to create model ready speciation inputs for a photochemical air quality model.

  2. SPECIATE 4.2: speciation Database Development Documentation

    EPA Science Inventory

    SPECIATE is the U.S. Environmental Protection Agency's (EPA) repository of volatile organic gas and particulate matter (PM) speciation profiles of air pollution sources. Among the many uses of speciation data, these source profiles are used to: (1) create speciated emissions inve...

  3. Ephemeral ecological speciation and the latitudinal biodiversity gradient.

    PubMed

    Cutter, Asher D; Gray, Jeremy C

    2016-10-01

    The richness of biodiversity in the tropics compared to high-latitude parts of the world forms one of the most globally conspicuous patterns in biology, and yet few hypotheses aim to explain this phenomenon in terms of explicit microevolutionary mechanisms of speciation and extinction. We link population genetic processes of selection and adaptation to speciation and extinction by way of their interaction with environmental factors to drive global scale macroecological patterns. High-latitude regions are both cradle and grave with respect to species diversification. In particular, we point to a conceptual equivalence of "environmental harshness" and "hard selection" as eco-evolutionary drivers of local adaptation and ecological speciation. By describing how ecological speciation likely occurs more readily at high latitudes, with such nascent species especially prone to extinction by fusion, we derive the ephemeral ecological speciation hypothesis as an integrative mechanistic explanation for latitudinal gradients in species turnover and the net accumulation of biodiversity. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  4. Interaction between Digestive Strategy and Niche Specialization Predicts Speciation Rates across Herbivorous Mammals.

    PubMed

    Tran, Lucy A P

    2016-04-01

    Biotic and abiotic factors often are treated as mutually exclusive drivers of diversification processes. In this framework, ecological specialists are expected to have higher speciation rates than generalists if abiotic factors are the primary controls on species diversity but lower rates if biotic interactions are more important. Speciation rate is therefore predicted to positively correlate with ecological specialization in the purely abiotic model but negatively correlate in the biotic model. In this study, I show that the positive relationship between ecological specialization and speciation expected from the purely abiotic model is recovered only when a species-specific trait, digestive strategy, is modeled in the terrestrial, herbivorous mammals (Mammalia). This result suggests a more nuanced model in which the response of specialized lineages to abiotic factors is dependent on a biological trait. I also demonstrate that the effect of digestive strategy on the ecological specialization-speciation rate relationship is not due to a difference in either the degree of ecological specialization or the speciation rate between foregut- and hindgut-fermenting mammals. Together, these findings suggest that a biological trait, alongside historical abiotic events, played an important role in shaping mammal speciation at long temporal and large geographic scales.

  5. X exceptionalism in Caenorhabditis speciation.

    PubMed

    Cutter, Asher D

    2017-11-13

    Speciation genetics research in diverse organisms shows the X-chromosome to be exceptional in how it contributes to "rules" of speciation. Until recently, however, the nematode phylum has been nearly silent on this issue, despite the model organism Caenorhabditis elegans having touched most other topics in biology. Studies of speciation with Caenorhabditis accelerated with the recent discovery of species pairs showing partial interfertility. The resulting genetic analyses of reproductive isolation in nematodes demonstrate key roles for the X-chromosome in hybrid male sterility and inviability, opening up new understanding of the genetic causes of Haldane's rule, Darwin's corollary to Haldane's rule, and enabling tests of the large-X effect hypothesis. Studies to date implicate improper chromatin regulation of the X-chromosome by small RNA pathways as integral to hybrid male dysfunction. Sexual transitions in reproductive mode to self-fertilizing hermaphroditism inject distinctive molecular evolutionary features into the speciation process for some species. Caenorhabditis also provides unique opportunities for analysis in a system with XO sex determination that lacks a Y-chromosome, sex chromosome-dependent sperm competition differences and mechanisms of gametic isolation, exceptional accessibility to the development process and rapid experimental evolution. As genetic analysis of reproductive isolation matures with investigation of multiple pairs of Caenorhabditis species and new species discovery, nematodes will provide a powerful complement to more established study organisms for deciphering the genetic basis of and rules to speciation. © 2017 John Wiley & Sons Ltd.

  6. New analytic results for speciation times in neutral models.

    PubMed

    Gernhard, Tanja

    2008-05-01

    In this paper, we investigate the standard Yule model, and a recently studied model of speciation and extinction, the "critical branching process." We develop an analytic way-as opposed to the common simulation approach-for calculating the speciation times in a reconstructed phylogenetic tree. Simple expressions for the density and the moments of the speciation times are obtained. Methods for dating a speciation event become valuable, if for the reconstructed phylogenetic trees, no time scale is available. A missing time scale could be due to supertree methods, morphological data, or molecular data which violates the molecular clock. Our analytic approach is, in particular, useful for the model with extinction, since simulations of birth-death processes which are conditioned on obtaining n extant species today are quite delicate. Further, simulations are very time consuming for big n under both models.

  7. Monte Carlo simulations of parapatric speciation

    NASA Astrophysics Data System (ADS)

    Schwämmle, V.; Sousa, A. O.; de Oliveira, S. M.

    2006-06-01

    Parapatric speciation is studied using an individual-based model with sexual reproduction. We combine the theory of mutation accumulation for biological ageing with an environmental selection pressure that varies according to the individuals geographical positions and phenotypic traits. Fluctuations and genetic diversity of large populations are crucial ingredients to model the features of evolutionary branching and are intrinsic properties of the model. Its implementation on a spatial lattice gives interesting insights into the population dynamics of speciation on a geographical landscape and the disruptive selection that leads to the divergence of phenotypes. Our results suggest that assortative mating is not an obligatory ingredient to obtain speciation in large populations at low gene flow.

  8. Song evolution, speciation, and vocal learning in passerine birds.

    PubMed

    Mason, Nicholas A; Burns, Kevin J; Tobias, Joseph A; Claramunt, Santiago; Seddon, Nathalie; Derryberry, Elizabeth P

    2017-03-01

    Phenotypic divergence can promote reproductive isolation and speciation, suggesting a possible link between rates of phenotypic evolution and the tempo of speciation at multiple evolutionary scales. To date, most macroevolutionary studies of diversification have focused on morphological traits, whereas behavioral traits─including vocal signals─are rarely considered. Thus, although behavioral traits often mediate mate choice and gene flow, we have a limited understanding of how behavioral evolution contributes to diversification. Furthermore, the developmental mode by which behavioral traits are acquired may affect rates of behavioral evolution, although this hypothesis is seldom tested in a phylogenetic framework. Here, we examine evidence for rate shifts in vocal evolution and speciation across two major radiations of codistributed passerines: one oscine clade with learned songs (Thraupidae) and one suboscine clade with innate songs (Furnariidae). We find that evolutionary bursts in rates of speciation and song evolution are coincident in both thraupids and furnariids. Further, overall rates of vocal evolution are higher among taxa with learned rather than innate songs. Taken together, these findings suggest an association between macroevolutionary bursts in speciation and vocal evolution, and that the tempo of behavioral evolution can be influenced by variation in developmental modes among lineages. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  9. Linking patterns and processes of species diversification in the cone flies Strobilomyia (Diptera: Anthomyiidae).

    PubMed

    Sachet, Jean-Marie; Roques, Alain; Després, Laurence

    2006-12-01

    Phytophagous insects provide useful models for the study of ecological speciation. Much attention has been paid to host shifts, whereas situations where closely related lineages of insects use the same plant during different time periods have been relatively neglected in previous studies of insect diversification. Flies of the genus Strobilomyia are major pests of conifers in Eurasia and North America. They are specialized feeders in cones and seeds of Abies (fir), Larix (larch) ,and Picea (spruce). This close association is accompanied by a large number of sympatric Strobilomyia species coexisting within each tree genus. We constructed a molecular phylogeny with a 1320 base-pair fragment of mitochondrial DNA that demonstrated contrasting patterns of speciation in larch cone flies, as opposed to spruce and fir cone flies; this despite their comparable geographic distributions and similar resource quality of the host. Species diversity is the highest on larch, and speciation is primarily driven by within-host phenological shifts, followed by allopatric speciation during geographical expansion. By contrast, fewer species exploit spruce and fir, and within-host phenological shifts did not occur. This study illustrates within-host adaptive radiation through phenological shifts, a neglected mode of sympatric speciation.

  10. PARTICLE SPECIATION AND EMISSION PROFILES OF SMALL 2-STROKE ENGINES

    EPA Science Inventory

    The Human Exposure and Atmospheric Sciences Division (HEASD) conducts studies designed to acquire information from emission sources for use in source apportionment studies. The objective of this work is to characterize a complete, speciated emission profile (PM and air toxics) ...

  11. XAS Studies of Se Speciation in Selenite-Fed Rats

    PubMed Central

    Weekley, Claire M.; Aitken, Jade B.; Witting, Paul K.; Harris, Hugh H.

    2014-01-01

    The biological activity of selenium is dependent on its chemical form. Therefore, knowledge of Se chemistry in vivo is required for efficacious use of selenium compounds in disease prevention and treatment. Using X-ray absorption spectroscopy, Se speciation in the kidney, liver, heart, spleen, testis and red blood cells of rats fed control (~0.3 ppm Se) or selenite-supplemented (1 ppm or 5 ppm Se) diets for 3 or 6 weeks, was investigated. X-ray absorption spectroscopy revealed the presence of Se–Se and Se–C species in the kidney and liver, and Se–S species in the kidney, but not the liver. X-ray absorption near edge structure (XANES) spectra showed that there was variation in speciation in the liver and kidneys, but Se speciation was much more uniform in the remaining organs. Using principal component analysis (PCA) to interpret the Se K-edge X-ray absorption spectra, we were able to directly compare the speciation of Se in two different models of selenite metabolism – human lung cancer cells and rat tissues. The effects of Se dose, tissue type and duration of diet on selenium speciation in rat tissues were investigated, and a relationship between the duration of the diet (3 weeks versus 6 weeks) and selenium speciation was observed. PMID:25363824

  12. Application of ESI-HRMS for molybdenum speciation in natural waters: An investigation of molybdate-halide reactions.

    PubMed

    Dang, Duc Huy; Evans, R Douglas

    2018-03-01

    High resolution electrospray ionization mass spectrometry (ESI-HRMS) was used to study the speciation of molybdate in interaction with halides (Cl, F, Br). Desolvation during electrospray ionization induced alteration of aqueous species but method optimization successfully suppressed artefact compounds. At low Mo concentrations, chloro(oxo)molybdate and fluoro(oxo)molybdate species were found and in natural samples, MoO 3 Cl was detected for the first time, to the best of our knowledge. Apparent equilibrium constants for Cl substitution on molybdate were calculated for a range of pH values from 4.5 to 8.5. A minor alteration in speciation during the gas phase (conversion of doubly charged MoO 4 2- to HMoO 4 - ) did not allow investigation of the molybdate acid-base properties; however this could be determined by speciation modeling. This study provides further evidence that ESI-HRMS is a fast and suitable tool to Deceasedassess the speciation of inorganic compounds such as Mo. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Speciation at the Mogollon Rim in the Arizona Mountain Kingsnake (Lampropeltis pyromelana).

    PubMed

    Burbrink, Frank T; Yao, Helen; Ingrasci, Matthew; Bryson, Robert W; Guiher, Timothy J; Ruane, Sara

    2011-09-01

    Studies of speciation and taxon delimitation are usually decoupled. Combining these methods provides a stronger theoretical ground for recognizing new taxa and understanding processes of speciation. Using coalescent methods, we examine speciation, post-speciation population demographics, and taxon delimitation in the Arizona Mountain Kingsnake (Lampropeltis pyromelana), a species restricted to high elevations in southwestern United States and northern Mexico (SW). These methods provide a solid foundation for understanding how biogeographic barriers operate at the regional scale in the SW. Bayesian species delimitation methods, using three loci from samples of L. pyromelana taken throughout their range, show strong support for the existence of two species that are separated by low elevation habitats found between the Colorado Plateau/ Mogollon Rim and the Sierra Madre Occidental. Our results suggest an allopatric mode of speciation given the near absence of gene flow over time, which resulted in two lineages of unequal population sizes. Speciation likely occurred prior to the Pleistocene, during the aridification of the SW and/or the uplift of the Colorado Plateau, and while these species occupy similar high-elevation niches, they are isolated by xeric conditions found in the intervening low deserts. Furthermore, post-speciation demographics suggest that populations of both lineages were not negatively impacted by climate change throughout the Pleistocene. Finally, our results suggest that at least for this group, where divergence is old and gene flow is low, Bayesian species delimitation performs well. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Use of Mössbauer spectroscopy to determine the effect of salinity on the speciation of triorganotins in Anacostia River sediments

    NASA Astrophysics Data System (ADS)

    Eng, George; Song, Xueqing; May, Leopold

    2006-06-01

    The speciation of several tributyltin and triphenyltin compounds under varying salinity conditions (0, 20, 40 and 60%) was studied by Mössbauer spectroscopy in both anaerobic and aerobic Anacostia River sediments. The Mössbauer spectral parameters of the spiked sediments indicated that changes in the salinity did not affect the speciation of the tin compounds in either aerobic or anaerobic sediments.

  15. Use of Mössbauer spectroscopy to determine the effect of salinity on the speciation of triorganotins in Anacostia River sediments

    NASA Astrophysics Data System (ADS)

    Eng, George; Song, Xueqing; May, Leopold

    The speciation of several tributyltin and triphenyltin compounds under varying salinity conditions (0, 20, 40 and 60%) was studied by Mössbauer spectroscopy in both anaerobic and aerobic Anacostia River sediments. The Mössbauer spectral parameters of the spiked sediments indicated that changes in the salinity did not affect the speciation of the tin compounds in either aerobic or anaerobic sediments.

  16. A light and electron microscopic study of Trypanosoma fallisi N. Sp. in toads (Bufo americanus) from Algonquin Park, Ontario.

    PubMed

    Martin, D S; Desser, S S

    1990-01-01

    Trypanosoma fallisi n. sp. is described from Bufo americanus in Ontario. The parasite was observed in 65 of 94 toads examined. The trypanosomes were pleomorphic with respect to the age of infections, being longer and broader in early infections (during spring and summer) and shorter and more slender during late summer and autumn. They ranged in size from 38-76 microns in body length and 3-8 microns in width, with a free flagellum 6-30 microns long. Epizootiological and experimental evidence suggests that this trypanosome is transmitted to the toads by the leech, Batracobdella picta. Trypanosoma fallisi is morphologically similar to T. bufophlebotomi described in Bufo boreas from California, but geographic isolation, host and vector differences as well as slight morphological differences indicate that speciation has occurred. Similar trypanosomes from Bufo americanus (which were identified as T. bufophlebotomi) in Michigan, are probably T. fallisi. This species shares many ultrastructural features with trypanosomes of other lower vertebrates and also of mammals.

  17. Trace metal speciation in natural waters: Computational vs. analytical

    USGS Publications Warehouse

    Nordstrom, D. Kirk

    1996-01-01

    Improvements in the field sampling, preservation, and determination of trace metals in natural waters have made many analyses more reliable and less affected by contamination. The speciation of trace metals, however, remains controversial. Chemical model speciation calculations do not necessarily agree with voltammetric, ion exchange, potentiometric, or other analytical speciation techniques. When metal-organic complexes are important, model calculations are not usually helpful and on-site analytical separations are essential. Many analytical speciation techniques have serious interferences and only work well for a limited subset of water types and compositions. A combined approach to the evaluation of speciation could greatly reduce these uncertainties. The approach proposed would be to (1) compare and contrast different analytical techniques with each other and with computed speciation, (2) compare computed trace metal speciation with reliable measurements of solubility, potentiometry, and mean activity coefficients, and (3) compare different model calculations with each other for the same set of water analyses, especially where supplementary data on speciation already exist. A comparison and critique of analytical with chemical model speciation for a range of water samples would delineate the useful range and limitations of these different approaches to speciation. Both model calculations and analytical determinations have useful and different constraints on the range of possible speciation such that they can provide much better insight into speciation when used together. Major discrepancies in the thermodynamic databases of speciation models can be evaluated with the aid of analytical speciation, and when the thermodynamic models are highly consistent and reliable, the sources of error in the analytical speciation can be evaluated. Major thermodynamic discrepancies also can be evaluated by simulating solubility and activity coefficient data and testing various chemical models for their range of applicability. Until a comparative approach such as this is taken, trace metal speciation will remain highly uncertain and controversial.

  18. Speciation of the trivalent f-elements Eu(III) and Cm(III) in digestive media.

    PubMed

    Wilke, Claudia; Barkleit, Astrid; Stumpf, Thorsten; Ikeda-Ohno, Atsushi

    2017-10-01

    In case radioactive materials are released into the environment, their incorporation into our digestive system would be a significant concern. Trivalent f-elements, i.e., trivalent actinides and lanthanides, could potentially represent a serious health risk due to their chemo- and radiotoxicity, nevertheless the biochemical behavior of these elements are mostly unknown even to date. This study, therefore, focuses on the chemical speciation of trivalent f-elements in the human gastrointestinal tract. To simulate the digestive system artificial digestive juices (saliva, gastric juice, pancreatic juice and bile fluid) were prepared. The chemical speciation of lanthanides (as Eu(III)) and actinides (as Cm(III)) was determined experimentally by time-resolved laser-induced fluorescence spectroscopy (TRLFS) and the results were compared with thermodynamic modeling. The results indicate a dominant inorganic species with phosphate/carbonate in the mouth, while the aquo ion is predominantly formed with a minor contribution of the enzyme pepsin in the stomach. In the intestinal tract the most significant species are with the protein mucin. We demonstrated the first experimental results on the chemical speciation of trivalent f-elements in the digestive media by TRLFS. The results highlight a significant gap in chemical speciation between experiments and thermodynamic modeling due to the limited availability of thermodynamic stability constants particularly for organic species. Chemical speciation strongly influences the in vivo behavior of metal ions. Therefore, the results of this speciation study will help to enhance the assessment of health risks and to improve decorporation strategies after ingestion of these (radio-)toxic heavy metal ions. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Variation of the NMVOC speciation in the solvent sector and the sensitivity of modelled tropospheric ozone

    NASA Astrophysics Data System (ADS)

    von Schneidemesser, E.; Coates, J.; Denier van der Gon, H. A. C.; Visschedijk, A. J. H.; Butler, T. M.

    2016-06-01

    Non-methane volatile organic compounds (NMVOCs) are detrimental to human health owing to the toxicity of many of the NMVOC species, as well as their role in the formation of secondary air pollutants such as tropospheric ozone (O3) and secondary organic aerosol. The speciation and amount of NMVOCs emitted into the troposphere are represented in emission inventories (EIs) for input to chemical transport models that predict air pollutant levels. Much of the information in EIs pertaining to speciation of NMVOCs is likely outdated, but before taking on the task of providing an up-to-date and highly speciated EI, a better understanding of the sensitivity of models to the change in NMVOC input would be highly beneficial. According to the EIs, the solvent sector is the most important sector for NMVOC emissions. Here, the sensitivity of modelled tropospheric O3 to NMVOC emission inventory speciation was investigated by comparing the maximum potential difference in O3 produced using a variety of reported solvent sector EI speciations in an idealized study using a box model. The sensitivity was tested using three chemical mechanisms that describe O3 production chemistry, typically employed for different types of modelling scales - point (MCM v3.2), regional (RADM2), and global (MOZART-4). In the box model simulations, a maximum difference of 15 ppbv (ca. 22% of the mean O3 mixing ratio of 69 ppbv) between the different EI speciations of the solvent sector was calculated. In comparison, for the same EI speciation, but comparing the three different mechanisms, a maximum difference of 6.7 ppbv was observed. Relationships were found between the relative contribution of NMVOC compound classes (alkanes and oxygenated species) in the speciations to the amount of Ox produced in the box model. These results indicate that modelled tropospheric O3 is sensitive to the speciation of NMVOCs as specified by emission inventories, suggesting that detailed updates to the EI speciation information would be warranted. Furthermore, modelled tropospheric O3 was also sensitive to the choice of chemical mechanism and further evaluation of both of these sensitivities in more realistic chemical-transport models is needed.

  20. Visualizing speciation in artificial cichlid fish.

    PubMed

    Clement, Ross

    2006-01-01

    The Cichlid Speciation Project (CSP) is an ALife simulation system for investigating open problems in the speciation of African cichlid fish. The CSP can be used to perform a wide range of experiments that show that speciation is a natural consequence of certain biological systems. A visualization system capable of extracting the history of speciation from low-level trace data and creating a phylogenetic tree has been implemented. Unlike previous approaches, this visualization system presents a concrete trace of speciation, rather than a summary of low-level information from which the viewer can make subjective decisions on how speciation progressed. The phylogenetic trees are a more objective visualization of speciation, and enable automated collection and summarization of the results of experiments. The visualization system is used to create a phylogenetic tree from an experiment that models sympatric speciation.

  1. Chemical Speciation and Metallomics.

    PubMed

    de Jesus, Jemmyson Romário; da Costa, Luana Ferreira; Lehmann, Eraldo Luiz; Galazzi, Rodrigo Moretto; Madrid, Katherine Chacón; Arruda, Marco Aurélio Zezzi

    2018-01-01

    Chemical speciation approaches is an inherent part of metallomics, once metals/metalloids and organic structures need to be currently evaluated for attaining metallomics studies. Then, this chapter focuses on the applications of the chemical speciation applied to the human health risk, food and human diet, drugs, forensic, nanoscience, and geological metallomics, also pointing out the advances in such area. Some aspects regarding sample preparation is commented along this chapter, and some strategies for maintaining the integrity of the metallomics information are also emphasized.

  2. Hybrid Speciation in a Marine Mammal: The Clymene Dolphin (Stenella clymene)

    PubMed Central

    Amaral, Ana R.; Lovewell, Gretchen; Coelho, Maria M.; Amato, George; Rosenbaum, Howard C.

    2014-01-01

    Natural hybridization may result in the exchange of genetic material between divergent lineages and even the formation of new taxa. Many of the Neo-Darwinian architects argued that, particularly for animal clades, natural hybridization was maladaptive. Recent evidence, however, has falsified this hypothesis, instead indicating that this process may lead to increased biodiversity through the formation of new species. Although such cases of hybrid speciation have been described in plants, fish and insects, they are considered exceptionally rare in mammals. Here we present evidence for a marine mammal, Stenella clymene, arising through natural hybridization. We found phylogenetic discordance between mitochondrial and nuclear markers, which, coupled with a pattern of transgressive segregation seen in the morphometric variation of some characters, support a case of hybrid speciation. S. clymene is currently genetically differentiated from its putative parental species, Stenella coerueloalba and Stenella longisrostris, although low levels of introgressive hybridization may be occurring. Although non-reticulate forms of evolution, such as incomplete lineage sorting, could explain our genetic results, we consider that the genetic and morphological evidence taken together argue more convincingly towards a case of hybrid speciation. We anticipate that our study will bring attention to this important aspect of reticulate evolution in non-model mammal species. The study of speciation through hybridization is an excellent opportunity to understand the mechanisms leading to speciation in the context of gene flow. PMID:24421898

  3. Hybrid speciation in a marine mammal: the clymene dolphin (Stenella clymene).

    PubMed

    Amaral, Ana R; Lovewell, Gretchen; Coelho, Maria M; Amato, George; Rosenbaum, Howard C

    2014-01-01

    Natural hybridization may result in the exchange of genetic material between divergent lineages and even the formation of new taxa. Many of the Neo-Darwinian architects argued that, particularly for animal clades, natural hybridization was maladaptive. Recent evidence, however, has falsified this hypothesis, instead indicating that this process may lead to increased biodiversity through the formation of new species. Although such cases of hybrid speciation have been described in plants, fish and insects, they are considered exceptionally rare in mammals. Here we present evidence for a marine mammal, Stenella clymene, arising through natural hybridization. We found phylogenetic discordance between mitochondrial and nuclear markers, which, coupled with a pattern of transgressive segregation seen in the morphometric variation of some characters, support a case of hybrid speciation. S. clymene is currently genetically differentiated from its putative parental species, Stenella coerueloalba and Stenella longisrostris, although low levels of introgressive hybridization may be occurring. Although non-reticulate forms of evolution, such as incomplete lineage sorting, could explain our genetic results, we consider that the genetic and morphological evidence taken together argue more convincingly towards a case of hybrid speciation. We anticipate that our study will bring attention to this important aspect of reticulate evolution in non-model mammal species. The study of speciation through hybridization is an excellent opportunity to understand the mechanisms leading to speciation in the context of gene flow.

  4. Comparative tests of the role of dewlap size in Anolis lizard speciation

    PubMed Central

    Harrison, Alexis; Mahler, D. Luke; Castañeda, María del Rosario; Glor, Richard E.; Herrel, Anthony; Stuart, Yoel E.; Losos, Jonathan B.

    2016-01-01

    Phenotypic traits may be linked to speciation in two distinct ways: character values may influence the rate of speciation or diversification in the trait may be associated with speciation events. Traits involved in signal transmission, such as the dewlap of Anolis lizards, are often involved in the speciation process. The dewlap is an important visual signal with roles in species recognition and sexual selection, and dewlaps vary among species in relative size as well as colour and pattern. We compile a dataset of relative dewlap size digitized from photographs of 184 anole species from across the genus' geographical range. We use phylogenetic comparative methods to test two hypotheses: that larger dewlaps are associated with higher speciation rates, and that relative dewlap area diversifies according to a speciational model of evolution. We find no evidence of trait-dependent speciation, indicating that larger signals do not enhance any role the dewlap has in promoting speciation. Instead, we find a signal of mixed speciational and gradual trait evolution, with a particularly strong signal of speciational change in the dewlaps of mainland lineages. This indicates that dewlap size diversifies in association with the speciation process, suggesting that divergent selection may play a role in the macroevolution of this signalling trait. PMID:28003450

  5. EPA’s SPECIATE 4.4 Database:Development and Uses

    EPA Science Inventory

    SPECIATE is the U.S. Environmental Protection Agency's (EPA)repository of volatile organic gas and particulate matter (PM) speciation profiles for air pollution sources. EPA released SPECIATE 4.4 in early 2014 and, in total, the SPECIATE 4.4 database includes 5,728 PM, VOC, total...

  6. EPA’s SPECIATE 4.4 Database: Development and Uses

    EPA Science Inventory

    SPECIATE is the U.S. Environmental Protection Agency's (EPA)repository of volatile organic gas and particulate matter (PM) speciation profiles for air pollution sources. EPA released SPECIATE 4.4 in early 2014 and, in total, the SPECIATE 4.4 database includes 5,728 PM, VOC, total...

  7. Metal Ion Speciation and Dissolved Organic Matter Composition in Soil Solutions

    NASA Astrophysics Data System (ADS)

    Benedetti, M. F.; Ren, Z. L.; Bravin, M.; Tella, M.; Dai, J.

    2014-12-01

    Knowledge of the speciation of heavy metals and the role of dissolved organic matter (DOM) in soil solution is a key to understand metal mobility and ecotoxicity. In this study, soil column-Donnan membrane technique (SC-DMT) was used to measure metal speciation of Cd, Cu, Ni, Pb, and Zn in eighteen soil solutions, covering a wide range of metal sources and concentrations. DOM composition in these soil solutions was also determined. Our results show that in soil solution Pb and Cu are dominant in complex form, whereas Cd, Ni and Zn mainly exist as free ions; for the whole range of soil solutions, only 26.2% of DOM is reactive and consists mainly of fulvic acid (FA). The metal speciation measured by SC-DMT was compared to the predicted ones obtained via the NICA-Donnan model using the measured FA concentrations. The free ion concentrations predicted by speciation modelling were in good agreement with the measurements. Diffusive gradients in thin-films gels (DGT) were also performed to quantify the labile metal species in the fluxes from solid phase to solution in fourteen soils. The concentrations of metal species detected by DGT were compared with the free ion concentrations measured by DMT and the maximum concentrations calculated based on the predicted metal speciation in SC-DMT soil solutions. It is concluded that both inorganic species and a fraction of FA bound species account for the amount of labile metals measured by DGT, consistent with the dynamic features of this technique. The comparisons between measurements using analytical techniques and mechanistic model predictions provided mutual validation in their performance. Moreover, we show that to make accurate modelling of metal speciation in soil solutions, the knowledge of DOM composition is the crucial information, especially for Cu; like in previous studies the modelling of Pb speciation is not optimal and an updated of Pb generic binding parameters is required to reduce model prediction uncertainties.

  8. Rapid radiation in spiny lobsters (Palinurus spp) as revealed by classic and ABC methods using mtDNA and microsatellite data.

    PubMed

    Palero, Ferran; Lopes, Joao; Abelló, Pere; Macpherson, Enrique; Pascual, Marta; Beaumont, Mark A

    2009-11-09

    Molecular tools may help to uncover closely related and still diverging species from a wide variety of taxa and provide insight into the mechanisms, pace and geography of marine speciation. There is a certain controversy on the phylogeography and speciation modes of species-groups with an Eastern Atlantic-Western Indian Ocean distribution, with previous studies suggesting that older events (Miocene) and/or more recent (Pleistocene) oceanographic processes could have influenced the phylogeny of marine taxa. The spiny lobster genus Palinurus allows for testing among speciation hypotheses, since it has a particular distribution with two groups of three species each in the Northeastern Atlantic (P. elephas, P. mauritanicus and P. charlestoni) and Southeastern Atlantic and Southwestern Indian Oceans (P. gilchristi, P. delagoae and P. barbarae). In the present study, we obtain a more complete understanding of the phylogenetic relationships among these species through a combined dataset with both nuclear and mitochondrial markers, by testing alternative hypotheses on both the mutation rate and tree topology under the recently developed approximate Bayesian computation (ABC) methods. Our analyses support a North-to-South speciation pattern in Palinurus with all the South-African species forming a monophyletic clade nested within the Northern Hemisphere species. Coalescent-based ABC methods allowed us to reject the previously proposed hypothesis of a Middle Miocene speciation event related with the closure of the Tethyan Seaway. Instead, divergence times obtained for Palinurus species using the combined mtDNA-microsatellite dataset and standard mutation rates for mtDNA agree with known glaciation-related processes occurring during the last 2 my. The Palinurus speciation pattern is a typical example of a series of rapid speciation events occurring within a group, with very short branches separating different species. Our results support the hypothesis that recent climate change-related oceanographic processes have influenced the phylogeny of marine taxa, with most Palinurus species originating during the last two million years. The present study highlights the value of new coalescent-based statistical methods such as ABC for testing different speciation hypotheses using molecular data.

  9. PM 2.5 CHEMICAL SPECIATION SAMPLER EVALUATION FIELD PROGRAM: RESULTS FROM THE FOUR CITY STUDY

    EPA Science Inventory

    The objective of this sampler intercomparison field study is to determine the performance characteristics for the collection of the chemical components of PM2.5 by the chemical speciation monitors developed for the national network relative to each other, to the Federal Referen...

  10. A COMPUTATIONAL AND EXPERIMENTAL STUDY OF MERCURY SPECIATION AS FACILITATED BY THE DEACON PROCESS

    EPA Science Inventory

    The paper gives results of a computational and experimental study of mercury (Hg) speciation as facilitated by the Deacon process. Fly ashes that contain trace cupric or ferric oxide are effective catalysts for elemental mercury (Hg) conversion to mercuric chloride in the presenc...

  11. US EPA's SPECIATE 4.4 Database: Development and Uses

    EPA Science Inventory

    SPECIATE is the U.S. Environmental Protection Agency’s (EPA) repository of volatile organic gas and particulate matter (PM) speciation profiles of air pollution sources. EPA released SPECIATE 4.4 in early 2014 and, in total, the SPECIATE 4.4 database includes 5,728 PM, volatile o...

  12. EPA’s SPECIATE 4.4 Database: Bridging Data Sources and Data Users

    EPA Science Inventory

    SPECIATE is the U.S. Environmental Protection Agency's (EPA)repository of volatile organic gas and particulate matter (PM) speciation profiles for air pollution sources. EPA released SPECIATE 4.4 in early 2014 and, in total, the SPECIATE 4.4 database includes 5,728 PM, VOC, total...

  13. Arsenic speciation in rice and risk assessment of inorganic arsenic in Taiwan population.

    PubMed

    Chen, Hsiu-Ling; Lee, Ching-Chang; Huang, Winn-Jung; Huang, Han-Ting; Wu, Yi-Chen; Hsu, Ya-Chen; Kao, Yi-Ting

    2016-03-01

    This study assessed the total arsenic content and arsenic speciation in rice to determine the health risks associated with rice consumption in various age-gender subgroups in Taiwan. The average total arsenic levels in white rice and brown rice were 116.6 ± 39.2 and 215.5 ± 63.5 ng/g weight (n = 51 and 13), respectively. The cumulative cancer risk among males was 10.4/100,000. The highest fraction of inorganic/total arsenic content in white rice ranged from 76.9 to 88.2 % and from 81.0 to 96.5 % in brown rice. The current study found different arsenic speciation of rice in southern Taiwan, where the famous blackfoot disease has been reported compared with arsenic speciation from other Taiwan areas. Therefore, rice and other grains should be further monitored in southern Taiwan to evaluate whether arsenic contamination is well controlled in this area.

  14. Modeling Non-Steady Isotopologue and Isotopomer Speciation and Fractionation during Denitrification in Soils

    NASA Astrophysics Data System (ADS)

    Maggi, F.; Riley, W. J.

    2009-12-01

    The composition and location of 15N atoms on N2O isotopomers and isotopologues during isotope speciation has been used to characterize soil biological N cycling and N2O surface emissions. Although there exist few experimental observations, no attempt has been made to model N2O isotopomer speciation. The mathematical treatment of biological kinetic reactions in isotopic applications normally makes use of first-order and quasi steady-state complexation assumptions without taking into account changes in enzyme concentration, reaction stoichiometry, and isotopologue and isotopomer speciation. When multiatomic isotopically-labeled reactants are used in a multi-molecurar reaction, these assumptions may fail since they always lead to a constant fractionation factor and cannot describe speciation of isotopologues and isotopomers. We have developed a mathematical framework that is capable of describing isotopologue and isotopmer speciation and fractionation under the assumption of non-steady complexation during biological kinetic reactions that overcome the limitations mentioned above. This framework was applied to a case study of non-steady (variable and inverse) isotopic effects observed during N2O production and consumption in soils. Our mathematical treatment has led to generalized kinetic equations which replicate experimental observations with high accuracy and help interpret non-steady isotopic effects and isotopologue and isotopomer speciation. The kinetic equations introduced and applied here have general validity in describing isotopic effects in any biochemical reactions by considering: changing enzyme concentrations, mass and isotope conservation, and reaction stoichiometry. The equations also describe speciation of any isotopologue and isotopomer product from any isotopologue and isotopmer reactant.

  15. New mitochondrial DNA data affirm the importance of Pleistocene speciation in North American birds.

    PubMed

    Johnson, Ned K; Cicero, Carla

    2004-05-01

    The timing of origin of modern North American bird species in relation to Pleistocene glaciations has long been the topic of significant discussion and disagreement. Recently, Klicka and Zink (1997) and Avise and Walker (1998) enlivened this debate by using calibrated molecular distance values to estimate timing of speciations. Here we use new molecular studies to test their conclusions. Molecular distance values for 39 pairs of proven sister species, 27 of which are based on new data, alter the currently perceived pattern that avian species splits occurred mainly in the Pliocene and early-mid-Pleistocene. Mitochondrial DNA divergence values for this set of taxa showed a skewed distribution pointing toward relatively young speciation times, in contrast to the pattern presented by Klicka and Zink (1997) for 35 sister plus non-sister species pairs. Our pattern was not significantly different from that of Avise and Walker (1998) for "intraspecific phylogroups," some of which are species. We conclude that the entire Pleistocene, including the last two glacial cycles (<250,000 years ago), was important in speciations of modern North American birds. A substantial number of speciations were both initiated and completed in the last 250,000 years. Simultaneously, many taxa began to diverge in the Pleistocene but their speciations are not yet complete (per Avise and Walker 1998). The suggestion that durations of speciations average two million years is probably a substantial overestimate.

  16. Global isolation by distance despite strong regional phylogeography in a small metazoan

    PubMed Central

    Mills, Scott; Lunt, David H; Gómez, Africa

    2007-01-01

    Background Small vagile eukaryotic organisms, which comprise a large proportion of the Earth's biodiversity, have traditionally been thought to lack the extent of population structuring and geographic speciation observed in larger taxa. Here we investigate the patterns of genetic diversity, amongst populations of the salt lake microscopic metazoan Brachionus plicatilis s. s. (sensu stricto) (Rotifera: Monogononta) on a global scale. We examine the phylogenetic relationships of geographic isolates from four continents using a 603 bp fragment of the mitochondrial COI gene to investigate patterns of phylogeographic subdivision in this species. In addition we investigate the relationship between genetic and geographic distances on a global scale to try and reconcile the paradox between the high vagility of this species and the previously reported patterns of restricted gene flow, even over local spatial scales. Results Analysis of global sequence diversity of B. plicatilis s. s. reveals the presence of four allopatric genetic lineages: North American-Far East Asian, Western Mediterranean, Australian, and an Eastern Mediterranean lineage represented by a single isolate. Geographically orientated substructure is also apparent within the three best sampled lineages. Surprisingly, given this strong phylogeographic structure, B. plicatilis s. s. shows a significant correlation between geographic and genetic distance on a global scale ('isolation by distance' – IBD). Conclusion Despite its cosmopolitan distribution and potential for high gene flow, B. plicatilis s. s. is strongly structured at a global scale. IBD patterns have traditionally been interpreted to indicate migration-drift equilibrium, although in this system equilibrium conditions are incompatible with the observed genetic structure. Instead, we suggest the pattern may have arisen through persistent founder effects, acting in a similar fashion to geographic barriers for larger organisms. Our data indicates that geographic speciation, contrary to historical views, is likely to be very important in microorganisms. By presenting compelling evidence for geographic speciation in a small eukaryote we add to the growing body of evidence that is forcing us to rethink our views of global biodiversity. PMID:17999774

  17. STUDY OF THE FUNDAMENTALS OF MERCURY SPECIATION IN COAL-FIRED BOILERS UNDER SIMULATED POST-COMBUSTION CONDITIONS

    EPA Science Inventory

    The report discusses a continuation of the study on mercury speciation initiated in the fiscal year 1997 (FY97). The previous study found that cupric oxide (CuO) and ferric oxide (Fe2O3) in the presence of hydrogen chloride (HCl) promote elemental mercury oxidation in simulated f...

  18. Speciation evolution of zinc and copper during pyrolysis and hydrothermal carbonization treatments of sewage sludges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Rixiang; Zhang, Bei; Saad, Emily M.

    Thermal and hydrothermal treatments are promising techniques for sewage sludge management that can potentially facilitate safe waste disposal, energy recovery, and nutrient recovery/recycling. Content and speciation of heavy metals in the treatment products affect the potential environmental risks upon sludge disposal and/or application of the treatment products. Therefore, it is important to study the speciation transformation of heavy metals and the effects of treatment conditions. By combining synchrotron X-ray spectroscopy/microscopy analysis and sequential chemical extraction, this study systematically characterized the speciation of Zn and Cu in municipal sewage sludges and their chars derived from pyrolysis (a representative thermal treatment technique)more » and hydrothermal carbonization (HTC; a representative hydrothermal treatment technique). Spectroscopy analysis revealed enhanced sulfidation of Zn and Cu by anaerobic digestion and HTC treatments, as compared to desulfidation by pyrolysis. Overall, changes in the chemical speciation and matrix properties led to reduced mobility of Zn and Cu in the treatment products. These results provide insights into the reaction mechanisms during pyrolysis and HTC treatments of sludges and can help evaluate the environmental/health risks associated with the metals in the treatment products.« less

  19. ARSENIC SPECIATION ANALYSIS IN HUMAN SALIVA

    EPA Science Inventory

    Background: Determination of arsenic species in human saliva is potentially useful for biomonitoring of human exposure to arsenic and for studying arsenic metabolism. However, there is no report on the speciation analysis of arsenic in saliva. Methods: Arsenic species in saliva ...

  20. Arsenic speciation and reactivity in poultry litter

    USGS Publications Warehouse

    Arai, Y.; Lanzirotti, A.; Sutton, S.; Davis, J.A.; Sparks, D.L.

    2003-01-01

    Recent U.S. government action to lower the maximum concentration levels (MCL) of total arsenic (As) (10 ppb) in drinking water has raised serious concerns about the agricultural use of As-containing biosolids such as poultry litter (PL). In this study, solid-state chemical speciation, desorbability, and total levels of As in PL and long-term amended soils were investigated using novel synchrotronbased probing techniques (microfocused (??) synchrotron X-ray fluorescence (SXRF) and ??-X-ray absorption near-edge structure (XANES) spectroscopies) coupled with chemical digestion and batch experiments. The total As levels in the PL were as high as ???50 mg kg-1, and As(II/III and V) was always concentrated in abundant needle-shaped microscopic particles (???20/ ??m x 850 ??m) associated with Ca, Cu, and Fe and to a lesser extent with S, CI, and Zn. Postedge XANES features of litter particles are dissimilar to those of the organo-As(V) compound in poultry feed (i.e., roxarsone), suggesting possible degradation/transformation of roxarsone in the litter and/or in poultry digestive tracts. The extent of As desorption from the litter increased with increasing time and pH from 4.5 to 7, but at most 15% of the total As was released after 5 d at pH 7, indicating the presence of insoluble phases and/or strongly retained soluble compounds. No significant As accumulation (< 15 mg kg-1) was found in long-term PL-a mended agricultural surface soils. This suggests that As in the PL may have undergone surface and subsurface transport processes. Our research results raise concerns about long-term PL amendment effects on As contamination in surrounding soilwater environments.

  1. Quantum Chemical Examination of the Sequential Halogen Incorporation Scheme for the Modeling of Speciation of I/Br/Cl-Containing Trihalomethanes.

    PubMed

    Zhang, Chenyang; Li, Maodong; Han, Xuze; Yan, Mingquan

    2018-02-20

    The recently developed three-step ternary halogenation model interprets the incorporation of chlorine, bromine, and iodine ions into natural organic matter (NOM) and formation of iodine-, bromine-, and chlorine-containing trihalomethanes (THMs) based on the competition of iodine, bromine, and chlorine species at each node of the halogenation sequence. This competition is accounted for using the dimensionless ratios (denoted as γ) of kinetic rates of reactions of the initial attack sites or halogenated intermediates with chlorine, bromine, and iodine ions. However, correlations between the model predictions made and mechanistic aspects of the incorporation of halogen species need to be ascertained in more detail. In this study, quantum chemistry calculations were first used to probe the formation mechanism of 10 species of Cl-/Br-/I- THMs. The HOMO energy (E HOMO ) of each mono-, bi-, or trihalomethanes were calculated by B3LYP method in Gaussian 09 software. Linear correlations were found to exist between the logarithms of experimentally determined kinetic preference coefficients γ reported in prior research and, on the other hand, differences of E HOMO values between brominated/iodinated and chlorinated halomethanes. One notable exception from this trend was that observed for the incorporation of iodine into mono- and di-iodinated intermediates. These observations confirm the three-step halogen incorporation sequence and the factor γ in the statistical model. The combined use of quantum chemistry calculations and the ternary sequential halogenation model provides a new insight into the microscopic nature of NOM-halogen interactions and the trends seen in the behavior of γ factors incorporated in the THM speciation models.

  2. Speciation of heavy metals in landfill leachate: a review.

    PubMed

    Baun, Dorthe L; Christensen, Thomas H

    2004-02-01

    The literature was reviewed with respect to metal speciation methods in aquatic samples specifically emphasizing speciation of heavy metals in landfill leachate. Speciation here refers to physical fractionation (particulate, colloidal, dissolved), chemical fractionation (organic complexes, inorganic complexes, free metal ions), as well as computer-based thermodynamic models. Relatively few landfill leachate samples have been speciated in detail (less than 30) representing only a few landfills (less than 15). This suggests that our knowledge about metal species in landfill leachate still is indicative. In spite of the limited database and the different definitions of the dissolved fraction (< 0.45 microm or < 0.001 microm) the studies consistently show that colloids as well as organic and inorganic complexes are important for all heavy metals in landfill leachate. The free metal ion constitutes less than 30%, typically less than 10%, of the total metal concentration. This has significant implications for sampling, since no standardized procedures exist, and for assessing the content of metals in leachate in the context of its treatment, toxicity and migration in aquifers.

  3. Parapatric speciation in three islands: dynamics of geographical configuration of allele sharing

    PubMed Central

    Iwasa, Yoh

    2017-01-01

    We studied the time to speciation by geographical isolation for a species living on three islands connected by rare migration. We assumed that incompatibility was controlled by a number of quantitative loci and that individuals differing in loci by more than a threshold did not mix genetically with each other. For each locus, we defined the geographical configuration (GC), which specifies islands with common alleles, and traced the stochastic transitions between different GCs. From these results, we calculated the changes in genetic distances. As a single migration event provides an opportunity for transitions in multiple loci, the GCs of different loci are correlated, which can be evaluated by constructing the stochastic differential equations of the number of loci with different GCs. Our model showed that the low number of incompatibility loci facilitates parapatric speciation and that migrants arriving as a group shorten the waiting time to speciation compared with the same number of migrants arriving individually. We also discuss how speciation rate changes with geographical structure. PMID:28386439

  4. Something's Fishy in Paxton Lake: A Case on Speciation in Sticklebacks.

    ERIC Educational Resources Information Center

    Sharp, Joan

    2002-01-01

    Introduces a case study on speciation and evolutionary mechanisms. Teaches science process skills as well as natural selection, biological species concepts, basic genetic terminology, and classification. Includes teaching notes and classroom management strategies. (Contains 14 references.) (YDS)

  5. Selenium speciation in acidic environmental samples: application to acid rain-soil interaction at Mount Etna volcano.

    PubMed

    Floor, Geerke H; Iglesías, Mònica; Román-Ross, Gabriela; Corvini, Philippe F X; Lenz, Markus

    2011-09-01

    Speciation plays a crucial role in elemental mobility. However, trace level selenium (Se) speciation analyses in aqueous samples from acidic environments are hampered due to adsorption of the analytes (i.e. selenate, selenite) on precipitates. Such solid phases can form during pH adaptation up till now necessary for chromatographic separation. Thermodynamic calculations in this study predicted that a pH<4 is needed to prevent precipitation of Al and Fe phases. Therefore, a speciation method with a low pH eluent that matches the natural sample pH of acid rain-soil interaction samples from Etna volcano was developed. With a mobile phase containing 20mM ammonium citrate at pH 3, selenate and selenite could be separated in different acidic media (spiked water, rain, soil leachates) in <10 min with a LOQ of 0.2 μg L(-1) using (78)Se for detection. Applying this speciation analysis to study acid rain-soil interaction using synthetic rain based on H(2)SO(4) and soil samples collected at the flanks of Etna volcano demonstrated the dominance of selenate over selenite in leachates from samples collected close to the volcanic craters. This suggests that competitive behavior with sulfate present in acid rain might be a key factor in Se mobilization. The developed speciation method can significantly contribute to understand Se cycling in acidic, Al/Fe rich environments. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Arsenic Speciation in Groundwater: Role of Thioanions

    EPA Science Inventory

    The behavior of arsenic in groundwater environments is fundamentally linked to its speciation. Understanding arsenic speciation is important because chemical speciation impacts reactivity, bioavailability, toxicity, and transport and fate processes. In aerobic environments arsen...

  7. The shape and temporal dynamics of phylogenetic trees arising from geographic speciation.

    PubMed

    Pigot, Alex L; Phillimore, Albert B; Owens, Ian P F; Orme, C David L

    2010-12-01

    Phylogenetic trees often depart from the expectations of stochastic models, exhibiting imbalance in diversification among lineages and slowdowns in the rate of lineage accumulation through time. Such departures have led to a widespread perception that ecological differences among species or adaptation and subsequent niche filling are required to explain patterns of diversification. However, a key element missing from models of diversification is the geographical context of speciation and extinction. In this study, we develop a spatially explicit model of geographic range evolution and cladogenesis, where speciation arises via vicariance or peripatry, and explore the effects of these processes on patterns of diversification. We compare the results with those observed in 41 reconstructed avian trees. Our model shows that nonconstant rates of speciation and extinction are emergent properties of the apportioning of geographic ranges that accompanies speciation. The dynamics of diversification exhibit wide variation, depending on the mode of speciation, tendency for range expansion, and rate of range evolution. By varying these parameters, the model is able to capture many, but not all, of the features exhibited by birth-death trees and extant bird clades. Under scenarios with relatively stable geographic ranges, strong slowdowns in diversification rates are produced, with faster rates of range dynamics leading to constant or accelerating rates of apparent diversification. A peripatric model of speciation with stable ranges also generates highly unbalanced trees typical of bird phylogenies but fails to produce realistic range size distributions among the extant species. Results most similar to those of a birth-death process are reached under a peripatric speciation scenario with highly volatile range dynamics. Taken together, our results demonstrate that considering the geographical context of speciation and extinction provides a more conservative null model of diversification and offers a very different perspective on the phylogenetic patterns expected in the absence of ecology.

  8. Ecological speciation in an island snail: evidence for the parallel evolution of a novel ecotype and maintenance by ecologically dependent postzygotic isolation.

    PubMed

    Stankowski, Sean

    2013-05-01

    Speciation is the process by which reproductive isolation evolves between populations. Two general models of speciation have been proposed: ecological speciation, where reproductive barriers evolve due to ecologically based divergent selection, and mutation-order speciation, where populations fix different mutations as they adapt to similar selection pressures. I evaluate these alternative models and determine the progress of speciation in a diverse group of land snails, genus Rhagada, inhabiting Rosemary Island. A recently derived keeled-flat morphotype occupies two isolated rocky hills, while globose-shelled snails inhabit the surrounding plains. The study of one hill reveals that they are separated by a narrow hybrid zone. As predicted by ecological speciation theory, there are local and landscape level associations between shell shape and habitat, and the morphological transition coincides with a narrow ecotone between the two distinct environments. Microsatellite DNA revealed a cline of hybrid index scores much wider than the morphological cline, further supporting the ecological maintenance of the morphotypes. The hybrid zone does not run through an area of low population density, as is expected for mutation-order hybrid zones, and there is a unimodal distribution of phenotypes at the centre, suggesting that there is little or no prezygotic isolation. Instead, these data suggest that the ecotypes are maintained by ecologically dependent postzygotic isolation (i.e. ecological selection against hybrids). Mitochondrial and Microsatellite DNA indicate that the keeled-flat form evolved recently, and without major historical disruptions to gene flow. The data also suggest that the two keeled-flat populations, inhabiting similar rocky hills, have evolved in parallel. These snails provide a complex example of ecological speciation in its early stages. © 2013 Blackwell Publishing Ltd.

  9. Geological and climatic forces driving speciation in the continentally distributed trilling chorus frogs (Pseudacris).

    PubMed

    Lemmon, Emily Moriarty; Lemmon, Alan R; Cannatella, David C

    2007-09-01

    Tertiary geological events and Quaternary climatic fluctuations have been proposed as important factors of speciation in the North American flora and fauna. Few studies, however, have rigorously tested hypotheses regarding the specific factors driving divergence of taxa. Here, we test explicit speciation hypotheses by correlating geologic events with divergence times among species in the continentally distributed trilling chorus frogs (Pseudacris). In particular, we ask whether marine inundation of the Mississippi Embayment, uplift of the Appalachian Mountains, or modification of the ancient Teays-Mahomet River system contributed to speciation. To examine the plausibility of ancient rivers causing divergence, we tested whether modern river systems inhibit gene flow. Additionally, we compared the effects of Quaternary climatic factors (glaciation and aridification) on levels of genetic variation. Divergence time estimates using penalized likelihood and coalescent approaches indicate that the major lineages of chorus frogs diversified during the Tertiary, and also exclude Quaternary climate change as a factor in speciation of chorus frogs. We show the first evidence that inundation of the Mississippi Embayment contributed to speciation. We reject the hypotheses that Cenozoic uplift of the Appalachians and that diversion of the Teays-Mahomet River contributed to speciation in this clade. We find that by reducing gene flow, rivers have the potential to cause divergence of lineages. Finally, we demonstrate that populations in areas affected by Quaternary glaciation and aridification have reduced levels of genetic variation compared to those from more equable regions, suggesting recent colonization.

  10. Anaerobic Digestion Alters Copper and Zinc Speciation.

    PubMed

    Legros, Samuel; Levard, Clément; Marcato-Romain, Claire-Emmanuelle; Guiresse, Maritxu; Doelsch, Emmanuel

    2017-09-19

    Anaerobic digestion is a widely used organic waste treatment process. However, little is known on how it could alter the speciation of contaminants in organic waste. This study was focused on determining the influence of anaerobic digestion on the speciation of copper and zinc, two metals that generally occur at high concentration in organic waste. Copper and zinc speciation was investigated by X-ray absorption spectroscopy in four different raw organic wastes (predigestion) and their digested counterparts (postdigestion, i.e., digestates). The results highlighted an increase in the digestates of the proportion of amorphous or nanostructured copper sulfides as well as amorphous or nanostructured zinc sulfides and zinc phosphate as compared to raw waste. We therefore suggest that the environmental fate of these elements would be different when spreading either digestates or raw waste on cropland.

  11. Capillary electrophoresis application in metal speciation and complexation characterization

    USDA-ARS?s Scientific Manuscript database

    Capillary electrophoresis is amenable to the separation of metal ionic species and the characterization of metal-ligand interactions. This book chapter reviews and discusses three representative case studies in applications of CE technology in speciation and reactions of metal with organic molecules...

  12. Bats (Chiroptera: Noctilionoidea) Challenge a Recent Origin of Extant Neotropical Diversity.

    PubMed

    Rojas, Danny; Warsi, Omar M; Dávalos, Liliana M

    2016-05-01

    The mechanisms underlying the high extant biodiversity in the Neotropics have been controversial since the 19th century. Support for the influence of period-specific changes on diversification often rests on detecting more speciation events during a particular period. The timing of speciation events may reflect the influence of incomplete taxon sampling, protracted speciation, and null processes of lineage accumulation. Here we assess the influence of these factors on the timing of speciation with new multilocus data for New World noctilionoid bats (Chiroptera: Noctilionoidea). Biogeographic analyses revealed the importance of the Neotropics in noctilionoid diversification, and the critical role of dispersal. We detected no shift in speciation rate associated with the Quaternary or pre-Quaternary periods, and instead found an increase in speciation linked to the evolution of the subfamily Stenodermatinae (∼18 Ma). Simulations modeling constant speciation and extinction rates for the phylogeny systematically showed more speciation events in the Quaternary. Since recording more divergence events in the Quaternary can result from lineage accumulation, the age of extant sister species cannot be interpreted as supporting higher speciation rates during this period. Instead, analyzing the factors that influence speciation requires modeling lineage-specific traits and environmental, spatial, and ecological drivers of speciation. © The Author(s) 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Modeling the two-locus architecture of divergent pollinator adaptation: how variation in SAD paralogs affects fitness and evolutionary divergence in sexually deceptive orchids.

    PubMed

    Xu, Shuqing; Schlüter, Philipp M

    2015-01-01

    Divergent selection by pollinators can bring about strong reproductive isolation via changes at few genes of large effect. This has recently been demonstrated in sexually deceptive orchids, where studies (1) quantified the strength of reproductive isolation in the field; (2) identified genes that appear to be causal for reproductive isolation; and (3) demonstrated selection by analysis of natural variation in gene sequence and expression. In a group of closely related Ophrys orchids, specific floral scent components, namely n-alkenes, are the key floral traits that control specific pollinator attraction by chemical mimicry of insect sex pheromones. The genetic basis of species-specific differences in alkene production mainly lies in two biosynthetic genes encoding stearoyl-acyl carrier protein desaturases (SAD) that are associated with floral scent variation and reproductive isolation between closely related species, and evolve under pollinator-mediated selection. However, the implications of this genetic architecture of key floral traits on the evolutionary processes of pollinator adaptation and speciation in this plant group remain unclear. Here, we expand on these recent findings to model scenarios of adaptive evolutionary change at SAD2 and SAD5, their effects on plant fitness (i.e., offspring number), and the dynamics of speciation. Our model suggests that the two-locus architecture of reproductive isolation allows for rapid sympatric speciation by pollinator shift; however, the likelihood of such pollinator-mediated speciation is asymmetric between the two orchid species O. sphegodes and O. exaltata due to different fitness effects of their predominant SAD2 and SAD5 alleles. Our study not only provides insight into pollinator adaptation and speciation mechanisms of sexually deceptive orchids but also demonstrates the power of applying a modeling approach to the study of pollinator-driven ecological speciation.

  14. Instrumentation for Aerosol and Gas Speciation

    NASA Technical Reports Server (NTRS)

    Coggiola, Michael J.

    1998-01-01

    Using support from NASA Grant No. NAG 2-963, SRI International successfully completed the project, entitled, 'Instrumentation for Aerosol and Gas Speciation.' This effort (SRI Project 7383) covered the design, fabrication, testing, and deployment of a real-time aerosol speciation instrument in NASA's DC-8 aircraft during the Spring 1996 SUbsonic aircraft: Contrail and Cloud Effects Special Study (SUCCESS) mission. This final technical report describes the pertinent details of the instrument design, its abilities, its deployment during SUCCESS and the data acquired from the mission, and the post-mission calibration, data reduction, and analysis.

  15. Primate diversification inferred from phylogenies and fossils.

    PubMed

    Herrera, James P

    2017-12-01

    Biodiversity arises from the balance between speciation and extinction. Fossils record the origins and disappearance of organisms, and the branching patterns of molecular phylogenies allow estimation of speciation and extinction rates, but the patterns of diversification are frequently incongruent between these two data sources. I tested two hypotheses about the diversification of primates based on ∼600 fossil species and 90% complete phylogenies of living species: (1) diversification rates increased through time; (2) a significant extinction event occurred in the Oligocene. Consistent with the first hypothesis, analyses of phylogenies supported increasing speciation rates and negligible extinction rates. In contrast, fossils showed that while speciation rates increased, speciation and extinction rates tended to be nearly equal, resulting in zero net diversification. Partially supporting the second hypothesis, the fossil data recorded a clear pattern of diversity decline in the Oligocene, although diversification rates were near zero. The phylogeny supported increased extinction ∼34 Ma, but also elevated extinction ∼10 Ma, coinciding with diversity declines in some fossil clades. The results demonstrated that estimates of speciation and extinction ignoring fossils are insufficient to infer diversification and information on extinct lineages should be incorporated into phylogenetic analyses. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  16. Bromine speciation in hydrous haplogranitic melts up to 7 GPa

    NASA Astrophysics Data System (ADS)

    Cochain, B.; de Grouchy, C.; Crepisson, C.; Kantor, I.; Irifune, T.; Sanloup, C.

    2013-12-01

    Halogens are minor volatiles in the Earth's mantle and crust, but they have significant and specific influences on magmatic and degassing processes. They also provide insights about subsurface magma movement and eruption likelihood in subduction-related volcanism. Their speciation in silicate melts affects volatile exsolution, rheology, and the thermodynamic properties of the melts but still remains relatively unknown. A few studies have explored halogen speciation at room conditions, i.e. in glasses but no firm conclusion has yet been reached. Furthermore, halogen speciation remains unexplored at high pressures and temperatures. In this work we investigate the speciation of Br in subduction-related melt (hydrous haplogranite melt) up to 1200°C and 7 GPa using X-ray absorption spectroscopy (XANES and EXAFS) at the Br K-edge. High P-T conditions were generated by the Paris-Edinburgh press. The use of nanocrystalline diamond capsules enabled us to avoid glitches in the EXAFS spectra. The results provide valuable information on Br speciation and its evolution with pressure. It gives insights into solubility mechanisms for halogens in magmas at depth and on their degassing from the melt. In addition, we were able to identify quench effects on the atomic environment of Br by comparison of high P-T in-situ spectra and ex-situ spectra recorded on quenched samples.

  17. PILOT-SCALE STUDY OF THE EFFECT OF SELECTIVE CATALYTIC REDUCTION CATALYST ON MERCURY SPECIATION IN ILLINOIS AND POWDER RIVER BASIN COAL COMBUSTION FLUE GASES

    EPA Science Inventory

    A study was conducted to investigate the effect of selective catalytic reduction (SCR) catalyst on mercury (Hg) speciation in bituminous and subbituminous coal combustion flue gases. Three different Illinois Basin bituminous coals (from high to low sulfur and chlorine) and one Po...

  18. The long term tsunami impact: Evolution of iron speciation and major elements concentration in tsunami deposits from Thailand.

    PubMed

    Kozak, Lidia; Niedzielski, Przemyslaw

    2017-08-01

    The article describes the unique studies of the chemical composition changes of new geological object (tsunami deposits in south Thailand - Andaman Sea Coast) during four years (2005-2008) from the beginning of formation of it (deposition of tsunami transported material, 26 December 2004). The chemical composition of the acid leachable fraction of the tsunami deposits has been studied in the scope of concentration macrocompounds - concentration of calcium, magnesium, iron, manganese and iron speciation - the occurrence of Fe(II), Fe(III) and non-ionic iron species described as complexed iron (Fe complex). The changes of chemical composition and iron speciation in the acid leachable fraction of tsunami deposits have been observed with not clear tendencies of changes direction. For iron speciation changes the transformation of the Fe complex to Fe(III) has been recorded with no significant changes of the level of Fe(II). Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Early events in speciation: Cryptic species of Drosophila aldrichi.

    PubMed

    Castro Vargas, Cynthia; Richmond, Maxi Polihronakis; Ramirez Loustalot Laclette, Mariana; Markow, Therese Ann

    2017-06-01

    Understanding the earliest events in speciation remains a major challenge in evolutionary biology. Thus identifying species whose populations are beginning to diverge can provide useful systems to study the process of speciation. Drosophila aldrichi , a cactophilic fruit fly species with a broad distribution in North America, has long been assumed to be a single species owing to its morphological uniformity. While previous reports either of genetic divergence or reproductive isolation among different D. aldrichi strains have hinted at the existence of cryptic species, the evolutionary relationships of this species across its range have not been thoroughly investigated. Here we show that D. aldrichi actually is paraphyletic with respect to its closest relative, Drosophila wheeleri , and that divergent D. aldrichi lineages show complete hybrid male sterility when crossed. Our data support the interpretation that there are at least two species of D. aldrichi, making these flies particularly attractive for studies of speciation in an ecological and geographical context.

  20. EPAs SPECIATE 4.4 Database: Development and Uses

    EPA Science Inventory

    SPECIATE is the U.S. Environmental Protection Agency’s (EPA) repository of source category-specific particulate matter (PM), volatile organic gas, and other gas speciation profiles of air pollutant emissions. Abt Associates, Inc. developed SPECIATE 4.4 through a collaborat...

  1. SPECIATE Version 4.4 Database Development Documentation

    EPA Science Inventory

    SPECIATE is the U.S. Environmental Protection Agency’s (EPA) repository of volatile organic gas and particulate matter (PM) speciation profiles of air pollution sources. Some of the many uses of these source profiles include: (1) creating speciated emissions inventories for regi...

  2. SPECIATE - EPA'S DATABASE OF SPECIATED EMISSION PROFILES

    EPA Science Inventory

    SPECIATE is the U.S. Environmental Protection Agency's (EPA) repository of total organic compound (TOC) and particulate matter (PM) speciation profiles for emissions from air pollution sources. The data base has recently been updated and an associated report has recently been re...

  3. Invisible and microscopic gold in pyrite: Methods and new data for massive sulfide ores of the Urals

    NASA Astrophysics Data System (ADS)

    Vikentyev, I. V.

    2015-07-01

    Au speciation in sulfides (including "invisible" Au), which mostly controls the loss of Au during ore dressing, is discussed. Modern methods of analysis of Au speciation, with discussion of limitations by locality and sensitivity, are reviewed. The results of sulfide investigation by the methods of scanning and transmission electron microscopy, mass spectrometric analysis with laser ablation (LA-ICP-MS), the thermochemical method (study of ionic Au speciation), and automated "quantitative mineralogy," are demonstrated for weakly metamorphosed VHMS deposits of the Urals (Galkinsk and Uchaly). Significant content of Au is scattered in sulfides, such as pyrite, chalcopyrite, and sphalerite, with quantitative predomination of pyrite. The portion of such "invisible" gold ranges from <10% (Galkinsk deposit) to 85% (Uchaly deposit). Major part of "invisible" gold occurs as micron- to nanoscale particles of Au minerals. The portion of gold structurally bound in pyrite lattice (from the bulk concentration of Au in pyrite) is estimated to be from few % (the Galkinsk deposit) to 20-25% (the Uchaly deposit). The presence of As and Sb in pyrite and sphalerite, as well as other trace elements (Te, Co, Mn, Cu, Hg, and Ag in both as well as Fe in sphalerite) stimulates the incorporation of Au in sulfide, but mostly in defect-associated, not isomorphic form. Micron particles of Ag sulfosalts (pyrargyrite, freibergite, stephanite, polybasite, pyrostilpnite, argentotetrahedrite, pearceite, proustite), Au-Ag alloys (from gold of high fineness to küstelite), Ag and Au-Ag tellurides (hessite, empressite, calaverite), and occasional Au-Ag sulfides (petrovskaite, uytenbogaardtite) were registered in the areas of Au enrichment of both deposits; selenotelluride (kurilite) particles were found on the Galkinsk deposit. Nanoscale (1-50 nm) native gold (spherical and disk-shaped particles, flakes) with a monocrystal diffraction pattern of some particles and a ring diffraction pattern of other particles was registered in the ores of these deposits by the methods of transmission electron microscopy. The low degree (or absence) of metamorphic recrystallization results in (1) predomination of thin intergrowths of sulfides, which is the main reason for the bad concentration of ores (especially for the Galkinsk deposit) and (2) the high portion of "invisible" gold in the massive sulfide ores, which explains the low yield of Au in copper and zinc concentrates, since it is lost in tailings with predominating pyrite.

  4. Influence of dissolved organic matter and manganese oxides on metal speciation in soil solution: A modelling approach.

    PubMed

    Schneider, Arnaud R; Ponthieu, Marie; Cancès, Benjamin; Conreux, Alexandra; Morvan, Xavier; Gommeaux, Maxime; Marin, Béatrice; Benedetti, Marc F

    2016-06-01

    Trace element (TE) speciation modelling in soil solution is controlled by the assumptions made about the soil solution composition. To evaluate this influence, different assumptions using Visual MINTEQ were tested and compared to measurements of free TE concentrations. The soil column Donnan membrane technique (SC-DMT) was used to estimate the free TE (Cd, Cu, Ni, Pb and Zn) concentrations in six acidic soil solutions. A batch technique using DAX-8 resin was used to fractionate the dissolved organic matter (DOM) into four fractions: humic acids (HA), fulvic acids (FA), hydrophilic acids (Hy) and hydrophobic neutral organic matter (HON). To model TE speciation, particular attention was focused on the hydrous manganese oxides (HMO) and the Hy fraction, ligands not considered in most of the TE speciation modelling studies in soil solution. In this work, the model predictions of free ion activities agree with the experimental results. The knowledge of the FA fraction seems to be very useful, especially in the case of high DOM content, for more accurately representing experimental data. Finally, the role of the manganese oxides and of the Hy fraction on TE speciation was identified and, depending on the physicochemical conditions of the soil solution, should be considered in future studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Search for microbial signatures within human and microbial calcifications using soft x-ray spectromicroscopy.

    PubMed

    Benzerara, Karim; Miller, Virginia M; Barell, Gerard; Kumar, Vivek; Miot, Jennyfer; Brown, Gordon E; Lieske, John C

    2006-11-01

    The origin of advanced arterial and renal calcification remains poorly understood. Self-replicating, calcifying entities have been detected and isolated from calcified human tissues, including blood vessels and kidney stones, and are referred to as nanobacteria. However, the microbiologic nature of putative nanobacteria continues to be debated, in part because of the difficulty in discriminating biomineralized microbes from minerals nucleated on anything else (eg, macromolecules, cell membranes). To address this controversy, the use of techniques capable of characterizing the organic and mineral content of these self-replicated structures at the submicrometer scale would be beneficial. Calcifying gram-negative bacteria (Caulobacter crescentus, Ramlibacter tataouinensis) used as references and self-replicating calcified nanoparticles cultured from human samples of calcified aneurysms were examined using a scanning transmission x-ray microscope (STXM) at the Advanced Light Source at Lawrence Berkeley National Laboratory. This microscope uses a monochromated and focused synchrotron x-ray beam (80-2,200 eV) to yield microscopic and spectroscopic information on both organic compounds and minerals at the 25 nm scale. High-spatial and energy resolution near-edge x-ray absorption fine structure (NEXAFS) spectra indicative of elemental speciation acquired at the C K-edge, N K-edge, and Ca L(2,3)-edge on a single-cell scale from calcified C. crescentus and R. tataouinensis displayed unique spectral signatures different from that of nonbiologic hydroxyapatite (Ca(10)(PO(4))(6)(OH)(2)). Further, preliminary NEXAFS measurements of calcium, carbon, and nitrogen functional groups of cultured calcified nanoparticles from humans revealed evidence of organics, likely peptides or proteins, specifically associated with hydroxyapatite minerals. Using NEXAFS at the 25 nm spatial scale, it is possible to define a biochemical signature for cultured calcified bacteria, including proteins, polysaccharides, nucleic acids, and hydroxyapatite. These preliminary studies suggest that nanoparticles isolated from human samples share spectroscopic characteristics with calcified proteins.

  6. SPECIATE--EPA'S DATABASE OF SPECIATED EMISSION PROFILES

    EPA Science Inventory

    SPECIATE is EPA's repository of Total Organic Compound and Particulate Matter speciated profiles for a wide variety of sources. The profiles in this system are provided for air quality dispersion modeling and as a library for source-receptor and source apportionment type models. ...

