Statistical Inference for Big Data Problems in Molecular Biophysics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramanathan, Arvind; Savol, Andrej; Burger, Virginia
2012-01-01
We highlight the role of statistical inference techniques in providing biological insights from analyzing long time-scale molecular simulation data. Technologi- cal and algorithmic improvements in computation have brought molecular simu- lations to the forefront of techniques applied to investigating the basis of living systems. While these longer simulations, increasingly complex reaching petabyte scales presently, promise a detailed view into microscopic behavior, teasing out the important information has now become a true challenge on its own. Mining this data for important patterns is critical to automating therapeutic intervention discovery, improving protein design, and fundamentally understanding the mech- anistic basis of cellularmore » homeostasis.« less
Toward a Parastatistics in Quantum Nonextensive Statistical Mechanics
NASA Astrophysics Data System (ADS)
Zaripov, R. G.
2018-05-01
On the basis of Bose quantum states in parastatistics the equations for the equilibrium distribution of quantum additive and nonextensive systems are determined. The fluctuations and variances of physical quantities for the equilibrium system are found. The Abelian group of microscopic entropies is determined for the composition law with a quadratic nonlinearity.
NASA Astrophysics Data System (ADS)
Ushenko, Yu. O.; Dubolazov, O. V.; Ushenko, V. O.; Zhytaryuk, V. G.; Prydiy, O. G.; Pavlyukovich, N.; Pavlyukovich, O.
2018-01-01
In this paper, we present the results of a statistical analysis of polarization-interference images of optically thin histological sections of biological tissues and polycrystalline films of biological fluids of human organs. A new analytical parameter is introduced-the local contrast of the interference pattern in the plane of a polarizationinhomogeneous microscopic image of a biological preparation. The coordinate distributions of the given parameter and the sets of statistical moments of the first-fourth order that characterize these distributions are determined. On this basis, the differentiation of degenerative-dystrophic changes in the myocardium and the polycrystalline structure of the synovial fluid of the human knee with different pathologies is realized.
Statistical mechanics of protein structural transitions: Insights from the island model
Kobayashi, Yukio
2016-01-01
The so-called island model of protein structural transition holds that hydrophobic interactions are the key to both the folding and function of proteins. Herein, the genesis and statistical mechanical basis of the island model of transitions are reviewed, by presenting the results of simulations of such transitions. Elucidating the physicochemical mechanism of protein structural formation is the foundation for understanding the hierarchical structure of life at the microscopic level. Based on the results obtained to date using the island model, remaining problems and future work in the field of protein structures are discussed, referencing Professor Saitô’s views on the hierarchic structure of science. PMID:28409078
Inverse statistical physics of protein sequences: a key issues review.
Cocco, Simona; Feinauer, Christoph; Figliuzzi, Matteo; Monasson, Rémi; Weigt, Martin
2018-03-01
In the course of evolution, proteins undergo important changes in their amino acid sequences, while their three-dimensional folded structure and their biological function remain remarkably conserved. Thanks to modern sequencing techniques, sequence data accumulate at unprecedented pace. This provides large sets of so-called homologous, i.e. evolutionarily related protein sequences, to which methods of inverse statistical physics can be applied. Using sequence data as the basis for the inference of Boltzmann distributions from samples of microscopic configurations or observables, it is possible to extract information about evolutionary constraints and thus protein function and structure. Here we give an overview over some biologically important questions, and how statistical-mechanics inspired modeling approaches can help to answer them. Finally, we discuss some open questions, which we expect to be addressed over the next years.
Inverse statistical physics of protein sequences: a key issues review
NASA Astrophysics Data System (ADS)
Cocco, Simona; Feinauer, Christoph; Figliuzzi, Matteo; Monasson, Rémi; Weigt, Martin
2018-03-01
In the course of evolution, proteins undergo important changes in their amino acid sequences, while their three-dimensional folded structure and their biological function remain remarkably conserved. Thanks to modern sequencing techniques, sequence data accumulate at unprecedented pace. This provides large sets of so-called homologous, i.e. evolutionarily related protein sequences, to which methods of inverse statistical physics can be applied. Using sequence data as the basis for the inference of Boltzmann distributions from samples of microscopic configurations or observables, it is possible to extract information about evolutionary constraints and thus protein function and structure. Here we give an overview over some biologically important questions, and how statistical-mechanics inspired modeling approaches can help to answer them. Finally, we discuss some open questions, which we expect to be addressed over the next years.
Fission dynamics with microscopic level densities
NASA Astrophysics Data System (ADS)
Randrup, Jørgen; Ward, Daniel; Carlsson, Gillis; Døssing, Thomas; Möller, Peter; Åberg, Sven
2018-03-01
Working within the Langevin framework of nuclear shape dynamics, we study the dependence of the evolution on the degree of excitation. As the excitation energy of the fissioning system is increased, the pairing correlations and the shell effects diminish and the effective potential-energy surface becomes ever more liquid-drop like. This feature can be included in the treatment in a formally well-founded manner by using the local level densities as a basis for the shape evolution. This is particularly easy to understand and implement in the Metropolis treatment where the evolution is simulated by means of a random walk on the five-dimensional lattice of shapes for which the potential energy has been tabulated. Because the individual steps between two neighboring lattice sites are decided on the basis of the ratio of the statistical weights, what is needed is the ratio of the local level densities for those shapes, evaluated at the associated local excitation energies. For this purpose, we adapt a recently developed combinatorial method for calculating level densities which employs the same single-particle levels as those that were used for the calculation of the pairing and shell contributions to the macroscopic-microscopic deformation-energy surface. For each nucleus under consideration, the level density (for a fixed total angular momentum) is calculated microscopically for each of the over five million shapes given in the three-quadratic-surface parametrization. This novel treatment, which introduces no new parameters, is illustrated for the fission fragment mass distributions for selected uranium and plutonium cases.
On the debris-level origins of adhesive wear
NASA Astrophysics Data System (ADS)
Aghababaei, Ramin; Warner, Derek H.; Molinari, Jean-François
2017-07-01
Every contacting surface inevitably experiences wear. Predicting the exact amount of material loss due to wear relies on empirical data and cannot be obtained from any physical model. Here, we analyze and quantify wear at the most fundamental level, i.e., wear debris particles. Our simulations show that the asperity junction size dictates the debris volume, revealing the origins of the long-standing hypothesized correlation between the wear volume and the real contact area. No correlation, however, is found between the debris volume and the normal applied force at the debris level. Alternatively, we show that the junction size controls the tangential force and sliding distance such that their product, i.e., the tangential work, is always proportional to the debris volume, with a proportionality constant of 1 over the junction shear strength. This study provides an estimation of the debris volume without any empirical factor, resulting in a wear coefficient of unity at the debris level. Discrepant microscopic and macroscopic wear observations and models are then contextualized on the basis of this understanding. This finding offers a way to characterize the wear volume in atomistic simulations and atomic force microscope wear experiments. It also provides a fundamental basis for predicting the wear coefficient for sliding rough contacts, given the statistics of junction clusters sizes.
On the debris-level origins of adhesive wear.
Aghababaei, Ramin; Warner, Derek H; Molinari, Jean-François
2017-07-25
Every contacting surface inevitably experiences wear. Predicting the exact amount of material loss due to wear relies on empirical data and cannot be obtained from any physical model. Here, we analyze and quantify wear at the most fundamental level, i.e., wear debris particles. Our simulations show that the asperity junction size dictates the debris volume, revealing the origins of the long-standing hypothesized correlation between the wear volume and the real contact area. No correlation, however, is found between the debris volume and the normal applied force at the debris level. Alternatively, we show that the junction size controls the tangential force and sliding distance such that their product, i.e., the tangential work, is always proportional to the debris volume, with a proportionality constant of 1 over the junction shear strength. This study provides an estimation of the debris volume without any empirical factor, resulting in a wear coefficient of unity at the debris level. Discrepant microscopic and macroscopic wear observations and models are then contextualized on the basis of this understanding. This finding offers a way to characterize the wear volume in atomistic simulations and atomic force microscope wear experiments. It also provides a fundamental basis for predicting the wear coefficient for sliding rough contacts, given the statistics of junction clusters sizes.
On the debris-level origins of adhesive wear
Warner, Derek H.; Molinari, Jean-François
2017-01-01
Every contacting surface inevitably experiences wear. Predicting the exact amount of material loss due to wear relies on empirical data and cannot be obtained from any physical model. Here, we analyze and quantify wear at the most fundamental level, i.e., wear debris particles. Our simulations show that the asperity junction size dictates the debris volume, revealing the origins of the long-standing hypothesized correlation between the wear volume and the real contact area. No correlation, however, is found between the debris volume and the normal applied force at the debris level. Alternatively, we show that the junction size controls the tangential force and sliding distance such that their product, i.e., the tangential work, is always proportional to the debris volume, with a proportionality constant of 1 over the junction shear strength. This study provides an estimation of the debris volume without any empirical factor, resulting in a wear coefficient of unity at the debris level. Discrepant microscopic and macroscopic wear observations and models are then contextualized on the basis of this understanding. This finding offers a way to characterize the wear volume in atomistic simulations and atomic force microscope wear experiments. It also provides a fundamental basis for predicting the wear coefficient for sliding rough contacts, given the statistics of junction clusters sizes. PMID:28696291
Microscopic saw mark analysis: an empirical approach.
Love, Jennifer C; Derrick, Sharon M; Wiersema, Jason M; Peters, Charles
2015-01-01
Microscopic saw mark analysis is a well published and generally accepted qualitative analytical method. However, little research has focused on identifying and mitigating potential sources of error associated with the method. The presented study proposes the use of classification trees and random forest classifiers as an optimal, statistically sound approach to mitigate the potential for error of variability and outcome error in microscopic saw mark analysis. The statistical model was applied to 58 experimental saw marks created with four types of saws. The saw marks were made in fresh human femurs obtained through anatomical gift and were analyzed using a Keyence digital microscope. The statistical approach weighed the variables based on discriminatory value and produced decision trees with an associated outcome error rate of 8.62-17.82%. © 2014 American Academy of Forensic Sciences.
Waller, D.L.; Holland Bartels, L. E.; Mitchell, L.G.
1988-01-01
Glochidia of the endangered unionid mussel Lampsilis higginsi (Lea) are morphologically similar to those of several other species in the upper Mississippi River. Life history details, such as the timing of reproduction and identity of host fish, can be readily studied if the glochidia of L. higginsi can be distinguished from those of related species. Authors used light and scanning electron microscopy and statistical analyses of three shell measurements, shell length, shell height, and hinge length, to compare the glochidia of L. higginsi with those of L. radiata siliquoidea (Barnes), L. ventricosa (Barnes), and Ligumia recta (Lamarck). Glochidia of L. higginsi were differentiated by scanning electron microscopy on the basis of a combined examination of the position of the hinge ligament and the width of dorsal ridges, but were indistinguishable by light microscope examination or by statistical analyses of measurements.
Raman active components of skin cancer.
Feng, Xu; Moy, Austin J; Nguyen, Hieu T M; Zhang, Jason; Fox, Matthew C; Sebastian, Katherine R; Reichenberg, Jason S; Markey, Mia K; Tunnell, James W
2017-06-01
Raman spectroscopy (RS) has shown great potential in noninvasive cancer screening. Statistically based algorithms, such as principal component analysis, are commonly employed to provide tissue classification; however, they are difficult to relate to the chemical and morphological basis of the spectroscopic features and underlying disease. As a result, we propose the first Raman biophysical model applied to in vivo skin cancer screening data. We expand upon previous models by utilizing in situ skin constituents as the building blocks, and validate the model using previous clinical screening data collected from a Raman optical fiber probe. We built an 830nm confocal Raman microscope integrated with a confocal laser-scanning microscope. Raman imaging was performed on skin sections spanning various disease states, and multivariate curve resolution (MCR) analysis was used to resolve the Raman spectra of individual in situ skin constituents. The basis spectra of the most relevant skin constituents were combined linearly to fit in vivo human skin spectra. Our results suggest collagen, elastin, keratin, cell nucleus, triolein, ceramide, melanin and water are the most important model components. We make available for download (see supplemental information) a database of Raman spectra for these eight components for others to use as a reference. Our model reveals the biochemical and structural makeup of normal, nonmelanoma and melanoma skin cancers, and precancers and paves the way for future development of this approach to noninvasive skin cancer diagnosis.
Raman active components of skin cancer
Feng, Xu; Moy, Austin J; Nguyen, Hieu T. M.; Zhang, Jason; Fox, Matthew C.; Sebastian, Katherine R.; Reichenberg, Jason S.; Markey, Mia K.; Tunnell, James W.
2017-01-01
Raman spectroscopy (RS) has shown great potential in noninvasive cancer screening. Statistically based algorithms, such as principal component analysis, are commonly employed to provide tissue classification; however, they are difficult to relate to the chemical and morphological basis of the spectroscopic features and underlying disease. As a result, we propose the first Raman biophysical model applied to in vivo skin cancer screening data. We expand upon previous models by utilizing in situ skin constituents as the building blocks, and validate the model using previous clinical screening data collected from a Raman optical fiber probe. We built an 830nm confocal Raman microscope integrated with a confocal laser-scanning microscope. Raman imaging was performed on skin sections spanning various disease states, and multivariate curve resolution (MCR) analysis was used to resolve the Raman spectra of individual in situ skin constituents. The basis spectra of the most relevant skin constituents were combined linearly to fit in vivo human skin spectra. Our results suggest collagen, elastin, keratin, cell nucleus, triolein, ceramide, melanin and water are the most important model components. We make available for download (see supplemental information) a database of Raman spectra for these eight components for others to use as a reference. Our model reveals the biochemical and structural makeup of normal, nonmelanoma and melanoma skin cancers, and precancers and paves the way for future development of this approach to noninvasive skin cancer diagnosis. PMID:28663910
Conventional Microscopy vs. Computer Imagery in Chiropractic Education.
Cunningham, Christine M; Larzelere, Elizabeth D; Arar, Ilija
2008-01-01
As human tissue pathology slides become increasingly difficult to obtain, other methods of teaching microscopy in educational laboratories must be considered. The purpose of this study was to evaluate our students' satisfaction with newly implemented computer imagery based laboratory instruction and to obtain input from their perspective on the advantages and disadvantages of computerized vs. traditional microscope laboratories. This undertaking involved the creation of a new computer laboratory. Robbins and Cotran Pathologic Basis of Disease, 7(th)ed, was chosen as the required text which gave students access to the Robbins Pathology website, including complete content of text, Interactive Case Study Companion, and Virtual Microscope. Students had experience with traditional microscopes in their histology and microbiology laboratory courses. Student satisfaction with computer based learning was assessed using a 28 question survey which was administered to three successive trimesters of pathology students (n=193) using the computer survey website Zoomerang. Answers were given on a scale of 1-5 and statistically analyzed using weighted averages. The survey data indicated that students were satisfied with computer based learning activities during pathology laboratory instruction. The most favorable aspect to computer imagery was 24-7 availability (weighted avg. 4.16), followed by clarification offered by accompanying text and captions (weighted avg. 4.08). Although advantages and disadvantages exist in using conventional microscopy and computer imagery, current pathology teaching environments warrant investigation of replacing traditional microscope exercises with computer applications. Chiropractic students supported the adoption of computer-assisted instruction in pathology laboratories.
Statistical fluctuations in pedestrian evacuation times and the effect of social contagion
NASA Astrophysics Data System (ADS)
Nicolas, Alexandre; Bouzat, Sebastián; Kuperman, Marcelo N.
2016-08-01
Mathematical models of pedestrian evacuation and the associated simulation software have become essential tools for the assessment of the safety of public facilities and buildings. While a variety of models is now available, their calibration and test against empirical data are generally restricted to global averaged quantities; the statistics compiled from the time series of individual escapes ("microscopic" statistics) measured in recent experiments are thus overlooked. In the same spirit, much research has primarily focused on the average global evacuation time, whereas the whole distribution of evacuation times over some set of realizations should matter. In the present paper we propose and discuss the validity of a simple relation between this distribution and the microscopic statistics, which is theoretically valid in the absence of correlations. To this purpose, we develop a minimal cellular automaton, with features that afford a semiquantitative reproduction of the experimental microscopic statistics. We then introduce a process of social contagion of impatient behavior in the model and show that the simple relation under test may dramatically fail at high contagion strengths, the latter being responsible for the emergence of strong correlations in the system. We conclude with comments on the potential practical relevance for safety science of calculations based on microscopic statistics.
Heering, Peter
2008-09-01
Solar microscopes and their techniques attracted particular attention in the second half of the eighteenth century. This paper investigates the grounds for this interest. After a general introduction to the solar microscope, it discusses the use of original instruments to gain access to the visual culture of solar microscopes and the issues raised by these reenactments. Experiences involved in this process serve as a basis for reassessing the original source materials. Thence emerges a different account of the meaning of the solar microscope in the eighteenth century and possible reasons for its popularity.
Thermodynamic constraints on fluctuation phenomena
NASA Astrophysics Data System (ADS)
Maroney, O. J. E.
2009-12-01
The relationships among reversible Carnot cycles, the absence of perpetual motion machines, and the existence of a nondecreasing globally unique entropy function form the starting point of many textbook presentations of the foundations of thermodynamics. However, the thermal fluctuation phenomena associated with statistical mechanics has been argued to restrict the domain of validity of this basis of the second law of thermodynamics. Here we demonstrate that fluctuation phenomena can be incorporated into the traditional presentation, extending rather than restricting the domain of validity of the phenomenologically motivated second law. Consistency conditions lead to constraints upon the possible spectrum of thermal fluctuations. In a special case this uniquely selects the Gibbs canonical distribution and more generally incorporates the Tsallis distributions. No particular model of microscopic dynamics need be assumed.
Thermodynamic constraints on fluctuation phenomena.
Maroney, O J E
2009-12-01
The relationships among reversible Carnot cycles, the absence of perpetual motion machines, and the existence of a nondecreasing globally unique entropy function form the starting point of many textbook presentations of the foundations of thermodynamics. However, the thermal fluctuation phenomena associated with statistical mechanics has been argued to restrict the domain of validity of this basis of the second law of thermodynamics. Here we demonstrate that fluctuation phenomena can be incorporated into the traditional presentation, extending rather than restricting the domain of validity of the phenomenologically motivated second law. Consistency conditions lead to constraints upon the possible spectrum of thermal fluctuations. In a special case this uniquely selects the Gibbs canonical distribution and more generally incorporates the Tsallis distributions. No particular model of microscopic dynamics need be assumed.
Ehanire, Tosan; Singhal, Dhruv; Mast, Bruce; Leyngold, Mark
2018-01-24
Microsurgery is performed using either the operating microscope or loupe magnification. Use of the operating microscope is considered the "criterion standard"; however, loupes are emerging as a safe and reliable technique to perform microsurgery. The purpose of this study was to analyze the safety of microsurgery under loupe magnification compared with the microscope. Previous studies discussing the safety of loupe magnification during microsurgery have been published; however, this is the first study to compare free flap outcomes from 2 surgeons at the same institution, each using their respective technique. The outcomes were compared by retrospective chart review of 116 patients, and 148 microvascular free tissue transfers were performed between January 1, 2013, and July 15, 2016, by 2 surgeons (D.S.) and (M.L.). Patients' demographics, free flap failure rate, and other surgical complications were analyzed. Statistical significance was determined by unpaired t test, and χ analysis was used to determine statistical significance in proportions between groups. Thirty-eight percent of flaps were performed under ×3.5 loupe magnification and 62% under the operating microscope. Most free flaps used were deep inferior epigastric perforator or muscle sparing transverse rectus abdominis flaps (52%) for breast reconstruction, remainder of free flaps included ALT, radial forearm, and latissimus dorsi for a variety of reconstructive applications. There was no significant difference between the loupes and microscope groups in intraoperative anastomotic revision rate (27% vs 17%), postoperative arterial or venous thrombosis (4.4% vs 2.6%, 5.4% vs 2.2%), flap loss (3.6% vs 2.2%), or median length of stay (6 days vs 6.5 days). The loupe magnification group had statistically significant shorter setup time (20 minutes, P < 0.01). Consistent with previously reported studies, we found no statistical difference in free flap outcomes and safety under loupe magnification compared with the operating microscope. This is the first study to demonstrate these findings with 2 microsurgeons both in their first 3 years in practice, with similar training and experience, operating at the same institution and given the same resources, each using either microscopes or loupes for microsurgery.
Dental enamel defect diagnosis through different technology-based devices.
Kobayashi, Tatiana Yuriko; Vitor, Luciana Lourenço Ribeiro; Carrara, Cleide Felício Carvalho; Silva, Thiago Cruvinel; Rios, Daniela; Machado, Maria Aparecida Andrade Moreira; Oliveira, Thais Marchini
2018-06-01
Dental enamel defects (DEDs) are faulty or deficient enamel formations of primary and permanent teeth. Changes during tooth development result in hypoplasia (a quantitative defect) and/or hypomineralisation (a qualitative defect). To compare technology-based diagnostic methods for detecting DEDs. Two-hundred and nine dental surfaces of anterior permanent teeth were selected in patients, 6-11 years of age, with cleft lip with/without cleft palate. First, a conventional clinical examination was conducted according to the modified Developmental Defects of Enamel Index (DDE Index). Dental surfaces were evaluated using an operating microscope and a fluorescence-based device. Interexaminer reproducibility was determined using the kappa test. To compare groups, McNemar's test was used. Cramer's V test was used for comparing the distribution of index codes obtained after classification of all dental surfaces. Cramer's V test revealed statistically significant differences (P < .0001) in the distribution of index codes obtained using the different methods; the coefficients were 0.365 for conventional clinical examination versus fluorescence, 0.961 for conventional clinical examination versus operating microscope and 0.358 for operating microscope versus fluorescence. The sensitivity of the operating microscope and fluorescence method was statistically significant (P = .008 and P < .0001, respectively). Otherwise, the results did not show statistically significant differences in accuracy and specificity for either the operating microscope or the fluorescence methods. This study suggests that the operating microscope performed better than the fluorescence-based device and could be an auxiliary method for the detection of DEDs. © 2017 FDI World Dental Federation.
Hanel, Rudolf; Thurner, Stefan; Gell-Mann, Murray
2014-05-13
The maximum entropy principle (MEP) is a method for obtaining the most likely distribution functions of observables from statistical systems by maximizing entropy under constraints. The MEP has found hundreds of applications in ergodic and Markovian systems in statistical mechanics, information theory, and statistics. For several decades there has been an ongoing controversy over whether the notion of the maximum entropy principle can be extended in a meaningful way to nonextensive, nonergodic, and complex statistical systems and processes. In this paper we start by reviewing how Boltzmann-Gibbs-Shannon entropy is related to multiplicities of independent random processes. We then show how the relaxation of independence naturally leads to the most general entropies that are compatible with the first three Shannon-Khinchin axioms, the (c,d)-entropies. We demonstrate that the MEP is a perfectly consistent concept for nonergodic and complex statistical systems if their relative entropy can be factored into a generalized multiplicity and a constraint term. The problem of finding such a factorization reduces to finding an appropriate representation of relative entropy in a linear basis. In a particular example we show that path-dependent random processes with memory naturally require specific generalized entropies. The example is to our knowledge the first exact derivation of a generalized entropy from the microscopic properties of a path-dependent random process.
3D Texture Analysis in Renal Cell Carcinoma Tissue Image Grading
Cho, Nam-Hoon; Choi, Heung-Kook
2014-01-01
One of the most significant processes in cancer cell and tissue image analysis is the efficient extraction of features for grading purposes. This research applied two types of three-dimensional texture analysis methods to the extraction of feature values from renal cell carcinoma tissue images, and then evaluated the validity of the methods statistically through grade classification. First, we used a confocal laser scanning microscope to obtain image slices of four grades of renal cell carcinoma, which were then reconstructed into 3D volumes. Next, we extracted quantitative values using a 3D gray level cooccurrence matrix (GLCM) and a 3D wavelet based on two types of basis functions. To evaluate their validity, we predefined 6 different statistical classifiers and applied these to the extracted feature sets. In the grade classification results, 3D Haar wavelet texture features combined with principal component analysis showed the best discrimination results. Classification using 3D wavelet texture features was significantly better than 3D GLCM, suggesting that the former has potential for use in a computer-based grading system. PMID:25371701
Entropy, a Unifying Concept: from Physics to Cognitive Psychology
NASA Astrophysics Data System (ADS)
Tsallis, Constantino; Tsallis, Alexandra C.
Together with classical, relativistic and quantum mechanics, as well as Maxwell electromagnetism, Boltzmann-Gibbs (BG) statistical mechanics constitutes one of the main theories of contemporary physics. This theory primarily concerns inanimate matter, and at its generic foundation we find nonlinear dynamical systems satisfying the ergodic hypothesis. This hypothesis is typically guaranteed for systems whose maximal Lyapunov exponent is positive. What happens when this crucial quantity is zero instead? We suggest here that, in what concerns thermostatistical properties, we typically enter what in some sense may be considered as a new world — the world of living systems — . The need emerges, at least for many systems, for generalizing the basis of BG statistical mechanics, namely the Boltzmann-Gibbs-von Neumann-Shannon en-tropic functional form, which connects the oscopic, thermodynamic quantity, with the occurrence probabilities of microscopic configurations. This unifying approach is briefly reviewed here, and its widespread applications — from physics to cognitive psychology — are overviewed. Special attention is dedicated to the learning/memorizing process in humans and computers. The present observations might be related to the gestalt theory of visual perceptions and the actor-network theory.
Malik, Mohsan M; Hachach-Haram, Nadine; Tahir, Muaaz; Al-Musabi, Musab; Masud, Dhalia; Mohanna, Pari-Naz
2017-04-01
Acquisition of fine motor skills required in microsurgery can be challenging in the current training system. Therefore, there is an increased demand for novel training and assessment methods to optimise learning outside the clinical setting. Here, we present a randomised control trial of three microsurgical training models, namely laboratory tabletop training microscope (Laboratory Microscope, LM), low-cost jewellers microscope (Home Microscope, HM) and iPad trainer (Home Tablet, HT). Thirty-nine participants were allocated to four groups, control n = 9, LM n = 10, HM n = 10 and HT n = 10. The participants performed a chicken femoral artery anastomosis at baseline and at the completion of training. The performance was assessed as follows: structured assessment of microsurgery skills (SAMS) score, time taken to complete anastomosis and time for suture placement. No statistically significant difference was noted between the groups at baseline. There was a statistically significant improvement in all training arms between the baseline and post-training for SAMS score, time taken to complete the anastomosis and time per suture placement. In addition, a reduction was observed in the leak rate. No statistical difference was observed among the training arms. Our study demonstrated that at the early stages of microsurgical skill acquisition, home training using either the jewellers microscope or iPad produces comparable results to laboratory-based training using a tabletop microscope. Therefore, home microsurgical training is a viable, easily accessible cost-effective modality that allows trainees to practice and take ownership of their technical skill development in this area. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Nonlinear unitary quantum collapse model with self-generated noise
NASA Astrophysics Data System (ADS)
Geszti, Tamás
2018-04-01
Collapse models including some external noise of unknown origin are routinely used to describe phenomena on the quantum-classical border; in particular, quantum measurement. Although containing nonlinear dynamics and thereby exposed to the possibility of superluminal signaling in individual events, such models are widely accepted on the basis of fully reproducing the non-signaling statistical predictions of quantum mechanics. Here we present a deterministic nonlinear model without any external noise, in which randomness—instead of being universally present—emerges in the measurement process, from deterministic irregular dynamics of the detectors. The treatment is based on a minimally nonlinear von Neumann equation for a Stern–Gerlach or Bell-type measuring setup, containing coordinate and momentum operators in a self-adjoint skew-symmetric, split scalar product structure over the configuration space. The microscopic states of the detectors act as a nonlocal set of hidden parameters, controlling individual outcomes. The model is shown to display pumping of weights between setup-defined basis states, with a single winner randomly selected and the rest collapsing to zero. Environmental decoherence has no role in the scenario. Through stochastic modelling, based on Pearle’s ‘gambler’s ruin’ scheme, outcome probabilities are shown to obey Born’s rule under a no-drift or ‘fair-game’ condition. This fully reproduces quantum statistical predictions, implying that the proposed non-linear deterministic model satisfies the non-signaling requirement. Our treatment is still vulnerable to hidden signaling in individual events, which remains to be handled by future research.
Multiresolution multiscale active mask segmentation of fluorescence microscope images
NASA Astrophysics Data System (ADS)
Srinivasa, Gowri; Fickus, Matthew; Kovačević, Jelena
2009-08-01
We propose an active mask segmentation framework that combines the advantages of statistical modeling, smoothing, speed and flexibility offered by the traditional methods of region-growing, multiscale, multiresolution and active contours respectively. At the crux of this framework is a paradigm shift from evolving contours in the continuous domain to evolving multiple masks in the discrete domain. Thus, the active mask framework is particularly suited to segment digital images. We demonstrate the use of the framework in practice through the segmentation of punctate patterns in fluorescence microscope images. Experiments reveal that statistical modeling helps the multiple masks converge from a random initial configuration to a meaningful one. This obviates the need for an involved initialization procedure germane to most of the traditional methods used to segment fluorescence microscope images. While we provide the mathematical details of the functions used to segment fluorescence microscope images, this is only an instantiation of the active mask framework. We suggest some other instantiations of the framework to segment different types of images.
Real-time restoration of white-light confocal microscope optical sections
Balasubramanian, Madhusudhanan; Iyengar, S. Sitharama; Beuerman, Roger W.; Reynaud, Juan; Wolenski, Peter
2009-01-01
Confocal microscopes (CM) are routinely used for building 3-D images of microscopic structures. Nonideal imaging conditions in a white-light CM introduce additive noise and blur. The optical section images need to be restored prior to quantitative analysis. We present an adaptive noise filtering technique using Karhunen–Loéve expansion (KLE) by the method of snapshots and a ringing metric to quantify the ringing artifacts introduced in the images restored at various iterations of iterative Lucy–Richardson deconvolution algorithm. The KLE provides a set of basis functions that comprise the optimal linear basis for an ensemble of empirical observations. We show that most of the noise in the scene can be removed by reconstructing the images using the KLE basis vector with the largest eigenvalue. The prefiltering scheme presented is faster and does not require prior knowledge about image noise. Optical sections processed using the KLE prefilter can be restored using a simple inverse restoration algorithm; thus, the methodology is suitable for real-time image restoration applications. The KLE image prefilter outperforms the temporal-average prefilter in restoring CM optical sections. The ringing metric developed uses simple binary morphological operations to quantify the ringing artifacts and confirms with the visual observation of ringing artifacts in the restored images. PMID:20186290
[Damage of modern building materials by microscopic fungi].
Chuenko, A I; Karpenko, Iu V
2011-01-01
Resistance of three materials, produced on the basis of concrete compounds to the action of microscopic fungi, isolated from damaged living buildings, has been first investigated. It has been shown that samples of froth-block and thermoeffective block had low fungal resistance, in contrast to samples of cellular polystyrene concrete, which were resistant to fungal action, that can be associated with peculiarities of their component composition.
Using laser technological unit ALTI "Karavella" for precision components of IEP production
NASA Astrophysics Data System (ADS)
Labin, N. A.; Chursin, A. D.; Paramonov, V. S.; Klimenko, V. I.; Paramonova, G. M.; Kolokolov, I. S.; Vinogradov, K. Y.; Betina, L. L.; Bulychev, N. A.; Dyakov, Yu. A.; Zakharyan, R. A.; Kazaryan, M. A.; Koshelev, K. K.; Kosheleva, O. K.; Grigoryants, A. G.; Shiganov, I. N.; Krasovskii, V. I.; Sachkov, V. I.; Plyaka, P. S.; Feofanov, I. N.; Chen, C.
2015-12-01
The paper revealed the using of industrial production equipment ALTI "Karavella-1", "Karavella-1M", "Karavella-2" and "Karavella-2M" precision components of IEP production [1-4]. The basis for the ALTI using in the IEP have become the positive results of research and development of technologies of foil (0.01-0.2 mm) and thin sheets (0.3-1 mm) materials micromachining by pulsed radiation CVL [5, 6]. To assess the micromachining quality and precision the measuring optical microscope (UHL VMM200), projection microscope (Mitutoyo PV5100) and Carl Zeiss microscope were used.
Generic distortion model for metrology under optical microscopes
NASA Astrophysics Data System (ADS)
Liu, Xingjian; Li, Zhongwei; Zhong, Kai; Chao, YuhJin; Miraldo, Pedro; Shi, Yusheng
2018-04-01
For metrology under optical microscopes, lens distortion is the dominant source of error. Previous distortion models and correction methods mostly rely on the assumption that parametric distortion models require a priori knowledge of the microscopes' lens systems. However, because of the numerous optical elements in a microscope, distortions can be hardly represented by a simple parametric model. In this paper, a generic distortion model considering both symmetric and asymmetric distortions is developed. Such a model is obtained by using radial basis functions (RBFs) to interpolate the radius and distortion values of symmetric distortions (image coordinates and distortion rays for asymmetric distortions). An accurate and easy to implement distortion correction method is presented. With the proposed approach, quantitative measurement with better accuracy can be achieved, such as in Digital Image Correlation for deformation measurement when used with an optical microscope. The proposed technique is verified by both synthetic and real data experiments.
NASA Astrophysics Data System (ADS)
Staroń, Waldemar; Herbowski, Leszek; Gurgul, Henryk
2007-04-01
The goal of the work was to determine the values of cumulative parameters of the cerebrospinal fluid. Values of the parameters characterise statistical cerebrospinal fluid obtained by puncture from the patients diagnosed due to suspicion of normotensive hydrocephalus. The cerebrospinal fluid taken by puncture for the routine examinations carried out at the patients suspected of normotensive hydrocephalus was analysed. In the paper there are presented results of examinations of several dozens of puncture samples of the cerebrospinal fluid coming from various patients. Each sample was examined under the microscope and photographed in 20 randomly chosen places. On the basis of analysis of the pictures showing the area of 100 x 100μm, the selected cumulative parameters such as count, numerical density, field area and field perimeter were determined for each sample. Then the average value of the parameters was determined as well.
Ion specific correlations in bulk and at biointerfaces.
Kalcher, I; Horinek, D; Netz, R R; Dzubiella, J
2009-10-21
Ion specific effects are ubiquitous in any complex colloidal or biological fluid in bulk or at interfaces. The molecular origins of these 'Hofmeister effects' are not well understood and their theoretical description poses a formidable challenge to the modeling and simulation community. On the basis of the combination of atomistically resolved molecular dynamics (MD) computer simulations and statistical mechanics approaches, we present a few selected examples of specific electrolyte effects in bulk, at simple neutral and charged interfaces, and on a short α-helical peptide. The structural complexity in these strongly Coulomb-correlated systems is highlighted and analyzed in the light of available experimental data. While in general the comparison of MD simulations to experiments often lacks quantitative agreement, mostly because molecular force fields and coarse-graining procedures remain to be optimized, the consensus as regards trends provides important insights into microscopic hydration and binding mechanisms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartman, J.S.; Gordon, R.L.; Lessor, D.L.
1980-09-01
The application of reflective Nomarski differential interference contrast microscopy for the determination of quantitative sample topography data is presented. The discussion includes a review of key theoretical results presented previously plus the experimental implementation of the concepts using a commercial Momarski microscope. The experimental work included the modification and characterization of a commercial microscope to allow its use for obtaining quantitative sample topography data. System usage for the measurement of slopes on flat planar samples is also discussed. The discussion has been designed to provide the theoretical basis, a physical insight, and a cookbook procedure for implementation to allow thesemore » results to be of value to both those interested in the microscope theory and its practical usage in the metallography laboratory.« less
Scanning ion-conductance and atomic force microscope with specialized sphere-shaped nanopippettes
NASA Astrophysics Data System (ADS)
Zhukov, M. V.; Sapozhnikov, I. D.; Golubok, A. O.; Chubinskiy-Nadezhdin, V. I.; Komissarenko, F. E.; Lukashenko, S. Y.
2017-11-01
A scanning ion-conductance microscope was designed on the basis of scanning probe microscope NanoTutor. The optimal parameters of nanopipettes fabrication were found according to scanning electron microscopy diagnostics, current-distance I (Z) and current-voltage characteristics. A comparison of images of test objects, including biological samples, was carried out in the modes of optical microscopy, atomic force microscopy and scanning ion-conductance microscopy. Sphere-shaped nanopippettes probes were developed and tested to increase the stability of pipettes, reduce invasiveness and improve image quality of atomic force microscopy in tapping mode. The efficiency of sphere-shaped nanopippettes is shown.
A combined confocal and magnetic resonance microscope for biological studies
NASA Astrophysics Data System (ADS)
Majors, Paul D.; Minard, Kevin R.; Ackerman, Eric J.; Holtom, Gary R.; Hopkins, Derek F.; Parkinson, Christopher I.; Weber, Thomas J.; Wind, Robert A.
2002-12-01
Complementary data acquired with different microscopy techniques provide a basis for establishing a more comprehensive understanding of cell function in health and disease, particularly when results acquired with different methodologies can be correlated in time and space. In this article, a novel microscope is described for studying live cells simultaneously with both confocal scanning laser fluorescence optical microscopy and magnetic resonance microscopy. The various design considerations necessary for integrating these two complementary techniques are discussed, the layout and specifications of the instrument are given, and examples of confocal and magnetic resonance images of large frog cells and model tumor spheroids obtained with the compound microscope are presented.
Mattfeldt, Torsten
2011-04-01
Computer-intensive methods may be defined as data analytical procedures involving a huge number of highly repetitive computations. We mention resampling methods with replacement (bootstrap methods), resampling methods without replacement (randomization tests) and simulation methods. The resampling methods are based on simple and robust principles and are largely free from distributional assumptions. Bootstrap methods may be used to compute confidence intervals for a scalar model parameter and for summary statistics from replicated planar point patterns, and for significance tests. For some simple models of planar point processes, point patterns can be simulated by elementary Monte Carlo methods. The simulation of models with more complex interaction properties usually requires more advanced computing methods. In this context, we mention simulation of Gibbs processes with Markov chain Monte Carlo methods using the Metropolis-Hastings algorithm. An alternative to simulations on the basis of a parametric model consists of stochastic reconstruction methods. The basic ideas behind the methods are briefly reviewed and illustrated by simple worked examples in order to encourage novices in the field to use computer-intensive methods. © 2010 The Authors Journal of Microscopy © 2010 Royal Microscopical Society.
Reconsideration of dynamic force spectroscopy analysis of streptavidin-biotin interactions.
Taninaka, Atsushi; Takeuchi, Osamu; Shigekawa, Hidemi
2010-05-13
To understand and design molecular functions on the basis of molecular recognition processes, the microscopic probing of the energy landscapes of individual interactions in a molecular complex and their dependence on the surrounding conditions is of great importance. Dynamic force spectroscopy (DFS) is a technique that enables us to study the interaction between molecules at the single-molecule level. However, the obtained results differ among previous studies, which is considered to be caused by the differences in the measurement conditions. We have developed an atomic force microscopy technique that enables the precise analysis of molecular interactions on the basis of DFS. After verifying the performance of this technique, we carried out measurements to determine the landscapes of streptavidin-biotin interactions. The obtained results showed good agreement with theoretical predictions. Lifetimes were also well analyzed. Using a combination of cross-linkers and the atomic force microscope that we developed, site-selective measurement was carried out, and the steps involved in bonding due to microscopic interactions are discussed using the results obtained by site-selective analysis.
Genetically Distinct Subsets within ANCA-Associated Vasculitis
Lyons, Paul A.; Rayner, Tim F.; Trivedi, Sapna; Holle, Julia U.; Watts, Richard A.; Jayne, David R.W.; Baslund, Bo; Brenchley, Paul; Bruchfeld, Annette; Chaudhry, Afzal N.; Tervaert, Jan Willem Cohen; Deloukas, Panos; Feighery, Conleth; Gross, Wolfgang L.; Guillevin, Loic; Gunnarsson, Iva; P, Lorraine Harper M.R.C; Hrušková, Zdenka; Little, Mark A.; Martorana, Davide; Neumann, Thomas; Ohlsson, Sophie; Padmanabhan, Sandosh; Pusey, Charles D.; Salama, Alan D.; Sanders, Jan-Stephan F.; Savage, Caroline O.; Segelmark, Mårten; Stegeman, Coen A.; Tesař, Vladimir; Vaglio, Augusto; Wieczorek, Stefan; Wilde, Benjamin; Zwerina, Jochen; Rees, Andrew J.; Clayton, David G.; Smith, Kenneth G.C.
2013-01-01
BACKGROUND Antineutrophil cytoplasmic antibody (ANCA)–associated vasculitis is a severe condition encompassing two major syndromes: granulomatosis with polyangiitis (formerly known as Wegener’s granulomatosis) and microscopic polyangiitis. Its cause is unknown, and there is debate about whether it is a single disease entity and what role ANCA plays in its pathogenesis. We investigated its genetic basis. METHODS A genomewide association study was performed in a discovery cohort of 1233 U.K. patients with ANCA-associated vasculitis and 5884 controls and was replicated in 1454 Northern European case patients and 1666 controls. Quality control, population stratification, and statistical analyses were performed according to standard criteria. RESULTS We found both major-histocompatibility-complex (MHC) and non-MHC associations with ANCA-associated vasculitis and also that granulomatosis with polyangiitis and microscopic polyangiitis were genetically distinct. The strongest genetic associations were with the antigenic specificity of ANCA, not with the clinical syndrome. Anti–proteinase 3 ANCA was associated with HLA-DP and the genes encoding α1-antitrypsin (SERPINA1) and proteinase 3 (PRTN3) (P = 6.2×10−89, P = 5.6×10−12, and P = 2.6×10−7, respectively). Anti–myeloperoxidase ANCA was associated with HLA-DQ (P = 2.1×10−8). CONCLUSIONS This study confirms that the pathogenesis of ANCA-associated vasculitis has a genetic component, shows genetic distinctions between granulomatosis with polyangiitis and microscopic polyangiitis that are associated with ANCA specificity, and suggests that the response against the autoantigen proteinase 3 is a central pathogenic feature of proteinase 3 ANCA–associated vasculitis. These data provide preliminary support for the concept that proteinase 3 ANCA–associated vasculitis and myeloperoxidase ANCA–associated vasculitis are distinct autoimmune syndromes. (Funded by the British Heart Foundation and others.) PMID:22808956
Cionni, Robert J; Pei, Ron; Dimalanta, Ramon; Lubeck, David
2015-08-01
To evaluate the intensity and stability of the red reflex produced by ophthalmic surgical microscopes with nearly-collimated versus focused illumination systems and to assess surgeon preference in a simulated surgical setting. This two-part evaluation consisted of postproduction surgical video analysis of red reflex intensity and a microscope use and preference survey completed by 13 experienced cataract surgeons. Survey responses were based on bench testing and experience in a simulated surgical setting. A microscope with nearly-collimated beam illumination and two focused beam microscopes were assessed. Red reflex intensity and stability were greater with the nearly-collimated microscope illumination system. In the bench testing survey, surgeons reported that the red reflex was maintained over significantly greater distances away from pupillary center, and depth of focus was numerically greater with nearly-collimated illumination relative to focused illumination. Most participating surgeons (≥64%) reported a preference for the microscope with nearly-collimated illumination with regard to red reflex stability, depth of focus, visualization, surgical working distance, and perceived patient comfort. The microscope with nearly-collimated illumination produced a more intense and significantly more stable red reflex and was preferred overall by more surgeons. This is the first report of an attempt to quantify red reflex intensity and stability and to evaluate surgically-relevant parameters between microscope systems. The data and methods presented here may provide a basis for future studies attempting to quantify differences between surgical microscopes that may affect surgeon preference and microscope use in ophthalmic surgery.
Microscopic theory of linear light scattering from mesoscopic media and in near-field optics.
Keller, Ole
2005-08-01
On the basis of quantum mechanical response theory a microscopic propagator theory of linear light scattering from mesoscopic systems is presented. The central integral equation problem is transferred to a matrix equation problem by discretization in transitions between pairs of (many-body) energy eigenstates. The local-field calculation which appears from this approach is valid down to the microscopic region. Previous theories based on the (macroscopic) dielectric constant concept make use of spatial (geometrical) discretization and cannot in general be trusted on the mesoscopic length scale. The present theory can be applied to light scattering studies in near-field optics. After a brief discussion of the macroscopic integral equation problem a microscopic potential description of the scattering process is established. In combination with the use of microscopic electromagnetic propagators the formalism allows one to make contact to the macroscopic theory of light scattering and to the spatial photon localization problem. The quantum structure of the microscopic conductivity response tensor enables one to establish a clear physical picture of the origin of local-field phenomena in mesoscopic and near-field optics. The Huygens scalar propagator formalism is revisited and its generality in microscopic physics pointed out.
Lee, Tae Hoon; Loke, Desmond; Elliott, Stephen R
2015-10-07
A comprehensive microscopic mechanism of doping-induced kinetically constrained crystallization in phase-change materials is provided by investigating structural and dynamical dopant characteristics via ab initio molecular dynamics simulations. The information gained from this study may provide a basis for a fast screening of dopant species for electronic memory devices, or for understanding the general physics involved in the crystallization of doped glasses. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A comparison of microscopic ink characteristics of 35 commercially available surgical margin inks.
Milovancev, Milan; Löhr, Christiane V; Bildfell, Robert J; Gelberg, Howard B; Heidel, Jerry R; Valentine, Beth A
2013-11-01
To compare microscopic characteristics of commercially available surgical margin inks used for surgical pathology specimens. Prospective in vitro study. Thirty-five different surgical margin inks (black, blue, green, orange, red, violet, and yellow from 5 different manufacturers). Inks were applied to uniform, single-source, canine cadaveric full-thickness ventral abdominal tissue blocks. Tissue blocks and ink manufacturers were randomly paired and each color was applied to a length of the cut tissue margin. After drying, tissues were fixed in formalin, and 3 radial slices were obtained from each color section and processed for routine histologic evaluation, yielding 105 randomly numbered slides with each manufacturer's color represented in triplicate. Slides were evaluated by 5 blinded, board-certified veterinary anatomic pathologists using a standardized scoring scheme. Statistical analyses were performed to evaluate for ink manufacturer effects on scores, correlation among different subjective variables, and pathologist agreement. Black and blue had the most consistently high scores whereas red and violet had the most consistently low overall scores, across all manufacturers. All colors tested, except yellow, had statistically significant differences in overall scores among individual manufacturers. Overall score was significantly correlated to all other subjective microscopic scores evaluated. The average Spearman correlation coefficient among the 10 pairwise pathologists overall ink scores was 0.60. There are statistically significant differences in microscopic ink characteristics among manufacturers, with a notable degree of inter-pathologist agreement. © Copyright 2013 by The American College of Veterinary Surgeons.
Microscopic hematuria and calculus-related ureteral obstruction.
Stewart, D P; Kowalski, R; Wong, P; Krome, R
1990-01-01
The evaluation of patients with ureteral calculi in the emergency department has historically included urinalysis (UA) and intravenous pyelograms (IVP). This retrospective study was done to determine if a statistically significant relationship existed between the degree of calculus-related ureteral obstruction, proven by IVP, and the presence or absence of microscopic hematuria. Urine red blood cells were recorded as less than 3 rbc/hpf (negative) or greater than or equal to 3 rbc/hpf (positive). IVPs were recorded as nonsevere or severe. IVP criteria were based on the presence or absence of extravasation, greater than 2-hour ureteral filling times, and a numerical scoring system of 1 to 4 for ureteral or calyceal dilatation and nephrogenic effect. Eighty-nine men (72%) had non-severe obstructions and 34 (28%) had severe obstructions. Twenty-five women (68%) had nonsevere obstructions and 12 (32%) had severe obstructions. Of the 28 patients with normal UAs, 11 had severe ureteral obstructions and 17 had nonsevere ureteral obstructions. There were no statistically significant differences between the presence or absence of significant microscopic hematuria and the presence or absence of severe ureteral obstruction. Microscopic hematuria is neither sensitive nor specific in determining the degree of calculus-related ureteral obstruction.
Cionni, Robert J.; Pei, Ron; Dimalanta, Ramon; Lubeck, David
2015-01-01
Purpose To evaluate the intensity and stability of the red reflex produced by ophthalmic surgical microscopes with nearly-collimated versus focused illumination systems and to assess surgeon preference in a simulated surgical setting. Methods This two-part evaluation consisted of postproduction surgical video analysis of red reflex intensity and a microscope use and preference survey completed by 13 experienced cataract surgeons. Survey responses were based on bench testing and experience in a simulated surgical setting. A microscope with nearly-collimated beam illumination and two focused beam microscopes were assessed. Results Red reflex intensity and stability were greater with the nearly-collimated microscope illumination system. In the bench testing survey, surgeons reported that the red reflex was maintained over significantly greater distances away from pupillary center, and depth of focus was numerically greater with nearly-collimated illumination relative to focused illumination. Most participating surgeons (≥64%) reported a preference for the microscope with nearly-collimated illumination with regard to red reflex stability, depth of focus, visualization, surgical working distance, and perceived patient comfort. Conclusions The microscope with nearly-collimated illumination produced a more intense and significantly more stable red reflex and was preferred overall by more surgeons. Translational Relevance This is the first report of an attempt to quantify red reflex intensity and stability and to evaluate surgically-relevant parameters between microscope systems. The data and methods presented here may provide a basis for future studies attempting to quantify differences between surgical microscopes that may affect surgeon preference and microscope use in ophthalmic surgery. PMID:26290778
Kumar, Vineet
2011-12-01
The grain size statistics, commonly derived from the grain map of a material sample, are important microstructure characteristics that greatly influence its properties. The grain map for nanomaterials is usually obtained manually by visual inspection of the transmission electron microscope (TEM) micrographs because automated methods do not perform satisfactorily. While the visual inspection method provides reliable results, it is a labor intensive process and is often prone to human errors. In this article, an automated grain mapping method is developed using TEM diffraction patterns. The presented method uses wide angle convergent beam diffraction in the TEM. The automated technique was applied on a platinum thin film sample to obtain the grain map and subsequently derive grain size statistics from it. The grain size statistics obtained with the automated method were found in good agreement with the visual inspection method.
The HOME tutor: a new tool for training in microscope skills.
Gray, E; Sowter, C
1995-10-01
AxioHOME is a new concept in microscope design. It is a microscope with a visual display unit mounted in the head permitting computer generated displays to be projected on to the real microscope image when viewed down the eyepieces. This allows the annotation of the microscope image with both text and graphics. The AxioHOME system was used for the construction of complex interactive tutorials for the training and assessment of students. The basis of a tutorial is that features of interest on a microscope slide are indicated to the student who is then provided with either information or questions about those features. In turn the student can also annotate the slide with comments for later discussion with the teacher. The system therefore allows a dialogue between teacher and student. The creation of tutorials is time consuming. It takes approximately 10 min of teacher time to create 1 min of student time. However since the same tutorial can be used by numerous students this releases the teacher from repetitive training. The student response to this teaching method has been very positive. The main criticism being that insufficient teaching material was available.
Ge, Jian-Feng; Liu, Zhi-Long; Gao, Chun-Lei; Qian, Dong; Liu, Canhua; Jia, Jin-Feng
2015-05-01
Electrons at surface may behave differently from those in bulk of a material. Multi-functional tools are essential in comprehensive studies on a crystal surface. Here, we developed an in situ microscopic four-point probe (4PP) transport measurement system on the basis of a scanning tunneling microscope (STM). In particular, convenient replacement between STM tips and micro-4PPs enables systematic investigations of surface morphology, electronic structure, and electrical transport property of a same sample surface. Performances of the instrument are demonstrated with high-quality STM images, tunneling spectra, and low-noise electrical I-V characteristic curves of a single-layer FeSe film grown on a conductive SrTiO3 surface.
Advanced MOKE magnetometry in wide-field Kerr-microscopy
NASA Astrophysics Data System (ADS)
Soldatov, I. V.; Schäfer, R.
2017-10-01
The measurement of MOKE (Magneto-Optical Kerr Effect) magnetization loops in a wide-field Kerr microscope offers the advantage that the relevant domain images along the loop can be readily recorded. As the microscope's objective lens is exposed to the magnetic field, the loops are usually strongly distorted by non-linear Faraday rotations of the polarized light that occur in the objective lens and that are superimposed to the MOKE signal. In this paper, an experimental method, based on a motorized analyzer, is introduced which allows to compensate the Faraday contributions, thus leading to pure MOKE loops. A wide field Kerr microscope, equipped with this technology, works well as a laser-based MOKE magnetometer, additionally offering domain images and thus providing the basis for loop interpretation.
Das, Dev Kumar; Ghosh, Madhumala; Pal, Mallika; Maiti, Asok K; Chakraborty, Chandan
2013-02-01
The aim of this paper is to address the development of computer assisted malaria parasite characterization and classification using machine learning approach based on light microscopic images of peripheral blood smears. In doing this, microscopic image acquisition from stained slides, illumination correction and noise reduction, erythrocyte segmentation, feature extraction, feature selection and finally classification of different stages of malaria (Plasmodium vivax and Plasmodium falciparum) have been investigated. The erythrocytes are segmented using marker controlled watershed transformation and subsequently total ninety six features describing shape-size and texture of erythrocytes are extracted in respect to the parasitemia infected versus non-infected cells. Ninety four features are found to be statistically significant in discriminating six classes. Here a feature selection-cum-classification scheme has been devised by combining F-statistic, statistical learning techniques i.e., Bayesian learning and support vector machine (SVM) in order to provide the higher classification accuracy using best set of discriminating features. Results show that Bayesian approach provides the highest accuracy i.e., 84% for malaria classification by selecting 19 most significant features while SVM provides highest accuracy i.e., 83.5% with 9 most significant features. Finally, the performance of these two classifiers under feature selection framework has been compared toward malaria parasite classification. Copyright © 2012 Elsevier Ltd. All rights reserved.
Das, D K; Maiti, A K; Chakraborty, C
2015-03-01
In this paper, we propose a comprehensive image characterization cum classification framework for malaria-infected stage detection using microscopic images of thin blood smears. The methodology mainly includes microscopic imaging of Leishman stained blood slides, noise reduction and illumination correction, erythrocyte segmentation, feature selection followed by machine classification. Amongst three-image segmentation algorithms (namely, rule-based, Chan-Vese-based and marker-controlled watershed methods), marker-controlled watershed technique provides better boundary detection of erythrocytes specially in overlapping situations. Microscopic features at intensity, texture and morphology levels are extracted to discriminate infected and noninfected erythrocytes. In order to achieve subgroup of potential features, feature selection techniques, namely, F-statistic and information gain criteria are considered here for ranking. Finally, five different classifiers, namely, Naive Bayes, multilayer perceptron neural network, logistic regression, classification and regression tree (CART), RBF neural network have been trained and tested by 888 erythrocytes (infected and noninfected) for each features' subset. Performance evaluation of the proposed methodology shows that multilayer perceptron network provides higher accuracy for malaria-infected erythrocytes recognition and infected stage classification. Results show that top 90 features ranked by F-statistic (specificity: 98.64%, sensitivity: 100%, PPV: 99.73% and overall accuracy: 96.84%) and top 60 features ranked by information gain provides better results (specificity: 97.29%, sensitivity: 100%, PPV: 99.46% and overall accuracy: 96.73%) for malaria-infected stage classification. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.
Chen, Zhaoxue; Chen, Hao
2014-01-01
A deconvolution method based on the Gaussian radial basis function (GRBF) interpolation is proposed. Both the original image and Gaussian point spread function are expressed as the same continuous GRBF model, thus image degradation is simplified as convolution of two continuous Gaussian functions, and image deconvolution is converted to calculate the weighted coefficients of two-dimensional control points. Compared with Wiener filter and Lucy-Richardson algorithm, the GRBF method has an obvious advantage in the quality of restored images. In order to overcome such a defect of long-time computing, the method of graphic processing unit multithreading or increasing space interval of control points is adopted, respectively, to speed up the implementation of GRBF method. The experiments show that based on the continuous GRBF model, the image deconvolution can be efficiently implemented by the method, which also has a considerable reference value for the study of three-dimensional microscopic image deconvolution.
Connections between the dynamical symmetries in the microscopic shell model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Georgieva, A. I., E-mail: anageorg@issp.bas.bg; Drumev, K. P.
2016-03-25
The dynamical symmetries of the microscopic shell model appear as the limiting cases of a symmetry adapted Pairing-Plus-Quadrupole Model /PQM/, with a Hamiltonian containing isoscalar and isovector pairing and quadrupole interactions. We establish a correspondence between each of the three types of pairing bases and Elliott’s SU(3) basis, that describes collective rotation of nuclear systems with quadrupole deformation. It is derived from their complementarity to the same LS coupling chain of the shell model number conserving algebra. The probability distribution of the S U(3) basis states within the pairing eigenstates is also obtained through a numerical diagonalization of the PQMmore » Hamiltonian in each limit. We introduce control parameters, which define the phase diagram of the model and determine the role of each term of the Hamiltonian in the correct reproduction of the experimental data for the considered nuclei.« less
Nong, Xiang; Zeng, Xuemei; Yang, Yaojun; Liang, Zi; Tang, Mei; Liao, Lejuan; Luo, Chaobing
2017-11-01
Both leica microscopic camera system and scanning electron microscopy was used to observe and characterize the feet, back, abdomen, antennae and mouthparts of the Pseudoregma bambucicola from the bamboo, Bambusa multiplex . The possible functions of all the external morphological characteristics of the P. bambucicola were described and discussed in detail, which offers a basis for further enriching the biology, phylogeny and ecological niche of the P. bambucicola . Moreover, the morphological results should contribute to morphological identification and differentiation of the P. bambucicola from other aphids in the same family.
The interactional foundations of MaxEnt: Open questions
NASA Astrophysics Data System (ADS)
Harré, Michael S.
2014-12-01
One of the simplest and potentially most useful techniques to be developed in the 20th century, a century noted for an ever more mathematically sophisticated formulation of the sciences, is that of maximising the entropy of a system in order to generate a descriptive, stochastic model of that system in closed form, often abbreviated to MaxEnt. The extension of MaxEnt to systems beyond the physics from which it originated is hampered by the fact that the microscopic physical interactions that are not justified or justifiable within the MaxEnt framework need to be falsifiably evaluated in each new field of application. It is not obvious that such justification exists for many systems in which the interactions are not directly based on physics. For example what is the justification for the use of MaxEnt in biology, climate modelling or economics? Is it simply a useful heuristic or is there some deeper connection with the foundations of some systems? Without further critical examination of the microscopic foundations that give rise to the success of the MaxEnt principle it is difficult to motivate the use of such techniques in other fields except through theoretically an practically unsatisfying analogical arguments. This article briefly presents the basis of MaxEnt principles as originally introduced in statistical mechanics in the Jaynes form, the Tsallis form and the Rényi form. Several different applications are introduced including that of ecological diversity where maximising the different diversity measures is equivalent to maximising different entropic functionals.
Ultrafast superresolution fluorescence imaging with spinning disk confocal microscope optics.
Hayashi, Shinichi; Okada, Yasushi
2015-05-01
Most current superresolution (SR) microscope techniques surpass the diffraction limit at the expense of temporal resolution, compromising their applications to live-cell imaging. Here we describe a new SR fluorescence microscope based on confocal microscope optics, which we name the spinning disk superresolution microscope (SDSRM). Theoretically, the SDSRM is equivalent to a structured illumination microscope (SIM) and achieves a spatial resolution of 120 nm, double that of the diffraction limit of wide-field fluorescence microscopy. However, the SDSRM is 10 times faster than a conventional SIM because SR signals are recovered by optical demodulation through the stripe pattern of the disk. Therefore a single SR image requires only a single averaged image through the rotating disk. On the basis of this theory, we modified a commercial spinning disk confocal microscope. The improved resolution around 120 nm was confirmed with biological samples. The rapid dynamics of micro-tubules, mitochondria, lysosomes, and endosomes were observed with temporal resolutions of 30-100 frames/s. Because our method requires only small optical modifications, it will enable an easy upgrade from an existing spinning disk confocal to a SR microscope for live-cell imaging. © 2015 Hayashi and Okada. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Another look through Heisenberg’s microscope
NASA Astrophysics Data System (ADS)
Boughn, Stephen; Reginatto, Marcel
2018-05-01
Heisenberg introduced his famous uncertainty relations in a seminal 1927 paper entitled The Physical Content of Quantum Kinematics and Mechanics. He motivated his arguments with a gedanken experiment, a gamma ray microscope to measure the position of a particle. A primary result was that, due to the quantum nature of light, there is an inherent uncertainty in the determinations of the particle’s position and momentum dictated by an indeterminacy relation, δ qδ p∼ h. Heisenberg offered this demonstration as ‘a direct physical interpretation of the [quantum mechanical] equation {{pq}}-{{qp}}=-{{i}}{\\hslash }’ but considered the indeterminacy relation to be much more than this. He also argued that it implies limitations on the very meanings of position and momentum and emphasised that these limitations are the source of the statistical character of quantum mechanics. In addition, Heisenberg hoped but was unable to demonstrate that the laws of quantum mechanics could be derived directly from the uncertainty relation. In this paper, we revisit Heisenberg’s microscope and argue that the Schrödinger equation for a free particle does indeed follow from the indeterminacy relation together with reasonable statistical assumptions.
NASA Astrophysics Data System (ADS)
Tsallis, Constantino
2012-06-01
The celebrated Boltzmann-Gibbs (BG) entropy, S BG = -kΣi p i ln p i, and associated statistical mechanics are essentially based on hypotheses such as ergodicity, i.e., when ensemble averages coincide with time averages. This dynamical simplification occurs in classical systems (and quantum counterparts) whose microscopic evolution is governed by a positive largest Lyapunov exponent (LLE). Under such circumstances, relevant microscopic variables behave, from the probabilistic viewpoint, as (nearly) independent. Many phenomena exist, however, in natural, artificial and social systems (geophysics, astrophysics, biophysics, economics, and others) that violate ergodicity. To cover a (possibly) wide class of such systems, a generalization (nonextensive statistical mechanics) of the BG theory was proposed in 1988. This theory is based on nonadditive entropies such as S_q = kfrac{{1 - sumnolimits_i {p_i^q } }} {{q - 1}}left( {S_1 = S_{BG} } right). Here we comment some central aspects of this theory, and briefly review typical predictions, verifications and applications in geophysics and elsewhere, as illustrated through theoretical, experimental, observational, and computational results.
Holding Together a Multifunctional College Zoology Course.
ERIC Educational Resources Information Center
Snyder, John A.; Teska, William R.
1981-01-01
Describes an introductory zoology course which includes: (1) lectures organized on the basis of taxonomic relationships; (2) out-of-class reading assignments from nontraditional sources such as magazines; (3) laboratories for microscope analysis and dissection; and (4) a separate self-paced laboratory. (DS)
NASA Astrophysics Data System (ADS)
Jolos, R. V.; Kartavenko, V. G.; Kolganova, E. A.
2018-03-01
Nucleon pair correlations in atomic nuclei are analyzed within a nuclear microscopic model with residual isovector pairing forces. These are formulated in the boson representation of fermion operators whereby the collective mode of pair excitations can be isolated without restricting the size of the one-particle basis. This method allows one to analyze the fluctuations in the nonsuperfluid phase of nuclear matter, its phase transition to the superfluid phase, and strong pair correlations. The performance of the method is exemplified by numerical results for the nuclei in the vicinity of the doubly magic 56Ni nucleus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savina, M. V., E-mail: savina@cern.ch
2015-06-15
A survey of the results of the Compact Muon Solenoid (CMS) experiment that concern searches for massive Kaluza-Klein graviton excitations and microscopic black holes, quantum black holes, and string balls within models of low-energy multidimensional gravity is presented on behalf of the CMS Collaboration. The analysis in question is performed on the basis of a complete sample of data accumulated for proton-proton collisions at the c.m. energies of 7 and 8 TeV at the Large Hadron Collider (LHC) over the period spanning 2010 and 2012.
[Description and histology identification of several algae of Sargassum sp].
