Reggente, Melania; Passeri, Daniele; Angeloni, Livia; Scaramuzzo, Francesca Anna; Barteri, Mario; De Angelis, Francesca; Persiconi, Irene; De Stefano, Maria Egle; Rossi, Marco
2017-05-04
Detecting stiff nanoparticles buried in soft biological matrices by atomic force microscopy (AFM) based techniques represents a new frontier in the field of scanning probe microscopies, originally developed as surface characterization methods. Here we report the detection of stiff (magnetic) nanoparticles (NPs) internalized in cells by using contact resonance AFM (CR-AFM) employed as a potentially non-destructive subsurface characterization tool. Magnetite (Fe 3 O 4 ) NPs were internalized in microglial cells from cerebral cortices of mouse embryos of 18 days by phagocytosis. Nanomechanical imaging of cells was performed by detecting the contact resonance frequencies (CRFs) of an AFM cantilever held in contact with the sample. Agglomerates of NPs internalized in cells were visualized on the basis of the local increase in the contact stiffness with respect to the surrounding biological matrix. A second AFM-based technique for nanomechanical imaging, i.e., HarmoniX™, as well as magnetic force microscopy and light microscopy were used to confirm the CR-AFM results. Thus, CR-AFM was demonstrated as a promising technique for subsurface imaging of nanomaterials in biological samples.
Yamada, Yutaro; Konno, Hiroki; Shimabukuro, Katsuya
2017-01-01
In this study, we present a new technique called correlative atomic force and transmission electron microscopy (correlative AFM/TEM) in which a targeted region of a sample can be observed under AFM and TEM. The ultimate goal of developing this new technique is to provide a technical platform to expand the fields of AFM application to complex biological systems such as cell extracts. Recent advances in the time resolution of AFM have enabled detailed observation of the dynamic nature of biomolecules. However, specifying molecular species, by AFM alone, remains a challenge. Here, we demonstrate correlative AFM/TEM, using actin filaments as a test sample, and further show that immuno-electron microscopy (immuno-EM), to specify molecules, can be integrated into this technique. Therefore, it is now possible to specify molecules, captured under AFM, by subsequent observation using immuno-EM. In conclusion, correlative AFM/TEM can be a versatile method to investigate complex biological systems at the molecular level. PMID:28828286
Wang, Yuliang; Wang, Huimin; Bi, Shusheng; Guo, Bin
2016-01-01
The dynamic wetting properties of atomic force microscopy (AFM) tips are of much concern in many AFM-related measurement, fabrication, and manipulation applications. In this study, the wetting properties of silicon and silicon nitride AFM tips are investigated through dynamic contact angle measurement using a nano-Wilhelmy balance based method. This is done by capillary force measurement during extension and retraction motion of AFM tips relative to interfacial nanobubbles. The working principle of the proposed method and mathematic models for dynamic contact angle measurement are presented. Geometric models of AFM tips were constructed using scanning electronic microscopy (SEM) images taken from different view directions. The detailed process of tip-nanobubble interaction was investigated using force-distance curves of AFM on nanobubbles. Several parameters including nanobubble height, adhesion and capillary force between tip and nanobubbles are extracted. The variation of these parameters was studied over nanobubble surfaces. The dynamic contact angles of the AFM tips were calculated from the capillary force measurements. The proposed method provides direct measurement of dynamic contact angles for AFM tips and can also be taken as a general approach for nanoscale dynamic wetting property investigation. PMID:27452115
NASA Astrophysics Data System (ADS)
Wang, Yuliang; Wang, Huimin; Bi, Shusheng; Guo, Bin
2016-07-01
The dynamic wetting properties of atomic force microscopy (AFM) tips are of much concern in many AFM-related measurement, fabrication, and manipulation applications. In this study, the wetting properties of silicon and silicon nitride AFM tips are investigated through dynamic contact angle measurement using a nano-Wilhelmy balance based method. This is done by capillary force measurement during extension and retraction motion of AFM tips relative to interfacial nanobubbles. The working principle of the proposed method and mathematic models for dynamic contact angle measurement are presented. Geometric models of AFM tips were constructed using scanning electronic microscopy (SEM) images taken from different view directions. The detailed process of tip-nanobubble interaction was investigated using force-distance curves of AFM on nanobubbles. Several parameters including nanobubble height, adhesion and capillary force between tip and nanobubbles are extracted. The variation of these parameters was studied over nanobubble surfaces. The dynamic contact angles of the AFM tips were calculated from the capillary force measurements. The proposed method provides direct measurement of dynamic contact angles for AFM tips and can also be taken as a general approach for nanoscale dynamic wetting property investigation.
Bukharina, N S; Ivanov, Yu D; Pleshakova, T O; Frantsuzov, P A; Andreeva, E Yu; Kaysheva, A L; Izotov, A A; Pavlova, T I; Ziborov, V S; Radko, S P; Archakov, A I
2015-01-01
A method of atomic force microscopy-based fishing (AFM fishing) has been developed for protein detection in the analyte solution using a chip with an immobilized aptamer. This method is based on the biospecific fishing of a target protein from a bulk solution onto the small AFM chip area with the immobilized aptamer to this protein used as the molecular probe. Such aptamer-based approach allows to increase an AFM image contrast compared to the antibody-based approach. Mass spectrometry analysis used after the biospecific fishing to identify the target protein on the AFM chip has proved complex formation. Use of the AFM chip with the immobilized aptamer avoids interference of the antibody and target protein peaks in a mass spectrum.
Nanoscale surface characterization using laser interference microscopy
NASA Astrophysics Data System (ADS)
Ignatyev, Pavel S.; Skrynnik, Andrey A.; Melnik, Yury A.
2018-03-01
Nanoscale surface characterization is one of the most significant parts of modern materials development and application. The modern microscopes are expensive and complicated tools, and its use for industrial tasks is limited due to laborious sample preparation, measurement procedures, and low operation speed. The laser modulation interference microscopy method (MIM) for real-time quantitative and qualitative analysis of glass, metals, ceramics, and various coatings has a spatial resolution of 0.1 nm for vertical and up to 100 nm for lateral. It is proposed as an alternative to traditional scanning electron microscopy (SEM) and atomic force microscopy (AFM) methods. It is demonstrated that in the cases of roughness metrology for super smooth (Ra >1 nm) surfaces the application of a laser interference microscopy techniques is more optimal than conventional SEM and AFM. The comparison of semiconductor test structure for lateral dimensions measurements obtained with SEM and AFM and white light interferometer also demonstrates the advantages of MIM technique.
NASA Technical Reports Server (NTRS)
Ye, Qi Laura; Cassell, Alan M.; Stevens, Ramsey M.; Meyyappan, Meyya; Li, Jun; Han, Jie; Liu, Hongbing; Chao, Gordon
2004-01-01
Carbon nanotube (CNT) probe tips for atomic force microscopy (AFM) offer several advantages over Si/Si3N4 probe tips, including improved resolution, shape, and mechanical properties. This viewgraph presentation discusses these advantages, and the drawbacks of existing methods for fabricating CNT probe tips for AFM. The presentation introduces a bottom up wafer scale fabrication method for CNT probe tips which integrates catalyst nanopatterning and nanomaterials synthesis with traditional silicon cantilever microfabrication technology. This method makes mass production of CNT AFM probe tips feasible, and can be applied to the fabrication of other nanodevices with CNT elements.
Application of atomic force microscopy as a nanotechnology tool in food science.
Yang, Hongshun; Wang, Yifen; Lai, Shaojuan; An, Hongjie; Li, Yunfei; Chen, Fusheng
2007-05-01
Atomic force microscopy (AFM) provides a method for detecting nanoscale structural information. First, this review explains the fundamentals of AFM, including principle, manipulation, and analysis. Applications of AFM are then reported in food science and technology research, including qualitative macromolecule and polymer imaging, complicated or quantitative structure analysis, molecular interaction, molecular manipulation, surface topography, and nanofood characterization. The results suggested that AFM could bring insightful knowledge on food properties, and the AFM analysis could be used to illustrate some mechanisms of property changes during processing and storage. However, the current difficulty in applying AFM to food research is lacking appropriate methodology for different food systems. Better understanding of AFM technology and developing corresponding methodology for complicated food systems would lead to a more in-depth understanding of food properties at macromolecular levels and enlarge their applications. The AFM results could greatly improve the food processing and storage technologies.
In-Process Atomic-Force Microscopy (AFM) Based Inspection
Mekid, Samir
2017-01-01
A new in-process atomic-force microscopy (AFM) based inspection is presented for nanolithography to compensate for any deviation such as instantaneous degradation of the lithography probe tip. Traditional method used the AFM probes for lithography work and retract to inspect the obtained feature but this practice degrades the probe tip shape and hence, affects the measurement quality. This paper suggests a second dedicated lithography probe that is positioned back-to-back to the AFM probe under two synchronized controllers to correct any deviation in the process compared to specifications. This method shows that the quality improvement of the nanomachining, in progress probe tip wear, and better understanding of nanomachining. The system is hosted in a recently developed nanomanipulator for educational and research purposes. PMID:28561747
Atomic Force Microscopy Techniques for Nanomechanical Characterization: A Polymeric Case Study
NASA Astrophysics Data System (ADS)
Reggente, Melania; Rossi, Marco; Angeloni, Livia; Tamburri, Emanuela; Lucci, Massimiliano; Davoli, Ivan; Terranova, Maria Letizia; Passeri, Daniele
2015-04-01
Atomic force microscopy (AFM) is a versatile tool to perform mechanical characterization of surface samples at the nanoscale. In this work, we review two of such methods, namely contact resonance AFM (CR-AFM) and torsional harmonics AFM (TH-AFM). First, such techniques are illustrated and their applicability on materials with elastic moduli in different ranges are discussed, together with their main advantages and limitations. Then, a case study is presented in which we report the mechanical characterization using both CR-AFM and TH-AFM of polyaniline and polyaniniline doped with nanodiamond particles tablets prepared by a pressing process. We determined the indentation modulus values of their surfaces, which were found in fairly good agreement, thus demonstrating the accuracy of the techniques. Finally, the determined surface elastic moduli have been compared with the bulk ones measured through standard indentation testing.
NASA Astrophysics Data System (ADS)
Wagner, Ryan; Killgore, Jason P.; Tung, Ryan C.; Raman, Arvind; Hurley, Donna C.
2015-01-01
Contact resonance atomic force microscopy (CR-AFM) methods currently utilize the eigenvalues, or resonant frequencies, of an AFM cantilever in contact with a surface to quantify local mechanical properties. However, the cantilever eigenmodes, or vibrational shapes, also depend strongly on tip-sample contact stiffness. In this paper, we evaluate the potential of eigenmode measurements for improved accuracy and sensitivity of CR-AFM. We apply a recently developed, in situ laser scanning method to experimentally measure changes in cantilever eigenmodes as a function of tip-sample stiffness. Regions of maximum sensitivity for eigenvalues and eigenmodes are compared and found to occur at different values of contact stiffness. The results allow the development of practical guidelines for CR-AFM experiments, such as optimum laser spot positioning for different experimental conditions. These experiments provide insight into the complex system dynamics that can affect CR-AFM and lay a foundation for enhanced nanomechanical measurements with CR-AFM.
NASA Astrophysics Data System (ADS)
Chyasnavichyus, Marius; Young, Seth L.; Tsukruk, Vladimir V.
2015-08-01
Probing of micro- and nanoscale mechanical properties of soft materials with atomic force microscopy (AFM) gives essential information about the performance of the nanostructured polymer systems, natural nanocomposites, ultrathin coatings, and cell functioning. AFM provides efficient and is some cases the exclusive way to study these properties nondestructively in controlled environment. Precise force control in AFM methods allows its application to variety of soft materials and can be used to go beyond elastic properties and examine temperature and rate dependent materials response. In this review, we discuss experimental AFM methods currently used in the field of soft nanostructured composites and biomaterials. We discuss advantages and disadvantages of common AFM probing techniques, which allow for both qualitative and quantitative mappings of the elastic modulus of soft materials with nanosacle resolution. We also discuss several advanced techniques for more elaborate measurements of viscoelastic properties of soft materials and experiments on single cells.
NASA Technical Reports Server (NTRS)
Hersam, Mark C. (Inventor); Pingree, Liam S. C. (Inventor)
2008-01-01
A conductive atomic force microscopy (cAFM) technique which can concurrently monitor topography, charge transport, and electroluminescence with nanometer spatial resolution. This cAFM approach is particularly well suited for probing the electroluminescent response characteristics of operating organic light-emitting diodes (OLEDs) over short length scales.
Göhler, Daniel; Wessely, Benno; Stintz, Michael; Lazzerini, Giovanni Mattia; Yacoot, Andrew
2017-01-01
Dimensional measurements on nano-objects by atomic force microscopy (AFM) require samples of safely fixed and well individualized particles with a suitable surface-specific particle number on flat and clean substrates. Several known and proven particle preparation methods, i.e., membrane filtration, drying, rinsing, dip coating as well as electrostatic and thermal precipitation, were performed by means of scanning electron microscopy to examine their suitability for preparing samples for dimensional AFM measurements. Different suspensions of nano-objects (with varying material, size and shape) stabilized in aqueous solutions were prepared therefore on different flat substrates. The drop-drying method was found to be the most suitable one for the analysed suspensions, because it does not require expensive dedicated equipment and led to a uniform local distribution of individualized nano-objects. Traceable AFM measurements based on Si and SiO2 coated substrates confirmed the suitability of this technique. PMID:28904839
Fiala, Petra; Göhler, Daniel; Wessely, Benno; Stintz, Michael; Lazzerini, Giovanni Mattia; Yacoot, Andrew
2017-01-01
Dimensional measurements on nano-objects by atomic force microscopy (AFM) require samples of safely fixed and well individualized particles with a suitable surface-specific particle number on flat and clean substrates. Several known and proven particle preparation methods, i.e., membrane filtration, drying, rinsing, dip coating as well as electrostatic and thermal precipitation, were performed by means of scanning electron microscopy to examine their suitability for preparing samples for dimensional AFM measurements. Different suspensions of nano-objects (with varying material, size and shape) stabilized in aqueous solutions were prepared therefore on different flat substrates. The drop-drying method was found to be the most suitable one for the analysed suspensions, because it does not require expensive dedicated equipment and led to a uniform local distribution of individualized nano-objects. Traceable AFM measurements based on Si and SiO 2 coated substrates confirmed the suitability of this technique.
Atomic force microscope-assisted scanning tunneling spectroscopy under ambient conditions.
Vakhshouri, Amin; Hashimoto, Katsushi; Hirayama, Yoshiro
2014-12-01
We have developed a method of atomic force microscopy (AFM)-assisted scanning tunneling spectroscopy (STS) under ambient conditions. An AFM function is used for rapid access to a selected position prior to performing STS. The AFM feedback is further used to suppress vertical thermal drift of the tip-sample distance during spectroscopy, enabling flexible and stable spectroscopy measurements at room temperature. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Kaysheva, A. L.; Pleshakova, T. O.; Kopylov, A. T.; Shumov, I. D.; Iourov, I. Y.; Vorsanova, S. G.; Yurov, Y. B.; Ziborov, V. S.; Archakov, A. I.; Ivanov, Y. D.
2017-10-01
Possibility of detection of target proteins associated with development of autistic disorders in children with use of combined atomic force microscopy and mass spectrometry (AFM/MS) method is demonstrated. The proposed method is based on the combination of affine enrichment of proteins from biological samples and visualization of these proteins by AFM and MS analysis with quantitative detection of target proteins.
Progress in the Correlative Atomic Force Microscopy and Optical Microscopy
Zhou, Lulu; Cai, Mingjun; Tong, Ti; Wang, Hongda
2017-01-01
Atomic force microscopy (AFM) has evolved from the originally morphological imaging technique to a powerful and multifunctional technique for manipulating and detecting the interactions between molecules at nanometer resolution. However, AFM cannot provide the precise information of synchronized molecular groups and has many shortcomings in the aspects of determining the mechanism of the interactions and the elaborate structure due to the limitations of the technology, itself, such as non-specificity and low imaging speed. To overcome the technical limitations, it is necessary to combine AFM with other complementary techniques, such as fluorescence microscopy. The combination of several complementary techniques in one instrument has increasingly become a vital approach to investigate the details of the interactions among molecules and molecular dynamics. In this review, we reported the principles of AFM and optical microscopy, such as confocal microscopy and single-molecule localization microscopy, and focused on the development and use of correlative AFM and optical microscopy. PMID:28441775
Atomic force microscopy-based characterization and design of biointerfaces
NASA Astrophysics Data System (ADS)
Alsteens, David; Gaub, Hermann E.; Newton, Richard; Pfreundschuh, Moritz; Gerber, Christoph; Müller, Daniel J.
2017-03-01
Atomic force microscopy (AFM)-based methods have matured into a powerful nanoscopic platform, enabling the characterization of a wide range of biological and synthetic biointerfaces ranging from tissues, cells, membranes, proteins, nucleic acids and functional materials. Although the unprecedented signal-to-noise ratio of AFM enables the imaging of biological interfaces from the cellular to the molecular scale, AFM-based force spectroscopy allows their mechanical, chemical, conductive or electrostatic, and biological properties to be probed. The combination of AFM-based imaging and spectroscopy structurally maps these properties and allows their 3D manipulation with molecular precision. In this Review, we survey basic and advanced AFM-related approaches and evaluate their unique advantages and limitations in imaging, sensing, parameterizing and designing biointerfaces. It is anticipated that in the next decade these AFM-related techniques will have a profound influence on the way researchers view, characterize and construct biointerfaces, thereby helping to solve and address fundamental challenges that cannot be addressed with other techniques.
Atomic Force Microscopy in Characterizing Cell Mechanics for Biomedical Applications: A Review.
Li, Mi; Dang, Dan; Liu, Lianqing; Xi, Ning; Wang, Yuechao
2017-09-01
Cell mechanics is a novel label-free biomarker for indicating cell states and pathological changes. The advent of atomic force microscopy (AFM) provides a powerful tool for quantifying the mechanical properties of single living cells in aqueous conditions. The wide use of AFM in characterizing cell mechanics in the past two decades has yielded remarkable novel insights in understanding the development and progression of certain diseases, such as cancer, showing the huge potential of cell mechanics for practical applications in the field of biomedicine. In this paper, we reviewed the utilization of AFM to characterize cell mechanics. First, the principle and method of AFM single-cell mechanical analysis was presented, along with the mechanical responses of cells to representative external stimuli measured by AFM. Next, the unique changes of cell mechanics in two types of physiological processes (stem cell differentiation, cancer metastasis) revealed by AFM were summarized. After that, the molecular mechanisms guiding cell mechanics were analyzed. Finally the challenges and future directions were discussed.
Bhat, Supriya V; Sultana, Taranum; Körnig, André; McGrath, Seamus; Shahina, Zinnat; Dahms, Tanya E S
2018-05-29
There is an urgent need to assess the effect of anthropogenic chemicals on model cells prior to their release, helping to predict their potential impact on the environment and human health. Laser scanning confocal microscopy (LSCM) and atomic force microscopy (AFM) have each provided an abundance of information on cell physiology. In addition to determining surface architecture, AFM in quantitative imaging (QI) mode probes surface biochemistry and cellular mechanics using minimal applied force, while LSCM offers a window into the cell for imaging fluorescently tagged macromolecules. Correlative AFM-LSCM produces complimentary information on different cellular characteristics for a comprehensive picture of cellular behaviour. We present a correlative AFM-QI-LSCM assay for the simultaneous real-time imaging of living cells in situ, producing multiplexed data on cell morphology and mechanics, surface adhesion and ultrastructure, and real-time localization of multiple fluorescently tagged macromolecules. To demonstrate the broad applicability of this method for disparate cell types, we show altered surface properties, internal molecular arrangement and oxidative stress in model bacterial, fungal and human cells exposed to 2,4-dichlorophenoxyacetic acid. AFM-QI-LSCM is broadly applicable to a variety of cell types and can be used to assess the impact of any multitude of contaminants, alone or in combination.
An AFM-based pit-measuring method for indirect measurements of cell-surface membrane vesicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xiaojun; Department of Biotechnology, Nanchang University, Nanchang, Jiangxi 330031; Chen, Yuan
2014-03-28
Highlights: • Air drying induced the transformation of cell-surface membrane vesicles into pits. • An AFM-based pit-measuring method was developed to measure cell-surface vesicles. • Our method detected at least two populations of cell-surface membrane vesicles. - Abstract: Circulating membrane vesicles, which are shed from many cell types, have multiple functions and have been correlated with many diseases. Although circulating membrane vesicles have been extensively characterized, the status of cell-surface membrane vesicles prior to their release is less understood due to the lack of effective measurement methods. Recently, as a powerful, micro- or nano-scale imaging tool, atomic force microscopy (AFM)more » has been applied in measuring circulating membrane vesicles. However, it seems very difficult for AFM to directly image/identify and measure cell-bound membrane vesicles due to the similarity of surface morphology between membrane vesicles and cell surfaces. Therefore, until now no AFM studies on cell-surface membrane vesicles have been reported. In this study, we found that air drying can induce the transformation of most cell-surface membrane vesicles into pits that are more readily detectable by AFM. Based on this, we developed an AFM-based pit-measuring method and, for the first time, used AFM to indirectly measure cell-surface membrane vesicles on cultured endothelial cells. Using this approach, we observed and quantitatively measured at least two populations of cell-surface membrane vesicles, a nanoscale population (<500 nm in diameter peaking at ∼250 nm) and a microscale population (from 500 nm to ∼2 μm peaking at ∼0.8 μm), whereas confocal microscopy only detected the microscale population. The AFM-based pit-measuring method is potentially useful for studying cell-surface membrane vesicles and for investigating the mechanisms of membrane vesicle formation/release.« less
Characterization of Structural and Configurational Properties of DNA by Atomic Force Microscopy.
Meroni, Alice; Lazzaro, Federico; Muzi-Falconi, Marco; Podestà, Alessandro
2018-01-01
We describe a method to extract quantitative information on DNA structural and configurational properties from high-resolution topographic maps recorded by atomic force microscopy (AFM). DNA molecules are deposited on mica surfaces from an aqueous solution, carefully dehydrated, and imaged in air in Tapping Mode. Upon extraction of the spatial coordinates of the DNA backbones from AFM images, several parameters characterizing DNA structure and configuration can be calculated. Here, we explain how to obtain the distribution of contour lengths, end-to-end distances, and gyration radii. This modular protocol can be also used to characterize other statistical parameters from AFM topographies.
Conductance of AFM Deformed Carbon Nanotubes
NASA Technical Reports Server (NTRS)
Svizhenko, Alexei; Maiti, Amitesh; Anatram, M. P.; Biegel, Bryan (Technical Monitor)
2002-01-01
This viewgraph presentation provides information on the electrical conductivity of carbon nanotubes upon deformation by atomic force microscopy (AFM). The density of states and conductance were computed using four orbital tight-binding method with various parameterizations. Different chiralities develop bandgap that varies with chirality.
Angeloni, Livia; Reggente, Melania; Passeri, Daniele; Natali, Marco; Rossi, Marco
2018-04-17
Identification of nanoparticles and nanosystems into cells and biological matrices is a hot research topic in nanobiotechnologies. Because of their capability to map physical properties (mechanical, electric, magnetic, chemical, or optical), several scanning probe microscopy based techniques have been proposed for the subsurface detection of nanomaterials in biological systems. In particular, atomic force microscopy (AFM) can be used to reveal stiff nanoparticles in cells and other soft biomaterials by probing the sample mechanical properties through the acquisition of local indentation curves or through the combination of ultrasound-based methods, like contact resonance AFM (CR-AFM) or scanning near field ultrasound holography. Magnetic force microscopy can detect magnetic nanoparticles and other magnetic (bio)materials in nonmagnetic biological samples, while electric force microscopy, conductive AFM, and Kelvin probe force microscopy can reveal buried nanomaterials on the basis of the differences between their electric properties and those of the surrounding matrices. Finally, scanning near field optical microscopy and tip-enhanced Raman spectroscopy can visualize buried nanostructures on the basis of their optical and chemical properties. Despite at a still early stage, these methods are promising for detection of nanomaterials in biological systems as they could be truly noninvasive, would not require destructive and time-consuming specific sample preparation, could be performed in vitro, on alive samples and in water or physiological environment, and by continuously imaging the same sample could be used to dynamically monitor the diffusion paths and interaction mechanisms of nanomaterials into cells and biological systems. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Nanotechnology Approaches to Biology > Nanoscale Systems in Biology. © 2018 Wiley Periodicals, Inc.
Characterizing Surfaces of the Wide Bandgap Semiconductor Ilmenite with Scanning Probe Microcopies
NASA Technical Reports Server (NTRS)
Wilkins, R.; Powell, Kirk St. A.
1997-01-01
Ilmenite (FeTiO3) is a wide bandgap semiconductor with an energy gap of about 2.5eV. Initial radiation studies indicate that ilmenite has properties suited for radiation tolerant applications, as well as a variety of other electronic applications. Two scanning probe microscopy methods have been used to characterize the surface of samples taken from Czochralski grown single crystals. The two methods, atomic force microscopy (AFM) and scanning tunneling microscopy (STM), are based on different physical principles and therefore provide different information about the samples. AFM provides a direct, three-dimensional image of the surface of the samples, while STM give a convolution of topographic and electronic properties of the surface. We will discuss the differences between the methods and present preliminary data of each method for ilmenite samples.
NASA Astrophysics Data System (ADS)
Chu, Liangyong; Korobko, Alexander V.; Bus, Marcel; Boshuizen, Bart; Sudhölter, Ernst J. R.; Besseling, Nicolaas A. M.
2018-05-01
This paper describes a novel method to fabricate porous graphene oxide (PGO) from GO by exposure to oxygen plasma. Compared to other methods to fabricate PGO described so far, e.g. the thermal and steam etching methods, oxygen plasma etching method is much faster. We studied the development of the porosity with exposure time using atomic force microscopy (AFM). It was found that the development of PGO upon oxygen-plasma exposure can be controlled by tapping mode AFM scanning using a Si tip. AFM tapping stalls the growth of pores upon further plasma exposure at a level that coincides with the fraction of sp2 carbons in the GO starting material. We suggest that AFM tapping procedure changes the bond structure of the intermediate PGO structure, and these stabilized PGO structures cannot be further etched by oxygen plasma. This constitutes the first report of tapping AFM as a tool for local mechano-chemistry.
Chu, Liangyong; Korobko, Alexander V; Bus, Marcel; Boshuizen, Bart; Sudhölter, Ernst J R; Besseling, Nicolaas A M
2018-05-04
This paper describes a novel method to fabricate porous graphene oxide (PGO) from GO by exposure to oxygen plasma. Compared to other methods to fabricate PGO described so far, e.g. the thermal and steam etching methods, oxygen plasma etching method is much faster. We studied the development of the porosity with exposure time using atomic force microscopy (AFM). It was found that the development of PGO upon oxygen-plasma exposure can be controlled by tapping mode AFM scanning using a Si tip. AFM tapping stalls the growth of pores upon further plasma exposure at a level that coincides with the fraction of sp 2 carbons in the GO starting material. We suggest that AFM tapping procedure changes the bond structure of the intermediate PGO structure, and these stabilized PGO structures cannot be further etched by oxygen plasma. This constitutes the first report of tapping AFM as a tool for local mechano-chemistry.
Jumelle, Clotilde; Hamri, Alina; Egaud, Gregory; Mauclair, Cyril; Reynaud, Stephanie; Dumas, Virginie; Pereira, Sandrine; Garcin, Thibaud; Gain, Philippe; Thuret, Gilles
2017-01-01
Corneal lamellar cutting with a blade or femtosecond laser (FSL) is commonly used during refractive surgery and corneal grafts. Surface roughness of the cutting plane influences postoperative visual acuity but is difficult to assess reliably. For the first time, we compared chromatic confocal microscopy (CCM) with scanning electron microscopy, atomic force microscopy (AFM) and focus-variation microscopy (FVM) to characterize surfaces of variable roughness after FSL cutting. The small area allowed by AFM hinders conclusive roughness analysis, especially with irregular cuts. FVM does not always differentiate between smooth and rough surfaces. Finally, CCM allows analysis of large surfaces and differentiates between surface states. PMID:29188095
Atomic Force Microscopy for Protein Detection and Their Physicoсhemical Characterization
Bukharina, Natalia S.; Archakov, Alexander I.; Ivanov, Yuri D.
2018-01-01
This review is focused on the atomic force microscopy (AFM) capabilities to study the properties of protein biomolecules and to detect the proteins in solution. The possibilities of application of a wide range of measuring techniques and modes for visualization of proteins, determination of their stoichiometric characteristics and physicochemical properties, are analyzed. Particular attention is paid to the use of AFM as a molecular detector for detection of proteins in solutions at low concentrations, and also for determination of functional properties of single biomolecules, including the activity of individual molecules of enzymes. Prospects for the development of AFM in combination with other methods for studying biomacromolecules are discussed. PMID:29642632
Atomic Force Microscopy of Biological Membranes
Frederix, Patrick L.T.M.; Bosshart, Patrick D.; Engel, Andreas
2009-01-01
Abstract Atomic force microscopy (AFM) is an ideal method to study the surface topography of biological membranes. It allows membranes that are adsorbed to flat solid supports to be raster-scanned in physiological solutions with an atomically sharp tip. Therefore, AFM is capable of observing biological molecular machines at work. In addition, the tip can be tethered to the end of a single membrane protein, and forces acting on the tip upon its retraction indicate barriers that occur during the process of protein unfolding. Here we discuss the fundamental limitations of AFM determined by the properties of cantilevers, present aspects of sample preparation, and review results achieved on reconstituted and native biological membranes. PMID:19167286
Noncontact Atomic Force Microscopy: An Emerging Tool for Fundamental Catalysis Research.
Altman, Eric I; Baykara, Mehmet Z; Schwarz, Udo D
2015-09-15
Although atomic force microscopy (AFM) was rapidly adopted as a routine surface imaging apparatus after its introduction in 1986, it has not been widely used in catalysis research. The reason is that common AFM operating modes do not provide the atomic resolution required to follow catalytic processes; rather the more complex noncontact (NC) mode is needed. Thus, scanning tunneling microscopy has been the principal tool for atomic scale catalysis research. In this Account, recent developments in NC-AFM will be presented that offer significant advantages for gaining a complete atomic level view of catalysis. The main advantage of NC-AFM is that the image contrast is due to the very short-range chemical forces that are of interest in catalysis. This motivated our development of 3D-AFM, a method that yields quantitative atomic resolution images of the potential energy surfaces that govern how molecules approach, stick, diffuse, and rebound from surfaces. A variation of 3D-AFM allows the determination of forces required to push atoms and molecules on surfaces, from which diffusion barriers and variations in adsorption strength may be obtained. Pushing molecules towards each other provides access to intermolecular interaction between reaction partners. Following reaction, NC-AFM with CO-terminated tips yields textbook images of intramolecular structure that can be used to identify reaction intermediates and products. Because NC-AFM and STM contrast mechanisms are distinct, combining the two methods can produce unique insight. It is demonstrated for surface-oxidized Cu(100) that simultaneous 3D-AFM/STM yields resolution of both the Cu and O atoms. Moreover, atomic defects in the Cu sublattice lead to variations in the reactivity of the neighboring O atoms. It is shown that NC-AFM also allows a straightforward imaging of work function variations which has been used to identify defect charge states on catalytic surfaces and to map charge transfer within an individual molecule. These advances highlight the potential for NC-AFM-based methods to become the cornerstone upon which a quantitative atomic scale view of each step of a catalytic process may be gained. Realizing this potential will rely on two breakthroughs: (1) development of robust methods for tip functionalization and (2) simplification of NC-AFM instrumentation and control schemes. Quartz force sensors may offer paths forward in both cases. They allow any material with an atomic asperity to be used as a tip, opening the door to a wide range of surface functionalization chemistry. In addition, they do not suffer from the instabilities that motivated the initial adoption of complex control strategies that are still used today.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morawski, Ireneusz; Institute of Experimental Physics, University of Wrocław, pl. M. Borna 9, 50-204 Wrocław; Spiegelberg, Richard
A method which allows scanning tunneling microscopy (STM) tip biasing independent of the sample bias during frequency modulated atomic force microscopy (AFM) operation is presented. The AFM sensor is supplied by an electronic circuit combining both a frequency shift signal and a tunneling current signal by means of an inductive coupling. This solution enables a control of the tip potential independent of the sample potential. Individual tip biasing is specifically important in order to implement multi-tip STM/AFM applications. An extensional quartz sensor (needle sensor) with a conductive tip is applied to record simultaneously topography and conductivity of the sample. Themore » high resonance frequency of the needle sensor (1 MHz) allows scanning of a large area of the surface being investigated in a reasonably short time. A recipe for the amplitude calibration which is based only on the frequency shift signal and does not require the tip being in contact is presented. Additionally, we show spectral measurements of the mechanical vibration noise of the scanning system used in the investigations.« less
Hain, Nicole; Wesner, Daniel; Druzhinin, Sergey I; Schönherr, Holger
2016-11-01
The impact of surface treatment and modification on surface nanobubble nucleation in water has been addressed by a new combination of fluorescence lifetime imaging microscopy (FLIM) and atomic force microscopy (AFM). In this study, rhodamine 6G (Rh6G)-labeled surface nanobubbles nucleated by the ethanol-water exchange were studied on differently cleaned borosilicate glass, silanized glass as well as self-assembled monolayers on transparent gold by combined AFM-FLIM. While the AFM data confirmed earlier reports on surface nanobubble nucleation, size, and apparent contact angles in dependence of the underlying substrate, the colocalization of these elevated features with highly fluorescent features observed in confocal intensity images added new information. By analyzing the characteristic contributions to the excited state lifetime of Rh6G in decay curves obtained from time-correlated single photon counting (TCSPC) experiments, the characteristic short-lived (<600 ps) component of could be associated with an emission at the gas-water interface. Its colocalization with nanobubble-like features in the AFM height images provides evidence for the observation of gas-filled surface nanobubbles. While piranha-cleaned glass supported nanobubbles, milder UV-ozone or oxygen plasma treatment afforded glass-water interfaces, where no nanobubbles were observed by combined AFM-FLIM. Finally, the number density of nanobubbles scaled inversely with increasing surface hydrophobicity.
2011-01-01
We report on the use of three different atomic force spectroscopy modalities to determine the nanomechanical properties of amyloid fibrils of the human α-synuclein protein. α-Synuclein forms fibrillar nanostructures of approximately 10 nm diameter and lengths ranging from 100 nm to several microns, which have been associated with Parkinson's disease. Atomic force microscopy (AFM) has been used to image the morphology of these protein fibrils deposited on a flat surface. For nanomechanical measurements, we used single-point nanoindentation, in which the AFM tip as the indenter is moved vertically to the fibril surface and back while the force is being recorded. We also used two recently developed AFM surface property mapping techniques: Harmonic force microscopy (HarmoniX) and Peakforce QNM. These modalities allow extraction of mechanical parameters of the surface with a lateral resolution and speed comparable to tapping-mode AFM imaging. Based on this phenomenological study, the elastic moduli of the α-synuclein fibrils determined using these three different modalities are within the range 1.3-2.1 GPa. We discuss the relative merits of these three methods for the determination of the elastic properties of protein fibrils, particularly considering the differences and difficulties of each method. PMID:21711775
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, Liam; Ahmadi, Mahshid; Wu, Ting
The atomic force microscope (AFM) offers unparalleled insight into structure and material functionality across nanometer length scales. However, the spatial resolution afforded by the AFM tip is counterpoised by slow detection speeds compared to other common microscopy techniques (e.g. optical, scanning electron microscopy etc.). In this work, we develop an AFM imaging approach allowing ultrafast reconstruction of the tip-sample forces having ~2 orders of magnitude higher time resolution than standard detection methods. Fast free force recovery (F3R) overcomes the widely-viewed temporal bottleneck in AFM, i.e. the mechanical bandwidth of the cantilever, enabling time-resolved imaging at sub-bandwidth speeds. We demonstrate quantitativemore » recovery of electrostatic forces with ~10 µs temporal resolution, free from cantilever ring-down effects. We further apply the F3R method to Kelvin probe force microscopy (KPFM) measurements. F3R-KPFM is an open loop imaging approach (i.e. no bias feedback), allowing ultrafast surface potential measurements (e.g. < 20 µs) to be performed at regular KPFM scan speeds. F3R-KPFM is demonstrated for exploration of ion migration in organometallic halide perovskites materials and shown to allow spatio-temporal imaging of positively charged ion migration under applied electric field, as well as subsequent formation of accumulated charges at the perovskite/electrode interface. In this work we demonstrate quantitative F3R-KPFM measurements – however, we fully expect the F3R approach to be valid for all modes of non-contact AFM operation, including non-invasive probing of ultrafast electrical and magnetic dynamics.« less
Collins, Liam; Ahmadi, Mahshid; Wu, Ting; ...
2017-08-06
The atomic force microscope (AFM) offers unparalleled insight into structure and material functionality across nanometer length scales. However, the spatial resolution afforded by the AFM tip is counterpoised by slow detection speeds compared to other common microscopy techniques (e.g. optical, scanning electron microscopy etc.). In this work, we develop an AFM imaging approach allowing ultrafast reconstruction of the tip-sample forces having ~2 orders of magnitude higher time resolution than standard detection methods. Fast free force recovery (F3R) overcomes the widely-viewed temporal bottleneck in AFM, i.e. the mechanical bandwidth of the cantilever, enabling time-resolved imaging at sub-bandwidth speeds. We demonstrate quantitativemore » recovery of electrostatic forces with ~10 µs temporal resolution, free from cantilever ring-down effects. We further apply the F3R method to Kelvin probe force microscopy (KPFM) measurements. F3R-KPFM is an open loop imaging approach (i.e. no bias feedback), allowing ultrafast surface potential measurements (e.g. < 20 µs) to be performed at regular KPFM scan speeds. F3R-KPFM is demonstrated for exploration of ion migration in organometallic halide perovskites materials and shown to allow spatio-temporal imaging of positively charged ion migration under applied electric field, as well as subsequent formation of accumulated charges at the perovskite/electrode interface. In this work we demonstrate quantitative F3R-KPFM measurements – however, we fully expect the F3R approach to be valid for all modes of non-contact AFM operation, including non-invasive probing of ultrafast electrical and magnetic dynamics.« less
Ebenstein, Yuval; Gassman, Natalie; Kim, Soohong; Weiss, Shimon
2011-01-01
Atomic force microscopy (AFM) and fluorescence microscopy are widely used for the study of protein-DNA interactions. While AFM excels in its ability to elucidate structural detail and spatial arrangement, it lacks the ability to distinguish between similarly sized objects in a complex system. This information is readily accessible to optical imaging techniques via site-specific fluorescent labels, which enable the direct detection and identification of multiple components simultaneously. Here, we show how the utilization of semiconductor quantum dots (QDs), serving as contrast agents for both AFM topography and fluorescence imaging, facilitates the combination of both imaging techniques, and with the addition of a flow based DNA extension method for sample deposition, results in a powerful tool for the study of protein-DNA complexes. We demonstrate the inherent advantages of this novel combination of techniques by imaging individual RNA polymerases (RNAP) on T7 genomic DNA. PMID:19452448
Joint Research on Scatterometry and AFM Wafer Metrology
NASA Astrophysics Data System (ADS)
Bodermann, Bernd; Buhr, Egbert; Danzebrink, Hans-Ulrich; Bär, Markus; Scholze, Frank; Krumrey, Michael; Wurm, Matthias; Klapetek, Petr; Hansen, Poul-Erik; Korpelainen, Virpi; van Veghel, Marijn; Yacoot, Andrew; Siitonen, Samuli; El Gawhary, Omar; Burger, Sven; Saastamoinen, Toni
2011-11-01
Supported by the European Commission and EURAMET, a consortium of 10 participants from national metrology institutes, universities and companies has started a joint research project with the aim of overcoming current challenges in optical scatterometry for traceable linewidth metrology. Both experimental and modelling methods will be enhanced and different methods will be compared with each other and with specially adapted atomic force microscopy (AFM) and scanning electron microscopy (SEM) measurement systems in measurement comparisons. Additionally novel methods for sophisticated data analysis will be developed and investigated to reach significant reductions of the measurement uncertainties in critical dimension (CD) metrology. One final goal will be the realisation of a wafer based reference standard material for calibration of scatterometers.
Ebeling, Daniel; Solares, Santiago D
2013-01-01
We present an overview of the bimodal amplitude-frequency-modulation (AM-FM) imaging mode of atomic force microscopy (AFM), whereby the fundamental eigenmode is driven by using the amplitude-modulation technique (AM-AFM) while a higher eigenmode is driven by using either the constant-excitation or the constant-amplitude variant of the frequency-modulation (FM-AFM) technique. We also offer a comparison to the original bimodal AFM method, in which the higher eigenmode is driven with constant frequency and constant excitation amplitude. General as well as particular characteristics of the different driving schemes are highlighted from theoretical and experimental points of view, revealing the advantages and disadvantages of each. This study provides information and guidelines that can be useful in selecting the most appropriate operation mode to characterize different samples in the most efficient and reliable way.
Cantilever spring constant calibration using laser Doppler vibrometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohler, Benjamin
2007-06-15
Uncertainty in cantilever spring constants is a critical issue in atomic force microscopy (AFM) force measurements. Though numerous methods exist for calibrating cantilever spring constants, the accuracy of these methods can be limited by both the physical models themselves as well as uncertainties in their experimental implementation. Here we report the results from two of the most common calibration methods, the thermal tune method and the Sader method. These were implemented on a standard AFM system as well as using laser Doppler vibrometry (LDV). Using LDV eliminates some uncertainties associated with optical lever detection on an AFM. It also offersmore » considerably higher signal to noise deflection measurements. We find that AFM and LDV result in similar uncertainty in the calibrated spring constants, about 5%, using either the thermal tune or Sader methods provided that certain limitations of the methods and instrumentation are observed.« less
Contour metrology using critical dimension atomic force microscopy
NASA Astrophysics Data System (ADS)
Orji, Ndubuisi G.; Dixson, Ronald G.; Vladár, András E.; Ming, Bin; Postek, Michael T.
2012-03-01
The critical dimension atomic force microscope (CD-AFM), which is used as a reference instrument in lithography metrology, has been proposed as a complementary instrument for contour measurement and verification. Although data from CD-AFM is inherently three dimensional, the planar two-dimensional data required for contour metrology is not easily extracted from the top-down CD-AFM data. This is largely due to the limitations of the CD-AFM method for controlling the tip position and scanning. We describe scanning techniques and profile extraction methods to obtain contours from CD-AFM data. We also describe how we validated our technique, and explain some of its limitations. Potential sources of error for this approach are described, and a rigorous uncertainty model is presented. Our objective is to show which data acquisition and analysis methods could yield optimum contour information while preserving some of the strengths of CD-AFM metrology. We present comparison of contours extracted using our technique to those obtained from the scanning electron microscope (SEM), and the helium ion microscope (HIM).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miranda, Adelaide; De Beule, Pieter A. A., E-mail: pieter.de-beule@inl.int; Martins, Marco
Combined microscopy techniques offer the life science research community a powerful tool to investigate complex biological systems and their interactions. Here, we present a new combined microscopy platform based on fluorescence optical sectioning microscopy through aperture correlation microscopy with a Differential Spinning Disk (DSD) and nanomechanical mapping with an Atomic Force Microscope (AFM). The illumination scheme of the DSD microscope unit, contrary to standard single or multi-point confocal microscopes, provides a time-independent illumination of the AFM cantilever. This enables a distortion-free simultaneous operation of fluorescence optical sectioning microscopy and atomic force microscopy with standard probes. In this context, we discussmore » sample heating due to AFM cantilever illumination with fluorescence excitation light. Integration of a DSD fluorescence optical sectioning unit with an AFM platform requires mitigation of mechanical noise transfer of the spinning disk. We identify and present two solutions to almost annul this noise in the AFM measurement process. The new combined microscopy platform is applied to the characterization of a DOPC/DOPS (4:1) lipid structures labelled with a lipophilic cationic indocarbocyanine dye deposited on a mica substrate.« less
NASA Astrophysics Data System (ADS)
Kageshima, Masami; Takeda, Seiji; Ptak, Arkadiusz; Nakamura, Chikashi; Jarvis, Suzanne P.; Tokumoto, Hiroshi; Miyake, Jun
2004-12-01
A method for measuring intramolecular energy dissipation as well as stiffness variation in a single biomolecule in situ by atomic force microscopy (AFM) is presented. An AFM cantilever is magnetically modulated at an off-resonance frequency while it elongates a single peptide molecule in buffer solution. The molecular stiffness and the energy dissipation are measured via the amplitude and phase lag in the response signal. Data showing a peculiar feature in both profiles of stiffness and dissipation is presented. This suggests that the present method is more sensitive to the state of the molecule than the conventional force-elongation measurement is.
Analysis of Nanodomain Composition in High-Impact Polypropylene by Atomic Force Microscopy-Infrared.
Tang, Fuguang; Bao, Peite; Su, Zhaohui
2016-05-03
In this paper, compositions of nanodomains in a commercial high-impact polypropylene (HIPP) were investigated by an atomic force microscopy-infrared (AFM-IR) technique. An AFM-IR quantitative analysis method was established for the first time, which was then employed to analyze the polyethylene content in the nanoscopic domains of the rubber particles dispersed in the polypropylene matrix. It was found that the polyethylene content in the matrix was close to zero and was high in the rubbery intermediate layers, both as expected. However, the major component of the rigid cores of the rubber particles was found to be polypropylene rather than polyethylene, contrary to what was previously believed. The finding provides new insight into the complicated structure of HIPPs, and the AFM-IR quantitative method reported here offers a useful tool for assessing compositions of nanoscopic domains in complex polymeric systems.
Simulation-based Extraction of Key Material Parameters from Atomic Force Microscopy
NASA Astrophysics Data System (ADS)
Alsafi, Huseen; Peninngton, Gray
Models for the atomic force microscopy (AFM) tip and sample interaction contain numerous material parameters that are often poorly known. This is especially true when dealing with novel material systems or when imaging samples that are exposed to complicated interactions with the local environment. In this work we use Monte Carlo methods to extract sample material parameters from the experimental AFM analysis of a test sample. The parameterized theoretical model that we use is based on the Virtual Environment for Dynamic AFM (VEDA) [1]. The extracted material parameters are then compared with the accepted values for our test sample. Using this procedure, we suggest a method that can be used to successfully determine unknown material properties in novel and complicated material systems. We acknowledge Fisher Endowment Grant support from the Jess and Mildred Fisher College of Science and Mathematics,Towson University.
Gierlinger, Notburga
2016-01-01
Abstract Scanning probe microscopies and spectroscopies, especially AFM and Confocal Raman microscopy are powerful tools to characterize biological materials. They are both non‐destructive methods and reveal mechanical and chemical properties on the micro and nano‐scale. In the last years the interest for increasing the lateral resolution of optical and spectral images has driven the development of new technologies that overcome the diffraction limit of light. The combination of AFM and Raman reaches resolutions of about 50–150 nm in near‐field Raman and 1.7–50 nm in tip enhanced Raman spectroscopy (TERS) and both give a molecular information of the sample and the topography of the scanned surface. In this review, the mentioned approaches are introduced, the main advantages and problems for application on biological samples discussed and some examples for successful experiments given. Finally the potential of colocated AFM and Raman measurements is shown on a case study of cellulose‐lignin films: the topography structures revealed by AFM can be related to a certain chemistry by the colocated Raman scan and additionally the mechanical properties be revealed by using the digital pulsed force mode. Microsc. Res. Tech. 80:30–40, 2017. © 2016 Wiley Periodicals, Inc. PMID:27514318
Application of Contact Mode AFM to Manufacturing Processes
NASA Astrophysics Data System (ADS)
Giordano, Michael A.; Schmid, Steven R.
A review of the application of contact mode atomic force microscopy (AFM) to manufacturing processes is presented. A brief introduction to common experimental techniques including hardness, scratch, and wear testing is presented, with a discussion of challenges in the extension of manufacturing scale investigations to the AFM. Differences between the macro- and nanoscales tests are discussed, including indentation size effects and their importance in the simulation of processes such as grinding. The basics of lubrication theory are presented and friction force microscopy is introduced as a method of investigating metal forming lubrication on the nano- and microscales that directly simulates tooling/workpiece asperity interactions. These concepts are followed by a discussion of their application to macroscale industrial manufacturing processes and direct correlations are made.
López-Jiménez, Lidia; Viñas, Miguel; Vinuesa, Teresa
2015-01-01
Aim: To visualize by Atomic Force Microscopy the alterations induced on Enterococcus. faecalis surface after treatment with 2 types of laser: Erbium chromium:yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser and Diode laser. Material and Methods: Bacterial suspensions from overnight cultures of E. faecalis were irradiated during 30 seconds with the laser-lights at 1 W and 2 W of power, leaving one untreated sample as control. Surface alterations on treated E. faecalis were visualized by Atomic Force Microscopy (AFM) and its surface roughness determined. Results: AFM imaging showed that at high potency of laser both cell morphology and surface roughness resulted altered, and that several cell lysis signs were easily visualized. Surface roughness clearly increase after the treatment with Er,Cr:YSGG at 2W of power, while the other treatments gave similar values of surface roughness. The effect of lasers on bacterial surfaces visualized by AFM revealed drastic alterations. Conclusions: AFM is a good tool to evaluate surface injuries after laser treatment; and could constitute a measure of antimicrobial effect that can complete data obtained by determination of microbial viability. Key words:Atomic force microscopy, Er,Cr:YSGG laser, diode laser, Enterococcus faecalis, surface roughness. PMID:25475770
Serial sectioning methods for 3D investigations in materials science.
Zankel, Armin; Wagner, Julian; Poelt, Peter
2014-07-01
A variety of methods for the investigation and 3D representation of the inner structure of materials has been developed. In this paper, techniques based on slice and view using scanning microscopy for imaging are presented and compared. Three different methods of serial sectioning combined with either scanning electron or scanning ion microscopy or atomic force microscopy (AFM) were placed under scrutiny: serial block-face scanning electron microscopy, which facilitates an ultramicrotome built into the chamber of a variable pressure scanning electron microscope; three-dimensional (3D) AFM, which combines an (cryo-) ultramicrotome with an atomic force microscope, and 3D FIB, which delivers results by slicing with a focused ion beam. These three methods complement one another in many respects, e.g., in the type of materials that can be investigated, the resolution that can be obtained and the information that can be extracted from 3D reconstructions. A detailed review is given about preparation, the slice and view process itself, and the limitations of the methods and possible artifacts. Applications for each technique are also provided. Copyright © 2014 Elsevier Ltd. All rights reserved.
Analysis of dynamic cantilever behavior in tapping mode atomic force microscopy.
Deng, Wenqi; Zhang, Guang-Ming; Murphy, Mark F; Lilley, Francis; Harvey, David M; Burton, David R
2015-10-01
Tapping mode atomic force microscopy (AFM) provides phase images in addition to height and amplitude images. Although the behavior of tapping mode AFM has been investigated using mathematical modeling, comprehensive understanding of the behavior of tapping mode AFM still poses a significant challenge to the AFM community, involving issues such as the correct interpretation of the phase images. In this paper, the cantilever's dynamic behavior in tapping mode AFM is studied through a three dimensional finite element method. The cantilever's dynamic displacement responses are firstly obtained via simulation under different tip-sample separations, and for different tip-sample interaction forces, such as elastic force, adhesion force, viscosity force, and the van der Waals force, which correspond to the cantilever's action upon various different representative computer-generated test samples. Simulated results show that the dynamic cantilever displacement response can be divided into three zones: a free vibration zone, a transition zone, and a contact vibration zone. Phase trajectory, phase shift, transition time, pseudo stable amplitude, and frequency changes are then analyzed from the dynamic displacement responses that are obtained. Finally, experiments are carried out on a real AFM system to support the findings of the simulations. © 2015 Wiley Periodicals, Inc.
Atomic force microscopy of atomic-scale ledges and etch pits formed during dissolution of quartz
NASA Technical Reports Server (NTRS)
Gratz, A. J.; Manne, S.; Hansma, P. K.
1991-01-01
The processes involved in the dissolution and growth of crystals are closely related. Atomic force microscopy (AFM) of faceted pits (called negative crystals) formed during quartz dissolution reveals subtle details of these underlying physical mechanisms for silicates. In imaging these surfaces, the AFM detected ledges less than 1 nm high that were spaced 10 to 90 nm apart. A dislocation pit, invisible to optical and scanning electron microscopy measurements and serving as a ledge source, was also imaged. These observations confirm the applicability of ledge-motion models to dissolution and growth of silicates; coupled with measurements of dissolution rate on facets, these methods provide a powerful tool for probing mineral surface kinetics.
Atomic force microscopy as nano-stethoscope to study living organisms, insects
NASA Astrophysics Data System (ADS)
Sokolov, Igor; Dokukin, Maxim; Guz, Nataliia
2012-02-01
Atomic force microscopy (AFM) is a known method to study various surfaces. Here we report on the use of AFM to study surface oscillations (coming from the work of internal organs) of living organisms, like insects. As an example, ladybird beetles (Hippodamia convergens) measured in different parts of the insect at picometer level. This allows us to record a much broader spectral range of possible surface vibrations (up to several kHz) than the previously studied oscillations due to breathing, heartbeat cycles, coelopulses, etc. (up to 5 -10 Hz). The used here AFM method allows collecting signal from the area as small as ˜100nm2 (0.0001μm2) with an example of noise level of (2±0.2)x10-3 nm r.m.s. at the range of frequencies >50Hz (potentially, up to a MHz). Application of this method to humans is discussed. The method, being a relatively non-invasive technique providing a new type of information, may be useful in developing of what could be called ``nanophysiology.''
Suzuki, Yuki; Sakai, Nobuaki; Yoshida, Aiko; Uekusa, Yoshitsugu; Yagi, Akira; Imaoka, Yuka; Ito, Shuichi; Karaki, Koichi; Takeyasu, Kunio
2013-01-01
A hybrid atomic force microscopy (AFM)-optical fluorescence microscopy is a powerful tool for investigating cellular morphologies and events. However, the slow data acquisition rates of the conventional AFM unit of the hybrid system limit the visualization of structural changes during cellular events. Therefore, high-speed AFM units equipped with an optical/fluorescence detection device have been a long-standing wish. Here we describe the implementation of high-speed AFM coupled with an optical fluorescence microscope. This was accomplished by developing a tip-scanning system, instead of a sample-scanning system, which operates on an inverted optical microscope. This novel device enabled the acquisition of high-speed AFM images of morphological changes in individual cells. Using this instrument, we conducted structural studies of living HeLa and 3T3 fibroblast cell surfaces. The improved time resolution allowed us to image dynamic cellular events. PMID:23823461
Suzuki, Yuki; Sakai, Nobuaki; Yoshida, Aiko; Uekusa, Yoshitsugu; Yagi, Akira; Imaoka, Yuka; Ito, Shuichi; Karaki, Koichi; Takeyasu, Kunio
2013-01-01
A hybrid atomic force microscopy (AFM)-optical fluorescence microscopy is a powerful tool for investigating cellular morphologies and events. However, the slow data acquisition rates of the conventional AFM unit of the hybrid system limit the visualization of structural changes during cellular events. Therefore, high-speed AFM units equipped with an optical/fluorescence detection device have been a long-standing wish. Here we describe the implementation of high-speed AFM coupled with an optical fluorescence microscope. This was accomplished by developing a tip-scanning system, instead of a sample-scanning system, which operates on an inverted optical microscope. This novel device enabled the acquisition of high-speed AFM images of morphological changes in individual cells. Using this instrument, we conducted structural studies of living HeLa and 3T3 fibroblast cell surfaces. The improved time resolution allowed us to image dynamic cellular events.
Localization and force analysis at the single virus particle level using atomic force microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Chih-Hao; Horng, Jim-Tong; Chang, Jeng-Shian
2012-01-06
Highlights: Black-Right-Pointing-Pointer Localization of single virus particle. Black-Right-Pointing-Pointer Force measurements. Black-Right-Pointing-Pointer Force mapping. -- Abstract: Atomic force microscopy (AFM) is a vital instrument in nanobiotechnology. In this study, we developed a method that enables AFM to simultaneously measure specific unbinding force and map the viral glycoprotein at the single virus particle level. The average diameter of virus particles from AFM images and the specificity between the viral surface antigen and antibody probe were integrated to design a three-stage method that sets the measuring area to a single virus particle before obtaining the force measurements, where the influenza virus was usedmore » as the object of measurements. Based on the purposed method and performed analysis, several findings can be derived from the results. The mean unbinding force of a single virus particle can be quantified, and no significant difference exists in this value among virus particles. Furthermore, the repeatability of the proposed method is demonstrated. The force mapping images reveal that the distributions of surface viral antigens recognized by antibody probe were dispersed on the whole surface of individual virus particles under the proposed method and experimental criteria; meanwhile, the binding probabilities are similar among particles. This approach can be easily applied to most AFM systems without specific components or configurations. These results help understand the force-based analysis at the single virus particle level, and therefore, can reinforce the capability of AFM to investigate a specific type of viral surface protein and its distributions.« less
Computational model for noncontact atomic force microscopy: energy dissipation of cantilever.
Senda, Yasuhiro; Blomqvist, Janne; Nieminen, Risto M
2016-09-21
We propose a computational model for noncontact atomic force microscopy (AFM) in which the atomic force between the cantilever tip and the surface is calculated using a molecular dynamics method, and the macroscopic motion of the cantilever is modeled by an oscillating spring. The movement of atoms in the tip and surface is connected with the oscillating spring using a recently developed coupling method. In this computational model, the oscillation energy is dissipated, as observed in AFM experiments. We attribute this dissipation to the hysteresis and nonconservative properties of the interatomic force that acts between the atoms in the tip and sample surface. The dissipation rate strongly depends on the parameters used in the computational model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ageev, O. A., E-mail: ageev@sfedu.ru; Bykov, Al. V.; Kolomiitsev, A. S.
2015-12-15
The results of an experimental study of the modification of probes for critical-dimension atomicforce microscopy (CD-AFM) by the deposition of carbon nanotubes (CNTs) to improve the accuracy with which the surface roughness of vertical walls is determined in submicrometer structures are presented. Methods of the deposition of an individual CNT onto the tip of an AFM probe via mechanical and electrostatic interaction between the probe and an array of vertically aligned carbon nanotubes (VACNTs) are studied. It is shown that, when the distance between the AFM tip and a VACNT array is 1 nm and the applied voltage is withinmore » the range 20–30 V, an individual carbon nanotube is deposited onto the tip. On the basis of the results obtained in the study, a probe with a carbon nanotube on its tip (CNT probe) with a radius of 7 nm and an aspect ratio of 1:15 is formed. Analysis of the CNT probe demonstrates that its use improves the resolution and accuracy of AFM measurements, compared with the commercial probe, and also makes it possible to determine the roughness of the vertical walls of high-aspect structures by CD-AFM. The results obtained can be used to develop technological processes for the fabrication and reconditioning of special AFM probes, including those for CD-AFM, and procedures for the interoperational express monitoring of technological process parameters in the manufacturing of elements for micro- and nanoelectronics and micro- and nanosystem engineering.« less
Stetsovych, Oleksandr; Todorović, Milica; Shimizu, Tomoko K.; Moreno, César; Ryan, James William; León, Carmen Pérez; Sagisaka, Keisuke; Palomares, Emilio; Matolín, Vladimír; Fujita, Daisuke; Perez, Ruben; Custance, Oscar
2015-01-01
Anatase is a pivotal material in devices for energy-harvesting applications and catalysis. Methods for the accurate characterization of this reducible oxide at the atomic scale are critical in the exploration of outstanding properties for technological developments. Here we combine atomic force microscopy (AFM) and scanning tunnelling microscopy (STM), supported by first-principles calculations, for the simultaneous imaging and unambiguous identification of atomic species at the (101) anatase surface. We demonstrate that dynamic AFM-STM operation allows atomic resolution imaging within the material's band gap. Based on key distinguishing features extracted from calculations and experiments, we identify candidates for the most common surface defects. Our results pave the way for the understanding of surface processes, like adsorption of metal dopants and photoactive molecules, that are fundamental for the catalytic and photovoltaic applications of anatase, and demonstrate the potential of dynamic AFM-STM for the characterization of wide band gap materials. PMID:26118408
High-speed atomic force microscopy coming of age
NASA Astrophysics Data System (ADS)
Ando, Toshio
2012-02-01
High-speed atomic force microscopy (HS-AFM) is now materialized. It allows direct visualization of dynamic structural changes and dynamic processes of functioning biological molecules in physiological solutions, at high spatiotemporal resolution. Dynamic molecular events unselectively appear in detail in an AFM movie, facilitating our understanding of how biological molecules operate to function. This review describes a historical overview of technical development towards HS-AFM, summarizes elementary devices and techniques used in the current HS-AFM, and then highlights recent imaging studies. Finally, future challenges of HS-AFM studies are briefly discussed.
High-speed atomic force microscopy imaging of live mammalian cells
Shibata, Mikihiro; Watanabe, Hiroki; Uchihashi, Takayuki; Ando, Toshio; Yasuda, Ryohei
2017-01-01
Direct imaging of morphological dynamics of live mammalian cells with nanometer resolution under physiological conditions is highly expected, but yet challenging. High-speed atomic force microscopy (HS-AFM) is a unique technique for capturing biomolecules at work under near physiological conditions. However, application of HS-AFM for imaging of live mammalian cells was hard to be accomplished because of collision between a huge mammalian cell and a cantilever during AFM scanning. Here, we review our recent improvements of HS-AFM for imaging of activities of live mammalian cells without significant damage to the cell. The improvement of an extremely long (~3 μm) AFM tip attached to a cantilever enables us to reduce severe damage to soft mammalian cells. In addition, a combination of HS-AFM with simple fluorescence microscopy allows us to quickly locate the cell in the AFM scanning area. After these improvements, we demonstrate that developed HS-AFM for live mammalian cells is possible to image morphogenesis of filopodia, membrane ruffles, pits open-close formations, and endocytosis in COS-7, HeLa cells as well as hippocampal neurons. PMID:28900590
Volume determination of irregularly-shaped quasi-spherical nanoparticles.
Attota, Ravi Kiran; Liu, Eileen Cherry
2016-11-01
Nanoparticles (NPs) are widely used in diverse application areas, such as medicine, engineering, and cosmetics. The size (or volume) of NPs is one of the most important parameters for their successful application. It is relatively straightforward to determine the volume of regular NPs such as spheres and cubes from a one-dimensional or two-dimensional measurement. However, due to the three-dimensional nature of NPs, it is challenging to determine the proper physical size of many types of regularly and irregularly-shaped quasi-spherical NPs at high-throughput using a single tool. Here, we present a relatively simple method that determines a better volume estimate of NPs by combining measurements from their top-down projection areas and peak heights using two tools. The proposed method is significantly faster and more economical than the electron tomography method. We demonstrate the improved accuracy of the combined method over scanning electron microscopy (SEM) or atomic force microscopy (AFM) alone by using modeling, simulations, and measurements. This study also exposes the existence of inherent measurement biases for both SEM and AFM, which usually produce larger measured diameters with SEM than with AFM. However, in some cases SEM measured diameters appear to have less error compared to AFM measured diameters, especially for widely used IS-NPs such as of gold, and silver. The method provides a much needed, proper high-throughput volumetric measurement method useful for many applications. Graphical Abstract The combined method for volume determination of irregularly-shaped quasi-spherical nanoparticles.
Usukura, Eiji; Narita, Akihiro; Yagi, Akira; Ito, Shuichi; Usukura, Jiro
2016-01-01
An improved unroofing method enabled the cantilever of an atomic force microscope (AFM) to reach directly into a cell to visualize the intracellular cytoskeletal actin filaments, microtubules, clathrin coats, and caveolae in phosphate-buffered saline (PBS) at a higher resolution than conventional electron microscopy. All of the actin filaments clearly exhibited a short periodicity of approximately 5–6 nm, which was derived from globular actins linked to each other to form filaments, as well as a long helical periodicity. The polarity of the actin filaments appeared to be determined by the shape of the periodic striations. Microtubules were identified based on their thickness. Clathrin coats and caveolae were observed on the cytoplasmic surface of cell membranes. The area containing clathrin molecules and their terminal domains was directly visualized. Characteristic ridge structures located at the surface of the caveolae were observed at high resolution, similar to those observed with electron microscopy (EM). Overall, unroofing allowed intracellular AFM imaging in a liquid environment with a level of quality equivalent or superior to that of EM. Thus, AFMs are anticipated to provide cutting-edge findings in cell biology and histology. PMID:27273367
Application of focused ion beam for the fabrication of AFM probes
NASA Astrophysics Data System (ADS)
Kolomiytsev, A. S.; Lisitsyn, S. A.; Smirnov, V. A.; Fedotov, A. A.; Varzarev, Yu N.
2017-10-01
The results of an experimental study of the probe tips fabrication for critical-dimension atomic force microscopy (CD-AFM) using the focused ion beam (FIB) induced deposition are presented. Methods of the FIB-induced deposition of tungsten and carbon onto the tip of an AFM probe are studied. Based on the results obtained in the study, probes for the CD-AFM technique with a tip height about 1 μm and radius of 20 nm were created. The formation of CD-AFM probes by FIB-induced deposition allows creating a high efficiency tool for nanotechnology and nanodiagnostics. The use of modified cantilevers allows minimizing the artefacts of AFM images and increasing the accuracy of the relief measurement. The obtained results can be used for fabrication of AFM probes for express monitoring of the technological process in the manufacturing of the elements for micro- and nanoelectronics.
EDITORIAL: Probing the nanoworld Probing the nanoworld
NASA Astrophysics Data System (ADS)
Miles, Mervyn
2009-10-01
In nanotechnology, it is the unique properties arising from nanometre-scale structures that lead not only to their technological importance but also to a better understanding of the underlying science. Over the last twenty years, material properties at the nanoscale have been dominated by the properties of carbon in the form of the C60 molecule, single- and multi-wall carbon nanotubes, nanodiamonds, and recently graphene. During this period, research published in the journal Nanotechnology has revealed the amazing mechanical properties of such materials as well as their remarkable electronic properties with the promise of new devices. Furthermore, nanoparticles, nanotubes, nanorods, and nanowires from metals and dielectrics have been characterized for their electronic, mechanical, optical, chemical and catalytic properties. Scanning probe microscopy (SPM) has become the main characterization technique and atomic force microscopy (AFM) the most frequently used SPM. Over the past twenty years, SPM techniques that were previously experimental in nature have become routine. At the same time, investigations using AFM continue to yield impressive results that demonstrate the great potential of this powerful imaging tool, particularly in close to physiological conditions. In this special issue a collaboration of researchers in Europe report the use of AFM to provide high-resolution topographical images of individual carbon nanotubes immobilized on various biological membranes, including a nuclear membrane for the first time (Lamprecht C et al 2009 Nanotechnology 20 434001). Other SPM developments such as high-speed AFM appear to be making a transition from specialist laboratories to the mainstream, and perhaps the same may be said for non-contact AFM. Looking to the future, characterisation techniques involving SPM and spectroscopy, such as tip-enhanced Raman spectroscopy, could emerge as everyday methods. In all these advanced techniques, routinely available probes will be needed to make them mainstream methods, as was indeed the case for establishing AFM. At the same time, both transmission electron microscopy and scanning electron microscopy have undergone major developments in resolution, spectroscopic techniques, and new techniques such as tomography. It is exciting to speculate in which areas new properties of materials at the nanoscale will be discovered over the next twenty years, and how characterization methods will evolve, but it is the unimaginable and unpredictable that will bring the most dramatic changes to nanotechnology.
Li, Jie-Ren; Lewandowski, Brian R; Xu, Song; Garno, Jayne C
2009-06-15
A new imaging strategy using atomic force microscopy (AFM) is demonstrated for mapping magnetic domains at size regimes below 100 nm. The AFM-based imaging mode is referred to as magnetic sample modulation (MSM), since the flux of an AC-generated electromagnetic field is used to induce physical movement of magnetic nanomaterials on surfaces during imaging. The AFM is operated in contact mode using a soft, nonmagnetic tip to detect the physical motion of the sample. By slowly scanning an AFM probe across a vibrating area of the sample, the frequency and amplitude of vibration induced by the magnetic field is tracked by changes in tip deflection. Thus, the AFM tip serves as a force and motion sensor for mapping the vibrational response of magnetic nanomaterials. Essentially, MSM is a hybrid of contact mode AFM combined with selective modulation of magnetic domains. The positional feedback loop for MSM imaging is the same as that used for force modulation and contact mode AFM; however, the vibration of the sample is analyzed using channels of a lock-in amplifier. The investigations are facilitated by nanofabrication methods combining particle lithography with organic vapor deposition and electroless deposition of iron oxide, to prepare designed test platforms of magnetic materials at nanometer length scales. Custom test platforms furnished suitable surfaces for MSM characterizations at the level of individual metal nanostructures.