  7. SPECIATE 4.4: The Bridge Between Emissions Characterization and Modeling

    EPA Science Inventory

    SPECIATE is the U.S. Environmental Protection Agency’s (EPA) repository of volatile organic gas and particulate matter (PM) speciation profiles of air pollution sources. Some of the many uses of these source profiles include: (1) creating speciated emissions inventories for...

  8. The importance of trace element speciation in biomedical science.

    PubMed

    Templeton, Douglas M

    2003-04-01

    According to IUPAC terminology, trace element speciation reflects differences in chemical composition at multiple levels from nuclear and electronic structure to macromolecular complexation. In the medical sciences, all levels of composition are important in various circumstances, and each can affect the bioavailability, distribution, physiological function, toxicity, diagnostic utility, and therapeutic potential of an element. Here we discuss, with specific examples, three biological principles in the intimate relation between speciation and biological behavior: i) the kinetics of interconversion of species determines distribution within the organism, ii) speciation governs transport across various biological barriers, and iii) speciation can limit potentially undesirable interactions between physiologically essential elements. We will also describe differences in the speciation of iron in states of iron overload, to illustrate how speciation analysis can provide insight into cellular processes in human disease.

  9. Antipredator defenses predict diversification rates

    PubMed Central

    Arbuckle, Kevin; Speed, Michael P.

    2015-01-01

    The “escape-and-radiate” hypothesis predicts that antipredator defenses facilitate adaptive radiations by enabling escape from constraints of predation, diversified habitat use, and subsequently speciation. Animals have evolved diverse strategies to reduce the direct costs of predation, including cryptic coloration and behavior, chemical defenses, mimicry, and advertisement of unprofitability (conspicuous warning coloration). Whereas the survival consequences of these alternative defenses for individuals are well-studied, little attention has been given to the macroevolutionary consequences of alternative forms of defense. Here we show, using amphibians as the first, to our knowledge, large-scale empirical test in animals, that there are important macroevolutionary consequences of alternative defenses. However, the escape-and-radiate hypothesis does not adequately describe them, due to its exclusive focus on speciation. We examined how rates of speciation and extinction vary across defensive traits throughout amphibians. Lineages that use chemical defenses show higher rates of speciation as predicted by escape-and-radiate but also show higher rates of extinction compared with those without chemical defense. The effect of chemical defense is a net reduction in diversification compared with lineages without chemical defense. In contrast, acquisition of conspicuous coloration (often used as warning signals or in mimicry) is associated with heightened speciation rates but unchanged extinction rates. We conclude that predictions based on the escape-and-radiate hypothesis must incorporate the effect of traits on both speciation and extinction, which is rarely considered in such studies. Our results also suggest that knowledge of defensive traits could have a bearing on the predictability of extinction, perhaps especially important in globally threatened taxa such as amphibians. PMID:26483488

  10. The importance of ligand speciation in environmental research: a case study.

    PubMed

    Sillanpää, M; Orama, M; Rämö, J; Oikari, A

    2001-02-21

    The speciations of EDTA and DTPA in process, waste and river waters are modelled and simulated, specifically to the mode of occurrence in the pulp and paper mill effluents and subsequently in receiving waters. Due to relatively short residence times in bleaching process and waste water treatment and slow exchange kinetics, it is expected that the thermodynamic equilibrium is not necessarily reached. Therefore, the initial speciation plays a key role. As such, the simulations have been extended to the process waters of the pulp and paper industry taking into account estimated average conditions. The results reveal that the main species are; Mn and Ca complexes of EDTA and DTPA in pulp mill process waters; Fe(III) and Mn complexes of EDTA and DTPA in waste waters; Fe(III) and Zn complexes of EDTA and DTPA in receiving waters. It is also shown how the increasing concentration of complexing agents effects the speciation. Alkaline earth metal chelation plays a significant role in the speciation of EDTA and DTPA when there is a noticeable molar excess of complexing agents compared with transition metals.

  11. Speciation through the lens of biomechanics: locomotion, prey capture and reproductive isolation.

    PubMed

    Higham, Timothy E; Rogers, Sean M; Langerhans, R Brian; Jamniczky, Heather A; Lauder, George V; Stewart, William J; Martin, Christopher H; Reznick, David N

    2016-09-14

    Speciation is a multifaceted process that involves numerous aspects of the biological sciences and occurs for multiple reasons. Ecology plays a major role, including both abiotic and biotic factors. Whether populations experience similar or divergent ecological environments, they often adapt to local conditions through divergence in biomechanical traits. We investigate the role of biomechanics in speciation using fish predator-prey interactions, a primary driver of fitness for both predators and prey. We highlight specific groups of fishes, or specific species, that have been particularly valuable for understanding these dynamic interactions and offer the best opportunities for future studies that link genetic architecture to biomechanics and reproductive isolation (RI). In addition to emphasizing the key biomechanical techniques that will be instrumental, we also propose that the movement towards linking biomechanics and speciation will include (i) establishing the genetic basis of biomechanical traits, (ii) testing whether similar and divergent selection lead to biomechanical divergence, and (iii) testing whether/how biomechanical traits affect RI. Future investigations that examine speciation through the lens of biomechanics will propel our understanding of this key process. © 2016 The Author(s).

  12. 250 years of hybridization between two biennial herb species without speciation.

    PubMed

    Matthews, Andrew; Emelianova, Katie; Hatimy, Abubakar A; Chester, Michael; Pellicer, Jaume; Ahmad, Khawaja Shafique; Guignard, Maité S; Rouhan, Germinal; Soltis, Douglas E; Soltis, Pamela S; Leitch, Ilia J; Leitch, Andrew R; Mavrodiev, Evgeny V; Buggs, Richard J A

    2015-07-17

    Hybridization between plant species can generate novel morphological diversity and lead to speciation at homoploid or polyploid levels. Hybrids between biennial herbs Tragopogon pratensis and T. porrifolius have been studied in experimental and natural populations for over 250 years. Here we examine their current status in natural populations in southeast England. All hybrids found were diploid; they tended to grow taller and with more buds than their parental species; many showed partial fertility; a few showed evidence of backcrossing. However, we found no evidence to suggest that the hybrids are establishing as a new species, nor can we find literature documenting speciation of these hybrids elsewhere. This lack of speciation despite at least 250 years of hybridization contrasts with the fact that both parental species have formed new allopolyploid species through hybridization with another diploid, T. dubius. Understanding why hybrids often do not speciate, despite repeated opportunities, would enhance our understanding of both the evolutionary process and risk assessments of invasive species. Published by Oxford University Press on behalf of the Annals of Botany Company.

  13. Complete genomes of Hairstreak butterflies, their speciation, and nucleo-mitochondrial incongruence

    PubMed Central

    Cong, Qian; Shen, Jinhui; Borek, Dominika; Robbins, Robert K.; Otwinowski, Zbyszek; Grishin, Nick V.

    2016-01-01

    Comparison of complete genomes of closely related species enables research on speciation and how phenotype is determined by genotype. Lepidoptera, an insect order of 150,000 species with diverse phenotypes, is well-suited for such comparative genomics studies if new genomes, which cover additional Lepidoptera families are acquired. We report a 729 Mbp genome assembly of the Calycopis cecrops, the first genome from the family Lycaenidae and the largest available Lepidoptera genome. As detritivore, Calycopis shows expansion in detoxification and digestion enzymes. We further obtained complete genomes of 8 Calycopis specimens: 3 C. cecrops and 5 C. isobeon, including a dry specimen stored in the museum for 30 years. The two species differ subtly in phenotype and cannot be differentiated by mitochondrial DNA. However, nuclear genomes revealed a deep split between them. Genes that can clearly separate the two species (speciation hotspots) mostly pertain to circadian clock, mating behavior, transcription regulation, development and cytoskeleton. The speciation hotspots and their function significantly overlap with those we previously found in Pterourus, suggesting common speciation mechanisms in these butterflies. PMID:27120974

  14. A review of recent developments in the speciation and location of arsenic and selenium in rice grain

    PubMed Central

    Carey, Anne-Marie; Lombi, Enzo; Donner, Erica; de Jonge, Martin D.; Punshon, Tracy; Jackson, Brian P.; Guerinot, Mary Lou; Price, Adam H.; Meharg, Andrew A.

    2014-01-01

    Rice is a staple food yet is a significant dietary source of inorganic arsenic, a class 1, nonthreshold carcinogen. Establishing the location and speciation of arsenic within the edible rice grain is essential for understanding the risk and for developing effective strategies to reduce grain arsenic concentrations. Conversely, selenium is an essential micronutrient and up to 1 billion people worldwide are selenium-deficient. Several studies have suggested that selenium supplementation can reduce the risk of some cancers, generating substantial interest in biofortifying rice. Knowledge of selenium location and speciation is important, because the anti-cancer effects of selenium depend on its speciation. Germanic acid is an arsenite/silicic acid analogue, and location of germanium may help elucidate the mechanisms of arsenite transport into grain. This review summarises recent discoveries in the location and speciation of arsenic, germanium, and selenium in rice grain using state-of-the-art mass spectrometry and synchrotron techniques, and illustrates both the importance of high-sensitivity and high-resolution techniques and the advantages of combining techniques in an integrated quantitative and spatial approach. PMID:22159463

  15. Complete genomes of Hairstreak butterflies, their speciation, and nucleo-mitochondrial incongruence.

    PubMed

    Cong, Qian; Shen, Jinhui; Borek, Dominika; Robbins, Robert K; Otwinowski, Zbyszek; Grishin, Nick V

    2016-04-28

    Comparison of complete genomes of closely related species enables research on speciation and how phenotype is determined by genotype. Lepidoptera, an insect order of 150,000 species with diverse phenotypes, is well-suited for such comparative genomics studies if new genomes, which cover additional Lepidoptera families are acquired. We report a 729 Mbp genome assembly of the Calycopis cecrops, the first genome from the family Lycaenidae and the largest available Lepidoptera genome. As detritivore, Calycopis shows expansion in detoxification and digestion enzymes. We further obtained complete genomes of 8 Calycopis specimens: 3 C. cecrops and 5 C. isobeon, including a dry specimen stored in the museum for 30 years. The two species differ subtly in phenotype and cannot be differentiated by mitochondrial DNA. However, nuclear genomes revealed a deep split between them. Genes that can clearly separate the two species (speciation hotspots) mostly pertain to circadian clock, mating behavior, transcription regulation, development and cytoskeleton. The speciation hotspots and their function significantly overlap with those we previously found in Pterourus, suggesting common speciation mechanisms in these butterflies.

  16. Speciation through the lens of biomechanics: locomotion, prey capture and reproductive isolation

    PubMed Central

    Rogers, Sean M.; Langerhans, R. Brian; Jamniczky, Heather A.; Lauder, George V.; Stewart, William J.; Martin, Christopher H.; Reznick, David N.

    2016-01-01

    Speciation is a multifaceted process that involves numerous aspects of the biological sciences and occurs for multiple reasons. Ecology plays a major role, including both abiotic and biotic factors. Whether populations experience similar or divergent ecological environments, they often adapt to local conditions through divergence in biomechanical traits. We investigate the role of biomechanics in speciation using fish predator–prey interactions, a primary driver of fitness for both predators and prey. We highlight specific groups of fishes, or specific species, that have been particularly valuable for understanding these dynamic interactions and offer the best opportunities for future studies that link genetic architecture to biomechanics and reproductive isolation (RI). In addition to emphasizing the key biomechanical techniques that will be instrumental, we also propose that the movement towards linking biomechanics and speciation will include (i) establishing the genetic basis of biomechanical traits, (ii) testing whether similar and divergent selection lead to biomechanical divergence, and (iii) testing whether/how biomechanical traits affect RI. Future investigations that examine speciation through the lens of biomechanics will propel our understanding of this key process. PMID:27629033

  17. ASSESSING SPECIATION AND RELEASE OF HEAVY METALS FROM COAL COMBUSTION PRODUCTS

    EPA Science Inventory

    In this study, the speciation of heavy metals such as arsenic, selenium, lead, zinc and mercury in coal combustion products (CCPs) was evaluated using sequential extraction procedures. Coal fly ash, bottom ash and flue gas desulphurization (FGD) sludge samples were used in the ex...

  18. Examination of Arsenic Speciation in Sulfidic Solutions Using X-ray Absorption Spectroscopy

    EPA Science Inventory

    The chemical speciation of arsenic in sulfidic waters is complicated by the existence of thioarsenic species. The purpose of this research was to use advanced spectroscopy techniques along with speciation modeling and chromatography to elucidate the chemical speciation of As in ...

  19. MODELING MONOMETHYLMERCURY AND TRIBUTYLTIN SPECIATION WITH EPA'S GEOCHEMICAL SPECIATION MODEL MINTEQA2

    EPA Science Inventory

    Given the complexity of the various, simultaneous (and competing) equilibrium reactions governing the speciation of ionic species in aquatic systems, EPA has developed and distributed the geochemical speciation model MINTEQA2 (Brown and Allison, 1987, Allison et al., 1991; Hydrog...

  20. Speciation genetics: current status and evolving approaches

    PubMed Central

    Wolf, Jochen B. W.; Lindell, Johan; Backström, Niclas

    2010-01-01

    The view of species as entities subjected to natural selection and amenable to change put forth by Charles Darwin and Alfred Wallace laid the conceptual foundation for understanding speciation. Initially marred by a rudimental understanding of hereditary principles, evolutionists gained appreciation of the mechanistic underpinnings of speciation following the merger of Mendelian genetic principles with Darwinian evolution. Only recently have we entered an era where deciphering the molecular basis of speciation is within reach. Much focus has been devoted to the genetic basis of intrinsic postzygotic isolation in model organisms and several hybrid incompatibility genes have been successfully identified. However, concomitant with the recent technological advancements in genome analysis and a newfound interest in the role of ecology in the differentiation process, speciation genetic research is becoming increasingly open to non-model organisms. This development will expand speciation research beyond the traditional boundaries and unveil the genetic basis of speciation from manifold perspectives and at various stages of the splitting process. This review aims at providing an extensive overview of speciation genetics. Starting from key historical developments and core concepts of speciation genetics, we focus much of our attention on evolving approaches and introduce promising methodological approaches for future research venues. PMID:20439277

  1. Assessment of Important SPECIATE Profiles in EPA’s Emissions Modeling Platform and Current Data Gaps

    EPA Science Inventory

    The US Environmental Protection Agency (EPA)’s SPECIATE database contains speciation profiles for both particulate matter (PM) and volatile organic compounds (VOCs) that are key inputs for creating speciated emission inventories for air quality modeling. The objective of th...

  2. Extraordinarily rapid speciation in a marine fish

    PubMed Central

    Momigliano, Paolo; Jokinen, Henri; Fraimout, Antoine; Florin, Ann-Britt; Norkko, Alf; Merilä, Juha

    2017-01-01

    Divergent selection may initiate ecological speciation extremely rapidly. How often and at what pace ecological speciation proceeds to yield strong reproductive isolation is more uncertain. Here, we document a case of extraordinarily rapid speciation associated with ecological selection in the postglacial Baltic Sea. European flounders (Platichthys flesus) in the Baltic exhibit two contrasting reproductive behaviors: pelagic and demersal spawning. Demersal spawning enables flounders to thrive in the low salinity of the Northern Baltic, where eggs cannot achieve neutral buoyancy. We show that demersal and pelagic flounders are a species pair arising from a recent event of speciation. Despite having a parapatric distribution with extensive overlap, the two species are reciprocally monophyletic and show strongly bimodal genotypic clustering and no evidence of contemporary migration, suggesting strong reproductive isolation. Divergence across the genome is weak but shows strong signatures of selection, a pattern suggestive of a recent ecological speciation event. We propose that spawning behavior in Baltic flounders is the trait under ecologically based selection causing reproductive isolation, directly implicating a process of ecological speciation. We evaluated different possible evolutionary scenarios under the approximate Bayesian computation framework and estimate that the speciation process started in allopatry ∼2,400 generations ago, following the colonization of the Baltic by the demersal lineage. This is faster than most known cases of ecological speciation and represents the most rapid event of speciation ever reported for any marine vertebrate. PMID:28533412

  3. Assessing element distribution and speciation in a stream at abandoned Pb-Zn mining site by combining classical, in-situ DGT and modelling approaches.

    PubMed

    Omanović, Dario; Pižeta, Ivanka; Vukosav, Petra; Kovács, Elza; Frančišković-Bilinski, Stanislav; Tamás, János

    2015-04-01

    The distribution and speciation of elements along a stream subjected to neutralised acid mine drainage (NAMD) effluent waters (Mátra Mountain, Hungary; Toka stream) were studied by a multi-methodological approach: dissolved and particulate fractions of elements were determined by HR-ICPMS, whereas speciation was carried out by DGT, supported by speciation modelling performed by Visual MINTEQ. Before the NAMD discharge, the Toka is considered as a pristine stream, with averages of dissolved concentrations of elements lower than world averages. A considerable increase of element concentrations caused by effluent water inflow is followed by a sharp or gradual concentration decrease. A large difference between total and dissolved concentrations was found for Fe, Al, Pb, Cu, Zn and As in effluent water and at the first downstream site, with high correlation factors between elements in particulate fraction, indicating their common behaviour, governed by the formation of ferri(hydr)oxides (co)precipitates. In-situ speciation by the DGT technique revealed that Zn, Cd, Ni, Co, Mn and U were predominantly present as a labile, potentially bioavailable fraction (>90%). The formation of strong complexes with dissolved organic matter (DOM) resulted in a relatively low DGT-labile concentration of Cu (42%), while low DGT-labile concentrations of Fe (5%) and Pb (12%) were presumably caused by their existence in colloidal (particulate) fraction which is not accessible to DGT. Except for Fe and Pb, a very good agreement between DGT-labile concentrations and those predicted by the applied speciation model was obtained, with an average correlation factor of 0.96. This study showed that the in-situ DGT technique in combination with model-predicted speciation and classical analysis of samples could provide a reasonable set of data for the assessment of the water quality status (WQS), as well as for the more general study of overall behaviour of the elements in natural waters subjected to high element loads. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. EFFECTS OF IRON CONTENT IN COAL COMBUSTION FLY ASHES ON SPECIATION OF MERCURY

    EPA Science Inventory

    The paper discusses the effects of iron content in coal combustion fly ashes on speciation of mercury. (NOTE: The chemical form of mercury species in combustion flue gases is an important influence on the control of mercury emissions from coal combustion). The study focused on th...

  5. Cobalt Distribution and Speciation: Effect of Aging, Intermittent Submergence, In situ Rice Roots

    EPA Science Inventory

    The speciation and distribution of cobalt (Co) in soils is poorly understood. This study was conducted using X-ray absorption spectroscopy (XAS) techniques to examine the influence of soluble Co(II) aging, submergence-dried cycling, and the presence of in vivo rice roots on the...

  6. Phosphorus solubility of agricultural soils: a surface charge and phosphorus-31 NMR speciation study

    USDA-ARS?s Scientific Manuscript database

    We investigated ten soils from six states in United States to determine the relationship between potentiometric titration derived soil surface charge and Phosphorus-31 (P) nuclear magnetic resonance (NMR) speciation with the concentration of water-extractable P (WEP). The surface charge value at the...

  7. METHODS INTERCOMPARISON OF SAMPLERS FOR EPA'S NATIONAL PM 2.5 CHEMICAL SPECIATION NETWORK

    EPA Science Inventory

    The objective of this sampler intercomparison field study is to determine the performance characteristics for the collection of the chemical components of PM2.5 by the chemical speciation monitors developed for the national PM2.5 network relative to each other, to the Federal R...

  8. TEMPORAL VARIABILITY IN PHYSICAL SPECIATION OF METALS DURING A WINTER RAIN-ON-SNOW EVENT

    EPA Science Inventory

    Particulate matter in urban rivers transports a significant fraction of pollutants, changes rapidly during storm events and is difficult to characterize. In this study, the physical speciation of trace metals and organic carbon in an urban river and upstream headwaters site in To...

  9. Application of chemometric analysis and self Organizing Map-Artificial Neural Network as source receptor modeling for metal speciation in river sediment.

    PubMed

    Pandey, Mayank; Pandey, Ashutosh Kumar; Mishra, Ashutosh; Tripathi, B D

    2015-09-01

    Present study deals with the river Ganga water quality and its impact on metal speciation in its sediments. Concentration of physico-chemical parameters was highest in summer season followed by winter and lowest in rainy season. Metal speciation study in river sediments revealed that exchangeable, reducible and oxidizable fractions were dominant in all the studied metals (Cr, Ni, Cu, Zn, Cd, Pb) except Mn and Fe. High pollution load index (1.64-3.89) recommends urgent need of mitigation measures. Self-organizing Map-Artificial Neural Network (SOM-ANN) was applied to the data set for the prediction of major point sources of pollution in the river Ganga. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Bioconcentration and arsenic speciation analysis in ragworm, Hediste diversicolor (Muller 1776).

    PubMed

    Gaion, Andrea; Scuderi, Alice; Pellegrini, David; Sartori, Davide

    2013-01-01

    This study focused on bioconcentrations of arsenic in Hediste diversicolor (Müller 1776) after exposure to three different molecule solutions: arsenate, dimethyl-arsinate and arsenobetaine. Speciation analysis was carried out after exposing the organisms to these solutions in order to investigate their arsenic biotransformation capacity. Arsenic reached to the maximum level in these tissues after 15 days' exposure to a solution of 100 μg L(-1) of arsenobetaine, although a significant increase was obtained in worms exposed to arsenate. Speciation analysis shows that trimethyl-arsine oxide is the slowest detoxification phase recorded in experiment.

  11. Selenium speciation in seleniferous agricultural soils under different cropping systems using sequential extraction and X-ray absorption spectroscopy.

    PubMed

    Qin, Hai-Bo; Zhu, Jian-Ming; Lin, Zhi-Qing; Xu, Wen-Po; Tan, De-Can; Zheng, Li-Rong; Takahashi, Yoshio

    2017-06-01

    Selenium (Se) speciation in soil is critically important for understanding the solubility, mobility, bioavailability, and toxicity of Se in the environment. In this study, Se fractionation and chemical speciation in agricultural soils from seleniferous areas were investigated using the elaborate sequential extraction and X-ray absorption near-edge structure (XANES) spectroscopy. The speciation results quantified by XANES technique generally agreed with those obtained by sequential extraction, and the combination of both approaches can reliably characterize Se speciation in soils. Results showed that dominant organic Se (56-81% of the total Se) and lesser Se(IV) (19-44%) were observed in seleniferous agricultural soils. A significant decrease in the proportion of organic Se to the total Se was found in different types of soil, i.e., paddy soil (81%) > uncultivated soil (69-73%) > upland soil (56-63%), while that of Se(IV) presented an inverse tendency. This suggests that Se speciation in agricultural soils can be significantly influenced by different cropping systems. Organic Se in seleniferous agricultural soils was probably derived from plant litter, which provides a significant insight for phytoremediation in Se-laden ecosystems and biofortification in Se-deficient areas. Furthermore, elevated organic Se in soils could result in higher Se accumulation in crops and further potential chronic Se toxicity to local residents in seleniferous areas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. [XANES study of lead speciation in duckweed].

    PubMed

    Chu, Bin-Bin; Luo, Li-Qiang; Xu, Tao; Yuan, Jing; Sun, Jian-Ling; Zeng, Yuan; Ma, Yan-Hong; Yi, Shan

    2012-07-01

    Qixiashan lead-zinc mine of Nanjing was one of the largest lead zinc deposits in East China Its exploitation has been over 50 years, and the environmental pollution has also been increasing. The lead concentration in the local environment was high, but lead migration and toxic mechanism has not been clear. Therefore, biogeochemistry research of the lead zinc mine was carried out. Using ICP-MS and Pb-L III edge XANES, lead concentration and speciation were analyzed respectively, and duckweed which can tolerate and enriched heavy metals was found in the pollution area. The results showed that the lead concentration of duckweed was 39.4 mg x kg(-1). XANES analysis and linear combination fit indicated that lead stearate and lead sulfide accounted for 65% and 36.9% respectively in the lead speciation of duckweed, suggesting that the main lead speciation of duckweed was sulfur-containing lead-organic acid.

  13. Rates of speciation and morphological evolution are correlated across the largest vertebrate radiation.

    PubMed

    Rabosky, Daniel L; Santini, Francesco; Eastman, Jonathan; Smith, Stephen A; Sidlauskas, Brian; Chang, Jonathan; Alfaro, Michael E

    2013-01-01

    Several evolutionary theories predict that rates of morphological change should be positively associated with the rate at which new species arise. For example, the theory of punctuated equilibrium proposes that phenotypic change typically occurs in rapid bursts associated with speciation events. However, recent phylogenetic studies have found little evidence linking these processes in nature. Here we demonstrate that rates of species diversification are highly correlated with the rate of body size evolution across the 30,000+ living species of ray-finned fishes that comprise the majority of vertebrate biological diversity. This coupling is a general feature of fish evolution and transcends vast differences in ecology and body-plan organization. Our results may reflect a widespread speciational mode of character change in living fishes. Alternatively, these findings are consistent with the hypothesis that phenotypic 'evolvability'-the capacity of organisms to evolve-shapes the dynamics of speciation through time at the largest phylogenetic scales.

  14. Global cooling as a driver of diversification in a major marine clade

    PubMed Central

    Davis, Katie E.; Hill, Jon; Astrop, Tim I.; Wills, Matthew A.

    2016-01-01

    Climate is a strong driver of global diversity and will become increasingly important as human influences drive temperature changes at unprecedented rates. Here we investigate diversification and speciation trends within a diverse group of aquatic crustaceans, the Anomura. We use a phylogenetic framework to demonstrate that speciation rate is correlated with global cooling across the entire tree, in contrast to previous studies. Additionally, we find that marine clades continue to show evidence of increased speciation rates with cooler global temperatures, while the single freshwater clade shows the opposite trend with speciation rates positively correlated to global warming. Our findings suggest that both global cooling and warming lead to diversification and that habitat plays a role in the responses of species to climate change. These results have important implications for our understanding of how extant biota respond to ongoing climate change and are of particular importance for conservation planning of marine ecosystems. PMID:27701377

  15. Computer simulations of sympatric speciation in a simple food web

    NASA Astrophysics Data System (ADS)

    Luz-Burgoa, K.; Dell, Tony; de Oliveira, S. Moss

    2005-07-01

    Galapagos finches, have motivated much theoretical research aimed at understanding the processes associated with the formation of the species. Inspired by them, in this paper we investigate the process of sympatric speciation in a simple food web model. For that we modify the individual-based Penna model that has been widely used to study aging as well as other evolutionary processes. Initially, our web consists of a primary food source and a single herbivore species that feeds on this resource. Subsequently we introduce a predator that feeds on the herbivore. In both instances we manipulate directly a basal resource distribution and monitor the changes in the populations. Sympatric speciation is obtained for the top species in both cases, and our results suggest that the speciation velocity depends on how far up, in the food chain, the focus population is feeding. Simulations are done with three different sexual imprintinglike mechanisms, in order to discuss adaptation by natural selection.

  16. Global cooling as a driver of diversification in a major marine clade

    NASA Astrophysics Data System (ADS)

    Davis, Katie E.; Hill, Jon; Astrop, Tim I.; Wills, Matthew A.

    2016-10-01

    Climate is a strong driver of global diversity and will become increasingly important as human influences drive temperature changes at unprecedented rates. Here we investigate diversification and speciation trends within a diverse group of aquatic crustaceans, the Anomura. We use a phylogenetic framework to demonstrate that speciation rate is correlated with global cooling across the entire tree, in contrast to previous studies. Additionally, we find that marine clades continue to show evidence of increased speciation rates with cooler global temperatures, while the single freshwater clade shows the opposite trend with speciation rates positively correlated to global warming. Our findings suggest that both global cooling and warming lead to diversification and that habitat plays a role in the responses of species to climate change. These results have important implications for our understanding of how extant biota respond to ongoing climate change and are of particular importance for conservation planning of marine ecosystems.

  17. Assessment of important SPECIATE Profiles in EPA’s Emissions Modeling Platform and Current Data Gaps (US EPA 2017 International Emissions Inventory Conference)

    EPA Science Inventory

    The US Environmental Protection Agency (EPA)’s SPECIATE database contains speciation profiles for both particulate matter (PM) and volatile organic compounds (VOCs) that are key inputs for creating speciated emission inventories for air quality modeling. The objective of th...

  18. Fate of heavy metals during municipal solid waste incineration.

    PubMed

    Abanades, S; Flamant, G; Gagnepain, B; Gauthier, D

    2002-02-01

    A thermodynamic analysis was performed to determine whether it is suitable to predict the heavy metal (HM) speciation during the Municipal Solid Waste Incineration process. The fate of several selected metals (Cd, Pb, Zn, Cr, Hg, As, Cu, Co, Ni) during incineration was theoretically investigated. The equilibrium analysis predicted the metal partitioning during incineration and determined the impact of operating conditions (temperature and gas composition) on their speciation. The study of the gas composition influence was based on the effects of the contents of oxygen (reducing or oxidising conditions) and chlorine on the HM partitioning. The theoretical HM speciation which was calculated in a complex system representing a burning sample of Municipal Solid Waste can explain the real partitioning (obtained from literature results) of all metals among the various ashes except for Pb. Then, the results of the thermodynamic study were compared with those of characterisation of real incinerator residues, using complementary techniques (chemical extraction series and X-ray micro-analyses). These analysis were performed to determine experimentally the speciation of the three representative metals Cr, Pb, and Zn. The agreement is good for Cr and Zn but not for Pb again, which mainly shows unleachable chemical speciations in the residues. Pb tends to remain in the bottom ash whereas thermodynamics often predicts its complete volatilisation under chlorides, and thus its presence exclusively in fly ash.

  19. Spatio-temporal Distribution and Chemical Speciation of Iron and Manganese in Sediments from Lake Aha, China

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Hu, Jiwei; Qin, Fanxin; Jiang, Cuihong; Huang, Xianfei; Deng, Jiajun; Li, Cunxiong

    2010-11-01

    This paper reports an investigation on pollution and potential risk on elements of iron (Fe) and manganese (Mn) in sediments from Lake Aha, which is a drinking-water source for Guiyang City, the capital of Guizhou Province in southwestern China. In the present research, chemical speciation of Fe and Mn in sediments from the lake was studied based on the sequential extraction procedure developed by Tessier et al.. The results obtained from the study are as follows. The average values of total Fe were 47617 mg/kg and 70325 mg/kg in sediments from the lake in summer and winter respectively, and its speciation consisted mainly of residual and Fe-Mn oxides fractions. The amounts of total Fe and the distribution of its speciation in the sediments should be affected by effluents from a large quantity of deserted coal mines in the lake basin in summer and winter. The average values of total Mn were 7996 mg/kg and 1753 mg/kg in summer and winter respectively, and its speciation is primarily comprised of carbonate and Fe-Mn oxides fractions. The amounts of total Mn and its distribution in different fractions in the sediments were believed to be primarily influenced by effluents from those deserted coal mines in summer and by the condition of redox interface in winter.

  20. Riverscape genetics identifies replicated ecological divergence across an Amazonian ecotone.

    PubMed

    Cooke, Georgina M; Landguth, Erin L; Beheregaray, Luciano B

    2014-07-01

    Ecological speciation involves the evolution of reproductive isolation and niche divergence in the absence of a physical barrier to gene flow. The process is one of the most controversial topics of the speciation debate, particularly in tropical regions. Here, we investigate ecologically based divergence across an Amazonian ecotone in the electric fish, Steatogenys elegans. We combine phylogenetics, genome scans, and population genetics with a recently developed individual-based evolutionary landscape genetics approach that incorporates selection. This framework is used to assess the relative contributions of geography and divergent natural selection between environments as biodiversity drivers. We report on two closely related and sympatric lineages that exemplify how divergent selection across a major Amazonian aquatic ecotone (i.e., between rivers with markedly different hydrochemical properties) may result in replicated ecologically mediated speciation. The results link selection across an ecological gradient with reproductive isolation and we propose that assortative mating based on water color may be driving the divergence. Divergence resulting from ecologically driven selection highlights the importance of considering environmental heterogeneity in studies of speciation in tropical regions. Furthermore, we show that framing ecological speciation in a spatially explicit evolutionary landscape genetics framework provides an important first step in exploring a wide range of the potential effects of spatial dependence in natural selection. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  1. How does male–male competition generate negative frequency-dependent selection and disruptive selection during speciation?

    PubMed Central

    Border, Shana E

    2018-01-01

    Abstract Natural selection has been shown to drive population differentiation and speciation. The role of sexual selection in this process is controversial; however, most of the work has centered on mate choice while the role of male–male competition in speciation is relatively understudied. Here, we outline how male–male competition can be a source of diversifying selection on male competitive phenotypes, and how this can contribute to the evolution of reproductive isolation. We highlight how negative frequency-dependent selection (advantage of rare phenotype arising from stronger male–male competition between similar male phenotypes compared with dissimilar male phenotypes) and disruptive selection (advantage of extreme phenotypes) drives the evolution of diversity in competitive traits such as weapon size, nuptial coloration, or aggressiveness. We underscore that male–male competition interacts with other life-history functions and that variable male competitive phenotypes may represent alternative adaptive options. In addition to competition for mates, aggressive interference competition for ecological resources can exert selection on competitor signals. We call for a better integration of male–male competition with ecological interference competition since both can influence the process of speciation via comparable but distinct mechanisms. Altogether, we present a more comprehensive framework for studying the role of male–male competition in speciation, and emphasize the need for better integration of insights gained from other fields studying the evolutionary, behavioral, and physiological consequences of agonistic interactions. PMID:29492042

  2. A study of method robustness for arsenic speciation in drinking water samples by anion exchange HPLC-ICP-MS.

    PubMed

    Day, Jason A; Montes-Bayón, María; Vonderheide, Anne P; Caruso, Joseph A

    2002-08-01

    Regulating arsenic species in drinking waters is a reasonable objective, since the various species have different toxicological impacts. However, developing robust and sensitive speciation methods is mandatory prior to any such regulations. Numerous arsenic speciation publications exist, but the question of robustness or ruggedness for a regulatory method has not been fully explored. The present work illustrates the use of anion exchange chromatography coupled to ICP-MS with a commercially available "speciation kit" option. The mobile phase containing 2 mM NaH(2)PO(4) and 0.2 mM EDTA at pH 6 allowed adequate separation of four As species (As(III), As(V), MMAA, DMAA) in less than 10 min. The analytical performance characteristics studied, including method detection limits (lower than 100 ng L(-1) for all the species evaluated), proved the suitability of the method to fulfill the current regulation. Other parameters evaluated such as laboratory fortified blanks, spiked recoveries, and reproducibility over a certain period of time produced adequate results. The samples analyzed were taken from water utilities in different areas of the United States and were provided by the U.S. EPA. The data suggests the speciation setup performs to U.S. EPA specifications but sample treatment and chemistry are also important factors for achieving good recoveries for samples spiked with As(III) as arsenite and As(V) as arsenate.

  3. Influence of gene flow on divergence dating - implications for the speciation history of Takydromus grass lizards.

    PubMed

    Tseng, Shu-Ping; Li, Shou-Hsien; Hsieh, Chia-Hung; Wang, Hurng-Yi; Lin, Si-Min

    2014-10-01

    Dating the time of divergence and understanding speciation processes are central to the study of the evolutionary history of organisms but are notoriously difficult. The difficulty is largely rooted in variations in the ancestral population size or in the genealogy variation across loci. To depict the speciation processes and divergence histories of three monophyletic Takydromus species endemic to Taiwan, we sequenced 20 nuclear loci and combined with one mitochondrial locus published in GenBank. They were analysed by a multispecies coalescent approach within a Bayesian framework. Divergence dating based on the gene tree approach showed high variation among loci, and the divergence was estimated at an earlier date than when derived by the species-tree approach. To test whether variations in the ancestral population size accounted for the majority of this variation, we conducted computer inferences using isolation-with-migration (IM) and approximate Bayesian computation (ABC) frameworks. The results revealed that gene flow during the early stage of speciation was strongly favoured over the isolation model, and the initiation of the speciation process was far earlier than the dates estimated by gene- and species-based divergence dating. Due to their limited dispersal ability, it is suggested that geographical isolation may have played a major role in the divergence of these Takydromus species. Nevertheless, this study reveals a more complex situation and demonstrates that gene flow during the speciation process cannot be overlooked and may have a great impact on divergence dating. By using multilocus data and incorporating Bayesian coalescence approaches, we provide a more biologically realistic framework for delineating the divergence history of Takydromus. © 2014 John Wiley & Sons Ltd.

  4. Erosive processes after tectonic uplift stimulate vicariant and adaptive speciation: evolution in an Afrotemperate-endemic paper daisy genus

    PubMed Central

    2014-01-01

    Background The role of tectonic uplift in stimulating speciation in South Africa’s only alpine zone, the Drakensberg, has not been explicitly examined. Tectonic processes may influence speciation both through the creation of novel habitats and by physically isolating plant populations. We use the Afrotemperate endemic daisy genus Macowania to explore the timing and mode (geographic versus adaptive) of speciation in this region. Between sister species pairs we expect high morphological divergence where speciation has happened in sympatry (adaptive) while with geographic (vicariant) speciation we may expect to find less morphological divergence and a greater degree of allopatry. A dated molecular phylogenetic hypothesis for Macowania elucidates species’ relationships and is used to address the potential impact of uplift on diversification. Morphological divergence of a small sample of reproductive and vegetative characters, used as a proxy for adaptive divergence, is measured against species’ range distributions to estimate mode of speciation across two subclades in the genus. Results The Macowania crown age is consistent with the hypothesis of post-uplift diversification, and we find evidence for both vicariant and adaptive speciation between the two subclades within Macowania. Both subclades exhibit strong signals of range allopatry, suggesting that geographic isolation was important in speciation. One subclade, associated with dry, rocky environments at high altitudes, shows very little morphological and ecological differentiation but high range allopatry. The other subclade occupies a greater variety of habitats and exhibits far greater morphological differentiation, but contains species with overlapping distribution ranges. Conclusions Species in Macowania are likely to have diversified in response to tectonic uplift, and we invoke uplift and uplift-mediated erosion as the main drivers of speciation. The greater relative morphological divergence in sympatric species of Macowania indicates that speciation in the non-sympatric taxa may not have required obvious adaptive differences, implying that simple geographic isolation was the driving force for speciation (‘neutral speciation’). PMID:24524661

  5. Cold Temperature Effects on Speciated VOC Emissions from Modern GDI Light-Duty Vehicles 1

    EPA Science Inventory

    In this study, speciated VOC emissions were characterized from three modern GDI light-duty vehicles. The vehicles were tested on a chassis dynamometer housed in a climate-controlled chamber at two temperatures (20 and 72 °F) using the EPA Federal Test Procedure (FTP) and a portio...

  6. A COMPARISON OF URINARY ARSENIC SPECIATION VIA DIRECT NEBULIZATION AND ON-LINE PHOTOOXIDATION-HYDRIDE GENERATION WITH DETECTION BY INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY

    EPA Science Inventory

    Arsenic speciation continues to be important in assessing human and environmental exposure risk. Urinary arsenic analysis provides information on recent arsenic exposure. In this study, two sample introduction pathways: direct nebulization (DN) and hydride generation (HG) were ut...

  7. The genomic landscape at a late stage of stickleback speciation: High genomic divergence interspersed by small localized regions of introgression.

    PubMed

    Ravinet, Mark; Yoshida, Kohta; Shigenobu, Shuji; Toyoda, Atsushi; Fujiyama, Asao; Kitano, Jun

    2018-05-01

    Speciation is a continuous process and analysis of species pairs at different stages of divergence provides insight into how it unfolds. Previous genomic studies on young species pairs have revealed peaks of divergence and heterogeneous genomic differentiation. Yet less known is how localised peaks of differentiation progress to genome-wide divergence during the later stages of speciation in the presence of persistent gene flow. Spanning the speciation continuum, stickleback species pairs are ideal for investigating how genomic divergence builds up during speciation. However, attention has largely focused on young postglacial species pairs, with little knowledge of the genomic signatures of divergence and introgression in older stickleback systems. The Japanese stickleback species pair, composed of the Pacific Ocean three-spined stickleback (Gasterosteus aculeatus) and the Japan Sea stickleback (G. nipponicus), which co-occur in the Japanese islands, is at a late stage of speciation. Divergence likely started well before the end of the last glacial period and crosses between Japan Sea females and Pacific Ocean males result in hybrid male sterility. Here we use coalescent analyses and Approximate Bayesian Computation to show that the two species split approximately 0.68-1 million years ago but that they have continued to exchange genes at a low rate throughout divergence. Population genomic data revealed that, despite gene flow, a high level of genomic differentiation is maintained across the majority of the genome. However, we identified multiple, small regions of introgression, occurring mainly in areas of low recombination rate. Our results demonstrate that a high level of genome-wide divergence can establish in the face of persistent introgression and that gene flow can be localized to small genomic regions at the later stages of speciation with gene flow.

  8. Chromosomal Speciation in the Genomics Era: Disentangling Phylogenetic Evolution of Rock-wallabies.

    PubMed

    Potter, Sally; Bragg, Jason G; Blom, Mozes P K; Deakin, Janine E; Kirkpatrick, Mark; Eldridge, Mark D B; Moritz, Craig

    2017-01-01

    The association of chromosome rearrangements (CRs) with speciation is well established, and there is a long history of theory and evidence relating to "chromosomal speciation." Genomic sequencing has the potential to provide new insights into how reorganization of genome structure promotes divergence, and in model systems has demonstrated reduced gene flow in rearranged segments. However, there are limits to what we can understand from a small number of model systems, which each only tell us about one episode of chromosomal speciation. Progressing from patterns of association between chromosome (and genic) change, to understanding processes of speciation requires both comparative studies across diverse systems and integration of genome-scale sequence comparisons with other lines of evidence. Here, we showcase a promising example of chromosomal speciation in a non-model organism, the endemic Australian marsupial genus Petrogale . We present initial phylogenetic results from exon-capture that resolve a history of divergence associated with extensive and repeated CRs. Yet it remains challenging to disentangle gene tree heterogeneity caused by recent divergence and gene flow in this and other such recent radiations. We outline a way forward for better integration of comparative genomic sequence data with evidence from molecular cytogenetics, and analyses of shifts in the recombination landscape and potential disruption of meiotic segregation and epigenetic programming. In all likelihood, CRs impact multiple cellular processes and these effects need to be considered together, along with effects of genic divergence. Understanding the effects of CRs together with genic divergence will require development of more integrative theory and inference methods. Together, new data and analysis tools will combine to shed light on long standing questions of how chromosome and genic divergence promote speciation.

  9. Mercury Speciation by X-ray Absorption Fine Structure Spectroscopy and Sequential Chemical Extractions: A Comparison of Speciation Methods

    USGS Publications Warehouse

    Kim, C.S.; Bloom, N.S.; Rytuba, J.J.; Brown, Gordon E.

    2003-01-01

    Determining the chemical speciation of mercury in contaminated mining and industrial environments is essential for predicting its solubility, transport behavior, and potential bioavailability as well as for designing effective remediation strategies. In this study, two techniques for determining Hg speciation-X-ray absorption fine structure (XAFS) spectroscopy and sequential chemical extractions (SCE)-are independently applied to a set of samples with Hg concentrations ranging from 132 to 7539 mg/kg to determine if the two techniques provide comparable Hg speciation results. Generally, the proportions of insoluble HgS (cinnabar, metacinnabar) and HgSe identified by XAFS correlate well with the proportion of Hg removed in the aqua regia extraction demonstrated to remove HgS and HgSe. Statistically significant (> 10%) differences are observed however in samples containing more soluble Hg-containing phases (HgCl2, HgO, Hg3S2O 4). Such differences may be related to matrix, particle size, or crystallinity effects, which could affect the apparent solubility of Hg phases present. In more highly concentrated samples, microscopy techniques can help characterize the Hg-bearing species in complex multiphase natural samples.

  10. Speciation of adsorbates on surface of solids by infrared spectroscopy and chemometrics.

    PubMed

    Vilmin, Franck; Bazin, Philippe; Thibault-Starzyk, Frédéric; Travert, Arnaud

    2015-09-03

    Speciation, i.e. identification and quantification, of surface species on heterogeneous surfaces by infrared spectroscopy is important in many fields but remains a challenging task when facing strongly overlapped spectra of multiple adspecies. Here, we propose a new methodology, combining state of the art instrumental developments for quantitative infrared spectroscopy of adspecies and chemometrics tools, mainly a novel data processing algorithm, called SORB-MCR (SOft modeling by Recursive Based-Multivariate Curve Resolution) and multivariate calibration. After formal transposition of the general linear mixture model to adsorption spectral data, the main issues, i.e. validity of Beer-Lambert law and rank deficiency problems, are theoretically discussed. Then, the methodology is exposed through application to two case studies, each of them characterized by a specific type of rank deficiency: (i) speciation of physisorbed water species over a hydrated silica surface, and (ii) speciation (chemisorption and physisorption) of a silane probe molecule over a dehydrated silica surface. In both cases, we demonstrate the relevance of this approach which leads to a thorough surface speciation based on comprehensive and fully interpretable multivariate quantitative models. Limitations and drawbacks of the methodology are also underlined. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Speciation of mercury compounds by differential atomization - atomic absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, J.W.; Skelly, E.M.

    This paper describes the dual stage atomization technique which allows speciation of several mercury-containing compounds in aqueous solution and in biological fluids. The technique holds great promise for further speciation studies. Accurate temperature control, expecially at temperatures less than 200/sup 0/C, is needed to separate the extremely volatile mercury halides and simple organomercurials from each other. Studies with mercury salts and EDTA, L-cysteine and dithioxamide demonstrate that this technique may be used to study the extent of complex formation. Investigations of biological fluids indicate that there is a single predominant form of mercury in sweat and a single predominant formmore » of mercury in urine. The mercury compound in urine is more volatile than that in sweat. Both quantitative and qualitative analyses are possible with this technique.« less

  12. Mountain Refugia Play a Role in Soil Arthropod Speciation on Madagascar: A Case Study of the Endemic Giant Fire-Millipede Genus Aphistogoniulus

    PubMed Central

    Wesener, Thomas; Raupach, Michael J.; Decker, Peter

    2011-01-01

    To elucidate the speciation mechanisms prevalent within hotspots of biodiversity, and the evolutionary processes behind the rise of their species-rich and endemic biota, we investigated the phylogeny of the giant fire-millipede genus Aphistogoniulus Silvestri, 1897, a Malagasy endemic. This study is the first comprehensive (molecular and morphological) phylogenetic study focusing on millipede (class Diplopoda) speciation on Madagascar. The morphological analysis is based on 35 morphological characters and incorporates ten described as well as two newly described species (A. rubrodorsalis n. sp. and A. jeekeli n. sp.) of Aphistogoniulus. The molecular analysis is based on both mitochondrial (COI and 16S), and nuclear genes (complete 18S rDNA), together comprised of 3031 base pairs, which were successfully sequenced for 31 individual specimens and eight species of Aphistogoniulus. In addition to the null-model (speciation by distance), two diversification models, mountain refugia and ecotone shift, were discovered to play a role in the speciation of soil arthropods on Madagascar. Mountain refugia were important in the speciation of the A. cowani clade, with three species occurring in the Andringitra and Ranomafana Mountains in the southeast (A. cowani), the Ambohijanahary and Ambohitantely Mountains in the mid-west (A. sanguineus), and the Marojejy Mountain in the northeast (A. rubrodorsalis n. sp.). An ecotone shift from the eastern rainforest to the unique subarid spiny forest of Mahavelo was discovered in the A. vampyrus - A. aridus species-pair. In the monophyletic A. diabolicus clade, evidence for divergent evolution of sexual morphology was detected: species with greatly enlarged gonopods are sister-taxa to species with normal sized gonopods. Among the large-bodied Spirobolida genera of Madagascar, Colossobolus and Sanguinobolus were found to be close sister-genera to Aphistogoniulus. Forest destruction has caused forest corridors between populations to disappear, which might limit the possible resolution of biogeographic analyses on Madagascar. PMID:22162998

  13. Sympatric ecological speciation meets pyrosequencing: sampling the transcriptome of the apple maggot Rhagoletis pomonella

    PubMed Central

    2009-01-01

    Background The full power of modern genetics has been applied to the study of speciation in only a small handful of genetic model species - all of which speciated allopatrically. Here we report the first large expressed sequence tag (EST) study of a candidate for ecological sympatric speciation, the apple maggot Rhagoletis pomonella, using massively parallel pyrosequencing on the Roche 454-FLX platform. To maximize transcript diversity we created and sequenced separate libraries from larvae, pupae, adult heads, and headless adult bodies. Results We obtained 239,531 sequences which assembled into 24,373 contigs. A total of 6810 unique protein coding genes were identified among the contigs and long singletons, corresponding to 48% of all known Drosophila melanogaster protein-coding genes. Their distribution across GO classes suggests that we have obtained a representative sample of the transcriptome. Among these sequences are many candidates for potential R. pomonella "speciation genes" (or "barrier genes") such as those controlling chemosensory and life-history timing processes. Furthermore, we identified important marker loci including more than 40,000 single nucleotide polymorphisms (SNPs) and over 100 microsatellites. An initial search for SNPs at which the apple and hawthorn host races differ suggested at least 75 loci warranting further work. We also determined that developmental expression differences remained even after normalization; transcripts expected to show different expression levels between larvae and pupae in D. melanogaster also did so in R. pomonella. Preliminary comparative analysis of transcript presences and absences revealed evidence of gene loss in Drosophila and gain in the higher dipteran clade Schizophora. Conclusions These data provide a much needed resource for exploring mechanisms of divergence in this important model for sympatric ecological speciation. Our description of ESTs from a substantial portion of the R. pomonella transcriptome will facilitate future functional studies of candidate genes for olfaction and diapause-related life history timing, and will enable large scale expression studies. Similarly, the identification of new SNP and microsatellite markers will facilitate future population and quantitative genetic studies of divergence between the apple and hawthorn-infesting host races. PMID:20035631

  14. Shedding Light on the Grey Zone of Speciation along a Continuum of Genomic Divergence.

    PubMed

    Roux, Camille; Fraïsse, Christelle; Romiguier, Jonathan; Anciaux, Yoann; Galtier, Nicolas; Bierne, Nicolas

    2016-12-01

    Speciation results from the progressive accumulation of mutations that decrease the probability of mating between parental populations or reduce the fitness of hybrids-the so-called species barriers. The speciation genomic literature, however, is mainly a collection of case studies, each with its own approach and specificities, such that a global view of the gradual process of evolution from one to two species is currently lacking. Of primary importance is the prevalence of gene flow between diverging entities, which is central in most species concepts and has been widely discussed in recent years. Here, we explore the continuum of speciation thanks to a comparative analysis of genomic data from 61 pairs of populations/species of animals with variable levels of divergence. Gene flow between diverging gene pools is assessed under an approximate Bayesian computation (ABC) framework. We show that the intermediate "grey zone" of speciation, in which taxonomy is often controversial, spans from 0.5% to 2% of net synonymous divergence, irrespective of species life history traits or ecology. Thanks to appropriate modeling of among-locus variation in genetic drift and introgression rate, we clarify the status of the majority of ambiguous cases and uncover a number of cryptic species. Our analysis also reveals the high incidence in animals of semi-isolated species (when some but not all loci are affected by barriers to gene flow) and highlights the intrinsic difficulty, both statistical and conceptual, of delineating species in the grey zone of speciation.

  15. Both temperature fluctuations and East Asian monsoons have driven plant diversification in the karst ecosystems from southern China.

    PubMed

    Kong, Hanghui; Condamine, Fabien L; Harris, A J; Chen, Junlin; Pan, Bo; Möller, Michael; Hoang, Van Sam; Kang, Ming

    2017-11-01

    Karst ecosystems in southern China are species-rich and have high levels of endemism, yet little is known regarding the evolutionary processes responsible for the origin and diversification of karst biodiversity. The genus Primulina (Gesneriaceae) comprises ca. 170 species endemic to southern China with high levels of ecological (edaphic) specialization, providing an exceptional model to study the plant diversification in karsts. We used molecular data from nine chloroplast and 11 nuclear regions and macroevolutionary analyses to assess the origin and cause of species diversification due to palaeoenvironmental changes and edaphic specialization in Primulina. We found that speciation was positively associated with changes in past temperatures and East Asian monsoons through the evolutionary history of Primulina. Climatic change around the mid-Miocene triggered an early burst followed by a slowdown of diversification rate towards the present with the climate cooling. We detected different speciation rates among edaphic types, and transitions among soil types were infrequently and did not impact the overall speciation rate. Our findings suggest that both global temperature changes and East Asian monsoons have played crucial roles in floristic diversification within the karst ecosystems in southern China, such that speciation was higher when climate was warmer and wetter. This is the first study to directly demonstrate that past monsoon activity is positively correlated with speciation rate in East Asia. This case study could motivate further investigations to assess the impacts of past environmental changes on the origin and diversification of biodiversity in global karst ecosystems, most of which are under threat. © 2017 John Wiley & Sons Ltd.

  16. Assessing models of speciation under different biogeographic scenarios; An empirical study using multi-locus and RNA-seq analyses

    USGS Publications Warehouse

    Edwards, Taylor; Tollis, Marc; Hsieh, PingHsun; Gutenkunst, Ryan N.; Liu, Zhen; Kusumi, Kenro; Culver, Melanie; Murphy, Robert W.

    2016-01-01

    Evolutionary biology often seeks to decipher the drivers of speciation, and much debate persists over the relative importance of isolation and gene flow in the formation of new species. Genetic studies of closely related species can assess if gene flow was present during speciation, because signatures of past introgression often persist in the genome. We test hypotheses on which mechanisms of speciation drove diversity among three distinct lineages of desert tortoise in the genus Gopherus. These lineages offer a powerful system to study speciation, because different biogeographic patterns (physical vs. ecological segregation) are observed at opposing ends of their distributions. We use 82 samples collected from 38 sites, representing the entire species' distribution and generate sequence data for mtDNA and four nuclear loci. A multilocus phylogenetic analysis in *BEAST estimates the species tree. RNA-seq data yield 20,126 synonymous variants from 7665 contigs from two individuals of each of the three lineages. Analyses of these data using the demographic inference package ∂a∂i serve to test the null hypothesis of no gene flow during divergence. The best-fit demographic model for the three taxa is concordant with the *BEAST species tree, and the ∂a∂i analysis does not indicate gene flow among any of the three lineages during their divergence. These analyses suggest that divergence among the lineages occurred in the absence of gene flow and in this scenario the genetic signature of ecological isolation (parapatric model) cannot be differentiated from geographic isolation (allopatric model).

  17. The Interaction of CuS and Halothiobacillus HT1 Biofilm in Microscale Using Synchrotron Radiation-Based Techniques

    PubMed Central

    Lin, Huirong; Chen, Guangcun; Zhu, Shenhai; Chen, Yingxu; Chen, Dongliang; Xu, Wei; Yu, Xiaohan; Shi, Jiyan

    2013-01-01

    In order to investigate the microbe-mineral interaction in the micro scale, spatial distribution and speciation of Cu and S in Halothiobacillus HT1 biofilm formed on a CuS surface was examined using synchrotron-based X-ray techniques. Confocal laser scanning microscope (CLSM) results indicated that Halothiobacillus HT1 biofilm formation gave rise to distinct chemical and redox gradients, leading to diverse niches in the biofilm. Live cells were distributed at the air-biofilm and membrane-biofilm interface. CuS was oxidized by Halothiobacillus HT1 biofilm, and copper penetrated into the biofilm. Sulfide was oxidized to cysteine (77.3%), sulfite (3.8%) and sulfonate (18.9%). Cu-cysteine-like species were involved in the copper homeostasis. These results significantly improve our understanding of the interfacial properties of the biofilm-mineral interface. PMID:23708108

  18. Prototheca zopfii Genotype 2-induced Nasal Dermatitis in a Cat.

    PubMed

    Huth, N; Wenkel, R F; Roschanski, N; Rösler, U; Plagge, L; Schöniger, S

    2015-05-01

    Few published cases of feline protothecosis exist; all of these were restricted to the skin and speciation of the causative organism revealed an infection with Prototheca wickerhamii in each case. This report describes Prototheca zopfii genotype 2-induced inflammation of the nasal skin and cutaneous mucosa of the right nostril in a 14-year-old neutered female domestic shorthair cat. Microscopical examination revealed marked pyogranulomatous inflammation with numerous intralesional algae. These had a round to ovoid shape, were 8-21 μm in diameter, formed endospores and displayed a positive immunoreaction for Prototheca zopfii antigen. By 18S rRNA gene amplification and sequencing the intralesional algae were confirmed as Prototheca zopfii and further characterized as Prototheca zopfii genotype 2. This case report reveals Prototheca zopfii as an additional Prototheca species associated with feline protothecosis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Using Visible Spectrophotometers and pH Measurements to Study Speciation in a Guided-Inquiry Laboratory

    ERIC Educational Resources Information Center

    Otto, William H.; Larive, Cynthia K.; Mason, Susan L.; Robinson, Janet B.; Heppert Joseph A.; Ellis, James D.

    2005-01-01

    An experiment to perform a simple initial investigation that illustrates concepts of speciation and equilibrium, using the instrument and chemical resources in the laboratory is presented. The investigation showed that the presence of multiple chemical species in a reaction mixture (phenol red solution) reflects the acid and base conditions…

  20. Latitude, elevational climatic zonation and speciation in New World vertebrates

    PubMed Central

    Cadena, Carlos Daniel; Kozak, Kenneth H.; Gómez, Juan Pablo; Parra, Juan Luis; McCain, Christy M.; Bowie, Rauri C. K.; Carnaval, Ana C.; Moritz, Craig; Rahbek, Carsten; Roberts, Trina E.; Sanders, Nathan J.; Schneider, Christopher J.; VanDerWal, Jeremy; Zamudio, Kelly R.; Graham, Catherine H.

    2012-01-01

    Many biodiversity hotspots are located in montane regions, especially in the tropics. A possible explanation for this pattern is that the narrow thermal tolerances of tropical species and greater climatic stratification of tropical mountains create more opportunities for climate-associated parapatric or allopatric speciation in the tropics relative to the temperate zone. However, it is unclear whether a general relationship exists among latitude, climatic zonation and the ecology of speciation. Recent taxon-specific studies obtained different results regarding the role of climate in speciation in tropical versus temperate areas. Here, we quantify overlap in the climatic distributions of 93 pairs of sister species of mammals, birds, amphibians and reptiles restricted to either the New World tropics or to the Northern temperate zone. We show that elevational ranges of tropical- and temperate-zone species do not differ from one another, yet the temperature range experienced by species in the temperate zone is greater than for those in the tropics. Moreover, tropical sister species tend to exhibit greater similarity in their climatic distributions than temperate sister species. This pattern suggests that evolutionary conservatism in the thermal niches of tropical taxa, coupled with the greater thermal zonation of tropical mountains, may result in increased opportunities for allopatric isolation, speciation and the accumulation of species in tropical montane regions. Our study exemplifies the power of combining phylogenetic and spatial datasets of global climatic variation to explore evolutionary (rather than purely ecological) explanations for the high biodiversity of tropical montane regions. PMID:21632626

  1. A multi-technique approach to assess chemical speciation of phosphate in soils

    NASA Astrophysics Data System (ADS)

    Belchior Abdala, Dalton; Rodrigues, Marcos; Herrera, Wilfrand; Pavinato, Paulo Sergio

    2017-04-01

    Soil scientists see chemical characterization of phosphorus (e.g., chemical speciation) as a winning strategy to increase phosphorus use efficiency in agriculture, to understand the fate of applied P fertilizer in soils and to devise strategies to minimize P losses to the environment. Phosphorus (P) is majorly presented in soils as phosphate, bound to mineral components of soils such as Al-, Ca- and Fe-(hydr)oxides or associated with organic molecules, being thus generally referred to as organic phosphates. In addition, because of the turnover of P between plants and microbes, it delivers P back to soils as a mixture of species with high spatial and chemical heterogeneity, adding complexity to the determination of the P species contained in environmental samples. Therefore, due to the variety of forms that phosphate can present in soils, its precise chemical characterization can only be achieved using a set of analytical techniques. Although established methodologies (e. g., soil test P, sequential chemical fractionation, P isotherms) have been useful to subsidize information for the establishment of policies and guidelines for soil management and P fertilizers use, they have failed to provide detailed information on P chemistry and reactivity in soils in a more satisfactory manner, which are critical to predict P bioavailability to plants and loss potential to the environment. More recently, the association of wet chemistry analysis with spectroscopy and microscopy techniques has arguably represented the most successful means to chemically speciate phosphate in soils. This is because using qualitative (chemical speciation), quantitative (chemical fractionation) and spatial (microscopy) data allows for triangulation of information, thereby reducing bias and increasing validity of the results. The analysis framework that we propose in this study includes the use of (i) sequential chemical fractionation of soil P to determine the partitioning of P within the different P pools considered in the fractionation protocol, (ii) two synchrotron-based X-ray absorption spectroscopic techniques, XANES and EXAFS, for chemical characterization of the P forms and mineralogy of Fe-(hydr)oxides present in a sample, and (iii) Scanning Electron Microscopy and Energy-Dispersive spectroscopy, SEM/EDS, to provide complimentary information to corroborate and aid in the interpretation of our P XANES data. It was shown that the combination of techniques can assist us not only in the determination of the P chemical species present in a given material, but also to better understand the complex and dynamic processes to which P is subjected in soils. The association of spectroscopy (XANES and EXAFS) and microscopy (SEM/EDS) with wet chemistry data in this study was key to shift our understanding of the relationship between P and other soil mineral components from a macroscopic into a microscopic one. This represents a strong driving force to integrate the results of multi-analytical techniques into a more complete understanding of the systems under study. In addition, we provide a library of reference spectra for P K-edge XANES containing P sorbed to single and binary mixtures of mineral analogues intended to assist in the identification of P sorbed species commonly found in soils and sediments. Key-words: P K-edge XANES, Fe K-edge EXAFS, sequential chemical fractionation, soil phosphorus

  2. Learning to speciate: The biased learning of mate preferences promotes adaptive radiation

    PubMed Central

    Gilman, R. Tucker; Kozak, Genevieve M.

    2015-01-01

    Bursts of rapid repeated speciation called adaptive radiations have generated much of Earth's biodiversity and fascinated biologists since Darwin, but we still do not know why some lineages radiate and others do not. Understanding what causes assortative mating to evolve rapidly and repeatedly in the same lineage is key to understanding adaptive radiation. Many species that have undergone adaptive radiations exhibit mate preference learning, where individuals acquire mate preferences by observing the phenotypes of other members of their populations. Mate preference learning can be biased if individuals also learn phenotypes to avoid in mates, and shift their preferences away from these avoided phenotypes. We used individual‐based computational simulations to study whether biased and unbiased mate preference learning promotes ecological speciation and adaptive radiation. We found that ecological speciation can be rapid and repeated when mate preferences are biased, but is inhibited when mate preferences are learned without bias. Our results suggest that biased mate preference learning may play an important role in generating animal biodiversity through adaptive radiation. PMID:26459795

  3. A Multivariate Dynamic Spatial Factor Model for Speciated Pollutants and Adverse Birth Outcomes

    DOE PAGES

    Kaufeld, Kimberly Ann; Fuentes, Montse; Reich, Brian J.; ...

    2017-09-11

    Evidence suggests that exposure to elevated concentrations of air pollution during pregnancy is associated with increased risks of birth defects and other adverse birth outcomes. While current regulations put limits on total PM2.5 concentrations, there are many speciated pollutants within this size class that likely have distinct effects on perinatal health. However, due to correlations between these speciated pollutants, it can be difficult to decipher their effects in a model for birth outcomes. To combat this difficulty, we develop a multivariate spatio-temporal Bayesian model for speciated particulate matter using dynamic spatial factors. These spatial factors can then be interpolated tomore » the pregnant women’s homes to be used to model birth defects. The birth defect model allows the impact of pollutants to vary across different weeks of the pregnancy in order to identify susceptible periods. Here, the proposed methodology is illustrated using pollutant monitoring data from the Environmental Protection Agency and birth records from the National Birth Defect Prevention Study.« less

  4. A Multivariate Dynamic Spatial Factor Model for Speciated Pollutants and Adverse Birth Outcomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaufeld, Kimberly Ann; Fuentes, Montse; Reich, Brian J.

    Evidence suggests that exposure to elevated concentrations of air pollution during pregnancy is associated with increased risks of birth defects and other adverse birth outcomes. While current regulations put limits on total PM2.5 concentrations, there are many speciated pollutants within this size class that likely have distinct effects on perinatal health. However, due to correlations between these speciated pollutants, it can be difficult to decipher their effects in a model for birth outcomes. To combat this difficulty, we develop a multivariate spatio-temporal Bayesian model for speciated particulate matter using dynamic spatial factors. These spatial factors can then be interpolated tomore » the pregnant women’s homes to be used to model birth defects. The birth defect model allows the impact of pollutants to vary across different weeks of the pregnancy in order to identify susceptible periods. Here, the proposed methodology is illustrated using pollutant monitoring data from the Environmental Protection Agency and birth records from the National Birth Defect Prevention Study.« less

  5. Radiating on oceanic islands: patterns and processes of speciation in the land snail genus Theba (Risso 1826).

    PubMed

    Greve, Carola; Gimnich, France; Hutterer, Rainer; Misof, Bernhard; Haase, Martin

    2012-01-01

    Island radiations have played a major role in shaping our current understanding of allopatric, sympatric and parapatric speciation. However, the fact that species divergence correlates with island size emphasizes the importance of geographic isolation (allopatry) in speciation. Based on molecular and morphological data, we investigated the diversification of the land snail genus Theba on the two Canary Islands of Lanzarote and Fuerteventura. Due to the geological history of both islands, this study system provides ideal conditions to investigate the interplay of biogeography, dispersal ability and differentiation in generating species diversity. Our analyses demonstrated extensive cryptic diversification of Theba on these islands, probably driven mainly by non-adaptive allopatric differentiation and secondary gene flow. In a few cases, we observed a complete absence of gene flow among sympatrically distributed forms suggesting an advanced stage of speciation. On the Jandía peninsula genome scans suggested genotype-environment associations and potentially adaptive diversification of two closely related Theba species to different ecological environments. We found support for the idea that genetic differentiation was enhanced by divergent selection in different environments. The diversification of Theba on both islands is therefore best explained by a mixture of non-adaptive and adaptive speciation, promoted by ecological and geomorphological factors.

  6. Radiating on Oceanic Islands: Patterns and Processes of Speciation in the Land Snail Genus Theba (Risso 1826)

    PubMed Central

    Greve, Carola; Gimnich, France; Hutterer, Rainer; Misof, Bernhard; Haase, Martin

    2012-01-01

    Island radiations have played a major role in shaping our current understanding of allopatric, sympatric and parapatric speciation. However, the fact that species divergence correlates with island size emphasizes the importance of geographic isolation (allopatry) in speciation. Based on molecular and morphological data, we investigated the diversification of the land snail genus Theba on the two Canary Islands of Lanzarote and Fuerteventura. Due to the geological history of both islands, this study system provides ideal conditions to investigate the interplay of biogeography, dispersal ability and differentiation in generating species diversity. Our analyses demonstrated extensive cryptic diversification of Theba on these islands, probably driven mainly by non-adaptive allopatric differentiation and secondary gene flow. In a few cases, we observed a complete absence of gene flow among sympatrically distributed forms suggesting an advanced stage of speciation. On the Jandía peninsula genome scans suggested genotype-environment associations and potentially adaptive diversification of two closely related Theba species to different ecological environments. We found support for the idea that genetic differentiation was enhanced by divergent selection in different environments. The diversification of Theba on both islands is therefore best explained by a mixture of non-adaptive and adaptive speciation, promoted by ecological and geomorphological factors. PMID:22493687

  7. Migration and speciation of heavy metal in salinized mine tailings affected by iron mining.

    PubMed

    Zhang, Xu; Yang, Huanhuan; Cui, Zhaojie

    2017-10-01

    The negative effects of heavy metals have aroused much attention due to their high toxicity to human beings. Migration and transformation trend of heavy metals have a close relationship with soil safety. Researching on migration and transformation of heavy metals in tailings can provide a reliable basis for pollution management and ecosystem restoration. Heavy metal speciation plays an important role in risk assessment. We chose Anshan tailings for our study, including field investigations and laboratory research. Four typical heavy metal elements of mine tailings {Fe (373.89 g/kg), Mn (2,303.80 mg/kg), Pb (40.99 mg/kg) and Cr (199.92 mg/kg)} were studied via Tessier test in vertical and horizontal direction. The main speciation of heavy metals in Anshan tailings was the residual. However, heavy metals have a strong ability for migration and transformation in vertical and horizontal directions. Its tendency to change from stable to unstable speciation results in increasing bioavailability and potential bioavailability. Fe, Mn, Pb and Cr showed different ability in the migration and transformation process (Mn > Pb > Fe > Cr) depending on the characteristics of heavy metals and physicochemical properties of the environment.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Bingbing; Knopf, Daniel A.; China, Swarup

    Heterogeneous ice nucleation is a physical chemistry process of critical relevance to a range of topics in the fundamental and the applied sciences and technologies. Heterogeneous ice nucleation remains insufficiently understood. This is in part due to the lack of experimental methods capable of in situ visualization of ice formation over nucleating substrates with microscopically characterized morphology and composition. We present development, validation and first applications of a novel electron microscopy platform allowing observation of individual ice nucleation events at temperature and relative humidity (RH) relevant for ice formation in a broad range of environmental and applied technology processes. Themore » approach utilizes a custom-built ice nucleation cell, interfaced with an Environmental Scanning Electron Microscope (IN-ESEM system). The IN-ESEM system allows dynamic observations of individual ice formation events over particles of atmospheric relevance and determination of the ice nucleation mechanisms. Additional IN-ESEM experiments allow examination of the location of ice formation on the surface of individual particles and micro-spectroscopy analysis of the ice nucleating particles (INPs). This includes elemental composition detected by the energy dispersed analysis of X-rays (EDX), speciation of the organic content in particles using scanning transmission X-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS), and Helium ion microscopy (HeIM). The capabilities of the IN-ESEM experimental platform are demonstrated first on laboratory standards and then by chemical imaging of INPs using a complex sample of ambient particles.« less

  9. Rates of speciation in the fossil record

    NASA Technical Reports Server (NTRS)

    Sepkoski, J. J. Jr; Sepkoski JJ, J. r. (Principal Investigator)

    1998-01-01

    Data from palaeontology and biodiversity suggest that the global biota should produce an average of three new species per year. However, the fossil record shows large variation around this mean. Rates of origination have declined through the Phanerozoic. This appears to have been largely a function of sorting among higher taxa (especially classes), which exhibit characteristic rates of speciation (and extinction) that differ among them by nearly an order of magnitude. Secular decline of origination rates is hardly constant, however; many positive deviations reflect accelerated speciation during rebounds from mass extinctions. There has also been general decline in rates of speciation within major taxa through their histories, although rates have tended to remain higher among members in tropical regions. Finally, pulses of speciation appear sometimes to be associated with climate change, although moderate oscillations of climate do not necessarily promote speciation despite forcing changes in species' geographical ranges.

