Wang, Xueju; Pan, Zhipeng; Fan, Feifei; ...
2015-09-10
We present an application of the digital image correlation (DIC) method to high-resolution transmission electron microscopy (HRTEM) images for nanoscale deformation analysis. The combination of DIC and HRTEM offers both the ultrahigh spatial resolution and high displacement detection sensitivity that are not possible with other microscope-based DIC techniques. We demonstrate the accuracy and utility of the HRTEM-DIC technique through displacement and strain analysis on amorphous silicon. Two types of error sources resulting from the transmission electron microscopy (TEM) image noise and electromagnetic-lens distortions are quantitatively investigated via rigid-body translation experiments. The local and global DIC approaches are applied for themore » analysis of diffusion- and reaction-induced deformation fields in electrochemically lithiated amorphous silicon. As a result, the DIC technique coupled with HRTEM provides a new avenue for the deformation analysis of materials at the nanometer length scales.« less
Revelation of graphene-Au for direct write deposition and characterization
NASA Astrophysics Data System (ADS)
Bhandari, Shweta; Deepa, Melepurath; Joshi, Amish G.; Saxena, Aditya P.; Srivastava, Avanish K.
2011-06-01
Graphene nanosheets were prepared using a modified Hummer's method, and Au-graphene nanocomposites were fabricated by in situ reduction of a gold salt. The as-produced graphene was characterized by X-ray photoelectron spectroscopy, ultraviolet-visible spectroscopy, scanning electron microscopy, and high-resolution transmission electron microscopy (HR-TEM). In particular, the HR-TEM demonstrated the layered crystallites of graphene with fringe spacing of about 0.32 nm in individual sheets and the ultrafine facetted structure of about 20 to 50 nm of Au particles in graphene composite. Scanning helium ion microscopy (HIM) technique was employed to demonstrate direct write deposition on graphene by lettering with gaps down to 7 nm within the chamber of the microscope. Bare graphene and graphene-gold nanocomposites were further characterized in terms of their composition and optical and electrical properties.
Sridhara Rao, Duggi V; Sankarasubramanian, Ramachandran; Muraleedharan, Kuttanellore; Mehrtens, Thorsten; Rosenauer, Andreas; Banerjee, Dipankar
2014-08-01
In GaAs-based pseudomorphic high-electron mobility transistor device structures, strain and composition of the In x Ga1-x As channel layer are very important as they influence the electronic properties of these devices. In this context, transmission electron microscopy techniques such as (002) dark-field imaging, high-resolution transmission electron microscopy (HRTEM) imaging, scanning transmission electron microscopy-high angle annular dark field (STEM-HAADF) imaging and selected area diffraction, are useful. A quantitative comparative study using these techniques is relevant for assessing the merits and limitations of the respective techniques. In this article, we have investigated strain and composition of the In x Ga1-x As layer with the mentioned techniques and compared the results. The HRTEM images were investigated with strain state analysis. The indium content in this layer was quantified by HAADF imaging and correlated with STEM simulations. The studies showed that the In x Ga1-x As channel layer was pseudomorphically grown leading to tetragonal strain along the [001] growth direction and that the average indium content (x) in the epilayer is ~0.12. We found consistency in the results obtained using various methods of analysis.
NASA Astrophysics Data System (ADS)
Kamalraj, Devaraj; Yuvaraj, Selvaraj; Yoganand, Coimbatore Paramasivam; Jaffer, Syed S.
2018-01-01
Here, we propose a new synthetic methodology for silver nanocluster preparation by using a double stranded-DNA (ds-DNA) template which no one has reported yet. A new calculative method was formulated to determine the size of the nanocluster and their band gaps by using steady state 3D contour fluorescence technique with Brus model. Generally, the structure and size of the nanoclusters determine by using High Resolution Transmission Electron Microscopy (HR-TEM). Before imaging the samples by using HR-TEM, they are introduced to drying process which causes aggregation and forms bigger polycrystalline particles. It takes long time duration and expensive methodology. In this current methodology, we found out the size and band gap of the nanocluster in the liquid form without any polycrystalline aggregation for which 3D contour fluorescence technique was used as an alternative approach to the HR-TEM method.
Chinthaka Silva, G W; Ma, Longzhou; Hemmers, Oliver; Lindle, Dennis
2008-01-01
Fluorapatite is a naturally occurring mineral of the apatite group and it is well known for its high physical and chemical stability. There is a recent interest in this ceramic to be used as a radioactive waste form material due to its intriguing chemical and physical properties. In this study, the nano-sized fluorapatite particles were synthesized using a precipitation method and the material was characterized using X-ray diffraction (XRD) and transmission electron microscopy (TEM). Two well-known methods, called solution-drop and the microtome cutting, were used to prepare the sample for TEM analysis. It was found that the microtome cutting technique is advantageous for examining the particle shape and cross-sectional morphology as well as for obtaining ultra-thin samples. However, this method introduces artifacts and strong background contrast for high-resolution transmission electron microscopy (HRTEM) observation. On the other hand, phase image simulations showed that the solution-drop method is reliable and stable for HRTEM analysis. Therefore, in order to comprehensively analyze the microstructure and morphology of the nano-material, it is necessary to combine both solution-drop and microtome cutting techniques for TEM sample preparation.
Utsunomiya, Satoshi; Ewing, Rodney C
2003-02-15
A major challenge to the development of a fundamental understanding of transport and retardation mechanisms of trace metal contaminants (<10 ppm) is their identification and characterization at the nanoscale. Atomic-scale techniques, such as conventional transmission electron microscopy, although powerful, are limited by the extremely small amounts of material that are examined. However, recent advances in electron microscopy provide a number of new analytical techniques that expand its application in environmental studies, particularly those concerning heavy metals on airborne particulates or water-borne colloids. High-angle annular dark field scanning transmission electron microscopy (HAADF-STEM), STEM-energy-dispersive X-ray spectrometry (EDX), and energy-filtered TEM (EFTEM) can be effectively used to identify and characterize nanoparticles. The image contrast in HAADF-STEM is strongly correlated to the atomic mass: heavier elements contribute to brighter contrast. Gold nanocrystals in pyrite and uranium nanocrystals in atmospheric aerosols have been identified by HAADF-STEM and STEM-EDX mapping and subsequently characterized by high-resolution TEM (HRTEM). EFTEM was used to identify U and Fe nanocrystals embedded in an aluminosilicate. A rare, As-bearing nanophase, westerveldite (FeAs), was identified by STEM-EDX and HRTEM. The combined use of these techniques greatly expands the effective application of electron microscopy in environmental studies, especially when applied to metals of very low concentrations. This paper describes examples of how these electron microbeam techniques can be used in combination to characterize a low concentration of heavy metals (a few ppm) on nanoscale particles.