Dong, Yan; Li, Yushan; Cui, Zheng; Zhang, Zhicheng; Liu, Dongchun; Wang, Chunyang
2002-04-01
This paper reported the description characters and microscopical identification of seven kinds of algae of Sargassum sp., Sargassum pallidum (Tum.) C. Ag., S. fusiforme (Harv.) Setch., S. horneri (Tum.) C. Ag., S. hemiphyllum (Turh.) C. Ag., S. thunbergii (Mert.) O'Kuntze, S. polycystum C. Ag. and S. kjellmanianum Yendo. The results revealed that there were clear differences in the description characters and microscopical identification of the seven kinds of algae of Sargassum sp. These studies provided a scientific basis for distinguishing crude drug of algae, developing and making use of alga natural resources of Sargassum sp.
NASA Astrophysics Data System (ADS)
Schneebeli, L.; Kira, M.; Koch, S. W.
2008-08-01
It is shown that spectrally resolved photon-statistics measurements of the resonance fluorescence from realistic semiconductor quantum-dot systems allow for high contrast identification of the two-photon strong-coupling states. Using a microscopic theory, the second-rung resonance of Jaynes-Cummings ladder is analyzed and optimum excitation conditions are determined. The computed photon-statistics spectrum displays gigantic, experimentally robust resonances at the energetic positions of the second-rung emission.
NASA Astrophysics Data System (ADS)
Capote, R.; Herman, M.; Obložinský, P.; Young, P. G.; Goriely, S.; Belgya, T.; Ignatyuk, A. V.; Koning, A. J.; Hilaire, S.; Plujko, V. A.; Avrigeanu, M.; Bersillon, O.; Chadwick, M. B.; Fukahori, T.; Ge, Zhigang; Han, Yinlu; Kailas, S.; Kopecky, J.; Maslov, V. M.; Reffo, G.; Sin, M.; Soukhovitskii, E. Sh.; Talou, P.
2009-12-01
We describe the physics and data included in the Reference Input Parameter Library, which is devoted to input parameters needed in calculations of nuclear reactions and nuclear data evaluations. Advanced modelling codes require substantial numerical input, therefore the International Atomic Energy Agency (IAEA) has worked extensively since 1993 on a library of validated nuclear-model input parameters, referred to as the Reference Input Parameter Library (RIPL). A final RIPL coordinated research project (RIPL-3) was brought to a successful conclusion in December 2008, after 15 years of challenging work carried out through three consecutive IAEA projects. The RIPL-3 library was released in January 2009, and is available on the Web through http://www-nds.iaea.org/RIPL-3/. This work and the resulting database are extremely important to theoreticians involved in the development and use of nuclear reaction modelling (ALICE, EMPIRE, GNASH, UNF, TALYS) both for theoretical research and nuclear data evaluations. The numerical data and computer codes included in RIPL-3 are arranged in seven segments: MASSES contains ground-state properties of nuclei for about 9000 nuclei, including three theoretical predictions of masses and the evaluated experimental masses of Audi et al. (2003). DISCRETE LEVELS contains 117 datasets (one for each element) with all known level schemes, electromagnetic and γ-ray decay probabilities available from ENSDF in October 2007. NEUTRON RESONANCES contains average resonance parameters prepared on the basis of the evaluations performed by Ignatyuk and Mughabghab. OPTICAL MODEL contains 495 sets of phenomenological optical model parameters defined in a wide energy range. When there are insufficient experimental data, the evaluator has to resort to either global parameterizations or microscopic approaches. Radial density distributions to be used as input for microscopic calculations are stored in the MASSES segment. LEVEL DENSITIES contains phenomenological parameterizations based on the modified Fermi gas and superfluid models and microscopic calculations which are based on a realistic microscopic single-particle level scheme. Partial level densities formulae are also recommended. All tabulated total level densities are consistent with both the recommended average neutron resonance parameters and discrete levels. GAMMA contains parameters that quantify giant resonances, experimental gamma-ray strength functions and methods for calculating gamma emission in statistical model codes. The experimental GDR parameters are represented by Lorentzian fits to the photo-absorption cross sections for 102 nuclides ranging from 51V to 239Pu. FISSION includes global prescriptions for fission barriers and nuclear level densities at fission saddle points based on microscopic HFB calculations constrained by experimental fission cross sections.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capote, R.; Herman, M.; Oblozinsky, P.
We describe the physics and data included in the Reference Input Parameter Library, which is devoted to input parameters needed in calculations of nuclear reactions and nuclear data evaluations. Advanced modelling codes require substantial numerical input, therefore the International Atomic Energy Agency (IAEA) has worked extensively since 1993 on a library of validated nuclear-model input parameters, referred to as the Reference Input Parameter Library (RIPL). A final RIPL coordinated research project (RIPL-3) was brought to a successful conclusion in December 2008, after 15 years of challenging work carried out through three consecutive IAEA projects. The RIPL-3 library was released inmore » January 2009, and is available on the Web through (http://www-nds.iaea.org/RIPL-3/). This work and the resulting database are extremely important to theoreticians involved in the development and use of nuclear reaction modelling (ALICE, EMPIRE, GNASH, UNF, TALYS) both for theoretical research and nuclear data evaluations. The numerical data and computer codes included in RIPL-3 are arranged in seven segments: MASSES contains ground-state properties of nuclei for about 9000 nuclei, including three theoretical predictions of masses and the evaluated experimental masses of Audi et al. (2003). DISCRETE LEVELS contains 117 datasets (one for each element) with all known level schemes, electromagnetic and {gamma}-ray decay probabilities available from ENSDF in October 2007. NEUTRON RESONANCES contains average resonance parameters prepared on the basis of the evaluations performed by Ignatyuk and Mughabghab. OPTICAL MODEL contains 495 sets of phenomenological optical model parameters defined in a wide energy range. When there are insufficient experimental data, the evaluator has to resort to either global parameterizations or microscopic approaches. Radial density distributions to be used as input for microscopic calculations are stored in the MASSES segment. LEVEL DENSITIES contains phenomenological parameterizations based on the modified Fermi gas and superfluid models and microscopic calculations which are based on a realistic microscopic single-particle level scheme. Partial level densities formulae are also recommended. All tabulated total level densities are consistent with both the recommended average neutron resonance parameters and discrete levels. GAMMA contains parameters that quantify giant resonances, experimental gamma-ray strength functions and methods for calculating gamma emission in statistical model codes. The experimental GDR parameters are represented by Lorentzian fits to the photo-absorption cross sections for 102 nuclides ranging from {sup 51}V to {sup 239}Pu. FISSION includes global prescriptions for fission barriers and nuclear level densities at fission saddle points based on microscopic HFB calculations constrained by experimental fission cross sections.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capote, R.; Herman, M.; Capote,R.
We describe the physics and data included in the Reference Input Parameter Library, which is devoted to input parameters needed in calculations of nuclear reactions and nuclear data evaluations. Advanced modelling codes require substantial numerical input, therefore the International Atomic Energy Agency (IAEA) has worked extensively since 1993 on a library of validated nuclear-model input parameters, referred to as the Reference Input Parameter Library (RIPL). A final RIPL coordinated research project (RIPL-3) was brought to a successful conclusion in December 2008, after 15 years of challenging work carried out through three consecutive IAEA projects. The RIPL-3 library was released inmore » January 2009, and is available on the Web through http://www-nds.iaea.org/RIPL-3/. This work and the resulting database are extremely important to theoreticians involved in the development and use of nuclear reaction modelling (ALICE, EMPIRE, GNASH, UNF, TALYS) both for theoretical research and nuclear data evaluations. The numerical data and computer codes included in RIPL-3 are arranged in seven segments: MASSES contains ground-state properties of nuclei for about 9000 nuclei, including three theoretical predictions of masses and the evaluated experimental masses of Audi et al. (2003). DISCRETE LEVELS contains 117 datasets (one for each element) with all known level schemes, electromagnetic and {gamma}-ray decay probabilities available from ENSDF in October 2007. NEUTRON RESONANCES contains average resonance parameters prepared on the basis of the evaluations performed by Ignatyuk and Mughabghab. OPTICAL MODEL contains 495 sets of phenomenological optical model parameters defined in a wide energy range. When there are insufficient experimental data, the evaluator has to resort to either global parameterizations or microscopic approaches. Radial density distributions to be used as input for microscopic calculations are stored in the MASSES segment. LEVEL DENSITIES contains phenomenological parameterizations based on the modified Fermi gas and superfluid models and microscopic calculations which are based on a realistic microscopic single-particle level scheme. Partial level densities formulae are also recommended. All tabulated total level densities are consistent with both the recommended average neutron resonance parameters and discrete levels. GAMMA contains parameters that quantify giant resonances, experimental gamma-ray strength functions and methods for calculating gamma emission in statistical model codes. The experimental GDR parameters are represented by Lorentzian fits to the photo-absorption cross sections for 102 nuclides ranging from {sup 51}V to {sup 239}Pu. FISSION includes global prescriptions for fission barriers and nuclear level densities at fission saddle points based on microscopic HFB calculations constrained by experimental fission cross sections.« less
Módis, László; Szalai, Eszter; Németh, Gábor; Berta, András
2010-01-01
The study was conducted to assess the central corneal thickness (CCT) of the healthy cornea with a recently developed noncontact specular microscope (EM-3000; Tomey) and compare the results with those measured with a contact specular microscope and an ultrasound pachymeter. Agreement between measurements taken by 2 investigators was also studied. The right eyes of 41 healthy individuals who had negative history of contact lens wear, ophthalmic disease, or ocular surgery were examined. The CCT was determined sequentially with a noncontact specular microscope, a contact specular microscope (EM-1000; Tomey), and an ultrasound pachymeter (AL-2000; Tomey). Each evaluation with the specular microscopes was performed by 2 independent operators. A significant difference was detected in pachymetry measurements among the 3 instruments (p=0.01; analysis of variance). The mean CCT values were lower measured with the ultrasound pachymeter (537+/-30 microm) than the contact endothelial microscope (543+/-37 microm, p=0.17, Student t-test) and the noncontact microscope (549+/-33 microm, p<0.0001) (operator 1). There was no statistically significant difference in CCT measurements between the 2 endothelial microscopes (p=0.19). We found significant correlations (p<0.0001) in thickness measurements between each pair of instruments (r=0.91, noncontact microscopy and ultrasound pachymetry; r=0.74, noncontact and contact microscopy; r=0.72, contact microscopy and ultrasound pachymetry; Spearman rank correlation). The strong correlations among the 3 pachymetry devices suggest that the tested instruments provide reliable measurements; however, they cannot be used interchangeably.
Quality of reporting statistics in two Indian pharmacology journals.
Jaykaran; Yadav, Preeti
2011-04-01
To evaluate the reporting of the statistical methods in articles published in two Indian pharmacology journals. All original articles published since 2002 were downloaded from the journals' (Indian Journal of Pharmacology (IJP) and Indian Journal of Physiology and Pharmacology (IJPP)) website. These articles were evaluated on the basis of appropriateness of descriptive statistics and inferential statistics. Descriptive statistics was evaluated on the basis of reporting of method of description and central tendencies. Inferential statistics was evaluated on the basis of fulfilling of assumption of statistical methods and appropriateness of statistical tests. Values are described as frequencies, percentage, and 95% confidence interval (CI) around the percentages. Inappropriate descriptive statistics was observed in 150 (78.1%, 95% CI 71.7-83.3%) articles. Most common reason for this inappropriate descriptive statistics was use of mean ± SEM at the place of "mean (SD)" or "mean ± SD." Most common statistical method used was one-way ANOVA (58.4%). Information regarding checking of assumption of statistical test was mentioned in only two articles. Inappropriate statistical test was observed in 61 (31.7%, 95% CI 25.6-38.6%) articles. Most common reason for inappropriate statistical test was the use of two group test for three or more groups. Articles published in two Indian pharmacology journals are not devoid of statistical errors.
Kubota, Y; Leung, E; Vincent, S R
1992-01-01
The ultrastructure of choline acetyltransferase (ChAT)-immunoreactive neurons in the laterodorsal tegmental nucleus (TLD) of the rat was investigated by immunohistochemical techniques. The immunoreactive neurons were medium to large in size, with a few elongated dendrites, contained well-developed cytoplasm, and a nucleus with deep infoldings. They received many nonimmunoreactive, mostly asymmetric synaptic inputs on their soma and dendrites. ChAT-immunoreactive, usually myelinated, axons were occasionally seen in TLD. Only one immunoreactive axon terminal was observed within TLD, and it made synaptic contact with a nonimmunoreactive neuronal perikaryon. The synaptic interactions between ChAT-immunoreactive neurons and tyrosine hydroxylase (TH)-immunoreactive fibers in the TLD were investigated with a double immunohistochemical staining method. ChAT-immunoreactivity detected with a beta-galactosidase method was light blue-green in the light microscope and formed dot-like electron dense particles at the electron microscopic level. TH-immunoreactivity, visualized with a nickel-enhanced immunoperoxidase method, was dark blue-black in the light microscope and diffusely opaque in the electron microscope. Therefore, the difference between these two kinds of immunoreactivity could be quite easily distinguished at both light and electron microscopic levels. In the light microscope, TH-positive fibers were often closely apposed to ChAT-immunoreactive cell bodies and dendrites in TLD. In the electron microscope, the cell soma and proximal dendrites of ChAT-immunoreactive neurons received synaptic contacts from TH-immunoreactive axon terminals. These results provide a morphological basis for catecholaminergic regulation of the cholinergic reticular system.
Spatio-temporal coordination among functional residues in protein
NASA Astrophysics Data System (ADS)
Dutta, Sutapa; Ghosh, Mahua; Chakrabarti, J.
2017-01-01
The microscopic basis of communication among the functional sites in bio-macromolecules is a fundamental challenge in uncovering their functions. We study the communication through temporal cross-correlation among the binding sites. We illustrate via Molecular Dynamics simulations the properties of the temporal cross-correlation between the dihedrals of a small protein, ubiquitin which participates in protein degradation in eukaryotes. We show that the dihedral angles of the residues possess non-trivial temporal cross-correlations with asymmetry with respect to exchange of the dihedrals, having peaks at low frequencies with time scales in nano-seconds and an algebraic tail with a universal exponent for large frequencies. We show the existence of path for temporally correlated degrees of freedom among the functional residues. We explain the qualitative features of the cross-correlations through a general mathematical model. The generality of our analysis suggests that temporal cross-correlation functions may provide convenient theoretical framework to understand bio-molecular functions on microscopic basis.
Braun, Stefan; Pokorná, Šárka; Šachl, Radek; Hof, Martin; Heerklotz, Heiko; Hoernke, Maria
2018-01-23
The mode of action of membrane-active molecules, such as antimicrobial, anticancer, cell penetrating, and fusion peptides and their synthetic mimics, transfection agents, drug permeation enhancers, and biological signaling molecules (e.g., quorum sensing), involves either the general or local destabilization of the target membrane or the formation of defined, rather stable pores. Some effects aim at killing the cell, while others need to be limited in space and time to avoid serious damage. Biological tests reveal translocation of compounds and cell death but do not provide a detailed, mechanistic, and quantitative understanding of the modes of action and their molecular basis. Model membrane studies of membrane leakage have been used for decades to tackle this issue, but their interpretation in terms of biology has remained challenging and often quite limited. Here we compare two recent, powerful protocols to study model membrane leakage: the microscopic detection of dye influx into giant liposomes and time-correlated single photon counting experiments to characterize dye efflux from large unilamellar vesicles. A statistical treatment of both data sets does not only harmonize apparent discrepancies but also makes us aware of principal issues that have been confusing the interpretation of model membrane leakage data so far. Moreover, our study reveals a fundamental difference between nano- and microscale systems that needs to be taken into account when conclusions about microscale objects, such as cells, are drawn from nanoscale models.
Environmental nanoparticles are significantly over-expressed in acute myeloid leukemia.
Visani, G; Manti, A; Valentini, L; Canonico, B; Loscocco, F; Isidori, A; Gabucci, E; Gobbi, P; Montanari, S; Rocchi, M; Papa, S; Gatti, A M
2016-11-01
The increase in the incidence of acute myeloid leukemia (AML) may suggest a possible environmental etiology. PM2.5 was declared by IARC a Class I carcinogen. No report has focused on particulate environmental pollution together with AML. The study investigated the presence and composition of particulate matter in blood with a Scanning Electron Microscope coupled with an Energy Dispersive Spectroscope, a sensor capable of identifying the composition of foreign bodies. 38 peripheral blood samples, 19 AML cases and 19 healthy controls, were analyzed. A significant overload of particulate matter-derived nanoparticles linked or aggregated to blood components was found in AML patients, while almost absent in matched healthy controls. Two-tailed Student's t-test, MANOVA and Principal Component Analysis indicated that the total numbers of aggregates and particles were statistically different between cases and controls (MANOVA, P<0.001 and P=0.009 respectively). The particles detected showed to contain highly-reactive, non-biocompatible and non-biodegradable metals; in particular, micro- and nano-sized particles grouped in organic/inorganic clusters, with statistically higher frequency of a subgroup of elements in AML samples. The demonstration, for the first time, of an overload of nanoparticles linked to blood components in AML patients could be the basis for a possible, novel pathogenetic mechanism for AML development. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lisle, John T.; Hamilton, Martin A.; Willse, Alan R.; McFeters, Gordon A.
2004-01-01
Total direct counts of bacterial abundance are central in assessing the biomass and bacteriological quality of water in ecological and industrial applications. Several factors have been identified that contribute to the variability in bacterial abundance counts when using fluorescent microscopy, the most significant of which is retaining an adequate number of cells per filter to ensure an acceptable level of statistical confidence in the resulting data. Previous studies that have assessed the components of total-direct-count methods that contribute to this variance have attempted to maintain a bacterial cell abundance value per filter of approximately 106 cells filter-1. In this study we have established the lower limit for the number of bacterial cells per filter at which the statistical reliability of the abundance estimate is no longer acceptable. Our results indicate that when the numbers of bacterial cells per filter were progressively reduced below 105, the microscopic methods increasingly overestimated the true bacterial abundance (range, 15.0 to 99.3%). The solid-phase cytometer only slightly overestimated the true bacterial abundances and was more consistent over the same range of bacterial abundances per filter (range, 8.9 to 12.5%). The solid-phase cytometer method for conducting total direct counts of bacteria was less biased and performed significantly better than any of the microscope methods. It was also found that microscopic count data from counting 5 fields on three separate filters were statistically equivalent to data from counting 20 fields on a single filter.
Generation of dense statistical connectomes from sparse morphological data
Egger, Robert; Dercksen, Vincent J.; Udvary, Daniel; Hege, Hans-Christian; Oberlaender, Marcel
2014-01-01
Sensory-evoked signal flow, at cellular and network levels, is primarily determined by the synaptic wiring of the underlying neuronal circuitry. Measurements of synaptic innervation, connection probabilities and subcellular organization of synaptic inputs are thus among the most active fields of research in contemporary neuroscience. Methods to measure these quantities range from electrophysiological recordings over reconstructions of dendrite-axon overlap at light-microscopic levels to dense circuit reconstructions of small volumes at electron-microscopic resolution. However, quantitative and complete measurements at subcellular resolution and mesoscopic scales to obtain all local and long-range synaptic in/outputs for any neuron within an entire brain region are beyond present methodological limits. Here, we present a novel concept, implemented within an interactive software environment called NeuroNet, which allows (i) integration of sparsely sampled (sub)cellular morphological data into an accurate anatomical reference frame of the brain region(s) of interest, (ii) up-scaling to generate an average dense model of the neuronal circuitry within the respective brain region(s) and (iii) statistical measurements of synaptic innervation between all neurons within the model. We illustrate our approach by generating a dense average model of the entire rat vibrissal cortex, providing the required anatomical data, and illustrate how to measure synaptic innervation statistically. Comparing our results with data from paired recordings in vitro and in vivo, as well as with reconstructions of synaptic contact sites at light- and electron-microscopic levels, we find that our in silico measurements are in line with previous results. PMID:25426033
The interactional foundations of MaxEnt: Open questions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harré, Michael S., E-mail: michael.harre@sydney.edu.au
One of the simplest and potentially most useful techniques to be developed in the 20{sup th} century, a century noted for an ever more mathematically sophisticated formulation of the sciences, is that of maximising the entropy of a system in order to generate a descriptive, stochastic model of that system in closed form, often abbreviated to MaxEnt. The extension of MaxEnt to systems beyond the physics from which it originated is hampered by the fact that the microscopic physical interactions that are not justified or justifiable within the MaxEnt framework need to be falsifiably evaluated in each new field ofmore » application. It is not obvious that such justification exists for many systems in which the interactions are not directly based on physics. For example what is the justification for the use of MaxEnt in biology, climate modelling or economics? Is it simply a useful heuristic or is there some deeper connection with the foundations of some systems? Without further critical examination of the microscopic foundations that give rise to the success of the MaxEnt principle it is difficult to motivate the use of such techniques in other fields except through theoretically an practically unsatisfying analogical arguments. This article briefly presents the basis of MaxEnt principles as originally introduced in statistical mechanics in the Jaynes form, the Tsallis form and the Rényi form. Several different applications are introduced including that of ecological diversity where maximising the different diversity measures is equivalent to maximising different entropic functionals.« less
Barmettler, Reto; Schweighauser, Ariane; Bigler, Susanne; Grooters, Amy M; Francey, Thierry
2011-01-15
To assess patterns of seroreactivity to Leptospira serovars in veterinary professional staff and dog owners exposed to dogs with acute leptospirosis and to contrast these patterns in people with those observed in dogs. Cross-sectional study. Human subjects consisted of 91 people (50 veterinarians, 19 technical staff, 9 administrative personnel, and 13 dog owners) exposed to dogs with leptospirosis. Canine subjects consisted of 52 dogs with naturally occurring leptospirosis admitted to the University of Bern Vetsuisse Faculty Small Animal Clinic in 2007 and 2008. People were tested for seroreactivity to regionally prevalent Leptospira serovars by use of a complement fixation test. A questionnaire designed to identify risk factors associated with seropositivity was used to collect demographic information from each study participant. Dogs were tested for seroreactivity to Leptospira serovars by use of a microscopic agglutination test. On the basis of microscopic agglutination test results, infected dogs were seropositive for antibodies against Leptospira serovars as follows (in descending order): Bratislava (43/52 [83%]), Australis (43/52 [83%]), Grippotyphosa (18/52 [35%]), Pomona (12/52 [23%]), Autumnalis (6/52 [12%]), Icterohemorrhagiae (4/52 [8%]), Tarassovi (2/52 [4%]), and Canicola (1/52 [2%]). All 91 people were seronegative for antibodies against Leptospira serovars. Therefore, statistical evaluation of risk factors and comparison of patterns of seroreactivity to Leptospira serovars between human and canine subjects were limited to theoretical risks. Seroreactivity to Leptospira serovars among veterinary staff adhering to standard hygiene protocols and pet owners exposed to dogs with acute leptospirosis was uncommon.
Quality of reporting statistics in two Indian pharmacology journals
Jaykaran; Yadav, Preeti
2011-01-01
Objective: To evaluate the reporting of the statistical methods in articles published in two Indian pharmacology journals. Materials and Methods: All original articles published since 2002 were downloaded from the journals’ (Indian Journal of Pharmacology (IJP) and Indian Journal of Physiology and Pharmacology (IJPP)) website. These articles were evaluated on the basis of appropriateness of descriptive statistics and inferential statistics. Descriptive statistics was evaluated on the basis of reporting of method of description and central tendencies. Inferential statistics was evaluated on the basis of fulfilling of assumption of statistical methods and appropriateness of statistical tests. Values are described as frequencies, percentage, and 95% confidence interval (CI) around the percentages. Results: Inappropriate descriptive statistics was observed in 150 (78.1%, 95% CI 71.7–83.3%) articles. Most common reason for this inappropriate descriptive statistics was use of mean ± SEM at the place of “mean (SD)” or “mean ± SD.” Most common statistical method used was one-way ANOVA (58.4%). Information regarding checking of assumption of statistical test was mentioned in only two articles. Inappropriate statistical test was observed in 61 (31.7%, 95% CI 25.6–38.6%) articles. Most common reason for inappropriate statistical test was the use of two group test for three or more groups. Conclusion: Articles published in two Indian pharmacology journals are not devoid of statistical errors. PMID:21772766
RELATIVE POTENCIES OF MINERAL FIBERS IN VIVO: FERROACTINOLITE FROM TACONITE
In the early 1970s EPA provided the scientific basis for the Federal Government's lead in the Reserve Mining Case. This historic case resulted in cessation of the discharge of taconite tailings into Lake Superior and controls on air and water emissions of microscopic amphibole fi...
[Study of the reliability in one dimensional size measurement with digital slit lamp microscope].
Wang, Tao; Qi, Chaoxiu; Li, Qigen; Dong, Lijie; Yang, Jiezheng
2010-11-01
To study the reliability of digital slit lamp microscope as a tool for quantitative analysis in one dimensional size measurement. Three single-blinded observers acquired and repeatedly measured the images with a size of 4.00 mm and 10.00 mm on the vernier caliper, which simulatated the human eye pupil and cornea diameter under China-made digital slit lamp microscope in the objective magnification of 4 times, 10 times, 16 times, 25 times, 40 times and 4 times, 10 times, 16 times, respectively. The correctness and precision of measurement were compared. The images with 4 mm size were measured by three investigators and the average values were located between 3.98 to 4.06. For the images with 10.00 mm size, the average values fell within 10.00 ~ 10.04. Measurement results of 4.00 mm images showed, except A4, B25, C16 and C25, significant difference was noted between the measured value and the true value. Regarding measurement results of 10.00 mm iamges indicated, except A10, statistical significance was found between the measured value and the true value. In terms of comparing the results of the same size measured at different magnifications by the same investigator, except for investigators A's measurements of 10.00 mm dimension, the measurement results by all the remaining investigators presented statistical significance at different magnifications. Compared measurements of the same size with different magnifications, measurements of 4.00 mm in 4-fold magnification had no significant difference among the investigators', the remaining results were statistically significant. The coefficient of variation of all measurement results were less than 5%; as magnification increased, the coefficient of variation decreased. The measurement of digital slit lamp microscope in one-dimensional size has good reliability,and should be performed for reliability analysis before used for quantitative analysis to reduce systematic errors.
Limits of agreement between the optical pachymeter and a noncontact specular microscope.
Ogbuehi, Kelechi C; Almubrad, Turki M
2005-07-01
To determine the limits of agreement between central corneal thickness (CCT) measurements made with the slit lamp-attached optical pachymeter and the SP2000P noncontact specular microscope. Triplicate readings for CCT were obtained for each of 130 (right) eyes of 130 patients, using the slit lamp-attached optical pachymeter and then the SP2000P noncontact specular microscope. The average CCT measured by each method was compared. Subsequently, the mean difference between both sets of measurements was assessed, and the 95% confidence interval (limits of agreement) between both techniques was determined. The mean +/- SD CCT measured by the optical pachymeter was 543 +/- 34 microm and 532 +/- 34 microm for the specular microscope. We found a statistically significant (P < 0.001) mean bias of 10 mum between CCT values measured with both types of equipment, with the optical pachymeter returning the higher values. The coefficient of variation was 6.3% for the optical pachymeter and 6.4% for the specular microscope. The right eye CCT measurements made by the optical pachymeter are, on average, 10 mum thicker than those made with the SP2000P specular microscope, which suggests that both pieces of equipment cannot be used interchangeably to monitor CCT changes in patients. Excluding left eye measurements, the reliability of the optical pachymeter is identical to that of the noncontact specular microscope.
Estimating past precipitation and temperature from fossil ostracodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, A.J.; Forester, R.M.
1994-12-31
The fossil records of certain aquatic organisms provide a way of obtaining meaningful estimates of past temperature and precipitation. These estimates of past environmental conditions are derived from multivariate statistical methods that are in turn based on the modern biogeographic distributions and environmental tolerances of the biota of interest. These estimates are helpful in conducting slimate studies as part of the Yucca Mountain site characterization. Ostracodes are microscopic crustaceans that produce bivalved calcite shells which are easily fossilized in the sediments of the lakes and wetlands in which the animals lived. The modern biogeographic distribution and environmental conditions of livingmore » ostracodes are the basis for the interpretation of the past environmental conditions of the fossil ostracodes. The major assumption in this method of interpretation is that the environmental tolerances of ostracodes have not changed substantially over thousands of years. Two methods using these modern analogs to determine past environmental conditions are the modern analog method and the range method. The range method also considers the information provided by fossil ostracode assemblages that have no modern analog in today`s world.« less
Growing complex network of citations of scientific papers: Modeling and measurements
NASA Astrophysics Data System (ADS)
Golosovsky, Michael; Solomon, Sorin
2017-01-01
We consider the network of citations of scientific papers and use a combination of the theoretical and experimental tools to uncover microscopic details of this network growth. Namely, we develop a stochastic model of citation dynamics based on the copying-redirection-triadic closure mechanism. In a complementary and coherent way, the model accounts both for statistics of references of scientific papers and for their citation dynamics. Originating in empirical measurements, the model is cast in such a way that it can be verified quantitatively in every aspect. Such validation is performed by measuring citation dynamics of physics papers. The measurements revealed nonlinear citation dynamics, the nonlinearity being intricately related to network topology. The nonlinearity has far-reaching consequences including nonstationary citation distributions, diverging citation trajectories of similar papers, runaways or "immortal papers" with infinite citation lifetime, etc. Thus nonlinearity in complex network growth is our most important finding. In a more specific context, our results can be a basis for quantitative probabilistic prediction of citation dynamics of individual papers and of the journal impact factor.
Stochastic effects in a thermochemical system with Newtonian heat exchange.
Nowakowski, B; Lemarchand, A
2001-12-01
We develop a mesoscopic description of stochastic effects in the Newtonian heat exchange between a diluted gas system and a thermostat. We explicitly study the homogeneous Semenov model involving a thermochemical reaction and neglecting consumption of reactants. The master equation includes a transition rate for the thermal transfer process, which is derived on the basis of the statistics for inelastic collisions between gas particles and walls of the thermostat. The main assumption is that the perturbation of the Maxwellian particle velocity distribution can be neglected. The transition function for the thermal process admits a continuous spectrum of temperature changes, and consequently, the master equation has a complicated integro-differential form. We perform Monte Carlo simulations based on this equation to study the stochastic effects in the Semenov system in the explosive regime. The dispersion of ignition times is calculated as a function of system size. For sufficiently small systems, the probability distribution of temperature displays transient bimodality during the ignition period. The results of the stochastic description are successfully compared with those of direct simulations of microscopic particle dynamics.
Godoy-Lorite, Antonia; Guimerà, Roger; Sales-Pardo, Marta
2016-01-01
In social networks, individuals constantly drop ties and replace them by new ones in a highly unpredictable fashion. This highly dynamical nature of social ties has important implications for processes such as the spread of information or of epidemics. Several studies have demonstrated the influence of a number of factors on the intricate microscopic process of tie replacement, but the macroscopic long-term effects of such changes remain largely unexplored. Here we investigate whether, despite the inherent randomness at the microscopic level, there are macroscopic statistical regularities in the long-term evolution of social networks. In particular, we analyze the email network of a large organization with over 1,000 individuals throughout four consecutive years. We find that, although the evolution of individual ties is highly unpredictable, the macro-evolution of social communication networks follows well-defined statistical patterns, characterized by exponentially decaying log-variations of the weight of social ties and of individuals' social strength. At the same time, we find that individuals have social signatures and communication strategies that are remarkably stable over the scale of several years.
Catalog of microscopic organisms of the Everglades, Part 1—The cyanobacteria
Rosen, Barry H.; Mareš, Jan
2016-07-27
The microscopic organisms of the Everglades include numerous prokaryotic organisms, including the eubacteria, such as the cyanobacteria and non-photosynthetic bacteria, as well as several eukaryotic algae and protozoa that form the base of the food web. This report is part 1 in a series of reports that describe microscopic organisms encountered during the examination of several hundred samples collected in the southern Everglades. Part 1 describes the cyanobacteria and includes a suite of images and the most current taxonomic treatment of each taxon. The majority of the images are of live organisms, allowing their true color to be represented. A number of potential new species are illustrated; however, corroborating evidence from a genetic analysis of the morphological characteristics is needed to confirm these designations as new species. Part 1 also includes images of eubacteria that resemble cyanobacteria. Additional parts of the report on microscopic organisms of the Everglades are currently underway, such as the green algae and diatoms. The report also serves as the basis for a taxonomic image database that will provide a digital record of the Everglades microscopic flora and fauna. It is anticipated that these images will facilitate current and future ecological studies on the Everglades, such as understanding food-web dynamics, sediment formation and accumulation, the effects of nutrients and flow, and climate change.
The Evolution of Random Number Generation in MUVES
2017-01-01
mathematical basis and statistical justification for algorithms used in the code. The working code provided produces results identical to the current...MUVES, includ- ing the mathematical basis and statistical justification for algorithms used in the code. The working code provided produces results...questionable numerical and statistical properties. The development of the modern system is traced through software change requests, resulting in a random number
NASA Technical Reports Server (NTRS)
Moore, W. W., Jr.; Kurtz, R. L.; Lemons, J. F.
1976-01-01
The paper describes a holographic/photographic camera to be used with the zero-g or low-g Atmospheric Cloud Physics Laboratory. The flight prototype holocamera is intended to record particles from 0.01 to 5 microns for an optimum two-dimensional plane only in the microscopic photography mode, particles on a volume basis in the in-line holography mode from 5 microns up, and all particle sizes possible on a volume basis in the acute sideband holography mode.
The Statistical Basis of Chemical Equilibria.
ERIC Educational Resources Information Center
Hauptmann, Siegfried; Menger, Eva
1978-01-01
Describes a machine which demonstrates the statistical bases of chemical equilibrium, and in doing so conveys insight into the connections among statistical mechanics, quantum mechanics, Maxwell Boltzmann statistics, statistical thermodynamics, and transition state theory. (GA)
NASA Astrophysics Data System (ADS)
Tadić, Bosiljka; Thurner, Stefan; Rodgers, G. J.
2004-03-01
We study the microscopic time fluctuations of traffic load and the global statistical properties of a dense traffic of particles on scale-free cyclic graphs. For a wide range of driving rates R the traffic is stationary and the load time series exhibits antipersistence due to the regulatory role of the superstructure associated with two hub nodes in the network. We discuss how the superstructure affects the functioning of the network at high traffic density and at the jamming threshold. The degree of correlations systematically decreases with increasing traffic density and eventually disappears when approaching a jamming density Rc. Already before jamming we observe qualitative changes in the global network-load distributions and the particle queuing times. These changes are related to the occurrence of temporary crises in which the network-load increases dramatically, and then slowly falls back to a value characterizing free flow.
Iancu, Violeta; Hla, Saw-Wai
2006-01-01
Single chlorophyll-a molecules, a vital resource for the sustenance of life on Earth, have been investigated by using scanning tunneling microscope manipulation and spectroscopy on a gold substrate at 4.6 K. Chlorophyll-a binds on Au(111) via its porphyrin unit while the phytyl-chain is elevated from the surface by the support of four CH3 groups. By injecting tunneling electrons from the scanning tunneling microscope tip, we are able to bend the phytyl-chain, which enables the switching of four molecular conformations in a controlled manner. Statistical analyses and structural calculations reveal that all reversible switching mechanisms are initiated by a single tunneling-electron energy-transfer process, which induces bond rotation within the phytyl-chain. PMID:16954201
34 CFR 668.46 - Institutional security policies and crime statistics.
Code of Federal Regulations, 2010 CFR
2010-07-01
... a voluntary, confidential basis for inclusion in the annual disclosure of crime statistics, and, if... procedures to report crimes on a voluntary, confidential basis for inclusion in the annual disclosure of... the victim's actual or perceived race, gender, religion, sexual orientation, ethnicity, or disability...
Size determination of Acipenser ruthenus spermatozoa in different types of electron microscopy.
Psenicka, Martin; Tesarová, Martina; Tesitel, Jakub; Nebesárová, Jana
2010-07-01
In this study three types of scanning electron microscopes were used for the size determination of spermatozoa of sterlet Acipenser ruthenus - high vacuum scanning electron microscope (SEM, JEOL 6300), environmental scanning electron microscope (ESEM, Quanta 200 FEG), field emission scanning electron microscope (FESEM, JEOL 7401F) with cryoattachment Alto 2500 (Gatan) and transmission electron microscope (TEM, JEOL 1010). The use of particular microscopes was tied with different specimen preparation techniques. The aim of this study was to evaluate to what degree the type of used electron microscope can influence the size of different parts of spermatozoa. For high vacuum SEM the specimen was prepared using two slightly different procedures. After chemical fixation with 2.5% glutaraldehyde in 0.1M phosphate buffer and post-fixation by 1% osmium tetroxide, the specimen was dehydrated by acetone series and dried either by critical point method or by means of t-butylalcohol. For ESEM fresh, unfixed material was used, which was dropped on microscopic copper grids. In FESEM working in cryo-mode the specimen was observed in a frozen state. Ultrathin sections from chemically fixed and Epon embedded specimens were prepared for TEM observation. Distinct parts of sterlet spermatozoa were measured in each microscope and the data obtained was statistically processed. Results confirmed that the classical chemical procedure of specimen preparation for SEM including critical point drying method led to a significant contraction of all measured values, which could deviate up to 30% in comparison with values measured on the fresh chemically untreated specimen in ESEM. Surprisingly sperm dimensions determinated on ultrathin sections by TEM are comparable with values obtained in ESEM or FESEM. Copyright 2010 Elsevier Ltd. All rights reserved.
A Method of Recording and Predicting the Pollen Count.
ERIC Educational Resources Information Center
Buck, M.
1985-01-01
A hair dryer, plastic funnel, and microscope slide can be used for predicting pollen counts on a day-to-day basis. Materials, methods for assembly, collection technique, meteorological influences, and daily patterns are discussed. Data collected using the apparatus suggest that airborne grass products other than pollen also affect hay fever…
Longitudinal Waves Organize and Control Plants and Other Life
NASA Astrophysics Data System (ADS)
Wagner, Orvin E.
2002-04-01
Since the discovery of longitudinal waves in plants (W-waves) in 1988 I have taken data related to influences of these waves. These data include spacings between structures on plants, sap flow data, electrical data from probes traceable to effects produced by these waves, data related to the influences of gravity, data related to these waves traveling between plants and on and on. All of the data suggest that these waves provide a basis for a unified theory for plant growth and development. They likely provide a basis for growth and development for all life. The wave influences are present on the microscopic level in live plants but may not show in the microscopic pieces of material often scrutinized by the usual researcher. It is this author's conclusion that the waves mentioned are important in all life and provide what we call life which has been so difficult to pinpoint in previous work. The waves show in dead material but generally are of a much smaller amplitude than in resonating live material. In the wave theory one might compare something alive to a properly operating laser. See the
Yadav, Sher Singh; Bhattar, Rohit; Sharma, Lokesh; Banga, Gautam; Sadasukhi, Trilok Chandra
2017-01-01
To study the ultra structural changes in bladder musculature in cases of BPE and their clinical relevance. In this descriptive longitudinal, controlled, observational study patients were enrolled into three groups, group 1, group 2A and group 2B. Control group (group-1) consisted of age matched normal male patients, who underwent surveillance or diagnostic cystoscopy for microscopic hematuria or irritative symptoms. Case group (group-2) comprised of patients with BPE, undergoing TURP. Case group (group-2) was further classified into: Category 2A (patients not on catheter) and cat-egory 2B (patients on catheter). All relevant clinical parameters like IPSS, prostate size, Qmax, PVR were recorded. Cystoscopy and bladder biopsy were performed in all patients. Various ultrastructural parameters like myocytes, fascicular pattern, interstitial tissue, nerve hypertrophy and cell junction pattern were analyzed under electron microscope and they were clinically correlated using appropriate statistical tests. Control group had significant difference as compared to case group in terms of baseline parameters like IPSS, flow rate and prostate size, both preoperatively and postoperatively, except for PVR, which was seen only preoperatively. There was statistically significant difference in ultrastructural patterns between case and control group in all five electron microscopic patterns. However, no significant difference was found between the subcategories of case groups. BPE is responsible for ultra structural changes in detrusor muscle and these changes remain persistent even after TURP. Nerve hypertrophy, which was not thoroughly discussed in previous studies, is also one of the salient feature of this study. Copyright® by the International Brazilian Journal of Urology.
NASA Astrophysics Data System (ADS)
Grimm, T.; Wiora, G.; Witt, G.
2017-03-01
Good correlations between three-dimensional surface analyses of laser-beam-melted parts of nickel alloy HX and their mechanical properties were found. The surface analyses were performed with a confocal microscope, which offers a more profound surface data basis than a conventional, two-dimensional tactile profilometry. This new approach results in a wide range of three-dimensional surface parameters, which were each evaluated with respect to their feasibility for quality control in additive manufacturing. As a result of an automated surface analysis process by the confocal microscope and an industrial six-axis robot, the results are an innovative approach for quality control in additive manufacturing.
Monte-Carlo Geant4 numerical simulation of experiments at 247-MeV proton microscope
NASA Astrophysics Data System (ADS)
Kantsyrev, A. V.; Skoblyakov, A. V.; Bogdanov, A. V.; Golubev, A. A.; Shilkin, N. S.; Yuriev, D. S.; Mintsev, V. B.
2018-01-01
A radiographic facility for an investigation of fast dynamic processes with areal density of targets up to 5 g/cm2 is under development on the basis of high-current proton linear accelerator at the Institute for Nuclear Research (Troitsk, Russia). A virtual model of the proton microscope developed in a software toolkit Geant4 is presented in the article. Fullscale Monte-Carlo numerical simulation of static radiographic experiments at energy of a proton beam 247 MeV was performed. The results of simulation of proton radiography experiments with static model of shock-compressed xenon are presented. The results of visualization of copper and polymethyl methacrylate step wedges static targets also described.
Jürgens, Tim; Brand, Thomas
2009-11-01
This study compares the phoneme recognition performance in speech-shaped noise of a microscopic model for speech recognition with the performance of normal-hearing listeners. "Microscopic" is defined in terms of this model twofold. First, the speech recognition rate is predicted on a phoneme-by-phoneme basis. Second, microscopic modeling means that the signal waveforms to be recognized are processed by mimicking elementary parts of human's auditory processing. The model is based on an approach by Holube and Kollmeier [J. Acoust. Soc. Am. 100, 1703-1716 (1996)] and consists of a psychoacoustically and physiologically motivated preprocessing and a simple dynamic-time-warp speech recognizer. The model is evaluated while presenting nonsense speech in a closed-set paradigm. Averaged phoneme recognition rates, specific phoneme recognition rates, and phoneme confusions are analyzed. The influence of different perceptual distance measures and of the model's a-priori knowledge is investigated. The results show that human performance can be predicted by this model using an optimal detector, i.e., identical speech waveforms for both training of the recognizer and testing. The best model performance is yielded by distance measures which focus mainly on small perceptual distances and neglect outliers.
Adaptation of in-situ microscopy for crystallization processes
NASA Astrophysics Data System (ADS)
Bluma, A.; Höpfner, T.; Rudolph, G.; Lindner, P.; Beutel, S.; Hitzmann, B.; Scheper, T.
2009-08-01
In biotechnological and pharmaceutical engineering, the study of crystallization processes gains importance. An efficient analytical inline sensor could help to improve the knowledge about these processes in order to increase efficiency and yields. The in-situ microscope (ISM) is an optical sensor developed for the monitoring of bioprocesses. A new application for this sensor is the monitoring in downstream processes, e.g. the crystallization of proteins and other organic compounds. This contribution shows new aspects of using in-situ microscopy to monitor crystallization processes. Crystals of different chemical compounds were precipitated from supersaturated solutions and the crystal growth was monitored. Exemplified morphological properties and different forms of crystals could be distinguished on the basis of offline experiments. For inline monitoring of crystallization processes, a special 0.5 L stirred tank reactor was developed and equipped with the in-situ microscope. This reactor was utilized to carry out batch experiments for crystallizations of O-acetylsalicyclic acid (ASS) and hen egg white lysozyme (HEWL). During the whole crystallization process, the in-situ microscope system acquired images directly from the crystallization broth. For the data evaluation, an image analysis algorithm was developed and implemented in the microscope analysis software.
Médigue, Claudine; Calteau, Alexandra; Cruveiller, Stéphane; Gachet, Mathieu; Gautreau, Guillaume; Josso, Adrien; Lajus, Aurélie; Langlois, Jordan; Pereira, Hugo; Planel, Rémi; Roche, David; Rollin, Johan; Rouy, Zoe; Vallenet, David
2017-09-12
The overwhelming list of new bacterial genomes becoming available on a daily basis makes accurate genome annotation an essential step that ultimately determines the relevance of thousands of genomes stored in public databanks. The MicroScope platform (http://www.genoscope.cns.fr/agc/microscope) is an integrative resource that supports systematic and efficient revision of microbial genome annotation, data management and comparative analysis. Starting from the results of our syntactic, functional and relational annotation pipelines, MicroScope provides an integrated environment for the expert annotation and comparative analysis of prokaryotic genomes. It combines tools and graphical interfaces to analyze genomes and to perform the manual curation of gene function in a comparative genomics and metabolic context. In this article, we describe the free-of-charge MicroScope services for the annotation and analysis of microbial (meta)genomes, transcriptomic and re-sequencing data. Then, the functionalities of the platform are presented in a way providing practical guidance and help to the nonspecialists in bioinformatics. Newly integrated analysis tools (i.e. prediction of virulence and resistance genes in bacterial genomes) and original method recently developed (the pan-genome graph representation) are also described. Integrated environments such as MicroScope clearly contribute, through the user community, to help maintaining accurate resources. © The Author 2017. Published by Oxford University Press.
Assessment of a liquid lens enabled in vivo optical coherence microscope.
Murali, Supraja; Meemon, Panomsak; Lee, Kye-Sung; Kuhn, William P; Thompson, Kevin P; Rolland, Jannick P
2010-06-01
The optical aberrations induced by imaging through skin can be predicted using formulas for Seidel aberrations of a plane-parallel plate. Knowledge of these aberrations helps to guide the choice of numerical aperture (NA) of the optics we can use in an implementation of Gabor domain optical coherence microscopy (GD-OCM), where the focus is the only aberration adjustment made through depth. On this basis, a custom-designed, liquid-lens enabled dynamic focusing optical coherence microscope operating at 0.2 NA is analyzed and validated experimentally. As part of the analysis, we show that the full width at half-maximum metric, as a characteristic descriptor for the point spread function, while commonly used, is not a useful metric for quantifying resolution in non-diffraction-limited systems. Modulation transfer function (MTF) measurements quantify that the liquid lens performance is as predicted by design, even when accounting for the effect of gravity. MTF measurements in a skinlike scattering medium also quantify the performance of the microscope in its potential applications. To guide the fusion of images across the various focus positions of the microscope, as required in GD-OCM, we present depth of focus measurements that can be used to determine the effective number of focusing zones required for a given goal resolution. Subcellular resolution in an onion sample, and high-definition in vivo imaging in human skin are demonstrated with the custom-designed and built microscope.
Basic statistics with Microsoft Excel: a review.
Divisi, Duilio; Di Leonardo, Gabriella; Zaccagna, Gino; Crisci, Roberto
2017-06-01
The scientific world is enriched daily with new knowledge, due to new technologies and continuous discoveries. The mathematical functions explain the statistical concepts particularly those of mean, median and mode along with those of frequency and frequency distribution associated to histograms and graphical representations, determining elaborative processes on the basis of the spreadsheet operations. The aim of the study is to highlight the mathematical basis of statistical models that regulate the operation of spreadsheets in Microsoft Excel.
Basic statistics with Microsoft Excel: a review
Di Leonardo, Gabriella; Zaccagna, Gino; Crisci, Roberto
2017-01-01
The scientific world is enriched daily with new knowledge, due to new technologies and continuous discoveries. The mathematical functions explain the statistical concepts particularly those of mean, median and mode along with those of frequency and frequency distribution associated to histograms and graphical representations, determining elaborative processes on the basis of the spreadsheet operations. The aim of the study is to highlight the mathematical basis of statistical models that regulate the operation of spreadsheets in Microsoft Excel. PMID:28740690
Novel Starch-PVA Polymer for Microparticle Preparation and Optimization Using Factorial Design Study
Chattopadhyay, Helen; De, Amit Kumar; Datta, Sriparna
2015-01-01
The aim of our present work was to optimize the ratio of a very novel polymer, starch-polyvinyl alcohol (PVA), for controlled delivery of Ornidazole. Polymer-coated drug microparticles were prepared by emulsion method. Microscopic study, scanning electron microscopic study, and atomic force microscopic study revealed that the microparticles were within 10 micrometers of size with smooth spherical shape. The Fourier transform infrared spectroscopy showed absence of drug polymer interaction. A statistical 32 full factorial design was used to study the effect of different concentration of starch and PVA on the drug release profile. The three-dimensional plots gave us an idea about the contribution of each factor on the release kinetics. Hence this novel polymer of starch and polyvinyl alcohol can be utilized for control release of the drug from a targeted delivery device. PMID:27347511
Demir, Aslan; Türker, Polat; Bozkurt, Suheyla Uyar; İlker, Yalcin Nazmi
2015-01-01
In this animal study, we reviewed the histomorphological findings in rabbit kidneys after a high number of high-energy shock wave applications and observed if there were any cumulative effects after repeated sessions. We formed 2 groups, each consisting of 8 rabbits. Group 1 received 1 session and group 2 received 3 sessions of ESWL with a 7 day interval between sessions, consisting of 3500 beats to the left kidney and 5500 beats to the right kidney per session. The specimens of kidneys were examined histomorphologically after bilateral nephrectomy was performed. For statistical analysis, 4 groups of specimens were formed. The first and second groups received 1 session, 3500 and 5500 beats, respectively. The third and fourth groups received 3 sessions, at 3500 and 5500 beats per each session, respectively. The sections were evaluated under a light microscope to determine subcapsular thickening; subcapsular, intratubular and parenchymal hemorrhage; subcapsular, intersitital, perivascular and proximal ureteral fibrosis; paranchymal necrosis; tubular epithelial vacuolization; tubular atrophy; glomerular destruction and calcification. In histopathological examinations capsular thickening, subcapsular hematoma, tubuloepithelial vacuolisation, glomerular destruction, parenchymal hemorrhage, interstitial fibrosis, and perivascular fibrosis were observed in all groups. In statistical analysis, on the basis of perivascular fibrosis and tubular atrophy, there was a beats per session dependent increase of both. The detrimental effects from ESWL are dose dependent but not cumulative for up to 3 sessions. Histopathological experimental animal studies will aid in understanding local and maybe, by means of these local effects, systemic effects.
Pan-neuronal calcium imaging with cellular resolution in freely swimming zebrafish.
Kim, Dal Hyung; Kim, Jungsoo; Marques, João C; Grama, Abhinav; Hildebrand, David G C; Gu, Wenchao; Li, Jennifer M; Robson, Drew N
2017-11-01
Calcium imaging with cellular resolution typically requires an animal to be tethered under a microscope, which substantially restricts the range of behaviors that can be studied. To expand the behavioral repertoire amenable to imaging, we have developed a tracking microscope that enables whole-brain calcium imaging with cellular resolution in freely swimming larval zebrafish. This microscope uses infrared imaging to track a target animal in a behavior arena. On the basis of the predicted trajectory of the animal, we applied optimal control theory to a motorized stage system to cancel brain motion in three dimensions. We combined this motion-cancellation system with differential illumination focal filtering, a variant of HiLo microscopy, which enabled us to image the brain of a freely swimming larval zebrafish for more than an hour. This work expands the repertoire of natural behaviors that can be studied with cellular-resolution calcium imaging to potentially include spatial navigation, social behavior, feeding and reward.
Yuan, Weimin; Wu, Xiaoqin; Ye, Jianren; Tian, Xiaojing
2011-08-01
The pine wood nematode, Bursaphlenchus xylophilus, morphologically similar to B. mucronatus, is the pathogen of pine wilt disease. This study was focused on the endophytic bacteria present in these nematodes. Detailed observations were made on sections of all parts of the two types of nematodes by transmission electron microscope. The nematodes were surface-sterilized by soaking in 1% mercuric chloride and antibiotic mixture, and then ground and cultured on nutrient agar plate. The physiological and biochemical characteristics combined with molecular characterization of bacteria were analyzed and identified. Endophytic bacteria were found in intestines of the two nematodes by transmission electron microscope observations. On the basis of surface sterilization, total three bacteria strains were obtained from B. xylophilus and B. mucronatus. These bacteria belong to Stenotrophomonas and Ewingella. It confirms the presence of endophytic bacteria in Bursaphelenchus xylophilus and B. mucronatus and these bacteria may play a physical and ecological roles in nematodes.
Dynamic Contact Angle at the Nanoscale: A Unified View.
Lukyanov, Alex V; Likhtman, Alexei E
2016-06-28
Generation of a dynamic contact angle in the course of wetting is a fundamental phenomenon of nature. Dynamic wetting processes have a direct impact on flows at the nanoscale, and therefore, understanding them is exceptionally important to emerging technologies. Here, we reveal the microscopic mechanism of dynamic contact angle generation. It has been demonstrated using large-scale molecular dynamics simulations of bead-spring model fluids that the main cause of local contact angle variations is the distribution of microscopic force acting at the contact line region. We were able to retrieve this elusive force with high accuracy. It has been directly established that the force distribution can be solely predicted on the basis of a general friction law for liquid flow at solid surfaces by Thompson and Troian. The relationship with the friction law provides both an explanation of the phenomenon of dynamic contact angle and a methodology for future predictions. The mechanism is intrinsically microscopic, universal, and irreducible and is applicable to a wide range of problems associated with wetting phenomena.
Wasik, Radosław
2009-01-01
During the exhumation of general Władysław Sikorski's corpse, a fragment of wood was found embedded in the left eye socket bone. The wood fragment was referred by the Institute of Forensic Research to the laboratory of Department of Forest and Wood Utilization, University of Agriculture in Krakow, where investigations were performed, aiming at determining the species of the wood. The fragment was cut into 20 microm thick microtome scraps of three anatomy sections: transverse, tangential and radial. The scraps were immersed in 99.8% ethyl alcohol for 24 hours and then for about 1 hour in xylene. Subsequently, they were placed between a microscope slide and a cover-glass in Canada balsam. The thus prepared scraps were then analyzed with the use of a Jenaval Carl Zeiss microscope. On the basis of microscope observations it was determined that the investigated fragment of wood belonged to Douglas-fir species (Pseudotsuga menziesii (Mirb.) Franco).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knyr, V. A.; Neudatchin, V. G.; Khokhlov, N. A.
Various pieces of evidence in favor of the Moscow potential of nucleon-nucleon interaction are discussed. The formalism of a relativistic potential model as applied to deuteron photodintegration is expounded. The differential cross section calculated for the reaction {gamma}d {sup {yields}} np on the basis of the Moscow potential at incident-photon energies E{sub {gamma}} between 1.5 and 2.5 GeV are quite in accord with present-day experimental data, which are also described well in the literature on the basis of the model of quark-gluon strings. Further steps in testing the Moscow potential and microscopically substantiating it on the basis of quark modelsmore » are indicated.« less
NASA Astrophysics Data System (ADS)
Royon, Arnaud; Papon, Gautier
2016-03-01
Fluorescence microscopes have become ubiquitous in life sciences laboratories, including those focused on pharmaceuticals, diagnosis, and forensics. For the past few years, the need for both performance guarantees and quantifiable results has driven development in this area. However, the lack of appropriate standards and reference materials makes it difficult or impossible to compare the results of two fluorescence microscopes, or to measure performance fluctuations of one microscope over time. Therefore, the operation of fluorescence microscopes is not monitored as often as their use warrants - an issue that is recognized by both systems manufacturers and national metrology institutes. We have developed a new process that enables the etching of long-term stable fluorescent patterns with sub-micrometer sizes in three dimensions inside glass. In this paper, we present, based on this new process, a fluorescent multi-dimensional ruler and a dedicated software that are suitable for monitoring and quality management of fluorescence-based imaging systems (wide-field, confocal, multiphoton, high content machines). In addition to fluorescence, the same patterns exhibit bright- and dark-field contrast, DIC, and phase contrast, which make them also relevant to monitor these types of microscopes. Non-exhaustively, this new solution enables the measurement of: The stage repositioning accuracy; The illumination and detection homogeneities; The field flatness; The detectors' characteristics; The lateral and axial spatial resolutions; The spectral response (spectrum, intensity and lifetime) of the system. Thanks to the stability of the patterns, microscope performance assessment can be carried out as well in a daily basis as in the long term.
[The evaluation of costs: standards of medical care and clinical statistic groups].
Semenov, V Iu; Samorodskaia, I V
2014-01-01
The article presents the comparative analysis of techniques of evaluation of costs of hospital treatment using medical economic standards of medical care and clinical statistical groups. The technique of evaluation of costs on the basis of clinical statistical groups was developed almost fifty years ago and is largely applied in a number of countries. Nowadays, in Russia the payment for completed case of treatment on the basis of medical economic standards is the main mode of payment for medical care in hospital. It is very conditionally a Russian analogue of world-wide prevalent system of diagnostic related groups. The tariffs for these cases of treatment as opposed to clinical statistical groups are counted on basis of standards of provision of medical care approved by Minzdrav of Russia. The information derived from generalization of cases of treatment of real patients is not applied.
Curve fitting and modeling with splines using statistical variable selection techniques
NASA Technical Reports Server (NTRS)
Smith, P. L.
1982-01-01
The successful application of statistical variable selection techniques to fit splines is demonstrated. Major emphasis is given to knot selection, but order determination is also discussed. Two FORTRAN backward elimination programs, using the B-spline basis, were developed. The program for knot elimination is compared in detail with two other spline-fitting methods and several statistical software packages. An example is also given for the two-variable case using a tensor product basis, with a theoretical discussion of the difficulties of their use.
Fitting multidimensional splines using statistical variable selection techniques
NASA Technical Reports Server (NTRS)
Smith, P. L.
1982-01-01
This report demonstrates the successful application of statistical variable selection techniques to fit splines. Major emphasis is given to knot selection, but order determination is also discussed. Two FORTRAN backward elimination programs using the B-spline basis were developed, and the one for knot elimination is compared in detail with two other spline-fitting methods and several statistical software packages. An example is also given for the two-variable case using a tensor product basis, with a theoretical discussion of the difficulties of their use.
Mujica Ascencio, Saul; Choe, ChunSik; Meinke, Martina C; Müller, Rainer H; Maksimov, George V; Wigger-Alberti, Walter; Lademann, Juergen; Darvin, Maxim E
2016-07-01
Propylene glycol is one of the known substances added in cosmetic formulations as a penetration enhancer. Recently, nanocrystals have been employed also to increase the skin penetration of active components. Caffeine is a component with many applications and its penetration into the epidermis is controversially discussed in the literature. In the present study, the penetration ability of two components - caffeine nanocrystals and propylene glycol, applied topically on porcine ear skin in the form of a gel, was investigated ex vivo using two confocal Raman microscopes operated at different excitation wavelengths (785nm and 633nm). Several depth profiles were acquired in the fingerprint region and different spectral ranges, i.e., 526-600cm(-1) and 810-880cm(-1) were chosen for independent analysis of caffeine and propylene glycol penetration into the skin, respectively. Multivariate statistical methods such as principal component analysis (PCA) and linear discriminant analysis (LDA) combined with Student's t-test were employed to calculate the maximum penetration depths of each substance (caffeine and propylene glycol). The results show that propylene glycol penetrates significantly deeper than caffeine (20.7-22.0μm versus 12.3-13.0μm) without any penetration enhancement effect on caffeine. The results confirm that different substances, even if applied onto the skin as a mixture, can penetrate differently. The penetration depths of caffeine and propylene glycol obtained using two different confocal Raman microscopes are comparable showing that both types of microscopes are well suited for such investigations and that multivariate statistical PCA-LDA methods combined with Student's t-test are very useful for analyzing the penetration of different substances into the skin. Copyright © 2016 Elsevier B.V. All rights reserved.
Yannopoulos, Fredrik S; Arvola, Oiva; Haapanen, Henri; Herajärvi, Johanna; Miinalainen, Ilkka; Jensen, Hanna; Kiviluoma, Kai; Juvonen, Tatu
2014-03-01
Remote ischaemic preconditioning and its neuroprotective abilities are currently under investigation and the method has shown significant effects in several small and large animal studies. In our previous studies, leucocyte filtration during cardiopulmonary bypass reduced cerebrocortical adherent leucocyte count and mitigated cerebral damage after hypothermic circulatory arrest (HCA) in piglets. This study aimed to obtain and assess direct visual data of leucocyte behaviour in cerebral vessels after hypothermic circulatory arrest following remote ischaemic preconditioning. Twelve native stock piglets were randomized into a remote ischaemic preconditioning group (n = 6) and a control group (n = 6). The intervention group underwent hind-leg ischaemia, whereas the control group received a sham-treatment before a 60-min period of hypothermic circulatory arrest. An intravital microscope was used to obtain measurements from the cerebrocortical vessel in vivo. It included three sets of filters: a violet filter to visualize microvascular perfusion and vessel diameter, a green filter for visualization of rhodamine-labelled leucocytes and an ultraviolet filter for reduced nicotinamide adenine dinucleotide (NADH) analysis. The final magnification on the microscope was 400. After the experiment, cerebral and cerebellar biopsies were collected and analysed with transmission electron microscope by a blinded analyst. In the transmission electron microscope analysis, the entire intervention group had normal, unaffected rough endoplasmic reticulum's in their cerebellar tissue, whereas the control group had a mean score of 1.06 (standard deviation 0.41) (P = 0.026). The measured amount of adherent leucocytes was lower in the remote ischaemic preconditioning group. The difference was statistically significant at 5, 15 and 45 min after circulatory arrest. Statistically significant differences were seen also in the recovery phase at 90 and 120 min after reperfusion. Nicotinamide adenine dinucleotide autofluorescence had statistically significant differences at 10 min after cooling and at 120 and 180 min after hypothermic circulatory arrest. Remote ischaemic preconditioning seems to provide better mitochondrial respiratory chain function as indicated by the higher NADH content. It simultaneously provides a reduction of adherent leucocytes in cerebral vessels after hypothermic circulatory arrest. Additionally, it might provide some degree of cellular organ preservation as implied by the electron microscopy results.
4D microscope-integrated OCT improves accuracy of ophthalmic surgical maneuvers
NASA Astrophysics Data System (ADS)
Carrasco-Zevallos, Oscar; Keller, Brenton; Viehland, Christian; Shen, Liangbo; Todorich, Bozho; Shieh, Christine; Kuo, Anthony; Toth, Cynthia; Izatt, Joseph A.
2016-03-01
Ophthalmic surgeons manipulate micron-scale tissues using stereopsis through an operating microscope and instrument shadowing for depth perception. While ophthalmic microsurgery has benefitted from rapid advances in instrumentation and techniques, the basic principles of the stereo operating microscope have not changed since the 1930's. Optical Coherence Tomography (OCT) has revolutionized ophthalmic imaging and is now the gold standard for preoperative and postoperative evaluation of most retinal and many corneal procedures. We and others have developed initial microscope-integrated OCT (MIOCT) systems for concurrent OCT and operating microscope imaging, but these are limited to 2D real-time imaging and require offline post-processing for 3D rendering and visualization. Our previously presented 4D MIOCT system can record and display the 3D surgical field stereoscopically through the microscope oculars using a dual-channel heads-up display (HUD) at up to 10 micron-scale volumes per second. In this work, we show that 4D MIOCT guidance improves the accuracy of depth-based microsurgical maneuvers (with statistical significance) in mock surgery trials in a wet lab environment. Additionally, 4D MIOCT was successfully performed in 38/45 (84%) posterior and 14/14 (100%) anterior eye human surgeries, and revealed previously unrecognized lesions that were invisible through the operating microscope. These lesions, such as residual and potentially damaging retinal deformation during pathologic membrane peeling, were visualized in real-time by the surgeon. Our integrated system provides an enhanced 4D surgical visualization platform that can improve current ophthalmic surgical practice and may help develop and refine future microsurgical techniques.
Microscopic multiphonon approach to spectroscopy in the neutron-rich oxygen region
NASA Astrophysics Data System (ADS)
De Gregorio, G.; Knapp, F.; Lo Iudice, N.; Veselý, P.