  10. Speciation driven by hybridization and chromosomal plasticity in a wild yeast.

    PubMed

    Leducq, Jean-Baptiste; Nielly-Thibault, Lou; Charron, Guillaume; Eberlein, Chris; Verta, Jukka-Pekka; Samani, Pedram; Sylvester, Kayla; Hittinger, Chris Todd; Bell, Graham; Landry, Christian R

    2016-01-11

    Hybridization is recognized as a powerful mechanism of speciation and a driving force in generating biodiversity. However, only few multicellular species, limited to a handful of plants and animals, have been shown to fulfil all the criteria of homoploid hybrid speciation. This lack of evidence could lead to the interpretation that speciation by hybridization has a limited role in eukaryotes, particularly in single-celled organisms. Laboratory experiments have revealed that fungi such as budding yeasts can rapidly develop reproductive isolation and novel phenotypes through hybridization, showing that in principle homoploid speciation could occur in nature. Here, we report a case of homoploid hybrid speciation in natural populations of the budding yeast Saccharomyces paradoxus inhabiting the North American forests. We show that the rapid evolution of chromosome architecture and an ecological context that led to secondary contact between nascent species drove the formation of an incipient hybrid species with a potentially unique ecological niche.

  11. The role of Quaternary environmental change in plant macroevolution: the exception or the rule?

    PubMed Central

    Willis, Katherine J; Niklas, Karl J

    2004-01-01

    The Quaternary has been described as an important time for genetic diversification and speciation. This is based on the premise that Quaternary climatic conditions fostered the isolation of populations and, in some instances, allopatric speciation. However, the 'Quaternary Ice-Age speciation model' rests on two key assumptions: (i) that biotic responses to climate change during the Quaternary were significantly different from those of other periods in Earth's history; and (ii) that the mechanisms of isolation during the Quaternary were sufficient in time and space for genetic diversification to foster speciation. These assumptions are addressed by examining the plant fossil record for the Quaternary (in detail) and for the past 410 Myr, which encompasses previous intervals of icehouse Earth. Our examination of the Quaternary record indicates that floristic responses to climate changes during the past 1.8 Myr were complex and that a distinction has to be made between those plants that were able to withstand the extremes of glacial conditions and those that could not. Generation times are also important as are different growth forms (e.g. herbaceous annuals and arborescent perennials), resulting in different responses in terms of genetic divergence rates during isolation. Because of these variations in the duration of isolation of populations and genomic diversification rates, no canonical statement about the predominant floristic response to climatic changes during the Quaternary (i.e. elevated rates of speciation or extinction, or stasis) is currently possible. This is especially true because of a sampling bias in terms of the fossil record of tree species over that of species with non-arborescent growth forms. Nevertheless, based on the available information, it appears that the dominant response of arborescent species during the Quaternary was extinction rather than speciation or stasis. By contrast, our examination of the fossil record of vascular plants for the past 410 Myr indicates that speciation rates often increased during long intervals of icehouse Earth (spanning up to 50 Myr). Therefore, longer periods of icehouse Earth than those occurring during the Quaternary may have isolated plant populations for sufficiently long periods of time to foster genomic diversification and allopatric speciation. Our results highlight the need for more detailed study of the fossil record in terms of finer temporal and spatial resolution than is currently available to examine the significance of intervals of icehouse Earth. It is equally clear that additional and detailed molecular studies of extant populations of Quaternary species are required in order to determine the extent to which these 'relic' species have genomically diversified across their current populations. PMID:15101573

  12. Distribution and potential sources and sinks of copper chelators in the Sargasso Sea

    NASA Astrophysics Data System (ADS)

    Moffett, J. W.; Zika, R. G.; Brand, L. E.

    1990-01-01

    Copper speciation has been studied at an oligotrophic station in the southwestern Sargasso Sea to determine the distribution of Cu binding ligands and evaluate their potential sources and sinks. Speciation was studied using a ligand exchange/liquid-liquid partition procedure used in a previous study in Florida coastal waters [ MOFFET and ZIKA (1987a) Marine Chemistry, 21, 301-313]. Copper speciation was dominated by organic complexation at all depths studied (16-950 m). Complexation was greatest in the region of the chlorophyll maximum. In this region, speciation was dominated by two ligands or ligand classes; L 1, with K cond. = 10 13.2, concentration = 2 nM, and a weaker but more abundant ligand class, L 2 with Kincond. = 10 9.7, concentration = 80 nM. From 140 to 16 m, [Cu(II)] free/[Cu(II)] total increases by a factor of 20, due to a decrease in [L 1] to a value below the ambient Cu concentration. Exposure of water from 140 m to sunlight indicated that photochemical decomposition of L 1 may account for the decrease. Below the chlorophyll maximum there is a gradual increase in [Cu(II)] free/[Cu(II)] total suggesting that the ligands are of recent biological origin rather than derived from refractory materials. Cultures of a ubiquitous marine cyanobacterium, Synechococcus sp. produced a ligand with K cond. comparable to L 1, indicating that a biological source is plausible.

  13. Sympatric speciation by sexual selection alone is unlikely.

    PubMed

    Arnegard, Matthew E; Kondrashov, Alexey S

    2004-02-01

    According to Darwin, sympatric speciation is driven by disruptive, frequency-dependent natural selection caused by competition for diverse resources. Recently, several authors have argued that disruptive sexual selection can also cause sympatric speciation. Here, we use hypergeometric phenotypic and individual-based genotypic models to explore sympatric speciation by sexual selection under a broad range of conditions. If variabilities of preference and display traits are each caused by more than one or two polymorphic loci, sympatric speciation requires rather strong sexual selection when females exert preferences for extreme male phenotypes. Under this kind of mate choice, speciation can occur only if initial distributions of preference and display are close to symmetric. Otherwise, the population rapidly loses variability. Thus, unless allele replacements at very few loci are enough for reproductive isolation, female preferences for extreme male displays are unlikely to drive sympatric speciation. By contrast, similarity-based female preferences that do not cause sexual selection are less destabilizing to the maintenance of genetic variability and may result in sympatric speciation across a broader range of initial conditions. Certain groups of African cichlids have served as the exclusive motivation for the hypothesis of sympatric speciation by sexual selection. Mate choice in these fishes appears to be driven by female preferences for extreme male phenotypes rather than similarity-based preferences, and the evolution of premating reproductive isolation commonly involves at least several genes. Therefore, differences in female preferences and male display in cichlids and other species of sympatric origin are more likely to have evolved as isolating mechanisms under disruptive natural selection.

  14. Comparing WHAM 6 and MINEQL+ 4.5 for the chemical speciation of Cu2+ in the rhizosphere of forest soils.

    PubMed

    Cloutier-Hurteau, Benoît; Sauvé, Sébastien; Courchesne, François

    2007-12-01

    Metal speciation data calculated by modeling could give useful information regarding the fate of metals in the rhizospheric environment. However, no comparative study has evaluated the relative accuracy of speciation models in this microenvironment. Consequently, the present study evaluates the reliability of free Cu ion (Cu2+) activity modeled by WHAM 6 and MINEQL+ 4.5 for 18 bulk and 18 rhizospheric soil samples collected in two Canadian forested areas located near industrial facilities. The modeling of Cu speciation was performed on water extracts using pH, dissolved organic carbon (DOC), major ions, and total dissolved Al, Ca, Cu, Mg, and Zn concentrations as input data. Four scenarios representing the composition of dissolved organic substances using fulvic, humic, and acetic acids were derived from the literature and used in the modeling exercise. Different scenarios were used to contrast soil components (rhizosphere vs bulk) and soil pH levels (acidic vs neutral to alkaline). Reference Cu2+ activity values measured by an ion-selective electrode varied between 0.39 and 41 nM. The model MINEQL+ 4.5 provided good predictions of Cu2+ activities [root-mean-square residual (RMSR)= 0.37], while predictions from WHAM 6 were poor (RMSR = 1.74) because they overestimated Cu complexation with DOC. Modeling with WHAM 6 could be improved by adjusting the proportion of inert DOC and the composition of DOC (RMSR = 0.94), but it remained weaker than predictions with MINEQL+ 4.5. These results suggested that the discrepancies between speciation models were attributed to differences in the binding capacity of humic substances with Cu, where WHAM 6 appeared to be too aggressive. Therefore, we concluded that chemical interactions occurring between Cu and DOC were key factors for an accurate simulation of Cu speciation, especially in rhizospheric forest soils, where high variation of the DOC concentration and composition are observed.

  15. Speciation and Lability of Ag-, AgCl- and Ag2S-Nanoparticles in Soil Determined by X-ray Absorption Spectroscopy and Diffusive Gradients in Thin Films

    EPA Science Inventory

    Long-term speciation and lability of silver (Ag-), silver chloride (AgCl-) and silver sulfide nanoparticles (Ag2S-NPs) in soil were studied by X-ray absorption spectroscopy (XAS), and newly developed "nano" Diffusive Gradients in Thin Films (DGT) devices. These nano-D...

  16. Combining Textural Techniques to Explore Effects of Diagenesis and Low-grade Metamorphism on Iron Mineralogy and Iron Speciation

    NASA Astrophysics Data System (ADS)

    Slotznick, S. P.; Webb, S.; Eiler, J. M.; Kirschvink, J. L.; Fischer, W. W.

    2016-12-01

    Iron chemistry and mineralogy in the sedimentary rocks provide a valuable tool for studying paleoenvironmental conditions due to the fact that iron atoms can take on either the +II or +III valence state under geological redox conditions. One method utilizing this redox chemistry is `iron speciation', a bulk chemical sequential extraction technique that maps proportions of iron species to redox conditions empirically calibrated from modern sediments. However, all Precambrian and many Phanerozoic rocks have experienced post-depositional processes; it is vital to explore their effects on iron mineralogy and speciation. We combined light and electron microscopy, magnetic microscopy, (synchrotron-based) microprobe x-ray spectroscopy, and rock magnetic measurements in order to deconvolve secondary overprints from primary phases and provide quantitative measurement of iron minerals. These techniques were applied to excellently-preserved shale and siltstone samples of the 1.4 Ga lower Belt Supergroup, Montana and Idaho, USA, spanning a metamorphic gradient from sub-biotite to garnet zone. Previously measured Silurian-Devonian shales, sandstones, and carbonates in Maine and Vermont, USA spanning from the chlorite to kyanite zone provided additional well-constrained, quantitative data for comparison and to extend our analysis. In all of the studied samples, pyrrhotite formation occurred at the sub-biotite or sub-chlorite zone. Pyrrhotite was interpreted to form from pyrite and/or other iron phases based on lithology; these reactions can affect the paleoredox proxy. Iron carbonates can also severely influence iron speciation results since they often form in anoxic pore fluids during diagenesis; textural analyses of the Belt Supergroup samples highlighted that iron-bearing carbonates were early diagenetic cements or later diagenetic overprints. The inclusion of iron from diagenetic minerals during iron speciation analyses will skew results by providing a view of pore-fluid redox, not ancient water column chemistry. While our analyses and biological indicators suggest that the studied samples of the lower Belt Supergroup and New England were deposited in oxic water columns, iron speciation results imply anoxic/ferruginous conditions due to diagenetic alterations affecting the record.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swanner, E. D.; Bayer, T.; Wu, W.

    In this study, we couple iron isotope analysis to microscopic and mineralogical investigation of iron speciation during circumneutral Fe(II) oxidation and Fe(III) precipitation with photosynthetically produced oxygen. In the presence of the cyanobacterium Synechococcus PCC 7002, aqueous Fe(II) (Fe(II) aq) is oxidized and precipitated as amorphous Fe(III) oxyhydroxide minerals (iron precipitates, Fe ppt), with distinct isotopic fractionation (ε 56Fe) values determined from fitting the δ 56Fe(II) aq (1.79‰ and 2.15‰) and the δ 56Fe ppt (2.44‰ and 2.98‰) data trends from two replicate experiments. Additional Fe(II) and Fe(III) phases were detected using microscopy and chemical extractions and likely represent Fe(II)more » and Fe(III) sorbed to minerals and cells. The iron desorbed with sodium acetate (FeNaAc) yielded heavier δ 56Fe compositions than Fe(II) aq. Modeling of the fractionation during Fe(III) sorption to cells and Fe(II) sorption to Feppt, combined with equilibration of sorbed iron and with Fe(II) aq using published fractionation factors, is consistent with our resulting δ 56FeNaAc. The δ 56Fe ppt data trend is inconsistent with complete equilibrium exchange with Fe(II)aq. Because of this and our detection of microbially excreted organics (e.g., exopolysaccharides) coating Feppt in our microscopic analysis, we suggest that electron and atom exchange is partially suppressed in this system by biologically produced organics. These results indicate that cyanobacteria influence the fate and composition of iron in sunlit environments via their role in Fe(II) oxidation through O 2 production, the capacity of their cell surfaces to sorb iron, and the interaction of secreted organics with Fe(III) minerals.« less

  18. Speciation below ground: Tempo and mode of diversification in a radiation of endogean ground beetles.

    PubMed

    Andújar, Carmelo; Pérez-González, Sergio; Arribas, Paula; Zaballos, Juan P; Vogler, Alfried P; Ribera, Ignacio

    2017-11-01

    Dispersal is a critical factor determining the spatial scale of speciation, which is constrained by the ecological characteristics and distribution of a species' habitat and the intrinsic traits of species. Endogean taxa are strongly affected by the unique qualities of the below-ground environment and its effect on dispersal, and contrasting reports indicate either high dispersal capabilities favoured by small body size and mediated by passive mechanisms, or low dispersal due to restricted movement and confinement inside the soil. We studied a species-rich endogean ground beetle lineage, Typhlocharina, including three genera and more than 60 species, as a model for the evolutionary biology of dispersal and speciation in the deep soil. A time-calibrated molecular phylogeny generated from >400 individuals was used to delimit candidate species, to study the accumulation of lineages through space and time by species-area-age relationships and to determine the geographical structure of the diversification using the relationship between phylogenetic and geographic distances across the phylogeny. Our results indicated a small spatial scale of speciation in Typhlocharina and low dispersal capacity combined with sporadic long distance, presumably passive dispersal events that fuelled the speciation process. Analysis of lineage growth within Typhlocharina revealed a richness plateau correlated with the range of distribution of lineages, suggesting a long-term species richness equilibrium mediated by density dependence through limits of habitat availability. The interplay of area- and age-dependent processes ruling the lineage diversification in Typhlocharina may serve as a general model for the evolution of high species diversity in endogean mesofauna. © 2017 John Wiley & Sons Ltd.

  19. How humans drive speciation as well as extinction

    PubMed Central

    Maron, M.

    2016-01-01

    A central topic for conservation science is evaluating how human activities influence global species diversity. Humanity exacerbates extinction rates. But by what mechanisms does humanity drive the emergence of new species? We review human-mediated speciation, compare speciation and known extinctions, and discuss the challenges of using net species diversity as a conservation objective. Humans drive rapid evolution through relocation, domestication, hunting and novel ecosystem creation—and emerging technologies could eventually provide additional mechanisms. The number of species relocated, domesticated and hunted during the Holocene is of comparable magnitude to the number of observed extinctions. While instances of human-mediated speciation are known, the overall effect these mechanisms have upon speciation rates has not yet been quantified. We also explore the importance of anthropogenic influence upon divergence in microorganisms. Even if human activities resulted in no net loss of species diversity by balancing speciation and extinction rates, this would probably be deemed unacceptable. We discuss why, based upon ‘no net loss’ conservation literature—considering phylogenetic diversity and other metrics, risk aversion, taboo trade-offs and spatial heterogeneity. We conclude that evaluating speciation alongside extinction could result in more nuanced understanding of biosphere trends, clarifying what it is we actually value about biodiversity. PMID:27358365

  20. How humans drive speciation as well as extinction.

    PubMed

    Bull, J W; Maron, M

    2016-06-29

    A central topic for conservation science is evaluating how human activities influence global species diversity. Humanity exacerbates extinction rates. But by what mechanisms does humanity drive the emergence of new species? We review human-mediated speciation, compare speciation and known extinctions, and discuss the challenges of using net species diversity as a conservation objective. Humans drive rapid evolution through relocation, domestication, hunting and novel ecosystem creation-and emerging technologies could eventually provide additional mechanisms. The number of species relocated, domesticated and hunted during the Holocene is of comparable magnitude to the number of observed extinctions. While instances of human-mediated speciation are known, the overall effect these mechanisms have upon speciation rates has not yet been quantified. We also explore the importance of anthropogenic influence upon divergence in microorganisms. Even if human activities resulted in no net loss of species diversity by balancing speciation and extinction rates, this would probably be deemed unacceptable. We discuss why, based upon 'no net loss' conservation literature-considering phylogenetic diversity and other metrics, risk aversion, taboo trade-offs and spatial heterogeneity. We conclude that evaluating speciation alongside extinction could result in more nuanced understanding of biosphere trends, clarifying what it is we actually value about biodiversity. © 2016 The Author(s).

  1. Coast of California Storm and Tidal Waves Study. Shoreline Movement Data Report. Portuguese Point to Mexican Border (1852-1982),

    DTIC Science & Technology

    1985-12-01

    34.uld not be used for site-specific shoreline ch~n i analisi For USe in engieering or planning studies, the companion analysis report haid be consulted...compiled from aerial photoraphy talum 1982. This is a speciat poros map designed for use by the U.S. Army Corps of Engineers. Natonal Oceanic and...is a speciat purpose map deisigned for use by the U.S. Army Corps of Engineers, National Ocemc and Atmospheric Administration. andother agencies

  2. Influence of Organic Matter - Mineral Interfacial Reactions on Metal(loid) Speciation and Bioaccessibility

    NASA Astrophysics Data System (ADS)

    Chorover, J.; Kong, S.; Root, R. A.; Thomas, A.

    2015-12-01

    Bioaccessibility of contaminant metals in geomedia is often measured on the basis of kinetic release to solution during in vitro reaction with biofluid simulants. We postulate that development of a predictive-mechanistic understanding of bioaccessibility requires knowledge of metal(loid) molecular speciation upon sample introduction, as well as its change over the course of the in vitro reaction. Our results - including data from batch, column, mesocosm and field studies pertaining to arsenic, lead, and zinc contaminated materials - indicate the strong influence of organic matter and associated biological activity on metal(loid) speciation in mine tailings and related model systems. Furthermore, presence/absence of organic matter during bioassays affects the kinetics of metal(loid) release into biofluid simulants through multiple mechanisms.

  3. Molecular evolution and the latitudinal biodiversity gradient.

    PubMed

    Dowle, E J; Morgan-Richards, M; Trewick, S A

    2013-06-01

    Species density is higher in the tropics (low latitude) than in temperate regions (high latitude) resulting in a latitudinal biodiversity gradient (LBG). The LBG must be generated by differential rates of speciation and/or extinction and/or immigration among regions, but the role of each of these processes is still unclear. Recent studies examining differences in rates of molecular evolution have inferred a direct link between rate of molecular evolution and rate of speciation, and postulated these as important drivers of the LBG. Here we review the molecular genetic evidence and examine the factors that might be responsible for differences in rates of molecular evolution. Critical to this is the directionality of the relationship between speciation rates and rates of molecular evolution.

  4. The origins of tropical marine biodiversity.

    PubMed

    Bowen, Brian W; Rocha, Luiz A; Toonen, Robert J; Karl, Stephen A

    2013-06-01

    Recent phylogeographic studies have overturned three paradigms for the origins of marine biodiversity. (i) Physical (allopatric) isolation is not the sole avenue for marine speciation: many species diverge along ecological boundaries. (ii) Peripheral habitats such as oceanic archipelagos are not evolutionary graveyards: these regions can export biodiversity. (iii) Speciation in marine and terrestrial ecosystems follow similar processes but are not the same: opportunities for allopatric isolation are fewer in the oceans, leaving greater opportunity for speciation along ecological boundaries. Biodiversity hotspots such as the Caribbean Sea and the Indo-Pacific Coral Triangle produce and export species, but can also accumulate biodiversity produced in peripheral habitats. Both hotspots and peripheral ecosystems benefit from this exchange in a process dubbed biodiversity feedback. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Ruminant-specific multiple duplication events of PRDM9 before speciation

    USDA-ARS?s Scientific Manuscript database

    Understanding the genetic and evolutionary mechanisms of speciation genes in sexually reproducing organisms would provide important insights into mammalian reproduction and fitness. PRDM9, a widely known speciation gene, has recently gained attention for its important role in meiotic recombination a...

  6. The Development and Uses of EPA's SPECIATE Database

    EPA Science Inventory

    SPECIATE is the U.S. Environmental Protection Agency's (EPA) repository of volatile organic compounds (VOC) and particulate matter (PM) speciation profiles of air pollution sources. These source profiles can be used to (l) provide input to chemical mass balance (CMB) receptor mod...

  7. Linkage between speciation of Cd in mangrove sediment and its bioaccumulation in total soft tissue of oyster from the west coast of India.

    PubMed

    Chakraborty, Parthasarathi; Ramteke, Darwin; Gadi, Subhadra Devi; Bardhan, Pratirupa

    2016-05-15

    This study established a mechanistic linkage between Cd speciation and bioavailability in mangrove system from the west coast of India. High bioaccumulation of Cd was found in the oyster (Crassostrea sp.) even at low Cd loading in the bottom sediment. Bioaccumulation of Cd in the oyster gradually increased with the increasing concentrations of water soluble, exchangeable and carbonate/bicarbonate forms of Cd in the sediments. Fe/Mn oxyhydroxide phase was found to control Cd bioavailability in the sediment system. Cd-associated with sedimentary organic matter was bioavailable and organic ligands in the sediments were poor chelating agents for Cd. This study suggests that bioaccumulation of Cd in oyster (Crassostrea sp.) depends not on the total Cd concentration but on the speciation of Cd in the system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Fate of copper complexes in hydrothermally altered deep-sea sediments from the Central Indian Ocean Basin.

    PubMed

    Chakraborty, Parthasarathi; Sander, Sylvia G; Jayachandran, Saranya; Nath, B Nagender; Nagaraju, G; Chennuri, Kartheek; Vudamala, Krushna; Lathika, N; Mascarenhas-Pereira, Maria Brenda L

    2014-11-01

    The current study aims to understand the speciation and fate of Cu complexes in hydrothermally altered sediments from the Central Indian Ocean Basin and assess the probable impacts of deep-sea mining on speciation of Cu complexes and assess the Cu flux from this sediment to the water column in this area. This study suggests that most of the Cu was strongly associated with different binding sites in Fe-oxide phases of the hydrothermally altered sediments with stabilities higher than that of Cu-EDTA complexes. The speciation of Cu indicates that hydrothermally influenced deep-sea sediments from Central Indian Ocean Basin may not significantly contribute to the global Cu flux. However, increasing lability of Cu-sediment complexes with increasing depth of sediment may increase bioavailability and Cu flux to the global ocean during deep-sea mining. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. EPA’s SPECIATE 4.4 Database - Development and Uses

    EPA Science Inventory

    SPECIATE is the EPA's repository of TOG, PM, and Other Gases speciation profiles of air pollution sources. It includes weight fractions of both organic species and PM and provides data in consistent units. Species include metals, ions, elements, and organic and inorganic compound...

  10. Geography, assortative mating, and the effects of sexual selection on speciation with gene flow.

    PubMed

    Servedio, Maria R

    2016-01-01

    Theoretical and empirical research on the evolution of reproductive isolation have both indicated that the effects of sexual selection on speciation with gene flow are quite complex. As part of this special issue on the contributions of women to basic and applied evolutionary biology, I discuss my work on this question in the context of a broader assessment of the patterns of sexual selection that lead to, versus inhibit, the speciation process, as derived from theoretical research. In particular, I focus on how two factors, the geographic context of speciation and the mechanism leading to assortative mating, interact to alter the effect that sexual selection through mate choice has on speciation. I concentrate on two geographic contexts: sympatry and secondary contact between two geographically separated populations that are exchanging migrants and two mechanisms of assortative mating: phenotype matching and separate preferences and traits. I show that both of these factors must be considered for the effects of sexual selection on speciation to be inferred.

  11. Sympatric speciation as a consequence of male pregnancy in seahorses

    PubMed Central

    Jones, Adam G.; Moore, Glenn I.; Kvarnemo, Charlotta; Walker, DeEtte; Avise, John C.

    2003-01-01

    The phenomenon of male pregnancy in the family Syngnathidae (seahorses, pipefishes, and sea dragons) undeniably has sculpted the course of behavioral evolution in these fishes. Here we explore another potentially important but previously unrecognized consequence of male pregnancy: a predisposition for sympatric speciation. We present microsatellite data on genetic parentage that show that seahorses mate size-assortatively in nature. We then develop a quantitative genetic model based on these empirical findings to demonstrate that sympatric speciation indeed can occur under this mating regime in response to weak disruptive selection on body size. We also evaluate phylogenetic evidence bearing on sympatric speciation by asking whether tiny seahorse species are sister taxa to large sympatric relatives. Overall, our results indicate that sympatric speciation is a plausible mechanism for the diversification of seahorses, and that assortative mating (in this case as a result of male parental care) may warrant broader attention in the speciation process for some other taxonomic groups as well. PMID:12732712

  12. Minimal effects of latitude on present-day speciation rates in New World birds

    PubMed Central

    Rabosky, Daniel L.; Title, Pascal O.; Huang, Huateng

    2015-01-01

    The tropics contain far greater numbers of species than temperate regions, suggesting that rates of species formation might differ systematically between tropical and non-tropical areas. We tested this hypothesis by reconstructing the history of speciation in New World (NW) land birds using BAMM, a Bayesian framework for modelling complex evolutionary dynamics on phylogenetic trees. We estimated marginal distributions of present-day speciation rates for each of 2571 species of birds. The present-day rate of speciation varies approximately 30-fold across NW birds, but there is no difference in the rate distributions for tropical and temperate taxa. Using macroevolutionary cohort analysis, we demonstrate that clades with high tropical membership do not produce species more rapidly than temperate clades. For nearly any value of present-day speciation rate, there are far more species in the tropics than the temperate zone. Any effects of latitude on speciation rate are marginal in comparison to the dramatic variation in rates among clades. PMID:26019156

  13. Uranium(IV) adsorption by natural organic matter in anoxic sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bone, Sharon E.; Dynes, James J.; Cliff, John

    Uranium is an important carbon-free fuel source and environmental contaminant that accumulates in the tetravalent state, U(IV), in anoxic sediments, such as ore deposits, marine basins, and contaminated aquifers. However, little is known about the speciation of U(IV) in low-temperature geochemical environments, inhibiting the development of a conceptual model of U behavior. Until recently, U(IV) was assumed to exist predominantly as the sparingly soluble mineral uraninite (UO 2+x) in anoxic sediments; however, studies now show that this is not often the case. Yet a model of U(IV) speciation in the absence of mineral formation under field-relevant conditions has not yetmore » been developed. Uranium(IV) speciation controls its reactivity, particularly its susceptibility to oxidative mobilization, impacting its distribution and toxicity. Here we show adsorption to organic carbon and organic carbon-coated clays dominate U(IV) speciation in an organic-rich natural substrate under field-relevant conditions. Whereas previous research assumed that U(IV) speciation is dictated by the mode of reduction (i.e., whether reduction is mediated by microbes or by inorganic reductants), our results demonstrate that mineral formation can be diminished in favor of adsorption, regardless of reduction pathway. Projections of U transport and bioavailability, and thus its threat to human and ecosystem health, must consider U(IV) adsorption to organic matter within the sediment environment.« less

  14. Uranium(IV) adsorption by natural organic matter in anoxic sediments

    DOE PAGES

    Bone, Sharon E.; Dynes, James J.; Cliff, John; ...

    2017-01-09

    Uranium is an important carbon-free fuel source and environmental contaminant that accumulates in the tetravalent state, U(IV), in anoxic sediments, such as ore deposits, marine basins, and contaminated aquifers. However, little is known about the speciation of U(IV) in low-temperature geochemical environments, inhibiting the development of a conceptual model of U behavior. Until recently, U(IV) was assumed to exist predominantly as the sparingly soluble mineral uraninite (UO 2+x) in anoxic sediments; however, studies now show that this is not often the case. Yet a model of U(IV) speciation in the absence of mineral formation under field-relevant conditions has not yetmore » been developed. Uranium(IV) speciation controls its reactivity, particularly its susceptibility to oxidative mobilization, impacting its distribution and toxicity. Here we show adsorption to organic carbon and organic carbon-coated clays dominate U(IV) speciation in an organic-rich natural substrate under field-relevant conditions. Whereas previous research assumed that U(IV) speciation is dictated by the mode of reduction (i.e., whether reduction is mediated by microbes or by inorganic reductants), our results demonstrate that mineral formation can be diminished in favor of adsorption, regardless of reduction pathway. Projections of U transport and bioavailability, and thus its threat to human and ecosystem health, must consider U(IV) adsorption to organic matter within the sediment environment.« less

  15. Application of Sequential Extractions and X-ray Absorption Spectroscopy to Determine the Speciation of Chromium in Northern New Jersey Marsh Soils Developed in Chromite ore Processing Residue (COPR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elzinga, E.; Cirmo, A

    2010-01-01

    The Cr speciation in marsh soils developed in weathering chromite ore processing residue (COPR) was characterized using sequential extractions and synchrotron microbeam and bulk X-ray absorption spectroscopic (XAS) analyses. The sequential extractions suggested substantial Cr associated with reducible and oxidizable soil components, and significant non-extractable residual Cr. Notable differences in Cr speciation estimates from three extraction schemes underscore the operationally defined nature of Cr speciation provided by these methods. Micro X-ray fluorescence maps and {mu}-XAS data indicated the presence of {micro}m-sized chromite particles scattered throughout the weathered COPR matrix. These particles derive from the original COPR material, and have relativelymore » high resistance towards weathering, and therefore persist even after prolonged leaching. Bulk XAS data further indicated Cr(III) incorporated in Fe(OH){sub 3}, and Cr(III) associated with organic matter. The low Cr contents of the weathered material (200-850 ppm) compared to unweathered COPR (20,000-60,000 ppm) point to substantial Cr leaching during COPR weathering, with partial repartitioning of released Cr into secondary Fe(OH){sub 3} phases and organics. The effects of anoxia on Cr speciation, and the potential of active COPR weathering releasing Cr(VI) deeper in the profile require further study.« less

  16. Genetic change and rates of cladogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avise, J.C.; Ayala, F.J.

    1975-12-01

    Models are introduced which predict ratios of mean levels of genetic divergence in species-rich versus species-poor phylads under two competing assumptions: (1) genetic differentiation is a function of time, unrelated to the number of cladogenetic events and (2) genetic differentiation is proportional to the number of speciation events in the group. The models are simple, general, and biologically real, but not precise. They lead to qualitatively distinct predictions about levels of genetic divergence depending upon the relationship between rates of speciation and amount of genetic change. When genetic distance between species is a function of time, mean genetic distances inmore » speciose and depauperate phylads of equal evolutionary age are very similar. On the contrary, when genetic distance is a function of the number of speciations in the history of a phylad, the ratio of mean genetic distances separating species in speciose versus depauperate phylads is greater than one, and increases rapidly as the frequency of speciations in one group relative to the other increases. The models may be tested with data from natural populations to assess (1) possible correlations between rates of anagenesis and cladogenesis and (2) the amount of genetic differentiation accompanying the speciation process. The data collected in electrophoretic surveys and other kinds of studies can be used to test the predictions of the models. For this purpose genetic distances need to be measured in speciose and depauperate phylads of equal evolutionary age. The limited information presently available agrees better with the model predicting that genetic change is primarily a function of time, and is not correlated with rates of speciation. Further testing of the models is, however, required before firm conclusions can be drawn. (auth)« less

  17. Heavy metal speciation and risk assessment in dry land and paddy soils near mining areas at Southern China.

    PubMed

    Liu, Guannan; Wang, Juan; Zhang, Erxi; Hou, Jing; Liu, Xinhui

    2016-05-01

    Heavy metal contamination of soils has been a long-standing environmental problem in many parts of the world, and poses enormous threats to ecosystem and human health. Speciation of heavy metals in soils is crucial to assessing environmental risks from contaminated soils. In this study, total concentrations and speciation of As, Cd, Cr, Cu, Mn, Ni, Pb, and Zn were measured for agricultural soils near mines along the Diaojiang River in Guangxi Zhuang Autonomy Region, China. The sources of heavy metals in soils also were identified to assess their effect on speciation distribution of soil heavy metals. Furthermore, the speciation distribution of Cd and Zn, main soil heavy metal pollutants, in dry land and paddy soils were compared. Results showed that there were two severely polluted regions near mine area reaching alarming pollution level. As, Cd, Pb, and Zn were more affected by mining activities, showing very strong pollution level in soils. The mean percentage of exchangeable and carbonate fraction was highest and up to 46.8 % for Cd, indicating a high environmental risk. Greater bioavailable fractions of As, Cd, Cu, Mn, Pb, and Zn were found in soils heavily polluted by mining activities, whereas Cr and Ni as geogenic elements in the stable residual fraction. In addition, in the dry land soils, reducible fraction proportion of Cd was higher than that in the paddy soils, whereas exchangeable and carbonate fraction of Cd was lower than that in the paddy soils. Oxidizable fraction of Zn was higher in the paddy soils than that in the dry land soils. The results indicate that the sources of soil heavy metals and land types affect heavy metal speciation in the soil and are significant for environmental risk assessment of soil heavy metal pollutions.

  18. The evolution of conditional dispersal and reproductive isolation along environmental gradients

    PubMed Central

    Payne, Joshua L.; Mazzucco, Rupert; Dieckmann, Ulf

    2011-01-01

    Dispersal modulates gene flow throughout a population’s spatial range. Gene flow affects adaptation at local spatial scales, and consequently impacts the evolution of reproductive isolation. A recent theoretical investigation has demonstrated that local adaptation along an environmental gradient, facilitated by the evolution of limited dispersal, can lead to parapatric speciation even in the absence of assortative mating. This and other studies assumed unconditional dispersal, so individuals start dispersing without regard to local environmental conditions. However, many species disperse conditionally; their propensity to disperse is contingent upon environmental cues, such as the degree of local crowding or the availability of suitable mates. Here, we use an individual-based model in continuous space to investigate by numerical simulation the relationship between the evolution of threshold-based conditional dispersal and parapatric speciation driven by frequency-dependent competition along environmental gradients. We find that, as with unconditional dispersal, parapatric speciation occurs under a broad range of conditions when reproduction is asexual, and under a more restricted range of conditions when reproduction is sexual. In both the asexual and sexual cases, the evolution of conditional dispersal is strongly influenced by the slope of the environmental gradient: shallow environmental gradients result in low dispersal thresholds and high dispersal distances, while steep environmental gradients result in high dispersal thresholds and low dispersal distances. The latter, however, remain higher than under unconditional dispersal, thus undermining isolation by distance, and hindering speciation in sexual populations. Consequently, the speciation of sexual populations under conditional dispersal is triggered by a steeper gradient than under unconditional dispersal. Enhancing the disruptiveness of frequency-dependent selection, more box-shaped competition kernels dramatically lower the speciation-enabling slope of the environmental gradient. PMID:21194533

  19. Synergistic selection between ecological niche and mate preference primes diversification.

    PubMed

    Boughman, Janette W; Svanbäck, Richard

    2017-01-01

    The ecological niche and mate preferences have independently been shown to be important for the process of speciation. Here, we articulate a novel mechanism by which ecological niche use and mate preference can be linked to promote speciation. The degree to which individual niches are narrow and clustered affects the strength of divergent natural selection and population splitting. Similarly, the degree to which individual mate preferences are narrow and clustered affects the strength of divergent sexual selection and assortative mating between diverging forms. This novel perspective is inspired by the literature on ecological niches; it also explores mate preferences and how they may contribute to speciation. Unlike much comparative work, we do not search for evolutionary patterns using proxies for adaptation and sexual selection, but rather we elucidate how ideas from niche theory relate to mate preference, and how this relationship can foster speciation. Recognizing that individual and population niches are conceptually and ecologically linked to individual and population mate preference functions will significantly increase our understanding of rapid evolutionary diversification in nature. It has potential to help solve the difficult challenge of testing the role of sexual selection in the speciation process. We also identify ecological factors that are likely to affect individual niche and individual mate preference in synergistic ways and as a consequence to promote speciation. The ecological niche an individual occupies can directly affect its mate preference. Clusters of individuals with narrow, differentiated niches are likely to have narrow, differentiated mate preference functions. Our approach integrates ecological and sexual selection research to further our understanding of diversification processes. Such integration may be necessary for progress because these processes seem inextricably linked in the natural world. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  20. The evolution of conditional dispersal and reproductive isolation along environmental gradients.

    PubMed

    Payne, Joshua L; Mazzucco, Rupert; Dieckmann, Ulf

    2011-03-21

    Dispersal modulates gene flow throughout a population's spatial range. Gene flow affects adaptation at local spatial scales, and consequently impacts the evolution of reproductive isolation. A recent theoretical investigation has demonstrated that local adaptation along an environmental gradient, facilitated by the evolution of limited dispersal, can lead to parapatric speciation even in the absence of assortative mating. This and other studies assumed unconditional dispersal, so individuals start dispersing without regard to local environmental conditions. However, many species disperse conditionally; their propensity to disperse is contingent upon environmental cues, such as the degree of local crowding or the availability of suitable mates. Here, we use an individual-based model in continuous space to investigate by numerical simulation the relationship between the evolution of threshold-based conditional dispersal and parapatric speciation driven by frequency-dependent competition along environmental gradients. We find that, as with unconditional dispersal, parapatric speciation occurs under a broad range of conditions when reproduction is asexual, and under a more restricted range of conditions when reproduction is sexual. In both the asexual and sexual cases, the evolution of conditional dispersal is strongly influenced by the slope of the environmental gradient: shallow environmental gradients result in low dispersal thresholds and high dispersal distances, while steep environmental gradients result in high dispersal thresholds and low dispersal distances. The latter, however, remain higher than under unconditional dispersal, thus undermining isolation by distance, and hindering speciation in sexual populations. Consequently, the speciation of sexual populations under conditional dispersal is triggered by a steeper gradient than under unconditional dispersal. Enhancing the disruptiveness of frequency-dependent selection, more box-shaped competition kernels dramatically lower the speciation-enabling slope of the environmental gradient. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Speciation dynamics in the SE Asian tropics: Putting a time perspective on the phylogeny and biogeography of Sundaland tree squirrels, Sundasciurus.

    PubMed

    den Tex, Robert-Jan; Thorington, Richard; Maldonado, Jesus E; Leonard, Jennifer A

    2010-05-01

    Tropical rainforests are well known for their extraordinarily high levels of biodiversity. The origin of this species richness is still debated. For instance, the museum hypothesis states that over evolutionary time more and more species will accumulate with relatively few extinctions. In contrast, the Pleistocene diversification model argues that during the last 2 million years, climatic factors (glaciations) caused environmental changes that drove isolation and vicariant speciation events. In this study, we construct a molecular phylogeny of the Sundaland (Malay Peninsula, Sumata, Borneo, Palawan) and Greater Mindanao (Mindanao, Samar, Leyte) tree squirrels (genus Sundasciurus). Our results show that most speciation events in this forest dependent taxon occurred before the Pleistocene and that even the timing of intra-specific splits among populations from different landmasses are relatively old. Additionally, we found unexpectedly high divergence within and between highland populations of S. tenuis on Sumatra and the Malay Peninsula, highlighting the importance of Pliocene events in both speciation and within species divergences in this region. Copyright 2010 Elsevier Inc. All rights reserved.

  2. Along the speciation continuum: Quantifying intrinsic and extrinsic isolating barriers across five million years of evolutionary divergence in California jewelflowers.

    PubMed

    Christie, Kyle; Strauss, Sharon Y

    2018-05-01

    Understanding the relative roles of intrinsic and extrinsic reproductive barriers, and their interplay within the geographic context of diverging taxa, remains an outstanding challenge in the study of speciation. We conducted a comparative analysis of reproductive isolation in California Jewelflowers (Streptanthus, s.l., Brassicaceae) by quantifying potential barriers to gene flow at multiple life history stages in 39 species pairs spanning five million years of evolutionary divergence. We quantified nine potential pre- and postzygotic barriers and explored patterns of reproductive isolation in relation to genetic distance. Intrinsic postzygotic isolation was initially weak, increased at intermediate genetic distances, and reached a threshold characterized by complete genetic incompatibility. Climatic niche differences were strong at shallow genetic distances, and species pairs with overlapping ranges showed slight but appreciable phenological isolation, highlighting the potential for ecological barriers to contribute to speciation. Geographic analyses suggest that speciation is not regionally allopatric in the California Jewelflowers, as recently diverged taxa occur in relatively close proximity and display substantial range overlap. Young pairs are characterized by incomplete intrinsic postzygotic isolation, suggesting that extrinsic barriers or fine-scale spatial segregation are more important early in the divergence process than genetic incompatibilities. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.

  3. Carbon speciation in ash, residual waste and contaminated soil by thermal and chemical analyses.

    PubMed

    Kumpiene, Jurate; Robinson, Ryan; Brännvall, Evelina; Nordmark, Désirée; Bjurström, Henrik; Andreas, Lale; Lagerkvist, Anders; Ecke, Holger

    2011-01-01

    Carbon in waste can occur as inorganic (IC), organic (OC) and elemental carbon (EC) each having distinct chemical properties and possible environmental effects. In this study, carbon speciation was performed using thermogravimetric analysis (TGA), chemical degradation tests and the standard total organic carbon (TOC) measurement procedures in three types of waste materials (bottom ash, residual waste and contaminated soil). Over 50% of the total carbon (TC) in all studied materials (72% in ash and residual waste, and 59% in soil) was biologically non-reactive or EC as determined by thermogravimetric analyses. The speciation of TOC by chemical degradation also showed a presence of a non-degradable C fraction in all materials (60% of TOC in ash, 30% in residual waste and 13% in soil), though in smaller amounts than those determined by TGA. In principle, chemical degradation method can give an indication of the presence of potentially inert C in various waste materials, while TGA is a more precise technique for C speciation, given that waste-specific method adjustments are made. The standard TOC measurement yields exaggerated estimates of organic carbon and may therefore overestimate the potential environmental impacts (e.g. landfill gas generation) of waste materials in a landfill environment. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Speciation and bioavailability of some heavy metals in agricultural soils used for cultivating various vegetables in Bedugul, Bali

    NASA Astrophysics Data System (ADS)

    Siaka, I. Made; Utama, I. Made Supartha; Manuaba, I. B. Putra; Adnyana, I. Made; Sahara, Emmy

    2016-03-01

    This paper discusses the speciation and bioavailability of some heavy metals in agricultural soils used to cultivate various vegetables in Bedugul, Bali. Vegetables grown on contaminated soils where agrochemicals were applied uncontrolled could contain a number of heavy metals. This could occur in the vegetables produced from agricultural soils of Bedugul as the farmers applied agrochemicals excessively. In considering the metals transport to the vegetables, a speciation and bioavailability methods were necessary to be studied. Wet digestion and sequential extraction techniques were employed to the sample prior to the metals measurement by AAS. The results showed that the average concentrations of Pb, Cu, Cd, Cr, and Zn in the soils were 38.531, 132.126, 7.689, 15.952, and 147.275 mg/kg, respectively. The highest concentrations of Pb and Zn were found in the soil for cultivating lettuce, Cd and Cr in the soil for tomato, and Cu in the soil for potatoes. It was found that the speciation of Pb, Cu, Cd, and Cr were predominantly bound to Fe-Mn oxides fraction, while Zn was mostly associated with the EFLE (easily, freely, leachable, and exchangeable) fractions. The highest bioavailability among the metals in the studied soils was Cr, while the lowest was Cu.

  5. SPECIATION OF ORGANICS IN WATER WITH RAMAN SPECTROSCOPY: UTILITY OF IONIC STRENGTH VARIATION

    EPA Science Inventory

    We have developed and are applying an experimental and mathematical method for describing the micro-speciation of complex organic contaminants in aqueous media. For our case, micro-speciation can be defined as qualitative and quantitative identification of all discrete forms of ...

  6. Estimating PM2.5 speciation concentrations using prototype 4.4 km-resolution MISR aerosol properties over Southern California

    NASA Astrophysics Data System (ADS)

    Meng, Xia; Garay, Michael J.; Diner, David J.; Kalashnikova, Olga V.; Xu, Jin; Liu, Yang

    2018-05-01

    Research efforts to better characterize the differential toxicity of PM2.5 (particles with aerodynamic diameters less than or equal to 2.5 μm) speciation are often hindered by the sparse or non-existent coverage of ground monitors. The Multi-angle Imaging SpectroRadiometer (MISR) aboard NASA's Terra satellite is one of few satellite aerosol sensors providing information of aerosol shape, size and extinction globally for a long and continuous period that can be used to estimate PM2.5 speciation concentrations since year 2000. Currently, MISR only provides a 17.6 km product for its entire mission with global coverage every 9 days, a bit too coarse for air pollution health effects research and to capture local spatial variability of PM2.5 speciation. In this study, generalized additive models (GAMs) were developed using MISR prototype 4.4 km-resolution aerosol data with meteorological variables and geographical indicators, to predict ground-level concentrations of PM2.5 sulfate, nitrate, organic carbon (OC) and elemental carbon (EC) in Southern California between 2001 and 2015 at the daily level. The GAMs are able to explain 66%, 62%, 55% and 58% of the daily variability in PM2.5 sulfate, nitrate, OC and EC concentrations during the whole study period, respectively. Predicted concentrations capture large regional patterns as well as fine gradients of the four PM2.5 species in urban areas of Los Angeles and other counties, as well as in the Central Valley. This study is the first attempt to use MISR prototype 4.4 km-resolution AOD (aerosol optical depth) components data to predict PM2.5 sulfate, nitrate, OC and EC concentrations at the sub-regional scale. In spite of its low temporal sampling frequency, our analysis suggests that the MISR 4.4 km fractional AODs provide a promising way to capture the spatial hotspots and long-term temporal trends of PM2.5 speciation, understand the effectiveness of air quality controls, and allow our estimated PM2.5 speciation data to be linked with common spatial units such as census tract or zip code in epidemiological studies. This modeling strategy needs to be validated in other regions when more MISR 4.4 km data becoming available in the future.

  7. High-resolution x-ray imaging for microbiology at the Advanced Photon Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, B.; Kemner, K. M.; Maser, J.

    1999-11-02

    Exciting new applications of high-resolution x-ray imaging have emerged recently due to major advances in high-brilliance synchrotrons sources and high-performance zone plate optics. Imaging with submicron resolution is now routine with hard x-rays: the authors have demonstrated 150 run in the 6--10 keV range with x-ray microscopes at the Advanced Photon Source (APS), a third-generation synchrotrons radiation facility. This has fueled interest in using x-ray imaging in applications ranging from the biomedical, environmental, and materials science fields to the microelectronics industry. One important application they have pursued at the APS is a study of the microbiology of bacteria and theirmore » associated extracellular material (biofilms) using fluorescence microanalysis. No microscopy techniques were previously available with sufficient resolution to study live bacteria ({approx}1 {micro}m x 4 {micro}m in size) and biofilms in their natural hydrated state with better than part-per-million elemental sensitivity and the capability of determining g chemical speciation. In vivo x-ray imaging minimizes artifacts due to sample fixation, drying, and staining. This provides key insights into the transport of metal contaminants by bacteria in the environment and potential new designs for remediation and sequestration strategies.« less

  8. Selective Separation and Determination of Heavy Metals (Cd, Pb, Cr) Speciation Forms from Hortic Antrosols

    NASA Astrophysics Data System (ADS)

    Bulgariu, D.; Bulgariu, L.

    2009-04-01

    The speciation, inter-phases distribution and biodisponibility of heavy metals in soils represent one of main problem of environmental geochemistry and agro-chemistry. This problem is very important in case of hortic antrosols (soils from glasshouses) for the elimination of agricultural products (fruits, vegetables) contamination with heavy metals. In soils from glass houses, the speciation and inter-phases distribution processes of heavy metals have a particular dynamic, different in comparison with those from non-protected soils. The predominant distribution forms of heavy metals in such soils types are: complexes with low mass organic molecules, organic-mineral complexes, complexes with inorganic ligands (hydroxide-complexes, carbonate-complexes, sulphate-complexes, etc.) and basic salts. All of these have high stabilities in conditions of soils from glass houses, and in consequence, the separation and determination of speciation forms (which is directly connected with biodisponibility of heavy metals) by usual methods id very difficult and has a high uncertain degree. In this study is presented an original method for the selective separation and differentiation of speciation forms of heavy metals from glass houses soils, which is based by the combination of solid-liquid sequential extraction (SPE) with the extraction in aqueous polymer-inorganic salt two-phase systems (ABS). The soil samples used for this study have been sampled from three different locations (glass houses from Iasi, Barlad and Bacau - Romania) where the vegetables cultivation have bee performed by three different technologies. In this way was estimated the applicability and the analytical limits of method proposed by as, in function of the chemical-mineralogical and physical-chemical characteristics of soils. As heavy metals have been studied cadmium, lead and chromium, all being known for their high toxicity. The procedure used for the selective separation and differentiation of speciation forms of heavy metals from glass houses soils has two main steps: (i) non-destructive separation of chemical-mineralogical associations and aggregates from soils samples - for this the separation method with heavy liquids (bromophorme) and isodynamic magnetic method have been used; (ii) sequential extraction of heavy metals from soil fractions separated in the first step, by using combined SPE-ABS procedure. For the preparation of combined extraction systems was used polyethylene glycol (with different molecular mass: 2000, 4000 and 8000). As phase-forming inorganic salts and as selective extracting agents we have used different usual inorganic reagents. The type and concentration of phase-forming salts have been selected in function of, both nature of extracted heavy metals and chemical-mineralogical characteristics of soil samples. The experimental parameters investigated in this study are: molecular mass of polyethylene glycol and the concentration of polymeric solutions, nature and concentration of phase-forming salts, nature and concentration of extracting agents, pH in extraction system phase, type of extracted heavy metals, type of speciation forms of heavy metals and their concentrations. All these factors can influence significantly the efficiency and the selectivity of separation process. The experimental results have indicate that the combined SPE-ABS extraction systems have better separation efficiency, in comparison with traditional SPE systems and ca realized a accurate discrimination between speciation forms of heavy metals from soils. Under these conditions, the estimation of inter-phases distribution and biodisponibility of heavy metals has a high precision. On the other hand, when the combined SPE-ABS systems are used, the concomitant extraction of the elements from the same geochemical association with studied heavy metals (inevitable phenomena in case of separation by SPE procedures) is significant diminished. This increases the separation selectivity and facilitated the more accurate determination of speciation forms concentration. By adequate selection of extraction conditions can be realized the selective separation of organic-mineral complexes, which will permit to perform detailed studies about the structure and chemical composition of these. Acknowledgments The authors would like to acknowledge the financial support from Romanian Ministry of Education and Research (Project PNCDI 2-D5 no. 51045/07).

  9. Field Evaluation Of Arsenic Speciation In Sediments At The Ground Water/Surface Water Interface

    EPA Science Inventory

    The speciation and mineralogy of sediments contaminated with arsenic at the ground water/surface water interface of the Ft. Devens Super Fund Site in Ft. Devens, MA were determined using X-ray absorption fine structure and X-ray diffraction spectroscopy. Speciation and mineralog...

  10. Gas and liquid chromatography with inductively coupled plasma mass spectrometry detection for environmental speciation analysis — advances and limitations

    NASA Astrophysics Data System (ADS)

    Szpunar, Joanna; McSheehy, Shona; Połeć, Kasia; Vacchina, Véronique; Mounicou, Sandra; Rodriguez, Isaac; Łobiński, Ryszard

    2000-07-01

    Recent advances in the coupling of gas chromatography (GC) and high performance liquid chromatography (HPLC) with inductively coupled plasma mass spectrometry (ICP MS) and their role in trace element speciation analysis of environmental materials are presented. The discussion is illustrated with three research examples concerning the following topics: (i) development and coupling of multicapillary microcolumn GC with ICP MS for speciation of organotin in sediment and biological tissue samples; (ii) speciation of arsenic in marine algae by size-exclusion-anion-exchange HPLC-ICP MS; and (iii) speciation of cadmium in plant cell cultures by size-exclusion HPLC-ICP MS. Particular attention is paid to the problem of signal identification in ICP MS chromatograms; the potential of electrospray MS/MS for this purpose is highlighted.

  11. Chromosomes, conflict, and epigenetics: chromosomal speciation revisited.

    PubMed

    Brown, Judith D; O'Neill, Rachel J

    2010-01-01

    Since Darwin first noted that the process of speciation was indeed the "mystery of mysteries," scientists have tried to develop testable models for the development of reproductive incompatibilities-the first step in the formation of a new species. Early theorists proposed that chromosome rearrangements were implicated in the process of reproductive isolation; however, the chromosomal speciation model has recently been questioned. In addition, recent data from hybrid model systems indicates that simple epistatic interactions, the Dobzhansky-Muller incompatibilities, are more complex. In fact, incompatibilities are quite broad, including interactions among heterochromatin, small RNAs, and distinct, epigenetically defined genomic regions such as the centromere. In this review, we will examine both classical and current models of chromosomal speciation and describe the "evolving" theory of genetic conflict, epigenetics, and chromosomal speciation.

  12. Living organisms as an alternative to hyphenated techniques for metal speciation. Evaluation of baker's yeast immobilized on silica gel for Hg speciation*1

    NASA Astrophysics Data System (ADS)

    Pérez-Corona, Teresa; Madrid-Albarrán, Yolanda; Cámara, Carmen; Beceiro, Elisa

    1998-02-01

    The use of living organisms for metal preconcentration and speciation is discussed. Among substrates, Saccharomyces cerevisiae baker's yeast has been successfully used for the speciation of mercury [Hg(II) and CH 3Hg +], selenium [Se(IV) and Se(VI)] and antimony [Sb(III) and Sb(V)]. To illustrate the capabilities of these organisms, the analytical performance of baker's yeast immobilized on silica gel for on-line preconcentration and speciation of Hg(II) and methylmercury is reported. The immobilized cells were packed in a PTFE microcolumn, through which mixtures of organic and inorganic mercury solutions were passed. Retention of inorganic and organic mercury solutions took place simultaneously, with the former retained in the silica and the latter on the yeast. The efficiency uptake for both species was higher than 95% over a wide pH range. The speciation was carried out by selective and sequential elution with 0.02 mol L -1 HCl for methylmercury and 0.8 mol L -1 CN - for Hg(II). This method allows both preconcentration and speciation of mercury. The preconcentration factors were around 15 and 100 for methylmercury and mercury(II), respectively. The method has been successfully applied to spiked sea water samples.

  13. A (Sub)Micro-Scale Investigation of Fe Plaque Distribution in Selected Wetland Plant Root Epidermis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Huan

    This study focuses on investigation of the distribution of Fe plaque in the root epidermis of the selected wetland plant species (Phragmites australis, Typha latifolia and Spartina alterniflora) using synchrotron X-ray microfluoresces, X-ray absorption near edge structure and transmission X-ray microscope techniques with (sub)micro-scale resolution. The wetland plants were collected in Liberty State Park, New Jersey, USA, and Yangtze River intertidal zone, Shanghai, China, respectively, during the different time period. Although a number of early studies have reported that Fe-oxides can precipitate on the surface of aquatic plants in the rhizosphere to form iron plaque, the role of Fe plaquemore » in regulating metal biogeochemical cycle has been in discussion for decades. The results from this study show that Fe is mainly distributed in the epidermis non-uniformly, and the major Fe species is ferric Fe (Fe3+). This information is needed to make broad inferences about the relevant plant metal uptake mechanisms because Fe accumulation and distribution in the root system is important to understanding the metal transport processes that control the mobility of metals in plants. This study improves our understanding of Fe plaque distributions and speciation in the wetland plant root system, and helps us to understand the function of Fe plaque in metal transport and accumulation through the root system.« less

  14. Speciation in experimental C-O-H fluids produced by the thermal dissociation of oxalic acid dihydrate

    NASA Astrophysics Data System (ADS)

    Morgan, G. B., VI; Chou, I.-Ming; Pasteris, J. D.

    1992-01-01

    Fluid speciations and their related reaction pathways were studied in C-O-H-system fluids produced by the thermal dissociation of oxalic acid dihydrate (OAD: H 2C 2O 4 · 2H 2O) sealed in silica glass capsules. Experiments were conducted in the temperature range 230-750°C, with bulk fluid densities in the range 0.01-0.53 g/cm 3. Pressure was controlled by temperature and density in the isochoric systems. The quenched products of dissociation experiments were an aqueous liquid and one (supercritical fluid) or, rarely, two (vapor plus liquid) carbonic phase (s). In-situ Raman microanalyses were performed on the quenched carbonic phases at room temperature, at which fluid pressures ranged from about 50 to 340 bars. Bulk fluid speciations were reconstructed from the Raman analyses via mass balance constraints, and appear to monitor the true fluid speciations at run conditions. In experiments from the lowtemperature range (230-350°C), fluid speciations record the dissociation of OAD according to the reaction OAD = CO2 + CO + 3 H2O. A process of the form CO + H2O = CO2 + H2 is driven to the right with increasing temperature. The hydrogen gas produced tends to escape from the sample systems via diffusion into/through the silica glass capsules, shifting bulk compositions toward equimolar binary H 2O-CO 2 mixtures. The speciations of fluids in experiments with minimal hydrogen loss show poor agreement with speciations calculated for equilibrium fluids by the corresponding-states model of SAXENA and FEI (1988). Such disagreement suggests that the formations of CH 4 and graphite are metastably inhibited in the current experiments, which correlates with their absence or trivial abundances in experimental products. Moreover, calculations in which the stabilities of methane and graphite are suppressed suggest that such metastable equilibrium is approached only in experiments at temperatures greater than about 600-650°C. These results have applications to fluid processes in geological environments, in addition to considerations of using oxalate compounds as volatile sources in experimental studies. It is possible that disequilibrium or metastable fluids may be entrapped as inclusions; re-speciation (toward metastable or stable equilibrium) during P-T evolution of a given terrain would place the fluid inclusion on a new isochore that would not project through the original conditions of entrapment. Moreover, the disequilibrium to metastable nature of dissociation reactions, coupled with the diffusional mobility of hydrogen gas observed in the current experiments, suggests that the predominance of binary H 2O-CO 2 fluid mixtures in natural inclusions from medium- to high-grade metamorphic terrains may be more than a coincidence of similar initial bulk compositions.

  15. Speciation in experimental C-O-H fluids produced by the thermal dissociation of oxalic acid dihydrate

    USGS Publications Warehouse

    Morgan, G.B.; Chou, I.-Ming; Pasteris, J.D.

    1992-01-01

    Fluid speciations and their related reaction pathways were studied in C-O-H-system fluids produced by the thermal dissociation of oxalic acid dihydrate (OAD: H2C2O4 ?? 2H2O) sealed in silica glass capsules. Experiments were conducted in the temperature range 230-750??C, with bulk fluid densities in the range 0.01-0.53 g/cm3. Pressure was controlled by temperature and density in the isochoric systems. The quenched products of dissociation experiments were an aqueous liquid and one (supercritical fluid) or, rarely, two (vapor plus liquid) carbonic phase (s). In-situ Raman microanalyses were performed on the quenched carbonic phases at room temperature, at which fluid pressures ranged from about 50 to 340 bars. Bulk fluid speciations were reconstructed from the Raman analyses via mass balance constraints, and appear to monitor the true fluid speciations at run conditions. In experiments from the lowtemperature range (230-350??C), fluid speciations record the dissociation of OAD according to the reaction OAD = CO2 + CO + 3H2O. A process of the form CO + H2O = CO2 + H2 is driven to the right with increasing temperature. The hydrogen gas produced tends to escape from the sample systems via diffusion into/through the silica glass capsules, shifting bulk compositions toward equimolar binary H2O-CO2 mixtures. The speciations of fluids in experiments with minimal hydrogen loss show poor agreement with speciations calculated for equilibrium fluids by the corresponding-states model of Saxena and Fei (1988). Such disagreement suggests that the formations of CH4 and graphite are metastably inhibited in the current experiments, which correlates with their absence or trivial abundances in experimental products. Moreover, calculations in which the stabilities of methane and graphite are suppressed suggest that such metastable equilibrium is approached only in experiments at temperatures greater than about 600-650??C. These results have applications to fluid processes in geological environments, in addition to considerations of using oxalate compounds as volatile sources in experimental studies. It is possible that disequilibrium or metastable fluids may be entrapped as inclusions; re-speciation (toward metastable or stable equilibrium) during P-T evolution of a given terrain would place the fluid inclusion on a new isochore that would not project through the original conditions of entrapment. Moreover, the disequilibrium to metastable nature of dissociation reactions, coupled with the diffusional mobility of hydrogen gas observed in the current experiments, suggests that the predominance of binary H2O-CO2 fluid mixtures in natural inclusions from medium- to high-grade metamorphic terrains may be more than a coincidence of similar initial bulk compositions. ?? 1992.

  16. Arsenic speciation for the phytoremediation by the Chinese brake fern, Pteris vittata.

    PubMed

    Shoji, R; Yajima, R; Yano, Y

    2008-01-01

    Arsenic (As) speciation for the phytoremediation by the Chinese brake fern was studied. In particular, the mechanism of how plants induce compounds containing thiol (SH) and proteins by As exposure in terms of the relationship between As and phosphate uptaken into plant cells was examined. Pteris vittata callus could efficiently reduce As(V) to As(III) by the rapid introduction of reductase and synthesize thiols leading to phytochelatins production. Furthermore, Pteris vittata could control phosphate concentration in the cells corresponding to the concentration of arsenite and arsenate. To our best knowledge, this is the first report to show the mechanisms of such high As tolerance of Pteris vittata using their callus in terms of in vitro approach for the analysis of As speciation and metabolism route.

  17. Uranium(VI) Binding Forms in Selected Human Body Fluids: Thermodynamic Calculations versus Spectroscopic Measurements.

    PubMed

    Osman, Alfatih A A; Geipel, Gerhard; Barkleit, Astrid; Bernhard, Gert

    2015-02-16

    Human exposure to uranium increasingly becomes a subject of interest in many scientific disciplines such as environmental medicine, toxicology, and radiation protection. Knowledge about uranium chemical binding forms(speciation) in human body fluids can be of great importance to understand not only its biokinetics but also its relevance in risk assessment and in designing decorporation therapy in the case of accidental overexposure. In this study, thermodynamic calculations of uranium speciation in relevant simulated and original body fluids were compared with spectroscopic data after ex-situ uranium addition. For the first time, experimental data on U(VI) speciation in body fluids (saliva, sweat, urine) was obtained by means of cryogenic time-resolved laser-induced fluorescence spectroscopy (cryo-TRLFS) at 153 K. By using the time dependency of fluorescence decay and the band positions of the emission spectra, various uranyl complexes were demonstrated in the studied samples. The variations of the body fluids in terms of chemical composition, pH, and ionic strength resulted in different binding forms of U(VI). The speciation of U(VI) in saliva and in urine was affected by the presence of bioorganic ligands, whereas in sweat, the distribution depends mainly on inorganic ligands. We also elucidated the role of biological buffers, i.e., phosphate (H(2)PO(4−)/HPO(4)(2−)) on U(VI) distribution, and the system Ca(2+)/UO(2)(2+)/PO(4)(3−) was discussed in detail in both saliva and urine. The theoretical speciation calculations of the main U(VI) species in the investigated body fluids were significantly consistent with the spectroscopic data. Laser fluorescence spectroscopy showed success and reliability for direct determination of U(VI) in such biological matrices with the possibility for further improvement.

  18. Four groups of new aromatic halogenated disinfection byproducts: effect of bromide concentration on their formation and speciation in chlorinated drinking water.

    PubMed

    Pan, Yang; Zhang, Xiangru

    2013-02-05

    Bromide is naturally present in source waters worldwide. Chlorination of drinking water can generate a variety of chlorinated and brominated disinfection byproducts (DBPs). Although substantial efforts have been made to examine the effect of bromide concentration on the formation and speciation of halogenated DBPs, almost all previous studies have focused on trihalomethanes and haloacetic acids. Given that about 50% of total organic halogen formed in chlorination remains unknown, it is still unclear how bromide concentration affects the formation and speciation of the new/unknown halogenated DBPs. In this study, chlorinated drinking water samples with different bromide concentrations were prepared, and a novel approach-precursor ion scan using ultra performance liquid chromatography/electrospray ionization-triple quadrupole mass spectrometry-was adopted for the detection and identification of polar halogenated DBPs in these water samples. With this approach, 11 new putative aromatic halogenated DBPs were identified, and they were classified into four groups: dihalo-4-hydroxybenzaldehydes, dihalo-4-hydroxybenzoic acids, dihalo-salicylic acids, and trihalo-phenols. A mechanism for the formation of the four groups of new aromatic halogenated DBPs was proposed. It was found that increasing the bromide concentration shifted the entire polar halogenated DBPs as well as the four groups of new DBPs from being less brominated to being more brominated; these new aromatic halogenated DBPs might be important intermediate DBPs formed in drinking water chlorination. Moreover, the speciation of the four groups of new DBPs was modeled: the speciation patterns of the four groups of new DBPs well matched those determined from the model equations, and the reactivity differences between HOBr and HOCl in reactions forming the four groups of new DBPs were larger than those in reactions forming trihalomethanes and haloacetic acids.

  19. Plant speciation in continental island floras as exemplified by Nigella in the Aegean Archipelago.

    PubMed

    Comes, Hans Peter; Tribsch, Andreas; Bittkau, Christiane

    2008-09-27

    Continental shelf island systems, created by rising sea levels, provide a premier setting for studying the effects of geographical isolation on non-adaptive radiation and allopatric speciation brought about by genetic drift. The Aegean Archipelago forms a highly fragmented complex of mostly continental shelf islands that have become disconnected from each other and the mainland in relatively recent geological times (ca <5.2 Ma). These ecologically fairly homogenous islands thus provide a suitable biogeographic context for assessing the relative influences of past range fragmentation, colonization, gene flow and drift on taxon diversification. Indeed, recent molecular biogeographic studies on the Aegean Nigella arvensis complex, combining phylogenetic, phylogeographic and population level approaches, exemplify the importance of allopatry and genetic drift coupled with restricted gene flow in driving plant speciation in this continental archipelago at different temporal and spatial scales. While the recent (Late Pleistocene) radiation of Aegean Nigella, as well as possible instances of incipient speciation (in the Cyclades), is shown to be strongly conditioned by (palaeo)geographic factors (including changes in sea level), shifts in breeding system (selfing) and associated isolating mechanisms have also contributed to this radiation. By contrast, founder event speciation has probably played only a minor role, perhaps reflecting a migratory situation typical for continental archipelagos characterized by niche pre-emption because of a long established resident flora. Overall, surveys of neutral molecular markers in Aegean Nigella have so far revealed population genetic processes that conform remarkably well to predictions raised by genetic drift theory. The challenge is now to gain more direct insights into the relative importance of the role of genetic drift, as opposed to natural selection, in the phenotypic and reproductive divergence among these Aegean plant species.