Measuring bacterial cells size with AFM
Osiro, Denise; Filho, Rubens Bernardes; Assis, Odilio Benedito Garrido; Jorge, Lúcio André de Castro; Colnago, Luiz Alberto
2012-01-01
Atomic Force Microscopy (AFM) can be used to obtain high-resolution topographical images of bacteria revealing surface details and cell integrity. During scanning however, the interactions between the AFM probe and the membrane results in distortion of the images. Such distortions or artifacts are the result of geometrical effects related to bacterial cell height, specimen curvature and the AFM probe geometry. The most common artifact in imaging is surface broadening, what can lead to errors in bacterial sizing. Several methods of correction have been proposed to compensate for these artifacts and in this study we describe a simple geometric model for the interaction between the tip (a pyramidal shaped AFM probe) and the bacterium (Escherichia coli JM-109 strain) to minimize the enlarging effect. Approaches to bacteria immobilization and examples of AFM images analysis are also described. PMID:24031837
Intermodulation Atomic Force Microscopy and Spectroscopy
NASA Astrophysics Data System (ADS)
Hutter, Carsten; Platz, Daniel; Tholen, Erik; Haviland, David; Hansson, Hans
2009-03-01
We present a powerful new method of dynamic AFM, which allows to gain far more information about the tip-surface interaction than standard amplitude or phase imaging, while scanning at comparable speed. Our method, called intermodulation atomic force microscopy (ImAFM), employs the manifestly nonlinear phenomenon of intermodulation to extract information about tip-surface forces. ImAFM uses one eigenmode of a mechanical resonator, the latter driven at two frequencies to produce many spectral peaks near its resonace, where sensitivity is highest [1]. We furthermore present a protocol for decoding the combined information encoded in the spectrum of intermodulation peaks. Our theoretical framework suggests methods to enhance the gained information by using a different parameter regime as compared to Ref. [1]. We also discuss strategies for solving the inverse problem, i.e., for extracting the nonlinear tip-surface interaction from the response, also naming limitations of our theoretical analysis. We will further report on latest progress to experimentally employ our new protocol.[3pt] [1] D. Platz, E. A. Tholen, D. Pesen, and D. B. Haviland, Appl. Phys. Lett. 92, 153106 (2008).
Eslami, Babak; Ebeling, Daniel
2014-01-01
Summary This paper presents experiments on Nafion® proton exchange membranes and numerical simulations illustrating the trade-offs between the optimization of compositional contrast and the modulation of tip indentation depth in bimodal atomic force microscopy (AFM). We focus on the original bimodal AFM method, which uses amplitude modulation to acquire the topography through the first cantilever eigenmode, and drives a higher eigenmode in open-loop to perform compositional mapping. This method is attractive due to its relative simplicity, robustness and commercial availability. We show that this technique offers the capability to modulate tip indentation depth, in addition to providing sample topography and material property contrast, although there are important competing effects between the optimization of sensitivity and the control of indentation depth, both of which strongly influence the contrast quality. Furthermore, we demonstrate that the two eigenmodes can be highly coupled in practice, especially when highly repulsive imaging conditions are used. Finally, we also offer a comparison with a previously reported trimodal AFM method, where the above competing effects are minimized. PMID:25161847
Imaging modes of atomic force microscopy for application in molecular and cell biology.
Dufrêne, Yves F; Ando, Toshio; Garcia, Ricardo; Alsteens, David; Martinez-Martin, David; Engel, Andreas; Gerber, Christoph; Müller, Daniel J
2017-04-06
Atomic force microscopy (AFM) is a powerful, multifunctional imaging platform that allows biological samples, from single molecules to living cells, to be visualized and manipulated. Soon after the instrument was invented, it was recognized that in order to maximize the opportunities of AFM imaging in biology, various technological developments would be required to address certain limitations of the method. This has led to the creation of a range of new imaging modes, which continue to push the capabilities of the technique today. Here, we review the basic principles, advantages and limitations of the most common AFM bioimaging modes, including the popular contact and dynamic modes, as well as recently developed modes such as multiparametric, molecular recognition, multifrequency and high-speed imaging. For each of these modes, we discuss recent experiments that highlight their unique capabilities.
USDA-ARS?s Scientific Manuscript database
The specific interactions between ricin and anti-ricin aptamer were measured with atomic force microscopy (AFM) and surface plasmon resonance (SPR) spectrometry and the results were compared. In AFM, a single-molecule experiment with ricin functionalized AFM tip was used for scanning the aptamer mol...
Peering at Brain Polysomes with Atomic Force Microscopy
Lunelli, Lorenzo; Bernabò, Paola; Bolner, Alice; Vaghi, Valentina; Marchioretto, Marta; Viero, Gabriella
2016-01-01
The translational machinery, i.e., the polysome or polyribosome, is one of the biggest and most complex cytoplasmic machineries in cells. Polysomes, formed by ribosomes, mRNAs, several proteins and non-coding RNAs, represent integrated platforms where translational controls take place. However, while the ribosome has been widely studied, the organization of polysomes is still lacking comprehensive understanding. Thus much effort is required in order to elucidate polysome organization and any novel mechanism of translational control that may be embedded. Atomic force microscopy (AFM) is a type of scanning probe microscopy that allows the acquisition of 3D images at nanoscale resolution. Compared to electron microscopy (EM) techniques, one of the main advantages of AFM is that it can acquire thousands of images both in air and in solution, enabling the sample to be maintained under near physiological conditions without any need for staining and fixing procedures. Here, a detailed protocol for the accurate purification of polysomes from mouse brain and their deposition on mica substrates is described. This protocol enables polysome imaging in air and liquid with AFM and their reconstruction as three-dimensional objects. Complementary to cryo-electron microscopy (cryo-EM), the proposed method can be conveniently used for systematically analyzing polysomes and studying their organization. PMID:27023752
Li, Mi; Liu, Lianqing; Xiao, Xiubin; Xi, Ning; Wang, Yuechao
2016-10-01
Methotrexate is a commonly used anti-cancer chemotherapy drug. Cellular mechanical properties are fundamental parameters that reflect the physiological state of a cell. However, so far the role of cellular mechanical properties in the actions of methotrexate is still unclear. In recent years, probing the behaviors of single cells with the use of atomic force microscopy (AFM) has contributed much to the field of cell biomechanics. In this work, with the use of AFM, the effects of methotrexate on the viscoelastic properties of four types of cells were quantitatively investigated. The inhibitory and cytotoxic effects of methotrexate on the proliferation of cells were observed by optical and fluorescence microscopy. AFM indenting was used to measure the changes of cellular viscoelastic properties (Young's modulus and relaxation time) by using both conical tip and spherical tip, quantitatively showing that the stimulation of methotrexate resulted in a significant decrease of both cellular Young's modulus and relaxation times. The morphological changes of cells induced by methotrexate were visualized by AFM imaging. The study improves our understanding of methotrexate action and offers a novel way to quantify drug actions at the single-cell level by measuring cellular viscoelastic properties, which may have potential impacts on developing label-free methods for drug evaluation.
Atomic Force Microscopy Based Cell Shape Index
NASA Astrophysics Data System (ADS)
Adia-Nimuwa, Usienemfon; Mujdat Tiryaki, Volkan; Hartz, Steven; Xie, Kan; Ayres, Virginia
2013-03-01
Stellation is a measure of cell physiology and pathology for several cell groups including neural, liver and pancreatic cells. In the present work, we compare the results of a conventional two-dimensional shape index study of both atomic force microscopy (AFM) and fluorescent microscopy images with the results obtained using a new three-dimensional AFM-based shape index similar to sphericity index. The stellation of astrocytes is investigated on nanofibrillar scaffolds composed of electrospun polyamide nanofibers that has demonstrated promise for central nervous system (CNS) repair. Recent work by our group has given us the ability to clearly segment the cells from nanofibrillar scaffolds in AFM images. The clear-featured AFM images indicated that the astrocyte processes were longer than previously identified at 24h. It was furthermore shown that cell spreading could vary significantly as a function of environmental parameters, and that AFM images could record these variations. The new three-dimensional AFM-based shape index incorporates the new information: longer stellate processes and cell spreading. The support of NSF PHY-095776 is acknowledged.
Atomic force microscopy of RNA: State of the art and recent advancements.
Schön, Peter
2018-01-01
The atomic force microscope (AFM) has become a powerful tool for the visualization, probing and manipulation of RNA at the single molecule level. AFM measurements can be carried out in buffer solution in a physiological medium, which is crucial to study the structure and function of biomolecules, also allowing studying them at work. Imaging the specimen in its native state is a great advantage compared to other high resolution methods such as electron microscopy and X-ray diffraction. There is no need to stain, freeze or crystallize biological samples. Moreover, compared to NMR spectroscopy for instance, for AFM studies the size of the biomolecules is not limiting. Consequently the AFM allows one also to investigate larger RNA molecules. In particular, structural studies of nucleic acids and assemblies thereof, have been carried out by AFM routinely including ssRNA, dsRNA and nucleoprotein complexes thereof, as well as RNA aggregates and 2D RNA assemblies. These are becoming increasingly important as novel unique building blocks in the emerging field of RNA nanotechnology. In particular by AFM unique information can be obtained on these RNA based assemblies. Moreover, the AFM is of fundamental relevance to study biological relevant RNA interactions and dynamics. In this short review a brief overview will be given on structural studies that have been done related to AFM topographic imaging of RNA, RNA assemblies and aggregates. Finally, an overview on AFM beyond imaging will be provided. This includes force spectroscopy of RNA under physiological conditions in aqueous buffer to probe RNA interaction with proteins and ligands as well as other AFM tip based RNA probing. Important applications include the detection and quantification of RNA in biological samples. A selection of recent highlights and breakthroughs will be provided related to structural and functional studies by AFM. The main intention of this short review to provide the reader with a flavor of what AFM is able to contribute to RNA research and engineering. Copyright © 2017 Elsevier Ltd. All rights reserved.
Challenges and complexities of multifrequency atomic force microscopy in liquid environments.
Solares, Santiago D
2014-01-01
This paper illustrates through numerical simulation the complexities encountered in high-damping AFM imaging, as in liquid enviroments, within the specific context of multifrequency atomic force microscopy (AFM). The focus is primarily on (i) the amplitude and phase relaxation of driven higher eigenmodes between successive tip-sample impacts, (ii) the momentary excitation of non-driven higher eigenmodes and (iii) base excitation artifacts. The results and discussion are mostly applicable to the cases where higher eigenmodes are driven in open loop and frequency modulation within bimodal schemes, but some concepts are also applicable to other types of multifrequency operations and to single-eigenmode amplitude and frequency modulation methods.
NASA Astrophysics Data System (ADS)
Sagitova, A.; Yaminsky, I.; Meshkov, G.
2016-08-01
Visualization of the structure of biological objects plays a key role in medicine, biotechnology, nanotechnology and IT-technology. Atomic force microscopy (AFM) is a promising method of studying of objects’ morphology and structure. In this work, AFM was used to determine the size and shape of the bacterial strains of Escherichia coli M-17 and visualization its interaction with the nanoparticles of zinc oxide. The suspension of E.coli bacteria was applied to natural mica and studied by contact mode using the FemtoScan multifunctional scanning probe microscope.
Tip Characterization Method using Multi-feature Characterizer for CD-AFM
Orji, Ndubuisi G.; Itoh, Hiroshi; Wang, Chumei; Dixson, Ronald G.; Walecki, Peter S.; Schmidt, Sebastian W.; Irmer, Bernd
2016-01-01
In atomic force microscopy (AFM) metrology, the tip is a key source of uncertainty. Images taken with an AFM show a change in feature width and shape that depends on tip geometry. This geometric dilation is more pronounced when measuring features with high aspect ratios, and makes it difficult to obtain absolute dimensions. In order to accurately measure nanoscale features using an AFM, the tip dimensions should be known with a high degree of precision. We evaluate a new AFM tip characterizer, and apply it to critical dimension AFM (CD-AFM) tips used for high aspect ratio features. The characterizer is made up of comb-shaped lines and spaces, and includes a series of gratings that could be used as an integrated nanoscale length reference. We also demonstrate a simulation method that could be used to specify what range of tip sizes and shapes the characterizer can measure. Our experiments show that for non re-entrant features, the results obtained with this characterizer are consistent to 1 nm with the results obtained by using widely accepted but slower methods that are common practice in CD-AFM metrology. A validation of the integrated length standard using displacement interferometry indicates a uniformity of better than 0.75%, suggesting that the sample could be used as highly accurate and SI traceable lateral scale for the whole evaluation process. PMID:26720439
Probing fibronectin–antibody interactions using AFM force spectroscopy and lateral force microscopy
Kulik, Andrzej J; Lee, Kyumin; Pyka-Fościak, Grazyna; Nowak, Wieslaw
2015-01-01
Summary The first experiment showing the effects of specific interaction forces using lateral force microscopy (LFM) was demonstrated for lectin–carbohydrate interactions some years ago. Such measurements are possible under the assumption that specific forces strongly dominate over the non-specific ones. However, obtaining quantitative results requires the complex and tedious calibration of a torsional force. Here, a new and relatively simple method for the calibration of the torsional force is presented. The proposed calibration method is validated through the measurement of the interaction forces between human fibronectin and its monoclonal antibody. The results obtained using LFM and AFM-based classical force spectroscopies showed similar unbinding forces recorded at similar loading rates. Our studies verify that the proposed lateral force calibration method can be applied to study single molecule interactions. PMID:26114080
Atomic force microscopy of starch systems.
Zhu, Fan
2017-09-22
Atomic force microscopy (AFM) generates information on topography, adhesion, and elasticity of sample surface by touching with a tip. Under suitable experimental settings, AFM can image biopolymers of few nanometers. Starch is a major food and industrial component. AFM has been used to probe the morphology, properties, modifications, and interactions of starches from diverse botanical origins at both micro- and nano-structural levels. The structural information obtained by AFM supports the blocklet structure of the granules, and provides qualitative and quantitative basis for some physicochemical properties of diverse starch systems. It becomes evident that AFM can complement other microscopic techniques to provide novel structural insights for starch systems.
The Use of Atomic Force Microscopy for 3D Analysis of Nucleic Acid Hybridization on Microarrays.
Dubrovin, E V; Presnova, G V; Rubtsova, M Yu; Egorov, A M; Grigorenko, V G; Yaminsky, I V
2015-01-01
Oligonucleotide microarrays are considered today to be one of the most efficient methods of gene diagnostics. The capability of atomic force microscopy (AFM) to characterize the three-dimensional morphology of single molecules on a surface allows one to use it as an effective tool for the 3D analysis of a microarray for the detection of nucleic acids. The high resolution of AFM offers ways to decrease the detection threshold of target DNA and increase the signal-to-noise ratio. In this work, we suggest an approach to the evaluation of the results of hybridization of gold nanoparticle-labeled nucleic acids on silicon microarrays based on an AFM analysis of the surface both in air and in liquid which takes into account of their three-dimensional structure. We suggest a quantitative measure of the hybridization results which is based on the fraction of the surface area occupied by the nanoparticles.
Atomic force microscopy of model lipid membranes.
Morandat, Sandrine; Azouzi, Slim; Beauvais, Estelle; Mastouri, Amira; El Kirat, Karim
2013-02-01
Supported lipid bilayers (SLBs) are biomimetic model systems that are now widely used to address the biophysical and biochemical properties of biological membranes. Two main methods are usually employed to form SLBs: the transfer of two successive monolayers by Langmuir-Blodgett or Langmuir-Schaefer techniques, and the fusion of preformed lipid vesicles. The transfer of lipid films on flat solid substrates offers the possibility to apply a wide range of surface analytical techniques that are very sensitive. Among them, atomic force microscopy (AFM) has opened new opportunities for determining the nanoscale organization of SLBs under physiological conditions. In this review, we first focus on the different protocols generally employed to prepare SLBs. Then, we describe AFM studies on the nanoscale lateral organization and mechanical properties of SLBs. Lastly, we survey recent developments in the AFM monitoring of bilayer alteration, remodeling, or digestion, by incubation with exogenous agents such as drugs, proteins, peptides, and nanoparticles.
Application of Advanced Atomic Force Microscopy Techniques to Study Quantum Dots and Bio-materials
NASA Astrophysics Data System (ADS)
Guz, Nataliia
In recent years, there has been an increase in research towards micro- and nanoscale devices as they have proliferated into diverse areas of scientific exploration. Many of the general fields of study that have greatly affected the advancement of these devices includes the investigation of their properties. The sensitivity of Atomic Force Microscopy (AFM) allows detecting charges up to the single electron value in quantum dots in ambient conditions, the measurement of steric forces on the surface of the human cell brush, determination of cell mechanics, magnetic forces, and other important properties. Utilizing AFM methods, the fast screening of quantum dot efficiency and the differences between cancer, normal (healthy) and precancer (immortalized) human cells has been investigated. The current research using AFM techniques can help to identify biophysical differences of cancer cells to advance our understanding of the resistance of the cells against the existing medicine.
Atomic force microscopy studies on cellular elastic and viscoelastic properties.
Li, Mi; Liu, Lianqing; Xi, Ning; Wang, Yuechao
2018-01-01
In this work, a method based on atomic force microscopy (AFM) approach-reside-retract experiments was established to simultaneously quantify the elastic and viscoelastic properties of single cells. First, the elastic and viscoelastic properties of normal breast cells and cancerous breast cells were measured, showing significant differences in Young's modulus and relaxation times between normal and cancerous breast cells. Remarkable differences in cellular topography between normal and cancerous breast cells were also revealed by AFM imaging. Next, the elastic and viscoelasitc properties of three other types of cell lines and primary normal B lymphocytes were measured; results demonstrated the potential of cellular viscoelastic properties in complementing cellular Young's modulus for discerning different states of cells. This research provides a novel way to quantify the mechanical properties of cells by AFM, which allows investigation of the biomechanical behaviors of single cells from multiple aspects.
Method of mechanical holding of cantilever chip for tip-scan high-speed atomic force microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fukuda, Shingo; Uchihashi, Takayuki; Ando, Toshio
In tip-scan atomic force microscopy (AFM) that scans a cantilever chip in the three dimensions, the chip body is held on the Z-scanner with a holder. However, this holding is not easy for high-speed (HS) AFM because the holder that should have a small mass has to be able to clamp the cantilever chip firmly without deteriorating the Z-scanner’s fast performance, and because repeated exchange of cantilever chips should not damage the Z-scanner. This is one of the reasons that tip-scan HS-AFM has not been established, despite its advantages over sample stage-scan HS-AFM. Here, we present a novel method ofmore » cantilever chip holding which meets all conditions required for tip-scan HS-AFM. The superior performance of this novel chip holding mechanism is demonstrated by imaging of the α{sub 3}β{sub 3} subcomplex of F{sub 1}-ATPase in dynamic action at ∼7 frames/s.« less
NASA Astrophysics Data System (ADS)
Dague, E.; Jauvert, E.; Laplatine, L.; Viallet, B.; Thibault, C.; Ressier, L.
2011-09-01
Immobilization of live micro-organisms on solid substrates is an important prerequisite for atomic force microscopy (AFM) bio-experiments. The method employed must immobilize the cells firmly enough to enable them to withstand the lateral friction forces exerted by the tip during scanning but without denaturing the cell interface. In this work, a generic method for the assembly of living cells on specific areas of substrates is proposed. It consists in assembling the living cells within the patterns of microstructured, functionalized poly-dimethylsiloxane (PDMS) stamps using convective/capillary deposition. This versatile approach is validated by applying it to two systems of foremost importance in biotechnology and medicine: Saccharomyces cerevisiae yeasts and Aspergillus fumigatus fungal spores. We show that this method allows multiplexing AFM nanomechanical measurements by force spectroscopy on S. cerevisiae yeasts and high-resolution AFM imaging of germinated Aspergillus conidia in buffer medium. These two examples clearly demonstrate the immense potential of micro-organism assembly on functionalized, microstructured PDMS stamps by convective/capillary deposition for performing rigorous AFM bio-experiments on living cells.
Chacko, Jenu Varghese; Zanacchi, Francesca Cella; Diaspro, Alberto
2013-01-01
In this article, we describe and show the application of some of the most advanced fluorescence superresolution techniques, STED AFM and STORM AFM microscopy towards imaging of cytoskeletal structures, such as microtubule filaments. Mechanical and structural properties can play a relevant role in the investigation of cytoskeletal structures of interest, such as microtubules, that provide support to the cell structure. In fact, the mechanical properties, such as the local stiffness and the elasticity, can be investigated by AFM force spectroscopy with tens of nanometers resolution. Force curves can be analyzed in order to obtain the local elasticity (and the Young's modulus calculation by fitting the force curves from every pixel of interest), and the combination with STED/STORM microscopy integrates the measurement with high specificity and yields superresolution structural information. This hybrid modality of superresolution-AFM working is a clear example of correlative multimodal microscopy. PMID:24027190
The application of atomic force microscopy in mineral flotation.
Xing, Yaowen; Xu, Mengdi; Gui, Xiahui; Cao, Yijun; Babel, Bent; Rudolph, Martin; Weber, Stefan; Kappl, Michael; Butt, Hans-Jürgen
2018-06-01
During the past years, atomic force microscopy (AFM) has matured to an indispensable tool to characterize nanomaterials in colloid and interface science. For imaging, a sharp probe mounted near to the end of a cantilever scans over the sample surface providing a high resolution three-dimensional topographic image. In addition, the AFM tip can be used as a force sensor to detect local properties like adhesion, stiffness, charge etc. After the invention of the colloidal probe technique it has also become a major method to measure surface forces. In this review, we highlight the advances in the application of AFM in the field of mineral flotation, such as mineral morphology imaging, water at mineral surface, reagent adsorption, inter-particle force, and bubble-particle interaction. In the coming years, the complementary characterization of chemical composition such as using infrared spectroscopy and Raman spectroscopy for AFM topography imaging and the synchronous measurement of the force and distance involving deformable bubble as a force sensor will further assist the fundamental understanding of flotation mechanism. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balke, Nina; Jesse, Stephen; Yu, Pu
Detection of dynamic surface displacements associated with local changes in material strain provides access to a number of phenomena and material properties. Contact resonance-enhanced methods of atomic force microscopy (AFM) have been shown capable of detecting ~1–3 pm-level surface displacements, an approach used in techniques such as piezoresponse force microscopy, atomic force acoustic microscopy, and ultrasonic force microscopy. Here, based on an analytical model of AFM cantilever vibrations, we demonstrate a guideline to quantify surface displacements with high accuracy by taking into account the cantilever shape at the first resonant contact mode, depending on the tip–sample contact stiffness. The approachmore » has been experimentally verified and further developed for piezoresponse force microscopy (PFM) using well-defined ferroelectric materials. These results open up a way to accurate and precise measurements of surface displacement as well as piezoelectric constants at the pm-scale with nanometer spatial resolution and will allow avoiding erroneous data interpretations and measurement artifacts. Furthermore, this analysis is directly applicable to all cantilever-resonance-based scanning probe microscopy (SPM) techniques.« less
Balke, Nina; Jesse, Stephen; Yu, Pu; ...
2016-09-15
Detection of dynamic surface displacements associated with local changes in material strain provides access to a number of phenomena and material properties. Contact resonance-enhanced methods of atomic force microscopy (AFM) have been shown capable of detecting ~1–3 pm-level surface displacements, an approach used in techniques such as piezoresponse force microscopy, atomic force acoustic microscopy, and ultrasonic force microscopy. Here, based on an analytical model of AFM cantilever vibrations, we demonstrate a guideline to quantify surface displacements with high accuracy by taking into account the cantilever shape at the first resonant contact mode, depending on the tip–sample contact stiffness. The approachmore » has been experimentally verified and further developed for piezoresponse force microscopy (PFM) using well-defined ferroelectric materials. These results open up a way to accurate and precise measurements of surface displacement as well as piezoelectric constants at the pm-scale with nanometer spatial resolution and will allow avoiding erroneous data interpretations and measurement artifacts. Furthermore, this analysis is directly applicable to all cantilever-resonance-based scanning probe microscopy (SPM) techniques.« less
LeBlanc, Sharonda; Wilkins, Hunter; Li, Zimeng; Kaur, Parminder; Wang, Hong; Erie, Dorothy A
2017-01-01
Atomic force microscopy (AFM) is a scanning probe technique that allows visualization of single biomolecules and complexes deposited on a surface with nanometer resolution. AFM is a powerful tool for characterizing protein-protein and protein-DNA interactions. It can be used to capture snapshots of protein-DNA solution dynamics, which in turn, enables the characterization of the conformational properties of transient protein-protein and protein-DNA interactions. With AFM, it is possible to determine the stoichiometries and binding affinities of protein-protein and protein-DNA associations, the specificity of proteins binding to specific sites on DNA, and the conformations of the complexes. We describe methods to prepare and deposit samples, including surface treatments for optimal depositions, and how to quantitatively analyze images. We also discuss a new electrostatic force imaging technique called DREEM, which allows the visualization of the path of DNA within proteins in protein-DNA complexes. Collectively, these methods facilitate the development of comprehensive models of DNA repair and provide a broader understanding of all protein-protein and protein-nucleic acid interactions. The structural details gleaned from analysis of AFM images coupled with biochemistry provide vital information toward establishing the structure-function relationships that govern DNA repair processes. © 2017 Elsevier Inc. All rights reserved.
Actuation of atomic force microscopy microcantilevers using contact acoustic nonlinearities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Torello, D.; Degertekin, F. Levent, E-mail: levent.degertekin@me.gatech.edu
2013-11-15
A new method of actuating atomic force microscopy (AFM) cantilevers is proposed in which a high frequency (>5 MHz) wave modulated by a lower frequency (∼300 kHz) wave passes through a contact acoustic nonlinearity at the contact interface between the actuator and the cantilever chip. The nonlinearity converts the high frequency, modulated signal to a low frequency drive signal suitable for actuation of tapping-mode AFM probes. The higher harmonic content of this signal is filtered out mechanically by the cantilever transfer function, providing for clean output. A custom probe holder was designed and constructed using rapid prototyping technologies and off-the-shelfmore » components and was interfaced with an Asylum Research MFP-3D AFM, which was then used to evaluate the performance characteristics with respect to standard hardware and linear actuation techniques. Using a carrier frequency of 14.19 MHz, it was observed that the cantilever output was cleaner with this actuation technique and added no significant noise to the system. This setup, without any optimization, was determined to have an actuation bandwidth on the order of 10 MHz, suitable for high speed imaging applications. Using this method, an image was taken that demonstrates the viability of the technique and is compared favorably to images taken with a standard AFM setup.« less
NASA Astrophysics Data System (ADS)
Ossola, Dario; Dorwling-Carter, Livie; Dermutz, Harald; Behr, Pascal; Vörös, János; Zambelli, Tomaso
2015-12-01
We combined scanning ion conductance microscopy (SICM) and atomic force microscopy (AFM) into a single tool using AFM cantilevers with an embedded microchannel flowing into the nanosized aperture at the apex of the hollow pyramid. An electrode was positioned in the AFM fluidic circuit connected to a second electrode in the bath. We could thus simultaneously measure the ionic current and the cantilever bending (in optical beam deflection mode). First, we quantitatively compared the SICM and AFM contact points on the approach curves. Second, we estimated where the probe in SICM mode touches the sample during scanning on a calibration grid and applied the finding to image a network of neurites on a Petri dish. Finally, we assessed the feasibility of a double controller using both the ionic current and the deflection as input signals of the piezofeedback. The experimental data were rationalized in the framework of finite elements simulations.
NASA Astrophysics Data System (ADS)
Dhahri, S.; Marliere, C.
2012-12-01
The presence of biological matter (bacteria) in deep geological sites for storage of, for instance, radioactive elements or groundwater in aquifers was clearly proved. That biomass triggers physical and chemical processes which greatly modify the durability and the sustainability of the storage sites. These processes, mainly from oxidative/reductive reactions, are poorly understood. This is mainly due to the fact that former studies were done at the macroscopic level far away from the micrometric scale where relevant processes induced by bacteria take place. Investigations at microscopic level are needed. Thus, we developed an experimental set -up based on the combined use of optical microscopy (epifluorescence and transmission), atomic force microscopy (AFM) and scanning electro -chemical microscopy (SECM) in order to get simultaneous information on topographic and electro -chemical processes at different length scales. The first highly sensitive step was to use AFM and optical microscopy with biological samples in liquid environment: We will present a new, non -perturbative method for imaging bacteria in their natural liquid environment using AFM. No immobilization protocol, neither chemical nor mechanical, is needed, contrary to what has been regarded till now as essential. Furthermore we were able to follow the natural gliding movements of bacteria, directly proving their living state during the AFM investigation: we thus directly prove the low impact of these breakthrough AFM observations on the native behavior of the bacteria. The second delicate step was to combine AFM and optical measurements with electrical ones. We mounted a new experimental set-up coupling real -time (i) monitoring of optical properties as the optical density (OD) evolution related to bulk bacterial growth in liquid or as the counting of number of bacteria adhering on the surface of the sample as well and (ii) electrical and electrochemical measurements. We thus will present results on the observed crossed correlations between physical, chemical and biological processes induced by the studied bacteria and the resulting variations of electrical signals as measured at different length scales. We indeed used variable sizes for the electrodes - from 10cm -square (colonies of around 10000 bacteria) to 0.1-1microns -square (the scale of an individual cell) thanks to newly manufactured AFM -SECM probes (using Focused Ion Beam - FIB method). These experiments were done with several bacterial strains, various medias (inoculated by bacteria versus non -inoculated). Furthermore, these results will shortly be applied to the optimized monitoring of the in -situ activity of bacteria consuming oil pollutants, following this way, in real -time, the bioremediation of an oil -contaminated soil (ANR ECOTECH_BIOPHY program).
QCM-D on mica for parallel QCM-D-AFM studies.
Richter, Ralf P; Brisson, Alain
2004-05-25
Quartz crystal microbalance with dissipation monitoring (QCM-D) has developed into a recognized method to study adsorption processes in liquid, such as the formation of supported lipid bilayers and protein adsorption. However, the large intrinsic roughness of currently used gold-coated or silica-coated QCM-D sensors limits parallel structural characterization by atomic force microscopy (AFM). We present a method for coating QCM-D sensors with thin mica sheets operating in liquid with high stability and sensitivity. We define criteria to objectively assess the reliability of the QCM-D measurements and demonstrate that the mica-coated sensors can be used to follow the formation of supported lipid membranes and subsequent protein adsorption. This method allows combining QCM-D and AFM investigations on identical supports, providing detailed physicochemical and structural characterization of model membranes.
Liu, Dongli; Cheng, Fang
2011-03-30
Atomic force microscopy (AFM) has many unique features compared with other conventional microscopies, such as high magnification with high resolution, minimal sample preparation, acquiring 2D and 3D images at the same time, observing ongoing processes directly, the possibility of manipulating macromolecules, etc. As a nanotechnology tool, AFM has been used to investigate the nanostructure of materials in many fields. This mini-review focuses mainly on its latest application to characterise the macromolecular nanostructure and surface topography of agricultural products. First the fundamentals of AFM are briefly explained. Then the macromolecular nanostructure information on agricultural products from AFM images is introduced by exploring the structure-function relationship in three aspects: agricultural product processing, agricultural product ripening and storage, and genetic and environmental factors. The surface topography characterisation of agricultural products using AFM is also discussed. The results reveal that AFM could be a powerful nanotechnology tool to acquire a deeper understanding of the mechanisms of structure and quality variations of agricultural products, which could be instructive in improving processing and storage technologies, and AFM is also helpful to reveal the essential nature of a product at nanoscale. Copyright © 2011 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Sajjadi, Mohammadreza; Pishkenari, Hossein Nejat; Vossoughi, Gholamreza
2018-06-01
Trolling mode atomic force microscopy (TR-AFM) has resolved many imaging problems by a considerable reduction of the liquid-resonator interaction forces in liquid environments. The present study develops a nonlinear model of the meniscus force exerted to the nanoneedle of TR-AFM and presents an analytical solution to the distributed-parameter model of TR-AFM resonator utilizing multiple time scales (MTS) method. Based on the developed analytical solution, the frequency-response curves of the resonator operation in air and liquid (for different penetration length of the nanoneedle) are obtained. The closed-form analytical solution and the frequency-response curves are validated by the comparison with both the finite element solution of the main partial differential equations and the experimental observations. The effect of excitation angle of the resonator on horizontal oscillation of the probe tip and the effect of different parameters on the frequency-response of the system are investigated.
Probing ternary solvent effect in high V oc polymer solar cells using advanced AFM techniques
Li, Chao; Soleman, Mikhael; Lorenzo, Josie; ...
2016-01-25
This work describes a simple method to develop a high V oc low band gap PSCs. In addition, two new atomic force microscopy (AFM)-based nanoscale characterization techniques to study the surface morphology and physical properties of the structured active layer are introduced. With the help of ternary solvent processing of the active layer and C 60 buffer layer, a bulk heterojunction PSC with V oc more than 0.9 V and conversion efficiency 7.5% is developed. In order to understand the fundamental properties of the materials ruling the performance of the PSCs tested, AFM-based nanoscale characterization techniques including Pulsed-Force-Mode AFM (PFM-AFM)more » and Mode-Synthesizing AFM (MSAFM) are introduced. Interestingly, MSAFM exhibits high sensitivity for direct visualization of the donor–acceptor phases in the active layer of the PSCs. Lastly, conductive-AFM (cAFM) studies reveal local variations in conductivity in the donor and acceptor phases as well as a significant increase in photocurrent in the PTB7:ICBA sample obtained with the ternary solvent processing.« less
On mapping subangstrom electron clouds with force microscopy.
Wright, C Alan; Solares, Santiago D
2011-11-09
In 2004 Hembacher et al. (Science 2004, 305, 380-383) reported simultaneous higher-harmonics atomic force mocroscopy (AFM)/scanning tunneling microscopy (STM) images acquired while scanning a graphite surface with a tungsten tip. They interpreted the observed subatomic features in the AFM images as the signature of lobes of increased electron density at the tungsten tip apex. Although these intriguing images have stirred controversy, an in-depth theoretical feasibility study has not yet been produced. Here we report on the development of a method for simulating higher harmonics AFM images and its application to the same system. Our calculations suggest that four lobes of increased electron density are expected to be present at a W(001) tip apex atom and that the corresponding higher harmonics AFM images of graphite can exhibit 4-fold symmetry features. Despite these promising results, open questions remain since the calculated amplitudes of the higher harmonics generated by the short-range forces are on the order of hundredths of picometers, leading to very small corrugations in the theoretical images. Additionally, the complex, intermittent nature of the tip-sample interaction, which causes constant readjustment of the tip and sample orbitals as the tip approaches and retracts from the surface, prevents a direct quantitative connection between the electron density and the AFM image features.
Jones, Matthew D; Beezer, Anthony E; Buckton, Graham
2008-10-01
Knowledge of the kinetics of solid state reactions is important when considering the stability of many medicines. Potentially, such reactions could follow different kinetics on the surface of particles when compared with their interior, yet solid state processes are routinely followed using only bulk characterisation techniques. Atomic force microscopy (AFM) has previously been shown to be a suitable technique for the investigation of surface processes, but has not been combined with bulk techniques in order to analyse surface and bulk kinetics separately. This report therefore describes the investigation of the outer layer and bulk kinetics of the dehydration of trehalose dihydrate at ambient temperature and low humidity, using AFM, dynamic vapour sorption (DVS) and near infrared spectroscopy (NIR). The use of AFM enabled the dehydration kinetics of the outer layers to be determined both directly and from bulk data. There were no significant differences between the outer layer dehydration kinetics determined using these methods. AFM also enabled the bulk-only kinetics to be analysed from the DVS and NIR data. These results suggest that the combination of AFM and bulk characterisation techniques should enable a more complete understanding of the kinetics of certain solid state reactions to be achieved. (c) 2008 Wiley-Liss, Inc. and the American Pharmacists Association
Compensator design for improved counterbalancing in high speed atomic force microscopy.
Bozchalooi, I S; Youcef-Toumi, K; Burns, D J; Fantner, G E
2011-11-01
High speed atomic force microscopy can provide the possibility of many new scientific observations and applications ranging from nano-manufacturing to the study of biological processes. However, the limited imaging speed has been an imperative drawback of the atomic force microscopes. One of the main reasons behind this limitation is the excitation of the AFM dynamics at high scan speeds, severely undermining the reliability of the acquired images. In this research, we propose a piezo based, feedforward controlled, counter actuation mechanism to compensate for the excited out-of-plane scanner dynamics. For this purpose, the AFM controller output is properly filtered via a linear compensator and then applied to a counter actuating piezo. An effective algorithm for estimating the compensator parameters is developed. The information required for compensator design is extracted from the cantilever deflection signal, hence eliminating the need for any additional sensors. The proposed approach is implemented and experimentally evaluated on the dynamic response of a custom made AFM. It is further assessed by comparing the imaging performance of the AFM with and without the application of the proposed technique and in comparison with the conventional counterbalancing methodology. The experimental results substantiate the effectiveness of the method in significantly improving the imaging performance of AFM at high scan speeds. © 2011 American Institute of Physics
Compensator design for improved counterbalancing in high speed atomic force microscopy
Bozchalooi, I. S.; Youcef-Toumi, K.; Burns, D. J.; Fantner, G. E.
2011-01-01
High speed atomic force microscopy can provide the possibility of many new scientific observations and applications ranging from nano-manufacturing to the study of biological processes. However, the limited imaging speed has been an imperative drawback of the atomic force microscopes. One of the main reasons behind this limitation is the excitation of the AFM dynamics at high scan speeds, severely undermining the reliability of the acquired images. In this research, we propose a piezo based, feedforward controlled, counter actuation mechanism to compensate for the excited out-of-plane scanner dynamics. For this purpose, the AFM controller output is properly filtered via a linear compensator and then applied to a counter actuating piezo. An effective algorithm for estimating the compensator parameters is developed. The information required for compensator design is extracted from the cantilever deflection signal, hence eliminating the need for any additional sensors. The proposed approach is implemented and experimentally evaluated on the dynamic response of a custom made AFM. It is further assessed by comparing the imaging performance of the AFM with and without the application of the proposed technique and in comparison with the conventional counterbalancing methodology. The experimental results substantiate the effectiveness of the method in significantly improving the imaging performance of AFM at high scan speeds. PMID:22128989
Compensator design for improved counterbalancing in high speed atomic force microscopy
NASA Astrophysics Data System (ADS)
Bozchalooi, I. S.; Youcef-Toumi, K.; Burns, D. J.; Fantner, G. E.
2011-11-01
High speed atomic force microscopy can provide the possibility of many new scientific observations and applications ranging from nano-manufacturing to the study of biological processes. However, the limited imaging speed has been an imperative drawback of the atomic force microscopes. One of the main reasons behind this limitation is the excitation of the AFM dynamics at high scan speeds, severely undermining the reliability of the acquired images. In this research, we propose a piezo based, feedforward controlled, counter actuation mechanism to compensate for the excited out-of-plane scanner dynamics. For this purpose, the AFM controller output is properly filtered via a linear compensator and then applied to a counter actuating piezo. An effective algorithm for estimating the compensator parameters is developed. The information required for compensator design is extracted from the cantilever deflection signal, hence eliminating the need for any additional sensors. The proposed approach is implemented and experimentally evaluated on the dynamic response of a custom made AFM. It is further assessed by comparing the imaging performance of the AFM with and without the application of the proposed technique and in comparison with the conventional counterbalancing methodology. The experimental results substantiate the effectiveness of the method in significantly improving the imaging performance of AFM at high scan speeds.
Zago, Miriam; Scaltriti, Erika; Fornasari, Maria Emanuela; Rivetti, Claudio; Grolli, Stefano; Giraffa, Giorgio; Ramoni, Roberto; Carminati, Domenico
2012-01-01
Bacteriophages attacking lactic acid bacteria (LAB) still represent a crucial problem in industrial dairy fermentations. The consequences of a phage infection against LAB can lead to fermentation delay, alteration of the product quality and, in most severe cases, the product loss. Phage particles enumeration and phage-host interactions are normally evaluated by conventional plaque count assays, but, in many cases, these methods can be unsuccessful. Bacteriophages of Lactobacillus helveticus, a LAB species widely used as dairy starter or probiotic cultures, are often unable to form lysis plaques, thus impairing their enumeration by plate assay. In this study, we used epifluorescence microscopy to enumerate L. helveticus phage particles from phage-infected cultures and Atomic Force Microscopy (AFM) to visualize both phages and bacteria during the different stages of the lytic cycle. Preliminary, we tested the sensitivity of phage counting by epifluorescence microscopy. To this end, phage particles of ΦAQ113, a lytic phage of L. helveticus isolated from a whey starter culture, were stained by SYBR Green I and enumerated by epifluorescence microscopy. Values obtained by the microscopic method were 10 times higher than plate counts, with a lowest sensitivity limit of ≥6log phage/ml. The interaction of phage ΦAQ113 with its host cell L. helveticus Lh1405 was imaged by AFM after 0, 2 and 5h from phage-host adsorption. The lytic cycle was followed by epifluorescence microscopy counting and the concomitant cell wall changes were visualized by AFM imaging. Our results showed that these two methods can be combined for a reliable phage enumeration and for studying phage and host morphology during infection processes, thus giving a complete overview of phage-host interactions in L. helveticus strains involved in dairy productions. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Natali, Marco; Reggente, Melania; Passeri, Daniele; Rossi, Marco
2016-06-01
The development of polymer-based nanocomposites to be used in critical thermal environments requires the characterization of their mechanical properties, which are related to their chemical composition, size, morphology and operating temperature. Atomic force microscopy (AFM) has been proven to be a useful tool to develop techniques for the mechanical characterization of these materials, thanks to its nanometer lateral resolution and to the capability of exerting ultra-low loads, down to the piconewton range. In this work, we demonstrate two techniques, one quasi-static, i.e., AFM-based indentation (I-AFM), and one dynamic, i.e., contact resonance AFM (CR-AFM), for the mechanical characterization of compliant materials at variable temperature. A cross-validation of I-AFM and CR-AFM has been performed by comparing the results obtained on two reference materials, i.e., low-density polyethylene (LDPE) and polycarbonate (PC), which demonstrated the accuracy of the techniques.
An observation of nanotwin lamellae in Cd 0.6Mn 0.4Te crystal by atomic force microscopy
NASA Astrophysics Data System (ADS)
George, M. A.; Azoulay, M.; Collins, W. E.; Burger, A.; Silberman, E.
1993-05-01
Atomic force microscopy (AFM) is used to examine the structure of freshly cleaved Cd 0.6Mn 0.4Te surfaces. The present report complements previous results obtained with X-ray diffraction and optical microscopy which showed the existence of microtwins. The AFM analysis was performed under ambient conditions and yielded nanometer scale resolution images of single twin lamellae that ranged between 20 and 100 nm in width. This is a first observation using AFM of such a substructure, which we interpret as evidence for the presence of nonotwins.
VEDA: a web-based virtual environment for dynamic atomic force microscopy.
Melcher, John; Hu, Shuiqing; Raman, Arvind
2008-06-01
We describe here the theory and applications of virtual environment dynamic atomic force microscopy (VEDA), a suite of state-of-the-art simulation tools deployed on nanoHUB (www.nanohub.org) for the accurate simulation of tip motion in dynamic atomic force microscopy (dAFM) over organic and inorganic samples. VEDA takes advantage of nanoHUB's cyberinfrastructure to run high-fidelity dAFM tip dynamics computations on local clusters and the teragrid. Consequently, these tools are freely accessible and the dAFM simulations are run using standard web-based browsers without requiring additional software. A wide range of issues in dAFM ranging from optimal probe choice, probe stability, and tip-sample interaction forces, power dissipation, to material property extraction and scanning dynamics over hetereogeneous samples can be addressed.
Invited Article: VEDA: A web-based virtual environment for dynamic atomic force microscopy
NASA Astrophysics Data System (ADS)
Melcher, John; Hu, Shuiqing; Raman, Arvind
2008-06-01
We describe here the theory and applications of virtual environment dynamic atomic force microscopy (VEDA), a suite of state-of-the-art simulation tools deployed on nanoHUB (www.nanohub.org) for the accurate simulation of tip motion in dynamic atomic force microscopy (dAFM) over organic and inorganic samples. VEDA takes advantage of nanoHUB's cyberinfrastructure to run high-fidelity dAFM tip dynamics computations on local clusters and the teragrid. Consequently, these tools are freely accessible and the dAFM simulations are run using standard web-based browsers without requiring additional software. A wide range of issues in dAFM ranging from optimal probe choice, probe stability, and tip-sample interaction forces, power dissipation, to material property extraction and scanning dynamics over hetereogeneous samples can be addressed.
Single- and multi-frequency detection of surface displacements via scanning probe microscopy.
Romanyuk, Konstantin; Luchkin, Sergey Yu; Ivanov, Maxim; Kalinin, Arseny; Kholkin, Andrei L
2015-02-01
Piezoresponse force microscopy (PFM) provides a novel opportunity to detect picometer-level displacements induced by an electric field applied through a conducting tip of an atomic force microscope (AFM). Recently, it was discovered that superb vertical sensitivity provided by PFM is high enough to monitor electric-field-induced ionic displacements in solids, the technique being referred to as electrochemical strain microscopy (ESM). ESM has been implemented only in multi-frequency detection modes such as dual AC resonance tracking (DART) and band excitation, where the response is recorded within a finite frequency range, typically around the first contact resonance. In this paper, we analyze and compare signal-to-noise ratios of the conventional single-frequency method with multi-frequency regimes of measuring surface displacements. Single-frequency detection ESM is demonstrated using a commercial AFM.
Direct quantitative measurement of the C═O⋅⋅⋅H–C bond by atomic force microscopy
Kawai, Shigeki; Nishiuchi, Tomohiko; Kodama, Takuya; Spijker, Peter; Pawlak, Rémy; Meier, Tobias; Tracey, John; Kubo, Takashi; Meyer, Ernst; Foster, Adam S.
2017-01-01
The hydrogen atom—the smallest and most abundant atom—is of utmost importance in physics and chemistry. Although many analysis methods have been applied to its study, direct observation of hydrogen atoms in a single molecule remains largely unexplored. We use atomic force microscopy (AFM) to resolve the outermost hydrogen atoms of propellane molecules via very weak C═O⋅⋅⋅H–C hydrogen bonding just before the onset of Pauli repulsion. The direct measurement of the interaction with a hydrogen atom paves the way for the identification of three-dimensional molecules such as DNAs and polymers, building the capabilities of AFM toward quantitative probing of local chemical reactivity. PMID:28508080
Challenges and complexities of multifrequency atomic force microscopy in liquid environments
2014-01-01
Summary This paper illustrates through numerical simulation the complexities encountered in high-damping AFM imaging, as in liquid enviroments, within the specific context of multifrequency atomic force microscopy (AFM). The focus is primarily on (i) the amplitude and phase relaxation of driven higher eigenmodes between successive tip–sample impacts, (ii) the momentary excitation of non-driven higher eigenmodes and (iii) base excitation artifacts. The results and discussion are mostly applicable to the cases where higher eigenmodes are driven in open loop and frequency modulation within bimodal schemes, but some concepts are also applicable to other types of multifrequency operations and to single-eigenmode amplitude and frequency modulation methods. PMID:24778952
Surface Morphology of Undoped and Doped ZnSe Films
NASA Technical Reports Server (NTRS)
George, T.; Hayes, M.; Chen, H.; Chattopadhyay, K.; Thomas E.; Morgan, S.; Burger, A.
1998-01-01
Rare-earth doped ions in polar II-VI semiconductors have recently played an important role in the optical properties of materials and devices. In this study, undoped ZnSe and erbium doped ZnSe films were grown by radio frequency (RF) magnetron sputtering method. Atomic Force Microscopy (AFM) was used together with optical microscopy and UV-Vis spectroscopy to characterize the films. Doped samples were found to have higher surface roughness and quite different surface morphology compared to that of undoped samples. The grown films generally show a relatively smooth and uniform surface indicating that they are of overall good quality. The impact of plasma etching on ZnSe:Er film examined under AFM is also discussed.
Nano-Electrochemistry and Nano-Electrografting with an Original Combined AFM-SECM
Ghorbal, Achraf; Grisotto, Federico; Charlier, Julienne; Palacin, Serge; Goyer, Cédric; Demaille, Christophe; Ben Brahim, Ammar
2013-01-01
This study demonstrates the advantages of the combination between atomic force microscopy and scanning electrochemical microscopy. The combined technique can perform nano-electrochemical measurements onto agarose surface and nano-electrografting of non-conducting polymers onto conducting surfaces. This work was achieved by manufacturing an original Atomic Force Microscopy-Scanning ElectroChemical Microscopy (AFM-SECM) electrode. The capabilities of the AFM-SECM-electrode were tested with the nano-electrografting of vinylic monomers initiated by aryl diazonium salts. Nano-electrochemical and technical processes were thoroughly described, so as to allow experiments reproducing. A plausible explanation of chemical and electrochemical mechanisms, leading to the nano-grafting process, was reported. This combined technique represents the first step towards improved nano-processes for the nano-electrografting. PMID:28348337
2014-01-01
The morphology and electrical properties of orthorhombic β-WO3 nanoflakes with thickness of ~7 to 9 nm were investigated at the nanoscale with a combination of scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), current sensing force spectroscopy atomic force microscopy (CSFS-AFM, or PeakForce TUNA™), Fourier transform infra-red absorption spectroscopy (FTIR), linear sweep voltammetry (LSV) and Raman spectroscopy techniques. CSFS-AFM analysis established good correlation between the topography of the developed nanostructures and various features of WO3 nanoflakes synthesized via a two-step sol-gel-exfoliation method. It was determined that β-WO3 nanoflakes annealed at 550°C possess distinguished and exceptional thickness-dependent properties in comparison with the bulk, micro and nanostructured WO3 synthesized at alternative temperatures. PMID:25221453
Direct Measurement of the Wettability of Minerals Using Atomic Force Microscopy
NASA Astrophysics Data System (ADS)
Deng, Y.; Xu, L.; Lu, H.; Wang, H.; Shi, Y.
2016-12-01
The wettability of reservoir rock plays an essential role in affecting the states of fluids (water, oil, etc) in pores which are constructed with various minerals. The contact angle method, which is based on the optical microscope photographs of millimeter-sized droplets on a smooth mineral surface, is one of the most widely employed methods to evaluate the wettability of a rock. However, the real reservoir rocks are composed of several kinds of minerals and thus nonhomogeneous, which leads to different wettability at different location of the rock. The mineral grains are usually micrometer-sized so that the traditional optical contact angle method cannot obtain the wettability of different minerals in the rock. Here we used a tapping-mode atomic force microscopy (TM-AFM, MFP-3D-BIO, Asylum Research) to measure the contact angles of micrometer-sized water droplets on different minerals in a tight sand rock which is mainly composed of quartz, albite, potash feldspar and anorthite. The water droplets varied from submicron to several tens micron in diameter. With the optimization of tool and operation parameters, the AFM tip was well controlled so that the nanoscale morphology of the contact configuration between water film and the mineral surface can be obtained at high resolution without disturbing the liquid surface. The AFM results showed that the contact angles of water on quartz and albite were 30-40 ° and 37-45 °, respectively. The AFM method provides a new measure for the wettability evaluation of reservoir rocks, and it is with potential to be applied to oil and gas hydrate studies.
Pleshakova, Tatyana O; Malsagova, Kristina A; Kaysheva, Anna L; Kopylov, Arthur T; Tatur, Vadim Yu; Ziborov, Vadim S; Kanashenko, Sergey L; Galiullin, Rafael A; Ivanov, Yuri D
2017-08-01
We report here the highly sensitive detection of protein in solution at concentrations from 10 -15 to 10 -18 m using the combination of atomic force microscopy (AFM) and mass spectrometry. Biospecific detection of biotinylated bovine serum albumin was carried out by fishing out the protein onto the surface of AFM chips with immobilized avidin, which determined the specificity of the analysis. Electrical stimulation was applied to enhance the fishing efficiency. A high sensitivity of detection was achieved by application of nanosecond electric pulses to highly oriented pyrolytic graphite placed under the AFM chip. A peristaltic pump-based flow system, which is widely used in routine bioanalytical assays, was employed throughout the analysis. These results hold promise for the development of highly sensitive protein detection methods using nanosensor devices.
Solares, Santiago D
2016-01-01
Significant progress has been accomplished in the development of experimental contact-mode and dynamic-mode atomic force microscopy (AFM) methods designed to measure surface material properties. However, current methods are based on one-dimensional (1D) descriptions of the tip-sample interaction forces, thus neglecting the intricacies involved in the material behavior of complex samples (such as soft viscoelastic materials) as well as the differences in material response between the surface and the bulk. In order to begin to address this gap, a computational study is presented where the sample is simulated using an enhanced version of a recently introduced model that treats the surface as a collection of standard-linear-solid viscoelastic elements. The enhanced model introduces in-plane surface elastic forces that can be approximately related to a two-dimensional (2D) Young's modulus. Relevant cases are discussed for single- and multifrequency intermittent-contact AFM imaging, with focus on the calculated surface indentation profiles and tip-sample interaction force curves, as well as their implications with regards to experimental interpretation. A variety of phenomena are examined in detail, which highlight the need for further development of more physically accurate sample models that are specifically designed for AFM simulation. A multifrequency AFM simulation tool based on the above sample model is provided as supporting information.
Quantification of in-contact probe-sample electrostatic forces with dynamic atomic force microscopy.
Balke, Nina; Jesse, Stephen; Carmichael, Ben; Okatan, M Baris; Kravchenko, Ivan I; Kalinin, Sergei V; Tselev, Alexander
2017-01-04
Atomic force microscopy (AFM) methods utilizing resonant mechanical vibrations of cantilevers in contact with a sample surface have shown sensitivities as high as few picometers for detecting surface displacements. Such a high sensitivity is harnessed in several AFM imaging modes. Here, we demonstrate a cantilever-resonance-based method to quantify electrostatic forces on a probe in the probe-sample junction in the presence of a surface potential or when a bias voltage is applied to the AFM probe. We find that the electrostatic forces acting on the probe tip apex can produce signals equivalent to a few pm of surface displacement. In combination with modeling, the measurements of the force were used to access the strength of the electrical field at the probe tip apex in contact with a sample. We find an evidence that the electric field strength in the junction can reach ca. 1 V nm -1 at a bias voltage of a few volts and is limited by non-ideality of the tip-sample contact. This field is sufficiently strong to significantly influence material states and kinetic processes through charge injection, Maxwell stress, shifts of phase equilibria, and reduction of energy barriers for activated processes. Besides, the results provide a baseline for accounting for the effects of local electrostatic forces in electromechanical AFM measurements as well as offer additional means to probe ionic mobility and field-induced phenomena in solids.
Thalhammer, S; Koehler, U; Stark, R W; Heckl, W M
2001-06-01
Surface topography of human metaphase chromosomes following GTG banding was examined using high resolution atomic force microscopy (AFM). Although using a completely different imaging mechanism, which is based on the mechanical interaction of a probe tip with the chromosome, the observed banding pattern is comparable to results from light microscopy and a karyotype of the AFM imaged metaphase spread can be generated. The AFM imaging process was performed on a normal 2n = 46, XX karyotype and on a 2n = 46, XY, t(2;15)(q23;q15) karyotype as an example of a translocation of chromosomal bands.
Reinhold, Matthew; Watson, Chad; Knowlton, William B; Müllner, Peter
2010-06-01
The magnetomechanical properties of ferromagnetic shape memory alloy Ni-Mn-Ga single crystals depend strongly on the twin microstructure, which can be modified through thermomagnetomechanical training. Atomic force microscopy (AFM) and magnetic force microscopy (MFM) were used to characterize the evolution of twin microstructures during thermomechanical training of a Ni-Mn-Ga single crystal. Experiments were performed in the martensite phase at 25 degrees C and in the austenite phase at 55 degrees C. Two distinct twinning surface reliefs were observed at room temperature. At elevated temperature (55 degrees C), the surface relief of one twinning mode disappeared while the other relief remained unchanged. When cooled back to 25 degrees C, the twin surface relief recovered. The relief persisting at elevated temperature specifies the positions of twin boundaries that were present when the sample was polished prior to surface characterization. AFM and MFM following thermomechanical treatment provide a nondestructive method to identify the crystallographic orientation of each twin and of each twin boundary plane. Temperature dependent AFM and MFM experiments reveal the twinning history thereby establishing the technique as a unique predictive tool for revealing the path of the martensitic and reverse transformations of magnetic shape memory alloys.
Reinhold, Matthew; Watson, Chad; Knowlton, William B.; Müllner, Peter
2010-01-01
The magnetomechanical properties of ferromagnetic shape memory alloy Ni–Mn–Ga single crystals depend strongly on the twin microstructure, which can be modified through thermomagnetomechanical training. Atomic force microscopy (AFM) and magnetic force microscopy (MFM) were used to characterize the evolution of twin microstructures during thermomechanical training of a Ni–Mn–Ga single crystal. Experiments were performed in the martensite phase at 25 °C and in the austenite phase at 55 °C. Two distinct twinning surface reliefs were observed at room temperature. At elevated temperature (55 °C), the surface relief of one twinning mode disappeared while the other relief remained unchanged. When cooled back to 25 °C, the twin surface relief recovered. The relief persisting at elevated temperature specifies the positions of twin boundaries that were present when the sample was polished prior to surface characterization. AFM and MFM following thermomechanical treatment provide a nondestructive method to identify the crystallographic orientation of each twin and of each twin boundary plane. Temperature dependent AFM and MFM experiments reveal the twinning history thereby establishing the technique as a unique predictive tool for revealing the path of the martensitic and reverse transformations of magnetic shape memory alloys. PMID:20589105
NASA Astrophysics Data System (ADS)
Heinzmann, U.; Gryzia, A.; Volkmann, T.; Brechling, A.; Hoeke, V.; Glaser, T.
2014-04-01
Single molecule magnets (SMM) deposited in submonolayers and monolayers have been analyzed with respect to their structures by means of non-contact AFM (topographic as well as damping mode) and Kelvin Probe Force Microscopy with molecular resolution.
Cartagena, Alexander; Hernando-Pérez, Mercedes; Carrascosa, José L; de Pablo, Pedro J; Raman, Arvind
2013-06-07
Understanding the relationships between viral material properties (stiffness, strength, charge density, adhesion, hydration, viscosity, etc.), structure (protein sub-units, genome, surface receptors, appendages), and functions (self-assembly, stability, disassembly, infection) is of significant importance in physical virology and nanomedicine. Conventional Atomic Force Microscopy (AFM) methods have measured a single physical property such as the stiffness of the entire virus from nano-indentation at a few points which severely limits the study of structure-property-function relationships. We present an in vitro dynamic AFM technique operating in the intermittent contact regime which synthesizes anharmonic Lorentz-force excited AFM cantilevers to map quantitatively at nanometer resolution the local electro-mechanical force gradient, adhesion, and hydration layer viscosity within individual φ29 virions. Furthermore, the changes in material properties over the entire φ29 virion provoked by the local disruption of its shell are studied, providing evidence of bacteriophage depressurization. The technique significantly generalizes recent multi-harmonic theory (A. Raman, et al., Nat. Nanotechnol., 2011, 6, 809-814) and enables high-resolution in vitro quantitative mapping of multiple material properties within weakly bonded viruses and nanoparticles with complex structure that otherwise cannot be observed using standard AFM techniques.
NASA Astrophysics Data System (ADS)
Masaaki Kurihara,; Sho Hatakeyama,; Noriko Yamada,; Takeya Shimomura,; Takaharu Nagai,; Kouji Yoshida,; Tatsuya Tomita,; Morihisa Hoga,; Naoya Hayashi,; Hiroyuki Ohtani,; Masamichi Fujihira,
2010-06-01
Antisticking layers (ASLs) on UV nanoimprint lithography (UV-NIL) molds were characterized by scanning probe microscopies (SPMs) in addition to macroscopic analyses of work of adhesion and separation force. Local physical properties of the ASLs were measured by atomic force microscopy (AFM) and friction force microscopy (FFM). The behavior of local adhesive forces measured with AFM on several surfaces was consistent with that of work of adhesion obtained from contact angle. The ASLs were coated by two different processes, i.e., one is a vapor-phase process and the other a spin-coating process. The homogeneity of the ASLs prepared by the vapor-phase process was better than that of those prepared by the spin-coating process. In addition, we measured the thicknesses of ASL patterns prepared by a lift-off method to investigate the effect of the ASL thicknesses on critical dimensions of the molds with ASLs and found that this effect is not negligible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avilov, V. I.; Ageev, O. A.; Kolomiitsev, A. S.
2014-12-15
The results of investigation of a memristor-matrix model on the basis of titanium-oxide nanoscale structures (ONSs) fabricated by methods of focused ion beams and atomic-force microscopy (AFM) are presented. The effect of the intensity of interaction between the AFM probe and the sample surface on the memristor effect in the titanium ONS is shown. The memristor effect in the titanium ONS is investigated by an AFM in the mode of spreading-resistance map. The possibility of the recording and erasure of information in the submicron cells is shown on the basis of using the memristor effect in the titanium ONS, whichmore » is most promising for developing the technological processes of the formation of resistive operation memory cells.« less
NASA Astrophysics Data System (ADS)
Gupta, Mousumi; Chatterjee, Somenath
2018-04-01
Surface texture is an important issue to realize the nature (crest and trough) of surfaces. Atomic force microscopy (AFM) image is a key analysis for surface topography. However, in nano-scale, the nature (i.e., deflection or crack) as well as quantification (i.e., height or depth) of deposited layers is essential information for material scientist. In this paper, a gradient-based K-means algorithm is used to differentiate the layered surfaces depending on their color contrast of as-obtained from AFM images. A transformation using wavelet decomposition is initiated to extract the information about deflection or crack on the material surfaces from the same images. Z-axis depth analysis from wavelet coefficients provides information about the crack present in the material. Using the above method corresponding surface information for the material is obtained. In addition, the Gaussian filter is applied to remove the unwanted lines, which occurred during AFM scanning. Few known samples are taken as input, and validity of the above approaches is shown.
Atomic force microscopy as a tool to study Xenopus laevis embryo
NASA Astrophysics Data System (ADS)
Pukhlyakova, E. A.; Efremov, Yu M.; Bagrov, D. V.; Luchinskaya, N. N.; Kiryukhin, D. O.; Belousov, L. V.; Shaitan, K. V.
2012-02-01
Atomic force microscopy (AFM) has become a powerful tool for imaging biological structures (from single molecules to living cells) and carrying out measurements of their mechanical properties. AFM provides three-dimensional high-resolution images of the studied biological objects in physiological environment. However there are only few AFM investigations of fresh tissue explants and virtually no such research on a whole organism, since most researchers work with cell cultures. In the current work AFM was used to observe the surface of living and fixed embryos and to measure mechanical properties of naive embryos and embryos with overexpression of guanine nucleotide-binding protein G-alpha-13.
High-resolution imaging of silicene on an Ag(111) surface by atomic force microscopy
NASA Astrophysics Data System (ADS)
Onoda, Jo; Yabuoshi, Keisuke; Miyazaki, Hiroki; Sugimoto, Yoshiaki
2017-12-01
Silicene, a two-dimensional (2D) honeycomb arrangement of Si atoms, is expected to have better electronic properties than graphene and has been mostly synthesized on Ag surfaces. Although scanning tunneling microscopy (STM) has been used for visualizing its atomic structure in real space, the interpretation of STM contrast is not straightforward and only the topmost Si atoms were observed on the (4 ×4 ) silicene/Ag(111) surface. Here, we demonstrate that high-resolution atomic force microscopy (AFM) can resolve all constituent Si atoms in the buckled honeycomb arrangement of the (4 ×4 ) silicene. Site-specific force spectroscopy attributes the origin of the high-resolution AFM images to chemical bonds between the AFM probe apex and the individual Si atoms on the (4 ×4 ) silicene. A detailed analysis of the geometric parameters suggests that the pulling up of lower-buckled Si atoms by the AFM tip could be a key for high-resolution AFM, implying a weakening of the Si-Ag interactions at the interface. We expect that high-resolution AFM will also unveil atomic structures of edges and defects of silicene, or other emerging 2D materials.
NASA Astrophysics Data System (ADS)
Govindhan, Raman; Karthikeyan, Balakrishnan
2017-12-01
3,5-Bis(trifluoromethyl)benzylamine derivatives of single amino acid tyrosine produced self-assembled nanotubes (BTTNTs) as simple Phe-Phe. It has been observed that tyrosine derivative gives exclusively micro and nano tubes irrespective of the concentration of the precursor monomer. However, the introduced xenobiotic trifluoromethyl group (TFM) present in key backbone positionsof the self assembly gives the specific therapeutic function has been highlighted. Herein this work study of such self assembled nanotubes were studied through experimental and theoretical methods. The interaction of nanocopper cluster with the nanotubes (Cu@BTTNTs) were extensively studied by various methods like XRD, AFM, confocal Raman microscopy, SERS and theoretical methods like Mulliken's atomic charge analysis. SERS reveals that the interactions of Cu cluster with NH2, OH, NH and phenyl ring π-electrons system of BTTNTs. DFT studies gave the total dipole moment values of Cu@BTTNTs and explained the nature of interaction.
In situ mechanical characterization of the cell nucleus by atomic force microscopy.
Liu, Haijiao; Wen, Jun; Xiao, Yun; Liu, Jun; Hopyan, Sevan; Radisic, Milica; Simmons, Craig A; Sun, Yu
2014-04-22
The study of nuclear mechanical properties can provide insights into nuclear dynamics and its role in cellular mechanotransduction. While several methods have been developed to characterize nuclear mechanical properties, direct intracellular probing of the nucleus in situ is challenging. Here, a modified AFM (atomic force microscopy) needle penetration technique is demonstrated to mechanically characterize cell nuclei in situ. Cytoplasmic and nuclear stiffness were determined based on two different segments on the AFM indentation curves and were correlated with simultaneous confocal Z-stack microscopy reconstructions. On the basis of direct intracellular measurement, we show that the isolated nuclei from fibroblast-like cells exhibited significantly lower Young's moduli than intact nuclei in situ. We also show that there is in situ nucleus softening in the highly metastatic bladder cancer cell line T24 when compared to its less metastatic counterpart RT4. This technique has potential to become a reliable quantitative measurement tool for intracellular mechanics studies.
Atomic force microscopy of biological samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doktycz, Mitchel John
2010-01-01
The ability to evaluate structural-functional relationships in real time has allowed scanning probe microscopy (SPM) to assume a prominent role in post genomic biological research. In this mini-review, we highlight the development of imaging and ancillary techniques that have allowed SPM to permeate many key areas of contemporary research. We begin by examining the invention of the scanning tunneling microscope (STM) by Binnig and Rohrer in 1982 and discuss how it served to team biologists with physicists to integrate high-resolution microscopy into biological science. We point to the problems of imaging nonconductive biological samples with the STM and relate howmore » this led to the evolution of the atomic force microscope (AFM) developed by Binnig, Quate, and Gerber, in 1986. Commercialization in the late 1980s established SPM as a powerful research tool in the biological research community. Contact mode AFM imaging was soon complemented by the development of non-contact imaging modes. These non-contact modes eventually became the primary focus for further new applications including the development of fast scanning methods. The extreme sensitivity of the AFM cantilever was recognized and has been developed into applications for measuring forces required for indenting biological surfaces and breaking bonds between biomolecules. Further functional augmentation to the cantilever tip allowed development of new and emerging techniques including scanning ion-conductance microscopy (SICM), scanning electrochemical microscope (SECM), Kelvin force microscopy (KFM) and scanning near field ultrasonic holography (SNFUH).« less
2011-09-01
glancing angle X - ray diffraction (GAXRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), and electrochemical...Emission SEM FWHM full width at half maximum GAXRD glancing angle X - ray diffraction H3COCH2CH2OH 2-methoxyethanol LiMn2O4 lithium manganese oxide...were characterized by scanning electron microscopy (SEM), X - ray diffraction (XRD), and atomic force microscopy (AFM). In addition,
NASA Astrophysics Data System (ADS)
Sharma, S.; LeClaire, M.; Gimzewski, J. K.