2018-03-01
Background: A fairly rich amount of experimental spectroscopic data have disclosed intriguing properties of the nuclei in the region of neutron rich oxygen isotopes up to the neutron dripline. They, therefore, represent a unique laboratory for studying the evolution of nuclear structure away from the stability line. Purpose: We intend to give an exhaustive microscopic description of low and high energy spectra, dipole response, weak, and electromagnetic properties of the even 22O and the odd 23O and 23F. Method: An equation of motion phonon method generates an orthonormal basis of correlated n -phonon states (n =0 ,1 ,2 ,⋯ ) built of constituent Tamm-Dancoff phonons. This basis is adopted to solve the full eigenvalue equations in even nuclei and to construct an orthonormal particle-core basis for the eigenvalue problem in odd nuclei. No approximations are involved and the Pauli principle is taken into full account. The method is adopted to perform self-consistent, parameter free, calculations using an optimized chiral nucleon-nucleon interaction in a space encompassing up to two-phonon basis states. Results: The computed spectra in 22O and 23O and the dipole cross section in 22O are in overall agreement with the experimental data. The calculation describes poorly the spectrum of 23F. Conclusions: The two-phonon configurations play a crucial role in the description of spectra and transitions. The large discrepancies concerning the spectra of 23F are ultimately traced back to the large separation between the Hartree-Fock levels belonging to different major shells. We suggest that a more compact single particle spectrum is needed and can be generated by a new chiral potential which includes explicitly the contribution of the three-body forces.
Plasmodium malariae in the Colombian Amazon region: you don't diagnose what you don't suspect.
Niño, Carlos Hernando; Cubides, Juan Ricardo; Camargo-Ayala, Paola Andrea; Rodríguez-Celis, Carlos Arturo; Quiñones, Teódulo; Cortés-Castillo, Moisés Tomás; Sánchez-Suárez, Lizeth; Sánchez, Ricardo; Patarroyo, Manuel Elkin; Patarroyo, Manuel Alfonso
2016-11-29
Malaria is a worldwide public health problem; parasites from the genus Plasmodium spp. are the aetiological agent of this disease. The parasite is mainly diagnosed by microscope-based techniques. However, these have limited sensitivity. Many asymptomatic infections are sub-microscopic and can only be detected by molecular methods. This study was aimed at comparing nested PCR results to those obtained by microscope for diagnosing malaria and to present epidemiological data regarding malaria in Colombia's Amazon department. A total of 1392 blood samples (taken by venepuncture) from symptomatic patients in Colombia's Amazon department were analysed in parallel by thick blood smear (TBS) test and nested PCR for determining Plasmodium spp. infection and identifying infecting species, such as Plasmodium vivax, Plasmodium malariae and/or Plasmodium falciparum. Descriptive statistics were used for comparing the results from both tests regarding detection of the disease, typing infecting species and their prevalence in the study region. Bearing the microscope assay in mind as gold standard, PCR diagnosis performance was evaluated by statistical indicators. The present study revealed great differences between both diagnostic tests, as well as suggesting high P. malariae prevalence from a molecular perspective. This differed profoundly from previous studies in this region of Colombia, usually based on the TBS test, suggesting that diagnosis by conventional techniques could lead to underestimating the prevalence of certain Plasmodium spp. having high circulation in this area. The present results highlight the need for modifying state malaria surveillance schemes for more efficient strategies regarding the detection of this disease in endemic areas. The importance of PCR as a back-up test in cases of low parasitaemia or mixed infection is also highlighted.
Stimmelmayr, Michael; Edelhoff, Daniel; Güth, Jan-Frederik; Erdelt, Kurt; Happe, Arndt; Beuer, Florian
2012-12-01
The purpose of this study was to determine and measure the wear of the interface between titanium implants and one-piece zirconia abutments in comparison to titanium abutments. 6 implants were secured into epoxy resin blocks. The implant interface of these implants and 6 corresponding abutments (group Zr: three one-piece zirconia abutments; group Ti: three titanium abutments) were examined by a microscope and scanning electron micrograph (SEM). Also the implants and the abutments were scanned by 3D-Micro Computer Tomography (CT). The abutments were connected to the implants and cyclically loaded with 1,200,000 cycles at 100N in a two-axis fatigue testing machine. Afterwards, all specimens were unscrewed and the implants and abutments again were scanned by microscope, SEM and CT. The microscope and SEM images were compared, the CT data were superimposed and the wear was calculated by inspection software. The statistical analysis was carried out with an unpaired t-test. Abutment fracture or screw loosening was not observed during cyclical loading. Comparing the microscope and SEM images more wear was observed on the implants connected to zirconia abutments. The maximum wear on the implant shoulder calculated by the inspection software was 10.2μm for group Zr, and 0.7μm for group Ti. The influence of the abutment material on the measured wear was statistically significant (p≤0.001; Levene-test). Titanium implants showed higher wear at the implant interface following cyclic loading when connected to one-piece zirconia implant abutments compared to titanium abutments. The clinical relevance is not clear; hence damage of the internal implant connection could result in prosthetic failures up to the need of implant removal. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Abuabara, Allan; Baratto-Filho, Flares; Aguiar Anele, Juliana; Leonardi, Denise Piotto; Sousa-Neto, Manoel Damião
2013-01-01
The success of endodontic treatment depends on the identification of all root canals. Technological advances have facilitated this process as well as the assessment of internal anatomical variations. The aim of this study was to compare the efficacy of clinical and radiological methods in locating second mesiobuccal canals (MB2) in maxillary first molars. Fifty patients referred for analysis; access and clinical analysis; cone-beam endodontic treatment of their maxillary first molars were submitted to the following assessments: analysis; access and clinical analysis; cone-beam computed tomography (CBCT); post-CBCT clinical analysis; clinical analysis using an operating microscope; and clinical analysis after Start X ultrasonic inserts in teeth with negative results in all previous analyses. Periapical radiographic analysis revealed the presence of MB2 in four (8%) teeth, clinical analysis in 25 (50%), CBCT analysis in 27 (54%) and clinical analysis following CBCT and using an operating microscope in 27 (54%) and 29 (58%) teeth, respectively. The use of Start X ultrasonic inserts allowed one to detect two additional teeth with MB2 (62%). According to Vertucci's classification 48% of the mesiobuccal canals found were type I, 28% type II, 18% type IV and 6% type V. Statistical analysis showed no significant differences (p > 0.5) in the ability of CBCT to detect MB2 canals when compared with clinical assessment with or without an operating microscope. A significant difference (p < 0.001)was found only between periapical radiography and clinical/CBCT evaluations. Combined use of different methods increased the detection ofthe second canal in MB roots, but without statistical difference among CBCT, operating microscope, Start X and clinical analysis.
The filamentous morphotype Eikelboom type 1863 is not a single genetic entity.
Seviour, E M; Blackall, L L; Christensson, C; Hugenholtz, P; Cunningham, M A; Bradford, D; Stratton, H M; Seviour, R J
1997-04-01
Five isolates of a filamentous bacterial morphotype with the distinctive diagnostic microscopic features of Eikelboom Type 1863 were obtained from activated sludge sewage treatment plants in Victoria, Australia. On the basis of phenotypic evidence and 16S rDNA sequence data, these isolates proved to be polyphyletic. Two (Ben 06 and Ben 06C) are from the Chryseobacterium subgroup which is in the Cytophaga group, subdivision I of the Flexibacter-Cytophaga-Bacteroides phylum. Two (Ben 56 and Ben 59) belong to the genus Acinetobacter, and one (Ben 58) is a Moraxella sp., closest to Mor. osloensis. The significance of these findings to the reliance on microscopic features for identification of these filamentous bacteria in activated sludge is discussed.
Day, Charles A.; Kraft, Lewis J.; Kang, Minchul; Kenworthy, Anne K.
2012-01-01
Fluorescence recovery after photobleaching (FRAP) is a powerful, versatile and widely accessible tool to monitor molecular dynamics in living cells that can be performed using modern confocal microscopes. Although the basic principles of FRAP are simple, quantitative FRAP analysis requires careful experimental design, data collection and analysis. In this review we discuss the theoretical basis for confocal FRAP, followed by step-by-step protocols for FRAP data acquisition using a laser scanning confocal microscope for (1) measuring the diffusion of a membrane protein, (2) measuring the diffusion of a soluble protein, and (3) analysis of intracellular trafficking. Finally, data analysis procedures are discussed and an equation for determining the diffusion coefficient of a molecular species undergoing pure diffusion is presented. PMID:23042527
Electronic holographic moire in the micron range
NASA Astrophysics Data System (ADS)
Sciammarella, Cesar A.; Sciammarella, Federico M.
2001-06-01
The basic theory behind microscopic electronic holographic moire is presented. Conditions of observation are discussed, and optimal parameters are established. An application is presented as an example where experimental result are statistically analyzed and successfully correlated with an independent method of measurement of the same quantity.
Microscopes and computers combined for analysis of chromosomes
NASA Technical Reports Server (NTRS)
Butler, J. W.; Butler, M. K.; Stroud, A. N.
1969-01-01
Scanning machine CHLOE, developed for photographic use, is combined with a digital computer to obtain quantitative and statistically significant data on chromosome shapes, distribution, density, and pairing. CHLOE permits data acquisition about a chromosome complement to be obtained two times faster than by manual pairing.
Modeling of Yb3+/Er3+-codoped microring resonators
NASA Astrophysics Data System (ADS)
Vallés, Juan A.; Gălătuş, Ramona
2015-03-01
The performance of a highly Yb3+/Er3+-codoped phosphate glass add-drop microring resonator is numerically analyzed. The model assumes resonant behaviour of both pump and signal powers and the dependences of pump intensity build-up inside the microring resonator and of the signal transfer functions to the device through and drop ports are evaluated. Detailed equations for the evolution of the rare-earth ions levels population densities and the propagation of the optical powers inside the microring resonator are included in the model. Moreover, due to the high dopant concentrations considered, the microscopic statistical formalism based on the statistical average of the excitation probability of the Er3+ ion in a microscopic level has been used to describe energy-transfer inter-atomic mechanisms. Realistic parameters and working conditions are used for the calculations. Requirements to achieve amplification and laser oscillation within these devices are obtainable as a function of rare earth ions concentration and coupling losses.
... on National Statistics (CNSTAT) to examine conceptual and methodological issues surrounding survey statistics on rape and sexual assault and to recommend to BJS the best methods for obtaining such statistics on an ongoing basis. ...
SS-HORSE method for studying resonances
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blokhintsev, L. D.; Mazur, A. I.; Mazur, I. A., E-mail: 008043@pnu.edu.ru
A new method for analyzing resonance states based on the Harmonic-Oscillator Representation of Scattering Equations (HORSE) formalism and analytic properties of partial-wave scattering amplitudes is proposed. The method is tested by applying it to the model problem of neutral-particle scattering and can be used to study resonance states on the basis of microscopic calculations performed within various versions of the shell model.
Charge-Carrier-Scattering Spectroscopy With BEEM
NASA Technical Reports Server (NTRS)
Hecht, Michael H.; Bell, Lloyd D.; Kaiser, William J.
1992-01-01
Ballistic-electron-emission microscopy (BEEM) constitutes basis of new spectroscopy of scattering of electrons and holes. Pointed tip electrode scans near surface of metal about 100 angstrom thick on semiconductor. Principle similar to scanning tunneling microscope, except metal acts as third electrode. Used to investigate transport phenomena, scattering phenomena, and creation of hot charge carriers in Au/Si and Au/GaAs metal/semiconductor microstructures.
Role of Proteome Physical Chemistry in Cell Behavior.
Ghosh, Kingshuk; de Graff, Adam M R; Sawle, Lucas; Dill, Ken A
2016-09-15
We review how major cell behaviors, such as bacterial growth laws, are derived from the physical chemistry of the cell's proteins. On one hand, cell actions depend on the individual biological functionalities of their many genes and proteins. On the other hand, the common physics among proteins can be as important as the unique biology that distinguishes them. For example, bacterial growth rates depend strongly on temperature. This dependence can be explained by the folding stabilities across a cell's proteome. Such modeling explains how thermophilic and mesophilic organisms differ, and how oxidative damage of highly charged proteins can lead to unfolding and aggregation in aging cells. Cells have characteristic time scales. For example, E. coli can duplicate as fast as 2-3 times per hour. These time scales can be explained by protein dynamics (the rates of synthesis and degradation, folding, and diffusional transport). It rationalizes how bacterial growth is slowed down by added salt. In the same way that the behaviors of inanimate materials can be expressed in terms of the statistical distributions of atoms and molecules, some cell behaviors can be expressed in terms of distributions of protein properties, giving insights into the microscopic basis of growth laws in simple cells.
NASA Astrophysics Data System (ADS)
Moretti, Massimo; Tropeano, Marcello; Loon, A. J. (Tom) van; Acquafredda, Pasquale; Baldacconi, Rossella; Festa, Vincenzo; Lisco, Stefania; Mastronuzzi, Giuseppe; Moretti, Vincenzo; Scotti, Rosa
2016-06-01
Beach sands from the Rosa Marina locality (Adriatic coast, southern Italy) were analysed mainly microscopically in order to trace the source areas of their lithoclastic and bioclastic components. The main cropping out sedimentary units were also studied with the objective to identify the potential source areas of lithoclasts. This allowed to establish how the various rock units contribute to the formation of beach sands. The analysis of the bioclastic components allows to estimate the actual role of organisms regarding the supply of this material to the beach. Identification of taxa that are present in the beach sands as shell fragments or other remains was carried out at the genus or family level. Ecological investigation of the same beach and the recognition of sub-environments (mainly distinguished on the basis of the nature of the substrate and of the water depth) was the key topic that allowed to establish the actual source areas of bioclasts in the Rosa Marina beach sands. The sedimentological analysis (including a physical study of the beach and the calculation of some statistical parameters concerning the grain-size curves) shows that the Rosa Marina beach is nowadays subject to erosion.
[Comparative adaptation of crowns of selective laser melting and wax-lost-casting method].
Li, Guo-qiang; Shen, Qing-yi; Gao, Jian-hua; Wu, Xue-ying; Chen, Li; Dai, Wen-an
2012-07-01
To investigate the marginal adaptation of crowns fabricated by selective laser melting (SLM) and wax-lost-casting method, so as to provide an experimental basis for clinic. Co-Cr alloy full crown were fabricated by SLM and wax-lost-casting for 24 samples in each group. All crowns were cemented with zinc phosphate cement and cut along longitudinal axis by line cutting machine. The gap between crown tissue surface and die was measured by 6-point measuring method with scanning electron microscope (SEM). The marginal adaptation of crowns fabricated by SLM and wax-lost-casting were compared statistically. The gap between SLM crowns were (36.51 ± 2.94), (49.36 ± 3.31), (56.48 ± 3.35), (42.20 ± 3.60) µm, and wax-lost-casting crowns were (68.86 ± 5.41), (58.86 ± 6.10), (70.62 ± 5.79), (69.90 ± 6.00) µm. There were significant difference between two groups (P < 0.05). Co-Cr alloy full crown fabricated by wax-lost-casting method and SLM method provide acceptable marginal adaptation in clinic, and the marginal adaptation of SLM is better than that of wax-lost-casting method.
Professional diversity and the productivity of cities.
Bettencourt, Luís M A; Samaniego, Horacio; Youn, Hyejin
2014-06-23
Attempts to understand the relationship between diversity, productivity and scale have remained limited due to the scheme-dependent nature of the taxonomies describing complex systems. We analyze the diversity of US metropolitan areas in terms of profession diversity and employment to show how this frequency distribution takes a universal scale-invariant form, common to all cities, in the limit of infinite resolution of occupational taxonomies. We show that this limit is obtained under general conditions that follow from the analysis of the variation of the occupational frequency across taxonomies at different resolutions in a way analogous to finite-size scaling in statistical physical systems. We propose a theoretical framework that derives the form and parameters of the limiting distribution of professions based on the appearance, in urban social networks, of new occupations as the result of specialization and coordination of labor. By deriving classification scheme-independent measures of functional diversity and modeling cities as social networks embedded in infrastructural space, these results show how standard economic arguments of division and coordination of labor can be articulated in detail in cities and provide a microscopic basis for explaining increasing returns to population scale observed at the level of entire metropolitan areas.
Multivariate statistical analysis of low-voltage EDS spectrum images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, I.M.
1998-03-01
Whereas energy-dispersive X-ray spectrometry (EDS) has been used for compositional analysis in the scanning electron microscope for 30 years, the benefits of using low operating voltages for such analyses have been explored only during the last few years. This paper couples low-voltage EDS with two other emerging areas of characterization: spectrum imaging and multivariate statistical analysis. The specimen analyzed for this study was a finished Intel Pentium processor, with the polyimide protective coating stripped off to expose the final active layers.
NASA Astrophysics Data System (ADS)
Cardenas, Nelson; Kyrish, Matthew; Taylor, Daniel; Fraelich, Margaret; Lechuga, Oscar; Claytor, Richard; Claytor, Nelson
2015-03-01
Electro-Chemical Polishing is routinely used in the anodizing industry to achieve specular surface finishes of various metals products prior to anodizing. Electro-Chemical polishing functions by leveling the microscopic peaks and valleys of the substrate, thereby increasing specularity and reducing light scattering. The rate of attack is dependent of the physical characteristics (height, depth, and width) of the microscopic structures that constitute the surface finish. To prepare the sample, mechanical polishing such as buffing or grinding is typically required before etching. This type of mechanical polishing produces random microscopic structures at varying depths and widths, thus the electropolishing parameters are determined in an ad hoc basis. Alternatively, single point diamond turning offers excellent repeatability and highly specific control of substrate polishing parameters. While polishing, the diamond tool leaves behind an associated tool mark, which is related to the diamond tool geometry and machining parameters. Machine parameters such as tool cutting depth, speed and step over can be changed in situ, thus providing control of the spatial frequency of the microscopic structures characteristic of the surface topography of the substrate. By combining single point diamond turning with subsequent electro-chemical etching, ultra smooth polishing of both rotationally symmetric and free form mirrors and molds is possible. Additionally, machining parameters can be set to optimize post polishing for increased surface quality and reduced processing times. In this work, we present a study of substrate surface finish based on diamond turning tool mark spatial frequency with subsequent electro-chemical polishing.
Gwyscan: a library to support non-equidistant scanning probe microscope measurements
NASA Astrophysics Data System (ADS)
Klapetek, Petr; Yacoot, Andrew; Grolich, Petr; Valtr, Miroslav; Nečas, David
2017-03-01
We present a software library and related methodology for enabling easy integration of adaptive step (non-equidistant) scanning techniques into metrological scanning probe microscopes or scanning probe microscopes where individual x, y position data are recorded during measurements. Scanning with adaptive steps can reduce the amount of data collected in SPM measurements thereby leading to faster data acquisition, a smaller amount of data collection required for a specific analytical task and less sensitivity to mechanical and thermal drift. Implementation of adaptive scanning routines into a custom built microscope is not normally an easy task: regular data are much easier to handle for previewing (e.g. levelling) and storage. We present an environment to make implementation of adaptive scanning easier for an instrument developer, specifically taking into account data acquisition approaches that are used in high accuracy microscopes as those developed by National Metrology Institutes. This includes a library with algorithms written in C and LabVIEW for handling data storage, regular mesh preview generation and planning the scan path on basis of different assumptions. A set of modules for Gwyddion open source software for handling these data and for their further analysis is presented. Using this combination of data acquisition and processing tools one can implement adaptive scanning in a relatively easy way into an instrument that was previously measuring on a regular grid. The performance of the presented approach is shown and general non-equidistant data processing steps are discussed.
Mapping flexible protein domains at subnanometer resolution with the atomic force microscope.
Müller, D J; Fotiadis, D; Engel, A
1998-06-23
The mapping of flexible protein domains with the atomic force microscope is reviewed. Examples discussed are the bacteriorhodopsin from Halobacterium salinarum, the head-tail-connector from phage phi29, and the hexagonally packed intermediate layer from Deinococcus radiodurans which all were recorded in physiological buffer solution. All three proteins undergo reversible structural changes that are reflected in standard deviation maps calculated from aligned topographs of individual protein complexes. Depending on the lateral resolution (up to 0.8 nm) flexible surface regions can ultimately be correlated with individual polypeptide loops. In addition, multivariate statistical classification revealed the major conformations of the protein surface.
Emergent Societal Effects of Crimino-Social Forces in an Animat Agent Model
NASA Astrophysics Data System (ADS)
Scogings, Chris J.; Hawick, Ken A.
Societal behaviour can be studied at a causal level by perturbing a stable multi-agent model with new microscopic behaviours and observing the statistical response over an ensemble of simulated model systems. We report on the effects of introducing criminal and law-enforcing behaviours into a large scale animat agent model and describe the complex spatial agent patterns and population changes that result. Our well-established predator-prey substrate model provides a background framework against which these new microscopic behaviours can be trialled and investigated. We describe some quantitative results and some surprising conclusions concerning the overall societal health when individually anti-social behaviour is introduced.
A microscopic model of the Stokes-Einstein relation in arbitrary dimension.
Charbonneau, Benoit; Charbonneau, Patrick; Szamel, Grzegorz
2018-06-14
The Stokes-Einstein relation (SER) is one of the most robust and widely employed results from the theory of liquids. Yet sizable deviations can be observed for self-solvation, which cannot be explained by the standard hydrodynamic derivation. Here, we revisit the work of Masters and Madden [J. Chem. Phys. 74, 2450-2459 (1981)], who first solved a statistical mechanics model of the SER using the projection operator formalism. By generalizing their analysis to all spatial dimensions and to partially structured solvents, we identify a potential microscopic origin of some of these deviations. We also reproduce the SER-like result from the exact dynamics of infinite-dimensional fluids.
Deciphering Dynamical Patterns of Growth Processes
ERIC Educational Resources Information Center
Kolakowska, A.
2009-01-01
Large systems of statistical physics often display properties that are independent of particulars that characterize their microscopic components. Universal dynamical patterns are manifested by the presence of scaling laws, which provides a common insight into governing physics of processes as vastly diverse as, e.g., growth of geological…
NASA Astrophysics Data System (ADS)
Hayata, Tomoya; Hidaka, Yoshimasa; Noumi, Toshifumi; Hongo, Masaru
2015-09-01
We derive relativistic hydrodynamics from quantum field theories by assuming that the density operator is given by a local Gibbs distribution at initial time. We decompose the energy-momentum tensor and particle current into nondissipative and dissipative parts, and analyze their time evolution in detail. Performing the path-integral formulation of the local Gibbs distribution, we microscopically derive the generating functional for the nondissipative hydrodynamics. We also construct a basis to study dissipative corrections. In particular, we derive the first-order dissipative hydrodynamic equations without a choice of frame such as the Landau-Lifshitz or Eckart frame.
Ab initio calculation of one-nucleon halo states
NASA Astrophysics Data System (ADS)
Rodkin, D. M.; Tchuvil'sky, Yu M.
2018-02-01
We develop an approach to microscopic and ab initio description of clustered systems, states with halo nucleon and one-nucleon resonances. For these purposes a basis combining ordinary shell-model components and cluster-channel terms is built up. The transformation of clustered wave functions to the uniform Slater-determinant type is performed using the concept of cluster coefficients. The resulting basis of orthonormalized wave functions is used for calculating the eigenvalues and the eigenvectors of Hamiltonians built in the framework of ab initio approaches. Calculations of resonance and halo states of 5He, 9Be and 9B nuclei demonstrate that the approach is workable and labor-saving.
Ximenes, Marcos; Triches, Thaisa C; Beltrame, Ana Paula C A; Hilgert, Leandro A; Cardoso, Mariane
2013-01-01
This study evaluated the efficacy of 2 final irrigation solutions for removal of the smear layer (SL) from root canals of primary teeth, using scanning electron microscope (SEM) analysis. Thirty primary molars were selected and a single operator instrumented the canals. The initial irrigation was done with a 1% sodium hypochlorite (NaOCl) solution. After the preparation, the roots were randomly divided into 3 groups for final irrigation: Group 1, 1% NaOCl (n = 10); Group 2, 17% EDTA + 1% NaOCl (n = 10); and Group 3, 17% EDTA + saline solution (n = 10). The roots were prepared for SEM analysis (magnification 1000X). The photomicrographs were independently analyzed by 2 investigators with SEM experience, attributing scores to each root third in terms of SL removal. Kruskal-Wallis and Mann-Whitney tests revealed that there was no statistical difference between the groups (P = 0.489). However, a statistical difference was found (P < 0.05) in a comparison of root thirds, with the apical third having the worst results. Comparing the thirds within the same group, all canals showed statistical differences between the cervical and apical thirds (P < 0.05). The authors determined that no substance or association of substances were able to completely remove SL.
Low-energy nuclear spectroscopy in a microscopic multiphonon approach
NASA Astrophysics Data System (ADS)
Lo Iudice, N.; Ponomarev, V. Yu; Stoyanov, Ch; Sushkov, A. V.; Voronov, V. V.
2012-04-01
The low-lying spectra of heavy nuclei are investigated within the quasiparticle-phonon model. This microscopic approach goes beyond the quasiparticle random-phase approximation by treating a Hamiltonian of separable form in a microscopic multiphonon basis. It is therefore able to describe the anharmonic features of collective modes as well as the multiphonon states, whose experimental evidence is continuously growing. The method can be put in close correspondence with the proton-neutron interacting boson model. By associating the microscopic isoscalar and isovector quadrupole phonons with proton-neutron symmetric and mixed-symmetry quadrupole bosons, respectively, the microscopic states can be classified, just as in the algebraic model, according to their phonon content and their symmetry. In addition, these states disclose the nuclear properties which are to be ascribed to genuine shell effects, not included in the algebraic approach. Due to its flexibility, the method can be implemented numerically for systematic studies of spectroscopic properties throughout entire regions of vibrational nuclei. The spectra and multipole transition strengths so computed are in overall good agreement with the experimental data. By exploiting the correspondence of the method with the interacting boson model, it is possible to embed the microscopic states into this algebraic frame and, therefore, face the study of nuclei far from shell closures, not directly accessible to merely microscopic approaches. Here, it is shown how this task is accomplished through systematic investigations of magnetic dipole and, especially, electric dipole modes along paths moving from the vibrational to the transitional regions. The method is very well suited to the study of well-deformed nuclei. It provides reliable descriptions of low-lying magnetic as well as electric multipole modes of nuclei throughout the rare-earth and actinide regions. Attention is focused here on the low-lying 0+ states produced in large abundance in recent experiments. The analysis shows that the quasiparticle-phonon model accounts for the occurrence of so many 0+ levels and discloses their nature.
ERIC Educational Resources Information Center
Bonney, Catherine
This monograph presents an annotated index of auto-tutorial materials in science education available to middle and secondary schools in the Newark School District. Materials relevant to the study of the biological sciences enable the students to become more familiar with Biology Statistics, Cytology, Marine Field Trips, Use of Microscopes,…
Statistical and Microscopic Approach to Gas Phase Chemical Kinetics.
ERIC Educational Resources Information Center
Perez, J. M.; Quereda, R.
1983-01-01
Describes advanced undergraduate laboratory exercise examining the dependence of the rate constants and the instantaneous concentrations with the nature and energy content in a gas-phase complex reaction. Computer program (with instructions and computation flow charts) used with the exercise is available from the author. (Author/JN)
Teaching the Meaning of Statistical Techniques with Microcomputer Simulation.
ERIC Educational Resources Information Center
Lee, Motoko Y.; And Others
Students in an introductory statistics course are often preoccupied with learning the computational routines of specific summary statistics and thereby fail to develop an understanding of the meaning of those statistics or their conceptual basis. To help students develop a better understanding of the meaning of three frequently used statistics,…
49 CFR 1248.1 - Freight commodity statistics.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 9 2011-10-01 2011-10-01 false Freight commodity statistics. 1248.1 Section 1248... STATISTICS § 1248.1 Freight commodity statistics. All class I railroads, as described in § 1240.1 of this... statistics on the basis of the commodity codes named in § 1248.101. Carriers shall report quarterly on the...
49 CFR 1248.1 - Freight commodity statistics.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 9 2010-10-01 2010-10-01 false Freight commodity statistics. 1248.1 Section 1248... STATISTICS § 1248.1 Freight commodity statistics. All class I railroads, as described in § 1240.1 of this... statistics on the basis of the commodity codes named in § 1248.101. Carriers shall report quarterly on the...
Vision and the dimensions of nerve fibers.
Wade, Nicholas J
2005-12-01
Vision provided the obvious source of determining the dimensions of nerve fibers when suitable achromatic microscopes were directed at neural tissue in the 1830s. The earlier microscopes of Hooke and Leeuwenhoek were unable to resolve such small structures adequately. However, it was not Hooke's microscope that led to an estimate of the dimensions of nerve fibers, but his experiments on the limits of visual resolution; he determined that a separation of one minute of arc was the minimum that could normally be seen. Descartes had earlier speculated that the retina consisted of the ends of fibers of the optic nerve, and that their size defined the limits of what could be seen. Estimates of the diameters of nerve fibers were made on the basis of human visual acuity by Porterfield in 1738; he calculated the diameters of nerve fibers in the retina as one 7,200th part of an inch (0.0035 mm), based on the resolution of one minute as the minimum visible. In the same year, Jurin questioned the reliability of such estimates because of variations in visual resolution with different stimuli.
Optically sectioned in vivo imaging with speckle illumination HiLo microscopy
Lim, Daryl; Ford, Tim N.; Chu, Kengyeh K.; Mertz, Jerome
2011-01-01
We present a simple wide-field imaging technique, called HiLo microscopy, that is capable of producing optically sectioned images in real time, comparable in quality to confocal laser scanning microscopy. The technique is based on the fusion of two raw images, one acquired with speckle illumination and another with standard uniform illumination. The fusion can be numerically adjusted, using a single parameter, to produce optically sectioned images of varying thicknesses with the same raw data. Direct comparison between our HiLo microscope and a commercial confocal laser scanning microscope is made on the basis of sectioning strength and imaging performance. Specifically, we show that HiLo and confocal 3-D imaging of a GFP-labeled mouse brain hippocampus are comparable in quality. Moreover, HiLo microscopy is capable of faster, near video rate imaging over larger fields of view than attainable with standard confocal microscopes. The goal of this paper is to advertise the simplicity, robustness, and versatility of HiLo microscopy, which we highlight with in vivo imaging of common model organisms including planaria, C. elegans, and zebrafish. PMID:21280920
Optically sectioned in vivo imaging with speckle illumination HiLo microscopy.
Lim, Daryl; Ford, Tim N; Chu, Kengyeh K; Mertz, Jerome
2011-01-01
We present a simple wide-field imaging technique, called HiLo microscopy, that is capable of producing optically sectioned images in real time, comparable in quality to confocal laser scanning microscopy. The technique is based on the fusion of two raw images, one acquired with speckle illumination and another with standard uniform illumination. The fusion can be numerically adjusted, using a single parameter, to produce optically sectioned images of varying thicknesses with the same raw data. Direct comparison between our HiLo microscope and a commercial confocal laser scanning microscope is made on the basis of sectioning strength and imaging performance. Specifically, we show that HiLo and confocal 3-D imaging of a GFP-labeled mouse brain hippocampus are comparable in quality. Moreover, HiLo microscopy is capable of faster, near video rate imaging over larger fields of view than attainable with standard confocal microscopes. The goal of this paper is to advertise the simplicity, robustness, and versatility of HiLo microscopy, which we highlight with in vivo imaging of common model organisms including planaria, C. elegans, and zebrafish.
Optically sectioned in vivo imaging with speckle illumination HiLo microscopy
NASA Astrophysics Data System (ADS)
Lim, Daryl; Ford, Tim N.; Chu, Kengyeh K.; Mertz, Jerome
2011-01-01
We present a simple wide-field imaging technique, called HiLo microscopy, that is capable of producing optically sectioned images in real time, comparable in quality to confocal laser scanning microscopy. The technique is based on the fusion of two raw images, one acquired with speckle illumination and another with standard uniform illumination. The fusion can be numerically adjusted, using a single parameter, to produce optically sectioned images of varying thicknesses with the same raw data. Direct comparison between our HiLo microscope and a commercial confocal laser scanning microscope is made on the basis of sectioning strength and imaging performance. Specifically, we show that HiLo and confocal 3-D imaging of a GFP-labeled mouse brain hippocampus are comparable in quality. Moreover, HiLo microscopy is capable of faster, near video rate imaging over larger fields of view than attainable with standard confocal microscopes. The goal of this paper is to advertise the simplicity, robustness, and versatility of HiLo microscopy, which we highlight with in vivo imaging of common model organisms including planaria, C. elegans, and zebrafish.
NASA Astrophysics Data System (ADS)
Mao, Gaojun; Cao, Rui; Guo, Xili; Jiang, Yong; Chen, Jianhong
2017-12-01
The kinetic processes of nucleation and growth of bainite laths in reheated weld metals are observed and analyzed by a combination of a laser confocal scanning microscope and an electron backscattering diffraction with a field emission scanning electron microscope. The results indicate that the surface relief induced by phase transformation is able to reveal the real microstructural morphologies of bainite laths when viewed from various angles. Five nucleation modes and six types of growth behaviors of bainite laths are revealed. The bainite lath growth rates are measured to vary over a wide range, from 2 μm/s to higher than 2000 μm/s. The orientations of the bainite laths within a prior austenite grain are examined and denoted as different variants. On the basis of variant identification, the reason is analyzed for various growth rates which are demonstrated to be affected by (1) the density of the high-angle misorientation in it, (2) the included angle between habit planes of different variants, and (3) the direction of lath growth with respect to the free (polished) surface.
Micro-Macro Duality and Space-Time Emergence
NASA Astrophysics Data System (ADS)
Ojima, Izumi
2011-03-01
The microscopic origin of space-time geometry is explained on the basis of an emergence process associated with the condensation of infinite number of microscopic quanta responsible for symmetry breakdown, which implements the basic essence of "Quantum-Classical Correspondence" and of the forcing method in physical and mathematical contexts, respectively. From this viewpoint, the space-time dependence of physical quantities arises from the "logical extension" [8] to change "constant objects" into "variable objects" by tagging the order parameters associated with the condensation onto "constant objects"; the logical direction here from a value y to a domain variable x (to materialize the basic mechanism behind the Gel'fand isomorphism) is just opposite to that common in the usual definition of a function ƒ : x⟼ƒ(x) from its domain variable x to a value y = ƒ(x).
Shape selection of twist-nematic-elastomer ribbons
Sawa, Yoshiki; Ye, Fangfu; Urayama, Kenji; Takigawa, Toshikazu; Gimenez-Pinto, Vianney; Selinger, Robin L. B.; Selinger, Jonathan V.
2011-01-01
How microscopic chirality is reflected in macroscopic scale to form various chiral shapes, such as straight helicoids and spiral ribbons, and how the degree of macroscopic chirality can be controlled are a focus of studies on the shape formation of many biomaterials and supramolecular systems. This article investigates both experimentally and theoretically how the chiral arrangement of liquid crystal mesogens in twist-nematic-elastomer films induces the formation of helicoids and spiral ribbons because of the coupling between the liquid crystalline order and the elasticity. It is also shown that the pitch of the formed ribbons can be tuned by temperature variation. The results of this study will facilitate the understanding of physics for the shape formation of chiral materials and the designing of new structures on basis of microscopic chirality. PMID:21464276
From the crust to the core of neutron stars on a microscopic basis
NASA Astrophysics Data System (ADS)
Baldo, M.; Burgio, G. F.; Centelles, M.; Sharma, B. K.; Viñas, X.
2014-09-01
Within a microscopic approach the structure of Neutron Stars is usually studied by modelling the homogeneous nuclear matter of the core by a suitable Equation of State, based on a many-body theory, and the crust by a functional based on a more phenomenological approach. We present the first calculation of Neutron Star overall structure by adopting for the core an Equation of State derived from the Brueckner-Hartree-Fock theory and for the crust, including the pasta phase, an Energy Density Functional based on the same Equation of State, and which is able to describe accurately the binding energy of nuclei throughout the mass table. Comparison with other approaches is discussed. The relevance of the crust Equation of State for the Neutron Star radius is particularly emphasised.
Zheng, Shouguo; Zeng, Xinhua; Luo, Wei; Jradi, Safi; Plain, Jérôme; Li, Miao; Renaud-Goud, Philippe; Deturche, Régis; Wang, Zengfu; Kou, Jieting; Bachelot, Renaud; Royer, Pascal
2013-01-14
In numerous applications of optical scanning microscopy, a reference tapered fiber lens with high symmetry at sub-wavelength scale remains a challenge. Here, we demonstrate the ability to manufacture it with a wide range of geometry control, either for the length from several hundred nanometers to several hundred microns, or for the curvature radius from several tens of nanometers to several microns on the endface of a single mode fiber. On this basis, a scanning optical microscope has been developed, which allows for fast characterization of various sub-wavelength tapered fiber lenses. Focal position and depth of microlenses with different geometries have been determined to be ranged from several hundreds of nanometers to several microns. FDTD calculations are consistent with experimental results.
Brannigan, V M; Bier, V M; Berg, C
1992-09-01
Toxic torts are product liability cases dealing with alleged injuries due to chemical or biological hazards such as radiation, thalidomide, or Agent Orange. Toxic tort cases typically rely more heavily than other product liability cases on indirect or statistical proof of injury. There have been numerous theoretical analyses of statistical proof of injury in toxic tort cases. However, there have been only a handful of actual legal decisions regarding the use of such statistical evidence, and most of those decisions have been inconclusive. Recently, a major case from the Fifth Circuit, involving allegations that Benedectin (a morning sickness drug) caused birth defects, was decided entirely on the basis of statistical inference. This paper examines both the conceptual basis of that decision, and also the relationships among statistical inference, scientific evidence, and the rules of product liability in general.
Bertani, Francesca R.; Ferrari, Luisa; Mussi, Valentina; Botti, Elisabetta; Costanzo, Antonio; Selci, Stefano
2013-01-01
A broad range hyper-spectroscopic microscope fed by a supercontinuum laser source and equipped with an almost achromatic optical layout is illustrated with detailed explanations of the design, implementation and data. The real novelty of this instrument, a confocal spectroscopic microscope capable of recording high resolution reflectance data in the VIS-IR spectral range from about 500 nm to 2.5 μm wavelengths, is the possibility of acquiring spectral data at every physical point as defined by lateral coordinates, X and Y, as well as at a depth coordinate, Z, as obtained by the confocal optical sectioning advantage. With this apparatus we collect each single scanning point as a whole spectrum by combining two linear spectral detector arrays, one CCD for the visible range, and one InGaAs infrared array, simultaneously available at the sensor output channel of the home made instrument. This microscope has been developed for biomedical analysis of human skin and other similar applications. Results are shown illustrating the technical performances of the instrument and the capability in extracting information about the composition and the structure of different parts or compartments in biological samples as well as in solid statematter. A complete spectroscopic fingerprinting of samples at microscopic level is shown possible by using statistical analysis on raw data or analytical reflectance models based on Abelés matrix transfer methods. PMID:24233077
Cleft Lip and Palate Repair Using a Surgical Microscope.
Kato, Motoi; Watanabe, Azusa; Watanabe, Shoji; Utsunomiya, Hiroki; Yokoyama, Takayuki; Ogishima, Shinya
2017-11-01
Cleft lip and palate repair requires a deep and small surgical field and is usually performed by surgeons wearing surgical loupes. Surgeons with loupes can obtain a wider surgical view, although headlights are required for the deepest procedures. Surgical microscopes offer comfort and a clear and magnification-adjustable surgical site that can be shared with the whole team, including observers, and easily recorded to further the education of junior surgeons. Magnification adjustments are convenient for precise procedures such as muscle dissection of the soft palate. We performed a comparative investigation of 18 cleft operations that utilized either surgical loupes or microscopy. Paper-based questionnaires were completed by staff nurses to evaluate what went well and what could be improved in each procedure. The operating time, complication rate, and scores of the questionnaire responses were statistically analyzed. The operating time when microscopy was used was not significantly longer than when surgical loupes were utilized. The surgical field was clearly shared with surgical assistants, nurses, anesthesiologists, and students via microscope-linked monitors. Passing surgical equipment was easier when sharing the surgical view, and preoperative microscope preparation did not interfere with the duties of the staff nurses. Surgical microscopy was demonstrated to be useful during cleft operations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nyhan, Marguerite; Sobolevsky, Stanislav; Kang, Chaogui
Air pollution related to traffic emissions pose an especially significant problem in cities; this is due to its adverse impact on human health and well-being. Previous studies which have aimed to quantify emissions from the transportation sector have been limited by either simulated or coarsely resolved traffic volume data. Emissions inventories form the basis of urban pollution models, therefore in this study, Global Positioning System (GPS) trajectory data from a taxi fleet of over 15,000 vehicles were analyzed with the aim of predicting air pollution emissions for Singapore. This novel approach enabled the quantification of instantaneous drive cycle parameters inmore » high spatio-temporal resolution, which provided the basis for a microscopic emissions model. Carbon dioxide (CO2), nitrogen oxides (NOx), volatile organic compounds (VOCs) and particulate matter (PM) emissions were thus estimated. Highly localized areas of elevated emissions levels were identified, with a spatio-temporal precision not possible with previously used methods for estimating emissions. Relatively higher emissions areas were mainly concentrated in a few districts that were the Singapore Downtown Core area, to the north of the central urban region and to the east of it. Daily emissions quantified for the total motor vehicle population of Singapore were found to be comparable to another emissions dataset Results demonstrated that high resolution spatio-temporal vehicle traces detected using GPS in large taxi fleets could be used to infer highly localized areas of elevated acceleration and air pollution emissions in cities, and may become a complement to traditional emission estimates, especially in emerging cities and countries where reliable fine-grained urban air quality data is not easily available. This is the first study of its kind to investigate measured microscopic vehicle movement in tandem with microscopic emissions modeling for a substantial study domain.« less
Todorich, Bozho; Shieh, Christine; DeSouza, Philip J; Carrasco-Zevallos, Oscar M; Cunefare, David L; Stinnett, Sandra S; Izatt, Joseph A; Farsiu, Sina; Mruthyunjaya, Privthi; Kuo, Anthony N; Toth, Cynthia A
2016-07-01
The integration of swept-source optical coherence tomography (SS-OCT) into the operating microscope enables real-time, tissue-level three-dimensional (3D) imaging to aid in ophthalmic microsurgery. In this prospective randomized controlled study, we evaluated the impact of SS microscope-integrated OCT (MI-OCT) on ophthalmology residents' performance of ophthalmic microsurgical maneuvers. Fourteen ophthalmology residents from a single institution were stratified by year of training and randomized to perform four anterior segment surgical maneuvers on porcine eyes with (MI-OCT+) or without (MI-OCT-) direct intraoperative OCT guidance. Subsequently, both groups repeated the same maneuvers without MI-OCT feedback to test whether initial MI-OCT experience affected subsequent surgical performance. Finally, the MI-OCT- group was crossed over and allowed to repeat the same maneuvers with direct MI-OCT guidance. Each resident completed a survey at the completion of the study. With direct MI-OCT feedback, residents demonstrated enhanced performance in depth-based anterior segment maneuvers (corneal suture passes at 50% and 90% depth and corneal laceration repair) compared with the residents operating without MI-OCT. Microscope-integrated OCT+ residents continued to outperform the controls when both groups subsequently operated without MI-OCT. For clear corneal wound geometry, there was no statistically significant effect of MI-OCT as applied in this study. Overall, the resident surgeons rated their subjective experience of using MI-OCT very favorably. Microscope-integrated OCT feedback enhances performance of ophthalmology residents in select anterior segment surgical maneuvers. Microscope-integrated OCT represents a valuable tool in the surgical education of ophthalmology residents.
Relating triggering processes in lab experiments with earthquakes.
NASA Astrophysics Data System (ADS)
Baro Urbea, J.; Davidsen, J.; Kwiatek, G.; Charalampidou, E. M.; Goebel, T.; Stanchits, S. A.; Vives, E.; Dresen, G.
2016-12-01
Statistical relations such as Gutenberg-Richter's, Omori-Utsu's and the productivity of aftershocks were first observed in seismology, but are also common to other physical phenomena exhibiting avalanche dynamics such as solar flares, rock fracture, structural phase transitions and even stock market transactions. All these examples exhibit spatio-temporal correlations that can be explained as triggering processes: Instead of being activated as a response to external driving or fluctuations, some events are consequence of previous activity. Although different plausible explanations have been suggested in each system, the ubiquity of such statistical laws remains unknown. However, the case of rock fracture may exhibit a physical connection with seismology. It has been suggested that some features of seismology have a microscopic origin and are reproducible over a vast range of scales. This hypothesis has motivated mechanical experiments to generate artificial catalogues of earthquakes at a laboratory scale -so called labquakes- and under controlled conditions. Microscopic fractures in lab tests release elastic waves that are recorded as ultrasonic (kHz-MHz) acoustic emission (AE) events by means of piezoelectric transducers. Here, we analyse the statistics of labquakes recorded during the failure of small samples of natural rocks and artificial porous materials under different controlled compression regimes. Temporal and spatio-temporal correlations are identified in certain cases. Specifically, we distinguish between the background and triggered events, revealing some differences in the statistical properties. We fit the data to statistical models of seismicity. As a particular case, we explore the branching process approach simplified in the Epidemic Type Aftershock Sequence (ETAS) model. We evaluate the empirical spatio-temporal kernel of the model and investigate the physical origins of triggering. Our analysis of the focal mechanisms implies that the occurrence of the empirical laws extends well beyond purely frictional sliding events, in contrast to what is often assumed.
Attur, Kailash; Joy, Mathew T; Karim, Riyas; Anil Kumar, V J; Deepika, C; Ahmed, Haseena
2016-08-01
The aim of the present study was to evaluate the efficiency of different endodontic irrigants in the removal of smear layer through scanning electron microscopic image analysis. The present in vitro study was carried out on 45 single-rooted extracted human mandibular premolar teeth with single canal and complete root formation. Teeth were randomly assigned to three groups with 15 teeth in each group. Group I samples were irrigated with 17% ethylenediaminetetraacetic (EDTA) irrigation, Group II with 7% maleic acid irrigation, and Group III with 2% chlorhexidine irrigation. Scanning electron microscope evaluation was done for the assessment of smear layer removal in the coronal, middle, and apical thirds. Comparison of the smear layer removal between the three different groups was done by Kruskal-Wallis test, followed by Mann-Whitney U test for comparing individual groups. A P value less than 0.05 was considered to be statistically significant. Statistically significant difference was seen between the two test groups (17% EDTA vs. 7% maleic acid and 17% EDTA vs. 2% chlorhexidine) in smear layer removal at coronal, middle, and apical thirds of the root canal. The most efficient smear layer removal was seen in Group I with 17% EDTA irrigation compared with other groups (P < 0.05) and the least by 2% chlorhexidine. The present study shows that 17% EDTA efficiently removes the smear layer from root canal walls.
Chandra, Vinay; Gandi, Padma; Shivanna, Anil Kumar; Srinivas, Siva; Himgiri, S; Nischith, K G
2013-07-01
To evaluate the efficacy of NaviTip FX in removing the canal debris during root canal preparation using scanning electron microscopic study. Thirty single rooted teeth with completely formed apices were used in this study. Standard endodontic access cavity preparations were performed. Then the teeth were randomly divided into two groups: groups 1 and 2 of 15 teeth each group. For group 1, NaviTip FX (brush covered needle) was used to irrigate the canal with 5.25% sodium hypochlorite after each instrument use. For group 2, NaviTip (brushless needle) was used for irrigation following each instrument use. ProTaper rotary files were used for the canal preparation. The teeth were then cleaned and dried before splitting them into two halves. The half with most visible part of the apex was used for scanning electron microscopic evaluation. The results were statistically analyzed using the Mann-Whitney U-test at significance level p < 0.005. The mean values for coronal and middle third of group 1 showed lower debris scores than group 2 and this difference was statistically significant at a p-value 0.01 and 0.05 respectively, but no significance difference between them at the apical third at a p-value of < 0.05. The NaviTip FX (brush covered needle) showed effectively better canal wall debris removal than the NaviTip (brushless needle).
Kuruvilla, Aby; Jaganath, Bharath Makonahalli; Krishnegowda, Sahadev Chickmagaravalli; Ramachandra, Praveen Kumar Makonahalli; Johns, Dexton Antony; Abraham, Aby
2015-01-01
Aim: The purpose of this study is to evaluate and compare the efficacy of 17% EDTA, 18% etidronic acid, and 7% maleic acid in smear layer removal using scanning electron microscopic image analysis. Materials and Methods: Thirty, freshly extracted mandibular premolars were used. The teeth were decoronated to obtain working length of 17mm and instrumentation up to 40 size (K file) with 2.5% NaOCl irrigation between each file. The samples were divided into Groups I (17% ethylenediaminetetraacetic acid (EDTA)), II (18% etidronic acid), and III (7% maleic acid) containing 10 samples each. Longitudinal sectioning of the samples was done. Then the samples were observed under scanning electron microscope (SEM) at apical, middle, and coronal levels. The images were scored according to the criteria: 1. No smear layer, 2. moderate smear layer, and 3 heavy smear layer. Statistical Analysis: Data was analyzed statistically using Kruskal–Wallis analysis of variance (ANOVA) followed by Mann-Whitney U test for individual comparisons. The level for significance was set at 0.05. Results: The present study showed that all the three experimental irrigants removed the smear layer from different tooth levels (coronal, middle, and apical). Final irrigation with 7% maleic acid is more efficient than 17% EDTA and 18% etidronic acid in the removal of smear layer from the apical third of root canal. PMID:26069414
Vallenet, David; Calteau, Alexandra; Cruveiller, Stéphane; Gachet, Mathieu; Lajus, Aurélie; Josso, Adrien; Mercier, Jonathan; Renaux, Alexandre; Rollin, Johan; Rouy, Zoe; Roche, David; Scarpelli, Claude; Médigue, Claudine
2017-01-01
The annotation of genomes from NGS platforms needs to be automated and fully integrated. However, maintaining consistency and accuracy in genome annotation is a challenging problem because millions of protein database entries are not assigned reliable functions. This shortcoming limits the knowledge that can be extracted from genomes and metabolic models. Launched in 2005, the MicroScope platform (http://www.genoscope.cns.fr/agc/microscope) is an integrative resource that supports systematic and efficient revision of microbial genome annotation, data management and comparative analysis. Effective comparative analysis requires a consistent and complete view of biological data, and therefore, support for reviewing the quality of functional annotation is critical. MicroScope allows users to analyze microbial (meta)genomes together with post-genomic experiment results if any (i.e. transcriptomics, re-sequencing of evolved strains, mutant collections, phenotype data). It combines tools and graphical interfaces to analyze genomes and to perform the expert curation of gene functions in a comparative context. Starting with a short overview of the MicroScope system, this paper focuses on some major improvements of the Web interface, mainly for the submission of genomic data and on original tools and pipelines that have been developed and integrated in the platform: computation of pan-genomes and prediction of biosynthetic gene clusters. Today the resource contains data for more than 6000 microbial genomes, and among the 2700 personal accounts (65% of which are now from foreign countries), 14% of the users are performing expert annotations, on at least a weekly basis, contributing to improve the quality of microbial genome annotations. PMID:27899624
Partitioning a macroscopic system into independent subsystems
NASA Astrophysics Data System (ADS)
Delle Site, Luigi; Ciccotti, Giovanni; Hartmann, Carsten
2017-08-01
We discuss the problem of partitioning a macroscopic system into a collection of independent subsystems. The partitioning of a system into replica-like subsystems is nowadays a subject of major interest in several fields of theoretical and applied physics. The thermodynamic approach currently favoured by practitioners is based on a phenomenological definition of an interface energy associated with the partition, due to a lack of easily computable expressions for a microscopic (i.e. particle-based) interface energy. In this article, we outline a general approach to derive sharp and computable bounds for the interface free energy in terms of microscopic statistical quantities. We discuss potential applications in nanothermodynamics and outline possible future directions.
da Silva, Juliana Melo; Silveira, Amanda; Santos, Elizandra; Prado, Laiìs; Pessoa, Oscar F
2011-12-01
Rooted molars were subjected to standardized canal instrumentation to a master apical file (MAF). The samples were dressed with Ca(OH)(2), and after 7 days, teeth were reopened and Ca(OH)(2) medication was removed by 1 of 4 different experimental procedures: 2.5% sodium hypochlorite (NaOCl) (n = 10); 17% EDTA-T (n = 10); 10% citric acid (n = 10); or 37% phosphoric acid (n = 10). This was followed by reinstrumentation with MAF plus 15 mL saline solution. The roots were prepared for scanning electron microscopic analysis of the cervical, middle, and apical thirds. Statistical analysis was performed with the Kruskal-Wallis test. EDTA-T and phosphoric acid gave the best results in the apical third, with significant statistical differences compared with other groups. NaOCl gave the worst results. Irrigation with 17% EDTA-T and 37% phosphoric acid is more effective than sodium hypochlorite and citric acid in the removal of calcium hydroxide from the apical third. Copyright © 2011 Mosby, Inc. All rights reserved.
Ma, Rui-hong; Luo, Xiao-bing; Zheng, Pei-ming; Luo, Zhen-liang; Yang, Liu-qing
2013-01-01
To improve the rate of detection of Clonorchis sinensis infection, we compared different specimens from patients with cholecystolithiasis. Feces, gallbladder bile, and gallbladder stones collected from 179 consecutive patients with cholecystolithiasis underwent microscopic examination, and according to the results, 30 egg-positive and 30 egg-negative fecal, gallbladder bile, and gallbladder stone specimens, respectively, underwent real-time fluorescent PCR. The detection rates of eggs in feces, bile, and gallbladder stones were 30.7%, 44.7%, and 69.8%, respectively, and the differences were statistically significant (P < 0.01). The PCR results confirmed that the eggs in the specimens were C. sinensis eggs. Eggs in the feces were “fresh” and in the gallbladder stones were “old.” Microscopic examination of gallbladder stones may improve the detection rates of C. sinensis infection, which is important for developing individualized treatments to prevent the recurrence of gallbladder stones and to prevent the occurrence of severe liver damage and cholangiocarcinoma. PMID:23698535
Samim, Masood; Sandkuijl, Daaf; Tretyakov, Ian; Cisek, Richard; Barzda, Virginijus
2013-09-09
Differential polarization nonlinear optical microscopy has the potential to become an indispensable tool for structural investigations of ordered biological assemblies and microcrystalline aggregates. Their microscopic organization can be probed through fast and sensitive measurements of nonlinear optical signal anisotropy, which can be achieved with microscopic spatial resolution by using time-multiplexed pulsed laser beams with perpendicular polarization orientations and photon-counting detection electronics for signal demultiplexing. In addition, deformable membrane mirrors can be used to correct for optical aberrations in the microscope and simultaneously optimize beam overlap using a genetic algorithm. The beam overlap can be achieved with better accuracy than diffraction limited point-spread function, which allows to perform polarization-resolved measurements on the pixel-by-pixel basis. We describe a newly developed differential polarization microscope and present applications of the differential microscopy technique for structural studies of collagen and cellulose. Both, second harmonic generation, and fluorescence-detected nonlinear absorption anisotropy are used in these investigations. It is shown that the orientation and structural properties of the fibers in biological tissue can be deduced and that the orientation of fluorescent molecules (Congo Red), which label the fibers, can be determined. Differential polarization microscopy sidesteps common issues such as photobleaching and sample movement. Due to tens of megahertz alternating polarization of excitation pulses fast data acquisition can be conveniently applied to measure changes in the nonlinear signal anisotropy in dynamically changing in vivo structures.
Mechanisms of Forming Intergranular Microcracks and Microscopic Surface Discontinuities in Welds
1992-06-01
SCC) is defined as slow stable crack extension occurring under static loading in sea water at stress intensity values below KIc (critical stress...preheating on the cold cracking resistance is reflected mainly in a reduction of the degree of localization of microplastic strains, their...deconcentration and an increase of the basis over which microplastic yielding takes place. This increases the amount of energy used for local plastic deformation
Do Uric Acid Deposits in Zooxanthellae Function as Eye-Spots?
Yamashita, Hiroshi; Kobiyama, Atsushi; Koike, Kazuhiko
2009-01-01
The symbiosis between zooxanthellae (dinoflagellate genus Symbiodinium) and corals is a fundamental basis of tropical marine ecosystems. However the physiological interactions of the hosts and symbionts are poorly understood. Recently, intracellular crystalline deposits in Symbiodinium were revealed to be uric acid functioning for nutrient storage. This is the first exploration of these enigmatic crystalline materials that had previously been misidentified as oxalic acid, providing new insights into the nutritional strategies of Symbiodinium in oligotrophic tropical waters. However, we believe these deposits also function as eye-spots on the basis of light and electron microscopic observations of motile cells of cultured Symbiodinium. The cells possessed crystalline deposit clusters in rows with each row 100–150 nm thick corresponding to 1/4 the wavelength of light and making them suitable for maximum wave interference and reflection of light. Crystalline clusters in cells observed with a light microscope strongly refracted and polarized light, and reflected or absorbed short wavelength light. The facts that purines, including uric acid, have been identified as the main constituents of light reflectors in many organisms, and that the photoreceptor protein, opsin, was detected in our Symbiodinium strain, support the idea that uric acid deposits in Symbiodinium motile cells may function as a component of an eye-spot. PMID:19609449
Do uric acid deposits in zooxanthellae function as eye-spots?
Yamashita, Hiroshi; Kobiyama, Atsushi; Koike, Kazuhiko
2009-07-17
The symbiosis between zooxanthellae (dinoflagellate genus Symbiodinium) and corals is a fundamental basis of tropical marine ecosystems. However the physiological interactions of the hosts and symbionts are poorly understood. Recently, intracellular crystalline deposits in Symbiodinium were revealed to be uric acid functioning for nutrient storage. This is the first exploration of these enigmatic crystalline materials that had previously been misidentified as oxalic acid, providing new insights into the nutritional strategies of Symbiodinium in oligotrophic tropical waters. However, we believe these deposits also function as eye-spots on the basis of light and electron microscopic observations of motile cells of cultured Symbiodinium. The cells possessed crystalline deposit clusters in rows with each row 100-150 nm thick corresponding to 1/4 the wavelength of light and making them suitable for maximum wave interference and reflection of light. Crystalline clusters in cells observed with a light microscope strongly refracted and polarized light, and reflected or absorbed short wavelength light. The facts that purines, including uric acid, have been identified as the main constituents of light reflectors in many organisms, and that the photoreceptor protein, opsin, was detected in our Symbiodinium strain, support the idea that uric acid deposits in Symbiodinium motile cells may function as a component of an eye-spot.
Texture as a basis for acoustic classification of substrate in the nearshore region
NASA Astrophysics Data System (ADS)
Dennison, A.; Wattrus, N. J.
2016-12-01
Segmentation and classification of substrate type from two locations in Lake Superior, are predicted using multivariate statistical processing of textural measures derived from shallow-water, high-resolution multibeam bathymetric data. During a multibeam sonar survey, both bathymetric and backscatter data are collected. It is well documented that the statistical characteristic of a sonar backscatter mosaic is dependent on substrate type. While classifying the bottom-type on the basis on backscatter alone can accurately predict and map bottom-type, it lacks the ability to resolve and capture fine textural details, an important factor in many habitat mapping studies. Statistical processing can capture the pertinent details about the bottom-type that are rich in textural information. Further multivariate statistical processing can then isolate characteristic features, and provide the basis for an accurate classification scheme. Preliminary results from an analysis of bathymetric data and ground-truth samples collected from the Amnicon River, Superior, Wisconsin, and the Lester River, Duluth, Minnesota, demonstrate the ability to process and develop a novel classification scheme of the bottom type in two geomorphologically distinct areas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uvarov, Vladimir, E-mail: vladimiru@savion.huji.ac.il; Popov, Inna
2013-11-15
Crystallite size values were determined by X-ray diffraction methods for 183 powder samples. The tested size range was from a few to about several hundred nanometers. Crystallite size was calculated with direct use of the Scherrer equation, the Williamson–Hall method and the Rietveld procedure via the application of a series of commercial and free software. The results were statistically treated to estimate the significance of the difference in size resulting from these methods. We also estimated effect of acquisition conditions (Bragg–Brentano, parallel-beam geometry, step size, counting time) and data processing on the calculated crystallite size values. On the basis ofmore » the obtained results it is possible to conclude that direct use of the Scherrer equation, Williamson–Hall method and the Rietveld refinement employed by a series of software (EVA, PCW and TOPAS respectively) yield very close results for crystallite sizes less than 60 nm for parallel beam geometry and less than 100 nm for Bragg–Brentano geometry. However, we found that despite the fact that the differences between the crystallite sizes, which were calculated by various methods, are small by absolute values, they are statistically significant in some cases. The values of crystallite size determined from XRD were compared with those obtained by imaging in a transmission (TEM) and scanning electron microscopes (SEM). It was found that there was a good correlation in size only for crystallites smaller than 50 – 60 nm. Highlights: • The crystallite sizes for 183 nanopowders were calculated using different XRD methods • Obtained results were subject to statistical treatment • Results obtained with Bragg-Brentano and parallel beam geometries were compared • Influence of conditions of XRD pattern acquisition on results was estimated • Calculated by XRD crystallite sizes were compared with same obtained by TEM and SEM.« less
Loxley, P N
2017-10-01
The two-dimensional Gabor function is adapted to natural image statistics, leading to a tractable probabilistic generative model that can be used to model simple cell receptive field profiles, or generate basis functions for sparse coding applications. Learning is found to be most pronounced in three Gabor function parameters representing the size and spatial frequency of the two-dimensional Gabor function and characterized by a nonuniform probability distribution with heavy tails. All three parameters are found to be strongly correlated, resulting in a basis of multiscale Gabor functions with similar aspect ratios and size-dependent spatial frequencies. A key finding is that the distribution of receptive-field sizes is scale invariant over a wide range of values, so there is no characteristic receptive field size selected by natural image statistics. The Gabor function aspect ratio is found to be approximately conserved by the learning rules and is therefore not well determined by natural image statistics. This allows for three distinct solutions: a basis of Gabor functions with sharp orientation resolution at the expense of spatial-frequency resolution, a basis of Gabor functions with sharp spatial-frequency resolution at the expense of orientation resolution, or a basis with unit aspect ratio. Arbitrary mixtures of all three cases are also possible. Two parameters controlling the shape of the marginal distributions in a probabilistic generative model fully account for all three solutions. The best-performing probabilistic generative model for sparse coding applications is found to be a gaussian copula with Pareto marginal probability density functions.
Ambicka, Aleksandra; Luczynska, Elzbieta; Adamczyk, Agnieszka; Harazin-Lechowska, Agnieszka; Sas-Korczynska, Beata; Niemiec, Joanna
Contrast-enhanced spectral mammography (CESM) is one of the new diagnostic modalities implemented in clinical practice. In the case of these techniques, there are two major issues to be addressed: (1) their diagnostic usefulness, and (2) the relation between parameters assessed using these techniques and well-known diagnostic/prognostic/predictive markers (histological, clinical, and molecular). Therefore, we studied the relationship between the tumour margin assessed on CESM and (1) tumour borders defined on the basis of macroscopic and microscopic examination, (2) pT, (3) pN, and (4) tumour grade in a group of 82 breast cancer patients. Based on CESM, the tumour border was defined as sharp, indistinct or spiculated, whereas in the case of lesions showing weak or medium enhancement on CESM the borders were classified as unspecified. We found a statistically significant relationship between tumour margin on CESM and (1) macroscopic border (a spiculated margin on CESM was found only in carcinomas with an invasive border on histological examination; p = 0.004), (2) pT (p = 0.016), and (3) pN (nodal involvement was observed most frequently in carcinomas with a spiculated or indistinct margin on CESM; p = 0.045). Moreover, in cases with an undefined margin on CESM (cases showing weak or medium enhancement on CESM), both invasive and pushing borders were found on histological examination. The results of our preliminary study suggest that it is possible to assess macroscopic borders of examined lesions on the basis of CESM imaging. This might be useful in planning the extent of surgical excision. On the other hand, the assessment of the tumour margin on CESM might not be precise in cases showing weak enhancement.
Pulmonary vascular sclerosis in an albino rat with leukemia.