High Resolution Transmission Electron Microscopy (HRTEM) of nanophase ferric oxides
NASA Technical Reports Server (NTRS)
Golden, D. C.; Morris, R. V.; Ming, D. W.; Lauer, H. V., Jr.
1994-01-01
Iron oxide minerals are the prime candidates for Fe(III) signatures in remotely sensed Martian surface spectra. Magnetic, Mossbauer, and reflectance spectroscopy have been carried out in the laboratory in order to understand the mineralogical nature of Martian analog ferric oxide minerals of submicron or nanometer size range. Out of the iron oxide minerals studied, nanometer sized ferric oxides are promising candidates for possible Martian spectral analogs. 'Nanophase ferric oxide (np-Ox)' is a generic term for ferric oxide/oxihydroxide particles having nanoscale (less than 10 nm) particle dimensions. Ferrihydrite, superparamagnetic particles of hematite, maghemite and goethite, and nanometer sized particles of inherently paramagnetic lepidocrocite are all examples of nanophase ferric oxides. np-Ox particles in general do not give X-ray diffraction (XRD) patterns with well defined peaks and would often be classified as X-ray amorphous. Therefore, different np-Oxs preparations should be characterized using a more sensitive technique e.g., high resolution transmission electron microscopy (HRTEM). The purpose of this study is to report the particle size, morphology and crystalline order, of five np-Ox samples by HRTEM imaging and electron diffraction (ED).
Ospina, C A; Terra, J; Ramirez, A J; Farina, M; Ellis, D E; Rossi, A M
2012-01-01
High-resolution transmission electron microscopy (HRTEM) and ab initio quantum-mechanical calculations of electronic structure were combined to investigate the structure of the hydroxyapatite (HA) (010) surface, which plays an important role in HA interactions with biological media. HA was synthesized by in vitro precipitation at 37°C. HRTEM images revealed thin elongated rod nanoparticles with preferential growth along the [001] direction and terminations parallel to the (010) plane. The focal series reconstruction (FSR) technique was applied to develop an atomic-scale structural model of the high-resolution images. The HRTEM simulations identified the coexistence of two structurally distinct terminations for (010) surfaces: a rather flat Ca(II)-terminated surface and a zig-zag structure with open OH channels. Density functional theory (DFT) was applied in a periodic slab plane-wave pseudopotential approach to refine details of atomic coordination and bond lengths of Ca(I) and Ca(II) sites in hydrated HA (010) surfaces, starting from the HRTEM model. Copyright © 2011 Elsevier B.V. All rights reserved.
Room temperature chemical synthesis of lead selenide thin films with preferred orientation
NASA Astrophysics Data System (ADS)
Kale, R. B.; Sartale, S. D.; Ganesan, V.; Lokhande, C. D.; Lin, Yi-Feng; Lu, Shih-Yuan
2006-11-01
Room temperature chemical synthesis of PbSe thin films was carried out from aqueous ammoniacal solution using Pb(CH3COO)2 as Pb2+ and Na2SeSO3 as Se2- ion sources. The films were characterized by a various techniques including, X-ray diffraction (XRD), energy dispersive X-ray analysis (EDAX), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HR-TEM), selected area electron diffraction (SAED), Fast Fourier transform (FFT) and UV-vis-NIR techniques. The study revealed that the PbSe thin film consists of preferentially oriented nanocubes with energy band gap of 0.5 eV.
RBS/C, HRTEM and HRXRD study of damage accumulation in irradiated SrTiO3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jagielski, Jacek; Jozwik, Przemyslaw A.; Jozwik Biala, Iwona
2013-05-14
Damage accumulation in argon-irradiated SrTiO3 single crystals has been studied by using combination of Rutherford Backscattering/Channeling (RBS/C), High Resolution Transmission Electron Microscopy (HRTEM) and High Resolution X-Ray Diffraction (HRXRD) techniques. The RBS/C spectra were fitted using McChasy, a Monte Carlo simulation code allowing the quantitative analysis of amorphous-like and dislocation-like types of defects. The results were interpreted by using a Multi-Step Damage Accumulation model which assumes, that the damage accumulation occurs in a series of structural transformations, the defect transformations are triggered by a stress caused by formation of a free volume in the irradiated crystal. This assumption has beenmore » confirmed by High Resolution Transmission Electron Microscopy and High Resolution X-Ray Diffraction analysis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, T. C.-J., E-mail: terry.yang@unsw.edu.au; Wu, L.; Lin, Z.