  20. Occurrence and Speciation of Polymeric Chromium(III), Monomeric Chromium(III) and Chromium(VI) in Environmental Samples

    PubMed Central

    HU, LIGANG; CAI, YONG; JIANG, GUIBIN

    2016-01-01

    Laboratory experiments suggest that polymeric Cr(III) could exist in aqueous solution for a relative long period of time. However, the occurrence of polymeric Cr(III) has not been reported in environmental media due partially to the lack of method for speciating polymeric Cr. We observed an unknown Cr species during the course of study on speciation of Cr in the leachates of chromated-copper-arsenate (CCA)-treated wood. Efforts were made to identify structure of the unknown Cr species. Considering the forms of Cr existed in the CCA-treated woods, we mainly focused our efforts to determine if the unknown species were polymeric Cr(III), complex of Cr/As or complex of Cr with dissolved organic matter (DOM). In order to evaluate whether polymeric Cr(III) largely exist in wood leachates, high performance liquid chromatography coupled with inductively coupled mass spectrometry (HPLC-ICPMS was used) for simultaneous speciation of monomeric Cr(III), polymeric Cr(III), and Cr(VI). In addition to wood leachates where polymeric Cr (III) ranged from 39.1 to 67.4 %, occurrence of the unknown Cr species in other environmental matrices, including surface waters, tap and waste waters, was also investigated. It was found that polymeric Cr(III) could exist in environmental samples containing μg/L level of Cr, at a level up to 60% of total Cr, suggesting that polymeric Cr(III) could significantly exist in natural environments. Failure in quantifying polymeric Cr(III) would lead to the underestimation of total Cr and bias in Cr speciation. The environmental implication of the presence of polymeric Cr(III) species in the environment deserves further study. PMID:27156211

  1. Origin and speciation of Picea schrenkiana and Piceasmithiana in the Center Asian Highlands and Himalayas.

    PubMed

    Li, Lili; Sun, Yongshuai; Zou, Jiabin; Yue, Wei; Wang, Xi; Liu, Jianquan

    Elucidating the evolutionary history of current species diversity, especially trees with large effective population sizes and long generation times, is a complicated exercise confounded by gene flow and incomplete lineage sorting. In the present study, we aim to determine the origin and speciation of Picea schrenkiana and Picea smithiana using population genetic data from chloroplast (cp), mitochondrial (mt), and nuclear (nr) genomes. These two species occur in the Central Asian Highlands and Himalayas, respectively, where they are isolated from other Asian congeneric species by the Qinghai-Tibet Plateau (QTP) or adjacent deserts. Previous studies based on both morphological and molecular evidence suggest that they have contrasting phylogenetic relationships with Picea likiangensis or Picea wilsonii which are closely related and both located in the QTP. We examined genetic variation among 16 loci of three genomes from 30 populations of these four species. At both cpDNA loci and mtDNA loci, P. schrenkiana appeared to be closely related to P. likiangensis , although statistical support for this was weak. However, phylogenetic analyses and speciation tests based on the nuclear data from 11 loci provided evidence that P. schrenkiana and P. smithiana are sister species. These two species diverged around five million years ago (Mya) while the divergence between them and the P. likiangensis - P. wilsonii clade occurred about 18.4 Mya. We also detected gene flow accompanying these speciation events. Our results highlight the complex speciation histories of these alpine conifers due to interspecific gene flow and/or incomplete lineage sorting, and the importance of the early QTP uplifts in promoting the origin of these important conifer species in the Asian highlands.

  2. Mimicry on the QT(L): genetics of speciation in Mimulus.

    PubMed

    Bleiweiss, R

    2001-08-01

    Ecological studies suggest that hummingbird-pollinated plants in North America mimic each other to increase visitation by birds. Published quantitative trait locus (QTL) data for two Mimulus species indicate that floral traits associated with hummingbird versus bee pollination results from a few loci with major effects on morphology, as predicted by classical models for the evolution of mimicry. Thus, the architecture of genetic divergence associated with speciation may depend on the ecological context.

  3. The impact of humic acid on chromium phytoextraction by aquatic macrophyte Lemna minor.

    PubMed

    Kalčíková, Gabriela; Zupančič, Marija; Jemec, Anita; Gotvajn, Andreja Žgajnar

    2016-03-01

    Studies assessing chromium phytoextration from natural waters rarely consider potential implications of chromium speciation in the presence of ubiquitous humic substances. Therefore, the present study investigated the influence of environmentally relevant concentration of humic acid (TOC = 10 mg L(-1)) on chromium speciation (Cr = 0.15 mg L(-1)) and consequently on phytoextraction by aquatic macrophyte duckweed Lemna minor. In absence of humic acid, only hexavalent chromium was present in water samples and easily taken up by L. minor. Chromium uptake resulted in a significant reduction of growth rate by 22% and decrease of chlorophyll a and chlorophyll b contents by 48% and 43%, respectively. On the other hand, presence of humic acid significantly reduced chromium bioavailability (57% Cr uptake decrease) and consequently it did not cause any measurable effect to duckweed. Such effect was related to abiotic reduction of hexavalent chromium species to trivalent. Hence, findings of our study suggest that presence of humic acid and chromium speciation cannot be neglected during phytoextraction studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Speciation and Toxic Emissions from On road Vehicles, and Particulate Matter Emissions from Light-Duty Gasoline Vehicles in MOVES201X

    EPA Science Inventory

    Updated methane, non-methane organic gas, and volatile organic compound calculations based on speciation data. Updated speciation and toxic emission rates for new model year 2010 and later heavy-duty diesel engines. Updated particulate matter emission rates for 2004 and later mod...

  5. Sexual selection drives speciation in an Amazonian frog

    USGS Publications Warehouse

    Boul, K.E.; Funk, W.C.; Darst, C.R.; Cannatella, D.C.; Ryan, M.J.

    2007-01-01

    One proposed mechanism of speciation is divergent sexual selection, whereby divergence in female preferences and male signals results in behavioural isolation. Despite the appeal of this hypothesis, evidence for it remains inconclusive. Here, we present several lines of evidence that sexual selection is driving behavioural isolation and speciation among populations of an Amazonian frog (Physalaemus petersi). First, sexual selection has promoted divergence in male mating calls and female preferences for calls between neighbouring populations, resulting in strong behavioural isolation. Second, phylogenetic analysis indicates that populations have become fixed for alternative call types several times throughout the species' range, and coalescent analysis rejects genetic drift as a cause for this pattern, suggesting that this divergence is due to selection. Finally, gene flow estimated with microsatellite loci is an average of 30 times lower between populations with different call types than between populations separated by a similar geographical distance with the same call type, demonstrating genetic divergence and incipient speciation. Taken together, these data provide strong evidence that sexual selection is driving behavioural isolation and speciation, supporting sexual selection as a cause for speciation in the wild. ?? 2006 The Royal Society.

  6. Metals, Health and the Environment – Emergence of Correlations Between Speciation and Effects

    PubMed Central

    Williams, David R.

    2004-01-01

    Over the last half-century both the identification of the causes of diseases and the use of inorganic compounds to treat such conditions have been considerably enlightened through our emerging capabilities to identify the pivotal chemical species involved. The ‘duty of care’ placed upon scientists to protect the environment from manufactured chemicals and to limit their effects upon humans therefrom is best realised from a speciation knowledge database. This paper discusses categorising chemicals in terms of their persistence, bioaccumulation, and toxicities and uses speciation information to optimise desirable effects of chemicals in several applications such as the manufacture of pulp for paper and in the foliar nutrition of crops. Simultaneously, the chemical wasting side effects of industrial overdosing is easily avoided if speciation approaches are used. The move towards new environmentally friendly ligand agents is described and methods of finding substitute agents (often combinations of two or more chemicals) to replace nonbiodegradable EDTA. The geosphere migration of metals through the environment is discussed in terms of speciation. Future objectives discussed include improved means of communicating speciation-based recommendations to decision makers. PMID:18365083

  7. In situ investigation of supercritical CO2 assisted impregnation of drugs into a polymer by high pressure FTIR micro-spectroscopy.

    PubMed

    Champeau, M; Thomassin, J-M; Jérôme, C; Tassaing, T

    2015-02-07

    An original experimental set-up combining a FTIR micro-spectrometer with a high pressure cell has been built in order to analyze in situ the impregnation of a solute into microscopic polymer samples, such as fibers or films, subjected to supercritical CO2. Thanks to this experimental set-up, key factors governing the impregnation process can be simultaneously followed such as the swelling of the polymeric matrix, the CO2 sorption, the kinetics of impregnation and the drug loading into the matrix. Moreover, the solute/polymer interactions and the speciation of the solute can be analyzed. We have monitored in situ the impregnation of aspirin and ketoprofen into PEO (Polyethylene Oxide) platelets at T = 40 °C and P = 5; 10 and 15 MPa. The kinetics of impregnation of aspirin was quicker than the one of ketoprofen and the final drug loading was also higher in the case of aspirin. Whereas the CO2 sorption and the PEO swelling remain constant when PEO is just subjected to CO2 under isobaric conditions, we noticed that both parameters can increase while the drug impregnates PEO. Coupling these results with DSC measurements, we underlined the plasticizing effect of the drug that also leads to a decrease in the crystallinity of PEO in situ thus favoring the sorption of CO2 molecules into the matrix and the swelling of the matrix. The plasticizing effect increases with the drug loading. Finally, the speciation of drugs was investigated considering the shift of the carboxyl bands of the drugs. Both drugs were found to be mainly homogeneously dispersed into PEO.

  8. Biological signatures of dynamic river networks from a coupled landscape evolution and neutral community model

    NASA Astrophysics Data System (ADS)

    Stokes, M.; Perron, J. T.

    2017-12-01

    Freshwater systems host exceptionally species-rich communities whose spatial structure is dictated by the topology of the river networks they inhabit. Over geologic time, river networks are dynamic; drainage basins shrink and grow, and river capture establishes new connections between previously separated regions. It has been hypothesized that these changes in river network structure influence the evolution of life by exchanging and isolating species, perhaps boosting biodiversity in the process. However, no general model exists to predict the evolutionary consequences of landscape change. We couple a neutral community model of freshwater organisms to a landscape evolution model in which the river network undergoes drainage divide migration and repeated river capture. Neutral community models are macro-ecological models that include stochastic speciation and dispersal to produce realistic patterns of biodiversity. We explore the consequences of three modes of speciation - point mutation, time-protracted, and vicariant (geographic) speciation - by tracking patterns of diversity in time and comparing the final result to an equilibrium solution of the neutral model on the final landscape. Under point mutation, a simple model of stochastic and instantaneous speciation, the results are identical to the equilibrium solution and indicate the dominance of the species-area relationship in forming patterns of diversity. The number of species in a basin is proportional to its area, and regional species richness reaches its maximum when drainage area is evenly distributed among sub-basins. Time-protracted speciation is also modeled as a stochastic process, but in order to produce more realistic rates of diversification, speciation is not assumed to be instantaneous. Rather, each new species must persist for a certain amount of time before it is considered to be established. When vicariance (geographic speciation) is included, there is a transient signature of increased regional diversity after river capture. The results indicate that the mode of speciation and the rate of speciation relative to the rate of divide migration determine the evolutionary signature of river capture.

  9. Speciation gradients and the distribution of biodiversity.

    PubMed

    Schluter, Dolph; Pennell, Matthew W

    2017-05-31

    Global patterns of biodiversity are influenced by spatial and environmental variations in the rate at which new species form. We relate variations in speciation rates to six key patterns of biodiversity worldwide, including the species-area relationship, latitudinal gradients in species and genetic diversity, and between-habitat differences in species richness. Although they sometimes mirror biodiversity patterns, recent rates of speciation, at the tip of the tree of life, are often highest where species richness is low. Speciation gradients therefore shape, but are also shaped by, biodiversity gradients and are often more useful for predicting future patterns of biodiversity than for interpreting the past.

  10. Dynamic coupled metal transport-speciation model: application to assess a zinc-contaminated lake.

    PubMed

    Bhavsar, Satyendra P; Diamond, Miriam L; Gandhi, Nilima; Nilsen, Joel

    2004-10-01

    A coupled metal transport and speciation/complexation model (TRANSPEC) has been developed to estimate the speciation and fate of multiple interconverting species in surface aquatic systems. Dynamic-TRANSPEC loosely, sequentially couples the speciation/complexation and fate modules that, for the unsteady state formulation, run alternatively at every time step. The speciation module first estimates species abundance using, in this version, MINEQL+ considering time-dependent changes in water and pore-water chemistry. The fate module is based on the quantitative water air sediment interaction (QWASI) model and fugacity/aquivalence formulation, with the option of using a pseudo-steady state solution to account for past discharges. Similarly to the QWASI model for organic contaminants, TRANSPEC assumes the instantaneous equilibrium distribution of metal species among dissolved, colloidal, and particulate phases based on ambient chemistry parameters that can be collected through conventional field methods. The model is illustrated with its application to Ross Lake (Manitoba, Canada) that has elevated Zn concentrations due to discharges over 70 years from a mining operation. Using measurements from field studies, the model reproduces year-round variations in Zn water concentrations. A 10-year projection for current conditions suggests decreasing Zn remobilization and export from the lake. Decreasing Zn loadings increases sediment-to-water transport but decreases water concentrations, and vice versa. Species distribution is affected by pH such that a decrease in pH increases metal export from the lake and vice versa.

  11. Cadmium accumulation is enhanced by ammonium compared to nitrate in two hyperaccumulators, without affecting speciation

    PubMed Central

    Cheng, Miaomiao; Wang, Peng; Kopittke, Peter M.; Wang, Anan; Sale, Peter W.G.

    2016-01-01

    Nitrogen fertilization could improve the efficiency of Cd phytoextraction in contaminated soil and thus shorten the remediation time. However, limited information is available on the effect of N form on Cd phytoextraction and associated mechanisms in plants. This study examined the effect of N form on Cd accumulation, translocation, and speciation in Carpobrotus rossii and Solanum nigrum. Plants were grown in nutrient solution with 5–15 μM Cd in the presence of 1000 µM NH4 + or NO3 −. Plant growth and Cd uptake were measured, and Cd speciation was analyzed using synchrotron-based X-ray absorption spectroscopy. Shoot Cd accumulation was 30% greater with NH4 + than NO3 − supply. Carpobrotus rossii accumulated three times more Cd than S. nigrum. However, Cd speciation in the plants was not influenced by N form, but it did vary with species and tissues. In C. rossii, up to 91% of Cd was bound to S-containing ligands in all tissues except the xylem sap where 87–95% were Cd-OH complexes. Furthermore, the proportion of Cd-S in shoots was substantially lower in S. nigrum (44–69%) than in C. rossii (60–91%). It is concluded that the application of NH4 + (instead of NO3 −) increased shoot Cd accumulation by increasing uptake and translocation, rather than changing Cd speciation, and is potentially an effective approach for increasing Cd phytoextraction. PMID:27385767

  12. [Speciation and Risk Characteristics of Heavy Metals in the Sediments of the Yangtze Estuary].

    PubMed

    Yin, Su; Feng, Cheng-hong; Li, Yang-yang; Yin, Li-feng; Shen, Zhen-yao

    2016-03-15

    Based on the investigation on the distribution of total contents and speciation of 8 heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb, Zn) in the surface sediments at 14 typical sites of the Yangtze Estuary during three hydrological seasons ( wet, normal, and dry seasons) , this study applied equilibrium partitioning approach to build the sediment quality guidelines (SQGs) of the Yangtze Estuary, and assessed ecological risks of the heavy metals. The relationship between ecological risk and speciation of heavy metals was also revealed. The results showed that, except for Cd, the residual fraction was the main speciation of heavy metals, especially for As, Cr and Hg, their residual fraction proportions were all over 90%. The sediment quality guidelines of the Yangtze Estuary for As, Cd, Cr, Cu, Hg, Ni, Pb, Zn were 43.29, 0.672, 79.65, 19.08, 0.569, 339.09, 30.87, 411.36 µg · g⁻¹, respectively. Cu had the highest ecological risk to aquatic organisms. The upstream of Yangtze Estuary was mainly affected by Yangtze River runoff, where the risks were relatively high in wet season and relatively low in normal and dry seasons. However, the downstream of the estuary was mainly affected by municipal sewage of cities like Shanghai, where the risks were relatively high, especially in normal and dry seasons. There were three different relationships between the ecological risks and speciation of the eight heavy metals.

  13. Speciation of sulfur in biochar produced from pyrolysis and gasification of oak and corn stover.

    PubMed

    Cheah, Singfoong; Malone, Shealyn C; Feik, Calvin J

    2014-01-01

    The effects of feedstock type and biomass conversion conditions on the speciation of sulfur in biochars are not well-known. In this study, the sulfur content and speciation in biochars generated from pyrolysis and gasification of oak and corn stover were determined. We found the primary determinant of the total sulfur content of biomass to be the feedstock from which the biochar is generated, with oak and corn stover biochars containing 160 and 600-800 ppm sulfur, respectively. In contrast, for sulfur speciation, we found the primary determinant to be the temperature combined with the thermochemical conversion method. The speciation of sulfur in biochars was determined using X-ray absorption near-edge structure (XANES), ASTM method D2492, and scanning electron microscopy-energy-dispersive spectroscopy (SEM-EDS). Biochars produced under pyrolysis conditions at 500-600 °C contain sulfate, organosulfur, and sulfide. In some cases, the sulfate contents are up to 77-100%. Biochars produced in gasification conditions at 850 °C contain 73-100% organosulfur. The increase of the organosulfur content as the temperature of biochar production increases suggests a similar sulfur transformation mechanism as that in coal, where inorganic sulfur reacts with hydrocarbon and/or H2 to form organosulfur when the coal is heated. EDS mapping of a biochar produced from corn stover pyrolysis shows individual sulfur-containing mineral particles in addition to the sulfur that is distributed throughout the organic matrix.

  14. Relationship between metal speciation in soil solution and metal adsorption at the root surface of ryegrass.

    PubMed

    Kalis, Erwin J J; Temminghoff, Erwin J M; Town, Raewyn M; Unsworth, Emily R; van Riemsdijk, Willem H

    2008-01-01

    The total metal content of the soil or total metal concentration in the soil solution is not always a good indicator for metal availability to plants. Therefore, several speciation techniques have been developed that measure a defined fraction of the total metal concentration in the soil solution. In this study the Donnan Membrane Technique (DMT) was used to measure free metal ion concentrations in CaCl(2) extractions (to mimic the soil solution, and to work under standardized conditions) of 10 different soils, whereas diffusive gradients in thin-films (DGT) and scanning chronopotentiometry (SCP) were used to measure the sum of free and labile metal concentrations in the CaCl(2) extracts. The DGT device was also exposed directly to the (wetted) soil (soil-DGT). The metal concentrations measured with the speciation techniques are related to the metal adsorption at the root surface of ryegrass (Lolium perenne L.), to be able to subsequently predict metal uptake. In most cases the metal adsorption related pH-dependently to the metal concentrations measured by DMT, SCP, and DGT in the CaCl(2) extract. However, the relationship between metal adsorption at the root surface and the metal concentrations measured by the soil-DGT was not-or only slightly-pH dependent. The correlations between metal adsorption at the root surface and metal speciation detected by different speciation techniques allow discussion about rate limiting steps in biouptake and the contribution of metal complexes to metal bioavailability.

  15. What initiates speciation in passion-vine butterflies?

    PubMed Central

    McMillan, W. Owen; Jiggins, Chris D.; Mallet, James

    1997-01-01

    Studies of the continuum between geographic races and species provide the clearest insights into the causes of speciation. Here we report on mate choice and hybrid viability experiments in a pair of warningly colored butterflies, Heliconius erato and Heliconius himera, that maintain their genetic integrity in the face of hybridization. Hybrid sterility and inviability have been unimportant in the early stages of speciation of these two Heliconius. We find no evidence of reduced fecundity, egg hatch, or larval survival nor increases in developmental time in three generations of hybrid crosses. Instead, speciation in this pair appears to have been catalyzed by the association of strong mating preferences with divergence in warning coloration and ecology. In mate choice experiments, matings between the two species are a tenth as likely as matings within species. F1 hybrids of both sexes mate frequently with both pure forms. However, male F1 progeny from crosses between H. himera mothers and H. erato fathers have somewhat reduced mating success. The strong barrier to gene flow provided by divergence in mate preference is probably enhanced by frequency-dependent predation against hybrids similar to the type known to occur across interracial hybrid zones of H. erato. In addition, the transition between this pair falls at the boundary between wet and dry forest, and rare hybrids may also be selected against because they are poorly adapted to either biotope. These results add to a growing body of evidence that challenge the importance of genomic incompatibilities in the earliest stages of speciation. PMID:9238028

  16. Speciation of Sulfur in Biochar Produced from Pyrolysis and Gasification of Oak and Corn Stover

    PubMed Central

    2015-01-01

    The effects of feedstock type and biomass conversion conditions on the speciation of sulfur in biochars are not well-known. In this study, the sulfur content and speciation in biochars generated from pyrolysis and gasification of oak and corn stover were determined. We found the primary determinant of the total sulfur content of biomass to be the feedstock from which the biochar is generated, with oak and corn stover biochars containing 160 and 600–800 ppm sulfur, respectively. In contrast, for sulfur speciation, we found the primary determinant to be the temperature combined with the thermochemical conversion method. The speciation of sulfur in biochars was determined using X-ray absorption near-edge structure (XANES), ASTM method D2492, and scanning electron microscopy–energy-dispersive spectroscopy (SEM–EDS). Biochars produced under pyrolysis conditions at 500–600 °C contain sulfate, organosulfur, and sulfide. In some cases, the sulfate contents are up to 77–100%. Biochars produced in gasification conditions at 850 °C contain 73–100% organosulfur. The increase of the organosulfur content as the temperature of biochar production increases suggests a similar sulfur transformation mechanism as that in coal, where inorganic sulfur reacts with hydrocarbon and/or H2 to form organosulfur when the coal is heated. EDS mapping of a biochar produced from corn stover pyrolysis shows individual sulfur-containing mineral particles in addition to the sulfur that is distributed throughout the organic matrix. PMID:25003702

  17. Incipient speciation with gene flow on a continental island: Species delimitation of the Hainan Hwamei (Leucodioptron canorum owstoni, Passeriformes, Aves).

    PubMed

    Wang, Ning; Liang, Bin; Wang, Jichao; Yeh, Chia-Fen; Liu, Yang; Liu, Yanlin; Liang, Wei; Yao, Cheng-Te; Li, Shou-Hsien

    2016-09-01

    Because of their isolation, continental islands (e.g., Madagascar) are often thought of as ideal systems to study allopatric speciation. However, many such islands have been connected intermittently to their neighboring continent during recent periods of glaciation, which may cause frequent contact between the diverging populations on the island and continent. As a result, the speciation processes on continental islands may not meet the prerequisites for strictly allopatric speciation. We used multiple lines of evidence to re-evaluate the taxonomic status of the Hainan Hwamei (Leucodioptron canorum owstoni), which is endemic to Hainan, the largest continental island in the South China Sea. Our analysis of mitochondrial DNA and twelve nuclear loci suggests that the Hainan Hwamei can be regarded as an independent species (L. owstoni); the morphological traits of the Hainan Hwamei also showed significant divergence from those of their mainland sister taxon, the Chinese Hwamei (L. canorum). We also inferred the divergence history of the Hainan and Chinese Hwamei to see whether their divergence was consistent with a strictly allopatric model. Our results suggest that the two Hwameis split only 0.2 million years ago with limited asymmetrical post-divergence gene flow. This implies that the Hainan Hwamei is an incipient species and that speciation occurred through ecologically divergent selection and/or assortative mating rather than a strictly allopatric process. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Assembly processes of gastropod community change with horizontal and vertical zonation in ancient Lake Ohrid: a metacommunity speciation perspective

    NASA Astrophysics Data System (ADS)

    Hauffe, Torsten; Albrecht, Christian; Wilke, Thomas

    2016-05-01

    The Balkan Lake Ohrid is the oldest and most diverse freshwater lacustrine system in Europe. However, it remains unclear whether species community composition, as well as the diversification of its endemic taxa, is mainly driven by dispersal limitation, environmental filtering, or species interaction. This calls for a holistic perspective involving both evolutionary processes and ecological dynamics, as provided by the unifying framework of the "metacommunity speciation model".The current study used the species-rich model taxon Gastropoda to assess how extant communities in Lake Ohrid are structured by performing process-based metacommunity analyses. Specifically, the study aimed (1) to identifying the relative importance of the three community assembly processes and (2) to test whether the importance of these individual processes changes gradually with lake depth or discontinuously with eco-zone shifts.Based on automated eco-zone detection and process-specific simulation steps, we demonstrated that dispersal limitation had the strongest influence on gastropod community composition. However, it was not the exclusive assembly process, but acted together with the other two processes - environmental filtering and species interaction. The relative importance of the community assembly processes varied both with lake depth and eco-zones, though the processes were better predicted by the latter.This suggests that environmental characteristics have a pronounced effect on shaping gastropod communities via assembly processes. Moreover, the study corroborated the high importance of dispersal limitation for both maintaining species richness in Lake Ohrid (through its impact on community composition) and generating endemic biodiversity (via its influence on diversification processes). However, according to the metacommunity speciation model, the inferred importance of environmental filtering and biotic interaction also suggests a small but significant influence of ecological speciation. These findings contribute to the main goal of the Scientific Collaboration on Past Speciation Conditions in Lake Ohrid (SCOPSCO) deep drilling initiative - inferring the drivers of biotic evolution - and might provide an integrative perspective on biological and limnological dynamics in ancient Lake Ohrid.

  19. Radical change of Zn speciation in pig slurry amended soil: Key role of nano-sized sulfide particles.

    PubMed

    Formentini, Thiago Augusto; Legros, Samuel; Fernandes, Cristovão Vicente Scapulatempo; Pinheiro, Adilson; Le Bars, Maureen; Levard, Clément; Mallmann, Fábio Joel Kochem; da Veiga, Milton; Doelsch, Emmanuel

    2017-03-01

    Spreading livestock manure as fertilizer on farmlands is a widespread practice. It represents the major source of heavy metal(loid)s (HM) input in agricultural soils. Since zinc (Zn) is present at high concentrations in manure, it poses special environmental concerns related to phytotoxicity, groundwater contamination, and introduction in the food chain. Therefore, investigations on the fate and behavior of manure-borne Zn, when it enters the soil environment, are necessary to predict the environmental effects. Nevertheless, long-term field studies assessing Zn speciation in the organic waste matrix, as well as within the soil after manure application, are lacking. This study was designed to fill this gap. Using SEM-EDS and XAS analysis, we reported the following new results: (i) ZnS made up 100% of the Zn speciation in the pig slurry (the highest proportion of ZnS ever observed in organic waste); and (ii) ZnS aggregates were about 1-μm diameter (the smallest particle size ever reported in pig slurry). Moreover, the pig slurry containing ZnS was spread on the soil over an 11-year period, totaling 22 applications, and the resulting Zn speciation within the amended soil was analyzed. Surprisingly, ZnS, i.e. the only species responsible for a nearly 2-fold increase in the Zn concentration within the amended soil, was not detected in this soil. Based on SEM-EDS and XAS observations, we put forward the hypothesis that Zn in the pig slurry consisted of nano-sized ZnS crystallites that further aggregated. The low stability of ZnS nanoparticles within oxic and complex environments such as the studied soil was the key explanation for the radical change in pig slurry-borne Zn speciation after long-term amendments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Whole-cell bioreporters and risk assessment of environmental pollution: A proof-of-concept study using lead.

    PubMed

    Zhang, Xiaokai; Qin, Boqiang; Deng, Jianming; Wells, Mona

    2017-10-01

    As the world burden of environmental contamination increases, it is of the utmost importance to develop streamlined approaches to environmental risk assessment in order to prioritize mitigation measures. Whole-cell biosensors or bioreporters and speciation modeling have both become of increasing interest to determine the bioavailability of pollutants, as bioavailability is increasingly in use as an indicator of risk. Herein, we examine whether bioreporter results are able to reflect expectations based on chemical reactivity and speciation modeling, with the hope to extend the research into a wider framework of risk assessment. We study a specific test case concerning the bioavailability of lead (Pb) in aqueous environments containing Pb-complexing ligands. Ligands studied include ethylene diamine tetra-acetic acid (EDTA), meso-2,3 dimercaptosuccinic acid (DMSA), leucine, methionine, cysteine, glutathione, and humic acid (HA), and we also performed experiments using natural water samples from Lake Tai (Taihu), the third largest lake in China. We find that EDTA, DMSA, cysteine, glutathione, and HA amendment significantly reduced Pb bioavailability with increasing ligand concentration according to a log-sigmoid trend. Increasing dissolved organic carbon in Taihu water also had the same effect, whereas leucine and methionine had no notable effect on bioavailability at the concentrations tested. We find that bioreporter results are in accord with the reduction of aqueous Pb 2+ that we expect from the relative complexation affinities of the different ligands tested. For EDTA and HA, for which reasonably accurate ionization and complexation constants are known, speciation modeling is in agreement with bioreporter response to within the level of uncertainty recognised as reasonable by the United States Environmental Protection Agency for speciation-based risk assessment applications. These findings represent a first step toward using bioreporter technology to streamline the biological confirmation or validation of speciation modeling for use in environmental risk assessment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. A cricket Gene Index: a genomic resource for studying neurobiology, speciation, and molecular evolution

    PubMed Central

    Danley, Patrick D; Mullen, Sean P; Liu, Fenglong; Nene, Vishvanath; Quackenbush, John; Shaw, Kerry L

    2007-01-01

    Background As the developmental costs of genomic tools decline, genomic approaches to non-model systems are becoming more feasible. Many of these systems may lack advanced genetic tools but are extremely valuable models in other biological fields. Here we report the development of expressed sequence tags (EST's) in an orthopteroid insect, a model for the study of neurobiology, speciation, and evolution. Results We report the sequencing of 14,502 EST's from clones derived from a nerve cord cDNA library, and the subsequent construction of a Gene Index from these sequences, from the Hawaiian trigonidiine cricket Laupala kohalensis. The Gene Index contains 8607 unique sequences comprised of 2575 tentative consensus (TC) sequences and 6032 singletons. For each of the unique sequences, an attempt was made to assign a provisional annotation and to categorize its function using a Gene Ontology-based classification through a sequence-based comparison to known proteins. In addition, a set of unique 70 base pair oligomers that can be used for DNA microarrays was developed. All Gene Index information is posted at the DFCI Gene Indices web page Conclusion Orthopterans are models used to understand the neurophysiological basis of complex motor patterns such as flight and stridulation. The sequences presented in the cricket Gene Index will provide neurophysiologists with many genetic tools that have been largely absent in this field. The cricket Gene Index is one of only two gene indices to be developed in an evolutionary model system. Species within the genus Laupala have speciated recently, rapidly, and extensively. Therefore, the genes identified in the cricket Gene Index can be used to study the genomics of speciation. Furthermore, this gene index represents a significant EST resources for basal insects. As such, this resource is a valuable comparative tool for the understanding of invertebrate molecular evolution. The sequences presented here will provide much needed genomic resources for three distinct but overlapping fields of inquiry: neurobiology, speciation, and molecular evolution. PMID:17459168

  2. Determining the speciation of Zn in soils around the sediment ponds of chemical plants by XRD and XAFS spectroscopy and sequential extraction.

    PubMed

    Minkina, Tatiana; Nevidomskaya, Dina; Bauer, Tatiana; Shuvaeva, Victoria; Soldatov, Alexander; Mandzhieva, Saglara; Zubavichus, Yan; Trigub, Alexander

    2018-09-01

    For a correct assessment of risk of polluted soil, it is crucial to establish the speciation and mobility of the contaminants. The aim of this study was to investigate the speciation and transformation of Zn in strongly technogenically transformed contaminated Spolic Technosols for a long time in territory of sludge collectors by combining analytical techniques and synchrotron techniques. Sequential fractionation of Zn compounds in studied soils revealed increasing metal mobility. Phyllosilicates and Fe and Mn hydroxides were the main stabilizers of Zn mobility. A high degree of transformation was identified for the composition of the mineral phase in Spolic Technosols by X-ray powder diffraction. Technogenic phases (Zn-containing authigenic minerals) were revealed in Spolic Technosols samples through the analysis of their Zn K-edge EXAFS and XANES spectra. In one of the samples Zn local environment was formed by predominantly oxygen atoms, and in the other one mixed ZnS and ZnO bonding was found. Zn speciation in the studied technogenically transformed soils was due to the composition of pollutants contaminating the floodplain landscapes for a long time, and, second, this is the combination of physicochemical properties controlling the buffer properties of investigated soils. X-ray spectroscopic and X-ray powder diffraction analyses combined with sequential extraction assays is an effective tool to check the affinity of the soil components for heavy metal cations. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Quantification of Cation Sorption to Engineered Barrier Materials Under Extreme Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, Brian; Schlautman, Mark; Rao, Linfeng

    The objective of this research is to examine mechanisms and thermodynamics of actinide sorption to engineered barrier materials (iron (oxyhydr)oxides and bentonite clay) for nuclear waste repositories under high temperature and high ionic strength conditions using a suite of macroscopic and microscopic techniques which will be coupled with interfacial reaction models. Gaining a mechanistic understanding of interfacial processes governing the sorption/sequestration of actinides at mineral-water interfaces is fundamental for the accurate prediction of actinide behavior in waste repositories. Although macroscale sorption data and various spectroscopic techniques have provided valuable information regarding speciation of actinides at solid-water interfaces, significant knowledge gapsmore » still exist with respect to sorption mechanisms and the ability to quantify sorption, particularly at high temperatures and ionic strengths. This objective is addressed through three major tasks: (1) influence of oxidation state on actinide sorption to iron oxides and clay minerals at elevated temperatures and ionic strengths; (2) calorimetric titrations of actinide-mineral suspensions; (3) evaluation of bentonite performance under repository conditions. The results of the work will include a qualitative conceptual model and a quantitative thermodynamic speciation model describing actinide partitioning to minerals and sediments, which is based upon a mechanistic understanding of specific sorption processes as determined from both micro-scale and macroscale experimental techniques. The speciation model will be a thermodynamic aqueous and surface complexation model of actinide interactions with mineral surfaces that is self-consistent with macroscopic batch sorption data, calorimetric and potentiometric titrations, X-ray absorption Spectroscopy (XAS, mainly Extended X-ray Absorption Fine Structure (EXAFS)), and electron microscopy analyses. The novelty of the proposed work lies largely in the unique system conditions which will be examined (i.e. elevated temperature and ionic strength) and the manner in which the surface complexation model will be developed in terms of specific surface species identified using XAS. These experiments will thus provide a fundamental understanding of the chemical and physical processes occurring at the solid-solution interface under expected repository conditions. Additionally, the focus on thermodynamic treatment of actinide ion interactions with minerals as proposed will provide information on the driving forces involved and contribute to the overall understanding of the high affinity many actinide ions have for oxide surfaces. The utility of this model will be demonstrated in this work through a series of advective and diffusive flow experiments.« less

  4. Probing Individual Ice Nucleation Events with Environmental Scanning Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Wang, Bingbing; China, Swarup; Knopf, Daniel; Gilles, Mary; Laskin, Alexander

    2016-04-01

    Heterogeneous ice nucleation is one of the processes of critical relevance to a range of topics in the fundamental and the applied science and technologies. Heterogeneous ice nucleation initiated by particles proceeds where microscopic properties of particle surfaces essentially control nucleation mechanisms. Ice nucleation in the atmosphere on particles governs the formation of ice and mixed phase clouds, which in turn influence the Earth's radiative budget and climate. Heterogeneous ice nucleation is still insufficiently understood and poses significant challenges in predictive understanding of climate change. We present a novel microscopy platform allowing observation of individual ice nucleation events at temperature range of 193-273 K and relative humidity relevant for ice formation in the atmospheric clouds. The approach utilizes a home built novel ice nucleation cell interfaced with Environmental Scanning Electron Microscope (IN-ESEM system). The IN-ESEM system is applied for direct observation of individual ice formation events, determining ice nucleation mechanisms, freezing temperatures, and relative humidity onsets. Reported microanalysis of the ice nucleating particles (INP) include elemental composition detected by the energy dispersed analysis of X-rays (EDX), and advanced speciation of the organic content in particles using scanning transmission x-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). The performance of the IN-ESEM system is validated through a set of experiments with kaolinite particles with known ice nucleation propensity. We demonstrate an application of the IN-ESEM system to identify and characterize individual INP within a complex mixture of ambient particles.

  5. Chromium fate in constructed wetlands treating tannery wastewaters.

    PubMed

    Dotro, Gabriela; Palazolo, Paul; Larsen, Daniel

    2009-06-01

    Nine experimental wetlands were built to determine chromium partitioning inside systems treating tannery wastewaters. Results showed 5-day biochemical oxygen demand and chromium removals of 95 to 99% and 90 to 99%, respectively. The majority of chromium was found in association with media (96 to 98%), followed by effluents (2.9 to 3.9%), and the least was found in plant parts (0.1%). Chemical speciation modeling of solutions and scanning electron microscope analysis suggest two potential chromium removal mechanisms--sorption/coprecipitation with iron hydroxides or oxyhydroxides and biomass sorption. The release of the majority of chromium in the iron- and organic-bound phases during sequential extractions supports the proposed dominant removal mechanisms. The use of a mixture of peat and gravel resulted in lower removal efficiencies and stronger partitioning in organic phases during sequential extractions. Chromium was efficiently removed by wetlands, retained through chemical and biological processes. Future research will focus on further exploring removal mechanisms and proposing management strategies for the chromium-containing wetland media.

  6. Identification of species origin of meat and meat products on the DNA basis: a review.

    PubMed

    Kumar, Arun; Kumar, Rajiv Ranjan; Sharma, Brahm Deo; Gokulakrishnan, Palanisamy; Mendiratta, Sanjod Kumar; Sharma, Deepak

    2015-01-01

    The adulteration/substitution of meat has always been a concern for various reasons such as public health, religious factors, wholesomeness, and unhealthy competition in meat market. Consumer should be protected from these malicious practices of meat adulterations by quick, precise, and specific identification of meat animal species. Several analytical methodologies have been employed for meat speciation based on anatomical, histological, microscopic, organoleptic, chemical, electrophoretic, chromatographic, or immunological principles. However, by virtue of their inherent limitations, most of these techniques have been replaced by the recent DNA-based molecular techniques. In the last decades, several methods based on polymerase chain reaction have been proposed as useful means for identifying the species origin in meat and meat products, due to their high specificity and sensitivity, as well as rapid processing time and low cost. This review intends to provide an updated and extensive overview on the DNA-based methods for species identification in meat and meat products.

  7. Anagenesis, Cladogenesis, and Speciation on Islands.

    PubMed

    Emerson, Brent C; Patiño, Jairo

    2018-05-03

    Anagenesis and cladogenesis are fundamental evolutionary concepts, but are increasingly being adopted as speciation models in the field of island biogeography. Here, we review the origin of the terms 'anagenetic' and 'cladogenetic' speciation, critique their utility, and finally suggest alternative terminology that better describes the geographical relationships of insular sister species. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Na, Mg, Ni and Cs distribution and speciation after long-term alteration of a simulated nuclear waste glass: A micro-XAS/XRF/XRD and wet chemical study

    NASA Astrophysics Data System (ADS)

    Curti, Enzo; Dähn, Rainer; Farges, François; Vespa, Marika

    2009-04-01

    Microscopic distribution and speciation of Na, Mg, Ni and Cs in a simulated (inactive) nuclear waste glass were studied using micro X-ray fluorescence (μ-XRF) and micro X-ray absorption spectroscopy (μ-XAS), after aqueous leaching during 12 years at 90 °C. Na and Mg are major constituents of the glass that can be used to determine the progress of the glass corrosion process and the nature of secondary alteration phases. Ni and Cs represent dose determining long-lived radionuclides ( 59Ni, 135Cs) in vitrified nuclear waste. The Na-Mg μ-XRF maps revealed that the core regions of the glass fragments are apparently unaltered and compositionally homogeneous, whereas rims and interstitial spaces are enriched with Mg-rich smectite formed during the leaching process. The micro X-ray absorption near edge structure (μ-XANES) spectra collected at the Mg K-edge in the altered zones show three sharp resonances typical for crystalline Mg-silicates. These resonances are distinctive of Mg occupying undistorted octahedral positions. In contrast, the μ-XANES spectra collected in the core zones of the glass fragments lack this resonance pattern and are identical to the spectra measured on the pristine (unleached) MW glass. Micro extended X-ray absorption fine structure (μ-EXAFS) and μ-XANES analyses at the Ni K-edge revealed three distinct Ni(II) species: (a) Ni uniformly distributed in the glass matrix, (b) micro-inclusions with high Ni concentrations and (c) Ni associated to the Mg-clay. The comparison with reference spectra of unleached MW and other Ni-bearing silicate glasses indicated that species (a) represents the original coordinative environment of Ni in the glass. The μ-EXAFS analyses revealed that species (b) is structural Ni in trevorite (NiFe 2O 4), which probably formed through unmixing processes during the cooling of the glass melt. The μ-EXAFS of species (c) could be successfully modeled assuming specific adsorption or incorporation of Ni into the lattice of trioctahedral Mg-clay minerals. Alternative models assuming other elements (Ni, Al, Fe) in addition to Mg in the second shell could not be fitted successfully. Aqueous concentration data were used to calculate the speciation of the leaching solutions. Saturation index (SI) calculations indicate undersaturation with respect to NiCO 3 and NiSO 4·7H 2O, but oversaturation with respect to β-Ni(OH) 2. The latter result is probably due to the omission of Ni borate and Ni silicate complexes in the speciation calculations, for which formation constants are not available. With the help of estimation techniques, we could infer that such complexes would dominate the Ni speciation and consequently reduce the SI below the saturation of β-Ni(OH) 2. The μ-XRF maps show that Cs is uniformly distributed in the MW glass, since no region with high Cs concentration could be detected. The Cs L III-edge μ-XAS spectra were all very similar independently of the degree of alteration, indicating similar coordination environments of Cs in the core regions of the glass as well as in the secondary clays. These spectra largely differ from that measured for pollucite (a potential secondary Cs-phase in altered glasses) implying that the coordination environments of Cs in the MW glass and in pollucite are fundamentally different. The present study shows that μ-XRF and μ-XAS are essential tools in determining the fate and the retention mechanisms of radionuclides released from nuclear waste during aqueous alteration. Our spectroscopic analyses allowed us to exclude formation of specific Ni and Cs secondary solids (e.g. nepouite, β-Ni(OH) 2, pollucite) during the aqueous alteration. Ni and Cs are instead distributed as trace elements in the alteration phases formed by major elements during the leaching process. Our results imply that solid solution and/or adsorption equilibria, rather than pure phase solubility equilibria, are the adequate chemical models to determine Ni and Cs aqueous concentrations in performance assessments for radioactive waste repositories.

  9. Assessing when chromosomal rearrangements affect the dynamics of speciation: implications from computer simulations

    PubMed Central

    Feder, Jeffrey L.; Nosil, Patrik; Flaxman, Samuel M.

    2014-01-01

    Many hypotheses have been put forth to explain the origin and spread of inversions, and their significance for speciation. Several recent genic models have proposed that inversions promote speciation with gene flow due to the adaptive significance of the genes contained within them and because of the effects inversions have on suppressing recombination. However, the consequences of inversions for the dynamics of genome wide divergence across the speciation continuum remain unclear, an issue we examine here. We review a framework for the genomics of speciation involving the congealing of the genome into alternate adaptive states representing species (“genome wide congealing”). We then place inversions in this context as examples of how genetic hitchhiking can potentially hasten genome wide congealing. Specifically, we use simulation models to (i) examine the conditions under which inversions may speed genome congealing and (ii) quantify predicted magnitudes of these effects. Effects of inversions on promoting speciation were most common and pronounced when inversions were initially fixed between populations before secondary contact and adaptation involved many genes with small fitness effects. Further work is required on the role of underdominance and epistasis between a few loci of major effect within inversions. The results highlight five important aspects of the roles of inversions in speciation: (i) the geographic context of the origins and spread of inversions, (ii) the conditions under which inversions can facilitate divergence, (iii) the magnitude of that facilitation, (iv) the extent to which the buildup of divergence is likely to be biased within vs. outside of inversions, and (v) the dynamics of the appearance and disappearance of exceptional divergence within inversions. We conclude by discussing the empirical challenges in showing that inversions play a central role in facilitating speciation with gene flow. PMID:25206365

  10. Solution speciation of plutonium and Americium at an Australian legacy radioactive waste disposal site.

    PubMed

    Ikeda-Ohno, Atsushi; Harrison, Jennifer J; Thiruvoth, Sangeeth; Wilsher, Kerry; Wong, Henri K Y; Johansen, Mathew P; Waite, T David; Payne, Timothy E

    2014-09-02

    During the 1960s, radioactive waste containing small amounts of plutonium (Pu) and americium (Am) was disposed in shallow trenches at the Little Forest Burial Ground (LFBG), located near the southern suburbs of Sydney, Australia. Because of periodic saturation and overflowing of the former disposal trenches, Pu and Am have been transferred from the buried wastes into the surrounding surface soils. The presence of readily detected amounts of Pu and Am in the trench waters provides a unique opportunity to study their aqueous speciation under environmentally relevant conditions. This study aims to comprehensively investigate the chemical speciation of Pu and Am in the trench water by combining fluoride coprecipitation, solvent extraction, particle size fractionation, and thermochemical modeling. The predominant oxidation states of dissolved Pu and Am species were found to be Pu(IV) and Am(III), and large proportions of both actinides (Pu, 97.7%; Am, 86.8%) were associated with mobile colloids in the submicron size range. On the basis of this information, possible management options are assessed.

  11. Sorbent control of trace metals in sewage sludge combustion and incineration

    NASA Astrophysics Data System (ADS)

    Naruse, I.; Yao, H.; Mkilaha, I. S. N.

    2003-05-01

    Coal and wastes combustion have become an important issue not only in terms of energy generation but also environmental conservation. The need for alternative fuels and wastes management has made the two energy sources of importance. However, the utilization of the two is faced with problems of impurity trace metals in the fuel. These metals usually speciate during combustion or incineration leading to generation of fumes and subsequently particles. This paper reports on the study aimed at understanding the speciation of trace metals and their emission from combustion systems as particulates. Experiments carried out using a down-flow furnace and theoretical study carried out using lead, chromium and cadmium as basic metals had shown that their speciation and subsequent emission is controlled by both chemical composition and physical properties of the fuel. The physical and chemical and physical properties of the fuel and their respective compounds and the operating conditions of the incineration and combustion system control the enrichment of the particles with trace metals.

  12. Quantifying variation in speciation and extinction rates with clade data.

    PubMed

    Paradis, Emmanuel; Tedesco, Pablo A; Hugueny, Bernard

    2013-12-01

    High-level phylogenies are very common in evolutionary analyses, although they are often treated as incomplete data. Here, we provide statistical tools to analyze what we name "clade data," which are the ages of clades together with their numbers of species. We develop a general approach for the statistical modeling of variation in speciation and extinction rates, including temporal variation, unknown variation, and linear and nonlinear modeling. We show how this approach can be generalized to a wide range of situations, including testing the effects of life-history traits and environmental variables on diversification rates. We report the results of an extensive simulation study to assess the performance of some statistical tests presented here as well as of the estimators of speciation and extinction rates. These latter results suggest the possibility to estimate correctly extinction rate in the absence of fossils. An example with data on fish is presented. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  13. Evolutionary history of aphid-plant associations and their role in aphid diversification.

    PubMed

    Peccoud, Jean; Simon, Jean-Christophe; von Dohlen, Carol; Coeur d'acier, Armelle; Plantegenest, Manuel; Vanlerberghe-Masutti, Flavie; Jousselin, Emmanuelle

    2010-01-01

    Aphids are intimately linked with their host plants that constitute their only food resource and habitat, and thus impose considerable selective pressure on their evolution. It is therefore commonly assumed that host plants have greatly influenced the diversification of aphids. Here, we review what is known about the role of host plant association on aphid speciation by examining both macroevolutionary and population-level studies. Phylogenetic studies conducted at different taxonomic levels show that, as in many phytophagous insect groups, the radiation of angiosperms has probably favoured the major Tertiary diversification of aphids. These studies also highlight many aphid lineages constrained to sets of related host plants, suggesting strong evolutionary commitment in aphids' host plant choice, but they fail to document cospeciation events between aphid and host lineages. Instead, phylogenies of several aphid genera reveal that divergence events are often accompanied by host shifts, and suggest, without constituting a formal demonstration, that aphid speciation could be a consequence of adaptation to new hosts. Experimental and field studies below the species level support reproductive isolation between host races as partly due to divergent selection by their host plants. Selected traits are mainly feeding performances and life cycle adaptations to plant phenology. Combined with behavioural preference for favourable host species, these divergent adaptations can induce pre- and post-zygotic barriers between host-specialized aphid populations. However, the hypothesis of host-driven speciation is seldom tested formally and must be weighed against overlooked explanations involving geographic isolation and non-ecological reproductive barriers in the process of speciation. Copyright 2010 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  14. [Primary speciation analysis of iron in edible flowers].

    PubMed

    Peng, Shan-shan; Huang, Guo-qing

    2003-02-01

    In this paper seven primary speciations of iron in three edible flowers, i.e. chrysanthemum, cottonrose hibiscus and honeysucker have been studied by atomic absorption spectrometry. Speciation parameters of iron such as extractive rate, residue rate, immerse-residue ratio in the samples were calculated. It was found that the first extractive rates of Fe were higher than the second ones in all three edible flowers, and the immerse-residue ratios of Fe were similar to the extractive rates. But the extraction of iron in all three edible flowers were no more than fifty percent. It is showed that the iron isn't easy to extract by water in the three edible flowers. The recovery was in the range of 96.5%-103.2% and RSD was in the range of 1.2%-3.1%. The results were satisfactory.

  15. Polymorphic butterfly reveals the missing link in ecological speciation.

    PubMed

    Chamberlain, Nicola L; Hill, Ryan I; Kapan, Durrell D; Gilbert, Lawrence E; Kronforst, Marcus R

    2009-11-06

    Ecological speciation occurs when ecologically based, divergent selection causes the evolution of reproductive isolation. There are many empirical examples of this process; however, there exists a poorly characterized stage during which the traits that distinguish species ecologically and reproductively segregate in a single population. By using a combination of genetic mapping, mate-choice experiments, field observations, and population genetics, we studied a butterfly population with a mimetic wing color polymorphism and found that the butterflies exhibited partial, color-based, assortative mate preference. These traits represent the divergent, ecologically based signal and preference components of sexual isolation that usually distinguish incipient and sibling species. The association between behavior and recognition trait in a single population may enhance the probability of speciation and provides an example of the missing link between an interbreeding population and isolated species.

  16. Dynamics of aluminum speciation in forest-well drainage waters from the Rhode River watershed, Maryland.

    PubMed

    Bi, S P; An, S Q; Yang, M; Chen, T

    2001-05-01

    This paper reports an investigation of the dynamics of aluminum (Al) speciation in the forest-well waters from study site 110 of the Rhode River watershed, a representative sub-unit of Chesapeake Bay. Seasonal changes of Al speciation are evaluated by a modified MINEQL computer model using chemical equilibrium calculation. It was found that Al-F and Al-Org complexes were the dominate forms, whereas toxic forms of Al3+ and Al-OH were not significant. This indicates that Al toxicity is not very serious in the Rhode River area due to the high concentrations of fluoride and organic materials, even though sometimes pH is very low (approximately 4). Increased H+ or some other associated factors may be responsible for the decline in fish and amphibian population on the watershed.

  17. The mechanism of sound production in túngara frogs and its role in sexual selection and speciation.

    PubMed

    Ryan, Michael J; Guerra, Mónica A

    2014-10-01

    Sexual communication can evolve in response to sexual selection, and it can also cause behavioral reproductive isolation between populations and thus drive speciation. Anurans are an excellent system to investigate these links between behavior and evolution because we have detailed knowledge of how neural mechanisms generate behavioral preferences for calls and how these preferences then generate selection on call variation. But we know far less about the physical mechanisms of call production, especially how different laryngeal morphologies generate call variation. Here we review studies of a group of species that differ in the presence of a secondary call component that evolved under sexual selection. We discuss how the larynx produces this call component, and how laryngeal morphology generates sexual selection and can contribute to speciation. Copyright © 2014. Published by Elsevier Ltd.

  18. [Speciation Characteristics and Bioavailability of Heavy Metals in Oasis Soil Under Pb, Zn Combined Stress].

    PubMed

    Jin, Cheng; Zhao, Zhuan-jun; Nan, Zhong-ren; Wang, Sheng-li; Wu, Wen-fei; Wang, Hou-cheng

    2015-05-01

    Pot experiments were conducted on cole (Brassica) grown in oasis soil under combined stress of lead and zinc, to study the effect of heavy metal combined pollution on cole growth as well as the speciation conversion rules and bioavailability. The result showed that the promoting effect on cole growth was shown in the low concentration treatments, especially on stem leaves. With addition of exotic heavy metals, the main speciations of Pb and Zn in the soil transformed from tight-bound to loose-bound forms as compared to the control, and the bioavailability of heavy metals was increased. And, the exchangeable Pb and the carbonate bound form of Zn were the major contributing speciations which were absorbed in different parts of cole. What's more, the capabilities of uptake and translocation of Pb and Zn by cole were stronger at lower stress levels, and the enrichment and migration coefficients decreased with the increasing content of bioavailable fraction of the corresponding element or the coexisting element. In all treatments, the Pb concentration in the stem leaves of cole exceeded the food safety threshold, therefore it is recommended to conduct detection of relevant indicators before planting foliage vegetables in this kind of soil.

  19. Tree of Life Reveals Clock-Like Speciation and Diversification

    PubMed Central

    Hedges, S. Blair; Marin, Julie; Suleski, Michael; Paymer, Madeline; Kumar, Sudhir

    2015-01-01

    Genomic data are rapidly resolving the tree of living species calibrated to time, the timetree of life, which will provide a framework for research in diverse fields of science. Previous analyses of taxonomically restricted timetrees have found a decline in the rate of diversification in many groups of organisms, often attributed to ecological interactions among species. Here, we have synthesized a global timetree of life from 2,274 studies representing 50,632 species and examined the pattern and rate of diversification as well as the timing of speciation. We found that species diversity has been mostly expanding overall and in many smaller groups of species, and that the rate of diversification in eukaryotes has been mostly constant. We also identified, and avoided, potential biases that may have influenced previous analyses of diversification including low levels of taxon sampling, small clade size, and the inclusion of stem branches in clade analyses. We found consistency in time-to-speciation among plants and animals, ∼2 My, as measured by intervals of crown and stem species times. Together, this clock-like change at different levels suggests that speciation and diversification are processes dominated by random events and that adaptive change is largely a separate process. PMID:25739733

  20. Application of Hyphenated Techniques in Speciation Analysis of Arsenic, Antimony, and Thallium

    PubMed Central

    Michalski, Rajmund; Szopa, Sebastian; Jabłońska, Magdalena; Łyko, Aleksandra

    2012-01-01

    Due to the fact that metals and metalloids have a strong impact on the environment, the methods of their determination and speciation have received special attention in recent years. Arsenic, antimony, and thallium are important examples of such toxic elements. Their speciation is especially important in the environmental and biomedical fields because of their toxicity, bioavailability, and reactivity. Recently, speciation analytics has been playing a unique role in the studies of biogeochemical cycles of chemical compounds, determination of toxicity and ecotoxicity of selected elements, quality control of food products, control of medicines and pharmaceutical products, technological process control, research on the impact of technological installation on the environment, examination of occupational exposure, and clinical analysis. Conventional methods are usually labor intensive, time consuming, and susceptible to interferences. The hyphenated techniques, in which separation method is coupled with multidimensional detectors, have become useful alternatives. The main advantages of those techniques consist in extremely low detection and quantification limits, insignificant interference, influence as well as high precision and repeatability of the determinations. In view of their importance, the present work overviews and discusses different hyphenated techniques used for arsenic, antimony, and thallium species analysis, in different clinical, environmental and food matrices. PMID:22654649

  1. Changes in sexual signals are greater than changes in ecological traits in a dichromatic group of fishes.

    PubMed

    Martin, Michael D; Mendelson, Tamra C

    2014-12-01

    Understanding the mechanisms by which phenotypic divergence occurs is central to speciation research. These mechanisms can be revealed by measuring differences in traits that are subject to different selection pressures; greater influence of different types of selection can be inferred from greater divergence in associated traits. Here, we address the potential roles of natural and sexual selection in promoting phenotypic divergence between species of snubnose darters by comparing differences in body shape, an ecologically relevant trait, and male color, a sexual signal. Body shape was measured using geometric morphometrics, and male color was measured using digital photography and visual system-dependent color values. Differences in male color are larger than differences in body shape across eight allopatric, phylogenetically independent species pairs. While this does not exclude the action of divergent natural selection, our results suggest a relatively more important role for sexual selection in promoting recent divergence in darters. Variation in the relative differences between male color and body shape across species pairs reflects the continuous nature of speciation mechanisms, ranging from ecological speciation to speciation by sexual selection alone. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  2. A role for a neo-sex chromosome in stickleback speciation

    PubMed Central

    Kitano, Jun; Ross, Joseph A.; Mori, Seiichi; Kume, Manabu; Jones, Felicity C.; Chan, Yingguang F.; Absher, Devin M.; Grimwood, Jane; Schmutz, Jeremy; Myers, Richard M.; Kingsley, David M.; Peichel, Catherine L.

    2009-01-01

    Sexual antagonism, or conflict between the sexes, has been proposed as a driving force in both sex chromosome turnover and speciation. Although closely related species often have different sex chromosome systems, it is unknown whether sex chromosome turnover contributes to the evolution of reproductive isolation between species. In this study, we show that a newly evolved sex chromosome harbours genes that contribute to speciation in threespine stickleback fish (Gasterosteus aculeatus). We first identified a neo-sex chromosome system found only in one member of a sympatric species pair in Japan. We then performed genetic linkage mapping of male-specific traits important for reproductive isolation between the Japanese species pair. The neo-X chromosome harbours loci for male courtship display traits that contribute to behavioural isolation, while the ancestral X chromosome contains loci for both behavioural isolation and hybrid male sterility. Our work not only provides strong evidence for a large-X effect on reproductive isolation in a vertebrate system, but also provides direct evidence that a young neo-X chromosome contributes to reproductive isolation between closely related species. Our data suggest that sex chromosome turnover might play a greater role in speciation than previously appreciated. PMID:19783981

  3. Testing the Underlying Chemical Principles of the Biotic Ligand Model (BLM) to Marine Copper Systems: Measuring Copper Speciation Using Fluorescence Quenching.

    PubMed

    Tait, Tara N; McGeer, James C; Smith, D Scott

    2018-01-01

    Speciation of copper in marine systems strongly influences the ability of copper to cause toxicity. Natural organic matter (NOM) contains many binding sites which provides a protective effect on copper toxicity. The purpose of this study was to characterize copper binding with NOM using fluorescence quenching techniques. Fluorescence quenching of NOM with copper was performed on nine sea water samples. The resulting stability constants and binding capacities were consistent with literature values of marine NOM, showing strong binding with [Formula: see text] values from 7.64 to 10.2 and binding capacities ranging from 15 to 3110 nmol mg [Formula: see text] Free copper concentrations estimated at total dissolved copper concentrations corresponding to previously published rotifer effect concentrations, in the same nine samples, were statistically the same as the range of free copper calculated for the effect concentration in NOM-free artificial seawater. These data confirms the applicability of fluorescence spectroscopy techniques for NOM and copper speciation characterization in sea water and demonstrates that such measured speciation is consistent with the chemical principles underlying the biotic ligand model approach for bioavailability-based metals risk assessment.

  4. Marsupials as models for understanding the role of chromosome rearrangements in evolution and disease.

    PubMed

    Deakin, Janine E; Kruger-Andrzejewska, Maya

    2016-09-01

    Chromosome rearrangements have been implicated in diseases, such as cancer, and speciation, but it remains unclear whether rearrangements are causal or merely a consequence of these processes. Two marsupial families with very different rates of karyotype evolution provide excellent models in which to study the role of chromosome rearrangements in a disease and evolutionary context. The speciose family Dasyuridae displays remarkable karyotypic conservation, with all species examined to date possessing nearly identical karyotypes. Despite the seemingly high degree of chromosome stability within this family, they appear prone to developing tumours, including transmissible devil facial tumours. In contrast, chromosome rearrangements have been frequent in the evolution of the species-rich family Macropodidae, which displays a high level of karyotypic diversity. In particular, the genus Petrogale (rock-wallabies) displays an extraordinary level of chromosome rearrangement among species. For six parapatric Petrogale species, it appears that speciation has essentially been caught in the act, providing an opportunity to determine whether chromosomal rearrangements are a cause or consequence of speciation in this system. This review highlights the reasons that these two marsupial families are excellent models for testing hypotheses for hotspots of chromosome rearrangement and deciphering the role of chromosome rearrangements in disease and speciation.

  5. Evolution, biogeography, and systematics of Puriana: evolution and speciation in Ostracoda, III.

    USGS Publications Warehouse

    Cronin, T. M.

    1987-01-01

    Three types of geographic isolation - land barriers, deep water barriers, and climatic barriers - resulted in three distinct evolutionary responses in Neogene and Quaternary species of the epineritic ostracode genus Puriana. Through systematic, paleobiogeographic, and morphologic study of several hundred fossil and Recent populations from the eastern Pacific, western Atlantic, Gulf of Mexico, and the Caribbean, the phylogeny of the genus and the geography of speciation events were determined. Isolation of large populations by the Isthumus of Panama during the Pliocene did not lead to lineage splitting in species known to have existed before the Isthmus formed. Conversely, the establishment of small isolated populations on Caribbean islands by passive dispersal mechanisms frequently led to the evolution of new species or subspecies. Climatic changes along the southeastern United States during the Pliocene also catalyzed possible parapatric speciation as populations that immigrated to the northeastern periphery of the genus' range split to form new species. The results provide evidence that evolutionary models describing the influence of abiotic events on patterns of evolution and speciation can be tested using properly selected tectonic and climatic events and fossil groups amenable to species-level analysis. Two new species, P. bajaensis and P. paikensis, are described. -Author

  6. Uranium speciation in biofilms studied by laser fluorescence techniques.

    PubMed

    Arnold, Thuro; Grossmann, Kay; Baumann, Nils

    2010-03-01

    Biofilms may immobilize toxic heavy metals in the environment and thereby influence their migration behaviour. The mechanisms of these processes are currently not understood, because the complexity of such biofilms creates many discrete geochemical microenvironments which may differ from the surrounding bulk solution in their bacterial diversity, their prevailing geochemical properties, e.g. pH and dissolved oxygen concentration, the presence of organic molecules, e.g. metabolites, and many more, all of which may affect metal speciation. To obtain such information, which is necessary for performance assessment studies or the development of new cost-effective strategies for cleaning waste waters, it is very important to develop new non-invasive methods applicable to study the interactions of metals within biofilm systems. Laser fluorescence techniques have some superior features, above all very high sensitivity for fluorescent heavy metals. An approach combining confocal laser scanning microscopy and laser-induced fluorescence spectroscopy for study of the interactions of biofilms with uranium is presented. It was found that coupling these techniques furnishes a promising tool for in-situ non-invasive study of fluorescent heavy metals within biofilm systems. Information on uranium speciation and uranium redox states can be obtained.

  7. Recent Developments in the Speciation and Determination of Mercury Using Various Analytical Techniques

    PubMed Central

    Suvarapu, Lakshmi Narayana; Baek, Sung-Ok

    2015-01-01

    This paper reviews the speciation and determination of mercury by various analytical techniques such as atomic absorption spectrometry, voltammetry, inductively coupled plasma techniques, spectrophotometry, spectrofluorometry, high performance liquid chromatography, and gas chromatography. Approximately 126 research papers on the speciation and determination of mercury by various analytical techniques published in international journals since 2013 are reviewed. PMID:26236539

  8. Rapid neo-sex chromosome evolution and incipient speciation in a major forest pest

    Treesearch

    Ryan R. Bracewell; Barbara J. Bentz; Brian T. Sullivan; Jeffrey M. Good

    2017-01-01

    Genome evolution is predicted to be rapid following the establishment of new (neo) sex chromosomes, but it is not known if neo-sex chromosome evolution plays an important role in speciation. Here we combine extensive crossing experiments with population and functional genomic data to examine neo-XY chromosome evolution and incipient speciation in the mountain pine...

  9. Presumptive speciation of Streptococcus bovis and other group D streptococci from human sources by using arginine and pyruvate tests.

    PubMed Central

    Gross, K C; Houghton, M P; Senterfit, L B

    1975-01-01

    A simplified method for speciation of group D streptococci is described. A total of 4,156 streptococcal isolates from human clinical material was tested for ability to hydrolyze esculin in the presence of 40% bile, ferment pyruvate, hydrolyze arginine, and grow in media containing 40% bile or 6.5% NaCl. Streptococci which hydrolyzed esculin in 40% bile, but which did not hydrolyze arginine, were also tested for their ability to ferment raffinose or sorbose. Sixty percent (2,503) of the isolates hydrolyzed esculin in the presence of 40% bile and were thus presumptively identified as group D. By application of the other criteria, 84% of these were speciated as Streptococcus faecalis, 7% were speciated as S. faecium, 6% were speciated as S. bovis, 2% were speciated as S. avium, and 1% were not identified. This scheme was shown to be both reliable and practical for use in the diagnostic laboratory. S. avium and S. bovis isolates were characterized, and 18 S. bovis isolates from patients with bacterial endocarditis were compared physiologically with 151 isolates of this species from other sources. PMID:1176592

  10. Pleistocene phylogeographic effects on avian populations and the speciation process.

    PubMed Central

    Avise, J C; Walker, D

    1998-01-01

    Pleistocene biogeographic events have traditionally been ascribed a major role in promoting speciations and in sculpting the present-day diversity and distributions of vertebrate taxa. However, this paradigm has recently come under challenge from a review of interspecific mtDNA genetic distances in birds: most sister-species separations dated to the Pliocene. Here we summarize the literature on intraspecific mtDNA phylogeographic patterns in birds and reinterpret the molecular evidence bearing on Pleistocene influences. At least 37 of the 63 avian species surveyed (59%) are sundered into recognizable phylogeographic units, and 28 of these separations (76%) trace to the Pleistocene. Furthermore, use of phylogroup separation times within species as minimum estimates of 'speciation durations' also indicates that many protracted speciations, considered individually, probably extended through time from Pliocene origins to Pleistocene completions. When avian speciation is viewed properly as an extended temporal process rather than as a point event, Pleistocene conditions appear to have played an active role both in initiating major phylogeographic separations within species, and in completing speciations that had been inaugurated earlier. Whether the Pleistocene was exceptional in these regards compared with other geological times remains to be determined. PMID:9569664

  11. Quantitative traits and diversification.

    PubMed

    FitzJohn, Richard G

    2010-12-01

    Quantitative traits have long been hypothesized to affect speciation and extinction rates. For example, smaller body size or increased specialization may be associated with increased rates of diversification. Here, I present a phylogenetic likelihood-based method (quantitative state speciation and extinction [QuaSSE]) that can be used to test such hypotheses using extant character distributions. This approach assumes that diversification follows a birth-death process where speciation and extinction rates may vary with one or more traits that evolve under a diffusion model. Speciation and extinction rates may be arbitrary functions of the character state, allowing much flexibility in testing models of trait-dependent diversification. I test the approach using simulated phylogenies and show that a known relationship between speciation and a quantitative character could be recovered in up to 80% of the cases on large trees (500 species). Consistent with other approaches, detecting shifts in diversification due to differences in extinction rates was harder than when due to differences in speciation rates. Finally, I demonstrate the application of QuaSSE to investigate the correlation between body size and diversification in primates, concluding that clade-specific differences in diversification may be more important than size-dependent diversification in shaping the patterns of diversity within this group.

  12. Prevalence of disruptive selection predicts extent of species differentiation in Lake Victoria cichlids.

    PubMed

    van Rijssel, Jacco C; Moser, Florian N; Frei, David; Seehausen, Ole

    2018-01-31

    Theory suggests that speciation with gene flow is most likely when both sexual and ecological selection are divergent or disruptive. Divergent sexual and natural selection on the visual system have been demonstrated before in sympatric, morphologically similar sister species of Lake Victoria cichlids, but this does not explain the subtle morphological differences between them. To investigate the significance of natural selection on morphology during speciation, we here ask whether the prevalence of disruptive ecological selection differs between sympatric sister species that are at different stages of speciation. Some of our species pairs do ( Pundamilia ) and others do not ( Neochromis ) differ distinctively in sexually selected male nuptial coloration. We find that (i) evidence for disruptive selection, and for evolutionary response to it, is prevalent in traits that are differentiated between sister species; (ii) prevalence of both predicts the extent of genetic differentiation; and (iii) genetic differentiation is weaker in species pairs with conserved male nuptial coloration. Our results speak to the existence of two different mechanisms of speciation with gene flow: speciation mainly by sexual selection tightly followed by ecological character displacement in some cases and speciation mainly by divergent ecological selection in others. © 2018 The Author(s).

  13. Synchrotron-based P K-edge XANES spectroscopy reveals rapid changes of phosphorus speciation in the topsoil of two glacier foreland chronosequences

    NASA Astrophysics Data System (ADS)

    Prietzel, Jörg; Dümig, Alexander; Wu, Yanhong; Zhou, Jun; Klysubun, Wantana

    2013-05-01

    Phosphorus (P) is a crucial element for life on Earth, and the bioavailability of P in terrestrial ecosystems, which is dependent on the soil P stock and its speciation, may limit ecosystem productivity and succession. In our study, for the first time a direct speciation of soil P in two glacier foreland chronosequences has been conducted using synchrotron-based X-ray Absorption Near-Edge Structure (XANES) spectroscopy. The chronosequences are located in the forefields of Hailuogou Glacier (Gongga Shan, China) and Damma Glacier (Swiss Alps). The age since deglaciation of the investigated soils ranges from 0 to 120 years at Hailuogou, and from 15 to >700 years at Damma. Differences in climate conditions (cooler at Damma, in contrast to Hailuogou precluding the establishment of forest in advanced ecosystem succession stages) and in the chemical composition of the parent material result in different soil contents of total P and Fe/Al oxyhydroxides, which are much smaller at Damma than at Hailuogou. Nevertheless, both chronosequences show similar trends of their topsoil P status with increasing soil age. Our study reveals a rapid change of topsoil P speciation in glacier retreat areas already during initial stages of pedogenesis: Initially dominating bedrock-derived apatite-P and Al-bound P is depleted; Fe-bound P and particularly organically-bound P is accumulated. Organic P strongly dominates in the topsoil of the mature soils outside the proglacial area of Damma Glacier (age 700-3000 years), and already 50 years after deglacation in the topsoil of the retreat area of Hailuogou Glacier. A key factor for the change in topsoil P speciation is the establishment of vegetation, resulting in soil organic matter (SOM) accumulation as well as accelerated soil acidification and apatite dissolution by organic acids, which are produced by SOM-degrading micro-organisms, mykorrhiza fungi, and plant roots. Particularly the succession of grassland to forest seems to accelerate the transformation of topsoil P from apatite-P into organic P. The conceptual model developed by Walker and Syers (1976) to explain long-term (millennial) changes of P speciation, availability, and turnover in soils and terrestrial ecosystems seems to be valid to describe short-term changes of P speciation and P availability in proglacial topsoils already within a century of initial soil formation. Because the apatite-depleted topsoil horizons in the young proglacial soils are shallow, the change of topsoil P speciation should not seriously affect P availability and the P acquisition strategy of adult trees, whose roots can easily access apatite-containing C horizons. In contrast, P acquisition strategies of fungi, micro-organisms and plants confined to the topsoil probably change from apatite dissolution to mineralization of organic P already within <3000 years in a proglacial ecosystem succession from bare soil to grassland (Damma Glacier Chronosequence) or even within <100 years in a proglacial ecosystem succession to forest (Hailuogou Glacier Chronosequence).