Pace, V; Mahrous, A T; Perentes, E
2000-08-01
The animal investigated was a two years old male control Sprague-Dawley rat which died spontaneously during a carcinogenicity study. Post-mortem examination disclosed hepatic and splenic enlargement. At microscopical examination, massive leucaemic infiltration was observed in many tissues/organs, including bone marrow, spleen, liver and renal blood vessels. A very unusual finding was observed in the lung, consisting of scattered micronodules which replaced most of the lung parenchyma. They contained collagen, displaying a somewhat circular distribution at the periphery of the lesions, fibrin, leukemic cells and fibroblasts. Immunostaining for desmin revealed the presence of smooth muscle fibers within the nodules, while staining for elastic fibers showed clearly that the internal and external elastic membranes were identifiable within the nodules. The diagnosis of pulmonary vascular sclerosis was made on the basis of microscopical and immunohistochemical findings.
De Vos, R; De Wolf-Peeters, C; Facchetti, F; Desmet, V
1990-01-01
Plasmacytoid monocytes, the so-called plasmacytoid T cells, were originally described in rare cases of lymphadenitis. Recent immunohistochemical studies have demonstrated their monocytic origin. Plasmacytoid monocytes have in common with epithelioid cells and multinucleated giant cells the expression of several antigens; they also occur in close topographic association with epithelioid and multinucleated giant cells in epithelioid cell granulomas. On the basis of these data it has been suggested that plasmacytoid monocytes may transform into epithelioid cells. The present ultrastructural and immunoelectron microscopic study of epithelioid cell granulomas provides further arguments in favor of this hypothesis. Moreover, the existence of a transitional cell type with characteristics of plasmacytoid monocytes and epithelioid cells is documented. Subplasmalemmal linear densities present on focal areas of the plasma membrane of the main cell components of granulomas are also discussed.
Unraveling Mixed Hydrate Formation: Microscopic Insights into Early Stage Behavior.
Hall, Kyle Wm; Zhang, Zhengcai; Kusalik, Peter G
2016-12-29
The molecular-level details of mixed hydrate nucleation remain unclear despite the broad implications of this process for a variety of scientific domains. Through analysis of mixed hydrate nucleation in a prototypical CH 4 /H 2 S/H 2 O system, we demonstrate that high-level kinetic similarities between mixed hydrate systems and corresponding pure hydrate systems are not a reliable basis for estimating the composition of early stage mixed hydrate nuclei. Moreover, we show that solution compositions prior to and during nucleation are not necessarily effective proxies for the composition of early stage mixed hydrate nuclei. Rather, microscopic details, (e.g., guest-host interactions and previously neglected cage types) apparently play key roles in determining early stage behavior of mixed hydrates. This work thus provides key foundational concepts and insights for understanding mixed hydrate nucleation.
Open quantum system approach to the modeling of spin recombination reactions.
Tiersch, M; Steiner, U E; Popescu, S; Briegel, H J
2012-04-26
In theories of spin-dependent radical pair reactions, the time evolution of the radical pair, including the effect of the chemical kinetics, is described by a master equation in the Liouville formalism. For the description of the chemical kinetics, a number of possible reaction operators have been formulated in the literature. In this work, we present a framework that allows for a unified description of the various proposed mechanisms and the forms of reaction operators for the spin-selective recombination processes. On the basis of the concept that master equations can be derived from a microscopic description of the spin system interacting with external degrees of freedom, it is possible to gain insight into the underlying microscopic processes and develop a systematic approach toward determining the specific form of the reaction operator in concrete scenarios.
Adaptive compensation of aberrations in ultrafast 3D microscopy using a deformable mirror
NASA Astrophysics Data System (ADS)
Sherman, Leah R.; Albert, O.; Schmidt, Christoph F.; Vdovin, Gleb V.; Mourou, Gerard A.; Norris, Theodore B.
2000-05-01
3D imaging using a multiphoton scanning confocal microscope is ultimately limited by aberrations of the system. We describe a system to adaptively compensate the aberrations with a deformable mirror. We have increased the transverse scanning range of the microscope by three with compensation of off-axis aberrations.We have also significantly increased the longitudinal scanning depth with compensation of spherical aberrations from the penetration into the sample. Our correction is based on a genetic algorithm that uses second harmonic or two-photon fluorescence signal excited by femtosecond pulses from the sample as the enhancement parameter. This allows us to globally optimize the wavefront without a wavefront measurement. To improve the speed of the optimization we use Zernike polynomials as the basis for correction. Corrections can be stored in a database for look-up with future samples.
Chahal, Gurparkash Singh; Chhina, Kamalpreet; Chhabra, Vipin; Bhatnagar, Rakhi; Chahal, Amna
2014-01-01
Background: A surface smear layer consisting of organic and inorganic material is formed on the root surface following mechanical instrumentation and may inhibit the formation of new connective tissue attachment to the root surface. Modification of the tooth surface by root conditioning has resulted in improved connective tissue attachment and has advanced the goal of reconstructive periodontal treatment. Aim: The aim of this study was to compare the effects of citric acid, tetracycline, and doxycycline on the instrumented periodontally involved root surfaces in vitro using a scanning electron microscope. Settings and Design: A total of 45 dentin samples obtained from 15 extracted, scaled, and root planed teeth were divided into three groups. Materials and Methods: The root conditioning agents were applied with cotton pellets using the Passive burnishing technique for 5 minutes. The samples were then examined by the scanning electron microscope. Statistical Analysis Used: The statistical analysis was carried out using Statistical Package for Social Sciences (SPSS Inc., Chicago, IL, version 15.0 for Windows). For all quantitative variables means and standard deviations were calculated and compared. For more than two groups ANOVA was applied. For multiple comparisons post hoc tests with Bonferroni correction was used. Results: Upon statistical analysis the root conditioning agents used in this study were found to be effective in removing the smear layer, uncovering and widening the dentin tubules and unmasking the dentin collagen matrix. Conclusion: Tetracycline HCl was found to be the best root conditioner among the three agents used. PMID:24744541
NASA Astrophysics Data System (ADS)
Marchesan, Melissa A.; Geurisoli, Danilo M. Z.; Brugnera, Aldo, Jr.; Barbin, Eduardo L.; Pecora, Jesus D.
2002-06-01
The present study examined root canal cleaning, using the optic microscope, after rotary instrumentation with ProFile.04 with or without laser application with different output energies. Cleaning and shaping can be accomplished manually, with ultra-sonic and sub-sonic devices, with rotary instruments and recently, increasing development in laser radiation has shown promising results for disinfection and smear layer removal. In this study, 30 palatal maxillary molar roots were examined using an optic microscope after rotary instrumentation with ProFile .04 with or without Er:YAG laser application (KaVo KeyLaser II, Germany) with different output energies (2940 nm, 15 Hz, 300 pulses, 500 milli-sec duration, 42 J, 140 mJ showed on the display- input, 61 mJ at fiberoptic tip-output and 140 mJ showed on the display-input and 51 mJ at fiberoptic tip-output). Statistical analysis showed no statistical differences between the tested treatments (ANOVA, p>0.05). ANOVA also showed a statistically significant difference (p<0.01) between the root canal thirds, indicating that the middle third had less debris than the apical third. We conclude that: 1) none of the tested treatments led to totally cleaned root canals; 2) all treatments removed debris similarly, 3) the middle third had less debris than the apical third; 4) variation in output energy did not increase cleaning.
14 CFR 234.6 - Baggage-handling statistics.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Baggage-handling statistics. 234.6 Section 234.6 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION... statistics. Each reporting carrier shall report monthly to the Department on a domestic system basis...
Code of Federal Regulations, 2010 CFR
2010-10-01
..., business or operation; (3) The name and address of each United States carrier alleged to be adversely... to petitioner: (i) Statistical data documenting present or prospective cargo loss by United States... on that basis, and the sources of the statistical data; (ii) Statistical data or other information...
14 CFR 234.6 - Baggage-handling statistics.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Baggage-handling statistics. 234.6 Section 234.6 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION... statistics. Each reporting carrier shall report monthly to the Department on a domestic system basis...
19 CFR 351.308 - Determinations on the basis of the facts available.
Code of Federal Regulations, 2010 CFR
2010-04-01
... facts available. (a) Introduction. The Secretary may make determinations on the basis of the facts... limited to, published price lists, official import statistics and customs data, and information obtained...
Initial evaluation of discrete orthogonal basis reconstruction of ECT images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moody, E.B.; Donohue, K.D.
1996-12-31
Discrete orthogonal basis restoration (DOBR) is a linear, non-iterative, and robust method for solving inverse problems for systems characterized by shift-variant transfer functions. This simulation study evaluates the feasibility of using DOBR for reconstructing emission computed tomographic (ECT) images. The imaging system model uses typical SPECT parameters and incorporates the effects of attenuation, spatially-variant PSF, and Poisson noise in the projection process. Sample reconstructions and statistical error analyses for a class of digital phantoms compare the DOBR performance for Hartley and Walsh basis functions. Test results confirm that DOBR with either basis set produces images with good statistical properties. Nomore » problems were encountered with reconstruction instability. The flexibility of the DOBR method and its consistent performance warrants further investigation of DOBR as a means of ECT image reconstruction.« less
On the Determination of Poisson Statistics for Haystack Radar Observations of Orbital Debris
NASA Technical Reports Server (NTRS)
Stokely, Christopher L.; Benbrook, James R.; Horstman, Matt
2007-01-01
A convenient and powerful method is used to determine if radar detections of orbital debris are observed according to Poisson statistics. This is done by analyzing the time interval between detection events. For Poisson statistics, the probability distribution of the time interval between events is shown to be an exponential distribution. This distribution is a special case of the Erlang distribution that is used in estimating traffic loads on telecommunication networks. Poisson statistics form the basis of many orbital debris models but the statistical basis of these models has not been clearly demonstrated empirically until now. Interestingly, during the fiscal year 2003 observations with the Haystack radar in a fixed staring mode, there are no statistically significant deviations observed from that expected with Poisson statistics, either independent or dependent of altitude or inclination. One would potentially expect some significant clustering of events in time as a result of satellite breakups, but the presence of Poisson statistics indicates that such debris disperse rapidly with respect to Haystack's very narrow radar beam. An exception to Poisson statistics is observed in the months following the intentional breakup of the Fengyun satellite in January 2007.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vidal-Codina, F., E-mail: fvidal@mit.edu; Nguyen, N.C., E-mail: cuongng@mit.edu; Giles, M.B., E-mail: mike.giles@maths.ox.ac.uk
We present a model and variance reduction method for the fast and reliable computation of statistical outputs of stochastic elliptic partial differential equations. Our method consists of three main ingredients: (1) the hybridizable discontinuous Galerkin (HDG) discretization of elliptic partial differential equations (PDEs), which allows us to obtain high-order accurate solutions of the governing PDE; (2) the reduced basis method for a new HDG discretization of the underlying PDE to enable real-time solution of the parameterized PDE in the presence of stochastic parameters; and (3) a multilevel variance reduction method that exploits the statistical correlation among the different reduced basismore » approximations and the high-fidelity HDG discretization to accelerate the convergence of the Monte Carlo simulations. The multilevel variance reduction method provides efficient computation of the statistical outputs by shifting most of the computational burden from the high-fidelity HDG approximation to the reduced basis approximations. Furthermore, we develop a posteriori error estimates for our approximations of the statistical outputs. Based on these error estimates, we propose an algorithm for optimally choosing both the dimensions of the reduced basis approximations and the sizes of Monte Carlo samples to achieve a given error tolerance. We provide numerical examples to demonstrate the performance of the proposed method.« less
12 CFR Appendix A to Subpart A of... - Appendix A to Subpart A of Part 327
Code of Federal Regulations, 2010 CFR
2010-01-01
... pricing multipliers are derived from: • A model (the Statistical Model) that estimates the probability..., which is four basis points higher than the minimum rate. II. The Statistical Model The Statistical Model... to 1997. As a result, and as described in Table A.1, the Statistical Model is estimated using a...
15 CFR 50.30 - Fee structure for foreign trade and shipping statistics.
Code of Federal Regulations, 2011 CFR
2011-01-01
... shipping statistics. 50.30 Section 50.30 Commerce and Foreign Trade Regulations Relating to Commerce and... THE CENSUS § 50.30 Fee structure for foreign trade and shipping statistics. (a) The Bureau of the Census is willing to furnish on a cost basis foreign trade and shipping statistics provided there is no...
15 CFR 50.30 - Fee structure for foreign trade and shipping statistics.
Code of Federal Regulations, 2010 CFR
2010-01-01
... shipping statistics. 50.30 Section 50.30 Commerce and Foreign Trade Regulations Relating to Commerce and... THE CENSUS § 50.30 Fee structure for foreign trade and shipping statistics. (a) The Bureau of the Census is willing to furnish on a cost basis foreign trade and shipping statistics provided there is no...
Todorich, Bozho; Shieh, Christine; DeSouza, Philip J.; Carrasco-Zevallos, Oscar M.; Cunefare, David L.; Stinnett, Sandra S.; Izatt, Joseph A.; Farsiu, Sina; Mruthyunjaya, Privthi; Kuo, Anthony N.; Toth, Cynthia A.
2016-01-01
Purpose The integration of swept-source optical coherence tomography (SS-OCT) into the operating microscope enables real-time, tissue-level three-dimensional (3D) imaging to aid in ophthalmic microsurgery. In this prospective randomized controlled study, we evaluated the impact of SS microscope-integrated OCT (MI-OCT) on ophthalmology residents' performance of ophthalmic microsurgical maneuvers. Methods Fourteen ophthalmology residents from a single institution were stratified by year of training and randomized to perform four anterior segment surgical maneuvers on porcine eyes with (MI-OCT+) or without (MI-OCT−) direct intraoperative OCT guidance. Subsequently, both groups repeated the same maneuvers without MI-OCT feedback to test whether initial MI-OCT experience affected subsequent surgical performance. Finally, the MI-OCT− group was crossed over and allowed to repeat the same maneuvers with direct MI-OCT guidance. Each resident completed a survey at the completion of the study. Results With direct MI-OCT feedback, residents demonstrated enhanced performance in depth-based anterior segment maneuvers (corneal suture passes at 50% and 90% depth and corneal laceration repair) compared with the residents operating without MI-OCT. Microscope-integrated OCT+ residents continued to outperform the controls when both groups subsequently operated without MI-OCT. For clear corneal wound geometry, there was no statistically significant effect of MI-OCT as applied in this study. Overall, the resident surgeons rated their subjective experience of using MI-OCT very favorably. Conclusions Microscope-integrated OCT feedback enhances performance of ophthalmology residents in select anterior segment surgical maneuvers. Microscope-integrated OCT represents a valuable tool in the surgical education of ophthalmology residents. PMID:27409466
Li, Aijun; Liu, Weisheng; Cao, Peicheng; Zheng, Yuehua; Bu, Zhenfu; Zhou, Tao
2017-05-01
Inconsistent findings have been reported regarding the efficacy and safety of endoscopic and microscopic transsphenoidal surgery for pituitary adenoma. This study aimed to assess the benefits and shortcomings of these surgical methods in patients with pituitary adenoma. The electronic databases PubMed, Embase, and the Cochrane Library were systematically searched, as well as proceedings of major meetings. Eligible studies with a retrospective or prospective design that evaluated endoscopic versus microscopic methods in patients with pituitary adenoma were included. Primary outcomes included gross tumor removal, cerebrospinal fluid leak, diabetes insipidus, and other complications. Overall, 23 studies (4 prospective and 19 retrospective) assessing 2272 patients with pituitary adenoma were included in the final analysis. Endoscopic transsphenoidal surgery was associated with a higher incidence of gross tumor removal (odds ratio, 1.52; 95% confidence interval, 1.11-2.08; P = 0.009) than those with microscopic transsphenoidal surgery. In addition, endoscopic transsphenoidal surgery had no significant effect on the risk of cerebrospinal fluid leak, compared with microscopic transsphenoidal surgery. Furthermore, endoscopic transsphenoidal surgery was associated with a 22% reduction in risk of diabetes insipidus compared with microscopic transsphenoidal surgery, but the difference was not statistically significant. Endoscopic transsphenoidal surgery significantly reduced the risk of septal perforation (odds ratio, 0.29; 95% confidence interval, 0.11-0.78; P = 0.014) and was not associated with the risk of meningitis, epistaxis, hematoma, hypopituitarism, hypothyroidism, hypocortisolism, total mortality, and recurrence. Endoscopic transsphenoidal surgery is associated with higher gross tumor removal and lower incidence of septal perforation in patients with pituitary adenoma. Future large-scale prospective randomized controlled trials are needed to verify these findings. Copyright © 2017 Elsevier Inc. All rights reserved.
On microscopic theory of radiative nuclear reaction characteristics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamerdzhiev, S. P.; Achakovskiy, O. I., E-mail: oachakovskiy@ippe.ru; Avdeenkov, A. V.
2016-07-15
A survey of some results in the modern microscopic theory of properties of nuclear reactions with gamma rays is given. First of all, we discuss the impact of Phonon Coupling (PC) on the Photon Strength Function (PSF) because it represents the most natural physical source of additional strength found for Sn isotopes in recent experiments that could not be explained within the standard HFB + QRPA approach. The self-consistent version of the Extended Theory of Finite Fermi Systems in the Quasiparticle Time Blocking Approximation is applied. It uses the HFB mean field and includes both the QRPA and PC effectsmore » on the basis of the SLy4 Skyrme force. With our microscopic E1 PSFs, the following properties have been calculated for many stable and unstable even–even semi-magic Sn and Ni isotopes as well as for double-magic {sup 132}Sn and {sup 208}Pb using the reaction codes EMPIRE and TALYS with several Nuclear Level Density (NLD) models: (1) the neutron capture cross sections; (2) the corresponding neutron capture gamma spectra; (3) the average radiative widths of neutron resonances. In all the properties considered, the PC contribution turned out to be significant, as compared with the standard QRPA one, and necessary to explain the available experimental data. The results with the phenomenological so-called generalized superfluid NLD model turned out to be worse, on the whole, than those obtained with the microscopic HFB + combinatorial NLD model. The very topical question about the M1 resonance contribution to PSFs is also discussed.Finally, we also discuss the modern microscopic NLD models based on the self-consistent HFB method and show their relevance to explain the experimental data as compared with the phenomenological models. The use of these self-consistent microscopic approaches is of particular relevance for nuclear astrophysics, but also for the study of double-magic nuclei.« less
Watching fat digestion: a microscopic method assessing intraluminal lipolysis.
Alliet, P; Eggermont, E
1990-01-01
We investigated the utility of a microscopic method assessing lipolytic activity of duodenal fluid. The method is based on evaluating microscopically physicochemical changes along time when olive oil is mixed with duodenal fluid in the presence of excess bile salts (13 mM) and calcium ions (8 mM) at pH 6.5. Data are analyzed on duodenal aspirations from 155 children referred for failure to thrive or gastrointestinal disorders. The "fat digestion index" (FDI) is the percentage of intact olive oil droplets that underwent complete hydrolysis or are transformed into amorphous reticular bodies (ARB) at steady state. In all patients with proven exocrine pancreatic disorder, a FDI less than 25% was found. This value was thus considered as a cut-off value. When no microscopic lipolysis (FDI = 0) was observed, exocrine pancreatic enzyme assays are suggestive for a total exocrine pancreatic insufficiency. In the group of children with FDI ranging 5-25%, however, no statistical difference in exocrine pancreatic enzymes could be found, as compared to control values. Our tests thus evaluate fat digestion in a dynamic way. It further seems to give additional information on intraluminal lipolysis as compared to exocrine pancreatic enzyme concentrations, since it gives an idea about the integrated action of (co)lipase and bile salts.
Ghane, Narjes; Vard, Alireza; Talebi, Ardeshir; Nematollahy, Pardis
2017-01-01
Recognition of white blood cells (WBCs) is the first step to diagnose some particular diseases such as acquired immune deficiency syndrome, leukemia, and other blood-related diseases that are usually done by pathologists using an optical microscope. This process is time-consuming, extremely tedious, and expensive and needs experienced experts in this field. Thus, a computer-aided diagnosis system that assists pathologists in the diagnostic process can be so effective. Segmentation of WBCs is usually a first step in developing a computer-aided diagnosis system. The main purpose of this paper is to segment WBCs from microscopic images. For this purpose, we present a novel combination of thresholding, k-means clustering, and modified watershed algorithms in three stages including (1) segmentation of WBCs from a microscopic image, (2) extraction of nuclei from cell's image, and (3) separation of overlapping cells and nuclei. The evaluation results of the proposed method show that similarity measures, precision, and sensitivity respectively were 92.07, 96.07, and 94.30% for nucleus segmentation and 92.93, 97.41, and 93.78% for cell segmentation. In addition, statistical analysis presents high similarity between manual segmentation and the results obtained by the proposed method.
Kawakita, Jin; Weitzel, Matthias
2011-04-01
Hybrid materials of the organic and inorganic semiconductors have a potential to show the better performance in the charge separation at the junction upon the photovoltaic action by the presence of the space charge layer in the inorganic semiconductor. In this study, the photo-anodic polymerization was selected as a fabrication method for the hybrid materials composed of TiO2 and polypyrrole on the basis of some advantages of this method. For the process control of the photo-anodic polymerization, it is important to elucidate the formation and growth mechanisms of the organic polymer. In this study, a flat sheet of single-crystal TiO2 was used as a well-defined surface for preparation of the organic polymer of pyrrole. Photo-anodic polarization behaviour was clarified and polypyrrole was prepared on TiO2. The formation process, especially the initial step was revealed by observation of polypyrrole with atomic force microscope (AFM) and statistical interpretation of the morphology of polypyrrole in the nano-scopic level. The formation process of polypyrrole on the TiO2 surface was summarized; (1) adsorption of precursors, (2) localized formation and growth of polypyrrole under the photo-illumination, and (3) homogenous growth of polypyrrole with the external current application under the photo-illumination.
Shiratori, Takashi; Ishida, Ken-Ichiro
2016-11-01
A novel cercozoan filose thecate amoeba, Trachyrhizium urniformis n. g., n. sp., was isolated from a marine sediment sample collected at Agenashiku Island, Okinawa, Japan. We performed light and electron microscopic observations, and a molecular phylogenetic analysis using the small subunit ribosomal RNA gene of the isolate. Cells of T. urniformis are spherical in shape and are covered by a thin theca possessing a wide rounded aperture. Branching and occasionally anastomosing filopodia with small granules emerge from the aperture. The granules are transported in the filopodia bidirectionally. Transmission electron microscopy showed that cells of T. urniformis possess nucleus with permanently condensed chromatin, Golgi apparatuses, microbodies, mitochondria with tubular cristae, and extrusomes. Several morphological and ultrastructural features of T. urniformis (the presence of thecae and nucleus with permanently condensed chromatin) show similarities with those of Thecofilosea. In a phylogenetic analysis, T. urniformis included in Thecofilosea with weak statistical supports and formed a clade with two sequences that constitutes a cercozoan environmental clade, novel clade 4. On the basis of morphological and ultrastructural information and the results of the phylogenetic analysis, we propose T. urniformis as a new member of class Thecofilosea. © 2016 The Author(s) Journal of Eukaryotic Microbiology © 2016 International Society of Protistologists.
Role of Proteome Physical Chemistry in Cell Behavior
2016-01-01
We review how major cell behaviors, such as bacterial growth laws, are derived from the physical chemistry of the cell’s proteins. On one hand, cell actions depend on the individual biological functionalities of their many genes and proteins. On the other hand, the common physics among proteins can be as important as the unique biology that distinguishes them. For example, bacterial growth rates depend strongly on temperature. This dependence can be explained by the folding stabilities across a cell’s proteome. Such modeling explains how thermophilic and mesophilic organisms differ, and how oxidative damage of highly charged proteins can lead to unfolding and aggregation in aging cells. Cells have characteristic time scales. For example, E. coli can duplicate as fast as 2–3 times per hour. These time scales can be explained by protein dynamics (the rates of synthesis and degradation, folding, and diffusional transport). It rationalizes how bacterial growth is slowed down by added salt. In the same way that the behaviors of inanimate materials can be expressed in terms of the statistical distributions of atoms and molecules, some cell behaviors can be expressed in terms of distributions of protein properties, giving insights into the microscopic basis of growth laws in simple cells. PMID:27513457
Kaplan, Halil Mahir; Kuyucu, Yurdun; Polat, Sait; Pazarci, Percin; Yegani, Arash Alizadeh; Şingirik, Ergin; Ertuğ, Peyman
2018-06-01
Exposure to cigarette smoke (CS) causes vessel damage and mechanism of this damage has not yet been clearly identified. Therefore, in this study we aimed to investigate whether vessel damage due to the CS exposure will be prevented by the alpha-linolenic acid (ALA) or not which has anti-inflammatory effect in mice. For this reason, mice were grouped as controls (with and without CS) and ALA (with and without CS). The CS application continued 5 days a week for two months. At the end of two months, the mice were killed by cervical dislocation and their blood and thoracic aortas were isolated. ALA Treatment increased acetylcholine relaxations. CS decreased acetylcholine relaxation. CS with ALA treatment increased acetylcholine relaxations versus just CS treatment. CS caused rising in cyclooxigenase-2 and phospholipase A2 levels. This rise is inhibited with ALA treatment. CS decreased eNOS levels. But this result was not statistically significant. Furthermore, according to electron microscopic study CS damaged both smooth muscle and endothelium. While ALA treatment prevented smooth muscle damage it didn't prevent endothelial damage. Using cigarette and CS exposure is a risk factor for cardiovascular disease. Our study showed that this disease. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
28 CFR 22.24 - Information transfer agreement.
Code of Federal Regulations, 2010 CFR
2010-07-01
... STATISTICAL INFORMATION § 22.24 Information transfer agreement. Prior to the transfer of any identifiable... identifiable to a private person will be used only for research and statistical purposes. (b) Information...-know basis for research or statistical purposes, provided that such transfer is approved by the person...
NASA Astrophysics Data System (ADS)
Catur Wibowo, Firmanul; Suhandi, Andi; Rusdiana, Dadi; Samsudin, Achmad; Rahmi Darman, Dina; Faizin, M. Noor; Wiyanto; Supriyatman; Permanasari, Anna; Kaniawati, Ida; Setiawan, Wawan; Karyanto, Yudi; Linuwih, Suharto; Fatah, Abdul; Subali, Bambang; Hasani, Aceng; Hidayat, Sholeh
2017-07-01
Electricity is a concept that is abstract and difficult to see by eye directly, one example electric shock, but cannot see the movement of electric current so that students have difficulty by students. A computer simulation designed to improve the understanding of the concept of the workings of the dry cell (battery). This study was conducted to 82 students (aged 18-20 years) in the experimental group by learning to use the Dry Cell Microscopic Simulation (DCMS). The result shows the improving of students’ conceptual understanding scores from post test were statistically significantly of the workings of batteries. The implication using computer simulations designed to overcome the difficulties of conceptual understanding, can effectively help students in facilitating conceptual change.
Molecular modeling of polycarbonate materials: Glass transition and mechanical properties
NASA Astrophysics Data System (ADS)
Palczynski, Karol; Wilke, Andreas; Paeschke, Manfred; Dzubiella, Joachim
2017-09-01
Linking the experimentally accessible macroscopic properties of thermoplastic polymers to their microscopic static and dynamic properties is a key requirement for targeted material design. Classical molecular dynamics simulations enable us to study the structural and dynamic behavior of molecules on microscopic scales, and statistical physics provides a framework for relating these properties to the macroscopic properties. We take a first step toward creating an automated workflow for the theoretical prediction of thermoplastic material properties by developing an expeditious method for parameterizing a simple yet surprisingly powerful coarse-grained bisphenol-A polycarbonate model which goes beyond previous coarse-grained models and successfully reproduces the thermal expansion behavior, the glass transition temperature as a function of the molecular weight, and several elastic properties.
MICROSCOPE Mission: First Results of a Space Test of the Equivalence Principle.
Touboul, Pierre; Métris, Gilles; Rodrigues, Manuel; André, Yves; Baghi, Quentin; Bergé, Joël; Boulanger, Damien; Bremer, Stefanie; Carle, Patrice; Chhun, Ratana; Christophe, Bruno; Cipolla, Valerio; Damour, Thibault; Danto, Pascale; Dittus, Hansjoerg; Fayet, Pierre; Foulon, Bernard; Gageant, Claude; Guidotti, Pierre-Yves; Hagedorn, Daniel; Hardy, Emilie; Huynh, Phuong-Anh; Inchauspe, Henri; Kayser, Patrick; Lala, Stéphanie; Lämmerzahl, Claus; Lebat, Vincent; Leseur, Pierre; Liorzou, Françoise; List, Meike; Löffler, Frank; Panet, Isabelle; Pouilloux, Benjamin; Prieur, Pascal; Rebray, Alexandre; Reynaud, Serge; Rievers, Benny; Robert, Alain; Selig, Hanns; Serron, Laura; Sumner, Timothy; Tanguy, Nicolas; Visser, Pieter
2017-12-08
According to the weak equivalence principle, all bodies should fall at the same rate in a gravitational field. The MICROSCOPE satellite, launched in April 2016, aims to test its validity at the 10^{-15} precision level, by measuring the force required to maintain two test masses (of titanium and platinum alloys) exactly in the same orbit. A nonvanishing result would correspond to a violation of the equivalence principle, or to the discovery of a new long-range force. Analysis of the first data gives δ(Ti,Pt)=[-1±9(stat)±9(syst)]×10^{-15} (1σ statistical uncertainty) for the titanium-platinum Eötvös parameter characterizing the relative difference in their free-fall accelerations.
Herz, Markus; Bouvron, Samuel; Ćavar, Elizabeta; Fonin, Mikhail; Belzig, Wolfgang; Scheer, Elke
2013-10-21
We present a measurement scheme that enables quantitative detection of the shot noise in a scanning tunnelling microscope while scanning the sample. As test objects we study defect structures produced on an iridium single crystal at low temperatures. The defect structures appear in the constant current images as protrusions with curvature radii well below the atomic diameter. The measured power spectral density of the noise is very near to the quantum limit with Fano factor F = 1. While the constant current images show detailed structures expected for tunnelling involving d-atomic orbitals of Ir, we find the current noise to be without pronounced spatial variation as expected for shot noise arising from statistically independent events.
Kriete, A; Schäffer, R; Harms, H; Aus, H M
1987-06-01
Nuclei of the cells from the thyroid gland were analyzed in a transmission electron microscope by direct TV scanning and on-line image processing. The method uses the advantages of a visual-perception model to detect structures in noisy and low-contrast images. The features analyzed include area, a form factor and texture parameters from the second derivative stage. Three tumor-free thyroid tissues, three follicular adenomas, three follicular carcinomas and three papillary carcinomas were studied. The computer-aided cytophotometric method showed that the most significant differences were the statistics of the chromatin texture features of homogeneity and regularity. These findings document the possibility of an automated differentiation of tumors at the ultrastructural level.
MICROSCOPE Mission: First Results of a Space Test of the Equivalence Principle
NASA Astrophysics Data System (ADS)
Touboul, Pierre; Métris, Gilles; Rodrigues, Manuel; André, Yves; Baghi, Quentin; Bergé, Joël; Boulanger, Damien; Bremer, Stefanie; Carle, Patrice; Chhun, Ratana; Christophe, Bruno; Cipolla, Valerio; Damour, Thibault; Danto, Pascale; Dittus, Hansjoerg; Fayet, Pierre; Foulon, Bernard; Gageant, Claude; Guidotti, Pierre-Yves; Hagedorn, Daniel; Hardy, Emilie; Huynh, Phuong-Anh; Inchauspe, Henri; Kayser, Patrick; Lala, Stéphanie; Lämmerzahl, Claus; Lebat, Vincent; Leseur, Pierre; Liorzou, Françoise; List, Meike; Löffler, Frank; Panet, Isabelle; Pouilloux, Benjamin; Prieur, Pascal; Rebray, Alexandre; Reynaud, Serge; Rievers, Benny; Robert, Alain; Selig, Hanns; Serron, Laura; Sumner, Timothy; Tanguy, Nicolas; Visser, Pieter
2017-12-01
According to the weak equivalence principle, all bodies should fall at the same rate in a gravitational field. The MICROSCOPE satellite, launched in April 2016, aims to test its validity at the 10-15 precision level, by measuring the force required to maintain two test masses (of titanium and platinum alloys) exactly in the same orbit. A nonvanishing result would correspond to a violation of the equivalence principle, or to the discovery of a new long-range force. Analysis of the first data gives δ (Ti ,Pt )=[-1 ±9 (stat)±9 (syst)]×10-15 (1 σ statistical uncertainty) for the titanium-platinum Eötvös parameter characterizing the relative difference in their free-fall accelerations.
Spectro-microscopy of living plant cells.
Harter, Klaus; Meixner, Alfred J; Schleifenbaum, Frank
2012-01-01
Spectro-microscopy, a combination of fluorescence microscopy with spatially resolved spectroscopic techniques, provides new and exciting tools for functional cell biology in living organisms. This review focuses on recent developments in spectro-microscopic applications for the investigation of living plant cells in their native tissue context. The application of spectro-microscopic methods led to the recent discovery of a fast signal response pathway for the brassinosteroide receptor BRI1 in the plasma membrane of living plant cells. Moreover, the competence of different plant cell types to respond to environmental or endogenous stimuli was determined in vivo by correlation analysis of different optical and spectroscopic readouts such as fluorescence lifetime (FLT). Furthermore, a new spectro-microscopic technique, fluorescence intensity decay shape analysis microscopy (FIDSAM), has been developed. FIDSAM is capable of imaging low-expressed fluorophore-tagged proteins at high spatial resolution and precludes the misinterpretation of autofluorescence artifacts. In addition, FIDSAM provides a very effective and sensitive tool on the basis of Förster resonance energy transfer (FRET) for the qualitative and quantitative determination of protein-protein interaction. Finally, we report on the quantitative analysis of the photosystem I and II (PSI/PSII) ratio in the chloroplasts of living Arabidopsis plants at room temperature, using high-resolution, spatially resolved fluorescence spectroscopy. With this technique, it was not only possible to measure PSI/PSII ratios, but also to demonstrate the differential competence of wild-type and carbohydrate-deficient plants to adapt the PSI/PSII ratio to different light conditions. In summary, the information content of standard microscopic images is extended by several dimensions by the use of spectro-microscopic approaches. Therefore, novel cell physiological and molecular topics can be addressed and valuable insights into molecular and subcellular processes can be obtained in living plants.
Vallenet, David; Calteau, Alexandra; Cruveiller, Stéphane; Gachet, Mathieu; Lajus, Aurélie; Josso, Adrien; Mercier, Jonathan; Renaux, Alexandre; Rollin, Johan; Rouy, Zoe; Roche, David; Scarpelli, Claude; Médigue, Claudine
2017-01-04
The annotation of genomes from NGS platforms needs to be automated and fully integrated. However, maintaining consistency and accuracy in genome annotation is a challenging problem because millions of protein database entries are not assigned reliable functions. This shortcoming limits the knowledge that can be extracted from genomes and metabolic models. Launched in 2005, the MicroScope platform (http://www.genoscope.cns.fr/agc/microscope) is an integrative resource that supports systematic and efficient revision of microbial genome annotation, data management and comparative analysis. Effective comparative analysis requires a consistent and complete view of biological data, and therefore, support for reviewing the quality of functional annotation is critical. MicroScope allows users to analyze microbial (meta)genomes together with post-genomic experiment results if any (i.e. transcriptomics, re-sequencing of evolved strains, mutant collections, phenotype data). It combines tools and graphical interfaces to analyze genomes and to perform the expert curation of gene functions in a comparative context. Starting with a short overview of the MicroScope system, this paper focuses on some major improvements of the Web interface, mainly for the submission of genomic data and on original tools and pipelines that have been developed and integrated in the platform: computation of pan-genomes and prediction of biosynthetic gene clusters. Today the resource contains data for more than 6000 microbial genomes, and among the 2700 personal accounts (65% of which are now from foreign countries), 14% of the users are performing expert annotations, on at least a weekly basis, contributing to improve the quality of microbial genome annotations. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Modeling decoherence with qubits
NASA Astrophysics Data System (ADS)
Heusler, Stefan; Dür, Wolfgang
2018-03-01
Quantum effects like the superposition principle contradict our experience of daily life. Decoherence can be viewed as a possible explanation why we do not observe quantum superposition states in the macroscopic world. In this article, we use the qubit ansatz to discuss decoherence in the simplest possible model system and propose a visualization for the microscopic origin of decoherence, and the emergence of a so-called pointer basis. Finally, we discuss the possibility of ‘macroscopic’ quantum effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Shi-Yu, E-mail: buaasyliu@gmail.com; Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong; Liu, Shiyang
Utilizing a combination of ab initio density-functional theory and thermodynamics formalism, we have established the microscopic mechanisms for oxidation of the binary and ternary alloy surfaces and provided a clear explanation for the experimental results of the oxidation. We construct three-dimensional surface phase diagrams (SPDs) for oxygen adsorption on three different Nb-X(110) (X = Ti, Al or Si) binary alloy surfaces. On the basis of the obtained SPDs, we conclude a general microscopic mechanism for the thermodynamic oxidation, that is, under O-rich conditions, a uniform single-phase SPD (type I) and a nonuniform double-phase SPD (type II) correspond to the sustainedmore » complete selective oxidation and the non-sustained partial selective oxidation by adding the X element, respectively. Furthermore, by revealing the framework of thermodynamics for the oxidation mechanism of ternary alloys through the comparison of the surface energies of two separated binary alloys, we provide an understanding for the selective oxidation behavior of the Nb ternary alloy surfaces. Using these general microscopic mechanisms, one could predict the oxidation behavior of any binary and multi-component alloy surfaces based on thermodynamics considerations.« less
Photonic Microhand with Autonomous Action.
Martella, Daniele; Nocentini, Sara; Nuzhdin, Dmitry; Parmeggiani, Camilla; Wiersma, Diederik S
2017-11-01
Grabbing and holding objects at the microscale is a complex function, even for microscopic living animals. Inspired by the hominid-type hand, a microscopic equivalent able to catch microelements is engineered. This microhand is light sensitive and can be either remotely controlled by optical illumination or can act autonomously and grab small particles on the basis of their optical properties. Since the energy is delivered optically, without the need for wires or batteries, the artificial hand can be shrunk down to the micrometer scale. Soft material is used, in particular, a custom-made liquid-crystal network that is patterned by a photolithographic technique. The elastic reshaping properties of this material allow finger movement, using environmental light as the only energy source. The hand can be either controlled externally (via the light field), or else the conditions in which it autonomously grabs a particle in its vicinity can be created. This microrobot has the unique feature that it can distinguish between particles of different colors and gray levels. The realization of this autonomous hand constitutes a crucial element in the development of microscopic creatures that can perform tasks without human intervention and self-organized automation at the micrometer scale. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Steinbach, Gábor; Pomozi, István; Zsiros, Ottó; Páy, Anikó; Horváth, Gábor V; Garab, Gyozo
2008-03-01
Anisotropy carries important information on the molecular organization of biological samples. Its determination requires a combination of microscopy and polarization spectroscopy tools. The authors constructed differential polarization (DP) attachments to a laser scanning microscope in order to determine physical quantities related to the anisotropic distribution of molecules in microscopic samples; here the authors focus on fluorescence-detected linear dichroism (FDLD). By modulating the linear polarization of the laser beam between two orthogonally polarized states and by using a demodulation circuit, the authors determine the associated transmitted and fluorescence intensity-difference signals, which serve the basis for LD (linear dichroism) and FDLD, respectively. The authors demonstrate on sections of Convallaria majalis root tissue stained with Acridin Orange that while (nonconfocal) LD images remain smeared and weak, FDLD images recorded in confocal mode reveal strong anisotropy of the cell wall. FDLD imaging is suitable for mapping the anisotropic distribution of transition dipoles in 3 dimensions. A mathematical model is proposed to account for the fiber-laminate ultrastructure of the cell wall and for the intercalation of the dye molecules in complex, highly anisotropic architecture. Copyright 2007 International Society for Analytical Cytology.
Alternative Derivations of the Statistical Mechanical Distribution Laws
Wall, Frederick T.
1971-01-01
A new approach is presented for the derivation of statistical mechanical distribution laws. The derivations are accomplished by minimizing the Helmholtz free energy under constant temperature and volume, instead of maximizing the entropy under constant energy and volume. An alternative method involves stipulating equality of chemical potential, or equality of activity, for particles in different energy levels. This approach leads to a general statement of distribution laws applicable to all systems for which thermodynamic probabilities can be written. The methods also avoid use of the calculus of variations, Lagrangian multipliers, and Stirling's approximation for the factorial. The results are applied specifically to Boltzmann, Fermi-Dirac, and Bose-Einstein statistics. The special significance of chemical potential and activity is discussed for microscopic systems. PMID:16578712
Alternative derivations of the statistical mechanical distribution laws.
Wall, F T
1971-08-01
A new approach is presented for the derivation of statistical mechanical distribution laws. The derivations are accomplished by minimizing the Helmholtz free energy under constant temperature and volume, instead of maximizing the entropy under constant energy and volume. An alternative method involves stipulating equality of chemical potential, or equality of activity, for particles in different energy levels. This approach leads to a general statement of distribution laws applicable to all systems for which thermodynamic probabilities can be written. The methods also avoid use of the calculus of variations, Lagrangian multipliers, and Stirling's approximation for the factorial. The results are applied specifically to Boltzmann, Fermi-Dirac, and Bose-Einstein statistics. The special significance of chemical potential and activity is discussed for microscopic systems.
Biostatistical analysis of quantitative immunofluorescence microscopy images.
Giles, C; Albrecht, M A; Lam, V; Takechi, R; Mamo, J C
2016-12-01
Semiquantitative immunofluorescence microscopy has become a key methodology in biomedical research. Typical statistical workflows are considered in the context of avoiding pseudo-replication and marginalising experimental error. However, immunofluorescence microscopy naturally generates hierarchically structured data that can be leveraged to improve statistical power and enrich biological interpretation. Herein, we describe a robust distribution fitting procedure and compare several statistical tests, outlining their potential advantages/disadvantages in the context of biological interpretation. Further, we describe tractable procedures for power analysis that incorporates the underlying distribution, sample size and number of images captured per sample. The procedures outlined have significant potential for increasing understanding of biological processes and decreasing both ethical and financial burden through experimental optimization. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.
New statistical scission-point model to predict fission fragment observables
NASA Astrophysics Data System (ADS)
Lemaître, Jean-François; Panebianco, Stefano; Sida, Jean-Luc; Hilaire, Stéphane; Heinrich, Sophie
2015-09-01
The development of high performance computing facilities makes possible a massive production of nuclear data in a full microscopic framework. Taking advantage of the individual potential calculations of more than 7000 nuclei, a new statistical scission-point model, called SPY, has been developed. It gives access to the absolute available energy at the scission point, which allows the use of a parameter-free microcanonical statistical description to calculate the distributions and the mean values of all fission observables. SPY uses the richness of microscopy in a rather simple theoretical framework, without any parameter except the scission-point definition, to draw clear answers based on perfect knowledge of the ingredients involved in the model, with very limited computing cost.
Statistically based material properties: A military handbook-17 perspective
NASA Technical Reports Server (NTRS)
Neal, Donald M.; Vangel, Mark G.
1990-01-01
The statistical procedures and their importance in obtaining composite material property values in designing structures for aircraft and military combat systems are described. The property value is such that the strength exceeds this value with a prescribed probability with 95 percent confidence in the assertion. The survival probabilities are the 99th percentile and 90th percentile for the A and B basis values respectively. The basis values for strain to failure measurements are defined in a similar manner. The B value is the primary concern.
[Histopathological changes in human placentas related to hypertensive disorders].
Artico, Luciano Guimarães; Madi, José Mauro; Godoy, Alessandra Eifler Guerra; Coelho, Celso Piccoli; Rombaldi, Renato Luís; Artico, Graziela Rech
2009-01-01
to determine the prevalence of histopathological changes, in human placentas, related to hypertensive syndromes. a transversal study that compares histopathological changes identified in 43 placentae from hypertensive pregnant women (HypPr), with the ones from 33 placentae from normotensive pregnant women (NorPr). The weight, volume and macroscopic and microscopic occurrence of infarctions, clots, hematomas, atherosis (partial obliteration, thickness of layers and presence of blood vessels hyalinization) and Tenney-Parker changes (absent, discreet and prominent), as well as the locating of infarctions and clots (central, peripheral or the association of both) have been analyzed. The chi2 and t Student tests have been used for the statistical analysis, as well as medians, standard deviations and ratios. It has been considered as significant, p<0.05. the macroscopic study of HypPr placentae have presented lower weight (461.1 versus 572.1 g) and volume (437.4 versus 542.0 cm(3)), higher infarction (51.2 versus 45.5%; p<0.05: OR=1.15) and clots (51.2 versus 15.1%; p<0.05; OR=5.4) ratios, as compared to the NorPr's. In the HypPr and NorPr, microscopic clots have occurred in 83.7 versus 45.5% (p<0.05; OR=4.3), respectively. Atherosis and Tenney-Parker changes have been statistically associated to the hypertensive syndromes (p<0.05). the obtained data allow us to associate lower placentary weight and volume, higher ratio of macro and microscopic infarction, clots, atherosis and Tenney-Parker changes to placentae of gestations occurring with hypertensive syndromes.
Chakka, N V Murali Krishna; Ratnakar, P; Das, Sanjib; Bagchi, Anandamy; Sudhir, Sudhir; Anumula, Lavanya
2012-11-01
Visual and microscopic evaluation of defects caused by torsional fatigue in hand and rotary nickel titanium (NiTi) instruments. Ninety-six NiTi greater taper instruments which were routinely used for root canal treatment only in anterior teeth were selected for the study. The files taken include ProTaper for hand use, ProTaper Rotary files and Endowave rotary files. After every use, the files were observed visually and microscopically (Stereomicroscope at 10×) to evaluate the defects caused by torsional fatigue. Scoring was given according to a new classification formulated which gives an indication of the severity of the defect or damage. Data was statistically analyzed using KruskallWallis and Mann-Whitney U test. Number of files showing defects were more under stereomicroscope than visual examination. But, the difference in the evaluation methods was not statistically significant. The different types of defects observed were bent instrument, straightening/stretching of twist contour and partial reverse twisting. Endowave files showed maximum number of defects followed by ProTaper for hand use and least in ProTaper Rotary. Visible defects due to torsional fatigue do occur in NiTi instruments after clinical use. Both visual and microscopic examinations were efficient in detecting defects caused due to torsional fatigue. This study emphasizes that all files should be observed for any visible defects before and after every instrumentation cycle to minimize the risk of instrument separation and failure of endodontic therapy.
Li, Da; Liang, Li; Zhang, Jing; Kang, Tingguo
2015-01-01
Background: Quality control is one of the bottleneck problems limiting the application and development of traditional Chinese medicine (TCM). In recent years, microscopy and high-performance liquid chromatography (HPLC) techniques have been frequently applied in the quality control of TCM. However, studies combining conventional microscopy and HPLC techniques for the quality control of the flower bud of Tussilago farfara L. (Kuandonghua) have not been reported. Objective: This study was undertaken to evaluate the quality of the flower bud of T. farfara L. and to establish the relationships between the quantity of pollen grains and four main bioactive constituents: tussilagone, chlorogenic acid, rutin and isoquercitrin. Materials and Methods: In this study, microscopic examination was used to quantify microscopic characteristics of the flower bud of T. farfara L., and the chemical components were determined by HPLC. The data were analyzed by Statistical Package for the Social Sciences statistics software. Results: The results of the analysis showed that tussilagone, chlorogenic acid, rutin and isoquercitrin were significantly correlated with the quantity of pollen grains in the flower bud of T. farfara L. There is a positive correlation between them. From these results, it can be deduced that the flower bud of T. farfara L. with a greater quantity of pollen grains should be of better quality. Conclusion: The study showed that the established method can be helpful for evaluating the quality of the flower bud of T. farfara L. based on microscopic characteristic constants and chemical quantitation. PMID:26246737
Multiplexed single-molecule force spectroscopy using a centrifuge.
Yang, Darren; Ward, Andrew; Halvorsen, Ken; Wong, Wesley P
2016-03-17
We present a miniature centrifuge force microscope (CFM) that repurposes a benchtop centrifuge for high-throughput single-molecule experiments with high-resolution particle tracking, a large force range, temperature control and simple push-button operation. Incorporating DNA nanoswitches to enable repeated interrogation by force of single molecular pairs, we demonstrate increased throughput, reliability and the ability to characterize population heterogeneity. We perform spatiotemporally multiplexed experiments to collect 1,863 bond rupture statistics from 538 traceable molecular pairs in a single experiment, and show that 2 populations of DNA zippers can be distinguished using per-molecule statistics to reduce noise.
Multiplexed single-molecule force spectroscopy using a centrifuge
Yang, Darren; Ward, Andrew; Halvorsen, Ken; Wong, Wesley P.
2016-01-01
We present a miniature centrifuge force microscope (CFM) that repurposes a benchtop centrifuge for high-throughput single-molecule experiments with high-resolution particle tracking, a large force range, temperature control and simple push-button operation. Incorporating DNA nanoswitches to enable repeated interrogation by force of single molecular pairs, we demonstrate increased throughput, reliability and the ability to characterize population heterogeneity. We perform spatiotemporally multiplexed experiments to collect 1,863 bond rupture statistics from 538 traceable molecular pairs in a single experiment, and show that 2 populations of DNA zippers can be distinguished using per-molecule statistics to reduce noise. PMID:26984516
Negative values of quasidistributions and quantum wave and number statistics
NASA Astrophysics Data System (ADS)
Peřina, J.; Křepelka, J.
2018-04-01
We consider nonclassical wave and number quantum statistics, and perform a decomposition of quasidistributions for nonlinear optical down-conversion processes using Bessel functions. We show that negative values of the quasidistribution do not directly represent probabilities; however, they directly influence measurable number statistics. Negative terms in the decomposition related to the nonclassical behavior with negative amplitudes of probability can be interpreted as positive amplitudes of probability in the negative orthogonal Bessel basis, whereas positive amplitudes of probability in the positive basis describe classical cases. However, probabilities are positive in all cases, including negative values of quasidistributions. Negative and positive contributions of decompositions to quasidistributions are estimated. The approach can be adapted to quantum coherence functions.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-20
... rent and the core-based statistical area (CBSA) rent as applied to the 40th percentile FMR for that..., calculated on the basis of the core-based statistical area (CBSA) or the metropolitan Statistical Area (MSA... will be ranked according to each of the statistics specified above, and then a weighted average ranking...
Intensity correlation-based calibration of FRET.
Bene, László; Ungvári, Tamás; Fedor, Roland; Sasi Szabó, László; Damjanovich, László
2013-11-05
Dual-laser flow cytometric resonance energy transfer (FCET) is a statistically efficient and accurate way of determining proximity relationships for molecules of cells even under living conditions. In the framework of this algorithm, absolute fluorescence resonance energy transfer (FRET) efficiency is determined by the simultaneous measurement of donor-quenching and sensitized emission. A crucial point is the determination of the scaling factor α responsible for balancing the different sensitivities of the donor and acceptor signal channels. The determination of α is not simple, requiring preparation of special samples that are generally different from a double-labeled FRET sample, or by the use of sophisticated statistical estimation (least-squares) procedures. We present an alternative, free-from-spectral-constants approach for the determination of α and the absolute FRET efficiency, by an extension of the presented framework of the FCET algorithm with an analysis of the second moments (variances and covariances) of the detected intensity distributions. A quadratic equation for α is formulated with the intensity fluctuations, which is proved sufficiently robust to give accurate α-values on a cell-by-cell basis in a wide system of conditions using the same double-labeled sample from which the FRET efficiency itself is determined. This seemingly new approach is illustrated by FRET measurements between epitopes of the MHCI receptor on the cell surface of two cell lines, FT and LS174T. The figures show that whereas the common way of α determination fails at large dye-per-protein labeling ratios of mAbs, this presented-as-new approach has sufficient ability to give accurate results. Although introduced in a flow cytometer, the new approach can also be straightforwardly used with fluorescence microscopes. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Fossil diatoms and neogene paleolimnology
Platt, Bradbury J.
1988-01-01
Diatoms have played an important role in the development of Neogene continental biostratigraphy and paleolimnology since the mid-19th Century. The history of progress in Quaternary diatom biostratigraphy has developed as a result of improved coring techniques that enable sampling sediments beneath existing lakes coupled with improved chronological control (including radiometric dating and varve enumeration), improved statistical treatment of fossil diatom assemblages (from qualitative description to influx calculations of diatom numbers or volumes), and improved ecological information about analogous living diatom associations. The last factor, diatom ecology, is the most critical in many ways, but progresses slowly. Fortunately, statistical comparison of modern diatom assemblages and insightful studies of the nutrient requirements of some common freshwater species are enabling diatom paleolimnologists to make more detailed interpretations of the Quaternary record than had been possible earlier, and progress in the field of diatom biology and ecology will continue to refine paleolimnological studies. The greater age and geologic setting of Tertiary diatomaceous deposits has prompted their study in the contexts of geologic history, biochronology and evolution. The distribution of diatoms of marine affinities in continental deposits has given geologists insights about tectonism and sea-level change, and the distribution of distinctive (extinct?) diatoms has found utilization both in making stratigraphic correlations between outcrops of diatomaceous deposits and in various types of biochronological studies that involve dating deposits in different areas. A continental diatom biochronologic scheme will rely upon evolution, such as the appearance of new genera within a family, in combination with regional environmental changes that are responsible for the wide distribution of distinctive diatom species. The increased use of the scanning electron microscope for the detailed descriptions of fossil diatoms will provide the basis for making more accurate correlations and identifications, and the micromorphological detail for speculations about evolutionary relationships. ?? 1988.
Steganalysis of recorded speech
NASA Astrophysics Data System (ADS)
Johnson, Micah K.; Lyu, Siwei; Farid, Hany
2005-03-01
Digital audio provides a suitable cover for high-throughput steganography. At 16 bits per sample and sampled at a rate of 44,100 Hz, digital audio has the bit-rate to support large messages. In addition, audio is often transient and unpredictable, facilitating the hiding of messages. Using an approach similar to our universal image steganalysis, we show that hidden messages alter the underlying statistics of audio signals. Our statistical model begins by building a linear basis that captures certain statistical properties of audio signals. A low-dimensional statistical feature vector is extracted from this basis representation and used by a non-linear support vector machine for classification. We show the efficacy of this approach on LSB embedding and Hide4PGP. While no explicit assumptions about the content of the audio are made, our technique has been developed and tested on high-quality recorded speech.
Energy density functional on a microscopic basis
NASA Astrophysics Data System (ADS)
Baldo, M.; Robledo, L.; Schuck, P.; Viñas, X.
2010-06-01
In recent years impressive progress has been made in the development of highly accurate energy density functionals, which allow us to treat medium-heavy nuclei. In this approach one tries to describe not only the ground state but also the first relevant excited states. In general, higher accuracy requires a larger set of parameters, which must be carefully chosen to avoid redundancy. Following this line of development, it is unavoidable that the connection of the functional with the bare nucleon-nucleon interaction becomes more and more elusive. In principle, the construction of a density functional from a density matrix expansion based on the effective nucleon-nucleon interaction is possible, and indeed the approach has been followed by few authors. However, to what extent a density functional based on such a microscopic approach can reach the accuracy of the fully phenomenological ones remains an open question. A related question is to establish which part of a functional can be actually derived by a microscopic approach and which part, in contrast, must be left as purely phenomenological. In this paper we discuss the main problems that are encountered when the microscopic approach is followed. To this purpose we will use the method we have recently introduced to illustrate the different aspects of these problems. In particular we will discuss the possible connection of the density functional with the nuclear matter equation of state and the distinct features of finite-size effect typical of nuclei.
NASA Astrophysics Data System (ADS)
Tejasvi, Ravi; Basu, Suddhasatwa
2017-12-01
A simple method for depositing a thin film of nanomaterial on a substrate using centrifugation technique has been developed, whereby solvent evaporation is prevented and solvent reuse is possible. The centrifuge technique of deposition yields uniform, smooth thin film irrespective of substrate surface texture. The deposited TiO2/eC3N4 film studied, through field emission scanning electron microscope, atomic force microscope, and optical surface profilometer, shows variation in surface roughness on the basis of centrifugation speeds. Initially film coverage improves and surface roughness decreases with the increase in rpm of the centrifuge and the surface roughness slightly increases with further increase in rpm. The photoelectrochemical studies of TiO2/eC3N4 films suggest that the centrifuge technique forms better heterojunctions compared to that by spin coating technique leading to enhanced photoelectrochemical water splitting.
Calibrating excitation light fluxes for quantitative light microscopy in cell biology
Grünwald, David; Shenoy, Shailesh M; Burke, Sean; Singer, Robert H
2011-01-01
Power output of light bulbs changes over time and the total energy delivered will depend on the optical beam path of the microscope, filter sets and objectives used, thus making comparison between experiments performed on different microscopes complicated. Using a thermocoupled power meter, it is possible to measure the exact amount of light applied to a specimen in fluorescence microscopy, regardless of the light source, as the light power measured can be translated into a power density at the sample. This widely used and simple tool forms the basis of a new degree of calibration precision and comparability of results among experiments and setups. Here we describe an easy-to-follow protocol that allows researchers to precisely estimate excitation intensities in the object plane, using commercially available opto-mechanical components. The total duration of this protocol for one objective and six filter cubes is 75 min including start-up time for the lamp. PMID:18974739
Morphological changes of the hair roots in alopecia areata: a scanning electron microscopic study.
Karashima, Tadashi; Tsuruta, Daisuke; Hamada, Takahiro; Ishii, Norito; Ono, Fumitake; Ueda, Akihiro; Abe, Toshifumi; Nakama, Takekuni; Dainichi, Teruki; Hashimoto, Takashi
2013-12-01
Alopecia areata is a chronic inflammatory condition causing non-scarring patchy hair loss. Diagnosis of alopecia areata is made by clinical observations, hair pluck test and dermoscopic signs. However, because differentiation from other alopecia diseases is occasionally difficult, an invasive diagnostic method using a punch biopsy is performed. In this study, to develop a reliable, less invasive diagnostic method for alopecia areata, we performed scanning electron microscopy of the hair roots of alopecia areata patients. This study identified four patterns of hair morphology specific to alopecia areata: (I) long tapering structure with no accumulation of scales; (II) club-shaped hair root with fine scales; (III) proximal accumulation of scales; and (IV) sharp tapering of the proximal end of hair. On the basis of these results, we can distinguish alopecia areata by scanning electron microscopic observation of the proximal end of the hair shafts. © 2013 Japanese Dermatological Association.
Effect of Pt and Fe catalysts in the transformation of carbon black into carbon nanotubes
NASA Astrophysics Data System (ADS)
Asokan, Vijayshankar; Myrseth, Velaug; Kosinski, Pawel
2015-06-01
In this research carbon nanotubes and carbon nano onion-like structures were synthesized from carbon black using metal catalysts at 400 °C and 700 °C. Platinum and iron-group metals were used as catalysts for the transformation of CB into graphitized nanocarbon and the effect of both metals was compared. The synthesized products were characterized using X-ray diffraction (XRD), transmission electron microscope (TEM), high resolution transmission electron microscope (HRTEM) and Raman spectroscopy. The characterization shows that this process is very efficient in the synthesis of high quality graphitized products from amorphous carbon black, even though the process temperature was relatively low in comparison with previous studies. Distinguished graphitic walls of the newly formed carbon nanostructures were clearly visible in the HRTEM images. Possible growth difference related to the type of catalyst used is briefly explained with the basis of electron vacancies in d-orbitals of metals.
Polarised IR-microscope spectra of guanidinium hydrogensulphate single crystal.
Drozd, M; Baran, J
2006-07-01
Polarised IR-microscope spectra of C(NH(2))(3)*HSO(4) small single crystal samples were measured at room temperature. The spectra are discussed on the basis of oriented gas model approximation and group theory. The stretching nuOH vibration of the hydrogen bond with the Ocdots, three dots, centeredO distance of 2.603A gives characteristic broad AB-type absorption in the IR spectra. The changes of intensity of the AB bands in function of polariser angle are described. Detailed assignments for bands derived from stretching and bending modes of sulphate anions and guanidinium cations were performed. The observed intensities of these bands in polarised infrared spectra were correlated with theoretical calculation of directional cosines of selected transition dipole moments for investigated crystal. The vibrational studies seem to be helpful in understanding of physical and chemical properties of described compound and also in design of new complexes with exactly defined behaviors.
Research on the injectors remanufacturing
NASA Astrophysics Data System (ADS)
Daraba, D.; Alexandrescu, I. M.; Daraba, C.
2017-05-01
During the remanufacturing process, the injector body - after disassembling and cleaning process - should be subjected to some strict control processes, both visually and by an electronic microscope, for evidencing any defects that may occur on the sealing surface of the injector body and the atomizer. In this paper we present the path followed by an injector body in the process of remanufacturing, exemplifying the verification method of roughness and hardness of the sealing surfaces, as well as the microscopic analysis of the sealing surface areas around the inlet. These checks can indicate which path the injector body has to follow during the remanufacturing. The control methodology of the injector body, that is established on the basis of this research, helps preventing some defective injector bodies to enter into the remanufacturing process, thus reducing to a minimum the number of remanufactured injectors to be declared non-conforming after final verification process.
The OptIPuter microscopy demonstrator: enabling science through a transatlantic lightpath
Ellisman, M.; Hutton, T.; Kirkland, A.; Lin, A.; Lin, C.; Molina, T.; Peltier, S.; Singh, R.; Tang, K.; Trefethen, A.E.; Wallom, D.C.H.; Xiong, X.
2009-01-01
The OptIPuter microscopy demonstrator project has been designed to enable concurrent and remote usage of world-class electron microscopes located in Oxford and San Diego. The project has constructed a network consisting of microscopes and computational and data resources that are all connected by a dedicated network infrastructure using the UK Lightpath and US Starlight systems. Key science drivers include examples from both materials and biological science. The resulting system is now a permanent link between the Oxford and San Diego microscopy centres. This will form the basis of further projects between the sites and expansion of the types of systems that can be remotely controlled, including optical, as well as electron, microscopy. Other improvements will include the updating of the Microsoft cluster software to the high performance computing (HPC) server 2008, which includes the HPC basic profile implementation that will enable the development of interoperable clients. PMID:19487201
The OptIPuter microscopy demonstrator: enabling science through a transatlantic lightpath.
Ellisman, M; Hutton, T; Kirkland, A; Lin, A; Lin, C; Molina, T; Peltier, S; Singh, R; Tang, K; Trefethen, A E; Wallom, D C H; Xiong, X
2009-07-13
The OptIPuter microscopy demonstrator project has been designed to enable concurrent and remote usage of world-class electron microscopes located in Oxford and San Diego. The project has constructed a network consisting of microscopes and computational and data resources that are all connected by a dedicated network infrastructure using the UK Lightpath and US Starlight systems. Key science drivers include examples from both materials and biological science. The resulting system is now a permanent link between the Oxford and San Diego microscopy centres. This will form the basis of further projects between the sites and expansion of the types of systems that can be remotely controlled, including optical, as well as electron, microscopy. Other improvements will include the updating of the Microsoft cluster software to the high performance computing (HPC) server 2008, which includes the HPC basic profile implementation that will enable the development of interoperable clients.
Transportation statistics annual report 2000
DOT National Transportation Integrated Search
2001-01-01
The Transportation Statistics Annual Report (TSAR) is a Congressionally mandated publication with wide distribution. The TSAR provides the most comprehensive overview of U.S. transportation that is done on an annual basis. TSAR examines the extent of...
Microscopic Electron Variations Measured Simultaneously By The Cluster Spacecraft
NASA Astrophysics Data System (ADS)
Buckley, A. M.; Carozzi, T. D.; Gough, M. P.; Beloff, N.
Data is used from the Particle Correlator experiments running on each of the four Cluster spacecraft so as to determine common microscopic behaviour in the elec- tron population observed over the macroscopic Cluster separations. The Cluster par- ticle correlator experiments operate by forming on board Auto Correlation Functions (ACFs) generated from short time series of electron counts obtained, as a function of electron energy, from the PEACE HEEA sensor. The information on the microscopic variation of the electron flux covers the frequency range DC up to 41 kHz (encom- passing typical electron plasma frequencies and electron gyro frequencies and their harmonics), the electron energy range is that covered by the PEACE HEEA sensor (within the range 1 eV to 26 keV). Results are presented of coherent electron struc- tures observed simultaneously by the four spacecraft in the differing plasma interac- tion regions and boundaries encountered by Cluster. As an aid to understanding the plasma interactions, use is made of numerical simulations which model both the un- derlying statistical properties of the electrons and also the manner in which particle correlator experiments operate.