2014-08-04
Solid-state nucleation of Si nanocrystals in a SiO{sub 2} bilayered matrix was observed at temperatures as low as 450 °C. This was achieved by aberration corrected high-resolution transmission electron microscopy (HRTEM) with real-time in-situ heating up to 600 °C. This technique is a valuable characterization tool especially with the recent interest in Si nanostructures for light emitting devices, non-volatile memories, and third-generation photovoltaics which all typically require a heating step in their fabrication. The control of size, shape, and distribution of the Si nanocrystals are critical for these applications. This experimental study involves in-situ observation of the nucleation of Si nanocrystals inmore » a SiO{sub 2} bilayered matrix fabricated through radio frequency co-sputtering. The results show that the shapes of Si nanocrystals in amorphous SiO{sub 2} bilayered matrices are irregular and not spherical, in contrast to many claims in the literature. Furthermore, the Si nanocrystals are well confined within their layers by the amorphous SiO{sub 2}. This study demonstrates the potential of in-situ HRTEM as a tool to observe the real time nucleation of Si nanocrystals in a SiO{sub 2} bilayered matrix. Furthermore, ideas for improvements on this in-situ heating HRTEM technique are discussed.« less
2015-01-01
The electrochemical reduction of highly oxidized unsupported graphene oxide nanosheets and its platinum electrodeposition was done by the rotating disk slurry electrode technique. Avoiding the use of a solid electrode, graphene oxide was electrochemically reduced in a slurry solution with a scalable process without the use of a reducing agent. Graphene oxide nanosheets were synthesized from carbon platelet nanofibers to obtain highly hydrophilic layers of less than 250 nm in width. The graphene oxide and electrochemically reduced graphene oxide/Pt (erGOx/Pt) hybrid materials were characterized through different spectroscopy and microscopy techniques. Pt nanoparticles with 100 facets, clusters, and atoms at erGOx were identified by high resolution transmission electron microscopy (HRTEM). Cyclic voltammetry was used to characterize the electrocatalytic activity of the highly dispersed erGOx/Pt hybrid material toward the oxidation of ammonia, which showed a 5-fold current density increase when compared with commercially available Vulcan/Pt 20%. This is in agreement with having Pt (100) facets present in the HRTEM images of the erGOx/Pt material. PMID:24417177
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miguel Cabielles; Jean-Nol Rouzaud; Ana B. Garcia
2009-01-15
High-resolution transmission electron microscopy (HRTEM) has been used in this work to study the microstructural (structure and microtexture) changes occurring during the high-temperature treatment of the unburned carbon concentrates from coal combustion fly ashes. Emphasis was placed on two aspects: (i) the development of graphitic carbon structures and (ii) the disordered carbon forms remaining in the graphitized samples. In addition, by coupling HRTEM with energy-dispersive spectroscopy, the transformations with the temperature of the inorganic matter (mainly iron- and silicon-based phases) of the unburned carbon concentrates were evidenced. The HRTEM results were compared to the averaged structural order of the materialsmore » as evaluated by X-ray diffraction (XRD) and Raman spectroscopy. As indicated by XRD and Raman parameters, more-ordered materials were obtained from the unburned carbon concentrates with higher mineral/inorganic matter, thus inferring the catalytic effect of some of their components. However, the average character of the information provided by these instrumental techniques seems to be inconclusive in discriminating between carbon structures with different degrees of order (stricto sensu graphite, graphitic, turbostratic, etc.) in a given graphitized unburned carbon. Unlike XRD and Raman, HRTEM is a useful tool for imaging directly the profile of the polyaromatic layers (graphene planes), thus allowing the sample heterogeneity to be looked at, specifically the presence of disordered carbon phases. 49 refs., 9 figs., 3 tabs.« less
NASA Astrophysics Data System (ADS)
Larramendi, S.; Vaillant Roca, Lidice; Saint-Gregoire, Pierre; Ferraz Dias, Johnny; Behar, Moni
2017-10-01
A ZnO nanorod structure was grown by the hydrothermal method and interpenetrated with CdTe using the isothermal closed space sublimation technique. The obtained structure was studied by using the Rutherford backscattering spectrometry (RBS), Scanning Electron Microscopy (SEM), High Resolution Transmission Electron Microscopy (HRTEM). The X-ray Diffraction (XRD) technique confirmed the presence of CdTe nanocrystals (NCs) of very small size formed on the surface and in the interspaces between the ZnO nanorods. The RBS observations together with the SEM observations give information on the obtained structure. Finally the photoluminescence studies show a strong energy confinement effect on the grown CdTe NCs.
NASA Astrophysics Data System (ADS)
Rajendran, V.; Deepa, B.
2018-03-01
Tungsten oxide and different concentration of silver (Ag)-doped tungsten oxide nano material were synthesized by co-precipitation technique. The functional vibrations, structure, and morphology of as-prepared nano material were studied by Fourier transmission infrared spectroscopy, X-ray diffraction, scanning electron microscopy (SEM) and High-resolution transmission electron microscopy (HR-TEM) techniques. The SEM and HR-TEM analysis revealed the formation of nano-plate/nano rods with an average diameter of 40-80 nm diameter and 1-1.5 mm length. Fluorescence (PL) and UV-visible absorption techniques have been used to study the optical properties of the prepared nanoparticles. The observed red shift in the visible absorption spectra confirmed the promoted electron-phonon interaction in WO3 and Ag: WO3 nanoparticles compared to bulk structures. The photoluminescence of nanocrystalline Ag2+ doped WO3 exhibited a strong violet-blue, blue-green emission. Concentration dependence of the emission intensity of Ag2+ in WO3 was studied, and the significant concentration was found to be 0.5% of Ag: WO3. The effluent dye degradation executed for the 0.5% of Ag: WO3 sample under the visible light which reveals the highest degradation efficiency in appropriate time.
Seleim, S M; Hamdalla, Taymour A; Mahmoud, Mohamed E
2017-09-05
Nanosized (NS) cobalt (II) bis(5-phenyl-azo-8-hydroxyquinolate) (NS Co(II)-(5PA-8HQ) 2 ) thin films have been synthesized using static step-by-step soft surface reaction (SS-b-SSR) technique. Structural and optical characterizations of these thin films have been carried out using thermal gravimetric analysis (TGA), Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HR-TEM) and X-ray diffraction (XRD). The HR-TEM results revealed that the assembled Co(II)-complex exhibited a uniformly NS structure particles in the form of nanorods with width and length up to 16.90nm and 506.38nm, respectively. The linear and nonlinear optical properties have been investigated. The identified energy gap of the designed thin film materials was found 4.01eV. The refractive index of deposited Co(II)-complex thin film was identified by thickness-dependence and found as 1.9 at wavelength 1100nm. In addition, the refractive index was varied by about 0.15 due to an increase in the thickness by 19nm. Copyright © 2017 Elsevier B.V. All rights reserved.
Hydrothermal Synthesis of Nanoclusters of ZnS Comprised on Nanowires
Ibupoto, Zafar Hussain; Khun, Kimleang; Liu, Xianjie; Willander, Magnus
2013-01-01
Cetyltrimethyl ammonium bromide cationic (CTAB) surfactant was used as template for the synthesis of nanoclusters of ZnS composed of nanowires, by hydrothermal method. The structural and morphological studies were performed by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM) techniques. The synthesized ZnS nanoclusters are composed of nanowires and high yield on the substrate was observed. The ZnS nanocrystalline consists of hexagonal phase and polycrystalline in nature. The chemical composition of ZnS nanoclusters composed of nanowires was studied by X-ray photo electron microscopy (XPS). This investigation has shown that the ZnS nanoclusters are composed of Zn and S atoms. PMID:28348350
Hydrothermal Synthesis of Nanoclusters of ZnS Comprised on Nanowires.