2018-04-01
Over the last 30 years, atomic force microscopy (AFM) has made several significant contributions to the field of biology and medicine. In this review, we draw our attention to the recent applications and promise of AFM as a high-resolution imaging and force sensing technology for probing subcellular vesicles: exosomes and other extracellular vesicles. Exosomes are naturally occurring nanoparticles found in several body fluids such as blood, saliva, cerebrospinal fluid, amniotic fluid and urine. Exosomes mediate cell-cell communication, transport proteins and genetic content between distant cells, and are now known to play important roles in progression of diseases such as cancers, neurodegenerative disorders and infectious diseases. Because exosomes are smaller than 100 nm (about 30-120 nm), the structural and molecular characterization of these vesicles at the individual level has been challenging. AFM has revealed a new degree of complexity in these nanosized vesicles and generated growing interest as a nanoscale tool for characterizing the abundance, morphology, biomechanics, and biomolecular make-up of exosomes. With the recent interest in exosomes for diagnostic and therapeutic applications, AFM-based characterization promises to contribute towards improved understanding of these particles at the single vesicle and sub-vesicular levels. When coupled with complementary methods like optical super resolution STED and Raman, AFM could further unlock the potential of exosomes as disease biomarkers and as therapeutic agents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Alex J.; Sakai, Yuki; Kim, Minjung
2016-05-09
Experimental atomic force microscopy (AFM) studies have reported distinct features in regions with little electron density for various organic systems. These unexpected features have been proposed to be a direct visualization of intermolecular hydrogen bonding. Here, we apply a computational method using ab initio real-space pseudopotentials along with a scheme to account for tip tilting to simulate AFM images of the 8-hydroxyquinoline dimer and related systems to develop an understanding of the imaging mechanism for hydrogen bonds. We find that contrast for the observed “hydrogen bond” feature comes not from the electrostatic character of the bonds themselves but rather frommore » repulsive tip tilting induced by neighboring electron-rich atoms.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muhunthan, N.; Singh, Om Pal; Toutam, Vijaykumar, E-mail: toutamvk@nplindia.org
2015-10-15
Graphical abstract: Experimental setup for conducting AFM (C-AFM). - Highlights: • Cu{sub 2}ZnSnS{sub 4} (CZTS) thin film was grown by reactive co-sputtering. • The electronic properties were probed using conducting atomic force microscope, scanning Kelvin probe microscopy and scanning capacitance microscopy. • C-AFM current flow mainly through grain boundaries rather than grain interiors. • SKPM indicated higher potential along the GBs compared to grain interiors. • The SCM explains that charge separation takes place at the interface of grain and grain boundary. - Abstract: Electrical characterization of grain boundaries (GB) of Cu-deficient CZTS (Copper Zinc Tin Sulfide) thin films wasmore » done using atomic force microscopic (AFM) techniques like Conductive atomic force microscopy (CAFM), Kelvin probe force microscopy (KPFM) and scanning capacitance microscopy (SCM). Absorbance spectroscopy was done for optical band gap calculations and Raman, XRD and EDS for structural and compositional characterization. Hall measurements were done for estimation of carrier mobility. CAFM and KPFM measurements showed that the currents flow mainly through grain boundaries (GB) rather than grain interiors. SCM results showed that charge separation mainly occurs at the interface of grain and grain boundaries and not all along the grain boundaries.« less
Evaluation of the electrical contact area in contact-mode scanning probe microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Celano, Umberto, E-mail: celano@imec.be, E-mail: u.celano@gmail.com; Chintala, Ravi Chandra; Vandervorst, Wilfried
The tunneling current through an atomic force microscopy (AFM) tip is used to evaluate the effective electrical contact area, which exists between tip and sample in contact-AFM electrical measurements. A simple procedure for the evaluation of the effective electrical contact area is described using conductive atomic force microscopy (C-AFM) in combination with a thin dielectric. We characterize the electrical contact area for coated metal and doped-diamond tips operated at low force (<200 nN) in contact mode. In both cases, we observe that only a small fraction (<10 nm{sup 2}) of the physical contact (∼100 nm{sup 2}) is effectively contributing to the transportmore » phenomena. Assuming this reduced area is confined to the central area of the physical contact, these results explain the sub-10 nm electrical resolution observed in C-AFM measurements.« less
Curry, Nathan; Ghézali, Grégory; Kaminski Schierle, Gabriele S.; Rouach, Nathalie; Kaminski, Clemens F.
2017-01-01
The plasticity of the cytoskeleton architecture and membrane properties is important for the establishment of cell polarity, adhesion and migration. Here, we present a method which combines stimulated emission depletion (STED) super-resolution imaging and atomic force microscopy (AFM) to correlate cytoskeletal structural information with membrane physical properties in live astrocytes. Using STED compatible dyes for live cell imaging of the cytoskeleton, and simultaneously mapping the cell surface topology with AFM, we obtain unprecedented detail of highly organized networks of actin and microtubules in astrocytes. Combining mechanical data from AFM with optical imaging of actin and tubulin further reveals links between cytoskeleton organization and membrane properties. Using this methodology we illustrate that scratch-induced migration induces cytoskeleton remodeling. The latter is caused by a polarization of actin and microtubule elements within astroglial cell processes, which correlates strongly with changes in cell stiffness. The method opens new avenues for the dynamic probing of the membrane structural and functional plasticity of living brain cells. It is a powerful tool for providing new insights into mechanisms of cell structural remodeling during physiological or pathological processes, such as brain development or tumorigenesis. PMID:28469559
Quality of corneal lamellar cuts quantified using atomic force microscopy
Ziebarth, Noël M.; Dias, Janice; Hürmeriç, Volkan; Shousha, Mohamed Abou; Yau, Chiyat Ben; Moy, Vincent T.; Culbertson, William; Yoo, Sonia H.
2012-01-01
PURPOSE To quantify the cut quality of lamellar dissections made with the femtosecond laser using atomic force microscopy (AFM). SETTING Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA. DESIGN Experimental study. METHODS Experiments were performed on 3 pairs of human cadaver eyes. The cornea was thinned to physiologic levels by placing the globe, cornea side down, in 25% dextran for 24 hours. The eyes were reinflated to normal pressures by injecting a balanced salt solution into the vitreous cavity. The eyes were placed in a holder, the epithelium was removed, and the eyes were cut with a Visumax femtosecond laser. The energy level was 180 nJ for the right eye and 340 nJ for the left eye of each pair. The cut depths were 200 μm, 300 μm, and 400 μm, with the cut depth maintained for both eyes of each pair. A 12.0 mm trephination was then performed. The anterior portion of the lamellar surface was placed in a balanced salt solution and imaged with AFM. As a control, the posterior surface was placed in 2% formalin and imaged with environmental scanning electron microscopy (SEM). Four quantitative parameters (root-mean-square deviation, average deviation, skewness, kurtosis) were calculated from the AFM images. RESULTS From AFM, the 300 μm low-energy cuts were the smoothest. Similar results were seen qualitatively in the environmental SEM images. CONCLUSION Atomic force microscopy provided quantitative information on the quality of lamellar dissections made using a femtosecond laser, which is useful in optimizing patient outcomes in refractive and lamellar keratoplasty surgeries. PMID:23141078
DOE Office of Scientific and Technical Information (OSTI.GOV)
Labuda, Aleksander; Proksch, Roger
An ongoing challenge in atomic force microscope (AFM) experiments is the quantitative measurement of cantilever motion. The vast majority of AFMs use the optical beam deflection (OBD) method to infer the deflection of the cantilever. The OBD method is easy to implement, has impressive noise performance, and tends to be mechanically robust. However, it represents an indirect measurement of the cantilever displacement, since it is fundamentally an angular rather than a displacement measurement. Here, we demonstrate a metrological AFM that combines an OBD sensor with a laser Doppler vibrometer (LDV) to enable accurate measurements of the cantilever velocity and displacement.more » The OBD/LDV AFM allows a host of quantitative measurements to be performed, including in-situ measurements of cantilever oscillation modes in piezoresponse force microscopy. As an example application, we demonstrate how this instrument can be used for accurate quantification of piezoelectric sensitivity—a longstanding goal in the electromechanical community.« less
NASA Astrophysics Data System (ADS)
Gustafsson, Alexander; Okabayashi, Norio; Peronio, Angelo; Giessibl, Franz J.; Paulsson, Magnus
2017-08-01
We describe a first-principles method to calculate scanning tunneling microscopy (STM) images, and compare the results to well-characterized experiments combining STM with atomic force microscopy (AFM). The theory is based on density functional theory with a localized basis set, where the wave functions in the vacuum gap are computed by propagating the localized-basis wave functions into the gap using a real-space grid. Constant-height STM images are computed using Bardeen's approximation method, including averaging over the reciprocal space. We consider copper adatoms and single CO molecules adsorbed on Cu(111), scanned with a single-atom copper tip with and without CO functionalization. The calculated images agree with state-of-the-art experiments, where the atomic structure of the tip apex is determined by AFM. The comparison further allows for detailed interpretation of the STM images.
NASA Astrophysics Data System (ADS)
Hsueh, Carlin
Nanotechnology has a unique and relatively untapped utility in the fields of medicine and dentistry at the level of single-biopolymer and -molecule diagnostics. In recent years atomic force microscopy (AFM) has garnered much interest due to its ability to obtain atomic-resolution of molecular structures and probe biophysical behaviors of biopolymers and proteins in a variety of biologically significant environments. The work presented in this thesis focuses on the nanoscale manipulation and observation of biopolymers to develop an innovative technology for personalized medicine while understanding complex biological systems. These studies described here primarily use AFM to observe biopolymer interactions with proteins and its surroundings with unprecedented resolution, providing a better understanding of these systems and interactions at the nanoscale. Transcriptional profiling, the measure of messenger RNA (mRNA) abundance in a single cell, is a powerful technique that detects "behavior" or "symptoms" at the tissue and cellular level. We have sought to develop an alternative approach, using our expertise in AFM and single molecule nanotechnology, to achieve a cost-effective high throughput method for sensitive detection and profiling of subtle changes in transcript abundance. The technique does not require amplification of the mRNA sample because the AFM provides three-dimensional views of molecules with unprecedented resolution, requires minimal sample preparation, and utilizes a simple tagging chemistry on cDNA molecules. AFM images showed collagen polymers in teeth and of Drebrin-A remodeling of filamentous actin structure and mechanics. AFM was used to image collagen on exposed dentine tubules and confirmed tubule occlusion with a desensitizing prophylaxis paste by Colgate-Palmolive. The AFM also superseded other microscopy tools in resolving F-actin helix remodeling and possible cooperative binding by a neuronal actin binding protein---Drebrin-A, an interaction that can provide scientists with a better understanding of debilitating neurological diseases, such as Alzheimer's and Down Syndrome at the molecular level. These observations provide extraordinary access to the subtle signs and behavior indicating early onset of disease in cells and tissues and to the dynamics of disease development and treatment.
Gianoncelli, A; Vaccari, L; Kourousias, G; Cassese, D; Bedolla, D E; Kenig, S; Storici, P; Lazzarino, M; Kiskinova, M
2015-05-14
Radiation damage of biological samples remains a limiting factor in high resolution X-ray microscopy (XRM). Several studies have attempted to evaluate the extent and the effects of radiation damage, proposing strategies to minimise or prevent it. The present work aims to assess the impact of soft X-rays on formalin fixed cells on a systematic manner. The novelty of this approach resides on investigating the radiation damage not only with XRM, as often reported in relevant literature on the topic, but by coupling it with two additional independent non-destructive microscopy methods: Atomic Force Microscopy (AFM) and FTIR Microscopy (FTIRM). Human Embryonic Kidney 293 cells were exposed to different radiation doses at 1 keV. In order to reveal possible morphological and biochemical changes, the irradiated cells were systematically analysed with AFM and FTIRM before and after. Results reveal that while cell morphology is not substantially affected, cellular biochemical profile changes significantly and progressively when increasing dose, resulting in a severe breakdown of the covalent bonding network. This information impacts most soft XRM studies on fixed cells and adds an in-depth understanding of the radiation damage for developing better prevention strategies.
Gianoncelli, A.; Vaccari, L.; Kourousias, G.; Cassese, D.; Bedolla, D. E.; Kenig, S.; Storici, P.; Lazzarino, M.; Kiskinova, M.
2015-01-01
Radiation damage of biological samples remains a limiting factor in high resolution X-ray microscopy (XRM). Several studies have attempted to evaluate the extent and the effects of radiation damage, proposing strategies to minimise or prevent it. The present work aims to assess the impact of soft X-rays on formalin fixed cells on a systematic manner. The novelty of this approach resides on investigating the radiation damage not only with XRM, as often reported in relevant literature on the topic, but by coupling it with two additional independent non-destructive microscopy methods: Atomic Force Microscopy (AFM) and FTIR Microscopy (FTIRM). Human Embryonic Kidney 293 cells were exposed to different radiation doses at 1 keV. In order to reveal possible morphological and biochemical changes, the irradiated cells were systematically analysed with AFM and FTIRM before and after. Results reveal that while cell morphology is not substantially affected, cellular biochemical profile changes significantly and progressively when increasing dose, resulting in a severe breakdown of the covalent bonding network. This information impacts most soft XRM studies on fixed cells and adds an in-depth understanding of the radiation damage for developing better prevention strategies. PMID:25974639
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tittmann, B. R.; Xi, X.
This chapter demonstrates the feasibility of Atomic Force Microscopy (AFM) and High Frequency Scanning Acoustic Microscopy (HF-SAM) as tools to characterize biological tissues. Both the AFM and the SAM have shown to provide imaging (with different resolution) and quantitative elasticity measuring abilities. Plant cell walls with minimal disturbance and under conditions of their native state have been examined with these two kinds of microscopy. After descriptions of both the SAM and AFM, their special features and the typical sample preparation is discussed. The sample preparation is focused here on epidermal peels of onion scales and celery epidermis cells which weremore » sectioned for the AFM to visualize the inner surface (closest to the plasma membrane) of the outer epidermal wall. The nm-wide cellulose microfibrils orientation and multilayer structure were clearly observed. The microfibril orientation and alignment tend to be more organized in older scales compared with younger scales. The onion epidermis cell wall was also used as a test analog to study cell wall elasticity by the AFM nanoindentation and the SAM V(z) feature. The novelty in this work was to demonstrate the capability of these two techniques to analyze isolated, single layered plant cell walls in their natural state. AFM nanoindentation was also used to probe the effects of Ethylenediaminetetraacetic acid (EDTA), and calcium ion treatment to modify pectin networks in cell walls. The results suggest a significant modulus increase in the calcium ion treatment and a slight decrease in EDTA treatment. To complement the AFM measurements, the HF-SAM was used to obtain the V(z) signatures of the onion epidermis. These measurements were focused on documenting the effect of pectinase enzyme treatment. The results indicate a significant change in the V(z) signature curves with time into the enzyme treatment. Thus AFM and HF-SAM open the door to a systematic nondestructive structure and mechanical property study of complex biological cell walls. A unique feature of this approach is that both microscopes allow the biological samples to be examined in their natural fluid (water) environment.« less
Gonzalez, Laura; Martínez-Martín, David; Otero, Jorge; de Pablo, Pedro José; Puig-Vidal, Manel; Gómez-Herrero, Julio
2015-01-14
The use of quartz tuning fork sensors as probes for scanning probe microscopy is growing in popularity. Working in shear mode, some methods achieve a lateral resolution comparable with that obtained with standard cantilevered probes, but only in experiments conducted in air or vacuum. Here, we report a method to produce and use commercial AFM tips in electrically driven quartz tuning fork sensors operating in shear mode in a liquid environment. The process is based on attaching a standard AFM tip to the end of a fiber probe which has previously been sharpened. Only the end of the probe is immersed in the buffer solution during imaging. The lateral resolution achieved is about 6 times higher than that of the etched microfiber on its own.
Detection of atomic force microscopy cantilever displacement with a transmitted electron beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, R.; Woehl, T. J.; Keller, R. R.
2016-07-25
The response time of an atomic force microscopy (AFM) cantilever can be decreased by reducing cantilever size; however, the fastest AFM cantilevers are currently nearing the smallest size that can be detected with the conventional optical lever approach. Here, we demonstrate an electron beam detection scheme for measuring AFM cantilever oscillations. The oscillating AFM tip is positioned perpendicular to and in the path of a stationary focused nanometer sized electron beam. As the tip oscillates, the thickness of the material under the electron beam changes, causing a fluctuation in the number of scattered transmitted electrons that are detected. We demonstratemore » detection of sub-nanometer vibration amplitudes with an electron beam, providing a pathway for dynamic AFM with cantilevers that are orders of magnitude smaller and faster than the current state of the art.« less
Chaos in Atomic Force Microscopy
NASA Astrophysics Data System (ADS)
Hu, Shuiqing; Raman, Arvind
2006-01-01
Chaotic oscillations of microcantilever tips in dynamic atomic force microscopy (AFM) are reported and characterized. Systematic experiments performed using a variety of microcantilevers under a wide range of operating conditions indicate that softer AFM microcantilevers bifurcate from periodic to chaotic oscillations near the transition from the noncontact to the tapping regimes. Careful Lyapunov exponent and noise titration calculations of the tip oscillation data confirm their chaotic nature. AFM images taken by scanning the chaotically oscillating tips over the sample show small, but significant metrology errors at the nanoscale due to this “deterministic” uncertainty.
Single ricin detection by atomic force microscopy chemomechanical mapping
NASA Astrophysics Data System (ADS)
Chen, Guojun; Zhou, Jianfeng; Park, Bosoon; Xu, Bingqian
2009-07-01
The authors report on a study of detecting ricin molecules immobilized on chemically modified Au (111) surface by chemomechanically mapping the molecular interactions with a chemically modified atomic force microscopy (AFM) tip. AFM images resolved the different fold-up conformations of single ricin molecule as well as their intramolecule structure of A- and B-chains. AFM force spectroscopy study of the interaction indicates that the unbinding force has a linear relation with the logarithmic force loading rate, which agrees well with calculations using one-barrier bond dissociation model.
Namai, Yoshimichi; Matsuoka, Osamu
2006-04-06
We succeeded in observing the atomic scale structure of a rutile-type TiO2(110) single-crystal surface prepared by the wet chemical method of chemical etching in an acid solution and surface annealing in air. Ultrahigh vacuum noncontact atomic force microscopy (UHV-NC-AFM) was used for observing the atomic scale structures of the surface. The UHV-NC-AFM measurements at 450 K, which is above a desorption temperature of molecularly adsorbed water on the TiO2(110) surface, enabled us to observe the atomic scale structure of the TiO2(110) surface prepared by the wet chemical method. In the UHV-NC-AFM measurements at room temperature (RT), however, the atomic scale structure of the TiO2(110) surface was not observed. The TiO2(110) surface may be covered with molecularly adsorbed water after the surface was prepared by the wet chemical method. The structure of the TiO2(110) surface that was prepared by the wet chemical method was consistent with the (1 x 1) bulk-terminated model of the TiO2(110) surface.
Quantification of in-contact probe-sample electrostatic forces with dynamic atomic force microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balke, Nina Wisinger; Jesse, Stephen; Carmichael, Ben D.
Here, atomic force microscopy (AFM) methods utilizing resonant mechanical vibrations of cantilevers in contact with a sample surface have shown sensitivities as high as few picometers for detecting surface displacements. Such a high sensitivity is harnessed in several AFM imaging modes. Here, we demonstrate a cantilever-resonance-based method to quantify electrostatic forces on a probe in the probe-sample junction in the presence of a surface potential or when a bias voltage is applied to the AFM probe. We find that the electrostatic forces acting on the probe tip apex can produce signals equivalent to a few pm of surface displacement. Inmore » combination with modeling, the measurements of the force were used to access the strength of the electrical field at the probe tip apex in contact with a sample. We find an evidence that the electric field strength in the junction can reach ca. 1 V nm –1 at a bias voltage of a few volts and is limited by non-ideality of the tip-sample contact. This field is sufficiently strong to significantly influence material states and kinetic processes through charge injection, Maxwell stress, shifts of phase equilibria, and reduction of energy barriers for activated processes. Besides, the results provide a baseline for accounting for the effects of local electrostatic forces in electromechanical AFM measurements as well as offer additional means to probe ionic mobility and field-induced phenomena in solids.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solares, Santiago D.
Significant progress has been accomplished in the development of experimental contact-mode and dynamic-mode atomic force microscopy (AFM) methods designed to measure surface material properties. However, current methods are based on one-dimensional (1D) descriptions of the tip-sample interaction forces, thus neglecting the intricacies involved in the material behavior of complex samples (such as soft viscoelastic materials) as well as the differences in material response between the surface and the bulk. In order to begin to address this gap, a computational study is presented where the sample is simulated using an enhanced version of a recently introduced model that treats the surfacemore » as a collection of standard-linear-solid viscoelastic elements. The enhanced model introduces in-plane surface elastic forces that can be approximately related to a two-dimensional (2D) Young's modulus. Relevant cases are discussed for single-and multifrequency intermittent-contact AFM imaging, with focus on the calculated surface indentation profiles and tip-sample interaction force curves, as well as their implications with regards to experimental interpretation. A variety of phenomena are examined in detail, which highlight the need for further development of more physically accurate sample models that are specifically designed for AFM simulation. As a result, a multifrequency AFM simulation tool based on the above sample model is provided as supporting information.« less
NASA Astrophysics Data System (ADS)
Kiracofe, Daniel; Melcher, John; Raman, Arvind
2012-01-01
Dynamic atomic force microscopy (dAFM) continues to grow in popularity among scientists in many different fields, and research on new methods and operating modes continues to expand the resolution, capabilities, and types of samples that can be studied. But many promising increases in capability are accompanied by increases in complexity. Indeed, interpreting modern dAFM data can be challenging, especially on complicated material systems, or in liquid environments where the behavior is often contrary to what is known in air or vacuum environments. Mathematical simulations have proven to be an effective tool in providing physical insight into these non-intuitive systems. In this article we describe recent developments in the VEDA (virtual environment for dynamic AFM) simulator, which is a suite of freely available, open-source simulation tools that are delivered through the cloud computing cyber-infrastructure of nanoHUB (www.nanohub.org). Here we describe three major developments. First, simulations in liquid environments are improved by enhancements in the modeling of cantilever dynamics, excitation methods, and solvation shell forces. Second, VEDA is now able to simulate many new advanced modes of operation (bimodal, phase-modulation, frequency-modulation, etc.). Finally, nineteen different tip-sample models are available to simulate the surface physics of a wide variety different material systems including capillary, specific adhesion, van der Waals, electrostatic, viscoelasticity, and hydration forces. These features are demonstrated through example simulations and validated against experimental data, in order to provide insight into practical problems in dynamic AFM.
Kiracofe, Daniel; Melcher, John; Raman, Arvind
2012-01-01
Dynamic atomic force microscopy (dAFM) continues to grow in popularity among scientists in many different fields, and research on new methods and operating modes continues to expand the resolution, capabilities, and types of samples that can be studied. But many promising increases in capability are accompanied by increases in complexity. Indeed, interpreting modern dAFM data can be challenging, especially on complicated material systems, or in liquid environments where the behavior is often contrary to what is known in air or vacuum environments. Mathematical simulations have proven to be an effective tool in providing physical insight into these non-intuitive systems. In this article we describe recent developments in the VEDA (virtual environment for dynamic AFM) simulator, which is a suite of freely available, open-source simulation tools that are delivered through the cloud computing cyber-infrastructure of nanoHUB (www.nanohub.org). Here we describe three major developments. First, simulations in liquid environments are improved by enhancements in the modeling of cantilever dynamics, excitation methods, and solvation shell forces. Second, VEDA is now able to simulate many new advanced modes of operation (bimodal, phase-modulation, frequency-modulation, etc.). Finally, nineteen different tip-sample models are available to simulate the surface physics of a wide variety different material systems including capillary, specific adhesion, van der Waals, electrostatic, viscoelasticity, and hydration forces. These features are demonstrated through example simulations and validated against experimental data, in order to provide insight into practical problems in dynamic AFM.
Quantification of In-Contact Probe-Sample Electrostatic Forces with Dynamic Atomic Force Microscopy.
Balke, Nina; Jesse, Stephen; Carmichael, Ben; Okatan, M; Kravchenko, Ivan; Kalinin, Sergei; Tselev, Alexander
2016-12-13
Atomic Force Microscopy (AFM) methods utilizing resonant mechanical vibrations of cantilevers in contact with a sample surface have shown sensitivities as high as few picometers for detecting surface displacements. Such a high sensitivity is harnessed in several AFM imaging modes. Here, we demonstrate a cantilever-resonance-based method to quantify electrostatic forces on a probe in the probe-sample junction in the presence of a surface potential or when a bias voltage is applied to the AFM probe. We find that the electrostatic forces acting on the probe tip apex can produce signals equivalent to a few pm of surface displacement. In combination with modeling, the measurements of the force were used to access the strength of the electrical field at the probe tip apex in contact with a sample. We find an evidence that the electric field strength in the junction can reach ca. 1 V/nm at a bias voltage of a few volts and is limited by non-ideality of the tip-sample contact. This field is sufficiently strong to significantly influence material states and kinetic processes through charge injection, Maxwell stress, shifts of phase equilibria, and reduction of energy barriers for activated processes. Besides, the results provide a baseline for accounting for the effects of local electrostatic forces in electromechanical AFM measurements as well as offer additional means to probe ionic mobility and field-induced phenomena in solids. Copyright 2016 IOP Publishing Ltd.
Solares, Santiago D.
2016-04-15
Significant progress has been accomplished in the development of experimental contact-mode and dynamic-mode atomic force microscopy (AFM) methods designed to measure surface material properties. However, current methods are based on one-dimensional (1D) descriptions of the tip-sample interaction forces, thus neglecting the intricacies involved in the material behavior of complex samples (such as soft viscoelastic materials) as well as the differences in material response between the surface and the bulk. In order to begin to address this gap, a computational study is presented where the sample is simulated using an enhanced version of a recently introduced model that treats the surfacemore » as a collection of standard-linear-solid viscoelastic elements. The enhanced model introduces in-plane surface elastic forces that can be approximately related to a two-dimensional (2D) Young's modulus. Relevant cases are discussed for single-and multifrequency intermittent-contact AFM imaging, with focus on the calculated surface indentation profiles and tip-sample interaction force curves, as well as their implications with regards to experimental interpretation. A variety of phenomena are examined in detail, which highlight the need for further development of more physically accurate sample models that are specifically designed for AFM simulation. As a result, a multifrequency AFM simulation tool based on the above sample model is provided as supporting information.« less
Quantification of in-contact probe-sample electrostatic forces with dynamic atomic force microscopy
Balke, Nina Wisinger; Jesse, Stephen; Carmichael, Ben D.; ...
2017-01-04
Here, atomic force microscopy (AFM) methods utilizing resonant mechanical vibrations of cantilevers in contact with a sample surface have shown sensitivities as high as few picometers for detecting surface displacements. Such a high sensitivity is harnessed in several AFM imaging modes. Here, we demonstrate a cantilever-resonance-based method to quantify electrostatic forces on a probe in the probe-sample junction in the presence of a surface potential or when a bias voltage is applied to the AFM probe. We find that the electrostatic forces acting on the probe tip apex can produce signals equivalent to a few pm of surface displacement. Inmore » combination with modeling, the measurements of the force were used to access the strength of the electrical field at the probe tip apex in contact with a sample. We find an evidence that the electric field strength in the junction can reach ca. 1 V nm –1 at a bias voltage of a few volts and is limited by non-ideality of the tip-sample contact. This field is sufficiently strong to significantly influence material states and kinetic processes through charge injection, Maxwell stress, shifts of phase equilibria, and reduction of energy barriers for activated processes. Besides, the results provide a baseline for accounting for the effects of local electrostatic forces in electromechanical AFM measurements as well as offer additional means to probe ionic mobility and field-induced phenomena in solids.« less
Kang, Tae-Yi; Lee, Joong; Park, Byung-Wook
2016-04-01
This paper describes the application of the atomic force microscopy (AFM) as a nano-indentation method and introduces a new method of identifying the chronological order of the application of the toner and stamping ink on the surface of documents by removing either of them. Various toners were used as samples for the AFM nano-indentation method. The chronological order of the application of the toner and stamping ink with either the toner placed over the stamping ink or the stamping ink placed over the toner, could be identified, regardless of the kinds of toners made by various companies. This paper provides the new approach for physically removing the toner and checking the material below it to identify questioned documents, which allows the method to be used to appraise documents forensically. Blind testing has shown that the method to analyze the chronological order of toner-printed documents and the seal stamping on them could accurately identify the order in all samples, while minimizing damage to the samples. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Design and Optimization of Nanomaterials for Sensing Applications
NASA Astrophysics Data System (ADS)
Sanderson, Robert Noboru
Nanomaterials, materials with one or more of their dimensions on the nanoscale, have emerged as an important field in the development of next-generation sensing systems. Their high surface-to-volume ratio makes them useful for sensing, but also makes them sensitive to processing defects and inherent material defects. To develop and optimize these systems, it is thus necessary to characterize these defects to understand their origin and how to work around them. Scanning probe microscopy (SPM) techniques like atomic force microscopy (AFM) and scanning tunneling microscopy (STM) are important characterization methods which can measure nanoscale topography and electronic structure. These methods are appealing in nanomaterial systems because they are non-damaging and provide local, high-resolution data, and so are capable of detecting nanoscale features such as single defect sites. There are difficulties, however, in the interpretation of SPM data. For instance, AFM-based methods are prone to experimental artifacts due to long-range interactions, such as capacitive crosstalk in Kelvin probe force microscopy (KPFM), and artifacts due to the finite size of the probe tip, such as incorrect surface tracking at steep topographical features. Mechanical characterization (via force spectroscopy) of nanomaterials with significant nanoscale variations, such as tethered lipid bilayer membranes (tLBMs), is also difficult since variations in the bulk system's mechanical behavior must be distinguished from local fluctuations. Additionally, interpretation of STM data is non-trivial due to local variations in electron density in addition to topographical variations. In this thesis we overcome some limitations of SPM methods by supplementing them with additional surface analytical methods as well as computational methods, and we characterize several nanomaterial systems. Current-carrying vapor-liquid-solid Si nanowires (useful for interdigitated-electrode-based sensors) are characterized using finite-element-method (FEM)-supplemented KPFM to retrieve useful information about processing defects, contact resistance, and the primary charge carriers. Next, a tLBM system's stiffness and the stiffness' dependence on tethering molecule concentration is measured using statistical analysis of thousands of AFM force spectra, demonstrating a biosensor-compatible system with a controllable bulk rigidity. Finally, we utilize surface analytical techniques to inform the development of a novel three-dimensional graphene system for sensing applications.
Atomic Force Microscopy for Soil Analysis
NASA Astrophysics Data System (ADS)
gazze, andrea; doerr, stefan; dudley, ed; hallin, ingrid; matthews, peter; quinn, gerry; van keulen, geertje; francis, lewis
2016-04-01
Atomic Force Microscopy (AFM) is a high-resolution surface-sensitive technique, which provides 3-dimensional topographical information and material properties of both stiff and soft samples in their natural environments. Traditionally AFM has been applied to samples with low roughness: hence its use for soil analysis has been very limited so far. Here we report the optimization settings required for a standardization of high-resolution and artefact-free analysis of natural soil with AFM: soil immobilization, AFM probe selection, artefact recognition and minimization. Beyond topography, AFM can be used in a spectroscopic mode to evaluate nanomechanical properties, such as soil viscosity, stiffness, and deformation. In this regards, Bruker PeakForce-Quantitative NanoMechanical (QNM) AFM provides a fast and convenient way to extract physical properties from AFM force curves in real-time to obtain soil nanomechanical properties. Here we show for the first time the ability of AFM to describe the topography of natural soil at nanometre resolution, with observation of micro-components, such as clays, and of nano-structures, possibly of biotic origin, the visualization of which would prove difficult with other instrumentations. Finally, nanomechanical profiling has been applied to different wettability states in soil and the respective physical patterns are discussed.
Phase modulation atomic force microscope with true atomic resolution
NASA Astrophysics Data System (ADS)
Fukuma, Takeshi; Kilpatrick, Jason I.; Jarvis, Suzanne P.
2006-12-01
We have developed a dynamic force microscope (DFM) working in a novel operation mode which is referred to as phase modulation atomic force microscopy (PM-AFM). PM-AFM utilizes a fixed-frequency excitation signal to drive a cantilever, which ensures stable imaging even with occasional tip crash and adhesion to the surface. The tip-sample interaction force is detected as a change of the phase difference between the cantilever deflection and excitation signals and hence the time response is not influenced by the Q factor of the cantilever. These features make PM-AFM more suitable for high-speed imaging than existing DFM techniques such as amplitude modulation and frequency modulation atomic force microscopies. Here we present the basic principle of PM-AFM and the theoretical limit of its performance. The design of the developed PM-AFM is described and its theoretically limited noise performance is demonstrated. Finally, we demonstrate the true atomic resolution imaging capability of the developed PM-AFM by imaging atomic-scale features of mica in water.
Imaging and Force Recognition of Single Molecular Behaviors Using Atomic Force Microscopy
Li, Mi; Dang, Dan; Liu, Lianqing; Xi, Ning; Wang, Yuechao
2017-01-01
The advent of atomic force microscopy (AFM) has provided a powerful tool for investigating the behaviors of single native biological molecules under physiological conditions. AFM can not only image the conformational changes of single biological molecules at work with sub-nanometer resolution, but also sense the specific interactions of individual molecular pair with piconewton force sensitivity. In the past decade, the performance of AFM has been greatly improved, which makes it widely used in biology to address diverse biomedical issues. Characterizing the behaviors of single molecules by AFM provides considerable novel insights into the underlying mechanisms guiding life activities, contributing much to cell and molecular biology. In this article, we review the recent developments of AFM studies in single-molecule assay. The related techniques involved in AFM single-molecule assay were firstly presented, and then the progress in several aspects (including molecular imaging, molecular mechanics, molecular recognition, and molecular activities on cell surface) was summarized. The challenges and future directions were also discussed. PMID:28117741
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobs, Tevis D. B., E-mail: tjacobs@pitt.edu; Wabiszewski, Graham E.; Goodman, Alexander J.
2016-01-15
The nanoscale geometry of probe tips used for atomic force microscopy (AFM) measurements determines the lateral resolution, contributes to the strength of the tip-surface interaction, and can be a significant source of uncertainty in the quantitative analysis of results. While inverse imaging of the probe tip has been used successfully to determine probe tip geometry, direct observation of the tip profile using electron microscopy (EM) confers several advantages: it provides direct (rather than indirect) imaging, requires fewer algorithmic parameters, and does not require bringing the tip into contact with a sample. In the past, EM-based observation of the probe tipmore » has been achieved using ad hoc mounting methods that are constrained by low throughput, the risk of contamination, and repeatability issues. We report on a probe fixture designed for use in a commercial transmission electron microscope that enables repeatable mounting of multiple AFM probes as well as a reference grid for beam alignment. This communication describes the design, fabrication, and advantages of this probe fixture, including full technical drawings for machining. Further, best practices are discussed for repeatable, non-destructive probe imaging. Finally, examples of the fixture’s use are described, including characterization of common commercial AFM probes in their out-of-the-box condition.« less
NASA Astrophysics Data System (ADS)
Jacobs, Tevis D. B.; Wabiszewski, Graham E.; Goodman, Alexander J.; Carpick, Robert W.
2016-01-01
The nanoscale geometry of probe tips used for atomic force microscopy (AFM) measurements determines the lateral resolution, contributes to the strength of the tip-surface interaction, and can be a significant source of uncertainty in the quantitative analysis of results. While inverse imaging of the probe tip has been used successfully to determine probe tip geometry, direct observation of the tip profile using electron microscopy (EM) confers several advantages: it provides direct (rather than indirect) imaging, requires fewer algorithmic parameters, and does not require bringing the tip into contact with a sample. In the past, EM-based observation of the probe tip has been achieved using ad hoc mounting methods that are constrained by low throughput, the risk of contamination, and repeatability issues. We report on a probe fixture designed for use in a commercial transmission electron microscope that enables repeatable mounting of multiple AFM probes as well as a reference grid for beam alignment. This communication describes the design, fabrication, and advantages of this probe fixture, including full technical drawings for machining. Further, best practices are discussed for repeatable, non-destructive probe imaging. Finally, examples of the fixture's use are described, including characterization of common commercial AFM probes in their out-of-the-box condition.
Friedman, Lawrence H.; Vaudin, Mark D.; Stranick, Stephan J.; Stan, Gheorghe; Gerbig, Yvonne B.; Osborn, William; Cook, Robert F.
2016-01-01
The accuracy of electron backscatter diffraction (EBSD) and confocal Raman microscopy (CRM) for small-scale strain mapping are assessed using the multi-axial strain field surrounding a wedge indentation in Si as a test vehicle. The strain field is modeled using finite element analysis (FEA) that is adapted to the near-indentation surface profile measured by atomic force microscopy (AFM). The assessment consists of (1) direct experimental comparisons of strain and deformation and (2) comparisons in which the modeled strain field is used as an intermediate step. Direct experimental methods (1) consist of comparisons of surface elevation and gradient measured by AFM and EBSD and of Raman shifts measured and predicted by CRM and EBSD, respectively. Comparisons that utilize the combined FEA-AFM model (2) consist of predictions of distortion, strain, and rotation for comparison with EBSD measurements and predictions of Raman shift for comparison with CRM measurements. For both EBSD and CRM, convolution of measurements in depth-varying strain fields is considered. The interconnected comparisons suggest that EBSD was able to provide an accurate assessment of the wedge indentation deformation field to within the precision of the measurements, approximately 2 × 10−4 in strain. CRM was similarly precise, but was limited in accuracy to several times this value. PMID:26939030
Electrical Measurements and Nanomechanics Using Scanning Probe Microscopy
NASA Astrophysics Data System (ADS)
Chang, Yong
2002-10-01
In the early 1980s, G. Binnig et al. invented the Scanning Tunneling Microscopy (STM) [1], making it possible to obtain atomic resolution images of conducting surfaces. After that, many different types of Scanning Probe Microscopy (SPM) were invented and some of the most useful representatives are Atomic Force Microscopy (AFM) [2], Electrostatic Force Microscopy (EFM) [3] and Kelvin Probe Force Microscopy (KPFM) [4,5]. In 1985, G. Binnig et al. [2] invented the AFM, which now is used as a fundamental tool in many fields of research. Developed from AFM, Y. Martin et al. [3] invented EFM in 1987. The development of AC mode AFM allows the detection of weak long-range forces. EFM has also been used to study other systems and phenomena, such as thin liquid films on solid surfaces [6], electrically stressed gold nanowires [7], and spatial charge distribution in quantum wires [8]. In 1991, M. Nonnenmacher et al. [5] invented Kelvin Probe Force Microscopy. KPFM is used to study any property that affects the tip-surface Contact Potential Difference (CPD), such as voltage signals in integrated circuits (IC) [9], charged grain boundaries in polycrystalline silicon [10] and surface potential variations in multilayer semiconductor devices [11]. The aim of this poster is to discuss the application of SPM to electrical measurements. The theory of SPM was presented. The AFM was firstly introduced as it was developed before the other two. The design and theory were discussed. The force-distance curve was introduced. After this EFM was presented. EFM was developed from AC mode AFM. The technique was achieved by applying a DC voltage between the tip and the sample. The design, theory and features of it were surveyed. KPFM was also discussed. KPFM was developed from EFM. The central part of this technique is to measure the CPD. Experimental measurements of SPM were described after theory part. Research work using AFM was presented. The newest technique of AFM, UHV-AFM has been used in investigating the nano-mechanical properties of different materials. Normally common AFM has shortcomings as it has either strict limit resolution or difficulties in interpreting the data from the measurements. In order to solve these problems, Ultra High Vacuum (UHV) conditions were applied to acquire quantitative results. A typical UHV-AFM uses a cantilever whose spring constant is relatively high (>100 N/m) to obtain high-resolution image. Experimental measurements using KPFM was presented after AFM. Researchers are using KPFM to acquire the topography and measuring the CPD of semiconductor or metal surfaces. Similarly as in AFM, KPFM works best in UHV environment. A typical UHV-KPFM also uses a cantilever whose spring constant is relatively high. A UHV-KPFM may be able to achieve a high resolution in CPD images. In the past 20 years many different kinds of SPM were invented and used. AFM, EFM, and KPFM are representatives of them. Researchers are still developing new techniques. However, in recent years, they pay more attention in improving the measurement accuracy instead of trying to invent new SPM. These three SPM continue to be frequently used. The current capabilities of SPM do not satisfy us completely. We still cant measure the Electrical field directly. We actually measure the capacitance gradient. There are also some other questions. This is because the electrostatic force depends very strongly on the geometry of the probe at all length scales, so any model is subject to two big problems. First, the geometry is not known with complete accuracy; and second, the tip shape can change during an experiment due to wear. In the future, maybe the problems could be overcome by using a tip with a very well defined shape, such as a carbon nanotube, for which a realistic geometrical model could be more easily constructed, and the wear could be avoided or reduced.
USDA-ARS?s Scientific Manuscript database
Atomic force microscopy (AFM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) are used to investigate vitreous (hard) and non-vitreous (soft) wheat kernels and their corresponding wheat flours. AFM data reveal two different microstructures. The vitreous kernel reveals a granular text...
Liu, Hui; Li, Yingzi; Zhang, Yingxu; Chen, Yifu; Song, Zihang; Wang, Zhenyu; Zhang, Suoxin; Qian, Jianqiang
2018-01-01
Proportional-integral-derivative (PID) parameters play a vital role in the imaging process of an atomic force microscope (AFM). Traditional parameter tuning methods require a lot of manpower and it is difficult to set PID parameters in unattended working environments. In this manuscript, an intelligent tuning method of PID parameters based on iterative learning control is proposed to self-adjust PID parameters of the AFM according to the sample topography. This method gets enough information about the output signals of PID controller and tracking error, which will be used to calculate the proper PID parameters, by repeated line scanning until convergence before normal scanning to learn the topography. Subsequently, the appropriate PID parameters are obtained by fitting method and then applied to the normal scanning process. The feasibility of the method is demonstrated by the convergence analysis. Simulations and experimental results indicate that the proposed method can intelligently tune PID parameters of the AFM for imaging different topographies and thus achieve good tracking performance. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babic, Bakir, E-mail: bakir.babic@measurement.gov.au; Lawn, Malcolm A.; Coleman, Victoria A.
The results of systematic height measurements of polystyrene (PS) nanoparticles using intermittent contact amplitude modulation atomic force microscopy (IC-AM-AFM) are presented. The experimental findings demonstrate that PS nanoparticles deform during AFM imaging, as indicated by a reduction in the measured particle height. This deformation depends on the IC-AM-AFM imaging parameters, material composition, and dimensional properties of the nanoparticles. A model for nanoparticle deformation occurring during IC-AM-AFM imaging is developed as a function of the peak force which can be calculated for a particular set of experimental conditions. The undeformed nanoparticle height can be estimated from the model by extrapolation tomore » zero peak force. A procedure is proposed to quantify and minimise nanoparticle deformation during IC-AM-AFM imaging, based on appropriate adjustments of the experimental control parameters.« less
Label-free optical imaging of membrane patches for atomic force microscopy
Churnside, Allison B.; King, Gavin M.; Perkins, Thomas T.
2010-01-01
In atomic force microscopy (AFM), finding sparsely distributed regions of interest can be difficult and time-consuming. Typically, the tip is scanned until the desired object is located. This process can mechanically or chemically degrade the tip, as well as damage fragile biological samples. Protein assemblies can be detected using the back-scattered light from a focused laser beam. We previously used back-scattered light from a pair of laser foci to stabilize an AFM. In the present work, we integrate these techniques to optically image patches of purple membranes prior to AFM investigation. These rapidly acquired optical images were aligned to the subsequent AFM images to ~40 nm, since the tip position was aligned to the optical axis of the imaging laser. Thus, this label-free imaging efficiently locates sparsely distributed protein assemblies for subsequent AFM study while simultaneously minimizing degradation of the tip and the sample. PMID:21164738
Kroeger, Marie E; Sorenson, Blaire A; Thomas, J Santoro; Stojković, Emina A; Tsonchev, Stefan; Nicholson, Kenneth T
2014-10-24
Atomic force microscopy (AFM) uses a pyramidal tip attached to a cantilever to probe the force response of a surface. The deflections of the tip can be measured to ~10 pN by a laser and sectored detector, which can be converted to image topography. Amplitude modulation or "tapping mode" AFM involves the probe making intermittent contact with the surface while oscillating at its resonant frequency to produce an image. Used in conjunction with a fluid cell, tapping-mode AFM enables the imaging of biological macromolecules such as proteins in physiologically relevant conditions. Tapping-mode AFM requires manual tuning of the probe and frequent adjustments of a multitude of scanning parameters which can be challenging for inexperienced users. To obtain high-quality images, these adjustments are the most time consuming. PeakForce Quantitative Nanomechanical Property Mapping (PF-QNM) produces an image by measuring a force response curve for every point of contact with the sample. With ScanAsyst software, PF-QNM can be automated. This software adjusts the set-point, drive frequency, scan rate, gains, and other important scanning parameters automatically for a given sample. Not only does this process protect both fragile probes and samples, it significantly reduces the time required to obtain high resolution images. PF-QNM is compatible for AFM imaging in fluid; therefore, it has extensive application for imaging biologically relevant materials. The method presented in this paper describes the application of PF-QNM to obtain images of a bacterial red-light photoreceptor, RpBphP3 (P3), from photosynthetic R. palustris in its light-adapted state. Using this method, individual protein dimers of P3 and aggregates of dimers have been observed on a mica surface in the presence of an imaging buffer. With appropriate adjustments to surface and/or solution concentration, this method may be generally applied to other biologically relevant macromolecules and soft materials.
NASA Astrophysics Data System (ADS)
Gangwar, Rajesh K.; Dhumale, Vinayak A.; Date, Kalyani S.; Alegaonkar, Prashant; Sharma, Rishi B.; Datar, Suwarna
2016-03-01
Thin multiwall carbon nanotubes (MWCNTs) have been decorated with gold nanoparticles (Au NPs) with polyaniline (PANI) as an inter-linker by a simple wet chemical method. The synthesized AuNPs:MWCNT:PANI composite was studied with UV-vis, FTIR, Raman spectroscopy, x-ray diffractometer, transmission electron microscopy (TEM) and atomic force microscopy (AFM). Conducting AFM (C-AFM) images of the composite reveal the role played by the two components in electrochemical reactions. The size of the Au NPs was found to be 13 ± 2 nm in the composite as observed from TEM. The synthesized AuNPs:MWCNT:PANI composite was further drop casted onto a glassy carbon electrode (GCE) for electrocatalytic study. The resulting composite exhibits good electrocatalytic activity towards reduction of H2O2 and O2. A glucose biosensor was developed by immobilizing glucose oxidase into AuNPs:MWCNT:PANI composite film on GCE. The fabricated sensor demonstrates good linear response to glucose (i.e. R = 0.9975) in the range of 2 to 12 mM.
Pulse electrochemical meso/micro/nano ultraprecision machining technology.
Lee, Jeong Min; Kim, Young Bin; Park, Jeong Woo
2013-11-01
This study demonstrated meso/micro/nano-ultraprecision machining through electrochemical reactions using intermittent DC pulses. The experiment focused on two machining methods: (1) pulse electrochemical polishing (PECP) of stainless steel, and (2) pulse electrochemical nano-patterning (PECNP) on a silicon (Si) surface, using atomic force microscopy (AFM) for fabrication. The dissolution reaction at the stainless steel surface following PECP produced a very clean, smooth workpiece. The advantages of the PECP process included improvements in corrosion resistance, deburring of the sample surface, and removal of hydrogen from the stainless steel surface as verified by time-of-flight secondary-ion mass spectrometry (TOF-SIMS). In PECNP, the electrochemical reaction generated within water molecules produced nanoscale oxide textures on a Si surface. Scanning probe microscopy (SPM) was used to evaluate nanoscale-pattern processing on a Si wafer surface produced by AFM-PECNP For both processes using pulse electrochemical reactions, three-dimensional (3-D) measurements and AFM were used to investigate the changes on the machined surfaces. Preliminary results indicated the potential for advancing surface polishing techniques and localized micro/nano-texturing technology using PECP and PECNP processes.
Atomic force microscopy study of enamel remineralization
Poggio, Claudio; Ceci, Matteo; Beltrami, Riccardo; Lombardini, Marco; Colombo, Marco
2014-01-01
Summary Aim The aim of the present in vitro study was the evaluation of two products: a CPP-ACP paste (GC Tooth Mousse, GC Corp.) and a desensitizing toothpaste (Colgate Sensitive Pro Relief, Colgate-Palmolive) on preventing enamel erosion produced by a soft drink (Coca Cola) by using Atomic Force Microscopy (AFM). Methods Thirty enamel specimens were assigned to 6 groups of 5 specimens each. 1: intact enamel, 2: enamel + soft drink, 3: intact enamel + Colgate Sensitive Pro Relief, 4: enamel + soft drink + Colgate Sensitive Pro Relief, 5: intact enamel + GC Tooth Mousse, 6: enamel + soft drink + GC Tooth Mousse. The surface of each specimen was imaged by AFM. The root mean-square roughness (Rrms) was obtained from the AFM images and the differences in the averaged values among the groups were analyzed by ANOVA test. Results Comparing groups 4 and 6 (soft drink + toothpastes) with group 2 (eroded enamel) a statistical difference (P<0.05) was registered, suggesting effectiveness in protecting enamel against erosion of the products investigated. Conclusions The use of new formulation toothpastes can prevent enamel demineralization. PMID:25506414
High resolution atomic force microscopy of double-stranded RNA.
Ares, Pablo; Fuentes-Perez, Maria Eugenia; Herrero-Galán, Elías; Valpuesta, José M; Gil, Adriana; Gomez-Herrero, Julio; Moreno-Herrero, Fernando
2016-06-09
Double-stranded (ds) RNA mediates the suppression of specific gene expression, it is the genetic material of a number of viruses, and a key activator of the innate immune response against viral infections. The ever increasing list of roles played by dsRNA in the cell and its potential biotechnological applications over the last decade has raised an interest for the characterization of its mechanical properties and structure, and that includes approaches using Atomic Force Microscopy (AFM) and other single-molecule techniques. Recent reports have resolved the structure of dsDNA with AFM at unprecedented resolution. However, an equivalent study with dsRNA is still lacking. Here, we have visualized the double helix of dsRNA under near-physiological conditions and at sufficient resolution to resolve the A-form sub-helical pitch periodicity. We have employed different high-sensitive force-detection methods and obtained images with similar spatial resolution. Therefore, we show here that the limiting factors for high-resolution AFM imaging of soft materials in liquid medium are, rather than the imaging mode, the force between the tip and the sample and the sharpness of the tip apex.
Carbon decorative coatings by dip-, spin-, and spray-assisted layer-by-layer assembly deposition.
Hong, Jinkee; Kang, Sang Wook
2011-09-01
We performed a comparative surface analysis of all-carbon nano-objects (multiwall carbon nanotubes (MWNT) or graphene oxide (GO) sheets) based multilayer coatings prepared using three widely used nanofilm fabrication methods: dip-, spin-, and spray-assisted layer-by-layer (LbL) deposition. The resultant films showed a marked difference in their growth mechanisms and surface morphologies. Various carbon decorative coatings were synthesized with different surface roughness values, despite identical preparation conditions. In particular, smooth to highly rough all-carbon surfaces, as determined by atomic force microscopy (AFM) and scanning electron microscopy (SEM), were readily obtained by manipulating the LbL deposition methods. As was confirmed by the AFM and SEM analyses, this finding indicated the fundamental morphological evolution of one-dimensional nano-objects (MWNT) and two-dimensional nano-objects (GO) by control of the surface roughness through the deposition method. Therefore, an analysis of the three LbL-assembly methods presented herein may offer useful information about the industrial use of carbon decorative coatings and provide an insight into ways to control the structures of multilayer coatings by tuning the morphologies of carbon nano-objects.
Measuring the local mobility of graphene on semiconductors
NASA Astrophysics Data System (ADS)
Zhong, Haijian; Liu, Zhenghui; Wang, Jianfeng; Pan, Anlian; Xu, Gengzhao; Xu, Ke
2018-04-01
Mobility is an important parameter to gauge the performance of graphene devices, which is usually measured by FET or Hall methods relying on the use of insulating substrates. However, these methods are not applicable for the case of graphene on semiconductors, because some current will inevitably cross their junctions and flow through the semiconductors except directly traversing the graphene surface. Here we demonstrate a method for measuring the local mobility of graphene on gallium nitrides combining Kelvin probe force microscopy (KPFM) and conductive atomic force microscopy (C-AFM). The carrier density related to Fermi level shifts in graphene can be acquired from KPFM. The local mobility of graphene is calculated from the carrier mean free path available from the effective contact area, which can be fitted from the local I-V curves in graphene/GaN junctions by C-AFM. Our method can be used to investigate an arbitrary region in graphene and also be applied to other semiconductor substrates and do not introduce damages. These results will benefit recent topical application researches for graphene integration in various semiconductor devices.
An intelligent control scheme for precise tip-motion control in atomic force microscopy.
Wang, Yanyan; Hu, Xiaodong; Xu, Linyan
2016-01-01
The paper proposes a new intelligent control method to precisely control the tip motion of the atomic force microscopy (AFM). The tip moves up and down at a high rate along the z direction during scanning, requiring the utilization of a rapid feedback controller. The standard proportional-integral (PI) feedback controller is commonly used in commercial AFMs to enable topography measurements. The controller's response performance is determined by the set of the proportional (P) parameter and the integral (I) parameter. However, the two parameters cannot be automatically altered simultaneously according to the scanning speed and the surface topography during continuors scanning, leading to an inaccurate measurement. Thus a new intelligent controller combining the fuzzy controller and the PI controller is put forward in the paper. The new controller automatically selects the most appropriate PI parameters to achieve a fast response rate on basis of the tracking errors. In the experimental setup, the new controller is realized with a digital signal process (DSP) system, implemented in a conventional AFM system. Experiments are carried out by comparing the new method with the standard PI controller. The results demonstrate that the new method is more robust and effective for the precise tip motion control, corresponding to the achievement of a highly qualified image by shortening the response time of the controller. © Wiley Periodicals, Inc.
Taking Nanomedicine Teaching into Practice with Atomic Force Microscopy and Force Spectroscopy
ERIC Educational Resources Information Center
Carvalho, Filomena A.; Freitas, Teresa; Santos, Nuno C.
2015-01-01
Atomic force microscopy (AFM) is a useful and powerful tool to study molecular interactions applied to nanomedicine. The aim of the present study was to implement a hands-on atomic AFM course for graduated biosciences and medical students. The course comprises two distinct practical sessions, where students get in touch with the use of an atomic…
Dynamics-Enabled Nanoelectromechanical Systems (NEMS) Oscillators
2014-06-01
it becomes strongly nonlinear, and thus constitutes an archetypal candidate for nonlinear engineering • its fundamental resonant frequency...width of spectral peaks of atomic force microscopy (AFM) resonators as they are brought close to a surface. 39 Approved for public release...alternating current AD Allan Deviation AFM atomic force microscopy AFRL Air Force Research Laboratory AlN aluminum nitride APN Anomalous Phase
Non-contact lateral force microscopy.
Weymouth, A J
2017-08-16
The goal of atomic force microscopy (AFM) is to measure the short-range forces that act between the tip and the surface. The signal recorded, however, includes long-range forces that are often an unwanted background. Lateral force microscopy (LFM) is a branch of AFM in which a component of force perpendicular to the surface normal is measured. If we consider the interaction between tip and sample in terms of forces, which have both direction and magnitude, then we can make a very simple yet profound observation: over a flat surface, long-range forces that do not yield topographic contrast have no lateral component. Short-range interactions, on the other hand, do. Although contact-mode is the most common LFM technique, true non-contact AFM techniques can be applied to perform LFM without the tip depressing upon the sample. Non-contact lateral force microscopy (nc-LFM) is therefore ideal to study short-range forces of interest. One of the first applications of nc-LFM was the study of non-contact friction. A similar setup is used in magnetic resonance force microscopy to detect spin flipping. More recently, nc-LFM has been used as a true microscopy technique to systems unsuitable for normal force microscopy.
Miyata, Kazuki; Tracey, John; Miyazawa, Keisuke; Haapasilta, Ville; Spijker, Peter; Kawagoe, Yuta; Foster, Adam S; Tsukamoto, Katsuo; Fukuma, Takeshi
2017-07-12
The microscopic understanding of the crystal growth and dissolution processes have been greatly advanced by the direct imaging of nanoscale step flows by atomic force microscopy (AFM), optical interferometry, and X-ray microscopy. However, one of the most fundamental events that govern their kinetics, namely, atomistic events at the step edges, have not been well understood. In this study, we have developed high-speed frequency modulation AFM (FM-AFM) and enabled true atomic-resolution imaging in liquid at ∼1 s/frame, which is ∼50 times faster than the conventional FM-AFM. With the developed AFM, we have directly imaged subnanometer-scale surface structures around the moving step edges of calcite during its dissolution in water. The obtained images reveal that the transition region with typical width of a few nanometers is formed along the step edges. Building upon insight in previous studies, our simulations suggest that the transition region is most likely to be a Ca(OH) 2 monolayer formed as an intermediate state in the dissolution process. On the basis of this finding, we improve our understanding of the atomistic dissolution model of calcite in water. These results open up a wide range of future applications of the high-speed FM-AFM to the studies on various dynamic processes at solid-liquid interfaces with true atomic resolution.
Owen, R J; Heyes, C D; Knebel, D; Röcker, C; Nienhaus, G U
2006-07-01
In recent years, the study of single biomolecules using fluorescence microscopy and atomic force microscopy (AFM) techniques has resulted in a plethora of new information regarding the physics underlying these complex biological systems. It is especially advantageous to be able to measure the optical, topographical, and mechanical properties of single molecules simultaneously. Here an AFM is used that is especially designed for integration with an inverted optical microscope and that has a near-infrared light source (850 nm) to eliminate interference between the optical experiment and the AFM operation. The Tip Assisted Optics (TAO) system consists of an additional 100 x 100-microm(2) X-Y scanner for the sample, which can be independently and simultaneously used with the AFM scanner. This allows the offset to be removed between the confocal optical image obtained with the sample scanner and the simultaneously acquired AFM topography image. The tip can be positioned exactly into the optical focus while the user can still navigate within the AFM image for imaging or manipulation of the sample. Thus the tip-enhancement effect can be maximized and it becomes possible to perform single molecule manipulation experiments within the focus of a confocal optical image. Here this is applied to simultaneous measurement of single quantum dot fluorescence and topography with high spatial resolution. (c) 2006 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Tsukamoto, Kazumi; Kuwazaki, Seigo; Yamamoto, Kimiko; Shichiri, Motoharu; Yoshino, Tomoyuki; Ohtani, Toshio; Sugiyama, Shigeru
2006-03-01
We have developed a method for dissecting chromosome fragments with a size of a few hundred nanometers by atomic force microscopy (AFM). By using this method, we demonstrated reproducible dissections of silkworm chromosomes in the pachytene phase. The dissected fragments were successfully recovered on the cantilever tips, as confirmed by fluorescent microscopy using fluorescent stained chromosomes. To recover dissected chromosome fragments from a larger chromosome, such as the human metaphase chromosome of a somatic cell, heat denaturation was found to be effective. Further improvements in this method may lead to a novel tool for isolating valuable genes and/or investigating local genome structures in the near future.
High-Speed Atomic Force Microscopy
NASA Astrophysics Data System (ADS)
Ando, Toshio; Uchihashi, Takayuki; Kodera, Noriyuki
2012-08-01
The technology of high-speed atomic force microscopy (HS-AFM) has reached maturity. HS-AFM enables us to directly visualize the structure and dynamics of biological molecules in physiological solutions at subsecond to sub-100 ms temporal resolution. By this microscopy, dynamically acting molecules such as myosin V walking on an actin filament and bacteriorhodopsin in response to light are successfully visualized. High-resolution molecular movies reveal the dynamic behavior of molecules in action in great detail. Inferences no longer have to be made from static snapshots of molecular structures and from the dynamic behavior of optical markers attached to biomolecules. In this review, we first describe theoretical considerations for the highest possible imaging rate, then summarize techniques involved in HS-AFM and highlight recent imaging studies. Finally, we briefly discuss future challenges to explore.
NASA Astrophysics Data System (ADS)
Neish, Calum S.; Martin, Ian L.; Davies, Martin; Henderson, Robert M.; Edwardson, J. Michael
2003-08-01
We have developed an atomic force microscopy (AFM)-based method for the determination of the subunit architecture of ionotropic receptors, and tested the method using the GABAA receptor as a model system. The most common form of the GABAA receptor probably consists of 2alpha1-, 2beta2- and 1gamma2-subunits. We show here that the arrangement of subunits around the central Cl- ion channel can be deduced by AFM of receptors tagged with subunit-specific antibodies. Transfection of cells with DNA encoding alpha1-, beta2- and gamma2-subunits resulted in the production of receptors containing all three subunits, as judged by both immunoblot analysis and the binding of [3H]-Ro15-1788, a specific radioligand for the GABAA receptor. A His6-tag on the alpha1-subunit was used to purify the receptor from membrane fractions of transfected cells. After incubation with anti-His6 immunoglobulin G, some receptors became tagged with either one or two antibody molecules. AFM analysis of complexes containing two bound antibodies showed that the most common angle between the two tags was 135°, close to the value of 144° expected if the two alpha-subunits are separated by a third subunit. This method is applicable to the complete elucidation of the subunit arrangement around the GABAA receptor rosette, and can also be applied to other ionotropic receptors.
Simulated structure and imaging of NTCDI on Si(1 1 1)-7 × 7 : a combined STM, NC-AFM and DFT study
NASA Astrophysics Data System (ADS)
Jarvis, S. P.; Sweetman, A. M.; Lekkas, I.; Champness, N. R.; Kantorovich, L.; Moriarty, P.
2015-02-01
The adsorption of naphthalene tetracarboxylic diimide (NTCDI) on Si(1 1 1)-7 × 7 is investigated through a combination of scanning tunnelling microscopy (STM), noncontact atomic force microscopy (NC-AFM) and density functional theory (DFT) calculations. We show that NTCDI adopts multiple planar adsorption geometries on the Si(1 1 1)-7 × 7 surface which can be imaged with intramolecular bond resolution using NC-AFM. DFT calculations reveal adsorption is dominated by covalent bond formation between the molecular oxygen atoms and the surface silicon adatoms. The chemisorption of the molecule is found to induce subtle distortions to the molecular structure, which are observed in NC-AFM images.
NASA Technical Reports Server (NTRS)
Cantrell, John H., Jr.; Cantrell, Sean A.
2008-01-01
A comprehensive analytical model of the interaction of the cantilever tip of the atomic force microscope (AFM) with the sample surface is developed that accounts for the nonlinearity of the tip-surface interaction force. The interaction is modeled as a nonlinear spring coupled at opposite ends to linear springs representing cantilever and sample surface oscillators. The model leads to a pair of coupled nonlinear differential equations that are solved analytically using a standard iteration procedure. Solutions are obtained for the phase and amplitude signals generated by various acoustic-atomic force microscope (A-AFM) techniques including force modulation microscopy, atomic force acoustic microscopy, ultrasonic force microscopy, heterodyne force microscopy, resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM), and the commonly used intermittent contact mode (TappingMode) generally available on AFMs. The solutions are used to obtain a quantitative measure of image contrast resulting from variations in the Young modulus of the sample for the amplitude and phase images generated by the A-AFM techniques. Application of the model to RDF-AFUM and intermittent soft contact phase images of LaRC-cp2 polyimide polymer is discussed. The model predicts variations in the Young modulus of the material of 24 percent from the RDF-AFUM image and 18 percent from the intermittent soft contact image. Both predictions are in good agreement with the literature value of 21 percent obtained from independent, macroscopic measurements of sheet polymer material.
NASA Astrophysics Data System (ADS)
Corvaglia, Stefania; Sanavio, Barbara; Sorce, Barbara; Bosco, Alessandro; Sabella, Stefania; Pompa, Pierpaolo; Scoles, Giacinto; Casalis, Loredana
2015-03-01
Intrinsically Disordered Proteins (IDPs) are characterized by the lack of well-defined 3-D structure and show high conformational plasticity. For this reason, they are a strong challenge for the traditional characterization of structure, supramolecular assembly and biorecognition phenomena. We show here how the fine tuning of protein orientation on a surface turns useful in the reliable testing of biorecognition interactions of IDPs, in particular α-Synuclein. We exploited atomic force microscopy (AFM) for the selective, nanoscale confinement of α-Synuclein on gold to study the early stages of α-Synuclein aggregation and the effect of small molecules, like dopamine, on the aggregation process. Capitalizing on the high sensitivity of AFM topographic height measurements we determined, for the first time in the literature, the dissociation constant of dopamine- α-Synuclein adducts.
NASA Astrophysics Data System (ADS)
Corvaglia, Stefania; Sanavio, Barbara; Hong Enriquez, Rolando P.; Sorce, Barbara; Bosco, Alessandro; Scaini, Denis; Sabella, Stefania; Pompa, Pier Paolo; Scoles, Giacinto; Casalis, Loredana
2014-06-01
Intrinsically Disordered Proteins (IDPs) are characterized by the lack of well-defined 3-D structure and show high conformational plasticity. For this reason, they are a strong challenge for the traditional characterization of structure, supramolecular assembly and biorecognition phenomena. We show here how the fine tuning of protein orientation on a surface turns useful in the reliable testing of biorecognition interactions of IDPs, in particular α-Synuclein. We exploited atomic force microscopy (AFM) for the selective, nanoscale confinement of α-Synuclein on gold to study the early stages of α-Synuclein aggregation and the effect of small molecules, like dopamine, on the aggregation process. Capitalizing on the high sensitivity of AFM topographic height measurements we determined, for the first time in the literature, the dissociation constant of dopamine-α-Synuclein adducts.
Tatlybaeva, Elena B; Nikiyan, Hike N; Vasilchenko, Alexey S; Deryabin, Dmitri G
2013-01-01
The labelling of functional molecules on the surface of bacterial cells is one way to recognize the bacteria. In this work, we have developed a method for the selective labelling of protein A on the cell surfaces of Staphylococcus aureus by using nanosized immunogold conjugates as cell-surface markers for atomic force microscopy (AFM). The use of 30-nm size Au nanoparticles conjugated with immunoglobulin G (IgG) allowed the visualization, localization and distribution of protein A-IgG complexes on the surface of S. aureus. The selectivity of the labelling method was confirmed in mixtures of S. aureus with Bacillus licheniformis cells, which differed by size and shape and had no IgG receptors on the surface. A preferential binding of the IgG-Au conjugates to S. aureus was obtained. Thus, this novel approach allows the identification of protein A and other IgG receptor-bearing bacteria, which is useful for AFM indication of pathogenic microorganisms in poly-component associations.
ERIC Educational Resources Information Center
Phuapaiboon, Unchada; Panijpan, Bhinyo; Osotchan, Tanakorn
2009-01-01
This study was conducted to examine the results of using a low-cost hands-on setup in combination with accompanying activities to promote understanding of the contact mode of atomic force microscopy (AFM). This contact mode setup enabled learners to study how AFM works by hand scanning using probing cantilevers with different characteristics on…
Direct AFM observation of an opening event of a DNA cuboid constructed via a prism structure.
Endo, Masayuki; Hidaka, Kumi; Sugiyama, Hiroshi
2011-04-07
A cuboid structure was constructed using a DNA origami design based on a square prism structure. The structure was characterized by atomic force microscopy (AFM) and dynamic light scattering. The real-time opening event of the cuboid was directly observed by high-speed AFM.
Measuring nanoscale viscoelastic parameters of cells directly from AFM force-displacement curves.
Efremov, Yuri M; Wang, Wen-Horng; Hardy, Shana D; Geahlen, Robert L; Raman, Arvind
2017-05-08
Force-displacement (F-Z) curves are the most commonly used Atomic Force Microscopy (AFM) mode to measure the local, nanoscale elastic properties of soft materials like living cells. Yet a theoretical framework has been lacking that allows the post-processing of F-Z data to extract their viscoelastic constitutive parameters. Here, we propose a new method to extract nanoscale viscoelastic properties of soft samples like living cells and hydrogels directly from conventional AFM F-Z experiments, thereby creating a common platform for the analysis of cell elastic and viscoelastic properties with arbitrary linear constitutive relations. The method based on the elastic-viscoelastic correspondence principle was validated using finite element (FE) simulations and by comparison with the existed AFM techniques on living cells and hydrogels. The method also allows a discrimination of which viscoelastic relaxation model, for example, standard linear solid (SLS) or power-law rheology (PLR), best suits the experimental data. The method was used to extract the viscoelastic properties of benign and cancerous cell lines (NIH 3T3 fibroblasts, NMuMG epithelial, MDA-MB-231 and MCF-7 breast cancer cells). Finally, we studied the changes in viscoelastic properties related to tumorigenesis including TGF-β induced epithelial-to-mesenchymal transition on NMuMG cells and Syk expression induced phenotype changes in MDA-MB-231 cells.