Correlation between inflammatory infiltrate and epithelial lining in 214 cases of periapical cysts.
Alcantara, Bárbara Albertini Roquim; Carli, Marina Lara de; Beijo, Luiz Alberto; Pereira, Alessandro Antônio Costa; Hanemann, João Adolfo Costa
2013-01-01
The aim of this study was to evaluate the prevalence of periapical cysts, identify their clinical and microscopic features and correlate their microscopic features with the inflammatory infiltrate present in the lesion site. A total of 214 cases were collected over a 10-year period. Clinical data, including gender, age, race, symptoms and location of the lesion, were recorded. Two independent examiners with no prior knowledge of the patients' clinical data conducted the microscopic evaluations. Statistical analyses were performed using Fisher's or chi-square tests at a 5% level of significance. The results showed that periapical cysts were more prevalent in white women, with a mean age of 35 years, and in the anterosuperior region. The majority of the lesions were lined by atrophic cystic epithelium, which was associated with moderate inflammatory infiltrate in the cystic capsule (p < 0.01), with a diffuse localization pattern (p = 0.03) and absence of neutrophils (p = 0.01). Our findings suggest that periapical cysts lined by atrophic epithelium are related to the presence of moderate mononuclear inflammatory infiltrate.
NASA Astrophysics Data System (ADS)
Nikitaev, V. G.; Pronichev, A. N.; Polyakov, E. V.; Zaharenko, Yu V.
2018-01-01
The paper considers the problem of leukocytes segmentation in microscopic images of bone marrow smears for automated diagnosis of the blood system diseases. The method was proposed to solve the problem of segmentation of contacting leukocytes in images of bone marrow smears. The method is based on the analysis of structure of objects of a separation and distances filter in combination with the watershed method and distance transformation method.
Association/Dissociation Processes in Dense Gases.
1985-08-16
temperature 0 and generally lies 1 0 ke below the dissociation limit (taken as zero energy). The central block E of highly excited " bound levels is...approximate solution of (1.1) with general V(R) "* a large body of literature (see ref. 7) exists on various schemes based on Green’s function,8...be obtained for general mass systems provided the new basic expression introduced here - for RAD(t) is adopted. A The microscopic basis of the
Diffuse diseases of the myocardium: MRI-pathologic review of cardiomyopathies with dilatation.
Giesbrandt, Kirk J; Bolan, Candice W; Shapiro, Brian P; Edwards, William D; Mergo, Patricia J
2013-03-01
In this radiologic-pathologic review of the cardiomyopathies, we present the pertinent imaging findings of diffuse myocardial diseases that are associated with ventricular dilatation, including ischemic cardiomyopathy, nonischemic dilated cardiomyopathy, cardiac sarcoidosis, and iron overload cardiomyopathy. Correlation of the key radiologic findings with gross and microscopic pathologic features is presented, to provide the reader with a focused and in-depth review of the pathophysiology underlying each entity and the basis for the corresponding imaging characteristics.
A new neuroinformatics approach to personalized medicine in neurology: The Virtual Brain
Falcon, Maria I.; Jirsa, Viktor; Solodkin, Ana
2017-01-01
Purpose of review An exciting advance in the field of neuroimaging is the acquisition and processing of very large data sets (so called ‘big data’), permitting large-scale inferences that foster a greater understanding of brain function in health and disease. Yet what we are clearly lacking are quantitative integrative tools to translate this understanding to the individual level to lay the basis for personalized medicine. Recent findings Here we address this challenge through a review on how the relatively new field of neuroinformatics modeling has the capacity to track brain network function at different levels of inquiry, from microscopic to macroscopic and from the localized to the distributed. In this context, we introduce a new and unique multiscale approach, The Virtual Brain (TVB), that effectively models individualized brain activity, linking large-scale (macroscopic) brain dynamics with biophysical parameters at the microscopic level. We also show how TVB modeling provides unique biological interpretable data in epilepsy and stroke. Summary These results establish the basis for a deliberate integration of computational biology and neuroscience into clinical approaches for elucidating cellular mechanisms of disease. In the future, this can provide the means to create a collection of disease-specific models that can be applied on the individual level to personalize therapeutic interventions. Video abstract http://links.lww.com/CONR/A41 PMID:27224088
Designing Intervention Studies: Selected Populations, Range Restrictions, and Statistical Power
ERIC Educational Resources Information Center
Miciak, Jeremy; Taylor, W. Pat; Stuebing, Karla K.; Fletcher, Jack M.; Vaughn, Sharon
2016-01-01
An appropriate estimate of statistical power is critical for the design of intervention studies. Although the inclusion of a pretest covariate in the test of the primary outcome can increase statistical power, samples selected on the basis of pretest performance may demonstrate range restriction on the selection measure and other correlated…
Design-based Sample and Probability Law-Assumed Sample: Their Role in Scientific Investigation.
ERIC Educational Resources Information Center
Ojeda, Mario Miguel; Sahai, Hardeo
2002-01-01
Discusses some key statistical concepts in probabilistic and non-probabilistic sampling to provide an overview for understanding the inference process. Suggests a statistical model constituting the basis of statistical inference and provides a brief review of the finite population descriptive inference and a quota sampling inferential theory.…
42 CFR 417.568 - Adequate financial records, statistical data, and cost finding.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., COMPETITIVE MEDICAL PLANS, AND HEALTH CARE PREPAYMENT PLANS Medicare Payment: Cost Basis § 417.568 Adequate... definitions and accounting, statistics, and reporting practices that are widely accepted in the health care... 42 Public Health 3 2010-10-01 2010-10-01 false Adequate financial records, statistical data, and...
42 CFR 417.568 - Adequate financial records, statistical data, and cost finding.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., COMPETITIVE MEDICAL PLANS, AND HEALTH CARE PREPAYMENT PLANS Medicare Payment: Cost Basis § 417.568 Adequate... definitions and accounting, statistics, and reporting practices that are widely accepted in the health care... 42 Public Health 3 2011-10-01 2011-10-01 false Adequate financial records, statistical data, and...
Statistical Annex: National Report on Schooling in Australia, 1991.
ERIC Educational Resources Information Center
Australian Education Council, Melbourne.
This report enlarges upon the tables and figures in the National Report on Schooling in Australia 1991 and provides a basis for the continuing cooperative development of educational statistics in Australia and better quality statistical information about Australian schooling. The following categories organize the series of figures and tables: (1)…
Using Microsoft Excel to Generate Usage Statistics
ERIC Educational Resources Information Center
Spellman, Rosemary
2011-01-01
At the Libraries Service Center, statistics are generated on a monthly, quarterly, and yearly basis by using four Microsoft Excel workbooks. These statistics provide information about what materials are being requested and by whom. They also give details about why certain requests may not have been filled. Utilizing Excel allows for a shallower…
Larkin, J D; Publicover, N G; Sutko, J L
2011-01-01
In photon event distribution sampling, an image formation technique for scanning microscopes, the maximum likelihood position of origin of each detected photon is acquired as a data set rather than binning photons in pixels. Subsequently, an intensity-related probability density function describing the uncertainty associated with the photon position measurement is applied to each position and individual photon intensity distributions are summed to form an image. Compared to pixel-based images, photon event distribution sampling images exhibit increased signal-to-noise and comparable spatial resolution. Photon event distribution sampling is superior to pixel-based image formation in recognizing the presence of structured (non-random) photon distributions at low photon counts and permits use of non-raster scanning patterns. A photon event distribution sampling based method for localizing single particles derived from a multi-variate normal distribution is more precise than statistical (Gaussian) fitting to pixel-based images. Using the multi-variate normal distribution method, non-raster scanning and a typical confocal microscope, localizations with 8 nm precision were achieved at 10 ms sampling rates with acquisition of ~200 photons per frame. Single nanometre precision was obtained with a greater number of photons per frame. In summary, photon event distribution sampling provides an efficient way to form images when low numbers of photons are involved and permits particle tracking with confocal point-scanning microscopes with nanometre precision deep within specimens. © 2010 The Authors Journal of Microscopy © 2010 The Royal Microscopical Society.
Micrometer-resolved film dosimetry using a microscope in microbeam radiation therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartzsch, Stefan, E-mail: stefan.bartzsch@icr.ac.uk; Oelfke, Uwe; Lott, Johanna
2015-07-15
Purpose: Microbeam radiation therapy (MRT) is a still preclinical tumor therapy approach that uses arrays of a few tens of micrometer wide parallel beams separated by a few 100 μm. The production, measurement, and planning of such radiation fields are a challenge up to now. Here, the authors investigate the feasibility of radiochromic film dosimetry in combination with a microscopic readout as a tool to validate peak and valley doses in MRT, which is an important requirement for a future clinical application of the therapy. Methods: Gafchromic{sup ®} HD-810 and HD-V2 films are exposed to MRT fields at the biomedicalmore » beamline ID17 of the European Synchrotron Radiation Facility (ESRF) and are afterward scanned with a microscope. The measured dose is compared with Monte Carlo calculations. Image analysis tools and film handling protocols are developed that allow accurate and reproducible dosimetry. The performance of HD-810 and HD-V2 films is compared and a detailed analysis of the resolution, noise, and energy dependence is carried out. Measurement uncertainties are identified and analyzed. Results: The dose was measured with a resolution of 5 × 1000 μm{sup 2} and an accuracy of 5% in the peak and between 10% and 15% in the valley region. As main causes for dosimetry uncertainties, statistical noise, film inhomogeneities, and calibration errors were identified. Calibration errors strongly increase at low doses and exceeded 3% for doses below 50 and 70 Gy for HD-V2 and HD-810 films, respectively. While the grain size of both film types is approximately 2 μm, the statistical noise in HD-V2 is much higher than in HD-810 films. However, HD-810 films show a higher energy dependence at low photon energies. Conclusions: Both film types are appropriate for dosimetry in MRT and the microscope is superior to the microdensitometer used before at the ESRF with respect to resolution and reproducibility. However, a very careful analysis of the image data is required. Dosimetry at low photon energies should be performed with great caution due to the energy sensitivity of the films. In this respect, HD-V2 films showed to have an advantage over HD-810 films. However, HD-810 films have a lower statistical noise level. When a higher resolution is required, e.g., for the dosimetry of pencil beam irradiations, noise may render HD-V2 films inapplicable.« less
Vadhana, Sekar; Latha, Jothi; Velmurugan, Natanasabapathy
2015-05-01
This study evaluated the penetration depth of 2% chlorhexidine digluconate (CHX) into root dentinal tubules and the influence of passive ultrasonic irrigation (PUI) using a confocal laser scanning microscope (CLSM). Twenty freshly extracted anterior teeth were decoronated and instrumented using Mtwo rotary files up to size 40, 4% taper. The samples were randomly divided into two groups (n = 10), that is, conventional syringe irrigation (CSI) and PUI. CHX was mixed with Rhodamine B dye and was used as the final irrigant. The teeth were sectioned at coronal, middle and apical levels and viewed under CLSM to record the penetration depth of CHX. The data were statistically analyzed using Kruskal-Wallis and Mann-Whitney U tests. The mean penetration depths of 2% CHX in coronal, middle and apical thirds were 138 µm, 80 µm and 44 µm in CSI group, respectively, whereas the mean penetration depths were 209 µm, 138 µm and 72 µm respectively in PUI group. Statistically significant difference was present between CSI group and PUI group at all three levels (p < 0.01 for coronal third and p < 0.001 for middle and apical thirds). On intragroup analysis, both groups showed statistically significant difference among three levels (p < 0.001). Penetration depth of 2% CHX into root dentinal tubules is deeper in coronal third when compared to middle and apical third. PUI aided in deeper penetration of 2% CHX into dentinal tubules when compared to conventional syringe irrigation at all three levels.
Microscopic calculations of liquid and solid neutron star matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakravarty, Sudip; Miller, Michael D.; Chia-Wei, Woo
1974-02-01
As the first step to a microscopic determination of the solidification density of neutron star matter, variational calculations are performed for both liquid and solid phases using a very simple model potential. The potential, containing only the repulsive part of the Reid /sup 1/S/sub o/ interaction, together with Boltzmann statistics defines a homework problem'' which several groups involved in solidification calculations have agreed to solve. The results were to be compared for the purpose of checking calculational techniques. For the solid energy good agreement with Canuto and Chitre was found. Both the liquid and solid energies are much lower thanmore » those of Pandharipande. It is shown that for this oversimplified model, neutron star matter will remain solid down to ordinary nuclear matter density.« less
Microscopic analysis of currency and stock exchange markets.
Kador, L
1999-08-01
Recently it was shown that distributions of short-term price fluctuations in foreign-currency exchange exhibit striking similarities to those of velocity differences in turbulent flows. Similar profiles represent the spectral-diffusion behavior of impurity molecules in disordered solids at low temperatures. It is demonstrated that a microscopic statistical theory of the spectroscopic line shapes can be applied to the other two phenomena. The theory interprets the financial data in terms of information which becomes available to the traders and their reactions as a function of time. The analysis shows that there is no characteristic time scale in financial markets, but that instead stretched-exponential or algebraic memory functions yield good agreement with the price data. For an algebraic function, the theory yields truncated Lévy distributions which are often observed in stock exchange markets.
Microscopic analysis of currency and stock exchange markets
NASA Astrophysics Data System (ADS)
Kador, L.
1999-08-01
Recently it was shown that distributions of short-term price fluctuations in foreign-currency exchange exhibit striking similarities to those of velocity differences in turbulent flows. Similar profiles represent the spectral-diffusion behavior of impurity molecules in disordered solids at low temperatures. It is demonstrated that a microscopic statistical theory of the spectroscopic line shapes can be applied to the other two phenomena. The theory interprets the financial data in terms of information which becomes available to the traders and their reactions as a function of time. The analysis shows that there is no characteristic time scale in financial markets, but that instead stretched-exponential or algebraic memory functions yield good agreement with the price data. For an algebraic function, the theory yields truncated Lévy distributions which are often observed in stock exchange markets.
Deriving the nuclear shell model from first principles
NASA Astrophysics Data System (ADS)
Barrett, Bruce R.; Dikmen, Erdal; Vary, James P.; Maris, Pieter; Shirokov, Andrey M.; Lisetskiy, Alexander F.
2014-09-01
The results of an 18-nucleon No Core Shell Model calculation, performed in a large basis space using a bare, soft NN interaction, can be projected into the 0 ℏω space, i.e., the sd -shell. Because the 16 nucleons in the 16O core are frozen in the 0 ℏω space, all the correlations of the 18-nucleon system are captured by the two valence, sd -shell nucleons. By the projection, we obtain microscopically the sd -shell 2-body effective interactions, the core energy and the sd -shell s.p. energies. Thus, the input for standard shell-model calculations can be determined microscopically by this approach. If the same procedure is then applied to 19-nucleon systems, the sd -shell 3-body effective interactions can also be obtained, indicating the importance of these 3-body effective interactions relative to the 2-body effective interactions. Applications to A = 19 and heavier nuclei with different intrinsic NN interactions will be presented and discussed. The results of an 18-nucleon No Core Shell Model calculation, performed in a large basis space using a bare, soft NN interaction, can be projected into the 0 ℏω space, i.e., the sd -shell. Because the 16 nucleons in the 16O core are frozen in the 0 ℏω space, all the correlations of the 18-nucleon system are captured by the two valence, sd -shell nucleons. By the projection, we obtain microscopically the sd -shell 2-body effective interactions, the core energy and the sd -shell s.p. energies. Thus, the input for standard shell-model calculations can be determined microscopically by this approach. If the same procedure is then applied to 19-nucleon systems, the sd -shell 3-body effective interactions can also be obtained, indicating the importance of these 3-body effective interactions relative to the 2-body effective interactions. Applications to A = 19 and heavier nuclei with different intrinsic NN interactions will be presented and discussed. Supported by the US NSF under Grant No. 0854912, the US DOE under Grants Nos. DESC0008485 and DE-FG02-87ER40371, the Higher Education Council of Turkey(YOK), and the Ministry of Education and Science of Russian Fed. under contracts P521 and 14.v37.21.1297.
Semistochastic approach to many electron systems
NASA Astrophysics Data System (ADS)
Grossjean, M. K.; Grossjean, M. F.; Schulten, K.; Tavan, P.
1992-08-01
A Pariser-Parr-Pople (PPP) Hamiltonian of an 8π electron system of the molecule octatetraene, represented in a configuration-interaction basis (CI basis), is analyzed with respect to the statistical properties of its matrix elements. Based on this analysis we develop an effective Hamiltonian, which represents virtual excitations by a Gaussian orthogonal ensemble (GOE). We also examine numerical approaches which replace the original Hamiltonian by a semistochastically generated CI matrix. In that CI matrix, the matrix elements of high energy excitations are choosen randomly according to distributions reflecting the statistics of the original CI matrix.
Statistical inference for noisy nonlinear ecological dynamic systems.
Wood, Simon N
2010-08-26
Chaotic ecological dynamic systems defy conventional statistical analysis. Systems with near-chaotic dynamics are little better. Such systems are almost invariably driven by endogenous dynamic processes plus demographic and environmental process noise, and are only observable with error. Their sensitivity to history means that minute changes in the driving noise realization, or the system parameters, will cause drastic changes in the system trajectory. This sensitivity is inherited and amplified by the joint probability density of the observable data and the process noise, rendering it useless as the basis for obtaining measures of statistical fit. Because the joint density is the basis for the fit measures used by all conventional statistical methods, this is a major theoretical shortcoming. The inability to make well-founded statistical inferences about biological dynamic models in the chaotic and near-chaotic regimes, other than on an ad hoc basis, leaves dynamic theory without the methods of quantitative validation that are essential tools in the rest of biological science. Here I show that this impasse can be resolved in a simple and general manner, using a method that requires only the ability to simulate the observed data on a system from the dynamic model about which inferences are required. The raw data series are reduced to phase-insensitive summary statistics, quantifying local dynamic structure and the distribution of observations. Simulation is used to obtain the mean and the covariance matrix of the statistics, given model parameters, allowing the construction of a 'synthetic likelihood' that assesses model fit. This likelihood can be explored using a straightforward Markov chain Monte Carlo sampler, but one further post-processing step returns pure likelihood-based inference. I apply the method to establish the dynamic nature of the fluctuations in Nicholson's classic blowfly experiments.
Bayar, Nuray; Kaymaz, F Figen; Apan, Alpaslan; Yilmaz, Erdal; Cakar, A Nur
2002-05-15
Extracorporeal shockwave lithotripsy (ESWL) has been applied in sialolithiasis as a new treatment modality. The aim of this experimental study is to investigate the local effects of electrohydraulic ESWL applied to the right submandibular gland of the rats. This prospective study was conveyed in four groups; groups I, II, III and IV; each group consisting of 20, 20, 18 and 9 rats, respectively, with a randomized distribution. Groups I, II, III and IV received 250, 500, 1000 and 2000 shock waves at 14-16 kV (average 15.1 kV), respectively, to the right submandibular glands on the 0th day. In groups I, II, III, right submandibular glands of the rats were removed on the 0th, 1st, 7th and 15th days; in group IV, this procedure could be managed only on the 0th and 7th days. Light and electron microscopic evaluation were assessed. Using the light microscopic changes, severity of damage score of the glands (SDS) was found. Statistical analysis was done using SDSs. Light and electron microscopic observations have shown that the damage produced by the shock waves were confined to focal areas in the acinar cells (AC), granulated convoluted tubule (GCT) cells and blood vessels at all doses applied. Vacuolization in the cytoplasms of the AC and GCT cells, disintegration of membranes, alteration in the cytoplasmic organization, swelling of the mitochondria and loss of the features were observed on electron microscopy. Increase in the secretion rate; stasis and dilatation in the blood vessels; blebbing and loss of features in the cytoplasm of the endothelial cells were observed. According to the result of the statistical analysis using SDSs; at 250 shock wave dose, a statistically significant difference between the SDSs of the days (0th, 1st, 7th and 15th) was found (P<0.05). The SDS on the 0th day was found to have the lowest value among the other days. And also a statistically significant difference was found on the 0th day between the SDSs at doses of 250, 500, 1000 and 2000 shock waves (P<0.05). The SDS at 250 and 500 shock waves was found to have the lower value than the SDS at the 2000 shock wave. It was observed that produced damage was less prominent by small doses (250, 500 doses) initially (0th day). Electrohydraulic ESWL caused a "patchy type" generalized pathology on submandibular glands of the rats and damaged focal areas were widespread all through the gland from the 1st day on. Formation of the damage was concluded to be related to the direct effect of the shock waves rather than the dose used. Electrohydraulic lithotripters are not suitable for sialolithiasis because of the focus problems, local tissue damage and the risk of the damage to the adjacent structures.
Qualitative and quantitative interpretation of SEM image using digital image processing.
Saladra, Dawid; Kopernik, Magdalena
2016-10-01
The aim of the this study is improvement of qualitative and quantitative analysis of scanning electron microscope micrographs by development of computer program, which enables automatic crack analysis of scanning electron microscopy (SEM) micrographs. Micromechanical tests of pneumatic ventricular assist devices result in a large number of micrographs. Therefore, the analysis must be automatic. Tests for athrombogenic titanium nitride/gold coatings deposited on polymeric substrates (Bionate II) are performed. These tests include microshear, microtension and fatigue analysis. Anisotropic surface defects observed in the SEM micrographs require support for qualitative and quantitative interpretation. Improvement of qualitative analysis of scanning electron microscope images was achieved by a set of computational tools that includes binarization, simplified expanding, expanding, simple image statistic thresholding, the filters Laplacian 1, and Laplacian 2, Otsu and reverse binarization. Several modifications of the known image processing techniques and combinations of the selected image processing techniques were applied. The introduced quantitative analysis of digital scanning electron microscope images enables computation of stereological parameters such as area, crack angle, crack length, and total crack length per unit area. This study also compares the functionality of the developed computer program of digital image processing with existing applications. The described pre- and postprocessing may be helpful in scanning electron microscopy and transmission electron microscopy surface investigations. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.
The National Ignition Facility modular Kirkpatrick-Baez microscope
Pickworth, L. A.; Ayers, J.; Bell, P.; ...
2016-08-10
Current two-dimensional X-ray imaging at the National Ignition Facility (NIF) uses time resolved pinhole cameras with ~10-25µm pinholes. This method has limitations in the smallest resolvable features that can be imaged with reasonable photon statistics for inertial confinement fusion (ICF) applications. ICF sources have a broadband self-emission spectrum that causes the pinhole images obtained, through thin foil filters, to contain a similarly broadband spectrum complicating the interpretation of structure in the source. In order to study phenomena on the scale of ~5 µm, such as dopant mix in the ICF capsule, a narrow energy band, higher spatial resolution microscope systemmore » with improved signal/noise has been developed using X-ray optics. Utilizing grazing incidence mirrors in a Kirkpatrick-Baez microscope (KBM) configuration, an X-ray microscope has been designed and fielded on NIF with four imaging channels. The KBM has ~12x magnification, <8 µm resolution and higher throughput in comparison to similar pinhole systems. The first KBM mirrors are coated with a multilayer mirror to allow a ‘narrow band’ energy response at 10.2keV with ΔE~3keV. By adjusting the mirror coating only, the energy response can be matched to future experimental requirements. Here, several mirror packs have been commissioned and are interchangeable in the diagnostic snout.« less
The National Ignition Facility modular Kirkpatrick-Baez microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pickworth, L. A.; Ayers, J.; Bell, P.
Current two-dimensional X-ray imaging at the National Ignition Facility (NIF) uses time resolved pinhole cameras with ~10-25µm pinholes. This method has limitations in the smallest resolvable features that can be imaged with reasonable photon statistics for inertial confinement fusion (ICF) applications. ICF sources have a broadband self-emission spectrum that causes the pinhole images obtained, through thin foil filters, to contain a similarly broadband spectrum complicating the interpretation of structure in the source. In order to study phenomena on the scale of ~5 µm, such as dopant mix in the ICF capsule, a narrow energy band, higher spatial resolution microscope systemmore » with improved signal/noise has been developed using X-ray optics. Utilizing grazing incidence mirrors in a Kirkpatrick-Baez microscope (KBM) configuration, an X-ray microscope has been designed and fielded on NIF with four imaging channels. The KBM has ~12x magnification, <8 µm resolution and higher throughput in comparison to similar pinhole systems. The first KBM mirrors are coated with a multilayer mirror to allow a ‘narrow band’ energy response at 10.2keV with ΔE~3keV. By adjusting the mirror coating only, the energy response can be matched to future experimental requirements. Here, several mirror packs have been commissioned and are interchangeable in the diagnostic snout.« less
The National Ignition Facility modular Kirkpatrick-Baez microscope.
Pickworth, L A; Ayers, J; Bell, P; Brejnholt, N F; Buscho, J G; Bradley, D; Decker, T; Hau-Riege, S; Kilkenny, J; McCarville, T; Pardini, T; Vogel, J; Walton, C
2016-11-01
Current two-dimensional X-ray imaging at the National Ignition Facility (NIF) uses time resolved pinhole cameras with ∼10-25 μm pinholes. This method has limitations in the smallest resolvable features that can be imaged with reasonable photon statistics for inertial confinement fusion (ICF) applications. ICF sources have a broadband self-emission spectrum that causes the pinhole images obtained, through thin foil filters, to contain a similarly broadband spectrum complicating the interpretation of structure in the source. In order to study phenomena on the scale of ∼5 μm, such as dopant mix in the ICF capsule, a narrow energy band, higher spatial resolution microscope system with improved signal/noise has been developed using X-ray optics. Utilizing grazing incidence mirrors in a Kirkpatrick-Baez microscope (KBM) configuration [P. Kirkpatrick and A. V. Baez, J. Opt. Soc. Am. 38, 766-774 (1948)], an X-ray microscope has been designed and fielded on NIF with four imaging channels. The KBM has ∼12 × magnification, <8 μm resolution, and higher throughput in comparison to similar pinhole systems. The first KBM mirrors are coated with a multilayer mirror to allow a "narrow band" energy response at 10.2 keV with ΔE ∼ 3 keV. By adjusting the mirror coating only, the energy response can be matched to the future experimental requirements. Several mirror packs have been commissioned and are interchangeable in the diagnostic snout.
40 CFR 91.512 - Request for public hearing.
Code of Federal Regulations, 2010 CFR
2010-07-01
... plans and statistical analyses have been properly applied (specifically, whether sampling procedures and statistical analyses specified in this subpart were followed and whether there exists a basis for... will be made available to the public during Agency business hours. ...
Statistical Measures, Hypotheses, and Tests in Applied Research
ERIC Educational Resources Information Center
Saville, David J.; Rowarth, Jacqueline S.
2008-01-01
This article reviews and discusses the use of statistical concepts in a natural resources and life sciences journal on the basis of a census of the articles published in a recent issue of the "Agronomy Journal" and presents a flow chart and a graph that display the inter-relationships between the most commonly used statistical terms. It also…
NASA Astrophysics Data System (ADS)
Thøgersen, Kjetil; Trømborg, Jørgen Kjoshagen; Sveinsson, Henrik Andersen; Malthe-Sørenssen, Anders; Scheibert, Julien
2014-05-01
To study how macroscopic friction phenomena originate from microscopic junction laws, we introduce a general statistical framework describing the collective behavior of a large number of individual microjunctions forming a macroscopic frictional interface. Each microjunction can switch in time between two states: a pinned state characterized by a displacement-dependent force and a slipping state characterized by a time-dependent force. Instead of tracking each microjunction individually, the state of the interface is described by two coupled distributions for (i) the stretching of pinned junctions and (ii) the time spent in the slipping state. This framework allows for a whole family of microjunction behavior laws, and we show how it represents an overarching structure for many existing models found in the friction literature. We then use this framework to pinpoint the effects of the time scale that controls the duration of the slipping state. First, we show that the model reproduces a series of friction phenomena already observed experimentally. The macroscopic steady-state friction force is velocity dependent, either monotonic (strengthening or weakening) or nonmonotonic (weakening-strengthening), depending on the microscopic behavior of individual junctions. In addition, slow slip, which has been reported in a wide variety of systems, spontaneously occurs in the model if the friction contribution from junctions in the slipping state is time weakening. Next, we show that the model predicts a nontrivial history dependence of the macroscopic static friction force. In particular, the static friction coefficient at the onset of sliding is shown to increase with increasing deceleration during the final phases of the preceding sliding event. We suggest that this form of history dependence of static friction should be investigated in experiments, and we provide the acceleration range in which this effect is expected to be experimentally observable.
Thøgersen, Kjetil; Trømborg, Jørgen Kjoshagen; Sveinsson, Henrik Andersen; Malthe-Sørenssen, Anders; Scheibert, Julien
2014-05-01
To study how macroscopic friction phenomena originate from microscopic junction laws, we introduce a general statistical framework describing the collective behavior of a large number of individual microjunctions forming a macroscopic frictional interface. Each microjunction can switch in time between two states: a pinned state characterized by a displacement-dependent force and a slipping state characterized by a time-dependent force. Instead of tracking each microjunction individually, the state of the interface is described by two coupled distributions for (i) the stretching of pinned junctions and (ii) the time spent in the slipping state. This framework allows for a whole family of microjunction behavior laws, and we show how it represents an overarching structure for many existing models found in the friction literature. We then use this framework to pinpoint the effects of the time scale that controls the duration of the slipping state. First, we show that the model reproduces a series of friction phenomena already observed experimentally. The macroscopic steady-state friction force is velocity dependent, either monotonic (strengthening or weakening) or nonmonotonic (weakening-strengthening), depending on the microscopic behavior of individual junctions. In addition, slow slip, which has been reported in a wide variety of systems, spontaneously occurs in the model if the friction contribution from junctions in the slipping state is time weakening. Next, we show that the model predicts a nontrivial history dependence of the macroscopic static friction force. In particular, the static friction coefficient at the onset of sliding is shown to increase with increasing deceleration during the final phases of the preceding sliding event. We suggest that this form of history dependence of static friction should be investigated in experiments, and we provide the acceleration range in which this effect is expected to be experimentally observable.
Maximum Entropy Methods as the Bridge Between Microscopic and Macroscopic Theory
NASA Astrophysics Data System (ADS)
Taylor, Jamie M.
2016-09-01
This paper is concerned with an investigation into a function of macroscopic variables known as the singular potential, building on previous work by Ball and Majumdar. The singular potential is a function of the admissible statistical averages of probability distributions on a state space, defined so that it corresponds to the maximum possible entropy given known observed statistical averages, although non-classical entropy-like objective functions will also be considered. First the set of admissible moments must be established, and under the conditions presented in this work the set is open, bounded and convex allowing a description in terms of supporting hyperplanes, which provides estimates on the development of singularities for related probability distributions. Under appropriate conditions it is shown that the singular potential is strictly convex, as differentiable as the microscopic entropy, and blows up uniformly as the macroscopic variable tends to the boundary of the set of admissible moments. Applications of the singular potential are then discussed, and particular consideration will be given to certain free-energy functionals typical in mean-field theory, demonstrating an equivalence between certain microscopic and macroscopic free-energy functionals. This allows statements about L^1-local minimisers of Onsager's free energy to be obtained which cannot be given by two-sided variations, and overcomes the need to ensure local minimisers are bounded away from zero and +∞ before taking L^∞ variations. The analysis also permits the definition of a dual order parameter for which Onsager's free energy allows an explicit representation. Also, the difficulties in approximating the singular potential by everywhere defined functions, in particular by polynomial functions, are addressed, with examples demonstrating the failure of the Taylor approximation to preserve relevant shape properties of the singular potential.
VizieR Online Data Catalog: Brussels nuclear reaction rate library (Aikawa+, 2005)
NASA Astrophysics Data System (ADS)
Aikawa, M.; Arnould, M.; Goriely, S.; Jorissen, A.; Takahashi, K.
2005-07-01
The present data is part of the Brussels nuclear reaction rate library (BRUSLIB) for astrophysics applications and concerns nuclear reaction rate predictions calculated within the statistical Hauser-Feshbach approximation and making use of global and coherent microscopic nuclear models for the quantities (nuclear masses, nuclear structure properties, nuclear level densities, gamma-ray strength functions, optical potentials) entering the rate calculations. (4 data files).
Xiao, Bin; Xu, Chang; Liu, Min; Ji, Yi; Yang Li-xun; Li, Tai-ming; Jiang, Jun; He, Tao-zhen
2016-03-01
To investigate the effects of Tetrandrine (TET) prenatal intervention on the differentiation of alveolar epithelial cells type I (AEC I) in rat model of Nitrofen-induced congenital diaphragmatic hernia (CDH). Timed-pregnant Sprague-Dawley rats were divided into three groups, namely control, CDH and TET group on day 9.5 of gestation. The rats in TET group and CDH group were given 125 mg of Nitrofen by gavage one time, while the rats in control group were given the same dose of seed fat. After that, the rats in TET group was given 30 mg/kg of TET by gavage once a day for three days from day 18.5 of gestation, while the rats in CDH and control group were given the same dose of normal saline. On day 21.5 of gestation, all fetuses were delivered by cesarean, the lungs of fetuses were histologically evaluated by microscope and electron microscope. The expressions of type I cell-specific protein (RT140) and thyroid transcription factor 1 (TTF1) in alveolar fluid content were analyzed by RT-PCR and immunohistochemistry staining. To detect the number of AEC I and AEC II of each group by transmission electron microscopy and calculate the percentage of AEC I and AEC II (I/II%). The microscope and electron microscope study found the lungs of fetuses in CDH group showed marked hypoplasia, in contrast to the improvement of hypoplasia in TET fetuses. The pulmonary alveolar area had significant difference statistically (P < 0.01) in each group, which present as control > TET > CDH. I/II% had significant difference statistically (P < 0.01) in each group, which present as control > TET > CDH. The expression level of TTF1 was up-regulated in both CDH and TET groups, and it was higher in CDH group (P < 0.01). The expression level of RT140 were down-regulated in CDH and TET groups, which was lower in CDH group (P < 0.01). The development of AEC I was interfered in CDH rat model, TET prenatal treatment could improve the lung development of CDH.
NASA Technical Reports Server (NTRS)
Stroke, G. W.
1972-01-01
Applications of the optical computer include an approach for increasing the sharpness of images obtained from the most powerful electron microscopes and fingerprint/credit card identification. The information-handling capability of the various optical computing processes is very great. Modern synthetic-aperture radars scan upward of 100,000 resolvable elements per second. Fields which have assumed major importance on the basis of optical computing principles are optical image deblurring, coherent side-looking synthetic-aperture radar, and correlative pattern recognition. Some examples of the most dramatic image deblurring results are shown.
Applications of a global nuclear-structure model to studies of the heaviest elements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moeller, P.; Nix, J.R.
1993-10-01
We present some new results on heavy-element nuclear-structure properties calculated on the basis of the finite-range droplet model and folded-Yukawa single-particle potential. Specifically, we discuss calculations of nuclear ground-state masses and microscopic corrections, {alpha}-decay properties, {beta}-decay properties, fission potential-energy surfaces, and spontaneous-fission half-lives. These results, obtained in a global nuclear-structure approach, are particularly reliable for describing the stability properties of the heaviest elements.
NASA Astrophysics Data System (ADS)
Khan, E.; Suomijärvi, T.; Blumenfeld, Y.; Van Giai, Nguyen; Alamanos, N.; Auger, F.; Bauge, E.; Beaumel, D.; Delaroche, J. P.; Delbourgo-Salvador, P.; Drouart, A.; Fortier, S.; Frascaria, N.; Gillibert, A.; Girod, M.; Jouanne, C.; Kemper, K. W.; Lagoyannis, A.; Lapoux, V.; Lépine-Szily, A.; Lhenry, I.; Libert, J.; Maréchal, F.; Maison, J. M.; Musumarra, A.; Ottini-Hustache, S.; Piattelli, P.; Pita, S.; Pollacco, E. C.; Roussel-Chomaz, P.; Santonocito, D.; Sauvestre, J. E.; Scarpaci, J. A.; Zerguerras, T.
2001-11-01
Proton elastic and inelastic scattering angular distributions to the 2 1+ and 3 1- collective states of the proton-rich nuclei 30S and 34Ar were measured at 53 MeV/ A and 47 MeV/ A, respectively, using secondary beams from the GANIL facility and the MUST silicon strip detector array. Data for the stable 32S nucleus were also obtained at 53 MeV/ A for comparison. A phenomenological analysis was used to deduce the deformation parameters βp,p' for the low-lying collective excitations. A microscopic analysis was performed by generating matter and transition densities from self-consistent QRPA calculations. Configuration mixing calculations based on a collective Bohr Hamiltonian were also performed. DWBA and coupled-channel calculations using microscopic optical potentials built from these densities and the JLM interaction are compared to the data. There is no indication for the presence of proton skins in these nuclei. The microscopic calculations are extended to the even-even sulfur and argon isotopes from A=30 to A=40, and A=34 to A=44, respectively, and compared to available experimental results. On the basis of this analysis predictions are made for the 42,44S and 46Ar nuclei concerning ground state and transition densities.
Review of a bituminous concrete statistical specification : final report.
DOT National Transportation Integrated Search
1971-01-01
The statistically oriented specification for bituminous concrete production reviewed in this report was used as a basis for acceptance of more than one million tons of bituminous concrete in 1970. Data obtained from this system were analyzed for grad...
40 CFR 90.712 - Request for public hearing.
Code of Federal Regulations, 2010 CFR
2010-07-01
... sampling plans and statistical analyses have been properly applied (specifically, whether sampling procedures and statistical analyses specified in this subpart were followed and whether there exists a basis... Clerk and will be made available to the public during Agency business hours. ...
Transportation statistics annual report 1994
DOT National Transportation Integrated Search
1994-01-01
The Transportation Statistics Annual Report (TSAR) provides the most comprehensive overview of U.S. transportation that is done on an annual basis. TSAR examines the extent of the system, how it is used, how well it works, how it affects people and t...
Liu, Chan-Chan; Cheng, Ming-En; Peng, Huasheng; Duan, Hai-Yan; Huang, Luqi
2015-05-01
Authentication is the first priority when evaluating the quality of Chinese herbal medicines, particularly highly toxic medicines. The most commonly used authentication methods are morphological identification and microscopic identification. Unfortunately, these methods could not effectively evaluate some herbs with complex interior structures, such as root of Aconitum species with a circular conical shape and an interior structure with successive changes. Defining the part that should be selected as the standard plays an essential role in accurate microscopic identification. In this study, we first present a visual 3D model of Aconitum carmichaeli Debx. constructed obtained from microscopic analysis of serial sections. Based on this model, we concluded that the point of largest root diameter should be used as the standard for comparison and identification. The interior structure at this point is reproducible and its shape and appearance can easily be used to distinguish among species. We also report details of the interior structures of parts not shown in the 3D model, such as stone cells and cortical thickness. To demonstrate the usefulness of the results from the 3D model, we have distinguished the microscopic structures, at their largest segments, of the other three Aconitum species used for local habitat species of Caowu. This work provides the basis for resolution of some debate regarding the microstructural differences among these species. Thus, we conclude that the 3D model composed of serial sections has enabled the selection of a standard cross-section that will enable the accurate identification of Aconitum species in Chinese medicine. © 2015 Wiley Periodicals, Inc.
Unified equation of state for neutron stars on a microscopic basis
NASA Astrophysics Data System (ADS)
Sharma, B. K.; Centelles, M.; Viñas, X.; Baldo, M.; Burgio, G. F.
2015-12-01
We derive a new equation of state (EoS) for neutron stars (NS) from the outer crust to the core based on modern microscopic calculations using the Argonne v18 potential plus three-body forces computed with the Urbana model. To deal with the inhomogeneous structures of matter in the NS crust, we use a recent nuclear energy density functional that is directly based on the same microscopic calculations, and which is able to reproduce the ground-state properties of nuclei along the periodic table. The EoS of the outer crust requires the masses of neutron-rich nuclei, which are obtained through Hartree-Fock-Bogoliubov calculations with the new functional when they are unknown experimentally. To compute the inner crust, Thomas-Fermi calculations in Wigner-Seitz cells are performed with the same functional. Existence of nuclear pasta is predicted in a range of average baryon densities between ≃0.067 fm-3 and ≃0.0825 fm-3, where the transition to the core takes place. The NS core is computed from the new nuclear EoS assuming non-exotic constituents (core of npeμ matter). In each region of the star, we discuss the comparison of the new EoS with previous EoSs for the complete NS structure, widely used in astrophysical calculations. The new microscopically derived EoS fulfills at the same time a NS maximum mass of 2 M⊙ with a radius of 10 km, and a 1.5 M⊙ NS with a radius of 11.6 km.
Vogel, P; Rüschoff, J; Kümmel, S; Zirngibl, H; Hofstädter, F; Hohenberger, W; Jauch, K W
2000-01-01
We evaluated the incidence and prognostic relevance of microscopic intraperitoneal tumor cell dissemination of colon cancer in comparison with dissemination of gastric cancer as a rational for additive intraperitoneal therapy. Peritoneal washouts of 90 patients with colon and 111 patients with gastric cancer were investigated prospectively. Sixty patients with benign diseases and 8 patients with histologically proven gross visible peritoneal carcinomatosis served as controls. Intraoperatively, 100 ml of warm NaCl 0.9 percent were instilled and 20 ml were reaspirated. In all patients hematoxylin and eosin staining (conventional cytology) was performed. Additionally, in 36 patients with colon cancer and 47 patients with gastric cancer, immunostaining with the HEA-125 antibody (immunocytology) was prepared. The results of cytology were assessed for an association with TNM category and cancer grade, based on all patients, and with patient survival, among the R0 resected patients. In conventional cytology 35.5 percent (32/90) of patients with colon cancer and 42.3 percent (47/111) of patients with gastric cancer had a positive cytology. In immunocytology 47.2 percent (17/36) of patients with colon cancer and 46.8 percent (22/47) of patients with gastric cancer were positive. In colon cancer, positive conventional cytology was associated with pT and M category (P = 0.044 and P = 0.0002), whereas immunocytology was only associated with M category (P = 0.007). No association was found between nodal status and immunocytology in colon cancer and with the grading. There was a statistically significant correlation between pT M category and conventional and immunocytology in gastric cancer (P < 0.0015/P = 0.007 and P < 0.001/P = 0.009, respectively). Positive immunocytology was additionally associated with pN category (P = 0.05). In a univariate analysis of R0 resected patients (no residual tumor), positive immunocytology was significantly related to an unfavorable prognosis in patients with gastric cancer only (n = 30). Mean survival time was significantly increased in patients with gastric cancer with negative cytology compared with positive cytology (1,205 (standard error of the mean, 91) vs. 771 (standard error of the mean, 147) days; P = 0.007) but not in patients with colon cancer (1,215 (standard error of the mean, 95) vs. 1,346 (standard error of the mean, 106) days; P = 0.55). Because microscopic peritoneal dissemination influences survival time after R0 resections only in patients with gastric but not with colon cancer, our results may provide a basis for a decision on additive, prophylactic (intraperitoneal) therapy in gastric but not colon cancer.
Visual neuroscience before the neuron.
Wade, Nicholas J
2004-01-01
Visual neuroscience is considered to be a contemporary concern, based in large part on relating characteristics of neural functioning to visual experience. It presupposes a detailed knowledge of neural activity for which the neuron doctrine is a fundamental tenet. However, long before either the neuron doctrine had been advanced or the nerve cell had been described, attempts were made to estimate the dimensions of nerve fibres from measures of visual resolution. In the seventeenth century, the microscopes of Hooke and van Leeuwenhoek were unable to resolve structures as small as nerves adequately. However, it was not Hooke's microscope that led to an estimate of the dimensions of nerve fibres but his experiments on the limits of visual resolution. Hooke determined that a separation of one minute of arc was the minimum that could normally be seen. Descartes had earlier speculated that the retina consisted of the terminations of fibres of the optic nerve, and that their size defined the limits of what could be seen. Estimates of the diameters of nerve fibres were made on the basis of human visual acuity by Porterfield in 1738; he calculated the diameters of nerve fibres in the retina as one 7200th part of an inch (0.0035 mm), based on the resolution of one minute of arc as the minimum visible. In the same year, Jurin questioned the reliability of such estimates because of variations in visual resolution with different stimuli. The measurement of visual acuity was refined by Mayer in 1755, with dots, gratings, and grids used as stimuli. In the 1830s, Treviranus fused the microscopic and acuity approaches to determine the dimensions of nerve fibres. His indirect estimates of the dimensions of retinal fibres were close to those derived from microscopic observation. However, the suggestion that the retina consisted of terminations of nerve fibres influenced his detailed illustrations of its microscopic structure. Contrary to the situation that obtained after the microscopic structure of the retina had been established, a function of vision (acuity) was used to determine the dimensions of the structures (retinal elements) that were thought to mediate it.
Khalighinejad, Navid; Aminoshariae, Anita; Kulild, James C; Williams, Kristin A; Wang, Jeannie; Mickel, Andre
2017-05-01
The aim of the current investigation was to assess the effect of the use of a dental operating microscope on the outcome of nonsurgical root canal treatment (NS RCT) while treating the mesiobuccal (MB) root of the maxillary first molar. This retrospective investigation included endodontically treated maxillary first molars (ETMs) with apparent adequate previous NS RCT and restorations referred for endodontic retreatment at the endodontic graduate clinic. Inclusion criteria were ETMs that were diagnosed with irreversible pulpitis and normal periapical tissues before the initial NS RCT and ETMs that presented with a minimum of 1 identifiable periapical lesion (PAR) at 1 of the roots at the time of retreatment. One hundred ninety-five ETMs were included and divided into 2 groups: (1) the initial NS RCT had been performed using a microscope (n = 83) and (2) NS RCT had been performed without the use of a microscope (n = 112). Data extracted were whether the second MB (MB2) canal was located initially and the presence of an MB PAR at the time of retreatment. Data were statistically analyzed using binary logistic regression (α = 0.05). The MB root was 3 times more likely to present with a PAR at the time of retreatment if the initial NS RCT was performed without the use of a microscope (P < .05, odds ratio = 3.1). There was a significant association between a missed MB2 canal and an MB PAR in the group in which the initial NS RCT was performed without the use of a microscope (P < .05, odds ratio = 5.1). However, in cases in which the initial NS RCT was performed using a microscope, a missed MB2 canal was not associated with the presence of an MB PAR. With proper education, dentists can gain further insight into recognizing limitations in treating cases that require advanced training and advanced optics such as a microscope. Based on this strategy, it would appear that the outcome of NS RCT can be improved. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Uncertainty Analysis for DAM Projects.
1987-09-01
overwhelming majority of articles published on the use of statistical methodology for geotechnical engineering focus on performance predictions and design ...Results of the present study do not support the adoption of more esoteric statistical procedures except on a special case basis or in research ...influence that recommended statistical procedures might have had on the Carters Project, had they been applied during planning and design phases
Schaid, Daniel J
2010-01-01
Measures of genomic similarity are the basis of many statistical analytic methods. We review the mathematical and statistical basis of similarity methods, particularly based on kernel methods. A kernel function converts information for a pair of subjects to a quantitative value representing either similarity (larger values meaning more similar) or distance (smaller values meaning more similar), with the requirement that it must create a positive semidefinite matrix when applied to all pairs of subjects. This review emphasizes the wide range of statistical methods and software that can be used when similarity is based on kernel methods, such as nonparametric regression, linear mixed models and generalized linear mixed models, hierarchical models, score statistics, and support vector machines. The mathematical rigor for these methods is summarized, as is the mathematical framework for making kernels. This review provides a framework to move from intuitive and heuristic approaches to define genomic similarities to more rigorous methods that can take advantage of powerful statistical modeling and existing software. A companion paper reviews novel approaches to creating kernels that might be useful for genomic analyses, providing insights with examples [1]. Copyright © 2010 S. Karger AG, Basel.
Annual statistical report 2008 : based on data from CARE/EC
DOT National Transportation Integrated Search
2008-10-31
This Annual Statistical Report provides the basic characteristics of road accidents in 19 member states of : the European Union for the period 1997-2006, on the basis of data collected and processed in the CARE : database, the Community Road Accident...
Magnetic resonance spectra and statistical geometry
USDA-ARS?s Scientific Manuscript database
Methods of statistical geometry are introduced which allow one to estimate, on the basis of computable criteria, the conditions under which maximally informative data may be collected. We note the important role of constraints that introduce curvature into parameter space and discuss the appropriate...
NASA Astrophysics Data System (ADS)
Rudoy, Yu. G.; Kotelnikova, O. A.
2012-10-01
The problem of existence of long-range order in the isotropic quantum Heisenberg model on the D=1 lattice is reconsidered in view of the possibility of sufficiently slow decaying exchange interaction with infinite effective radius. It is shown that the macrosopic arguments given by Landau and Lifshitz and then supported microscopically by Mermin and Wagner fail for this case so that the non-zero spontaneous magnetization may yet exist. This result was anticipated by Thouless on the grounds of phenomenological analysis, and we give its microscopic foundation, which amounts to the generalization of Mermin-Wagner theorem for the case of the infinite second moment of the exchange interaction. Two well known in lattice statistics models - i.e., Kac-I and Kac-II - illustrate our results.
Improved silicon nitride for advanced heat engines
NASA Technical Reports Server (NTRS)
Yeh, Harry C.; Fang, Ho T.
1991-01-01
The results of a four year program to improve the strength and reliability of injection-molded silicon nitride are summarized. Statistically designed processing experiments were performed to identify and optimize critical processing parameters and compositions. Process improvements were monitored by strength testing at room and elevated temperatures, and microstructural characterization by optical, scanning electron microscopes, and scanning transmission electron microscope. Processing modifications resulted in a 20 percent strength and 72 percent Weibull slope improvement of the baseline material. Additional sintering aids screening and optimization experiments succeeded in developing a new composition (GN-10) capable of 581.2 MPa at 1399 C. A SiC whisker toughened composite using this material as a matrix achieved a room temperature toughness of 6.9 MPa m(exp .5) by the Chevron notched bar technique. Exploratory experiments were conducted on injection molding of turbocharger rotors.
Using Cell-ID 1.4 with R for Microscope-Based Cytometry
Bush, Alan; Chernomoretz, Ariel; Yu, Richard; Gordon, Andrew
2012-01-01
This unit describes a method for quantifying various cellular features (e.g., volume, total and subcellular fluorescence localization) from sets of microscope images of individual cells. It includes procedures for tracking cells over time. One purposefully defocused transmission image (sometimes referred to as bright-field or BF) is acquired to segment the image and locate each cell. Fluorescent images (one for each of the color channels to be analyzed) are then acquired by conventional wide-field epifluorescence or confocal microscopy. This method uses the image processing capabilities of Cell-ID (Gordon et al., 2007, as updated here) and data analysis by the statistical programming framework R (R-Development-Team, 2008), which we have supplemented with a package of routines for analyzing Cell-ID output. Both Cell-ID and the analysis package are open-source. PMID:23026908
Limit of validity of Ostwald's rule of stages in a statistical mechanical model of crystallization.
Hedges, Lester O; Whitelam, Stephen
2011-10-28
We have only rules of thumb with which to predict how a material will crystallize, chief among which is Ostwald's rule of stages. It states that the first phase to appear upon transformation of a parent phase is the one closest to it in free energy. Although sometimes upheld, the rule is without theoretical foundation and is not universally obeyed, highlighting the need for microscopic understanding of crystallization controls. Here we study in detail the crystallization pathways of a prototypical model of patchy particles. The range of crystallization pathways it exhibits is richer than can be predicted by Ostwald's rule, but a combination of simulation and analytic theory reveals clearly how these pathways are selected by microscopic parameters. Our results suggest strategies for controlling self-assembly pathways in simulation and experiment.
Active mask segmentation of fluorescence microscope images.
Srinivasa, Gowri; Fickus, Matthew C; Guo, Yusong; Linstedt, Adam D; Kovacević, Jelena
2009-08-01
We propose a new active mask algorithm for the segmentation of fluorescence microscope images of punctate patterns. It combines the (a) flexibility offered by active-contour methods, (b) speed offered by multiresolution methods, (c) smoothing offered by multiscale methods, and (d) statistical modeling offered by region-growing methods into a fast and accurate segmentation tool. The framework moves from the idea of the "contour" to that of "inside and outside," or masks, allowing for easy multidimensional segmentation. It adapts to the topology of the image through the use of multiple masks. The algorithm is almost invariant under initialization, allowing for random initialization, and uses a few easily tunable parameters. Experiments show that the active mask algorithm matches the ground truth well and outperforms the algorithm widely used in fluorescence microscopy, seeded watershed, both qualitatively, as well as quantitatively.
Relationship between dynamical entropy and energy dissipation far from thermodynamic equilibrium.
Green, Jason R; Costa, Anthony B; Grzybowski, Bartosz A; Szleifer, Igal
2013-10-08
Connections between microscopic dynamical observables and macroscopic nonequilibrium (NE) properties have been pursued in statistical physics since Boltzmann, Gibbs, and Maxwell. The simulations we describe here establish a relationship between the Kolmogorov-Sinai entropy and the energy dissipated as heat from a NE system to its environment. First, we show that the Kolmogorov-Sinai or dynamical entropy can be separated into system and bath components and that the entropy of the system characterizes the dynamics of energy dissipation. Second, we find that the average change in the system dynamical entropy is linearly related to the average change in the energy dissipated to the bath. The constant energy and time scales of the bath fix the dynamical relationship between these two quantities. These results provide a link between microscopic dynamical variables and the macroscopic energetics of NE processes.
Relationship between dynamical entropy and energy dissipation far from thermodynamic equilibrium
Green, Jason R.; Costa, Anthony B.; Grzybowski, Bartosz A.; Szleifer, Igal
2013-01-01
Connections between microscopic dynamical observables and macroscopic nonequilibrium (NE) properties have been pursued in statistical physics since Boltzmann, Gibbs, and Maxwell. The simulations we describe here establish a relationship between the Kolmogorov–Sinai entropy and the energy dissipated as heat from a NE system to its environment. First, we show that the Kolmogorov–Sinai or dynamical entropy can be separated into system and bath components and that the entropy of the system characterizes the dynamics of energy dissipation. Second, we find that the average change in the system dynamical entropy is linearly related to the average change in the energy dissipated to the bath. The constant energy and time scales of the bath fix the dynamical relationship between these two quantities. These results provide a link between microscopic dynamical variables and the macroscopic energetics of NE processes. PMID:24065832
NASA Astrophysics Data System (ADS)
Sibley, David; Nold, Andreas; Kalliadasis, Serafim
2015-11-01
Density Functional Theory (DFT), a statistical mechanics of fluids approach, captures microscopic details of the fluid density structure in the vicinity of contact lines, as seen in computations in our recent study. Contact lines describe the location where interfaces between two fluids meet solid substrates, and have stimulated a wealth of research due to both their ubiquity in nature and technological applications and also due to their rich multiscale behaviour. Whilst progress can be made computationally to capture the microscopic to mesoscopic structure from DFT, complete analytical results to fully bridge to the macroscale are lacking. In this work, we describe our efforts to bring asymptotic methods to DFT to obtain results for contact angles and other macroscopic quantities in various parameter regimes. We acknowledge financial support from European Research Council via Advanced Grant No. 247031.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Roux, J. A.
Earlier work based on nonlinear guiding center (NLGC) theory suggested that perpendicular cosmic-ray transport is diffusive when cosmic rays encounter random three-dimensional magnetohydrodynamic turbulence dominated by uniform two-dimensional (2D) turbulence with a minor uniform slab turbulence component. In this approach large-scale perpendicular cosmic-ray transport is due to cosmic rays microscopically diffusing along the meandering magnetic field dominated by 2D turbulence because of gyroresonant interactions with slab turbulence. However, turbulence in the solar wind is intermittent and it has been suggested that intermittent turbulence might be responsible for the observation of 'dropout' events in solar energetic particle fluxes on small scales.more » In a previous paper le Roux et al. suggested, using NLGC theory as a basis, that if gyro-scale slab turbulence is intermittent, large-scale perpendicular cosmic-ray transport in weak uniform 2D turbulence will be superdiffusive or subdiffusive depending on the statistical characteristics of the intermittent slab turbulence. In this paper we expand and refine our previous work further by investigating how both parallel and perpendicular transport are affected by intermittent slab turbulence for weak as well as strong uniform 2D turbulence. The main new finding is that both parallel and perpendicular transport are the net effect of an interplay between diffusive and nondiffusive (superdiffusive or subdiffusive) transport effects as a consequence of this intermittency.« less
Cooper, Justin T; Peterson, Eric M; Harris, Joel M
2013-10-01
Due to its high specific surface area and chemical stability, porous silica is used as a support structure in numerous applications, including heterogeneous catalysis, biomolecule immobilization, sensors, and liquid chromatography. Reversed-phase liquid chromatography (RPLC), which uses porous silica support particles, has become an indispensable separations tool in quality control, pharmaceutics, and environmental analysis requiring identification of compounds in mixtures. For complex samples, the need for higher resolution separations requires an understanding of the time scale of processes responsible for analyte retention in the stationary phase. In the present work, single-molecule fluorescence imaging is used to observe transport of individual molecules within RPLC porous silica particles. This technique allows direct measurement of intraparticle molecular residence times, intraparticle diffusion rates, and the spatial distribution of molecules within the particle. On the basis of the localization uncertainty and characteristic measured diffusion rates, statistical criteria were developed to resolve the frame-to-frame behavior of molecules into moving and stuck events. The measured diffusion coefficient of moving molecules was used in a Monte Carlo simulation of a random-walk model within the cylindrical geometry of the particle diameter and microscope depth-of-field. The simulated molecular transport is in good agreement with the experimental data, indicating transport of moving molecules in the porous particle is described by a random-walk. Histograms of stuck-molecule event times, locations, and their contributions to intraparticle residence times were also characterized.
Iris melanocyte numbers in Asian, African American, and Caucasian irides.
Albert, Daniel M; Green, W Richard; Zimbric, Michele L; Lo, Cecilia; Gangnon, Ronald E; Hope, Kirsten L; Gleiser, Joel
2003-01-01
PURPOSE: The anatomical basis for iris color has long been a controversial issue in ophthalmology. Recent studies demonstrated that in Caucasians, blue-eyed, gray-eyed, and hazel-eyed individuals have comparable numbers of iris melanocytes. The present investigation was carried out to compare melanocyte numbers in the irides of Asian, African American, and Caucasian brown-eyed individuals. METHODS: Paraffin-embedded sections from 71 brown-colored irides were incubated with rabbit anti-cow antibody against S100a, linked with an FITC conjugate antibody, and counterstained with Evans blue. Cells were counted under a fluorescence microscope and scored as melanocytes or other cells. Cell number, density, and iris area were calculated for each specimen. RESULTS: Caucasian and African American irides had comparable mean total melanocyte numbers. Asian irides had fewer total melanocytes than African American (P = .042) and Caucasian (P = .001) irides and smaller total number of cells (ie, melanocytes plus other cells) than African American (P = .054) or Caucasian (P = .009) irides. CONCLUSIONS: There is a statistically significant smaller mean total melanocyte number and mean total cellularity in Asian irides as compared to Caucasian and African American irides. This difference appears to be due to the combination of smaller iris area and lower melanocyte density in the Asian irides. The possibility exists that this may be a factor in ethnic variations in certain ocular diseases. PMID:14971580
Kunimitsu, Ayano
2009-01-01
Background The accuracy of malaria case reporting is challenging due to restricted human and material resources in many countries. The reporting often depends on the clinical diagnosis because of the scarcity of microscopic examinations. Particularly, clinical malaria case reporting by primary health care facilities (local clinics), which constitutes the baseline data of surveillance, has never previously been sufficiently evaluated. In order to improve the malaria reporting system to the level required to eventually eliminate this disease, this study estimates the gaps between the records of clinics and government statistics regarding the incidence of clinical malaria, and then also examines some factors that might explain the data discrepancy, including such variables as clinic staffing and record keeping. Methods All medical records for outpatients in 2007, handwritten by nurses, were collected from local clinics in Honiara, the capital of the Solomon Islands. The all-monthly clinical malaria cases were then recalculated. The corresponding monthly data in official statistics were provided by the government. Next, in order to estimate any data discrepancy, the ratio of the cases recorded at clinics to the cases reported to the government was determined on the monthly basis. Finally, the associations between the monthly discrepancy and other variables were evaluated by a multiple regression analysis. Results The mean data discrepancy between the records of clinics and government statistics was 21.2% (n = 96). Significant associations were observed between the discrepancy and the average number of patients (coefficient: 0.05, 95%CI: 0.31, 0.07), illegible handwriting (coefficient: 0.09, 95%CI: 0.04, 0.15), the use of tally sheets (coefficient:-0.38, 95%CI: -0.54, -0.22), and the clinic level (coefficient:-0.48, 95%CI:-0.89,-0.06). Conclusion The findings of this study demonstrate the huge data discrepancy between the records of clinics and government statistics in regard to clinical malaria case reporting. Moreover, the high numbers of patients, illegible writing, the disuse of tally sheets, and insufficient resources at some clinics are likely to be related to the increase in the discrepancy. The clinical malaria case reporting at the local clinic level therefore urgently needs improvement, in order to achieve both better malaria surveillance and to also eventually eliminate this disease in the Solomon Islands. PMID:19389239
Statistical-Mechanical Study of Polyvinylidene Fluoride.
1984-06-01
been thoroughly investigated. The time-dependence and microscopic origin of the poling . over... .DO 9 0nt7 OF I 1oNOV GS IS OSMLETE UNCLASSIFIED 84 07...8217% ._-.’.\\ ,’a ,> . m - _’ . - . -. . ...--- , .:-. - 3 The dynamics of the process, known as poling , by which piezoelectric activity is induced...was also studied theoretically. The very short poling times, of the order of microseconds, predicted by the theory have since been confirmed
NASA Astrophysics Data System (ADS)
Zorin, A. B.
1985-03-01
In the present, quantum-statistical analysis of SIS heterodyne mixer performance, the conventional three-port model of the mixer circuit and the microscopic theory of superconducting tunnel junctions are used to derive a general expression for a noise parameter previously used for the case of parametric amplifiers. This expression is numerically evaluated for various quasiparticle current step widths, dc bias voltages, local oscillator powers, signal frequencies, signal source admittances, and operation temperatures.
Jayarajan, Jayanth; Janardhanam, P; Jayakumar, P
2011-01-01
Remineralization as a treatment procedure has received a lot of attention both from clinicians as well researchers. The objective of this in vitro study was to find out the efficacy of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) and casein phosphopeptide-amorphous calcium phosphate fluoride (CPP-ACPF) in remineralizing enamel surface on which artificial caries lesion had been created. The changes were analyzed using DIAGNOdent (KaVo) and scanning electron microscope (SEM). Ninety maxillary premolars were selected and divided into three groups of 30 teeth each: A (artificial saliva), B (CPP-ACP), and C (CPP-ACPF). All the samples were assessed using DIAGNOdent at the baseline and after demineralization and remineralization. Three samples were randomly selected from each group after remineralization for surface evaluation using SEM. Statistical analysis showed that group B {CPP-ACP (4.1 ± 1.8)} and group C {CPP-ACPF (4.8 ± 1.2)} had a significantly higher amount of remineralization than group A (1.7 ± 0.7). All the three groups showed a statistically significant amount of remineralization. However, because of the added benefit of fluoride (NaF 0.2%), CPP-ACPF (Tooth Mousse-Plus) showed marginally more amount of remineralization than CPP-ACP (Tooth Mousse).