  14. Multi-scale analysis of the occurrence of Pb, Cr and Mn in the NIST standards: Urban dust (SRM 1649a) and indoor dust (SRM 2584)

    NASA Astrophysics Data System (ADS)

    Jiang, Mingyu; Nakamatsu, Yuki; Jensen, Keld A.; Utsunomiya, Satoshi

    2014-01-01

    Adverse health effects of ambient particulate matters are closely related to the speciation of the constituting organic matters and toxic metals. To determine multi-parameters of the metal speciation in urban and indoor dusts, we have performed systematic bulk- to nano-scale (“multi-scale”) analysis on the speciation of Pb, Mn, and Cr in two National Institute of Standards and Technology (NIST) standard reference materials (SRMs): urban dust (SRM 1649a) and indoor dust (SRM 2584), utilizing X-ray absorption near-edge structure, powder X-ray diffraction analysis, electron microprobe analysis, scanning electron microscopy, and transmission electron microscopy. Major crystalline phases are quartz, gypsum, kaolinite, and muscovite in SRM 1649a, while quartz, gypsum, calcite, and possibly muscovite (or chabazite) in SRM 2584. A number of Pb sulfate nanoparticles (50-200 nm) occur in SRM 1649a, whereas micron-sized Pb carbonate is present containing various concentrations of Zn and Ti in the complex texture in SRM 2584. Relatively soluble Mn(II) sulfate is the bulk-averaged Mn speciation in SRM 1649a, although discrete Mn sulfate particles are not characterized by individual particle analysis, implying the diluted Mn distribution within other sulfate. In SRM 2584, Mn speciation includes a mixture of oxides and carbonates, and trace Mn in chromite. Chromite (FeCr2O4) is the major Cr speciation in SRM1694a, while unidentified Cr(III) phases with minor chromite and Pb chromate are present in SRM 2584, among which the Pb chromate is composed of Cr(VI). A significant number of the metal-bearing particles are distributed to the submicron-size fraction in the urban dust, SRM 1649a, suggesting that these metal nanoparticles can potentially penetrate into the deep respiratory system. This study demonstrates that multi-scale analysis combining nano and bulk analytical techniques is a powerful approach to investigate the multi-parameters of metal-bearing nanoparticles in heterogeneous PM samples.

  15. Characterization and speciation of mercury-bearing mine wastes using X-ray absorption spectroscopy

    USGS Publications Warehouse

    Kim, C.S.; Brown, Gordon E.; Rytuba, J.J.

    2000-01-01

    Mining of mercury deposits located in the California Coast Range has resulted in the release of mercury to the local environment and water supplies. The solubility, transport, and potential bioavailability of mercury are controlled by its chemical speciation, which can be directly determined for samples with total mercury concentrations greater than 100 mg kg-1 (ppm) using X-ray absorption spectroscopy (XAS). This technique has the additional benefits of being non-destructive to the sample, element-specific, relatively sensitive at low concentrations, and requiring minimal sample preparation. In this study, Hg L(III)-edge extended X-ray absorption fine structure (EXAFS) spectra were collected for several mercury mine tailings (calcines) in the California Coast Range. Total mercury concentrations of samples analyzed ranged from 230 to 1060 ppm. Speciation data (mercury phases present and relative abundances) were obtained by comparing the spectra from heterogeneous, roasted (calcined) mine tailings samples with a spectral database of mercury minerals and sorbed mercury complexes. Speciation analyses were also conducted on known mixtures of pure mercury minerals in order to assess the quantitative accuracy of the technique. While some calcine samples were found to consist exclusively of mercuric sulfide, others contain additional, more soluble mercury phases, indicating a greater potential for the release of mercury into solution. Also, a correlation was observed between samples from hot-spring mercury deposits, in which chloride levels are elevated, and the presence of mercury-chloride species as detected by the speciation analysis. The speciation results demonstrate the ability of XAS to identify multiple mercury phases in a heterogeneous sample, with a quantitative accuracy of ??25% for the mercury-containing phases considered. Use of this technique, in conjunction with standard microanalytical techniques such as X-ray diffraction and electron probe microanalysis, is beneficial in the prioritization and remediation of mercury-contaminated mine sites. (C) 2000 Elsevier Science B.V.

  16. A Genome-Wide Analysis Reveals No Nuclear Dobzhansky-Muller Pairs of Determinants of Speciation between S. cerevisiae and S. paradoxus, but Suggests More Complex Incompatibilities

    PubMed Central

    Kao, Katy C.; Schwartz, Katja; Sherlock, Gavin

    2010-01-01

    The Dobzhansky-Muller (D-M) model of speciation by genic incompatibility is widely accepted as the primary cause of interspecific postzygotic isolation. Since the introduction of this model, there have been theoretical and experimental data supporting the existence of such incompatibilities. However, speciation genes have been largely elusive, with only a handful of candidate genes identified in a few organisms. The Saccharomyces sensu stricto yeasts, which have small genomes and can mate interspecifically to produce sterile hybrids, are thus an ideal model for studying postzygotic isolation. Among them, only a single D-M pair, comprising a mitochondrially targeted product of a nuclear gene and a mitochondrially encoded locus, has been found. Thus far, no D-M pair of nuclear genes has been identified between any sensu stricto yeasts. We report here the first detailed genome-wide analysis of rare meiotic products from an otherwise sterile hybrid and show that no classic D-M pairs of speciation genes exist between the nuclear genomes of the closely related yeasts S. cerevisiae and S. paradoxus. Instead, our analyses suggest that more complex interactions, likely involving multiple loci having weak effects, may be responsible for their post-zygotic separation. The lack of a nuclear encoded classic D-M pair between these two yeasts, yet the existence of multiple loci that may each exert a small effect through complex interactions suggests that initial speciation events might not always be mediated by D-M pairs. An alternative explanation may be that the accumulation of polymorphisms leads to gamete inviability due to the activities of anti-recombination mechanisms and/or incompatibilities between the species' transcriptional and metabolic networks, with no single pair at least initially being responsible for the incompatibility. After such a speciation event, it is possible that one or more D-M pairs might subsequently arise following isolation. PMID:20686707

  17. Culturing Selenastrum capricornutum (Chlorophyta) in a synthetic algal nutrient medium with defined mineral particulates

    USGS Publications Warehouse

    Kuwabara, J.S.; Davis, J.A.; Chang, Cecily C.Y.

    1985-01-01

    Algal nutrient studies in chemically-defined media typically employ a synthetic chelator to prevent iron hydroxide precipitation. Micronutrient-particulate interactions may, however, significantly affect chemical speciation and hence biovailability of these nutrients in natural waters. A technique is described by which Selenastrum capricornutum Printz (Chlorophyta) may be cultured in a medium where trace metal speciation (except iron) is controlled, not by organic chelation, but by sorption onto titanium dioxide. Application of this culturing protocol in conjunction with results from sorption studies of nutrient ions on mineral particles provides a means of studying biological impacts of sorptive processes in aquatic environments. ?? 1985 Dr W. Junk Publishers.

  18. Arsenic distribution and valence state variation studied by fast hierarchical length-scale morphological, compositional, and speciation imaging at the Nanoscopium, Synchrotron Soleil

    NASA Astrophysics Data System (ADS)

    Somogyi, Andrea; Medjoubi, Kadda; Sancho-Tomas, Maria; Visscher, P. T.; Baranton, Gil; Philippot, Pascal

    2017-09-01

    The understanding of real complex geological, environmental and geo-biological processes depends increasingly on in-depth non-invasive study of chemical composition and morphology. In this paper we used scanning hard X-ray nanoprobe techniques in order to study the elemental composition, morphology and As speciation in complex highly heterogeneous geological samples. Multivariate statistical analytical techniques, such as principal component analysis and clustering were used for data interpretation. These measurements revealed the quantitative and valance state inhomogeneity of As and its relation to the total compositional and morphological variation of the sample at sub-μm scales.

  19. Evolution of Metallic Trace Elements in Contaminated River Sediments: Geochemical Variation Along River Linear and Vertical Profile

    NASA Astrophysics Data System (ADS)

    Kanbar, Hussein; Montarges-Pelletier, Emmanuelle; Mansuy-Huault, Laurence; Losson, Benoit; Manceau, Luc; Bauer, Allan; Bihannic, Isabelle; Gley, Renaud; El Samrani, Antoine; Kobaissi, Ahmad; Kazpard, Veronique; Villieras, Frédéric

    2015-04-01

    Metal pollution in riverine systems poses a serious threat that jeopardizes water and sediment quality, and hence river dwelling biota. Since those metallic pollutants can be transported for long distances via river flow, river management has become a great necessity, especially in times where industrial activities and global climate change are causing metal release and spreading (by flooding events). These changes are able to modify river hydrodynamics, and as a consequence natural physico-chemical status of different aquatic system compartments, which in turn alter metal mobility, availability and speciation. Vertical profiles of sediments hold the archive of what has been deposited for several tenths of years, thus they are used as a tool to study what had been deposited in rivers beds. The studied area lies in the Orne river, northeastern France. This river had been strongly modified physically and affected by steelmaking industrial activities that had boosted in the middle of the last century. This study focuses on several sites along the linear of the Orne river, as well as vertical profiles of sediments. Sediment cores were collected at sites where sedimentation is favoured, and in particular upstream two dams, built in the second half of the XXth century for industrial purposes. Sediment cores were sliced into 2-5cm layers, according to suitability, and analysed for physical and physico-chemical properties, elemental content and mineralogy. Data of the vertical profile in a sediment core is important to show the evolution of sediments as a function of depth, and hence age, in terms of nature, size and constituents. The physical properties include particle size distribution (PSD) and water content. In addition, the physico-chemical properties, such as pH and oxido-reduction potential (ORP) of interstitial water from undisturbed cores were also detected. Total elemental content of sediment and available ones of extracted interstitial waters was detected using ICP-MS and ICP-OES for trace and major elements respectively. Well crystallized minerals were detected by X-Ray Diffraction (XRD), while amorphous and poorly crystallized phases were identified with scanning and transmission electron microscope (SEM and TEM respectively), combined with Energy Dispersive X-Ray Spectroscopy (EDXS). Such microscopic techniques also provided information about metal carriers. To have an insight about the metal speciation at molecular level, X-Ray Absorption spectroscopy (XAS) was performed at Zn K-edge. The first analyses of Orne sediment cores evidenced different particle size distribution and sediment consolidation levels. Yet the cores showed that below a layer of apparently recent sediments (about 10-20 cm), lie highly contaminated ones. Zn and Pb content in deep sediment layers reach several thousands ppm, where they appeared mainly as Zn and Pb sulphides. Also, the high content of iron in deep sediments resulted in the presence of different iron phases: hematite, wuestite, magnetite, goethite, sulphides (pyrite), as well as undefined iron-silicate. In addition, interstitial waters contained high values of available metals (Zn: 500-35000 ppm, Pb: 150-5700 ppm, Cd: 1-10ppm), which might cause a greater concern than solid-bound metals, especially when river bed sediments are disturbed.

  20. [Analysis and separation of organic and inorganic speciations of soluble zinc in edible flowers].

    PubMed

    Peng, Shan-shan; Huang, Guo-qing

    2005-02-01

    Considering the medicinal effects of the edible flowers, the authors studied the separation of trace element zinc's soluble organic and inorganic speciations in water decoction of three edible flowers: Chrysanthemum, Cottonrose hibiscus and Honeysucker by using the 0.45 microm membrane filter and amberlite XAD-2 macroreticular resins. And trace element zinc contents were determined by atomic absorption spectrometry. The optimal conditions for separation had been established. This study verifies the economic value of developing edible flowers, and provides theoretical basis for developing edible flowers as the third functional food materials.

  1. Role of demographic stochasticity in a speciation model with sexual reproduction

    NASA Astrophysics Data System (ADS)

    Lafuerza, Luis F.; McKane, Alan J.

    2016-03-01

    Recent theoretical studies have shown that demographic stochasticity can greatly increase the tendency of asexually reproducing phenotypically diverse organisms to spontaneously evolve into localized clusters, suggesting a simple mechanism for sympatric speciation. Here we study the role of demographic stochasticity in a model of competing organisms subject to assortative mating. We find that in models with sexual reproduction, noise can also lead to the formation of phenotypic clusters in parameter ranges where deterministic models would lead to a homogeneous distribution. In some cases, noise can have a sizable effect, rendering the deterministic modeling insufficient to understand the phenotypic distribution.

  2. Testing founder effect speciation: Divergence population genetics of the Spoonbills Platalea regia and Pl. minor (Threskiornithidae, Aves)

    USGS Publications Warehouse

    Yeung, Carol K.L.; Tsai, Pi-Wen; Chesser, R. Terry; Lin, Rong-Chien; Yao, Cheng-Te; Tian, Xiu-Hua; Li, Shou-Hsien

    2011-01-01

    Although founder effect speciation has been a popular theoretical model for the speciation of geographically isolated taxa, its empirical importance has remained difficult to evaluate due to the intractability of past demography, which in a founder effect speciation scenario would involve a speciational bottleneck in the emergent species and the complete cessation of gene flow following divergence. Using regression-weighted approximate Bayesian computation, we tested the validity of these two fundamental conditions of founder effect speciation in a pair of sister species with disjunct distributions: the royal spoonbill Platalea regia in Australasia and the black-faced spoonbill Pl. minor in eastern Asia. When compared with genetic polymorphism observed at 20 nuclear loci in the two species, simulations showed that the founder effect speciation model had an extremely low posterior probability (1.55 × 10-8) of producing the extant genetic pattern. In contrast, speciation models that allowed for postdivergence gene flow were much more probable (posterior probabilities were 0.37 and 0.50 for the bottleneck with gene flow and the gene flow models, respectively) and postdivergence gene flow persisted for a considerable period of time (more than 80% of the divergence history in both models) following initial divergence (median = 197,000 generations, 95% credible interval [CI]: 50,000-478,000, for the bottleneck with gene flow model; and 186,000 generations, 95% CI: 45,000-477,000, for the gene flow model). Furthermore, the estimated population size reduction in Pl. regia to 7,000 individuals (median, 95% CI: 487-12,000, according to the bottleneck with gene flow model) was unlikely to have been severe enough to be considered a bottleneck. Therefore, these results do not support founder effect speciation in Pl. regia but indicate instead that the divergence between Pl. regia and Pl. minor was probably driven by selection despite continuous gene flow. In this light, we discuss the potential importance of evolutionarily labile traits with significant fitness consequences, such as migratory behavior and habitat preference, in facilitating divergence of the spoonbills.

  3. Ecological divergence and conservatism: spatiotemporal patterns of niche evolution in a genus of livebearing fishes (Poeciliidae: Xiphophorus).

    PubMed

    Culumber, Zachary W; Tobler, Michael

    2016-02-19

    Ecological factors often have a strong impact on spatiotemporal patterns of biodiversity. The integration of spatial ecology and phylogenetics allows for rigorous tests of whether speciation is associated with niche conservatism (constraints on ecological divergence) or niche divergence. We address this question in a genus of livebearing fishes for which the role of sexual selection in speciation has long been studied, but in which the potential role of ecological divergence during speciation has not been tested. By combining reconstruction of ancestral climate tolerances and disparity indices, we show that the earliest evolutionary split in Xiphophorus was associated with significant divergence for temperature variables. Niche evolution and present day niches were most closely associated with each species' geographic distribution relative to a biogeographic barrier, the Trans-Mexican Volcanic Belt. Tests for similarity of the environmental backgrounds of closely related species suggested that the relative importance of niche conservatism and divergence during speciation varied among the primary clades of Xiphophorus. Closely related species in the two swordtail clades exhibited higher levels of niche overlap than expected given environmental background similarity indicative of niche conservatism. In contrast, almost all species of platyfish had significantly divergent niches compared to environmental backgrounds, which is indicative of niche divergence. The results suggest that the relative importance of niche conservatism and divergence differed among the clades of Xiphophorus and that traits associated with niche evolution may be more evolutionarily labile in the platyfishes. Our results ultimately suggest that the taxonomic scale of tests for conservatism and divergence could greatly influence inferences of their relative importance in the speciation process.

  4. Lead Speciation and In Vitro Bioaccessibility of Compost-Amended Urban Garden Soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Attanayake, Chammi P.; Hettiarachchi, Ganga M.; Ma, Qing

    In situ soil amendments can modify the Pb bioavailability by changing soil Pb speciation. Urban soils from three vegetable gardens containing different total Pb concentrations were used. The study evaluated how compost amendment and aging of soil-compost mixture in situ affected the following: (i) soil Pb speciation in the field and (ii) change of soil Pb speciation during an in vitro bioaccessibility extraction mimicking gastric phase dissolution at pH 2.5. X-ray absorption fine structure spectroscopy was used to determine Pb speciation in amended and nonamended soils and residues left after in vitro bioaccessibility extraction of those soils. Compost amendment andmore » aging of compost in the field had a negligible effect on Pb bioaccessibility in the soils. Major Pb species in the soils were Pb sorbed to Fe oxy(hydr)oxide (Pb-Fh) and to soil organic C (Pb-Org). The fraction of Pb-Org was increased as soil-compost mixture aged in the field. During the in vitro extraction, the fraction of Pb-Fh was decreased, the fraction of Pb-Org was increased, and hydroxypyromorphite was formed in both amended and nonamended soils. Freshly incorporated compost enhanced the dissolution of Pb-Fh during the extraction. As soil-compost mixture aged in the field, the dissolution of Pb-Fh was low, demonstrating more stability of the Pb-Fh during the extraction. Compost amendment showed potential to contribute to reduced bioaccessibility of Pb as compost aged in the soil by increasing Pb-Org fraction in the field and stability of Pb-Fh during the in vitro bioaccessibility extraction.« less

  5. Changes in heavy metal bioavailability and speciation from a Pb-Zn mining soil amended with biochars from co-pyrolysis of rice straw and swine manure.

    PubMed

    Meng, Jun; Tao, Mengming; Wang, Lili; Liu, Xingmei; Xu, Jianming

    2018-08-15

    Biochar has been utilized as a good amendment to immobilize heavy metals in contaminated soils. However, the effectiveness of biochar in metal immobilization depends on biochar properties and metal species. In this study, the biochars produced from co-pyrolysis of rice straw with swine manure at 400°C were investigated to evaluate their effects on bioavailability and chemical speciation of four heavy metals (Cd, Cu, Pb and Zn) in a Pb-Zn contaminated soil through incubation experiment. Results showed that co-pyrolysis process significantly change the yield, ash content, pH, and electrical conductivity (EC) of the blended biochars compared with the single straw/manure biochar. The addition of these biochars significantly increased the soil pH, EC, and dissolved organic carbon (DOC) concentrations. The addition of biochars at a rate of 3% significantly reduced the CaCl 2 -extractable metal concentrations in the order of Pb>Cu>Zn>Cd. The exchangeable heavy metals decreased in all the biochar-amended soils whereas the carbonate-bound metal speciation increased. The increase in soil pH and the decrease in the CaCl 2 extractable metals indicated that these amendments can directly transform the highly availability metal speciation to the stable speciation in soils. In conclusion, biochar derived from co-pyrolysis of rice straw with swine manure at a mass ratio of 3:1 could most effectively immobilize the heavy metals in the soil. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. The concentration and chemical speciation of arsenic in the Nanpan River, the upstream of the Pearl River, China.

    PubMed

    Yang, Silin; Zhao, Ning; Zhou, Dequn; Wei, Rong; Yang, Bin; Pan, Bo

    2016-04-01

    The concentration and chemical speciation of arsenic (As) in different environmental matrixes (water, sediment, agricultural soils, and non-agricultural soils) were investigated in the Nanpan River area, the upstream of Pearl River, China. The results did not show any obvious transport of As along the flow direction of the river (from upstream to downstream). Total As concentrations in sediment were significantly different from those in agricultural soil. According to the comparison to quality standards, the As in sediments of the studied area have potential ecological risks and a minority of the sampling sites of agricultural soils in the studied area were polluted with As. As speciations were analyzed using sequential extraction and the percentage of non-residual fraction in sediment predominated over residual fraction. We thus believe that As in the studied area was with low mobility and bioavailability in sediment, agricultural soils, and non-agricultural soils. However, the bioavailability and mobility of As in sediment were higher than in both agricultural and non-agricultural soils, and thus, special attention should be paid for the risk assessment of As in the river in future studies.

  7. Unraveling the processes shaping mammalian gut microbiomes over evolutionary time

    PubMed Central

    Groussin, Mathieu; Mazel, Florent; Sanders, Jon G.; Smillie, Chris S.; Lavergne, Sébastien; Thuiller, Wilfried; Alm, Eric J.

    2017-01-01

    Whether mammal–microbiome interactions are persistent and specific over evolutionary time is controversial. Here we show that host phylogeny and major dietary shifts have affected the distribution of different gut bacterial lineages and did so on vastly different bacterial phylogenetic resolutions. Diet mostly influences the acquisition of ancient and large microbial lineages. Conversely, correlation with host phylogeny is mostly seen among more recently diverged bacterial lineages, consistent with processes operating at similar timescales to host evolution. Considering microbiomes at appropriate phylogenetic scales allows us to model their evolution along the mammalian tree and to infer ancient diets from the predicted microbiomes of mammalian ancestors. Phylogenetic analyses support co-speciation as having a significant role in the evolution of mammalian gut microbiome compositions. Highly co-speciating bacterial genera are also associated with immune diseases in humans, laying a path for future studies that probe these co-speciating bacteria for signs of co-evolution. PMID:28230052

  8. Convergent and divergent evolution in carnivorous pitcher plant traps.

    PubMed

    Thorogood, Chris J; Bauer, Ulrike; Hiscock, Simon J

    2018-02-01

    Contents Summary 1035 I. Introduction 1035 II. Evolution of the pitcher 1036 III. Convergent evolution 1036 IV. Divergent evolution 1038 V. Adaptive radiation and speciation 1040 VI. Conclusions and perspectives 1040 Acknowledgements 1040 References 1040 SUMMARY: The pitcher trap is a striking example of convergent evolution across unrelated carnivorous plant lineages. Convergent traits that have evolved across pitcher plant lineages are essential for trap function, suggesting that key selective pressures are in action. Recent studies have also revealed patterns of divergent evolution in functional pitcher morphology within genera. Adaptations to differences in local prey assemblages may drive such divergence and, ultimately, speciation. Here, we review recent research on convergent and divergent evolution in pitcher plant traps, with a focus on the genus Nepenthes, which we propose as a new model for research into adaptive radiation and speciation. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  9. Chemical Speciation and Quantitative Evaluation of Heavy Metal Pollution Hazards in Two Army Shooting Range Backstop Soils.

    PubMed

    Islam, Mohammad Nazrul; Nguyen, Xuan Phuc; Jung, Ho-Young; Park, Jeong-Hun

    2016-02-01

    The chemical speciation and ecological risk assessment of heavy metals in two shooting range backstop soils in Korea were studied. Both soils were highly contaminated with Cd, Cu, Pb, and Sb. The chemical speciation of heavy metals reflected the present status of contamination, which could help in promoting management practices. We-rye soil had a higher proportion of exchangeable and carbonate bound metals and water-extractable Cd and Sb than the Cho-do soil. Bioavailable Pb represented 42 % of the total Pb content in both soils. A significant amount of Sb was found in the two most bioavailable fractions, amounting to ~32 % in the soil samples, in good agreement with the batch leaching test using water. Based on the values of ecological risk indices, both soils showed extremely high potential risk and may represent serious environmental problems.

  10. Optimisation of the storage of natural freshwaters before organotin speciation.

    PubMed

    Bancon-Montigny, C; Lespes, G; Potin-Gautier, M

    2001-01-01

    The speciation of organotin compounds is essential due to the species-dependent toxicity, especially in natural waters. Precautions have to be taken during sampling and storage of waters in order to prevent degradations and losses. Experimental design methodology has been used to study the conditions of stability of organotins after water sampling in rivers. The modelling of results allows the determination of optimal conditions of preservation. After acidification at pH = 4 with nitric acid, the storage in polyethylene containers at 4 degrees C in the dark is suitable to preserve the most degradable trisubstituted (butyl- and phenyl-) species over 1 month. These conditions of sampling and storage are applied to two different freshwaters. The rate of species decomposition appears to be only dependent on the water nature, whatever the organotin concentrations in the sample. Speciation could be so preserved between 1 and 3 months.

  11. Omnivory in birds is a macroevolutionary sink

    PubMed Central

    Burin, Gustavo; Kissling, W. Daniel; Guimarães, Paulo R.; Şekercioğlu, Çağan H.; Quental, Tiago B.

    2016-01-01

    Diet is commonly assumed to affect the evolution of species, but few studies have directly tested its effect at macroevolutionary scales. Here we use Bayesian models of trait-dependent diversification and a comprehensive dietary database of all birds worldwide to assess speciation and extinction dynamics of avian dietary guilds (carnivores, frugivores, granivores, herbivores, insectivores, nectarivores, omnivores and piscivores). Our results suggest that omnivory is associated with higher extinction rates and lower speciation rates than other guilds, and that overall net diversification is negative. Trait-dependent models, dietary similarity and network analyses show that transitions into omnivory occur at higher rates than into any other guild. We suggest that omnivory acts as macroevolutionary sink, where its ephemeral nature is retrieved through transitions from other guilds rather than from omnivore speciation. We propose that these dynamics result from competition within and among dietary guilds, influenced by the deep-time availability and predictability of food resources. PMID:27052750

  12. Chromium fractionation and speciation in natural waters.

    PubMed

    Pereira, Catarinie Diniz; Techy, João Gabriel; Ganzarolli, Edgard Moreira; Quináia, Sueli Pércio

    2012-05-01

    It is common for leather industries to dump chromium-contaminated effluent into rivers and other bodies of water. Thus, it is crucial to know the impacts caused by this practice to the environment. A study on chromium partitioning and speciation, with determination at trace levels, was carried out in a potentially contaminated creek. Chromium fractionation and speciation was performed using a flow-injection preconcentration system and detection by flame atomic absorption spectrometry. High levels of this element were found in the particulate material (449-9320 mg kg(-1)), which indicates its compatibility with this fraction. The concentration of Cr(iii) in the water samples collected ranged from 5.2-105.2 μg L(-1). Cr(vi) was always below of the DL (0.3 μg L(-1)). Chromium accumulation observed in the sediment (873-1691 mg kg(-1)) may confirm contamination due to the long term release of contaminated effluents in the creek.

  13. Great Salt Lake Composition and Rare Earth Speciation Analysis

    DOE Data Explorer

    Jiao, Yongqin; Lammers, Laura; Brewer, Aaron

    2017-04-19

    We have conducted aqueous speciation analyses of the Great Salt Lake (GSL) brine sample (Table 1) and a mock geo sample (Table 2) spiked with 1 ppb Tb and 100 ppb Tb. The GSL speciation (Figure 1) aligns with our basic speciation expectations that strong carbonate complexes would form at mid to higher pH's. Although we expected strong aqueous complexes with fluorides at neutral pH and with chlorides, and hydroxides at low pH, we observe that the dominant species in the low to mid pH range to be Tb3+ as a free ion. Still, we do see the presence of fluoride and chloride complexes within the expected low to mid pH range.

  14. Potential application of SERS for arsenic speciation in biological matrices.

    PubMed

    Yang, Mingwei; Matulis, Shannon; Boise, Lawrence H; McGoron, Anthony J; Cai, Yong

    2017-08-01

    Speciation of arsenic is usually carried out using chromatography-based methods coupled with spectroscopic determination; however, the inevitable procedures involving sample preparation and separation could potentially alter the integrity of the arsenic metabolites present in biological samples. Surface-enhanced Raman spectroscopy (SERS) could be a promising alternative for providing a reliable arsenic analysis under the influence of a cellular matrix. A method for arsenic speciation using SERS in cellular matrix was developed in this study and four arsenicals were selected, including arsenite (As III ), arsenate (As V ), monomethylarsonic acid (MMA V ) and dimethylarsinic acid (DMA V ). Silver nanoparticles in the form of colliodal suspension with different surface charges, i.e., coated with citrate (AgNPs-Citrate) and spermine (AgNPs-Spermine) were employed as SERS substrates. Adsorption of arsenicals on nanoparticles in colloidal suspensions and the cellular matrix and the pH, size, and zeta potential of the colloidal suspensions were investigated for a better understanding of the SERS signal response of arsenicals in the colloidal suspensions or under the influence of cellular matrix. Arsenicals showed substantially different SERS responses in the two colloidal suspensions, mainly because of the distinct difference in the interaction between the arsenicals and the nanoparticles. Arsenic speciation in cell lysate could be successfully carried out in AgNPs-Spermine suspension, while AgNPs-Citrate could not yield significant SERS signals under the experimental conditions. This study proved that AgNPs-Spermine colloidal suspension could be a promising SERS substrate for studying arsenic metabolism in a biological matrix, reducing the bias caused by traditional techniques that involve sample extraction and pretreatment.

  15. Arsenic, Antimony, Chromium, and Thallium Speciation in Water and Sediment Samples with the LC-ICP-MS Technique

    PubMed Central

    Jabłońska-Czapla, Magdalena

    2015-01-01

    Chemical speciation is a very important subject in the environmental protection, toxicology, and chemical analytics due to the fact that toxicity, availability, and reactivity of trace elements depend on the chemical forms in which these elements occur. Research on low analyte levels, particularly in complex matrix samples, requires more and more advanced and sophisticated analytical methods and techniques. The latest trends in this field concern the so-called hyphenated techniques. Arsenic, antimony, chromium, and (underestimated) thallium attract the closest attention of toxicologists and analysts. The properties of those elements depend on the oxidation state in which they occur. The aim of the following paper is to answer the question why the speciation analytics is so important. The paper also provides numerous examples of the hyphenated technique usage (e.g., the LC-ICP-MS application in the speciation analysis of chromium, antimony, arsenic, or thallium in water and bottom sediment samples). An important issue addressed is the preparation of environmental samples for speciation analysis. PMID:25873962

  16. Transformation of heavy metal speciation during sludge drying: mechanistic insights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weng, Huanxin; Ma, Xue-Wen; Fu, Feng-Xia

    2014-01-30

    Speciation can fundamentally affect on the stability and toxicity of heavy metals in sludge from wastewater treatment plants. This research investigated the speciation of heavy metals in sludge from both municipal and industrial sources, and metal speciation change as a result of drying process to reduce sludge volume. The changes in sludge properties including sludge moisture content, temperature, density, and electrical conductivity were also monitored to provide insights into the mechanisms causing the change in heavy metal speciation. The results show that the drying process generally stabilized the Cr, Cu, Cd and Pb in sludge by transforming acid-soluble, reducible andmore » oxidizable species into structurally stable forms. Such transformation and stabilization occurred regardless of the sludge source and type, and were primarily caused by the changes in sludge properties associated with decomposition of organic matter and sulfide. The results enhanced our understanding of the geochemical behavior of heavy metals in municipal sludge, and are useful for designing a treatment system for environment-friendly disposal of sludge.« less

  17. Multielemental speciation analysis by advanced hyphenated technique - HPLC/ICP-MS: A review.

    PubMed

    Marcinkowska, Monika; Barałkiewicz, Danuta

    2016-12-01

    Speciation analysis has become an invaluable tool in human health risk assessment, environmental monitoring or food quality control. Another step is to develop reliable multielemental speciation methodologies, to reduce costs, waste and time needed for the analysis. Separation and detection of species of several elements in a single analytical run can be accomplished by high performance liquid chromatography hyphenated to inductively coupled plasma mass spectrometry (HPLC/ICP-MS). Our review assembles articles concerning multielemental speciation determination of: As, Se, Cr, Sb, I, Br, Pb, Hg, V, Mo, Te, Tl, Cd and W in environmental, biological, food and clinical samples analyzed with HPLC/ICP-MS. It addresses the procedures in terms of following issues: sample collection and pretreatment, selection of optimal conditions for elements species separation by HPLC and determination using ICP-MS as well as metrological approach. The presented work is the first review article concerning multielemental speciation analysis by advanced hyphenated technique HPLC/ICP-MS. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Biodegradation and speciation of residual SS-ethylenediaminedisuccinic acid (EDDS) in soil solution left after soil washing.

    PubMed

    Tandy, Susan; Ammann, Adrian; Schulin, Rainer; Nowack, Bernd

    2006-07-01

    This paper aims to investigate the degradation and speciation of EDDS-complexes (SS-ethylenediaminedisuccinic acid) in soil following soil washing. The changes in soil solution metal and EDDS concentrations were investigated for three polluted soils. EDDS was degraded after a lag phase of 7-11 days with a half-life of 4.18-5.60 days. No influence of EDDS-speciation on the reaction was observed. The decrease in EDDS resulted in a corresponding decrease in solubilized metals. Changes in EDDS speciation can be related to (1) initial composition of the soil, (2) temporarily anoxic conditions in the soil slurry after soil washing, (3) exchange of EDDS complexes with Cu even in soils without elevated Cu and (4) formation of NiEDDS. Dissolved organic matter is important for metal speciation at low EDDS concentrations. Our results show that even in polluted soils EDDS is degraded from a level of several hundred micromoles to below 1 microM within 50 days.

  19. Evidence for nonallopatric speciation among closely related sympatric Heliotropium species in the Atacama Desert

    PubMed Central

    Luebert, Federico; Jacobs, Pit; Hilger, Hartmut H; Muller, Ludo A H

    2014-01-01

    The genetic structure of populations of closely related, sympatric species may hold the signature of the geographical mode of the speciation process. In fully allopatric speciation, it is expected that genetic differentiation between species is homogeneously distributed across the genome. In nonallopatric speciation, the genomes may remain undifferentiated to a large extent. In this article, we analyzed the genetic structure of five sympatric species from the plant genus Heliotropium in the Atacama Desert. We used amplified fragment length polymorphisms (AFLPs) to characterize the genetic structure of these species and evaluate their genetic differentiation as well as the number of loci subject to positive selection using divergence outlier analysis (DOA). The five species form distinguishable groups in the genetic space, with zones of overlap, indicating that they are possibly not completely isolated. Among-species differentiation accounts for 35% of the total genetic differentiation (FST = 0.35), and FST between species pairs is positively correlated with phylogenetic distance. DOA suggests that few loci are subject to positive selection, which is in line with a scenario of nonallopatric speciation. These results support the idea that sympatric species of Heliotropium sect. Cochranea are under an ongoing speciation process, characterized by a fluctuation of population ranges in response to pulses of arid and humid periods during Quaternary times. PMID:24558582

  20. Evidence for nonallopatric speciation among closely related sympatric Heliotropium species in the Atacama Desert.

    PubMed

    Luebert, Federico; Jacobs, Pit; Hilger, Hartmut H; Muller, Ludo A H

    2014-02-01

    The genetic structure of populations of closely related, sympatric species may hold the signature of the geographical mode of the speciation process. In fully allopatric speciation, it is expected that genetic differentiation between species is homogeneously distributed across the genome. In nonallopatric speciation, the genomes may remain undifferentiated to a large extent. In this article, we analyzed the genetic structure of five sympatric species from the plant genus Heliotropium in the Atacama Desert. We used amplified fragment length polymorphisms (AFLPs) to characterize the genetic structure of these species and evaluate their genetic differentiation as well as the number of loci subject to positive selection using divergence outlier analysis (DOA). The five species form distinguishable groups in the genetic space, with zones of overlap, indicating that they are possibly not completely isolated. Among-species differentiation accounts for 35% of the total genetic differentiation (F ST = 0.35), and F ST between species pairs is positively correlated with phylogenetic distance. DOA suggests that few loci are subject to positive selection, which is in line with a scenario of nonallopatric speciation. These results support the idea that sympatric species of Heliotropium sect. Cochranea are under an ongoing speciation process, characterized by a fluctuation of population ranges in response to pulses of arid and humid periods during Quaternary times.

  1. REE speciation in low-temperature acidic waters and the competitive effects of aluminum

    USGS Publications Warehouse

    Gimeno, Serrano M.J.; Auque, Sanz L.F.; Nordstrom, D. Kirk

    2000-01-01

    The effect of simultaneous competitive speciation of dissolved rare earth elements (REEs) in acidic waters (pH 3.3 to 5.2) has been evaluated by applying the PHREEQE code to the speciation of water analyses from Spain, Brazil, USA, and Canada. The main ions that might affect REE are Al3+, F-, SO42-, and PO43-. Fluoride, normally a significant complexer of REEs, is strongly associated with Al3+ in acid waters and consequently has little influence on REEs. The inclusion of aluminum concentrations in speciation calculations for acidic waters is essential for reliable speciation of REEs. Phosphate concentrations are too low (10-4 to 10-7 m) to affect REE speciation. Consequently, SO42- is the only important complexing ligand for REEs under these conditions. According to Millero [Millero, F.J., 1992. Stability constants for the formation of rare earth inorganic complexes as a function of ionic strength. Geochim. Cosmochim. Acta, 56, 3123-3132], the lanthanide sulfate stability constants are nearly constant with increasing atomic number so that no REE fractionation would be anticipated from aqueous complexation in acidic waters. Hence, REE enrichments or depletions must arise from mass transfer reactions. (C) 2000 Elsevier Science B.V. All rights reserved.

  2. Hybridization masks speciation in the evolutionary history of the Galápagos marine iguana

    PubMed Central

    MacLeod, Amy; Rodríguez, Ariel; Vences, Miguel; Orozco-terWengel, Pablo; García, Carolina; Trillmich, Fritz; Gentile, Gabriele; Caccone, Adalgisa; Quezada, Galo; Steinfartz, Sebastian

    2015-01-01

    The effects of the direct interaction between hybridization and speciation—two major contrasting evolutionary processes—are poorly understood. We present here the evolutionary history of the Galápagos marine iguana (Amblyrhynchus cristatus) and reveal a case of incipient within-island speciation, which is paralleled by between-island hybridization. In-depth genome-wide analyses suggest that Amblyrhynchus diverged from its sister group, the Galápagos land iguanas, around 4.5 million years ago (Ma), but divergence among extant populations is exceedingly young (less than 50 000 years). Despite Amblyrhynchus appearing as a single long-branch species phylogenetically, we find strong population structure between islands, and one case of incipient speciation of sister lineages within the same island—ostensibly initiated by volcanic events. Hybridization between both lineages is exceedingly rare, yet frequent hybridization with migrants from nearby islands is evident. The contemporary snapshot provided by highly variable markers indicates that speciation events may have occurred throughout the evolutionary history of marine iguanas, though these events are not visible in the deeper phylogenetic trees. We hypothesize that the observed interplay of speciation and hybridization might be a mechanism by which local adaptations, generated by incipient speciation, can be absorbed into a common gene pool, thereby enhancing the evolutionary potential of the species as a whole. PMID:26041359

  3. Speciation on a local geographic scale: the evolution of a rare rock outcrop specialist in Mimulus.

    PubMed

    Ferris, Kathleen G; Sexton, Jason P; Willis, John H

    2014-08-05

    Speciation can occur on both large and small geographical scales. In plants, local speciation, where small populations split off from a large-ranged progenitor species, is thought to be the dominant mode, yet there are still few examples to verify speciation has occurred in this manner. A recently described morphological species in the yellow monkey flowers, Mimulus filicifolius, is an excellent candidate for local speciation because of its highly restricted geographical range. Mimulus filicifolius was formerly identified as a population of M. laciniatus due to similar lobed leaf morphology and rocky outcrop habitat. To investigate whether M. filicifolius is genetically divergent and reproductively isolated from M. laciniatus, we examined patterns of genetic diversity in ten nuclear and eight microsatellite loci, and hybrid fertility in M. filicifolius and its purported close relatives: M. laciniatus, M. guttatus and M. nasutus. We found that M. filicifolius is genetically divergent from the other species and strongly reproductively isolated from M. laciniatus. We conclude that M. filicifolius is an independent rock outcrop specialist despite being morphologically and ecologically similar to M. laciniatus, and that its small geographical range nested within other wide-ranging members of the M. guttatus species complex is consistent with local speciation. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  4. Mercury mobilization and speciation linked to bacterial iron oxide and sulfate reduction: A column study to mimic reactive transfer in an anoxic aquifer.

    PubMed

    Hellal, Jennifer; Guédron, Stéphane; Huguet, Lucie; Schäfer, Jörg; Laperche, Valérie; Joulian, Catherine; Lanceleur, Laurent; Burnol, André; Ghestem, Jean-Philippe; Garrido, Francis; Battaglia-Brunet, Fabienne

    2015-09-01

    Mercury (Hg) mobility and speciation in subsurface aquifers is directly linked to its surrounding geochemical and microbial environment. The role of bacteria on Hg speciation (i.e., methylation, demethylation and reduction) is well documented, however little data is available on their impact on Hg mobility. The aim of this study was to test if (i) Hg mobility is due to either direct iron oxide reduction by iron reducing bacteria (IRB) or indirect iron reduction by sulfide produced by sulfate reducing bacteria (SRB), and (ii) to investigate its subsequent fate and speciation. Experiments were carried out in an original column setup combining geochemical and microbiological approaches that mimic an aquifer including an interface of iron-rich and iron depleted zones. Two identical glass columns containing iron oxides spiked with Hg(II) were submitted to (i) direct iron reduction by IRB and (ii) to indirect iron reduction by sulfides produced by SRB. Results show that in both columns Hg was leached and methylated during the height of bacterial activity. In the column where IRB are dominant, Hg methylation and leaching from the column was directly correlated to bacterial iron reduction (i.e., Fe(II) release). In opposition, when SRB are dominant, produced sulfide induced indirect iron oxide reduction and rapid adsorption of leached Hg (or produced methylmercury) on neoformed iron sulfides (e.g., Mackinawite) or its precipitation as HgS. At the end of the SRB column experiment, when iron-oxide reduction was complete, filtered Hg and Fe concentrations increased at the outlet suggesting a leaching of Hg bound to FeS colloids that may be a dominant mechanism of Hg transport in aquifer environments. These experimental results highlight different biogeochemical mechanisms that can occur in stratified sub-surface aquifers where bacterial activities play a major role on Hg mobility and changes in speciation. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Unprecedented within-species chromosome number cline in the Wood White butterfly Leptidea sinapis and its significance for karyotype evolution and speciation

    PubMed Central

    2011-01-01

    Background Species generally have a fixed number of chromosomes in the cell nuclei while between-species differences are common and often pronounced. These differences could have evolved through multiple speciation events, each involving the fixation of a single chromosomal rearrangement. Alternatively, marked changes in the karyotype may be the consequence of within-species accumulation of multiple chromosomal fissions/fusions, resulting in highly polymorphic systems with the subsequent extinction of intermediate karyomorphs. Although this mechanism of chromosome number evolution is possible in theory, it has not been well documented. Results We present the discovery of exceptional intraspecific variability in the karyotype of the widespread Eurasian butterfly Leptidea sinapis. We show that within this species the diploid chromosome number gradually decreases from 2n = 106 in Spain to 2n = 56 in eastern Kazakhstan, resulting in a 6000 km-wide cline that originated recently (8,500 to 31,000 years ago). Remarkably, intrapopulational chromosome number polymorphism exists, the chromosome number range overlaps between some populations separated by hundreds of kilometers, and chromosomal heterozygotes are abundant. We demonstrate that this karyotypic variability is intraspecific because in L. sinapis a broad geographical distribution is coupled with a homogenous morphological and genetic structure. Conclusions The discovered system represents the first clearly documented case of explosive chromosome number evolution through intraspecific and intrapopulation accumulation of multiple chromosomal changes. Leptidea sinapis may be used as a model system for studying speciation by means of chromosomally-based suppressed recombination mechanisms, as well as clinal speciation, a process that is theoretically possible but difficult to document. The discovered cline seems to represent a narrow time-window of the very first steps of species formation linked to multiple chromosomal changes that have occurred explosively. This case offers a rare opportunity to study this process before drift, dispersal, selection, extinction and speciation erase the traces of microevolutionary events and just leave the final picture of a pronounced interspecific chromosomal difference. PMID:21507222

  6. Speciation via floral heterochrony and presumed mycorrhizal host switching of endemic butterfly orchids on the Azorean archipelago.

    PubMed

    Bateman, Richard M; Rudall, Paula J; Bidartondo, Martin I; Cozzolino, Salvatore; Tranchida-Lombardo, Valentina; Carine, Mark A; Moura, Mónica

    2014-06-01

    • Premise of the study: Most orchid species native to the Macaronesian islands reflect immigration from western Europe or North Africa followed by anagenesis. The only putative exception is the butterfly orchids (Platanthera) of the Azores, where three species apparently reflect at least one cladogenetic speciation event. This multidisciplinary study explores the origin, speciation, phenotypic, and genotypic cohesion of these Azorean species and their mainland relatives.• Methods: Plants of Platanthera from 30 localities spanning all nine Azorean islands were compared with those of four continental European relatives for 38 morphometric characters; substantial subsets were also analyzed for plastid microsatellites, and for nrITS of both the orchids and their mycorrhizae.• Key results: Although the three Azorean and four mainland species are all readily distinguished morphometrically using several floral characters, and hybridization appears rare, divergence in ITS and especially plastid sequences is small. Despite occupying similar laurisilva habitats, the Azorean species differ radically in the identities and diversity of their mycorrhizal partners; specialism apparently increases rarity.• Conclusions: Although morphological evidence suggests two invasions of the islands from NW Africa and/or SW Europe, ITS data imply only one. As the molecular data are unable to distinguish among the potential mainland ancestors, two scenarios of relationship are explored that imply different ancestors. Both scenarios require both anagenetic and cladogenetic speciation events, involving homoplastic shifts in overall flower size and (often substantial) changes in the relative dimensions of individual floral organs. Limited genotypic divergence among the three species compared with greater phenotypic divergence suggests comparatively recent speciation. Mycorrhizae may be the most critical factor dictating the respective ecological tolerances, and thus the relative frequencies, of these species. The recent IUCN Red-List amalgamation of Azorean Platanthera taxa into a single species urgently requires reappraisal, as P. micrantha is an excellent indicator species of seminatural laurisilva forest and P. azorica is arguably Europe's rarest orchid. © 2014 Botanical Society of America, Inc.

  7. Developmental plasticity and the origin of species differences

    PubMed Central

    West-Eberhard, Mary Jane

    2005-01-01

    Speciation is the origin of reproductive isolation and divergence between populations, according to the “biological species concept” of Mayr. Studies of reproductive isolation have dominated research on speciation, leaving the origin of species differences relatively poorly understood. Here, I argue that the origin of species differences, and of novel phenotypes in general, involves the reorganization of ancestral phenotypes (developmental recombination) followed by the genetic accommodation of change. Because selection acts on phenotypes, not directly on genotypes or genes, novel traits can originate by environmental induction as well as mutation, then undergo selection and genetic accommodation fueled by standing genetic variation or by subsequent mutation and genetic recombination. Insofar as phenotypic novelties arise from adaptive developmental plasticity, they are not “random” variants, because their initial form reflects adaptive responses with an evolutionary history, even though they are initiated by mutations or novel environmental factors that are random with respect to (future) adaptation. Change in trait frequency involves genetic accommodation of the threshold or liability for expression of a novel trait, a process that follows rather than directs phenotypic change. Contrary to common belief, environmentally initiated novelties may have greater evolutionary potential than mutationally induced ones. Thus, genes are probably more often followers than leaders in evolutionary change. Species differences can originate before reproductive isolation and contribute to the process of speciation itself. Therefore, the genetics of speciation can profit from studies of changes in gene expression as well as changes in gene frequency and genetic isolation. PMID:15851679

  8. Monoterpene chemical speciation in a tropical rainforest:variation with season, height, and time of dayat the Amazon Tall Tower Observatory (ATTO)

    NASA Astrophysics Data System (ADS)

    María Yáñez-Serrano, Ana; Nölscher, Anke Christine; Bourtsoukidis, Efstratios; Gomes Alves, Eliane; Ganzeveld, Laurens; Bonn, Boris; Wolff, Stefan; Sa, Marta; Yamasoe, Marcia; Williams, Jonathan; Andreae, Meinrat O.; Kesselmeier, Jürgen

    2018-03-01

    Speciated monoterpene measurements in rainforest air are scarce, but they are essential for understanding the contribution of these compounds to the overall reactivity of volatile organic compound (VOC) emissions towards the main atmospheric oxidants, such as hydroxyl radicals (OH), ozone (O3) and nitrate radicals (NO3). In this study, we present the chemical speciation of gas-phase monoterpenes measured in the tropical rainforest at the Amazon Tall Tower Observatory (ATTO, Amazonas, Brazil). Samples of VOCs were collected by two automated sampling systems positioned on a tower at 12 and 24 m height and analysed using gas chromatography-flame ionization detection. The samples were collected in October 2015, representing the dry season, and compared with previous wet and dry season studies at the site. In addition, vertical profile measurements (at 12 and 24 m) of total monoterpene mixing ratios were made using proton-transfer-reaction mass spectrometry. The results showed a distinctly different chemical speciation between day and night. For instance, α-pinene was more abundant during the day, whereas limonene was more abundant at night. Reactivity calculations showed that higher abundance does not generally imply higher reactivity. Furthermore, inter- and intra-annual results demonstrate similar chemodiversity during the dry seasons analysed. Simulations with a canopy exchange modelling system show simulated monoterpene mixing ratios that compare relatively well with the observed mixing ratios but also indicate the necessity of more experiments to enhance our understanding of in-canopy sinks of these compounds.

  9. Silver speciation and release in commercial antimicrobial textiles as influenced by washing.

    PubMed

    Lombi, Enzo; Donner, Erica; Scheckel, Kirk G; Sekine, Ryo; Lorenz, Christiane; Von Goetz, Natalie; Nowack, Bernd

    2014-09-01

    The use of nanoscale Ag in textiles is one the most often mentioned uses of nano-Ag. It has previously been shown that significant amounts of the Ag in the textiles are released upon washing. However, the form of Ag present in the textiles remains largely unknown as product labelling is insufficient. The aim of this study was therefore to investigate the solid phase speciation of Ag in original and washed silver textiles using XANES. The original Ag speciation in the textiles was found to vary greatly between different materials with Ag(0), AgCl, Ag2S, Ag-phosphate, ionic Ag and other species identified. Furthermore, within the same textile a number of different species were found to coexist. This is likely due to a combination of factors such as the synthesis processes at industrial scale and the possible reaction of Ag with atmospheric gases. Washing with two different detergents resulted in marked changes in Ag-speciation. For some textiles the two detergents induced similar transformation, in other textiles they resulted in very different Ag species. This study demonstrates that in functional Ag textiles a variety of different Ag species coexist before and after washing. These results have important implications for the risk assessment of Ag textiles because they show that the metallic Ag is only one of the many silver species that need to be considered. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Speciation and leaching of trace metal contaminants from e-waste contaminated soils.

    PubMed

    Cui, Jin-Li; Luo, Chun-Ling; Tang, Chloe Wing-Yee; Chan, Ting-Shan; Li, Xiang-Dong

    2017-05-05

    Primitive electrical and electronic waste (e-waste) recycling activities have caused serious environmental problems. However, little is known about the speciation and leaching behaviors of metal contaminants at e-waste contaminated sites. This study investigated trace metal speciation/mobilization from e-waste polluted soil through column leaching experiments involving irrigation with rainwater for almost 2.5 years. Over the experimental period, Cu and Zn levels in the porewater were 0.14±0.08mg/L, and 0.16±0.08mg/L, respectively, increasing to 0.33±0.16mg/L, and 0.69±0.28mg/L with plant growth. The amounts of Cu, Zn, and Pb released in surface soil (0-2cm) contributed 43.8%, 22.5%, and 13.8%, respectively, to the original levels. The released Cu and Zn were primarily caused by the mobilization of the carbonate species of metals, including Cu(OH) 2 , CuCO 3 , and Zn 5 (CO 3 ) 2 (OH) 6 , and amorphous Fe/Mn oxides associated fractions characterized by sequential extraction coupling with X-ray absorption spectroscopy. During the experiments, trace metals were not detected in the effluent, and the re-sequestration of trace metals was mainly attributed to the adsorption on the abundant Fe/Mn oxides in the sub-layer soil. This study quantitatively elucidated the molecular speciation of Cu and Zn in e-waste contaminated soil during the column leaching process. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Soil-solution speciation of Cd as affected by soil characteristics in unpolluted and polluted soils.

    PubMed

    Meers, Erik; Unamuno, Virginia; Vandegehuchte, Michiel; Vanbroekhoven, Karolien; Geebelen, Wouter; Samson, Roeland; Vangronsveld, Jaco; Diels, Ludo; Ruttens, Ann; Du Laing, Gijs; Tack, Filip

    2005-03-01

    Total metal content by itself is insufficient as a measure to indicate actual environmental risk. Understanding the mobility of heavy metals in the soil and their speciation in the soil solution is of great importance for accurately assessing environmental risks posed by these metals. In a first explorative study, the effects of general soil characteristics on Cd mobility were evaluated and expressed in the form of empirical formulations. The most important factors influencing mobility of Cd proved to be pH and total soil content. This may indicate that current legislation expressing the requirement for soil sanitation in Flanders (Belgium) as a function of total soil content, organic matter, and clay does not successfully reflect actual risks. Current legal frameworks focusing on total content, therefore, should be amended with criteria that are indicative of metal mobility and availability and are based on physicochemical soil properties. In addition, soil-solution speciation was performed using two independent software packages (Visual Minteq 2.23 and Windermere Humic Aqueous model VI [WHAM VI]). Both programs largely were in agreement in concern to Cd speciation in all 29 soils under study. Depending on soil type, free ion and the organically complexed forms were the most abundant species. Additional inorganic soluble species were sulfates and chlorides. Minor species in solution were in the form of nitrates, hydroxides, and carbonates, the relative importance of which was deemed insignificant in comparison to the four major species.

  12. Selective determination of heavy metals (Cd, Pb, Cr) speciation forms from hortic anthrosols

    NASA Astrophysics Data System (ADS)

    Bulgariu, Dumitru; Bulgariu, Laura; Filipov, Feodor; Astefanei, Dan; Stoleru, Vasile

    2010-05-01

    In soils from glass houses, the speciation and inter-phases distribution processes of heavy metals have a particular dynamic, different in comparison with those from non-protected soils. The predominant distribution forms of heavy metals in such soils types are: complexes with low mass organic molecules, organic-mineral complexes, complexes with inorganic ligands (hydroxide-complexes, carbonate-complexes, sulphate-complexes, etc.) and basic salts. All of these have high stabilities in conditions of soils from glass houses, and in consequence, the separation and determination of speciation forms (which is directly connected with biodisponibility of heavy metals) by usual methods id very difficult and has a high uncertain degree. In this study is presented an original method for the selective separation and differentiation of speciation forms of heavy metals from glass houses soils, which is based by the combination of solid-liquid sequential extraction (SPE) with the extraction in aqueous polymer-inorganic salt two-phase systems (ABS). The soil samples used for this study have been sampled from three different locations (glass houses from Iasi, Barlad and Bacau - Romania) where the vegetables cultivation have been performed by three different technologies. In this way was estimated the applicability and the analytical limits of method proposed by as, in function of the chemical-mineralogical and physical-chemical characteristics of soils. As heavy metals have been studied cadmium, lead and chromium, all being known for their high toxicity. The procedure used for the selective separation and differentiation of speciation forms of heavy metals from glass houses soils has two main steps: (i) non-destructive separation of chemical-mineralogical associations and aggregates from soils samples - for this the separation method with heavy liquids (bromophorme) and isodynamic magnetic method have been used; (ii) sequential extraction of heavy metals from soil fractions separated in the first step, by using combined SPE-ABS procedure. For the preparation of combined extraction systems was used polyethylene glycol (with different molecular mass: 2000, 4000 and 8000). As phase-forming inorganic salts and as selective extracting agents we have used different usual inorganic reagents. The type and concentration of phase-forming salts have been selected in function of, both nature of extracted heavy metals and chemical-mineralogical characteristics of soil samples. The experimental parameters investigated in this study are: molecular mass of polyethylene glycol and the concentration of polymeric solutions, nature and concentration of phase-forming salts, nature and concentration of extracting agents, pH in extraction system phase, type of extracted heavy metals, type of speciation forms of heavy metals and their concentrations. All these factors can influence significantly the efficiency and the selectivity of separation process. The experimental results have indicate that the combined SPE-ABS extraction systems have better separation efficiency, in comparison with traditional SPE systems and ca realized a accurate discrimination between speciation forms of heavy metals from soils. Under these conditions, the estimation of inter-phases distribution and biodisponibility of heavy metals has a high precision. On the other hand, when the combined SPE-ABS systems are used, the concomitant extraction of the elements from the same geochemical association with studied heavy metals (inevitable phenomena in case of separation by SPE procedures) is significant diminished. This increases the separation selectivity and facilitated the more accurate determination of speciation forms concentration. By adequate selection of extraction conditions can be realized the selective separation of organic-mineral complexes, which will permit to perform detailed studies about the structure and chemical composition of these. Acknowledgments The authors would like to acknowledge the financial support from Romanian Ministry of Education and Research (Project PNCDI 2-D5 no. 51045/07 and project PNCDI 2 - D5 no. 52-141 / 2008).

  13. Sexual imprinting on ecologically divergent traits leads to sexual isolation in sticklebacks

    PubMed Central

    Kozak, Genevieve M.; Head, Megan L.; Boughman, Janette W.

    2011-01-01

    During sexual imprinting, offspring learn parental phenotypes and then select mates who are similar to their parents. Imprinting has been thought to contribute to the process of speciation in only a few rare cases; this is despite imprinting's potential to generate assortative mating and solve the problem of recombination in ecological speciation. If offspring imprint on parental traits under divergent selection, these traits will then be involved in both adaptation and mate preference. Such ‘magic traits’ easily generate sexual isolation and facilitate speciation. In this study, we show that imprinting occurs in two ecologically divergent stickleback species (benthics and limnetics: Gasterosteus spp.). Cross-fostered females preferred mates of their foster father's species. Furthermore, imprinting is essential for sexual isolation between species; isolation was reduced when females were raised without fathers. Daughters imprinted on father odour and colour during a critical period early in development. These traits have diverged between the species owing to differences in ecology. Therefore, we provide the first evidence that imprinting links ecological adaptation to sexual isolation between species. Our results suggest that imprinting may facilitate the evolution of sexual isolation during ecological speciation, may be especially important in cases of rapid diversification, and thus play an integral role in the generation of biodiversity. PMID:21270044

  14. Sexual imprinting on ecologically divergent traits leads to sexual isolation in sticklebacks.

    PubMed

    Kozak, Genevieve M; Head, Megan L; Boughman, Janette W

    2011-09-07

    During sexual imprinting, offspring learn parental phenotypes and then select mates who are similar to their parents. Imprinting has been thought to contribute to the process of speciation in only a few rare cases; this is despite imprinting's potential to generate assortative mating and solve the problem of recombination in ecological speciation. If offspring imprint on parental traits under divergent selection, these traits will then be involved in both adaptation and mate preference. Such 'magic traits' easily generate sexual isolation and facilitate speciation. In this study, we show that imprinting occurs in two ecologically divergent stickleback species (benthics and limnetics: Gasterosteus spp.). Cross-fostered females preferred mates of their foster father's species. Furthermore, imprinting is essential for sexual isolation between species; isolation was reduced when females were raised without fathers. Daughters imprinted on father odour and colour during a critical period early in development. These traits have diverged between the species owing to differences in ecology. Therefore, we provide the first evidence that imprinting links ecological adaptation to sexual isolation between species. Our results suggest that imprinting may facilitate the evolution of sexual isolation during ecological speciation, may be especially important in cases of rapid diversification, and thus play an integral role in the generation of biodiversity.

  15. Chemical speciation and bioavailability of rare earth elements (REEs) in the ecosystem: a review.

    PubMed

    Khan, Aysha Masood; Bakar, Nor Kartini Abu; Bakar, Ahmad Farid Abu; Ashraf, Muhammad Aqeel

    2017-10-01

    Rare earths (RE), chemically uniform group of elements due to similar physicochemical behavior, are termed as lanthanides. Natural occurrence depends on the geological circumstances and has been of long interest for geologist as tools for further scientific research into the region of ores, rocks, and oceanic water. The review paper mainly focuses to provide scientific literature about rare earth elements (REEs) with potential environmental and health effects in understanding the research. This is the initial review of RE speciation and bioavailability with current initiative toward development needs and research perceptive. In this paper, we have also discussed mineralogy, extraction, geochemistry, analytical methods of rare earth elements. In this study, REEs with their transformation and vertical distribution in different environments such as fresh and seawater, sediments, soil, weathering, transport, and solubility have been reported with most recent literature along key methods of findings. Speciation and bioavailability have been discussed in detail with special emphasis on soil, plant, and aquatic ecosystems and their impacts on the environment. This review shows that REE gained more importance in last few years due to their detrimental effects on living organisms, so their speciation, bioavailability, and composition are much more important to evaluate their health risks and are discussed thoroughly as well.

  16. Niche divergence builds the case for ecological speciation in skinks of the Plestiodon skiltonianus species complex

    USGS Publications Warehouse

    Wogan, Guinevere O.U.; Richmond, Jonathan Q.

    2015-01-01

    Adaptation to different thermal environments has the potential to cause evolutionary changes that are sufficient to drive ecological speciation. Here, we examine whether climate-based niche divergence in lizards of the Plestiodon skiltonianus species complex is consistent with the outcomes of such a process. Previous work on this group shows that a mechanical sexual barrier has evolved between species that differ mainly in body size and that the barrier may be a by-product of selection for increased body size in lineages that have invaded xeric environments; however, baseline information on niche divergence among members of the group is lacking. We quantified the climatic niche using mechanistic physiological and correlative niche models and then estimated niche differences among species using ordination techniques and tests of niche overlap and equivalency. Our results show that the thermal niches of size-divergent, reproductively isolated morphospecies are significantly differentiated and that precipitation may have been as important as temperature in causing increased shifts in body size in xeric habitats. While these findings alone do not demonstrate thermal adaptation or identify the cause of speciation, their integration with earlier genetic and behavioral studies provides a useful test of phenotype–environment associations that further support the case for ecological speciation in these lizards.

  17. Distribution patterns and possible influencing factors of As speciation in ornithogenic sediments from the Ross Sea region, East Antarctica.

    PubMed

    Lou, Chuangneng; Liu, Xiaodong; Liu, Wenqi; Wu, Libin; Nie, Yaguang; Emslie, Steven D

    2016-05-15

    Ornithogenic sediments are rich in toxic As (arsenic) compounds, posing a potential threat to local ecosystems. Here we analyzed the distribution of As speciation in three ornithogenic sediment profiles (MB6, BI and CC) collected from the Ross Sea region, East Antarctica. The distributions of total As and total P (phosphorus) concentrations were highly consistent in all three profiles, indicating that guano input is a major factor controlling total As distribution in the ornithogenic sediments. The As found in MB6 and CC is principally As(V) (arsenate), in BI As(III) (arsenite) predominates, but the As in fresh guano is largely composed of DMA (dimethylarsinate). The significant difference of As species between fresh guano and ornithogenic sediment samples may be related to diagenetic processes after deposition by seabirds. Based on analysis of the sedimentary environment in the studied sediments, we found that the redox conditions have an obvious influence on the As speciation distribution. Moreover, the distributions of As(III) and chlorophyll a in the MB6 and BI profiles are highly consistent, demonstrating that aquatic algae abundance may also influence the distribution patterns of As speciation in the ornithogenic sediments. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Population Genomics Reveals Speciation and Introgression between Brown Norway Rats and Their Sibling Species

    PubMed Central

    Teng, Huajing; Zhang, Yaohua; Shi, Chengmin; Mao, Fengbiao; Cai, Wanshi; Lu, Liang; Zhao, Fangqing; Sun, Zhongsheng; Zhang, Jianxu

    2017-01-01

    Abstract Murine rodents are excellent models for study of adaptive radiations and speciation. Brown Norway rats (Rattus norvegicus) are successful global colonizers and the contributions of their domesticated laboratory strains to biomedical research are well established. To identify nucleotide-based speciation timing of the rat and genomic information contributing to its colonization capabilities, we analyzed 51 whole-genome sequences of wild-derived Brown Norway rats and their sibling species, R. nitidus, and identified over 20 million genetic variants in the wild Brown Norway rats that were absent in the laboratory strains, which substantially expand the reservoir of rat genetic diversity. We showed that divergence of the rat and its siblings coincided with drastic climatic changes that occurred during the Middle Pleistocene. Further, we revealed that there was a geographically widespread influx of genes between Brown Norway rats and the sibling species following the divergence, resulting in numerous introgressed regions in the genomes of admixed Brown Norway rats. Intriguing, genes related to chemical communications among these introgressed regions appeared to contribute to the population-specific adaptations of the admixed Brown Norway rats. Our data reveals evolutionary history of the Brown Norway rat, and offers new insights into the role of climatic changes in speciation of animals and the effect of interspecies introgression on animal adaptation. PMID:28482038

  19. Presence in Mediterranean hotspots and floral symmetry affect speciation and extinction rates in Proteaceae.

    PubMed

    Reyes, Elisabeth; Morlon, Hélène; Sauquet, Hervé

    2015-07-01

    The Proteaceae is a large angiosperm family displaying the common pattern of uneven distribution of species among genera. Previous studies have shown that this disparity is a result of variation in diversification rates across lineages, but the reasons for this variation are still unclear. Here, we tested the impact of floral symmetry and occurrence in Mediterranean climate regions on speciation and extinction rates in the Proteaceae. A rate shift analysis was conducted on dated genus-level phylogenetic trees of the Proteaceae. Character-dependent analyses were used to test for differences in diversification rates between actinomorphic and zygomorphic lineages and between lineages located within or outside Mediterranean climate regions. The rate shift analysis identified 5-10 major diversification rate shifts in the Proteaceae tree. The character-dependent analyses showed that speciation rates, extinction rates and net diversification rates of the Proteaceae were significantly higher for lineages occurring in Mediterranean hotspots. Higher speciation and extinction rates were also detected for zygomorphic species, but net diversification rates appeared to be similar in actinomorphic and zygomorphic Proteaceae. Presence in Mediterranean hotspots favors Proteaceae diversification. In contrast with observations at the scale of angiosperms, floral symmetry is not a trait that strongly influences their evolutionary success. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  20. Moving Speciation Genetics Forward: Modern Techniques Build on Foundational Studies in Drosophila.

    PubMed

    Castillo, Dean M; Barbash, Daniel A

    2017-11-01

    The question of how new species evolve has been examined at every level, from macroevolutionary patterns of diversification to molecular population genetic analyses of specific genomic regions between species pairs. Drosophila has been at the center of many of these research efforts. Though our understanding of the speciation process has grown considerably over the past few decades, very few genes have been identified that contribute to barriers to reproduction. The development of advanced molecular genetic and genomic methods provides promising avenues for the rapid discovery of more genes that contribute to speciation, particularly those involving prezygotic isolation. The continued expansion of tools and resources, especially for species other than Drosophila melanogaster , will be most effective when coupled with comparative approaches that reveal the genetic basis of reproductive isolation across a range of divergence times. Future research programs in Drosophila have high potential to answer long-standing questions in speciation. These include identifying the selective forces that contribute to divergence between populations and the genetic basis of traits that cause reproductive isolation. The latter can be expanded upon to understand how the genetic basis of reproductive isolation changes over time and whether certain pathways and genes are more commonly involved. Copyright © 2017 by the Genetics Society of America.

  1. The evolution of recombination rates in finite populations during ecological speciation.

    PubMed

    Reeve, James; Ortiz-Barrientos, Daniel; Engelstädter, Jan

    2016-10-26

    Recombination can impede ecological speciation with gene flow by mixing locally adapted genotypes with maladapted migrant genotypes from a divergent population. In such a scenario, suppression of recombination can be selectively favoured. However, in finite populations evolving under the influence of random genetic drift, recombination can also facilitate adaptation by reducing Hill-Robertson interference between loci under selection. In this case, increased recombination rates can be favoured. Although these two major effects on recombination have been studied individually, their joint effect on ecological speciation with gene flow remains unexplored. Using a mathematical model, we investigated the evolution of recombination rates in two finite populations that exchange migrants while adapting to contrasting environments. Our results indicate a two-step dynamic where increased recombination is first favoured (in response to the Hill-Robertson effect), and then disfavoured, as the cost of recombining locally with maladapted migrant genotypes increases over time (the maladaptive gene flow effect). In larger populations, a stronger initial benefit for recombination was observed, whereas high migration rates intensify the long-term cost of recombination. These dynamics may have important implications for our understanding of the conditions that facilitate incipient speciation with gene flow and the evolution of recombination in finite populations. © 2016 The Author(s).