NASA Astrophysics Data System (ADS)
Morton, Kirstin Claire
Carbon is one of the most remarkable elements due to its wide abundance on Earth and its many allotropes, which include diamond and graphite. Many carbon allotropes are conductive and in recent decades scientists have discovered and synthesized many new forms of carbon, including graphene and carbon nanotubes. The work in this thesis specifically focuses on the fabrication and characterization of pyrolyzed parylene C (PPC), a conductive pyrocarbon, as an electrode material for diodes, as a conductive coating for atomic force microscopy (AFM) probes and as an ultramicroelectrode (UME) for the electrochemical interrogation of cellular systems in vitro. Herein, planar and three-dimensional (3D) PPC electrodes were microscopically, spectroscopically and electrochemically characterized. First, planar PPC films and PPC-coated nanopipettes were utilized to detect a model redox species, Ru(NH3) 6Cl3. Then, free-standing PPC thin films were chemically doped, with hydrazine and concentrated nitric acid, to yield p- and n-type carbon films. Doped PPC thin films were positioned in conjunction with doped silicon to create Schottky and p-n junction diodes for use in an alternating current half-wave rectifier circuit. Pyrolyzed parylene C has found particular merit as a 3D electrode coating of AFM probes. Current sensing-atomic force microscopy imaging in air of nanoscale metallic features was undertaken to demonstrate the electronic imaging applicability of PPC AFM probes. Upon further insulation with parylene C and modification with a focused ion beam, a PPC UME was microfabricated near the AFM probe apex and utilized for electrochemical imaging. Subsequently, scanning electrochemical microscopy-atomic force microscopy imaging was undertaken to electrochemically quantify and image the spatial location of dopamine exocytotic release, elicited mechanically via the AFM probe itself, from differentiated pheochromocytoma 12 cells in vitro.
Unraveling DNA dynamics using atomic force microscopy.
Suzuki, Yuki; Yoshikawa, Yuko; Yoshimura, Shige H; Yoshikawa, Kenichi; Takeyasu, Kunio
2011-01-01
The elucidation of structure-function relationships of biological samples has become important issue in post-genomic researches. In order to unveil the molecular mechanisms controlling gene regulations, it is essential to understand the interplay between fundamental DNA properties and the dynamics of the entire molecule. The wide range of applicability of atomic force microscopy (AFM) has allowed us to extract physicochemical properties of DNA and DNA-protein complexes, as well as to determine their topographical information. Here, we review how AFM techniques have been utilized to study DNA and DNA-protein complexes and what types of analyses have accelerated the understanding of the DNA dynamics. We begin by illustrating the application of AFM to investigate the fundamental feature of DNA molecules; topological transition of DNA, length dependent properties of DNA molecules, flexibility of double-stranded DNA, and capability of the formation of non-Watson-Crick base pairing. These properties of DNA are critical for the DNA folding and enzymatic reactions. The technical advancement in the time-resolution of AFM and sample preparation methods enabled visual analysis of DNA-protein interactions at sub-second time region. DNA tension-dependent enzymatic reaction and DNA looping dynamics by restriction enzymes were examined at a nanoscale in physiological environments. Contribution of physical properties of DNA to dynamics of nucleosomes and transition of the higher-order structure of reconstituted chromatin are also reviewed. Copyright © 2011 John Wiley & Sons, Inc.
AFM and SEM study of the effects of etching on IPS-Empress 2 TM dental ceramic
NASA Astrophysics Data System (ADS)
Luo, X.-P.; Silikas, N.; Allaf, M.; Wilson, N. H. F.; Watts, D. C.
2001-10-01
The aim of this study was to investigate the effects of increasing etching time on the surface of the new dental material, IPS-Empress 2 TM glass ceramic. Twenty one IPS-Empress 2 TM glass ceramic samples were made from IPS-Empress 2 TM ingots through lost-wax, hot-pressed ceramic fabrication technology. All samples were highly polished and cleaned ultrasonically for 5 min in acetone before and after etching with 9.6% hydrofluoric acid gel. The etching times were 0, 10, 20, 30, 60, 90 and 120 s respectively. Microstructure was analysed by scanning electron microscopy (SEM) and atomic force microscopy (AFM) was used to evaluate the surface roughness and topography. Observations with SEM showed that etching with hydrofluoric acid resulted in preferential dissolution of glass matrix, and that partially supported crystals within the glass matrix were lost with increasing etching time. AFM measurements indicated that etching increased the surface roughness of the glass-ceramic. A simple least-squares linear regression was used to establish a relationship between surface roughness parameters ( Ra, RMS), and etching time, for which r2>0.94. This study demonstrates the benefits of combining two microscopic methods for a better understanding of the surface. SEM showed the mode of action of hydrofluoric acid on the ceramic and AFM provided valuable data regarding the extent of surface degradation relative to etching time.
NASA Astrophysics Data System (ADS)
Waddell, J.; Ou, R.; Capozzi, C. J.; Gupta, S.; Parker, C. A.; Gerhardt, R. A.; Seal, K.; Kalinin, S. V.; Baddorf, A. P.
2009-12-01
Composite specimens possessing polyhedral segregated network microstructures require a very small amount of nanosize filler, <1 vol %, to reach percolation because percolation occurs by accumulation of the fillers along the edges of the deformed polymer matrix particles. In this paper, electrostatic force microscopy (EFM) and conductive atomic force microscopy (C-AFM) were used to confirm the location of the nanosize fillers and the corresponding percolating paths in polymethyl methacrylate/carbon black composites. The EFM and C-AFM images revealed that the polyhedral polymer particles were coated with filler, primarily on the edges as predicted by the geometric models provided.
Atomic force microscopy of lead iodide crystal surfaces
NASA Astrophysics Data System (ADS)
George, M. A.; Azoulay, M.; Jayatirtha, H. N.; Biao, Y.; Burger, A.; Collins, W. E.; Silberman, E.
1994-03-01
Atomic force microscopy (AFM) was used to characterize the surface of lead iodide crystals. The high vapor pressure of lead iodide prohibits the use of traditional high resolution surface study techniques that require high vacuum conditions. AFM was used to image numerous insulating surface in various ambients, with very little sample preparation techniques needed. Freshly cleaved and modified surfaces, including, chemical and vacuum etched, and air aged surfaces, were examined. Both intrinsic and induced defects were imaged with high resolution. The results were compared to a similar AFM study of mercuric iodide surfaces and it was found that, at ambient conditions, lead iodide is significantly more stable than mercuric iodide.
CO tip functionalization in subatomic resolution atomic force microscopy
NASA Astrophysics Data System (ADS)
Kim, Minjung; Chelikowsky, James R.
2015-10-01
Noncontact atomic force microscopy (nc-AFM) employing a CO-functionalized tip displays dramatically enhanced resolution wherein covalent bonds of polycyclic aromatic hydrocarbon can be imaged. Employing real-space pseudopotential first-principles calculations, we examine the role of CO in functionalizing the nc-AFM tip. Our calculations allow us to simulate full AFM images and ascertain the enhancement mechanism of the CO molecule. We consider two approaches: one with an explicit inclusion of the CO molecule and one without. By comparing our simulations to existing experimental images, we ascribe the enhanced resolution of the CO functionalized tip to the special orbital characteristics of the CO molecule.
NASA Astrophysics Data System (ADS)
Lee, Junsu; Kim, Minjung; Chelikowsky, James R.; Kim, Gunn
2016-07-01
Using ab initio density functional calculations, we predict subatomic-resolution atomic force microscopy (AFM) and scanning tunneling microscopy (STM) images of vertical heterostructures of graphene/hexagonal boron nitride (h-BN) with an intercalated metal atom (Li, K, Cr, Mn, Co, or Cu), and study the effects of the extrinsic metal defect on the interfacial coupling. We find that the structural deformation of the graphene/h-BN layer caused by the metal defect strongly affects the AFM images, whereas orbital hybridization between the metal defect and the graphene/h-BN layer characterizes the STM images.
CO tip functionalization in subatomic resolution atomic force microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Minjung; Chelikowsky, James R.
2015-10-19
Noncontact atomic force microscopy (nc-AFM) employing a CO-functionalized tip displays dramatically enhanced resolution wherein covalent bonds of polycyclic aromatic hydrocarbon can be imaged. Employing real-space pseudopotential first-principles calculations, we examine the role of CO in functionalizing the nc-AFM tip. Our calculations allow us to simulate full AFM images and ascertain the enhancement mechanism of the CO molecule. We consider two approaches: one with an explicit inclusion of the CO molecule and one without. By comparing our simulations to existing experimental images, we ascribe the enhanced resolution of the CO functionalized tip to the special orbital characteristics of the CO molecule.
A beginner's guide to atomic force microscopy probing for cell mechanics
2016-01-01
Abstract Atomic Force microscopy (AFM) is becoming a prevalent tool in cell biology and biomedical studies, especially those focusing on the mechanical properties of cells and tissues. The newest generation of bio‐AFMs combine ease of use and seamless integration with live‐cell epifluorescence or more advanced optical microscopies. As a unique feature with respect to other bionanotools, AFM provides nanometer‐resolution maps for cell topography, stiffness, viscoelasticity, and adhesion, often overlaid with matching optical images of the probed cells. This review is intended for those about to embark in the use of bio‐AFMs, and aims to assist them in designing an experiment to measure the mechanical properties of adherent cells. In addition to describing the main steps in a typical cell mechanics protocol and explaining how data is analysed, this review will also discuss some of the relevant contact mechanics models available and how they have been used to characterize specific features of cellular and biological samples. Microsc. Res. Tech. 80:75–84, 2017. © 2016 Wiley Periodicals, Inc. PMID:27676584
Applications of AFM for atomic manipulation and spectroscopy
NASA Astrophysics Data System (ADS)
Custance, Oscar
2009-03-01
Since the first demonstration of atom-by-atom assembly [1], atomic manipulation with scanning tunneling microscopy has yielded stunning realizations in nanoscience. A new exciting panorama has been recently opened with the possibility of manipulating atoms at surfaces using atomic force microscopy (AFM) [2-5]. In this talk, we will present two different approaches that enable patterning structures at semiconductor surfaces by manipulating individual atoms with AFM and at room temperature [2, 3]. We will discuss the physics behind each protocol through the analysis of the measured forces associated with these manipulations [3-5]. Another challenging issue in scanning probe microscopy is the ability to disclose the local chemical composition of a multi-element system at atomic level. Here, we will introduce a single-atom chemical identification method, which is based on detecting the forces between the outermost atom of the AFM tip and the atoms at a surface [6]. We demonstrate this identification procedure on a particularly challenging system, where any discrimination attempt based solely on topographic measurements would be impossible to achieve. [4pt] References: [0pt] [1] D. M. Eigler and E. K. Schweizer, Nature 344, 524 (1990); [0pt] [2] Y. Sugimoto, M. Abe, S. Hirayama, N. Oyabu, O. Custance and S. Morita, Nature Materials 4, 156 (2005); [0pt] [3] Y. Sugimoto, P. Pou, O. Custance, P. Jelinek, M. Abe, R. Perez and S. Morita, Science 322, 413 (2008); [0pt] [4] Y. Sugimoto, P. Jelinek, P. Pou, M. Abe, S. Morita, R. Perez and O. Custance, Phys. Rev. Lett. 98, 106104 (2007); [0pt] [5] M. Ternes, C. P. Lutz, C. F. Hirjibehedin, F. J. Giessibl and A. J. Heinrich, Science 319, 1066 (2008); [0pt] [6] Y. Sugimoto, P. Pou, M. Abe, P. Jelinek, R. Perez, S. Morita, and O. Custance, Nature 446, 64 (2007)
Gaikwad, Ravi M.; Dokukin, Maxim E.; Iyer, K. Swaminathan; Woodworth, Craig D.; Volkov, Dmytro O.; Sokolov, Igor
2012-01-01
Here we describe a non-traditional method to identify cancerous human cervical epithelial cells in a culture dish based on physical interaction between silica beads and cells. It is a simple optical fluorescence-based technique which detects the relative difference in the amount of fluorescent silica beads physically adherent to surfaces of cancerous and normal cervical cells. The method utilizes the centripetal force gradient that occurs in a rotating culture dish. Due to the variation in the balance between adhesion and centripetal forces, cancerous and normal cells demonstrate clearly distinctive distributions of the fluorescent particles adherent to the cell surface over the culture dish. The method demonstrates higher adhesion of silica particles to normal cells compared to cancerous cells. The difference in adhesion was initially observed by atomic force microscopy (AFM). The AFM data were used to design the parameters of the rotational dish experiment. The optical method that we describe is much faster and technically simpler than AFM. This work provides proof of the concept that physical interactions can be used to accurately discriminate normal and cancer cells. PMID:21305062
NASA Astrophysics Data System (ADS)
Akiyama, Terunobu; Staufer, Urs; Rooij, Nico F. de
2002-06-01
A microfabricated, electrical connector is proposed for facilitating the mounting of atomic force microscopy (AFM) probes, which have an integrated sensor and/or actuator. Only a base chip, which acts as a socket, is permanently fixed onto a printed circuit board and electronically connected by standard wire bonding. The AFM chip, the “plug”, is flipped onto the base chip and pressed from the backside by a spring. Electrical contact with the eventual stress sensors, capacitive or piezoelectric sensor/actuators, is provided by contact bumps. These bumps of about 8 μm height are placed onto the base chip. They touch the pads on the AFM chip that were originally foreseen to be for wire bonding and thus provide the electrical contact. This connector schema was successfully used to register AFM images with piezoresistive cantilevers.
Quantitative force measurements in liquid using frequency modulation atomic force microscopy
NASA Astrophysics Data System (ADS)
Uchihashi, Takayuki; Higgins, Michael J.; Yasuda, Satoshi; Jarvis, Suzanne P.; Akita, Seiji; Nakayama, Yoshikazu; Sader, John E.
2004-10-01
The measurement of short-range forces with the atomic force microscope (AFM) typically requires implementation of dynamic techniques to maintain sensitivity and stability. While frequency modulation atomic force microscopy (FM-AFM) is used widely for high-resolution imaging and quantitative force measurements in vacuum, quantitative force measurements using FM-AFM in liquids have proven elusive. Here we demonstrate that the formalism derived for operation in vacuum can also be used in liquids, provided certain modifications are implemented. To facilitate comparison with previous measurements taken using surface forces apparatus, we choose a model system (octamethylcyclotetrasiloxane) that is known to exhibit short-ranged structural ordering when confined between two surfaces. Force measurements obtained are found to be in excellent agreement with previously reported results. This study therefore establishes FM-AFM as a powerful tool for the quantitative measurement of forces in liquid.
NASA Astrophysics Data System (ADS)
Moores, A. N.; Cadby, A. J.
2018-02-01
Correlative fluorescence and atomic force microscopy (AFM) imaging is a highly attractive technique for use in biological imaging, enabling force and mechanical measurements of particular structures whose locations are known due to the specificity of fluorescence imaging. The ability to perform these two measurements simultaneously (rather than consecutively with post-processing correlation) is highly valuable because it would allow the mechanical properties of a structure to be tracked over time as changes in the sample occur. We present an instrument which allows simultaneous AFM and fluorescence imaging by aligning an incident fluorescence excitation beam with an AFM-tip. Alignment was performed by calibrating a 2D galvanometer present in the excitation beam path and using it to reposition the incident beam. Two programs were developed (one manual and one automated) which correlate sample features between the AFM and fluorescence images, calculating the distance required to translate the incident beam towards the AFM-tip. Using this method, we were able to obtain beam-tip alignment (and therefore field-of-view alignment) from an offset of >15 μm to within one micron in two iterations of the program. With the program running alongside data acquisition for real-time feedback between AFM and optical images, this offset was maintained over a time period of several hours. Not only does this eliminate the need to image large areas with both techniques to ensure that fields-of-view overlap, but it also raises the possibility of using this instrument for tip-enhanced fluorescence applications, a technique in which super-resolution images have previously been achieved.
Crystal Growth of Undoped and Doped ZnSe
NASA Technical Reports Server (NTRS)
Davis, Swanson L.; Chen, K.-T.; George, M. A.; Shi, D. T.; Collins, W. E.; Burger, Arnold
1997-01-01
The surface morphology of freshly cleaved ZnSe single crystal grown by the physical vapor transport (PVT) method was investigated by Atomic Force Microscopy (AFM) and the results were correlated with Differential Scanning Calorimetry (DSC) data. Selenium precipitates have been revealed in undoped doped ZnSe crystals having a size of about 50 nm. A transition temperature around 221 C in the DSC measurements is interpreted as the eutectic temperature of Se-saturated ZnSe. The AFM images of doped ZnSe also show that possible Cr clusters are uniformly distributed and they have an estimated size of about 6 nm.
Probing lipid membrane electrostatics
NASA Astrophysics Data System (ADS)
Yang, Yi
The electrostatic properties of lipid bilayer membranes play a significant role in many biological processes. Atomic force microscopy (AFM) is highly sensitive to membrane surface potential in electrolyte solutions. With fully characterized probe tips, AFM can perform quantitative electrostatic analysis of lipid membranes. Electrostatic interactions between Silicon nitride probes and supported zwitterionic dioleoylphosphatidylcholine (DOPC) bilayer with a variable fraction of anionic dioleoylphosphatidylserine (DOPS) were measured by AFM. Classical Gouy-Chapman theory was used to model the membrane electrostatics. The nonlinear Poisson-Boltzmann equation was numerically solved with finite element method to provide the potential distribution around the AFM tips. Theoretical tip-sample electrostatic interactions were calculated with the surface integral of both Maxwell and osmotic stress tensors on tip surface. The measured forces were interpreted with theoretical forces and the resulting surface charge densities of the membrane surfaces were in quantitative agreement with the Gouy-Chapman-Stern model of membrane charge regulation. It was demonstrated that the AFM can quantitatively detect membrane surface potential at a separation of several screening lengths, and that the AFM probe only perturbs the membrane surface potential by <2%. One important application of this technique is to estimate the dipole density of lipid membrane. Electrostatic analysis of DOPC lipid bilayers with the AFM reveals a repulsive force between the negatively charged probe tips and the zwitterionic lipid bilayers. This unexpected interaction has been analyzed quantitatively to reveal that the repulsion is due to a weak external field created by the internai membrane dipole moment. The analysis yields a dipole moment of 1.5 Debye per lipid with a dipole potential of +275 mV for supported DOPC membranes. This new ability to quantitatively measure the membrane dipole density in a noninvasive manner will be useful in identifying the biological effects of the dipole potential. Finally, heterogeneous model membranes were studied with fluid electric force microscopy (FEFM). Electrostatic mapping was demonstrated with 50 nm resolution. The capabilities of quantitative electrostatic measurement and lateral charge density mapping make AFM a unique and powerful probe of membrane electrostatics.
Atomic force microscopy nanomanipulation of silicon nanocrystals for nanodevice fabrication
NASA Astrophysics Data System (ADS)
Decossas, Sébastien; Mazen, Frédéric; Baron, Thierry; Brémond, Georges; Souifi, Abdelkader
2003-12-01
An atomic force microscopy (AFM) tip has been used to manipulate silicon nanocrystals deposited by low-pressure chemical vapour deposition on thermally oxidized p-type Si wafer. Three nanomanipulation methods are presented. The first one catches a nanocrystal with the AFM tip and deposits it elsewhere: the tip is used as an electrostatic 'nano-crane'. The second one simultaneously manipulates a set of nanocrystals in order to draw well-defined unidimensional lines: the tip is used as a 'nano-broom'. The third one manipulates individual nanocrystals with a precision of about 10 nm using both oscillating and contact AFM modes. Switching from strong interaction forces (chemical) to weak ones (van der Waals, electrostatic or capillarity) is the basis of these manipulation methods. We have applied the second method to connect two electrodes drawn by e-beam and lift-off with a 70 nm long silicon nanocrystal chain. Current versus voltage characterization of the nanofabricated device shows that the increase in nanocrystal density gives rise to conduction between the connected electrodes. Resonant tunnelling effects resulting from Si nanocrystal (nc-Si) multiple tunnel junctions have been observed at 300 K. We also show that offset charges directly influence the position of the resonant tunnelling peaks. Finally, the possibility of manipulating nc-Si with a diameter of around 5 nm is shown to be a promising way to fabricate single electron devices operating at room temperature and fully compatible with silicon technology.
Ahmad, Mariam; Andersen, Frederik; Brend Bech, Ári; Bendixen, H. Krestian L.; Nawrocki, Patrick R.; Bloch, Anders J.; Bora, Ilkay; Bukhari, Tahreem A.; Bærentsen, Nicolai V.; Carstensen, Jens; Chima, Smeeah; Colberg, Helene; Dahm, Rasmus T.; Daniels, Joshua A.; Dinckan, Nermin; El Idrissi, Mohamed; Erlandsen, Ricci; Førster, Marc; Ghauri, Yasmin; Gold, Mikkel; Hansen, Andreas; Hansen, Kenn; Helmsøe-Zinck, Mathias; Henriksen, Mathias; Hoffmann, Sophus V.; Hyllested, Louise O. H.; Jensen, Casper; Kallenbach, Amalie S.; Kaur, Kirandip; Khan, Suheb R.; Kjær, Emil T. S.; Kristiansen, Bjørn; Langvad, Sylvester; Lund, Philip M.; Munk, Chastine F.; Møller, Theis; Nehme, Ola M. Z.; Nejrup, Mathilde Rove; Nexø, Louise; Nielsen, Simon Skødt Holm; Niemeier, Nicolai; Nikolajsen, Lasse V.; Nøhr, Peter C. T.; Skaarup Ovesen, Jacob; Paustian, Lucas; Pedersen, Adam S.; Petersen, Mathias K.; Poulsen, Camilla M.; Praeger-Jahnsen, Louis; Qureshi, L. Sonia; Schiermacher, Louise S.; Simris, Martin B.; Smith, Gorm; Smith, Heidi N.; Sonne, Alexander K.; Zenulovic, Marko R.; Winther Sørensen, Alma; Vogt, Emil; Væring, Andreas; Westermann, Jonas; Özcan, Sevin B.
2018-01-01
Three series of ionic self-assembled materials based on anionic azo-dyes and cationic benzalkonium surfactants were synthesized and thin films were prepared by spin-casting. These thin films appear isotropic when investigated with polarized optical microscopy, although they are highly anisotropic. Here, three series of homologous materials were studied to rationalize this observation. Investigating thin films of ordered molecular materials relies to a large extent on advanced experimental methods and large research infrastructure. A statement that in particular is true for thin films with nanoscopic order, where X-ray reflectometry, X-ray and neutron scattering, electron microscopy and atom force microscopy (AFM) has to be used to elucidate film morphology and the underlying molecular structure. Here, the thin films were investigated using AFM, optical microscopy and polarized absorption spectroscopy. It was shown that by using numerical method for treating the polarized absorption spectroscopy data, the molecular structure can be elucidated. Further, it was shown that polarized optical spectroscopy is a general tool that allows determination of the molecular order in thin films. Finally, it was found that full control of thermal history and rigorous control of the ionic self-assembly conditions are required to reproducibly make these materials of high nanoscopic order. Similarly, the conditions for spin-casting are shown to be determining for the overall thin film morphology, while molecular order is maintained. PMID:29462883
Kühnel, Miguel R Carro-Temboury Martin; Ahmad, Mariam; Andersen, Frederik; Bech, Ári Brend; Bendixen, H Krestian L; Nawrocki, Patrick R; Bloch, Anders J; Bora, Ilkay; Bukhari, Tahreem A; Bærentsen, Nicolai V; Carstensen, Jens; Chima, Smeeah; Colberg, Helene; Dahm, Rasmus T; Daniels, Joshua A; Dinckan, Nermin; Idrissi, Mohamed El; Erlandsen, Ricci; Førster, Marc; Ghauri, Yasmin; Gold, Mikkel; Hansen, Andreas; Hansen, Kenn; Helmsøe-Zinck, Mathias; Henriksen, Mathias; Hoffmann, Sophus V; Hyllested, Louise O H; Jensen, Casper; Kallenbach, Amalie S; Kaur, Kirandip; Khan, Suheb R; Kjær, Emil T S; Kristiansen, Bjørn; Langvad, Sylvester; Lund, Philip M; Munk, Chastine F; Møller, Theis; Nehme, Ola M Z; Nejrup, Mathilde Rove; Nexø, Louise; Nielsen, Simon Skødt Holm; Niemeier, Nicolai; Nikolajsen, Lasse V; Nøhr, Peter C T; Orlowski, Dominik B; Overgaard, Marc; Ovesen, Jacob Skaarup; Paustian, Lucas; Pedersen, Adam S; Petersen, Mathias K; Poulsen, Camilla M; Praeger-Jahnsen, Louis; Qureshi, L Sonia; Ree, Nicolai; Schiermacher, Louise S; Simris, Martin B; Smith, Gorm; Smith, Heidi N; Sonne, Alexander K; Zenulovic, Marko R; Sørensen, Alma Winther; Sørensen, Karina; Vogt, Emil; Væring, Andreas; Westermann, Jonas; Özcan, Sevin B; Sørensen, Thomas Just
2018-02-15
Three series of ionic self-assembled materials based on anionic azo-dyes and cationic benzalkonium surfactants were synthesized and thin films were prepared by spin-casting. These thin films appear isotropic when investigated with polarized optical microscopy, although they are highly anisotropic. Here, three series of homologous materials were studied to rationalize this observation. Investigating thin films of ordered molecular materials relies to a large extent on advanced experimental methods and large research infrastructure. A statement that in particular is true for thin films with nanoscopic order, where X-ray reflectometry, X-ray and neutron scattering, electron microscopy and atom force microscopy (AFM) has to be used to elucidate film morphology and the underlying molecular structure. Here, the thin films were investigated using AFM, optical microscopy and polarized absorption spectroscopy. It was shown that by using numerical method for treating the polarized absorption spectroscopy data, the molecular structure can be elucidated. Further, it was shown that polarized optical spectroscopy is a general tool that allows determination of the molecular order in thin films. Finally, it was found that full control of thermal history and rigorous control of the ionic self-assembly conditions are required to reproducibly make these materials of high nanoscopic order. Similarly, the conditions for spin-casting are shown to be determining for the overall thin film morphology, while molecular order is maintained.
Hematite/silica nanoparticle bilayers on mica: AFM and electrokinetic characterization.
Morga, Maria; Adamczyk, Zbigniew; Kosior, Dominik; Oćwieja, Magdalena
2018-06-06
Quantitative studies on self-assembled hematite/silica nanoparticle (NP) bilayers on mica were performed by applying scanning electron microscopy (SEM), atomic force microscopy (AFM), and streaming potential measurements. The coverage of the supporting hematite layers was adjusted by changing the bulk concentration of the suspension and the deposition time. The coverage was determined by direct enumeration of deposited particles from AFM images and SEM micrographs. Afterward, silica nanoparticle monolayers were assembled under diffusion-controlled transport. A unique functional relationship was derived connecting the silica coverage with the hematite precursor layer coverage. The formation of the hematite monolayer and the hematite/silica bilayer was also monitored in situ by streaming potential measurements. It was confirmed that the zeta potential of the bilayers was independent of the supporting layer coverage, exceeding 0.15. These measurements were theoretically interpreted in terms of the general electrokinetic model that allowed for deriving a formula for calculating nanoparticle coverage in the bilayers. Additionally, from desorption experiments, the interactions among hematite/silica particles in the bilayers were determined using DLVO theory. These results facilitate the development of a robust method of preparing nanoparticle bilayers with controlled properties, with potential applications in catalytic processes.
Electron beam detection of a Nanotube Scanning Force Microscope.
Siria, Alessandro; Niguès, Antoine
2017-09-14
Atomic Force Microscopy (AFM) allows to probe matter at atomic scale by measuring the perturbation of a nanomechanical oscillator induced by near-field interaction forces. The quest to improve sensitivity and resolution of AFM forced the introduction of a new class of resonators with dimensions at the nanometer scale. In this context, nanotubes are the ultimate mechanical oscillators because of their one dimensional nature, small mass and almost perfect crystallinity. Coupled to the possibility of functionalisation, these properties make them the perfect candidates as ultra sensitive, on-demand force sensors. However their dimensions make the measurement of the mechanical properties a challenging task in particular when working in cavity free geometry at ambient temperature. By using a focused electron beam, we show that the mechanical response of nanotubes can be quantitatively measured while approaching to a surface sample. By coupling electron beam detection of individual nanotubes with a custom AFM we image the surface topography of a sample by continuously measuring the mechanical properties of the nanoresonators. The combination of very small size and mass together with the high resolution of the electron beam detection method offers unprecedented opportunities for the development of a new class of nanotube-based scanning force microscopy.
AFM-IR: Technology and Applications in Nanoscale Infrared Spectroscopy and Chemical Imaging.
Dazzi, Alexandre; Prater, Craig B
2016-12-13
Atomic force microscopy-based infrared spectroscopy (AFM-IR) is a rapidly emerging technique that provides chemical analysis and compositional mapping with spatial resolution far below conventional optical diffraction limits. AFM-IR works by using the tip of an AFM probe to locally detect thermal expansion in a sample resulting from absorption of infrared radiation. AFM-IR thus can provide the spatial resolution of AFM in combination with the chemical analysis and compositional imaging capabilities of infrared spectroscopy. This article briefly reviews the development and underlying technology of AFM-IR, including recent advances, and then surveys a wide range of applications and investigations using AFM-IR. AFM-IR applications that will be discussed include those in polymers, life sciences, photonics, solar cells, semiconductors, pharmaceuticals, and cultural heritage. In the Supporting Information , the authors provide a theoretical section that reviews the physics underlying the AFM-IR measurement and detection mechanisms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, Ryosuke; Okajima, Takaharu, E-mail: okajima@ist.hokudai.ac.jp
We present multi-frequency force modulation atomic force microscopy (AFM) for mapping the complex shear modulus G* of living cells as a function of frequency over the range of 50–500 Hz in the same measurement time as the single-frequency force modulation measurement. The AFM technique enables us to reconstruct image maps of rheological parameters, which exhibit a frequency-dependent power-law behavior with respect to G{sup *}. These quantitative rheological measurements reveal a large spatial variation in G* in this frequency range for single cells. Moreover, we find that the reconstructed images of the power-law rheological parameters are much different from those obtained inmore » force-curve or single-frequency force modulation measurements. This indicates that the former provide information about intracellular mechanical structures of the cells that are usually not resolved with the conventional force measurement methods.« less
Understanding Pt-ZnO:In Schottky nanocontacts by conductive atomic force microscopy
NASA Astrophysics Data System (ADS)
Chirakkara, Saraswathi; Choudhury, Palash Roy; Nanda, K. K.; Krupanidhi, S. B.
2016-04-01
Undoped and In doped ZnO (IZO) thin films are grown on Pt coated silicon substrates Pt/Si by pulsed laser deposition to fabricate Pt/ZnO:In Schottky diodes. The Schottky diodes were investigated by conventional two-probe current-voltage (I-V) measurements and by the I-V spectroscopy tool of conductive atomic force microscopy (C-AFM). The large deviation of the ideality factor from unity and the temperature dependent Schottky barrier heights (SBHs) obtained from the conventional method imply the presence of inhomogeneous interfaces. The inhomogeneity of SBHs is confirmed by C-AFM. Interestingly, the I-V curves at different points are found to be different, and the SBHs deduced from the point diodes reveal inhomogeneity at the nanoscale at the metal-semiconductor interface. A reduction in SBH and turn-on voltage along with enhancement in forward current are observed with increasing indium concentration.
Ramachandran, Gayathri
2017-01-01
Kinetic studies of tau fibril formation in vitro most commonly employ spectroscopic probes such as thioflavinT fluorescence and laser light scattering or negative stain transmission electron microscopy. Here, I describe the use of Fourier transform infrared (FTIR) spectroscopy, ultraviolet resonance Raman (UVRR) spectroscopy, and atomic force microscopy (AFM) as complementary probes for studies of tau aggregation. The sensitivity of vibrational spectroscopic techniques (FTIR and UVRR) to secondary structure content allows for measurement of conformational changes that occur when the intrinsically disordered protein tau transforms into cross-β-core containing fibrils. AFM imaging serves as a gentle probe of structures populated over the time course of tau fibrillization. Together, these assays help further elucidate the structural and mechanistic complexity inherent in tau fibril formation.
Rieti, S; Manni, V; Lisi, A; Giuliani, L; Sacco, D; D'Emilia, E; Cricenti, A; Generosi, R; Luce, M; Grimaldi, S
2004-01-01
In this study we have employed atomic force microscopy (AFM) and scanning near-field optical microscopy (SNOM) techniques to study the effect of the interaction between human keratinocytes (HaCaT) and electromagnetic fields at low frequency. HaCaT cells were exposed to a sinusoidal magnetic field at a density of 50 Hz, 1 mT. AFM analysis revealed modification in shape and morphology in exposed cells with an increase in the areas of adhesion between cells. This latter finding was confirmed by SNOM indirect immunofluorescence analysis performed with a fluorescent antibody against the adhesion marker beta4 integrin, which revealed an increase of beta4 integrin segregation in the cell membrane of 50-Hz exposed cells, suggesting that a higher percentage of these cells shows a modified pattern of this adhesion marker.
NASA Astrophysics Data System (ADS)
Ćelik, Ümit; Karcı, Özgür; Uysallı, Yiǧit; Özer, H. Özgür; Oral, Ahmet
2017-01-01
We describe a novel radiation pressure based cantilever excitation method for imaging in dynamic mode atomic force microscopy (AFM) for the first time. Piezo-excitation is the most common method for cantilever excitation, however it may cause spurious resonance peaks. Therefore, the direct excitation of the cantilever plays a crucial role in AFM imaging. A fiber optic interferometer with a 1310 nm laser was used both for the excitation of the cantilever at the resonance and the deflection measurement of the cantilever in a commercial low temperature atomic force microscope/magnetic force microscope (AFM/MFM) from NanoMagnetics Instruments. The laser power was modulated at the cantilever's resonance frequency by a digital Phase Locked Loop (PLL). The laser beam is typically modulated by ˜500 μW, and ˜141.8 nmpp oscillation amplitude is obtained in moderate vacuum levels between 4 and 300 K. We have demonstrated the performance of the radiation pressure excitation in AFM/MFM by imaging atomic steps in graphite, magnetic domains in CoPt multilayers between 4 and 300 K and Abrikosov vortex lattice in BSCCO(2212) single crystal at 4 K for the first time.
Çelik, Ümit; Karcı, Özgür; Uysallı, Yiğit; Özer, H Özgür; Oral, Ahmet
2017-01-01
We describe a novel radiation pressure based cantilever excitation method for imaging in dynamic mode atomic force microscopy (AFM) for the first time. Piezo-excitation is the most common method for cantilever excitation, however it may cause spurious resonance peaks. Therefore, the direct excitation of the cantilever plays a crucial role in AFM imaging. A fiber optic interferometer with a 1310 nm laser was used both for the excitation of the cantilever at the resonance and the deflection measurement of the cantilever in a commercial low temperature atomic force microscope/magnetic force microscope (AFM/MFM) from NanoMagnetics Instruments. The laser power was modulated at the cantilever's resonance frequency by a digital Phase Locked Loop (PLL). The laser beam is typically modulated by ∼500 μW, and ∼141.8 nm pp oscillation amplitude is obtained in moderate vacuum levels between 4 and 300 K. We have demonstrated the performance of the radiation pressure excitation in AFM/MFM by imaging atomic steps in graphite, magnetic domains in CoPt multilayers between 4 and 300 K and Abrikosov vortex lattice in BSCCO(2212) single crystal at 4 K for the first time.
Direct Force Measurements of Receptor-Ligand Interactions on Living Cells
NASA Astrophysics Data System (ADS)
Eibl, Robert H.
The characterization of cell adhesion between two living cells at the level of single receptor-ligand bonds is an experimental challenge. This chapter describes how the extremely sensitive method of atomic force microscopy (AFM) based force spectroscopy can be applied to living cells in order to probe for cell-to-cell or cell-to-substrate interactions mediated by single pairs of adhesion receptors. In addition, it is outlined how single-molecule AFM force spectroscopy can be used to detect physiologic changes of an adhesion receptor in a living cell. This force spectroscopy allows us to detect in living cells rapidly changing, chemokine SDF-1 triggered activation states of single VLA-4 receptors. This recently developed AFM application will allow for the detailed investigation of the integrin-chemokine crosstalk of integrin activation mechanisms and on how other adhesion receptors are modulated in health and disease. As adhesion molecules, living cells and even bacteria can be studied by single-molecule AFM force spectroscopy, this method is set to become a powerful tool that can not only be used in biophysics, but in cell biology as well as in immunology and cancer research.
Mitani, Yuji; Kubo, Mamoru; Muramoto, Ken-ichiro; Fukuma, Takeshi
2009-08-01
We have developed a wideband digital frequency detector for high-speed frequency modulation atomic force microscopy (FM-AFM). We used a subtraction-based phase comparator (PC) in a phase-locked loop circuit instead of a commonly used multiplication-based PC, which has enhanced the detection bandwidth to 100 kHz. The quantitative analysis of the noise performance revealed that the internal noise from the developed detector is small enough to provide the theoretically limited noise performance in FM-AFM experiments in liquid. FM-AFM imaging of mica in liquid was performed with the developed detector, showing its stability and applicability to true atomic-resolution imaging in liquid.
Zander, N.E.; Strawhecker, K.E.; Orlicki, J.A.; Rawlett, A.M.; Beebe, T.P.
2011-01-01
Poly(methylmethacrylate) (PMMA)- Polyacrylonitrile (PAN) fibers were prepared using a conventional single-nozzle electrospinning technique. The as-spun fibers exhibited core-shell morphology as verified by transmission electron microscopy (TEM) and atomic force microscopy (AFM). AFM-phase and modulus mapping images of the fiber cross-section and x-ray photoelectron spectroscopy (XPS) analysis indicated PAN formed the shell and PMMA the core material. XPS, thermal gravimetric analysis (TGA), and elemental analysis were used to determine fiber compositional information. Soaking the fibers in solvent demonstrated removal of the core material, generating hollow PAN fibers. PMID:21928836
NASA Astrophysics Data System (ADS)
Khlebnikov, Nikolai; Polyakov, Evgenii; Borisov, Sergei; Barashev, Nikolai; Biramov, Emir; Maltceva, Anastasia; Vereshchagin, Artem; Khartov, Stas; Voronin, Anton
2016-01-01
In this article, the principle and examples composite materials obtained by deposition of metal compound coatings on polymer film substrates by the ion-plasma sputtering method are presented. A synergistic effect is to obtain the materials with structural properties of the polymer substrate and the surface properties of the metal deposited coatings. The technology of sputtering of TiN coatings of various thicknesses on polyethylene terephthalate films is discussed. The obtained composites are characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM), and scanning tunneling microscopy (STM) is shown. The examples of application of this method, such as receiving nanocomposite track membranes and flexible transparent electrodes, are considered.
Carbon nanotube modified probes for stable and high sensitivity conductive atomic force microscopy
NASA Astrophysics Data System (ADS)
Slattery, Ashley D.; Shearer, Cameron J.; Gibson, Christopher T.; Shapter, Joseph G.; Lewis, David A.; Stapleton, Andrew J.
2016-11-01
Conductive atomic force microscopy (C-AFM) is used to characterise the nanoscale electrical properties of many conducting and semiconducting materials. We investigate the effect of single walled carbon nanotube (SWCNT) modification of commercial Pt/Ir cantilevers on the sensitivity and image stability during C-AFM imaging. Pt/Ir cantilevers were modified with small bundles of SWCNTs via a manual attachment procedure and secured with a conductive platinum pad. AFM images of topography and current were collected from heterogeneous polymer and nanomaterial samples using both standard and SWCNT modified cantilevers. Typically, achieving a good current image comes at the cost of reduced feedback stability. In part, this is due to electrostatic interaction and increased tip wear upon applying a bias between the tip and the sample. The SWCNT modified tips displayed superior current sensitivity and feedback stability which, combined with superior wear resistance of SWCNTs, is a significant advancement for C-AFM.
Indentation of poroviscoelastic vocal fold tissue using an atomic force microscope.
Heris, Hossein K; Miri, Amir K; Tripathy, Umakanta; Barthelat, Francois; Mongeau, Luc
2013-12-01
The elastic properties of the vocal folds (VFs) vary as a function of depth relative to the epithelial surface. The poroelastic anisotropic properties of porcine VFs, at various depths, were measured using atomic force microscopy (AFM)-based indentation. The minimum tip diameter to effectively capture the local properties was found to be 25µm, based on nonlinear laser scanning microscopy data and image analysis. The effects of AFM tip dimensions and AFM cantilever stiffness were systematically investigated. The indentation tests were performed along the sagittal and coronal planes for an evaluation of the VF anisotropy. Hertzian contact theory was used along with the governing equations of linear poroelasticity to calculate the diffusivity coefficient of the tissue from AFM indentation creep testing. The permeability coefficient of the porcine VF was found to be 1.80±0.32×10(-15)m(4)/Ns. Copyright © 2013 Elsevier Ltd. All rights reserved.
Indentation of poroviscoelastic vocal fold tissue using an atomic force microscope☆
Heris, Hossein K.; Miri, Amir K.; Tripathy, Umakanta; Barthelat, Francois; Mongeau, Luc
2013-01-01
The elastic properties of the vocal folds (VFs) vary as a function of depth relative to the epithelial surface. The poroelastic anisotropic properties of porcine VFs, at various depths, were measured using atomic force microscopy (AFM)-based indentation. The minimum tip diameter to effectively capture the local properties was found to be 25 µm, based on nonlinear laser scanning microscopy data and image analysis. The effects of AFM tip dimensions and AFM cantilever stiffness were systematically investigated. The indentation tests were performed along the sagittal and coronal planes for an evaluation of the VF anisotropy. Hertzian contact theory was used along with the governing equations of linear poroelasticity to calculate the diffusivity coefficient of the tissue from AFM indentation creep testing. The permeability coefficient of the porcine VF was found to be 1.80 ± 0.32 × 10−15 m4/N s. PMID:23829979
Nanoscale monitoring of drug actions on cell membrane using atomic force microscopy
Li, Mi; Liu, Lian-qing; Xi, Ning; Wang, Yue-chao
2015-01-01
Knowledge of the nanoscale changes that take place in individual cells in response to a drug is useful for understanding the drug action. However, due to the lack of adequate techniques, such knowledge was scarce until the advent of atomic force microscopy (AFM), which is a multifunctional tool for investigating cellular behavior with nanometer resolution under near-physiological conditions. In the past decade, researchers have applied AFM to monitor the morphological and mechanical dynamics of individual cells following drug stimulation, yielding considerable novel insight into how the drug molecules affect an individual cell at the nanoscale. In this article we summarize the representative applications of AFM in characterization of drug actions on cell membrane, including topographic imaging, elasticity measurements, molecular interaction quantification, native membrane protein imaging and manipulation, etc. The challenges that are hampering the further development of AFM for studies of cellular activities are aslo discussed. PMID:26027658
Mechanical properties of monolayer graphene oxide.
Suk, Ji Won; Piner, Richard D; An, Jinho; Ruoff, Rodney S
2010-11-23
Mechanical properties of ultrathin membranes consisting of one layer, two overlapped layers, and three overlapped layers of graphene oxide platelets were investigated by atomic force microscopy (AFM) imaging in contact mode. In order to evaluate both the elastic modulus and prestress of thin membranes, the AFM measurement was combined with the finite element method (FEM) in a new approach for evaluating the mechanics of ultrathin membranes. Monolayer graphene oxide was found to have a lower effective Young's modulus (207.6 ± 23.4 GPa when a thickness of 0.7 nm is used) as compared to the value reported for "pristine" graphene. The prestress (39.7-76.8 MPa) of the graphene oxide membranes obtained by solution-based deposition was found to be 1 order of magnitude lower than that obtained by others for mechanically cleaved graphene. The novel AFM imaging and FEM-based mapping methods presented here are of general utility for obtaining the elastic modulus and prestress of thin membranes.
Customized atomic force microscopy probe by focused-ion-beam-assisted tip transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Andrew; Butte, Manish J., E-mail: manish.butte@stanford.edu
2014-08-04
We present a technique for transferring separately fabricated tips onto tipless atomic force microscopy (AFM) cantilevers, performed using focused ion beam-assisted nanomanipulation. This method addresses the need in scanning probe microscopy for certain tip geometries that cannot be achieved by conventional lithography. For example, in probing complex layered materials or tall biological cells using AFM, a tall tip with a high-aspect-ratio is required to avoid artifacts caused by collisions of the tip's sides with the material being probed. We show experimentally that tall (18 μm) cantilever tips fabricated by this approach reduce squeeze-film damping, which fits predictions from hydrodynamic theory, andmore » results in an increased quality factor (Q) of the fundamental flexural mode. We demonstrate that a customized tip's well-defined geometry, tall tip height, and aspect ratio enable improved measurement of elastic moduli by allowing access to low-laying portions of tall cells (T lymphocytes). This technique can be generally used to attach tips to any micromechanical device when conventional lithography of tips cannot be accomplished.« less
Analysis of DNA interactions using single-molecule force spectroscopy.
Ritzefeld, Markus; Walhorn, Volker; Anselmetti, Dario; Sewald, Norbert
2013-06-01
Protein-DNA interactions are involved in many biochemical pathways and determine the fate of the corresponding cell. Qualitative and quantitative investigations on these recognition and binding processes are of key importance for an improved understanding of biochemical processes and also for systems biology. This review article focusses on atomic force microscopy (AFM)-based single-molecule force spectroscopy and its application to the quantification of forces and binding mechanisms that lead to the formation of protein-DNA complexes. AFM and dynamic force spectroscopy are exciting tools that allow for quantitative analysis of biomolecular interactions. Besides an overview on the method and the most important immobilization approaches, the physical basics of the data evaluation is described. Recent applications of AFM-based force spectroscopy to investigate DNA intercalation, complexes involving DNA aptamers and peptide- and protein-DNA interactions are given.
Meza, José Antonio Morán; Lubin, Christophe; Thoyer, François; Cousty, Jacques
2015-01-26
The structural and mechanical properties of an epitaxial graphene (EG) monolayer thermally grown on top of a 6H-SiC(0001) surface were studied by combined dynamic scanning tunneling microscopy (STM) and frequency modulation atomic force microscopy (FM-AFM). Experimental STM, dynamic STM and AFM images of EG on 6H-SiC(0001) show a lattice with a 1.9 nm period corresponding to the (6 × 6) quasi-cell of the SiC surface. The corrugation amplitude of this (6 × 6) quasi-cell, measured from AFM topographies, increases with the setpoint value of the frequency shift Δf (15-20 Hz, repulsive interaction). Excitation variations map obtained simultaneously with the AFM topography shows that larger dissipation values are measured in between the topographical bumps of the (6 × 6) quasi-cell. These results demonstrate that the AFM tip deforms the graphene monolayer. During recording in dynamic STM mode, a frequency shift (Δf) map is obtained in which Δf values range from 41 to 47 Hz (repulsive interaction). As a result, we deduced that the STM tip, also, provokes local mechanical distortions of the graphene monolayer. The origin of these tip-induced distortions is discussed in terms of electronic and mechanical properties of EG on 6H-SiC(0001).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doktycz, Mitchel John; Sullivan, Claretta; Mortensen, Ninell P
Atomic force microscopy (AFM) is finding increasing application in a variety of fields including microbiology. Until the emergence of AFM, techniques for ivnestigating processes in single microbes were limited. From a biologist's perspective, the fact that AFM can be used to generate high-resolution images in buffers or media is its most appealing feature as live-cell imaging can be pursued. Imaging living cells by AFM allows dynamic biological events to be studied, at the nanoscale, in real time. Few areas of biological research have as much to gain as microbiology from the application of AFM. Whereas the scale of microbes placesmore » them near the limit of resolution for light microscopy. AFM is well suited for the study of structures on the order of a micron or less. Although electron microscopy techniques have been the standard for high-resolution imaging of microbes, AFM is quickly gaining favor for several reasons. First, fixatives that impair biological activity are not required. Second, AFM is capable of detecting forces in the pN range, and precise control of the force applied to the cantilever can be maintained. This combination facilitates the evaluation of physical characteristics of microbes. Third, rather than yielding the composite, statistical average of cell populations, as is the case with many biochemical assays, the behavior of single cells can be monitored. Despite the potential of AFM in microbiology, there are several limitations that must be considered. For example, the time required to record an image allows for the study of gross events such as cell division or membrane degradation from an antibiotic but precludes the evaluation of biological reactions and events that happen in just fractions of a second. Additionally, the AFM is a topographical tool and is restricted to imaging surfaces. Therefore, it cannot be used to look inside cells as with opticla and transmission electron microscopes. other practical considerations are the limitation on the maximum scan size (roughly 100 x 100 {mu}m) and the restricted movement of the cantilever in the Z (or height) direction. In most commercial AFMs, the Z range is restricted to roughly 10 {mu}m such that the height of cells to be imaged must be seriously considered. Nevertheless, AFM can provide structural-functional information at nanometer resolution and do so in physiologically relevant environments. Further, instrumentation for scanning probe microscopy continues to advance. Systems for high-speed imaging are becoming available, and techniques for looking inside the cells are being demonstrated. The ability to combine AFM with other imaging modalities is likely to have an even greater impact on microbiological studies. AFM studies of intact microbial cells started to appear in the literature in the 1990s. For example, AFM studies of Saccharomyces cerevisiae examined buddings cars after cell division and detailed changes related to cell growth processes. Also, the first AFM studies of bacterial biofilms appeared. In the late 1990s, AFM studies of intact fungal spores described clear changes in spore surfaces upon germination, and studies of individual bacterial cells were also described. These early bacterial imaging studies examined changes in bacterial morphology due to antimicrobial peptides exposure and bacterial adhesion properties. The majority of these early studies were carried out on dried samples and took advantage of the resolving power of AFM. The lack of cell mounting procedures presented an impediment for cell imaging studies. Subsequently, several approaches to mounting microbial cells have been developed, and these techniques are described later. Also highlighted are general considerations for microbial imaging and a description of some of the various applications of AFM to microbiology.« less
Photoinduced force microscopy: A technique for hyperspectral nanochemical mapping
NASA Astrophysics Data System (ADS)
Murdick, Ryan A.; Morrison, William; Nowak, Derek; Albrecht, Thomas R.; Jahng, Junghoon; Park, Sung
2017-08-01
Advances in nanotechnology have intensified the need for tools that can characterize newly synthesized nanomaterials. A variety of techniques has recently been shown which combines atomic force microscopy (AFM) with optical illumination including tip-enhanced Raman spectroscopy (TERS), scattering-type scanning near-field optical microscopy (sSNOM), and photothermal induced resonance microscopy (PTIR). To varying degrees, these existing techniques enable optical spectroscopy with the nanoscale spatial resolution inherent to AFM, thereby providing nanochemical interrogation of a specimen. Here we discuss photoinduced force microscopy (PiFM), a recently developed technique for nanoscale optical spectroscopy that exploits image forces acting between an AFM tip and sample to detect wavelength-dependent polarization within the sample to generate absorption spectra. This approach enables ∼10 nm spatial resolution with spectra that show correlation with macroscopic optical absorption spectra. Unlike other techniques, PiFM achieves this high resolution with virtually no constraints on sample or substrate properties. The applicability of PiFM to a variety of archetypal systems is reported here, highlighting the potential of PiFM as a useful tool for a wide variety of industrial and academic investigations, including semiconducting nanoparticles, nanocellulose, block copolymers, and low dimensional systems, as well as chemical and morphological mixing at interfaces.
NASA Astrophysics Data System (ADS)
Sierakowski, Andrzej; Kopiec, Daniel; Majstrzyk, Wojciech; Kunicki, Piotr; Janus, Paweł; Dobrowolski, Rafał; Grabiec, Piotr; Rangelow, Ivo W.; Gotszalk, Teodor
2017-03-01
In this paper the authors compare methods used for piezoresistive microcantilevers actuation for the atomic force microscopy (AFM) imaging in the dynamic shear force mode. The piezoresistive detection is an attractive technique comparing the optical beam detection of deflection. The principal advantage is that no external alignment of optical source and detector are needed. When the microcantilever is deflected, the stress is transferred into a change of resistivity of piezoresistors. The integration of piezoresistive read-out provides a promising solution in realizing a compact non-contact AFM. Resolution of piezoresistive read-out is limited by three main noise sources: Johnson, 1/f and thermomechanical noise. In the dynamic shear force mode measurement the method used for cantilever actuation will also affect the recorded noise in the piezoresistive detection circuit. This is the result of a crosstalk between an aluminium path (current loop used for actuation) and piezoresistors located near the base of the beam. In this paper authors described an elaborated in ITE (Institute of Electron Technology) technology of fabrication cantilevers with piezoresistive detection of deflection and compared efficiency of two methods used for cantilever actuation.
Mi Li; Lianqing Liu; Xiubin Xiao; Ning Xi; Yuechao Wang
2016-07-01
Cell mechanics has been proved to be an effective biomarker for indicating cellular states. The advent of atomic force microscopy (AFM) provides an exciting instrument for measuring the mechanical properties of single cells. However, current AFM single-cell mechanical measurements are commonly performed on cell lines cultured in vitro which are quite different from the primary cells in the human body. Investigating the mechanical properties of primary cells from clinical environments can help us to better understand cell behaviors. Here, by combining AFM with magnetic beads cell isolation, the viscoelastic properties of human primary B lymphocytes were quantitatively measured. B lymphocytes were isolated from the peripheral blood of healthy volunteers by density gradient centrifugation and CD19 magnetic beads cell isolation. The activity and specificity of the isolated cells were confirmed by fluorescence microscopy. AFM imaging revealed the surface topography and geometric parameters of B lymphocytes. The instantaneous modulus and relaxation time of living B lymphocytes were measured by AFM indenting technique, showing that the instantaneous modulus of human normal B lymphocytes was 2-3 kPa and the relaxation times were 0.03-0.06 s and 0.35-0.55 s. The differences in cellular visocoelastic properties between primary B lymphocytes and cell lines cultured in vitro were analyzed. The study proves the capability of AFM in quantifying the viscoelastic properties of individual specific primary cells from the blood sample of clinical patients, which will improve our understanding of the behaviors of cells in the human body.
Liu, Yanxia; Deng, Yuanxin; Luo, Shuxiu; Deng, Yu; Guo, Linming; Xu, Weiwei; Liu, Lei; Liu, Junkang
2014-01-01
This study aimed to observe the multicellular spinning behavior of Proteus mirabilis by atomic force microscopy (AFM) and multifunctional microscopy in order to understand the mechanism underlying this spinning movement and its biological significance. Multifunctional microscopy with charge-coupled device (CCD) and real-time AFM showed changes in cell structure and shape of P. mirabilis during multicellular spinning movement. Specifically, the morphological characteristics of P. mirabilis, multicellular spinning dynamics, and unique movement were observed. Our findings indicate that the multicellular spinning behavior of P. mirabilis may be used to collect nutrients, perform colonization, and squeeze out competitors. The movement characteristics of P. mirabilis are vital to the organism's biological adaptability to the surrounding environment. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Slobodian, Oleksandr M.; Lytvyn, Peter M.; Nikolenko, Andrii S.; Naseka, Victor M.; Khyzhun, Oleg Yu.; Vasin, Andrey V.; Sevostianov, Stanislav V.; Nazarov, Alexei N.
2018-05-01
Graphene oxide (GO) films were formed by drop-casting method and were studied by FTIR spectroscopy, micro-Raman spectroscopy (mRS), X-ray photoelectron spectroscopy (XPS), four-points probe method, atomic force microscopy (AFM), and scanning Kelvin probe force (SKPFM) microscopy after low-temperature annealing at ambient conditions. It was shown that in temperature range from 50 to 250 °C the electrical resistivity of the GO films decreases by seven orders of magnitude and is governed by two processes with activation energies of 6.22 and 1.65 eV, respectively. It was shown that the first process is mainly associated with water and OH groups desorption reducing the thickness of the film by 35% and causing the resistivity decrease by five orders of magnitude. The corresponding activation energy is the effective value determined by desorption and electrical connection of GO flakes from different layers. The second process is mainly associated with desorption of oxygen epoxy and alkoxy groups connected with carbon located in the basal plane of GO. AFM and SKPFM methods showed that during the second process, first, the surface of GO plane is destroyed forming nanostructured surface with low work function and then at higher temperature a flat carbon plane is formed that results in an increase of the work function of reduced GO.
Boehmite nanostructures preparation by hydrothermal method from anodic aluminium oxide membrane.
Yang, X; Wang, J Y; Pan, H Y
2009-02-01
Boehmite nanostructures were successfully synthesized from porous anodic aluminium oxide (AAO) membrane by a simple and efficient hydro-thermal method. The experiment used high purity alumina as raw material, and the whole reaction process avoided superfluous impurities to be introduced. Thus, the purity of Boehmite products was ensured. The examinations of the morphology and structure were carried out by atomic force microscope (AFM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Composition of the specimens was analyzed using energy dispersive X-ray spectroscope (EDX) and X-ray diffraction (XRD). Based on these observations the growth process was analyzed.
Overcoming Ehrlich-Schwöbel barrier in (1 1 1)A GaAs molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Ritzmann, Julian; Schott, Rüdiger; Gross, Katherine; Reuter, Dirk; Ludwig, Arne; Wieck, Andreas D.
2018-01-01
In this work, we first study the effect of different growth parameters on the molecular beam epitaxy (MBE) growth of GaAs layers on (1 1 1)A oriented substrates. After that we present a method for the MBE growth of atomically smooth layers by sequences of growth and annealing phases. The samples exhibit low surface roughness and good electrical properties shown by atomic force microscopy (AFM), scanning electron microscopy (SEM) and van-der-Pauw Hall measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dantas, Noelio Oliveira; Lima Fernandes, Guilherme de; Almeida Silva, Anielle Christine
2014-09-29
In this study, we synthesized Cd{sub 1−x}Mn{sub x}Te ultrasmall quantum dots (USQDs) in SiO{sub 2}-Na{sub 2}CO{sub 3}-Al{sub 2}O{sub 3}-B{sub 2}O{sub 3} glass system using the fusion method. Growth of these Cd{sub 1−x}Mn{sub x}Te USQDs was confirmed by optical absorption, atomic force microscopy (AFM), magnetic force microscopy (MFM), scanning transmission electron microscopy (TEM), and electron paramagnetic resonance (EPR) measurements. The blueshift of absorption transition with increasing manganese concentration gives evidence of incorporation of manganese ions (Mn{sup 2+}) in CdTe USQDs. AFM, TEM, and MFM confirmed, respectively, the formation of high quality Cd{sub 1−x}Mn{sub x}Te USQDs with uniformly distributed size and magneticmore » phases. Furthermore, EPR spectra showed six lines associated to the S = 5/2 spin half-filled d-state, characteristic of Mn{sup 2+}, and confirmed that Mn{sup 2+} are located in the sites core and surface of the CdTe USQD. Therefore, synthesis of high quality Cd{sub 1−x}Mn{sub x}Te USQDs may allow the control of optical and magnetic properties.« less
NASA Technical Reports Server (NTRS)
Nguyen, Cattien V.; Chao, Kuo-Jen; Stevens, Ramsey M. D.; Delzeit, Lance; Cassell, Alan; Han, Jie; Meyyappan, M.; Arnold, James (Technical Monitor)
2001-01-01
In this paper we present results on the stability and lateral resolution capability of carbon nanotube (CNT) scanning probes as applied to atomic force microscopy (AFM). Surface topography images of ultra-thin films (2-5 nm thickness) obtained with AFM are used to illustrate the lateral resolution capability of single-walled carbon nanotube probes. Images of metal films prepared by ion beam sputtering exhibit grain sizes ranging from greater than 10 nm to as small as approximately 2 nm for gold and iridium respectively. In addition, imaging stability and lifetime of multi-walled carbon nanotube scanning probes are studied on a relatively hard surface of silicon nitride (Si3N4). AFM images Of Si3N4 surface collected after more than 15 hrs of continuous scanning show no detectable degradation in lateral resolution. These results indicate the general feasibility of CNT tips and scanning probe microscopy for examining nanometer-scale surface features of deposited metals as well as non-conductive thin films. AFM coupled with CNT tips offers a simple and nondestructive technique for probing a variety of surfaces, and has immense potential as a surface characterization tool in integrated circuit manufacturing.
Nanomechanics of Cells and Biomaterials Studied by Atomic Force Microscopy.
Kilpatrick, Jason I; Revenko, Irène; Rodriguez, Brian J
2015-11-18
The behavior and mechanical properties of cells are strongly dependent on the biochemical and biomechanical properties of their microenvironment. Thus, understanding the mechanical properties of cells, extracellular matrices, and biomaterials is key to understanding cell function and to develop new materials with tailored mechanical properties for tissue engineering and regenerative medicine applications. Atomic force microscopy (AFM) has emerged as an indispensable technique for measuring the mechanical properties of biomaterials and cells with high spatial resolution and force sensitivity within physiologically relevant environments and timescales in the kPa to GPa elastic modulus range. The growing interest in this field of bionanomechanics has been accompanied by an expanding array of models to describe the complexity of indentation of hierarchical biological samples. Furthermore, the integration of AFM with optical microscopy techniques has further opened the door to a wide range of mechanotransduction studies. In recent years, new multidimensional and multiharmonic AFM approaches for mapping mechanical properties have been developed, which allow the rapid determination of, for example, cell elasticity. This Progress Report provides an introduction and practical guide to making AFM-based nanomechanical measurements of cells and surfaces for tissue engineering applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Brain tumor classification using AFM in combination with data mining techniques.
Huml, Marlene; Silye, René; Zauner, Gerald; Hutterer, Stephan; Schilcher, Kurt
2013-01-01
Although classification of astrocytic tumors is standardized by the WHO grading system, which is mainly based on microscopy-derived, histomorphological features, there is great interobserver variability. The main causes are thought to be the complexity of morphological details varying from tumor to tumor and from patient to patient, variations in the technical histopathological procedures like staining protocols, and finally the individual experience of the diagnosing pathologist. Thus, to raise astrocytoma grading to a more objective standard, this paper proposes a methodology based on atomic force microscopy (AFM) derived images made from histopathological samples in combination with data mining techniques. By comparing AFM images with corresponding light microscopy images of the same area, the progressive formation of cavities due to cell necrosis was identified as a typical morphological marker for a computer-assisted analysis. Using genetic programming as a tool for feature analysis, a best model was created that achieved 94.74% classification accuracy in distinguishing grade II tumors from grade IV ones. While utilizing modern image analysis techniques, AFM may become an important tool in astrocytic tumor diagnosis. By this way patients suffering from grade II tumors are identified unambiguously, having a less risk for malignant transformation. They would benefit from early adjuvant therapies.
Reid, Obadiah G; Munechika, Keiko; Ginger, David S
2008-06-01
We describe local (~150 nm resolution), quantitative measurements of charge carrier mobility in conjugated polymer films that are commonly used in thin-film transistors and nanostructured solar cells. We measure space charge limited currents (SCLC) through these films using conductive atomic force microscopy (c-AFM) and in macroscopic diodes. The current densities we measure with c-AFM are substantially higher than those observed in planar devices at the same bias. This leads to an overestimation of carrier mobility by up to 3 orders of magnitude when using the standard Mott-Gurney law to fit the c-AFM data. We reconcile this apparent discrepancy between c-AFM and planar device measurements by accounting for the proper tip-sample geometry using finite element simulations of tip-sample currents. We show that a semiempirical scaling factor based on the ratio of the tip contact area diameter to the sample thickness can be used to correct c-AFM current-voltage curves and thus extract mobilities that are in good agreement with values measured in the conventional planar device geometry.
Roy, Rajarshi; Desai, Jaydev P.
2016-01-01
This paper outlines a comprehensive parametric approach for quantifying mechanical properties of spatially heterogeneous thin biological specimens such as human breast tissue using contact-mode Atomic Force Microscopy. Using inverse finite element (FE) analysis of spherical nanoindentation, the force response from hyperelastic material models is compared with the predicted force response from existing analytical contact models, and a sensitivity study is carried out to assess uniqueness of the inverse FE solution. Furthermore, an automation strategy is proposed to analyze AFM force curves with varying levels of material nonlinearity with minimal user intervention. Implementation of our approach on an elastic map acquired from raster AFM indentation of breast tissue specimens indicates that a judicious combination of analytical and numerical techniques allow more accurate interpretation of AFM indentation data compared to relying on purely analytical contact models, while keeping the computational cost associated an inverse FE solution with reasonable limits. The results reported in this study have several implications in performing unsupervised data analysis on AFM indentation measurements on a wide variety of heterogeneous biomaterials. PMID:25015130
Estimation of polymer-surface interfacial interaction strength by a contact AFM technique.
Dvir, H; Jopp, J; Gottlieb, M
2006-12-01
Atomic force microscopy (AFM) measurements were employed to assess polymer-surface interfacial interaction strength. The main feature of the measurement is the use of contact-mode AFM as a tool to scratch off the polymer monolayer adsorbed on the solid surface. Tapping-mode AFM was used to determine the depth of the scraped recess. Independent determination of the layer thickness obtained from optical phase interference microscopy (OPIM) confirmed the depth of the AFM scratch. The force required for the complete removal of the polymer layer with no apparent damage to the substrate surface was determined. Polypropylene (PP), low-density polyethylene (PE), and PP-grafted-maleic anhydride (PP-g-ma) were scraped off silane-treated glass slabs, and the strength of surface interaction of the polymer layer was determined. In all cases it was determined that the magnitude of surface interaction force is of the order of van der Waals (VDW) interactions. The interaction strength is influenced either by polymer ability to wet the surface (hydrophobic or hydrophilic interactions) or by hydrogen bonding between the polymer and the surface treatment.
Material properties of viral nanocages explored by atomic force microscopy.
van Rosmalen, Mariska G M; Roos, Wouter H; Wuite, Gijs J L
2015-01-01
Single-particle nanoindentation by atomic force microscopy (AFM) is an emergent technique to characterize the material properties of nano-sized proteinaceous systems. AFM uses a very small tip attached to a cantilever to scan the surface of the substrate. As a result of the sensitive feedback loop of AFM, the force applied by the tip on the substrate during scanning can be controlled and monitored. By accurately controlling this scanning force, topographical maps of fragile substrates can be acquired to study the morphology of the substrate. In addition, mechanical properties of the substrate like stiffness and breaking point can be determined by using the force spectroscopy capability of AFM. Here we discuss basics of AFM operation and how this technique is used to determine the structure and mechanical properties of protein nanocages, in particular viral particles. Knowledge of morphology as well as mechanical properties is essential for understanding viral life cycles, including genome packaging, capsid maturation, and uncoating, but also contributes to the development of diagnostics, vaccines, imaging modalities, and targeted therapeutic devices based on viruslike particles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, J., E-mail: radiant@ferrodevices.com; Chapman, S., E-mail: radiant@ferrodevices.com
Piezoresponse Force Microscopy (PFM) is a popular tool for the study of ferroelectric and piezoelectric materials at the nanometer level. Progress in the development of piezoelectric MEMS fabrication is highlighting the need to characterize absolute displacement at the nanometer and Ångstrom scales, something Atomic Force Microscopy (AFM) might do but PFM cannot. Absolute displacement is measured by executing a polarization measurement of the ferroelectric or piezoelectric capacitor in question while monitoring the absolute vertical position of the sample surface with a stationary AFM cantilever. Two issues dominate the execution and precision of such a measurement: (1) the small amplitude ofmore » the electrical signal from the AFM at the Ångstrom level and (2) calibration of the AFM. The authors have developed a calibration routine and test technique for mitigating the two issues, making it possible to use an atomic force microscope to measure both the movement of a capacitor surface as well as the motion of a micro-machine structure actuated by that capacitor. The theory, procedures, pitfalls, and results of using an AFM for absolute piezoelectric measurement are provided.« less
Mettu, Srinivas; Ye, Qianyu; Zhou, Meifang; Dagastine, Raymond; Ashokkumar, Muthupandian
2018-04-25
Atomic Force Microscopy (AFM) is used to measure the stiffness and Young's modulus of individual microcapsules that have a chitosan cross-linked shell encapsulating tetradecane. The oil filled microcapsules were prepared using a one pot synthesis via ultrasonic emulsification of tetradecane and crosslinking of the chitosan shell in aqueous solutions of acetic acid. The concentration of acetic acid in aqueous solutions of chitosan was varied from 0.2% to 25% v/v. The effect of acetic acid concentration and size of the individual microcapsules on the strength was probed. The deformations and forces required to rupture the microcapsules were also measured. Three dimensional deformations of microcapsules under large applied loads were obtained by the combination of Laser Scanning Confocal Microscopy (LSCM) with Atomic Force Microscopy (AFM). The stiffness, and hence the modulus, of the microcapsules was found to decrease with an increase in size with the average stiffness ranging from 82 to 111 mN m-1 and average Young's modulus ranging from 0.4 to 6.5 MPa. The forces required to rupture the microcapsules varied from 150 to 250 nN with deformations of the microcapsules up to 62 to 110% relative to their radius, respectively. Three dimensional images obtained using laser scanning confocal microscopy showed that the microcapsules retained their structure and shape after being subjected to large deformations and subsequent removal of the loads. Based on the above observations, the oil filled chitosan crosslinked microcapsules are an ideal choice for use in the food and pharmaceutical industries as they would be able to withstand the process conditions encountered.