Ibupoto, Zafar Hussain; Khun, Kimleang; Liu, Xianjie; Willander, Magnus
2013-09-09
Cetyltrimethyl ammonium bromide cationic (CTAB) surfactant was used as template for the synthesis of nanoclusters of ZnS composed of nanowires, by hydrothermal method. The structural and morphological studies were performed by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM) techniques. The synthesized ZnS nanoclusters are composed of nanowires and high yield on the substrate was observed. The ZnS nanocrystalline consists of hexagonal phase and polycrystalline in nature. The chemical composition of ZnS nanoclusters composed of nanowires was studied by X-ray photo electron microscopy (XPS). This investigation has shown that the ZnS nanoclusters are composed of Zn and S atoms.
Substrate bias induced synthesis of flowered-like bunched carbon nanotube directly on bulk nickel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bisht, Atul; Academy of Scientific and Innovative Research; Chockalingam, S.
2016-02-15
Highlights: • Flowered-like bunched MWCNTs have been synthesized by MW PECVD technique. • Effect of substrate bias on the properties of MWCNT has been studied. • Minimum E{sub T} = 1.9 V/μm with β = 4770 has been obtained in the film deposited at −350 V. - Abstract: This paper reports the effect of substrate bias on the multiwalled carbon nanotube (MWCNT) deposited on nickel foil by microwave plasma enhanced chemical vapor deposition technique. The MWCNTs have been characterized by the scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), Raman spectroscopy, field emission and current–voltage characteristic of themore » heterojunction diode. The SEM images exhibit unique hierarchical flowered-like bunched and conformally coated MWCNTs. Substrate bias induced ion bombardment helps in the enhancement of hydrocarbon dissociation and is responsible for flowered-like MWCNTs growth. The HRTEM micrographs show the base growth mechanism for MWCNTs. The value of turn on field for emission decreases from 5.5 to 1.9 V/μm and field enhancement factor increases from 927 to 4770, respectively, with the increase of substrate bias. The diode ideality factor of CNT/ n-Si heterojunction is evaluated as 2.4 and the on/off current ratio is found to be 7 at ±2 V, respectively.« less
HRTEM Analysis of Crystallographic Defects in CdZnTe Single Crystal
NASA Astrophysics Data System (ADS)
Yasar, Bengisu; Ergunt, Yasin; Kabukcuoglu, Merve Pinar; Parlak, Mehmet; Turan, Rasit; Kalay, Yunus Eren
2018-01-01
In recent years, CdZnTe has attracted much attention due to its superior electrical and structural properties for room-temperature operable gamma and x-ray detectors. However, CdZnTe (CZT) material has often suffered from crystallographic defects encountered during the growth and post-growth processes. The identification and structural characterization of these defects is crucial to synthesize defect-free CdZnTe single crystals. In this study, Cd0.95 Zn0.05 Te single crystals were grown using a three-zone vertical Bridgman system. The single crystallinity of the material was ensured by using x-ray diffraction measurements. High-resolution electron microscopy (HRTEM) was used to characterize the nano-scale defects on the CdZnTe matrix. The linear defects oriented along the ⟨211⟩ direction were examined by transmission electron microscopy (TEM) and the corresponding HRTEM image simulations were performed by using a quantitative scanning TEM simulation package.
Sun, Xin-Yuan; Xue, Jun-Fa; Xia, Zhi-Yue; Ouyang, Jian-Ming
2015-06-01
This study aimed to analyse the components of nanocrystallites in urines of patients with uric acid (UA) stones. X-ray diffraction (XRD), Fourier transform infrared spectroscopy, high-resolution transmission electron microscopy (HRTEM), fast Fourier transformation (FFT) of HRTEM, and energy dispersive X-ray spectroscopy (EDS) were performed to analyse the components of these nanocrystallites. XRD and FFT showed that the main component of urinary nanocrystallites was UA, which contains a small amount of calcium oxalate monohydrate and phosphates. EDS showed the characteristic absorption peaks of C, O, Ca and P. The formation of UA stones was closely related to a large number of UA nanocrystallites in urine. A combination of HRTEM, FFT, EDS and XRD analyses could be performed accurately to analyse the components of urinary nanocrystallites.
NASA Astrophysics Data System (ADS)
Haider, Adawiya J.; Marzoog, Thorria R.; Hadi, Iman H.; Jameel, Zainab N.
2018-05-01
In this work, new surfactants for Functionalization of Multi Walled Carbon Nanotubes (F-MWCNTs) with functional groups have been developed by using walnut oil, to improve their surface activity (solubility) and a create free reticules (functional groups) on it. MWCNTs were functionalized with walnut oil via ultra-sonication technique at 25°C for 1h with no drastic fragmentation of MWCNTs. Fourier Transformed Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), High Resolution Transmission Electron Microscopy (HRTEM) and have been employed for the characterizations and analysis. In addition, the antibacterial activity of functionalized MWCNTs against Gram negative. Escherichia coli (E. coli) and Gram positive Staphylococcus aureus (S. aureus) bacteria are examined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Supriya; Srivastava, Pratibha; Singh, Gurdip, E-mail: gsingh4us@yahoo.com
2013-02-15
Graphical abstract: Prepared nanoferrites were characterized by FE-SEM and bright field TEM micrographs. The catalytic effect of these nanoferrites was evaluated on the thermal decomposition of ammonium perchlorate using TG and TG–DSC techniques. The kinetics of thermal decomposition of AP was evaluated using isothermal TG data by model fitting as well as isoconversional method. Display Omitted Highlights: ► Synthesis of ferrite nanostructures (∼20.0 nm) by wet-chemical method under different synthetic conditions. ► Characterization using XRD, FE-SEM, EDS, TEM, HRTEM and SAED pattern. ► Catalytic activity of ferrite nanostructures on AP thermal decomposition by thermal techniques. ► Burning rate measurements ofmore » CSPs with ferrite nanostructures. ► Kinetics of thermal decomposition of AP + nanoferrites. -- Abstract: In this paper, the nanoferrites of Mn, Co and Ni were synthesized by wet chemical method and characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive, X-ray spectra (EDS), transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HR-TEM). It is catalytic activity were investigated on the thermal decomposition of ammonium perchlorate (AP) and composite solid propellants (CSPs) using thermogravimetry (TG), TG coupled with differential scanning calorimetry (TG–DSC) and ignition delay measurements. Kinetics of thermal decomposition of AP + nanoferrites have also been investigated using isoconversional and model fitting approaches which have been applied to data for isothermal TG decomposition. The burning rate of CSPs was considerably enhanced by these nanoferrites. Addition of nanoferrites to AP led to shifting of the high temperature decomposition peak toward lower temperature. All these studies reveal that ferrite nanorods show the best catalytic activity superior to that of nanospheres and nanocubes.« less
Filling of single-walled carbon nanotubes by CuI nanocrystals via capillary technique
NASA Astrophysics Data System (ADS)
Chernysheva, M. V.; Eliseev, A. A.; Lukashin, A. V.; Tretyakov, Yu. D.; Savilov, S. V.; Kiselev, N. A.; Zhigalina, O. M.; Kumskov, A. S.; Krestinin, A. V.; Hutchison, J. L.