  2. Metal Speciation in Landfill Leachates with a Focus on the Influence of Organic Matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    F Claret; C Tournassat; C Crouzet

    This study characterizes the heavy-metal content in leachates collected from eight landfills in France. In order to identify heavy metal occurrence in the different size fractions of leachates, a cascade filtration protocol was applied directly in the field, under a nitrogen gas atmosphere to avoid metal oxidation. The results of analyses performed on the leachates suggest that most of the metals are concentrated in the <30 kDa fraction, while lead, copper and cadmium show an association with larger particles. Initial speciation calculations, without considering metal association with organic matter, suggest that leachate concentrations in lead, copper, nickel and zinc aremore » super-saturated with respect to sulphur phases. Speciation calculations that account for metal complexation with organic matter, considered as fulvic acids based on C1(s) NEXAFS spectroscopy, show that this mechanism is not sufficient to explain such deviation from equilibrium conditions. It is therefore hypothesized that the deviation results also from the influence of biological activity on the kinetics of mineral phase precipitation and dissolution, thus providing a dynamic system. The results of chemical analyses of sampled fluids are compared with speciation calculations and some implications for the assessment of metal mobility and natural attenuation in a context of landfill risk assessment are discussed.« less

  3. Comparison of Solid-Water Partitions of Radiocesium in River Waters in Fukushima and Chernobyl Areas.

    PubMed

    Takahashi, Yoshio; Fan, Qiaohui; Suga, Hiroki; Tanaka, Kazuya; Sakaguchi, Aya; Takeichi, Yasuo; Ono, Kanta; Mase, Kazuhiko; Kato, Kenji; Kanivets, Vladimir V

    2017-09-29

    Adsorption of radiocesium (RCs) on particulate matters in aquatic environment is important to understand its mobility and bioavailability. We here focused on factors controlling partition of RCs on particulate matters and sediments in Kuchibuto (Fukushima) and Pripyat (Chernobyl) Rivers, though RCs level in water was much smaller than WHO guideline. Moreover, Cs speciation and organic matter-clay mineral interaction were studied: (i) extended X-ray absorption fine structure showed that the contribution of outer-sphere complex of Cs on particulate matters is larger in Chernobyl than in Fukushima and (ii) scanning transmission X-ray microscope revealed larger association of humic substances and clay minerals in Chernobyl partly due to high [Ca 2+ ] in the Pripyat River. Consequently, RCs is more soluble in the Pripyat River due to weaker interaction of RCs with clay minerals caused by the inhibition effect of the adsorbed humic substances. In contrast, particulate matters and sediments in the Kuchibuto River display high adsorption affinity with lesser inhibition effect of adsorbed humic substances. This difference is possibly governed by the geology and soil type of provenances surrounding both catchments (Fukushima: weathered granite; Chernobyl: peat wetland and carbonate platform) which leads to high concentrations of organic matter and Ca 2+ in the Pripyat River.

  4. From Gene Trees to a Dated Allopolyploid Network: Insights from the Angiosperm Genus Viola (Violaceae)

    PubMed Central

    Marcussen, Thomas; Heier, Lise; Brysting, Anne K.; Oxelman, Bengt; Jakobsen, Kjetill S.

    2015-01-01

    Allopolyploidization accounts for a significant fraction of speciation events in many eukaryotic lineages. However, existing phylogenetic and dating methods require tree-like topologies and are unable to handle the network-like phylogenetic relationships of lineages containing allopolyploids. No explicit framework has so far been established for evaluating competing network topologies, and few attempts have been made to date phylogenetic networks. We used a four-step approach to generate a dated polyploid species network for the cosmopolitan angiosperm genus Viola L. (Violaceae Batch.). The genus contains ca 600 species and both recent (neo-) and more ancient (meso-) polyploid lineages distributed over 16 sections. First, we obtained DNA sequences of three low-copy nuclear genes and one chloroplast region, from 42 species representing all 16 sections. Second, we obtained fossil-calibrated chronograms for each nuclear gene marker. Third, we determined the most parsimonious multilabeled genome tree and its corresponding network, resolved at the section (not the species) level. Reconstructing the “correct” network for a set of polyploids depends on recovering all homoeologs, i.e., all subgenomes, in these polyploids. Assuming the presence of Viola subgenome lineages that were not detected by the nuclear gene phylogenies (“ghost subgenome lineages”) significantly reduced the number of inferred polyploidization events. We identified the most parsimonious network topology from a set of five competing scenarios differing in the interpretation of homoeolog extinctions and lineage sorting, based on (i) fewest possible ghost subgenome lineages, (ii) fewest possible polyploidization events, and (iii) least possible deviation from expected ploidy as inferred from available chromosome counts of the involved polyploid taxa. Finally, we estimated the homoploid and polyploid speciation times of the most parsimonious network. Homoploid speciation times were estimated by coalescent analysis of gene tree node ages. Polyploid speciation times were estimated by comparing branch lengths and speciation rates of lineages with and without ploidy shifts. Our analyses recognize Viola as an old genus (crown age 31 Ma) whose evolutionary history has been profoundly affected by allopolyploidy. Between 16 and 21 allopolyploidizations are necessary to explain the diversification of the 16 major lineages (sections) of Viola, suggesting that allopolyploidy has accounted for a high percentage—between 67% and 88%—of the speciation events at this level. The theoretical and methodological approaches presented here for (i) constructing networks and (ii) dating speciation events within a network, have general applicability for phylogenetic studies of groups where allopolyploidization has occurred. They make explicit use of a hitherto underexplored source of ploidy information from chromosome counts to help resolve phylogenetic cases where incomplete sequence data hampers network inference. Importantly, the coalescent-based method used herein circumvents the assumption of tree-like evolution required by most techniques for dating speciation events. PMID:25281848

  5. Clustering and Phase Transitions on a Neutral Landscape

    NASA Astrophysics Data System (ADS)

    Scott, Adam; King, Dawn; Maric, Nevena; Bahar, Sonya

    2012-02-01

    The problem of speciation and species aggregation on a neutral landscape, subject to random mutational fluctuations rather than selective drive, has been a focus of research since the seminal work of Kimura on genetic drift. These ideas have received increased attention due to the more recent development of a neutral ecological theory by Hubbell. De Aguiar et al. recently demonstrated, in a computational model, that speciation can occur under neutral conditions; this study bears some comparison with more mathematical studies of clustering on neutral landscapes in the context of branching and annihilating random walks. Here, we show that clustering can occur on a neutral landscape where the dimensions specify the simulated organisms' phenotypes. Unlike the De Aguiar et al. model, we simulate sympatric speciation: the organisms cluster phenotypically, but are not spatially separated. Moreover, we find that clustering occurs not only in the case of assortative mating, but also in the case of asexual fission. Clustering is not observed in a control case where organisms can mate randomly. We find that the population size and the number of clusters undergo phase-transition-like behavior as the maximum mutation size is varied.

  6. Identification and dynamics of a cryptic suture zone in tropical rainforest

    PubMed Central

    Moritz, C.; Hoskin, C.J.; MacKenzie, J.B.; Phillips, B.L.; Tonione, M.; Silva, N.; VanDerWal, J.; Williams, S.E.; Graham, C.H.

    2009-01-01

    Suture zones, shared regions of secondary contact between long-isolated lineages, are natural laboratories for studying divergence and speciation. For tropical rainforest, the existence of suture zones and their significance for speciation has been controversial. Using comparative phylogeographic evidence, we locate a morphologically cryptic suture zone in the Australian Wet Tropics rainforest. Fourteen out of 18 contacts involve morphologically cryptic phylogeographic lineages, with mtDNA sequence divergences ranging from 2 to 15 per cent. Contact zones are significantly clustered in a suture zone located between two major Quaternary refugia. Within this area, there is a trend for secondary contacts to occur in regions with low environmental suitability relative to both adjacent refugia and, by inference, the parental lineages. The extent and form of reproductive isolation among interacting lineages varies across species, ranging from random admixture to speciation, in one case via reinforcement. Comparative phylogeographic studies, combined with environmental analysis at a fine-scale and across varying climates, can generate new insights into suture zone formation and to diversification processes in species-rich tropical rainforests. As arenas for evolutionary experimentation, suture zones merit special attention for conservation. PMID:19203915

  7. Considerations in As analysis and speciation

    USGS Publications Warehouse

    Edwards, M.; Patel, S.; McNeil, L.; Chen, H.W.; Frey, M.; Eaton, A.D.; Antweiler, Ronald C.; Taylor, Howard E.

    1998-01-01

    This article summarizes recent experiences in arsenic (As) quantification, preservation, and speciation developed during AWWA Research Foundation (AWWARF) and Water Industry Technical Action Fund (WITAF) projects. The goal of this article is to alert analysts and decision-makers to potential problems in As analysis and speciation, because there appear to be several unresolved problems with routine analytical approaches. In true split drinking water samples As was quantified by three accepted analytical methods in three laboratories. The techniques used were graphite furnace atomic absorption spectrometry (GFAAS), inductively coupled plasma mass spectrometry (ICP-MS), and hydride generation inductively coupled plasma-emission spectrometry (HG-ICP-AES). Experimental findings are organized into sections on As analysis, particulate As in water supplies, and examination of As speciation methods.

  8. Biology and toxicology of tellurium explored by speciation analysis.

    PubMed

    Ogra, Yasumitsu

    2017-05-24

    Tellurium (Te) is widely used in industry because it has unique physicochemical properties. Although Te is a non-essential element in animals and plants, it is expected to be metabolized to organometallic compounds having a carbon-Te bond in living organisms exposed to inorganic Te compounds. Thus, the speciation and identification of tellurometabolites are expected to contribute to the depiction of the metabolic chart of Te. Speciation by elemental mass spectrometry and identification by molecular mass spectrometry coupled with separation techniques have significantly contributed to the discovery of tellurometabolites in animals and plants. The aim of this mini review is to present recent advances in the biology and toxicology of tellurium as revealed by speciation and identification by molecular mass spectrometry.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nedrich, Sara M.; Chappaz, Anthony; Hudson, Michelle L.

    Effects of hydrologic variability on reservoir biogeochemistry are relatively unknown, particularly for less studied metals like vanadium (V). Further, few studies have investigated the fate and effects of sediment-associated V to aquatic organisms in hydrologically variable systems. Our primary objective was to assess effects of hydrologic manipulation on speciation and toxicity of V (range: 635 to 1620 mg kg- 1) and other metals to Hyalella azteca and Daphnia magna. Sediments were collected from a reservoir located in a former mining area and microcosm experiments were conducted to emulate 7-day drying and inundation periods. Despite high sediment concentrations, V bioavailability remainedmore » low with no significant effects to organism survival, growth, or reproduction. The lack of V toxicity was attributed to reduced speciation (III, IV), non-labile complexation, and sorption to Al/Fe/Mn-oxyhydroxides. Zinc (Zn) increased in surface and porewater with inundation, for some sediments exceeding the U.S. EPA threshold for chronic toxicity. While no effects of Zn to organism survival or growth were observed, Zn body concentrations were negatively correlated with H. azteca growth. Results from this study indicate that V bioavailability and environmental risk is dependent on V-speciation, and V is less influenced by hydrologic variability than more labile metals such as Zn.« less

  10. Research on chromium and arsenic speciation in atmospheric particulate matter: short review

    NASA Astrophysics Data System (ADS)

    Nocoń, Katarzyna; Rogula-Kozłowska, Wioletta; Widziewicz, Kamila

    2018-01-01

    Atmospheric particulate matter (PM) plays an important role in the distribution of elements in the environment. The PM-bound elements penetrates into the other elements of the environment, in two basic forms - those dissolved in the atmospheric precipitation and those permanently bound to PM particles. Those forms differs greatly in their mobility, thus posing a potential threat to living organisms. They can also be an immediate threat, while being inhaled. Chromium (Cr) and arsenic (As) belong to the group of elements whose certain chemical states exhibit toxic properties, that is Cr(VI) and As(III). Thus, recognition of the actual threat posed by Cr and As in the environment, including those present in PM, is possible only through the in depth speciation analysis. Research on the Cr and As speciation in PM, more than the analogous studies of their presence in other compartments of the environment, have been undertaken quite rarely. Hence the knowledge on the speciation of PM-bound As and Cr is still limited. The state of knowledge in the field of PM-bound Cr and As is presented in the paper. The issues related to the characterization and occurrence of Cr and As species in PM, the share of Cr and As species mass in different PM size fractions, and in PM of different origin is also summarized. The analytical techniques used in the speciation analysis of PM-bound Cr and As are also discussed. In the existing literature there is no data on the physical characteristics of Cr and As (bound to a different PM size fractions), and thus it still lack of data needed for a comprehensive assessment of the actual environmental and health threat posed by airborne Cr and As.

  11. Microbial-driven arsenic cycling in rice paddies amended with monosodium methanearsonate

    NASA Astrophysics Data System (ADS)

    Maguffin, S. C.; McClung, A.; Rohila, J. S.; Derry, L. A.; Huang, R.; Reid, M. C.

    2017-12-01

    Rice consumption is the second largest contributor to human arsenic exposure worldwide and is linked to many serious diseases. Because rice is uniquely adapted for agricultural production under flooded soils, arsenic species solubilized in such environments can be effectively transported into plant tissue via root transporters. Through this process, both inorganic and organic (methylated) arsenic species can accumulate to problematic concentrations and may affect grain yield as well as crop value. The distribution of these species in plant tissue is determined by arsenic sources, as well as enzymatic redox and methylation-demethylation reactions in soils and pore water. Historic use of organoarsenic-based pesticides in US agriculture may provide an enduring source of arsenic in rice paddies. However, it is unclear how persistent these organic species are in the adsorbed phase or how available they remain to rice cultivars throughout the growing season. We conducted a field experiment in a 2x2 factorial design examining the effects of irrigation methods (continuous flooding and alternate wetting and drying) and monosodium methanearsonate (MSMA) application on the abundance and speciation of arsenic in pore water, soil, and rice plant tissues. We monitored arsenic speciation and partitioning between these reservoirs at semi-weekly to semi-monthly frequencies. Pore water arsenic speciation was determined using LC-ICP-MS, and X-ray absorption near-edge structure (XANES) analysis was employed to speciate the arsenic within solid-phase soil and plant tissue throughout the growing season. These data help clarify the role of two irrigation methods and MSMA amendments for arsenic bioavailability and speciation in rice. Furthermore, the study illuminates the significance of microbial metabolism in the reapportionment of arsenic within the soil-plant-water system and its impact on arsenic levels in rice grains.

  12. Factors driving adaptive radiation in plants of oceanic islands: a case study from the Juan Fernández Archipelago.

    PubMed

    Takayama, Koji; Crawford, Daniel J; López-Sepúlveda, Patricio; Greimler, Josef; Stuessy, Tod F

    2018-05-01

    Adaptive radiation is a common evolutionary phenomenon in oceanic islands. From one successful immigrant population, dispersal into different island environments and directional selection can rapidly yield a series of morphologically distinct species, each adapted to its own particular environment. Not all island immigrants, however, follow this evolutionary pathway. Others successfully arrive and establish viable populations, but they remain in the same ecological zone and only slowly diverge over millions of years. This transformational speciation, or anagenesis, is also common in oceanic archipelagos. The critical question is why do some groups radiate adaptively and others not? The Juan Fernández Islands contain 105 endemic taxa of angiosperms, 49% of which have originated by adaptive radiation (cladogenesis) and 51% by anagenesis, hence providing an opportunity to examine characteristics of taxa that have undergone both types of speciation in the same general island environment. Life form, dispersal mode, and total number of species in progenitors (genera) of endemic angiosperms in the archipelago were investigated from literature sources and compared with modes of speciation (cladogenesis vs. anagenesis). It is suggested that immigrants tending to undergo adaptive radiation are herbaceous perennial herbs, with leaky self-incompatible breeding systems, good intra-island dispersal capabilities, and flexible structural and physiological systems. Perhaps more importantly, the progenitors of adaptively radiated groups in islands are those that have already been successful in adaptations to different environments in source areas, and which have also undergone eco-geographic speciation. Evolutionary success via adaptive radiation in oceanic islands, therefore, is less a novel feature of island lineages but rather a continuation of tendency for successful adaptive speciation in lineages of continental source regions.

  13. Arsenic speciation in biological samples using XAS and mixed oxidation state calibration standards of inorganic arsenic.

    PubMed

    Parsons, J G; Lopez, M L; Castillo-Michel, H; Peralta-Videa, J R; Gardea-Torresdey, J L

    2009-08-01

    The speciation of elements without pre-edge features preformed with X-ray absorption near edge structure (XANES) can lead to problems when the energy difference between two species is small. The speciation of arsenic (As) in plant samples was investigated using the mixtures As2S3/As2O5, As2S3/As2O3, or As2O3/As2O5. The data showed that the energy separation (eV) between As2O5 and As2S3 was 5.8, between As2O3 and As2O5 was 3.6, and between As2S3 and As2O3 was 2.1. From the intensity of the white-line feature and the concentration of As species, calibration curves showing a limit of detection of approximately 10% were generated. In addition, an error of +/-10% was determined for the linear combination-XANES (LC-XANES) fitting technique. The difference between the LC-XANES fittings and calculations from the calibration curves was <10%. The data also showed that the speciation of As in a sample can be determined using EXAFS (extended X-ray absorption fine structure). Finally, it was also shown that both EXAFS and XANES of the sample should be examined to determine the true speciation of an element. Even though there is a difference of 2 eV between As(III) bound to O and As(III) bound to S, in the EXAFS region the As(III)-S and As(III)-O ligands are clearly visible. However, distinction between the As(III)-O and As(V)-O ligands in the EXAFS spectra was not clearly visible in this study.

  14. Divergent Selection Drives Genetic Differentiation in an R2R3-MYB Transcription Factor That Contributes to Incipient Speciation in Mimulus aurantiacus

    PubMed Central

    Streisfeld, Matthew A.; Young, Wambui N.; Sobel, James M.

    2013-01-01

    Identifying the molecular genetic basis of traits contributing to speciation is of crucial importance for understanding the ecological and evolutionary mechanisms that generate biodiversity. Despite several examples describing putative “speciation genes,” it is often uncertain to what extent these genetic changes have contributed to gene flow reductions in nature. Therefore, considerable interest lies in characterizing the molecular basis of traits that actively confer reproductive isolation during the early stages of speciation, as these loci can be attributed directly to the process of divergence. In Southern California, two ecotypes of Mimulus aurantiacus are parapatric and differ primarily in flower color, with an anthocyanic, red-flowered morph in the west and an anthocyanin-lacking, yellow-flowered morph in the east. Evidence suggests that the genetic changes responsible for this shift in flower color have been essential for divergence and have become fixed in natural populations of each ecotype due to almost complete differences in pollinator preference. In this study, we demonstrate that a cis-regulatory mutation in an R2R3-MYB transcription factor results in differential regulation of enzymes in the anthocyanin biosynthetic pathway and is the major contributor to differences in floral pigmentation. In addition, molecular population genetic data show that, despite gene flow at neutral loci, divergent selection has driven the fixation of alternate alleles at this gene between ecotypes. Therefore, by identifying the genetic basis underlying ecologically based divergent selection in flower color between these ecotypes, we have revealed the ecological and functional mechanisms involved in the evolution of pre-mating isolation at the early stages of incipient speciation. PMID:23555295

  15. Modeling bromide effects on yields and speciation of dihaloacetonitriles formed in chlorinated drinking water.

    PubMed

    Roccaro, Paolo; Chang, Hyun-shik; Vagliasindi, Federico G A; Korshin, Gregory V

    2013-10-15

    This study examined effects of bromide on yields and speciation of dihaloacetonitrile (DHAN) species that included dichloro-, bromochloro- and dibromoacetonitriles generated in chlorinated water. Experimental data obtained using two water sources, varying concentrations and characters of Natural Organic Matter (NOM), bromide concentrations, reaction times, chlorine doses, temperatures and pHs were interpreted using a semi-phenomenological model that assumed the presence of three kinetically distinct sites in NOM (denoted as sites S1, S2 and S3) and the occurrence of sequential incorporation of bromine and chlorine into them. One site was found to react very fast with the chlorine and bromine but its contribution in the DHAN generation was very low. The site with the highest contribution to the yield of DHAN (>70%) has the lowest reaction rates. The model introduced dimensionless coefficients (denoted as φ1(DHAN), φ2(DHAN) and φ3(DHAN)) applicable to the initial DHAN generation sites and their monochlorinated and monobrominated products, respectively. These parameters were used to quantify the kinetic preference to bromine incorporation over that of chlorine. Values of these coefficients optimized for DHAN formation were indicative of the strongly preferential incorporation of bromine into the engaged NOM sites. The same set of φ(i)(DHAN) coefficients could be used to model the speciation of DHAN released from their kinetically different precursors. The dimensionless speciation coefficients φ(i)(DHAN) were determined to be site specific and dependent on the NOM content and character as well as pH. The presented model of DHAN formation and speciation can help quantify in more detail the generation of DHAN and provide more insight necessary for further assessment of their potential health effects. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Ionic liquids improved reversed-phase HPLC on-line coupled with ICP-MS for selenium speciation.

    PubMed

    Chen, Beibei; He, Man; Mao, Xiangju; Cui, Ran; Pang, Daiwen; Hu, Bin

    2011-01-15

    Room-temperature ionic liquids (RTILs) improved reversed-phase high performance liquid chromatography (RP-HPLC) on-line combined with inductively coupled plasma mass spectrometry (ICP-MS) was developed for selenium speciation. The different parameters affecting the retention behaviors of six target selenium species especially the effect of RTILs as mobile phase additives have been studied, it was found that the mobile phase consisting of 0.4% (v/v) 1-butyl-3-methylimidazolium chloride ([BMIM]Cl), 0.4% (v/v) 1-butyl-2,3-dimethylimidazolium tetrafluroborate ([BMMIM]BF(4)) and 99.2% (v/v) water has effectively improved the peak profile and six target selenium species including Na(2)SeO(3) (Se(IV)), Na(2)SeO(4) (Se(VI)), L-selenocystine (SeCys(2)), D,L-selenomethionine (SeMet), Se-methylseleno-l-cysteine (MeSeCys), seleno-D,L-ethionine (SeEt) were separated in 8 min. In order to validate the accuracy of the method, a Certified Reference Material of SELM-1 yeast sample was analyzed and the results obtained were in good agreement with the certified values. The developed method was also successfully applied to the speciation of selenium in Se-enriched yeasts and clover. For fresh Se-enriched yeast cells, it was found that the spiked SeCys(2) in living yeast cells could be transformed into SeMet. Compared with other ion-pair RP-HPLC-ICP-MS approaches for selenium speciation, the proposed method possessed the advantages including ability to regulate the retention time of the target selenium species by selecting the suitable RTILs and their concentration, simplicity, rapidness and low injection volume, thus providing wide potential applications for elemental speciation in biological systems. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Equilibrium Speciation of Select Lanthanides in the Presence of Acidic Ligands in Homo- and Heterogeneous Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Troy A

    2011-08-01

    This dissertation explores lanthanide speciation in liquid solution systems related to separation schemes involving the acidic ligands: bis(2-ethylhexyl) phosphoric acid (HDEHP), lactate, and 8-hydroxyquinoline. Equilibrium speciation of neodymium (Nd 3+), sodium (Na+), HDEHP, water, and lactate in the TALSPEAK liquid-liquid extraction system was explored under varied Nd 3+ loading of HDEHP in the organic phase and through extraction from aqueous HCl and lactate media. System speciation was probed through vapor pressure osmometry, visible and Fourier Transform Infrared (FTIR) spectroscopy, 22Na and 13C labeled lactate radiotracer distribution measurements, Karl Fischer titrations, and equilibrium pH measurements. Distribution of Nd 3+, Na +,more » lactate, and equilibrium pH were modeled using the SXLSQI software to obtain logKNd and logKNa extraction constants under selected conditions. Results showed that high Nd 3+ loading of the HDEHP led to Nd 3+ speciation that departs from the ion exchange mechanism and includes formation of highly aggregated, polynuclear [NdLactate(DEHP) 2] x; (with x > 1). By substituting lanthanum (La 3+) for Nd 3+ in this system, NMR scoping experiments using 23Na, 31P nuclei and 13C labeled lactate were performed. Results indicated that this technique is sensitive to changes in system speciation, and that further experiments are warranted. In a homogeneous system representing the TALSPEAK aqueous phase, Lactate protonation behavior at various temperatures was characterized using a combination of potentiometric titration and modeling with the Hyperquad computer program. The temperature dependent deprotonation behavior of lactate showed little change with temperature at 2.0 M NaCl ionic strength. Cloud point extraction is a non-traditional separation technique that starts with a homogeneous phase that becomes heterogeneous by the micellization of surfactants through the increase of temperature. To better understand the behavior of europium (Eu 3+) and 8-hydroxyquinoline under cloud point extraction conditions, potentiometric and spectrophotometric titrations coupled with modeling with Hyperquad and SQUAD computer programs were performed to assess europium (Eu 3+) and 8-hydroxyquinoline speciation. Experiments in both water and a 1wt% Triton X-114/water mixed solvent were compared to understand the effect of Triton X-114 on the system speciation. Results indicated that increased solvation of 8-hydroxyquinoline by the mixed solvent lead to more stable complexes involving 8-hydroxyquinoline than in water, whereas competition between hydroxide and Triton X-114 for Eu 3+ led to lower stability hydrolysis complexes in the mixed solvent than in water. Lanthanide speciation is challenging due to the trivalent oxidation state that leads to multiple ligand complexes, including some mixed complexes. The complexity of the system demands well-designed and precise experiments that capture the nuances of the chemistry. This work increased the understanding of lanthanide speciation in the explored systems, but more work is required to produce a comprehensive understanding of the speciation involved.« less

  18. The existence of species rests on a metastable equilibrium between inbreeding and outbreeding. An essay on the close relationship between speciation, inbreeding and recessive mutations

    PubMed Central

    2011-01-01

    Background Speciation corresponds to the progressive establishment of reproductive barriers between groups of individuals derived from an ancestral stock. Since Darwin did not believe that reproductive barriers could be selected for, he proposed that most events of speciation would occur through a process of separation and divergence, and this point of view is still shared by most evolutionary biologists today. Results I do, however, contend that, if so much speciation occurs, the most likely explanation is that there must be conditions where reproductive barriers can be directly selected for. In other words, situations where it is advantageous for individuals to reproduce preferentially within a small group and reduce their breeding with the rest of the ancestral population. This leads me to propose a model whereby new species arise not by populations splitting into separate branches, but by small inbreeding groups "budding" from an ancestral stock. This would be driven by several advantages of inbreeding, and mainly by advantageous recessive phenotypes, which could only be retained in the context of inbreeding. Reproductive barriers would thus not arise as secondary consequences of divergent evolution in populations isolated from one another, but under the direct selective pressure of ancestral stocks. Many documented cases of speciation in natural populations appear to fit the model proposed, with more speciation occurring in populations with high inbreeding coefficients, and many recessive characters identified as central to the phenomenon of speciation, with these recessive mutations expected to be surrounded by patterns of limited genomic diversity. Conclusions Whilst adaptive evolution would correspond to gains of function that would, most of the time, be dominant, this type of speciation by budding would thus be driven by mutations resulting in the advantageous loss of certain functions since recessive mutations very often correspond to the inactivation of a gene. A very important further advantage of inbreeding is that it reduces the accumulation of recessive mutations in genomes. A consequence of the model proposed is that the existence of species would correspond to a metastable equilibrium between inbreeding and outbreeding, with excessive inbreeding promoting speciation, and excessive outbreeding resulting in irreversible accumulation of recessive mutations that could ultimately only lead to extinction. Reviewer names Eugene V. Koonin, Patrick Nosil (nominated by Dr Jerzy Jurka), Pierre Pontarotti PMID:22152499

  19. Allochronic speciation, secondary contact, and reproductive character displacement in periodical cicadas (Hemiptera: Magicicada spp.): genetic, morphological, and behavioural evidence.

    PubMed

    Cooley, J R; Simon, C; Marshall, D C; Slon, K; Ehrhardt, C

    2001-03-01

    Periodical cicadas have proven useful in testing a variety of ecological and evolutionary hypotheses because of their unusual life history, extraordinary abundance, and wide geographical range. Periodical cicadas provide the best examples of synchronous periodicity and predator satiation in the animal kingdom, and are excellent illustrations of habitat partitioning (by the three morphologically distinct species groups), incipient species (the year classes or broods), and cryptic species (a newly discovered 13-year species, Magicicada neotredecim). They are particularly useful for exploring questions regarding speciation via temporal isolation, or allochronic speciation. Recently, data were presented that provided strong support for an instance of allochronic speciation by life-cycle switching. This speciation event resulted in the formation of a new 13-year species from a 17-year species and led to secondary contact between two formerly separated lineages, one represented by the new 13-year cicadas (and their 17-year ancestors), and the other represented by the pre-existing 13-year cicadas. Allozyme frequency data, mitochondrial DNA (mtDNA), and abdominal colour were shown to be correlated genetic markers supporting the life-cycle switching/allochronic speciation hypothesis. In addition, a striking pattern of reproductive character displacement in male call pitch and female pitch preference between the two 13-year species was discovered. In this paper we report a strong association between calling song pitch and mtDNA haplotype for 101 individuals from a single locality within the M. tredecim/M. neotredecim contact zone and a strong association between abdomen colour and mtDNA haplotype. We conclude by reviewing proposed mechanisms for allochronic speciation and reproductive character displacement.

  20. Sample preparation and storage can change arsenic speciation in human urine.

    PubMed

    Feldmann, J; Lai, V W; Cullen, W R; Ma, M; Lu, X; Le, X C

    1999-11-01

    Stability of chemical speciation during sample handling and storage is a prerequisite to obtaining reliable results of trace element speciation analysis. There is no comprehensive information on the stability of common arsenic species, such as inorganic arsenite [As(III)], arsenate [As(V)], monomethylarsonic acid, dimethylarsinic acid, and arsenobetaine, in human urine. We compared the effects of the following storage conditions on the stability of these arsenic species: temperature (25, 4, and -20 degrees C), storage time (1, 2, 4, and 8 months), and the use of additives (HCl, sodium azide, benzoic acid, benzyltrimethylammonium chloride, and cetylpyridinium chloride). HPLC with both inductively coupled plasma mass spectrometry and hydride generation atomic fluorescence detection techniques were used for the speciation of arsenic. We found that all five of the arsenic species were stable for up to 2 months when urine samples were stored at 4 and -20 degrees C without any additives. For longer period of storage (4 and 8 months), the stability of arsenic species was dependent on urine matrices. Whereas the arsenic speciation in some urine samples was stable for the entire 8 months at both 4 and -20 degrees C, other urine samples stored under identical conditions showed substantial changes in the concentration of As(III), As(V), monomethylarsonic acid, and dimethylarsinic acid. The use of additives did not improve the stability of arsenic speciation in urine. The addition of 0.1 mol/L HCl (final concentration) to urine samples produced relative changes in inorganic As(III) and As(V) concentrations. Low temperature (4 and -20 degrees C) conditions are suitable for the storage of urine samples for up to 2 months. Untreated samples maintain their concentration of arsenic species, and additives have no particular benefit. Strong acidification is not appropriate for speciation analysis.

  1. Speciation distribution and mass balance of copper and zinc in urban rain, sediments, and road runoff.

    PubMed

    Zuo, Xiaojun; Fu, Dafang; Li, He

    2012-11-01

    Heavy metal pollution in road runoff had caused widespread concern since the last century. However, there are little references on metal speciation in multiple environmental media (e.g., rain, road sediments, and road runoff). Our research targeted the investigation of metal speciation in rain, road sediments, and runoff; the analysis of speciation variation and mass balance of metals among rain, road sediments, and runoff; the selection of main factors by principal component analysis (PCA); and the establishment of equation to evaluate the impact of rain and road sediments to metals in road runoff. Sequential extraction procedure contains five steps for the chemical fractionation of metals. Flame atomic absorption spectrometry (Shimadzu, AA-6800) was used to determine metal speciation concentration, as well as the total and dissolved fractions. The dissolved fractions for both Cu and Zn were dominant in rain. The speciation distribution of Zn was different from that of Cu in road sediments, while speciation distribution of Zn is similar to that of Cu in runoff. The bound to carbonates for both Cu and Zn in road sediments were prone to be dissolved by rain. The levels of Cu and Zn in runoff were not obviously influenced by rain, but significantly influenced by road sediments. The masses for both Cu and Zn among rain, road sediments, and road runoff approximately meet the mass balance equation for all rainfall patterns. Five principal factors were selected for metal regression equation based on PCA, including rainfall, average rainfall intensity, antecedent dry periods, total suspended particles, and temperature. The established regression equations could be used to predict the effect of road runoff on receiving environments.

  2. Speciation of Reactive Sulfur Species and their Reactions with Alkylating Agents: Do we have any clue about what is present inside the cell?

    PubMed

    Bogdándi, Virág; Ida, Tomoaki; Sutton, Thomas R; Bianco, Christopher; Ditrói, Tamás; Koster, Grielof; Henthorn, Hillary A; Minnion, Magda; Toscano, John P; van der Vliet, Albert; Pluth, Michael D; Feelisch, Martin; Fukuto, Jon M; Akaike, Takaaki; Nagy, Péter

    2018-06-17

    Posttranslational modifications of cysteine (Cys) residues represent a major aspect of redox biology, and their reliable detection is key in providing mechanistic insights. The metastable character of these modifications and cell lysis-induced artifactual oxidation render current state-of-the-art protocols to rely on alkylation-based stabilization of labile Cys derivatives before cell/tissue rupture. An untested assumption in these procedures is that for all Cys derivatives alkylation rates are faster than their dynamic interchange. However, when the interconversion of Cys derivatives is not rate-limiting, then electrophilic labeling is under Curtin-Hammett control and hence the final alkylated mixture may not represent the speciation that prevailed before alkylation. We here present evidence that in the majority of cases, the speciation of alkylated polysulfide/thiol derivatives indeed depends on the experimental conditions. Our results reveal that alkylation perturbs sulfur speciation in both a concentration- and time-dependent manner, and that strong alkylating agents can cleave polysulfur chains. Moreover, we show that labeling of sulfenic acids with dimedone also affects Cys speciation, suggesting that part of the endogenous pool of products previously believed to represent sulfenic acid species may in fact represent polysulfides. These observations were obtained using buffered aqueous solutions of inorganic-, organic-, cysteine-, glutathione- and GAPDH-polysulfide species. Additional experiments in human plasma and serum revealed that monobromobimane can extract sulfide from the endogenous sulfur pool by shifting speciation equilibria, suggesting caution should be exercised when interpreting experimental results using this tool. We highlight methodological caveats potentially arising from these pitfalls and conclude that current derivatization strategies often fail to adequately capture physiologic speciation of sulfur species. This article is protected by copyright. All rights reserved.

  3. The phosphorus speciations in the sediments up- and down-stream of cascade dams along the middle Lancang River.

    PubMed

    Liu, Qi; Liu, Shiliang; Zhao, Haidi; Deng, Li; Wang, Cong; Zhao, Qinghe; Dong, Shikui

    2015-02-01

    We detected the longitudinal variability of phosphorus speciations and its relation to metals and grain size distribution of sediments in three cascade canyon reservoirs (Xiaowan, Manwan and Dachaoshan) along Lancang River, China. Five phosphorus speciations including loosely bound P (ex-P), reductant soluble P (BD-P), metal oxide-bound P (NaOH-P) calcium-bound P (HCl-P) and residual-P were extracted and quantified. Results showed that in Manwan Reservoir HCl-P accounted for the largest part of total phosphorus (TP) (49.69%), while in Xiaowan and Dachaoshan reservoirs, NaOH-P was the most abundant speciation which accounted for 57.21% and 55.19% of total phosphorus respectively. Higher contents of bio-available phosphorus in Xiaowan and Dachaoshan reservoirs suggested a high rate of P releasing from sediments. Results also showed ex-P and HCl-P had positive correlation with Ca. Total phosphorus was positively correlated with Fe. The silt/clay contents of the sediments had close relationship with ex-P (r=0.413, p<0.05), NaOH-P (r=0.428, p<0.05) and BAP (r=0.458, p<0.05). The concentration of Ca, Mn and silt/clay speciation in the sediments explained 40%, 10% and 4% of the spatial variation of phosphorus speciations, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Ancient islands and modern invasions: disparate phylogeographic histories among Hispaniola's endemic birds.

    PubMed

    Sly, Nicholas D; Townsend, Andrea K; Rimmer, Christopher C; Townsend, Jason M; Latta, Steven C; Lovette, Irby J

    2011-12-01

    With its large size, complex topography and high number of avian endemics, Hispaniola appears to be a likely candidate for the in situ speciation of its avifauna, despite the worldwide rarity of avian speciation within single islands. We used multilocus comparative phylogeography techniques to examine the pattern and history of divergence in 11 endemic birds representing potential within-island speciation events. Haplotype and allele networks from mitochondrial ND2 and nuclear intron loci reveal a consistent pattern: phylogeographic divergence within or between closely related species is correlated with the likely distribution of ancient sea barriers that once divided Hispaniola into several smaller paleo-islands. Coalescent and mitochondrial clock dating of divergences indicate species-specific response to different geological events over the wide span of the island's history. We found no evidence that ecological or topographical complexity generated diversity, either by creating open niches or by restricting long-term gene flow. Thus, no true within-island speciation appears to have occurred among the species sampled on Hispaniola. Divergence events predating the merging of Hispaniola's paleo-island blocks cannot be considered in situ divergence, and postmerging divergence in response to episodic island segmentation by marine flooding probably represents in situ vicariance or interarchipelago speciation by dispersal. Our work highlights the necessity of considering island geologic history while investigating the speciation-area relationship in birds and other taxa. © 2011 Blackwell Publishing Ltd.

  5. Moran model as a dynamical process on networks and its implications for neutral speciation.

    PubMed

    de Aguiar, Marcus A M; Bar-Yam, Yaneer

    2011-09-01

    In population genetics, the Moran model describes the neutral evolution of a biallelic gene in a population of haploid individuals subjected to mutations. We show in this paper that this model can be mapped into an influence dynamical process on networks subjected to external influences. The panmictic case considered by Moran corresponds to fully connected networks and can be completely solved in terms of hypergeometric functions. Other types of networks correspond to structured populations, for which approximate solutions are also available. This approach to the classic Moran model leads to a relation between regular networks based on spatial grids and the mechanism of isolation by distance. We discuss the consequences of this connection for topopatric speciation and the theory of neutral speciation and biodiversity. We show that the effect of mutations in structured populations, where individuals can mate only with neighbors, is greatly enhanced with respect to the panmictic case. If mating is further constrained by genetic proximity between individuals, a balance of opposing tendencies takes place: increasing diversity promoted by enhanced effective mutations versus decreasing diversity promoted by similarity between mates. Resolution of large enough opposing tendencies occurs through speciation via pattern formation. We derive an explicit expression that indicates when speciation is possible involving the parameters characterizing the population. We also show that the time to speciation is greatly reduced in comparison with the panmictic case.

  6. Moran model as a dynamical process on networks and its implications for neutral speciation

    NASA Astrophysics Data System (ADS)

    de Aguiar, Marcus A. M.; Bar-Yam, Yaneer

    2011-03-01

    In population genetics, the Moran model describes the neutral evolution of a biallelic gene in a population of haploid individuals subjected to mutations. We show in this paper that this model can be mapped into an influence dynamical process on networks subjected to external influences. The panmictic case considered by Moran corresponds to fully connected networks and can be completely solved in terms of hypergeometric functions. Other types of networks correspond to structured populations, for which approximate solutions are also available. This approach to the classic Moran model leads to a relation between regular networks based on spatial grids and the mechanism of isolation by distance. We discuss the consequences of this connection for topopatric speciation and the theory of neutral speciation and biodiversity. We show that the effect of mutations in structured populations, where individuals can mate only with neighbors, is greatly enhanced with respect to the panmictic case. If mating is further constrained by genetic proximity between individuals, a balance of opposing tendencies takes place: increasing diversity promoted by enhanced effective mutations versus decreasing diversity promoted by similarity between mates. Resolution of large enough opposing tendencies occurs through speciation via pattern formation. We derive an explicit expression that indicates when speciation is possible involving the parameters characterizing the population. We also show that the time to speciation is greatly reduced in comparison with the panmictic case.

  7. Molecular evolutionary rates predict both extinction and speciation in temperate angiosperm lineages

    PubMed Central

    2010-01-01

    Background A positive relationship between diversification (i.e., speciation) and nucleotide substitution rates is commonly reported for angiosperm clades. However, the underlying cause of this relationship is often unknown because multiple intrinsic and extrinsic factors can affect the relationship, and these have confounded previous attempts infer causation. Determining which factor drives this oft-reported correlation can lend insight into the macroevolutionary process. Results Using a new database of 13 time-calibrated angiosperm phylogenies based on internal transcribed spacer (ITS) sequences, and controlling for extrinsic variables of life history and habitat, I evaluated several potential intrinsic causes of this correlation. Speciation rates (λ) and relative extinction rates (ε) were positively correlated with mean substitution rates, but were uncorrelated with substitution rate heterogeneity. It is unlikely that the positive diversification-substitution correlation is due to accelerated molecular evolution during speciation (e.g., via enhanced selection or drift), because punctuated increases in ITS rate (i.e., greater mean and variation in ITS rate for rapidly speciating clades) were not observed. Instead, fast molecular evolution likely increases speciation rate (via increased mutational variation as a substrate for selection and reproductive isolation) but also increases extinction (via mutational genetic load). Conclusions In general, these results predict that clades with higher background substitution rates may undergo successful diversification under new conditions while clades with lower substitution rates may experience decreased extinction during environmental stasis. PMID:20515493

  8. Transformation of heavy metal speciation during sludge drying: mechanistic insights.

    PubMed

    Weng, Huan-Xin; Ma, Xue-Wen; Fu, Feng-Xia; Zhang, Jin-Jun; Liu, Zan; Tian, Li-Xun; Liu, Chongxuan

    2014-01-30

    Speciation can fundamentally affect on the stability and toxicity of heavy metals in sludge from wastewater treatment plants. This research investigated the speciation of heavy metals in sludge from both municipal and industrial sources, and metal speciation change as a result of drying process to reduce sludge volume. The changes in sludge properties including sludge moisture content, temperature, density, and electrical conductivity were also monitored to provide insights into the mechanisms causing the change in heavy metal speciation. The results show that the drying process generally stabilized Cr, Cu, Cd, and Pb in sludge by transforming acid-soluble, reducible, and oxidizable species into structurally stable forms. Such transformation and stabilization occurred regardless of the sludge source and type, and were primarily caused by the changes in sludge properties associated with decomposition of organic matter and sulfide. The results enhanced our understanding of the geochemical behavior of heavy metals in municipal sludge, and are useful for designing a treatment system for environment-friendly disposal of sludge. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Phylogenetic niche conservatism and the evolutionary basis of ecological speciation.

    PubMed

    Pyron, R Alexander; Costa, Gabriel C; Patten, Michael A; Burbrink, Frank T

    2015-11-01

    Phylogenetic niche conservatism (PNC) typically refers to the tendency of closely related species to be more similar to each other in terms of niche than they are to more distant relatives. This has been implicated as a potential driving force in speciation and other species-richness patterns, such as latitudinal gradients. However, PNC has not been very well defined in most previous studies. Is it a pattern or a process? What are the underlying endogenous (e.g. genetic) and exogenous (e.g. ecological) factors that cause niches to be conserved? What degree of similarity is necessary to qualify as PNC? Is it possible for the evolutionary processes causing niches to be conserved to also result in niche divergence in different habitats? Here, we revisit these questions, codifying a theoretical and operational definition of PNC as a mechanistic evolutionary process resulting from several factors. We frame this both from a macroevolutionary and population-genetic perspective. We discuss how different axes of physical (e.g. geographic) and environmental (e.g. climatic) heterogeneity interact with the fundamental process of PNC to produce different outcomes of ecological speciation. We also review tests for PNC, and suggest ways that these could be improved or better utilized in future studies. Ultimately, PNC as a process has a well-defined mechanistic basis in organisms, and future studies investigating ecological speciation would be well served to consider this, and frame hypothesis testing in terms of the processes and expected patterns described herein. The process of PNC may lead to patterns where niches are conserved (more similar than expected), constrained (divergent within a limited subset of available niches), or divergent (less similar than expected), based on degree of phylogenetic relatedness between species. © 2014 Cambridge Philosophical Society.

  10. The effect of calcium on aqueous uranium(VI) speciation and adsorption to ferrihydrite and quartz

    USGS Publications Warehouse

    Fox, P.M.; Davis, J.A.; Zachara, J.M.

    2006-01-01

    Recent studies of uranium(VI) geochemistry have focused on the potentially important role of the aqueous species, CaUO2 (CO3)32- and Ca2 UO2(CO3)30(aq), on inhibition of microbial reduction and uranium(VI) aqueous speciation in contaminated groundwater. However, to our knowledge, there have been no direct studies of the effects of these species on U(VI) adsorption by mineral phases. The sorption of U(VI) on quartz and ferrihydrite was investigated in NaNO3 solutions equilibrated with either ambient air (430 ppm CO2) or 2% CO2 in the presence of 0, 1.8, or 8.9 mM Ca2+. Under conditions where the Ca2UO2(CO3)30 (aq) species predominates U(VI) aqueous speciation, the presence of Ca in solution lowered U(VI) adsorption on quartz from 77% in the absence of Ca to 42% and 10% at Ca concentrations of 1.8 and 8.9 mM, respectively. U(VI) adsorption to ferrihydrite decreased from 83% in the absence of Ca to 57% in the presence of 1.8 mM Ca. Surface complexation model predictions that included the formation constant for aqueous Ca2UO2(CO3)30(aq) accurately simulated the effect of Ca2+ on U(VI) sorption onto quartz and ferrihydrite within the thermodynamic uncertainty of the stability constant value. This study confirms that Ca2+ can have a significant impact on the aqueous speciation of U(VI), and consequently, on the sorption and mobility of U(VI) in aquifers. ?? 2005 Elsevier Inc. All rights reserved.

  11. Estimation of speciated and total mercury dry deposition at monitoring locations in eastern and central North America

    USGS Publications Warehouse

    Zhang, L.; Blanchard, P.; Gay, D.A.; Prestbo, E.M.; Risch, M.R.; Johnson, D.; Narayan, J.; Zsolway, R.; Holsen, T.M.; Miller, E.K.; Castro, M.S.; Graydon, J.A.; St. Louis, V.L.; Dalziel, J.

    2012-01-01

    Dry deposition of speciated mercury, i.e., gaseous oxidized mercury (GOM), particulate-bound mercury (PBM), and gaseous elemental mercury (GEM), was estimated for the year 2008–2009 at 19 monitoring locations in eastern and central North America. Dry deposition estimates were obtained by combining monitored two- to four-hourly speciated ambient concentrations with modeled hourly dry deposition velocities (Vd) calculated using forecasted meteorology. Annual dry deposition of GOM+PBM was estimated to be in the range of 0.4 to 8.1 μg m−2 at these locations with GOM deposition being mostly five to ten times higher than PBM deposition, due to their different modeled Vd values. Net annual GEM dry deposition was estimated to be in the range of 5 to 26 μg m−2 at 18 sites and 33 μg m−2 at one site. The estimated dry deposition agrees very well with limited surrogate-surface dry deposition measurements of GOM and PBM, and also agrees with litterfall mercury measurements conducted at multiple locations in eastern and central North America. This study suggests that GEM contributes much more than GOM+PBM to the total dry deposition at the majority of the sites considered here; the only exception is at locations close to significant point sources where GEM and GOM+PBM contribute equally to the total dry deposition. The relative magnitude of the speciated dry deposition and their good comparisons with litterfall deposition suggest that mercury in litterfall originates primarily from GEM, which is consistent with the limited number of previous field studies. The study also supports previous analyses suggesting that total dry deposition of mercury is equal to, if not more important than, wet deposition of mercury on a regional scale in eastern North America.

  12. Atmospheric speciation of mercury in two contrasting Southeastern US airsheds

    NASA Astrophysics Data System (ADS)

    Gabriel, Mark C.; Williamson, Derek G.; Brooks, Steve; Lindberg, Steve

    Simultaneous measurement of gaseous elemental, reactive gaseous, and fine particulate mercury took place in Tuscaloosa AL, (urban airshed) and Cove Mountain, TN (non-urban airshed) during the summers of 2002 and 2003. The objective of this research was to (1) summarize the temporal distribution of each mercury specie at each site and compare to other speciation data sets developed by other researchers and (2) provide insight into urban and non-urban mercury speciation effects using various statistical methods. Average specie concentrations were as follows: 4.05 ng m -3 (GEM), 13.6 pg m -3 (RGM), 16.4 pg m -3 (Hg-p) for Tuscaloosa; 3.20 ng m -3 (GEM), 13.6 pg m -3 (RGM), 9.73 pg m -3 (Hg-p) for Cove Mountain. As a result of urban airshed impacts, short periods of high concentration for all mercury species was common in Tuscaloosa. At Cove Mountain a consistent mid-day rise and evening drop for mercury species was found. This pattern was primarily the result of un-impacted physical boundary layer movement, although, other potential impacts were ambient photochemistry and air-surface exchange of mercury. Meteorological parameters that are known to heavily impact mercury speciation were similar for the study period for Tuscaloosa and Cove Mountain except for wind speed (m s -1), which was higher at Cove Mountain. For both sites statistically significant ( p<0.0001), inverse relationships existed between wind speed and Hg 0 concentration. A weaker windspeed-Hg 0 correlation existed for Tuscaloosa. By analyzing Hg concentration—wind speed magnitude change at both sites it was found that wind speed at Cove Mountain had a greater influence on Hg 0 concentration variability than Tuscaloosa by a factor of 3. Using various statistical tests, we concluded that the nature of Tuscaloosa's atmospheric mercury speciation was the result of typical urban airshed impacts. Cove Mountain showed atmospheric mercury speciation characteristics indicative of a non-urban area along with potential influence from steady regional input of mercury pollution from larger sources.

  13. An unexpectedly long history of sexual selection in birds-of-paradise

    PubMed Central

    Irestedt, Martin; Jønsson, Knud A; Fjeldså, Jon; Christidis, Les; Ericson, Per GP

    2009-01-01

    Background The birds-of-paradise (Paradisaeidae) form one of the most prominent avian examples of sexual selection and show a complex biogeographical distribution. The family has accordingly been used as a case-study in several significant evolutionary and biogeographical syntheses. As a robust phylogeny of the birds-of-paradise has been lacking, these hypotheses have been tentative and difficult to assess. Here we present a well supported species phylogeny with divergence time estimates of the birds-of-paradise. We use this to assess if the rates of the evolution of sexually selected traits and speciation have been excessively high within the birds-of-paradise, as well as to re-interpret biogeographical patterns in the group. Results The phylogenetic results confirm some traditionally recognized relationships but also suggest novel ones. Furthermore, we find that species pairs are geographically more closely linked than previously assumed. The divergence time estimates suggest that speciation within the birds-of-paradise mainly took place during the Miocene and the Pliocene, and that several polygynous and morphologically homogeneous genera are several million years old. Diversification rates further suggest that the speciation rate within birds-of-paradise is comparable to that of the enitre core Corvoidea. Conclusion The estimated ages of morphologically homogeneous and polygynous genera within the birds-of-paradise suggest that there is no need to postulate a particularly rapid evolution of sexually selected morphological traits. The calculated divergence rates further suggest that the speciation rate in birds-of-paradise has not been excessively high. Thus the idea that sexual selection could generate high speciation rates and rapid changes in sexual ornamentations is not supported by our birds-of-paradise data. Potentially, hybridization and long generation times in polygynous male birds-of-paradise have constrained morphological diversification and speciation, but external ecological factors on New Guinea may also have allowed the birds-of-paradise to develop and maintain magnificent male plumages. We further propose that the restricted but geographically complex distributions of birds-of-paradise species may be a consequence of the promiscuous breeding system. PMID:19758445

  14. Analytical methodologies for aluminium speciation in environmental and biological samples--a review.

    PubMed

    Bi, S P; Yang, X D; Zhang, F P; Wang, X L; Zou, G W

    2001-08-01

    It is recognized that aluminium (Al) is a potential environmental hazard. Acidic deposition has been linked to increased Al concentrations in natural waters. Elevated levels of Al might have serious consequences for biological communities. Of particular interest is the speciation of Al in aquatic environments, because Al toxicity depends on its forms and concentrations. In this paper, advances in analytical methodologies for Al speciation in environmental and biological samples during the past five years are reviewed. Concerns about the specific problems of Al speciation and highlights of some important methods are elucidated in sections devoted to hybrid techniques (HPLC or FPLC coupled with ET-AAS, ICP-AES, or ICP-MS), flow-injection analysis (FIA), nuclear magnetic resonance (27Al NMR), electrochemical analysis, and computer simulation. More than 130 references are cited.

  15. Influence of environmental conditions on the toxicokinetics of cadmium in the marine copepod Acartia tonsa.

    PubMed

    Pavlaki, Maria D; Morgado, Rui G; van Gestel, Cornelis A M; Calado, Ricardo; Soares, Amadeu M V M; Loureiro, Susana

    2017-11-01

    mMarine and estuarine ecosystems are highly productive areas that often act as a final sink for several pollutants, such as cadmium. Environmental conditions in these habitats can affect metal speciation, as well as its uptake and depuration by living organisms. The aim of this study was to assess cadmium uptake and depuration rates in the euryhaline calanoid copepod Acartia tonsa under different pH, salinity and temperature conditions. Cadmium speciation did not vary with changing pH or temperature, but varied with salinity. Free Cd 2+ ion activity increased with decreasing salinities resulting in increased cadmium concentrations in A. tonsa. However, uptake rate, derived using free Cd 2+ ion activity, showed no significant differences at different salinities indicating a simultaneous combined effect of Cd 2+ speciation and metabolic rates for osmoregulation. Cadmium concentration in A. tonsa and uptake rate increased with increasing pH, showing a peak at the intermediate pH of 7.5, while depuration rate fluctuated, thus suggesting that both parameters are mediated by metabolic processes (to maintain homeostasis at pH levels lower than normal) and ion competition at membrane binding sites. Cadmium concentration in A. tonsa, uptake and depuration rates increased with increasing temperature, a trend that can be attributed to an increase in metabolic energy demand at higher temperatures. The present study shows that cadmium uptake and depuration rates in the marine copepod A. tonsa is mostly affected by biological processes, mainly driven by metabolic mechanisms, and to a lesser extent by metal speciation in the exposure medium. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. [Treatment of tannery wastewater by infiltration percolation: chromium removal and speciation in soil].

    PubMed

    Tiglyene, S; Jaouad, A; Mandi, L

    2008-06-01

    The aim of this paper was, on one hand, to study the treatment of raw tannery effluent by infiltration percolation system and, on the other hand, to determine the distribution and speciation of chromium in the used soil. The system pilot consisted of columns filled to 15 cm of gravel and 60 cm of soil (88% of sand). The columns irrigated by raw tannery wastewater with a daily hydraulic load of 5 cm per day (approximately 10 L every day). The water flowed vertically through the soil. The speciation of Cr was investigated by using selective five steps sequential extraction method. The results indicated that the pH of the treated wastewater increases by three units in comparison to the raw wastewater. The electrical conductivity of the effluent increases also after treatment. Over the whole experimental period, results revealed significant performances of infiltration percolation system for organic load reduction. The mean elimination rate was 74% for total COD. In addition, there was a significant accumulation of organic carbon (62%) in the surface strata for the system. The total chromium undergoes an overall removal of 98%. After seven months of experiment, the results indicated that the whole retention of Cr occurring in the surface horizon of the soil (69%). Furthermore, the speciation study of Cr in the soil revealed that the oxidizable fraction is the most represented 55%. The reducible and residual phases represent 17.5% and 18.5%, respectively. The carbonate fraction presented 9% while exchangeable fraction presented only 0.02%.

  17. [Effects of Low-Molecular-Weight Organic Acids on the Speciation of Pb in Purple Soil and Soil Solution].

    PubMed

    Liu, Jiang; Jiang, Tao; Huang, Rong; Zhang, Jin-zhong; Chen, Hong

    2016-04-15

    Lead (Pb) in purple soil was selected as the research target, using one-step extraction method with 0.01 mol · L⁻¹ sodium nitrate as the background electrolyte to study the release effect of citric acid (CA), tartaric acid (TA) and acetic acid (AC) with different concentrations. Sequential extraction and geochemical model (Visual Minteq v3.0) were applied to analyze and predict the speciation of Pb in soil solid phase and soil solution phase. Then the ebvironmental implications and risks of low-molecule weight organic acid (LMWOA) on soil Pb were analyzed. The results indicated that all three types of LMWOA increased the desorption capacity of Pb in purple soil, and the effect followed the descending order of CA > TA > AC. After the action of LMWOAs, the exchangeable Pb increased; the carbonate-bound Pb and Fe-Mn oxide bound Pb dropped in soil solid phase. Organic bound Pb was the main speciation in soil solution phase, accounting for 45.16%-75.05%. The following speciation of Pb in soil solution was free Pb, accounting for 22.71%-50.25%. For CA and TA treatments, free Pb ions and inorganic bound Pb in soil solution increased with increasing LMWOAs concentration, while organic bound Pb suffered a decrease in this process. An opposite trend for AC treatment was observed compared with CA and TA treatments. Overall, LMWOAs boosted the bioavailability of Pb in purple soil and had a potential risk to contaminate underground water. Among the three LMWOAs in this study, CA had the largest potential to activate soil Pb.

  18. ISSUES IN SIMULATING ELEMENTAL MERCURY AIR/WATER EXCHANGE AND AQUEOUS MONOMETHYLMERCURY SPECIATION

    EPA Science Inventory

    This presentation focuses on two areas relevant to assessing the global fate and bioavailability of mercury: elemental mercury air/water exchange and aqueous environmental monomethylmercury speciation.

  19. Chemical Speciation - General Information

    EPA Pesticide Factsheets

    This page includes general information about the Chemical Speciation Network that is not covered on the main page. Commonly visited documents, including calendars, site lists, and historical files for the program are listed here

  20. Geological and anthropogenic factors influencing mercury speciation in mine wastes: An EXAFS spectroscopy study

    USGS Publications Warehouse

    Kim, C.S.; Rytuba, J.J.; Brown, Gordon E.

    2004-01-01

    The speciation of Hg is a critical determinant of its mobility, reactivity, and potential bioavailability in mine-impacted regions. Furthermore, Hg speciation in these complex natural systems is influenced by a number of physical, geological, and anthropogenic variables. In order to investigate the degree to which several of these variables may affect Hg speciation, extended X-ray absorption fine structure (EXAFS) spectroscopy was used to determine the Hg phases and relative proportions of these phases present in Hg-bearing wastes from selected mine-impacted regions in California and Nevada. The geological origin of Hg ore has a significant effect on Hg speciation in mine wastes. Specifically, samples collected from hot-spring Hg deposits were found to contain soluble Hg-chloride phases, while such phases were largely absent in samples from silica-carbonate Hg deposits; in both deposit types, however, Hg-sulfides in the form of cinnabar (HgS, hex.) and metacinnabar (HgS, cub.) dominate. Calcined wastes in which Hg ore was crushed and roasted in excess of 600??C, contain high proportions of metacinnabar while the main Hg-containing phase in unroasted waste rock samples from the same mines is cinnabar. The calcining process is thought to promote the reconstructive phase transformation of cinnabar to metacinnabar, which typically occurs at 345??C. The total Hg concentration in calcines is strongly correlated with particle size, with increases of nearly an order of magnitude in total Hg concentration between the 500-2000 ??m and <45 ??m size fractions (e.g., from 97-810 mg/kg Hg in calcines from the Sulphur Bank Mine, CA). The proportion of Hg-sulfides present also increased by 8-18% as particle size decreased over the same size range. This finding suggests that insoluble yet soft Hg-sulfides are subject to preferential mechanical weathering and become enriched in the fine-grained fraction, while soluble Hg phases are leached out more readily as particle size decreases. The speciation of Hg in mine wastes is similar to that in distributed sediments located downstream from the same waste piles, indicating that the transport of Hg from mine waste piles does not significantly impact Hg speciation. Hg LIII-EXAFS analysis of samples from Au mining regions, where elemental Hg(0) was introduced to aid in the Au recovery process, identified the presence of Hg-sulfides and schuetteite (Hg3O2SO4), which may have formed as a result of long-term Hg(0) burial in reducing high-sulfide sediments. ?? 2003 Elsevier Ltd. All rights reserved.

  1. Cellular processing of gold nanoparticles: CE-ICP-MS evidence for the speciation changes in human cytosol.

    PubMed

    Legat, Joanna; Matczuk, Magdalena; Timerbaev, Andrei R; Jarosz, Maciej

    2018-01-01

    The cellular uptake of gold nanoparticles (AuNPs) may (or may not) affect their speciation, but information on the chemical forms in which the particles exist in the cell remains obscure. An analytical method based on the use of capillary electrophoresis hyphenated with inductively coupled plasma mass spectrometry (ICP-MS) has been proposed to shed light on the intracellular processing of AuNPs. It was observed that when being introduced into normal cytosol, the conjugates of 10-50 nm AuNPs with albumin evolved in human serum stayed intact. On the contrary, under simulated cancer cytosol conditions, the nanoconjugates underwent decomposition, the rate of which and the resulting metal speciation patterns were strongly influenced by particle size. The new peaks that appeared in ICP-MS electropherograms could be ascribed to nanosized species, as upon ultracentrifugation, they quantitatively precipitated whereas the supernatant showed only trace Au signals. Our present study is the first step to unravel a mystery of the cellular chemistry for metal-based nanomedicines.

  2. Speciation within Columnea section Angustiflora (Gesneriaceae): islands, pollinators and climate.

    PubMed

    Schulte, Lacie J; Clark, John L; Novak, Stephen J; Jeffries, Shandra K; Smith, James F

    2015-03-01

    Despite many advances in evolutionary biology, understanding the proximate mechanisms that lead to speciation for many taxonomic groups remains elusive. Phylogenetic analyses provide a means to generate well-supported estimates of species relationships. Understanding how genetic isolation (restricted gene flow) occurred in the past requires not only a well-supported molecular phylogenetic analysis, but also an understanding of when character states that define species may have changed. In this study, phylogenetic trees resolve species level relationships for fourteen of the fifteen species within Columnea section Angustiflorae (Gesneriaceae). The distributions of sister species pairs are compared and ancestral character states are reconstructed using Bayesian stochastic mapping. Climate variables were also assessed and shifts in ancestral climate conditions were mapped using SEEVA. The relationships between morphological character states and climate variables were assessed with correlation analyses. These results indicate that species in section Angustiflorae have likely diverged as a result of allopatric, parapatric, and sympatric speciation, with both biotic and abiotic forces driving morphological and phenological divergence. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. The contribution of post-copulatory mechanisms to incipient ecological speciation in sticklebacks.

    PubMed

    Kaufmann, Joshka; Eizaguirre, Christophe; Milinski, Manfred; Lenz, Tobias L

    2015-01-01

    Ecology can play a major role in species diversification. As individuals are adapting to contrasting habitats, reproductive barriers may evolve at multiple levels. While pre-mating barriers have been extensively studied, the evolution of post-mating reproductive isolation during early stages of ecological speciation remains poorly understood. In diverging three-spined stickleback ecotypes from two lakes and two rivers, we observed differences in sperm traits between lake and river males. Interestingly, these differences did not translate into ecotype-specific gamete precedence for sympatric males in competitive in vitro fertilization experiments, potentially owing to antagonistic compensatory effects. However, we observed indirect evidence for impeded development of inter-ecotype zygotes, possibly suggesting an early stage of genetic incompatibility between ecotypes. Our results show that pre-zygotic post-copulatory mechanisms play a minor role during this first stage of ecotype divergence, but suggest that genetic incompatibilities may arise at early stages of ecological speciation. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  4. Effects of iron on arsenic speciation and redox chemistry in acid mine water

    USGS Publications Warehouse

    Bednar, A.J.; Garbarino, J.R.; Ranville, J.F.; Wildeman, T.R.

    2005-01-01

    Concern about arsenic is increasing throughout the world, including areas of the United States. Elevated levels of arsenic above current drinking-water regulations in ground and surface water can be the result of purely natural phenomena, but often are due to anthropogenic activities, such as mining and agriculture. The current study correlates arsenic speciation in acid mine drainage and mining-influenced water with the important water-chemistry properties Eh, pH, and iron(III) concentration. The results show that arsenic speciation is generally in equilibrium with iron chemistry in low pH AMD, which is often not the case in other natural-water matrices. High pH mine waters and groundwater do not always hold to the redox predictions as well as low pH AMD samples. The oxidation and precipitation of oxyhydroxides deplete iron from some systems, and also affect arsenite and arsenate concentrations through sorption processes. ?? 2004 Elsevier B.V. All rights reserved.

  5. Phylogenetics and biogeography of the two-wing flyingfish (Exocoetidae: Exocoetus).

    PubMed

    Lewallen, Eric A; Bohonak, Andrew J; Bonin, Carolina A; van Wijnen, Andre J; Pitman, Robert L; Lovejoy, Nathan R

    2017-03-01

    Two-wing flyingfish ( Exocoetus spp .) are widely distributed, epipelagic, mid-trophic organisms that feed on zooplankton and are preyed upon by numerous predators (e.g., tunas, dolphinfish, tropical seabirds), yet an understanding of their speciation and systematics is lacking. As a model of epipelagic fish speciation and to investigate mechanisms that increase biodiversity, we studied the phylogeny and biogeography of Exocoetus , a highly abundant holoepipelagic fish taxon of the tropical open ocean. Morphological and molecular data were used to evaluate the phylogenetic relationships, species boundaries, and biogeographic patterns of the five putative Exocoetus species. We show that the most widespread species ( E. volitans ) is sister to all other species, and we find no evidence for cryptic species in this taxon. Sister relationship between E. monocirrhus (Indo-Pacific) and E. obtusirostris (Atlantic) indicates the Isthmus of Panama and/or Benguela Barrier may have played a role in their divergence via allopatric speciation. The sister species E. peruvianus and E. gibbosus are found in different regions of the Pacific Ocean; however, our molecular results do not show a clear distinction between these species, indicating recent divergence or ongoing gene flow. Overall, our phylogeny reveals that the most spatially restricted species are more recently derived, suggesting that allopatric barriers may drive speciation, but subsequent dispersal and range expansion may affect the distributions of species.

  6. Mercury speciation in the Mt. Amiata mining district (Italy): interplay between urban activities and mercury contamination

    USGS Publications Warehouse

    Rimondi, Valentina; Bardelli, Fabrizio; Benvenuti, Marco; Costagliola, Pilario; Gray, John E.; Lattanzi, Pierfranco

    2014-01-01

    A fundamental step to evaluate the biogeochemical and eco-toxicological significance of Hg dispersion in the environment is to determine speciation of Hg in solid matrices. In this study, several analytical techniques such as scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), sequential chemical extractions (SCEs), and X-ray absorption spectroscopy (XANES) were used to identify Hg compounds and Hg speciation in samples collected from the Mt. Amiata Hg mining district, southern Tuscany, Italy. Different geological materials, such as mine waste calcine (retorted ore), soil, stream sediment, and stream water suspended particulate matter were analyzed. Results show that the samples were generally composed of highly insoluble Hg compounds such as sulphides (HgS, cinnabar and metacinnabar), and more soluble Hg halides such as those associated with the mosesite group. Other moderately soluble Hg compounds, HgCl2, HgO and Hg0, were also identified in stream sediments draining the mining area. The presence of these minerals suggests active and continuous runoff of soluble Hg compounds from calcines, where such Hg compounds form during retorting, or later in secondary processes. Specifically, we suggest that, due to the proximity of Hg mines to the urban center of Abbadia San Salvatore, the influence of other anthropogenic activities was a key factor for Hg speciation, resulting in the formation of unusual Hg-minerals such as mosesite.

  7. Loss of sexual recombination and segregation is associated with increased diversification in evening primroses.

    PubMed

    Johnson, Marc T J; Fitzjohn, Richard G; Smith, Stacey D; Rausher, Mark D; Otto, Sarah P

    2011-11-01

    The loss of sexual recombination and segregation in asexual organisms has been portrayed as an irreversible process that commits asexually reproducing lineages to reduced diversification. We test this hypothesis by estimating rates of speciation, extinction, and transition between sexuality and functional asexuality in the evening primroses. Specifically, we estimate these rates using the recently developed BiSSE (Binary State Speciation and Extinction) phylogenetic comparative method, which employs maximum likelihood and Bayesian techniques. We infer that net diversification rates (speciation minus extinction) in functionally asexual evening primrose lineages are roughly eight times faster than diversification rates in sexual lineages, largely due to higher speciation rates in asexual lineages. We further reject the hypothesis that a loss of recombination and segregation is irreversible because the transition rate from functional asexuality to sexuality is significantly greater than zero and in fact exceeded the reverse rate. These results provide the first empirical evidence in support of the alternative theoretical prediction that asexual populations should instead diversify more rapidly than sexual populations because they are free from the homogenizing effects of sexual recombination and segregation. Although asexual reproduction may often constrain adaptive evolution, our results show that the loss of recombination and segregation need not be an evolutionary dead end in terms of diversification of lineages. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  8. Aqueous Speciation and Electrochemical Properties of a Water-Soluble Manganese Phthalocyanine Complex#

    PubMed Central

    Blakemore, James D.; Hull, Jonathan F.