Characterisation of dry powder inhaler formulations using atomic force microscopy.
Weiss, Cordula; McLoughlin, Peter; Cathcart, Helen
2015-10-15
Inhalation formulations are a popular way of treating the symptoms of respiratory diseases. The active pharmaceutical ingredient (API) is delivered directly to the site of action within the deep lung using an inhalation device such as the dry powder inhaler (DPI). The performance of the formulation and the efficiency of the treatment depend on a number of factors including the forces acting between the components. In DPI formulations these forces are dominated by interparticulate interactions. Research has shown that adhesive and cohesive forces depend on a number of particulate properties such as size, surface roughness, crystallinity, surface energetics and combinations of these. With traditional methods the impact of particulate properties on interparticulate forces could be evaluated by examining the bulk properties. Atomic force microscopy (AFM), however, enables the determination of local surface characteristics and the direct measurement of interparticulate forces using the colloidal probe technique. AFM is considered extremely useful for evaluating the surface topography of a substrate (an API or carrier particle) and even allows the identification of crystal faces, defects and polymorphs from high-resolution images. Additionally, information is given about local mechanical properties of the particles and changes in surface composition and energetics. The assessment of attractive forces between two bodies is possible by using colloidal probe AFM. This review article summarises the application of AFM in DPI formulations while specifically focussing on the colloidal probe technique and the evaluation of interparticulate forces. Copyright © 2015 Elsevier B.V. All rights reserved.
Elemental Identification by Combining Atomic Force Microscopy and Kelvin Probe Force Microscopy.
Schulz, Fabian; Ritala, Juha; Krejčí, Ondrej; Seitsonen, Ari Paavo; Foster, Adam S; Liljeroth, Peter
2018-06-01
There are currently no experimental techniques that combine atomic-resolution imaging with elemental sensitivity and chemical fingerprinting on single molecules. The advent of using molecular-modified tips in noncontact atomic force microscopy (nc-AFM) has made it possible to image (planar) molecules with atomic resolution. However, the mechanisms responsible for elemental contrast with passivated tips are not fully understood. Here, we investigate elemental contrast by carrying out both nc-AFM and Kelvin probe force microscopy (KPFM) experiments on epitaxial monolayer hexagonal boron nitride (hBN) on Ir(111). The hBN overlayer is inert, and the in-plane bonds connecting nearest-neighbor boron and nitrogen atoms possess strong covalent character and a bond length of only ∼1.45 Å. Nevertheless, constant-height maps of both the frequency shift Δ f and the local contact potential difference exhibit striking sublattice asymmetry. We match the different atomic sites with the observed contrast by comparison with nc-AFM image simulations based on the density functional theory optimized hBN/Ir(111) geometry, which yields detailed information on the origin of the atomic-scale contrast.
Tatlybaeva, Elena B; Vasilchenko, Alexey S; Deryabin, Dmitri G
2013-01-01
Summary The labelling of functional molecules on the surface of bacterial cells is one way to recognize the bacteria. In this work, we have developed a method for the selective labelling of protein A on the cell surfaces of Staphylococcus aureus by using nanosized immunogold conjugates as cell-surface markers for atomic force microscopy (AFM). The use of 30-nm size Au nanoparticles conjugated with immunoglobulin G (IgG) allowed the visualization, localization and distribution of protein A–IgG complexes on the surface of S. aureus. The selectivity of the labelling method was confirmed in mixtures of S. aureus with Bacillus licheniformis cells, which differed by size and shape and had no IgG receptors on the surface. A preferential binding of the IgG–Au conjugates to S. aureus was obtained. Thus, this novel approach allows the identification of protein A and other IgG receptor-bearing bacteria, which is useful for AFM indication of pathogenic microorganisms in poly-component associations. PMID:24367742
[AFM fishing of proteins under impulse electric field].
Ivanov, Yu D; Pleshakova, T O; Malsagova, K A; Kaysheva, A L; Kopylov, A T; Izotov, A A; Tatur, V Yu; Vesnin, S G; Ivanova, N D; Ziborov, V S; Archakov, A I
2016-05-01
A combination of (atomic force microscopy)-based fishing (AFM-fishing) and mass spectrometry allows to capture protein molecules from solutions, concentrate and visualize them on an atomically flat surface of the AFM chip and identify by subsequent mass spectrometric analysis. In order to increase the AFM-fishing efficiency we have applied pulsed voltage with the rise time of the front of about 1 ns to the AFM chip. The AFM-chip was made using a conductive material, highly oriented pyrolytic graphite (HOPG). The increased efficiency of AFM-fishing has been demonstrated using detection of cytochrome b5 protein. Selection of the stimulating pulse with a rise time of 1 ns, corresponding to the GHz frequency range, by the effect of intrinsic emission from water observed in this frequency range during water injection into the cell.
The Effect of Pile-Up and Contact Area on Hardness Test by Nanoindentation
NASA Astrophysics Data System (ADS)
Miyake, Koji; Fujisawa, Satoru; Korenaga, Atsushi; Ishida, Takao; Sasaki, Shinya
2004-07-01
We used atomic force microscopy (AFM) for the indentation test evaluating the indentation hardness of materials in the nanometer range. BK7, fused silica, and single-crystal silicon were used as test sample materials. The data analysis processes used to determine the contact area were important in evaluating the indentation hardness of the materials. The direct measurement of the size of the residual hardness impression was useful in evaluating the contact area even in the nanometer region. The results led us to conclude that AFM indentation using a sharp indenter is a powerful method for estimating the indentation hardness in the nanometer range.
Photoluminescence of vapor and solution grown ZnTe single crystals
NASA Astrophysics Data System (ADS)
Biao, Y.; Azoulay, M.; George, M. A.; Burger, A.; Collins, W. E.; Silberman, E.; Su, C.-H.; Volz, M. E.; Szofran, F. R.; Gillies, D. C.
1994-04-01
ZnTe single crystals grown by horizontal physical vapor transport (PVT) and by vertical traveling heater method (THM) from a Te solution were characterized by photoluminescence (PL) at 10.6 K and by atomic force microscopy (AFM). Copper was identified by PL as a major impurity existing in both crystals, forming a substitutional acceptor, Cu Zn. The THM ZnTe crystals were found to contain more Cu impurity than the PVT ZnTe crystals. The formation of Cu Zn-V Te complexes and the effects of annealing, oxygen contamination and intentional Cu doping were also studied. Finally, the surface morphology analyzed by AFM was correlated to the PL results.
NASA Astrophysics Data System (ADS)
Tang, Jun; Liu, Zhong-Liang; Kang, Chao-Yang; Pan, Hai-Bin; Wei, Shi-Qiang; Xu, Peng-Shou; Gao, Yu-Qiang; Xu, Xian-Gang
2009-08-01
An epitaxial graphene (EG) layer is successfully grown on a Si-terminated 6H-SiC (0001) substrate by the method of thermal annealing in an ultrahigh vacuum molecular beam epitaxy chamber. The structure and morphology of the EG sample are characterized by reflection high energy diffraction (RHEED), Raman spectroscopy and atomic force microscopy (AFM). Graphene diffraction streaks can be seen in RHEED. The G and 2D peaks of graphene are clearly observed in the Raman spectrum. The AFM results show that the graphene nominal thickness is about 4-10 layers.
Li, Qian; Jesse, Stephen; Tselev, Alexander; ...
2015-01-05
In this paper, nanomechanical properties are closely related to the states of matter, including chemical composition, crystal structure, mesoscopic domain configuration, etc. Investigation of these properties at the nanoscale requires not only static imaging methods, e.g., contact resonance atomic force microscopy (CR-AFM), but also spectroscopic methods capable of revealing their dependence on various external stimuli. Here we demonstrate the voltage spectroscopy of CR-AFM, which was realized by combining photothermal excitation (as opposed to the conventional piezoacoustic excitation method) with the band excitation technique. We applied this spectroscopy to explore local bias-induced phenomena ranging from purely physical to surface electromechanical andmore » electrochemical processes. Our measurements show that the changes in the surface properties associated with these bias-induced transitions can be accurately assessed in a fast and dynamic manner, using resonance frequency as a signature. Finally, with many of the advantages offered by photothermal excitation, contact resonance voltage spectroscopy not only is expected to find applications in a broader field of nanoscience but also will provide a basis for future development of other nanoscale elastic spectroscopies.« less
Real-space identification of intermolecular bonding with atomic force microscopy.
Zhang, Jun; Chen, Pengcheng; Yuan, Bingkai; Ji, Wei; Cheng, Zhihai; Qiu, Xiaohui
2013-11-01
We report a real-space visualization of the formation of hydrogen bonding in 8-hydroxyquinoline (8-hq) molecular assemblies on a Cu(111) substrate, using noncontact atomic force microscopy (NC-AFM). The atomically resolved molecular structures enable a precise determination of the characteristics of hydrogen bonding networks, including the bonding sites, orientations, and lengths. The observation of bond contrast was interpreted by ab initio density functional calculations, which indicated the electron density contribution from the hybridized electronic state of the hydrogen bond. Intermolecular coordination between the dehydrogenated 8-hq and Cu adatoms was also revealed by the submolecular resolution AFM characterization. The direct identification of local bonding configurations by NC-AFM would facilitate detailed investigations of intermolecular interactions in complex molecules with multiple active sites.
Confocal Raman spectroscopy and AFM for evaluation of sidewalls in type II superlattice FPAs
NASA Astrophysics Data System (ADS)
Rotter, T. J.; Busani, T.; Rathi, P.; Jaeckel, F.; Reyes, P. A.; Malloy, K. J.; Ukhanov, A. A.; Plis, E.; Krishna, S.; Jaime-Vasquez, M.; Baril, N. F.; Benson, J. D.; Tenne, D. A.
2015-06-01
We propose to utilize confocal Raman spectroscopy combined with high resolution atomic force microscopy (AFM) for nondestructive characterisation of the sidewalls of etched and passivated small pixel (24 μm×24 μm) focal plane arrays (FPA) fabricated using LW/LWIR InAs/GaSb type-II strained layer superlattice (T2SL) detector material. Special high aspect ratio Si and GaAs AFM probes, with tip length of 13 μm and tip aperture less than 7°, allow characterisation of the sidewall morphology. Confocal microscopy enables imaging of the sidewall profile through optical sectioning. Raman spectra measured on etched T2SL FPA single pixels enable us to quantify the non-uniformity of the mesa delineation process.
Wang, Liqun; Chen, Tangting; Zhou, Xiang; Huang, Qiaobing; Jin, Chunhua
2013-08-01
We applied atomic force microscopy (AFM) to observe lipopolysaccharide (LPS)-induced intracellular cytoskeleton reorganization in primary cardiomyocytes from neonatal mouse. The nonionic detergent Triton X-100 was used to remove the membrane, soluble proteins, and organelles from the cell. The remaining cytoskeleton can then be directly visualized by AFM. Using three-dimensional technique of AFM, we were able to quantify the changes of cytoskeleton by the "density" and total "volume" of the cytoskeleton fibers. Compared to the control group, the density of cytoskeleton was remarkably decreased and the volume of cytoskeleton was significantly increased after LPS treatment, which suggests that LPS may induce the cytoskeleton reorganization and change the cardiomyocyte morphology. Copyright © 2013 Elsevier Ltd. All rights reserved.
KPFM/AFM imaging on TiO2(110) surface in O2 gas
NASA Astrophysics Data System (ADS)
Arima, Eiji; Wen, Huan Fei; Naitoh, Yoshitaka; Li, Yan Jun; Sugawara, Yasuhiro
2018-03-01
We have carried out high-speed imaging of the topography and local contact potential difference (LCPD) on rutile TiO2(110) in O2 gas by atomic force microscopy (AFM) and Kelvin probe force microscopy (KPFM). We succeeded in KPFM/AFM imaging with atomic resolution at 1 frame min-1 and observed the adsorbate on a hydroxylated TiO2(110) surface. The observed adsorbate is considered to be oxygen adatoms (Oa), hydroperoxyls (HO2), or terminal hydroxyls (OHt). After adsorption, changes in the topography and the LCPD of the adsorbate were observed. This phenomenon is thought to be caused by the charge transfer of the adsorbate. This technique has the potential to observe catalytic behavior with atomic resolution.
Soufli, Regina; Baker, Sherry L; Windt, David L; Gullikson, Eric M; Robinson, Jeff C; Podgorski, William A; Golub, Leon
2007-06-01
The high-spatial frequency roughness of a mirror operating at extreme ultraviolet (EUV) wavelengths is crucial for the reflective performance and is subject to very stringent specifications. To understand and predict mirror performance, precision metrology is required for measuring the surface roughness. Zerodur mirror substrates made by two different polishing vendors for a suite of EUV telescopes for solar physics were characterized by atomic force microscopy (AFM). The AFM measurements revealed features in the topography of each substrate that are associated with specific polishing techniques. Theoretical predictions of the mirror performance based on the AFM-measured high-spatial-frequency roughness are in good agreement with EUV reflectance measurements of the mirrors after multilayer coating.
Cartagena, Alexander; Raman, Arvind
2014-01-01
The measurement of viscoelasticity of cells in physiological environments with high spatio-temporal resolution is a key goal in cell mechanobiology. Traditionally only the elastic properties have been measured from quasi-static force-distance curves using the atomic force microscope (AFM). Recently, dynamic AFM-based methods have been proposed to map the local in vitro viscoelastic properties of living cells with nanoscale resolution. However, the differences in viscoelastic properties estimated from such dynamic and traditional quasi-static techniques are poorly understood. In this work we quantitatively reconstruct the local force and dissipation gradients (viscoelasticity) on live fibroblast cells in buffer solutions using Lorentz force excited cantilevers and present a careful comparison between mechanical properties (local stiffness and damping) extracted using dynamic and quasi-static force spectroscopy methods. The results highlight the dependence of measured viscoelastic properties on both the frequency at which the chosen technique operates as well as the interactions with subcellular components beyond certain indentation depth, both of which are responsible for differences between the viscoelasticity property maps acquired using the dynamic AFM method against the quasi-static measurements. PMID:24606928
Gaikwad, Ravi M; Dokukin, Maxim E; Iyer, K Swaminathan; Woodworth, Craig D; Volkov, Dmytro O; Sokolov, Igor
2011-04-07
Here we describe a non-traditional method to identify cancerous human cervical epithelial cells in a culture dish based on physical adhesion between silica beads and cells. It is a simple optical fluorescence-based technique which detects the relative difference in the amount of fluorescent silica beads physically adherent to surfaces of cancerous and normal cervical cells. The method utilizes the centripetal force gradient that occurs in a rotating culture dish. Due to the variation in the balance between adhesion and centripetal forces, cancerous and normal cells demonstrate clearly distinctive distributions of the fluorescent particles adherent to the cell surface over the culture dish. The method demonstrates higher adhesion of silica particles to normal cells compared to cancerous cells. The difference in adhesion was initially observed by atomic force microscopy (AFM). The AFM data were used to design the parameters of the rotational dish experiment. The optical method that we describe is much faster and technically simpler than AFM. This work provides proof of the concept that physical interactions can be used to accurately discriminate normal and cancer cells. © The Royal Society of Chemistry 2011
AFM as an analysis tool for high-capacity sulfur cathodes for Li–S batteries
Sörgel, Seniz; Costa, Rémi; Carlé, Linus; Galm, Ines; Cañas, Natalia; Pascucci, Brigitta; Friedrich, K Andreas
2013-01-01
Summary In this work, material-sensitive atomic force microscopy (AFM) techniques were used to analyse the cathodes of lithium–sulfur batteries. A comparison of their nanoscale electrical, electrochemical, and morphological properties was performed with samples prepared by either suspension-spraying or doctor-blade coating with different binders. Morphological studies of the cathodes before and after the electrochemical tests were performed by using AFM and scanning electron microscopy (SEM). The cathodes that contained polyvinylidene fluoride (PVDF) and were prepared by spray-coating exhibited a superior stability of the morphology and the electric network associated with the capacity and cycling stability of these batteries. A reduction of the conductive area determined by conductive AFM was found to correlate to the battery capacity loss for all cathodes. X-ray diffraction (XRD) measurements of Li2S exposed to ambient air showed that insulating Li2S hydrolyses to insulating LiOH. This validates the significance of electrical ex-situ AFM analysis after cycling. Conductive tapping mode AFM indicated the existence of large carbon-coated sulfur particles. Based on the analytical findings, the first results of an optimized cathode showed a much improved discharge capacity of 800 mA·g(sulfur)−1 after 43 cycles. PMID:24205455
Taking nanomedicine teaching into practice with atomic force microscopy and force spectroscopy.
Carvalho, Filomena A; Freitas, Teresa; Santos, Nuno C
2015-12-01
Atomic force microscopy (AFM) is a useful and powerful tool to study molecular interactions applied to nanomedicine. The aim of the present study was to implement a hands-on atomic AFM course for graduated biosciences and medical students. The course comprises two distinct practical sessions, where students get in touch with the use of an atomic force microscope by performing AFM scanning images of human blood cells and force spectroscopy measurements of the fibrinogen-platelet interaction. Since the beginning of this course, in 2008, the overall rating by the students was 4.7 (out of 5), meaning a good to excellent evaluation. Students were very enthusiastic and produced high-quality AFM images and force spectroscopy data. The implementation of the hands-on AFM course was a success, giving to the students the opportunity of contact with a technique that has a wide variety of applications on the nanomedicine field. In the near future, nanomedicine will have remarkable implications in medicine regarding the definition, diagnosis, and treatment of different diseases. AFM enables students to observe single molecule interactions, enabling the understanding of molecular mechanisms of different physiological and pathological processes at the nanoscale level. Therefore, the introduction of nanomedicine courses in bioscience and medical school curricula is essential. Copyright © 2015 The American Physiological Society.
AFM Structural Characterization of Drinking Water Biofilm under Physiological Conditions
Due to the complexity of mixed culture drinking water biofilm, direct visual observation under in situ conditions has been challenging. In this study, atomic force microscopy (AFM) revealed the three dimensional morphology and arrangement of drinking water relevant biofilm in air...
NASA Astrophysics Data System (ADS)
Schwarz, Udo
2005-03-01
With the ongoing miniaturization of devices and controlled nanostructuring of materials, the importance of atomic-scale information on surfaces and surface properties is growing continuously. The astonishing progress in nanoscience and nanotechnology that took place during the last two decades was in many ways related to recent progress in high-resolution imaging techniques such as scanning tunnelling microscopy and transmission electron microscopy. Since the mid-1990s, non-contact atomic force microscopy (NC-AFM) performed in ultrahigh vacuum has evolved as an alternative technique that achieves atomic resolution, but without the restriction to conducting surfaces of the previously established techniques. Advances of the rapidly developing field of NC-AFM are discussed at annual conferences as part of a series that started in 1998 in Osaka, Japan. This special issue of Nanotechnology is a compilation of original work presented at the 7th International Conference on Non-contact Atomic Force Microscopy that took place in Seattle, USA, 12-15 September 2004. Over the years, the conference grew in size and scope. Atomic resolution imaging of oxides and semiconductors remains an issue. Noticeable new developments have been presented in this regard such as, e.g., the demonstrated ability to manipulate individual atoms. Additionally, the investigation of individual molecules, clusters, and organic materials gains more and more attention. In this context, considerable effort is undertaken to transfer the NC-AFM principle based on frequency modulation to applications in air and liquids with the goal of enabling high-resolution surface studies of biological material in native environments, as well as to reduce the experimental complexity, which so far involves the availability of (costly) vacuum systems. Force spectroscopy methods continue to be improved and are applied to topics such as the imaging of the three-dimensional force field as a function of the distance with atomic resolution, the investigation of near-surface electronic states, the quantification of adhesion forces, and the lateral mapping of surface potentials. The origin of energy dissipation, which is closely related to an in-depth understanding of tip-surface interactions and imaging mechanisms, was the subject of an ongoing discussion and addressed by various theoretical, computational, and experimental contributions. A characteristic of the NC-AFM conference series is the lively and friendly atmosphere, which year after year stimulates scientific discussions between the participants. This time, the programme included 5 invited talks, 84 contributed presentations, and 113 participants; furthermore, three educational lectures were given as part of a pre-conference workshop targeted at NC-AFM newcomers, which was attended by 30 participants. I would like to thank the members of the international steering committee and the programme committee for their continued effort in organizing the meeting. Special thanks go to the chair of the programme and local organizing committees S Fain and the conference manager J Kvamme for making the meeting a success. Financial support is acknowledged from the corporate sponsors MikroMasch USA, Nanonis GmbH, Nanosurf AG, Omicron Nanotechnology, PSIA, Inc., and RHK Technology, as well as from the institutional sponsors National Science Foundation and PNNL/UW Joint Institute for Nanoscience. Finally, I would like to express my gratitude to everyone who participated in assembling this special issue including the authors, the reviewers, and, in particular, the excellent and experienced journal team from the Institute of Physics Publishing headed by Nina Couzin, for devoting their time and efforts so that we could make this issue a useful representation of the progress in NC-AFM while maintaining our tight publication schedule. In conclusion, I would like to mention that the Seattle conference was the first one of the NC-AFM series that took place in the USA. As such, it was part of a series of recent activities within the USA, which will help in establishing a strong domestic NC-AFM community.
Nonlinear Dynamics of Cantilever-Sample Interactions in Atomic Force Microscopy
NASA Technical Reports Server (NTRS)
Cantrell, John H.; Cantrell, Sean A.
2010-01-01
The interaction of the cantilever tip of an atomic force microscope (AFM) with the sample surface is obtained by treating the cantilever and sample as independent systems coupled by a nonlinear force acting between the cantilever tip and a volume element of the sample surface. The volume element is subjected to a restoring force from the remainder of the sample that provides dynamical equilibrium for the combined systems. The model accounts for the positions on the cantilever of the cantilever tip, laser probe, and excitation force (if any) via a basis set of set of orthogonal functions that may be generalized to account for arbitrary cantilever shapes. The basis set is extended to include nonlinear cantilever modes. The model leads to a pair of coupled nonlinear differential equations that are solved analytically using a matrix iteration procedure. The effects of oscillatory excitation forces applied either to the cantilever or to the sample surface (or to both) are obtained from the solution set and applied to the to the assessment of phase and amplitude signals generated by various acoustic-atomic force microscope (A-AFM) modalities. The influence of bistable cantilever modes of on AFM signal generation is discussed. The effects on the cantilever-sample surface dynamics of subsurface features embedded in the sample that are perturbed by surface-generated oscillatory excitation forces and carried to the cantilever via wave propagation are accounted by the Bolef-Miller propagating wave model. Expressions pertaining to signal generation and image contrast in A-AFM are obtained and applied to amplitude modulation (intermittent contact) atomic force microscopy and resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM). The influence of phase accumulation in A-AFM on image contrast is discussed, as is the effect of hard contact and maximum nonlinearity regimes of A-AFM operation.
NASA Astrophysics Data System (ADS)
Kolekar, Sadhu; Patole, Shashikant P.; Yoo, Ji-Beom; Dharmadhikari, Chandrakant V.
2018-03-01
Field emission from nanostructured films is known to be dominated by only small number of localized spots which varies with the voltage, electric field and heat treatment. It is important to develop processing methods which will produce stable and uniform emitting sites. In this paper we report a novel approach which involves analysis of Proximity Field Emission Microscopic (PFEM) images using Scanning Probe Image Processing technique. Vertically aligned carbon nanotube emitters have been deposited on tungsten foil by water assisted chemical vapor deposition. Prior to the field electron emission studies, these films were characterized by scanning electron microscopy, transmission electron microscopy, and Atomic Force Microscopy (AFM). AFM images of the samples show bristle like structure, the size of bristle varying from 80 to 300 nm. The topography images were found to exhibit strong correlation with current images. Current-Voltage (I-V) measurements both from Scanning Tunneling Microscopy and Conducting-AFM mode suggest that electron transport mechanism in imaging vertically grown CNTs is ballistic rather than usual tunneling or field emission with a junction resistance of 10 kΩ. It was found that I-V curves for field emission mode in PFEM geometry vary initially with number of I-V cycles until reproducible I-V curves are obtained. Even for reasonably stable I-V behavior the number of spots was found to increase with the voltage leading to a modified Fowler-Nordheim (F-N) behavior. A plot of ln(I/V3) versus 1/V was found to be linear. Current versus time data exhibit large fluctuation with the power spectral density obeying 1/f2 law. It is suggested that an analogue of F-N equation of the form ln(I/Vα) versus 1/V may be used for the analysis of field emission data, where α may depend on nanostructure configuration and can be determined from the dependence of emitting spots on the voltage.
NASA Astrophysics Data System (ADS)
Sangeetha, Neralagatta M.; Moutet, Pierre; Lagarde, Delphine; Sallen, Gregory; Urbaszek, Bernhard; Marie, Xavier; Viau, Guillaume; Ressier, Laurence
2013-09-01
Formation of 3D close-packed assemblies of upconverting NaYF4 colloidal nanocrystals (NCs) on surfaces, by Atomic Force Microscopy (AFM) nanoxerography is presented. The surface potential of the charge patterns, the NC concentration, the polarizability of the NCs and the polarity of the dispersing solvent are identified as the key parameters controlling the assembly of NaYF4 NCs into micropatterns of the desired 3D architecture. This insight allowed us to fabricate micrometer sized Quick Response (QR) codes encoded in terms of upconversion luminescence intensity or color. Topographically hidden messages could also be readily incorporated within these microtags. This work demonstrates that AFM nanoxerography has enormous potential for generating high-security anti-counterfeiting microtags.Formation of 3D close-packed assemblies of upconverting NaYF4 colloidal nanocrystals (NCs) on surfaces, by Atomic Force Microscopy (AFM) nanoxerography is presented. The surface potential of the charge patterns, the NC concentration, the polarizability of the NCs and the polarity of the dispersing solvent are identified as the key parameters controlling the assembly of NaYF4 NCs into micropatterns of the desired 3D architecture. This insight allowed us to fabricate micrometer sized Quick Response (QR) codes encoded in terms of upconversion luminescence intensity or color. Topographically hidden messages could also be readily incorporated within these microtags. This work demonstrates that AFM nanoxerography has enormous potential for generating high-security anti-counterfeiting microtags. Electronic supplementary information (ESI) available: Detailed experimental procedures for the synthesis of upconverting NaYF4 nanocrystals and their transmission electron microscopy images. KFM and AFM images corresponding to the assembly of positively charged β-NaYF4:Er3+,Yb3+ nanocrystals from water suspensions by AFM nanoxerography. Photoluminescence spectra of β-NaYF4:Er3+,Yb3+ nanocrystals in a hexane suspension and assembled on charge patterns. See DOI: 10.1039/c3nr02734a
Direct observation of the actin filament by tip-scan atomic force microscopy
Narita, Akihiro; Usukura, Eiji; Yagi, Akira; Tateyama, Kiyohiko; Akizuki, Shogo; Kikumoto, Mahito; Matsumoto, Tomoharu; Maéda, Yuichiro; Ito, Shuichi; Usukura, Jiro
2016-01-01
Actin filaments, the actin–myosin complex and the actin–tropomyosin complex were observed by a tip-scan atomic force microscope (AFM), which was recently developed by Olympus as the AFM part of a correlative microscope. This newly developed AFM uses cantilevers of similar size as stage-scan AFMs to improve substantially the spatial and temporal resolution. Such an approach has previously never been possible by a tip-scan system, in which a cantilever moves in the x, y and z directions. We evaluated the performance of this developed tip-scan AFM by observing the molecular structure of actin filaments and the actin–tropomyosin complex. In the image of the actin filament, the molecular interval of the actin subunits (∼5.5 nm) was clearly observed as stripes. From the shape of the stripes, the polarity of the actin filament was directly determined and the results were consistent with the polarity determined by myosin binding. In the image of the actin–tropomyosin complex, each tropomyosin molecule (∼2 nm in diameter) on the actin filament was directly observed without averaging images of different molecules. Each tropomyosin molecule on the actin filament has never been directly observed by AFM or electron microscopy. Thus, our developed tip-scan AFM offers significant potential in observing purified proteins and cellular structures at nanometer resolution. Current results represent an important step in the development of a new correlative microscope to observe nm-order structures at an acceptable frame rate (∼10 s/frame) by AFM at the position indicated by the fluorescent dye observed under a light microscope. PMID:27242058
NASA Astrophysics Data System (ADS)
Cross, Sarah E.; Kreth, Jens; Zhu, Lin; Qi, Fengxia; Pelling, Andrew E.; Shi, Wenyuan; Gimzewski, James K.
2006-02-01
Atomic force microscopy (AFM) has garnered much interest in recent years for its ability to probe the structure, function and cellular nanomechanics inherent to specific biological cells. In particular, we have used AFM to probe the important structure-function relationships of the bacterium Streptococcus mutans. S. mutans is the primary aetiological agent in human dental caries (tooth decay), and is of medical importance due to the virulence properties of these cells in biofilm initiation and formation, leading to increased tolerance to antibiotics. We have used AFM to characterize the unique surface structures of distinct mutants of S. mutans. These mutations are located in specific genes that encode surface proteins, thus using AFM we have resolved characteristic surface features for mutant strains compared to the wild type. Ultimately, our characterization of surface morphology has shown distinct differences in the local properties displayed by various S. mutans strains on the nanoscale, which is imperative for understanding the collective properties of these cells in biofilm formation.
López-Guerra, Enrique A
2014-01-01
Summary We examine different approaches to model viscoelasticity within atomic force microscopy (AFM) simulation. Our study ranges from very simple linear spring–dashpot models to more sophisticated nonlinear systems that are able to reproduce fundamental properties of viscoelastic surfaces, including creep, stress relaxation and the presence of multiple relaxation times. Some of the models examined have been previously used in AFM simulation, but their applicability to different situations has not yet been examined in detail. The behavior of each model is analyzed here in terms of force–distance curves, dissipated energy and any inherent unphysical artifacts. We focus in this paper on single-eigenmode tip–sample impacts, but the models and results can also be useful in the context of multifrequency AFM, in which the tip trajectories are very complex and there is a wider range of sample deformation frequencies (descriptions of tip–sample model behaviors in the context of multifrequency AFM require detailed studies and are beyond the scope of this work). PMID:25551043
Possibilities of Using Combined Optical and AFM Investigations of Albumin
NASA Astrophysics Data System (ADS)
Buzoverya, M. E.; Shishpor, I. V.; Shcherbak, Yu. P.
2018-02-01
The results of a complex study of 10% aqueous solution of human serum albumin using methods of optical and atomic force microscopy have been presented. The fine structure of main structures of albumin facies (vitreous matrix and concretions) has been revealed and some observed structural effects have been interpreted from the viewpoint of polymer materials science.
Observation of DNA Molecules Using Fluorescence Microscopy and Atomic Force Microscopy
ERIC Educational Resources Information Center
Ito, Takashi
2008-01-01
This article describes experiments for an undergraduate instrumental analysis laboratory that aim to observe individual double-stranded DNA (dsDNA) molecules using fluorescence microscopy and atomic force microscopy (AFM). dsDNA molecules are observed under several different conditions to discuss their chemical and physical properties. In…
NASA Astrophysics Data System (ADS)
Durda, E.; Jaglarz, J.; Kąc, S.; Przybylski, K.; El Kouari, Y.
2016-06-01
The perovskite La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF48) film was deposited on Crofer 22 APU ferritic stainless steel by pulsed laser deposition (PLD). Morphological studies of the sample were performed using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Information about film thickness and surface topography of the film and the steel substrate were obtained using following optical methods: spectroscopic ellipsometry (SE), bidirectional reflection distribution function (BRDF) and total integrated reflectometry (TIS). In particular, the BRDF study, being complementary to atomic force microscopy, yielded information about surface topography. Using the previously mentioned methods, the following statistic surface parameters were determined: root-mean square (rms) roughness and autocorrelation length by determining the power spectral density (PSD) function of surface irregularities.
Measurement and modelization of silica opal optical properties
NASA Astrophysics Data System (ADS)
Avoine, Amaury; Hong, Phan Ngoc; Frederich, Hugo; Aregahegn, Kifle; Bénalloul, Paul; Coolen, Laurent; Schwob, Catherine; Thu Nga, Pham; Gallas, Bruno; Maître, Agnès
2014-03-01
We present the synthesis process and optical characterization of artificial silica opals. The specular reflection spectra are analyzed and compared to band structure calculations and finite difference time domain (FDTD) simulations. The silica optical index is a key parameter to correctly describe an opal and is usually not known and treated as a free parameter. Here we propose a method to infer the silica index, as well as the silica spheres diameter, from the reflection spectra and we validate it by comparison with two independent infrared methods for the index and, scanning electron microscopy (SEM) and atomic force microscopy (AFM) measurements for the spheres diameter.
Chemical Phenomena of Atomic Force Microscopy Scanning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ievlev, Anton V.; Brown, Chance; Burch, Matthew J.
Atomic force microscopy is widely used for nanoscale characterization of materials by scientists worldwide. The long-held belief of ambient AFM is that the tip is generally chemically inert but can be functionalized with respect to the studied sample. This implies that basic imaging and scanning procedures do not affect surface and bulk chemistry of the studied sample. However, an in-depth study of the confined chemical processes taking place at the tip–surface junction and the associated chemical changes to the material surface have been missing as of now. Here, we used a hybrid system that combines time-of-flight secondary ion mass spectrometrymore » with an atomic force microscopy to investigate the chemical interactions that take place at the tip–surface junction. Investigations showed that even basic contact mode AFM scanning is able to modify the surface of the studied sample. In particular, we found that the silicone oils deposited from the AFM tip into the scanned regions and spread to distances exceeding 15 μm from the tip. These oils were determined to come from standard gel boxes used for the storage of the tips. In conclusion, the explored phenomena are important for interpreting and understanding results of AFM mechanical and electrical studies relying on the state of the tip–surface junction.« less
Chemical Phenomena of Atomic Force Microscopy Scanning
Ievlev, Anton V.; Brown, Chance; Burch, Matthew J.; ...
2018-01-30
Atomic force microscopy is widely used for nanoscale characterization of materials by scientists worldwide. The long-held belief of ambient AFM is that the tip is generally chemically inert but can be functionalized with respect to the studied sample. This implies that basic imaging and scanning procedures do not affect surface and bulk chemistry of the studied sample. However, an in-depth study of the confined chemical processes taking place at the tip–surface junction and the associated chemical changes to the material surface have been missing as of now. Here, we used a hybrid system that combines time-of-flight secondary ion mass spectrometrymore » with an atomic force microscopy to investigate the chemical interactions that take place at the tip–surface junction. Investigations showed that even basic contact mode AFM scanning is able to modify the surface of the studied sample. In particular, we found that the silicone oils deposited from the AFM tip into the scanned regions and spread to distances exceeding 15 μm from the tip. These oils were determined to come from standard gel boxes used for the storage of the tips. In conclusion, the explored phenomena are important for interpreting and understanding results of AFM mechanical and electrical studies relying on the state of the tip–surface junction.« less
Automated force controller for amplitude modulation atomic force microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyagi, Atsushi, E-mail: atsushi.miyagi@inserm.fr, E-mail: simon.scheuring@inserm.fr; Scheuring, Simon, E-mail: atsushi.miyagi@inserm.fr, E-mail: simon.scheuring@inserm.fr
Atomic Force Microscopy (AFM) is widely used in physics, chemistry, and biology to analyze the topography of a sample at nanometer resolution. Controlling precisely the force applied by the AFM tip to the sample is a prerequisite for faithful and reproducible imaging. In amplitude modulation (oscillating) mode AFM, the applied force depends on the free and the setpoint amplitudes of the cantilever oscillation. Therefore, for keeping the applied force constant, not only the setpoint amplitude but also the free amplitude must be kept constant. While the AFM user defines the setpoint amplitude, the free amplitude is typically subject to uncontrollablemore » drift, and hence, unfortunately, the real applied force is permanently drifting during an experiment. This is particularly harmful in biological sciences where increased force destroys the soft biological matter. Here, we have developed a strategy and an electronic circuit that analyzes permanently the free amplitude of oscillation and readjusts the excitation to maintain the free amplitude constant. As a consequence, the real applied force is permanently and automatically controlled with picoNewton precision. With this circuit associated to a high-speed AFM, we illustrate the power of the development through imaging over long-duration and at various forces. The development is applicable for all AFMs and will widen the applicability of AFM to a larger range of samples and to a larger range of (non-specialist) users. Furthermore, from controlled force imaging experiments, the interaction strength between biomolecules can be analyzed.« less
Diaz, Alfredo J; Noh, Hanaul; Meier, Tobias; Solares, Santiago D
2017-01-01
Bioinspired design has been central in the development of hierarchical nanocomposites. Particularly, the nacre-mimetic brick-and-mortar structure has shown excellent mechanical properties, as well as gas-barrier properties and optical transparency. Along with these intrinsic properties, the layered structure has also been utilized in sensing devices. Here we extend the multifunctionality of nacre-mimetics by designing an optically transparent and electron conductive coating based on PEDOT:PSS and nanoclays Laponite RD and Cloisite Na + . We carry out extensive characterization of the nanocomposite using transmittance spectra (transparency), conductive atomic force microscopy (conductivity), contact-resonance force microscopy (mechanical properties), and SEM combined with a variety of stress-strain AFM experiments and AFM numerical simulations (internal structure). We further study the nanoclay's response to the application of pressure with multifrequency AFM and conductive AFM, whereby increases and decreases in conductivity can occur for the Laponite RD composites. We offer a possible mechanism to explain the changes in conductivity by modeling the coating as a 1-dimensional multibarrier potential for electron transport, and show that conductivity can change when the separation between the barriers changes under the application of pressure, and that the direction of the change depends on the energy of the electrons. We did not observe changes in conductivity under the application of pressure with AFM for the Cloisite Na + nanocomposite, which has a large platelet size compared with the AFM probe diameter. No pressure-induced changes in conductivity were observed in the clay-free polymer either.
Force-controlled manipulation of single cells: from AFM to FluidFM.
Guillaume-Gentil, Orane; Potthoff, Eva; Ossola, Dario; Franz, Clemens M; Zambelli, Tomaso; Vorholt, Julia A
2014-07-01
The ability to perturb individual cells and to obtain information at the single-cell level is of central importance for addressing numerous biological questions. Atomic force microscopy (AFM) offers great potential for this prospering field. Traditionally used as an imaging tool, more recent developments have extended the variety of cell-manipulation protocols. Fluidic force microscopy (FluidFM) combines AFM with microfluidics via microchanneled cantilevers with nano-sized apertures. The crucial element of the technology is the connection of the hollow cantilevers to a pressure controller, allowing their operation in liquid as force-controlled nanopipettes under optical control. Proof-of-concept studies demonstrated a broad spectrum of single-cell applications including isolation, deposition, adhesion and injection in a range of biological systems. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kane, D. M.; Naidoo, N.; Staib, G. R.
2010-10-01
Atomic force microscopy (AFM) study is used to measure the surface topology and roughness of radial and capture spider silks on the micro- and nanoscale. This is done for silks of the orb weaver spider Argiope keyserlingi. Capture silk has a surface roughness that is five times less than that for radial silk. The capture silk has an equivalent flatness of λ /100 (5-6 nm deep surface features) as an optical surface. This is equivalent to a very highly polished optical surface. AFM does show the number of silk fibers that make up a silk thread but geometric distortion occurs during sample preparation. This prevented AFM from accurately measuring the silk topology on the microscale in this study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soufli, Regina; Baker, Sherry L.; Windt, David L.
2007-06-01
The high-spatial frequency roughness of a mirror operating at extreme ultraviolet (EUV)wavelengths is crucial for the reflective performance and is subject to very stringent specifications. To understand and predict mirror performance, precision metrology is required for measuring the surface roughness. Zerodur mirror substrates made by two different polishing vendors for a suite of EUV telescopes for solar physics were characterized by atomic force microscopy (AFM). The AFM measurements revealed features in the topography of each substrate that are associated with specific polishing techniques. Theoretical predictions of the mirror performance based on the AFM-measured high-spatial-frequency roughness are in good agreement withmore » EUV reflectance measurements of the mirrors after multilayer coating.« less
Weber, Stefan A L; Kilpatrick, Jason I; Brosnan, Timothy M; Jarvis, Suzanne P; Rodriguez, Brian J
2014-05-02
Atomic force microscopy (AFM) is widely used in liquid environments, where true atomic resolution at the solid-liquid interface can now be routinely achieved. It is generally expected that AFM operation in more viscous environments results in an increased noise contribution from the thermal motion of the cantilever, thereby reducing the signal-to-noise ratio (SNR). Thus, viscous fluids such as ionic and organic liquids have been generally avoided for high-resolution AFM studies despite their relevance to, e.g. energy applications. Here, we investigate the thermal noise limitations of dynamic AFM operation in both low and high viscosity environments theoretically, deriving expressions for the amplitude, phase and frequency noise resulting from the thermal motion of the cantilever, thereby defining the performance limits of amplitude modulation, phase modulation and frequency modulation AFM. We show that the assumption of a reduced SNR in viscous environments is not inherent to the technique and demonstrate that SNR values comparable to ultra-high vacuum systems can be obtained in high viscosity environments under certain conditions. Finally, we have obtained true atomic resolution images of highly ordered pyrolytic graphite and mica surfaces, thus revealing the potential of high-resolution imaging in high viscosity environments.
NASA Astrophysics Data System (ADS)
Weber, Stefan A. L.; Kilpatrick, Jason I.; Brosnan, Timothy M.; Jarvis, Suzanne P.; Rodriguez, Brian J.
2014-05-01
Atomic force microscopy (AFM) is widely used in liquid environments, where true atomic resolution at the solid-liquid interface can now be routinely achieved. It is generally expected that AFM operation in more viscous environments results in an increased noise contribution from the thermal motion of the cantilever, thereby reducing the signal-to-noise ratio (SNR). Thus, viscous fluids such as ionic and organic liquids have been generally avoided for high-resolution AFM studies despite their relevance to, e.g. energy applications. Here, we investigate the thermal noise limitations of dynamic AFM operation in both low and high viscosity environments theoretically, deriving expressions for the amplitude, phase and frequency noise resulting from the thermal motion of the cantilever, thereby defining the performance limits of amplitude modulation, phase modulation and frequency modulation AFM. We show that the assumption of a reduced SNR in viscous environments is not inherent to the technique and demonstrate that SNR values comparable to ultra-high vacuum systems can be obtained in high viscosity environments under certain conditions. Finally, we have obtained true atomic resolution images of highly ordered pyrolytic graphite and mica surfaces, thus revealing the potential of high-resolution imaging in high viscosity environments.
Atomic force microscopy as an advanced tool in neuroscience
Jembrek, Maja Jazvinšćak; Šimić, Goran; Hof, Patrick R.; Šegota, Suzana
2015-01-01
This review highlights relevant issues about applications and improvements of atomic force microscopy (AFM) toward a better understanding of neurodegenerative changes at the molecular level with the hope of contributing to the development of effective therapeutic strategies for neurodegenerative illnesses. The basic principles of AFM are briefly discussed in terms of evaluation of experimental data, including the newest PeakForce Quantitative Nanomechanical Mapping (QNM) and the evaluation of Young’s modulus as the crucial elasticity parameter. AFM topography, revealed in imaging mode, can be used to monitor changes in live neurons over time, representing a valuable tool for high-resolution detection and monitoring of neuronal morphology. The mechanical properties of living cells can be quantified by force spectroscopy as well as by new AFM. A variety of applications are described, and their relevance for specific research areas discussed. In addition, imaging as well as non-imaging modes can provide specific information, not only about the structural and mechanical properties of neuronal membranes, but also on the cytoplasm, cell nucleus, and particularly cytoskeletal components. Moreover, new AFM is able to provide detailed insight into physical structure and biochemical interactions in both physiological and pathophysiological conditions. PMID:28123795
2013-01-01
Objective The aim of this study was to compare the difference between insulin-producing cells (IPCs) and normal human pancreatic beta cells both in physiological function and morphological features in cellular level. Methods The levels of insulin secretion were measured by enzyme-linked immunosorbent assay. The insulin gene expression was determined by real-time quantitative polymerase chain reaction. The morphological features were detected by atomic force microscopy (AFM) and laser confocal scanning microscopy. Results IPCs and normal human pancreatic beta cells were similar to each other under the observation in AFM with the porous structure features in the cytoplasm. Both number of membrane particle size and average roughness of normal human beta cells were higher than those of IPCs. Conclusions Our results firstly revealed that the cellular ultrastructure of IPCs was closer to that of normal human pancreatic beta cells, but they still could not mimic the physiological regulation of insulin secretion performed by pancreatic beta cells. PMID:23421382
Structural, morphological and optical studies of ripple-structured ZnO thin films
NASA Astrophysics Data System (ADS)
Navin, Kumar; Kurchania, Rajnish
2015-11-01
Ripple-structured ZnO thin films were prepared on Si (100) substrate by sol-gel spin-coating method with different heating rates during preheating process and finally sintered at 500 °C for 2 h in ambient condition. The structural, morphological and photoluminescence (PL) properties of the nanostructured films were analyzed by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM) and PL spectroscopy. XRD analysis revealed that films have hexagonal wurtzite structure and texture coefficient increases along (002) plane with preheating rate. The faster heating rate produced higher crystallization and larger average crystallite size. The AFM and SEM images indicate that all the films have uniformly distributed ripple structure with skeletal branches. The number of ripples increases, while the rms roughness, amplitude and correlation length of the ripple structure decrease with preheating rates. The PL spectra show the presence of different defects in the structure. The ultraviolet emission improved with the heating rate which indicates its better crystallinity.
Wörner, Michael; Lioubashevski, Oleg; Basel, Matthew T; Niebler, Sandra; Gogritchiani, Eliso; Egner, Nicole; Heinz, Christian; Hoferer, Jürgen; Cipolloni, Michela; Janik, Katharine; Katz, Evgeny; Braun, Andre M; Willner, Itamar; Niederweis, Michael; Bossmann, Stefan H
2007-06-01
Nanostructures with long-term stability at the surface of gold electrodes are generated by reconstituting the porin MspA from Mycobacterium smegmatis into a specially designed monolayer of long-chain lipid surfactant on gold. Tailored surface coverage of gold electrodes with long-chain surfactants is achieved by electrochemically assisted deposition of organic thiosulfates (Bunte salts). The subsequent reconstitution of the octameric-pore MspA is guided by its extraordinary self-assembling properties. Importantly, electrochemical reduction of copper(II) yields copper nanoparticles within the MspA nanopores. Electrochemical impedance spectroscopy, reflection electron microscopy, and atomic force microscopy (AFM) show that: 1) the MspA pores within the self-assembled monolayer (SAM) are monodisperse and electrochemically active, 2) MspA reconstitutes in SAMs and with a 10-nm thickness, 3) AFM is a suitable method to detect pores within SAMs, and 4) the electrochemical reduction of Cu2+ to Cu0 under overpotential conditions starts within the MspA pores.
Resta, Andrea; Leoni, Thomas; Barth, Clemens; Ranguis, Alain; Becker, Conrad; Bruhn, Thomas; Vogt, Patrick; Le Lay, Guy
2013-01-01
Silicene, the considered equivalent of graphene for silicon, has been recently synthesized on Ag(111) surfaces. Following the tremendous success of graphene, silicene might further widen the horizon of two-dimensional materials with new allotropes artificially created. Due to stronger spin-orbit coupling, lower group symmetry and different chemistry compared to graphene, silicene presents many new interesting features. Here, we focus on very important aspects of silicene layers on Ag(111): First, we present scanning tunneling microscopy (STM) and non-contact Atomic Force Microscopy (nc-AFM) observations of the major structures of single layer and bi-layer silicene in epitaxy with Ag(111). For the (3 × 3) reconstructed first silicene layer nc-AFM represents the same lateral arrangement of silicene atoms as STM and therefore provides a timely experimental confirmation of the current picture of the atomic silicene structure. Furthermore, both nc-AFM and STM give a unifying interpretation of the second layer (√3 × √3)R ± 30° structure. Finally, we give support to the conjectured possible existence of less stable, ~2% stressed, (√7 × √7)R ± 19.1° rotated silicene domains in the first layer. PMID:23928998
Moro, Daniele; Valdrè, Giovanni; Mesto, Ernesto; Scordari, Fernando; Lacalamita, Maria; Ventura, Giancarlo Della; Bellatreccia, Fabio; Scirè, Salvatore; Schingaro, Emanuela
2017-01-01
This study presents a cross-correlated surface and near surface investigation of two phlogopite polytypes from Kasenyi kamafugitic rocks (SW Uganda) by means of advanced Atomic Force Microscopy (AFM), confocal microscopy and Raman micro-spectroscopy. AFM revealed comparable nanomorphology and electrostatic surface potential for the two mica polytypes. A widespread presence of nano-protrusions located on the mica flake surface was also observed, with an aspect ratio (maximum height/maximum width) from 0.01 to 0.09. Confocal microscopy showed these features to range from few nm to several μm in dimension, and shapes from perfectly circular to ellipsoidic and strongly elongated. Raman spectra collected across the bubbles showed an intense and convolute absorption in the range 3000–2800 cm−1, associated with weaker bands at 1655, 1438 and 1297 cm−1, indicating the presence of fluid inclusions consisting of aliphatic hydrocarbons, alkanes and cycloalkanes, with minor amounts of oxygenated compounds, such as carboxylic acids. High-resolution Raman images provided evidence that these hydrocarbons are confined within the bubbles. This work represents the first direct evidence that phlogopite, a common rock-forming mineral, may be a possible reservoir for hydrocarbons. PMID:28098185
Simulating contrast inversion in atomic force microscopy imaging with real-space pseudopotentials
NASA Astrophysics Data System (ADS)
Lee, Alex J.; Sakai, Yuki; Chelikowsky, James R.
2017-02-01
Atomic force microscopy (AFM) measurements have reported contrast inversions for systems such as Cu2N and graphene that can hamper image interpretation and characterization. Here, we apply a simulation method based on ab initio real-space pseudopotentials to gain an understanding of the tip-sample interactions that influence the inversion. We find that chemically reactive tips induce an attractive binding force that results in the contrast inversion. We find that the inversion is tip height dependent and not observed when using less reactive CO-functionalized tips.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chitralekha, C. S.; Rasi, Mohammed; Nair, Swapna S., E-mail: swapna.s.nair@gmail.com
A modified sol-gel method was introduced by employing a cost effective novel template to synthesize coaxial one dimensional (1-D) composite nanostructures based on CoFe{sub 2}O{sub 4} (CFO) - K{sub 0.5}Na{sub 0.5}NbO{sub 3} (KNN) and magnetic nanostructures based on CoFe{sub 2}O{sub 4} (CFO). The studies with scanning electron microscopy (SEM) and atomic force microscopy (AFM) revealed that the composite material is characterized by the 1-D tubular structure. The absorption edge is blue shifted for both KNN and CFO nanotubes due to the lattice strain effect.
NASA Astrophysics Data System (ADS)
de Grauw, Kees
Raman microscopy and atomic force microscopy (AFM) are used for the investigation of the composition and structure of the banding patterns of polytene chromosomes and of hydroxyapatite bone-implant coatings. For Raman microspectroscopy two new measuring methods are introduced: line-scan Raman and Low-wavenumber Raman microspectroscopy. A transparent and easy to use model to predict the depth resolution of a confocal microscope is described. A Chevron-type of filter set was developed for simultaneous measurements of Stokes and anti-Stokes Raman scattering close to the exciting laser frequency. Bands of polytene chromosomes appeared to contain a higher concentration of DNA and proteins compared to interbands. AFM measurements revealed that bands consist of a densely packed chromatin structure and are hardly affected by stretching of the chromosome. Interbands have a more open chromatin structure and are more accessible to solvent molecules. For the study of bone implant coatings Raman micro spectroscopy appeared to provide an easy, non- destructive, way to obtain information about the apatite structure and the degree of crystallinity. It was shown that the degree of crystallinity was constant over coatings produced by plasma spraying while the material density did vary.
Monson, Todd C; Hollars, Christopher W; Orme, Christine A; Huser, Thomas
2011-04-01
The dispersion of CdTe tetrapods in a conducting polymer and the resulting charge transfer is studied using a combination of confocal fluorescence microscopy and atomic force microscopy (AFM). The results of this work show that both the tetrapod dispersion and charge transfer between the CdTe and conducting polymer (P3HT) are greatly enhanced by exchanging the ligands on the surface of the CdTe and by choosing proper solvent mixtures. The ability to experimentally probe the relationship between particle dispersion and charge transfer through the combination of AFM and fluorescence microscopy provides another avenue to assess the performance of polymer/semiconductor nanoparticle composites. © 2011 American Chemical Society
Correlating microscopy techniques and ToF-SIMS analysis of fully grown mammalian oocytes.
Gulin, Alexander; Nadtochenko, Victor; Astafiev, Artyom; Pogorelova, Valentina; Rtimi, Sami; Pogorelov, Alexander
2016-06-20
The 2D-molecular thin film analysis protocol for fully grown mice oocytes is described using an innovative approach. Time-of-flight secondary ion mass spectrometry (ToF-SIMS), scanning electron microscopy (SEM), atomic force microscopy (AFM) and optical microscopy imaging were applied to the same mice oocyte section on the same sample holder. A freeze-dried mice oocyte was infiltrated into embedding media, e.g. Epon, and then was cut with a microtome and 2 μm thick sections were transferred onto an ITO coated conductive glass. Mammalian oocytes can contain "nucleolus-like body" (NLB) units and ToF-SIMS analysis was used to investigate the NLB composition. The ion-spatial distribution in the cell components was identified and compared with the images acquired by SEM, AFM and optical microscopy. This study presents a significant advancement in cell embryology, cell physiology and cancer-cell biochemistry.
2016-01-01
The function of bioenergetic membranes is strongly influenced by the spatial arrangement of their constituent membrane proteins. Atomic force microscopy (AFM) can be used to probe protein organization at high resolution, allowing individual proteins to be identified. However, previous AFM studies of biological membranes have typically required that curved membranes are ruptured and flattened during sample preparation, with the possibility of disruption of the native protein arrangement or loss of proteins. Imaging native, curved membranes requires minimal tip–sample interaction in both lateral and vertical directions. Here, long-range tip–sample interactions are reduced by optimizing the imaging buffer. Tapping mode AFM with high-resonance-frequency small and soft cantilevers, in combination with a high-speed AFM, reduces the forces due to feedback error and enables application of an average imaging force of tens of piconewtons. Using this approach, we have imaged the membrane organization of intact vesicular bacterial photosynthetic “organelles”, chromatophores. Despite the highly curved nature of the chromatophore membrane and lack of direct support, the resolution was sufficient to identify the photosystem complexes and quantify their arrangement in the native state. Successive imaging showed the proteins remain surprisingly static, with minimal rotation or translation over several-minute time scales. High-order assemblies of RC-LH1-PufX complexes are observed, and intact ATPases are successfully imaged. The methods developed here are likely to be applicable to a broad range of protein-rich vesicles or curved membrane systems, which are an almost ubiquitous feature of native organelles. PMID:28114766
Tekçe, Neslihan; Pala, Kansad; Demirci, Mustafa; Tuncer, Safa
2016-11-01
To evaluate changes in surface characteristics of two different resin composites after 1 year of water storage using a profilometer, Vickers hardness, scanning electron microscopy (SEM), and atomic force microscopy (AFM). A total of 46 composite disk specimens (10 mm in diameter and 2 mm thick) were fabricated using Clearfil Majesty Esthetic and Clearfil Majesty Posterior (Kuraray Medical Co, Tokyo, Japan). Ten specimens from each composite were used for surface roughness and microhardness tests (n = 10). For each composite, scanning electron microscope (SEM, n = 2) and atomic force microscope (AFM, n = 1) images were obtained after 24 h and 1 year of water storage. The data were analyzed using two-way analysis of variance and a post-hoc Bonferroni test. Microhardness values of Clearfil Majesty Esthetic decreased significantly (78.15-63.74, p = 0.015) and surface roughness values did not change after 1 year of water storage (0.36-0.39, p = 0.464). Clearfil Majesty Posterior microhardness values were quite stable (138.74-137.25, p = 0.784), and surface roughness values increased significantly (0.39-0.48, p = 0.028) over 1 year. One year of water storage caused microhardness values for Clearfil Majesty Esthetic to decrease and the surface roughness of Clearfil Majesty Posterior increased. AFM and SEM images demonstrated surface detoration of the materials after 1 year and ensured similar results with the quantitative test methods. SCANNING 38:694-700, 2016. © 2016 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.
Distributed force probe bending model of critical dimension atomic force microscopy bias
NASA Astrophysics Data System (ADS)
Ukraintsev, Vladimir A.; Orji, Ndubuisi G.; Vorburger, Theodore V.; Dixson, Ronald G.; Fu, Joseph; Silver, Rick M.
2013-04-01
Critical dimension atomic force microscopy (CD-AFM) is a widely used reference metrology technique. To characterize modern semiconductor devices, small and flexible probes, often 15 to 20 nm in diameter, are used. Recent studies have reported uncontrolled and significant probe-to-probe bias variation during linewidth and sidewall angle measurements. To understand the source of these variations, tip-sample interactions between high aspect ratio features and small flexible probes, and their influence on measurement bias, should be carefully studied. Using theoretical and experimental procedures, one-dimensional (1-D) and two-dimensional (2-D) models of cylindrical probe bending relevant to carbon nanotube (CNT) AFM probes were developed and tested. An earlier 1-D bending model was refined, and a new 2-D distributed force (DF) model was developed. Contributions from several factors were considered, including: probe misalignment, CNT tip apex diameter variation, probe bending before snapping, and distributed van der Waals-London force. A method for extracting Hamaker probe-surface interaction energy from experimental probe-bending data was developed. Comparison of the new 2-D model with 1-D single point force (SPF) model revealed a difference of about 28% in probe bending. A simple linear relation between biases predicted by the 1-D SPF and 2-D DF models was found. The results suggest that probe bending can be on the order of several nanometers and can partially explain the observed CD-AFM probe-to-probe variation. New 2-D and three-dimensional CD-AFM data analysis software is needed to take full advantage of the new bias correction modeling capabilities.
Chammas, Oliver; Bonass, William A; Thomson, Neil H
2017-05-01
The influence of heparin and heparan sulphate (HepS) on the appearance and analysis of open promoter complex (RP o ) formation by E. coli RNA polymerase (RNAP) holoenzyme (σ 70 RNAP) on linear DNA using ex situ imaging by atomic force microscopy (AFM) has been investigated. Introducing heparin or HepS into the reaction mix significantly reduces non-specific interactions of the σ 70 RNAP and RNAP after RP o formation allowing for better interpretation of complexes shown within AFM images, particularly on DNA templates containing more than one promoter. Previous expectation was that negatively charged polysaccharides, often used as competitive inhibitors of σRNAP binding and RP o formation, would also inhibit binding of the DNA template to the mica support surface and thereby lower the imaging yield of active RNAP-DNA complexes. We found that the reverse of this was true, and that the yield of RP o formation detected by AFM, for a simple tandem gene model containing two λ PR promoters, increased. Moreover and unexpectedly, HepS was more efficient than heparin, with both of them having a dispersive effect on the sample, minimising unwanted RNAP-RNAP interactions as well as non-specific interactions between the RNAP and DNA template. The success of this method relied on the observation that E. coli RNAP has the highest affinity for the mica surface of all the molecular components. For our system, the affinity of the three constituent biopolymers to muscovite mica was RNAP>Heparin or HepS>DNA. While we observed that heparin and HepS can inhibit DNA binding to the mica, the presence of E. coli RNAP overcomes this effect allowing a greater yield of RP o s for AFM analysis. This method can be extended to other DNA binding proteins and enzymes, which have an affinity to mica higher than DNA, to improve sample preparation for AFM studies. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Magnetic skin layer of NiO(100) probed by polarization-dependent spectromicroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mandal, Suman, E-mail: suman.mandal@sscu.iisc.ernet.in; Menon, Krishnakumar S. R., E-mail: krishna.menon@saha.ac.in; Belkhou, Rachid
2014-06-16
Using polarization-dependent x-ray photoemission electron microscopy, we have investigated the surface effects on antiferromagnetic (AFM) domain formation. Depth-resolved information obtained from our study indicates the presence of strain-induced surface AFM domains on some of the cleaved NiO(100) crystals, which are unusually thinner than bulk AFM domain wall widths (∼150 nm). Existence of such magnetic skin layer is substantiated by exchange-coupled ferromagnetic Fe domains in Fe/NiO(100), thereby evidencing the influence of this surface AFM domains on interfacial magnetic coupling. Our observations demonstrate a depth evolution of AFM structure in presence of induced surface strain, while the surface symmetry-breaking in absence of inducedmore » strain does not modify the bulk AFM domain structure. Realization of such thin surface AFM layer will provide better microscopic understanding of the exchange bias phenomena.« less
Biological Applications of FM-AFM in Liquid Environment
NASA Astrophysics Data System (ADS)
Fukuma, Takeshi; Jarvis, Suzanne P.
Atomic force microscopy (AFM) was noted for its potential to study biological materials shortly after its first development in 1986 due to its ability to image insulators in liquid environments. The subsequent application of AFM to biology has included lateral characterization via imaging, unraveling of molecules under a tensile load and application of a force either to measure mechanical properties under the tip or to instigate a biochemical response in living cells. To date, the application of frequency modulation AFM (FM-AFM) specifically to biological materials has been limited to relatively few research groups when compared to the extensive application of AFM to biological materials. This is probably due to the perceived complexity of the technique both by researchers in the life sciences and those manufacturing liquid AFMs for biological research. In this chapter, we aim to highlight the advantages of applying the technique to biological materials.
Imaging The Genetic Code of a Virus
NASA Astrophysics Data System (ADS)
Graham, Jenna; Link, Justin
2013-03-01
Atomic Force Microscopy (AFM) has allowed scientists to explore physical characteristics of nano-scale materials. However, the challenges that come with such an investigation are rarely expressed. In this research project a method was developed to image the well-studied DNA of the virus lambda phage. Through testing and integrating several sample preparations described in literature, a quality image of lambda phage DNA can be obtained. In our experiment, we developed a technique using the Veeco Autoprobe CP AFM and mica substrate with an appropriate absorption buffer of HEPES and NiCl2. This presentation will focus on the development of a procedure to image lambda phage DNA at Xavier University. The John A. Hauck Foundation and Xavier University
Walke, Peter; Fujita, Yasuhiko; Peeters, Wannes; Toyouchi, Shuichi; Frederickx, Wout; De Feyter, Steven; Uji-I, Hiroshi
2018-04-26
Tip-enhanced Raman scattering (TERS) microscopy is a unique analytical tool to provide complementary chemical and topographic information of surfaces with nanometric resolution. However, difficulties in reliably producing the necessary metallized scanning probe tips has limited its widespread utilisation, particularly in the case of cantilever-based atomic force microscopy. Attempts to alleviate tip related issues using colloidal or bottom-up engineered tips have so far not reported consistent probes for both Raman and topographic imaging. Here we demonstrate the reproducible fabrication of cantilever-based high-performance TERS probes for both topographic and Raman measurements, based on an approach that utilises noble metal nanowires as the active TERS probe. The tips show 10 times higher TERS contrasts than the most typically used electrochemically-etched tips, and show a reproducibility for TERS greater than 90%, far greater than found with standard methods. We show that TERS can be performed in tapping as well as contact AFM mode, with optical resolutions around or below 15 nm, and with a maximum resolution achieved in tapping-mode of 6 nm. Our work illustrates that superior TERS probes can be produced in a fast and cost-effective manner using simple wet-chemistry methods, leading to reliable and reproducible high-resolution and high-sensitivity TERS, and thus renders the technique applicable for a broad community.
Multimode resistive switching in nanoscale hafnium oxide stack as studied by atomic force microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Y., E-mail: houyi@pku.edu.cn, E-mail: lfliu@pku.edu.cn; IMEC, Kapeldreef 75, B-3001 Heverlee; Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, B-3001 Heverlee
2016-07-11
The nanoscale resistive switching in hafnium oxide stack is investigated by the conductive atomic force microscopy (C-AFM). The initial oxide stack is insulating and electrical stress from the C-AFM tip induces nanometric conductive filaments. Multimode resistive switching can be observed in consecutive operation cycles at one spot. The different modes are interpreted in the framework of a low defect quantum point contact theory. The model implies that the optimization of the conductive filament active region is crucial for the future application of nanoscale resistive switching devices.
Electrochemical atomic force microscopy: In situ monitoring of electrochemical processes
NASA Astrophysics Data System (ADS)
Reggente, Melania; Passeri, Daniele; Rossi, Marco; Tamburri, Emanuela; Terranova, Maria Letizia
2017-08-01
The in-situ electrodeposition of polyaniline (PANI), one of the most attractive conducting polymers (CP), has been monitored performing electrochemical atomic force microscopy (EC-AFM) experiments. The electropolymerization of PANI on a Pt working electrode has been observed performing cyclic voltammetry experiments and controlling the evolution of current flowing through the electrode surface, together with a standard AFM image. The working principle and the potentialities of this emerging technique are briefly reviewed and factors limiting the studying of the in-situ electrosynthesis of organic compounds discussed.
Interfacial gas nanobubbles or oil nanodroplets?
Wang, Xingya; Zhao, Binyu; Hu, Jun; Wang, Shuo; Tai, Renzhong; Gao, Xingyu; Zhang, Lijuan
2017-01-04
The existence of nanobubbles at a solid-liquid interface with high stability has been confirmed by myriad experimental studies, and their gaseous nature has also been extensively verified. However, nanodroplets of polydimethylsiloxane (PDMS) recently observed in the atomic force microscopy (AFM) measurement of nanobubbles plague the nanobubble community. It may easily lead to wrong interpretations of the AFM results and thus hinders further application of the already widely used AFM in nanobubble studies. Therefore, finding a direct experimental solution to distinguish nanobubbles from nanodroplets in AFM measurements is a matter of great urgency. Herein, we first developed an effective and reproducible method to produce PDMS nanodroplets at the highly ordered pyrolytic graphite (HOPG)/water interface. From their size, contact angle, and stiffness, the formed PDMS nanodroplets are not distinguishable from nanobubbles. However, the force curves on these two objects are strikingly different from each other, i.e., a peculiar plateau in both the approach and retraction curves was found on nanobubbles whereas they changed linearly between the jump-in and jump-off point on PDMS nanodroplets. Thus, the present study not only provided a simple and effective procedure to generate PDMS nanodroplets but also paved a simple practical and in situ way to discriminate nanobubbles from the PDMS nanodroplets by direct AFM force measurements.
Characterization of konjac glucomannan-ethyl cellulose film formation via microscopy.
Xiao, Man; Wan, Li; Corke, Harold; Yan, Wenli; Ni, Xuewen; Fang, Yapeng; Jiang, Fatang
2016-04-01
Konjac glucomannan-ethyl cellulose (KGM-EC, 7:3, w/w) blended film shows good mechanical and moisture resistance properties. To better understand the basis for the KGM-EC film formation, optical microscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM) were used to observe the formation of the film from emulsion. Optical microscopy images showed that EC oil droplets were homogeneously dispersed in KGM water phase without obviously coalescence throughout the entire drying process. SEM images showed the surface and cross-sectional structures of samples maintained continuous and homogeneous appearance from the emulsion to dried film. AFM images indicated that KGM molecules entangled EC molecules in the emulsion. Interactions between KGM and EC improved the stability of KGM-EC emulsion, and contributed to uniformed structures of film formation. Based on these output information, a schematic model was built to elucidate KGM-EC film-forming process. Copyright © 2015 Elsevier B.V. All rights reserved.
Sub-50 nm metrology on extreme ultra violet chemically amplified resist—A systematic assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maas, D. J., E-mail: diederik.maas@tno.nl; Herfst, R.; Veldhoven, E. van
2015-10-15
With lithographic patterning dimensions decreasing well below 50 nm, it is of high importance to understand metrology at such small scales. This paper presents results obtained from dense arrays of contact holes (CHs) with various Critical Dimension (CD) between 15 and 50 nm, as patterned in a chemically amplified resist using an ASML EUV scanner and measured at ASML and TNO. To determine the differences between various (local) CD metrology techniques, we conducted an experiment using optical scatterometry, CD-Scanning Electron Microscopy (CD-SEM), Helium ion Microscopy (HIM), and Atomic Force Microscopy (AFM). CD-SEM requires advanced beam scan strategies to mitigate samplemore » charging; the other tools did not need that. We discuss the observed main similarities and differences between the various techniques. To this end, we assessed the spatial frequency content in the raw images for SEM, HIM, and AFM. HIM and AFM resolve the highest spatial frequencies, which are attributed to the more localized probe-sample interaction for these techniques. Furthermore, the SEM, HIM, and AFM waveforms are analyzed in detail. All techniques show good mutual correlation, albeit the reported CD values systematically differ significantly. HIM systematically reports a 25% higher CD uniformity number than CD-SEM for the same arrays of CHs, probably because HIM has a higher resolution than the CD-SEM used in this assessment. A significant speed boost for HIM and AFM is required before these techniques are to serve the demanding industrial metrology applications like optical critical dimension and CD-SEM do nowadays.« less
Sub-50 nm metrology on extreme ultra violet chemically amplified resist—A systematic assessment
NASA Astrophysics Data System (ADS)
Maas, D. J.; Fliervoet, T.; Herfst, R.; van Veldhoven, E.; Meessen, J.; Vaenkatesan, V.; Sadeghian, H.