2007-03-01
The present study is focused on the synthesis and investigation of the nanocomposite CuI@SWNT obtained by the filling of metallic single-walled carbon nanotubes (SWNTs) (inner diameter 1-1.4 nm) by wide-gap semiconducting CuI nanocrystals using so-called capillary technique. The method is based on the impregnation of pre-opened SWNTs by molten CuI in vacuum with subsequent slow cooling to room temperature. SWNTs and CuI@SWNT nanocomposites were studied by nitrogen capillary adsorption method, EDX microanalysis, HRTEM microscopy and Raman spectroscopy. The changing of electronic properties of CuI@SWNT as compare to row nanotubes was observed.
Armendariz, Veronica; Parsons, Jason G; Lopez, Martha L; Peralta-Videa, Jose R; Jose-Yacaman, Miguel; Gardea-Torresdey, Jorge L
2009-03-11
Gold (Au) nanoparticles can be produced through the interaction of Au(III) ions with oat and wheat biomasses. This paper describes a procedure to recover gold nanoparticles from oat and wheat biomasses using cetyltrimethylammonium bromide or sodium citrate. Extracts were analyzed using UV-visible spectroscopy, high-resolution transmission electron microscopy (HRTEM), and x-ray absorption spectroscopy. The HRTEM data demonstrated that smaller nanoparticles are extracted first, followed by larger nanoparticles. In the fourth extraction, coating of chelating agents is visible on the extracted nanoparticles.
Thin single-crystalline Bi2(Te1-xSex)3 ternary nanosheets synthesized by a solvothermal technique
NASA Astrophysics Data System (ADS)
Guo, Jing; Jian, Jikang; Zhang, Zhihua; Wu, Rong; Li, Jin; Sun, Yanfei
2016-01-01
Bi2(Te1-xSex)3 ternary nanosheets have been successfully synthesized through a facile solvothermal technique using diethylenetriamine as solvent, where x can vary from 0 to 1. X-ray diffraction (XRD) and Scanning electron microscopy (SEM) indicate that the as-synthesized Bi2(Te1-xSex)3 samples are nanosheets with rhombohedral structure, and the thickness of the nanosheets can be as thin as several nanometers. High resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) reveal that the nanosheets are single crystalline with a rhombohedral structure. Energy disperse spectroscopy (EDS) and XRD analysis by Vegard's law confirm that the ternary Bi2(Te1-xSex)3 nanosheets have been obtained here. The growth of the nanosheets is discussed based on an amine-based molecular template mechanism that has been employed to synthesize some other metal chalcogenides.
Shakir, Mohammad; Nasir, Zeba; Khan, Mohd Shoeb; Lutfullah; Alam, Md Fazle; Younus, Hina; Al-Resayes, Saud Ibrahim
2015-01-01
The covalent binding of yeast alcohol dehydrogenase (YADH) enzyme complex in a series of magnetic crystalline Ni-Co nanoferrites, synthesized via sol-gel auto combustion technique was investigated. The structural analysis, morphology and magnetic properties of Ni-Co nanoferrites were determined by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), vibrating-sample magnetometer (VSM), high resolution transmission electron microscopy (HRTEM) and Fourier transform infrared spectroscopy (FTIR). The comparative analysis of the HRTEM micrographs of bare magnetic nanoferrite particles and particles immobilized with enzyme revealed an uniform distribution of the particles in both the cases without undergoing change in the size which was found to be in the range 20-30 nm. The binding of YADH to Ni-Co nanoferrites and the possible binding mechanism have been suggested by comparing the FTIR results. The binding properties of the immobilized YADH enzyme were also studied by kinetic parameters, optimum operational pH, temperature, thermal stability and reusability. The immobilized YADH exhibits enhanced thermal stability as compared to the free enzyme over a wide range of temperature and pH, and showed good durability after recovery by magnetic separation for repeated use. Copyright © 2014 Elsevier B.V. All rights reserved.
Effects of a common worldwide drink (Beer) on L-Phenylalanine and L-Tyrosine fibrillar assemblies
NASA Astrophysics Data System (ADS)
Banik, Debasis; Banerjee, Pavel; Sabeehuddin, Ghazi; Sarkar, Nilmoni
2017-11-01
In this letter, small amount of beer [0.42-2.08% (v/v)] is employed to investigate the fibril inhibition kinetics of 1 mM L-Phenylalanine and L-Tyrosine (relevant to disease condition) using Fluorescence Lifetime imaging Microscopy (FLIM), Field Emission Scanning Electron Microscopy (FESEM) and High Resolution Transmission Electron Microscopic (HR-TEM) techniques. Our results indicate that 1.67 and 0.42% of beer is sufficient for effective breakdown of L-Phe and L-Tyr assemblies, respectively. Quantitative information about fibril inhibition is obtained from Fluorescence Correlation Spectroscopic (FCS) measurements. We have shown that the morphology of L-Phe changes to L-Tyr in presence of 2,2‧-Bipyridine-3,3‧-diol (BP(OH)2).
Detection of quantum well induced single degenerate-transition-dipoles in ZnO nanorods.