    2012-01-01

    The speciation behavior of a water-soluble manganese(III) tetrasulfonated phthalocyanine complex was investigated with UV-visible and electron paramagnetic resonance (EPR) spectroscopies, as well as cyclic voltammetry. Parallel-mode EPR (in dimethylformamide:pyridine solvent mix) reveals a six-line hyperfine signal, centered at a g-value of 8.8, for the manganese(III) monomer, characteristic of the d4 S=2 system. The color of an aqueous solution containing the complex is dependent upon the pH of the solution; the phthalocyanine complex can exist as a water-bound monomer, a hydroxide-bound monomer, or an oxo-bridged dimer. Addition of coordinating bases such as borate or pyridine changes the speciation behavior by coordinating the manganese center. From the UV-visible spectra, complete speciation diagrams are plotted by global analysis of the pH-dependent UV-visible spectra, and a complete set of pKa values is obtained by fitting the data to a standard pKa model. Electrochemical studies reveal a pH-independent quasi-reversible oxidation event for the monomeric species, which likely involves oxidation of the organic ligand to the radical cation species. Adsorption of the phthalocyanine complex on the carbon working electrode was sometimes observed. The pKa values and electrochemistry data are discussed in the context of the development of mononuclear water-oxidation catalysts. PMID:22585306

  9. Population Genomics Reveals Speciation and Introgression between Brown Norway Rats and Their Sibling Species.

    PubMed

    Teng, Huajing; Zhang, Yaohua; Shi, Chengmin; Mao, Fengbiao; Cai, Wanshi; Lu, Liang; Zhao, Fangqing; Sun, Zhongsheng; Zhang, Jianxu

    2017-09-01

    Murine rodents are excellent models for study of adaptive radiations and speciation. Brown Norway rats (Rattus norvegicus) are successful global colonizers and the contributions of their domesticated laboratory strains to biomedical research are well established. To identify nucleotide-based speciation timing of the rat and genomic information contributing to its colonization capabilities, we analyzed 51 whole-genome sequences of wild-derived Brown Norway rats and their sibling species, R. nitidus, and identified over 20 million genetic variants in the wild Brown Norway rats that were absent in the laboratory strains, which substantially expand the reservoir of rat genetic diversity. We showed that divergence of the rat and its siblings coincided with drastic climatic changes that occurred during the Middle Pleistocene. Further, we revealed that there was a geographically widespread influx of genes between Brown Norway rats and the sibling species following the divergence, resulting in numerous introgressed regions in the genomes of admixed Brown Norway rats. Intriguing, genes related to chemical communications among these introgressed regions appeared to contribute to the population-specific adaptations of the admixed Brown Norway rats. Our data reveals evolutionary history of the Brown Norway rat, and offers new insights into the role of climatic changes in speciation of animals and the effect of interspecies introgression on animal adaptation. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  10. Both Geography and Ecology Contribute to Mating Isolation in Guppies

    PubMed Central

    Schwartz, Amy K.; Weese, Dylan J.; Bentzen, Paul; Kinnison, Michael T.; Hendry, Andrew P.

    2010-01-01

    Local adaptation to different environments can promote mating isolation – either as an incidental by-product of trait divergence, or as a result of selection to avoid maladaptive mating. Numerous recent empirical examples point to the common influence of divergent natural selection on speciation based largely on evidence of strong pre-mating isolation between populations from different habitat types. Accumulating evidence for natural selection's influence on speciation is therefore no longer a challenge. The difficulty, rather, is in determining the mechanisms involved in the progress of adaptive divergence to speciation once barriers to gene flow are already present. Here, we present results of both laboratory and field experiments with Trinidadian guppies (Poecilia reticulata) from different environments, who do not show complete reproductive isolation despite adaptive divergence. We investigate patterns of mating isolation between populations that do and do not exchange migrants and show evidence for both by-product and reinforcement mechanisms depending on female ecology. Specifically, low-predation females discriminate against all high-predation males thus implying a by-product mechanism, whereas high-predation females only discriminate against low-predation males from further upstream in the same river, implying selection to avoid maladaptive mating. Our study thus confirms that mechanisms of adaptive speciation are not necessarily mutually exclusive and uncovers the complex ecology-geography interactions that underlie the evolution of mating isolation in nature. PMID:21179541

  11. A neo-W chromosome in a tropical butterfly links colour pattern, male-killing, and speciation.

    PubMed

    Smith, David A S; Gordon, Ian J; Traut, Walther; Herren, Jeremy; Collins, Steve; Martins, Dino J; Saitoti, Kennedy; Ireri, Piera; Ffrench-Constant, Richard

    2016-07-27

    Sexually antagonistic selection can drive both the evolution of sex chromosomes and speciation itself. The tropical butterfly the African Queen, Danaus chrysippus, shows two such sexually antagonistic phenotypes, the first being sex-linked colour pattern, the second, susceptibility to a male-killing, maternally inherited mollicute, Spiroplasma ixodeti, which causes approximately 100% mortality in male eggs and first instar larvae. Importantly, this mortality is not affected by the infection status of the male parent and the horizontal transmission of Spiroplasma is unknown. In East Africa, male-killing of the Queen is prevalent in a narrow hybrid zone centred on Nairobi. This hybrid zone separates otherwise allopatric subspecies with different colour patterns. Here we show that a neo-W chromosome, a fusion between the W (female) chromosome and an autosome that controls both colour pattern and male-killing, links the two phenotypes thereby driving speciation across the hybrid zone. Studies of the population genetics of the neo-W around Nairobi show that the interaction between colour pattern and male-killer susceptibility restricts gene flow between two subspecies of D. chrysippus Our results demonstrate how a complex interplay between sex, colour pattern, male-killing, and a neo-W chromosome, has set up a genetic 'sink' that keeps the two subspecies apart. The association between the neo-W and male-killing thus provides a 'smoking gun' for an ongoing speciation process. © 2016 The Authors.

  12. Chemical speciation and enzymatic impact of silver in antimicrobial fabric buried in soil.

    PubMed

    Takeuchi, Satoshi; Hashimoto, Yohey; Yamaguchi, Noriko; Toyota, Koki

    2016-11-05

    This study investigated the impact of Ag in antibacterial fabric on soil enzymes in relation to solubility and speciation of Ag. Sections of Ag-containing sock fabric (1.0-1.5cm(2)) were incubated in soils with aerobic and anaerobic conditions and periodically determined activity of arylsulfatase, dehydrogenase and urease. Microscale distribution and speciation of Ag at the interface between socks and soil particles were investigated using micro-focused X-ray fluorescence (μ-XRF), and Ag speciation was determined using micro-focused X-ray absorption near edge structure (μ-XANES) spectroscopy. Results showed that the sock fabric consisted of elemental Ag and Ag2S. After 60-day exposure to soil, majority (50-90%) of Ag in sock did not undergo phase transformation and present as elemental Ag and Ag2S in aerobic and anaerobic conditions. A part of Ag in sock fabric was bound with soil colloids (<15%), depending on the distance from the edge of sock fabric. Soil enzyme activities were overall unaffected by Ag in sock textile after 60days of incubation, although a significant decrease in arylsulfatase activity was found only in the initial stage of soil incubation. Silver in the sock fabric is relatively stable and has little detrimental impacts on enzyme activity in ordinary soil conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Pollinator specificity, floral odour chemistry and the phylogeny of Australian sexually deceptive Chiloglottis orchids: implications for pollinator-driven speciation.

    PubMed

    Peakall, Rod; Ebert, Daniel; Poldy, Jacqueline; Barrow, Russell A; Francke, Wittko; Bower, Colin C; Schiestl, Florian P

    2010-10-01

    • Sexually deceptive orchids are predicted to represent a special case of plant speciation where strong reproductive isolation may be achieved by differences in floral scent. • In this study of Australian sexually deceptive Chiloglottis orchids, we performed choice experiments to test for wasp pollinator specificity in the field; identified the compounds involved in pollinator attraction by gas chromatography with electroantennographic detection (GC-EAD), gas chromatography with mass selective detection (GC-MS), chemical synthesis and behavioural bioassays; and mapped our chemical findings on to a phylogeny of the orchids. • Field experiments confirmed pollination is a highly specific interaction, but also revealed a pool of nonpollinating 'minor responder' wasps. Six novel compounds, all 2,5-dialkylcyclohexan-1,3-diones, called 'chiloglottones', were discovered to be involved in pollinator attraction. Bioassays confirmed that pollinator specificity has a strong chemical basis, with specificity among sympatric orchids maintained by either different single compounds or a variation in a blend of two compounds. The phylogenetic overlay confirmed that speciation is always associated with pollinator switching and usually underpinned by chemical change. • If the chemical differences that control reproductive isolation in Chiloglottis have a strong genetic basis, and given the confirmed pool of potential pollinators, we conclude that pollinator-driven speciation appears highly plausible in this system. © The Authors (2010). Journal compilation © New Phytologist Trust (2010).

  14. Importance of reduced sulfur for the equilibrium chemistry and kinetics of Fe(II), Co(II) and Ni(II) supplemented to semi-continuous stirred tank biogas reactors fed with stillage.

    PubMed

    Shakeri Yekta, Sepehr; Lindmark, Amanda; Skyllberg, Ulf; Danielsson, Asa; Svensson, Bo H

    2014-03-30

    The objective of the present study was to assess major chemical reactions and chemical forms contributing to solubility and speciation of Fe(II), Co(II), and Ni(II) during anaerobic digestion of sulfur (S)-rich stillage in semi-continuous stirred tank biogas reactors (SCSTR). These metals are essential supplements for efficient and stable performance of stillage-fed SCSTR. In particular, the influence of reduced inorganic and organic S species on kinetics and thermodynamics of the metals and their partitioning between aqueous and solid phases were investigated. Solid phase S speciation was determined by use of S K-edge X-ray absorption near-edge spectroscopy. Results demonstrated that the solubility and speciation of supplemented Fe were controlled by precipitation of FeS(s) and formation of the aqueous complexes of Fe-sulfide and Fe-thiol. The relatively high solubility of Co (∼ 20% of total Co content) was attributed to the formation of compounds other than Co-sulfide and Co-thiol, presumably of microbial origin. Nickel had lower solubility than Co and its speciation was regulated by interactions with FeS(s) (e.g. co-precipitation, adsorption, and ion substitution) in addition to precipitation/dissolution of discrete NiS(s) phase and formation of aqueous Ni-sulfide complexes. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. [Forefront of diagnosis and treatment of deep-steam mycology in Korea--rhinoorbitocerebral zygomycosis].

    PubMed

    Lee, Eun Jung; Chung, Jin-Won; Choi, Sangho; Kim, Yang Soo; Woo, Jun Hee

    2009-01-01

    Mucor is a mold which exists in nature, but mucor infections of humans, even in immunocompromised hosts, are rare. Clinical manifestations of mucormycosis are nonspecific and diagnosis is based on microscopic examination and culture of biopsy specimens. Serologic test or molecular methods of speciation are used only as research tools. We investigated medical records especially for underlying diseases, clinical findings, treatment, and prognosis of patients diagnosed with rhinocerebral mucormycosis retrospectively in the Asan Medical Center. The underlying diseases were diabetes mellitus in 8 patients, acute leukemia in 2, kidney transplantation in 2, and myelodysplastic syndrome in 1 of the total 13 patients. Six patients complained of nasal symptoms including stuffy nose, rhinorrhea, 5 patients complained of ophthalmic symptoms such as decreased visual acuity, diplopia, and ophthalmic pain and 2 of hard palate ulcer. The mortality was 23%(3/13; the two patients with kidney transplant, and one patient with acute leukemia). In summary, mucormycosis should be considered in an uncontrolled DM and an immunocompromised host. The combined modality of early surgical debridement and antifungal agents was used for better treatment of rhinocerebral mucormycosis.

  16. Use of laser rhinoscopy to treat a nasal obstruction in a captive California sea lion (Zalophus californianus).

    PubMed

    Sherrill, Johanna; Peavy, George M; Kopit, Mark J; Garner, Michael M; Gardiner, Chris H; Adams, Lance M

    2004-06-01

    Laser rhinoscopy was used to treat a nasal obstruction in a captive California sea lion (Zalophus californianus). The rehabilitated, adult, female sea lion developed mucopurulent, intermittent, bilateral nasal discharge and functional nasal obstruction 20 mo after acquisition by the Aquarium of the Pacific in Long Beach, California. A 3-mm-thick soft tissue structure spanning the region between the soft and hard palates, a deviated nasal septum, and several nasopharyngeal polyps were identified. Biopsies and cultures of the obstructive web showed ulcerative granulation tissue with suppurative inflammation, bacterial infection, and a partial section of an arthropod larva (not speciated). Laser rhinoscopy was performed to relieve the caudal nasopharyngeal obstruction and ablate the polyps. The sea lion appeared to breathe through the nares with lessened nasal discharge for a period of 6 wk after laser therapy, but within 8 wk the mucopurulent nasal discharge returned, the obstruction had reformed, and the sea lion was euthanized. Postmortem examination confirmed antemortem diagnoses of caudal nasopharyngeal obstruction secondary to inflammatory tissue; however, no additional sections of arthropod parasites were located microscopically.

  17. Nucleic acid in-situ hybridization detection of infectious agents

    NASA Astrophysics Data System (ADS)

    Thompson, Curtis T.

    2000-04-01

    Limitations of traditional culture methods and newer polymerase chain reaction (PCR)-based methods for detection and speciation of infectious agents demonstrate the need for more rapid and better diagnostics. Nucleic acid hybridization is a detection technology that has gained wide acceptance in cancer and prenatal cytogenetics. Using a modification of the nucleic acid hybridization technique known as fluorescence in-situ hybridization, infectious agents can be detected in a variety of specimens with high sensitivity and specificity. The specimens derive from all types of human and animal sources including body fluids, tissue aspirates and biopsy material. Nucleic acid hybridization can be performed in less than one hour. The result can be interpreted either using traditional fluorescence microscopy or automated platforms such as micro arrays. This paper demonstrates proof of concept for nucleic acid hybridization detection of different infectious agents. Interpretation within a cytologic and histologic context is possible with fluorescence microscopic analysis, thereby providing confirmatory evidence of hybridization. With careful probe selection, nucleic acid hybridization promises to be a highly sensitive and specific practical diagnostic alternative to culture, traditional staining methods, immunohistochemistry and complicated nucleic acid amplification tests.

  18. SPECIATE Version 4.5 Database Development Documentation

    EPA Science Inventory

    This product updated SPECIATE 4.4 with new emission profiles to address high priority Agency data gaps and to included new, more accurate emission profiles generated by research underway within and outside the Agency.

  19. From gene trees to a dated allopolyploid network: insights from the angiosperm genus Viola (Violaceae).

    PubMed

    Marcussen, Thomas; Heier, Lise; Brysting, Anne K; Oxelman, Bengt; Jakobsen, Kjetill S

    2015-01-01

    Allopolyploidization accounts for a significant fraction of speciation events in many eukaryotic lineages. However, existing phylogenetic and dating methods require tree-like topologies and are unable to handle the network-like phylogenetic relationships of lineages containing allopolyploids. No explicit framework has so far been established for evaluating competing network topologies, and few attempts have been made to date phylogenetic networks. We used a four-step approach to generate a dated polyploid species network for the cosmopolitan angiosperm genus Viola L. (Violaceae Batch.). The genus contains ca 600 species and both recent (neo-) and more ancient (meso-) polyploid lineages distributed over 16 sections. First, we obtained DNA sequences of three low-copy nuclear genes and one chloroplast region, from 42 species representing all 16 sections. Second, we obtained fossil-calibrated chronograms for each nuclear gene marker. Third, we determined the most parsimonious multilabeled genome tree and its corresponding network, resolved at the section (not the species) level. Reconstructing the "correct" network for a set of polyploids depends on recovering all homoeologs, i.e., all subgenomes, in these polyploids. Assuming the presence of Viola subgenome lineages that were not detected by the nuclear gene phylogenies ("ghost subgenome lineages") significantly reduced the number of inferred polyploidization events. We identified the most parsimonious network topology from a set of five competing scenarios differing in the interpretation of homoeolog extinctions and lineage sorting, based on (i) fewest possible ghost subgenome lineages, (ii) fewest possible polyploidization events, and (iii) least possible deviation from expected ploidy as inferred from available chromosome counts of the involved polyploid taxa. Finally, we estimated the homoploid and polyploid speciation times of the most parsimonious network. Homoploid speciation times were estimated by coalescent analysis of gene tree node ages. Polyploid speciation times were estimated by comparing branch lengths and speciation rates of lineages with and without ploidy shifts. Our analyses recognize Viola as an old genus (crown age 31 Ma) whose evolutionary history has been profoundly affected by allopolyploidy. Between 16 and 21 allopolyploidizations are necessary to explain the diversification of the 16 major lineages (sections) of Viola, suggesting that allopolyploidy has accounted for a high percentage-between 67% and 88%-of the speciation events at this level. The theoretical and methodological approaches presented here for (i) constructing networks and (ii) dating speciation events within a network, have general applicability for phylogenetic studies of groups where allopolyploidization has occurred. They make explicit use of a hitherto underexplored source of ploidy information from chromosome counts to help resolve phylogenetic cases where incomplete sequence data hampers network inference. Importantly, the coalescent-based method used herein circumvents the assumption of tree-like evolution required by most techniques for dating speciation events. © The Author(s) 2014. Published by Oxford University Press, on behalf of the Society of Systematic Biologists.

  20. Coupling pervaporation to AAS for inorganic and organic mercury determination. A new approach to speciation of Hg in environmental samples.

    PubMed

    Fernandez-Rivas, C; Muñoz-Olivas, R; Camara, C

    2001-12-01

    The design and development of a new approach for Hg speciation in environmental samples is described in detail. This method, consisting of the coupling of pervaporation and atomic absorption spectrometry, is based on a membrane phenomenon that combines the evaporation of volatile analytes and their diffusion through a polymeric membrane. It is proposed here as an alternative to gas chromatography for speciation of inorganic and organic Hg compounds, as the latter compounds are volatile and can be separated by applying the principles mentioned above. The interest of this method lies in its easy handling, low cost, and rapidity for the analysis of liquid and solid samples. This method has been applied to Hg speciation in a compost sample provided by a waste water treatment plant.

  1. Selenium analysis in waters. Part 2: Speciation methods.

    PubMed

    LeBlanc, Kelly L; Kumkrong, Paramee; Mercier, Patrick H J; Mester, Zoltán

    2018-06-21

    In aquatic ecosystems, there is often no correlation between the total concentration of selenium present in the water column and the toxic effects observed in that environment. This is due, in part, to the variation in the bioavailability of different selenium species to organisms at the base of the aquatic food chain. The first part of this review (Kumkrong et al., 2018) discusses regulatory framework and standard methodologies for selenium analysis in waters. In this second article, we are reviewing the state of speciation analysis and importance of speciation data for decision makers in industry and regulators. We look in detail at fractionation methods for speciation, including the popular selective sequential hydride generation. We examine advantages and limitations of these methods, in terms of achievable detection limits and interferences from other matrix species, as well as the potential to over- or under-estimate operationally-defined fractions based on the various conversion steps involved in fractionation processes. Additionally, we discuss methods of discrete speciation (through separation methods), their importance in analyzing individual selenium species, difficulties associated with their implementation, as well as ways to overcome these difficulties. We also provide a brief overview of biological treatment methods for the remediation of selenium-contaminated waters. We discuss the importance of selenium speciation in the application of these methods and their potential to actually increase the bioavailability of selenium despite decreasing its total waterborne concentration. Copyright © 2018. Published by Elsevier B.V.

  2. Host shift and speciation in a coral-feeding nudibranch

    PubMed Central

    Faucci, Anuschka; Toonen, Robert J; Hadfield, Michael G

    2006-01-01

    While the role of host preference in ecological speciation has been investigated extensively in terrestrial systems, very little is known in marine environments. Host preference combined with mate choice on the preferred host can lead to population subdivision and adaptation leading to host shifts. We use a phylogenetic approach based on two mitochondrial genetic markers to disentangle the taxonomic status and to investigate the role of host specificity in the speciation of the nudibranch genus Phestilla (Gastropoda, Opisthobranchia) from Guam, Palau and Hawaii. Species of the genus Phestilla complete their life cycle almost entirely on their specific host coral (species of Porites, Goniopora and Tubastrea). They reproduce on their host coral and their planktonic larvae require a host-specific chemical cue to metamorphose and settle onto their host. The phylogenetic trees of the combined cytochrome oxidase I and ribosomal 16S gene sequences clarify the relationship among species of Phestilla identifying most of the nominal species as monophyletic clades. We found a possible case of host shift from Porites to Goniopora and Tubastrea in sympatric Phestilla spp. This represents one of the first documented cases of host shift as a mechanism underlying speciation in a marine invertebrate. Furthermore, we found highly divergent clades within Phestilla sp. 1 and Phestilla minor (8.1–11.1%), suggesting cryptic speciation. The presence of a strong phylogenetic signal for the coral host confirms that the tight link between species of Phestilla and their host coral probably played an important role in speciation within this genus. PMID:17134995

  3. A test of the chromosomal theory of ecotypic speciation in Anopheles gambiae

    PubMed Central

    Manoukis, Nicholas C.; Powell, Jeffrey R.; Touré, Mahamoudou B.; Sacko, Adama; Edillo, Frances E.; Coulibaly, Mamadou B.; Traoré, Sekou F.; Taylor, Charles E.; Besansky, Nora J.

    2008-01-01

    The role of chromosomal inversions in speciation has long been of interest to evolutionists. Recent quantitative modeling has stimulated reconsideration of previous conceptual models for chromosomal speciation. Anopheles gambiae, the most important vector of human malaria, carries abundant chromosomal inversion polymorphism nonrandomly associated with ecotypes that mate assortatively. Here, we consider the potential role of paracentric inversions in promoting speciation in A. gambiae via “ecotypification,” a term that refers to differentiation arising from local adaptation. In particular, we focus on the Bamako form, an ecotype characterized by low inversion polymorphism and fixation of an inversion, 2Rj, that is very rare or absent in all other forms of A. gambiae. The Bamako form has a restricted distribution by the upper Niger River and its tributaries that is associated with a distinctive type of larval habitat, laterite rock pools, hypothesized to be its optimal breeding site. We first present computer simulations to investigate whether the population dynamics of A. gambiae are consistent with chromosomal speciation by ecotypification. The models are parameterized using field observations on the various forms of A. gambiae that exist in Mali, West Africa. We then report on the distribution of larvae of this species collected from rock pools and more characteristic breeding sites nearby. Both the simulations and field observations support the thesis that speciation by ecotypification is occurring, or has occurred, prompting consideration of Bamako as an independent species. PMID:18287019

  4. Speciation and Neutral Molecular Evolution in One-Dimensional Closed Population

    NASA Astrophysics Data System (ADS)

    Semovski, Sergei V.; Bukin, Yuri S.; Sherbakov, Dmitry Yu.

    Models are presented suitable for a description of speciation processes arising due to reproductive isolation depending on genetic distance. The main attention is paid to the model of a one-dimensional closed population, which describes the evolution of littoral benthic organisms. In order to correspond the modeling results to the results obtained in the course of experimental phylogenetic studies, all individual-based models described here involve neutrally evolving and maternally inherited DNA sequence. Sub-samples of the resulting sequences were used for a posteriori phylogenetic inferences which then were compared to the "true" evolutionary histories.

  5. XAS Studies of Arsenic in the Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charnock, J. M.; School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Oxford Road, Manchester, M13 9PL; Polya, D. A.

    2007-02-02

    Arsenic is present in low concentrations in much of the Earth's crust and changes in its speciation are vital to understanding its transport and toxicity in the environment. We have used X-ray absorption spectroscopy to investigate the coordination sites of arsenic in a wide variety of samples, including soil and earthworm tissues from arsenic-contaminated land, and human hair and nail samples from people exposed to arsenic in Cambodia. Our results confirm the effectiveness of using X-ray absorption near edge structure (XANES) and X-ray absorption fine structure (EXAFS) spectroscopy to determine speciation changes in environmental samples.

  6. The impact of seasonality on niche breadth, distribution range and species richness: a theoretical exploration of Janzen's hypothesis.

    PubMed

    Hua, Xia

    2016-07-27

    Being invoked as one of the candidate mechanisms for the latitudinal patterns in biodiversity, Janzen's hypothesis states that the limited seasonal temperature variation in the tropics generates greater temperature stratification across elevations, which makes tropical species adapted to narrower ranges of temperatures and have lower effective dispersal across elevations than species in temperate regions. Numerous empirical studies have documented latitudinal patterns in species elevational ranges and thermal niche breadths that are consistent with the hypothesis, but the theoretical underpinnings remain unclear. This study presents the first mathematical model to examine the evolutionary processes that could back up Janzen's hypothesis and assess the effectiveness of limited seasonal temperature variation to promote speciation along elevation in the tropics. Results suggest that trade-offs in thermal tolerances provide a mechanism for Janzen's hypothesis. Limited seasonal temperature variation promotes gradient speciation not due to the reduction in gene flow that is associated with narrow thermal niche, but due to the pleiotropic effects of more stable divergent selection of thermal tolerance on the evolution of reproductive incompatibility. The proposed modelling approach also provides a potential way to test a speciation model against genetic data. © 2016 The Author(s).

  7. The Robertsonian phenomenon in the house mouse: mutation, meiosis and speciation.

    PubMed

    Garagna, Silvia; Page, Jesus; Fernandez-Donoso, Raul; Zuccotti, Maurizio; Searle, Jeremy B

    2014-12-01

    Many different chromosomal races with reduced chromosome number due to the presence of Robertsonian fusion metacentrics have been described in western Europe and northern Africa, within the distribution area of the western house mouse Mus musculus domesticus. This subspecies of house mouse has become the ideal model for studies to elucidate the processes of chromosome mutation and fixation that lead to the formation of chromosomal races and for studies on the impact of chromosome heterozygosities on reproductive isolation and speciation. In this review, we briefly describe the history of the discovery of the first and subsequent metacentric races in house mice; then, we focus on the molecular composition of the centromeric regions involved in chromosome fusion to examine the molecular characteristics that may explain the great variability of the karyotype that house mice show. The influence that metacentrics exert on the nuclear architecture of the male meiocytes and the consequences on meiotic progression are described to illustrate the impact that chromosomal heterozygosities exert on fertility of house mice-of relevance to reproductive isolation and speciation. The evolutionary significance of the Robertsonian phenomenon in the house mouse is discussed in the final section of this review.

  8. Concentrations and speciation of heavy metals in sludge from nine textile dyeing plants.

    PubMed

    Liang, Xin; Ning, Xun-an; Chen, Guoxin; Lin, Meiqing; Liu, Jingyong; Wang, Yujie

    2013-12-01

    The safe disposal of sludge from textile dyeing industry requires research on bioavailability and concentration of heavy metals. In this study, concentrations and chemical speciation of heavy metals (Cd, Cr, Cu, Ni, Zn, Pb) in sludge from nine different textile dyeing plants were examined. Some physiochemical features of sludge from textile dyeing industry were determined, and a sequential extraction procedure recommended by the Community Bureau of Reference (BCR) was used to study the metal speciation. Cluster analysis (CA) and principal component analysis (PCA) were applied to provide additional information regarding differences in sludge composition. The results showed that Zn and Cu contents were the highest, followed by Ni, Cr, Cd and Pb. The concentration of Cd and Ni in some sludge samples exceeded the standard suggested for acidic soils in China (GB18918-2002). In sludge from textile dyeing plants, Pb, Cd and Cr were principally distributed in the oxidizable and residual fraction, Cu in the oxidizable fraction, Ni in all four fractions and Zn in the acid soluble/exchangeable and reducible fractions. The pH and heat-drying method affected the fractionation of heavy metals in sludge. © 2013 Elsevier Inc. All rights reserved.

  9. Determining and dating recent rodent speciation events by using L1 (LINE-1) retrotransposons

    PubMed Central

    Verneau, Olivier; Catzeflis, François; Furano, Anthony V.

    1998-01-01

    Phylogenies based on the inheritance of shared derived characters will be ambiguous when the shared characters are not the result of common ancestry. Such characters are called homoplasies. Phylogenetic analysis also can be problematic if the characters have not changed sufficiently, as might be the case for rapid or recent speciations. The latter are of particular interest because evolutionary processes may be more accessible the more recent the speciation. The repeated DNA subfamilies generated by the mammalian L1 (LINE-1) retrotransposon are apparently homoplasy-free phylogenetic characters. L1 retrotransposons are transmitted only by inheritance and rapidly generate novel variants that produce distinct subfamilies of mostly defective copies, which then “age” as they diverge. Here we show that the L1 character can both resolve and date recent speciation events within the large group of very closely related rats known as Rattus sensu stricto. This lineage arose 5–6 million years ago (Mya) and subsequently underwent two episodes of speciation: an intense one, ≈2.7 Mya, produced at least five lineages in <0.3 My; a second began ≈1.2 Mya and may still be continuing. PMID:9736728

  10. Determining and dating recent rodent speciation events by using L1 (LINE-1) retrotransposons.

    PubMed

    Verneau, O; Catzeflis, F; Furano, A V

    1998-09-15

    Phylogenies based on the inheritance of shared derived characters will be ambiguous when the shared characters are not the result of common ancestry. Such characters are called homoplasies. Phylogenetic analysis also can be problematic if the characters have not changed sufficiently, as might be the case for rapid or recent speciations. The latter are of particular interest because evolutionary processes may be more accessible the more recent the speciation. The repeated DNA subfamilies generated by the mammalian L1 (LINE-1) retrotransposon are apparently homoplasy-free phylogenetic characters. L1 retrotransposons are transmitted only by inheritance and rapidly generate novel variants that produce distinct subfamilies of mostly defective copies, which then "age" as they diverge. Here we show that the L1 character can both resolve and date recent speciation events within the large group of very closely related rats known as Rattus sensu stricto. This lineage arose 5-6 million years ago (Mya) and subsequently underwent two episodes of speciation: an intense one, approximately 2.7 Mya, produced at least five lineages in <0.3 My; a second began approximately 1.2 Mya and may still be continuing.

  11. Iron solubility driven by speciation in dust sources to the ocean

    USGS Publications Warehouse

    Schroth, A.W.; Crusius, John; Sholkovitz, E.R.; Bostick, B.C.

    2009-01-01

    Although abundant in the Earths crust, iron is present at trace concentrations in sea water and is a limiting nutrient for phytoplankton in approximately 40% of the ocean. Current literature suggests that aerosols are the primary external source of iron to offshore waters, yet controls on iron aerosol solubility remain unclear. Here we demonstrate that iron speciation (oxidation state and bonding environment) drives iron solubility in arid region soils, glacial weathering products (flour) and oil combustion products (oil fly ash). Iron speciation varies by aerosol source, with soils in arid regions dominated by ferric (oxy)hydroxides, glacial flour by primary and secondary ferrous silicates and oil fly ash by ferric sulphate salts. Variation in iron speciation produces systematic differences in iron solubility: less than 1% of the iron in arid soils was soluble, compared with 2-3% in glacial products and 77-81% in oil combustion products, which is directly linked to fractions of more soluble phases. We conclude that spatial and temporal variations in aerosol iron speciation, driven by the distribution of deserts, glaciers and fossil-fuel combustion, could have a pronounced effect on aerosol iron solubility and therefore on biological productivity and the carbon cycle in the ocean. ?? 2009 Macmillan Publishers Limited.

  12. Speciation dynamics and biogeography of Neotropical spiral gingers (Costaceae).

    PubMed

    André, Thiago; Salzman, Shayla; Wendt, Tânia; Specht, Chelsea D

    2016-10-01

    Species can arise via the divisive effects of allopatry as well as due to ecological and/or reproductive character displacement within sympatric populations. Two separate lineages of Costaceae are native to the Neotropics; an early-diverging clade endemic to South America (consisting of ca. 16 species in the genera Monocostus, Dimerocostus and Chamaecostus); and the Neotropical Costus clade (ca. 50 species), a diverse assemblage of understory herbs comprising nearly half of total familial species richness. We use a robust dated molecular phylogeny containing most of currently known species to inform macroevolutionary reconstructions, enabling us to examine the context of speciation in Neotropical lineages. Analyses of speciation rate revealed a significant variation among clades, with a rate shift at the most recent common ancestor of the Neotropical Costus clade. There is an overall predominance of allopatric speciation in the South American clade, as most species display little range overlap. In contrast, sympatry is much higher within the Neotropical Costus clade, independent of node age. Our results show that speciation dynamics during the history of Costaceae is strongly heterogeneous, and we suggest that the Costus radiation in the Neotropics arose at varied geographic contexts. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Dissolved sulfides in the oxic water column of San Francisco Bay, California

    USGS Publications Warehouse

    Kuwabara, J.S.; Luther, G.W.

    1993-01-01

    Trace contaminants enter major estuaries such as San Francisco Bay from a variety of point and nonpoint sources and may then be repartitioned between solid and aqueous phases or altered in chemical speciation. Chemical speciation affects the bioavailability of metals as well as organic ligands to planktonic and benthic organisms, and the partitioning of these solutes between phases. Our previous, work in south San Francisco Bay indicated that sulfide complexation with metals may be of particular importance because of the thermodynamic stability of these complexes. Although the water column of the bay is consistently well-oxygenated and typically unstratified with respect to dissolved oxygen, the kinetics of sulfide oxidation could exert at least transient controls on metal speciation. Our initial data on dissolved sulfides in the main channel of both the northern and southern components of the bay consistently indicate submicromolar concenrations (from <1 nM to 162 nM), as one would expect in an oxidizing environment. However, chemical speciation calculations over the range of observed sulfide concentrations indicate that these trace concentrations in the bay water column can markedly affect chemical speciation of ecologically significant trace metals such as cadmium, copper, and zinc.

  14. Speciation: more likely through a genetic or through a learned habitat preference?

    PubMed Central

    Beltman, J.B; Metz, J.A.J

    2005-01-01

    A problem in understanding sympatric speciation is establishing how reproductive isolation can arise when there is disruptive selection on an ecological trait. One of the solutions that has been proposed is that a habitat preference evolves, and that mates are chosen within the preferred habitat. We present a model where the habitat preference can evolve either by means of a genetic mechanism or by means of learning. Employing an adaptive-dynamical analysis, we show that evolution proceeds either to a single population of specialists with a genetic preference for their optimal habitat, or to a population of generalists without a habitat preference. The generalist population subsequently experiences disruptive selection. Learning promotes speciation because it increases the intensity of disruptive selection. An individual-based version of the model shows that, when loci are completely unlinked and learning confers little cost, the presence of disruptive selection most probably leads to speciation via the simultaneous evolution of a learned habitat preference. For high costs of learning, speciation is most likely to occur via the evolution of a genetic habitat preference. However, the latter only happens when the effect of mutations is large, or when there is linkage between genes coding for the different traits. PMID:16011920

  15. Social selection parapatry in Afrotropical sunbirds.

    PubMed

    McEntee, Jay P; Peñalba, Joshua V; Werema, Chacha; Mulungu, Elia; Mbilinyi, Maneno; Moyer, David; Hansen, Louis; Fjeldså, Jon; Bowie, Rauri C K

    2016-06-01

    The extent of range overlap of incipient and recent species depends on the type and magnitude of phenotypic divergence that separates them, and the consequences of phenotypic divergence on their interactions. Signal divergence by social selection likely initiates many speciation events, but may yield niche-conserved lineages predisposed to limit each others' ranges via ecological competition. Here, we examine this neglected aspect of social selection speciation theory in relation to the discovery of a nonecotonal species border between sunbirds. We find that Nectarinia moreaui and Nectarinia fuelleborni meet in a ∼6 km wide contact zone, as estimated by molecular cline analysis. These species exploit similar bioclimatic niches, but sing highly divergent learned songs, consistent with divergence by social selection. Cline analyses suggest that within-species stabilizing social selection on song-learning predispositions maintains species differences in song despite both hybridization and cultural transmission. We conclude that ecological competition between moreaui and fuelleborni contributes to the stabilization of the species border, but that ecological competition acts in conjunction with reproductive interference. The evolutionary maintenance of learned song differences in a hybrid zone recommend this study system for future studies on the mechanisms of learned song divergence and its role in speciation. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  16. Tungsten speciation in sulfidic waters: Stability and lability of thiotungstates

    NASA Astrophysics Data System (ADS)

    Cui, M.; Johannesson, K. H.

    2017-12-01

    Tungsten (W) is an important metal that has been widely used in industries. It normally occurs as the monomeric tungstate oxyanion in circumneutral to alkaline pH natural waters but tends to form polytungstates species at low pH and high W concentrations. A number of studies show that W is strongly correlated with dissolved sulfide in natural waters. Laboratory investigations have presented evidence that, like Mo, W undergoes sulfidation in four steps that conserve tungstate and lead to the formation of tetrathiotungstate. In addition, natural waters may be seasonally anoxic, thus W speciation is likely to be kinetically controlled. Our previous studies showed that the speciation of tungsten is important in controlling its fate and transport in natural waters. Thiotungstate and tungstate are adsorbed differently to the mineral surfaces such as goethite and pyrite. In our present study, we have observed that the sulfidation reactions of W are acid catalyzed. We suggest that in environments such as sediment porewaters, the presence of Brønsted acids, will promote conversion of tungstate to thiotungstates. However, the conversion of the predominant anion from a hard to a soft base alters W's geochemical behavior, increasing its susceptibility to scavenging. Thus, an important product of this research will be an improved understanding of the scavenging pathways of W in euxinic environments.

  17. Convergent life-history shifts: toxic environments result in big babies in two clades of poeciliids

    NASA Astrophysics Data System (ADS)

    Riesch, Rüdiger; Plath, Martin; García de León, Francisco J.; Schlupp, Ingo

    2010-02-01

    The majority of studies on ecological speciation in animals have investigated the divergence caused by biotic factors like divergent food sources or predatory regimes. Here, we examined a system where ecological speciation can clearly be ascribed to abiotic environmental gradients of naturally occurring toxic hydrogen sulfide (H2S). In southern Mexico, two genera of livebearing fishes (Poeciliidae: Poecilia and Gambusia) thrive in various watercourses with different concentrations of H2S. Previous studies have revealed pronounced genetic differentiation between different locally adapted populations in one species ( Poecilia mexicana), pointing towards incipient speciation. In the present study, we examined female reproductive life-history traits in two species pairs: Gambusia sexradiata (from a nonsulfidic and a sulfidic habitat) and Gambusia eurystoma (sulfide-endemic), as well as P. mexicana (nonsulfidic and sulfidic) and Poecilia sulphuraria (sulfide endemic). We found convergent divergence of life-history traits in response to sulfide; most prominently, extremophile poeciliids exhibit drastically increased offspring size coupled with reduced fecundity. Furthermore, within each genus, this trend increased with increasing sulfide concentrations and was most pronounced in the two endemic sulfur-adapted species. We discuss the adaptive significance of large offspring size in toxic environments and propose that divergent life-history evolution may promote further ecological divergence through isolation by adaptation.

  18. Comparative Evolution of an Archetypal Adaptive Radiation: Innovation and Opportunity in Anolis Lizards.

    PubMed

    Poe, Steven; de Oca, Adrián Nieto-Montes; Torres-Carvajal, Omar; de Queiroz, Kevin; Velasco, Julián A; Truett, Brad; Gray, Levi N; Ryan, Mason J; Köhler, Gunther; Ayala-Varela, Fernando; Latella, Ian

    2018-06-01

    Adaptive radiation is a widely recognized pattern of evolution wherein substantial phenotypic change accompanies rapid speciation. Adaptive radiation may be triggered by environmental opportunities resulting from dispersal to new areas or via the evolution of traits, called key innovations, that allow for invasion of new niches. Species sampling is a known source of bias in many comparative analyses, yet classic adaptive radiations have not been studied comparatively with comprehensively sampled phylogenies. In this study, we use unprecedented comprehensive phylogenetic sampling of Anolis lizard species to examine comparative evolution in this well-studied adaptive radiation. We compare adaptive radiation models within Anolis and in the Anolis clade and a potential sister lineage, the Corytophanidae. We find evidence for island (i.e., opportunity) effects and no evidence for trait (i.e., key innovation) effects causing accelerated body size evolution within Anolis. However, island effects are scale dependent: when Anolis and Corytophanidae are analyzed together, no island effect is evident. We find no evidence for an island effect on speciation rate and tenuous evidence for greater speciation rate due to trait effects. These results suggest the need for precision in treatments of classic adaptive radiations such as Anolis and further refinement of the concept of adaptive radiation.

  19. Multi-trace element levels and arsenic speciation in urine of e-waste recycling workers from Agbogbloshie, Accra in Ghana.

    PubMed

    Asante, Kwadwo Ansong; Agusa, Tetsuro; Biney, Charles Augustus; Agyekum, William Atuobi; Bello, Mohammed; Otsuka, Masanari; Itai, Takaaki; Takahashi, Shin; Tanabe, Shinsuke

    2012-05-01

    To understand human contamination by multi-trace elements (TEs) in electrical and electronic waste (e-waste) recycling site at Agbogbloshie, Accra in Ghana, this study analyzed TEs and As speciation in urine of e-waste recycling workers. Concentrations of Fe, Sb, and Pb in urine of e-waste recycling workers were significantly higher than those of reference sites after consideration of interaction by age, indicating that the recycling workers are exposed to these TEs through the recycling activity. Urinary As concentration was relatively high, although the level in drinking water was quite low. Speciation analysis of As in human urine revealed that arsenobetaine and dimethylarsinic acid were the predominant As species and concentrations of both species were positively correlated with total As concentration as well as between each other. These results suggest that such compounds may be derived from the same source, probably fish and shellfish and greatly influence As exposure levels. To our knowledge, this is the first study on human contamination resulting from the primitive recycling of e-waste in Ghana. This study will contribute to the knowledge about human exposure to trace elements from an e-waste site in a less industrialized region so far scantly covered in the literature. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Use of X-Ray Absorption Spectroscopy (XAS) to Speciate Manganese in Airborne Particulate Matter from 5 Counties Across the US

    PubMed Central

    Datta, Saugata; Rule, Ana M; Mihalic, Jana N; Chillrud, Steve N; Bostick, Benjamin C.; Ramos-Bonilla, Juan P; Han, Inkyu; Polyak, Lisa M; Geyh, Alison S; Breysse, Patrick N

    2012-01-01

    The purpose of this study is to characterize manganese oxidation states and speciation in airborne particulate matter (PM), and describe how these potentially important determinants of PM toxicity vary by location. Ambient PM samples were collected from five counties across the US using a high volume sequential cyclone system that collects PM in dry bulk form segregated into “coarse” and “fine” size fractions. The fine fraction was analyzed for this study. Analyses included total Mn using ICP-MS, and characterization of oxidation states and speciation using X-ray Absorption Spectroscopy (XAS). XAS spectra of all samples and ten standard compounds of Mn were obtained at the National Synchrotron Light Source. XAS data was analyzed using Linear Combination Fitting (LCF). Results of the LCF analysis describe differences in composition between samples. Mn(II) acetate and Mn(II) oxide are present in all samples, while Mn(II) carbonate and Mn(IV) oxide are absent. To the best of our knowledge, this is the first paper to characterize Mn composition of ambient PM and examine differences between urban sites in the US. Differences in oxidation state and composition indicate regional variations in sources and atmospheric chemistry that may help explain differences in health effects identified in epidemiological studies. PMID:22309075

  1. The Phylogeny and Biogeographic History of Ashes (Fraxinus, Oleaceae) Highlight the Roles of Migration and Vicariance in the Diversification of Temperate Trees

    PubMed Central

    Hinsinger, Damien Daniel; Basak, Jolly; Gaudeul, Myriam; Cruaud, Corinne; Bertolino, Paola; Frascaria-Lacoste, Nathalie; Bousquet, Jean

    2013-01-01

    The cosmopolitan genus Fraxinus, which comprises about 40 species of temperate trees and shrubs occupying various habitats in the Northern Hemisphere, represents a useful model to study speciation in long-lived angiosperms. We used nuclear external transcribed spacers (nETS), phantastica gene sequences, and two chloroplast loci (trnH-psbA and rpl32-trnL) in combination with previously published and newly obtained nITS sequences to produce a time-calibrated multi-locus phylogeny of the genus. We then inferred the biogeographic history and evolution of floral morphology. An early dispersal event could be inferred from North America to Asia during the Oligocene, leading to the diversification of the section Melioides sensus lato. Another intercontinental dispersal originating from the Eurasian section of Fraxinus could be dated from the Miocene and resulted in the speciation of F. nigra in North America. In addition, vicariance was inferred to account for the distribution of the other Old World species (sections Sciadanthus, Fraxinus and Ornus). Geographic speciation likely involving dispersal and vicariance could also be inferred from the phylogenetic grouping of geographically close taxa. Molecular dating suggested that the initial divergence of the taxonomical sections occurred during the middle and late Eocene and Oligocene periods, whereas diversification within sections occurred mostly during the late Oligocene and Miocene, which is consistent with the climate warming and accompanying large distributional changes observed during these periods. These various results underline the importance of dispersal and vicariance in promoting geographic speciation and diversification in Fraxinus. Similarities in life history, reproductive and demographic attributes as well as geographical distribution patterns suggest that many other temperate trees should exhibit similar speciation patterns. On the other hand, the observed parallel evolution and reversions in floral morphology would imply a major influence of environmental pressure. The phylogeny obtained and its biogeographical implications should facilitate future studies on the evolution of complex adaptive characters, such as habitat preference, and their possible roles in promoting divergent evolution in trees. PMID:24278282

  2. The phylogeny and biogeographic history of ashes (fraxinus, oleaceae) highlight the roles of migration and vicariance in the diversification of temperate trees.

    PubMed

    Hinsinger, Damien Daniel; Basak, Jolly; Gaudeul, Myriam; Cruaud, Corinne; Bertolino, Paola; Frascaria-Lacoste, Nathalie; Bousquet, Jean

    2013-01-01

    The cosmopolitan genus Fraxinus, which comprises about 40 species of temperate trees and shrubs occupying various habitats in the Northern Hemisphere, represents a useful model to study speciation in long-lived angiosperms. We used nuclear external transcribed spacers (nETS), phantastica gene sequences, and two chloroplast loci (trnH-psbA and rpl32-trnL) in combination with previously published and newly obtained nITS sequences to produce a time-calibrated multi-locus phylogeny of the genus. We then inferred the biogeographic history and evolution of floral morphology. An early dispersal event could be inferred from North America to Asia during the Oligocene, leading to the diversification of the section Melioides sensus lato. Another intercontinental dispersal originating from the Eurasian section of Fraxinus could be dated from the Miocene and resulted in the speciation of F. nigra in North America. In addition, vicariance was inferred to account for the distribution of the other Old World species (sections Sciadanthus, Fraxinus and Ornus). Geographic speciation likely involving dispersal and vicariance could also be inferred from the phylogenetic grouping of geographically close taxa. Molecular dating suggested that the initial divergence of the taxonomical sections occurred during the middle and late Eocene and Oligocene periods, whereas diversification within sections occurred mostly during the late Oligocene and Miocene, which is consistent with the climate warming and accompanying large distributional changes observed during these periods. These various results underline the importance of dispersal and vicariance in promoting geographic speciation and diversification in Fraxinus. Similarities in life history, reproductive and demographic attributes as well as geographical distribution patterns suggest that many other temperate trees should exhibit similar speciation patterns. On the other hand, the observed parallel evolution and reversions in floral morphology would imply a major influence of environmental pressure. The phylogeny obtained and its biogeographical implications should facilitate future studies on the evolution of complex adaptive characters, such as habitat preference, and their possible roles in promoting divergent evolution in trees.

  3. Microcolumn-based speciation analysis of thallium in soil and green cabbage.

    PubMed

    Jia, Yanlong; Xiao, Tangfu; Sun, Jialong; Yang, Fei; Baveye, Philippe C

    2018-07-15

    Thallium (Tl) is a toxic trace metal, whose geochemical behavior and biological effects are closely controlled by its chemical speciation in the environment. However, little tends to be known about this speciation of Tl in soil and plant systems that directly affect the safety of food supplies. In this context, the objective of the present study was to elaborate an efficient method to separate and detect Tl(I) and Tl(III) species for soil and plant samples. This method involves the selective adsorption of Tl(I) on microcolumns filled with immobilized oxine, in the presence of DTPA (diethylenetriaminepentaacetic acid), followed by DTPA-enhanced ultrasonic and heating-induced extraction, coupled with ICP-MS detection. The method was characterized by a LOD of 0.037 μg/L for Tl(I) and 0.18 μg/L for Tl(III) in 10  mL samples. With this method, a second objective of the research was to assess the speciation of Tl in pot and field soils and in green cabbage crops. Experimental results suggest that DTPA extracted Tl was mainly present as Tl(I) in soils (>95%). Tl in hyperaccumulator plant green cabbage was also mainly present as Tl(I) (>90%). With respect to Tl uptake in plants, this study provides direct evidence that green cabbage mainly takes up Tl(I) from soil, and transports it into the aboveground organs. In soils, Tl(III) is reduced to Tl(I) even at the surface where the chemical environment promotes oxidation. This observation is conducive to understanding the mechanisms of Tl isotope fractionation in the soil-plant system. Based on geochemical fraction studies, the reducible fraction was the main source of Tl getting accumulated by plants. These results indicate that the improved analytical method presented in this study offers an economical, simple, fast, and sensitive approach for the separation of Tl species present in soils at trace levels. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. How Does Boiling in the Earth's Crust Influence Metal Speciation and Transport?

    NASA Astrophysics Data System (ADS)

    Kam, K.; Lemke, K.

    2014-12-01

    The presence of large quantities of precious metals, such as gold and copper, near the Earth's surface (upper crust) is commonly attributed to transport in aqueous solution and precipitation upon variations in temperature and pressure. As a consequence, gold exploration is closely linked to solution chemistry, i.e. hydrothermal processes involving aqueous fluids with densities of around unity. However, as crustal fluids buoyantly ascend, boiling produces a coexisting low-density aqueous liquid with fundamentally different physical and chemical properties, and a, most importantly, a high affinity for coinage metals (Heinrich et al., Econ Geol., 1992, 87, 1566). From recent experimental studies of Au (Hurtig and Williams-Jones, 2014, Geochim. Cosmochim. Acta,, 127, 304), we know that metal speciation in this low-density phase differs fundamentally from that observed in bulk solution, clearly, with important implications for Au, and metal speciation in general, transport and ore concentrations processes (these processes would also be operable in industrial geothermal plants given the quite special solvent properties of steam). In brief, this study focuses on the speciation of select metal halides in bulk solution as well as in water vapor, and is driven by our need to understand the solvent properties of around 2.0x109 cubic kilometers of free water (or 2,500 times as much water as stored in all lakes and rivers) present in the Earth's crust. The scope of this study has particular applications in the geothermal and oil industries, as both deal with high temperature low-density aqueous fluids. Understanding how metal halide species behave upon boiling can also provide insight into how metals, such as copper and silver, coat turbine equipment and steam piping in geothermal plants, ultimately rendering these components inoperable. This study will also provide preliminary results from mass spectrometric experiments of transition metal halides, and will be augmented with results from molecular simulations of metal halides that are aimed at characterizing the nature (i.e. relativistic structures and energies) of metal clusters in water vapor.

  5. Speciation genes in plants

    PubMed Central

    Rieseberg, Loren H.; Blackman, Benjamin K.

    2010-01-01

    Background Analyses of speciation genes – genes that contribute to the cessation of gene flow between populations – can offer clues regarding the ecological settings, evolutionary forces and molecular mechanisms that drive the divergence of populations and species. This review discusses the identities and attributes of genes that contribute to reproductive isolation (RI) in plants, compares them with animal speciation genes and investigates what these genes can tell us about speciation. Scope Forty-one candidate speciation genes were identified in the plant literature. Of these, seven contributed to pre-pollination RI, one to post-pollination, prezygotic RI, eight to hybrid inviability, and 25 to hybrid sterility. Genes, gene families and genetic pathways that were frequently found to underlie the evolution of RI in different plant groups include the anthocyanin pathway and its regulators (pollinator isolation), S RNase-SI genes (unilateral incompatibility), disease resistance genes (hybrid necrosis), chimeric mitochondrial genes (cytoplasmic male sterility), and pentatricopeptide repeat family genes (cytoplasmic male sterility). Conclusions The most surprising conclusion from this review is that identities of genes underlying both prezygotic and postzygotic RI are often predictable in a broad sense from the phenotype of the reproductive barrier. Regulatory changes (both cis and trans) dominate the evolution of pre-pollination RI in plants, whereas a mix of regulatory mutations and changes in protein-coding genes underlie intrinsic postzygotic barriers. Also, loss-of-function mutations and copy number variation frequently contribute to RI. Although direct evidence of positive selection on speciation genes is surprisingly scarce in plants, analyses of gene family evolution, along with theoretical considerations, imply an important role for diversifying selection and genetic conflict in the evolution of RI. Unlike in animals, however, most candidate speciation genes in plants exhibit intraspecific polymorphism, consistent with an important role for stochastic forces and/or balancing selection in development of RI in plants. PMID:20576737

  6. Detecting Hidden Diversification Shifts in Models of Trait-Dependent Speciation and Extinction.

    PubMed

    Beaulieu, Jeremy M; O'Meara, Brian C

    2016-07-01

    The distribution of diversity can vary considerably from clade to clade. Attempts to understand these patterns often employ state-dependent speciation and extinction models to determine whether the evolution of a particular novel trait has increased speciation rates and/or decreased extinction rates. It is still unclear, however, whether these models are uncovering important drivers of diversification, or whether they are simply pointing to more complex patterns involving many unmeasured and co-distributed factors. Here we describe an extension to the popular state-dependent speciation and extinction models that specifically accounts for the presence of unmeasured factors that could impact diversification rates estimated for the states of any observed trait, addressing at least one major criticism of BiSSE (Binary State Speciation and Extinction) methods. Specifically, our model, which we refer to as HiSSE (Hidden State Speciation and Extinction), assumes that related to each observed state in the model are "hidden" states that exhibit potentially distinct diversification dynamics and transition rates than the observed states in isolation. We also demonstrate how our model can be used as character-independent diversification models that allow for a complex diversification process that is independent of the evolution of a character. Under rigorous simulation tests and when applied to empirical data, we find that HiSSE performs reasonably well, and can at least detect net diversification rate differences between observed and hidden states and detect when diversification rate differences do not correlate with the observed states. We discuss the remaining issues with state-dependent speciation and extinction models in general, and the important ways in which HiSSE provides a more nuanced understanding of trait-dependent diversification. © The Author(s) 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. CORRELATING METAL SPECIATION IN SOILS

    EPA Science Inventory

    Understanding bioavailability of metals from exposure to contaminated soils is a challenging aspect of environmental research. This presentation will examine three areas of research with respect to metal speciation in soils as it relates to bioavailability: 1) Pb immobilization a...

  8. Aerosol Chemical Speciation Monitor (ACSM) Instrument Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, Thomas B.

    The Aerodyne Aerosol Chemical Speciation Monitor (ACSM) measures particle mass loading and chemical composition in real time for non-refractory sub-micron aerosol particles. The ACSM is designed for long-term unattended deployment and routine monitoring applications.

  9. Speciation in the Derrida-Higgs model with finite genomes and spatial populations

    NASA Astrophysics Data System (ADS)

    de Aguiar, Marcus A. M.

    2017-02-01

    The speciation model proposed by Derrida and Higgs demonstrated that a sexually reproducing population can split into different species in the absence of natural selection or any type of geographic isolation, provided that mating is assortative and the number of genes involved in the process is infinite. Here we revisit this model and simulate it for finite genomes, focusing on the question of how many genes it actually takes to trigger neutral sympatric speciation. We find that, for typical parameters used in the original model, it takes the order of 105 genes. We compare the results with a similar spatially explicit model where about 100 genes suffice for speciation. We show that when the number of genes is small the species that emerge are strongly segregated in space. For a larger number of genes, on the other hand, the spatial structure of the population is less important and the species distribution overlap considerably.

  10. Dispersion, Speciation, and Pollution Assessment of Heavy Metals Pb and Zn in Surface Sediment from Disturbed Ecosystem of Jeneberang Waters

    NASA Astrophysics Data System (ADS)

    Najamuddin; Surahman

    2017-10-01

    Surface sediments were collected from seventeen stations in Jeneberang waters (riverine, estuarine, and marine). Lead (Pb) and zinc (Zn) concentrations were determined by atomic absorption spectrometry, and the speciation of metals was obtained by a sequential extraction procedure. Dispersion of Pb and Zn were found higher in the riverine and marine samples than the estuarine samples. Following speciation, the metals were found similar composition of fraction in the riverine and estuarine samples but any different in the marine samples. The results indicated that there is a change of dispersion pattern and speciation composition of metals due to the presence of the dam that lies at the boundary between the estuary and the river. The toxicity unit was indicated low toxicity level; pollution level was in weakly to moderately polluted while the aquatic environment risk attributed were no risky to light risk.

  11. Ecology, sexual selection and speciation.

    PubMed

    Maan, Martine E; Seehausen, Ole

    2011-06-01

    The spectacular diversity in sexually selected traits among animal taxa has inspired the hypothesis that divergent sexual selection can drive speciation. Unfortunately, speciation biologists often consider sexual selection in isolation from natural selection, even though sexually selected traits evolve in an ecological context: both preferences and traits are often subject to natural selection. Conversely, while behavioural ecologists may address ecological effects on sexual communication, they rarely measure the consequences for population divergence. Herein, we review the empirical literature addressing the mechanisms by which natural selection and sexual selection can interact during speciation. We find that convincing evidence for any of these scenarios is thin. However, the available data strongly support various diversifying effects that emerge from interactions between sexual selection and environmental heterogeneity. We suggest that evaluating the evolutionary consequences of these effects requires a better integration of behavioural, ecological and evolutionary research. © 2011 Blackwell Publishing Ltd/CNRS.

  12. Biogeography and speciation of terrestrial fauna in the south-western Australian biodiversity hotspot.

    PubMed

    Rix, Michael G; Edwards, Danielle L; Byrne, Margaret; Harvey, Mark S; Joseph, Leo; Roberts, J Dale

    2015-08-01

    The south-western land division of Western Australia (SWWA), bordering the temperate Southern and Indian Oceans, is the only global biodiversity hotspot recognised in Australia. Renowned for its extraordinary diversity of endemic plants, and for some of the largest and most botanically significant temperate heathlands and woodlands on Earth, SWWA has long fascinated biogeographers. Its flat, highly weathered topography and the apparent absence of major geographic factors usually implicated in biotic diversification have challenged attempts to explain patterns of biogeography and mechanisms of speciation in the region. Botanical studies have always been central to understanding the biodiversity values of SWWA, although surprisingly few quantitative botanical analyses have allowed for an understanding of historical biogeographic processes in both space and time. Faunistic studies, by contrast, have played little or no role in defining hotspot concepts, despite several decades of accumulating quantitative research on the phylogeny and phylogeography of multiple lineages. In this review we critically analyse datasets with explicit supporting phylogenetic data and estimates of the time since divergence for all available elements of the terrestrial fauna, and compare these datasets to those available for plants. In situ speciation has played more of a role in shaping the south-western Australian fauna than has long been supposed, and has occurred in numerous endemic lineages of freshwater fish, frogs, reptiles, snails and less-vagile arthropods. By contrast, relatively low levels of endemism are found in birds, mammals and highly dispersive insects, and in situ speciation has played a negligible role in generating local endemism in birds and mammals. Quantitative studies provide evidence for at least four mechanisms driving patterns of endemism in south-western Australian animals, including: (i) relictualism of ancient Gondwanan or Pangaean taxa in the High Rainfall Province; (ii) vicariant isolation of lineages west of the Nullarbor divide; (iii) in situ speciation; and (iv) recent population subdivision. From dated quantitative studies we derive four testable models of historical biogeography for animal taxa in SWWA, each explicit in providing a spatial, temporal and topological perspective on patterns of speciation or divergence. For each model we also propose candidate lineages that may be worthy of further study, given what we know of their taxonomy, distributions or relationships. These models formalise four of the strongest patterns seen in many animal taxa from SWWA, although other models are clearly required to explain particular, idiosyncratic patterns. Generating numerous new datasets for suites of co-occurring lineages in SWWA will help refine our understanding of the historical biogeography of the region, highlight gaps in our knowledge, and allow us to derive general postulates from quantitative (rather than qualitative) results. For animals, this process has now begun in earnest, as has the process of taxonomically documenting many of the more diverse invertebrate lineages. The latter remains central to any attempt to appreciate holistically biogeographic patterns and processes in SWWA, and molecular phylogenetic studies should - where possible - also lead to tangible taxonomic outcomes. © 2014 The Authors. Biological Reviews © 2014 Cambridge Philosophical Society.

  13. XANES Spectroscopic Analysis of Phosphorus Speciation in Alum-Amended Poultry Litter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seiter,J.; Staats-Borda, K.; Ginder-Vogel, M.

    2008-01-01

    Aluminum sulfate (alum; Al2(SO4)3{center_dot}14H2O) is used as a chemical treatment of poultry litter to reduce the solubility and release of phosphate, thereby minimizing the impacts on adjacent aquatic ecosystems when poultry litter is land applied as a crop fertilizer. The objective of this study was to determine, through the use of X-ray absorption near edge structure (XANES) spectroscopy and sequential extraction, how alum amendments alter P distribution and solid-state speciation within the poultry litter system. Our results indicate that traditional sequential fractionation procedures may not account for variability in P speciation in heterogeneous animal manures. Analysis shows that NaOH-extracted Pmore » in alum amended litters is predominantly organic ({approx}80%), whereas in the control samples, >60% of NaOH-extracted P was inorganic P. Linear least squares fitting (LLSF) analysis of spectra collected of sequentially extracted litters showed that the P is present in inorganic (P sorbed on Al oxides, calcium phosphates) and organic forms (phytic acid, polyphosphates, and monoesters) in alum- and non-alum-amended poultry litter. When determining land application rates of poultry litter, all of these compounds must be considered, especially organic P. Results of the sequential extractions in conjunction with LLSF suggest that no P species is completely removed by a single extractant. Rather, there is a continuum of removal as extractant strength increases. Overall, alum-amended litters exhibited higher proportions of Al-bound P species and phytic acid, whereas untreated samples contained Ca-P minerals and organic P compounds. This study provides in situ information about P speciation in the poultry litter solid and about P availability in alum- and non-alum-treated poultry litter that will dictate P losses to ground and surface water systems.« less

  14. Distribution of Cd, Pb, Zn and Cu and their chemical speciations in soils from a peri-smelter area in northeast China

    NASA Astrophysics Data System (ADS)

    Du, Ping; Xue, Nandong; Liu, Li; Li, Fasheng

    2008-07-01

    An exploratory study on soil contamination of heavy metals was carried out surrounding Huludao zinc smelter in Liaoning province, China. The distribution of total heavy metals and their chemical speciations were investigated. The correlations between heavy metal speciations and soil pH values in corresponding sites were also analyzed. In general, Cd, Zn, Pb, Cu and As presented a significant contamination in the area near the smelter, comparied with Environmental Quality Standards for Soils in China. The geoaccumulation index showed the degree of contamination: Cd > Zn > Pb > Cu > As. There was no obvious pollution of Cr and Ni in the studied area. The speciation analysis showed that the dominant fraction of Cd and Zn was the acid soluble fraction, and the second was the residual fraction. Pb was mostly associated with the residual fraction, which constituted more than 50% of total concentration in all samples. Cu in residual fraction accounted for a high percentage (40-80%) of total concentration, and the proportion of Cu in the oxidizable fraction is higher than that of other metals. The distribution pattern of Pb and Zn was obviously affected by soil pH. It seemed that Pb and Zn content in acid solution fraction increased with increasing soil pH values, while Cd content in acid soluble fraction accounted for more proportion in neutral and alkaline groups than acidic one. The fraction distribution patterns of Cu in three pH groups were very similar and independent of soil pH values. And the residual fraction of Cu took a predominant part (50%) of the total content.

  15. HPLC-ICP-MS speciation analysis and risk assessment of arsenic in Cordyceps sinensis.

    PubMed

    Zuo, Tian-Tian; Li, Yao-Lei; Jin, Hong-Yu; Gao, Fei; Wang, Qi; Wang, Ya-Dan; Ma, Shuang-Cheng

    2018-01-01

    Cordyceps sinensis , one of the most valued traditional herbal medicines in China, contains high amount of arsenic. Considering the adverse health effects of arsenic, this is of particular concern. The aim of this study was to determine and analyze arsenic speciation in C. sinensis , and to measure the associated human health risks. We used microwave extraction and high-performance liquid chromatography coupled with inductively coupled plasma mass spectrometry to determine and analyze the arsenic content in C. sinensis , and measured the associated human health risks according to the hazard index (HI), lifetime cancer risk (CR), and target hazard quotient (THQ). The main arsenic speciation in C. sinensis were not the four organic arsenic compounds, including dimethyl arsenic, monomethyl arsenic, arsenobetaine, and arsenocholine, but comprised inorganic arsenic and other unknown risk arsenic compounds. HI scores indicated that the risk of C. sinensis was acceptable. CR results suggested that the cancer risk was greater than the acceptable lifetime risk of 10 -5 , even at low exposure levels. THQ results indicated that at the exposure level < 2.0 months/year, the arsenic was not likely to harm human health during a lifetime; however, if the exposure rate was > 3.0 months/year, the systemic effects of the arsenic in C. sinensis was of great concern. The arsenic in C. sinensis might not be free of risks. The suggested C. sinensis consumption rate of 2.0 months/year provided important insights into the ways by which to minimize potential health risks. Our study not only played the role of "cast a brick to attract jade" by which to analyze arsenic speciation in C. sinensis but also offered a promising strategy of risk assessment for harmful residues in traditional herbal medicines.

  16. Phenotypic disparity in Iberian short-horned grasshoppers (Acrididae): the role of ecology and phylogeny.

    PubMed

    García-Navas, Vicente; Noguerales, Víctor; Cordero, Pedro J; Ortego, Joaquín

    2017-05-04

    The combination of model-based comparative techniques, disparity analyses and ecomorphological correlations constitutes a powerful method to gain insight into the evolutionary mechanisms that shape morphological variation and speciation processes. In this study, we used a time-calibrated phylogeny of 70 Iberian species of short-horned grasshoppers (Acrididae) to test for patterns of morphological disparity in relation to their ecology and phylogenetic history. Specifically, we examined the role of substrate type and level of ecological specialization in driving different aspects of morphological evolution (locomotory traits, chemosensitive organs and cranial morphology) in this recent radiation. We found a bimodal distribution of locomotory attributes corresponding to the two main substrate type guilds (plant vs. ground); plant-perching species tend to exhibit larger wings and thicker femora than those that remain on the ground. This suggests that life form (i.e., substrate type) is an important driving force in the evolution of morphological traits in short-horned grasshoppers, irrespective of ancestry. Substrate type and ecological specialization had no significant influence on head shape, a trait that showed a strong phylogenetic conservatism. Finally, we also found a marginal significant association between the length of antennae and the level of ecological specialization, suggesting that the development of sensory organs may be favored in specialist species. Our results provide evidence that even in taxonomic groups showing limited morphological and ecological disparity, natural selection seems to play a more important role than genetic drift in driving the speciation process. Overall, this study suggests that morphostatic radiations should not necessarily be considered as "non-adaptive" and that the speciation process can bind both adaptive divergence mechanisms and neutral speciation processes related with allopatric and/or reproductive isolation.

  17. Metal speciation in landfill leachates with a focus on the influence of organic matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Claret, Francis, E-mail: f.claret@brgm.fr; Tournassat, Christophe; Crouzet, Catherine

    Highlights: > This study characterises the heavy-metal content in leachates collected from eight landfills in France. > Most of the metals are concentrated in the <30 kDa fraction, while Pb, Cu and Cd are associated with larger particles. > Metal complexation with OM is not sufficient to explain apparent supersaturation of metals with sulphide minerals. - Abstract: This study characterises the heavy-metal content in leachates collected from eight landfills in France. In order to identify heavy metal occurrence in the different size fractions of leachates, a cascade filtration protocol was applied directly in the field, under a nitrogen gas atmospheremore » to avoid metal oxidation. The results of analyses performed on the leachates suggest that most of the metals are concentrated in the <30 kDa fraction, while lead, copper and cadmium show an association with larger particles. Initial speciation calculations, without considering metal association with organic matter, suggest that leachate concentrations in lead, copper, nickel and zinc are super-saturated with respect to sulphur phases. Speciation calculations that account for metal complexation with organic matter, considered as fulvic acids based on C1(s) NEXAFS spectroscopy, show that this mechanism is not sufficient to explain such deviation from equilibrium conditions. It is therefore hypothesized that the deviation results also from the influence of biological activity on the kinetics of mineral phase precipitation and dissolution, thus providing a dynamic system. The results of chemical analyses of sampled fluids are compared with speciation calculations and some implications for the assessment of metal mobility and natural attenuation in a context of landfill risk assessment are discussed.« less

  18. Sex chromosomes and speciation in birds and other ZW systems.

    PubMed

    Irwin, Darren E

    2018-02-14

    Theory and empirical patterns suggest a disproportionate role for sex chromosomes in evolution and speciation. Focusing on ZW sex determination (females ZW, males ZZ; the system in birds, many snakes, and lepidopterans), I review how evolutionary dynamics are expected to differ between the Z, W and the autosomes, discuss how these differences may lead to a greater role of the sex chromosomes in speciation and use data from birds to compare relative evolutionary rates of sex chromosomes and autosomes. Neutral mutations, partially or completely recessive beneficial mutations, and deleterious mutations under many conditions are expected to accumulate faster on the Z than on autosomes. Sexually antagonistic polymorphisms are expected to arise on the Z, raising the possibility of the spread of preference alleles. The faster accumulation of many types of mutations and the potential for complex evolutionary dynamics of sexually antagonistic traits and preferences contribute to a role for the Z chromosome in speciation. A quantitative comparison among a wide variety of bird species shows that the Z tends to have less within-population diversity and greater between-species differentiation than the autosomes, likely due to both adaptive evolution and a greater rate of fixation of deleterious alleles. The W chromosome also shows strong potential to be involved in speciation, in part because of its co-inheritance with the mitochondrial genome. While theory and empirical evidence suggest a disproportionate role for sex chromosomes in speciation, the importance of sex chromosomes is moderated by their small size compared to the whole genome. © 2018 John Wiley & Sons Ltd.