Reaction rates for mesoscopic reaction-diffusion kinetics
Hellander, Stefan; Hellander, Andreas; Petzold, Linda
2015-02-23
The mesoscopic reaction-diffusion master equation (RDME) is a popular modeling framework frequently applied to stochastic reaction-diffusion kinetics in systems biology. The RDME is derived from assumptions about the underlying physical properties of the system, and it may produce unphysical results for models where those assumptions fail. In that case, other more comprehensive models are better suited, such as hard-sphere Brownian dynamics (BD). Although the RDME is a model in its own right, and not inferred from any specific microscale model, it proves useful to attempt to approximate a microscale model by a specific choice of mesoscopic reaction rates. In thismore » paper we derive mesoscopic scale-dependent reaction rates by matching certain statistics of the RDME solution to statistics of the solution of a widely used microscopic BD model: the Smoluchowski model with a Robin boundary condition at the reaction radius of two molecules. We also establish fundamental limits on the range of mesh resolutions for which this approach yields accurate results and show both theoretically and in numerical examples that as we approach the lower fundamental limit, the mesoscopic dynamics approach the microscopic dynamics. Finally, we show that for mesh sizes below the fundamental lower limit, results are less accurate. Thus, the lower limit determines the mesh size for which we obtain the most accurate results.« less
Effect of honey on bacterial translocation and intestinal morphology in obstructive jaundice
Gencay, Cem; Kilicoglu, Sibel Serin; Kismet, Kemal; Kilicoglu, Bulent; Erel, Serap; Muratoglu, Sabahattin; Sunay, Asli Elif; Erdemli, Esra; Akkus, Mehmet Ali
2008-01-01
AIM: To evaluate the effects of honey on bacterial translocation and intestinal villus histopathology in experimental obstructive jaundice. METHODS: Thirty Wistar-Albino rats were randomly divided into three groups each including 10 animals: group I, sham-operated; group II, ligation and section of the common bile duct (BDL); group III, bile duct ligation followed by oral supplementation of honey (BDL + honey) 10 g/kg per day. Liver, blood, spleen, mesenteric lymph nodes, and ileal samples were taken for microbiological, light and transmission electrone microscopic examination. RESULTS: Although the number of villi per centimeter and the height of the mucosa were higher in sham group, there was no statistically significant difference between sham and BDL + honey groups (P > 0.05). On the other hand, there was a statistically significant difference between BDL group and other groups (P < 0.05). The electron microscopic changes were also different between these groups. Sham and honey groups had similar incidence of bacterial translocation (P > 0.05). BDL group had significantly higher rates of bacterial translocation as compared with sham and honey groups. Bacterial translocation was predominantly detected in mesenteric lymph nodes. CONCLUSION: Supplementation of honey in presence of obstructive jaundice ameliorates bacterial translocation and improves ileal morphology. PMID:18528939
Reaction rates for mesoscopic reaction-diffusion kinetics
Hellander, Stefan; Hellander, Andreas; Petzold, Linda
2016-01-01
The mesoscopic reaction-diffusion master equation (RDME) is a popular modeling framework frequently applied to stochastic reaction-diffusion kinetics in systems biology. The RDME is derived from assumptions about the underlying physical properties of the system, and it may produce unphysical results for models where those assumptions fail. In that case, other more comprehensive models are better suited, such as hard-sphere Brownian dynamics (BD). Although the RDME is a model in its own right, and not inferred from any specific microscale model, it proves useful to attempt to approximate a microscale model by a specific choice of mesoscopic reaction rates. In this paper we derive mesoscopic scale-dependent reaction rates by matching certain statistics of the RDME solution to statistics of the solution of a widely used microscopic BD model: the Smoluchowski model with a Robin boundary condition at the reaction radius of two molecules. We also establish fundamental limits on the range of mesh resolutions for which this approach yields accurate results and show both theoretically and in numerical examples that as we approach the lower fundamental limit, the mesoscopic dynamics approach the microscopic dynamics. We show that for mesh sizes below the fundamental lower limit, results are less accurate. Thus, the lower limit determines the mesh size for which we obtain the most accurate results. PMID:25768640
Doskocz, Joanna; Drabik, Dominik; Chodaczek, Grzegorz; Przybyło, Magdalena; Langner, Marek
2018-06-01
Bending rigidity coefficient describes propensity of a lipid bilayer to deform. In order to measure the parameter experimentally using flickering noise spectroscopy, the microscopic imaging is required, which necessitates the application of giant unilamellar vesicles (GUV) lipid bilayer model. The major difficulty associated with the application of the model is the statistical character of GUV population with respect to their size and the homogeneity of lipid bilayer composition, if a mixture of lipids is used. In the paper, the bending rigidity coefficient was measured using the fluorescence-enhanced flicker-noise spectroscopy. In the paper, the bending rigidity coefficient was determined for large populations of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine and 1,2-dioleoyl-sn-glycero-3-phosphocholine vesicles. The quantity of obtained experimental data allows to perform statistical analysis aiming at the identification of the distribution, which is the most appropriate for the calculation of the value of the membrane bending rigidity coefficient. It has been demonstrated that the bending rigidity coefficient is characterized by an asymmetrical distribution, which is well approximated with the gamma distribution. Since there are no biophysical reasons for that we propose to use the difference between normal and gamma fits as a measure of the homogeneity of vesicle population. In addition, the effect of a fluorescent label and types of instrumental setups on determined values has been tested. Obtained results show that the value of the bending rigidity coefficient does not depend on the type of a fluorescent label nor on the type of microscope used.
Institutional Image Indicators of Three Universities: Basis for Attracting Prospective Entrants
ERIC Educational Resources Information Center
Bringula, Rex P.; Basa, Roselle S.
2011-01-01
This study determined the student profile and enrollment of the three Universities in the University Belt. It also found out the respondents' level of consideration concerning the institutional image indicators that served as basis for attracting prospective entrants. Descriptive statistics revealed the following: most of the respondents belonged…
Tigala, Snehlata; Sharma, Anu Rani; Sachdeva, Kamna
2018-06-04
The paper subsumes a framework that assesses health risk due to exposure to different fuel combustion through articulation of modern microscopic techniques, empirical equations, lung diagnostic tools and a pre-existing model that has been extrapolated to futuristic aspects (within controlled conditions). The framework was tested on 132 household cooks belonging to different age groups and using different types of fuel. The inhalable fraction released during fuel combustion varied in morphological characteristics and deposition site. Micrographs obtained using Scanning Electron Microscope (SEM) analysis of (biomass smoke) soot indicates aggregate formation attributing to a higher level of health risk. Further, abnormal ventilatory function along with higher risk (RR > 1) was more evident within biomass fuel users. The condition further exacerbates while using dung cakes due to high levels of emissions (294.3 particles/liter) that deposit in the upper respiratory tract (0.0899). Further, the population attributable risk percent (79%) calculated on the basis of cooking behavior suggests a 'rural culture' health determinant as clean fuel usage is not practiced as an outcome of low literacy and poor income in the region. These preliminary findings highlight the drudgery of impuissant women who are exposed to high particulate emissions on a regular basis which results in reduced lung function. Nevertheless, further cogitation is required to eliminate the limitations in this study and explore further linkages between exposure and vulnerable group to generate meaningful policy recommendations. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhi, Jie; Zhao, Libin; Zhang, Jianyu; Liu, Zhanli
2016-06-01
In this paper, a new numerical method that combines a surface-based cohesive model and extended finite element method (XFEM) without predefining the crack paths is presented to simulate the microscopic damage evolution in composites under uniaxial transverse tension. The proposed method is verified to accurately capture the crack kinking into the matrix after fiber/matrix debonding. A statistical representative volume element (SRVE) under periodic boundary conditions is used to approximate the microstructure of the composites. The interface parameters of the cohesive models are investigated, in which the initial interface stiffness has a great effect on the predictions of the fiber/matrix debonding. The detailed debonding states of SRVE with strong and weak interfaces are compared based on the surface-based and element-based cohesive models. The mechanism of damage in composites under transverse tension is described as the appearance of the interface cracks and their induced matrix micro-cracking, both of which coalesce into transversal macro-cracks. Good agreement is found between the predictions of the model and the in situ experimental observations, demonstrating the efficiency of the presented model for simulating the microscopic damage evolution in composites.
Droplets and the three-phase contact line at the nano-scale. Statics and dynamics
NASA Astrophysics Data System (ADS)
Yatsyshin, Petr; Sibley, David; Savva, Nikos; Kalliadasis, Serafim
2014-11-01
Understanding the behaviour of the solid-liquid-vapour contact line at the scale of several tens of molecular diameters is important in wetting hydrodynamics with applications in micro- and nano-fluidics, including the design of lab-on-a-chip devices and surfaces with specific wetting properties. Due to the fluid inhomogeneity at the nano-scale, the application of continuum-mechanical approaches is limited, and a natural way to remedy this is to seek descriptions accounting for the non-local molecular-level interactions. Density Functional Theory (DFT) for fluids offers a statistical-mechanical framework based on expressing the free energy of the fluid-solid pair as a functional of the spatially varying fluid density. DFT allows us to investigate small drops deposited on planar substrates whilst keeping track of the microscopic structural details of the fluid. Starting from a model of intermolecular forces, we systematically obtain interfaces, surface tensions, and the microscopic contact angle. Using a dynamic extension of equilibrium DFT, we investigate the diffusion-driven evolution of the three-phase contact line to gain insight into the dynamic behaviour of the microscopic contact angle, which is still under debate.
NASA Astrophysics Data System (ADS)
Yang, Bo; Yoon, Ji Wei; Monterola, Christopher
We present large scale, detailed analysis of the microscopic empirical data of the congested traffic flow, focusing on the non-linear interactions between the components of the many-body traffic system. By implementing a systematic procedure that averages over relatively unimportant factors, we extract the effective dependence of the acceleration on the gap between the vehicles, velocity and relative velocity. Such relationship is characterised not just by a few vehicles but the traffic system as a whole. Several interesting features of the detailed vehicle-to-vehicle interactions are revealed, including the stochastic distribution of the human responses, relative importance of the non-linear terms in different density regimes, symmetric response to the relative velocity, and the insensitivity of the acceleration to the velocity within a certain gap and velocity range. The latter leads to a multitude of steady-states without a fundamental diagram. The empirically constructed functional dependence of the acceleration on the important dynamical quantities not only gives the detailed collective driving behaviours of the traffic system, it also serves as the fundamental reference for the validations of the deterministic and stochastic microscopic traffic models in the literature.
Agent-based model with multi-level herding for complex financial systems
NASA Astrophysics Data System (ADS)
Chen, Jun-Jie; Tan, Lei; Zheng, Bo
2015-02-01
In complex financial systems, the sector structure and volatility clustering are respectively important features of the spatial and temporal correlations. However, the microscopic generation mechanism of the sector structure is not yet understood. Especially, how to produce these two features in one model remains challenging. We introduce a novel interaction mechanism, i.e., the multi-level herding, in constructing an agent-based model to investigate the sector structure combined with volatility clustering. According to the previous market performance, agents trade in groups, and their herding behavior comprises the herding at stock, sector and market levels. Further, we propose methods to determine the key model parameters from historical market data, rather than from statistical fitting of the results. From the simulation, we obtain the sector structure and volatility clustering, as well as the eigenvalue distribution of the cross-correlation matrix, for the New York and Hong Kong stock exchanges. These properties are in agreement with the empirical ones. Our results quantitatively reveal that the multi-level herding is the microscopic generation mechanism of the sector structure, and provide new insight into the spatio-temporal interactions in financial systems at the microscopic level.
Agent-based model with multi-level herding for complex financial systems
Chen, Jun-Jie; Tan, Lei; Zheng, Bo
2015-01-01
In complex financial systems, the sector structure and volatility clustering are respectively important features of the spatial and temporal correlations. However, the microscopic generation mechanism of the sector structure is not yet understood. Especially, how to produce these two features in one model remains challenging. We introduce a novel interaction mechanism, i.e., the multi-level herding, in constructing an agent-based model to investigate the sector structure combined with volatility clustering. According to the previous market performance, agents trade in groups, and their herding behavior comprises the herding at stock, sector and market levels. Further, we propose methods to determine the key model parameters from historical market data, rather than from statistical fitting of the results. From the simulation, we obtain the sector structure and volatility clustering, as well as the eigenvalue distribution of the cross-correlation matrix, for the New York and Hong Kong stock exchanges. These properties are in agreement with the empirical ones. Our results quantitatively reveal that the multi-level herding is the microscopic generation mechanism of the sector structure, and provide new insight into the spatio-temporal interactions in financial systems at the microscopic level. PMID:25669427
From atoms to steps: The microscopic origins of crystal evolution
NASA Astrophysics Data System (ADS)
Patrone, Paul N.; Einstein, T. L.; Margetis, Dionisios
2014-07-01
The Burton-Cabrera-Frank (BCF) theory of crystal growth has been successful in describing a wide range of phenomena in surface physics. Typical crystal surfaces are slightly misoriented with respect to a facet plane; thus, the BCF theory views such systems as composed of staircase-like structures of steps separating terraces. Adsorbed atoms (adatoms), which are represented by a continuous density, diffuse on terraces, and steps move by absorbing or emitting these adatoms. Here we shed light on the microscopic origins of the BCF theory by deriving a simple, one-dimensional (1D) version of the theory from an atomistic, kinetic restricted solid-on-solid (KRSOS) model without external material deposition. We define the time-dependent adatom density and step position as appropriate ensemble averages in the KRSOS model, thereby exposing the non-equilibrium statistical mechanics origins of the BCF theory. Our analysis reveals that the BCF theory is valid in a low adatom-density regime, much in the same way that an ideal gas approximation applies to dilute gasses. We find conditions under which the surface remains in a low-density regime and discuss the microscopic origin of corrections to the BCF model.
Dinis, L.; Petrov, D.; Parrondo, J. M. R.; Rica, R. A.
2016-01-01
The Carnot cycle imposes a fundamental upper limit to the efficiency of a macroscopic motor operating between two thermal baths1. However, this bound needs to be reinterpreted at microscopic scales, where molecular bio-motors2 and some artificial micro-engines3–5 operate. As described by stochastic thermodynamics6,7, energy transfers in microscopic systems are random and thermal fluctuations induce transient decreases of entropy, allowing for possible violations of the Carnot limit8. Here we report an experimental realization of a Carnot engine with a single optically trapped Brownian particle as the working substance. We present an exhaustive study of the energetics of the engine and analyse the fluctuations of the finite-time efficiency, showing that the Carnot bound can be surpassed for a small number of non-equilibrium cycles. As its macroscopic counterpart, the energetics of our Carnot device exhibits basic properties that one would expect to observe in any microscopic energy transducer operating with baths at different temperatures9–11. Our results characterize the sources of irreversibility in the engine and the statistical properties of the efficiency—an insight that could inspire new strategies in the design of efficient nano-motors. PMID:27330541
NASA Astrophysics Data System (ADS)
Gallwas, Julia; Jalilova, Aydan; Ladurner, Roland; Kolben, Theresa Maria; Kolben, Thomas; Ditsch, Nina; Homann, Christian; Lankenau, Eva; Dannecker, Christian
2017-01-01
Optical coherence tomography (OCT) is a noninvasive high-resolution imaging technique that permits the detection of cancerous and precancerous lesions of the uterine cervix. The purpose of this study was to evaluate a new system that integrates an OCT device into a microscope. OCT images were taken from loop electrosurgical excision procedure (LEEP) specimens under microscopic guidance. The images were blinded with respect to their origin within the microscopic image and analyzed independently by two investigators using initially defined criteria and later compared to the corresponding histology. Sensitivity and specificity were calculated with respect to the correct identification of high-grade squamous intraepithelial lesions (HSIL). The interinvestigator agreement was assessed by using Cohen's kappa statistics. About 160 OCT images were obtained from 20 LEEP specimens. Sixty randomly chosen images were used to define reproducible criteria for evaluation. The assessment of the remaining 100 images showed a sensitivity of 88% (second investigator 84%) and a specificity of 69% (65%) in detecting HSIL. Surgical microscopy-guided OCT appears to be a promising technique for immediate assessment of microanatomical changes. In the gynecological setting, the combination of OCT with a colposcope may improve the detection of high-grade squamous intraepithelial lesions.
Directory of Agencies Collecting Statistical Data from College & University Libraries.
ERIC Educational Resources Information Center
LaBrake, Lynn B., Ed.
This directory of organizations and agencies that survey academic libraries for statistical information on a regular basis includes 104 organizations representing state and federal agencies, college and university administrative bodies, accrediting organizations, all types of library organizations and associations, and publishers. The directory…
NASA Astrophysics Data System (ADS)
Hla, Saw Wai
2014-05-01
Atomic manipulation using a scanning tunneling microscope (STM) tip enables the construction of quantum structures on an atom-by-atom basis, as well as the investigation of the electronic and dynamical properties of individual atoms on a one-atom-at-a-time basis. An STM is not only an instrument that is used to ‘see’ individual atoms by means of imaging, but is also a tool that is used to ‘touch’ and ‘take’ the atoms, or to ‘hear’ their movements. Therefore, the STM can be considered as the ‘eyes’, ‘hands’ and ‘ears’ of the scientists, connecting our macroscopic world to the exciting atomic world. In this article, various STM atom manipulation schemes and their example applications are described. The future directions of atomic level assembly on surfaces using scanning probe tips are also discussed.
The validity of multiphase DNS initialized on the basis of single--point statistics
NASA Astrophysics Data System (ADS)
Subramaniam, Shankar
1999-11-01
A study of the point--process statistical representation of a spray reveals that single--point statistical information contained in the droplet distribution function (ddf) is related to a sequence of single surrogate--droplet pdf's, which are in general different from the physical single--droplet pdf's. The results of this study have important consequences for the initialization and evolution of direct numerical simulations (DNS) of multiphase flows, which are usually initialized on the basis of single--point statistics such as the average number density in physical space. If multiphase DNS are initialized in this way, this implies that even the initial representation contains certain implicit assumptions concerning the complete ensemble of realizations, which are invalid for general multiphase flows. Also the evolution of a DNS initialized in this manner is shown to be valid only if an as yet unproven commutation hypothesis holds true. Therefore, it is questionable to what extent DNS that are initialized in this manner constitute a direct simulation of the physical droplets.
Confocal Microscopy of Jammed Matter: From Elasticity to Granular Thermodynamics
NASA Astrophysics Data System (ADS)
Jorjadze, Ivane
Packings of particles are ubiquitous in nature and are of interest not only to the scientific community but also to the food, pharmaceutical, and oil industries. In this thesis we use confocal microscopy to investigate packing geometry and stress transmission in 3D jammed particulate systems. By introducing weak depletion attraction we probe the accessible phase-space and demonstrate that a microscopic approach to jammed matter gives validity to statistical mechanics framework, which is intriguing because our particles are not thermally activated. We show that the fluctuations of the local packing parameters can be successfully captured by the recently proposed 'granocentric' model, which generates packing statistics according to simple stochastic processes. This model enables us to calculate packing entropy and granular temperature, the so-called 'compactivity', therefore, providing a basis for a statistical mechanics of granular matter. At a jamming transition point at which there are formed just enough number of contacts to guarantee the mechanical stability, theoretical arguments suggest a singularity which gives rise to the surprising scaling behavior of the elastic moduli and the microstructure, as observed in numerical simulations. Since the contact network in 3D is typically hidden from view, experimental test of the scaling law between the coordination number and the applied pressure is lacking in the literature. Our data show corrections to the linear scaling of the pressure with density which takes into account the creation of contacts. Numerical studies of vibrational spectra, in turn, reveal sudden features such as excess of low frequency modes, dependence of mode localization and structure on the pressure. Chapter four describes the first calculation of vibrational density of states from the experimental 3D data and is in qualitative agreement with the analogous computer simulations. We study the configurational role of the pressure and demonstrate that low frequency modes become progressively localized as the packing density is increased. Another application of our oil-in-water emulsions serves to mimic cell adhesion in biological tissues. By analyzing the microstructure in 3D we find that a threshold compression force is necessary to overcome electrostatic repulsion and surface elasticity and establish protein-mediated adhesion.
ERIC Educational Resources Information Center
Nicholson, James; Ridgway, Jim
2017-01-01
White and Gorard make important and relevant criticisms of some of the methods commonly used in social science research, but go further by criticising the logical basis for inferential statistical tests. This paper comments briefly on matters we broadly agree on with them and more fully on matters where we disagree. We agree that too little…
Zhu, Xingjun; Feng, Wei; Chang, Jian; Tan, Yan-Wen; Li, Jiachang; Chen, Min; Sun, Yun; Li, Fuyou
2016-01-01
Photothermal therapy (PTT) at present, following the temperature definition for conventional thermal therapy, usually keeps the temperature of lesions at 42–45 °C or even higher. Such high temperature kills cancer cells but also increases the damage of normal tissues near lesions through heat conduction and thus brings about more side effects and inhibits therapeutic accuracy. Here we use temperature-feedback upconversion nanoparticle combined with photothermal material for real-time monitoring of microscopic temperature in PTT. We observe that microscopic temperature of photothermal material upon illumination is high enough to kill cancer cells when the temperature of lesions is still low enough to prevent damage to normal tissue. On the basis of the above phenomenon, we further realize high spatial resolution photothermal ablation of labelled tumour with minimal damage to normal tissues in vivo. Our work points to a method for investigating photothermal properties at nanoscale, and for the development of new generation of PTT strategy. PMID:26842674
Chemical and microscopic characterization of outer seed coats of fossil and extant water plants
NASA Astrophysics Data System (ADS)
van Bergen, P. F.; Goñi, M.; Collinson, M. E.; Barrie, P. J.; Damsté, J. S. Sinninghe; De Leeuw, J. W.
1994-09-01
Sclerotic outer seed coat layers (testae) of three fossil and two extant water plant species were analyzed using scanning electron and light microscopy in addition to Curie-point pyrolysis, solid state 13C NMR, and CuO oxidation. Comparison between the chemical results from the fossil and extant samples reveals that the original resistant constituents in the sclerotic testae are native lignin-celluloses which are transformed to polyphenol macromolecules recognized in the fossil samples. The combination of microscopic and chemical data provides new insights regarding the early diagenetic processes by which lignin-cellulose-containing plant remains may have been transformed. In particular, the unaltered morphology in combination with major chemical modifications is used as the basis to postulate the timing and nature of lignin transformations. The combination of pyrolysis, solid state 13C NMR, and CuO oxidation is shown to be a powerful tool to characterize the chemical structure of testae of fossil and extant water plants.
Dependence of the ferroelectric domain shape on the electric field of the microscope tip
DOE Office of Scientific and Technical Information (OSTI.GOV)
Starkov, Alexander S.; Starkov, Ivan A., E-mail: starkov@feec.vutbr.cz
2015-08-21
A theory of an equilibrium shape of the domain formed in an electric field of a scanning force microscope (SFM) tip is proposed. We do not assume a priori that the domain has a fixed form. The shape of the domain is defined by the minimum of the free energy of the ferroelectric. This energy includes the energy of the depolarization field, the energy of the domain wall, and the energy of the interaction between the domain and the electric field of the SFM tip. The contributions of the apex and conical part of the tip are examined. Moreover, inmore » the proposed approach, any narrow tip can be considered. The surface energy is determined on the basis of the Ginzburg-Landau-Devonshire theory and takes into account the curvature of the domain wall. The variation of the free energy with respect to the domain shape leads to an integro-differential equation, which must be solved numerically. Model results are illustrated for lithium tantalate ceramics.« less
Specific and reversible DNA-directed self-assembly of oil-in-water emulsion droplets
Hadorn, Maik; Boenzli, Eva; Sørensen, Kristian T.; Fellermann, Harold; Eggenberger Hotz, Peter; Hanczyc, Martin M.
2012-01-01
Higher-order structures that originate from the specific and reversible DNA-directed self-assembly of microscopic building blocks hold great promise for future technologies. Here, we functionalized biotinylated soft colloid oil-in-water emulsion droplets with biotinylated single-stranded DNA oligonucleotides using streptavidin as an intermediary linker. We show the components of this modular linking system to be stable and to induce sequence-specific aggregation of binary mixtures of emulsion droplets. Three length scales were thereby involved: nanoscale DNA base pairing linking microscopic building blocks resulted in macroscopic aggregates visible to the naked eye. The aggregation process was reversible by changing the temperature and electrolyte concentration and by the addition of competing oligonucleotides. The system was reset and reused by subsequent refunctionalization of the emulsion droplets. DNA-directed self-assembly of oil-in-water emulsion droplets, therefore, offers a solid basis for programmable and recyclable soft materials that undergo structural rearrangements on demand and that range in application from information technology to medicine. PMID:23175791
Light and electron microscope observations on Nephroselmis gaoae sp. nov. (Prasinophyceae)
NASA Astrophysics Data System (ADS)
Tseng, C. K.; Jiao-Fen, Chen; Zhe-Fu, Zhang; Hui-Qi, Zhang
1994-09-01
Nephroselmis gaoae sp. nov. is described on the basis of light and electron microscope observations of cultured material originally collected and isolated from seawater of Jiaozhou Bay, Qingdao, China. The periplasts on the cell body and flagella are covered by five types of scales, two types on the flagella and three on the body. Among these, the morphology and the number of spines of large stellate body scales differ remarkably from those of previously described species of Nephroselmis. Apart from these, the unusual fine structure of the eyespot (stigma) is very characteristic. As in the other species of Nephroselmis, the eyespot lies immediately under the two-membraned chloroplast envelope; unlike the others, however, it is not composed of a number of osmiophilic globules, but consists of about 14 curved rod-shaped osmiophilic bodies arranged loosely and randomly. This feature distinguishes the present new species not only from the other species of Nephroselmis but also from the other motile algal species, the eyespots structure of which had been previously described.
Yamauchi, Asao; Yamauchi, Kiyoshi
2015-01-01
Infant' and adult' scalp hair fibers were disassembled to various cellular components and blocks by chemical and enzymatic treatments, followed by random scission with rapidly rotating cutters. The hair fibers were also fractured by the use of a vise. The optical microscopic inspection of these specimens led to the discovery of many previously unknown structures in the hair shaft. In particular, a cuticular cell (Cu) was found to take a trowel-like shape consisting of a part with a blade-like shape (CuB) and a part with a handle-like shape (CuH), where CuB overlapped one another and fused partially to build the honeycomb-like structure on a large cuticular thin plate (CuP). Whereas CuH was closely similar to the cortical cell in dimensions and richness of macrofibrils (Mf). It was considered that human hair is stabilized structurally and physicochemically by the presence of the honeycomb-like structure, the CuP and the Mf.
Zhu, Xingjun; Feng, Wei; Chang, Jian; Tan, Yan-Wen; Li, Jiachang; Chen, Min; Sun, Yun; Li, Fuyou
2016-02-04
Photothermal therapy (PTT) at present, following the temperature definition for conventional thermal therapy, usually keeps the temperature of lesions at 42-45 °C or even higher. Such high temperature kills cancer cells but also increases the damage of normal tissues near lesions through heat conduction and thus brings about more side effects and inhibits therapeutic accuracy. Here we use temperature-feedback upconversion nanoparticle combined with photothermal material for real-time monitoring of microscopic temperature in PTT. We observe that microscopic temperature of photothermal material upon illumination is high enough to kill cancer cells when the temperature of lesions is still low enough to prevent damage to normal tissue. On the basis of the above phenomenon, we further realize high spatial resolution photothermal ablation of labelled tumour with minimal damage to normal tissues in vivo. Our work points to a method for investigating photothermal properties at nanoscale, and for the development of new generation of PTT strategy.
NASA Astrophysics Data System (ADS)
Walla, Frederik; Wiecha, Matthias M.; Mecklenbeck, Nicolas; Beldi, Sabri; Keilmann, Fritz; Thomson, Mark D.; Roskos, Hartmut G.
2018-01-01
We investigated the excitation of surface plasmon polaritons on gold films with the metallized probe tip of a scattering-type scanning near-field optical microscope (s-SNOM). The emission of the polaritons from the tip, illuminated by near-infrared laser radiation, was found to be anisotropic and not circularly symmetric as expected on the basis of literature data. We furthermore identified an additional excitation channel via light that was reflected off the tip and excited the plasmon polaritons at the edge of the metal film. Our results, while obtained for a non-rotationally-symmetric type of probe tip and thus specific for this situation, indicate that when an s-SNOM is employed for the investigation of plasmonic structures, the unintentional excitation of surface waves and anisotropic surface wave propagation must be considered in order to correctly interpret the signatures of plasmon polariton generation and propagation.
Diffusion MRI at 25: Exploring brain tissue structure and function
Bihan, Denis Le; Johansen-Berg, Heidi
2013-01-01
Diffusion MRI (or dMRI) came into existence in the mid-1980s. During the last 25 years, diffusion MRI has been extraordinarily successful (with more than 300,000 entries on Google Scholar for diffusion MRI). Its main clinical domain of application has been neurological disorders, especially for the management of patients with acute stroke. It is also rapidly becoming a standard for white matter disorders, as diffusion tensor imaging (DTI) can reveal abnormalities in white matter fiber structure and provide outstanding maps of brain connectivity. The ability to visualize anatomical connections between different parts of the brain, non-invasively and on an individual basis, has emerged as a major breakthrough for neurosciences. The driving force of dMRI is to monitor microscopic, natural displacements of water molecules that occur in brain tissues as part of the physical diffusion process. Water molecules are thus used as a probe that can reveal microscopic details about tissue architecture, either normal or in a diseased state. PMID:22120012
NASA Astrophysics Data System (ADS)
Burgio, G. F.
2018-03-01
We discuss the structure of Neutron Stars by modelling the homogeneous nuclear matter of the core by a suitable microscopic Equation of State, based on the Brueckner-Hartree-Fock many-body theory, and the crust, including the pasta phase, by the BCPM energy density functional which is based on the same Equation of State. This allows for a uni ed description of the Neutron Star matter over a wide density range. A comparison with other uni ed approaches is discussed. With the same Equation of State, which features strong direct Urca processes and using consistent nuclear pairing gaps as well as effective masses, we model neutron star cooling, in particular the current rapid cooldown of the neutron star Cas A. We nd that several scenarios are possible to explain the features of Cas A, but only large and extended proton 1 S 0 gaps and small neutron 3 PF 2 gaps can accommodate also the major part of the complete current cooling data.
Chee, Augustus K. W.
2016-01-01
Two-dimensional dopant profiling using the secondary electron (SE) signal in the scanning electron microscope (SEM) is a technique gaining impulse for its ability to enable rapid and contactless low-cost diagnostics for integrated device manufacturing. The basis is doping contrast from electrical p-n junctions, which can be influenced by wet-chemical processing methods typically adopted in ULSI technology. This paper describes the results of doping contrast studies by energy-filtering in the SEM from silicon p-n junction specimens that were etched in ammonium fluoride solution. Experimental SE micro-spectroscopy and numerical simulations indicate that Fermi level pinning occurred on the surface of the treated-specimen, and that the doping contrast can be explained in terms of the ionisation energy integral for SEs, which is a function of the dopant concentration, and surface band-bending effects that prevail in the mechanism for doping contrast as patch fields from the specimen are suppressed. PMID:27576347
Towards more accurate and reliable predictions for nuclear applications
NASA Astrophysics Data System (ADS)
Goriely, Stephane; Hilaire, Stephane; Dubray, Noel; Lemaître, Jean-François
2017-09-01
The need for nuclear data far from the valley of stability, for applications such as nuclear astrophysics or future nuclear facilities, challenges the robustness as well as the predictive power of present nuclear models. Most of the nuclear data evaluation and prediction are still performed on the basis of phenomenological nuclear models. For the last decades, important progress has been achieved in fundamental nuclear physics, making it now feasible to use more reliable, but also more complex microscopic or semi-microscopic models in the evaluation and prediction of nuclear data for practical applications. Nowadays mean-field models can be tuned at the same level of accuracy as the phenomenological models, renormalized on experimental data if needed, and therefore can replace the phenomenological inputs in the evaluation of nuclear data. The latest achievements to determine nuclear masses within the non-relativistic HFB approach, including the related uncertainties in the model predictions, are discussed. Similarly, recent efforts to determine fission observables within the mean-field approach are described and compared with more traditional existing models.
NASA Astrophysics Data System (ADS)
Lin, Yung-Chi; Shih, Toung-Yi; Tien, Shih-Kang; Duh, Jenq-Gong
2007-11-01
Interfacial morphologies and microstructure of Sn-3Ag-0.5Cu/Ni-P under bump metallization (UBM) with various phosphorous contents were investigated by transmission electron microscope (TEM) and field emission electron probe microanalyzer (FE-EPMA). It was revealed that as the Ni-Sn-P compound was formed between the solder matrix and Ni-P UBM, the conventionally so-called phosphorous-rich (P-rich) layer was transformed to a series of layer compounds, including Ni3P, Ni12P5 and Ni2P. The relationship between Ni-Sn-P formation and evolution of P-rich layers was probed by electron microscopic characterization with the aid of the phase diagram of Ni-P. On the basis of the TEM micrograph, the selected area diffraction (SAD) pattern, and the FE-EPMA results, the detailed phase evolution of P-rich layers in the SnAgCu/Ni-P joint was revealed and proposed.
The Microscope Space Mission and the In-Orbit Calibration Plan for its Instrument
NASA Astrophysics Data System (ADS)
Levy, Agnès Touboul, Pierre; Rodrigues, Manuel; Onera, Émilie Hardy; Métris, Gilles; Robert, Alain
2015-01-01
The MICROSCOPE space mission aims at testing the Equivalence Principle (EP) with an accuracy of 10-15. This principle is one of the basis of the General Relativity theory; it states the equivalence between gravitational and inertial mass. The test is based on the precise measurement of a gravitational signal by a differential electrostatic accelerometer which includes two cylindrical test masses made of different materials. The accelerometers constitute the payload accommodated on board a drag-free micro-satellite which is controlled inertial or rotating about the normal to the orbital plane. The acceleration estimates used for the EP test are disturbed by the instruments physical parameters and by the instrument environment conditions on-board the satellite. These parameters are partially measured with ground tests or during the integration of the instrument in the satellite (alignment). Nevertheless, the ground evaluations are not sufficient with respect to the EP test accuracy objectives. An in-orbit calibration is therefore needed to characterize them finely. The calibration process for each parameter has been defined.
Simulation of transmission electron microscope images of biological specimens.
Rullgård, H; Ofverstedt, L-G; Masich, S; Daneholt, B; Oktem, O
2011-09-01
We present a new approach to simulate electron cryo-microscope images of biological specimens. The framework for simulation consists of two parts; the first is a phantom generator that generates a model of a specimen suitable for simulation, the second is a transmission electron microscope simulator. The phantom generator calculates the scattering potential of an atomic structure in aqueous buffer and allows the user to define the distribution of molecules in the simulated image. The simulator includes a well defined electron-specimen interaction model based on the scalar Schrödinger equation, the contrast transfer function for optics, and a noise model that includes shot noise as well as detector noise including detector blurring. To enable optimal performance, the simulation framework also includes a calibration protocol for setting simulation parameters. To test the accuracy of the new framework for simulation, we compare simulated images to experimental images recorded of the Tobacco Mosaic Virus (TMV) in vitreous ice. The simulated and experimental images show good agreement with respect to contrast variations depending on dose and defocus. Furthermore, random fluctuations present in experimental and simulated images exhibit similar statistical properties. The simulator has been designed to provide a platform for development of new instrumentation and image processing procedures in single particle electron microscopy, two-dimensional crystallography and electron tomography with well documented protocols and an open source code into which new improvements and extensions are easily incorporated. © 2011 The Authors Journal of Microscopy © 2011 Royal Microscopical Society.
3D widefield light microscope image reconstruction without dyes
NASA Astrophysics Data System (ADS)
Larkin, S.; Larson, J.; Holmes, C.; Vaicik, M.; Turturro, M.; Jurkevich, A.; Sinha, S.; Ezashi, T.; Papavasiliou, G.; Brey, E.; Holmes, T.
2015-03-01
3D image reconstruction using light microscope modalities without exogenous contrast agents is proposed and investigated as an approach to produce 3D images of biological samples for live imaging applications. Multimodality and multispectral imaging, used in concert with this 3D optical sectioning approach is also proposed as a way to further produce contrast that could be specific to components in the sample. The methods avoid usage of contrast agents. Contrast agents, such as fluorescent or absorbing dyes, can be toxic to cells or alter cell behavior. Current modes of producing 3D image sets from a light microscope, such as 3D deconvolution algorithms and confocal microscopy generally require contrast agents. Zernike phase contrast (ZPC), transmitted light brightfield (TLB), darkfield microscopy and others can produce contrast without dyes. Some of these modalities have not previously benefitted from 3D image reconstruction algorithms, however. The 3D image reconstruction algorithm is based on an underlying physical model of scattering potential, expressed as the sample's 3D absorption and phase quantities. The algorithm is based upon optimizing an objective function - the I-divergence - while solving for the 3D absorption and phase quantities. Unlike typical deconvolution algorithms, each microscope modality, such as ZPC or TLB, produces two output image sets instead of one. Contrast in the displayed image and 3D renderings is further enabled by treating the multispectral/multimodal data as a feature set in a mathematical formulation that uses the principal component method of statistics.
Increasing market efficiency in the stock markets
NASA Astrophysics Data System (ADS)
Yang, Jae-Suk; Kwak, Wooseop; Kaizoji, Taisei; Kim, In-Mook
2008-01-01
We study the temporal evolutions of three stock markets; Standard and Poor's 500 index, Nikkei 225 Stock Average, and the Korea Composite Stock Price Index. We observe that the probability density function of the log-return has a fat tail but the tail index has been increasing continuously in recent years. We have also found that the variance of the autocorrelation function, the scaling exponent of the standard deviation, and the statistical complexity decrease, but that the entropy density increases as time goes over time. We introduce a modified microscopic spin model and simulate the model to confirm such increasing and decreasing tendencies in statistical quantities. These findings indicate that these three stock markets are becoming more efficient.
Differential diagnosis of neoplasia of the palatine tonsil.
Hyams, V J
1978-05-01
The differential diagnosis of approximately 2000 cases of palatine tonsillar malignancy contained in the Otolaryngic Pathology Registry of the Armed Forces Institute of Pathology are presented to include basic statistics of age, race and sex. These statistics and others from the World English language medical literature are compared and discussed briefly. Pertinent information points out the overwhelming predominance of squanmous (epidermoid) carcinoma, the delayed medical attention of patients and hence the advanced clinical state of the disease when first diagnosed, the involvement of cervical lymph nodes in the majority of cases and the causative relationship of alcoholism. A discussion of the various histological types of tonsillar carcinoma suggests a simplification of the current microscopic classification.
Direct atomic force microscopy observation of DNA tile crystal growth at the single-molecule level.
Evans, Constantine G; Hariadi, Rizal F; Winfree, Erik
2012-06-27
While the theoretical implications of models of DNA tile self-assembly have been extensively researched and such models have been used to design DNA tile systems for use in experiments, there has been little research testing the fundamental assumptions of those models. In this paper, we use direct observation of individual tile attachments and detachments of two DNA tile systems on a mica surface imaged with an atomic force microscope (AFM) to compile statistics of tile attachments and detachments. We show that these statistics fit the widely used kinetic Tile Assembly Model and demonstrate AFM movies as a viable technique for directly investigating DNA tile systems during growth rather than after assembly.
Advanced microwave soil moisture studies. [Big Sioux River Basin, Iowa
NASA Technical Reports Server (NTRS)
Dalsted, K. J.; Harlan, J. C.
1983-01-01
Comparisons of low level L-band brightness temperature (TB) and thermal infrared (TIR) data as well as the following data sets: soil map and land cover data; direct soil moisture measurement; and a computer generated contour map were statistically evaluated using regression analysis and linear discriminant analysis. Regression analysis of footprint data shows that statistical groupings of ground variables (soil features and land cover) hold promise for qualitative assessment of soil moisture and for reducing variance within the sampling space. Dry conditions appear to be more conductive to producing meaningful statistics than wet conditions. Regression analysis using field averaged TB and TIR data did not approach the higher sq R values obtained using within-field variations. The linear discriminant analysis indicates some capacity to distinguish categories with the results being somewhat better on a field basis than a footprint basis.
Application of a truncated normal failure distribution in reliability testing
NASA Technical Reports Server (NTRS)
Groves, C., Jr.
1968-01-01
Statistical truncated normal distribution function is applied as a time-to-failure distribution function in equipment reliability estimations. Age-dependent characteristics of the truncated function provide a basis for formulating a system of high-reliability testing that effectively merges statistical, engineering, and cost considerations.
Characterization and Screening of Native Scenedesmus sp. Isolates Suitable for Biofuel Feedstock.
Gour, Rakesh Singh; Chawla, Aseem; Singh, Harvinder; Chauhan, Rajinder Singh; Kant, Anil
2016-01-01
In current study isolates of two native microalgae species were screened on the basis of growth kinetics and lipid accumulation potential. On the basis of data obtained on growth parameters and lipid accumulation, it is concluded that Scenedesmus dimorphus has better potential as biofuel feedstock. Two of the isolates of Scenedesmus dimorphus performed better than other isolates with respect to important growth parameters with lipid content of ~30% of dry biomass. Scenedesmus dimorphus was found to be more suitable as biodiesel feedstock candidate on the basis of cumulative occurrence of five important biodiesel fatty acids, relative occurrence of SFA (53.04%), MUFA (23.81%) and PUFA (19.69%), and more importantly that of oleic acid in its total lipids. The morphological observations using light and Scanning Electron Microscope and molecular characterization using amplified 18S rRNA gene sequences of microalgae species under study were also performed. Amplified 18S rRNA gene fragments of the microalgae species were sequenced, annotated at the NCBI website and phylogenetic analysis was done. We have published eight 18S rRNA gene sequences of microalgae species in NCBI GenBank.
Hard x-ray phase contrastmicroscopy - techniques and applications
NASA Astrophysics Data System (ADS)
Holzner, Christian
In 1918, Einstein provided the first description of the nature of the refractive index for X-rays, showing that phase contrast effects are significant. A century later, most x-ray microscopy and nearly all medical imaging remains based on absorption contrast, even though phase contrast offers orders of magnitude improvements in contrast and reduced radiation exposure at multi-keV x-ray energies. The work presented is concerned with developing practical and quantitative methods of phase contrast for x-ray microscopy. A theoretical framework for imaging in phase contrast is put forward; this is used to obtain quantitative images in a scanning microscope using a segmented detector, and to correct for artifacts in a commercial phase contrast x-ray nano-tomography system. The principle of reciprocity between scanning and full-field microscopes is then used to arrive at a novel solution: Zernike contrast in a scanning microscope. These approaches are compared on a theoretical and experimental basis in direct connection with applications using multi-keV x-ray microscopes at the Advanced Photon Source at Argonne National Laboratory. Phase contrast provides the best means to image mass and ultrastructure of light elements that mainly constitute biological matter, while stimulated x-ray fluorescence provides high sensitivity for studies of the distribution of heavier trace elements, such as metals. These approaches are combined in a complementary way to yield quantitative maps of elemental concentration from 2D images, with elements placed in their ultrastructural context. The combination of x-ray fluorescence and phase contrast poses an ideal match for routine, high resolution tomographic imaging of biological samples in the future. The presented techniques and demonstration experiments will help pave the way for this development.
31 CFR 9.5 - Applications for investigation.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., both past and current. (c) Statistical material presented should be on a calendar-year basis for... domestic industry concerned with the article in question. (4) Pertinent statistics showing the quantities... competition created by imports of the article in question. (6) The effect, if any, of imports of the article...
40 CFR 51.364 - Enforcement against contractors, stations and inspectors.
Code of Federal Regulations, 2010 CFR
2010-07-01
... suspend or revoke the station or inspector license within three station business days of the finding. (2..., revocations, and violations and shall compile statistics on violations and penalties on an annual basis. (d... approved by the Administrator. Statistical process control shall be used whenever possible to demonstrate...
Farkle Fundamentals and Fun. Activities for Students
ERIC Educational Resources Information Center
Hooley, Donald E.
2014-01-01
The dice game Farkle provides an excellent basis for four activities that reinforce probability and expected value concepts for students in an introductory statistics class. These concepts appear in the increasingly popular AP statistics course (Peck 2011) and are used in analyzing ethical issues from insurance and gambling (COMAP 2009; Woodward…
The Forest Survey Organization Central States Forest Experiment Station
1956-01-01
This report contains forest area and timber volume statistics for the State of Iowa. The information presented here was gathered and compiled according to three different geographical units, the divisions being made on the basis of similar forest, soil, and economic conditions (frontispiece). So, for the benefit of those who might find such localized information useful...
Statistical mechanics of neocortical interactions: Path-integral evolution of short-term memory
NASA Astrophysics Data System (ADS)
Ingber, Lester
1994-05-01
Previous papers in this series of statistical mechanics of neocortical interactions (SMNI) have detailed a development from the relatively microscopic scales of neurons up to the macroscopic scales as recorded by electroencephalography (EEG), requiring an intermediate mesocolumnar scale to be developed at the scale of minicolumns (~=102 neurons) and macrocolumns (~=105 neurons). Opportunity was taken to view SMNI as sets of statistical constraints, not necessarily describing specific synaptic or neuronal mechanisms, on neuronal interactions, on some aspects of short-term memory (STM), e.g., its capacity, stability, and duration. A recently developed c-language code, pathint, provides a non-Monte Carlo technique for calculating the dynamic evolution of arbitrary-dimension (subject to computer resources) nonlinear Lagrangians, such as derived for the two-variable SMNI problem. Here, pathint is used to explicitly detail the evolution of the SMNI constraints on STM.
Advanced STEM microanalysis of bimetallic nanoparticle catalysts
NASA Astrophysics Data System (ADS)
Lyman, Charles E.; Dimick, Paul S.
2012-05-01
Individual particles within bimetallic nanoparticle populations are not always identical, limiting the usefulness of bulk analysis techniques such as EXAFS. The scanning transmission electron microscope (STEM) is the only instrument able to characterize supported nanoparticle populations on a particle-by-particle basis. Quantitative elemental analyses of sub-5-nm particles reveal phase separations among particles and surface segregation within particles. This knowledge can lead to improvements in bimetallic catalysts. Advanced STEMs with field-emission guns, aberration-corrected optics, and efficient signal detection systems allow analysis of sub-nanometer particles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Frank; Popp, Till; Wieczorek, Klaus
The purposes of this paper are to review the vast amount of knowledge concerning crushed salt reconsolidation and its attendant hydraulic properties (i.e., its capability for fluid or gas transport) and to provide a sufficient basis to understand reconsolidation and healing rates under repository conditions. Topics covered include: deformation mechanisms and hydro-mechanical interactions during reconsolidation; the experimental data base pertaining to crushed salt reconsolidation; transport properties of consolidating granulated salt and provides quantitative substantiation of its evolution to characteristics emulating undisturbed rock salt; and extension of microscopic and laboratory observations and data to the applicable field scale.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Majka, Z.; Budzanowski, A.; Grotowski, K.
1978-07-01
Antisymmetrization effects in the ..cap alpha..-nucleus interaction are investigated on the basis of a microscopic model in an one nucleon exchange approximation. It influences the form factor, increasing the halfway radius and decreasing the diffuseness as compared with the direct term of the potential only. Antisymmetrization preserves the shape of the potential which can be parametrized by a Woods-Saxon squared form. The phenomenological potential with the energy independent form factor of the above shape fits experimental data in a wide energy region.
NASA Astrophysics Data System (ADS)
Qiu, T.; Wu, X. L.; Mei, Y. F.; Chu, P. K.; Siu, G. G.
2005-09-01
Unique silver dendritic nanostructures, with stems, branches, and leaves, were synthesized with self-organization via a simple electroless metal deposition method in a conventional autoclave containing aqueous HF and AgNO3 solution. Their growth mechanisms are discussed in detail on the basis of a self-assembled localized microscopic electrochemical cell model. A process of diffusion-limited aggregation is suggested for the formation of the silver dendritic nanostructures. This nanostructured material is of great potential to be building blocks for assembling mini-functional devices of the next generation.
Anisotropy of electrical resistivity in PVT grown WSe2-x crystals
NASA Astrophysics Data System (ADS)
Solanki, G. K.; Patel, Y. A.; Agarwal, M. K.
2018-05-01
Single crystals of p-type WSe2 and WSe1.9 were grown by a physical vapour transport technique. The anisotropy in d.c. electrical resistivity was investigated in these grown crystals. The off-stoichiometric WSe1.9 exhibited a higher anisotropy ratio as compared to WSe2 crystals. The electron microscopic examination revealed the presence of a large number of stacking faults in these crystals. The resistivity enhancement along the c-axis and anisotropic effective mass ratio explained on the basis of structural disorder introduced due to off-stoichiometry.
NASA Astrophysics Data System (ADS)
Ulianova, O. V.; Uianov, S. S.; Li, Pengcheng; Luo, Qingming
2011-04-01
The method of speckle microscopy was adapted to estimate the reactogenicity of the prototypes of vaccine preparations against extremely dangerous infections. The theory is proposed to describe the mechanism of formation of the output signal from the super-high spatial resolution speckle microscope. The experimental studies show that bacterial suspensions, irradiated in different regimes of inactivation, do not exert negative influence on the blood microcirculations in laboratory animals.
An investigation into vascular prosthesis modified with an electron beam.
Lowkis, B; Szymonowicz, M; Rutkowski, J
1997-01-01
The present paper shows the results of an investigation into the effect of implanted electric charge on blood platelet adhesion to woven surfaces of "Dallon" polyester vascular prosthesis. The electrets were formed using the electron beam method. The assessment of the electret effect on blood platelet adhesion was performed on the basis of microscopic studies. It was shown that an implanted negative electric charge remarkably suppresses thrombocyte adhesion to the prosthesis surface. The electret effect was found to play a significant role in the process of preparing nonthrombogenic surfaces.
Bråten, T
1975-01-01
The development of the rhizoid cells of the green alga Ulva mutabilis was investigated at the ultrastructural level paying special attention to the mechanism of attachment of the plant. Cytochemical data concerning the initial settling of the early zygote are also given. On the basis of histochemical staining and enzyme treatment it is concluded that the adhesive material secreted by the rhizoid cells is chemically different from that secreted by the zygote during the initial settling of the alga.
Frenkel versus charge-transfer exciton dispersion in molecular crystals
NASA Astrophysics Data System (ADS)
Cudazzo, Pierluigi; Gatti, Matteo; Rubio, Angel; Sottile, Francesco
2013-11-01
By solving the many-body Bethe-Salpeter equation at finite momentum transfer, we characterize the exciton dispersion in two prototypical molecular crystals, picene and pentacene, in which localized Frenkel excitons compete with delocalized charge-transfer excitons. We explain the exciton dispersion on the basis of the interplay between electron and hole hopping and electron-hole exchange interaction, unraveling a simple microscopic description to distinguish Frenkel and charge-transfer excitons. This analysis is general and can be applied to other systems in which the electron wave functions are strongly localized, as in strongly correlated insulators.
Direct observation of MoO 2 crystal growth from amorphous MoO 3 film
NASA Astrophysics Data System (ADS)
Nina, Kenji; Kimura, Yuki; Yokoyama, Kaori; Kido, Osamu; Binyo, Gong; Kaito, Chihiro
2008-08-01
The formation process of MoO 2 crystal from amorphous MoO 3 film has been imaged by in situ observation with a transmission electron microscope. Selective growth of flower-shaped MoO 2 crystals by heating above 673 K in vacuum was directly observed. Since the MoO 2 crystal has metallic conductivity of the order of indium oxide film containing tin (ITO film), the thin film growth of the MoO 2 phase has been discussed on the basis of a new substitute for ITO film.
NASA Astrophysics Data System (ADS)
Mitryaeva, N. S.; Myshlyavtsev, A. V.; Akimenko, S. S.
2017-08-01
The paper studies the effect of ultrasonic processing on the vulcanizing, physical, mechanical and electrophysical properties of elastomeric compositions based on synthetic isoprene rubber. Microscopic studies of multi-wall carbon nanotubes samples before and after ultrasonic processing are carried out. Due to the research, the applied ultrasonic processing method provides splitting of bundles formed from multi-wall carbon nanotubes. This results in elastomeric material with increased strength and high electrical conductivity with a low concentration of nanofiller.
ERIC Educational Resources Information Center
Foster, Emily M.
1942-01-01
The U.S. Office of Education is required by law to collect statistics to show the condition and progress of education. Statistics can be made available, on a national scale, to the extent that school administrators, principals, and college officials cooperate on a voluntary basis with the Office of Education in making the facts available. This…
Code of Federal Regulations, 2011 CFR
2011-01-01
... 15 Commerce and Foreign Trade 1 2011-01-01 2011-01-01 false Fee structure for statistics for city... SERVICES AND STUDIES BY THE BUREAU OF THE CENSUS § 50.40 Fee structure for statistics for city blocks in... for each city block, drawn from the subjects which are being covered on a 100-percent basis. For these...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Fee structure for statistics for city... SERVICES AND STUDIES BY THE BUREAU OF THE CENSUS § 50.40 Fee structure for statistics for city blocks in... for each city block, drawn from the subjects which are being covered on a 100-percent basis. For these...
1982-06-01
usefulness to the Untted States Antarctic mission as managed by the National Science Foundation. Various statistical measures were applied to the reported... statistical procedures that would evolve a general meteorological picture of each of these remote sites. Primary texts used as a basis for...processed by station for monthly, seasonal and annual statistics , as appropriate. The following outlines the evaluations completed for both
Knowledge Extraction from Atomically Resolved Images.
Vlcek, Lukas; Maksov, Artem; Pan, Minghu; Vasudevan, Rama K; Kalinin, Sergei V
2017-10-24
Tremendous strides in experimental capabilities of scanning transmission electron microscopy and scanning tunneling microscopy (STM) over the past 30 years made atomically resolved imaging routine. However, consistent integration and use of atomically resolved data with generative models is unavailable, so information on local thermodynamics and other microscopic driving forces encoded in the observed atomic configurations remains hidden. Here, we present a framework based on statistical distance minimization to consistently utilize the information available from atomic configurations obtained from an atomically resolved image and extract meaningful physical interaction parameters. We illustrate the applicability of the framework on an STM image of a FeSe x Te 1-x superconductor, with the segregation of the chalcogen atoms investigated using a nonideal interacting solid solution model. This universal method makes full use of the microscopic degrees of freedom sampled in an atomically resolved image and can be extended via Bayesian inference toward unbiased model selection with uncertainty quantification.
NASA Astrophysics Data System (ADS)
Lemaître, J.-F.; Dubray, N.; Hilaire, S.; Panebianco, S.; Sida, J.-L.
2013-12-01
Our purpose is to determine fission fragments characteristics in a framework of a scission point model named SPY for Scission Point Yields. This approach can be considered as a theoretical laboratory to study fission mechanism since it gives access to the correlation between the fragments properties and their nuclear structure, such as shell correction, pairing, collective degrees of freedom, odd-even effects. Which ones are dominant in final state? What is the impact of compound nucleus structure? The SPY model consists in a statistical description of the fission process at the scission point where fragments are completely formed and well separated with fixed properties. The most important property of the model relies on the nuclear structure of the fragments which is derived from full quantum microscopic calculations. This approach allows computing the fission final state of extremely exotic nuclei which are inaccessible by most of the fission model available on the market.
Investigation of the {Fe}/{Si} interface and its phase transformations
NASA Astrophysics Data System (ADS)
Fanciulli, M.; Degroote, S.; Weyer, G.; Langouche, G.
1997-04-01
Thin 57Fe films (3-10 Å) have been grown by molecular beam epitaxy (MBE) on (7 × 7) reconstructed Si(111) and (2 × 1) reconstructed Si(001) surfaces and by e-gun evaporation on an H-terminated Si(111) surface. Conversion electron Mössbauer spectroscopy (CEMS) with high statistical accuracy and resolution allowed a detailed microscopic investigation of the silicide formation mechanism and of the structural phase transformations upon annealing.
Laws of Large Numbers and Langevin Approximations for Stochastic Neural Field Equations
2013-01-01
In this study, we consider limit theorems for microscopic stochastic models of neural fields. We show that the Wilson–Cowan equation can be obtained as the limit in uniform convergence on compacts in probability for a sequence of microscopic models when the number of neuron populations distributed in space and the number of neurons per population tend to infinity. This result also allows to obtain limits for qualitatively different stochastic convergence concepts, e.g., convergence in the mean. Further, we present a central limit theorem for the martingale part of the microscopic models which, suitably re-scaled, converges to a centred Gaussian process with independent increments. These two results provide the basis for presenting the neural field Langevin equation, a stochastic differential equation taking values in a Hilbert space, which is the infinite-dimensional analogue of the chemical Langevin equation in the present setting. On a technical level, we apply recently developed law of large numbers and central limit theorems for piecewise deterministic processes taking values in Hilbert spaces to a master equation formulation of stochastic neuronal network models. These theorems are valid for processes taking values in Hilbert spaces, and by this are able to incorporate spatial structures of the underlying model. Mathematics Subject Classification (2000): 60F05, 60J25, 60J75, 92C20. PMID:23343328
Correlative SEM SERS for quantitative analysis of dimer nanoparticles.
Timmermans, F J; Lenferink, A T M; van Wolferen, H A G M; Otto, C
2016-11-14
A Raman microscope integrated with a scanning electron microscope was used to investigate plasmonic structures by correlative SEM-SERS analysis. The integrated Raman-SEM microscope combines high-resolution electron microscopy information with SERS signal enhancement from selected nanostructures with adsorbed Raman reporter molecules. Correlative analysis is performed for dimers of two gold nanospheres. Dimers were selected on the basis of SEM images from multi aggregate samples. The effect of the orientation of the dimer with respect to the polarization state of the laser light and the effect of the particle gap size on the Raman signal intensity is observed. Additionally, calculations are performed to simulate the electric near field enhancement. These simulations are based on the morphologies observed by electron microscopy. In this way the experiments are compared with the enhancement factor calculated with near field simulations and are subsequently used to quantify the SERS enhancement factor. Large differences between experimentally observed and calculated enhancement factors are regularly detected, a phenomenon caused by nanoscale differences between the real and 'simplified' simulated structures. Quantitative SERS experiments reveal the structure induced enhancement factor, ranging from ∼200 to ∼20 000, averaged over the full nanostructure surface. The results demonstrate correlative Raman-SEM microscopy for the quantitative analysis of plasmonic particles and structures, thus enabling a new analytical method in the field of SERS and plasmonics.
Imaging of the 3D dynamics of flagellar beating in human sperm.
Silva-Villalobos, F; Pimentel, J A; Darszon, A; Corkidi, G
2014-01-01
The study of the mechanical and environmental factors that regulate a fundamental event such as fertilization have been subject of multiple studies. Nevertheless, the microscopical size of the spermatozoa and the high beating frequency of their flagella (up to 20 Hz) impose a series of technological challenges for the study of the mechanical factors implicated. Traditionally, due to the inherent characteristics of the rapid sperm movement, and to the technological limitations of microscopes (optical or confocal) to follow in three dimensions (3D) their movement, the analysis of their dynamics has been studied in two dimensions, when the head is confined to a surface. Flagella propel sperm and while their head can be confined to a surface, flagellar movement is not restricted to 2D, always displaying 3D components. In this work, we present a highly novel and useful tool to analyze sperm flagella dynamics in 3D. The basis of the method is a 100 Hz oscillating objective mounted on a bright field optical microscope covering a 16 microns depth space at a rate of ~ 5000 images per second. The best flagellum focused subregions were associated to their respective Z real 3D position. Unprecedented graphical results making evident the 3D movement of the flagella are shown in this work and supplemental material illustrating a 3D animation using the obtained experimental results is also included.
Brodusch, Nicolas; Demers, Hendrix; Gauvin, Raynald
2015-01-01
Dark-field (DF) images were acquired in the scanning electron microscope with an offline procedure based on electron backscatter diffraction (EBSD) patterns (EBSPs). These EBSD-DF images were generated by selecting a particular reflection on the electron backscatter diffraction pattern and by reporting the intensity of one or several pixels around this point at each pixel of the EBSD-DF image. Unlike previous studies, the diffraction information of the sample is the basis of the final image contrast with a pixel scale resolution at the EBSP providing DF imaging in the scanning electron microscope. The offline facility of this technique permits the selection of any diffraction condition available in the diffraction pattern and displaying the corresponding image. The high number of diffraction-based images available allows a better monitoring of deformation structures compared to electron channeling contrast imaging (ECCI) which is generally limited to a few images of the same area. This technique was applied to steel and iron specimens and showed its high capability in describing more rigorously the deformation structures around micro-hardness indents. Due to the offline relation between the reference EBSP and the EBSD-DF images, this new technique will undoubtedly greatly improve our knowledge of deformation mechanism and help to improve our understanding of the ECCI contrast mechanisms. Copyright © 2014 Elsevier B.V. All rights reserved.
DAVAMI, M H; MOTAZEDIAN, M H; KALANTARI, M; ASGARI, Q; BADZOHRE, A; MOHAMMADPOUR, I
2011-01-01
Zoonotoc cutaneous leishmaniasis is endemic in several parts of Iran. Jahrom district is one of the most important endemic foci of leishmaniasis located in Fars province, southern Iran. To identify the vectors of leishmaniasis in this area, a total of 349 sandflies were collected during May to August 2009. They were caught from outdoors in five regions of Jahrom district including villages of Mousavieh, Ghotb-Abad, Heydar-Abad, Fath-Abad and Jahrom County. Eleven species of Phlebotomine (three Phlebotomus spp. and eight Sergentomyia spp.) were detected. To determine the sandflies naturally infected by Leishmania spp., 122 female sandflies were dissected and evaluated microscopically using Giemsa-stained slides. Natural infection of 2 out of 38 (5.26%) P. papatasi and 1 out of 8 (12.5%) P. salehi to Leishmania major was confirmed in the region. Sequencing and nested polymerase chain reaction-based detection of Leishmania were carried out to confirm the microscopic findings. Five (13.16%) P. papatasi and two (25%) P. salehi were positive in nested polymerase chain reaction assay. All positive samples were shown 72–76% similarity with L. major Friedlin. On the basis of our knowledge, this is the first molecular detection of L. major within naturally infected P. salehi in this region in southern Iran. PMID:22185942
Rubino, Corrado; Mazzarello, Vittorio; Faenza, Mario; Montella, Andrea; Santanelli, Fabio; Farace, Francesco
2015-06-01
The aim of this study was to evaluate the effects on adipocyte morphology of 2 techniques of fat harvesting and of fat purification in lipofilling, considering that the number of viable healthy adipocytes is important in fat survival in recipient areas of lipofilling. Fat harvesting was performed in 10 female patients from flanks, on one side with a 2-mm Coleman cannula and on the other side with a 3-mm Mercedes cannula. Thirty milliliter of fat tissue from each side was collected and divided into three 10 mL syringes: A, B, and C. The fat inside syringe A was left untreated, the fat in syringe B underwent simple sedimentation, and the fat inside syringe C underwent centrifugation at 3000 rpm for 3 minutes. Each fat graft specimen was processed for examination under low-vacuum scanning electron microscope. Diameter (μ) and number of adipocytes per square millimeter and number of altered adipocytes per square millimeter were evaluated. Untreated specimens harvested with the 2 different techniques were first compared, then sedimented versus centrifuged specimens harvested with the same technique were compared. Statistical analysis was performed using Wilcoxon signed rank test. The number of adipocytes per square millimeter was statistically higher in specimens harvested with the 3-mm Mercedes cannula (P = 0.0310). The number of altered cells was statistically higher in centrifuged specimens than in sedimented ones using both methods of fat harvesting (P = 0.0080) with a 2-mm Coleman cannula and (P = 0.0050) with a 3-mm Mercedes cannula. Alterations in adipocyte morphology consisted in wrinkling of the membrane, opening of pore with leakage of oily material, reduction of cellular diameter, and total collapse of the cellular membrane. Fat harvesting by a 3-mm cannula results in a higher number of adipocytes and centrifugation of the harvested fat results in a higher number of morphologic altered cells than sedimentation.
The basis function approach for modeling autocorrelation in ecological data
Hefley, Trevor J.; Broms, Kristin M.; Brost, Brian M.; Buderman, Frances E.; Kay, Shannon L.; Scharf, Henry; Tipton, John; Williams, Perry J.; Hooten, Mevin B.
2017-01-01
Analyzing ecological data often requires modeling the autocorrelation created by spatial and temporal processes. Many seemingly disparate statistical methods used to account for autocorrelation can be expressed as regression models that include basis functions. Basis functions also enable ecologists to modify a wide range of existing ecological models in order to account for autocorrelation, which can improve inference and predictive accuracy. Furthermore, understanding the properties of basis functions is essential for evaluating the fit of spatial or time-series models, detecting a hidden form of collinearity, and analyzing large data sets. We present important concepts and properties related to basis functions and illustrate several tools and techniques ecologists can use when modeling autocorrelation in ecological data.