Ghosh, Siddharth; Ghosh, Moumita; Seibt, Michael; Rao, G Mohan
2016-02-07
Quantifying and characterising atomic defects in nanocrystals is difficult and low-throughput using the existing methods such as high resolution transmission electron microscopy (HRTEM). In this article, using a defocused wide-field optical imaging technique, we demonstrate that a single ultrahigh-piezoelectric ZnO nanorod contains a single defect site. We model the observed dipole-emission patterns from optical imaging with a multi-dimensional dipole and find that the experimentally observed dipole pattern and model-calculated patterns are in excellent agreement. This agreement suggests the presence of vertically oriented degenerate-transition-dipoles in vertically aligned ZnO nanorods. The HRTEM of the ZnO nanorod shows the presence of a stacking fault, which generates a localised quantum well induced degenerate-transition-dipole. Finally, we elucidate that defocused wide-field imaging can be widely used to characterise defects in nanomaterials to answer many difficult questions concerning the performance of low-dimensional devices, such as in energy harvesting, advanced metal-oxide-semiconductor storage, and nanoelectromechanical and nanophotonic devices.
Strain field mapping of dislocations in a Ge/Si heterostructure.
Liu, Quanlong; Zhao, Chunwang; Su, Shaojian; Li, Jijun; Xing, Yongming; Cheng, Buwen
2013-01-01
Ge/Si heterostructure with fully strain-relaxed Ge film was grown on a Si (001) substrate by using a two-step process by ultra-high vacuum chemical vapor deposition. The dislocations in the Ge/Si heterostructure were experimentally investigated by high-resolution transmission electron microscopy (HRTEM). The dislocations at the Ge/Si interface were identified to be 90° full-edge dislocations, which are the most efficient way for obtaining a fully relaxed Ge film. The only defect found in the Ge epitaxial film was a 60° dislocation. The nanoscale strain field of the dislocations was mapped by geometric phase analysis technique from the HRTEM image. The strain field around the edge component of the 60° dislocation core was compared with those of the Peierls-Nabarro and Foreman dislocation models. Comparison results show that the Foreman model with a = 1.5 can describe appropriately the strain field around the edge component of a 60° dislocation core in a relaxed Ge film on a Si substrate.
Strains on the nano- and microscale in nickel-titanium: An advanced TEM study
NASA Astrophysics Data System (ADS)
Tirry, Wim
2007-12-01
A general introduction to shape memory behavior and the martensitic transformation is given in chapter 1, with speck information concerning the NiTi material. The technique used to study the material is transmission electron microscopy (TEM) of which the basics are explained in chapter 2 as well as information concerning the NiTi material. The main goal was to apply more advanced TEM techniques in order to measure some aspects in a quantitative way rather than qualitative, which is mostly the case in conventional TEM. (1) Quantitative electron diffraction was used to refine the structure of Ni4Ti3 precipitates, this was done by using the MSLS method in combination with density functional theory (DFT) calculations. (2) These Ni4Ti3 precipitates are (semi-)coherent which results in a strain field in the matrix close to the precipitate. High resolution TEM (HRTEM) in combination with image processing techniques was used to measure these strain fields. The obtained results are compared to the Eshelby model for elliptical inclusions, and major difference is an underestimation of the strain magnitude by the model. One of the algorithms used to extract strain information from HRTEM images is the geometric phase method. (3) The Ni4Ti3-Ni4Ti3 and Ni4Ti3-precipitate interface was investigated with HRTEM showing that the Ni4Ti3-precipitate interface might be diffuse over a range of 3nm. (4) In-situ straining experiments were performed on single crystalline and superelastic polycrystalline NiTi samples. It seems that the strain induced martensite planes in the polycrystalline sample show no sign of twinning. This is in contradiction to what is expected and is discussed in the view of the crystallographic theory of martensite, in addition a first model explaining this behavior is proposed. In this dissertation the main attention is divided over the material aspects of NiTi and on how to apply these more advanced TEM techniques.
NASA Astrophysics Data System (ADS)
Wang, Zhengduo; Zhang, Li; Liu, Zhongwei; Sang, Lijun; Yang, Lizhen; Chen, Qiang
2017-06-01
In this paper, we report the combination of atomic layer deposition (ALD) with hydrothermal techniques to deposit ZnO on electrospun polyamide 6 (PA 6) nanofiber (NF) surface in the purpose of antibacterial application. The micro- and nanostructures of the hierarchical fibers are characterized by field emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HRTEM), and scanning transmission electron microscopy (STEM). We find that NFs can grow into "water lily"- and "caterpillar"-like shapes, which depend on the number of ALD cycles and the hydrothermal reaction period. It is believed that the thickness of ZnO seed layer by ALD process and the period in hydrothermal reaction have the same importance in crystalline growth and hierarchical fiber formation. The tests of antibacterial activity demonstrate that the ZnO/PA 6 core-shell composite fabricated by the combination of ALD with hydrothermal are markedly efficient in suppressing bacteria survivorship.
NASA Astrophysics Data System (ADS)
Li, Bin; Zhang, Qin-Jian; Shi, Yan-Chao; Li, Jia-Jun; Li, Hong; Lu, Fan-Xiu; Chen, Guang-Chao
2014-08-01
A nano-crystlline diamond film is grown by the dc arcjet chemical vapor deposition method. The film is characterized by scanning electron microscopy, high-resolution transmission electron microscopy (HRTEM), x-ray diffraction (XRD) and Raman spectra, respectively. The nanocrystalline grains are averagely with 80 nm in the size measured by XRD, and further proven by Raman and HRTEM. The observed novel morphology of the growth surface, pineapple-like morphology, is constructed by cubo-octahedral growth zones with a smooth faceted top surface and coarse side surfaces. The as-grown film possesses (100) dominant surface containing a little amorphous sp2 component, which is far different from the nano-crystalline film with the usual cauliflower-like morphology.
Nucleation of diamond by pure carbon ion bombardment—a transmission electron microscopy study
NASA Astrophysics Data System (ADS)
Yao, Y.; Liao, M. Y.; Wang, Z. G.; Lifshitz, Y.; Lee, S. T.
2005-08-01
A cross-sectional high-resolution transmission electron microscopy (HRTEM) study of a film deposited by a 1 keV mass-selected carbon ion beam onto silicon held at 800 °C is presented. Initially, a graphitic film with its basal planes perpendicular to the substrate is evolving. The precipitation of nanodiamond crystallites in upper layers is confirmed by HRTEM, selected area electron diffraction, and electron energy loss spectroscopy. The nucleation of diamond on graphitic edges as predicted by Lambrecht et al. [W. R. L. Lambrecht, C. H. Lee, B. Segall, J. C. Angus, Z. Li, and M. Sunkara, Nature, 364 607 (1993)] is experimentally confirmed. The results are discussed in terms of our recent subplantation-based diamond nucleation model.