  19. Interpreting the genomic landscape of speciation: a road map for finding barriers to gene flow.

    PubMed

    Ravinet, M; Faria, R; Butlin, R K; Galindo, J; Bierne, N; Rafajlović, M; Noor, M A F; Mehlig, B; Westram, A M

    2017-08-01

    Speciation, the evolution of reproductive isolation among populations, is continuous, complex, and involves multiple, interacting barriers. Until it is complete, the effects of this process vary along the genome and can lead to a heterogeneous genomic landscape with peaks and troughs of differentiation and divergence. When gene flow occurs during speciation, barriers restricting gene flow locally in the genome lead to patterns of heterogeneity. However, genomic heterogeneity can also be produced or modified by variation in factors such as background selection and selective sweeps, recombination and mutation rate variation, and heterogeneous gene density. Extracting the effects of gene flow, divergent selection and reproductive isolation from such modifying factors presents a major challenge to speciation genomics. We argue one of the principal aims of the field is to identify the barrier loci involved in limiting gene flow. We first summarize the expected signatures of selection at barrier loci, at the genomic regions linked to them and across the entire genome. We then discuss the modifying factors that complicate the interpretation of the observed genomic landscape. Finally, we end with a road map for future speciation research: a proposal for how to account for these modifying factors and to progress towards understanding the nature of barrier loci. Despite the difficulties of interpreting empirical data, we argue that the availability of promising technical and analytical methods will shed further light on the important roles that gene flow and divergent selection have in shaping the genomic landscape of speciation. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  20. SPECIATED VOC EMISSIONS FROM MODERN GDI LIGHT DUTY VEHICLES

    EPA Science Inventory

    Chassis dynamometer emissions testing was conducted to characterize speciated volatile organic compounds (VOCs), including mobile source air toxics (MSATs) and ozone precursors, in exhaust emissions from three modern gasoline direct injection (GDI) light-duty vehicles. Each GDI v...

  1. Speciation And Bioavailability Of Zinc In Amended Sediments

    EPA Science Inventory

    The speciation and bioavailability of zinc (Zn) in smelter-contaminated sediments was investigated as a function of phosphate (apatite) and organic amendment loading rate. Zinc species identified in preamendment sediment were zinc hydroxide-like phases, sphalerite, and zinc sorbe...

  2. NICKEL SPECIATION OF RESIDUAL OIL ASH

    EPA Science Inventory

    EPA GRANT NUMBER: R827649C002
    Title: Nickel Speciation Of Residual Oil Ash
    Investigators: Kevin C. Galbreath, John Won, Frank E. Huggins, Gerald P. Huffman, Christopher J. Zygarlicke, Donald L. Toman
    Institution: University of North Dakota<...

  3. CORRELATING METAL SPECIATION IN SOILS TO RISK

    EPA Science Inventory

    Understanding bioavailability of metals from exposure to contaminated soils is a challenging aspect of environmental research. This presentation will examine three areas of research with respect to metal speciation in soils as it relates to bioavailability: 1) Pb immobilization a...

  4. Special Speciation

    ERIC Educational Resources Information Center

    Countryman, Lyn L.; Maroo, Jill D.

    2015-01-01

    Considerable anecdotal evidence indicates that some of the most difficult concepts that both high school and undergraduate elementary-education students struggle with are those surrounding evolutionary principles, especially speciation. It's no wonder that entry-level biology students are confused, when biologists have multiple definitions of…

  5. Bioleaching combined brine leaching of heavy metals from lead-zinc mine tailings: Transformations during the leaching process.

    PubMed

    Ye, Maoyou; Yan, Pingfang; Sun, Shuiyu; Han, Dajian; Xiao, Xiao; Zheng, Li; Huang, Shaosong; Chen, Yun; Zhuang, Shengwei

    2017-02-01

    During the process of bioleaching, lead (Pb) recovery is low. This low recovery is caused by a problem with the bioleaching technique. This research investigated the bioleaching combination of bioleaching with brine leaching to remove heavy metals from lead-zinc mine tailings. The impact of different parameters were studied, including the effects of initial pH (1.5-3.0) and solid concentration (5-20%) for bioleaching, and the effects of sodium chloride (NaCl) concentration (10-200 g/L) and temperature (25 and 50 °C) for brine leaching. Complementary characterization experiments (Sequential extraction, X-ray diffractometer (XRD), scanning electronic microscope (SEM)) were also conducted to explore the transformation of tailings during the leaching process. The results showed that bioleaching efficiency was significantly influenced by initial pH and solid concentration. Approximately 85.45% of iron (Fe), 4.12% of Pb, and 97.85% of zinc (Zn) were recovered through bioleaching in optimum conditions. Increasing the brine concentration and temperature promoted lead recovery. Lead was recovered from the bioleaching residues at a rate of 94.70% at 25 °C and at a rate of 99.46% at 50 °C when the NaCl concentration was 150 g/L. The study showed that bioleaching significantly changed the speciation of heavy metals and the formation and surface morphology of tailings. The metals were mainly bound in stable fractions after bioleaching. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Bio-precipitation of uranium by two bacterial isolates recovered from extreme environments as estimated by potentiometric titration, TEM and X-ray absorption spectroscopic analyses.

    PubMed

    Merroun, Mohamed L; Nedelkova, Marta; Ojeda, Jesus J; Reitz, Thomas; Fernández, Margarita López; Arias, José M; Romero-González, María; Selenska-Pobell, Sonja

    2011-12-15

    This work describes the mechanisms of uranium biomineralization at acidic conditions by Bacillus sphaericus JG-7B and Sphingomonas sp. S15-S1 both recovered from extreme environments. The U-bacterial interaction experiments were performed at low pH values (2.0-4.5) where the uranium aqueous speciation is dominated by highly mobile uranyl ions. X-ray absorption spectroscopy (XAS) showed that the cells of the studied strains precipitated uranium at pH 3.0 and 4.5 as a uranium phosphate mineral phase belonging to the meta-autunite group. Transmission electron microscopic (TEM) analyses showed strain-specific localization of the uranium precipitates. In the case of B. sphaericus JG-7B, the U(VI) precipitate was bound to the cell wall. Whereas for Sphingomonas sp. S15-S1, the U(VI) precipitates were observed both on the cell surface and intracellularly. The observed U(VI) biomineralization was associated with the activity of indigenous acid phosphatase detected at these pH values in the absence of an organic phosphate substrate. The biomineralization of uranium was not observed at pH 2.0, and U(VI) formed complexes with organophosphate ligands from the cells. This study increases the number of bacterial strains that have been demonstrated to precipitate uranium phosphates at acidic conditions via the activity of acid phosphatase. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Clustering and phase transitions on a neutral landscape

    NASA Astrophysics Data System (ADS)

    Scott, Adam D.; King, Dawn M.; Marić, Nevena; Bahar, Sonya

    2013-06-01

    Recent computational studies have shown that speciation can occur under neutral conditions, i.e., when the simulated organisms all have identical fitness. These works bear comparison with mathematical studies of clustering on neutral landscapes in the context of branching and coalescing random walks. Here, we show that sympatric clustering/speciation can occur on a neutral landscape whose dimensions specify only the simulated organisms’ phenotypes. We demonstrate that clustering occurs not only in the case of assortative mating, but also in the case of asexual fission; it is not observed in the control case of random mating. We find that the population size and the number of clusters undergo a second-order non-equilibrium phase transition as the maximum mutation size is varied.

  8. Uranium speciation in acid waste-weathered sediments: The role of aging and phosphate amendments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perdrial, Nicolas; Vázquez-Ortega, Angélica; Wang, Guohui

    Uranium speciation and lability are strongly coupled to mineral transformations in silicate sediments, particularly for sediments subjected to weathering in acidic, high-level radioactive waste, as occurred at the Department of Energy's Hanford (WA) site. In this study, uncontaminated Hanford sediments were reacted for 365 days with acidic (pH 3), uranium-bearing waste solutions, with and without phosphate in batch experiments, prior to detailed characterizations using electron microscopy, x-ray diffraction and x-ray absorption spectroscopy. In PO(4)(-)reactant free systems, uranium speciation was controlled initially by precipitation of compreignacite [K-2(UO2)(6)O-4(OH)(6)center dot 8H(2)O]-and becquerelite [Ca(UO2)(6)O-4(OH)(6)center dot 8H(2)O]-like species. Subsequent further removal of uranium coincided withmore » that of Si and accumulation of boltwoodite, [(K, Na)(UO2)(2)O-4(HSiO4)(2)center dot 0.5(H2O)]-like species of uranium at 180 and 365 days. When present, PO4 exerted a direct and strong control over U speciation. The detection of meta-ankoleite, [K-2(UO2)(2)O-4(PO4)(2)center dot 6H(2)O] at all reaction times when U was present emphasizes the importance of dissolved phosphate as a control on U speciation. Here, meta-ankoleite appears well crystallized and when it occurs as the principal product of sediment weathering, its low solubility is expected to limit dissolved U(VI) concentrations in groundwater. Although boltwoodite solubility is also low, it is formed more slowly (and only when PO4 is absent), after initial precipitation of more soluble, less crystalline uranyl hydroxides. In the context of Hanford crib waste our results suggest that with PO4 present, nearly all uranium would have precipitated in the upper soil.« less

  9. Partitioning of Dissolved Metals (Fe, Mn, Cu, Cd, Zn, Ni, and Pb) into Soluble and Colloidal Fractions in Continental Shelf and Offshore Waters, Northern California

    NASA Astrophysics Data System (ADS)

    Fitzsimmons, J. N.; Parker, C.; Sherrell, R. M.

    2016-02-01

    The physicochemical speciation of trace metals in seawater influences their cycling as essential micronutrients for microorganisms or as tracers of anthropogenic influences on the marine environment. While chemical speciation affects lability, the size of metal complexes influences their ability to be accessed biologically and also influences their fate in the aggregation pathway to marine particles. In this study, we show that multiple trace metals in shelf and open ocean waters off northern California (IRN-BRU cruise, July 2014) have colloidal-sized components. Colloidal fractions were operationally defined using two ultrafiltration methods: a 0.02 µm Anopore membrane and a 10 kDa ( 0.003 µm) cross flow filtration (CFF) system. Together these two methods distinguished small (0.003 - 0.02 µm) and large (0.02 µm - 0.2 µm) colloids. As has been found previously for seawater in other ocean regimes, dissolved Fe had a broad size distribution with 50% soluble (<10 kDa) complexes and both small and large colloidal species. Dissolved Mn had no measurable colloidal component, consistent with its predicted chemical speciation as free Mn(II). Dissolved Cu, which like Fe is thought to be nearly fully organically bound in seawater, was only 25% colloidal, and these colloids were all small. Surprisingly Cd, Ni, and Pb also showed colloidal components (8-20%, 25-40%, and 10-50%) despite their hypothesized low organic speciation. Zn and Pb were nearly completely sorbed onto the Anopore membrane, making CFF the only viable ultrafiltration method for those elements. Zn suffered incomplete recovery ( 50-75%) through the CFF system but showed 30-85% colloidal contribution; thus, verifying a Zn colloidal phase with these methods is challenging. Conclusions will reveal links between the physical and chemical speciation for these metals and what role these metal colloids might have on trace metal exchange between the ocean margin and offshore waters.

  10. Cytogenetic and symbiont analysis of five members of the B. dorsalis complex (Diptera, Tephritidae): no evidence of chromosomal or symbiont-based speciation events

    PubMed Central

    Augustinos, Antonios A.; Drosopoulou, Elena; Gariou-Papalexiou, Aggeliki; Asimakis, Elias D.; Cáceres, Carlos; Tsiamis, George; Bourtzis, Kostas; Penelope Mavragani-Tsipidou; Zacharopoulou, Antigone

    2015-01-01

    Abstract The Bactrocera dorsalis species complex, currently comprising about 90 entities has received much attention. During the last decades, considerable effort has been devoted to delimiting the species of the complex. This information is of great importance for agriculture and world trade, since the complex harbours several pest species of major economic importance and other species that could evolve into global threats. Speciation in Diptera is usually accompanied by chromosomal rearrangements, particularly inversions that are assumed to reduce/eliminate gene flow. Other candidates currently receiving much attention regarding their possible involvement in speciation are reproductive symbionts, such as Wolbachia, Spiroplasma, Arsenophonus, Rickettsia and Cardinium. Such symbionts tend to spread quickly through natural populations and can cause a variety of phenotypes that promote pre-mating and/or post-mating isolation and, in addition, can affect the biology, physiology, ecology and evolution of their insect hosts in various ways. Considering all these aspects, we present: (a) a summary of the recently gained knowledge on the cytogenetics of five members of the Bactrocera dorsalis complex, namely Bactrocera dorsalis s.s., Bactrocera invadens, Bactrocera philippinensis, Bactrocera papayae and Bactrocera carambolae, supplemented by additional data from a Bactrocera dorsalis s.s. colony from China, as well as by a cytogenetic comparison between the dorsalis complex and the genetically close species, Bactrocera tryoni, and, (b) a reproductive symbiont screening of 18 different colonized populations of these five taxa. Our analysis did not reveal any chromosomal rearrangements that could differentiate among them. Moreover, screening for reproductive symbionts was negative for all colonies derived from different geographic origins and/or hosts. There are many different factors that can lead to speciation, and our data do not support chromosomal and/or symbiotic-based speciation phenomena in the taxa under study. PMID:26798263

  11. Are sympatrically speciating Midas cichlid fish special? Patterns of morphological and genetic variation in the closely related species Archocentrus centrarchus.

    PubMed

    Fruciano, Carmelo; Franchini, Paolo; Raffini, Francesca; Fan, Shaohua; Meyer, Axel

    2016-06-01

    Established empirical cases of sympatric speciation are scarce, although there is an increasing consensus that sympatric speciation might be more common than previously thought. Midas cichlid fish are one of the few substantiated cases of sympatric speciation, and they formed repeated radiations in crater lakes. In contrast, in the same environment, such radiation patterns have not been observed in other species of cichlids and other families of fish. We analyze morphological and genetic variation in a cichlid species (Archocentrus centrarchus) that co-inhabits several crater lakes with the Midas species complex. In particular, we analyze variation in body and pharyngeal jaw shape (two ecologically important traits in sympatrically divergent Midas cichlids) and relate that to genetic variation in mitochondrial control region and microsatellites. Using these four datasets, we analyze variation between and within two Nicaraguan lakes: a crater lake where multiple Midas cichlids have been described and a lake where the source population lives. We do not observe any within-lake clustering consistent across morphological traits and genetic markers, suggesting the absence of sympatric divergence in A. centrarchus. Genetic differentiation between lakes was low and morphological divergence absent. Such morphological similarity between lakes is found not only in average morphology, but also when analyzing covariation between traits and degree of morphospace occupation. A combined analysis of the mitochondrial control region in A. centrarchus and Midas cichlids suggests that a difference between lineages in the timing of crater lake colonization cannot be invoked as an explanation for the difference in their levels of diversification. In light of our results, A. centrarchus represents the ideal candidate to study the genomic differences between these two lineages that might explain why some lineages are more likely to speciate and diverge in sympatry than others.

  12. Phylogeography, colonization and population history of the Midas cichlid species complex (Amphilophus spp.) in the Nicaraguan crater lakes.

    PubMed

    Barluenga, Marta; Meyer, Axel

    2010-10-26

    Elucidation of the mechanisms driving speciation requires detailed knowledge about the phylogenetic relationships and phylogeography of the incipient species within their entire ranges as well as their colonization history. The Midas cichlid species complex Amphilophus spp. has been proven to be a powerful model system for the study of ecological specialization, sexual selection and the mechanisms of sympatric speciation. Here we present a comprehensive and integrative phylogeographic analysis of the complete Midas Cichlid species complex in Nicaragua (> 2000 individuals) covering the entire distributional range, using two types of molecular markers (the mitochondrial DNA control region and 15 microsatellites). We investigated the majority of known lake populations of this species complex and reconstructed their colonization history in order to distinguish between alternative speciation scenarios. We found that the large lakes contain older and more diverse Midas Cichlid populations, while all crater lakes hold younger and genetically less variable species assemblages. The large lakes appear to have repeatedly acted as source populations for all crater lakes, and our data indicate that faunal exchange among crater lakes is extremely unlikely. Despite their very recent (often only a few thousand years old) and common origin from the two large Nicaraguan lakes, all crater lake Midas Cichlid radiations underwent independent, but parallel, evolution, and comprise distinct genetic units. Indeed several of these crater lakes contain multiple genetically distinct incipient species that most likely arose through sympatric speciation. Several crater lake radiations can be traced back to a single ancestral line, but some appear to have more than one founding lineage. The timing of the colonization(s) of each crater lake differs, although most of them occurred more (probably much more) recently than 20,000 years ago. The genetic differentiation of the crater lake populations is directly related to the number of founding lineages, but independent of the timing of colonization. Interestingly, levels of phenotypic differentiation, and speciation events, appeared independent of both factors.

  13. Biotic immigration events, speciation, and the accumulation of biodiversity in the fossil record

    NASA Astrophysics Data System (ADS)

    Stigall, Alycia L.; Bauer, Jennifer E.; Lam, Adriane R.; Wright, David F.

    2017-01-01

    Biotic Immigration Events (BIMEs) record the large-scale dispersal of taxa from one biogeographic area to another and have significantly impacted biodiversity throughout geologic time. BIMEs associated with biodiversity increases have been linked to ecologic and evolutionary processes including niche partitioning, species packing, and higher speciation rates. Yet substantial biodiversity decline has also been documented following BIMEs due to elevated extinction and/or reduced speciation rates. In this review, we develop a conceptual model for biodiversity accumulation that links BIMEs and geographic isolation with local (α) diversity, regional (β) diversity, and global (γ) diversity metrics. Within the model, BIME intervals are characterized by colonization of existing species within new geographic regions and a lack of successful speciation events. Thus, there is no change in γ-diversity, and α-diversity increases at the cost of β-diversity. An interval of regional isolation follows in which lineage splitting results in successful speciation events and diversity increases across all three metrics. Alternation of these two regimes can result in substantial biodiversity accumulation. We tested this conceptual model using a series of case studies from the paleontological record. We primarily focus on two intervals during the Middle through Late Ordovician Period (470-458 Ma): the globally pervasive BIMEs during the Great Ordovician Biodiversification Event (GOBE) and a regional BIME, the Richmondian Invasion. We further test the conceptual model by examining the Great Devonian Interchange, Neogene mollusk migrations and diversification, and the Great American Biotic Interchange. Paleontological data accord well with model predictions. Constraining the mechanisms of biodiversity accumulation provides context for conservation biology. Because α-, β-, and γ-diversity are semi-independent, different techniques should be considered for sustaining various diversity partitions. Maintaining natural migration routes and population sizes among isolated regions are vital to preserving both extant biodiversity and biogeographic pathways requisite for future diversity generation.

  14. Variability of the health effects of crystalline silica: Fe speciation in industrial quartz reagents and suspended dusts—insights from XAS spectroscopy

    NASA Astrophysics Data System (ADS)

    Di Benedetto, Francesco; D'Acapito, Francesco; Capacci, Fabio; Fornaciai, Gabriele; Innocenti, Massimo; Montegrossi, Giordano; Oberhauser, Werner; Pardi, Luca A.; Romanelli, Maurizio

    2014-03-01

    We investigated the speciation of Fe in bulk and in suspended respirable quartz dusts coming from ceramic and iron-casting industrial processes via X-ray absorption spectroscopy, with the aim of contributing to a better understanding of the variability of crystalline silica toxicity. Four different bulk industrial quartz powders, nominally pure quartz samples with Fe contents below 200 ppm, and three respirable dusts filters were selected. Fe speciation was determined in all samples through a coupled study of the X-ray absorption near-edge structure and extended X-ray absorption fine structure regions, operating at the Fe-K edge. Fe speciation revealed common features at the beginning of the different production processes, whereas significant differences were observed on both respirable dusts and bulk dusts exiting from the production process. Namely, a common pollution of the raw quartz dusts by elemental Fe was evidenced and attributed to residuals of the industrial production of quartz materials. Moreover, the respirable samples indicated that reactivity occurs after the suspension of the powders in air. The gravitational selection during the particle suspension consistently allowed us to clearly discriminate between suspended and bulk dusts. On the basis of the obtained results, we provide an apparent spectroscopic discrimination between the raw materials used in the considered industrial processes, and those that are effectively inhaled by workers. In particular, an amorphous FeIII oxide, with an unsaturated coordination sphere, can be related to silica reactivity (and health consequences).

  15. Voltammetric determination of arsenic in high iron and manganese groundwaters.

    PubMed

    Gibbon-Walsh, Kristoff; Salaün, Pascal; Uroic, M Kalle; Feldmann, Joerg; McArthur, John M; van den Berg, Constant M G

    2011-09-15

    Determination of the speciation of arsenic in groundwaters, using cathodic stripping voltammetry (CSV), is severely hampered by high levels of iron and manganese. Experiments showed that the interference is eliminated by addition of EDTA, making it possible to determine the arsenic speciation on-site by CSV. This work presents the CSV method to determine As(III) in high-iron or -manganese groundwaters in the field with only minor sample treatment. The method was field-tested in West-Bengal (India) on a series of groundwater samples. Total arsenic was subsequently determined after acidification to pH 1 by anodic stripping voltammetry (ASV). Comparative measurements by ICP-MS as reference method for total As, and by HPLC for its speciation, were used to corroborate the field data in stored samples. Most of the arsenic (78±0.02%) was found to occur as inorganic As(III) in the freshly collected waters, in accordance with previous studies. The data shows that the modified on-site CSV method for As(III) is a good measure of water contamination with As. The EDTA was also found to be effective in stabilising the arsenic speciation for longterm sample storage at room temperature. Without sample preservation, in water exposed to air and sunlight, the As(III) was found to become oxidised to As(V), and Fe(II) oxidised to Fe(III), removing the As(V) by adsorption on precipitating Fe(III)-hydroxides within a few hours. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. A world-wide perspective on crucifer speciation and evolution: phylogenetics, biogeography and trait evolution in tribe Arabideae

    PubMed Central

    Karl, Robert; Koch, Marcus A.

    2013-01-01

    Background and Aims Tribe Arabideae are the most species-rich monophyletic lineage in Brassicaceae. More than 500 species are distributed in the majority of mountain and alpine regions worldwide. This study provides the first comprehensive phylogenetic analysis for the species assemblage and tests for association of trait and characters, providing the first explanations for the enormous species radiation since the mid Miocene. Methods Phylogenetic analyses of DNA sequence variation of nuclear encoded loci and plastid DNA are used to unravel a reliable phylogenetic tree. Trait and ancestral area reconstructions were performed and lineage-specific diversification rates were calculated to explain various radiations in the last 15 Myr in space and time. Key Results A well-resolved phylogenetic tree demonstrates the paraphyly of the genus Arabis and a new systematic concept is established. Initially, multiple radiations involved a split between lowland annuals and mountain/alpine perennial sister species. Subsequently, increased speciation rates occur in the perennial lineages. The centre of origin of tribe Arabideae is most likely the Irano-Turanian region from which the various clades colonized the temperate mountain and alpine regions of the world. Conclusions Mid Miocene early diversification started with increased speciation rates due to the emergence of various annual lineages. Subsequent radiations were mostly driven by diversification within perennial species during the Pliocene, but increased speciation rates also occurred during that epoch. Taxonomic concepts in Arabis are still in need of a major taxonomic revision to define monophyletic groups. PMID:23904444

  17. Applications of time-resolved laser fluorescence spectroscopy to the environmental biogeochemistry of actinides.

    PubMed

    Collins, Richard N; Saito, Takumi; Aoyagi, Noboru; Payne, Timothy E; Kimura, Takaumi; Waite, T David

    2011-01-01

    Time-resolved laser fluorescence spectroscopy (TRLFS) is a useful means of identifying certain actinide species resulting from various biogeochemical processes. In general, TRLFS differentiates chemical species of a fluorescent metal ion through analysis of different excitation and emission spectra and decay lifetimes. Although this spectroscopic technique has largely been applied to the analysis of actinide and lanthanide ions having fluorescence decay lifetimes on the order of microseconds, such as UO , Cm, and Eu, continuing development of ultra-fast and cryogenic TRLFS systems offers the possibility to obtain speciation information on metal ions having room-temperature fluorescence decay lifetimes on the order of nanoseconds to picoseconds. The main advantage of TRLFS over other advanced spectroscopic techniques is the ability to determine in situ metal speciation at environmentally relevant micromolar to picomolar concentrations. In the context of environmental biogeochemistry, TRLFS has principally been applied to studies of (i) metal speciation in aqueous and solid phases and (ii) the coordination environment of metal ions sorbed to mineral and bacterial surfaces. In this review, the principles of TRLFS are described, and the literature reporting the application of this methodology to the speciation of actinides in systems of biogeochemical interest is assessed. Significant developments in TRLFS methodology and advanced data analysis are highlighted, and we outline how these developments have the potential to further our mechanistic understanding of actinide biogeochemistry. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.

  18. Mechanistic study of the influence of pyrolysis conditions on potassium speciation in biochar "preparation-application" process.

    PubMed

    Tan, Zhongxin; Liu, Liyun; Zhang, Limei; Huang, Qiaoyun

    2017-12-01

    Biochar samples produced from rice straw by pyrolysis at different temperatures (400°C and 800°C) and under different atmospheres (N 2 and CO 2 ) were applied to lettuce growth in a 'preparation-application' system. The conversion of potassium in the prepared biochar and the effect of the temperature used for pyrolysis on the bioavailability of potassium in the biochar were investigated. Root samples from lettuce plants grown with and without application of biochar were assayed by X-ray photoelectron spectroscopy (XPS). The optimal conditions for preparation of biochar to achieve the maximum bioavailability of potassium (i.e. for returning biochar to soil) were thus determined. Complex-K, a stable speciation of potassium in rice straw, was transformed into potassium sulfate, potassium nitrate, potassium nitrite, and potassium chloride after oxygen-limited pyrolysis. The aforementioned ionic-state potassium species can be directly absorbed and used by plants. Decomposition of the stable speciation of potassium during the pyrolysis process was more effective at higher temperature, whereas the pyrolysis atmosphere (CO 2 and N 2 ) had little effect on the quality of the biochar. Based on the potassium speciation in the biochar, the preparation cost, and the plant growth and rigor after the application of returning biochar to soil, 400°C and CO 2 atmosphere were the most appropriate conditions for preparation of biochar. Copyright © 2017. Published by Elsevier B.V.

  19. The Role of microRNAs in the Repeated Parallel Diversification of Lineages of Midas Cichlid Fish from Nicaragua

    PubMed Central

    Franchini, Paolo; Xiong, Peiwen; Fruciano, Carmelo; Meyer, Axel

    2016-01-01

    Cichlid fishes are an ideal model system for studying biological diversification because they provide textbook examples of rapid speciation. To date, there has been little focus on the role of gene regulation during cichlid speciation. However, in recent years, gene regulation has been recognized as a powerful force linking diversification in gene function to speciation. Here, we investigated the potential role of miRNA regulation in the diversification of six cichlid species of the Midas cichlid lineage (Amphilophus spp.) inhabiting the Nicaraguan crater lakes. Using several genomic resources, we inferred 236 Midas miRNA genes that were used to predict the miRNA target sites on 8,232 Midas 3′-UTRs. Using population genomic calculations of SNP diversity, we found the miRNA genes to be more conserved than protein coding genes. In contrast to what has been observed in other cichlid fish, but similar to what has been typically found in other groups, we observed genomic signatures of purifying selection on the miRNA targets by comparing these sites with the less conserved nontarget portion of the 3′-UTRs. However, in one species pair that has putatively speciated sympatrically in crater Lake Apoyo, we recovered a different pattern of relaxed purifying selection and high genetic divergence at miRNA targets. Our results suggest that sequence evolution at miRNA binding sites could be a critical genomic mechanism contributing to the rapid phenotypic evolution of Midas cichlids. PMID:27189980

  20. Genetic structure and bio-climatic modeling support allopatric over parapatric speciation along a latitudinal gradient.

    PubMed

    Rossetto, Maurizio; Allen, Chris B; Thurlby, Katie A G; Weston, Peter H; Milner, Melita L

    2012-08-20

    Four of the five species of Telopea (Proteaceae) are distributed in a latitudinal replacement pattern on the south-eastern Australian mainland. In similar circumstances, a simple allopatric speciation model that identifies the origins of genetic isolation within temporal geographic separation is considered as the default model. However, secondary contact between differentiated lineages can result in similar distributional patterns to those arising from a process of parapatric speciation (where gene flow between lineages remains uninterrupted during differentiation). Our aim was to use the characteristic distributional patterns in Telopea to test whether it reflected the evolutionary models of allopatric or parapatric speciation. Using a combination of genetic evidence and environmental niche modelling, we focused on three main questions: do currently described geographic borders coincide with genetic and environmental boundaries; are there hybrid zones in areas of secondary contact between closely related species; did species distributions contract during the last glacial maximum resulting in distributional gaps even where overlap and hybridisation currently occur? Total genomic DNA was extracted from 619 individuals sampled from 36 populations representing the four species. Seven nuclear microsatellites (nSSR) and six chloroplast microsatellites (cpSSR) were amplified across all populations. Genetic structure and the signature of admixture in overlap zones was described using the Bayesian clustering methods implemented in STUCTURE and NewHybrids respectively. Relationships between chlorotypes were reconstructed as a median-joining network. Environmental niche models were produced for all species using environmental parameters from both the present day and the last glacial maximum (LGM).The nSSR loci amplified a total of 154 alleles, while data for the cpSSR loci produced a network of six chlorotypes. STRUCTURE revealed an optimum number of five clusters corresponding to the four recognised species with the additional division of T. speciosissima into populations north and south of the Shoalhaven River valley. Unexpectedly, the northern disjunct population of T. oreades grouped with T. mongaensis and was identified as a hybrid swarm by the Bayesian assignment test implemented in NewHybrids. Present day and LGM environmental niche models differed dramatically, suggesting that distributions of all species had repeatedly expanded and contracted in response to Pleistocene climatic oscillations and confirming strongly marked historical distributional gaps among taxes. Genetic structure and bio-climatic modeling results are more consistent with a history of allopatric speciation followed by repeated episodes of secondary contact and localised hybridisation, rather than with parapatric speciation. This study on Telopea shows that the evidence for temporal exclusion of gene flow can be found even outside obvious geographical contexts, and that it is possible to make significant progress towards excluding parapatric speciation as a contributing evolutionary process.

  1. EXAMINATION OF CHANGES IN AS SPECIATION IN SULFIDIC SOLUTIONS

    EPA Science Inventory

    The fate of arsenic (As) in the environment, its bioavailability and toxicity is fundamentally linked to its speciation. As in aerobic environments is predominantly arsenate (As(V)), however under reducing conditions arsenite (As(III)) species dominate. In sulfidic environments t...

  2. Next-Generation Genetics in Plants: Evolutionary Trade-off, Immunity and Speciation (2010 JGI User Meeting)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiegel, Detlef

    Detlef Wiegel from the Max Planck Institute for Developmental Biology on "Next-generation genetics in plants: Evolutionary tradeoffs, immunity and speciation" on March 25, 2010 at the 5th Annual DOE JGI User Meeting.

  3. PM 2.5 ORGANIC SPECIATION INTERCOMPARISON RESULTS

    EPA Science Inventory

    This abstract describes a poster on results to a laboratory intercomparison of organic aerosol speciation analysis to be presented at the 2006 International Aerosol Conference sponsored by the American Association for Aerosol Research in St. Paul, Minnesota on September 10-15. T...

  4. Next-Generation Genetics in Plants: Evolutionary Trade-off, Immunity and Speciation (2010 JGI User Meeting)

    ScienceCinema

    Wiegel, Detlef

    2018-02-12

    Detlef Wiegel from the Max Planck Institute for Developmental Biology on "Next-generation genetics in plants: Evolutionary tradeoffs, immunity and speciation" on March 25, 2010 at the 5th Annual DOE JGI User Meeting.

  5. XANES Identification of Plutonium Speciation in RFETS Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LoPresti, V.; Conradson, S.D.; Clark, D.L.

    2009-06-03

    Using primarily X-ray absorption near edge spectroscopy (XANES) with standards run in tandem with samples, probable plutonium speciation was determined for 13 samples from contaminated soil, acid-splash or fire-deposition building interior surfaces, or asphalt pads from the Rocky Flats Environmental Technology Site (RFETS). Save for extreme oxidizing situations, all other samples were found to be of Pu(IV) speciation, supporting the supposition that such contamination is less likely to show mobility off site. EXAFS analysis conducted on two of the 13 samples supported the validity of the XANES features employed as determinants of the plutonium valence.

  6. Arsenic speciation in manufactured seafood products.

    PubMed

    Vélez, D; Montoro, R

    1998-09-01

    The literature on the speciation of arsenic (As) in seafoods was critically reviewed. Most research has been directed toward fresh seafood products with few papers dealing with As speciation in manufactured seafoods. Predictions concerning As species made on the basis of fresh seafood products cannot be extrapolated to manufactured seafoods. Therefore, due to the numerous species of As, the scarcity of data concerning their presence in foods, the transformations each species may undergo during industrial processing and cooking, and the lack of legislation on permitted As levels in seafood products, As species in manufactured seafood products need to be determined and quantified.

  7. Measured solubilities and speciations of neptunium, plutonium, and americium in a typical groundwater (J-13) from the Yucca Mountain region; Milestone report 3010-WBS 1.2.3.4.1.3.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nitsche, H.; Gatti, R.C.; Standifer, E.M.

    1993-07-01

    Solubility and speciation data are important in understanding aqueous radionuclide transport through the geosphere. They define the source term for transport retardation processes such as sorption and colloid formation. Solubility and speciation data are useful in verifying the validity of geochemical codes that are part of predictive transport models. Results are presented from solubility and speciation experiments of {sup 237}NpO{sub 2}{sup +}, {sup 239}Pu{sup 4+}, {sup 241}Am{sup 3+}/Nd{sup 3+}, and {sup 243}Am{sup 3+} in J-13 groundwater (from the Yucca Mountain region, Nevada, which is being investigated as a potential high-level nuclear waste disposal site) at three different temperatures (25{degree}, 60{degree},more » and 90{degree}C) and pH values (5.9, 7.0, and 8.5). The solubility-controlling steady-state solids were identified and the speciation and/or oxidation states present in the supernatant solutions were determined. The neptunium solubility decreased with increasing temperature and pH. Plutonium concentrations decreased with increasing temperature and showed no trend with pH. The americium solutions showed no clear solubility trend with increasing temperature and increasing pH.« less

  8. Characterization of Technetium Speciation in Cast Stone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Um, Wooyong; Jung, Hun Bok; Wang, Guohui

    2013-11-11

    This report describes the results from laboratory tests performed at Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy (DOE) EM-31 Support Program (EMSP) subtask, “Production and Long-Term Performance of Low Temperature Waste Forms” to provide additional information on technetium (Tc) speciation characterization in the Cast Stone waste form. To support the use of Cast Stone as an alternative to vitrification for solidifying low-activity waste (LAW) and as the current baseline waste form for secondary waste streams at the Hanford Site, additional understanding of Tc speciation in Cast Stone is needed to predict the long-term Tc leachability frommore » Cast Stone and to meet the regulatory disposal-facility performance requirements for the Integrated Disposal Facility (IDF). Characterizations of the Tc speciation within the Cast Stone after leaching under various conditions provide insights into how the Tc is retained and released. The data generated by the laboratory tests described in this report provide both empirical and more scientific information to increase our understanding of Tc speciation in Cast Stone and its release mechanism under relevant leaching processes for the purpose of filling data gaps and to support the long-term risk and performance assessments of Cast Stone in the IDF at the Hanford Site.« less

  9. Speciation and distribution of arsenic and localization of nutrients in rice grains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lombi, E.; Scheckel, K.G.; Pallon, J.

    2012-09-05

    Arsenic (As) contamination of rice grains and the generally low concentration of micronutrients in rice have been recognized as a major concern for human health. Here, we investigated the speciation and localization of As and the distribution of (micro)nutrients in rice grains because these are key factors controlling bioavailability of nutrients and contaminants. Bulk total and speciation analyses using high-pressure liquid chromatography (HPLC)-inductively coupled plasma mass spectrometry (ICP-MS) and X-ray absorption near-edge spectroscopy (XANES) was complemented by spatially resolved microspectroscopic techniques ({mu}-XANES, {mu}-X-ray fluorescence ({mu}-XRF) and particle induced X-ray emission (PIXE)) to investigate both speciation and distribution of As andmore » localization of nutrients in situ. The distribution of As and micronutrients varied between the various parts of the grains (husk, bran and endosperm) and was characterized by element-specific distribution patterns. The speciation of As in bran and endosperm was dominated by As(III)-thiol complexes. The results indicate that the translocation from the maternal to filial tissues may be a bottleneck for As accumulation in the grain. Strong similarities between the distribution of iron (Fe), manganese (Mn) and phosphorus (P) and between zinc (Zn) and sulphur (S) may be indicative of complexation mechanisms in rice grains.« less

  10. Chromosome speciation: Humans, Drosophila, and mosquitoes

    PubMed Central

    Ayala, Francisco J.; Coluzzi, Mario

    2005-01-01

    Chromosome rearrangements (such as inversions, fusions, and fissions) may play significant roles in the speciation between parapatric (contiguous) or partly sympatric (geographically overlapping) populations. According to the “hybrid-dysfunction” model, speciation occurs because hybrids with heterozygous chromosome rearrangements produce dysfunctional gametes and thus have low reproductive fitness. Natural selection will, therefore, promote mutations that reduce the probability of intercrossing between populations carrying different rearrangements and thus promote their reproductive isolation. This model encounters a disabling difficulty: namely, how to account for the spread in a population of a chromosome rearrangement after it first arises as a mutation in a single individual. The “suppressed-recombination” model of speciation points out that chromosome rearrangements act as a genetic filter between populations. Mutations associated with the rearranged chromosomes cannot flow from one to another population, whereas genetic exchange will freely occur between colinear chromosomes. Mutations adaptive to local conditions will, therefore, accumulate differentially in the protected chromosome regions so that parapatric or partially sympatric populations will genetically differentiate, eventually evolving into different species. The speciation model of suppressed recombination has recently been tested by gene and DNA sequence comparisons between humans and chimpanzees, between Drosophila species, and between species related to Anopheles gambiae, the vector of malignant malaria in Africa. PMID:15851677

  11. Speciation, population structure, and demographic history of the Mojave Fringe-toed Lizard (Uma scoparia), a species of conservation concern

    PubMed Central

    Gottscho, Andrew D; Marks, Sharyn B; Jennings, W Bryan

    2014-01-01

    The North American deserts were impacted by both Neogene plate tectonics and Quaternary climatic fluctuations, yet it remains unclear how these events influenced speciation in this region. We tested published hypotheses regarding the timing and mode of speciation, population structure, and demographic history of the Mojave Fringe-toed Lizard (Uma scoparia), a sand dune specialist endemic to the Mojave Desert of California and Arizona. We sampled 109 individual lizards representing 22 insular dune localities, obtained DNA sequences for 14 nuclear loci, and found that U. scoparia has low genetic diversity relative to the U. notata species complex, comparable to that of chimpanzees and southern elephant seals. Analyses of genotypes using Bayesian clustering algorithms did not identify discrete populations within U. scoparia. Using isolation-with-migration (IM) models and a novel coalescent-based hypothesis testing approach, we estimated that U. scoparia diverged from U. notata in the Pleistocene epoch. The likelihood ratio test and the Akaike Information Criterion consistently rejected nested speciation models that included parameters for migration and population growth of U. scoparia. We reject the Neogene vicariance hypothesis for the speciation of U. scoparia and define this species as a single evolutionarily significant unit for conservation purposes. PMID:25360285

  12. Long-term evolution of the Luteoviridae: time scale and mode of virus speciation.

    PubMed

    Pagán, Israel; Holmes, Edward C

    2010-06-01

    Despite their importance as agents of emerging disease, the time scale and evolutionary processes that shape the appearance of new viral species are largely unknown. To address these issues, we analyzed intra- and interspecific evolutionary processes in the Luteoviridae family of plant RNA viruses. Using the coat protein gene of 12 members of the family, we determined their phylogenetic relationships, rates of nucleotide substitution, times to common ancestry, and patterns of speciation. An associated multigene analysis enabled us to infer the nature of selection pressures and the genomic distribution of recombination events. Although rates of evolutionary change and selection pressures varied among genes and species and were lower in some overlapping gene regions, all fell within the range of those seen in animal RNA viruses. Recombination breakpoints were commonly observed at gene boundaries but less so within genes. Our molecular clock analysis suggested that the origin of the currently circulating Luteoviridae species occurred within the last 4 millennia, with intraspecific genetic diversity arising within the last few hundred years. Speciation within the Luteoviridae may therefore be associated with the expansion of agricultural systems. Finally, our phylogenetic analysis suggested that viral speciation events tended to occur within the same plant host species and country of origin, as expected if speciation is largely sympatric, rather than allopatric, in nature.

  13. Mercury speciation with fluorescent gold nanocluster as a probe.

    PubMed

    Yang, Jian-Yu; Yang, Ting; Wang, Xiao-Yan; Chen, Ming-Li; Yu, Yong-Liang; Wang, Jian-Hua

    2018-05-11

    Fluorescent nanoparticles are widely used for sensing biologically significant species. However, it is rarely reported for the discrimination or speciation of metal species. In this work, we report for the first time the speciation of mercury (Hg 2+ ) and methylmercury (CH 3 Hg + ) by taking advantage of the fluorescence feature of folic acid-capped gold nanoclusters (FA-AuNCs). FA-Au NCs exhibit an average size of 2.08±0.15 nm and a maximum emission at λ ex /λ em = 280/440 nm with a quantum yield of 27.3%. It is interesting that Hg 2+ causes a significant quench on the fluorescence of FA-Au NCs, whereas CH 3 Hg + leads to a remarkable fluorescence enhancement. Based on this discriminative fluorescent response between Hg 2+ and CH 3 Hg + , a novel nanosensor for the speciation of CH 3 Hg + and Hg 2+ was developed, providing limits of detection (LOD) of 28 nM for Hg 2+ and 25 nM for CH 3 Hg + within 100-1000 nM. This sensing system is highly selective to mercury. Its practical applications were further demonstrated by the analysis of CH 3 Hg + and the speciation of mercury (CH 3 Hg + and Hg 2+ ) in environmental water and fish samples.

  14. Dissolved and colloidal copper in the tropical South Pacific

    NASA Astrophysics Data System (ADS)

    Roshan, Saeed; Wu, Jingfeng

    2018-07-01

    Copper (Cu) as a bioactive trace metal in the ocean has widely been studied in the context of chemical speciation. However, this trace metal is extremely understudied in the context of physical speciation (i.e., size- or molecular weight-partitioning), which may help in characterizing dissolved Cu species. In this study, we determine total dissolved Cu (<0.2 μm) distribution and its physical speciation along the US GEOTRACES 2013 cruise, a 4300-km east-west transect in the tropical South Pacific. The distribution of dissolved Cu is rather uniform horizontally and exhibits a linear increase with depth from surface to 2500-3000 m, below which it varies less significantly both vertically and horizontally. Dissolved Cu shows a strong correlation with silicate (SiO44-) in the upper 1500 m, which is in agreement with previous studies in other regions. This correlation is weaker but with higher slope at depths below 1500 m, which supports the sedimentary source hypothesis. Although hydrothermal activity at the East Pacific Rise (EPR) does not show a readily evident impact on the dissolved Cu distribution, high-quality data at 2300-2800 m allow for diagnosing a subtle westward decrease in the background-subtracted dissolved Cu component. This component of dissolved Cu poorly correlates with mantle-derived 3He (R2 = 0.41), indicating a possible hydrothermal source for dissolved Cu, in contrast to previous studies. For the first time in a major basin, we also determined the physical speciation of dissolved Cu, which shows that Cu species lighter than 10 kDa (Da = 1 g mol-1) dominate the pool of dissolved Cu (<0.2 μm) below 1000 m with a contribution of 61 ± 6% (fraction of total dissolved). 39 ± 6% of dissolved Cu at depths below 1000 m, thus, occurs in the pool of colloidal matter (10 kDa-0.2 μm). Moreover, using a suite of molecular weight cutoffs indicate that Cu species are distributed between two distinct molecular weight classes: the lighter than 5 kDa and heavier than 300 kDa classes, which form 53 ± 6% and 37 ± 7% of dissolved Cu at 2200-2800 m, respectively. The Cu species with molecular weight between 5 kDa and 300 kDa contribute only to 10 ± 12% of the pool at 2200-2800 m. These results offer new insights into structure, reactivity and bioavailability of oceanic Cu compounds. As an organic-dominating metal, Cu physical speciation may also shed light on size-reactivity spectrum of dissolved organic matter (DOM) in the deep ocean.

  15. Bioleaching of vanadium from barren stone coal and its effect on the transition of vanadium speciation and mineral phase

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Lin, Hai; Dong, Ying-bo; Li, Gan-yu

    2018-03-01

    This study determined the optimal conditions required to obtain maximum vanadium extraction and examined the transition of mineral phases and vanadium speciation during the bioleaching process. Parameters including the initial pH value, initial Fe2+ concentration, solid load, and inoculum quantity were examined. The results revealed that 48.92wt% of the vanadium was extracted through bioleaching under optimal conditions. Comparatively, the chemical leaching yield (H2SO4, pH 2.0) showed a slower and milder increase in vanadium yield. The vanadium bioleaching yield was 35.11wt% greater than the chemical leaching yield. The Community Bureau of Reference (BCR) sequential extraction results revealed that 88.62wt% of vanadium existed in the residual fraction. The bacteria substantially changed the distribution of the vanadium speciation during the leaching process, and the residual fraction decreased to 48.44wt%. The X-ray diffraction (XRD) and Fourier transform infrared (FTIR) results provided evidence that the crystal lattice structure of muscovite was destroyed by the bacteria.

  16. [Study on arsenic speciation changes in crude and processed traditional Chinese medicines by HPLC-ICP-MS].

    PubMed

    Jin, Peng-fei; Wu, Xue-jun; Zou, Ding; Kuang, Yong-mei; Hu, Xin; Jiang, Wen-qing; Sun, Chun-hua

    2011-03-01

    A HPLC-ICP-MS method for simultaneous determination of As(III), As(V), MMA and DMA in traditional Chinese medicines (TCMs) was established, and the contents of As(III), As(V), MMA and DMA in a TCM with high total arsenic content (Cordyceps) and 5 crude and processed TCMs (Radix Astragali, Radix et Rhizoma Rhei, Radix Scutellariae, Radix Polygoni Multiflori and Radix Rehmanniae) were determined and analyzed. The method validation indicated that the correlative coefficients (r) for all speciations were bigger than 0.9984; the limits of quantitation (LOQ) were from 0.8 to 1.0 microg x L(-1); the reproducibility and stability were satisfactory with all RSDs less than 10%; the spiked recoveries ranged from 82.40% to 119.5%. The results of samples analysis showed that the inorganic arsenic (As(III) and As(V)) was the dominating speciation in the tested TCMs; MMA and DMA were not found in all plant resourced TCMs, but MMA was found in Cordyceps; all the tested TCMs indicated a content increasing of inorganic arsenic after processing.

  17. Determination of arsenite, arsenate, monomethylarsonic acid and dimethylarsinic acid in cereals by hydride generation atomic fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Matos Reyes, M. N.; Cervera, M. L.; Campos, R. C.; de la Guardia, M.

    2007-09-01

    A fast, sensitive and simple non-chromatographic analytical method was developed for the speciation analysis of toxic arsenic species in cereal samples, namely rice and wheat semolina. An ultrasound-assisted extraction of the toxic arsenic species was performed with 1 mol L - 1 H 3PO 4 and 0.1% (m/v) Triton XT-114. After extraction, As(III), As(V), dimethylarsinic acid (DMA) and monomethylarsonic acid (MMA) concentrations were determined by hydride generation atomic fluorescence spectrometry using a series of proportional equations corresponding to four different experimental reduction conditions. The detection limits of the method were 1.3, 0.9, 1.5 and 0.6 ng g - 1 for As(III), As(V), DMA and MMA, respectively, expressed in terms of sample dry weight. Recoveries were always greater than 90%, and no species interconversion occurred. The speciation analysis of a rice flour reference material certified for total arsenic led to coherent results, which were also in agreement with other speciation studies made on the same certified reference material.

  18. Toxin gene determination and evolution in scorpaenoid fish.

    PubMed

    Chuang, Po-Shun; Shiao, Jen-Chieh

    2014-09-01

    In this study, we determine the toxin genes from both cDNA and genomic DNA of four scorpaenoid fish and reconstruct their evolutionary relationship. The deduced protein sequences of the two toxin subunits in Sebastapistes strongia, Scorpaenopsis oxycephala, and Sebastiscus marmoratus are about 700 amino acid, similar to the sizes of the stonefish (Synanceia horrida, and Synanceia verrucosa) and lionfish (Pterois antennata and Pterois volitans) toxins previously published. The intron positions are highly conserved among these species, which indicate the applicability of gene finding by using genomic DNA template. The phylogenetic analysis shows that the two toxin subunits were duplicated prior to the speciation of Scorpaenoidei. The precedence of the gene duplication over speciation indicates that the toxin genes may be common to the whole family of Scorpaeniform. Furthermore, one additional toxin gene has been determined in the genomic DNA of Dendrochirus zebra. The phylogenetic analysis suggests that an additional gene duplication occurred before the speciation of the lionfish (Pteroinae) and a pseudogene may be generally present in the lineage of lionfish. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Asymmetry and polymorphism of hybrid male sterility during the early stages of speciation in house mice.

    PubMed

    Good, Jeffrey M; Handel, Mary Ann; Nachman, Michael W

    2008-01-01

    House mice offer a powerful system for dissecting the genetic basis of phenotypes that isolate species in the early stages of speciation. We used a series of reciprocal crosses between wild-derived strains of Mus musculus and M. domesticus to examine F(1) hybrid male sterility, one of the primary phenotypes thought to isolate these species. We report four main results. First, we found significantly smaller testes and fewer sperm in hybrid male progeny of most crosses. Second, in some crosses hybrid male sterility was asymmetric and depended on the species origin of the X chromosome. These observations confirm and extend previous findings, underscoring the central role that the M. musculus X chromosome plays in reproductive isolation. Third, comparisons among reciprocal crosses revealed polymorphism at one or more hybrid incompatibilities within M. musculus. Fourth, the spermatogenic phenotype of this polymorphic interaction appears distinct from previously described hybrid incompatibilities between these species. These data build on previous studies of speciation in house mice and show that the genetic basis of hybrid male sterility is fairly complex, even at this early stage of divergence.

  20. [Geographical variation in the species Montivagum dihumerale and speciation in chigger mites (Acari: Trombiculidae)].

    PubMed

    Stekol'nikov, A A

    2006-01-01

    Intraspecific morphological variation of the chigger mite species Montivagum dihumerale (Traub et Nadchatram, 1967) is studied. Eco-geographic rules of the variation are revealed. General size of mites is found to be increased along with the rise of the high-mountain character of the landscape in the collection localities. The numbers of idiosomal setae are varied independently from the size parameters and geographically close populations are proved to be the most similar by these characters. At the same time, numbers of the setae of different types play the leading role in the discrimination of closely related Montivagum species, while the eco-geographical rules have not been found in this genus at the level of interspecific differences. As a result, the hypothesis is set up, that a significant degree of isolation of local populations separated from each other by high mountain ranges of the Central Asia is the main factor of speciation in the genus Montivagum. Regional character of this speciation mode is confirmed by the comparison with other chigger mites taxa.

  1. The Role of Transposable Elements in Speciation

    PubMed Central

    Serrato-Capuchina, Antonio; Matute, Daniel R.

    2018-01-01

    Understanding the phenotypic and molecular mechanisms that contribute to genetic diversity between and within species is fundamental in studying the evolution of species. In particular, identifying the interspecific differences that lead to the reduction or even cessation of gene flow between nascent species is one of the main goals of speciation genetic research. Transposable elements (TEs) are DNA sequences with the ability to move within genomes. TEs are ubiquitous throughout eukaryotic genomes and have been shown to alter regulatory networks, gene expression, and to rearrange genomes as a result of their transposition. However, no systematic effort has evaluated the role of TEs in speciation. We compiled the evidence for TEs as potential causes of reproductive isolation across a diversity of taxa. We find that TEs are often associated with hybrid defects that might preclude the fusion between species, but that the involvement of TEs in other barriers to gene flow different from postzygotic isolation is still relatively unknown. Finally, we list a series of guides and research avenues to disentangle the effects of TEs on the origin of new species. PMID:29762547

  2. Selective loss of polymorphic mating types is associated with rapid phenotypic evolution during morphic speciation.

    PubMed

    Corl, Ammon; Davis, Alison R; Kuchta, Shawn R; Sinervo, Barry

    2010-03-02

    Polymorphism may play an important role in speciation because new species could originate from the distinctive morphs observed in polymorphic populations. However, much remains to be understood about the process by which morphs found new species. To detail the steps of this mode of speciation, we studied the geographic variation and evolutionary history of a throat color polymorphism that distinguishes the "rock-paper-scissors" mating strategies of the side-blotched lizard, Uta stansburiana. We found that the polymorphism is geographically widespread and has been maintained for millions of years. However, there are many populations with reduced numbers of throat color morphs. Phylogenetic reconstruction showed that the polymorphism is ancestral, but it has been independently lost eight times, often giving rise to morphologically distinct subspecies/species. Changes to the polymorphism likely involved selection because the allele for one particular male strategy, the "sneaker" morph, has been lost in all cases. Polymorphism loss was associated with accelerated evolution of male size, female size, and sexual dimorphism, which suggests that polymorphism loss can promote rapid divergence among populations and aid species formation.

  3. Gastropod diversification and community structuring processes in ancient Lake Ohrid: a metacommunity speciation perspective

    NASA Astrophysics Data System (ADS)

    Hauffe, T.; Albrecht, C.; Wilke, T.

    2015-09-01

    The Balkan Lake Ohrid is the oldest and most speciose freshwater lacustrine system in Europe. However, it remains unclear whether the diversification of its endemic taxa is mainly driven by neutral processes, environmental factors, or species interactions. This calls for a holistic perspective involving both evolutionary processes and ecological dynamics. Such a unifying framework - the metacommunity speciation model - considers how community assembly affects diversification and vice versa by assessing the relative contribution of the three main community assembly processes, dispersal limitation, environmental filtering, and species interaction. The current study therefore used the species-rich model taxon Gastropoda to assess how extant communities in Lake Ohrid are structured by performing process based metacommunity analyses. Specifically, the study aimed at (i) identifying the relative importance of the three community assembly processes and (ii) to test whether the importance of these individual processes changes gradually with lake depth or whether they are distinctively related to eco-zones. Based on specific simulation steps for each of the three processes, it could be demonstrated that dispersal limitation had the strongest influence on gastropod community structures in Lake Ohrid. However, it was not the exclusive assembly process but acted together with the other two processes - environmental filtering, and species interaction. In fact, the relative importance of the three community assembly processes varied both with lake depth and eco-zones, though the processes were better predicted by the latter. The study thus corroborated the high importance of dispersal limitation for both maintaining species richness in Lake Ohrid (through its impact on community structure) and generating endemic biodiversity (via its influence on diversification processes). However, according to the metacommunity speciation model, the inferred importance of environmental filtering and biotic interaction also suggests a small but significant influence of ecological speciation. These findings contribute to the main goal of the SCOPSCO initiative - inferring the drivers of biotic evolution - and might provide an integrative perspective on biological and limnological dynamics in ancient Lake Ohrid.

  4. Evolution: Understanding Life on Earth.

    ERIC Educational Resources Information Center

    Dybas, Cheryl Lyn

    2002-01-01

    Reports on presentations representing evolution at the 53rd annual meeting of the American Institute of Biological Sciences (AIBS) which was held March 22-24, 2002. Explains evolutionary patterns, phylogenetic pageantry, molecular clocks, speciation and biogeography, speciation and macroevolution, and human-induced evolution of drugs-resistant…

  5. Lead Speciation And Bioavailability In Apatite-Amended Sediments

    EPA Science Inventory

    The in situ sequestration of lead (Pb) in sediment with a phosphate amendment was investigated by Pb speciation and bioavailability. Sediment Pb in preamendment samples was identified as galena (PbS) with trace amounts of absorbed Pb. Sediment exposed to atmospheric conditions ...

  6. LINKING WATERFOWL WITH CONTAMINANT SPECIATION IN RIPARIAN SOILS

    EPA Science Inventory

    This report summarizes the results of Mine Waste Technology Program (MWTP) Activity III, Project 38, Linking Waterfowl with Contaminant Speciation in Riparian Soils, implemented and funded by the U.S. Environmental Protection Agency (EPA) and jointly administered by EPA and the U...

  7. ELEMENTAL SPECIATION IN ENVIRONMENTAL EXPOSURE ASSESSMENT MATRICES

    EPA Science Inventory

    Arsenic and tin are two trace metals where exposure assessments have moved towards a speciation based approach because the toxicity is very chemical form dependent. This toxicity difference can be one of many factors which influence the formulation of certain regulations. For a...

  8. A PERSONAL PARTICLE SPECIATION SAMPLER

    EPA Science Inventory

    Dr. Susanne Hering of Aerosol Dynamics Inc and her colleagues expect to design and validate a personal monitoring sampler for particles smaller than 2.5 µm (PM2.5) that is suitable for subsequent chemical speciation work. The investigators believe the result will be a...

  9. THE ONTARIO HYDRO METHOD FOR SPECIATED MERCURY MEASUREMENTS: ISSUES AND CONSIDERATIONS

    EPA Science Inventory

    The Ontario Hydro (OH) method has been developed for the measurement of total and speciated mercury emissions from coal-fired combustion sources. The OH method was initially developed to support EPA's information collection request to characterize and inventory mercury emissions ...

  10. Application Of Synchrotron Techniques To Investigate In-Situ Arsenic Speciation

    EPA Science Inventory

    The speciation, or chemical form of elements governs their fate, toxicity, mobility, and bioavailability in contaminated soils, sediments and water as well as food chain transfer mechanisms. To assess these chemical properties and to accurately gauge contaminant impact on human h...

  11. SPECIATION OF ARSENIC IN SULFIDIC SOLUTIONS USING X-RAY ABSORPTION SPECTROSCOPY

    EPA Science Inventory

    The fate of arsenic in the environment is fundamentally linked to its speciation. Arsenic in aerobic environments is predominantly arsenate, however under reducing conditions arsenite species dominate. In sulfidic environments, thioarsenic species are known to exist and play key...

  12. Speciated VOC Emissions from an Outdoor Residential Pellet burning Hydronic Heater

    EPA Science Inventory

    Outdoor hydronic heaters used for residential heating emit air pollutants such as particulate matter and volatile organic compounds (VOCs), which can lead to deleterious impacts on local air quality and human health. Detailed speciated emissions measurements are required to accur...

  13. Detecting cryptic speciation in the widespread and morphologically conservative carpet chameleon (Furcifer lateralis) of Madagascar.

    PubMed

    Florio, A M; Ingram, C M; Rakotondravony, H A; Louis, E E; Raxworthy, C J

    2012-07-01

    Species delimitation within recently evolved groups can be challenging because species may be difficult to distinguish morphologically. Following the General Lineage Concept, we apply a multiple evidence approach to assess species limits within the carpet chameleon Furcifer lateralis, which is endemic to Madagascar and exported in large numbers for the pet trade. Cryptic speciation within F. lateralis was considered likely because this species (1) has a vast distribution, (2) occupies exceptionally diverse habitats and (3) exhibits subtle regional differences in morphology. Phylogenetic trees reconstructed using nuclear and mitochondrial genes recovered three well-supported clades corresponding with geography. Morphological results based on canonical variates analysis show that these clades exhibit subtle differences in head casque morphology. Ecological niche modelling results found that these phylogenetic groups also occupy unique environmental space and exhibit patterns of regional endemism typical of other endemic reptiles. Combined, our findings provide diverse yet consistent evidence for the existence of three species. Consequently, we elevate the subspecies F. lateralis major to species rank and name a new species distributed in northern and western Madagascar. Initial ecological divergence, associated with speciation of F. lateralis in humid eastern habitat, fits the Ecographic Constraint model for species diversification in Madagascar. By contrast, the second speciation event provides some support for the Riverine Barrier model, with the Mangoky River possibly causing initial isolation between species. These findings thus support two contrasting models of speciation within closely related species and demonstrate the utility of applying a combined-evidence approach for detecting cryptic speciation. © 2012 The Authors. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.

  14. Characterizing Zinc Speciation in Soils from a Smelter-Affected Boreal Forest Ecosystem.

    PubMed

    Hamilton, Jordan G; Farrell, Richard E; Chen, Ning; Feng, Renfei; Reid, Joel; Peak, Derek

    2016-03-01

    HudBay Minerals, Inc., has mined and/or processed Zn and Cu ore in Flin Flon, MB, Canada, since the 1930s. The boreal forest ecosystem and soil surrounding these facilities have been severely impacted by mixed metal contamination and HSO deposition. Zinc is one of the most prevalent smelter-derived contaminants and has been identified as a key factor that may be limiting revegetation. Metal toxicity is related to both total concentrations and speciation; therefore, X-ray absorption spectroscopy and X-ray fluorescence mapping were used to characterize Zn speciation in soils throughout the most heavily contaminated areas of the landscape. Zinc speciation was linked to two distinct soil types. Group I soils consist of exposed soils in weathered positions of bedrock outcrops with Zn present primarily as franklinite, a (ZnFeO) spinel mineral. Group II soils are stabilized by an invasive metal-tolerant grass species, with Zn found as a mixture of octahedral (Fe oxides) and tetrahedral Mn oxides) adsorption complexes with a franklinite component. Soil erosion influences Zn speciation through the redistribution of Zn and soil particulates from Group I landscape positions to Group II soils. Despite Group II soils having the highest concentrations of CaCl-extractable Zn, they support metal-tolerant plant growth. The metal-tolerant plants are probably preferentially colonizing these areas due to better soil and nutrient conditions as a result of soil deposition from upslope Group I areas. Zinc concentration and speciation appears to not influence the colonization by metal-tolerant grasses, but the overall soil properties and erosion effects prevent the revegetation by native boreal forest species. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  15. The role of different network modifying cations on the speciation of the Co2 + complex in silicates and implication in the investigation of historical glasses

    NASA Astrophysics Data System (ADS)

    Fornacelli, Cristina; Ceglia, Andrea; Bracci, Susanna; Vilarigues, Marcia

    2018-01-01

    In the last decades the speciation of the cobalt complex in a glass matrix has been extensively studied. Bivalent cobalt ions in glasses of different composition commonly adopt a tetrahedral coordination, though hexa- or penta-coordinated species are also possible. Changes in the absorbance spectrum of Co-doped glasses were attested in previous studies according to the introduction of different modifying cations. A shifting of the first sub-band characterizing the typical triplets of tetrahedral Co2 + ions in both the visible and near infrared regions was observed, but discrepancies in literature suggested a relevant role of glass composition on the definition of the optical signature of cobalt. Co-doped glasses with different composition (soda-lime, potash-lime, mixed alkali and ZnO-Na2O-CaO-SiO2) were studied via Fiber Optic Reflectance Spectroscopy (FORS). Pseudo-Voigt functions were used for the deconvolution of the absorbance spectra and the features of the bands characteristic of each cobalt complex were investigated. The structural role played by each modifying cation and the fundamental implications of glass basicity on the speciation of different Co-complexes were stressed. Changes in glass structure resulted in different equilibria between the three absorbing species whose specific optical signatures in the 480-530 nm region interact to determine the resulting absorbance spectrum.

  16. Iodine-129 and iodine-127 speciation in groundwater at the Hanford site, US: iodate incorporation into calcite.

    PubMed

    Zhang, Saijin; Xu, Chen; Creeley, Danielle; Ho, Yi-Fang; Li, Hsiu-Ping; Grandbois, Russell; Schwehr, Kathleen A; Kaplan, Daniel I; Yeager, Chris M; Wellman, Dawn; Santschi, Peter H

    2013-09-03

    The geochemical transport and fate of radioiodine depends largely on its chemical speciation that is greatly affected by environmental factors. This study reports, for the first time, the speciation of stable and radioactive iodine in the groundwater from the Hanford Site. Iodate was the dominant species and accounted for up to 84% of the total iodine present. The alkaline pH (pH ∼ 8) and predominantly oxidizing environment may have prevented reduction of the iodate. In addition, groundwater samples were found to have large amounts of calcite precipitate which were likely formed as a result of CO2 degassing during removal from the deep subsurface (>70m depth). Further analyses indicated that between 7 and 40% of the dissolved (127)I and (129)I that was originally in the groundwater had coprecipitated in the calcite. Iodate was the main species incorporated into calcite and this incorporation process could be impeded by elevating the pH and decreasing ionic strength in groundwater. This study provides critical information for predicting the long-term fate and transport of (129)I. Furthermore, the common sampling artifact resulting in the precipitation of calcite by degassing CO2, had the unintended consequence of providing insight into a potential solution for the in situ remediation of groundwater (129)I.

  17. Can preference for oviposition sites initiate reproductive isolation in Callosobruchus maculatus?

    PubMed

    Rova, Emma; Björklund, Mats

    2011-01-31

    Theory has identified a variety of evolutionary processes that may lead to speciation. Our study includes selection experiments using different host plants and test key predictions concerning models of speciation based on host plant choice, such as the evolution of host use (preference and performance) and assortative mating. This study shows that after only ten generations of selection on different resources/hosts in allopatry, strains of the seed beetle Callosobruchus maculatus develop new resource preferences and show resource-dependent assortative mating when given the possibility to choose mates and resources during secondary contact. The resulting reduced gene flow between the different strains remained for two generations after contact before being overrun by disassortative mating. We show that reduced gene flow can evolve in a population due to a link between host preference and assortative mating, although this result was not found in all lines. However, consistent with models of speciation, assortative mating alone is not sufficient to maintain reproductive isolation when individuals disperse freely between hosts. We conclude that the evolution of reproductive isolation in this system cannot proceed without selection against hybrids. Other possible factors facilitating the evolution of isolation would be longer periods of allopatry, the build up of local adaptation or reduced migration upon secondary contact.

  18. Inferring phylogeny and speciation of Gymnosporangium species, and their coevolution with host plants

    PubMed Central

    Zhao, Peng; Liu, Fang; Li, Ying-Ming; Cai, Lei

    2016-01-01

    Gymnosporangium species (Pucciniaceae, Pucciniales) cause serious diseases and significant economic losses to apple cultivars. Most of the reported species are heteroecious and complete their life cycles on two different plant hosts belonging to two unrelated genera, i.e. Juniperus and Malus. However, the phylogenetic relationships among Gymnosporangium species and the evolutionary history of Gymnosporangium on its aecial and telial hosts were still undetermined. In this study, we recognized species based on rDNA sequence data by using coalescent method of generalized mixed Yule-coalescent (GMYC) and Poisson Tree Processes (PTP) models. The evolutionary relationships of Gymnosporangium species and their hosts were investigated by comparing the cophylogenetic analyses of Gymnosporangium species with Malus species and Juniperus species, respectively. The concordant results of GMYC and PTP analyses recognized 14 species including 12 known species and two undescribed species. In addition, host alternations of 10 Gymnosporangium species were uncovered by linking the derived sequences between their aecial and telial stages. This study revealed the evolutionary process of Gymnosporangium species, and clarified that the aecial hosts played more important roles than telial hosts in the speciation of Gymnosporangium species. Host switch, losses, duplication and failure to divergence all contributed to the speciation of Gymnosporangium species. PMID:27385413

  19. The Secondary Contact Zone of Phylogenetic Lineages of the Philaenus spumarius (Hemiptera: Aphrophoridae): An Example of Incomplete Allopatric Speciation

    PubMed Central

    Lis, Agata; Maryańska-Nadachowska, Anna; Lachowska-Cierlik, Dorota; Kajtoch, Łukasz

    2014-01-01

    Abstract Previous studies on the phylogeography of the meadow spittlebug Philaenus spumarius (L.) (Hemiptera: Aphrophoridae) suggest the existence of a contact zone of its main phylogenetic lineages along mountain chains in Europe and western Asia. This study presents a detailed examination of the population genetics of P. spumarius within the Carpathian Mountains. The main objective was to determine whether the populations inhabiting that area consist of individuals belonging to different genetic units and whether the observed pattern could be an example of secondary contact zone which formed after incomplete allopatric speciation. Specimens from six transects across the Carpathian arc were examined. The mitochondrial phylogeography of the meadow spittlebug in the examined area clearly shows that individuals from both main clades meet and mix there. Representatives of all three main EF1-α clades were also found. The present distribution of the main clades with a zone of overlap along the mountain ranges may suggest that these phylogenetic lineages form a young hybrid zone. Moreover, a limited number of individuals were shown to possess heteroplasmic mitochondrial DNA, which gives additional support to intraspecific hybridization. P. spumarius could be used in future work as an excellent model species in investigating population genetics, intraspecific hybridization, and speciation in progress. PMID:25500280

  20. Arsenic speciation and spatial and interspecies differences of metal concentrations in mollusks and crustaceans from a South China estuary.

    PubMed

    Zhang, Wei; Wang, Wen-Xiong; Zhang, Li

    2013-05-01

    Arsenic speciation and concentrations were determined in mollusks and crustaceans in the intertidal zone from twelve locations in Zhanjiang estuary, South China. Metal concentrations (Ag, As, Cd, Cu, Hg, Ni, Pb, and Zn) were also concurrently determined in these species. Arsenic speciation analysis showed that the less-toxic arsenobetaine (AsB) constituted 80.6-98.8 % of all As compounds, and dimethylarsinic acid (DMA) constituted 0.47-3.44 %. Monomethylarsonic acid (MMA) and As(V) were only detected in the whelk Drupa fiscella and the crab Heteropilumnus ciliatus, respectively. Arsenite [As(III)] was not detected in any of the sampled specimens, but there were also unidentified other As species. A strong spatial variation of metals in the oyster Saccostrea cucullata was found in the estuary, confirming that oysters can be used as a good biomonitor of metal contamination in the studied area. The concentrations of eight metals in the studied mollusks and crustaceans clearly revealed that these invertebrates accumulated different metals to different degrees. Furthermore, As, Cd, Cu, Hg, and Pb contents in mollusks and crustacean samples were below the Food and Agricultural Organization (FAO) safe concentrations, thus there was no obvious health risk from the intake of the metals through marine mollusks and crustaceans consumption.

Top