2015-10-01
With lithographic patterning dimensions decreasing well below 50 nm, it is of high importance to understand metrology at such small scales. This paper presents results obtained from dense arrays of contact holes (CHs) with various Critical Dimension (CD) between 15 and 50 nm, as patterned in a chemically amplified resist using an ASML EUV scanner and measured at ASML and TNO. To determine the differences between various (local) CD metrology techniques, we conducted an experiment using optical scatterometry, CD-Scanning Electron Microscopy (CD-SEM), Helium ion Microscopy (HIM), and Atomic Force Microscopy (AFM). CD-SEM requires advanced beam scan strategies to mitigate sample charging; the other tools did not need that. We discuss the observed main similarities and differences between the various techniques. To this end, we assessed the spatial frequency content in the raw images for SEM, HIM, and AFM. HIM and AFM resolve the highest spatial frequencies, which are attributed to the more localized probe-sample interaction for these techniques. Furthermore, the SEM, HIM, and AFM waveforms are analyzed in detail. All techniques show good mutual correlation, albeit the reported CD values systematically differ significantly. HIM systematically reports a 25% higher CD uniformity number than CD-SEM for the same arrays of CHs, probably because HIM has a higher resolution than the CD-SEM used in this assessment. A significant speed boost for HIM and AFM is required before these techniques are to serve the demanding industrial metrology applications like optical critical dimension and CD-SEM do nowadays.
NASA Astrophysics Data System (ADS)
Knorr, Nikolaus; Rosselli, Silvia; Miteva, Tzenka; Nelles, Gabriele
2009-06-01
Although charging of insulators by atomic force microscopy (AFM) has found widespread interest, often with data storage or nanoxerography in mind, less attention has been paid to the charging mechanism and the nature of the charge. Here we present a systematic study on charging of amorphous polymer films by voltage pulses applied to conducting AFM probes. We find a quadratic space charge limited current law of Kelvin probe force microscopy and electrostatic force microscopy peak volumes in pulse height, offset by a threshold voltage, and a power law in pulse width of positive exponents smaller than one. We interpret the results by a charging mechanism of injection and surface near accumulation of aqueous ions stemming from field induced water adsorption, with threshold voltages linked to the water affinities of the polymers.
Adhesion between peptides/antibodies and breast cancer cells
NASA Astrophysics Data System (ADS)
Meng, J.; Paetzell, E.; Bogorad, A.; Soboyejo, W. O.
2010-06-01
Atomic force microscopy (AFM) techniques were used to measure the adhesion forces between the receptors on breast cancer cells specific to human luteinizing hormone-releasing hormone (LHRH) peptides and antibodies specific to the EphA2 receptor. The adhesion forces between LHRH-coated AFM tips and human MDA-MB-231 cells (breast cancer cells) were shown to be about five times greater than those between LHRH-coated AFM tips and normal Hs578Bst breast cells. Similarly, those between EphA2 antibody-coated AFM tips and breast cancer cells were over five times greater than those between EphA2 antibody-coated AFM tips and normal breast cells. The results suggest that AFM can be used for the detection of breast cancer cells in biopsies. The implications of the results are also discussed for the early detection and localized treatment of cancer.
Three-Dimensional Nanoprinting via Direct Delivery.
Ventrici de Souza, Joao; Liu, Yang; Wang, Shuo; Dörig, Pablo; Kuhl, Tonya L; Frommer, Jane; Liu, Gang-Yu
2018-01-18
Direct writing methods are a generic and simple means to produce designed structures in three dimensions (3D). The printing is achieved by extruding printing materials through a nozzle, which provides a platform to deliver a wide range of materials. Although this method has been routinely used for 3D printing at macroscopic scales, miniaturization to micrometer and nanometer scales and building hierarchical structures at multidimensional scales represent new challenges in research and development. The current work addresses these challenges by combining the spatial precision of atomic force microscopy (AFM) and local delivery capability of microfluidics. Specialized AFM probes serve dual roles of a microscopy tip and a delivery tool, enabling the miniaturization of 3D printing via direct material delivery. Stacking grids of 20 μm periodicity were printed layer-by-layer covering 1 mm × 1 mm regions. The spatial fidelity was measured to be several nanometers, which is among the highest in 3D printing. The results clearly demonstrate the feasibility of achieving high precision 3D nanoprinting with nanometer feature size and accuracy with practical throughput and overall size. This work paves the way for advanced applications of 3D hierarchical nanostructures.
Electrical characterization of HgTe nanowires using conductive atomic force microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gundersen, P.; Department of Physics, Norwegian University of Science and Technology, NO-7491 Trondheim; Kongshaug, K. O.
Self-organized HgTe nanowires grown by molecular beam epitaxy (MBE) have been characterized using conductive atomic force microscopy. As HgTe will degrade or evaporate at normal baking temperatures for electron beam lithography (EBL) resists, an alternative method was developed. Using low temperature optical lithography processes, large Au contacts were deposited on a sample covered with randomly oriented, lateral HgTe nanowires. Nanowires partly covered by the large electrodes were identified with a scanning electron microscope and then localized in the atomic force microscope (AFM). The conductive tip of the AFM was then used as a movable electrode to measure current-voltage curves atmore » several locations on HgTe nanowires. The measurements revealed that polycrystalline nanowires had diffusive electron transport, with resistivities two orders of magnitude larger than that of an MBE-grown HgTe film. The difference can be explained by scattering at the rough surface walls and at the grain boundaries in the wires. The method can be a solution when EBL is not available or requires too high temperature, or when measurements at several positions along a wire are required.« less
Loganathan, Muthukumaran; Bristow, Douglas A
2014-04-01
This paper presents a method and cantilever design for improving the mechanical measurement sensitivity in the atomic force microscopy (AFM) tapping mode. The method uses two harmonics in the drive signal to generate a bi-harmonic tapping trajectory. Mathematical analysis demonstrates that the wide-valley bi-harmonic tapping trajectory is as much as 70% more sensitive to changes in the sample topography than the standard single-harmonic trajectory typically used. Although standard AFM cantilevers can be driven in the bi-harmonic tapping trajectory, they require large forcing at the second harmonic. A design is presented for a bi-harmonic cantilever that has a second resonant mode at twice its first resonant mode, thereby capable of generating bi-harmonic trajectories with small forcing signals. Bi-harmonic cantilevers are fabricated by milling a small cantilever on the interior of a standard cantilever probe using a focused ion beam. Bi-harmonic drive signals are derived for standard cantilevers and bi-harmonic cantilevers. Experimental results demonstrate better than 30% improvement in measurement sensitivity using the bi-harmonic cantilever. Images obtained through bi-harmonic tapping exhibit improved sharpness and surface tracking, especially at high scan speeds and low force fields.
Solares, Santiago D
2014-01-01
This paper presents computational simulations of single-mode and bimodal atomic force microscopy (AFM) with particular focus on the viscoelastic interactions occurring during tip-sample impact. The surface is modeled by using a standard linear solid model, which is the simplest system that can reproduce creep compliance and stress relaxation, which are fundamental behaviors exhibited by viscoelastic surfaces. The relaxation of the surface in combination with the complexities of bimodal tip-sample impacts gives rise to unique dynamic behaviors that have important consequences with regards to the acquisition of quantitative relationships between the sample properties and the AFM observables. The physics of the tip-sample interactions and its effect on the observables are illustrated and discussed, and a brief research outlook on viscoelasticity measurement with intermittent-contact AFM is provided.
NASA Astrophysics Data System (ADS)
Natali, Marco; Passeri, Daniele; Reggente, Melania; Tamburri, Emanuela; Terranova, Maria Letizia; Rossi, Marco
2016-06-01
Characterization of mechanical properties at the nanometer scale at variable temperature is one of the main challenges in the development of polymer-based nanocomposites for application in high temperature environments. Contact resonance atomic force microscopy (CR-AFM) is a powerful technique to characterize viscoelastic properties of materials at the nanoscale. In this work, we demonstrate the capability of CR-AFM of characterizing viscoelastic properties (i.e., storage and loss moduli, as well as loss tangent) of polymer-based nanocomposites at variable temperature. CR-AFM is first illustrated on two polymeric reference samples, i.e., low-density polyethylene (LDPE) and polycarbonate (PC). Then, temperature-dependent viscoelastic properties (in terms of loss tangent) of a nanocomposite sample constituted by a epoxy resin reinforced with single-wall carbon nanotubes (SWCNTs) are investigated.
Optimizing atomic force microscopy for characterization of diamond-protein interfaces
NASA Astrophysics Data System (ADS)
Rezek, Bohuslav; Ukraintsev, Egor; Kromka, Alexander
2011-12-01
Atomic force microscopy (AFM) in contact mode and tapping mode is employed for high resolution studies of soft organic molecules (fetal bovine serum proteins) on hard inorganic diamond substrates in solution and air. Various effects in morphology and phase measurements related to the cantilever spring constant, amplitude of tip oscillations, surface approach, tip shape and condition are demonstrated and discussed based on the proposed schematic models. We show that both diamond and proteins can be mechanically modified by Si AFM cantilever. We propose how to choose suitable cantilever type, optimize scanning parameters, recognize and minimize various artifacts, and obtain reliable AFM data both in solution and in air to reveal microscopic characteristics of protein-diamond interfaces. We also suggest that monocrystalline diamond is well defined substrate that can be applicable for fundamental studies of molecules on surfaces in general.
Single molecule imaging of RNA polymerase II using atomic force microscopy
NASA Astrophysics Data System (ADS)
Rhodin, Thor; Fu, Jianhua; Umemura, Kazuo; Gad, Mohammed; Jarvis, Suzi; Ishikawa, Mitsuru
2003-03-01
An atomic force microscopy (AFM) study of the shape, orientation and surface topology of RNA polymerase II supported on silanized freshly cleaved mica was made. The overall aim is to define the molecular topology of RNA polymerase II in appropriate fluids to help clarify the relationship of conformational features to biofunctionality. A Nanoscope III atomic force microscope was used in the tapping mode with oxide-sharpened (8-10 nm) Si 3N 4 probes in aqueous zinc chloride buffer. The main structural features observed by AFM were compared to those derived from electron-density plots based on X-ray crystallographic studies. The conformational features included a bilobal silhouette with an inverted umbrella-shaped crater connected to a reaction site. These studies provide a starting point for constructing a 3D-AFM profiling analysis of proteins such as RNA polymerase complexes.
Speranza, V.; Sorrentino, A.; De Santis, F.; Pantani, R.
2014-01-01
The first stages of the crystallization of polycaprolactone (PCL) were studied using several techniques. The crystallization exotherms measured by differential scanning calorimetry (DSC) were analyzed and compared with results obtained by polarized optical microscopy (POM), rheology, and atomic force microscope (AFM). The experimental results suggest a strong influence of the observation scale. In particular, the AFM, even if limited on time scale, appears to be the most sensitive technique to detect the first stages of crystallization. On the contrary, at least in the case analysed in this work, rheology appears to be the least sensitive technique. DSC and POM provide closer results. This suggests that the definition of induction time in the polymer crystallization is a vague concept that, in any case, requires the definition of the technique used for its characterization. PMID:24523644
Speranza, V; Sorrentino, A; De Santis, F; Pantani, R
2014-01-01
The first stages of the crystallization of polycaprolactone (PCL) were studied using several techniques. The crystallization exotherms measured by differential scanning calorimetry (DSC) were analyzed and compared with results obtained by polarized optical microscopy (POM), rheology, and atomic force microscope (AFM). The experimental results suggest a strong influence of the observation scale. In particular, the AFM, even if limited on time scale, appears to be the most sensitive technique to detect the first stages of crystallization. On the contrary, at least in the case analysed in this work, rheology appears to be the least sensitive technique. DSC and POM provide closer results. This suggests that the definition of induction time in the polymer crystallization is a vague concept that, in any case, requires the definition of the technique used for its characterization.
Walczyk, Wiktoria; Schönherr, Holger
2013-01-15
To date, TM AFM (tapping mode or intermittent contact mode atomic force microscopy) is the most frequently applied direct imaging technique to visualize surface nanobubbles at the solid-aqueous interface. On one hand, AFM is the only profilometric technique that provides estimates of the bubbles' nanoscopic dimensions. On the other hand, the nanoscopic contact angles of surface nanobubbles estimated from their apparent dimensions that are deduced from AFM "height" images of nanobubbles differ markedly from the macrocopic water contact angles on the identical substrates. Here we show in detail how the apparent bubble height and width of surface nanobubbles on highly oriented pyrolytic graphite (HOPG) depend on the free amplitude of the cantilever oscillations and the amplitude setpoint ratio. (The role of these two AFM imaging parameters and their interdependence has not been studied so far for nanobubbles in a systematic way.) In all experiments, even with optimal scanning parameters, nanobubbles at the HOPG-water interface appeared to be smaller in the AFM images than their true size, which was estimated using a method presented herein. It was also observed that the severity of the underestimate increased with increasing bubble height and radius of curvature. The nanoscopic contact angle of >130° for nanobubbles on HOPG extrapolated to zero interaction force was only slightly overestimated and hence significantly higher than the macroscopic contact angle of water on HOPG (63 ± 2°). Thus, the widely reported contact angle discrepancy cannot be solely attributed to inappropriate AFM imaging conditions.
Fractal analysis as a potential tool for surface morphology of thin films
NASA Astrophysics Data System (ADS)
Soumya, S.; Swapna, M. S.; Raj, Vimal; Mahadevan Pillai, V. P.; Sankararaman, S.
2017-12-01
Fractal geometry developed by Mandelbrot has emerged as a potential tool for analyzing complex systems in the diversified fields of science, social science, and technology. Self-similar objects having the same details in different scales are referred to as fractals and are analyzed using the mathematics of non-Euclidean geometry. The present work is an attempt to correlate fractal dimension for surface characterization by Atomic Force Microscopy (AFM). Taking the AFM images of zinc sulphide (ZnS) thin films prepared by pulsed laser deposition (PLD) technique, under different annealing temperatures, the effect of annealing temperature and surface roughness on fractal dimension is studied. The annealing temperature and surface roughness show a strong correlation with fractal dimension. From the regression equation set, the surface roughness at a given annealing temperature can be calculated from the fractal dimension. The AFM images are processed using Photoshop and fractal dimension is calculated by box-counting method. The fractal dimension decreases from 1.986 to 1.633 while the surface roughness increases from 1.110 to 3.427, for a change of annealing temperature 30 ° C to 600 ° C. The images are also analyzed by power spectrum method to find the fractal dimension. The study reveals that the box-counting method gives better results compared to the power spectrum method.
Cumurcu, Aysegul; Diaz, Jordi; Lindsay, Ian D; de Beer, Sissi; Duvigneau, Joost; Schön, Peter; Julius Vancso, G
2015-03-01
Tip-enhanced nanoscale optical imaging techniques such as apertureless scanning near-field optical microscopy (a-SNOM) and scanning near-field ellipsometric microscopy (SNEM) applications can suffer from a steady degradation in performance due to adhesion of atmospheric contaminants to the metal coated tip. Here, we demonstrate that a self-assembled monolayer (SAM) of ethanethiol (EtSH) is an effective means of protecting gold-coated atomic force microscopy (AFM) probe tips from accumulation of surface contaminants during prolonged exposure to ambient air. The period over which they yield consistent and reproducible results for scanning near-field ellipsometric microscopy (SNEM) imaging is thus extended. SNEM optical images of a microphase separated polystyrene-block-poly (methylmethacrylate) (PS-b-PMMA) diblock copolymer film, which were captured with bare and SAM-protected gold-coated AFM probes, both immediately after coating and following five days of storage in ambient air, were compared. During this period the intensity of the optical signals from the untreated gold tip fell by 66%, while those from the SAM protected tip fell by 14%. Additionally, gold coated AFM probe tips were modified with various lengths of alkanethiols to measure the change in intensity variation in the optical images with SAM layer thickness. The experimental results were compared to point dipole model calculations. While a SAM of 1-dodecanethiol (DoSH) was found to strongly suppress field enhancement we find that it can be locally removed from the tip apex by deforming the molecules under load, restoring SNEM image contrast. Copyright © 2014 Elsevier B.V. All rights reserved.
Chung, Sung Hee; Min, Junhong
2009-07-01
Polydimethylsiloxane (PDMS) surface consisting irregular pattern was investigated to develop cell-based biochip using PDMS. PDMS surface was modified with nano- and micro-combined patterns using surface deformation technology. Hydrophobicity of nano-patterned PDMS surface was sustained. Nevertheless it has irregular patterns consisting of micro- and nano-patterns. According to atomic force microscopy (AFM), scanning electron microscopy (SEM) and confocal microscopy results by immunostaining method, human mammary epithelial cells (HMEC) adhered well on irregularly patterned surface without any reagents such as gelatin and collagen, compared to commercial culture dish. It implies PDMS material can be utilized as template for cell-based biochip without any reagents.
Nano-sized graphene flakes: insights from experimental synthesis and first principles calculations.
Lin, Pin-Chun; Chen, Yi-Rui; Hsu, Kuei-Ting; Lin, Tzu-Neng; Tung, Kuo-Lun; Shen, Ji-Lin; Liu, Wei-Ren
2017-03-01
In this study, we proposed a cost-effective method for preparing graphene nano-flakes (GNFs) derived from carbon nanotubes (CNTs) via three steps (pressing, homogenization and sonication exfoliation processes). Scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), laser scattering, as well as ultraviolet-visible and photoluminescence (PL) measurements were carried out. The results indicated that the size of as-synthesized GNFs was approximately 40-50 nm. Furthermore, we also used first principles calculations to understand the transformation from CNTs to GNFs from the viewpoints of the edge formation energies of GNFs in different shapes and sizes. The corresponding photoluminescence measurements of GNFs were carried out in this work.
Diaz, Alfredo J; Noh, Hanaul; Meier, Tobias
2017-01-01
Bioinspired design has been central in the development of hierarchical nanocomposites. Particularly, the nacre-mimetic brick-and-mortar structure has shown excellent mechanical properties, as well as gas-barrier properties and optical transparency. Along with these intrinsic properties, the layered structure has also been utilized in sensing devices. Here we extend the multifunctionality of nacre-mimetics by designing an optically transparent and electron conductive coating based on PEDOT:PSS and nanoclays Laponite RD and Cloisite Na+. We carry out extensive characterization of the nanocomposite using transmittance spectra (transparency), conductive atomic force microscopy (conductivity), contact-resonance force microscopy (mechanical properties), and SEM combined with a variety of stress-strain AFM experiments and AFM numerical simulations (internal structure). We further study the nanoclay’s response to the application of pressure with multifrequency AFM and conductive AFM, whereby increases and decreases in conductivity can occur for the Laponite RD composites. We offer a possible mechanism to explain the changes in conductivity by modeling the coating as a 1-dimensional multibarrier potential for electron transport, and show that conductivity can change when the separation between the barriers changes under the application of pressure, and that the direction of the change depends on the energy of the electrons. We did not observe changes in conductivity under the application of pressure with AFM for the Cloisite Na+ nanocomposite, which has a large platelet size compared with the AFM probe diameter. No pressure-induced changes in conductivity were observed in the clay-free polymer either. PMID:29090109
NASA Astrophysics Data System (ADS)
Kaltenbach, Robin; Diehl, Dörte; Schaumann, Gabriele E.
2017-04-01
Organic coatings are considered as main cause of soil water repellency (SWR). This phenomenon plays a crucial role in the rhizosphere, at the interface of plant water uptake and soil hydraulics. Still, there is little knowledge about the nanoscale properties of natural soil compounds such as root-mucilage and its mechanistic effect on wettability. In this study, dried films of natural root-mucilage from Sorghum (Sorghum sp., MOENCH) on glass substrates were studied in order to explore experimental and evaluation methods that allow to link between macroscopic wettability and nano-/microscopic surface properties in this model soil system. SWR was assessed by optical contact angle (CA) measurements. The nanostructure of topography and adhesion forces of the mucilage surfaces was revealed by atomic force microscopy (AFM) measurements in ambient air, using PeakForce Quantitative Nanomechanical Mapping (PFQNM). Undiluted mucilage formed hydrophobic films on the substrate with CA > 90° and rather homogeneous nanostructure. Contact angles showed reduced water repellency of surfaces, when concentration of mucilage was decreased by dilution. AFM height and adhesion images displayed incomplete mucilage surface coverage for diluted samples. Hole-like structures in the film frequently exhibited increased adhesion forces. Spatial analysis of the AFM data via variograms enabled a numerical description of such 'adhesion holes'. The use of geostatistical approaches in AFM studies of the complex surface structure of soil compounds was considered meaningful in view of the need of comprehensive analysis of large AFM image data sets that exceed the capability of comparative visual inspection. Furthermore, force curves measured with the AFM showed increased break-free distances and pull-off forces inside the observed 'adhesion holes', indicating enhanced capillary forces due to adsorbed water films at hydrophilic domains for ambient RH (40 ± 2 %). This offers the possibility of mapping the nanostructure of water layers on soil surfaces and assessing the consequences for wettability. The collected information on macroscopic wetting properties, nanoscale roughness and adhesion structure of the investigated surfaces in this study are discussed in view of the applicability of the mechanistic wetting models given by Wenzel and Cassie-Baxter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmutz, P.; Frankel, G.S.
1998-07-01
The localized corrosion of AA2024-T3, and the behavior of intermetallic particles in particular, were studied using different capabilities of the atomic force microscope (AFM). The role of intermetallic particles in determining the locations and rates of localized corrosion was determined using scanning Kelvin probe force microscopy in air after exposure to chloride solutions. Al-Cu-Mg particles, which have a noble Volta potential in air because of an altered surface film, are actively dissolved in chloride solution after a certain induction time. Al-Cu(Fe, Mn) particles are heterogeneous in nature and exhibit nonuniform dissolution in chloride solution as well as trenching of themore » matrix around the particles. Light scratching of the surface by rastering with the AFM tip in contact mode in chloride solution results in accelerated dissolution of both pure Al and alloy 2024-T3. The abrasion associated with contact AFM in situ resulted in the immediate dissolution of the Al-Cu-Mg particles because of a destabilization of the surface film.« less
Exploratory Study of RNA Polymerase II Using Dynamic Atomic Force Microscopy
NASA Astrophysics Data System (ADS)
Rhodin, Thor; Umemura, Kazuo; Gad, Mohammed; Jarvis, Suzanne; Ishikawa, Mitsuru; Fu, Jianhua
2002-03-01
An exploratory study of the microtopological dimensions and shape features of yeast RNA polymerase II (y-poly II) on freshly cleaved mica was made in phosphate aqueous buffer solution at room temperature following previous work by Hansma and others. The molecules were imaged by stabilization on freshly cleaved mica at a limiting resolution of 10 Å and scanned using dynamical atomic force microscopy with a 10 nm multi-wall carbon nanotube in the resonance frequency modulation mode. They indicated microtopological shape and dimensional features similar to those predicted by electron density plots derived from the X-ray crystallographic model. It is concluded that this is considered primarily a feasibility study with definitive conclusions subject to more detailed systematic measurements of the 3D microtopology. These measurements appear to establish validity of the noncontact atomic force microscopy (nc-AFM) approach into defining the primary microtopology and biochemical functionality of RNA polymerase II. Further nc-AFM studies at higher resolution using dynamical nc-AFM will be required to clearly define the detailed 3D microtopology of RNA polymerase II in anaerobic aqueous environments for both static and dynamic conditions.
Soft Landing of Bare Nanoparticles with Controlled Size, Composition, and Morphology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Grant E.; Colby, Robert J.; Laskin, Julia
2015-01-01
A kinetically-limited physical synthesis method based on magnetron sputtering and gas aggregation has been coupled with size-selection and ion soft landing to prepare bare metal nanoparticles on surfaces with controlled coverage, size, composition, and morphology. Employing atomic force microscopy (AFM) and scanning electron microscopy (SEM), it is demonstrated that the size and coverage of bare nanoparticles soft landed onto flat glassy carbon and silicon as well as stepped graphite surfaces may be controlled through size-selection with a quadrupole mass filter and the length of deposition, respectively. The bare nanoparticles are observed with AFM to bind randomly to the flat glassymore » carbon surface when soft landed at relatively low coverage (1012 ions). In contrast, on stepped graphite surfaces at intermediate coverage (1013 ions) the soft landed nanoparticles are shown to bind preferentially along step edges forming extended linear chains of particles. At the highest coverage (5 x 1013 ions) examined in this study the nanoparticles are demonstrated with both AFM and SEM to form a continuous film on flat glassy carbon and silicon surfaces. On a graphite surface with defects, however, it is shown with SEM that the presence of localized surface imperfections results in agglomeration of nanoparticles onto these features and the formation of neighboring depletion zones that are devoid of particles. Employing high resolution scanning transmission electron microscopy in the high angular annular dark field imaging mode (STEM-HAADF) and electron energy loss spectroscopy (EELS) it is demonstrated that the magnetron sputtering/gas aggregation synthesis technique produces single metal particles with controlled morphology as well as bimetallic alloy nanoparticles with clearly defined core-shell structure. Therefore, this kinetically-limited physical synthesis technique, when combined with ion soft landing, is a versatile complementary method for preparing a wide range of bare supported nanoparticles with selected properties that are free of the solvent, organic capping agents, and residual reactants present with nanoparticles synthesized in solution.« less
Atomic Force Microscopy Study on the Stiffness of Nanosized Liposomes Containing Charged Lipids.
Takechi-Haraya, Yuki; Goda, Yukihiro; Sakai-Kato, Kumiko
2018-06-18
It has recently been recognized that the mechanical properties of lipid nanoparticles play an important role during in vitro and in vivo behaviors such as cellular uptake, blood circulation, and biodistribution. However, there have been no quantitative investigations of the effect of commonly used charged lipids on the stiffness of nanosized liposomes. In this study, by means of atomic force microscopy (AFM), we quantified the stiffness of nanosized liposomes composed of neutrally charged lipids combined with positively or negatively charged lipids while simultaneously imaging the liposomes in aqueous medium. Our results showed that charged lipids, whether negatively or positively charged, have the effect of reducing the stiffness of nanosized liposomes, independently of the saturation degree of the lipid acyl chains; the measured stiffness values of liposomes containing charged lipids are 30-60% lower than those of their neutral counterpart liposomes. In addition, we demonstrated that the Laurdan generalized polarization values, which are related to the hydration degree of the liposomal membrane interface and often used as a qualitative indicator of liposomal membrane stiffness, do not directly correlate with the physical stiffness values of the liposomes prepared in this study. However, our results indicate that direct quantitative AFM measurement is a valuable method to gain molecular-scale information about how the hydration degree of liposomal interfaces reflects (or does not reflect) liposome stiffness as a macroscopic property. Our AFM method will contribute to the quantitative characterization of the nano-bio interaction of nanoparticles and to the optimization of the lipid composition of liposomes for clinical use.
Image contrast mechanisms in dynamic friction force microscopy: Antimony particles on graphite
NASA Astrophysics Data System (ADS)
Mertens, Felix; Göddenhenrich, Thomas; Dietzel, Dirk; Schirmeisen, Andre
2017-01-01
Dynamic Friction Force Microscopy (DFFM) is a technique based on Atomic Force Microscopy (AFM) where resonance oscillations of the cantilever are excited by lateral actuation of the sample. During this process, the AFM tip in contact with the sample undergoes a complex movement which consists of alternating periods of sticking and sliding. Therefore, DFFM can give access to dynamic transition effects in friction that are not accessible by alternative techniques. Using antimony nanoparticles on graphite as a model system, we analyzed how combined influences of friction and topography can effect different experimental configurations of DFFM. Based on the experimental results, for example, contrast inversion between fractional resonance and band excitation imaging strategies to extract reliable tribological information from DFFM images are devised.
Characterization of virus-like particles by atomic force microscopy in ambient conditions
NASA Astrophysics Data System (ADS)
Oropesa, Reinier; Ramos, Jorge R.; Falcón, Viviana; Felipe, Ariel
2013-06-01
Recombinant virus-like particles (VLPs) are attractive candidates for vaccine design since they resemble native viroids in size and morphology, but they are non-infectious due to the absence of a viral genome. The visualization of surface morphologies and structures can be used to deepen the understanding of physical, chemical, and biological phenomena. Atomic force microscopy (AFM) is a useful tool for the visualization of soft biological samples in a nanoscale resolution. In this work we have investigated the morphology of recombinant surface antigens of hepatitis B (rHBsAg) VLPs from Cuban vaccine against hepatitis B. The rHBsAg VLPs sizes estimated by AFM between 15 and 30 nm are similar to those reported on previous transmission electron microscopy (TEM) studies.
Pace, P; Huntington, Shane; Lyytikäinen, K; Roberts, A; Love, J
2004-04-05
We show a quantitative connection between Refractive Index Profiles (RIP) and measurements made by an Atomic Force Microscope (AFM). Germanium doped fibers were chemically etched in hydrofluoric acid solution (HF) and the wet etching characteristics of germanium were studied using an AFM. The AFM profiles were compared to both a concentration profile of the preform determined using a Scanning Electron Microscope (SEM) and a RIP of the fiber measured using a commercial profiling instrument, and were found to be in excellent agreement. It is now possible to calculate the RIP of a germanium doped fiber directly from an AFM profile.
Detection of toxins in single molecule level using deoxyribonucleic acid aptamers
USDA-ARS?s Scientific Manuscript database
Toxins in foodstuffs are always a threat to food safety Among many toxins related to food, ricin (category B toxin) from castor beans has been mentioned in some poisoning cases happened. Atomic Force Microscopy (AFM) is a widely used nanotechnology to detect biospecies in vitro and in situ. The AFM...
USDA-ARS?s Scientific Manuscript database
Tick-borne Babesia parasites are responsible for costly diseases worldwide. Improved control and prevention tools are urgently needed, but development of such tools is limited by numerous gaps in knowledge of the parasite-host relationships. We hereby used atomic force microscopy (AFM) and Kelvin pr...
Coffee Cup Atomic Force Microscopy
ERIC Educational Resources Information Center
Ashkenaz, David E.; Hall, W. Paige; Haynes, Christy L.; Hicks, Erin M.; McFarland, Adam D.; Sherry, Leif J.; Stuart, Douglas A.; Wheeler, Korin E.; Yonzon, Chanda R.; Zhao, Jing; Godwin, Hilary A.; Van Duyne, Richard P.
2010-01-01
In this activity, students use a model created from a coffee cup or cardstock cutout to explore the working principle of an atomic force microscope (AFM). Students manipulate a model of an AFM, using it to examine various objects to retrieve topographic data and then graph and interpret results. The students observe that movement of the AFM…
Tan, Yih Horng; Schallom, John R.; Ganesh, N. Vijaya; Fujikawa, Kohki; Demchenko, Alexei V.
2011-01-01
Nanoporous gold (NPG), made by dealloying low carat gold alloys, is a relatively new nanomaterial finding application in catalysis, sensing, and as a support for biomolecules. NPG has attracted considerable interest due to its open bicontinuous structure, high surface-to-volume ratio, tunable porosity, chemical stability and biocompatibility. NPG also has the attractive feature of being able to be modified by self-assembled monolayers. Here we use scanning electron microscopy (SEM) and atomic force microscopy (AFM) to characterize a highly efficient approach for protein immobilization on NPG using N-hydroxysuccinimide (NHS) ester functionalized self-assembled monolayers on NPG with pore sizes in the range of tens of nanometres. Comparison of coupling under static versus flow conditions suggests that BSA (Bovine Serum Albumin) and IgG (Immunoglobulin G) can only be immobilized onto the interior surfaces of free standing NPG monoliths with good coverage under flow conditions. AFM is used to examine protein coverage on both the exterior and interior of protein modified NPG. Access to the interior surface of NPG for AFM imaging is achieved using a special procedure for cleaving NPG. AFM is also used to examine BSA immobilized on rough gold surfaces as a comparative study. In principle, the general approach described should be applicable to many enzymes, proteins and protein complexes since both pore sizes and functional groups present on the NPG surfaces are controllable. PMID:21750834
Investigating bioconjugation by atomic force microscopy
2013-01-01
Nanotechnological applications increasingly exploit the selectivity and processivity of biological molecules. Integration of biomolecules such as proteins or DNA into nano-systems typically requires their conjugation to surfaces, for example of carbon-nanotubes or fluorescent quantum dots. The bioconjugated nanostructures exploit the unique strengths of both their biological and nanoparticle components and are used in diverse, future oriented research areas ranging from nanoelectronics to biosensing and nanomedicine. Atomic force microscopy imaging provides valuable, direct insight for the evaluation of different conjugation approaches at the level of the individual molecules. Recent technical advances have enabled high speed imaging by AFM supporting time resolutions sufficient to follow conformational changes of intricately assembled nanostructures in solution. In addition, integration of AFM with different spectroscopic and imaging approaches provides an enhanced level of information on the investigated sample. Furthermore, the AFM itself can serve as an active tool for the assembly of nanostructures based on bioconjugation. AFM is hence a major workhorse in nanotechnology; it is a powerful tool for the structural investigation of bioconjugation and bioconjugation-induced effects as well as the simultaneous active assembly and analysis of bioconjugation-based nanostructures. PMID:23855448
Investigating bioconjugation by atomic force microscopy.
Tessmer, Ingrid; Kaur, Parminder; Lin, Jiangguo; Wang, Hong
2013-07-15
Nanotechnological applications increasingly exploit the selectivity and processivity of biological molecules. Integration of biomolecules such as proteins or DNA into nano-systems typically requires their conjugation to surfaces, for example of carbon-nanotubes or fluorescent quantum dots. The bioconjugated nanostructures exploit the unique strengths of both their biological and nanoparticle components and are used in diverse, future oriented research areas ranging from nanoelectronics to biosensing and nanomedicine. Atomic force microscopy imaging provides valuable, direct insight for the evaluation of different conjugation approaches at the level of the individual molecules. Recent technical advances have enabled high speed imaging by AFM supporting time resolutions sufficient to follow conformational changes of intricately assembled nanostructures in solution. In addition, integration of AFM with different spectroscopic and imaging approaches provides an enhanced level of information on the investigated sample. Furthermore, the AFM itself can serve as an active tool for the assembly of nanostructures based on bioconjugation. AFM is hence a major workhorse in nanotechnology; it is a powerful tool for the structural investigation of bioconjugation and bioconjugation-induced effects as well as the simultaneous active assembly and analysis of bioconjugation-based nanostructures.
Investigation of nucleation and growth processes of diamond films by atomic force microscopy
NASA Technical Reports Server (NTRS)
George, M. A.; Burger, A.; Collins, W. E.; Davidson, J. L.; Barnes, A. V.; Tolk, N. H.
1994-01-01
The nucleation and growth of plasma-enhanced chemical-vapor deposited polycrystalline diamond films were studied using atomic force microscopy (AFM). AFM images were obtained for (1) nucleated diamond films produced from depositions that were terminated during the initial stages of growth, (2) the silicon substrate-diamond film interface side of diamond films (1-4 micrometers thick) removed from the original surface of the substrate, and (3) the cross-sectional fracture surface of the film, including the Si/diamond interface. Pronounced tip effects were observed for early-stage diamond nucleation attributed to tip convolution in the AFM images. AFM images of the film's cross section and interface, however, were not highly affected by tip convolution, and the images indicate that the surface of the silicon substrate is initially covered by a small grained polycrystalline-like film and the formation of this precursor film is followed by nucleation of the diamond film on top of this layer. X-ray photoelectron spectroscopy spectra indicate that some silicon carbide is present in the precursor layer.
NASA Astrophysics Data System (ADS)
Fukuma, Takeshi; Mostaert, Anika S.; Serpell, Louise C.; Jarvis, Suzanne P.
2008-09-01
We have investigated the surface structure of islet amyloid polypeptide (IAPP) fibrils and α-synuclein protofibrils in liquid by means of frequency modulation atomic force microscopy (FM-AFM). Ångström-resolution FM-AFM imaging of isolated macromolecules in liquid is demonstrated for the first time. Individual β-strands aligned perpendicular to the fibril axis with a spacing of 0.5 nm are resolved in FM-AFM images, which confirms cross-β structure of IAPP fibrils in real space. FM-AFM images also reveal the existence of 4 nm periodic domains along the axis of IAPP fibrils. Stripe features with 0.5 nm spacing are also found in images of α-synuclein protofibrils. However, in contrast to the case for IAPP fibrils, the stripes are oriented 30° from the axis, suggesting the possibility of β-strand alignment in protofibrils different from that in mature fibrils or the regular arrangement of thioflavin T molecules present during the fibril preparation aligned at the surface of the protofibrils.
Black, Jennifer M.; Zhu, Mengyang; Zhang, Pengfei; Unocic, Raymond R.; Guo, Daqiang; Okatan, M. Baris; Dai, Sheng; Cummings, Peter T.; Kalinin, Sergei V.; Feng, Guang; Balke, Nina
2016-01-01
Atomic force microscopy (AFM) force-distance measurements are used to investigate the layered ion structure of Ionic Liquids (ILs) at the mica surface. The effects of various tip properties on the measured force profiles are examined and reveal that the measured ion position is independent of tip properties, while the tip radius affects the forces required to break through the ion layers as well as the adhesion force. Force data is collected for different ILs and directly compared with interfacial ion density profiles predicted by molecular dynamics. Through this comparison it is concluded that AFM force measurements are sensitive to the position of the ion with the larger volume and mass, suggesting that ion selectivity in force-distance measurements are related to excluded volume effects and not to electrostatic or chemical interactions between ions and AFM tip. The comparison also revealed that at distances greater than 1 nm the system maintains overall electroneutrality between the AFM tip and sample, while at smaller distances other forces (e.g., van der waals interactions) dominate and electroneutrality is no longer maintained. PMID:27587276
In situ probing the interior of single bacterial cells at nanometer scale
NASA Astrophysics Data System (ADS)
Liu, Boyin; Hemayet Uddin, Md; Ng, Tuck Wah; Paterson, David L.; Velkov, Tony; Li, Jian; Fu, Jing
2014-10-01
We report a novel approach to probe the interior of single bacterial cells at nanometre resolution by combining focused ion beam (FIB) and atomic force microscopy (AFM). After removing layers of pre-defined thickness in the order of 100 nm on the target bacterial cells with FIB milling, AFM of different modes can be employed to probe the cellular interior under both ambient and aqueous environments. Our initial investigations focused on the surface topology induced by FIB milling and the hydration effects on AFM measurements, followed by assessment of the sample protocols. With fine-tuning of the process parameters, in situ AFM probing beneath the bacterial cell wall was achieved for the first time. We further demonstrate the proposed method by performing a spatial mapping of intracellular elasticity and chemistry of the multi-drug resistant strain Klebsiella pneumoniae cells prior to and after it was exposed to the ‘last-line’ antibiotic polymyxin B. Our results revealed increased stiffness occurring in both surface and interior regions of the treated cells, suggesting loss of integrity of the outer membrane from polymyxin treatments. In addition, the hydrophobicity measurement using a functionalized AFM tip was able to highlight the evident hydrophobic portion of the cell such as the regions containing cell membrane. We expect that the proposed FIB-AFM platform will help in gaining deeper insights of bacteria-drug interactions to develop potential strategies for combating multi-drug resistance.
Jones, Matthew D; Buckton, Graham
2016-07-25
The abilities of the cohesive-adhesive balance approach to atomic force microscopy (AFM) and the measurement of Hansen partial solubility parameters by inverse gas chromatography (IGC) to predict the performance of carrier-based dry powder inhaler (DPI) formulations were compared. Five model drugs (beclometasone dipropionate, budesonide, salbutamol sulphate, terbutaline sulphate and triamcinolone acetonide) and three model carriers (erythritol, α-lactose monohydrate and d-mannitol) were chosen, giving fifteen drug-carrier combinations. Comparison of the AFM and IGC interparticulate adhesion data suggested that they did not produce equivalent results. Comparison of the AFM data with the in vitro fine particle delivery of appropriate DPI formulations normalised to account for particle size differences revealed a previously observed pattern for the AFM measurements, with a slightly cohesive AFM CAB ratio being associated with the highest fine particle fraction. However, no consistent relationship between formulation performance and the IGC data was observed. The results as a whole highlight the complexity of the many interacting variables that can affect the behaviour of DPIs and suggest that the prediction of their performance from a single measurement is unlikely to be successful in every case. Copyright © 2016 Elsevier B.V. All rights reserved.
Ambient atomic resolution atomic force microscopy with qPlus sensors: Part 1.
Wastl, Daniel S
2017-01-01
Atomic force microscopy (AFM) is an enormous tool to observe nature in highest resolution and understand fundamental processes like friction and tribology on the nanoscale. Atomic resolution in highest quality was possible only in well-controlled environments like ultrahigh vacuum (UHV) or controlled buffer environments (liquid conditions) and more specified for long-term high-resolution analysis at low temperatures (∼4 K) in UHV where drift is nearly completely absent. Atomic resolution in these environments is possible and is widely used. However, in uncontrolled environments like air, with all its pollutants and aerosols, unspecified thin liquid films as thin as a single molecular water-layer of 200 pm or thicker condensation films with thicknesses up to hundred nanometer, have been a problem for highest resolution since the invention of the AFM. The goal of true atomic resolution on hydrophilic as well as hydrophobic samples was reached recently. In this manuscript we want to review the concept of ambient AFM with atomic resolution. The reader will be introduced to the phenomenology in ambient conditions and the problems will be explained and analyzed while a method for scan parameter optimization will be explained. Recently developed concepts and techniques how to reach atomic resolution in air and ultra-thin liquid films will be shown and explained in detail, using several examples. Microsc. Res. Tech. 80:50-65, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Single-Molecule Microscopy and Force Spectroscopy of Membrane Proteins
NASA Astrophysics Data System (ADS)
Engel, Andreas; Janovjak, Harald; Fotiadis, Dimtrios; Kedrov, Alexej; Cisneros, David; Müller, Daniel J.
Single-molecule atomic force microscopy (AFM) provides novel ways to characterize the structure-function relationship of native membrane proteins. High-resolution AFM topographs allow observing the structure of single proteins at sub-nanometer resolution as well as their conformational changes, oligomeric state, molecular dynamics and assembly. We will review these feasibilities illustrating examples of membrane proteins in native and reconstituted membranes. Classification of individual topographs of single proteins allows understanding the principles of motions of their extrinsic domains, to learn about their local structural flexibilities and to find the entropy minima of certain conformations. Combined with the visualization of functionally related conformational changes these insights allow understanding why certain flexibilities are required for the protein to function and how structurally flexible regions allow certain conformational changes. Complementary to AFM imaging, single-molecule force spectroscopy (SMFS) experiments detect molecular interactions established within and between membrane proteins. The sensitivity of this method makes it possible to measure interactions that stabilize secondary structures such as transmembrane α-helices, polypeptide loops and segments within. Changes in temperature or protein-protein assembly do not change the locations of stable structural segments, but influence their stability established by collective molecular interactions. Such changes alter the probability of proteins to choose a certain unfolding pathway. Recent examples have elucidated unfolding and refolding pathways of membrane proteins as well as their energy landscapes.
Lv, Kang; Li, Yinfeng
2018-06-21
Understanding the interaction of graphene with cell membranes is crucial to the development of graphene-based biological applications and the management of graphene safety issues. To help reveal the key factors controlling the interaction between graphene and cell membranes, here we adopt the dissipative particle dynamics method to analyze the evolution of interaction force and free energy as the graphene-covered atomic force microscopy (AFM) probe indents across a lipid bilayer. The simulation results show that the graphene-covered AFM probe can cause severe deformation of the cell membrane which drives the lipid molecule to adsorb and diffuse at the surface of graphene. The breakthrough force and free energy are calculated to study the effects of the tip shape, size, and surface hydrophobicity on the piercing behaviors of graphene-covered AFM. In addition, the deformation of cell membrane can decrease the dependency of the breakthrough force on the tip shape. The analysis of surface functionalization suggests that the horizontal patterns on graphene can change the preferred orientation in the penetration process, but the vertical patterns on graphene may disrupt the cell membrane. What's more, the bending stiffness of graphene has little influence on the penetration process as graphene pierces into the cell membrane. These results provide useful guidelines for the molecular design of graphene materials with controllable cell penetrability.
Mechanical properties of sol–gel derived SiO2 nanotubes
Antsov, Mikk; Vlassov, Sergei; Dorogin, Leonid M; Vahtrus, Mikk; Zabels, Roberts; Lange, Sven; Lõhmus, Rünno
2014-01-01
Summary The mechanical properties of thick-walled SiO2 nanotubes (NTs) prepared by a sol–gel method while using Ag nanowires (NWs) as templates were measured by using different methods. In situ scanning electron microscopy (SEM) cantilever beam bending tests were carried out by using a nanomanipulator equipped with a force sensor in order to investigate plasticity and flexural response of NTs. Nanoindentation and three point bending tests of NTs were performed by atomic force microscopy (AFM) under ambient conditions. Half-suspended and three-point bending tests were processed in the framework of linear elasticity theory. Finite element method simulations were used to extract Young’s modulus values from the nanoindentation data. Finally, the Young’s moduli of SiO2 NTs measured by different methods were compared and discussed. PMID:25383292
Atomic Force Microscopy Studies on DNA Structural Changes Induced by Vincristine Sulfate and Aspirin
NASA Astrophysics Data System (ADS)
Zhu, Yi; Zeng, Hu; Xie, Jianming; Ba, Long; Gao, Xiang; Lu, Zuhong
2004-04-01
We report that atomic force microscopy (AFM) studies on structural variations of a linear plasmid DNA interact with various concentrations of vincristine sulfate and aspirin. The different binding images show that vincrinstine sulfate binding DNA chains caused some loops and cleavages of the DNA fragments, whereas aspirin interaction caused the width changes and conformational transition of the DNA fragments. Two different DNA structural alternations could be explained by the different mechanisms of the interactions with these two components. Our work indicates that the AFM is a powerful tool in studying the interaction between DNA and small molecules.
Yamazaki, Shiro; Maeda, Keisuke; Sugimoto, Yoshiaki; Abe, Masayuki; Zobač, Vladimír; Pou, Pablo; Rodrigo, Lucia; Mutombo, Pingo; Pérez, Ruben; Jelínek, Pavel; Morita, Seizo
2015-07-08
We assemble bistable silicon quantum dots consisting of four buckled atoms (Si4-QD) using atom manipulation. We demonstrate two competing atom switching mechanisms, downward switching induced by tunneling current of scanning tunneling microscopy (STM) and opposite upward switching induced by atomic force of atomic force microscopy (AFM). Simultaneous application of competing current and force allows us to tune switching direction continuously. Assembly of the few-atom Si-QDs and controlling their states using versatile combined AFM/STM will contribute to further miniaturization of nanodevices.
NASA Astrophysics Data System (ADS)
Takeuchi, Osamu; Miyakoshi, Takaaki; Taninaka, Atsushi; Tanaka, Katsunori; Cho, Daichi; Fujita, Machiko; Yasuda, Satoshi; Jarvis, Suzanne P.; Shigekawa, Hidemi
2006-10-01
The accuracy of dynamic-force spectroscopy (DFS), a promising technique of analyzing the energy landscape of noncovalent molecular bonds, was reconsidered in order to justify the use of an atomic-force microscopy (AFM) cantilever as a DFS force probe. The advantages and disadvantages caused, for example, by the force-probe hardness were clarified, revealing the pivotal role of the molecular linkage between the force probe and the molecular bonds. It was shown that the feedback control of the loading rate of tensile force enables us a precise DFS measurement using an AFM cantilever as the force probe.
NASA Astrophysics Data System (ADS)
Santos, Sergio; Thomson, Neil H.
The use of the atomic force microscope (AFM) in ambient conditions has some key advantages for characterising isolated nanostructures over other operating environments. The lack of a bulk liquid environment minimises motion of the sample to maximise resolution, while humidity control allows retention of surface water, keeping biomolecules sufficiently hydrated. The use of relatively stiff cantilevers in air (k > 10 N/m) prevents significant energy being transferred to higher modes or frequencies. This enables reliable modelling of the cantilever dynamics with relatively straightforward point mass and spring models. We show herein that combining modelling with experiment leads to robust interpretation of dynamic AFM in air. This understanding has led to new ways of operation, including a true non-contact mode in ambient and small amplitude small set-point (SASS) modes. These modes will be important to gain quantitative information about structure and processes on the nanoscale. We also discuss interpretation of height information obtained from AFM on the nanoscale and summarise a framework for recovery of apparent height loss for nanostructures. A combination of these methods will lead to a new era of quantitative AFM for nanoscience and nanotechnology.
Dukic, Maja; Adams, Jonathan D.; Fantner, Georg E.
2015-01-01
Optical beam deflection (OBD) is the most prevalent method for measuring cantilever deflections in atomic force microscopy (AFM), mainly due to its excellent noise performance. In contrast, piezoresistive strain-sensing techniques provide benefits over OBD in readout size and the ability to image in light-sensitive or opaque environments, but traditionally have worse noise performance. Miniaturisation of cantilevers, however, brings much greater benefit to the noise performance of piezoresistive sensing than to OBD. In this paper, we show both theoretically and experimentally that by using small-sized piezoresistive cantilevers, the AFM imaging noise equal or lower than the OBD readout noise is feasible, at standard scanning speeds and power dissipation. We demonstrate that with both readouts we achieve a system noise of ≈0.3 Å at 20 kHz measurement bandwidth. Finally, we show that small-sized piezoresistive cantilevers are well suited for piezoresistive nanoscale imaging of biological and solid state samples in air. PMID:26574164
Lens capsule structure assessed with atomic force microscopy
Sueiras, Vivian M.; Moy, Vincent T.
2015-01-01
Purpose To image the ultrastructure of the anterior lens capsule at the nanoscale level using atomic force microscopy (AFM). Methods Experiments were performed on anterior lens capsules maintained in their in situ location surrounding the lens from six human cadavers (donor age range: 44–88 years), four cynomolgus monkeys (Macaca fascicularis age range: 4.83–8.92 years), and seven pigs (<6 months). Hydration of all samples was maintained using Dulbecco’s Modified Eagle Medium (DMEM). Whole lenses were removed from the eye and placed anterior side up in agarose gel before gel hardening where only the posterior half of the lens was contained within the gel. After the gel hardened, the Petri dish was filled with DMEM until the point where the intact lens was fully submerged. AFM was used to image the anterior lens surface in contact mode. An integrated analysis program was used to calculate the interfibrillar spacing, fiber diameter, and surface roughness of the samples. Results The AFM images depict a highly ordered fibrous structure at the surface of the lens capsule in all three species. The interfibrillar spacing for the porcine, cynomolgus monkey, and human lens capsules was 0.68±0.25, 1.80±0.39, and 1.08±0.25 μm, respectively. In the primate, interfibrillar spacing significantly decreased linearly as a function of age. The fiber diameters ranged from 50 to 950 nm. Comparison of the root mean square (RMS) and average deviation demonstrate that the surface of the porcine lens capsule is the smoothest, and that the human and cynomolgus monkey capsules are significantly rougher. Conclusions AFM was successful in providing high-resolution images of the nanostructure of the lens capsule samples. Species-dependent differences were observed in the overall structure and surface roughness. PMID:25814829
Safer, Abdel-Majeed A; Hanafy, Nomany A; Bharali, Dhruba J; Cui, Huadong; Mousa, Shaker A
2015-09-01
The present study examined the effect of Green Tea Extract (GTE) encapsulated into Chitosan Nanoparticles (CS-NPs) on hepatic fibrosis in rat model as determined by atomic force microscopy (AFM). The bioactive compounds in GTE encapsulated into CS-NPs were determined using LC-MS/MS method. Additionally, the uptake of GTE-CS NPs in HepG2 cells showed enhanced uptake. In experimental fibrosis model, AFM was used as a high resolution microscopic tool to investigate collagen fibers as an indicator of hepatic fibrosis induced by treatment with CCl4. Paraffin sections of fibrotic liver tissues caused by CC4 treatment of rats and the effect of GTE-CS NPs treatment with or without CCl4 on hepatic fibrosis were examined. Liver tissues from the different groups of animals were de-waxed and processed as for normal H/E staining and Masson's trichrome staining to locate the proper area of ECM collagen in the CCl4 group versus collagen in liver tissues treated with the GTE-CS NPs with or without CCl4. Selected areas of paraffin sections were trimmed off and fixed flat on top of mica and inserted in the AFM stage. H/E staining, Masson's trichrome stained slides, and AFM images revealed that collagen fibers of 250 to 300 nm widths were abundant in the fibrotic liver samples while those of GTE-CS NPs were clear as in the control group. Data confirmed the hypothesis that GTE-CS NPs are effective in removing all the extracellular collagen caused by CCl4 in the hepatic fibrosis rat liver.
The structure and function of cell membranes studied by atomic force microscopy.
Shi, Yan; Cai, Mingjun; Zhou, Lulu; Wang, Hongda
2018-01-01
The cell membrane, involved in almost all communications of cells and surrounding matrix, is one of the most complicated components of cells. Lack of suitable methods for the detection of cell membranes in vivo has sparked debates on the biochemical composition and structure of cell membranes over half a century. The development of single molecule techniques, such as AFM, SMFS, and TREC, provides a versatile platform for imaging and manipulating cell membranes in biological relevant environments. Here, we discuss the latest developments in AFM and the progress made in cell membrane research. In particular, we highlight novel structure models and dynamic processes, including the mechanical properties of the cell membranes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Synthesis of nanodimensional TiO2 thin films.
Thakurdesai, Madhavi; Mohanty, T; John, J; Rao, T K Gundu; Raychaudhuri, Pratap; Bhattacharyya, V; Kanjilal, D
2008-08-01
Nanodimensional TiO2 has wide application in the field of photocatalysis, photovoltaic and photochromic devices. In present investigation TiO2 thin films deposited by pulsed laser deposition method are irradiated by 100 MeV Ag ion beam to achieve growth of nanophases. The nanostructure evolution is characterized by atomic force microscopy (AFM). The phases of TiO2 formed after irradiation are identified by glancing angle X-ray diffraction and Raman spectroscopy. The particle radius estimated by AFM varies from 10-13 nm. Anatase phase of TiO2 is formed after irradiation. The blue shift observed in UV-VIS absorption spectra indicates the nanostructure formation. The shape and size of nanoparticles formed due to high electronic excitation depend upon thickness of the film.
Spectroscopy and atomic force microscopy of biomass.
Tetard, L; Passian, A; Farahi, R H; Kalluri, U C; Davison, B H; Thundat, T
2010-05-01
Scanning probe microscopy has emerged as a powerful approach to a broader understanding of the molecular architecture of cell walls, which may shed light on the challenge of efficient cellulosic ethanol production. We have obtained preliminary images of both Populus and switchgrass samples using atomic force microscopy (AFM). The results show distinctive features that are shared by switchgrass and Populus. These features may be attributable to the lignocellulosic cell wall composition, as the collected images exhibit the characteristic macromolecular globule structures attributable to the lignocellulosic systems. Using both AFM and a single case of mode synthesizing atomic force microscopy (MSAFM) to characterize Populus, we obtained images that clearly show the cell wall structure. The results are of importance in providing a better understanding of the characteristic features of both mature cells as well as developing plant cells. In addition, we present spectroscopic investigation of the same samples.
NASA Astrophysics Data System (ADS)
Yang, Haoyu; Hattori, Azusa N.; Ohata, Akinori; Takemoto, Shohei; Hattori, Ken; Daimon, Hiroshi; Tanaka, Hidekazu
2017-11-01
A three-dimensional Si{111} vertical side-surface structure on a Si(110) wafer was fabricated by reactive ion etching (RIE) followed by wet-etching and flash-annealing treatments. The side-surface was studied with scanning tunneling microscopy (STM) in atomic scale for the first time, in addition to atomic force microscopy (AFM), scanning electron microscopy (SEM), and low-energy electron diffraction (LEED). AFM and SEM showed flat and smooth vertical side-surfaces without scallops, and STM proved the realization of an atomically-flat 7 × 7-reconstructed structure, under optimized RIE and wet-etching conditions. STM also showed that a step-bunching occurred on the produced {111} side-surface corresponding to a reversely taped side-surface with a tilt angle of a few degrees, but did not show disordered structures. Characteristic LEED patterns from both side- and top-reconstructed surfaces were also demonstrated.
NASA Astrophysics Data System (ADS)
Gryzia, Aaron; Volkmann, Timm; Brechling, Armin; Hoeke, Veronika; Schneider, Lilli; Kuepper, Karsten; Glaser, Thorsten; Heinzmann, Ulrich
2014-02-01
Monolayers and submonolayers of [Mn III 6 Cr III ] 3+ single-molecule magnets (SMMs) adsorbed on highly oriented pyrolytic graphite (HOPG) using the droplet technique characterized by non-contact atomic force microscopy (nc-AFM) as well as by Kelvin probe force microscopy (KPFM) show island-like structures with heights resembling the height of the molecule. Furthermore, islands were found which revealed ordered 1D as well as 2D structures with periods close to the width of the SMMs. Along this, islands which show half the heights of intact SMMs were observed which are evidences for a decomposing process of the molecules during the preparation. Finally, models for the structure of the ordered SMM adsorbates are proposed to explain the observations.
Tamilselvan, Selvaraj; Ashokkumar, Thirunavukkarasu; Govindaraju, Kasivelu
2017-04-01
In the present investigation, silver nanoparticles (AgNPs) interactions with Bombyx mori Nuclear Polyhedrosis virus (BmNPV) were characterized using High-Resolution Scanning Electron Microscopy (HR-SEM), Energy Dispersive X-ray Analysis (EDAX), Transmission Electron Microscopy (TEM), Atomic Force Microcopy (AFM) and Confocal Microscope (CM). HR-SEM study reveals that the biosynthesized AgNPs have interacted with BmNPV and were found on the surface. TEM micrographs of normal and viral polyhedra treated with AgNPs showed that the nanoparticles were accumulated in the membrane and it was noted that some of the AgNPs successfully penetrated the membrane by reaching the capsid of BmNPV. AFM and confocal microscopy studies reveal that the disruption in the shell membrane tends to lose its stability due to exposure of AgNPs to BmNPV. Copyright © 2017 Elsevier B.V. All rights reserved.
Nanomedicine photoluminescence crystal-inspired brain sensing approach
NASA Astrophysics Data System (ADS)
Fang, Yan; Wang, Fangzhen; Wu, Rong
2018-02-01
Precision sensing needs to overcome a gap of a single atomic step height standard. In response to the cutting-edge challenge, a heterosingle molecular nanomedicine crystal was developed wherein a nanomedicine crystal height less than 1 nm was designed and selfassembled on a substrate of either a highly ordered and freshly separated graphite or a N-doped silicon with hydrogen bonding by a home-made hybrid system of interacting single bioelectron donor-acceptor and a single biophoton donor-acceptor according to orthogonal mathematical optimization scheme, and an atomic spatial resolution conducting atomic force microscopy (C-AFM) with MHz signal processing by a special transformation of an atomic force microscopy (AFM) and a scanning tunneling microscopy (STM) were employed, wherein a z axis direction UV-VIS laser interferometer and a feedback circuit were used to achieve the minimized uncertainty of a micro-regional structure height and its corresponding local differential conductance quantization (spin state) process was repeatedly measured with a highly time resolution, as well as a pulsed UV-VIS laser micro-photoluminescence (PL) spectrum with a single photon resolution was set up by traceable quantum sensing and metrology relied up a quantum electrical triangle principle. The coupling of a single bioelectron conducting, a single biophoton photoluminescence, a frequency domain temporal spin phase in nanomedicine crystal-inspired sensing methods and sensor technologies were revealed by a combination of C-AFM and PL measurement data-based mathematic analyses1-3, as depicted in Figure 1 and repeated in nanomedicine crystals with a single atomic height. It is concluded that height-current-phase uncertainty correlation pave a way to develop a brain imaging and a single atomic height standard, quantum sensing, national security, worldwide impact1-3 technology and beyond.
Traceable quantum sensing and metrology relied up a quantum electrical triangle principle
NASA Astrophysics Data System (ADS)
Fang, Yan; Wang, Hengliang; Yang, Xinju; Wei, Jingsong
2016-11-01
Hybrid quantum state engineering in quantum communication and imaging1-2 needs traceable quantum sensing and metrology, which are especially critical to quantum internet3 and precision measurements4 that are important across all fields of science and technology-. We aim to set up a mode of traceable quantum sensing and metrology. We developed a method by specially transforming an atomic force microscopy (AFM) and a scanning tunneling microscopy (STM) into a conducting atomic force microscopy (C-AFM) with a feedback control loop, wherein quantum entanglement enabling higher precision was relied upon a set-point, a visible light laser beam-controlled an interferometer with a surface standard at z axis, diffractometers with lateral standards at x-y axes, four-quadrant photodiode detectors, a scanner and its image software, a phase-locked pre-amplifier, a cantilever with a kHz Pt/Au conducting tip, a double barrier tunneling junction model, a STM circuit by frequency modulation and a quantum electrical triangle principle involving single electron tunneling effect, quantum Hall effect and Josephson effect5. The average and standard deviation result of repeated measurements on a 1 nm height local micro-region of nanomedicine crystal hybrid quantum state engineering surface and its differential pA level current and voltage (dI/dV) in time domains by using C-AFM was converted into an international system of units: Siemens (S), an indicated value 0.86×10-12 S (n=6) of a relative standard uncertainty was superior over a relative standard uncertainty reference value 2.3×10-10 S of 2012 CODADA quantized conductance6. It is concluded that traceable quantum sensing and metrology is emerging.
NASA Astrophysics Data System (ADS)
Schönherr, Holger; Hain, Nicole; Walczyk, Wiktoria; Wesner, Daniel; Druzhinin, Sergey I.
2016-08-01
In this review surface nanobubbles, which are presumably gas-filled enclosures found at the solid-liquid interface, are introduced and discussed together with key experimental findings that suggest that these nanoscale features indeed exist and are filled with gas. The most prominent technique used thus far has been atomic force microscopy (AFM). However, due to its potentially invasive nature, AFM data must be interpreted with great care. Owing to their curved interface, the Laplace internal pressure of surface nanobubbles exceeds substantially the outside ambient pressure, and the experimentally observed long term stability is in conflict with estimates of gas transport rates and predicted surface nanobubble lifetimes. Despite recent explanations of both the stability and the unusual nanoscopic contact angles, the development of new co-localization approaches and the adequate analysis of AFM data of surface nanobubbles are important as a means to confirm the gaseous nature and correctly estimate the interfacial curvature.
Atomic force microscopy on chromosomes, chromatin and DNA: a review.
Kalle, Wouter; Strappe, Padraig
2012-12-01
The purpose of this review is to discuss the achievements and progress that has been made in the use of atomic force microscopy in DNA related research in the last 25 years. For this review DNA related research is split up in chromosomal-, chromatin- and DNA focused research to achieve a logical flow from large- to smaller structures. The focus of this review is not only on the AFM as imaging tool but also on the AFM as measuring tool using force spectroscopy, as therein lays its greatest advantage and future. The amazing technological and experimental progress that has been made during the last 25 years is too extensive to fully cover in this review but some key developments and experiments have been described to give an overview of the evolution of AFM use from 'imaging tool' to 'measurement tool' on chromosomes, chromatin and DNA. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.
Pelling, Andrew E.; Li, Yinuo; Shi, Wenyuan; Gimzewski, James K.
2005-01-01
Multicellular microbial communities are the predominant form of existence for microorganisms in nature. As one of the most primitive social organisms, Myxococcus xanthus has been an ideal model bacterium for studying intercellular interaction and multicellular organization. Through previous genetic and EM studies, various extracellular appendages and matrix components have been found to be involved in the social behavior of M. xanthus, but none of them was directly visualized and analyzed under native conditions. Here, we used atomic force microscopy (AFM) imaging and in vivo force spectroscopy to characterize these cellular structures under native conditions. AFM imaging revealed morphological details on the extracellular ultrastructures at an unprecedented resolution, and in vivo force spectroscopy of live cells in fluid allowed us to nanomechanically characterize extracellular polymeric substances. The findings provide the basis for AFM as a useful tool for investigating microbial-surface ultrastructures and nanomechanical properties under native conditions. PMID:15840722
Dufrêne, Y F
2001-02-01
The application of atomic force microscopy (AFM) to probe the ultrastructure and physical properties of microbial cell surfaces is reviewed. The unique capabilities of AFM can be summarized as follows: imaging surface topography with (sub)nanometer lateral resolution; examining biological specimens under physiological conditions; measuring local properties and interaction forces. AFM is being used increasingly for: (i) visualizing the surface ultrastructure of microbial cell surface layers, including bacterial S-layers, purple membranes, porin OmpF crystals and fungal rodlet layers; (ii) monitoring conformational changes of individual membrane proteins; (iii) examining the morphology of bacterial biofilms, (iv) revealing the nanoscale structure of living microbial cells, including fungi, yeasts and bacteria, (v) mapping interaction forces at microbial surfaces, such as van der Waals and electrostatic forces, solvation forces, and steric/bridging forces; and (vi) probing the local mechanical properties of cell surface layers and of single cells.
Emmrich, Matthias; Huber, Ferdinand; Pielmeier, Florian; Welker, Joachim; Hofmann, Thomas; Schneiderbauer, Maximilian; Meuer, Daniel; Polesya, Svitlana; Mankovsky, Sergiy; Ködderitzsch, Diemo; Ebert, Hubert; Giessibl, Franz J
2015-04-17
Clusters built from individual iron atoms adsorbed on surfaces (adatoms) were investigated by atomic force microscopy (AFM) with subatomic resolution. Single copper and iron adatoms appeared as toroidal structures and multiatom clusters as connected structures, showing each individual atom as a torus. For single adatoms, the toroidal shape of the AFM image depends on the bonding symmetry of the adatom to the underlying structure [twofold for copper on copper(110) and threefold for iron on copper(111)]. Density functional theory calculations support the experimental data. The findings correct our previous work, in which multiple minima in the AFM signal were interpreted as a reflection of the orientation of a single front atom, and suggest that dual and triple minima in the force signal are caused by dimer and trimer tips, respectively. Copyright © 2015, American Association for the Advancement of Science.
Ab initio simulations of subatomic resolution images in noncontact atomic force microscopy
NASA Astrophysics Data System (ADS)
Kim, Minjung; Chelikowsky, James R.
2015-03-01
Direct imaging of polycyclic aromatic molecules with a subatomic resolution has recently been achieved with noncontact atomic force microscopy (nc-AFM). Specifically, nc-AFM employing a CO functionalized tip has provided details of the chemical bond in aromatic molecules, including the discrimination of bond order. However, the underlying physics of such high resolution imaging remains problematic. By employing new, efficient algorithms based on real space pseudopotentials, we calculate the forces between the nc-AFM tip and specimen. We simulate images of planar organic molecules with two different approaches: 1) with a chemically inert tip and 2) with a CO functionalized tip. We find dramatic differences in the resulting images, which are consistent with recent experimental work. Our work is supported by the DOE under DOE/DE-FG02-06ER46286 and by the Welch Foundation under Grant F-1837. Computational resources were provided by NERSC and XSEDE.
Inverting dynamic force microscopy: From signals to time-resolved interaction forces
Stark, Martin; Stark, Robert W.; Heckl, Wolfgang M.; Guckenberger, Reinhard
2002-01-01
Transient forces between nanoscale objects on surfaces govern friction, viscous flow, and plastic deformation, occur during manipulation of matter, or mediate the local wetting behavior of thin films. To resolve transient forces on the (sub) microsecond time and nanometer length scale, dynamic atomic force microscopy (AFM) offers largely unexploited potential. Full spectral analysis of the AFM signal completes dynamic AFM. Inverting the signal formation process, we measure the time course of the force effective at the sensing tip. This approach yields rich insight into processes at the tip and dispenses with a priori assumptions about the interaction, as it relies solely on measured data. Force measurements on silicon under ambient conditions demonstrate the distinct signature of the interaction and reveal that peak forces exceeding 200 nN are applied to the sample in a typical imaging situation. These forces are 2 orders of magnitude higher than those in covalent bonds. PMID:12070341
Surface electrical properties of stainless steel fibres: An AFM-based study
NASA Astrophysics Data System (ADS)
Yin, Jun; D'Haese, Cécile; Nysten, Bernard
2015-03-01
Atomic force microscopy (AFM) electrical modes were used to study the surface electrical properties of stainless steel fibres. The surface electrical conductivity was studied by current sensing AFM and I-V spectroscopy. Kelvin probe force microscopy was used to measure the surface contact potential. The oxide film, known as passivation layer, covering the fibre surface gives rise to the observation of an apparently semiconducting behaviour. The passivation layer generally exhibits a p-type semiconducting behaviour, which is attributed to the predominant formation of chromium oxide on the surface of the stainless steel fibres. At the nanoscale, different behaviours are observed from points to points, which may be attributed to local variations of the chemical composition and/or thickness of the passivation layer. I-V curves are well fitted with an electron tunnelling model, indicating that electron tunnelling may be the predominant mechanism for electron transport.