Superionic conductor PbSnF4 in the inner channel of SWNT
NASA Astrophysics Data System (ADS)
Zakalyukin, Ruslan Mikhalovich; Levkevich, Ekaterina Alexandrovna; Kumskov, Andrey Sergeevich; Orekhov, Andrey Sergeevich
2018-04-01
The nanocomposite PbSnF4@SWNT was obtained by capillary technique for the first time. This nanocomposite was investigated using X-ray diffraction phase analysis (XRD), high-resolution transmission electron microscopy (HRTEM) and scanning transmission electron microscopy (STEM), energy-dispersive X-ray spectroscopy (EDX). SWNT diameter is ˜2 nm. Lead tetrafluorostannate (PbSnF4) monoclinic modification (space group P2/n) was identified by XRD analysis. The periodicity of the crystal plane (201) along the tube axis is ˜3.2Å. The distortion of plane is 11° with respect to the nanotube axis. The model of PbSnF4 single crystal contains ˜168 atoms. The structure of 1D PbSnF4@SWNT nanocomposite and HREM image were modelled.
NASA Astrophysics Data System (ADS)
Sharma, Vikram
2017-11-01
This is the first time the graphene sample has been functionalized with metal oxide nanoparticles by thermal decomposition process. In this paper, graphene has been synthesized from natural resources using flower petals as carbon feedstock by thermal exfoliation technique at temperatures 1300 °C and the synthesis of graphene-tin oxide (SnO2) nanocomposites has been done using chemical treatment followed by thermal decomposition method. The response versus time condition has been investigated for the fabricated sample. The electrical resistance w.r.t. temperature could be explained by the thermal generation of electron-hole pairs and carrier scattering by acoustic phonons. The structural, morphological and chemical composition studies of the nanocomposites were carried out by the Raman spectroscopy, x-ray diffraction spectroscopy, scanning electron microscopy (SEM), x-ray photoelectron spectroscopy and high-resolution transmission electron microscopy (HRTEM). The evidence of good-quality graphene is obtained from Raman spectroscopy studies. The SEM and HRTEM images have shown that SnO2 nanoparticles are well distributed in the multilayer electron transparent graphene films. The sensor response was found to lie between 8.25 and 9.36% at 500 ppm of nitrogen dioxide, and also resistance recovered quickly without any application of heat. We believe such chemical treatment of graphene could potentially be used to manufacture a new generation of low-power nano-NO2 sensors.
Vijayaraghavan, Rajani K; Gaman, Cezar; Jose, Bincy; McCoy, Anthony P; Cafolla, Tony; McNally, Patrick J; Daniels, Stephen
2016-02-01
We demonstrate the growth of multilayer and single-layer graphene on copper foil using bipolar pulsed direct current (DC) magnetron sputtering of a graphite target in pure argon atmosphere. Single-layer graphene (SG) and few-layer graphene (FLG) films are deposited at temperatures ranging from 700 °C to 920 °C within <30 min. We find that the deposition and post-deposition annealing temperatures influence the layer thickness and quality of the graphene films formed. The films were characterized using atomic force microscopy (AFM), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and optical transmission spectroscopy techniques. Based on the above studies, a diffusion-controlled mechanism was proposed for the graphene growth. A single-step whole blood assay was used to investigate the anticoagulant activity of graphene surfaces. Platelet adhesion, activation, and morphological changes on the graphene/glass surfaces, compared to bare glass, were analyzed using fluorescence microscopy and SEM techniques. We have found significant suppression of the platelet adhesion, activation, and aggregation on the graphene-covered surfaces, compared to the bare glass, indicating the anticoagulant activity of the deposited graphene films. Our production technique represents an industrially relevant method for the growth of SG and FLG for various applications including the biomedical field.
Optical and structural characterization of InAs/GaAs quantum wells
NASA Technical Reports Server (NTRS)
Ksendzov, A.; George, T.; Grunthaner, F. J.; Liu, J. K.; Rich, D. H.; Terhune, R. W.; Wilson, B. A.; Pollak, F. H.; Huang, Y.-S.
1991-01-01
Three InAs/GaAs single quantum wells of two-, three-, and four-monolayer thickness were characterized using optical and structural techniques. The results of high-resolution transmission electron (HRTEM) microscopy and optical studies which combine absorption, photoluminescence (PL), photoreflectance, and cathodoluminescence are presented. Using the polarization modulated absorptance technique, we observed two absorption features in our samples at 77 K. On the basis of their polarization properties and comparison with an envelope function calculation, these structures are assigned to transitions between the confined heavy-hole and confined and unconfined electron levels. Photoreflectance spectra of the three-monolayer sample in 77-300 K range show only the fundamental quantum well transition. The temperature dependence of this transition is approximately linear with a slope of 2.2 x 10 exp -4 eV/K, which is significantly lower than in both constituent materials. Comparison to the absorption data reveals that the PL spectra are affected by the carrier diffusion and therefore do not provide direct measure of the exciton density of states. The HRTEM images indicate that, while the interfaces of the two-monolayer sample are smooth and the well thickness is uniform, the four-monolayer sample has uneven interfaces and contains domains of two, three, and four monolayers.
Czyrska-Filemonowicz, A; Buffat, P A
2009-01-01
Surface processing of a Ti-6Al-4V alloy led to a complex multilayered microstructure containing several phases of the Ni-Ti-P-Al-O system, which improves the mechanical and tribological surface properties. The microstructure, chemical and phase compositions of the hard layer formed on the surface were investigated by LM, XRD, SEM as well as analytical/high-resolution TEM, STEM, EDS, electron diffraction and FIB. Phase identification based on electron diffraction, HRTEM and EDS microanalysis revealed the presence of several binary and ternary phases in the system Ti-Ni-P, sometimes with partial substitution of Ti by Al. However some phases, mainly nanoparticles, still remain not identified satisfactorily. Electron microscopy techniques used for identification of phases present in surface multilayers and some practical limits to their routine application are reminded here.
Nanostructure CdS/ZnO heterojunction configuration for photocatalytic degradation of Methylene blue
NASA Astrophysics Data System (ADS)
Velanganni, S.; Pravinraj, S.; Immanuel, P.; Thiruneelakandan, R.