NASA Astrophysics Data System (ADS)
Carlsohn, Matthias F.; Kemmling, André; Petersen, Arne; Wietzke, Lennart
2016-04-01
Cerebral aneurysms require endovascular treatment to eliminate potentially lethal hemorrhagic rupture by hemostasis of blood flow within the aneurysm. Devices (e.g. coils and flow diverters) promote homeostasis, however, measurement of blood flow within an aneurysm or cerebral vessel before and after device placement on a microscopic level has not been possible so far. This would allow better individualized treatment planning and improve manufacture design of devices. For experimental analysis, direct measurement of real-time microscopic cerebrovascular flow in micro-structures may be an alternative to computed flow simulations. An application of microscopic aneurysm flow measurement on a regular basis to empirically assess a high number of different anatomic shapes and the corresponding effect of different devices would require a fast and reliable method at low cost with high throughout assessment. Transparent three dimensional 3D models of brain vessels and aneurysms may be used for microscopic flow measurements by particle image velocimetry (PIV), however, up to now the size of structures has set the limits for conventional 3D-imaging camera set-ups. On line flow assessment requires additional computational power to cope with the processing large amounts of data generated by sequences of multi-view stereo images, e.g. generated by a light field camera capturing the 3D information by plenoptic imaging of complex flow processes. Recently, a fast and low cost workflow for producing patient specific three dimensional models of cerebral arteries has been established by stereo-lithographic (SLA) 3D printing. These 3D arterial models are transparent an exhibit a replication precision within a submillimeter range required for accurate flow measurements under physiological conditions. We therefore test the feasibility of microscopic flow measurements by PIV analysis using a plenoptic camera system capturing light field image sequences. Averaging across a sequence of single double or triple shots of flashed images enables reconstruction of the real-time corpuscular flow through the vessel system before and after device placement. This approach could enable 3D-insight of microscopic flow within blood vessels and aneurysms at submillimeter resolution. We present an approach that allows real-time assessment of 3D particle flow by high-speed light field image analysis including a solution that addresses high computational load by image processing. The imaging set-up accomplishes fast and reliable PIV analysis in transparent 3D models of brain aneurysms at low cost. High throughput microscopic flow assessment of different shapes of brain aneurysms may therefore be possibly required for patient specific device designs.
Omental leiomyosarcoma with unusual giant cells in a Beagle dog - Short communication.
Sasaki, Jun; Toyoshima, Megumi; Okamura, Yasuhiko; Goryo, Masanobu
2016-06-01
A 10-year-old castrated male Beagle dog was presented with a 2-month history of intermittent vomiting and abdominal pain. The dog was referred to the Veterinary Teaching Hospital at Iwate University for further evaluation, and a splenic tumour was suspected on the basis of ultrasonography and computed tomography. Surgery identified a large, solid, light-pink mass on the greater omentum with blood-coloured ascites in the abdominal cavity, and resection was performed. Microscopically, the mass comprised spindle-shaped tumour cells and scattered osteoclast-like giant cells. Most spindle-shaped cells were positive for vimentin, desmin, and smooth muscle actin (α-SMA), whereas osteoclast-like giant cells were positive only for vimentin. On the basis of histopathological and immunohistochemical findings, a diagnosis of leiomyosarcoma was made. To the best of our knowledge, this represents the first report of leiomyosarcoma associated with osteoclast-like giant cells developing from the greater omentum in a dog.
Are Phenacoccus solani Ferris and P. defectus Ferris (Hemiptera: Pseudococcidae) distinct species?
Chatzidimitriou, Evangelia; Simonato, Mauro; Watson, Gillian W; Martinez-Sañudo, Isabel; Tanaka, Hirotaka; Zhao, Jing; Pellizzari, Giuseppina
2016-03-24
Among the Nearctic species of Phenacoccus (Hemiptera: Pseudococcidae), Phenacoccus solani Ferris and P. defectus Ferris are morphologically similar and it can be difficult to separate them on the basis of microscopic morphological characters of the adult female alone. In order to resolve their identity, a canonical variates morphological analysis of 199 specimens from different geographical origins and host plants and a molecular analysis of the COI and 28S genes were performed. The morphological analysis supported synonymy of the two species, as although the type specimens of the "species" are widely separated from each other in the canonical variates plot, they are all part of a continuous range of variation. The molecular analysis showed that P. solani and P. defectus are grouped in the same clade. On the basis of the morphological and molecular analyses, P. defectus is synonymized under the senior name P. solani, syn. n.
A study of cell electrophoresis as a means of purifying growth hormone secreting cells
NASA Technical Reports Server (NTRS)
Plank, Lindsay D.; Hymer, W. C.; Kunze, M. Elaine; Marks, Gary M.; Lanham, J. Wayne
1983-01-01
Growth hormone secreting cells of the rat anterior pituitary are heavily laden with granules of growth hormone and can be partialy purified on the basis of their resulting high density. Two methods of preparative cell electrophoresis were investigated as methods of enhancing the purification of growth hormone producing cells: density gradient electrophoresis and continuous flow electrophoresis. Both methods provided a two- to four-fold enrichment in growth hormone production per cell relative to that achieved by previous methods. Measurements of electrophoretic mobilities by two analytical methods, microscopic electrophoresis and laser-tracking electrophoresis, revealed very little distinction between unpurified anterior pituitary cell suspensions and somatotroph-enriched cell suspensions. Predictions calculated on the basis of analytical electrophoretic data are consistent with the hypothesis that sedimentation plays a significant role in both types of preparative electrophoresis and the electrophoretic mobility of the growth hormone secreting subpopulation of cells remains unknown.
{ITALIC AB INITIO} Large-Basis no-Core Shell Model and its Application to Light Nuclei
NASA Astrophysics Data System (ADS)
Barrett, Bruce R.; Navratil, Petr; Ormand, W. E.; Vary, James P.
2002-01-01
We discuss the {ITALIC ab initio} No-Core Shell Model (NCSM). In this method the effective Hamiltonians are derived microscopically from realistic nucleon-nucleon (NN) potentials, such as the CD-Bonn and the Argonne AV18 NN potentials, as a function of the finite Harmonic Oscillator (HO) basis space. We present converged results, i.e. , up to 50 Ω and 18 Ω HO excitations, respectively, for the A=3 and 4 nucleon systems. Our results for these light systems are in agreement with results obtained by other exact methods. We also calculate properties of 6Li and 6He in model spaces up to 10 Ω and of 12C up to 6 Ω. Binding energies, rms radii, excitation spectra and electromagnetic properties are discussed. The favorable comparison with available data is a consequence of the underlying NN interaction rather than a phenomenological fit.
NASA Astrophysics Data System (ADS)
Pan, Andrew; Burnett, Benjamin A.; Chui, Chi On; Williams, Benjamin S.
2017-08-01
We derive a density matrix (DM) theory for quantum cascade lasers (QCLs) that describes the influence of scattering on coherences through a generalized scattering superoperator. The theory enables quantitative modeling of QCLs, including localization and tunneling effects, using the well-defined energy eigenstates rather than the ad hoc localized basis states required by most previous DM models. Our microscopic approach to scattering also eliminates the need for phenomenological transition or dephasing rates. We discuss the physical interpretation and numerical implementation of the theory, presenting sets of both energy-resolved and thermally averaged equations, which can be used for detailed or compact device modeling. We illustrate the theory's applications by simulating a high performance resonant-phonon terahertz (THz) QCL design, which cannot be easily or accurately modeled using conventional DM methods. We show that the theory's inclusion of coherences is crucial for describing localization and tunneling effects consistent with experiment.
Mean-field theory for multipole ordering in f-electron systems on the basis of a j-j coupling scheme
NASA Astrophysics Data System (ADS)
Yamamura, Ryosuke; Hotta, Takashi
2018-05-01
We develop a microscopic theory for multipole ordering, applicable to the system with plural numbers of f electrons per ion, from an itinerant picture on the basis of a j-j coupling scheme. For the purpose, by introducing the Γ8 Hubbard Hamiltonian as the minimum model to discuss the multipole ordering in f-electron systems, we describe the mean-field approximation in terms of the multipole operators. For the case of n = 2 , where n denotes the average f-electron number per ion, we analyze the model on a simple cubic lattice to obtain the multipole phase diagram. In particular, we find the order of non-Kramers Γ3 quadrupoles, O20 and O22 , with different ordering vectors. We attempt to explain the phase diagram from the discussion on the interaction energy.
ERIC Educational Resources Information Center
Byrne, Eileen M.
This volume is to be used in conjunction with volume I (Final Research Report) of the Women in Science and Technology in Australia (WISTA) research project. This document contains the main statistical tables of grade 12 and higher education enrollments used as the basis for the statistical element of the WISTA research report. The document is…
Microscopic Studies of Quantum Phase Transitions in Optical Lattices
NASA Astrophysics Data System (ADS)
Bakr, Waseem S.
2011-12-01
In this thesis, I report on experiments that microscopically probe quantum phase transitions of ultracold atoms in optical lattices. We have developed a "quantum gas microscope" that allowed, for the first time, optical imaging and manipulation of single atoms in a quantum-degenerate gas on individual sites of an optical lattice. This system acts as a quantum simulator of strongly correlated materials, which are currently the subject of intense research because of the technological potential of high--T c superconductors and spintronic materials. We have used our microscope to study the superfluid to Mott insulator transition in bosons and a magnetic quantum phase transition in a spin system. In our microscopic study of the superfluid-insulator transition, we have characterized the on-site number statistics in a space- and time-resolved manner. We observed Mott insulators with fidelities as high as 99%, corresponding to entropies of 0.06kB per particle. We also measured local quantum dynamics and directly imaged the shell structure of the Mott insulator. I report on the first quantum magnetism experiments in optical lattices. We have realized a quantum Ising chain in a magnetic field, and observed a quantum phase transition between a paramagnet and antiferromagnet. We achieved strong spin interactions by encoding spins in excitations of a Mott insulator in a tilted lattice. We detected the transition by measuring the total magnetization of the system across the transition using in-situ measurements as well as the Neel ordering in the antiferromagnetic state using noise-correlation techniques. We characterized the dynamics of domain formation in the system. The spin mapping introduced opens up a new path to realizing more exotic states in optical lattices including spin liquids and quantum valence bond solids. As our system sizes become larger, simulating their physics on classical computers will require exponentially larger resources because of entanglement build-up near a quantum phase transition. We have demonstrated a quantum simulator in which all degrees of freedom can be read out microscopically, allowing the simulation of quantum many-body systems with manageable resources. More generally, the ability to image and manipulate individual atoms in optical lattices opens an avenue towards scalable quantum computation.
Wildermuth, Brett E; Griffin, Craig E; Rosenkrantz, Wayne S
2012-04-01
In this study, we evaluated the treatment of feline eosinophilic plaques and lip ulcers with amoxicillin trihydrate-potassium clavulanate (Clavamox(®); Pfizer Animal Health). Nineteen cats with clinical and cytological findings consistent with eosinophilic plaques and/or lip ulcers were enrolled. Lesions were photographed and their areas measured in square centimetres before and after 21 days of therapy with either flavoured amoxicillin-clavulanate suspension or flavoured placebo suspension. Sixteen cats completed the study, with nine plaque lesions (four treatment and five placebo) and eight lip ulcer lesions (four treatment and four placebo) included in the analysis. All lesions were shown to have infection, with bacterial phagocytosis present on cytological examination. Coagulase-positive staphylococci were the most commonly isolated bacteria. The amoxicillin-clavulanate-treated eosinophilic plaque group had a statistically significant 96.2% reduction in mean lesion size (-7.60 cm(2), P = 0.0078) and an 80% reduction in mean percentage of microscopic fields demonstrating evidence of bacterial infection (P < 0.0001), whereas the placebo group did not. The amoxicillin-clavulanate-treated lip ulcer group had a 42.6% decrease in mean lesion size (-0.25 cm(2), P = 0.4125) and the placebo group a 36.6% increase (+0.49 cm(2), P = 0.1575), although neither change was statistically significant. The amoxicillin-clavulanate-treated lip ulcer group had a statistically significant 65.0% reduction in mean percentage of microscopic fields demonstrating evidence of bacterial infection (P < 0.0001), while no significant reduction was observed in the placebo group. A suspension of amoxicillin trihydrate-potassium clavulanate is an effective monotherapy for the treatment of feline eosinophilic plaques. © 2011 The Authors. Veterinary Dermatology. © 2011 ESVD and ACVD.
De Spiegelaere, Ward; Malatinkova, Eva; Lynch, Lindsay; Van Nieuwerburgh, Filip; Messiaen, Peter; O'Doherty, Una; Vandekerckhove, Linos
2014-06-01
Quantification of integrated proviral HIV DNA by repetitive-sampling Alu-HIV PCR is a candidate virological tool to monitor the HIV reservoir in patients. However, the experimental procedures and data analysis of the assay are complex and hinder its widespread use. Here, we provide an improved and simplified data analysis method by adopting binomial and Poisson statistics. A modified analysis method on the basis of Poisson statistics was used to analyze the binomial data of positive and negative reactions from a 42-replicate Alu-HIV PCR by use of dilutions of an integration standard and on samples of 57 HIV-infected patients. Results were compared with the quantitative output of the previously described Alu-HIV PCR method. Poisson-based quantification of the Alu-HIV PCR was linearly correlated with the standard dilution series, indicating that absolute quantification with the Poisson method is a valid alternative for data analysis of repetitive-sampling Alu-HIV PCR data. Quantitative outputs of patient samples assessed by the Poisson method correlated with the previously described Alu-HIV PCR analysis, indicating that this method is a valid alternative for quantifying integrated HIV DNA. Poisson-based analysis of the Alu-HIV PCR data enables absolute quantification without the need of a standard dilution curve. Implementation of the CI estimation permits improved qualitative analysis of the data and provides a statistical basis for the required minimal number of technical replicates. © 2014 The American Association for Clinical Chemistry.
Sungjun Lim; Nowak, Michael R; Yoonsuck Choe
2016-08-01
We present a novel, parallelizable algorithm capable of automatically reconstructing and calculating anatomical statistics of cerebral vascular networks embedded in large volumes of Rat Nissl-stained data. In this paper, we report the results of our method using Rattus somatosensory cortical data acquired using Knife-Edge Scanning Microscopy. Our algorithm performs the reconstruction task with averaged precision, recall, and F2-score of 0.978, 0.892, and 0.902 respectively. Calculated anatomical statistics show some conformance to values previously reported. The results that can be obtained from our method are expected to help explicate the relationship between the structural organization of the microcirculation and normal (and abnormal) cerebral functioning.
NASA Astrophysics Data System (ADS)
Jaffke, Patrick; Möller, Peter; Stetcu, Ionel; Talou, Patrick; Schmitt, Christelle
2018-03-01
We implement fission fragment yields, calculated using Brownian shape-motion on a macroscopic-microscopic potential energy surface in six dimensions, into the Hauser-Feshbach statistical decay code CGMF. This combination allows us to test the impact of utilizing theoretically-calculated fission fragment yields on the subsequent prompt neutron and γ-ray emission. We draw connections between the fragment yields and the total kinetic energy TKE of the fission fragments and demonstrate that the use of calculated yields can introduce a difference in the 〈TKE〉 and, thus, the prompt neutron multiplicity
Alania, M; De Backer, A; Lobato, I; Krause, F F; Van Dyck, D; Rosenauer, A; Van Aert, S
2017-10-01
In this paper, we investigate how precise atoms of a small nanocluster can ultimately be located in three dimensions (3D) from a tilt series of images acquired using annular dark field (ADF) scanning transmission electron microscopy (STEM). Therefore, we derive an expression for the statistical precision with which the 3D atomic position coordinates can be estimated in a quantitative analysis. Evaluating this statistical precision as a function of the microscope settings also allows us to derive the optimal experimental design. In this manner, the optimal angular tilt range, required electron dose, optimal detector angles, and number of projection images can be determined. Copyright © 2016 Elsevier B.V. All rights reserved.
Symmetry Transition Preserving Chirality in QCD: A Versatile Random Matrix Model
NASA Astrophysics Data System (ADS)
Kanazawa, Takuya; Kieburg, Mario
2018-06-01
We consider a random matrix model which interpolates between the chiral Gaussian unitary ensemble and the Gaussian unitary ensemble while preserving chiral symmetry. This ensemble describes flavor symmetry breaking for staggered fermions in 3D QCD as well as in 4D QCD at high temperature or in 3D QCD at a finite isospin chemical potential. Our model is an Osborn-type two-matrix model which is equivalent to the elliptic ensemble but we consider the singular value statistics rather than the complex eigenvalue statistics. We report on exact results for the partition function and the microscopic level density of the Dirac operator in the ɛ regime of QCD. We compare these analytical results with Monte Carlo simulations of the matrix model.
42 CFR 417.568 - Adequate financial records, statistical data, and cost finding.
Code of Federal Regulations, 2012 CFR
2012-10-01
... ORGANIZATIONS, COMPETITIVE MEDICAL PLANS, AND HEALTH CARE PREPAYMENT PLANS Medicare Payment: Cost Basis § 417... health care industry. (b) Provision of data. (1) The HMO or CMP must provide adequate cost and... 42 Public Health 3 2012-10-01 2012-10-01 false Adequate financial records, statistical data, and...
Statistical Learning as a Basis for Social Understanding in Children
ERIC Educational Resources Information Center
Ruffman, Ted; Taumoepeau, Mele; Perkins, Chris
2012-01-01
Many authors have argued that infants understand goals, intentions, and beliefs. We posit that infants' success on such tasks might instead reveal an understanding of behaviour, that infants' proficient statistical learning abilities might enable such insights, and that maternal talk scaffolds children's learning about the social world as well. We…
Statistical basis and outputs of stable isotope mixing models: Comment on Fry (2013)
A recent article by Fry (2013; Mar Ecol Prog Ser 472:1−13) reviewed approaches to solving underdetermined stable isotope mixing systems, and presented a new graphical approach and set of summary statistics for the analysis of such systems. In his review, Fry (2013) mis-characteri...
Statistical Bulletin: Annual Report On Economic Indicators, 1979.
ERIC Educational Resources Information Center
American Samoa Development Planning Office, Pago Pago.
Designed to serve as the basis for systematic collection of statistical information for government and the private sector, this bulletin presents a wide variety of economic indicators in tabular form. The data, selected to facilitate government and private planning efforts, are displayed in 25 tables and 27 graphs. Information is organized under…
A Different Approach for Usage of the Implant Materials: The Composite Graft Prefabrication.
Deniz, Lutfi Murat; Ataman, Murat Görkem; Borman, Huseyin; Erinanç, Hilal
2016-10-01
With all implanted materials, a certain sequence of biological events occurs following the implantation. This process is destructive to the implant and peri-implant tissues. The aforementioned sequence of biological events may be responsible for the complications. In this study, the natural biologic process following implantation was completed in an area other than the final implantation area. The aim was to keep the peri-implant tissues in the final implantation area away from the process. In the control group, the porous polyethylene discs were implanted to subcutaneous area on the frontal bone of the rats. A month after the implantation, macroscopic and microscopic examinations were performed. In the study group, the discs were implanted primarily above the rectus abdominis muscle of the rats. It was named as "the composite graft prefabrication." Twenty-one days after the first implantation, the discs were removed from the rectus muscle and implanted to subcutaneous area on the frontal bone of the rats. A month after the final implantation, macroscopic and microscopic examinations were performed. In macroscopic examination, all possible complications were evaluated. In microscopic examination, apoptosis, fibrosis, inflammation, and fibrovascular in-growing were evaluated. In the control group, implant exposure was observed in 3 of the rats. In the study group, no complications were observed. Although there was no statistical difference between 2 groups in the microscopic findings, at first glance, the inflammation seemed to be the factor responsible for the complication in the control group. According to the macroscopic results, the composite graft prefabrication seemed to be effective in preventing complications.
Saini, Divya; Gadicherla, Prahlad; Chandra, Prakash; Anandakrishna, Latha
2017-06-01
The viability of periodontal ligament (PDL) cells is a significant determinant of the long-term prognosis of replanted avulsed teeth. A storage medium is often required to maintain the viability of these cells during the extra-alveolar period. Many studies have been carried out to search for the most suitable storage medium for avulsed teeth, but an ideal solution has not yet been found. The purpose of the study was to compare and analyze the ability of coconut milk and probiotic milk to maintain PDL cell viability. In an in vitro setting, 69 caries free human premolars with normal periodontium that had been extracted for orthodontic purposes were randomly divided into two experimental groups on the basis of storage media used (i.e., coconut milk or probiotic milk) and a Hanks' balanced salt solution (HBSS) control group (23 samples per group). Immediately after extraction, the teeth were stored dry for 20 min and then immersed for 30 min in one of the storage media. The teeth were then subjected to collagenase-dispase assay and labeled with 0.5% trypan blue staining solution for determination of cell viability. The number of viable cells was counted under a light microscope and statistically analyzed using anova and post hoc Tukey test (P ≤ 0.05). Statistical analysis demonstrated there was a significant difference (P < 0.001) between coconut milk and probiotic milk as well as HBSS in maintaining cell viability. However, there was no significant difference between probiotic milk and HBSS in ability to maintain PDL cell viability (P > 0.05). Coconut milk may not be suitable as an interim transport media due to poor maintenance of cell viability. However, probiotic milk was able to maintain PDL cell viability as well as HBSS. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mezhov, E.A.; Reimarov, G.A.; Rubisov, V.N.
1987-05-01
On the basis of a statistical treatment of the entire set of published data on anion exchange extraction constants, the authors have refined and expanded the scale of the hydration parameters for the anions ..delta..G/sub hydr/ (the effective free energies of hydration for the anions). The authors have estimated the parameters ..delta..G for 93 anions and the coefficients % for 94 series of extraction systems, which are distinguished within each series only by the nature of the exchanging anions. The series are distinguished from one another by the nature of the cation extraction agent and the diluent.
Rieth, Sven; Engel, Felix; Bühner, Eva; Uhlmann, Susann; Wiedemann, Peter; Foja, Christian
2010-03-01
The aim of this study was to validate data arising from the Rostock Cornea Module (RCM) of the Heidelberg Retina Tomograph. Morphological parameters of the cornea were analyzed according to their dependency on patient's age. RCM measurements of 60 healthy eyes within 2 different age groups (group 1 <35 years, group 2 >50 years) were compared with the corneal thickness determined by the Oculus Pentacam and the endothelial cell density measured by the Tomey endothelial microscope, EM-2000. The mean corneal thickness measured with the Heidelberg Retina Tomograph/RCM was 517 +/- 31 microm and 542 +/- 30 microm with the Oculus Pentacam (correlation coefficient, R = 0.78). Group 1 showed a corneal thickness of 509 +/- 24 microm with the RCM and 531 +/- 27 microm with the Pentacam. In group 2, the corneal thickness was 525 +/- 34 microm and 553 +/- 29 microm, respectively. A significant increase in corneal thickness for older patients could be shown. The differences between the methods and the age groups were statistically significant (P < 0.0001). The average endothelial cell density measured with the RCM was 2779 +/- 472 cells per square millimeter. Between the age groups and the methods (RCM and endothelial microscope), no statistically significant differences could be found. Cell densities for the epithelial cell layers and keratocytes showed no significant correlation with age and sex of the patients. The RCM provides a reliable procedure for the evaluation of all corneal layers including morphological parameters. Endothelial cell densities either determined with the RCM or the EM-2000 are generally comparable to each other and showed no significant differences. It is suggested that lower corneal thickness measurements of the RCM can be caused by pressure during examination. An increased corneal thickness in the older group could be determined with the RCM and the Oculus Pentacam.
NASA Astrophysics Data System (ADS)
Vicsek, Tamas
1997-03-01
It is demonstrated that a wide range of experimental results on biological motion can be successfully interpreted in terms of statistical physics motivated models taking into account the relevant microscopic details of motor proteins and allowing analytic solutions. Two important examples are considered, i) the motion of a single kinesin molecule along microtubules inside individual cells and ii) muscle contraction which is a macroscopic phenomenon due to the collective action of a large number of myosin heads along actin filaments. i) Recently individual two-headed kinesin molecules have been studied in in vitro motility assays revealing a number of their peculiar transport properties. Here we propose a simple and robust model for the kinesin stepping process with elastically coupled Brownian heads showing all of these properties. The analytic treatment of our model results in a very good fit to the experimental data and practically has no free parameters. ii) Myosin is an ATPase enzyme that converts the chemical energy stored in ATP molecules into mechanical work. During muscle contraction, the myosin cross-bridges attach to the actin filaments and exert force on them yielding a relative sliding of the actin and myosin filaments. In this paper we present a simple mechanochemical model for the cross-bridge interaction involving the relevant kinetic data and providing simple analytic solutions for the mechanical properties of muscle contraction, such as the force-velocity relationship or the relative number of the attached cross-bridges. So far the only analytic formula which could be fitted to the measured force-velocity curves has been the well known Hill equation containing parameters lacking clear microscopic origin. The main advantages of our new approach are that it explicitly connects the mechanical data with the kinetic data and the concentration of the ATP and ATPase products and as such it leads to new analytic solutions which agree extremely well with a wide range of experimental curves, while the parameters of the corresponding expressions have well defined microscopic meaning.
Agent based reasoning for the non-linear stochastic models of long-range memory
NASA Astrophysics Data System (ADS)
Kononovicius, A.; Gontis, V.
2012-02-01
We extend Kirman's model by introducing variable event time scale. The proposed flexible time scale is equivalent to the variable trading activity observed in financial markets. Stochastic version of the extended Kirman's agent based model is compared to the non-linear stochastic models of long-range memory in financial markets. The agent based model providing matching macroscopic description serves as a microscopic reasoning of the earlier proposed stochastic model exhibiting power law statistics.
Srirekha, A; Rashmi, K; Hegde, Jayshree; Lekha, S; Rupali, K; Reshmi, George
2013-09-01
This study evaluated the removal of debris and smear layer after post space preparation using different irrigations and passive ultrasonic agitation. Sixty human premolars were decoronated and post space prepared after endodontic therapy. The samples were then randomly divided into three experimental groups (Groups A, B, C) and one control group (Group D) with fifteen samples in each group. Groups A and B samples were treated with 10 % citric acid and 17 % ethylenediamintetraacetic acid (EDTA), respectively and passive ultrasonic agitation was done, rinsed with sodium hypochlorite and finally flushed with saline. Group C samples were conditioned with 36 % phosphoric acid and then rinsed with saline. The control group was treated with 3 % sodium hypochlorite, passive ultrasonic agitation done and flushed with saline. The samples were sectioned and evaluated for debris and smear layer removal under scanning electron microscope. 10 % citric acid showed the best removal of smear layer when compared with 17 % EDTA and 36 % phosphoric acid, but was not statistically significant (p > 0.05). The difference in scoring for debris and smear layer removal in the coronal, middle and apical third of post space of experimental groups in comparison with control group was statistically significant (p < 0.001).
Entropic measures of individual mobility patterns
NASA Astrophysics Data System (ADS)
Gallotti, Riccardo; Bazzani, Armando; Degli Esposti, Mirko; Rambaldi, Sandro
2013-10-01
Understanding human mobility from a microscopic point of view may represent a fundamental breakthrough for the development of a statistical physics for cognitive systems and it can shed light on the applicability of macroscopic statistical laws for social systems. Even if the complexity of individual behaviors prevents a true microscopic approach, the introduction of mesoscopic models allows the study of the dynamical properties for the non-stationary states of the considered system. We propose to compute various entropy measures of the individual mobility patterns obtained from GPS data that record the movements of private vehicles in the Florence district, in order to point out new features of human mobility related to the use of time and space and to define the dynamical properties of a stochastic model that could generate similar patterns. Moreover, we can relate the predictability properties of human mobility to the distribution of time passed between two successive trips. Our analysis suggests the existence of a hierarchical structure in the mobility patterns which divides the performed activities into three different categories, according to the time cost, with different information contents. We show that a Markov process defined by using the individual mobility network is not able to reproduce this hierarchy, which seems the consequence of different strategies in the activity choice. Our results could contribute to the development of governance policies for a sustainable mobility in modern cities.
Like Beauty, Complexity is Hard to Define
NASA Astrophysics Data System (ADS)
Tsallis, Constantino
Like beauty, complexity is hard to define and rather easy to identify: nonlinear dynamics, strongly interconnected simple elements, some sort of divisoria aquorum between order and disorder. Before focusing on complexity, let us remember that the theoretical pillars of contemporary physics are mechanics (Newtonian, relativistic, quantum), Maxwell electromagnetism, and (Boltzmann-Gibbs, BG) statistical mechanics - obligatory basic disciplines in any advanced course in physics. The firstprinciple statistical-mechanical approach starts from (microscopic) electro-mechanics and theory of probabilities, and, through a variety of possible mesoscopic descriptions, arrives to (oscopic) thermodynamics. In the middle of this trip, we cross energy and entropy. Energy is related to the possible microscopic configurations of the system, whereas entropy is related to the corresponding probabilities. Therefore, in some sense, entropy represents a concept which, epistemologically speaking, is one step further with regard to energy. The fact that energy is not parameter-independent is very familiar: the kinetic energy of a truck is very different from that of a fly, and the relativistic energy of a fast electron is very different from its classical value, and so on. What about entropy? One hundred and forty years of tradition, and hundreds - we may even say thousands - of impressive theoretical successes of the parameter-free BG entropy have sedimented, in the mind of many scientists, the conviction that it is unique. However, it can be straightforwardly argued that, in general, this is not the case...
Jhingan, Pulkit; Sandhu, Meera; Jindal, Garima; Goel, Deepti; Sachdev, Vinod
2015-01-01
Context: Very recently, diode laser has been used for disinfecting the root canals in endodontic treatment and increasing its success rate and longevity utilizing the thermal effect of laser on surrounding tissues. Aims: The aim of this study is to evaluate the effect of 980 nm laser irradiation on intra-canal dentin surface – scanning electron microscopic (SEM) - in-vitro study. Methods: A total of 40 single-rooted freshly extracted permanent teeth were collected. Teeth were sectioned at the cemento-enamel junction using diamond disc. Root canals of all samples were prepared using hand ProTaper, which were randomly assigned into two groups (n = 20 each). Group 1: Receiving no treatment after biomechanical preparation; Group 2: 980 nm diode laser-treated root canals. Teeth were prepared for SEM analysis to check the size of intra-canal dentinal tubule openings. Statistical Analysis Used: Data were analyzed using SPSS V.16 software and compared using Levene's and independent t-test. Results: On statistical analysis, width of intracanal dentinal tubule openings in Group 1 (control) was significantly higher than those observed in Group 2 (diode laser-treated) (P < 0.001). Conclusion: This study showed that the application of 980 nm diode laser on intra-radicular dentin resulted in ultrastructural alterations resulting in melting of dentin. PMID:26097338
NASA Astrophysics Data System (ADS)
Feng, Judy J.; Ip, Horace H.; Cheng, Shuk H.
2004-05-01
Many grey-level thresholding methods based on histogram or other statistic information about the interest image such as maximum entropy and so on have been proposed in the past. However, most methods based on statistic analysis of the images concerned little about the characteristics of morphology of interest objects, which sometimes could provide very important indication which can help to find the optimum threshold, especially for those organisms which have special texture morphologies such as vasculature, neuro-network etc. in medical imaging. In this paper, we propose a novel method for thresholding the fluorescent vasculature image series recorded from Confocal Scanning Laser Microscope. After extracting the basic orientation of the slice of vessels inside a sub-region partitioned from the images, we analysis the intensity profiles perpendicular to the vessel orientation to get the reasonable initial threshold for each region. Then the threshold values of those regions near the interest one both in x-y and optical directions have been referenced to get the final result of thresholds of the region, which makes the whole stack of images look more continuous. The resulting images are characterized by suppressing both noise and non-interest tissues conglutinated to vessels, while improving the vessel connectivities and edge definitions. The value of the method for idealized thresholding the fluorescence images of biological objects is demonstrated by a comparison of the results of 3D vascular reconstruction.
Urban growth simulation from "first principles".
Andersson, Claes; Lindgren, Kristian; Rasmussen, Steen; White, Roger
2002-08-01
General and mathematically transparent models of urban growth have so far suffered from a lack in microscopic realism. Physical models that have been used for this purpose, i.e., diffusion-limited aggregation, dielectric breakdown models, and correlated percolation all have microscopic dynamics for which analogies with urban growth appear stretched. Based on a Markov random field formulation we have developed a model that is capable of reproducing a variety of important characteristic urban morphologies and that has realistic microscopic dynamics. The results presented in this paper are particularly important in relation to "urban sprawl," an important aspect of which is aggressively spreading low-density land uses. This type of growth is increasingly causing environmental, social, and economical problems around the world. The microdynamics of our model, or its "first principles," can be mapped to human decisions and motivations and thus potentially also to policies and regulations. We measure statistical properties of macrostates generated by the urban growth mechanism that we propose, and we compare these to empirical measurements as well as to results from other models. To showcase the open-endedness of the model and to thereby relate our work to applied urban planning we have also included a simulated city consisting of a large number of land use classes in which also topographical data have been used.
Selection of the best features for leukocytes classification in blood smear microscopic images
NASA Astrophysics Data System (ADS)
Sarrafzadeh, Omid; Rabbani, Hossein; Talebi, Ardeshir; Banaem, Hossein Usefi
2014-03-01
Automatic differential counting of leukocytes provides invaluable information to pathologist for diagnosis and treatment of many diseases. The main objective of this paper is to detect leukocytes from a blood smear microscopic image and classify them into their types: Neutrophil, Eosinophil, Basophil, Lymphocyte and Monocyte using features that pathologists consider to differentiate leukocytes. Features contain color, geometric and texture features. Colors of nucleus and cytoplasm vary among the leukocytes. Lymphocytes have single, large, round or oval and Monocytes have singular convoluted shape nucleus. Nucleus of Eosinophils is divided into 2 segments and nucleus of Neutrophils into 2 to 5 segments. Lymphocytes often have no granules, Monocytes have tiny granules, Neutrophils have fine granules and Eosinophils have large granules in cytoplasm. Six color features is extracted from both nucleus and cytoplasm, 6 geometric features only from nucleus and 6 statistical features and 7 moment invariants features only from cytoplasm of leukocytes. These features are fed to support vector machine (SVM) classifiers with one to one architecture. The results obtained by applying the proposed method on blood smear microscopic image of 10 patients including 149 white blood cells (WBCs) indicate that correct rate for all classifiers are above 93% which is in a higher level in comparison with previous literatures.
NASA Astrophysics Data System (ADS)
Yamauchi, Toyohiko; Iwai, Hidenao; Yamashita, Yutaka
2011-11-01
We demonstrate tomographic imaging of intracellular activity of living cells by a low-coherent quantitative phase microscope. The intracellular organelles, such as the nucleus, nucleolus, and mitochondria, are moving around inside living cells, driven by the cellular physiological activity. In order to visualize the intracellular motility in a label-free manner we have developed a reflection-type quantitative phase microscope which employs the phase shifting interferometric technique with a low-coherent light source. The phase shifting interferometry enables us to quantitatively measure the intensity and phase of the optical field, and the low-coherence interferometry makes it possible to selectively probe a specific sectioning plane in the cell volume. The results quantitatively revealed the depth-resolved fluctuations of intracellular surfaces so that the plasma membrane and the membranes of intracellular organelles were independently measured. The transversal and the vertical spatial resolutions were 0.56 μm and 0.93 μm, respectively, and the mechanical sensitivity of the phase measurement was 1.2 nanometers. The mean-squared displacement was applied as a statistical tool to analyze the temporal fluctuation of the intracellular organelles. To the best of our knowledge, our system visualized depth-resolved intracellular organelles motion for the first time in sub-micrometer resolution without contrast agents.
Statistical projection effects in a hydrodynamic pilot-wave system
NASA Astrophysics Data System (ADS)
Sáenz, Pedro J.; Cristea-Platon, Tudor; Bush, John W. M.
2018-03-01
Millimetric liquid droplets can walk across the surface of a vibrating fluid bath, self-propelled through a resonant interaction with their own guiding or `pilot' wave fields. These walking droplets, or `walkers', exhibit several features previously thought to be peculiar to the microscopic, quantum realm. In particular, walkers confined to circular corrals manifest a wave-like statistical behaviour reminiscent of that of electrons in quantum corrals. Here we demonstrate that localized topological inhomogeneities in an elliptical corral may lead to resonant projection effects in the walker's statistics similar to those reported in quantum corrals. Specifically, we show that a submerged circular well may drive the walker to excite specific eigenmodes in the bath that result in drastic changes in the particle's statistical behaviour. The well tends to attract the walker, leading to a local peak in the walker's position histogram. By placing the well at one of the foci, a mode with maxima near the foci is preferentially excited, leading to a projection effect in the walker's position histogram towards the empty focus, an effect strongly reminiscent of the quantum mirage. Finally, we demonstrate that the mean pilot-wave field has the same form as the histogram describing the walker's statistics.
Agent-Based Model with Asymmetric Trading and Herding for Complex Financial Systems
Chen, Jun-Jie; Zheng, Bo; Tan, Lei
2013-01-01
Background For complex financial systems, the negative and positive return-volatility correlations, i.e., the so-called leverage and anti-leverage effects, are particularly important for the understanding of the price dynamics. However, the microscopic origination of the leverage and anti-leverage effects is still not understood, and how to produce these effects in agent-based modeling remains open. On the other hand, in constructing microscopic models, it is a promising conception to determine model parameters from empirical data rather than from statistical fitting of the results. Methods To study the microscopic origination of the return-volatility correlation in financial systems, we take into account the individual and collective behaviors of investors in real markets, and construct an agent-based model. The agents are linked with each other and trade in groups, and particularly, two novel microscopic mechanisms, i.e., investors’ asymmetric trading and herding in bull and bear markets, are introduced. Further, we propose effective methods to determine the key parameters in our model from historical market data. Results With the model parameters determined for six representative stock-market indices in the world, respectively, we obtain the corresponding leverage or anti-leverage effect from the simulation, and the effect is in agreement with the empirical one on amplitude and duration. At the same time, our model produces other features of the real markets, such as the fat-tail distribution of returns and the long-term correlation of volatilities. Conclusions We reveal that for the leverage and anti-leverage effects, both the investors’ asymmetric trading and herding are essential generation mechanisms. Among the six markets, however, the investors’ trading is approximately symmetric for the five markets which exhibit the leverage effect, thus contributing very little. These two microscopic mechanisms and the methods for the determination of the key parameters can be applied to other complex systems with similar asymmetries. PMID:24278146
Agent-based model with asymmetric trading and herding for complex financial systems.
Chen, Jun-Jie; Zheng, Bo; Tan, Lei
2013-01-01
For complex financial systems, the negative and positive return-volatility correlations, i.e., the so-called leverage and anti-leverage effects, are particularly important for the understanding of the price dynamics. However, the microscopic origination of the leverage and anti-leverage effects is still not understood, and how to produce these effects in agent-based modeling remains open. On the other hand, in constructing microscopic models, it is a promising conception to determine model parameters from empirical data rather than from statistical fitting of the results. To study the microscopic origination of the return-volatility correlation in financial systems, we take into account the individual and collective behaviors of investors in real markets, and construct an agent-based model. The agents are linked with each other and trade in groups, and particularly, two novel microscopic mechanisms, i.e., investors' asymmetric trading and herding in bull and bear markets, are introduced. Further, we propose effective methods to determine the key parameters in our model from historical market data. With the model parameters determined for six representative stock-market indices in the world, respectively, we obtain the corresponding leverage or anti-leverage effect from the simulation, and the effect is in agreement with the empirical one on amplitude and duration. At the same time, our model produces other features of the real markets, such as the fat-tail distribution of returns and the long-term correlation of volatilities. We reveal that for the leverage and anti-leverage effects, both the investors' asymmetric trading and herding are essential generation mechanisms. Among the six markets, however, the investors' trading is approximately symmetric for the five markets which exhibit the leverage effect, thus contributing very little. These two microscopic mechanisms and the methods for the determination of the key parameters can be applied to other complex systems with similar asymmetries.
Future Needs and Recommendations in the Development of ...
A species sensitivity distribution (SSD) is a probability model of the variation of species sensitivities to a stressor, in particular chemical exposure. The SSD approach has been used as a decision support tool in environmental protection and management since the 1980s, and the ecotoxicological, statistical and regulatory basis and applications continue to evolve. This article summarizes the findings of a 2014 workshop held by ECETOC (the European Center for Toxicology and Ecotoxicology of Chemicals) and the UK Environment Agency in Amsterdam, the Netherlands on the ecological relevance, statistical basis, and regulatory applications of SSDs. An array of research recommendations categorized under the topical areas of Use of SSDs, Ecological Considerations, Guideline Considerations, Method Development and Validation, Toxicity Data, Mechanistic Understanding and Uncertainty were identified and prioritized. A rationale for the most critical research needs identified in the workshop is provided. The workshop reviewed the technical basis and historical development and application of SSDs, described approaches to estimating generic and scenario specific SSD-based thresholds, evaluated utility and application of SSDs as diagnostic tools, and presented new statistical approaches to formulate SSDs. Collectively, these address many of the research needs to expand and improve their application. The highest priority work, from a pragmatic regulatory point of view, is t
Decoy-state quantum key distribution with biased basis choice
Wei, Zhengchao; Wang, Weilong; Zhang, Zhen; Gao, Ming; Ma, Zhi; Ma, Xiongfeng
2013-01-01
We propose a quantum key distribution scheme that combines a biased basis choice with the decoy-state method. In this scheme, Alice sends all signal states in the Z basis and decoy states in the X and Z basis with certain probabilities, and Bob measures received pulses with optimal basis choice. This scheme simplifies the system and reduces the random number consumption. From the simulation result taking into account of statistical fluctuations, we find that in a typical experimental setup, the proposed scheme can increase the key rate by at least 45% comparing to the standard decoy-state scheme. In the postprocessing, we also apply a rigorous method to upper bound the phase error rate of the single-photon components of signal states. PMID:23948999
Decoy-state quantum key distribution with biased basis choice.
Wei, Zhengchao; Wang, Weilong; Zhang, Zhen; Gao, Ming; Ma, Zhi; Ma, Xiongfeng
2013-01-01
We propose a quantum key distribution scheme that combines a biased basis choice with the decoy-state method. In this scheme, Alice sends all signal states in the Z basis and decoy states in the X and Z basis with certain probabilities, and Bob measures received pulses with optimal basis choice. This scheme simplifies the system and reduces the random number consumption. From the simulation result taking into account of statistical fluctuations, we find that in a typical experimental setup, the proposed scheme can increase the key rate by at least 45% comparing to the standard decoy-state scheme. In the postprocessing, we also apply a rigorous method to upper bound the phase error rate of the single-photon components of signal states.
The basis function approach for modeling autocorrelation in ecological data.
Hefley, Trevor J; Broms, Kristin M; Brost, Brian M; Buderman, Frances E; Kay, Shannon L; Scharf, Henry R; Tipton, John R; Williams, Perry J; Hooten, Mevin B
2017-03-01
Analyzing ecological data often requires modeling the autocorrelation created by spatial and temporal processes. Many seemingly disparate statistical methods used to account for autocorrelation can be expressed as regression models that include basis functions. Basis functions also enable ecologists to modify a wide range of existing ecological models in order to account for autocorrelation, which can improve inference and predictive accuracy. Furthermore, understanding the properties of basis functions is essential for evaluating the fit of spatial or time-series models, detecting a hidden form of collinearity, and analyzing large data sets. We present important concepts and properties related to basis functions and illustrate several tools and techniques ecologists can use when modeling autocorrelation in ecological data. © 2016 by the Ecological Society of America.
Freeman, Walter J
2007-06-01
The hypothesis is proposed that the central dynamics of the action-perception cycle has five steps: emergence from an existing macroscopic brain state of a pattern that predicts a future goal state; selection of a mesoscopic frame for action control; execution of a limb trajectory by microscopic spike activity; modification of microscopic cortical spike activity by sensory inputs; construction of mesoscopic perceptual patterns; and integration of a new macroscopic brain state. The basis is the circular causality between microscopic entities (neurons) and the mesoscopic and macroscopic entities (populations) self-organized by axosynaptic interactions. Self-organization of neural activity is bidirectional in all cortices. Upwardly the organization of mesoscopic percepts from microscopic spike input predominates in primary sensory areas. Downwardly the organization of spike outputs that direct specific limb movements is by mesoscopic fields constituting plans to achieve predicted goals. The mesoscopic fields in sensory and motor cortices emerge as frames within macroscopic activity. Part 1 describes the action-perception cycle and its derivative reflex arc qualitatively. Part 2 describes the perceptual limb of the arc from microscopic MSA to mesoscopic wave packets, and from these to macroscopic EEG and global ECoG fields that express experience-dependent knowledge in successive states. These macroscopic states are conceived to embed and control mesoscopic frames in premotor and motor cortices that are observed in local ECoG and LFP of frontoparietal areas. The fields sampled by ECoG and LFP are conceived as local patterns of neural activity in which trajectories of multiple spike activities (MSA) emerge that control limb movements. Mesoscopic frames are located by use of the analytic signal from the Hilbert transform after band pass filtering. The state variables in frames are measured to construct feature vectors by which to describe and classify frame patterns. Evidence is cited to justify use of linear analysis. The aim of the review is to enable researchers to conceive and identify goal-oriented states in brain activity for use as commands, in order to relegate the details of execution to adaptive control devices outside the brain.
Multiple-scale stochastic processes: Decimation, averaging and beyond
NASA Astrophysics Data System (ADS)
Bo, Stefano; Celani, Antonio
2017-02-01
The recent experimental progresses in handling microscopic systems have allowed to probe them at levels where fluctuations are prominent, calling for stochastic modeling in a large number of physical, chemical and biological phenomena. This has provided fruitful applications for established stochastic methods and motivated further developments. These systems often involve processes taking place on widely separated time scales. For an efficient modeling one usually focuses on the slower degrees of freedom and it is of great importance to accurately eliminate the fast variables in a controlled fashion, carefully accounting for their net effect on the slower dynamics. This procedure in general requires to perform two different operations: decimation and coarse-graining. We introduce the asymptotic methods that form the basis of this procedure and discuss their application to a series of physical, biological and chemical examples. We then turn our attention to functionals of the stochastic trajectories such as residence times, counting statistics, fluxes, entropy production, etc. which have been increasingly studied in recent years. For such functionals, the elimination of the fast degrees of freedom can present additional difficulties and naive procedures can lead to blatantly inconsistent results. Homogenization techniques for functionals are less covered in the literature and we will pedagogically present them here, as natural extensions of the ones employed for the trajectories. We will also discuss recent applications of these techniques to the thermodynamics of small systems and their interpretation in terms of information-theoretic concepts.
Waszak, Małgorzata; Cieślik, Krystyna; Pietryga, Marek; Lewandowski, Jacek; Chuchracki, Marek; Nowak-Markwitz, Ewa; Bręborowicz, Grzegorz
2016-01-01
The aim of the study was to determine if, and to what extent, structural and functional changes of the secundines influence biometric parameters of neonates from dichorionic twin pregnancies. The study included neonates from dichorionic, diamniotic twin pregnancies, along with their secundines. Based on histopathological examination of the secundines, the mass and dimensions of the placenta, length and condition of the umbilical cord, chorionicity, focal lesions, and microscopic placental abnormalities were determined for 445 pairs of twins. Morphological development of examined twins was characterized on the basis of their six somatic traits, while birth status of the newborns was assessed based on their Apgar scores. Statistical analysis included Student t-tests, Snedecor's F-tests, post-hoc tests, non-parametric chi-squared Pearson's tests, and determination of Spearman coefficients of rank correlation. The lowest values of analyzed somatic traits were observed in twins who had placentas with velamentous or marginal cord insertion. Inflammatory lesions in the placenta and placental abruption turned out to have the greatest impact of all analyzed abnormalities of the secundines. Inflammatory lesions in the placenta were associated with lower values of biometric parameters and a greater likelihood of preterm birth. Neonates with a history of placental abruption were characterized by significantly lower birth weight and smaller chest circumference. Morphological changes in the secundines have a limited impact on biometric parameters of neonates from dichorionic twin pregnancies. In turn, functional changes exert a significant effect and more often contribute to impaired fetal development.
ERIC Educational Resources Information Center
Stemler, Steven E.; Grigorenko, Elena L.; Jarvin, Linda; Sternberg, Robert J.
2006-01-01
Sternberg's theory of successful intelligence was used to create augmented exams in Advanced Placement Psychology and Statistics. Participants included 1895 high school students from 19 states and 56 schools throughout the U.S. The psychometric results support the validity of creating examinations that assess memory, analytical, creative, and…
Belanger, Scott; Barron, Mace; Craig, Peter; Dyer, Scott; Galay-Burgos, Malyka; Hamer, Mick; Marshall, Stuart; Posthuma, Leo; Raimondo, Sandy; Whitehouse, Paul
2017-07-01
A species sensitivity distribution (SSD) is a probability model of the variation of species sensitivities to a stressor, in particular chemical exposure. The SSD approach has been used as a decision support tool in environmental protection and management since the 1980s, and the ecotoxicological, statistical, and regulatory basis and applications continue to evolve. This article summarizes the findings of a 2014 workshop held by the European Centre for Toxicology and Ecotoxicology of Chemicals and the UK Environment Agency in Amsterdam, The Netherlands, on the ecological relevance, statistical basis, and regulatory applications of SSDs. An array of research recommendations categorized under the topical areas of use of SSDs, ecological considerations, guideline considerations, method development and validation, toxicity data, mechanistic understanding, and uncertainty were identified and prioritized. A rationale for the most critical research needs identified in the workshop is provided. The workshop reviewed the technical basis and historical development and application of SSDs, described approaches to estimating generic and scenario-specific SSD-based thresholds, evaluated utility and application of SSDs as diagnostic tools, and presented new statistical approaches to formulate SSDs. Collectively, these address many of the research needs to expand and improve their application. The highest priority work, from a pragmatic regulatory point of view, is to develop a guidance of best practices that could act as a basis for global harmonization and discussions regarding the SSD methodology and tools. Integr Environ Assess Manag 2017;13:664-674. © 2016 SETAC. © 2016 SETAC.
Aspiroz, C; Moreno, L A; Rezusta, A; Rubio, C
1999-01-01
One hundred and twenty lipid dependent Malassezia spp. isolates were obtained from the clinically normal skin of 38 healthy adult volunteers by swabbing three different body sites (back, chest and scalp). Ninety-six percent of these strains could be grouped into three biotypes on the basis of microscopic, cultural, metabolic and biochemical (catalase, esculin and lipase (C-14)) characteristics. The differential features were simple to determine and easily reproduced. Moreover, the three biotypes were referable to the species M. globosa (biotype 1), M. sympodialis (biotype 2) and M. restricta (biotype 3). Based on their microscopic features, cultural properties and body site locations, we suggest that biotype 1 /M. globosa corresponds to the description of Pityrosporum orbiculare (round yeast cells with a narrow base, very frequently found on the upper trunk), and biotype 3/M. restricta corresponds to the concept of P. ovale (oval yeast cells with a broad budding base, located mainly on the scalp). Pleomorphic biotype 2/M. sympodialis, most frequently found in the back, does not clearly fit into any of the Pityrosporum species.
Thermodynamic analysis and purifying an amorphous phase of frozen crystallization centers
NASA Astrophysics Data System (ADS)
Lysov, V. I.; Tsaregradskaya, T. L.; Turkov, O. V.; Saenko, G. V.
2017-12-01
The possibility of dissolving frozen crystallization centers in amorphous alloys of the Fe-B system is considered by means of thermodynamic calculations. This can in turn improve the thermal stability of an amorphous alloy. The effect isothermal annealing has on the thermal stability of multicomponent amorphous alloys based on iron is investigated via the highly sensitive dilatometric technique, measurements of microsolidity, and electron microscopic investigations. The annealing temperature is determined empirically on the basis of the theses of the thermodynamic theory of the high temperature stability of multicomponent amorphous alloys, according to which there exists a range of temperatures that is characterized by a negative difference between the chemical potentials of phases in a heterogeneous amorphous matrix-frozen crystallization centers system. The thermodynamic condition of the possible dissolution of frozen crystallization centers is thus met. It is shown that introducing regimes of thermal processing allows us to expand the ranges of the thermal stability of iron-based amorphous alloys by 20-40 K through purifying an amorphous matrix of frozen crystallization centers. This conclusion is proved via electron microscopic investigations.
NASA Astrophysics Data System (ADS)
Zhang, Xiaojie; Yang, Jipeng; Cai, Tiancong; Zuo, Guoqiang; Tang, Changqing
2018-06-01
Boron carbide (B4C) nanoparticles-decorated anatase titanium dioxide (TiO2) nanosheets photocatalysts were synthesized by a hydrothermal method in the presence of hydrofluoric acid and characterized by field emission scanning electron microscope, high-resolution transmission electron microscope, UV-vis diffuse reflectance spectra, photoluminescence spectra, etc. With metallic Pt nanoparticles as a co-catalyst, the as-synthesized B4C/TiO2 composites were evaluated using photocatalytic CO2 or H2O reduction to solar fuels such as methane and hydrogen. Under either simulated sunlight or visible light irradiation, coupling p-type B4C with n-type anatase TiO2 significantly improved the photocatalytic performance. Both photoluminescence and transient photocurrent measurements indicated that the interfacial coupling effect between B4C and anatase TiO2 could significantly promote photo-excited charges separations. On the basis of measurements and literatures, a possible mechanism of excited charges transfer at the B4C-anatase TiO2 heterojunction interface during irradiation was deduced.
Structure of the low-lying positive parity states in the proton-neutron symplectic model
NASA Astrophysics Data System (ADS)
Ganev, H. G.
2018-05-01
The proton-neutron symplectic model with Sp(12, R) dynamical symmetry is applied for the simultaneous description of the microscopic structure of the low-lying states of the ground state, γ and β bands in 166 Er. For this purpose, the model Hamiltonian is diagonalized in the space of stretched states by exploiting the SUp (3) ⊗ SUn (3) symmetry-adapted basis. The theoretical predictions are compared with experiment and some other microscopic collective models, like the one-component Sp(6, R) symplectic and pseudo-SU(3) models. A good description of the energy levels of the three bands under consideration, as well as the enhanced intraband B(E2) transition strengths between the states of the ground and γ bands is obtained without the use of effective charges. The results show the presence of a good SU(3) dynamical symmetry. It is also shown that, in contrast to the Sp(6, R) case, the lowest excited bands, e.g., the β and γ bands, naturally appear together with the ground state band within a single Sp(12, R) irreducible representation.
NASA Astrophysics Data System (ADS)
Deng, Yunsheng; Huang, Qimeng; Zhao, Yue; Zhou, Daming; Ying, Cuifeng; Wang, Deqiang
2017-01-01
We report a scalable method to fabricate high-quality graphene nanopores for biomolecule detection using a helium ion microscope (HIM). HIM milling shows promising capabilities for precisely controlling the size and shape, and may allow for the potential production of nanopores at wafer scale. Nanopores could be fabricated at different sizes ranging from 5 to 30 nm in diameter in few minutes. Compared with the current solid-state nanopore fabrication techniques, e.g. transmission electron microscopy, HIM is fast. Furthermore, we investigated the exposure-time dependence of graphene nanopore formation: the rate of pore expansion did not follow a simple linear relationship with exposure time, but a fast expansion rate at short exposure time and a slow rate at long exposure time. In addition, we performed biomolecule detection with our patterned graphene nanopore. The ionic current signals induced by 20-base single-stranded DNA homopolymers could be used as a basis for homopolymer differentiation. However, the charge interaction of homopolymer chains with graphene nanopores, and the conformations of homopolymer chains need to be further considered to improve the accuracy of discrimination.
Zheng, Haocheng; Goldner, Lori S; Leuba, Sanford H
2007-03-01
Many technical improvements in fluorescence microscopy over the years have focused on decreasing background and increasing the signal to noise ratio (SNR). The scanning confocal fluorescence microscope (SCFM) represented a major improvement in these efforts. The SCFM acquires signal from a thin layer of a thick sample, rejecting light whose origin is not in the focal plane thereby dramatically decreasing the background signal. A second major innovation was the advent of high quantum-yield, low noise, single-photon counting detectors. The superior background rejection of SCFM combined with low-noise, high-yield detectors makes it possible to detect the fluorescence from single-dye molecules. By labeling a DNA molecule or a DNA/protein complex with a donor/acceptor dye pair, fluorescence resonance energy transfer (FRET) can be used to track conformational changes in the molecule/complex itself, on a single molecule/complex basis. In this methods paper, we describe the core concepts of SCFM in the context of a study that uses FRET to reveal conformational fluctuations in individual Holliday junction DNA molecules and nucleosomal particles. We also discuss data processing methods for SCFM.
Drift of Phase Fluctuations in the ABC Model
NASA Astrophysics Data System (ADS)
Bertini, Lorenzo; Buttà, Paolo
2013-07-01
In a recent work, Bodineau and Derrida analyzed the phase fluctuations in the ABC model. In particular, they computed the asymptotic variance and, on the basis of numerical simulations, they conjectured the presence of a drift, which they guessed to be an antisymmetric function of the three densities. By assuming the validity of the fluctuating hydrodynamic approximation, we prove the presence of such a drift, providing an analytical expression for it. This expression is then shown to be an antisymmetric function of the three densities. The antisymmetry of the drift can also be inferred from a symmetry property of the underlying microscopic dynamics.
A case of nontraumatic gas gangrene in a common marmoset (Callithrix jacchus).
Yasuda, Masahiko; Inoue, Takashi; Ueno, Masami; Morita, Hanako; Hayashimoto, Nobuhito; Kawai, Kenji; Itoh, Toshio
2016-01-01
The common marmoset is widely used in neuroscience and regenerative medicine research. However, information concerning common marmoset disorders, particularly infectious diseases, is scarce. Here, we report a case of a female common marmoset that died suddenly due to gas gangrene. The animal presented with gaseous abdominal distention at postmortem, and Clostridium perfringens type A was isolated from several tissues. Vacuoles, a Gram-positive bacteremia and intravascular hemolysis were observed microscopically in the muscles, liver and lungs. On the basis of these findings, we diagnosed nontraumatic gas gangrene caused by Clostridium perfringens type A in this common marmoset.
A case of nontraumatic gas gangrene in a common marmoset (Callithrix jacchus)
YASUDA, Masahiko; INOUE, Takashi; UENO, Masami; MORITA, Hanako; HAYASHIMOTO, Nobuhito; KAWAI, Kenji; ITOH, Toshio
2015-01-01
The common marmoset is widely used in neuroscience and regenerative medicine research. However, information concerning common marmoset disorders, particularly infectious diseases, is scarce. Here, we report a case of a female common marmoset that died suddenly due to gas gangrene. The animal presented with gaseous abdominal distention at postmortem, and Clostridium perfringens type A was isolated from several tissues. Vacuoles, a Gram-positive bacteremia and intravascular hemolysis were observed microscopically in the muscles, liver and lungs. On the basis of these findings, we diagnosed nontraumatic gas gangrene caused by Clostridium perfringens type A in this common marmoset. PMID:26156080
Electron Beam-Induced Writing of Nanoscale Iron Wires on a Functional Metal Oxide
2013-01-01
Electron beam-induced surface activation (EBISA) has been used to grow wires of iron on rutile TiO2(110)-(1 × 1) in ultrahigh vacuum. The wires have a width down to ∼20 nm and hence have potential utility as interconnects on this dielectric substrate. Wire formation was achieved using an electron beam from a scanning electron microscope to activate the surface, which was subsequently exposed to Fe(CO)5. On the basis of scanning tunneling microscopy and Auger electron spectroscopy measurements, the activation mechanism involves electron beam-induced surface reduction and restructuring. PMID:24159366
1981-01-01
Video cameras with contrast and black level controls can yield polarized light and differential interference contrast microscope images with unprecedented image quality, resolution, and recording speed. The theoretical basis and practical aspects of video polarization and differential interference contrast microscopy are discussed and several applications in cell biology are illustrated. These include: birefringence of cortical structures and beating cilia in Stentor, birefringence of rotating flagella on a single bacterium, growth and morphogenesis of echinoderm skeletal spicules in culture, ciliary and electrical activity in a balancing organ of a nudibranch snail, and acrosomal reaction in activated sperm. PMID:6788777
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ulianova, O V; Uianov, S S; Li Pengcheng
2011-04-30
The method of speckle microscopy was adapted to estimate the reactogenicity of the prototypes of vaccine preparations against extremely dangerous infections. The theory is proposed to describe the mechanism of formation of the output signal from the super-high spatial resolution speckle microscope. The experimental studies show that bacterial suspensions, irradiated in different regimes of inactivation, do not exert negative influence on the blood microcirculations in laboratory animals. (optical technologies in biophysics and medicine)
Perturbation theory of nuclear matter with a microscopic effective interaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benhar, Omar; Lovato, Alessandro
Here, an updated and improved version of the effective interaction based on the Argonne-Urbana nuclear Hamiltonian, derived using the formalism of correlated basis functions and the cluster expansion technique, is employed to obtain a number of properties of cold nuclear matter at arbitrary neutron excess within the formalism of many-body perturbation theory. The numerical results, including the ground-state energy per nucleon, the symmetry energy, the pressure, the compressibility, and the single-particle spectrum, are discussed in the context of the available empirical information, obtained from measured nuclear properties and heavy-ion collisions.
Perturbation theory of nuclear matter with a microscopic effective interaction
Benhar, Omar; Lovato, Alessandro
2017-11-01
Here, an updated and improved version of the effective interaction based on the Argonne-Urbana nuclear Hamiltonian, derived using the formalism of correlated basis functions and the cluster expansion technique, is employed to obtain a number of properties of cold nuclear matter at arbitrary neutron excess within the formalism of many-body perturbation theory. The numerical results, including the ground-state energy per nucleon, the symmetry energy, the pressure, the compressibility, and the single-particle spectrum, are discussed in the context of the available empirical information, obtained from measured nuclear properties and heavy-ion collisions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Estevez, Ivan; Concept Scientific Instruments, ZA de Courtaboeuf, 2 rue de la Terre de Feu, 91940 Les Ulis; Chrétien, Pascal
2014-02-24
On the basis of a home-made nanoscale impedance measurement device associated with a commercial atomic force microscope, a specific operating process is proposed in order to improve absolute (in sense of “nonrelative”) capacitance imaging by drastically reducing the parasitic effects due to stray capacitance, surface topography, and sample tilt. The method, combining a two-pass image acquisition with the exploitation of approach curves, has been validated on sets of calibration samples consisting in square parallel plate capacitors for which theoretical capacitance values were numerically calculated.
Ramírez-Romero, Rafael; Nevárez-Garza, Alicia M.; Rodríguez-Tovar, Luis E.; Wong-González, Alfredo; Ledezma-Torres, Rogelio A.; Hernández-Vidal, Gustavo
2012-01-01
Most of the natural cases of pneumonia in feedlot cattle are characterized by a longer clinical course due to chronic lung lesions. Microscopically, these lesions include interstitial fibroplasia, bronchitis, bronchiectasis, bronchiolitis obliterans, and epithelial metaplasia of the airways. Herein, the aim was to review, under a medical perspective, the pathologic mechanisms operating in these chronic pneumonic lesions in calves. Based on the similarities of these changes to those reported in bronchiolitis obliterans/organising pneumonia (BO/OP) and chronic obstructive pulmonary disease (COPD) in human beings, calves are proposed as an alternative animal model. PMID:22629176
Polliack, A; McKenzie, S; Gee, T; Lampen, N; de Harven, E; Clarkson, B D
1975-09-01
This report describes the surface architecture of leukemic cells, as seen by scanning electron microscopy in 34 patients with acute nonlymphoblastic leukemia. Six patients with myeloblastic, 4 with promyelocytic, 10 with myelomonocytic, 8 with monocytic, 4 with histiocytic and 2 with undifferentiated leukemia were studied. Under the scanning electron microscope most leukemia histiocytes and monocytes appeared similar and were characterized by the presence of large, well developed broad-based ruffled membranes or prominent raised ridge-like profiles, resembling ithis respect normal monocytes. Most cells from patients with acute promyelocytic or myeloblastic leukemia exhibited narrower ridge-like profiles whereas some showed ruffles or microvilli. Patients with myelomonocytic leukemia showed mixed populations of cells with ridge-like profiles and ruffled membranes whereas cells from two patients with undifferentiated leukemia had smooth surfaces, similar to those encountered in cells from patients with acute lymphoblastic leukemia. It appears that nonlymphoblastic and lymphoblastic leukemia cells (particularly histiocytes and monocytes) can frequently be distinquished on the basis of their surface architecture. The surface features of leukemic histiocytes and monocytes are similar, suggesting that they may belong to the same cell series. The monocytes seem to have characteristic surface features recognizable with the scanning electron microscope and differ from most cells from patients with acute granulocytic leukemia. Although overlap of surface features and misidentification can occur, scanning electron microscopy is a useful adjunct to other modes of microscopy in the study and diagnosis of acute leukemia.