2014-01-01
Summary This paper presents computational simulations of single-mode and bimodal atomic force microscopy (AFM) with particular focus on the viscoelastic interactions occurring during tip–sample impact. The surface is modeled by using a standard linear solid model, which is the simplest system that can reproduce creep compliance and stress relaxation, which are fundamental behaviors exhibited by viscoelastic surfaces. The relaxation of the surface in combination with the complexities of bimodal tip–sample impacts gives rise to unique dynamic behaviors that have important consequences with regards to the acquisition of quantitative relationships between the sample properties and the AFM observables. The physics of the tip–sample interactions and its effect on the observables are illustrated and discussed, and a brief research outlook on viscoelasticity measurement with intermittent-contact AFM is provided. PMID:25383277
NASA Astrophysics Data System (ADS)
Świątkowski, Michał; Wojtuś, Arkadiusz; Wielgoszewski, Grzegorz; Rudek, Maciej; Piasecki, Tomasz; Jóźwiak, Grzegorz; Gotszalk, Teodor
2018-04-01
Atomic force microscopy (AFM) is a widely used technology for the investigation and characterization of nanomaterials. Its functionality can be easily expanded by applying dedicated extension modules, which can measure the electrical conductivity or temperature of a sample. In this paper, we introduce a transformer ratio-arm bridge setup dedicated to AFM-based thermal imaging. One of the key features of the thermal module is the use of a low-power driving signal that prevents undesirable tip heating during resistance measurement, while the other is the sensor location in a ratio-arm transformer bridge working in the audio frequency range and ensuring galvanic isolation of the tip, enabling contact-mode scanning of electronic circuits. The proposed expansion module is compact and it can be integrated onto the AFM head close to the cantilever. The calibration process and the resolution of 11 mK of the proposed setup are shown.
NASA Astrophysics Data System (ADS)
Coceano, G.; Yousafzai, M. S.; Ma, W.; Ndoye, F.; Venturelli, L.; Hussain, I.; Bonin, S.; Niemela, J.; Scoles, G.; Cojoc, D.; Ferrari, E.
2016-02-01
Investigating the mechanical properties of cells could reveal a potential source of label-free markers of cancer progression, based on measurable viscoelastic parameters. The Young’s modulus has proved to be the most thoroughly studied so far, however, even for the same cell type, the elastic modulus reported in different studies spans a wide range of values, mainly due to the application of different experimental conditions. This complicates the reliable use of elasticity for the mechanical phenotyping of cells. Here we combine two complementary techniques, atomic force microscopy (AFM) and optical tweezer microscopy (OTM), providing a comprehensive mechanical comparison of three human breast cell lines: normal myoepithelial (HBL-100), luminal breast cancer (MCF-7) and basal breast cancer (MDA-MB-231) cells. The elastic modulus was measured locally by AFM and OTM on single cells, using similar indentation approaches but different measurement parameters. Peak force tapping AFM was employed at nanonewton forces and high loading rates to draw a viscoelastic map of each cell and the results indicated that the region on top of the nucleus provided the most meaningful results. OTM was employed at those locations at piconewton forces and low loading rates, to measure the elastic modulus in a real elastic regime and rule out the contribution of viscous forces typical of AFM. When measured by either AFM or OTM, the cell lines’ elasticity trend was similar for the aggressive MDA-MB-231 cells, which were found to be significantly softer than the other two cell types in both measurements. However, when comparing HBL-100 and MCF-7 cells, we found significant differences only when using OTM.
Zhang, Tian; Zheng, Yunzhen; Cosgrove, Daniel J
2016-01-01
We used atomic force microscopy (AFM), complemented with electron microscopy, to characterize the nanoscale and mesoscale structure of the outer (periclinal) cell wall of onion scale epidermis - a model system for relating wall structure to cell wall mechanics. The epidermal wall contains ~100 lamellae, each ~40 nm thick, containing 3.5-nm wide cellulose microfibrils oriented in a common direction within a lamella but varying by ~30 to 90° between adjacent lamellae. The wall thus has a crossed polylamellate, not helicoidal, wall structure. Montages of high-resolution AFM images of the newly deposited wall surface showed that single microfibrils merge into and out of short regions of microfibril bundles, thereby forming a reticulated network. Microfibril direction within a lamella did not change gradually or abruptly across the whole face of the cell, indicating continuity of the lamella across the outer wall. A layer of pectin at the wall surface obscured the underlying cellulose microfibrils when imaged by FESEM, but not by AFM. The AFM thus preferentially detects cellulose microfibrils by probing through the soft matrix in these hydrated walls. AFM-based nanomechanical maps revealed significant heterogeneity in cell wall stiffness and adhesiveness at the nm scale. By color coding and merging these maps, the spatial distribution of soft and rigid matrix polymers could be visualized in the context of the stiffer microfibrils. Without chemical extraction and dehydration, our results provide multiscale structural details of the primary cell wall in its near-native state, with implications for microfibrils motions in different lamellae during uniaxial and biaxial extensions. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.
Wu, Li; Huang, Jie; Yu, Xiaoxue; Zhou, Xiaoqing; Gan, Chaoye; Li, Ming; Chen, Yong
2014-02-01
The nonionic detergent extraction at 4 °C and the cholesterol-depletion-induced lipid raft disruption are the two widely used experimental strategies for lipid raft research. However, the effects of raft disruption and/or cold treatment on the ultrastructural and mechanical properties of cells are still unclear. Here, we evaluated the effects of raft disruption and/or cold (4 °C) treatment on these properties of living human umbilical vein endothelial cells (HUVECs). At first, the cholesterol-depletion-induced raft disruption was visualized by confocal microscopy and atomic force microscopy (AFM) in combination with fluorescent quantum dots. Next, the cold-induced cell contraction and the formation of end-branched filopodia were observed by confocal microscopy and AFM. Then, the cell-surface ultrastructures were imaged by AFM, and the data showed that raft disruption and cold treatment induced opposite effects on cell-surface roughness (a significant decrease and a significant increase, respectively). Moreover, the cell-surface mechanical properties (stiffness and adhesion force) of raft-disrupted- and/or cold-treated HUVECs were measured by the force measurement function of AFM. We found that raft disruption and cold treatment induced parallel effects on cell stiffness (increase) or adhesion force (decrease) and that the combination of the two treatments caused dramatically strengthened effects. Finally, raft disruption was found to significantly impair cell migration as previously reported, whereas temporary cold treatment only caused a slight but nonsignificant decrease in cell migration performed at physiological temperature. Although the mechanisms for causing these results might be complicated and more in-depth studies will be needed, our data may provide important information for better understanding the effects of raft disruption or cold treatment on cells and the two strategies for lipid raft research.
Nanotechnology Support for Memristor Nanoelectronics
2012-03-01
hafnium oxide; 2) investigation of a conductive atomic force microscopy (cAFM) approach for measuring nanoparticle electrical properties , which was...films; and 4) successful measurement of memristive properties of nanoparticle -loaded insulating films. These results lay the groundwork for follow-on...a cAFM strategy for measuring nanoparticle electrical properties . Our initial approach to measuring nanoparticles was to attempt electrical
USDA-ARS?s Scientific Manuscript database
Atomic force microscopy (AFM) was used to investigate the microstructure of laccase-induced arabinoxylan (AX) gels for the first time. The effect of the degree of substitution (DS) of AX on gel microstructure was investigated by AFM. AX with three DS values (0.68, 0.61 and 0.51) were enzymatically t...
The structure of high-methoxyl sugar acid gels of citrus pectin as determined by AFM
USDA-ARS?s Scientific Manuscript database
Images of native high methoxyl sugar acid gels (HMSAG) were obtained by atomic force microscopy (AFM) in the Tapping ModeTM. Electronic thinning of the pectin strands to one pixel wide allowed the pectin network to be viewed in the absence of variable strand widths related to preferentially solvate...
A novel AFM-based 5-axis nanoscale machine tool for fabrication of nanostructures on a micro ball
NASA Astrophysics Data System (ADS)
Geng, Yanquan; Wang, Yuzhang; Yan, Yongda; Zhao, Xuesen
2017-11-01
This paper presents a novel atomic force microscopy (AFM)-based 5-axis nanoscale machine tool developed to fabricate nanostructures on different annuli of the micro ball. Different nanostructures can be obtained by combining the scratching trajectory of the AFM tip with the movement of the high precision air-bearing spindle. The center of the micro ball is aligned to be coincided with the gyration center of the high precision to guarantee the machining process during the rotating of the air-bearing spindle. Processing on different annuli of the micro ball is achieved by controlling the distance between the center of the micro ball and the rotation center of the AFM head. Nanostructures including square cavities, circular cavities, triangular cavities, and an annular nanochannel are machined successfully on the three different circumferences of a micro ball with a diameter of 1500 μm. Moreover, the influences of the error motions of the high precision air-bearing spindle and the eccentric between the micro ball and the gyration center of the high precision air-bearing spindle on the processing position error on the micro ball are also investigated. This proposed machining method has the potential to prepare the inertial confinement fusion target with the expected dimension defects, which would advance the application of the AFM tip-based nanomachining approach.
Multifarious applications of atomic force microscopy in forensic science investigations.
Pandey, Gaurav; Tharmavaram, Maithri; Rawtani, Deepak; Kumar, Sumit; Agrawal, Y
2017-04-01
Forensic science is a wide field comprising of several subspecialties and uses methods derived from natural sciences for finding criminals and other evidence valid in a legal court. A relatively new area; Nano-forensics brings a new era of investigation in forensic science in which instantaneous results can be produced that determine various agents such as explosive gasses, biological agents and residues in different crime scenes and terrorist activity investigations. This can be achieved by applying Nanotechnology and its associated characterization techniques in forensic sciences. Several characterization techniques exist in Nanotechnology and nano-analysis is one such technique that is used in forensic science which includes Electron microscopes (EM) like Transmission (TEM) and Scanning (SEM), Raman microscopy (Micro -Raman) and Scanning Probe Microscopes (SPMs) like Atomic Force Microscope (AFM). Atomic force microscopy enables surface characterization of different materials by examining their morphology and mechanical properties. Materials that are immeasurable such as hair, body fluids, textile fibers, documents, polymers, pressure sensitive adhesives (PSAs), etc. are often encountered during forensic investigations. This review article will mainly focus on the use of AFM in the examination of different evidence such as blood stains, forged documents, human hair samples, ammunitions, explosives, and other such applications in the field of Forensic Science. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Jitao; Wu, Chen; Raghunathan, Raksha; Larin, Kirill V.; Scarcelli, Giuliano
2017-02-01
Embryos undergo dramatic changes in size, shape, and mechanical properties during development, which is regulated by both genetic and environmental factors. Quantifying mechanical properties of different embryonic tissues may represent good metrics for the embryonic health and proper development. Alternations and structure coupled with biomechanical information may provide a way for early diagnosis and drug treatment of various congenital diseases. Many methods have been developed to determine the mechanical properties of the embryo, such as atomic force microscopy (AFM), ultrasound elastography (UE), and optical coherent elastography (OCE). However, AFM is invasive and time-consuming. While UE and OCE are both non-invasive methods, the spatial resolutions are limited to mm to sub-mm, which is not enough to observe the details inside the embryo. Brillouin microscopy can potentially enable non-invasive measurement of the mechanical properties of a sample by measuring the spectra of acoustically induced light scattering therein. It has fast speed ( 0.1 second per point) and high resolution (sub-micron), and thus has been widely investigated for biomedical application, such as single cell and tissue. In this work, we utilized this technique to characterize the mechanical property of an embryo. A 2D elasticity imaging of the whole body of an E8 embryo was acquired by a Brillouin microscopy, and the stiffness changes between different organs (such as brain, heart, and spine) were shown. The elasticity maps were correlated with structural information provided by OCT.
Thermoelectric properties of CuS/Ag{sub 2}S nanocomposites synthesed by modified polyol method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarachand,, E-mail: tarachand@csr.res.in; Sharma, Vikash; Ganesan, V.
This is the report on successful synthesis of Ag doped CuS nanostructures by modified polyol method. The resulting samples were characterized by powder X-ray diffraction (XRD), energy dispersive X-ray (EDX), atomic force microscopy (AFM) and dynamic light scattering (DLS). Particle size of pure CuS nanoparticles (NPs) was 17 nm, 38 nm and 97 nm as determined from Scherrer formula, AFM and DLS, respectively. Introduction of Ag led to formation of CuS/Ag{sub 2}S composites. A transition at 55 K in thermopower is ascribed to structural transformation from hexagonal to orthorhombic structure. Further, their thermoelectric properties exhibit remarkable change owing to Agmore » doping in CuS nanostructures. The power factor improves with increasing Ag content. They reveal that CuS/Ag{sub 2}S nanocomposites are some of the potential candidates for generation of thermoelectricity in future.« less
2018-01-01
This paper measures the adhesion/cohesion force among asphalt molecules at nanoscale level using an Atomic Force Microscopy (AFM) and models the moisture damage by applying state-of-the-art Computational Intelligence (CI) techniques (e.g., artificial neural network (ANN), support vector regression (SVR), and an Adaptive Neuro Fuzzy Inference System (ANFIS)). Various combinations of lime and chemicals as well as dry and wet environments are used to produce different asphalt samples. The parameters that were varied to generate different asphalt samples and measure the corresponding adhesion/cohesion forces are percentage of antistripping agents (e.g., Lime and Unichem), AFM tips K values, and AFM tip types. The CI methods are trained to model the adhesion/cohesion forces given the variation in values of the above parameters. To achieve enhanced performance, the statistical methods such as average, weighted average, and regression of the outputs generated by the CI techniques are used. The experimental results show that, of the three individual CI methods, ANN can model moisture damage to lime- and chemically modified asphalt better than the other two CI techniques for both wet and dry conditions. Moreover, the ensemble of CI along with statistical measurement provides better accuracy than any of the individual CI techniques. PMID:29849551
Walder, Robert; Van Patten, William J; Adhikari, Ayush; Perkins, Thomas T
2018-01-23
Single-molecule force spectroscopy (SMFS) is a powerful technique to characterize the energy landscape of individual proteins, the mechanical properties of nucleic acids, and the strength of receptor-ligand interactions. Atomic force microscopy (AFM)-based SMFS benefits from ongoing progress in improving the precision and stability of cantilevers and the AFM itself. Underappreciated is that the accuracy of such AFM studies remains hindered by inadvertently stretching molecules at an angle while measuring only the vertical component of the force and extension, degrading both measurements. This inaccuracy is particularly problematic in AFM studies using double-stranded DNA and RNA due to their large persistence length (p ≈ 50 nm), often limiting such studies to other SMFS platforms (e.g., custom-built optical and magnetic tweezers). Here, we developed an automated algorithm that aligns the AFM tip above the DNA's attachment point to a coverslip. Importantly, this algorithm was performed at low force (10-20 pN) and relatively fast (15-25 s), preserving the connection between the tip and the target molecule. Our data revealed large uncorrected lateral offsets for 100 and 650 nm DNA molecules [24 ± 18 nm (mean ± standard deviation) and 180 ± 110 nm, respectively]. Correcting this offset yielded a 3-fold improvement in accuracy and precision when characterizing DNA's overstretching transition. We also demonstrated high throughput by acquiring 88 geometrically corrected force-extension curves of a single individual 100 nm DNA molecule in ∼40 min and versatility by aligning polyprotein- and PEG-based protein-ligand assays. Importantly, our software-based algorithm was implemented on a commercial AFM, so it can be broadly adopted. More generally, this work illustrates how to enhance AFM-based SMFS by developing more sophisticated data-acquisition protocols.
NASA Astrophysics Data System (ADS)
Shen, Yajing; Nakajima, Masahiro; Kojima, Seiji; Homma, Michio; Kojima, Masaru; Fukuda, Toshio
2011-11-01
Fast and sensitive cell viability identification is a key point for single cell analysis. To address this issue, this paper reports a novel single cell viability identification method based on the measurement of single cell shear adhesion force using an atomic force microscopy (AFM) cantilever-based micro putter. Viable and nonviable yeast cells are prepared and put onto three kinds of substrate surfaces, i.e. tungsten probe, gold and ITO substrate surfaces. A micro putter is fabricated from the AFM cantilever by focused ion beam etching technique. The spring constant of the micro putter is calibrated using the nanomanipulation approach. The shear adhesion force between the single viable or nonviable cell and each substrate is measured using the micro putter based on the nanorobotic manipulation system inside an environmental scanning electron microscope. The adhesion force is calculated based on the deflection of the micro putter beam. The results show that the adhesion force of the viable cell to the substrate is much larger than that of the nonviable cell. This identification method is label free, fast, sensitive and can give quantitative results at the single cell level.
Neural network approximation of tip-abrasion effects in AFM imaging
NASA Astrophysics Data System (ADS)
Bakucz, Peter; Yacoot, Andrew; Dziomba, Thorsten; Koenders, Ludger; Krüger-Sehm, Rolf
2008-06-01
The abrasion (wear) of tips used in scanning force microscopy (SFM) directly influences SFM image quality and is therefore of great relevance to quantitative SFM measurements. The increasing implementation of automated SFM measurement schemes has become a strong driving force for increasing efforts towards the prediction of tip wear, as it needs to be ensured that the probe is exchanged before a level of tip wear is reached that adversely affects the measurement quality. In this paper, we describe the identification of tip abrasion in a system of SFM measurements. We attempt to model the tip-abrasion process as a concatenation of a mapping from the measured AFM data to a regression vector and a nonlinear mapping from the regressor space to the output space. The mapping is formed as a basis function expansion. Feedforward neural networks are used to approximate this mapping. The one-hidden layer network gave a good quality of fit for the training and test sets for the tip-abrasion system. We illustrate our method with AFM measurements of both fine periodic structures and randomly oriented sharp features and compare our neural network results with those obtained using other methods.
NASA Astrophysics Data System (ADS)
An, Sangmin; Hong, Mun-heon; Kim, Jongwoo; Kwon, Soyoung; Lee, Kunyoung; Lee, Manhee; Jhe, Wonho
2012-11-01
We present a platform for the quartz tuning fork (QTF)-based, frequency modulation atomic force microscopy (FM-AFM) system for quantitative study of the mechanical or topographical properties of nanoscale materials, such as the nano-sized water bridge formed between the quartz tip (˜100 nm curvature) and the mica substrate. A thermally stable, all digital phase-locked loop is used to detect the small frequency shift of the QTF signal resulting from the nanomaterial-mediated interactions. The proposed and demonstrated novel FM-AFM technique provides high experimental sensitivity in the measurement of the viscoelastic forces associated with the confined nano-water meniscus, short response time, and insensitivity to amplitude noise, which are essential for precision dynamic force spectroscopy and microscopy.
An, Sangmin; Hong, Mun-heon; Kim, Jongwoo; Kwon, Soyoung; Lee, Kunyoung; Lee, Manhee; Jhe, Wonho
2012-11-01
We present a platform for the quartz tuning fork (QTF)-based, frequency modulation atomic force microscopy (FM-AFM) system for quantitative study of the mechanical or topographical properties of nanoscale materials, such as the nano-sized water bridge formed between the quartz tip (~100 nm curvature) and the mica substrate. A thermally stable, all digital phase-locked loop is used to detect the small frequency shift of the QTF signal resulting from the nanomaterial-mediated interactions. The proposed and demonstrated novel FM-AFM technique provides high experimental sensitivity in the measurement of the viscoelastic forces associated with the confined nano-water meniscus, short response time, and insensitivity to amplitude noise, which are essential for precision dynamic force spectroscopy and microscopy.
NASA Astrophysics Data System (ADS)
Shi, Shuai; Guo, Dan; Luo, Jianbin
2017-10-01
Active quality factor (Q) exhibits many promising properties in dynamic atomic force microscopy. Energy dissipation and image contrasts are investigated in the non-contact amplitude modulation atomic force microscopy (AM-AFM) with an active Q-control circuit in the ambient air environment. Dissipated power and virial were calculated to compare the highly nonlinear interaction of tip-sample and image contrasts with different Q gain values. Greater free amplitudes and lower effective Q values show better contrasts for the same setpoint ratio. Active quality factor also can be employed to change tip-sample interaction force in non-contact regime. It is meaningful that non-destructive and better contrast images can be realized in non-contact AM-AFM by applying an active Q-control to the dynamic system.
Simulation of CNT-AFM tip based on finite element analysis for targeted probe of the biological cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yousefi, Amin Termeh, E-mail: at.tyousefi@gmail.com; Miyake, Mikio, E-mail: miyakejaist@gmail.com; Ikeda, Shoichiro, E-mail: sho16.ikeda@gmail.com
Carbon nanotubes (CNTs) are potentially ideal tips for atomic force microscopy (AFM) due to the robust mechanical properties, nano scale diameter and also their ability to be functionalized by chemical and biological components at the tip ends. This contribution develops the idea of using CNTs as an AFM tip in computational analysis of the biological cell’s. Finite element analysis employed for each section and displacement of the nodes located in the contact area was monitored by using an output database (ODB). This reliable integration of CNT-AFM tip process provides a new class of high performance nanoprobes for single biological cellmore » analysis.« less
Estimation of lattice strain in nanocrystalline RuO2 by Williamson-Hall and size-strain plot methods
NASA Astrophysics Data System (ADS)
Sivakami, R.; Dhanuskodi, S.; Karvembu, R.
2016-01-01
RuO2 nanoparticles (RuO2 NPs) have been successfully synthesized by the hydrothermal method. Structure and the particle size have been determined by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and transmission electron microscopy (TEM). UV-Vis spectra reveal that the optical band gap of RuO2 nanoparticles is red shifted from 3.95 to 3.55 eV. BET measurements show a high specific surface area (SSA) of 118-133 m2/g and pore diameter (10-25 nm) has been estimated by Barret-Joyner-Halenda (BJH) method. The crystallite size and lattice strain in the samples have been investigated by Williamson-Hall (W-H) analysis assuming uniform deformation, deformation stress and deformation energy density, and the size-strain plot method. All other relevant physical parameters including stress, strain and energy density have been calculated. The average crystallite size and the lattice strain evaluated from XRD measurements are in good agreement with the results of TEM.
Kutes, Yasemin; Luria, Justin; Sun, Yu; ...
2017-04-11
Ion beam milling is the most common modern method for preparing specific features for microscopic analysis, even though concomitant ion implantation and amorphization remain persistent challenges, particularly as they often modify materials properties of interest. Atomic force microscopy (AFM), on the other hand, can mechanically mill specific nanoscale regions in plan-view without chemical or high energy ion damage, due to its resolution, directionality, and fine load control. As an example, AFM-nanomilling (AFM-NM) is implemented for top-down planarization of polycrystalline CdTe thin film solar cells, with a resulting decrease in the root mean square (RMS) roughness by an order of magnitude,more » even better than for a low incidence FIB polished surface. Subsequently AFM-based property maps reveal a substantially stronger contrast, in this case of the short-circuit current or open circuit voltage during light exposure. Furthermore, electron back scattering diffraction (EBSD) imaging also becomes possible upon AFM-NM, enabling direct correlations between the local materials properties and the polycrystalline microstructure. Smooth shallow-angle cross-sections are demonstrated as well, based on targeted oblique milling. As expected, this reveals a gradual decrease in the average short-circuit current and maximum power as the underlying CdS and electrode layers are approached, but a relatively consistent open-circuit voltage through the diminishing thickness of the CdTe absorber. AFM-based nanomilling is therefore a powerful tool for material characterization, uniquely providing ion-damage free, selective area, planar smoothing or low-angle sectioning of specimens while preserving their functionality. This then enables novel, co-located advanced AFM measurements, EBSD analysis, and investigations by related techniques that are otherwise hindered by surface morphology or surface damage.« less
NASA Astrophysics Data System (ADS)
Kutes, Yasemin; Luria, Justin; Sun, Yu; Moore, Andrew; Aguirre, Brandon A.; Cruz-Campa, Jose L.; Aindow, Mark; Zubia, David; Huey, Bryan D.
2017-05-01
Ion beam milling is the most common modern method for preparing specific features for microscopic analysis, even though concomitant ion implantation and amorphization remain persistent challenges, particularly as they often modify materials properties of interest. Atomic force microscopy (AFM), on the other hand, can mechanically mill specific nanoscale regions in plan-view without chemical or high energy ion damage, due to its resolution, directionality, and fine load control. As an example, AFM-nanomilling (AFM-NM) is implemented for top-down planarization of polycrystalline CdTe thin film solar cells, with a resulting decrease in the root mean square (RMS) roughness by an order of magnitude, even better than for a low incidence FIB polished surface. Subsequent AFM-based property maps reveal a substantially stronger contrast, in this case of the short-circuit current or open circuit voltage during light exposure. Electron back scattering diffraction (EBSD) imaging also becomes possible upon AFM-NM, enabling direct correlations between the local materials properties and the polycrystalline microstructure. Smooth shallow-angle cross-sections are demonstrated as well, based on targeted oblique milling. As expected, this reveals a gradual decrease in the average short-circuit current and maximum power as the underlying CdS and electrode layers are approached, but a relatively consistent open-circuit voltage through the diminishing thickness of the CdTe absorber. AFM-based nanomilling is therefore a powerful tool for material characterization, uniquely providing ion-damage free, selective area, planar smoothing or low-angle sectioning of specimens while preserving their functionality. This enables novel, co-located advanced AFM measurements, EBSD analysis, and investigations by related techniques that are otherwise hindered by surface morphology or surface damage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kutes, Yasemin; Luria, Justin; Sun, Yu
Ion beam milling is the most common modern method for preparing specific features for microscopic analysis, even though concomitant ion implantation and amorphization remain persistent challenges, particularly as they often modify materials properties of interest. Atomic force microscopy (AFM), on the other hand, can mechanically mill specific nanoscale regions in plan-view without chemical or high energy ion damage, due to its resolution, directionality, and fine load control. As an example, AFM-nanomilling (AFM-NM) is implemented for top-down planarization of polycrystalline CdTe thin film solar cells, with a resulting decrease in the root mean square (RMS) roughness by an order of magnitude,more » even better than for a low incidence FIB polished surface. Subsequently AFM-based property maps reveal a substantially stronger contrast, in this case of the short-circuit current or open circuit voltage during light exposure. Furthermore, electron back scattering diffraction (EBSD) imaging also becomes possible upon AFM-NM, enabling direct correlations between the local materials properties and the polycrystalline microstructure. Smooth shallow-angle cross-sections are demonstrated as well, based on targeted oblique milling. As expected, this reveals a gradual decrease in the average short-circuit current and maximum power as the underlying CdS and electrode layers are approached, but a relatively consistent open-circuit voltage through the diminishing thickness of the CdTe absorber. AFM-based nanomilling is therefore a powerful tool for material characterization, uniquely providing ion-damage free, selective area, planar smoothing or low-angle sectioning of specimens while preserving their functionality. This then enables novel, co-located advanced AFM measurements, EBSD analysis, and investigations by related techniques that are otherwise hindered by surface morphology or surface damage.« less
NASA Astrophysics Data System (ADS)
Duman, M.; Pfleger, M.; Zhu, R.; Rankl, C.; Chtcheglova, L. A.; Neundlinger, I.; Bozna, B. L.; Mayer, B.; Salio, M.; Shepherd, D.; Polzella, P.; Moertelmaier, M.; Kada, G.; Ebner, A.; Dieudonne, M.; Schütz, G. J.; Cerundolo, V.; Kienberger, F.; Hinterdorfer, P.
2010-03-01
The combination of fluorescence microscopy and atomic force microscopy has a great potential in single-molecule-detection applications, overcoming many of the limitations coming from each individual technique. Here we present a new platform of combined fluorescence and simultaneous topography and recognition imaging (TREC) for improved localization of cellular receptors. Green fluorescent protein (GFP) labeled human sodium-glucose cotransporter (hSGLT1) expressed Chinese Hamster Ovary (CHO) cells and endothelial cells (MyEnd) from mouse myocardium stained with phalloidin-rhodamine were used as cell systems to study AFM topography and fluorescence microscopy on the same surface area. Topographical AFM images revealed membrane features such as lamellipodia, cytoskeleton fibers, F-actin filaments and small globular structures with heights ranging from 20 to 30 nm. Combined fluorescence and TREC imaging was applied to detect density, distribution and localization of YFP-labeled CD1d molecules on α-galactosylceramide (αGalCer)-loaded THP1 cells. While the expression level, distribution and localization of CD1d molecules on THP1 cells were detected with fluorescence microscopy, the nanoscale distribution of binding sites was investigated with molecular recognition imaging by using a chemically modified AFM tip. Using TREC on the inverted light microscope, the recognition sites of cell receptors were detected in recognition images with domain sizes ranging from ~ 25 to ~ 160 nm, with the smaller domains corresponding to a single CD1d molecule.
Duman, M; Pfleger, M; Zhu, R; Rankl, C; Chtcheglova, L A; Neundlinger, I; Bozna, B L; Mayer, B; Salio, M; Shepherd, D; Polzella, P; Moertelmaier, M; Kada, G; Ebner, A; Dieudonne, M; Schütz, G J; Cerundolo, V; Kienberger, F; Hinterdorfer, P
2010-03-19
The combination of fluorescence microscopy and atomic force microscopy has a great potential in single-molecule-detection applications, overcoming many of the limitations coming from each individual technique. Here we present a new platform of combined fluorescence and simultaneous topography and recognition imaging (TREC) for improved localization of cellular receptors. Green fluorescent protein (GFP) labeled human sodium-glucose cotransporter (hSGLT1) expressed Chinese Hamster Ovary (CHO) cells and endothelial cells (MyEnd) from mouse myocardium stained with phalloidin-rhodamine were used as cell systems to study AFM topography and fluorescence microscopy on the same surface area. Topographical AFM images revealed membrane features such as lamellipodia, cytoskeleton fibers, F-actin filaments and small globular structures with heights ranging from 20 to 30 nm. Combined fluorescence and TREC imaging was applied to detect density, distribution and localization of YFP-labeled CD1d molecules on alpha-galactosylceramide (alphaGalCer)-loaded THP1 cells. While the expression level, distribution and localization of CD1d molecules on THP1 cells were detected with fluorescence microscopy, the nanoscale distribution of binding sites was investigated with molecular recognition imaging by using a chemically modified AFM tip. Using TREC on the inverted light microscope, the recognition sites of cell receptors were detected in recognition images with domain sizes ranging from approximately 25 to approximately 160 nm, with the smaller domains corresponding to a single CD1d molecule.
Dulińska-Molak, Ida; Mao, Hongli; Kawazoe, Naoki; Chen, Guoping
2014-04-01
With a range of biological properties, single-walled carbon nanotubes (SWCNTs) are a promising material for nanobiotechnology. Concerns about their potential effect on human health have led to the interest in understanding the interaction between SWCNTs and cells. There are many reports showing the potential cellular effects of SWCNTs but this issue is quite controversially discussed in the literature. In this study, we used conventional biological evaluation methods and atomic force microscopy (AFM) to compare the effects of SWCNTs on three different cell types: bovine articular chondrocytes, human bone marrow-derived mesenchymal stem cells and HeLa cells. No obvious effects of SWCNTs on cell morphology and viability were observed during 3 days in vitro culture. However, SWCNTs significantly increased the Young's modulus of all the three types of cells. The effect of SWCNTs on Young's modulus was in an increasing order of Hela cells < chondrocytes < mesenchymal stem cells. AFM was shown to be a useful tool for investigation of the effect of nanomaterials on mechanical property of cells.
NASA Astrophysics Data System (ADS)
Sah, Bijay Kumar; Kundu, Sarathi
2017-05-01
Langmuir monolayers of phospholipids at the air-water interface are well-established model systems for mimicking biological membranes and hence are useful for studying lipid-protein interactions. In the present work, phases and phase transformations occurring in the lipid (DMPA) monolayer in the presence of globular protein (BSA) at neutral subphase pH (≈7.0) are highlighted and the corresponding in-plane pattern and morphology are explored from the surface pressure (π) - specific molecular area (A) isotherm, Brewster angle microscopy (BAM) and atomic force microscopy (AFM) both at air-water and air-solid interfaces. Films of pure lipid and lipid-protein complexes are deposited on solid surfaces by Langmuir-Blodgett method. Due to the presence of BSA molecules, phases and domain pattern changes in comparison with that of the pure DMPA. Moreover, accumulations of globular proteins in between lipid domains are also visible through BAM. AFM shows that the mixed film has relatively bigger globular-like morphology in comparison with that of pure DMPA domains. Combination of electrostatic and hydrophobic interactions between protein and lipid are responsible for such modifications.
Ivanov, Yuri D; Pleshakova, Tatyana; Malsagova, Krystina; Kozlov, Andrey; Kaysheva, Anna; Kopylov, Arthur; Izotov, Alexander; Andreeva, Elena; Kanashenko, Sergey; Usanov, Sergey; Archakov, Alexander
2014-10-01
An approach combining atomic force microscopy (AFM) fishing and mass spectrometry (MS) analysis to detect proteins at ultra-low concentrations is proposed. Fishing out protein molecules onto a highly oriented pyrolytic graphite surface coated with polytetrafluoroethylene film was carried out with and without application of an external electric field. After that they were visualized by AFM and identified by MS. It was found that injection of solution leads to charge generation in the solution, and an electric potential within the measuring cell is induced. It was demonstrated that without an external electric field in the rapid injection input of diluted protein solution the fishing is efficient, as opposed to slow fluid input. The high sensitivity of this method was demonstrated by detection of human serum albumin and human cytochrome b5 in 10(-17) -10(-18) m water solutions. It was shown that an external negative voltage applied to highly oriented pyrolytic graphite hinders the protein fishing. The efficiency of fishing with an external positive voltage was similar to that obtained without applying any voltage. © 2014 FEBS.
Spray deposition of highly transparent fluorine doped cadmium oxide thin films
NASA Astrophysics Data System (ADS)
Deokate, R. J.; Pawar, S. M.; Moholkar, A. V.; Sawant, V. S.; Pawar, C. A.; Bhosale, C. H.; Rajpure, K. Y.
2008-01-01
The cadmium oxide (CdO) and F:CdO films have been deposited by spray pyrolysis method using cadmium acetate and ammonium fluoride as precursors for Cd and F ions, respectively. The effect of temperature and F doping on the structural, morphological, optical and Hall effect properties of sprayed CdO thin films was investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), optical absorption and electrical measurement techniques. TGA and DTA studies, indicates the formation of CdO by decomposition of cadmium acetate after 250 °C. XRD patterns reveal that samples are polycrystalline with cubic structure and exhibits (2 0 0) preferential orientation. Considerable broading of (2 0 0) peak, simultaneous shifting of corresponding Bragg's angle have been observed with respect to F doping level. SEM and AFM show the heterogeneous distribution of cubical grains all over the substrate, which are randomly distributed. F doping shifts the optical gap along with the increase in the transparency of CdO films. The Hall effect measurement indicates that the resistivity and mobility decrease up to 4% F doping.
Automated image segmentation-assisted flattening of atomic force microscopy images.
Wang, Yuliang; Lu, Tongda; Li, Xiaolai; Wang, Huimin
2018-01-01
Atomic force microscopy (AFM) images normally exhibit various artifacts. As a result, image flattening is required prior to image analysis. To obtain optimized flattening results, foreground features are generally manually excluded using rectangular masks in image flattening, which is time consuming and inaccurate. In this study, a two-step scheme was proposed to achieve optimized image flattening in an automated manner. In the first step, the convex and concave features in the foreground were automatically segmented with accurate boundary detection. The extracted foreground features were taken as exclusion masks. In the second step, data points in the background were fitted as polynomial curves/surfaces, which were then subtracted from raw images to get the flattened images. Moreover, sliding-window-based polynomial fitting was proposed to process images with complex background trends. The working principle of the two-step image flattening scheme were presented, followed by the investigation of the influence of a sliding-window size and polynomial fitting direction on the flattened images. Additionally, the role of image flattening on the morphological characterization and segmentation of AFM images were verified with the proposed method.
NASA Astrophysics Data System (ADS)
Guan, Qing-Qing; Zhou, Hua-Jing; Ning, Ping; Lian, Pei-Chao; Wang, Bo; He, Liang; Chai, Xin-Sheng
2018-05-01
We have developed an easy and efficient method for exfoliating few-layer sheets of black phosphorus (BP) in N-methyl-2-pyrrolidone, using ultra-high pressure homogenization (UPH). The BP was first exfoliated into sheets that were a few atomic layers thick, using a homogenizer for only 30 min. Next, a double centrifugation procedure was used to separate the material into few-layer nanosheets that were examined by X-ray diffraction, atomic force microscopy (AFM), transmission electron microscopy (TEM), high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM), and energy-dispersive X-ray (EDX) spectroscopy. The results show that the products are specimens of phosphorene that are only a few-layer thick.
A green synthesis method for large area silver thin film containing nanoparticles.
Shinde, N M; Lokhande, A C; Lokhande, C D
2014-07-05
The green synthesis method is inexpensive and convenient for large area deposition of thin films. For the first time, a green synthesis method for large area silver thin film containing nanoparticles is reported. Silver nanostructured films are deposited using silver nitrate solution and guava leaves extract. The study confirmed that the reaction time plays a key role in the growth and shape/size control of silver nanoparticles. The properties of silver films are studied using UV-visible spectrophotometer, scanning electron microscopy (SEM), X-ray diffraction (XRD), atomic force microscopy (AFM), contact angle, Fourier-transform Raman (FT-Raman) spectroscopy and Photoluminescence (PL) techniques. Finally, as an application, these films are used effectively in antibacterial activity study. Copyright © 2014 Elsevier B.V. All rights reserved.
Scanning Probe Microscopy of Organic Solar Cells
NASA Astrophysics Data System (ADS)
Reid, Obadiah G.
Nanostructured composites of organic semiconductors are a promising class of materials for the manufacture of low-cost solar cells. Understanding how the nanoscale morphology of these materials affects their efficiency as solar energy harvesters is crucial to their eventual potential for large-scale deployment for primary power generation. In this thesis we describe the use of optoelectronic scanning-probe based microscopy methods to study this efficiency-structure relationship with nanoscale resolution. In particular, our objective is to make spatially resolved measurements of each step in the power conversion process from photons to an electric current, including charge generation, transport, and recombination processes, and correlate them with local device structure. We have achieved two aims in this work: first, to develop and apply novel electrically sensitive scanning probe microscopy experiments to study the optoelectronic materials and processes discussed above; and second, to deepen our understanding of the physics underpinning our experimental techniques. In the first case, we have applied conductive-, and photoconductive atomic force (cAFM & pcAFM) microscopy to measure both local photocurrent collection and dark charge transport properties in a variety of model and novel organic solar cell composites, including polymer/fullerene blends, and polymer-nanowire/fullerene blends, finding that local heterogeneity is the rule, and that improvements in the uniformity of specific beneficial nanostructures could lead to large increases in efficiency. We have used scanning Kelvin probe microscopy (SKPM) and time resolved-electrostatic force microscopy (trEFM) to characterize all-polymer blends, quantifying their sensitivity to photochemical degradation and the subsequent formation of local charge traps. We find that while trEFM provides a sensitive measure of local quantum efficiency, SKPM is generally unsuited to measurements of efficiency, less sensitive than trEFM, and of greater utility in identifying local changes in steady-state charge density that can be associated with charge trapping. In the second case, we have developed a new understanding of charge transport between a sharp AFM tip and planar substrates applicable to conductive and photoconductive atomic force microscopy, and shown that hole-only transport characteristics can be easily obtained including quantitative values of the charge carrier mobility. Finally, we have shown that intensity-dependent photoconductive atomic force microscopy measurements can be used to infer the 3D structure of organic photovoltaic materials, and gained new insight into the influence vertical composition of the these devices can have on their open-circuit voltage and its intensity dependence.
Saboo, Sugandha; Taylor, Lynne S
2017-08-30
The aim of this study was to evaluate the utility of confocal fluorescence microscopy (CFM) to study the water-induced phase separation of miconazole-poly (vinylpyrrolidone-co-vinyl acetate) (mico-PVPVA) amorphous solid dispersions (ASDs), induced during preparation, upon storage at high relative humidity (RH) and during dissolution. Different fluorescent dyes were added to drug-polymer films and the location of the dyes was evaluated using CFM. Orthogonal techniques, in particular atomic force microscopy (AFM) coupled with nanoscale infrared spectroscopy (AFM-nanoIR), were used to provide additional analysis of the drug-polymer blends. The initial miscibility of mico-PVPVA ASDs prepared under low humidity conditions was confirmed by AFM-nanoIR. CFM enabled rapid identification of drug-rich and polymer-rich phases in phase separated films prepared under high humidity conditions. The identity of drug- and polymer-rich domains was confirmed using AFM-nanoIR imaging and localized IR spectroscopy, together with Lorentz contact resonance (LCR) measurements. The CFM technique was then utilized successfully to further investigate phase separation in mico-PVPVA films exposed to high RH storage and to visualize phase separation dynamics following film immersion in buffer. CFM is thus a promising new approach to study the phase behavior of ASDs, utilizing drug and polymer specific dyes to visualize the evolution of heterogeneity in films exposed to water. Copyright © 2017 Elsevier B.V. All rights reserved.
A fully-automated neural network analysis of AFM force-distance curves for cancer tissue diagnosis
NASA Astrophysics Data System (ADS)
Minelli, Eleonora; Ciasca, Gabriele; Sassun, Tanya Enny; Antonelli, Manila; Palmieri, Valentina; Papi, Massimiliano; Maulucci, Giuseppe; Santoro, Antonio; Giangaspero, Felice; Delfini, Roberto; Campi, Gaetano; De Spirito, Marco
2017-10-01
Atomic Force Microscopy (AFM) has the unique capability of probing the nanoscale mechanical properties of biological systems that affect and are affected by the occurrence of many pathologies, including cancer. This capability has triggered growing interest in the translational process of AFM from physics laboratories to clinical practice. A factor still hindering the current use of AFM in diagnostics is related to the complexity of AFM data analysis, which is time-consuming and needs highly specialized personnel with a strong physical and mathematical background. In this work, we demonstrate an operator-independent neural-network approach for the analysis of surgically removed brain cancer tissues. This approach allowed us to distinguish—in a fully automated fashion—cancer from healthy tissues with high accuracy, also highlighting the presence and the location of infiltrating tumor cells.
Atomic force microscopy imaging of fragments from the Martian meteorite ALH84001
NASA Technical Reports Server (NTRS)
Steele, A.; Goddard, D.; Beech, I. B.; Tapper, R. C.; Stapleton, D.; Smith, J. R.
1998-01-01
A combination of scanning electron microscopy (SEM) and environmental scanning electron microscopy (ESEM) techniques, as well as atomic force microscopy (AFM) methods has been used to study fragments of the Martian meteorite ALH84001. Images of the same areas on the meteorite were obtained prior to and following gold/palladium coating by mapping the surface of the fragment using ESEM coupled with energy-dispersive X-ray analysis. Viewing of the fragments demonstrated the presence of structures, previously described as nanofossils by McKay et al. (Search for past life on Mars--possible relic biogenic activity in martian meteorite ALH84001. Science, 1996, pp. 924-930) of NASA who used SEM imaging of gold-coated meteorite samples. Careful imaging of the fragments revealed that the observed structures were not an artefact introduced by the coating procedure.
NASA Astrophysics Data System (ADS)
Farrell, Alan A.; Fukuma, Takeshi; Uchihashi, Takayuki; Kay, Euan R.; Bottari, Giovanni; Leigh, David A.; Yamada, Hirofumi; Jarvis, Suzanne P.
2005-09-01
We compare constant amplitude frequency modulation atomic force microscopy (FM-AFM) in ambient conditions to ultrahigh vacuum (UHV) experiments by analysis of thin films of rotaxane molecules. Working in ambient conditions is important for the development of real-world molecular devices. We show that the FM-AFM technique allows quantitative measurement of conservative and dissipative forces without instabilities caused by any native water layer. Molecular resolution is achieved despite the low Q-factor in the air. Furthermore, contrast in the energy dissipation is observed even at the molecular level. This should allow investigations into stimuli-induced sub-molecular motion of organic films.
NASA Astrophysics Data System (ADS)
Shibata, Takayuki; Iio, Naohiro; Furukawa, Hiromi; Nagai, Moeto
2017-02-01
We performed a fundamental study on the photocatalytic degradation of fluorescently labeled DNA molecules immobilized on titanium dioxide (TiO2) thin films under ultraviolet irradiation. The films were prepared by the electrochemical anodization of Ti thin films sputtered on silicon substrates. We also confirmed that the photocurrent arising from the photocatalytic oxidation of DNA molecules can be detected during this process. We then demonstrated an atomic force microscopy (AFM)-based nanofabrication technique by employing TiO2-coated AFM probes to penetrate living cell membranes under near-physiological conditions for minimally invasive intracellular delivery.
NASA Astrophysics Data System (ADS)
Ageev, O. A.; Il'in, O. I.; Rubashkina, M. V.; Smirnov, V. A.; Fedotov, A. A.; Tsukanova, O. G.
2015-07-01
Techniques are developed to determine the resistance per unit length and the electrical resistivity of vertically aligned carbon nanotubes (VA CNTs) using atomic force microscopy (AFM) and scanning tunneling microscopy (STM). These techniques are used to study the resistance of VA CNTs. The resistance of an individual VA CNT calculated with the AFM-based technique is shown to be higher than the resistance of VA CNTs determined by the STM-based technique by a factor of 200, which is related to the influence of the resistance of the contact of an AFM probe to VA CNTs. The resistance per unit length and the electrical resistivity of an individual VA CNT 118 ± 39 nm in diameter and 2.23 ± 0.37 μm in height that are determined by the STM-based technique are 19.28 ± 3.08 kΩ/μm and 8.32 ± 3.18 × 10-4 Ω m, respectively. The STM-based technique developed to determine the resistance per unit length and the electrical resistivity of VA CNTs can be used to diagnose the electrical parameters of VA CNTs and to create VA CNT-based nanoelectronic elements.
NASA Astrophysics Data System (ADS)
Marlière, Christian; Dhahri, Samia
2015-05-01
We report an in vivo electromechanical atomic force microscopy (AFM) study of charge distribution on the cell wall of Gram+ Rhodococcus wratislaviensis bacteria, naturally adherent to a glass substrate, under physiological conditions. The method presented in this paper relies on a detailed study of AFM approach/retract curves giving the variation of the interaction force versus distance between the tip and the sample. In addition to classical height and mechanical (as stiffness) data, mapping of local electrical properties, such as bacterial surface charge, was proved to be feasible at a spatial resolution better than a few tens of nanometers. This innovative method relies on the measurement of the cantilever's surface stress through its deflection far from (>10 nm) the repulsive contact zone: the variations of surface stress come from the modification of electrical surface charge of the cantilever (as in classical electrocapillary measurements) likely stemming from its charging during contact of both the tip and the sample electrical double layers. This method offers an important improvement in local electrical and electrochemical measurements at the solid/liquid interface, particularly in high-molarity electrolytes when compared to techniques focused on the direct use of electrostatic force. It thus opens a new way to directly investigate in situ biological electrical surface processes involved in numerous practical applications and fundamental problems such as bacterial adhesion, biofilm formation, microbial fuel cells, etc.We report an in vivo electromechanical atomic force microscopy (AFM) study of charge distribution on the cell wall of Gram+ Rhodococcus wratislaviensis bacteria, naturally adherent to a glass substrate, under physiological conditions. The method presented in this paper relies on a detailed study of AFM approach/retract curves giving the variation of the interaction force versus distance between the tip and the sample. In addition to classical height and mechanical (as stiffness) data, mapping of local electrical properties, such as bacterial surface charge, was proved to be feasible at a spatial resolution better than a few tens of nanometers. This innovative method relies on the measurement of the cantilever's surface stress through its deflection far from (>10 nm) the repulsive contact zone: the variations of surface stress come from the modification of electrical surface charge of the cantilever (as in classical electrocapillary measurements) likely stemming from its charging during contact of both the tip and the sample electrical double layers. This method offers an important improvement in local electrical and electrochemical measurements at the solid/liquid interface, particularly in high-molarity electrolytes when compared to techniques focused on the direct use of electrostatic force. It thus opens a new way to directly investigate in situ biological electrical surface processes involved in numerous practical applications and fundamental problems such as bacterial adhesion, biofilm formation, microbial fuel cells, etc. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00968e
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sukhanova, T. E., E-mail: tat-sukhanova@mail.ru; Vylegzhanina, M. E.; Valueva, S. V.
The morphology and electrical properties of biogenic selenium-containing nanosystems based on polyelectrolyte complexes (PECs) were examined using AFM, Kelvin Probe Force and electron microscopy methods. It has been found, that prepared nanostructures significantly differed in their morphological types and parameters. In particular, multilayers capsules can be produced via varying synthesis conditions, especially, the selenium–PEC mass ratio ν. At the “special point” (ν = 0.1), filled and hollow nano- and microcapsules are formed in the system. The multilayer character of the capsules walls is visible in the phase images. Kelvin Probe Force images showed the inhomogeneity of potential distribution in capsulesmore » and outside them.« less
Isolating and moving single atoms using silicon nanocrystals
Carroll, Malcolm S.
2010-09-07
A method is disclosed for isolating single atoms of an atomic species of interest by locating the atoms within silicon nanocrystals. This can be done by implanting, on the average, a single atom of the atomic species of interest into each nanocrystal, and then measuring an electrical charge distribution on the nanocrystals with scanning capacitance microscopy (SCM) or electrostatic force microscopy (EFM) to identify and select those nanocrystals having exactly one atom of the atomic species of interest therein. The nanocrystals with the single atom of the atomic species of interest therein can be sorted and moved using an atomic force microscope (AFM) tip. The method is useful for forming nanoscale electronic and optical devices including quantum computers and single-photon light sources.
Huang, Jen-Ching; Chen, Chung-Ming
2012-01-01
This study used atomic force microscopy (AFM), metallic probes with a nanoscale tip, and high-voltage generators to investigate the feasibility of high-voltage nano-oxidation processing in deionized water (DI water) and atmospheric environments. Researchers used a combination of wire-cutting and electrochemical etching to transform a 20-μm-thick stainless steel sheet into a conductive metallic AFM probe with a tip radius of 60 nm, capable of withstanding high voltages. The combination of AFM, high-voltage generators, and nanoscale metallic probes enabled nano-oxidation processing at 200 V in DI water environments, producing oxides up to 66.6 nm in height and 467.03 nm in width. Oxides produced through high-voltage nano-oxidation in atmospheric environments were 117.29 nm in height and 551.28 nm in width, considerably exceeding the dimensions of those produced in DI water. An increase in the applied bias voltage led to an apparent logarithmic increase in the height of the oxide dots in the range of 200-400 V. The performance of the proposed high-voltage nano-oxidation technique was relatively high with seamless integration between the AFM machine and the metallic probe fabricated in this study. © Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Black, Jennifer M.; Zhu, Mengyang; Zhang, Pengfei
In this paper, atomic force microscopy (AFM) force-distance measurements are used to investigate the layered ion structure of Ionic Liquids (ILs) at the mica surface. The effects of various tip properties on the measured force profiles are examined and reveal that the measured ion position is independent of tip properties, while the tip radius affects the forces required to break through the ion layers as well as the adhesion force. Force data is collected for different ILs and directly compared with interfacial ion density profiles predicted by molecular dynamics. Through this comparison it is concluded that AFM force measurements aremore » sensitive to the position of the ion with the larger volume and mass, suggesting that ion selectivity in force-distance measurements are related to excluded volume effects and not to electrostatic or chemical interactions between ions and AFM tip. Finally, the comparison also revealed that at distances greater than 1 nm the system maintains overall electroneutrality between the AFM tip and sample, while at smaller distances other forces (e.g., van der waals interactions) dominate and electroneutrality is no longer maintained.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jinkins, K.; Farina, L.; Wu, Y., E-mail: wuy@uwplatt.edu
2015-12-14
The properties of Few-Layer Graphene (FLG) change with the number of layers and Amplitude Modulation (AM) Atomic Force Microscopy (AFM) is commonly used to determine the thickness of FLG. However, AFM measurements have been shown to be sensitive to environmental conditions such as relative humidity (RH). In the present study, AM-AFM is used to measure the thickness and loss tangent of exfoliated graphene on silicon dioxide (SiO{sub 2}) as RH is increased from 10% to 80%. We show that the measured thickness of graphene is dependent on RH. The loss tangent values of the graphene and oxide regions are bothmore » affected by humidity, with generally higher loss tangent for graphene than SiO{sub 2}. As RH increases, we observe the loss tangent of both materials approaches the same value. We hypothesize that there is a layer of water trapped between the graphene and SiO{sub 2} substrate to explain this observation. Using this interpretation, the loss tangent images also indicate movement and change in this trapped water layer as RH increases, which impacts the measured thickness of graphene using AM-AFM.« less
Single molecule atomic force microscopy and force spectroscopy of chitosan.
Kocun, Marta; Grandbois, Michel; Cuccia, Louis A
2011-02-01
Atomic force microscopy (AFM) and AFM-based force spectroscopy was used to study the desorption of individual chitosan polymer chains from substrates with varying chemical composition. AFM images of chitosan adsorbed onto a flat mica substrate show elongated single strands or aggregated bundles. The aggregated state of the polymer is consistent with the high level of flexibility and mobility expected for a highly positively charged polymer strand. Conversely, the visualization of elongated strands indicated the presence of stabilizing interactions with the substrate. Surfaces with varying chemical composition (glass, self-assembled monolayer of mercaptoundecanoic acid/decanethiol and polytetrafluoroethylene (PTFE)) were probed with chitosan modified AFM tips and the corresponding desorption energies, calculated from plateau-like features, were attributed to the desorption of individual polymer strands. Desorption energies of 2.0±0.3×10(-20)J, 1.8±0.3×10(-20)J and 3.5±0.3×10(-20)J were obtained for glass, SAM of mercaptoundecanoic/dodecanethiol and PTFE, respectively. These single molecule level results can be used as a basis for investigating chitosan and chitosan-based materials for biomaterial applications. Copyright © 2010 Elsevier B.V. All rights reserved.
Black, Jennifer M.; Zhu, Mengyang; Zhang, Pengfei; ...
2016-09-02
In this paper, atomic force microscopy (AFM) force-distance measurements are used to investigate the layered ion structure of Ionic Liquids (ILs) at the mica surface. The effects of various tip properties on the measured force profiles are examined and reveal that the measured ion position is independent of tip properties, while the tip radius affects the forces required to break through the ion layers as well as the adhesion force. Force data is collected for different ILs and directly compared with interfacial ion density profiles predicted by molecular dynamics. Through this comparison it is concluded that AFM force measurements aremore » sensitive to the position of the ion with the larger volume and mass, suggesting that ion selectivity in force-distance measurements are related to excluded volume effects and not to electrostatic or chemical interactions between ions and AFM tip. Finally, the comparison also revealed that at distances greater than 1 nm the system maintains overall electroneutrality between the AFM tip and sample, while at smaller distances other forces (e.g., van der waals interactions) dominate and electroneutrality is no longer maintained.« less
Ben Salem-Fnayou, Asma; Zemni, Hassène; Nefzaoui, Ali; Ghorbel, Abdelwahed
2014-01-01
Cladode ultrastructural features of two prickly and two spineless Opuntia ficus-indica cultivars were examined using environmental scanning electron and atomic force microscopies. Observations focused on cladode as well as spine and glochid surface micromorphologies. Prickly cultivars were characterized by abundant cracked epicuticular wax deposits covering the cladode surface, with an amorphous structure as observed by AFM, while less abundant waxy plates were observed by ESEM on spineless cultivar cladodes. Further AFM observations allowed a rough granular and crystalloid epicuticular wax structure to be distinguished in spineless cultivars. Regarding spine micromorphology, prickly cultivars had strong persistent spines, observed by ESEM as a compact arrangement of oblong epidermal cells with a rough granular structure. However, deciduous spines in spineless cultivars had a broken transversely fissured epidermis covering a parallel arrangement of fibres. Through AFM, the deciduous spine surface presented an irregular hilly and smooth microrelief while persistent spines exhibited rough helical filamentous prints. ESEM and AFM studies of cladode surfaces from prickly and spineless cactus pear cultivars revealed valuable micro-morphological details that ought to be extended to a large number of O. ficus-indica cultivars. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, You-Lin, E-mail: ylwu@ncnu.edu.tw; Liao, Chun-Wei; Ling, Jing-Jenn
2014-06-16
The electrical characterization of HfO{sub 2}/ITO/Invar resistive switching memory structure was studied using conductive atomic force microscopy (AFM) with a semiconductor parameter analyzer, Agilent 4156C. The metal alloy Invar was used as the metal substrate to ensure good ohmic contact with the substrate holder of the AFM. A conductive Pt/Ir AFM tip was placed in direct contact with the HfO{sub 2} surface, such that it acted as the top electrode. Nanoscale current-voltage (I-V) characteristics of the HfO{sub 2}/ITO/Invar structure were measured by applying a ramp voltage through the conductive AFM tip at various current compliances and ramp voltage sweep rates.more » It was found that the resistance of the low resistance state (RLRS) decreased with increasing current compliance value, but resistance of high resistance state (RHRS) barely changed. However, both the RHRS and RLRS decreased as the voltage sweep rate increased. The reasons for this dependency on current compliance and voltage sweep rate are discussed.« less
NASA Astrophysics Data System (ADS)
Ahmadipour, Mohsen; Ain, Mohd Fadzil; Ahmad, Zainal Arifin
2016-11-01
In this study, calcium copper titanate (CCTO) thin films were deposited on ITO substrates successfully by radio frequency (RF) magnetron sputtering method in argon atmosphere. The CCTO thin films present a polycrystalline, uniform and porous structure. The surface morphology, optical and humidity sensing properties of the synthesized CCTO thin films have been studied by X-ray diffraction (XRD), atomic force microscopy (AFM), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), UV-vis spectrophotometer and current-voltage (I-V) analysis. XRD and AFM confirmed that the intensity of peaks and pore size of CCTO thin films were enhanced by increasing the thin films. Tauc plot method was adopted to estimate the optical band gaps. The surface structure and energy band gaps of the deposited films were affected by film thickness. Energy band gap of the layers were 3.76 eV, 3.68 eV and 3.5 eV for 200 nm, 400 nm, and 600 nm CCTO thin films layer, respectively. The humidity sensing properties were measured by using direct current (DC) analysis method. The response times were 12 s, 22 s, and 35 s while the recovery times were 500 s, 600 s, and 650 s for 200 nm, 400 nm, and 600 nm CCTO thin films, respectively at humidity range of 30-90% relative humidity (RH).
Deposition of Size-Selected Cu Nanoparticles by Inert Gas Condensation
2010-01-01
Nanometer size-selected Cu clusters in the size range of 1–5 nm have been produced by a plasma-gas-condensation-type cluster deposition apparatus, which combines a grow-discharge sputtering with an inert gas condensation technique. With this method, by controlling the experimental conditions, it was possible to produce nanoparticles with a strict control in size. The structure and size of Cu nanoparticles were determined by mass spectroscopy and confirmed by atomic force microscopy (AFM) and scanning electron transmission microscopy (STEM) measurements. In order to preserve the structural and morphological properties, the energy of cluster impact was controlled; the energy of acceleration of the nanoparticles was in near values at 0.1 ev/atom for being in soft landing regime. From SEM measurements developed in STEM-HAADF mode, we found that nanoparticles are near sized to those values fixed experimentally also confirmed by AFM observations. The results are relevant, since it demonstrates that proper optimization of operation conditions can lead to desired cluster sizes as well as desired cluster size distributions. It was also demonstrated the efficiency of the method to obtain size-selected Cu clusters films, as a random stacking of nanometer-size crystallites assembly. The deposition of size-selected metal clusters represents a novel method of preparing Cu nanostructures, with high potential in optical and catalytic applications. PMID:20652132
Advanced atomic force microscopy: Development and application
NASA Astrophysics Data System (ADS)
Walters, Deron A.
Over the decade since atomic force microscopy (AFM) was invented, development of new microscopes has been closely intertwined with application of AFM to problems of interest in physics, chemistry, biology, and engineering. New techniques such as tapping mode AFM move quickly in our lab from the designer's bench to the user's table-since this is often the same piece of furniture. In return, designers get ample feedback as to what problems are limiting current instruments, and thus need most urgent attention. Tip sharpness and characterization are such a problem. Chapter 1 describes an AFM designed to operate in a scanning electron microscope, whose electron beam is used to deposit sharp carbonaceous tips. These tips can be tested and used in situ. Another limitation is addressed in Chapter 2: the difficulty of extracting more than just topographic information from a sample. A combined AFM/confocal optical microscope was built to provide simultaneous, independent images of the topography and fluorescence of a sample. In combination with staining or antibody labelling, this could provide submicron information about the composition of a sample. Chapters 3 and 4 discuss two generations of small cantilevers developed for lower-noise, higher-speed AFM of biological samples. In Chapter 4, a 26 mum cantilever is used to image the process of calcite growth from solution at a rate of 1.6 sec/frame. Finally, Chapter 5 explores in detail a biophysics problem that motivates us to develop fast, quiet, and gentle microscopes; namely, the control of crystal growth in seashells by the action of soluble proteins on a growing calcite surface.
Minimizing pulling geometry errors in atomic force microscope single molecule force spectroscopy.
Rivera, Monica; Lee, Whasil; Ke, Changhong; Marszalek, Piotr E; Cole, Daniel G; Clark, Robert L
2008-10-01
In atomic force microscopy-based single molecule force spectroscopy (AFM-SMFS), it is assumed that the pulling angle is negligible and that the force applied to the molecule is equivalent to the force measured by the instrument. Recent studies, however, have indicated that the pulling geometry errors can drastically alter the measured force-extension relationship of molecules. Here we describe a software-based alignment method that repositions the cantilever such that it is located directly above the molecule's substrate attachment site. By aligning the applied force with the measurement axis, the molecule is no longer undergoing combined loading, and the full force can be measured by the cantilever. Simulations and experimental results verify the ability of the alignment program to minimize pulling geometry errors in AFM-SMFS studies.
Micromorphological characterization of zinc/silver particle composite coatings.
Méndez, Alia; Reyes, Yolanda; Trejo, Gabriel; StĘpień, Krzysztof; Ţălu, Ştefan
2015-12-01
The aim of this study was to evaluate the three-dimensional (3D) surface micromorphology of zinc/silver particles (Zn/AgPs) composite coatings with antibacterial activity prepared using an electrodeposition technique. These 3D nanostructures were investigated over square areas of 5 μm × 5 μm by atomic force microscopy (AFM), fractal, and wavelet analysis. The fractal analysis of 3D surface roughness revealed that (Zn/AgPs) composite coatings have fractal geometry. Triangulation method, based on the linear interpolation type, applied for AFM data was employed in order to characterise the surfaces topographically (in amplitude, spatial distribution and pattern of surface characteristics). The surface fractal dimension Df , as well as height values distribution have been determined for the 3D nanostructure surfaces. © 2015 The Authors published by Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Hosokawa, Yoichiroh
2011-12-01
We developed a local force measurement system of a femtosecond laser-induced impulsive force, which is due to shock and stress waves generated by focusing an intense femtosecond laser into water with a highly numerical aperture objective lens. In this system, the force localized in micron-sized region was detected by bending movement of a cantilever of atomic force microscope (AFM). Here we calculated the bending movement of the AFM cantilever when the femtosecond laser is focused in water at the vicinity of the cantilever and the impulsive force is loaded on the cantilever. From the result, a method to estimate the total of the impulsive force at the laser focal point was suggested and applied to estimate intercellular adhesion strength.
WEATHERING DEGRADATION OF A POLYURETHANE COATING. (R828081E01)
The degradation of polyurethane topcoat over a chromate pigmented epoxy primer was examined by atomic force microscopy (AFM), scanning electronic microscopy (SEM), X-ray photo-electron spectroscopy (XPS) and Fourier transform infra-red spectroscopy (FTIR) after the coated pane...
Membrane-based actuation for high-speed single molecule force spectroscopy studies using AFM.
Sarangapani, Krishna; Torun, Hamdi; Finkler, Ofer; Zhu, Cheng; Degertekin, Levent
2010-07-01
Atomic force microscopy (AFM)-based dynamic force spectroscopy of single molecular interactions involves characterizing unbinding/unfolding force distributions over a range of pulling speeds. Owing to their size and stiffness, AFM cantilevers are adversely affected by hydrodynamic forces, especially at pulling speeds >10 microm/s, when the viscous drag becomes comparable to the unbinding/unfolding forces. To circumvent these adverse effects, we have fabricated polymer-based membranes capable of actuating commercial AFM cantilevers at speeds >or=100 microm/s with minimal viscous drag effects. We have used FLUENT, a computational fluid dynamics (CFD) software, to simulate high-speed pulling and fast actuation of AFM cantilevers and membranes in different experimental configurations. The simulation results support the experimental findings on a variety of commercial AFM cantilevers and predict significant reduction in drag forces when membrane actuators are used. Unbinding force experiments involving human antibodies using these membranes demonstrate that it is possible to achieve bond loading rates >or=10(6) pN/s, an order of magnitude greater than that reported with commercial AFM cantilevers and systems.
NASA Astrophysics Data System (ADS)
Yurtsever, Ayhan; Sugimoto, Yoshiaki; Fukumoto, Masaki; Abe, Masayuki; Morita, Seizo
2012-08-01
We investigate thin insulating CaF2 films on a Si (111) surface using a combination of noncontact atomic force microscopy (NC-AFM) and Kelvin probe force microscopy (KPFM). Atomic-scale NC-AFM and KPFM images are obtained in different imaging modes by employing two different tip polarities. The KPFM image contrast and the distance-dependent variation of the local contact potential difference (LCPD) give rise to a tip-polarity-dependent contrast inversion. Ca2+ cations had a higher LCPD contrast than F- anions for a positively terminated tip, while the LCPD provided by a negatively charged tip gave a higher contrast for F- anions. Thus, this result implies that it is essential to determine the tip apex polarity to correctly interpret LCPD signals acquired by KPFM.
Characterization of fiber-forming peptides and proteins by means of atomic force microscopy.
Creasey, Rhiannon G; Gibson, Christopher T; Voelcker, Nicolas H
2012-05-01
The atomic force microscope (AFM) is widely used in biological sciences due to its ability to perform imaging experiments at high resolution in a physiological environment, without special sample preparation such as fixation or staining. AFM is unique, in that it allows single molecule information of mechanical properties and molecular recognition to be gathered. This review sets out to identify methodological applications of AFM for characterization of fiber-forming proteins and peptides. The basics of AFM operation are detailed, with in-depth information for any life scientist to get a grasp on AFM capabilities. It also briefly describes antibody recognition imaging and mapping of nanomechanical properties on biological samples. Subsequently, examples of AFM application to fiber-forming natural proteins, and fiber-forming synthetic peptides are given. Here, AFM is used primarily for structural characterization of fibers in combination with other techniques, such as circular dichroism and fluorescence spectroscopy. More recent developments in antibody recognition imaging to identify constituents of protein fibers formed in human disease are explored. This review, as a whole, seeks to encourage the life scientists dealing with protein aggregation phenomena to consider AFM as a part of their research toolkit, by highlighting the manifold capabilities of this technique.
NASA Astrophysics Data System (ADS)
Stumpf, F.; Abu Quba, A. A.; Singer, P.; Rumler, M.; Cherkashin, N.; Schamm-Chardon, S.; Cours, R.; Rommel, M.
2018-03-01
The lateral damage induced by focused ion beam on silicon carbide was characterized using electrical scanning probe microscopy (SPM), namely, scanning spreading resistance microscopy and conductive atomic force microscopy (c-AFM). It is shown that the damage exceeds the purposely irradiated circles with a radius of 0.5 μm by several micrometres, up to 8 μm for the maximum applied ion dose of 1018 cm-2. Obtained SPM results are critically compared with earlier findings on silicon. For doses above the amorphization threshold, in both cases, three different areas can be distinguished. The purposely irradiated area exhibits resistances smaller than the non-affected substrate. A second region with strongly increasing resistance and a maximum saturation value surrounds it. The third region shows the transition from maximum resistance to the base resistance of the unaffected substrate. It correlates to the transition from amorphized to defect-rich to pristine crystalline substrate. Additionally, conventional transmission electron microscopy (TEM) and annular dark-field STEM were used to complement and explain the SPM results and get a further understanding of the defect spreading underneath the surface. Those measurements also show three different regions that correlate well with the regions observed from electrical SPM. TEM results further allow to explain observed differences in the electrical results for silicon and silicon carbide which are most prominent for ion doses above 3 × 1016 cm-2. Furthermore, the conventional approach to perform current-voltage measurements by c-AFM was critically reviewed and several improvements for measurement and analysis process were suggested that result in more reliable and impactful c-AFM data.
Flexible free-standing TiO2/graphene/PVdF films as anode materials for lithium-ion batteries
NASA Astrophysics Data System (ADS)
Ren, H. M.; Ding, Y. H.; Chang, F. H.; He, X.; Feng, J. Q.; Wang, C. F.; Jiang, Y.; Zhang, P.
2012-12-01
Graphene composites were prepared by hydrothermal method using titanium dioxide (TiO2) adsorbed graphene oxide (GO) sheets as precursors. Free-standing hybrid films for lithium-ion batteries were prepared by adding TiO2/graphene composites to the polyvinylidene fluoride (PVdF)/N-methyl-2-pyrrolidone (NMP) solution, followed by a solvent evaporation technique. These films were characterized by atomic force microscopy (AFM), X-ray diffraction (XRD), scanning electron microscopy (SEM) and various electrochemical techniques. Flexible films show an excellent cycling performance, which was attributed to the interconnected graphene conducting network, which depressed the increasing of electric resistance during the cycling.
Nanostructuring on zinc phthalocyanine thin films for single-junction organic solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaudhary, Dhirendra K.; Kumar, Lokendra, E-mail: lokendrakr@allduniv.ac.in
2016-05-23
Vertically aligned and random oriented crystalline molecular nanorods of organic semiconducting Zinc Phthalocyanine (ZnPc) have been grown on ITO coated glass substrate using solvent volatilization method. Interesting changes in surface morphology were observed under different solvent treatment. Vertically aligned nanorods of ZnPc thin film were observed in the films treated with acetone, where as the random oriented nanorods were observed in the films treated with chloroform. The X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) have been used for characterization of nanostructures. The optical properties of the nanorods have been investigated by UV-Vis. absorption spectroscopy.
Probing physical properties at the nanoscale using atomic force microscopy
NASA Astrophysics Data System (ADS)
Ditzler, Lindsay Rachel
Techniques that measure physical properties at the nanoscale with high sensitivity are significantly limited considering the number of new nanomaterials being developed. The development of atomic force microscopy (AFM) has lead to significant advancements in the ability to characterize physical properties of materials in all areas of science: chemistry, physics, engineering, and biology have made great scientific strides do to the versatility of the AFM. AFM is used for quantification of many physical properties such as morphology, electrical, mechanical, magnetic, electrochemical, binding interactions, and protein folding. This work examines the electrical and mechanical properties of materials applicable to the field of nano-electronics. As electronic devices are miniaturized the demand for materials with unique electrical properties, which can be developed and exploited, has increased. For example, discussed in this work, a derivative of tetrathiafulvalene, which exhibits a unique loss of conductivity upon compression of the self-assembled monolayer could be developed into a molecular switch. This work also compares tunable organic (tetraphenylethylene tetracarboxylic acid and bis(pyridine)s assemblies) and metal-organic (Silver-stilbizole coordination compounds) crystals which show high electrical conductivity. The electrical properties of these materials vary depending on their composition allowing for the development of compositionally tunable functional materials. Additional work was done to investigate the effects of molecular environment on redox active 11-ferroceneyl-1 undecanethiol (Fc) molecules. The redox process of mixed monolayers of Fc and decanethiol was measured using conductive probe atomic force microscopy and force spectroscopy. As the concentration of Fc increased large, variations in the force were observed. Using these variations the number of oxidized molecules in the monolayer was determined. AFM is additionally capable of investigating interactions at the nanoscale, such as ligand-receptor interactions. This work examines the interactions between the enzyme dihydrofolate reductase (DHFR), a widely investigated enzyme targeted for cancer and antimicrobial pharmaceutical, and methotrexate (MTX), a strong competitive inhibitor of DHFR. The DHFR was immobilized on a gold substrate, bound through a single surface cysteine, and maintained catalytic activity. AFM probe was functionalized with MTX and the interaction strength was measured using AFM. This work highlights the versatility of AFM, specifically force spectroscopy for the quantification of electrical, mechanical, and ligand-receptor interactions at the nanoscale.
NASA Astrophysics Data System (ADS)
Wang, Xin
This dissertation is focused on surface and mechanical characterization of freestanding biological and other nano-structures using atomic force microscopy including two parts: cell mechanics and nano-structure mechanics. The main purpose of this work is to investigate how the nano- / micro-scale mechanical properties affect macro-scale function. In cancer cells, efficacy of drug delivery is oftentimes declined due to the thick dendritic network of oligosaccharide mucin chains on the cell surface. AFM is used to measure the force needed to pierce the mucin layer to reach the cell surface. A pool of ovarian, pancreatic, lung, colorectal and breast cancer cells are characterized. The studies offer additional support for the development of clinical and pharmaceutical approaches to combat mucin over-expression in tumors during cancer chemotherapy. Macroscopic adhesion-aggregation and subsequent transportation of microorganisms in porous medium are closely related to the microscopic deformation and adhesion mechanical properties. The classical Tabor's parameter is modified. Multiple bacterial strains are characterized in terms of aggregates size, aggregation index and transportation kinetics. AFM is employed to obtain the microscopic coupled adhesion-deformation properties. The strong correlation between Tabor's parameter and aggregation-deposition-transportation suggests the AFM characterization is capable of making reliable predication of macroscopic behavior. A novel "nano-cheese-cutter" is fabricated on tipless AFM cantilever to measure elastic modulus and interfacial adhesion of a 1-D freestanding nano-structure. A single electrospun fiber is attached to the free end of AFM cantilever, while another fiber is similarly prepared on a mica substrate in an orthogonal direction. An external load is applied to deform the two fibers into complementary V-shapes. This work is extended to investigate the interfacial adhesion energy between dissimilar materials. SWCNT thin film promises a broad range of potential applications in electronic devices due to unique electrical and mechanical properties. SWCNT thin film is transferred onto micro-patterned SU-8 strips using wet contact print method, forming a freestanding nano-structure. AFM with tipless cantilever is used to deform the suspended thin film under mixed bending and stretching for mechanical and electromechanical characterization. The experiment helps to construct the base for next generation flexible electronic devices with fundamental understanding in morphology-property relation.
Communication: atomic force detection of single-molecule nonlinear optical vibrational spectroscopy.
Saurabh, Prasoon; Mukamel, Shaul
2014-04-28
Atomic Force Microscopy (AFM) allows for a highly sensitive detection of spectroscopic signals. This has been first demonstrated for NMR of a single molecule and recently extended to stimulated Raman in the optical regime. We theoretically investigate the use of optical forces to detect time and frequency domain nonlinear optical signals. We show that, with proper phase matching, the AFM-detected signals closely resemble coherent heterodyne-detected signals. Applications are made to AFM-detected and heterodyne-detected vibrational resonances in Coherent Anti-Stokes Raman Spectroscopy (χ((3))) and sum or difference frequency generation (χ((2))).
[Atomic force microscopy: a tool to analyze the viral cycle].
Bernaud, Julien; Castelnovo, Martin; Muriaux, Delphine; Faivre-Moskalenko, Cendrine
2015-05-01
Each step of the HIV-1 life cycle frequently involves a change in the morphology and/or mechanical properties of the viral particle or core. The atomic force microscope (AFM) constitutes a powerful tool for characterizing these physical changes at the scale of a single virus. Indeed, AFM enables the visualization of viral capsids in a controlled physiological environment and to probe their mechanical properties by nano-indentation. Finally, AFM force spectroscopy allows to characterize the affinities between viral envelope proteins and cell receptors at the single molecule level. © 2015 médecine/sciences – Inserm.
Atomic force microscopy and spectroscopy to probe single membrane proteins in lipid bilayers.
Sapra, K Tanuj
2013-01-01
The atomic force microscope (AFM) has opened vast avenues hitherto inaccessible to the biological scientist. The high temporal (millisecond) and spatial (nanometer) resolutions of the AFM are suited for studying many biological processes in their native conditions. The AFM cantilever stylus is aptly termed as a "lab on a tip" owing to its versatility as an imaging tool as well as a handle to manipulate single bonds and proteins. Recent examples assert that the AFM can be used to study the mechanical properties and monitor processes of single proteins and single cells, thus affording insight into important mechanistic details. This chapter specifically focuses on practical and analytical protocols of single-molecule AFM methodologies related to high-resolution imaging and single-molecule force spectroscopy of membrane proteins. Both these techniques are operator oriented, and require specialized working knowledge of the instrument, theoretical, and practical skills.
The use of atomic force microscopy to evaluate warm mix asphalt.
DOT National Transportation Integrated Search
2013-01-01
The main objective of this study was to use the Atomic Force Microscopy (AFM) to examine the moisture susceptibility : and healing characteristics of Warm Mix Asphalt (WMA) and compare it with those of conventional Hot Mix Asphalt (HMA). To : this en...
NASA Astrophysics Data System (ADS)
Mechehoud, F.; Benaioun, N. E.; Hakiki, N. E.; Khelil, A.; Simon, L.; Bubendorff, J. L.
2018-03-01
Thermally oxidized nickel-based alloys are studied by scanning tunnelling microscopy (STM), scanning tunnelling spectroscopy (STS), atomic force microscopy (AFM), scanning kelvin probe force microscopy (SKPFM) and photoelectro-chemical techniques as a function of oxidation time at a fixed temperature of 623 K. By photoelectrochemistry measurements we identify the formation of three oxides NiO, Fe2O3, Cr2O3 and determine the corresponding gap values. We use these values as parameter for imaging the surface at high bias voltage by STM allowing the spatial localization and identification of both NiO, Fe2O3 oxide phases using STS measurements. Associated to Kelvin probe measurements we show also that STS allow to distinguished NiO from Cr2O3 and confirm that the Cr2O3 is not visible at the surface and localized at the oxide/steel interface.
Real-space and real-time dynamics of CRISPR-Cas9 visualized by high-speed atomic force microscopy.
Shibata, Mikihiro; Nishimasu, Hiroshi; Kodera, Noriyuki; Hirano, Seiichi; Ando, Toshio; Uchihashi, Takayuki; Nureki, Osamu
2017-11-10
The CRISPR-associated endonuclease Cas9 binds to a guide RNA and cleaves double-stranded DNA with a sequence complementary to the RNA guide. The Cas9-RNA system has been harnessed for numerous applications, such as genome editing. Here we use high-speed atomic force microscopy (HS-AFM) to visualize the real-space and real-time dynamics of CRISPR-Cas9 in action. HS-AFM movies indicate that, whereas apo-Cas9 adopts unexpected flexible conformations, Cas9-RNA forms a stable bilobed structure and interrogates target sites on the DNA by three-dimensional diffusion. These movies also provide real-time visualization of the Cas9-mediated DNA cleavage process. Notably, the Cas9 HNH nuclease domain fluctuates upon DNA binding, and subsequently adopts an active conformation, where the HNH active site is docked at the cleavage site in the target DNA. Collectively, our HS-AFM data extend our understanding of the action mechanism of CRISPR-Cas9.
Strain relaxation induced surface morphology of heterogeneous GaInNAs layers grown on GaAs substrate
NASA Astrophysics Data System (ADS)
Gelczuk, Ł.; Jóźwiak, G.; Moczała, M.; Dłużewski, P.; Dąbrowska-Szata, M.; Gotszalk, T. P.
2017-07-01
The partially-relaxed heterogeneous GaInNAs layers grown on GaAs substrate by atmospheric pressure vapor phase epitaxy (AP-MOVPE) were investigated by transmission electron microscopy (TEM) and atomic force microscopy (AFM). The planar-view TEM image shows a regular 2D network of misfit dislocations oriented in two orthogonal 〈1 1 0〉 crystallographic directions at the (0 0 1) layer interface. Moreover, the cross-sectional view TEM image reveals InAs-rich and V-shaped precipitates in the near surface region of the GaInNAs epitaxial layer. The resultant undulating surface morphology, known as a cross-hatch pattern, is formed as observed by AFM. The numerical analysis of the AFM image of the GaInNAs layer surface with the well-defined cross-hatch morphology enabled us to determine a lower bound of actual density of misfit dislocations. However, a close correspondence between the asymmetric distribution of interfacial misfit dislocations and undulating surface morphology is observed.
SEM and AFM studies of dip-coated CuO nanofilms.
Dhanasekaran, V; Mahalingam, T; Ganesan, V
2013-01-01
Cupric oxide (CuO) semiconducting thin films were prepared at various copper sulfate concentrations by dip coating. The copper sulfate concentration was varied to yield films of thicknesses in the range of 445-685 nm by surface profilometer. X-ray diffraction patterns revealed that the deposited films were polycrystalline in nature with monoclinic structure of (-111) plane. The surface morphology and topography of monoclinic-phase CuO thin films were examined using scanning electron microscopy (SEM) and atomic force microscopy (AFM), respectively. Surface roughness profile was plotted using WSxM software and the estimated surface roughness was about ∼19.4 nm at 30 mM molar concentration. The nanosheets shaped grains were observed by SEM and AFM studies. The stoichiometric compound formation was observed at 30 mM copper sulfate concentration prepared film by EDX. The indirect band gap energy of CuO films was increased from 1.08 to 1.20 eV with the increase of copper sulfate concentrations. Copyright © 2012 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Lyuksyutov, Sergei F.; Paramonov, Pavel B.; Sigalov, Grigori; Vaia, Richard A.; Juhl, Shane; Sancaktar, Erol
2003-10-01
The combination of localized softening attolitres (10^2 -10^4) of polymer film by Jule heating, extremely non-uniform electric field gradients to polarize and manipulate the soften polymer, and single step technique using conventional atomic force microscopy (AFM), establishes a new paradigm for nanolithography in a broad class of polymer materials allowing rapid (order of milliseconds) creation of raised and depressed nanostructures without external heating of a polymer film of AFM tip-film contact [1]. In this work we present recent studies of AFM-assisted electrostatic nanolithography (AFMEN) such as amplitude-modulated AFMEN, and the humidity influence on nanostructures formation during contact mode AFMEN. It has been shown that the aspect ratio of nanostructures grows on the order of magnitude (0.2), while the lateral dimensions of nanodots decreases down to 10-15 nm. [1] S.F. Lyuksyutov, R.A. Vaia, P.B. Paramonov, S. Juhl, L. Waterhouse, R.M. Ralich, G. Sigalov, and E. Sancaktar, "Electrostatic nanolithography in polymers using atomic force microscopy," Nature Materials 2, 468-472 (2003)
Frequency modulation atomic force microscopy: a dynamic measurement technique for biological systems
NASA Astrophysics Data System (ADS)
Higgins, Michael J.; Riener, Christian K.; Uchihashi, Takayuki; Sader, John E.; McKendry, Rachel; Jarvis, Suzanne P.
2005-03-01
Frequency modulation atomic force microscopy (FM-AFM) has been modified to operate in a liquid environment within an atomic force microscope specifically designed for investigating biological samples. We demonstrate the applicability of FM-AFM to biological samples using the spectroscopy mode to measure the unbinding forces of a single receptor-ligand (biotin-avidin) interaction. We show that quantitative adhesion force measurements can only be obtained provided certain modifications are made to the existing theory, which is used to convert the detected frequency shifts to an interaction force. Quantitative force measurements revealed that the unbinding forces for the biotin-avidin interaction were greater than those reported in previous studies. This finding was due to the use of high average tip velocities, which were calculated to be two orders of magnitude greater than those typically used in unbinding receptor-ligand experiments. This study therefore highlights the potential use of FM-AFM to study a range of biological systems, including living cells and/or single biomolecule interactions.
Kozai, Toshiya; Yang, Huiran; Ishikuro, Daiki; Seyama, Kaho; Kumagai, Yusuke; Abe, Tadashi; Yamada, Hiroshi; Uchihashi, Takayuki
2018-01-01
Dynamin is a mechanochemical GTPase essential for membrane fission during clathrin-mediated endocytosis. Dynamin forms helical complexes at the neck of clathrin-coated pits and their structural changes coupled with GTP hydrolysis drive membrane fission. Dynamin and its binding protein amphiphysin cooperatively regulate membrane remodeling during the fission, but its precise mechanism remains elusive. In this study, we analyzed structural changes of dynamin-amphiphysin complexes during the membrane fission using electron microscopy (EM) and high-speed atomic force microscopy (HS-AFM). Interestingly, HS-AFM analyses show that the dynamin-amphiphysin helices are rearranged to form clusters upon GTP hydrolysis and membrane constriction occurs at protein-uncoated regions flanking the clusters. We also show a novel function of amphiphysin in size control of the clusters to enhance biogenesis of endocytic vesicles. Our approaches using combination of EM and HS-AFM clearly demonstrate new mechanistic insights into the dynamics of dynamin-amphiphysin complexes during membrane fission. PMID:29357276
ViriChip: a solid phase assay for detection and identification of viruses by atomic force microscopy
NASA Astrophysics Data System (ADS)
Nettikadan, Saju R.; Johnson, James C.; Vengasandra, Srikanth G.; Muys, James; Henderson, Eric
2004-03-01
Bionanotechnology can be viewed as the integration of tools and concepts in nanotechnology with the attributes of biomolecules. We report here on an atomic force microscopy-immunosensor assay (AFMIA) that couples AFM with solid phase affinity capture of biological entities for the rapid detection and identification of group B coxsackievirus particles. Virus identification is based on type-specific immunocapture and the morphological properties of the captured viruses as obtained by the AFM. Representatives of the six group B coxsackieviruses have been specifically captured from 1 µl volumes of clarified cell lysates, body fluids and environmental samples. Concentration and kinetic profiles for capture indicate that detection is possible at 103 TCID50 µl-1 and the dynamic range of the assay spans three logs. The results demonstrate that the melding of a nanotechnological tool (AFM) with biotechnology (solid phase immunocapture of virus particles) can create a clinically relevant platform, useful for the detection and identification of enterovirus particles in a variety of samples.
Surface microstructure of bitumen characterized by atomic force microscopy.
Yu, Xiaokong; Burnham, Nancy A; Tao, Mingjiang
2015-04-01
Bitumen, also called asphalt binder, plays important roles in many industrial applications. It is used as the primary binding agent in asphalt concrete, as a key component in damping systems such as rubber, and as an indispensable additive in paint and ink. Consisting of a large number of hydrocarbons of different sizes and polarities, together with heteroatoms and traces of metals, bitumen displays rich surface microstructures that affect its rheological properties. This paper reviews the current understanding of bitumen's surface microstructures characterized by Atomic Force Microscopy (AFM). Microstructures of bitumen develop to different forms depending on crude oil source, thermal history, and sample preparation method. While some bitumens display surface microstructures with fine domains, flake-like domains, and dendrite structuring, 'bee-structures' with wavy patterns several micrometers in diameter and tens of nanometers in height are commonly seen in other binders. Controversy exists regarding the chemical origin of the 'bee-structures', which has been related to the asphaltene fraction, the metal content, or the crystallizing waxes in bitumen. The rich chemistry of bitumen can result in complicated intermolecular associations such as coprecipitation of wax and metalloporphyrins in asphaltenes. Therefore, it is the molecular interactions among the different chemical components in bitumen, rather than a single chemical fraction, that are responsible for the evolution of bitumen's diverse microstructures, including the 'bee-structures'. Mechanisms such as curvature elasticity and surface wrinkling that explain the rippled structures observed in polymer crystals might be responsible for the formation of 'bee-structures' in bitumen. Despite the progress made on morphological characterization of bitumen using AFM, the fundamental question whether the microstructures observed on bitumen surfaces represent its bulk structure remains to be addressed. In addition, critical technical challenges associated with AFM characterization of bitumen surface structures are discussed, with possible solutions recommended. For future work, combining AFM with other chemical analysis tools that can generate comparable high resolution to AFM would provide an avenue to linking bitumen's chemistry to its microscopic morphological and mechanical properties and consequently benefit the efforts of developing structure-related models for bituminous materials across the different length scales. Copyright © 2015 Elsevier B.V. All rights reserved.
SU-8 hollow cantilevers for AFM cell adhesion studies
NASA Astrophysics Data System (ADS)
Martinez, Vincent; Behr, Pascal; Drechsler, Ute; Polesel-Maris, Jérôme; Potthoff, Eva; Vörös, Janos; Zambelli, Tomaso
2016-05-01
A novel fabrication method was established to produce flexible, transparent, and robust tipless hollow atomic force microscopy (AFM) cantilevers made entirely from SU-8. Channels of 3 μm thickness and several millimeters length were integrated into 12 μm thick and 40 μm wide cantilevers. Connected to a pressure controller, the devices showed high sealing performance with no leakage up to 6 bars. Changing the cantilever lengths from 100 μm to 500 μm among the same wafer allowed the targeting of various spring constants ranging from 0.5 to 80 N m-1 within a single fabrication run. These hollow polymeric AFM cantilevers were operated in the optical beam deflection configuration. To demonstrate the performance of the device, single-cell force spectroscopy experiments were performed with a single probe detaching in a serial protocol more than 100 Saccharomyces cerevisiae yeast cells from plain glass and glass coated with polydopamine while measuring adhesion forces in the sub-nanoNewton range. SU-8 now offers a new alternative to conventional silicon-based hollow cantilevers with more flexibility in terms of complex geometric design and surface chemistry modification.
Meckes, Brian; Arce, Fernando Teran; Connelly, Laura S.; Lal, Ratnesh
2014-01-01
Biological membranes contain ion channels, which are nanoscale pores allowing controlled ionic transport and mediating key biological functions underlying normal/abnormal living. Synthetic membranes with defined pores are being developed to control various processes, including filtration of pollutants, charge transport for energy storage, and separation of fluids and molecules. Although ionic transport (currents) can be measured with single channel resolution, imaging their structure and ionic currents simultaneously is difficult. Atomic force microscopy enables high resolution imaging of nanoscale structures and can be modified to measure ionic currents simultaneously. Moreover, the ionic currents can also be used to image structures. A simple method for fabricating conducting AFM cantilevers to image pore structures at high resolution is reported. Tungsten microwires with nanoscale tips are insulated except at the apex. This allows simultaneous imaging via cantilever deflections in normal AFM force feedback mode as well as measuring localized ionic currents. These novel probes measure ionic currents as small as picoampere while providing nanoscale spatial resolution surface topography and is suitable for measuring ionic currents and conductance of biological ion channels. PMID:24663394
Atomic force microscope image contrast mechanisms on supported lipid bilayers.
Schneider, J; Dufrêne, Y F; Barger, W R; Lee, G U
2000-08-01
This work presents a methodology to measure and quantitatively interpret force curves on supported lipid bilayers in water. We then use this method to correlate topographic imaging contrast in atomic force microscopy (AFM) images of phase-separated Langmuir-Blodgett bilayers with imaging load. Force curves collected on pure monolayers of both distearoylphosphatidylethanolamine (DSPE) and monogalactosylethanolamine (MGDG) and dioleoylethanolamine (DOPE) deposited at similar surface pressures onto a monolayer of DSPE show an abrupt breakthrough event at a repeatable, material-dependent force. The breakthrough force for DSPE and MGDG is sizable, whereas the breakthrough force for DOPE is too small to measure accurately. Contact-mode AFM images on 1:1 mixed monolayers of DSPE/DOPE and MGDG/DOPE have a high topographic contrast at loads between the breakthrough force of each phase, and a low topographic contrast at loads above the breakthrough force of both phases. Frictional contrast is inverted and magnified at loads above the breakthrough force of both phases. These results emphasize the important role that surface forces and mechanics can play in imaging multicomponent biomembranes with AFM.
Structural studies of chromatin and chromosomes. Progress report, March 15--September 15, 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradbury, E.M.
This study focused on the following: (1) the structure of chromatin and chromosomes by neutron and x-ray scatter and atomic force microscope; (2) the architecture of human sperm and the structure of sperm by atomic force microscopy (AFM); (3) genome-architecture and higher-order structures in human sperm nuclei; and (4) the effects of histone modifications on the structure of nucleosomes by protein DNA crosslinking method.
On the origin of amplitude reduction mechanism in tapping mode atomic force microscopy
NASA Astrophysics Data System (ADS)
Keyvani, Aliasghar; Sadeghian, Hamed; Goosen, Hans; van Keulen, Fred
2018-04-01
The origin of amplitude reduction in Tapping Mode Atomic Force Microscopy (TM-AFM) is typically attributed to the shift in resonance frequency of the cantilever due to the nonlinear tip-sample interactions. In this paper, we present a different insight into the same problem which, besides explaining the amplitude reduction mechanism, provides a simple reasoning for the relationship between tip-sample interactions and operation parameters (amplitude and frequency). The proposed formulation, which attributes the amplitude reduction to an interference between the tip-sample and dither force, only deals with the linear part of the system; however, it fully agrees with experimental results and numerical solutions of the full nonlinear model of TM-AFM.
NASA Technical Reports Server (NTRS)
Lu, W. J.; Shi, D. T.; Elshot, K.; Bryant, E.; Lafate, K.; Chen, H.; Burger, A.; Collins, W. E.
1998-01-01
Pd/SiC has been used as a hydrogen and a hydrocarbon gas sensor operated at high temperature. UHV (Ultra High Vacuum)-Scanning Tunneling Microscopy (STM), Atomic Force Microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS) techniques were applied to study the relationship between the morphology and chemical compositions for Pd ultra-thin films on SiC (less than 30 angstroms) at different annealing temperatures. Pd ultra-thin film on 6H-SiC was prepared by the RF sputtering method. The morphology from UHV-STM and AFM shows that the Pd thin film was well deposited on SiC substrate, and the Pd was partially aggregated to round shaped participates at an annealing temperature of 300 C. At 400 C, the amount of surface participates decreases, and some strap shape participates appear. From XPS, Pd2Si was formed on the surface after annealing at 300 C, and all Pd reacted with SiC to form Pd2Si after annealing at 400 C. The intensity of the XPS Pd peak decreases enormously at 400 C. The Pd film diffused into SiC, and the Schottky barrier height has almost no changes. The work shows the Pd sicilides/SiC have the same electronic properties with Pd/SiC, and explains why the Pd/SiC sensor still responds to hydrogen at high operating temperatures.
Organometallic rotaxane dendrimers with fourth-generation mechanically interlocked branches.
Wang, Wei; Chen, Li-Jun; Wang, Xu-Qing; Sun, Bin; Li, Xiaopeng; Zhang, Yanyan; Shi, Jiameng; Yu, Yihua; Zhang, Li; Liu, Minghua; Yang, Hai-Bo
2015-05-05
Mechanically interlocked molecules, such as catenanes, rotaxanes, and knots, have applications in information storage, switching devices, and chemical catalysis. Rotaxanes are dumbbell-shaped molecules that are threaded through a large ring, and the relative motion of the two components along each other can respond to external stimuli. Multiple rotaxane units can amplify responsiveness, and repetitively branched molecules--dendrimers--can serve as vehicles for assembly of many rotaxanes on single, monodisperse compounds. Here, we report the synthesis of higher-generation rotaxane dendrimers by a divergent approach. Linkages were introduced as spacer elements to reduce crowding and to facilitate rotaxane motion, even at the congested periphery of the compounds up to the fourth generation. The structures were characterized by 1D multinuclear ((1)H, (13)C, and (31)P) and 2D NMR spectroscopy, MALDI-TOF-MS, gel permeation chromatography (GPC), and microscopy-based methods including atomic force microscopy (AFM) and transmission electron microscopy (TEM). AFM and TEM studies of rotaxane dendrimers vs. model dendrimers show that the rotaxane units enhance the rigidity and reduce the tendency of these assemblies to collapse by self-folding. Surface functionalization of the dendrimers with ferrocenes as termini produced electrochemically active assemblies. The preparation of dendrimers with a well-defined topological structure, enhanced rigidity, and diverse functional groups opens previously unidentified avenues for the application of these materials in molecular electronics and materials science.
A two-dimensional polymer synthesized at the air/water interface.
Schlüter, A Dieter; Müller, Vivian; Hinaut, Antoine; Moradi, Mina; Baljozovic, Milos; Jung, Thomas; Shahgaldian, Patrick; Möhwald, Helmuth; Hofer, Gregor; Kröger, Martin; King, Benjamin; Meyer, Ernst; Glatzel, Thilo
2018-06-11
A trifunctional, partially fluorinated anthracene-substituted triptycene monomer is spread at the air/water interface into a monolayer, which is transformed into a long-range ordered 2D polymer by irradiation with a standard ultraviolet lamp using 365 nm light. The polymer is analyzed by Brewster angle microscopy directly at this interface and by scanning tunneling microscopy measurements and non-contact atomic force microscopy (nc-AFM), both after transfer from below the interface onto highly oriented pyrolytic graphite and then into ultra-high vacuum. Both methods confirm a network structure, the lattice parameters of which are virtually identical to a structural model network based on X-ray diffractometry of a closely related 2D polymer unequivocally established in a single crystal. The nc-AFM images are obtained with unprecedentedly high resolution and prove long-range order over areas of at least 300 × 300 nm2. As required for a 2D polymer, the pore sizes are monodisperse, except for the regions, where the network is somewhat stretched because it spans over protrusions. Together with a previous report on the nature of the cross-links in this network, the structural information provided here leaves no doubt that a 2D polymer has been synthesized under ambient conditions at an air/water interface. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
MORPHOLOGICAL CHANGES IN POLYURETHANE COATINGS ON EXPOSURE TO WATER. (R828081E01)
When a polyurethane self-priming coating on a sol-gel treated aluminum panel was immersed in dilute Harrison's solution, subsequent change of the polyurethane coating surface was inspected with atomic force microscopy (AFM) and scanning electron microscopy (SEM). After immersi...
Corroding of copper piping used in household drinking water plumbing may potentially impacts consumer’s health and economics. Copper corrosion studies conducted on newly corroding material with atomic force microscopy (AFM) may be particularly useful in understanding the impact ...
NASA Astrophysics Data System (ADS)
Romo, Jaime E., Jr.
Optical microscopy, the most common technique for viewing living microorganisms, is limited in resolution by Abbe's criterion. Recent microscopy techniques focus on circumnavigating the light diffraction limit by using different methods to obtain the topography of the sample. Systems like the AFM and SEM provide images with fields of view in the nanometer range with high resolvable detail, however these techniques are expensive, and limited in their ability to document live cells. The Dino-Lite digital microscope coupled with the Zeiss Axiovert 25 CFL microscope delivers a cost-effective method for recording live cells. Fields of view ranging from 8 microns to 300 microns with fair resolution provide a reliable method for discovering native cell structures at the nanoscale. In this report, cultured HeLa cells are recorded using different optical configurations resulting in documentation of cell dynamics at high magnification and resolution.
Solares, Santiago D.
2015-11-26
This study introduces a quasi-3-dimensional (Q3D) viscoelastic model and software tool for use in atomic force microscopy (AFM) simulations. The model is based on a 2-dimensional array of standard linear solid (SLS) model elements. The well-known 1-dimensional SLS model is a textbook example in viscoelastic theory but is relatively new in AFM simulation. It is the simplest model that offers a qualitatively correct description of the most fundamental viscoelastic behaviors, namely stress relaxation and creep. However, this simple model does not reflect the correct curvature in the repulsive portion of the force curve, so its application in the quantitative interpretationmore » of AFM experiments is relatively limited. In the proposed Q3D model the use of an array of SLS elements leads to force curves that have the typical upward curvature in the repulsive region, while still offering a very low computational cost. Furthermore, the use of a multidimensional model allows for the study of AFM tips having non-ideal geometries, which can be extremely useful in practice. Examples of typical force curves are provided for single- and multifrequency tappingmode imaging, for both of which the force curves exhibit the expected features. Lastly, a software tool to simulate amplitude and phase spectroscopy curves is provided, which can be easily modified to implement other controls schemes in order to aid in the interpretation of AFM experiments.« less
NASA Astrophysics Data System (ADS)
Kilpatrick, J. I.; Gannepalli, A.; Cleveland, J. P.; Jarvis, S. P.
2009-02-01
Frequency modulation atomic force microscopy (FM-AFM) is rapidly evolving as the technique of choice in the pursuit of high resolution imaging of biological samples in ambient environments. The enhanced stability afforded by this dynamic AFM mode combined with quantitative analysis enables the study of complex biological systems, at the nanoscale, in their native physiological environment. The operational bandwidth and accuracy of constant amplitude FM-AFM in low Q environments is heavily dependent on the cantilever dynamics and the performance of the demodulation and feedback loops employed to oscillate the cantilever at its resonant frequency with a constant amplitude. Often researchers use ad hoc feedback gains or instrument default values that can result in an inability to quantify experimental data. Poor choice of gains or exceeding the operational bandwidth can result in imaging artifacts and damage to the tip and/or sample. To alleviate this situation we present here a methodology to determine feedback gains for the amplitude and frequency loops that are specific to the cantilever and its environment, which can serve as a reasonable "first guess," thus making quantitative FM-AFM in low Q environments more accessible to the nonexpert. This technique is successfully demonstrated for the low Q systems of air (Q ˜40) and water (Q ˜1). In addition, we present FM-AFM images of MC3T3-E1 preosteoblast cells acquired using the gains calculated by this methodology demonstrating the effectiveness of this technique.
Solares, Santiago D
2015-01-01
This paper introduces a quasi-3-dimensional (Q3D) viscoelastic model and software tool for use in atomic force microscopy (AFM) simulations. The model is based on a 2-dimensional array of standard linear solid (SLS) model elements. The well-known 1-dimensional SLS model is a textbook example in viscoelastic theory but is relatively new in AFM simulation. It is the simplest model that offers a qualitatively correct description of the most fundamental viscoelastic behaviors, namely stress relaxation and creep. However, this simple model does not reflect the correct curvature in the repulsive portion of the force curve, so its application in the quantitative interpretation of AFM experiments is relatively limited. In the proposed Q3D model the use of an array of SLS elements leads to force curves that have the typical upward curvature in the repulsive region, while still offering a very low computational cost. Furthermore, the use of a multidimensional model allows for the study of AFM tips having non-ideal geometries, which can be extremely useful in practice. Examples of typical force curves are provided for single- and multifrequency tapping-mode imaging, for both of which the force curves exhibit the expected features. Finally, a software tool to simulate amplitude and phase spectroscopy curves is provided, which can be easily modified to implement other controls schemes in order to aid in the interpretation of AFM experiments.
Temperature-Controlled High-Speed AFM: Real-Time Observation of Ripple Phase Transitions.
Takahashi, Hirohide; Miyagi, Atsushi; Redondo-Morata, Lorena; Scheuring, Simon
2016-11-01
With nanometer lateral and Angstrom vertical resolution, atomic force microscopy (AFM) has contributed unique data improving the understanding of lipid bilayers. Lipid bilayers are found in several different temperature-dependent states, termed phases; the main phases are solid and fluid phases. The transition temperature between solid and fluid phases is lipid composition specific. Under certain conditions some lipid bilayers adopt a so-called ripple phase, a structure where solid and fluid phase domains alternate with constant periodicity. Because of its narrow regime of existence and heterogeneity ripple phase and its transition dynamics remain poorly understood. Here, a temperature control device to high-speed atomic force microscopy (HS-AFM) to observe dynamics of phase transition from ripple phase to fluid phase reversibly in real time is developed and integrated. Based on HS-AFM imaging, the phase transition processes from ripple phase to fluid phase and from ripple phase to metastable ripple phase to fluid phase could be reversibly, phenomenologically, and quantitatively studied. The results here show phase transition hysteresis in fast cooling and heating processes, while both melting and condensation occur at 24.15 °C in quasi-steady state situation. A second metastable ripple phase with larger periodicity is formed at the ripple phase to fluid phase transition when the buffer contains Ca 2+ . The presented temperature-controlled HS-AFM is a new unique experimental system to observe dynamics of temperature-sensitive processes at the nanoscopic level. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Scanning hall probe microscopy (SHPM) using quartz crystal AFM feedback.
Dede, M; Urkmen, K; Girişen, O; Atabak, M; Oral, A; Farrer, I; Ritchie, D
2008-02-01
Scanning Hall Probe Microscopy (SHPM) is a quantitative and non-invasive technique for imaging localized surface magnetic field fluctuations such as ferromagnetic domains with high spatial and magnetic field resolution of approximately 50 nm and 7 mG/Hz(1/2) at room temperature. In the SHPM technique, scanning tunneling microscope (STM) or atomic force microscope (AFM) feedback is used to keep the Hall sensor in close proximity of the sample surface. However, STM tracking SHPM requires conductive samples; therefore the insulating substrates have to be coated with a thin layer of gold. This constraint can be eliminated with the AFM feedback using sophisticated Hall probes that are integrated with AFM cantilevers. However it is very difficult to micro fabricate these sensors. In this work, we have eliminated the difficulty in the cantilever-Hall probe integration process, just by gluing a Hall Probe chip to a quartz crystal tuning fork force sensor. The Hall sensor chip is simply glued at the end of a 32.768 kHz or 100 kHz Quartz crystal, which is used as force sensor. An LT-SHPM system is used to scan the samples. The sensor assembly is dithered at the resonance frequency using a digital Phase Locked Loop circuit and frequency shifts are used for AFM tracking. SHPM electronics is modified to detect AFM topography and the frequency shift, along with the magnetic field image. Magnetic domains and topography of an Iron Garnet thin film crystal, NdFeB demagnetised magnet and hard disk samples are presented at room temperature. The performance is found to be comparable with the SHPM using STM feedback.
NASA Astrophysics Data System (ADS)
Arai, Toyoko; Inamura, Ryo; Kura, Daiki; Tomitori, Masahiko
2018-03-01
The kinetic energy of the oscillating cantilever of noncontact atomic force microscopy (nc-AFM) at room temperature was considerably dissipated over regions between a Si adatom and its neighboring rest atom for Si(111 )-(7 ×7 ) in close proximity to a Si tip on the cantilever. However, nc-AFM topographic images showed no atomic features over those regions, which were the hollow sites of the (7 ×7 ). This energy dissipation likely originated from displacement of Si adatoms with respect to the tip over the hollow sites, leading to a lateral shift of the adatoms toward the rest atom. This interaction led to hysteresis over each cantilever oscillation cycle; when the tip was retracted, the Si adatom likely returned to its original position. To confirm the atomic processes involved in the force interactions through Si dangling bonds, the Si(111 )-(7 ×7 ) surface was partly terminated with atomic hydrogen (H) and examined by nc-AFM. When the Si adatoms and/or the rest atoms were terminated with H, the hollow sites were not bright (less dissipation) in images of the energy dissipation channels by nc-AFM. The hollow sites acted as metastable sites for Si adatoms in surface diffusion and atom manipulation; thus, the dissipation energy which is saturated on the tip likely corresponds to the difference in the potential energy between the hollow site and the Si adatom site. In this study, we demonstrated the ability of dissipation channels of nc-AFM to enable visualization of the dynamics of atoms and molecules on surfaces, which cannot be revealed by nc-AFM topographic images alone.
Thanawan, S; Radabutra, S; Thamasirianunt, P; Amornsakchai, T; Suchiva, K
2009-01-01
Atomic force microscopy (AFM) was used to study the morphology and surface properties of NR/NBR blend. Blends at 1/3, 1/1 and 3/1 weight ratios were prepared in benzene and formed film by casting. AFM phase images of these blends in tapping mode displayed islands in the sea morphology or matrix-dispersed structures. For blend 1/3, NR formed dispersed phase while in blends 1/1 and 3/1 phase inversion was observed. NR showed higher phase shift angle in AFM phase imaging for all blends. This circumstance was governed by adhesion energy hysteresis between the device tip and the rubber surface rather than surface stiffness of the materials, as proved by force distance measurements in the AFM contact mode.
Effect of angle of deposition on the Fractal properties of ZnO thin film surface
NASA Astrophysics Data System (ADS)
Yadav, R. P.; Agarwal, D. C.; Kumar, Manvendra; Rajput, Parasmani; Tomar, D. S.; Pandey, S. N.; Priya, P. K.; Mittal, A. K.
2017-09-01
Zinc oxide (ZnO) thin films were prepared by atom beam sputtering at various deposition angles in the range of 20-75°. The deposited thin films were examined by glancing angle X-ray diffraction and atomic force microscopy (AFM). Scaling law analysis was performed on AFM images to show that the thin film surfaces are self-affine. Fractal dimension of each of the 256 vertical sections along the fast scan direction of a discretized surface, obtained from the AFM height data, was estimated using the Higuchi's algorithm. Hurst exponent was computed from the fractal dimension. The grain sizes, as determined by applying self-correlation function on AFM micrographs, varied with the deposition angle in the same manner as the Hurst exponent.
The detection of hepatitis c virus core antigen using afm chips with immobolized aptamers.
Pleshakova, T O; Kaysheva, A L; Bayzyanova, J М; Anashkina, А S; Uchaikin, V F; Ziborov, V S; Konev, V A; Archakov, A I; Ivanov, Y D
2018-01-01
In the present study, the possibility of hepatitis C virus core antigen (HCVcoreAg) detection in buffer solution, using atomic force microscope chip (AFM-chip) with immobilized aptamers, has been demonstrated. The target protein was detected in 1mL of solution at concentrations from 10 -10 М to 10 -13 М. The registration of aptamer/antigen complexes on the chip surface was carried out by atomic force microscopy (AFM). The further mass-spectrometric (MS) identification of AFM-registered objects on the chip surface allowed reliable identification of HCVcoreAg target protein in the complexes. Aptamers, which were designed for therapeutic purposes, have been shown to be effective in HCVcoreAg detection as probe molecules. Copyright © 2017 Elsevier B.V. All rights reserved.
AFM feature definition for neural cells on nanofibrillar tissue scaffolds.
Tiryaki, Volkan M; Khan, Adeel A; Ayres, Virginia M
2012-01-01
A diagnostic approach is developed and implemented that provides clear feature definition in atomic force microscopy (AFM) images of neural cells on nanofibrillar tissue scaffolds. Because the cellular edges and processes are on the same order as the background nanofibers, this imaging situation presents a feature definition problem. The diagnostic approach is based on analysis of discrete Fourier transforms of standard AFM section measurements. The diagnostic conclusion that the combination of dynamic range enhancement with low-frequency component suppression enhances feature definition is shown to be correct and to lead to clear-featured images that could change previously held assumptions about the cell-cell interactions present. Clear feature definition of cells on scaffolds extends the usefulness of AFM imaging for use in regenerative medicine. © Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noh, Hanaul; Diaz, Alfredo J.; Solares, Santiago D.
Organic photovoltaic systems comprising donor polymers and acceptor fullerene derivatives are attractive for inexpensive energy harvesting. Extensive research on polymer solar cells has provided insight into the factors governing device-level efficiency and stability. However, the detailed investigation of nanoscale structures is still challenging. Here we demonstrate the analysis and modification of unidentified surface aggregates. The aggregates are characterized electrically by Kelvin probe force microscopy and conductive atomic force microscopy (C-AFM), whereby the correlation between local electrical potential and current confirms a defective charge transport. Bimodal AFM modification confirms that the aggregates exist on top of the solar cell structure, andmore » is used to remove them and to reveal the underlying active layer. The systematic analysis of the surface aggregates suggests that the structure consists of PCBM molecules.« less
Noh, Hanaul; Diaz, Alfredo J.; Solares, Santiago D.
2017-03-08
Organic photovoltaic systems comprising donor polymers and acceptor fullerene derivatives are attractive for inexpensive energy harvesting. Extensive research on polymer solar cells has provided insight into the factors governing device-level efficiency and stability. However, the detailed investigation of nanoscale structures is still challenging. Here we demonstrate the analysis and modification of unidentified surface aggregates. The aggregates are characterized electrically by Kelvin probe force microscopy and conductive atomic force microscopy (C-AFM), whereby the correlation between local electrical potential and current confirms a defective charge transport. Bimodal AFM modification confirms that the aggregates exist on top of the solar cell structure, andmore » is used to remove them and to reveal the underlying active layer. The systematic analysis of the surface aggregates suggests that the structure consists of PCBM molecules.« less
Microstructures of Ni-AlN composite coatings prepared by pulse electrodeposition technology
NASA Astrophysics Data System (ADS)
Xia, Fafeng; Xu, Huibin; Liu, Chao; Wang, Jinwu; Ding, Junjie; Ma, Chunhua
2013-04-01
Ni-AlN composite coating was fabricated onto the surface of steel substrates by using pulse electrodeposition (PED) technique in this work. The effect of pulse current on the nucleation and growth of grains was investigated using transmission electronic microscopy (TEM), X-ray diffraction (XRD), scanning electronic microscopy (SEM) and atomic force microscopy (AFM), respectively. The results show that the contents of AlN nanoparticles increase with density of pulse current and on-duty ratio of pulse current increasing. Whereas the size of nickel grains decreases with density of pulse current increasing and on-duty ratio of pulse current decreasing. Ni-AlN composite coating consists of crystalline nickel (˜68 nm) and AlN particles (˜38 nm). SEM and AFM observations show that the composite coatings obtained by PED showed more compact surfaces and less grain sizes, whereas those obtained by direct current electrodepositing have rougher surfaces and bigger grain sizes.
Noh, Hanaul; Diaz, Alfredo J
2017-01-01
Organic photovoltaic systems comprising donor polymers and acceptor fullerene derivatives are attractive for inexpensive energy harvesting. Extensive research on polymer solar cells has provided insight into the factors governing device-level efficiency and stability. However, the detailed investigation of nanoscale structures is still challenging. Here we demonstrate the analysis and modification of unidentified surface aggregates. The aggregates are characterized electrically by Kelvin probe force microscopy and conductive atomic force microscopy (C-AFM), whereby the correlation between local electrical potential and current confirms a defective charge transport. Bimodal AFM modification confirms that the aggregates exist on top of the solar cell structure, and is used to remove them and to reveal the underlying active layer. The systematic analysis of the surface aggregates suggests that the structure consists of PCBM molecules. PMID:28382247
Few-layer graphene growth from polystyrene as solid carbon source utilizing simple APCVD method
NASA Astrophysics Data System (ADS)
Ahmadi, Shahrokh; Afzalzadeh, Reza
2016-07-01
This research article presents development of an economical, simple, immune and environment friendly process to grow few-layer graphene by controlling evaporation rate of polystyrene on copper foil as catalyst and substrate utilizing atmospheric pressure chemical vapor deposition (APCVD) method. Evaporation rate of polystyrene depends on molecular structure, amount of used material and temperature. We have found controlling rate of evaporation of polystyrene by controlling the source temperature is easier than controlling the material weight. Atomic force microscopy (AFM) as well as Raman Spectroscopy has been used for characterization of the layers. The frequency of G‧ to G band ratio intensity in some samples varied between 0.8 and 1.6 corresponding to few-layer graphene. Topography characterization by atomic force microscopy confirmed Raman results.
Real Space Imaging of Nanoparticle Assembly at Liquid-Liquid Interfaces with Nanoscale Resolution.
Costa, Luca; Li-Destri, Giovanni; Thomson, Neil H; Konovalov, Oleg; Pontoni, Diego
2016-09-14
Bottom up self-assembly of functional materials at liquid-liquid interfaces has recently emerged as method to design and produce novel two-dimensional (2D) nanostructured membranes and devices with tailored properties. Liquid-liquid interfaces can be seen as a "factory floor" for nanoparticle (NP) self-assembly, because NPs are driven there by a reduction of interfacial energy. Such 2D assembly can be characterized by reciprocal space techniques, namely X-ray and neutron scattering or reflectivity. These techniques have drawbacks, however, as the structural information is averaged over the finite size of the radiation beam and nonperiodic isolated assemblies in 3D or defects may not be easily detected. Real-space in situ imaging methods are more appropriate in this context, but they often suffer from limited resolution and underperform or fail when applied to challenging liquid-liquid interfaces. Here, we study the surfactant-induced assembly of SiO2 nanoparticle monolayers at a water-oil interface using in situ atomic force microscopy (AFM) achieving nanoscale resolved imaging capabilities. Hitherto, AFM imaging has been restricted to solid-liquid interfaces because applications to liquid interfaces have been hindered by their softness and intrinsic dynamics, requiring accurate sample preparation methods and nonconventional AFM operational schemes. Comparing both AFM and grazing incidence X-ray small angle scattering data, we unambiguously demonstrate correlation between real and reciprocal space structure determination showing that the average interfacial NP density is found to vary with surfactant concentration. Additionally, the interaction between the tip and the interface can be exploited to locally determine the acting interfacial interactions. This work opens up the way to studying complex nanostructure formation and phase behavior in a range of liquid-liquid and complex liquid interfaces.
NASA Astrophysics Data System (ADS)
Kuppers, J. D.; Gouverneur, I. M.; Rodgers, M. T.; Wenger, J.; Furlong, C.
2006-08-01
In atomic probe microscopy, micro-probes of various sizes, geometries, and materials are used to define the interface between the samples under investigation and the measuring detectors and instrumentation. Therefore, measuring resolution in atomic probe microscopy is highly dependent on the transfer function characterizing the micro-probes used. In this paper, characterization of the dynamic transfer function of specific micro-cantilever probes used in an Atomic Force Microscope (AFM) operating in the tapping mode is presented. Characterization is based on the combined application of laser Doppler vibrometry (LDV) and real-time stroboscopic optoelectronic holographic microscopy (OEHM) methodologies. LDV is used for the rapid measurement of the frequency response of the probes due to an excitation function containing multiple frequency components. Data obtained from the measured frequency response is used to identify the principal harmonics. In order to identify mode shapes corresponding to the harmonics, full-field of view OEHM is applied. This is accomplished by measurements of motion at various points on the excitation curve surrounding the identified harmonics. It is shown that the combined application of LDV and OEHM enables the high-resolution characterization of mode shapes of vibration, damping characteristics, as well as transient response of the micro-cantilever probes. Such characterization is necessary in high-resolution AFM measurements.
Design and evaluation of precise current integrator for scanning probe microscopy
NASA Astrophysics Data System (ADS)
Raczkowski, Kamil; Piasecki, Tomasz; Rudek, Maciej; Gotszalk, Teodor
2017-03-01
Several of the scanning probe microscopy (SPM) techniques, such as the scanning tunnelling microscopy (STM) or conductive atomic force microscopy (C-AFM), rely on precise measurements of current flowing between the investigated sample and the conductive nanoprobe. The parameters of current-to-voltage converter (CVC), which should detect current in the picompere range, are of utmost importance to those systems as they determine the microscopes’ measuring capabilities. That was the motivation for research on the precise current integrator (PCI), described in this paper, which could be used as the CVC in the C-AFM systems. The main design goal of the PCI was to provide a small and versatile device with the sub-picoampere level resolution with high dynamic range in the order of nanoamperes. The PCI was based on the integrating amplifier (Texas Instruments DDC112) paired with a STM32F4 microcontroller unit (MCU).The gain and bandwidth of the PCI might be easily changed by varying the integration time and the feedback capacitance. Depending on these parameters it was possible to obtain for example the 2.15 pA resolution at 688 nA range with 1 kHz bandwidth or 7.4 fA resolution at 0.98 nA range with 10 Hz bandwidth. The measurement of sinusoidal current with 28 fA amplitude was also presented. The PCI was integrated with the C-AFM system and used in the highly ordered pyrolytic graphite (HOPG) and graphene samples imaging.
Wang, Mengmeng; Cai, Yin; Zhao, Bo; Zhu, Peizhi
2017-01-01
In this study, scanning electron microscopy (SEM), Raman spectroscopy and high-resolution atomic force microscopy (AFM) were used to reveal the early-stage change of nanomorphology and nanomechanical properties of poly(lactic acid) (PLA) fibers in a time-resolved manner during the mineralization process. Electrospun PLA nanofibers were soaked in simulated body fluid (SBF) for different periods of time (0, 1, 3, 5, 7 and 21 days) at 10 °C, much lower than the conventional 37 °C, to simulate the slow biomineralization process. Time-resolved Raman spectroscopy analysis can confirm that apatites were deposited on PLA nanofibers after 21 days of mineralization. However, there is no significant signal change among several Raman spectra before 21 days. SEM images can reveal the mineral deposit on PLA nanofibers during the process of mineralization. In this work, for the first time, time-resolved AFM was used to monitor early-stage nanomorphology and nanomechanical changes of PLA nanofibers. The Surface Roughness and Young’s Modulus of the PLA nanofiber quantitatively increased with the time of mineralization. The electrospun PLA nanofibers with delicate porous structure could mimic the extracellular matrix (ECM) and serve as a model to study the early-stage mineralization. Tested by the mode of PLA nanofibers, we demonstrated that AFM technique could be developed as a potential diagnostic tool to monitor the early onset of pathologic mineralization of soft tissues. PMID:28817096
Wang, B; Lou, Z; Park, B; Kwon, Y; Zhang, H; Xu, B
2015-01-07
We used atomic force microscopy (AFM) and surface plasmon resonance (SPR) to study the surface conformations of an anti-ricin aptamer and its specific binding affinity for ricin molecules. The effect of surface modification of the Au(111) substrate on the aptamer affinity was also estimated. The AFM topography images had a resolution high enough to distinguish different aptamer conformations. The specific binding site on the aptamer molecule was clearly located by the AFM recognition images. The aptamer on a Au(111) surface modified with carboxymethylated-dextran (CD) showed both similarities to and differences from the one without CD modification. The influence of CD modification was evaluated using AFM images of various aptamer conformations on the Au(111) surface. The affinity between ricin and the anti-ricin aptamer was estimated using the off-rate values measured using AFM and SPR. The SPR measurements of the ricin sample were conducted in the range from 83.3 pM to 8.33 nM, and the limit of detection was estimated as 25 pM (1.5 ng mL(-1)). The off-rate values of the ricin-aptamer interactions were estimated using both single-molecule dynamic force spectroscopy (DFS) and SPR as (7.3 ± 0.4) × 10(-4) s(-1) and (1.82 ± 0.067) × 10(-2) s(-1), respectively. The results show that single-molecule measurements can obtain different reaction parameters from bulk solution measurements. In AFM single-molecule measurements, the various conformations of the aptamer immobilized on the gold surface determined the availability of each specific binding site to the ricin molecules. The SPR bulk solution measurements averaged the signals from specific and non-specific interactions. AFM images and DFS measurements provide more specific information on the interactions of individual aptamer and ricin molecules.
Atomic force microscopy for two-dimensional materials: A tutorial review
NASA Astrophysics Data System (ADS)
Zhang, Hang; Huang, Junxiang; Wang, Yongwei; Liu, Rui; Huai, Xiulan; Jiang, Jingjing; Anfuso, Chantelle
2018-01-01
Low dimensional materials exhibit distinct properties compared to their bulk counterparts. A plethora of examples have been demonstrated in two-dimensional (2-D) materials, including graphene and transition metal dichalcogenides (TMDCs). These novel and intriguing properties at the nano-, molecular- and even monatomic scales have triggered tremendous interest and research, from fundamental studies to practical applications and even device fabrication. The unique behaviors of 2-D materials result from the special structure-property relationships that exist between surface topographical variations and mechanical responses, electronic structures, optical characteristics, and electrochemical properties. These relationships are generally convoluted and sensitive to ambient and external perturbations. Characterizing these systems thus requires techniques capable of providing multidimensional information under controlled environments, such as atomic force microscopy (AFM). Today, AFM plays a key role in exploring the basic principles underlying the functionality of 2-D materials. In this tutorial review, we provide a brief introduction to some of the unique properties of 2-D materials, followed by a summary of the basic principles of AFM and the various AFM modes most appropriate for studying these systems. Following that, we will focus on five important properties of 2-D materials and their characterization in more detail, including recent literature examples. These properties include nanomechanics, nanoelectromechanics, nanoelectrics, nanospectroscopy, and nanoelectrochemistry.
Grebíková, Lucie; Whittington, Stuart G; Vancso, Julius G
2018-05-23
The adsorption-desorption behavior of polymer chains is at the heart of macromolecular surface science and technology. With the current developments in atomic force microscopy (AFM), it has now become possible to address the desorption problem from the perspective of a single macromolecule. Here, we report on desorption of single polymer chains on planar surfaces by AFM-based single molecule force spectroscopy (SMFS) as a function of the pulling angle with respect to the surface-normal direction. SMFS experiments were performed in water with various substrates using different polymers covalently attached to the AFM probe tip. End-grafting at the AFM tip was achieved by surface-initiated polymerization using initiator functionalized tips. We found that the desorption force increases with a decreasing pulling angle, i.e., an enhanced adhesion of the polymer chain was observed. The magnitude of the desorption force shows a weak angular dependence at pulling angles close to the surface normal. A significant increase of the force is observed at shallower pulling from a certain pulling angle. This behavior carries the signature of an adsorption-desorption transition. The angular dependence of the normalized desorption force exhibits a universal behavior. We compared and interpreted our results using theoretical predictions for single-chain adsorption-desorption transitions.
2018-01-01
The adsorption–desorption behavior of polymer chains is at the heart of macromolecular surface science and technology. With the current developments in atomic force microscopy (AFM), it has now become possible to address the desorption problem from the perspective of a single macromolecule. Here, we report on desorption of single polymer chains on planar surfaces by AFM-based single molecule force spectroscopy (SMFS) as a function of the pulling angle with respect to the surface-normal direction. SMFS experiments were performed in water with various substrates using different polymers covalently attached to the AFM probe tip. End-grafting at the AFM tip was achieved by surface-initiated polymerization using initiator functionalized tips. We found that the desorption force increases with a decreasing pulling angle, i.e., an enhanced adhesion of the polymer chain was observed. The magnitude of the desorption force shows a weak angular dependence at pulling angles close to the surface normal. A significant increase of the force is observed at shallower pulling from a certain pulling angle. This behavior carries the signature of an adsorption–desorption transition. The angular dependence of the normalized desorption force exhibits a universal behavior. We compared and interpreted our results using theoretical predictions for single-chain adsorption–desorption transitions. PMID:29712430
Coupling of conservative and dissipative forces in frequency-modulation atomic force microscopy
NASA Astrophysics Data System (ADS)
Sader, John E.; Jarvis, Suzanne P.
2006-11-01
Frequency modulation atomic force microscopy (FM-AFM) utilizes the principle of self-excitation to ensure the cantilever probe vibrates at its resonant frequency, regardless of the tip-sample interaction. Practically, this is achieved by fixing the phase difference between tip deflection and driving force at precisely 90° . This, in turn, decouples the frequency shift and excitation amplitude signals, enabling quantitative interpretation in terms of conservative and dissipative tip-sample interaction forces. In this article, we theoretically investigate the effect of phase detuning in the self-excitation mechanism on the coupling between conservative and dissipative forces in FM-AFM. We find that this coupling depends only on the relative difference in the drive and resonant frequencies far from the surface, and is thus very weakly dependent on the actual phase error particularly for high quality factors. This establishes that FM-AFM is highly robust with respect to phase detuning, and enables quantitative interpretation of the measured frequency shift and excitation amplitude, even while operating away from the resonant frequency with the use of appropriate replacements in the existing formalism. We also examine the calibration of phase shifts in FM-AFM measurements and demonstrate that the commonly used approach of minimizing the excitation amplitude can lead to significant phase detuning, particularly in liquid environments.
Leitner, Michael; Fantner, Georg E.; Fantner, Ernest J.; Ivanova, Katerina; Ivanov, Tzvetan; Rangelow, Ivo; Ebner, Andreas; Rangl, Martina; Tang, Jilin; Hinterdorfer, Peter
2012-01-01
In this study, we demonstrate the increased performance in speed and sensitivity achieved by the use of small AFM cantilevers on a standard AFM system. For this, small rectangular silicon oxynitride cantilevers were utilized to arrive at faster atomic force microscopy (AFM) imaging times and more sensitive molecular recognition force spectroscopy (MRFS) experiments. The cantilevers we used had lengths between 13 and 46 μm, a width of about 11 μm, and a thickness between 150 and 600 nm. They were coated with chromium and gold on the backside for a better laser reflection. We characterized these small cantilevers through their frequency spectrum and with electron microscopy. Due to their small size and high resonance frequency we were able to increase the imaging speed by a factor of 10 without any loss in resolution for images from several μm scansize down to the nanometer scale. This was shown on bacterial surface layers (s-layer) with tapping mode under aqueous, near physiological conditions and on nuclear membranes in contact mode in ambient environment. In addition, we showed that single molecular forces can be measured with an up to 5 times higher force sensitivity in comparison to conventional cantilevers with similar spring constants. PMID:22721963
Sivakami, R; Dhanuskodi, S; Karvembu, R
2016-01-05
RuO2 nanoparticles (RuO2 NPs) have been successfully synthesized by the hydrothermal method. Structure and the particle size have been determined by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and transmission electron microscopy (TEM). UV-Vis spectra reveal that the optical band gap of RuO2 nanoparticles is red shifted from 3.95 to 3.55eV. BET measurements show a high specific surface area (SSA) of 118-133m(2)/g and pore diameter (10-25nm) has been estimated by Barret-Joyner-Halenda (BJH) method. The crystallite size and lattice strain in the samples have been investigated by Williamson-Hall (W-H) analysis assuming uniform deformation, deformation stress and deformation energy density, and the size-strain plot method. All other relevant physical parameters including stress, strain and energy density have been calculated. The average crystallite size and the lattice strain evaluated from XRD measurements are in good agreement with the results of TEM. Copyright © 2015 Elsevier B.V. All rights reserved.
Effect of different coating layer on the topography and optical properties of ZnO nanostructured
NASA Astrophysics Data System (ADS)
Mohamed, R.; Mamat, M. H.; Malek, M. F.; Ismail, A. S.; Yusoff, M. M.; Asiah, M. N.; Khusaimi, Z.; Rusop, M.
2018-05-01
Magnesium (Mg) and aluminum (Al) co-doped zinc oxide (MAZO) thin films were synthesized on glass substrate by sol-gel spin coating method. MAZO thin films were prepared at different coating layers range from 1 to 9. Atomic Force Microscopy (AFM) was used to investigate the topography of the thin films. According to the AFM results, Root Means Square (RMS) of MAZO thin films was increased from 0.747 to 6.545 nm, with increase of number coating layer from 1 to 9, respectively. The results shown the variation on structural and topography properties of MAZO seed film when it's deposited at different coating layers on glass substrate. The optical properties was analyzed using UV-Vis spectroscopy. The obtained results show that the transmittance spectra was increased as thin films coating layer increases.
NASA Astrophysics Data System (ADS)
Burtsev, Vasilii; Marchuk, Valentina; Kugaevskiy, Artem; Guselnikova, Olga; Elashnikov, Roman; Miliutina, Elena; Postnikov, Pavel; Svorcik, Vaclav; Lyutakov, Oleksiy
2018-03-01
Nano-spheres lithography is actually considered as a powerful tool to manufacture various periodic structures with a wide potential in the field of nano- and micro-fabrication. However, during self-assembling of colloid microspheres, various defects and mismatches can appear. In this work the size and quality of single-domains of closed-packed polystyrene (PS), grown up on thin Au layers modified by hydrophilic or hydrophobic functional groups via diazonium chemistry was studied. The effects of the surface modification on the quality and single-domain size of polystyrene (PS) microspheres array were investigated and discussed. Modified surfaces were characterized using the AFM and wettability tests. PS colloidal suspension was deposited using the drop evaporation method. Resulted PS microspheres array was characterized using the SEM, AFM and confocal microscopy technique.
Use of self-actuating and self-sensing cantilevers for imaging biological samples in fluid
Barbero, R J; Deutschinger, A; Todorov, V; Gray, D S; Belcher, A M; Rangelow, I W; Youcef-Toumi, K
2014-01-01
In this paper, we present a detailed investigation into the suitability of atomic force microscopy (AFM) cantilevers with integrated deflection sensor and micro-actuator for imaging of soft biological samples in fluid. The Si cantilevers are actuated using a micro-heater at the bottom end of the cantilever. Sensing is achieved through p-doped resistors connected in a Wheatstone bridge. We investigated the influence of the water on the cantilever dynamics, the actuation and the sensing mechanisms, as well as the crosstalk between sensing and actuation. Successful imaging of yeast cells in water using the integrated sensor and actuator shows the potential of the combination of this actuation and sensing method. This constitutes a major step towards the automation and miniaturization required to establish AFM in routine biomedical diagnostics and in vivo applications. PMID:19801750
Conductive Atomic Force Microscopy | Materials Science | NREL
electrical measurement techniques is the high spatial resolution. For example, C-AFM measurements on : High-resolution image of a sample semiconductor device; the image shows white puff-like clusters on a dark background and was obtained using atomic force microscopy. Bottom: High-resolution image of the
NASA Astrophysics Data System (ADS)
Wagner, Martin; Carneiro, Karina; Habelitz, Stefan; Mueller, Thomas; BNS Team; UCSF Team
Heterogeneity in material systems requires methods for nanoscale chemical identification. Scattering scanning near-field microscopy (s-SNOM) is chemically sensitive in the infrared fingerprint region while providing down to 10 nm spatial resolution. This technique detects material specific tip-scattering in an atomic force microscope. Here, we present the first combination of s-SNOM with peak-force tapping (PFT), a valuable AFM technique that allows precise force control between tip and sample down to 10s of pN. The latter is essential for imaging fragile samples, but allows also quantitative extraction of nano-mechanical properties, e.g. the modulus. PFT can further be complemented by KPFM or conductive AFM for nano-electrical mapping, allowing access to nanoscale optical, mechanical and electrical information in a single instrument. We will address several questions ranging from graphene plasmonics to material distributions in polymers. We highlight a biological application where dental amelogenin protein was studied via s-SNOM to learn about its self-assembly into nanoribbons. At the same time PFT allows to track crystallization to distinguish protein from apatite crystals for which amelogenin is supposed to act as a template.
Reduced graphene oxide growth on 316L stainless steel for medical applications
NASA Astrophysics Data System (ADS)
Cardenas, L.; MacLeod, J.; Lipton-Duffin, J.; Seifu, D. G.; Popescu, F.; Siaj, M.; Mantovani, D.; Rosei, F.
2014-07-01
We report a new method for the growth of reduced graphene oxide (rGO) on the 316L alloy of stainless steel (SS) and its relevance for biomedical applications. We demonstrate that electrochemical etching increases the concentration of metallic species on the surface and enables the growth of rGO. This result is supported through a combination of Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), scanning electron microscopy (SEM), density functional theory (DFT) calculations and static water contact angle measurements. Raman spectroscopy identifies the G and D bands for oxidized species of graphene at 1595 cm-1 and 1350 cm-1, respectively, and gives an ID/IG ratio of 1.2, indicating a moderate degree of oxidation. XPS shows -OH and -COOH groups in the rGO stoichiometry and static contact angle measurements confirm the wettability of rGO. SEM and AFM measurements were performed on different substrates before and after coronene treatment to confirm rGO growth. Cell viability studies reveal that these rGO coatings do not have toxic effects on mammalian cells, making this material suitable for biomedical and biotechnological applications.
Thompson, Hank T; Barroso-Bujans, Fabienne; Herrero, Julio Gomez; Reifenberger, Ron; Raman, Arvind
2013-04-05
The characterization of dispersion and connectivity of carbon nanotube (CNT) networks inside polymers is of great interest in polymer nanocomposites in new material systems, organic photovoltaics, and in electrodes for batteries and supercapacitors. We focus on a technique using amplitude modulation atomic force microscopy (AM-AFM) in the attractive regime of operation, using both single and dual mode excitation, which upon the application of a DC tip bias voltage allows, via the phase channel, the in situ, nanoscale, subsurface imaging of CNT networks dispersed in a polymer matrix at depths of 10-100 nm. We present an in-depth study of the origins of phase contrast in this technique and demonstrate that an electrical energy dissipation mechanism in the Coulomb attractive regime is key to the formation of the phase contrast which maps the spatial variations in the local capacitance and resistance due to the CNT network. We also note that dual frequency excitation can, under some conditions, improve the contrast for such samples. These methods open up the possibility for DC-biased amplitude modulation AFM to be used for mapping the variations in local capacitance and resistance in nanocomposites with conducting networks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diaz, Alfredo J.; Eslami, Babak; López-Guerra, Enrique A.
2014-09-14
This paper explores the effect of the amplitude ratio of the higher to the fundamental eigenmode in bimodal atomic force microscopy (AFM) on the phase contrast and the dissipated power contrast of the higher eigenmode. We explore the optimization of the amplitude ratio in order to maximize the type of contrast that is most relevant to the particular study. Specifically, we show that the trends in the contrast range behave differently for different quantities, especially the dissipated power and the phase, with the former being more meaningful than the latter (a similar analysis can be carried out using the virial,more » for which we also provide a brief example). Our work is based on numerical simulations using two different conservative-dissipative tip-sample models, including the standard linear solid and the combination of a dissipation coefficient with a conservative model, as well as experimental images of thin film Nafion{sup ®} proton exchange polymers. We focus on the original bimodal AFM method, where the higher eigenmode is driven with constant amplitude and frequency (i.e., in “open loop”).« less