NASA Astrophysics Data System (ADS)
Lapshin, Rostislav V.
2016-08-01
A method of distributed calibration of a probe microscope scanner is suggested. The main idea consists in a search for a net of local calibration coefficients (LCCs) in the process of automatic measurement of a standard surface, whereby each point of the movement space of the scanner can be characterized by a unique set of scale factors. Feature-oriented scanning (FOS) methodology is used as a basis for implementation of the distributed calibration permitting to exclude in situ the negative influence of thermal drift, creep and hysteresis on the obtained results. Possessing the calibration database enables correcting in one procedure all the spatial systematic distortions caused by nonlinearity, nonorthogonality and spurious crosstalk couplings of the microscope scanner piezomanipulators. To provide high precision of spatial measurements in nanometer range, the calibration is carried out using natural standards - constants of crystal lattice. One of the useful modes of the developed calibration method is a virtual mode. In the virtual mode, instead of measurement of a real surface of the standard, the calibration program makes a surface image ;measurement; of the standard, which was obtained earlier using conventional raster scanning. The application of the virtual mode permits simulation of the calibration process and detail analysis of raster distortions occurring in both conventional and counter surface scanning. Moreover, the mode allows to estimate the thermal drift and the creep velocities acting while surface scanning. Virtual calibration makes possible automatic characterization of a surface by the method of scanning probe microscopy (SPM).
Properties of a memory network in psychology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wedemann, Roseli S.; Donangelo, Raul; Carvalho, Luis A. V. de
We have previously described neurotic psychopathology and psychoanalytic working-through by an associative memory mechanism, based on a neural network model, where memory was modelled by a Boltzmann machine (BM). Since brain neural topology is selectively structured, we simulated known microscopic mechanisms that control synaptic properties, showing that the network self-organizes to a hierarchical, clustered structure. Here, we show some statistical mechanical properties of the complex networks which result from this self-organization. They indicate that a generalization of the BM may be necessary to model memory.
Directed polymers versus directed percolation
NASA Astrophysics Data System (ADS)
Halpin-Healy, Timothy
1998-10-01
Universality plays a central role within the rubric of modern statistical mechanics, wherein an insightful continuum formulation rises above irrelevant microscopic details, capturing essential scaling behaviors. Nevertheless, occasions do arise where the lattice or another discrete aspect can constitute a formidable legacy. Directed polymers in random media, along with its close sibling, directed percolation, provide an intriguing case in point. Indeed, the deep blood relation between these two models may have sabotaged past efforts to fully characterize the Kardar-Parisi-Zhang universality class, to which the directed polymer belongs.
Properties of a memory network in psychology
NASA Astrophysics Data System (ADS)
Wedemann, Roseli S.; Donangelo, Raul; de Carvalho, Luís A. V.
2007-12-01
We have previously described neurotic psychopathology and psychoanalytic working-through by an associative memory mechanism, based on a neural network model, where memory was modelled by a Boltzmann machine (BM). Since brain neural topology is selectively structured, we simulated known microscopic mechanisms that control synaptic properties, showing that the network self-organizes to a hierarchical, clustered structure. Here, we show some statistical mechanical properties of the complex networks which result from this self-organization. They indicate that a generalization of the BM may be necessary to model memory.
Transistor-like behavior of single metalloprotein junctions.
Artés, Juan M; Díez-Pérez, Ismael; Gorostiza, Pau
2012-06-13
Single protein junctions consisting of azurin bridged between a gold substrate and the probe of an electrochemical tunneling microscope (ECSTM) have been obtained by two independent methods that allowed statistical analysis over a large number of measured junctions. Conductance measurements yield (7.3 ± 1.5) × 10(-6)G(0) in agreement with reported estimates using other techniques. Redox gating of the protein with an on/off ratio of 20 was demonstrated and constitutes a proof-of-principle of a single redox protein field-effect transistor.
Low-flow statistics of selected streams in Chester County, Pennsylvania
Schreffler, Curtis L.
1998-01-01
Low-flow statistics for many streams in Chester County, Pa., were determined on the basis of data from 14 continuous-record streamflow stations in Chester County and data from 1 station in Maryland and 1 station in Delaware. The stations in Maryland and Delaware are on streams that drain large areas within Chester County. Streamflow data through the 1994 water year were used in the analyses. The low-flow statistics summarized are the 1Q10, 7Q10, 30Q10, and harmonic mean. Low-flow statistics were estimated at 34 partial-record stream sites throughout Chester County.
On real statistics of relaxation in gases
NASA Astrophysics Data System (ADS)
Kuzovlev, Yu. E.
2016-02-01
By example of a particle interacting with ideal gas, it is shown that the statistics of collisions in statistical mechanics at any value of the gas rarefaction parameter qualitatively differ from that conjugated with Boltzmann's hypothetical molecular chaos and kinetic equation. In reality, the probability of collisions of the particle in itself is random. Because of that, the relaxation of particle velocity acquires a power-law asymptotic behavior. An estimate of its exponent is suggested on the basis of simple kinematic reasons.
Characterization and Screening of Native Scenedesmus sp. Isolates Suitable for Biofuel Feedstock
Gour, Rakesh Singh; Chawla, Aseem; Singh, Harvinder; Chauhan, Rajinder Singh; Kant, Anil
2016-01-01
In current study isolates of two native microalgae species were screened on the basis of growth kinetics and lipid accumulation potential. On the basis of data obtained on growth parameters and lipid accumulation, it is concluded that Scenedesmus dimorphus has better potential as biofuel feedstock. Two of the isolates of Scenedesmus dimorphus performed better than other isolates with respect to important growth parameters with lipid content of ~30% of dry biomass. Scenedesmus dimorphus was found to be more suitable as biodiesel feedstock candidate on the basis of cumulative occurrence of five important biodiesel fatty acids, relative occurrence of SFA (53.04%), MUFA (23.81%) and PUFA (19.69%), and more importantly that of oleic acid in its total lipids. The morphological observations using light and Scanning Electron Microscope and molecular characterization using amplified 18S rRNA gene sequences of microalgae species under study were also performed. Amplified 18S rRNA gene fragments of the microalgae species were sequenced, annotated at the NCBI website and phylogenetic analysis was done. We have published eight 18S rRNA gene sequences of microalgae species in NCBI GenBank. PMID:27195694
Spectral likelihood expansions for Bayesian inference
NASA Astrophysics Data System (ADS)
Nagel, Joseph B.; Sudret, Bruno
2016-03-01
A spectral approach to Bayesian inference is presented. It pursues the emulation of the posterior probability density. The starting point is a series expansion of the likelihood function in terms of orthogonal polynomials. From this spectral likelihood expansion all statistical quantities of interest can be calculated semi-analytically. The posterior is formally represented as the product of a reference density and a linear combination of polynomial basis functions. Both the model evidence and the posterior moments are related to the expansion coefficients. This formulation avoids Markov chain Monte Carlo simulation and allows one to make use of linear least squares instead. The pros and cons of spectral Bayesian inference are discussed and demonstrated on the basis of simple applications from classical statistics and inverse modeling.
Creation of a virtual cutaneous tissue bank
NASA Astrophysics Data System (ADS)
LaFramboise, William A.; Shah, Sujal; Hoy, R. W.; Letbetter, D.; Petrosko, P.; Vennare, R.; Johnson, Peter C.
2000-04-01
Cellular and non-cellular constituents of skin contain fundamental morphometric features and structural patterns that correlate with tissue function. High resolution digital image acquisitions performed using an automated system and proprietary software to assemble adjacent images and create a contiguous, lossless, digital representation of individual microscope slide specimens. Serial extraction, evaluation and statistical analysis of cutaneous feature is performed utilizing an automated analysis system, to derive normal cutaneous parameters comprising essential structural skin components. Automated digital cutaneous analysis allows for fast extraction of microanatomic dat with accuracy approximating manual measurement. The process provides rapid assessment of feature both within individual specimens and across sample populations. The images, component data, and statistical analysis comprise a bioinformatics database to serve as an architectural blueprint for skin tissue engineering and as a diagnostic standard of comparison for pathologic specimens.
Nuclear level densities of 64 , 66 Zn from neutron evaporation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramirez, A. P. D.; Voinov, A. V.; Grimes, S. M.
Double differential cross sections of neutrons from d+ 63,65Cu reactions have been measured at deuteron energies of 6 and 7.5 MeV. The cross sections measured at backward angles have been compared to theoretical calculations in the framework of the statistical Hauser-Feshbach model. Three different level density models were tested: the Fermi-gas model, the Gilbert-Cameron model, and the microscopic approach through the Hartree-Fock-Bogoliubov method (HFBM). The calculations using the Gilbert-Cameron model are in best agreement with our experimental data. Level densities of the residual nuclei 64Zn and 66Zn have been obtained from statistical neutron evaporation spectra. In conclusion, the angle-integrated crossmore » sections have been analyzed with the exciton model of nuclear reaction.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
More, R.M.
A new statistical model (the quantum-statistical model (QSM)) was recently introduced by Kalitkin and Kuzmina for the calculation of thermodynamic properties of compressed matter. This paper examines the QSM and gives (i) a numerical QSM calculation of pressure and energy for aluminum and comparison to existing augmented-plane-wave data; (ii) display of separate kinetic, exchange, and quantum pressure terms; (iii) a study of electron density at the nucleus; (iv) a study of the effects of the Kirzhnitz-Weizsacker parameter controlling the gradient terms; (v) an analytic expansion for very high densities; and (vi) rigorous pressure theorems including a general version of themore » virial theorem which applies to an arbitrary microscopic volume. It is concluded that the QSM represents the most accurate and consistent theory of the Thomas-Fermi type.« less
Nuclear level densities of 64 , 66 Zn from neutron evaporation
Ramirez, A. P. D.; Voinov, A. V.; Grimes, S. M.; ...
2013-12-26
Double differential cross sections of neutrons from d+ 63,65Cu reactions have been measured at deuteron energies of 6 and 7.5 MeV. The cross sections measured at backward angles have been compared to theoretical calculations in the framework of the statistical Hauser-Feshbach model. Three different level density models were tested: the Fermi-gas model, the Gilbert-Cameron model, and the microscopic approach through the Hartree-Fock-Bogoliubov method (HFBM). The calculations using the Gilbert-Cameron model are in best agreement with our experimental data. Level densities of the residual nuclei 64Zn and 66Zn have been obtained from statistical neutron evaporation spectra. In conclusion, the angle-integrated crossmore » sections have been analyzed with the exciton model of nuclear reaction.« less
Grid indentation analysis of mechanical properties of composite electrodes in Li-ion batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasconcelos, Luize Scalco de; Xu, Rong; Li, Jianlin
We report that electrodes in commercial rechargeable batteries are microscopically heterogeneous materials. The constituent components, including active materials, polymeric binders, and porous conductive matrix, often have large variation in their mechanical properties, making the mechanical characterization of composite electrodes a challenging task. In a model system of LiNi 0.5Mn 0.3Co 0.2O 2 cathode, we employ the instrumented grid indentation to determine the elastic modulus and hardness of the constituent phases. The approach relies on a large array of nanoindentation experiments and statistical analysis of the resulting data provided that the maximum indentation depth is carefully chosen. The statistically extracted propertiesmore » of the active particles and the surrounding medium are in good agreement with the tests of targeted indentation at selected sites. Lastly, the combinatory technique of grid indentation and statistical deconvolution represents a fast and reliable route to quantify the mechanical properties of composite electrodes that feed the parametric input for the mechanics models.« less
Grid indentation analysis of mechanical properties of composite electrodes in Li-ion batteries
Vasconcelos, Luize Scalco de; Xu, Rong; Li, Jianlin; ...
2016-03-09
We report that electrodes in commercial rechargeable batteries are microscopically heterogeneous materials. The constituent components, including active materials, polymeric binders, and porous conductive matrix, often have large variation in their mechanical properties, making the mechanical characterization of composite electrodes a challenging task. In a model system of LiNi 0.5Mn 0.3Co 0.2O 2 cathode, we employ the instrumented grid indentation to determine the elastic modulus and hardness of the constituent phases. The approach relies on a large array of nanoindentation experiments and statistical analysis of the resulting data provided that the maximum indentation depth is carefully chosen. The statistically extracted propertiesmore » of the active particles and the surrounding medium are in good agreement with the tests of targeted indentation at selected sites. Lastly, the combinatory technique of grid indentation and statistical deconvolution represents a fast and reliable route to quantify the mechanical properties of composite electrodes that feed the parametric input for the mechanics models.« less
Dang-Trinh, Minh-Anh; Angeles, Jose Ma M; Moendeg, Kharleezelle J; Macalanda, Adrian Miki C; Higuchi, Luna; Oto, Chiho; Kirinoki, Masashi; Chigusa, Yuichi; Kawazu, Shin-Ichiro
2018-06-01
Schistosoma japonicum, causing zoonotic intestinal schistosomiasis, is found in China, the Philippines and parts of Indonesia. Severe disease manifestations are basically due to the deposition of eggs in some vital organs such as the liver, spleen and brain. Traditionally, histopathological microscopic examination of the egg burden was used to evaluate the intensity of infection in the affected organs. However, this technique is laborious, time-consuming and requires trained personnel. In this study, real time PCR targeting the mitochondrial NADH dehydrogenase I gene was used to compare with microscopic examination of tissue sections in evaluating the egg burdens in different affected organs. Livers, spleens and brains of the S. japonicum infected mice after 8 and 18 weeks post-infection (p.i) were harvested and examined. Results showed that there were statistically significant correlations between the egg burden evaluated by tissue section examination, and the Ct values of the real time PCR of livers with heavy egg burden at 8 (r = -0.81) and 18 (r = -0.80) weeks p.i. Furthermore, a correlation (r = -0.56) between the egg burden assessed by the microscopic examination and Ct value of the real time PCR of spleens with moderate egg burden after 18 weeks p.i and not 8 weeks p.i was also observed. Brains with low egg burden showed no schistosome eggs in the microscopic examination, however one sample tested positive by real time PCR. These results suggested that real time PCR is useful in evaluating schistosome egg burden in the organs of the experimentally infected mice model that will give further insights into the pathology of schistosomiasis. Copyright © 2018 Elsevier Inc. All rights reserved.
Chhabra, Sanjay; Yadav, Seema; Talwar, Sangeeta
2014-05-01
The study was aimed to acquire better understanding of C-shaped canal systems in mandibular second molar teeth through a clinical approach using sophisticated techniques such as surgical operating microscope and cone beam computed tomography (CBCT). A total of 42 extracted mandibular second molar teeth with fused roots and longitudinal grooves were collected randomly from native Indian population. Pulp chamber floors of all specimens were examined under surgical operating microscope and classified into four types (Min's method). Subsequently, samples were subjected to CBCT scan after insertion of K-files size #10 or 15 into each canal orifice and evaluated using the cross-sectional and 3-dimensional images in consultation with dental radiologist so as to obtain more accurate results. Minimum distance between the external root surface on the groove and initial file placed in the canal was also measured at different levels and statistically analyzed. Out of 42 teeth, maximum number of samples (15) belonged to Type-II category. A total of 100 files were inserted in 86 orifices of various types of specimens. Evaluation of the CBCT scan images of the teeth revealed that a total of 21 canals were missing completely or partially at different levels. The mean values for the minimum thickness were highest at coronal followed by middle and apical third levels in all the categories. Lowest values were obtained for teeth with Type-III category at all three levels. The present study revealed anatomical variations of C-shaped canal system in mandibular second molars. The prognosis of such complex canal anatomies can be improved by simultaneous employment of modern techniques such as surgical operating microscope and CBCT.
Effectiveness of rotary or manual techniques for removing a 6-year-old filling material.
Duarte, Marco Antônio Hungaro; Só, Marcus Vinícius Reis; Cimadon, Vanessa Buffon; Zucatto, Cristiane; Vier-Pelisser, Fabiana Vieira; Kuga, Milton Carlos
2010-01-01
The aim of this study was to evaluate the effectiveness of manual and rotary instrumentation techniques for removing root fillings after different storage times. Twenty-four canals from palatal roots of human maxillary molars were instrumented and filled with gutta-percha and zinc-oxide eugenol-based sealer (Endofill) , and were stored in saline for 6 years. Non-aged control specimens were treated in the same manner and stored for 1 week. All canals were retreated using hand files or ProTaper Universal NiTi rotary system. Radiographs were taken to determine the amount of remaining material in the canals. The roots were vertically split, the halves were examined with a clinical microscope and the obtained images were digitized. The images were evaluated with AutoCAD software and the percentage of residual material was calculated. Data were analyzed with two-way ANOVA and Tukey's test at 5% significance level. There was no statistically significant differences (p>0.05) between the manual and rotary techniques for filling material removal regardless the ageing effect on endodontic sealers. When only the age of the filling material was analyzed microscopically, non-aged fillings that remained on the middle third of the canals presented a higher percentage of material remaining (p<0.05) compared to the aged sealers and to the other thirds of the roots. The apical third showed a higher percentage of residual filling material in both radiographic and microscopic analysis when compared to the other root thirds. In conclusion, all canals presented residual filling material after endodontic retreatment procedures. Microscopic analysis was more effective than radiographs for detection of residual filling material.
Sarkar, Sauradeep; Rajaratnam, Simon; Chacko, Geeta; Chacko, Ari George
2014-11-01
To describe outcomes and complications in patients undergoing transsphenoidal surgery for acromegaly using the 2010 consensus criteria for biochemical remission. Retrospective review of 113 treatment naïve patients who underwent transsphenoidal surgery with the endoscopic (n=66) and the endonasal microscopic technique (n=47). Cure was defined if the age and sex-adjusted IGF-1 level was normal and either the basal GH was <1 ng/ml or the nadir GH was <0.4 ng/ml following oral glucose suppression at last follow-up. The mean age at presentation was 38.1 ± 7.1 years and 86% of tumors were macroadenomas. Adenoma sizes averaged 21.1 ± 9.7 mm, but 56% of all tumors were ≥ 2 cm in size and 43.4% were invasive. Remission rates between endoscopic and microscopic transsphenoidal surgery did not differ significantly overall (28.8% versus 36.2%). On univariate analysis, a preoperative GH level <40 ng/ml, adenoma size <20mm and non-invasiveness were predictors of remission at follow-up. Although there were no statistically significant differences in remission rates between the endoscopic and microsurgical groups, surgically induced hypopituitarism was less frequent with the former. We report our surgical experience with predominantly large, invasive GH adenomas using the 2010 criteria for cure. Patients with smaller, non-invasive tumors with lower preoperative GH levels are most likely to achieve remission. Outcomes with either the microscopic or endoscopic approach do not differ significantly, although the rate of surgically induced hypopituitarism may be higher with the former. Transsphenoidal surgery remains the first line of treatment for patients with acromegaly, but invasive adenomas will frequently require adjuvant therapy. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Carollo, Federico; Garrahan, Juan P.; Lesanovsky, Igor; Pérez-Espigares, Carlos
2017-11-01
We consider a class of either fermionic or bosonic noninteracting open quantum chains driven by dissipative interactions at the boundaries and study the interplay of coherent transport and dissipative processes, such as bulk dephasing and diffusion. Starting from the microscopic formulation, we show that the dynamics on large scales can be described in terms of fluctuating hydrodynamics. This is an important simplification as it allows us to apply the methods of macroscopic fluctuation theory to compute the large deviation (LD) statistics of time-integrated currents. In particular, this permits us to show that fermionic open chains display a third-order dynamical phase transition in LD functions. We show that this transition is manifested in a singular change in the structure of trajectories: while typical trajectories are diffusive, rare trajectories associated with atypical currents are ballistic and hyperuniform in their spatial structure. We confirm these results by numerically simulating ensembles of rare trajectories via the cloning method, and by exact numerical diagonalization of the microscopic quantum generator.
Carollo, Federico; Garrahan, Juan P; Lesanovsky, Igor; Pérez-Espigares, Carlos
2017-11-01
We consider a class of either fermionic or bosonic noninteracting open quantum chains driven by dissipative interactions at the boundaries and study the interplay of coherent transport and dissipative processes, such as bulk dephasing and diffusion. Starting from the microscopic formulation, we show that the dynamics on large scales can be described in terms of fluctuating hydrodynamics. This is an important simplification as it allows us to apply the methods of macroscopic fluctuation theory to compute the large deviation (LD) statistics of time-integrated currents. In particular, this permits us to show that fermionic open chains display a third-order dynamical phase transition in LD functions. We show that this transition is manifested in a singular change in the structure of trajectories: while typical trajectories are diffusive, rare trajectories associated with atypical currents are ballistic and hyperuniform in their spatial structure. We confirm these results by numerically simulating ensembles of rare trajectories via the cloning method, and by exact numerical diagonalization of the microscopic quantum generator.
A short essay on quantum black holes and underlying noncommutative quantized space-time
NASA Astrophysics Data System (ADS)
Tanaka, Sho
2017-01-01
We emphasize the importance of noncommutative geometry or Lorenz-covariant quantized space-time towards the ultimate theory of quantum gravity and Planck scale physics. We focus our attention on the statistical and substantial understanding of the Bekenstein-Hawking area-entropy law of black holes in terms of the kinematical holographic relation (KHR). KHR manifestly holds in Yang’s quantized space-time as the result of kinematical reduction of spatial degrees of freedom caused by its own nature of noncommutative geometry, and plays an important role in our approach without any recourse to the familiar hypothesis, so-called holographic principle. In the present paper, we find a unified form of KHR applicable to the whole region ranging from macroscopic to microscopic scales in spatial dimension d = 3. We notice a possibility of nontrivial modification of area-entropy law of black holes which becomes most remarkable in the extremely microscopic system close to Planck scale.
Time-dependent entropy evolution in microscopic and macroscopic electromagnetic relaxation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker-Jarvis, James
This paper is a study of entropy and its evolution in the time and frequency domains upon application of electromagnetic fields to materials. An understanding of entropy and its evolution in electromagnetic interactions bridges the boundaries between electromagnetism and thermodynamics. The approach used here is a Liouville-based statistical-mechanical theory. I show that the microscopic entropy is reversible and the macroscopic entropy satisfies an H theorem. The spectral entropy development can be very useful for studying the frequency response of materials. Using a projection-operator based nonequilibrium entropy, different equations are derived for the entropy and entropy production and are applied tomore » the polarization, magnetization, and macroscopic fields. I begin by proving an exact H theorem for the entropy, progress to application of time-dependent entropy in electromagnetics, and then apply the theory to relevant applications in electromagnetics. The paper concludes with a discussion of the relationship of the frequency-domain form of the entropy to the permittivity, permeability, and impedance.« less
Modeling of ultrashort pulse generation in mode-locked VECSELs
NASA Astrophysics Data System (ADS)
Kilen, I.; Koch, S. W.; Hader, J.; Moloney, J. V.
2016-03-01
We present a study of various models for the mode-locked pulse dynamics in a vertical external-cavity surface emitting laser with a saturable absorber. The semiconductor Bloch equations are used to model microscopically the light-matter interaction and the carrier dynamics. Maxwell's equations describe the pulse propagation. Scattering contributions due to higher order correlation effects are approximated using effective rates that are found from a comparison to solving the microscopic scattering equations on the second Born-Markov level. It is shown that the simulations result in the same mode-locked final state whether the system is initialized with a test pulse close to the final mode-locked pulse or the full field build-up from statistical noise is considered. The influence of the cavity design is studied. The longest pulses are found for a standard V-cavity while a linear cavity and a V-cavity with an high reflectivity mirror in the middle are shown to produce similar, much shorter pulses.
Transverse excitations in liquid metals
NASA Astrophysics Data System (ADS)
Hosokawa, S.; Munejiri, S.; Inui, M.; Kajihara, Y.; Pilgrim, W.-C.; Baron, A. Q. R.; Shimojo, F.; Hoshino, K.
2013-02-01
The transverse acoustic excitation modes were detected by inelastic x-ray scattering in liquid Ga, Cu and Fe in the Q range around 10 nm-1 using a third-generation synchrotron radiation facility, SPring-8, although these liquid metals are mostly described by a simple hard-sphere liquid. Ab initio molecular dynamics simulations clearly support this finding for liquid Ga. From the detailed analyses for the S(Q,ω) spectra with good statistic qualities, the lifetime of less than 1 ps and the propagating length of less than 1 nm can be estimated for the transverse acoustic phonon modes, which correspond to the lifetime and size of cages formed instantaneously in these liquid metals. The microscopic Poisson's ratio estimated from the dynamic velocities of sound is 0.42 for liquid Ga and about -0.2 for liquid transition metals, indicating a rubber-like soft and extremely hard elastic properties of the cage clusters, respectively. The origin of these microscopic elastic properties is discussed in detail.
Structural Fingerprinting of Nanocrystals in the Transmission Electron Microscope
NASA Astrophysics Data System (ADS)
Rouvimov, Sergei; Plachinda, Pavel; Moeck, Peter
2010-03-01
Three novel strategies for the structurally identification of nanocrystals in a transmission electron microscope are presented. Either a single high-resolution transmission electron microscopy image [1] or a single precession electron diffractogram (PED) [2] may be employed. PEDs from fine-grained crystal powders may also be utilized. Automation of the former two strategies is in progress and shall lead to statistically significant results on ensembles of nanocrystals. Open-access databases such as the Crystallography Open Database which provides more than 81,500 crystal structure data sets [3] or its mainly inorganic and educational subsets [4] may be utilized. [1] http://www.scientificjournals.org/journals 2007/j/of/dissertation.htm [2] P. Moeck and S. Rouvimov, in: {Drugs and the Pharmaceutical Sciences}, Vol. 191, 2009, 270-313 [3] http://cod.ibt.lt, http://www.crystallography.net, http://cod.ensicaen.fr, http://nanocrystallography.org, http://nanocrystallography.net, http://journals.iucr.org/j/issues/2009/04/00/kk5039/kk5039.pdf [4] http://nanocrystallography.research.pdx.edu/CIF-searchable
Radiological and histopathological evaluation of experimentally-induced periapical lesion in rats
TEIXEIRA, Renata Cordeiro; RUBIRA, Cassia Maria Fischer; ASSIS, Gerson Francisco; LAURIS, José Roberto Pereira; CESTARI, Tania Mary; RUBIRA-BULLEN, Izabel Regina Fischer
2011-01-01
Objective This study evaluated experimentally-induced periapical bone loss sites using digital radiographic and histopathologic parameters. Material and Methods Twenty-seven Wistar rats were submitted to coronal opening of their mandibular right first molars. They were radiographed at 2, 15 and 30 days after the operative procedure by two digital radiographic storage phosphor plates (Digora®). The images were analyzed by creating a region of interest at the periapical region of each tooth (ImageJ) and registering the corresponding pixel values. After the sacrifice, the specimens were submitted to microscopic analysis in order to confirm the pulpal and periapical status of the tooth. Results There was significant statistically difference between the control and test sides in all the experimental periods regarding the pixel values (two-way ANOVA; p<0.05). Conclusions The microscopic analysis proved that a periapical disease development occurred during the experimental periods with an evolution from pulpal necrosis to periapical bone resorption. PMID:21922123
NASA Technical Reports Server (NTRS)
Barth, Timothy J.
2014-01-01
This workshop presentation discusses the design and implementation of numerical methods for the quantification of statistical uncertainty, including a-posteriori error bounds, for output quantities computed using CFD methods. Hydrodynamic realizations often contain numerical error arising from finite-dimensional approximation (e.g. numerical methods using grids, basis functions, particles) and statistical uncertainty arising from incomplete information and/or statistical characterization of model parameters and random fields. The first task at hand is to derive formal error bounds for statistics given realizations containing finite-dimensional numerical error [1]. The error in computed output statistics contains contributions from both realization error and the error resulting from the calculation of statistics integrals using a numerical method. A second task is to devise computable a-posteriori error bounds by numerically approximating all terms arising in the error bound estimates. For the same reason that CFD calculations including error bounds but omitting uncertainty modeling are only of limited value, CFD calculations including uncertainty modeling but omitting error bounds are only of limited value. To gain maximum value from CFD calculations, a general software package for uncertainty quantification with quantified error bounds has been developed at NASA. The package provides implementations for a suite of numerical methods used in uncertainty quantification: Dense tensorization basis methods [3] and a subscale recovery variant [1] for non-smooth data, Sparse tensorization methods[2] utilizing node-nested hierarchies, Sampling methods[4] for high-dimensional random variable spaces.
Nonlinear Dynamics of Cantilever-Sample Interactions in Atomic Force Microscopy
NASA Technical Reports Server (NTRS)
Cantrell, John H.; Cantrell, Sean A.
2010-01-01
The interaction of the cantilever tip of an atomic force microscope (AFM) with the sample surface is obtained by treating the cantilever and sample as independent systems coupled by a nonlinear force acting between the cantilever tip and a volume element of the sample surface. The volume element is subjected to a restoring force from the remainder of the sample that provides dynamical equilibrium for the combined systems. The model accounts for the positions on the cantilever of the cantilever tip, laser probe, and excitation force (if any) via a basis set of set of orthogonal functions that may be generalized to account for arbitrary cantilever shapes. The basis set is extended to include nonlinear cantilever modes. The model leads to a pair of coupled nonlinear differential equations that are solved analytically using a matrix iteration procedure. The effects of oscillatory excitation forces applied either to the cantilever or to the sample surface (or to both) are obtained from the solution set and applied to the to the assessment of phase and amplitude signals generated by various acoustic-atomic force microscope (A-AFM) modalities. The influence of bistable cantilever modes of on AFM signal generation is discussed. The effects on the cantilever-sample surface dynamics of subsurface features embedded in the sample that are perturbed by surface-generated oscillatory excitation forces and carried to the cantilever via wave propagation are accounted by the Bolef-Miller propagating wave model. Expressions pertaining to signal generation and image contrast in A-AFM are obtained and applied to amplitude modulation (intermittent contact) atomic force microscopy and resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM). The influence of phase accumulation in A-AFM on image contrast is discussed, as is the effect of hard contact and maximum nonlinearity regimes of A-AFM operation.
Swiderska, Zaneta; Korzynska, Anna; Markiewicz, Tomasz; Lorent, Malgorzata; Zak, Jakub; Wesolowska, Anna; Roszkowiak, Lukasz; Slodkowska, Janina; Grala, Bartlomiej
2015-01-01
Background. This paper presents the study concerning hot-spot selection in the assessment of whole slide images of tissue sections collected from meningioma patients. The samples were immunohistochemically stained to determine the Ki-67/MIB-1 proliferation index used for prognosis and treatment planning. Objective. The observer performance was examined by comparing results of the proposed method of automatic hot-spot selection in whole slide images, results of traditional scoring under a microscope, and results of a pathologist's manual hot-spot selection. Methods. The results of scoring the Ki-67 index using optical scoring under a microscope, software for Ki-67 index quantification based on hot spots selected by two pathologists (resp., once and three times), and the same software but on hot spots selected by proposed automatic methods were compared using Kendall's tau-b statistics. Results. Results show intra- and interobserver agreement. The agreement between Ki-67 scoring with manual and automatic hot-spot selection is high, while agreement between Ki-67 index scoring results in whole slide images and traditional microscopic examination is lower. Conclusions. The agreement observed for the three scoring methods shows that automation of area selection is an effective tool in supporting physicians and in increasing the reliability of Ki-67 scoring in meningioma.
Micro-CT based modelling for characterising injection-moulded porous titanium implants.
Chen, Junning; Chen, Liangjian; Chang, Che-Cheng; Zhang, Zhongpu; Li, Wei; Swain, Michael V; Li, Qing
2017-01-01
Design of prosthetic implants to ensure rapid and stable osseointegration remains a significant challenge, and continuous efforts have been directed to new implant materials, structures and morphology. This paper aims to develop and characterise a porous titanium dental implant fabricated by metallic powder injection-moulding. The surface morphology of the specimens was first examined with a scanning electron microscope (SEM), followed by microscopic computerised tomography (μ-CT) scanning to capture its 3D microscopic features non-destructively. The nature of porosity and pore sizes were determined statistically. A homogenisation technique based on the Hills-energy theorem was adopted to evaluate its directional elastic moduli, and the conservation of mass theorem was employed to quantify the oxygen diffusivity for bio-transportation feature. This porous medium was found to have pore sizes varying from 50 to 400 µm and the average porosity of 46.90 ± 1.83%. The anisotropic principal elastic moduli were found fairly close to the upper range of cortical bone, and the directional diffusivities could potentially enable radial osseous tissue ingrowth and vascularisation. This porous titanium successfully reduces the elastic modulus mismatch between implant and bone for dental and orthopaedic applications, and provides improved capacity for transporting oxygen, nutrient and waste for pre-vascular network formation. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Swiderska, Zaneta; Korzynska, Anna; Markiewicz, Tomasz; Lorent, Malgorzata; Zak, Jakub; Wesolowska, Anna; Roszkowiak, Lukasz; Slodkowska, Janina; Grala, Bartlomiej
2015-01-01
Background. This paper presents the study concerning hot-spot selection in the assessment of whole slide images of tissue sections collected from meningioma patients. The samples were immunohistochemically stained to determine the Ki-67/MIB-1 proliferation index used for prognosis and treatment planning. Objective. The observer performance was examined by comparing results of the proposed method of automatic hot-spot selection in whole slide images, results of traditional scoring under a microscope, and results of a pathologist's manual hot-spot selection. Methods. The results of scoring the Ki-67 index using optical scoring under a microscope, software for Ki-67 index quantification based on hot spots selected by two pathologists (resp., once and three times), and the same software but on hot spots selected by proposed automatic methods were compared using Kendall's tau-b statistics. Results. Results show intra- and interobserver agreement. The agreement between Ki-67 scoring with manual and automatic hot-spot selection is high, while agreement between Ki-67 index scoring results in whole slide images and traditional microscopic examination is lower. Conclusions. The agreement observed for the three scoring methods shows that automation of area selection is an effective tool in supporting physicians and in increasing the reliability of Ki-67 scoring in meningioma. PMID:26240787
Manheim, Jeremy; Doty, Kyle C; McLaughlin, Gregory; Lednev, Igor K
2016-07-01
Hair and fibers are common forms of trace evidence found at crime scenes. The current methodology of microscopic examination of potential hair evidence is absent of statistical measures of performance, and examiner results for identification can be subjective. Here, attenuated total reflection (ATR) Fourier transform-infrared (FT-IR) spectroscopy was used to analyze synthetic fibers and natural hairs of human, cat, and dog origin. Chemometric analysis was used to differentiate hair spectra from the three different species, and to predict unknown hairs to their proper species class, with a high degree of certainty. A species-specific partial least squares discriminant analysis (PLSDA) model was constructed to discriminate human hair from cat and dog hairs. This model was successful in distinguishing between the three classes and, more importantly, all human samples were correctly predicted as human. An external validation resulted in zero false positive and false negative assignments for the human class. From a forensic perspective, this technique would be complementary to microscopic hair examination, and in no way replace it. As such, this methodology is able to provide a statistical measure of confidence to the identification of a sample of human, cat, and dog hair, which was called for in the 2009 National Academy of Sciences report. More importantly, this approach is non-destructive, rapid, can provide reliable results, and requires no sample preparation, making it of ample importance to the field of forensic science. © The Author(s) 2016.
Long-term survival and cure model following liver resection for breast cancer metastases.
Ruiz, Aldrick; Sebagh, Mylène; Wicherts, Dennis A; Castro-Benitez, Carlos; van Hillegersberg, Richard; Paule, Bernard; Castaing, Denis; Vibert, Eric; Cunha, Antonio Sa; Cherqui, Daniel; Morère, Jean-François; Adam, René
2018-02-20
Long-term survival is still rarely achieved with current systemic treatment in patients with breast cancer liver metastases (BCLM). Extended survival after hepatectomy was examined in a select group of BCLM patients. Hepatectomy for BCLM was performed in 139 consecutive patients between 1985 and 2012. Patients who survived < 5 years were compared to those who survived ≥ 5 years from first diagnosis of hepatic metastases. Predictive factors for survival were analyzed. Statistically cured, defined as those patients who their hazard rate returned to that of the general population, was analyzed. Of the 139, 43 patients survived ≥ 5 years. Significant differences between patient groups (< 5 vs. ≥ 5 years) were mean time interval between primary tumor and hepatic metastases diagnosis (50 vs. 43 months), mean number of resected tumors (3 vs. 2), positive estrogen receptors (54% vs. 79%), microscopic lymphatic invasion (65% vs. 34%), vascular invasion (63% vs. 37%), hormonal therapy after resection (34% vs. 74%), number of recurrence (40% vs. 65%) and repeat hepatectomy (1% vs. 42%), respectively. The probability of statistical cure was 14% (95% CI 1.4-26.7%) in these patients. Hepatectomy combined with systemic treatment can provide a chance of long-term survival and even cure in selected patients with BCLM. Microscopic vascular/lymphatic invasion appears to be a novel predictor for long-term survival after hepatectomy for BCLM and should be part of the review when discussing multidisciplinary treatment strategies.
Kitamura, Yukichi; Takenaka, Norio; Koyano, Yoshiyuki; Nagaoka, Masataka
2014-08-12
We have proposed a new theoretical methodology to clarify the microscopic nature of the vibrational properties in solution, which consists of a combination of the vibrational frequency analyses (VFAs) with two kinds of Hessian matrices, that is, the effective Hessian on the free energy surface (free energy Hessian: "FE-Hessian") and the instantaneous one (instantaneous normal mode Hessian: "INM-Hessian") within QM/MM framework. In these VFAs, the Hessians were obtained by the analytical approach, having the advantages from the aspect of both the computational efficiency and accuracy in comparison to those obtained by the numerical one. In the present study, we have applied them to the glycine aqueous solution. First, by using the VFA with the FE-Hessian (VFA-FEH), we estimated the vibrational frequency shifts induced by solvent water molecules. The calculated values were quantitatively in agreement with experimental ones. It was clearly demonstrated that such vibrational shifts are attributed to not only the structural relaxation but also the explicit solute-solvent interactions (i.e., interatomic interactions). Second, by using the VFA with the INM-Hessian (VFA-INMH), the vibrational spectra in solution were investigated through the vibrational INM densities of states (DOS). By the comparison between the spectroscopic features and the microscopic solvation structure around glycine molecule, it was found that the frequency shifts and bandwidths in IR spectra are closely correlated with the hydrogen bonding (HB) network formations. In particular, the instantaneous changes of vibrational states of the hydroxyl group and carbonyl one, showing apparently inverse tendency on the strength of the HB interaction, can be explained very well on the basis of two different mechanisms, that is, the direct change of electron density in the bonding orbitals and the indirect one due to hyperconjugation between the lone electron pair and the antibonding orbitals, respectively. In conclusion, the present dual VFA approach is a quite useful strategy to interpret the microscopic origin of the experimental vibrational spectra.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dowdell, S; Paganetti, H; Schuemann, J
Purpose: To report on the efforts funded by the AAPM seed funding grant to develop the basis for fluorescent nuclear track detector (FNTD) based radiobiological experiments in combination with dedicated Monte Carlo simulations (MCS) on the nanometer scale. Methods: Two confocal microscopes were utilized in this study. Two FNTD samples were used to find the optimal microscope settings, one FNTD irradiated with 11.1 MeV/u Gold ions and one irradiated with 428.77 MeV/u Carbon ions. The first sample provided a brightly luminescent central track while the latter is used to test the capabilities to observe secondary electrons. MCS were performed usingmore » TOPAS beta9 version, layered on top of Geant4.9.6p02. Two sets of simulations were performed, one with the Geant4-DNA physics list and approximating the FNTDs by water, a second set using the Penelope physics list in a water-approximated FNTD and a aluminum-oxide FNTD. Results: Within the first half of the funding period, we have successfully established readout capabilities of FNTDs at our institute. Due to technical limitations, our microscope setup is significantly different from the approach implemented at the DKFZ, Germany. However, we can clearly reconstruct Carbon tracks in 3D with electron track resolution of 200 nm. A second microscope with superior readout capabilities will be tested in the second half of the funding period, we expect an improvement in signal to background ratio with the same the resolution.We have successfully simulated tracks in FNTDs. The more accurate Geant4-DNA track simulations can be used to reconstruct the track energy from the size and brightness of the observed tracks. Conclusion: We have achieved the goals set in the seed funding proposal: the setup of FNTD readout and simulation capabilities. We will work on improving the readout resolution to validate our MCS track structures down to the nanometer scales.« less
Geboy, Nicholas J.; Engle, Mark A.; Hower, James C.
2013-01-01
Several standard methods require coal to be ashed prior to geochemical analysis. Researchers, however, are commonly interested in the compositional nature of the whole-coal, not its ash. Coal geochemical data for any given sample can, therefore, be reported in the ash basis on which it is analyzed or the whole-coal basis to which the ash basis data are back calculated. Basic univariate (mean, variance, distribution, etc.) and bivariate (correlation coefficients, etc.) measures of the same suite of samples can be very different depending which reporting basis the researcher uses. These differences are not real, but an artifact resulting from the compositional nature of most geochemical data. The technical term for this artifact is subcompositional incoherence. Since compositional data are forced to a constant sum, such as 100% or 1,000,000 ppm, they possess curvilinear properties which make the Euclidean principles on which most statistical tests rely inappropriate, leading to erroneous results. Applying the isometric logratio (ilr) transformation to compositional data allows them to be represented in Euclidean space and evaluated using traditional tests without fear of producing mathematically inconsistent results. When applied to coal geochemical data, the issues related to differences between the two reporting bases are resolved as demonstrated in this paper using major oxide and trace metal data from the Pennsylvanian-age Pond Creek coal of eastern Kentucky, USA. Following ilr transformation, univariate statistics, such as mean and variance, still differ between the ash basis and whole-coal basis, but in predictable and calculated manners. Further, the stability between two different components, a bivariate measure, is identical, regardless of the reporting basis. The application of ilr transformations addresses both the erroneous results of Euclidean-based measurements on compositional data as well as the inconsistencies observed on coal geochemical data reported on different bases.
Seeking parsimony in hydrology and water resources technology
NASA Astrophysics Data System (ADS)
Koutsoyiannis, D.
2009-04-01
The principle of parsimony, also known as the principle of simplicity, the principle of economy and Ockham's razor, advises scientists to prefer the simplest theory among those that fit the data equally well. In this, it is an epistemic principle but reflects an ontological characterization that the universe is ultimately parsimonious. Is this principle useful and can it really be reconciled with, and implemented to, our modelling approaches of complex hydrological systems, whose elements and events are extraordinarily numerous, different and unique? The answer underlying the mainstream hydrological research of the last two decades seems to be negative. Hopes were invested to the power of computers that would enable faithful and detailed representation of the diverse system elements and the hydrological processes, based on merely "first principles" and resulting in "physically-based" models that tend to approach in complexity the real world systems. Today the account of such research endeavour seems not positive, as it did not improve model predictive capacity and processes comprehension. A return to parsimonious modelling seems to be again the promising route. The experience from recent research and from comparisons of parsimonious and complicated models indicates that the former can facilitate insight and comprehension, improve accuracy and predictive capacity, and increase efficiency. In addition - and despite aspiration that "physically based" models will have lower data requirements and, even, they ultimately become "data-free" - parsimonious models require fewer data to achieve the same accuracy with more complicated models. Naturally, the concepts that reconcile the simplicity of parsimonious models with the complexity of hydrological systems are probability theory and statistics. Probability theory provides the theoretical basis for moving from a microscopic to a macroscopic view of phenomena, by mapping sets of diverse elements and events of hydrological systems to single numbers (a probability or an expected value), and statistics provides the empirical basis of summarizing data, making inference from them, and supporting decision making in water resource management. Unfortunately, the current state of the art in probability, statistics and their union, often called stochastics, is not fully satisfactory for the needs of modelling of hydrological and water resource systems. A first problem is that stochastic modelling has traditionally relied on classical statistics, which is based on the independent "coin-tossing" prototype, rather than on the study of real-world systems whose behaviour is very different from the classical prototype. A second problem is that the stochastic models (particularly the multivariate ones) are often not parsimonious themselves. Therefore, substantial advancement of stochastics is necessary in a new paradigm of parsimonious hydrological modelling. These ideas are illustrated using several examples, namely: (a) hydrological modelling of a karst system in Bosnia and Herzegovina using three different approaches ranging from parsimonious to detailed "physically-based"; (b) parsimonious modelling of a peculiar modified catchment in Greece; (c) a stochastic approach that can replace parameter-excessive ARMA-type models with a generalized algorithm that produces any shape of autocorrelation function (consistent with the accuracy provided by the data) using a couple of parameters; (d) a multivariate stochastic approach which replaces a huge number of parameters estimated from data with coefficients estimated by the principle of maximum entropy; and (e) a parsimonious approach for decision making in multi-reservoir systems using a handful of parameters instead of thousands of decision variables.
Are some BL Lac objects artefacts of gravitational lensing?
NASA Technical Reports Server (NTRS)
Ostriker, J. P.; Vietri, M.
1985-01-01
It is proposed here that a significant fraction of BL Lac objects are optically violently variable quasars whose continuum emission has been greatly amplified, relative to the line emission, by pointlike gravitational lenses in intervening galaxies. Several anomalous physical and statistical properties of BL Lacs can be understood on the basis of this model, which is immediately testable on the basis of absorption line studies and by direct imaging.
Fractional superstatistics from a kinetic approach
NASA Astrophysics Data System (ADS)
Ourabah, Kamel; Tribeche, Mouloud
2018-03-01
Through a kinetic approach, in which temperature fluctuations are taken into account, we obtain generalized fractional statistics interpolating between Fermi-Dirac and Bose-Einstein statistics. The latter correspond to the superstatistical analogues of the Polychronakos and Haldane-Wu statistics. The virial coefficients corresponding to these statistics are worked out and compared to those of an ideal two-dimensional anyon gas. It is shown that the obtained statistics reproduce correctly the second and third virial coefficients of an anyon gas. On this basis, a link is established between the statistical parameter and the strength of fluctuations. A further generalization is suggested by allowing the statistical parameter to fluctuate. As a by-product, superstatistics of ewkons, introduced recently to deal with dark energy [Phys. Rev. E 94, 062115 (2016), 10.1103/PhysRevE.94.062115], are also obtained within the same method.
Osteomyelitis caused by Neosartorya pseudofischeri.
Padhye, A A; Godfrey, J H; Chandler, F W; Peterson, S W
1994-01-01
The first case of osteomyelitis caused by Neosartorya pseudofischeri is reported. The patient, a 77-year-old male with a history of silicosis and tuberculosis, on X-ray examination revealed lytic lesions of L2 and L3 vertebrae suspicious for metastatic lesions. Histologic examination of biopsy specimens from vertebral bodies showed short, distorted, extra- and intracellular, hyaline hyphal fragments. The culture from the biopsy tissue produced numerous, evanescent asci containing eight ellipsoidal ascospores with two distinctive equatorial bands ca. 1 micron wide. When examined by a scanning electron microscope, ascospores exhibited a convex surface ornamented with raised flaps of tissue, in shape resembling triangular projections or long ridge lines. The conidial state (anamorph) was identified as Aspergillus thermomutatus on the basis of conidial columns which were smaller and less tightly packed as well as of a lighter shade of green than those observed in Aspergillus fumigatus. On the basis of the morphologic features of the ascospores, the teleomorph was identified as N. pseudofischeri. Images PMID:7852580
Chaoudhary, Vijayata; Hasnani, J. J.; Khyalia, Mukesh K.; Pandey, Sunanda; Chauhan, Vandip D.; Pandya, Suchit S.; Patel, P. V.
2015-01-01
Aim: This study was undertaken to identify Paramphistomum cervi on the basis of its morphology and histology to be the common cause of paramphistomosis in infected sheep and its differentiation from other similar Paramphistomes in Gujarat. Materials and Methods: Adult rumen flukes were recovered from the rumen of naturally infected sheep slaughtered in various abattoirs in Gujarat. Some adult flukes were flattened and stained in Borax carmine, and some were sectioned in the median sagittal plane and histological slides of the flukes were prepared for detailed morphological and histological studies. Result: Microscopic pictures of the parasite used in identification define the similarity in the morphology and histology of the anterior sucker, pharynx, esophagus, genital atrium, posterior sucker (acetabulum) and testes to the P. cervi. Conclusion: It can be concluded that the most common species found in sheep infected with Paramphistomosis is P. cervi on the basis of its histo-morphological appearance in Gujarat. PMID:27047009
Visualization of yeast chromosomal DNA
NASA Technical Reports Server (NTRS)
Lubega, Seth
1990-01-01
The DNA molecule is the most significant life molecule since it codes the blue print for other structural and functional molecules of all living organisms. Agarose gel electrophoresis is now being widely used to separate DNA of virus, bacteria, and lower eukaryotes. The task was undertaken of reviewing the existing methods of DNA fractionation and microscopic visualization of individual chromosonal DNA molecules by gel electrophoresis as a basis for a proposed study to investigate the feasibility of separating DNA molecules in free fluids as an alternative to gel electrophoresis. Various techniques were studied. On the molecular level, agarose gel electrophoresis is being widely used to separate chromosomal DNA according to molecular weight. Carl and Olson separate and characterized the entire karyotype of a lab strain of Saccharomyces cerevisiae. Smith et al. and Schwartz and Koval independently reported the visualization of individual DNA molecules migrating through agarose gel matrix during electrophoresis. The techniques used by these researchers are being reviewed in the lab as a basis for the proposed studies.
Neural image analysis in the process of quality assessment: domestic pig oocytes
NASA Astrophysics Data System (ADS)
Boniecki, P.; Przybył, J.; Kuzimska, T.; Mueller, W.; Raba, B.; Lewicki, A.; Przybył, K.; Zaborowicz, M.; Koszela, K.
2014-04-01
The questions related to quality classification of animal oocytes are explored by numerous scientific and research centres. This research is important, particularly in the context of improving the breeding value of farm animals. The methods leading to the stimulation of normal development of a larger number of fertilised animal oocytes in extracorporeal conditions are of special importance. Growing interest in the techniques of supported reproduction resulted in searching for new, increasingly effective methods for quality assessment of mammalian gametes and embryos. Progress in the production of in vitro animal embryos in fact depends on proper classification of obtained oocytes. The aim of this paper was the development of an original method for quality assessment of oocytes, performed on the basis of their graphical presentation in the form of microscopic digital images. The classification process was implemented on the basis of the information coded in the form of microphotographic pictures of the oocytes of domestic pig, using the modern methods of neural image analysis.
A critical survey of methods to detect plasma membrane rafts
Klotzsch, Enrico; Schütz, Gerhard J.
2013-01-01
The plasma membrane is still one of the enigmatic cellular structures. Although the microscopic structure is getting clearer, not much is known about the organization at the nanometre level. Experimental difficulties have precluded unambiguous approaches, making the current picture rather fuzzy. In consequence, a variety of different membrane models has been proposed over the years, on the basis of different experimental strategies. Recent data obtained via high-resolution single-molecule microscopy shed new light on the existing hypotheses. We thus think it is a good time for reviewing the consistency of the existing models with the new data. In this paper, we summarize the available models in ten propositions, each of which is discussed critically with respect to the applied technologies and the strengths and weaknesses of the approaches. Our aim is to provide the reader with a sound basis for his own assessment. We close this chapter by exposing our picture of the membrane organization at the nanoscale. PMID:23267184
Cascading process in the flute-mode turbulence of a plasma
NASA Technical Reports Server (NTRS)
Gonzalez, R.; Gomez, D.; Fontan, C. F.; Schifino, A. C. S.; Montagne, R.
1993-01-01
The cascades of ideal invariants in the flute-mode turbulence are analyzed by considering a statistics based on an elementary three-mode coupling process. The statistical dynamics of the system is investigated on the basis of the existence of the physically most important (PMI) triad. When finite ion Larmor radius effects are considered, the PMI triad describes the formation of zonal flows.
The maximum entropy production principle: two basic questions.
Martyushev, Leonid M
2010-05-12
The overwhelming majority of maximum entropy production applications to ecological and environmental systems are based on thermodynamics and statistical physics. Here, we discuss briefly maximum entropy production principle and raises two questions: (i) can this principle be used as the basis for non-equilibrium thermodynamics and statistical mechanics and (ii) is it possible to 'prove' the principle? We adduce one more proof which is most concise today.
ERIC Educational Resources Information Center
Soule, Margaret
This survey of the current status of public school libraries in Maine was intended to provide statistical data as a basis for improving the school library media center program in these schools. Information was gathered that detailed how resources and delivery of services differed across grade level; across variation in size of school; between…
Jethwa, Pinakin R; Patel, Tapan D; Hajart, Aaron F; Eloy, Jean Anderson; Couldwell, William T; Liu, James K
2016-03-01
Although prolactinomas are treated effectively with dopamine agonists, some have proposed curative surgical resection for select cases of microprolactinomas to avoid life-long medical therapy. We performed a cost-effectiveness analysis comparing transsphenoidal surgery (either microsurgical or endoscopic) and medical therapy (either bromocriptine or cabergoline) with decision analysis modeling. A 2-armed decision tree was created with TreeAge Pro Suite 2012 to compare upfront transsphenoidal surgery versus medical therapy. The economic perspective was that of the health care third-party payer. On the basis of a literature review, we assigned plausible distributions for costs and utilities to each potential outcome, taking into account medical and surgical costs and complications. Base-case analysis, sensitivity analysis, and Monte Carlo simulations were performed to determine the cost-effectiveness of each strategy at 5-year and 10-year time horizons. In the base-case scenario, microscopic transsphenoidal surgery was the most cost-effective option at 5 years from the time of diagnosis; however, by the 10-year time horizon, endoscopic transsphenoidal surgery became the most cost-effective option. At both time horizons, medical therapy (both bromocriptine and cabergoline) were found to be more costly and less effective than transsphenoidal surgery (i.e., the medical arm was dominated by the surgical arm in this model). Two-way sensitivity analysis demonstrated that endoscopic resection would be the most cost-effective strategy if the cure rate from endoscopic surgery was greater than 90% and the complication rate was less than 1%. Monte Carlo simulation was performed for endoscopic surgery versus microscopic surgery at both time horizons. This analysis produced an incremental cost-effectiveness ratio of $80,235 per quality-adjusted life years at 5 years and $40,737 per quality-adjusted life years at 10 years, implying that with increasing time intervals, endoscopic transsphenoidal surgery is the more cost-effective treatment strategy. On the basis of the results of our model, transsphenoidal surgical resection of microprolactinomas, either microsurgical or endoscopic, appears to be more cost-effective than life-long medical therapy in young patients with life expectancy greater than 10 years. We caution that surgical resection for microprolactinomas be performed only in select cases by experienced pituitary surgeons at high-volume centers with high biochemical cure rates and low complication rates. Copyright © 2016 Elsevier Inc. All rights reserved.
Miranda de Sá, Antonio Mauricio F L; Infantosi, Antonio Fernando C; Lazarev, Vladimir V
2007-01-01
In the present work, a commonly used index for evaluating the Event-Related Synchronization and Desynchronization (ERS/ERD) in the EEG was expressed as a function of the Spectral F-Test (SFT), which is a statistical test for assessing if two sample spectra are from populations with identical theoretical spectra. The sampling distribution of SFT has been derived, allowing hence ERS/ERD to be evaluated under a statistical basis. An example of the technique was also provided in the EEG signals from 10 normal subjects during intermittent photic stimulation.
NASA Astrophysics Data System (ADS)
Svirina, Anna; Shindor, Olga; Tatmyshevsky, Konstantin
2014-12-01
The paper deals with the main problems of Russian energy system development that proves necessary to provide educational programs in the field of renewable and alternative energy. In the paper the process of curricula development and defining teaching techniques on the basis of expert opinion evaluation is defined, and the competence model for renewable and alternative energy processing master students is suggested. On the basis of a distributed questionnaire and in-depth interviews, the data for statistical analysis was obtained. On the basis of this data, an optimization of curricula structure was performed, and three models of a structure for optimizing teaching techniques were developed. The suggested educational program structure which was adopted by employers is presented in the paper. The findings include quantitatively estimated importance of systemic thinking and professional skills and knowledge as basic competences of a masters' program graduate; statistically estimated necessity of practice-based learning approach; and optimization models for structuring curricula in renewable and alternative energy processing. These findings allow the establishment of a platform for the development of educational programs.
Statistics for nuclear engineers and scientists. Part 1. Basic statistical inference
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beggs, W.J.
1981-02-01
This report is intended for the use of engineers and scientists working in the nuclear industry, especially at the Bettis Atomic Power Laboratory. It serves as the basis for several Bettis in-house statistics courses. The objectives of the report are to introduce the reader to the language and concepts of statistics and to provide a basic set of techniques to apply to problems of the collection and analysis of data. Part 1 covers subjects of basic inference. The subjects include: descriptive statistics; probability; simple inference for normally distributed populations, and for non-normal populations as well; comparison of two populations; themore » analysis of variance; quality control procedures; and linear regression analysis.« less
Intestinal parasites in First World War German soldiers from "Kilianstollen", Carspach, France.
Le Bailly, Matthieu; Landolt, Michaël; Mauchamp, Leslie; Dufour, Benjamin
2014-01-01
Paleoparasitological investigations revealed the presence of intestinal helminths in samples taken from the abdominal cavities of two German soldiers, recovered in the First World War site named "Kilianstollen" in Carspach, France. Eggs from roundworm, whipworm, tapeworm and capillariids were identified. The morphological and morphometrical comparison, followed by statistical analyses, showed that the Carspach capillariid eggs are similar to rodent parasites. Poor sanitary conditions in the trenches, the lack of knowledge of parasites, and the widespread presence of commensal animals, can explain the occurrence of such parasites in human intestines. This study is the second dealing with 20th century human samples. It confirms the presence of intestinal worms in First World War German soldiers. In this case study, the application of statistics to precise measurements facilitated the diagnosis of ancient helminth eggs and completed the microscopic approach.
Neutron-$$\\gamma$$ competition for β-delayed neutron emission
Mumpower, Matthew Ryan; Kawano, Toshihiko; Moller, Peter
2016-12-19
Here we present a coupled quasiparticle random phase approximation and Hauser-Feshbach (QRPA+HF) model for calculating delayed particle emission. This approach uses microscopic nuclear structure information, which starts with Gamow-Teller strength distributions in the daughter nucleus and then follows the statistical decay until the initial available excitation energy is exhausted. Explicitly included at each particle emission stage is γ-ray competition. We explore this model in the context of neutron emission of neutron-rich nuclei and find that neutron-γ competition can lead to both increases and decreases in neutron emission probabilities, depending on the system considered. Finally, a second consequence of this formalismmore » is a prediction of more neutrons on average being emitted after β decay for nuclei near the neutron drip line compared to models that do not consider the statistical decay.« less
Lin, Chih-Tin; Meyhofer, Edgar; Kurabayashi, Katsuo
2010-01-01
Directional control of microtubule shuttles via microfabricated tracks is key to the development of controlled nanoscale mass transport by kinesin motor molecules. Here we develop and test a model to quantitatively predict the stochastic behavior of microtubule guiding when they mechanically collide with the sidewalls of lithographically patterned tracks. By taking into account appropriate probability distributions of microscopic states of the microtubule system, the model allows us to theoretically analyze the roles of collision conditions and kinesin surface densities in determining how the motion of microtubule shuttles is controlled. In addition, we experimentally observe the statistics of microtubule collision events and compare our theoretical prediction with experimental data to validate our model. The model will direct the design of future hybrid nanotechnology devices that integrate nanoscale transport systems powered by kinesin-driven molecular shuttles.
Black swans and dragon kings: A unified model
NASA Astrophysics Data System (ADS)
Eliazar, Iddo
2017-09-01
The term “black swan” is a metaphor for outlier events whose statistics are characterized by Pareto's Law and by Zipf's Law; namely, statistics governed by power-law tails. The term “dragon king” is a metaphor for a singular outlier event which, in comparison with all other outlier events, is in a league of its own. As an illustrative example consider the wealth of a family that is sampled at random from a medieval society: the nobility constitutes the black-swan category, and the royal family constitutes the dragon-king category. In this paper we present and analyze a dynamical model that generates, universally and jointly, black swans and dragon kings. According to this model, growing from the microscopic scale to the macroscopic scale, black swans and dragon kings emerge together and invariantly with respect to initial conditions.
AGN jets under the microscope: A divide? Doctoral Thesis Award Lecture 2011
NASA Astrophysics Data System (ADS)
Karouzos, M.; Britzen, S.; Witzel, A.; Zensus, A. J.; Eckart, A.
2012-06-01
A new paradigm for active galactic jet kinematics has emerged through detailed investigations of BL Lac objects using very long baseline radio interferometry. In this new scheme, most, if not all, jet components appear to remain stationary with respect to the core but show significant non-radial motions. This paper presents results from our kinematic investigation of the jets of a statistically complete sample of radio-loud flat-spectrum active galaxies, focusing on the comparison between the jet kinematic properties of BL Lacs and flat-spectrum radio-quasars. It is shown that there is a statistically significant difference between the kinematics of the two AGN classes, with BL Lacs showing more bent jets, that are wider and show slower movement along the jet axis, compared to flat-spectrum radio-quasars. This is interpreted as evidence for helically structured jets.
Symmetry breaking gives rise to energy spectra of three states of matter
Bolmatov, Dima; Musaev, Edvard T.; Trachenko, K.
2013-01-01
A fundamental task of statistical physics is to start with a microscopic Hamiltonian, predict the system's statistical properties and compare them with observable data. A notable current fundamental challenge is to tell whether and how an interacting Hamiltonian predicts different energy spectra, including solid, liquid and gas phases. Here, we propose a new idea that enables a unified description of all three states of matter. We introduce a generic form of an interacting phonon Hamiltonian with ground state configurations minimising the potential. Symmetry breaking SO(3) to SO(2), from the group of rotations in reciprocal space to its subgroup, leads to emergence of energy gaps of shear excitations as a consequence of the Goldstone theorem, and readily results in the emergence of energy spectra of solid, liquid and gas phases. PMID:24077388
Statistical mechanics of self-driven Carnot cycles.
Smith, E
1999-10-01
The spontaneous generation and finite-amplitude saturation of sound, in a traveling-wave thermoacoustic engine, are derived as properties of a second-order phase transition. It has previously been argued that this dynamical phase transition, called "onset," has an equivalent equilibrium representation, but the saturation mechanism and scaling were not computed. In this work, the sound modes implementing the engine cycle are coarse-grained and statistically averaged, in a partition function derived from microscopic dynamics on criteria of scale invariance. Self-amplification performed by the engine cycle is introduced through higher-order modal interactions. Stationary points and fluctuations of the resulting phenomenological Lagrangian are analyzed and related to background dynamical currents. The scaling of the stable sound amplitude near the critical point is derived and shown to arise universally from the interaction of finite-temperature disorder, with the order induced by self-amplification.
Breathing of voltage dependent anion channel as revealed by the fractal property of its gating
NASA Astrophysics Data System (ADS)
Manna, Smarajit; Banerjee, Jyotirmoy; Ghosh, Subhendu
2007-12-01
The gating of voltage dependent anion channel (VDAC) depends on the movement of voltage sensors in the transmembrane region, but the actual mechanism is still not well understood. With a view to understand the phenomenon we have analyzed the current recordings of VDAC in lipid bilayer membrane (BLM) and found that the data show self-similarity and fractal characteristics. We look for the microscopic and molecular basis of fractal behavior of gating of VDAC. A model describing the oscillatory dynamics of voltage sensors of VDAC in the transmembrane region under applied potential has been proposed which gives rise to the aforesaid fractal behavior.