2018-04-01
In the present manuscript, thin films of Zinc Oxide (ZnO) have been deposited on a FTO substrate using a simple successive ionic layer adsorption and reaction (SILAR) and chemical bath deposition (CBD) method. Cadmium Sulphide (CdS) nanoparticles are sensitized over ZnO thin films using SILAR method. The synthesized nanostructured CdS/ZnO heterojunction thin films was characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), High resolution transmission electron microscopy (HR-TEM), X-ray photoelectron spectroscopy (XPS), UV-Vis spectroscopy and Raman spectroscopy techniques. The band gap of CdS nanoparticles over ZnO nanostructure was found to be about 3.20 eV. The photocatalytic activities of the deposited CdS/ZnO thin films were evaluated by the degradation of methylene blue (MB) in an aqueous solution under sun light irradiation.
Ultrasound with low intensity assisted the synthesis of nanocrystalline TiO2 without calcination.
Ghows, Narjes; Entezari, Mohamad H
2010-06-01
A novel method has been developed for the preparation of nano-sized TiO(2) with anatase phase. Nanoparticles with diameter about 6 nm were prepared at a relatively low temperature (75 degrees C) and short time. The synthesis was carried out by the hydrolysis of titanium tetra-isopropoxide (TTIP) in the presence of water, ethanol, and dispersant under ultrasonic irradiation (500 kHz) at low intensity. The results show that variables such as water/ethanol ratio, irradiation time, and temperature have a great influence on the particle size and crystalline phases of TiO(2) nanoparticles. Characterization of the product was carried out by different techniques such as powder X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM) and UV-vis spectroscopy. (c) 2010 Elsevier B.V. All rights reserved.
Removal of aqueous chromium and environmental CO2 by using photocatalytic TiO2 doped with tungsten.
Trejo-Valdez, M; Hernández-Guzmán, S R; Manriquez-Ramírez, M E; Sobral, H; Martínez-Gutiérrez, H; Torres-Torres, C
2018-05-15
Removal of hexavalent chromium was accomplished by using photocatalyst materials of TiO 2 doped with tungsten oxide, environmental air as oxygen supply and white light as irradiation source. Dichromate anions in concentration ranges of 50 to 1000 μg/L were removed by means of aqueous dispersions of TiO 2 doped with tungsten. The aqueous chromium analyses were performed by Differential Pulse Voltammetry technique. Additionally, mineralization of CO 2 gas was promoted by the photocatalysis process, as was clearly shown by Raman spectroscopy and X-ray Photoelectron Spectroscopy (XPS) analyses obtained from the TiO 2 samples recovered after photocatalytic experiments. Results of sample analyses by Scanning Electron Microscopy (SEM) and High Resolution Transmission Electron Microscopy (HRTEM) are presented and discussed. Copyright © 2018 Elsevier B.V. All rights reserved.
Gao, Jie; Xue, Jun-Fa; Xu, Meng; Gui, Bao-Song; Wang, Feng-Xin; Ouyang, Jian-Ming
2014-01-01
Purpose This study aimed to accurately analyze the relationship between calcium oxalate (CaOx) stone formation and the components of urinary nanocrystallites. Method High-resolution transmission electron microscopy (HRTEM), selected area electron diffraction, fast Fourier transformation of HRTEM, and energy dispersive X-ray spectroscopy were performed to analyze the components of these nanocrystallites. Results The main components of CaOx stones are calcium oxalate monohydrate and a small amount of dehydrate, while those of urinary nanocrystallites are calcium oxalate monohydrate, uric acid, and calcium phosphate. The mechanism of formation of CaOx stones was discussed based on the components of urinary nanocrystallites. Conclusion The formation of CaOx stones is closely related both to the properties of urinary nanocrystallites and to the urinary components. The combination of HRTEM, fast Fourier transformation, selected area electron diffraction, and energy dispersive X-ray spectroscopy could be accurately performed to analyze the components of single urinary nanocrystallites. This result provides evidence for nanouric acid and/or nanocalcium phosphate crystallites as the central nidus to induce CaOx stone formation. PMID:25258530
Microstructure of amorphous aluminum hydroxide in belite-calcium sulfoaluminate cement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Fei; Yu, Zhenglei; Yang, Fengling
Belite-calcium sulfoaluminate (BCSA) cement is a promising low-CO{sub 2} alternative to ordinary Portland cement. Herein, aluminum hydroxide (AH{sub 3}), the main amorphous hydration product of BCSA cement, was investigated in detail. The microstructure of AH{sub 3} with various quantities of gypsum was investigated via scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The AH{sub 3} with various morphologies were observed and confirmed in the resulting pastes. Particular attention was paid to the fact that AH{sub 3} always contained a small amount of Ca according to the results of EDS analysis. The AH{sub 3} was then characterized via highmore » resolution transmission electron microscopy (HRTEM). The results of HRTEM indicated that Ca arose from nanosized tricalcium aluminate hexahydrate which existed in the AH{sub 3}.« less
Microstructural evolution of diamond growth during HFCVD
NASA Technical Reports Server (NTRS)
Singh, J.
1994-01-01
High resolution transmission electron microscopy (HRTEM) was used to study the nucleation and growth mechanism of diamond by hot filament chemical vapor deposition (HFCVD) process. A novel technique has shown a direct evidence for the formation of the diamond-like carbon layer 8-14 nm thick in which small diamond micro-crystallites were embedded. These diamond micro-crystallites were formed as a result of transformation of diamond-like carbon into diamond. The diamond micro-crystallites present in the amorphous diamond-like carbon layer provided nucleation sites for diamond growth. Large diamond crystallites were observed to grow from these micro-crystallites. The mechanism of diamond growth will be presented based on experimental findings.
NASA Astrophysics Data System (ADS)
Byram, Chandu; Moram, Sree Sathya Bharathi; Soma, Venugopal Rao
2018-04-01
In this paper, we present the results from fabrication studies of Ag, Au, and Ag-Au alloy nanoparticles (NPs) using picosecond laser ablation technique in the presence of liquid media. The alloy formation in the NPs was confirmed from UV-Visible measurements. The shape and crystallinity of NPs were investigated by using high resolution transmission electron microscopy (HRTEM), selected area diffraction pattern (SAED) and energy dispersive spectroscopy (EDS). The SERS effect of fabricated NPs was tested with methylene blue and an explosive molecule (ammonium perchlorate) using a portable Raman spectrometer and achieved EFs of ˜106.
Atom by atom: HRTEM insights into inorganic nanotubes and fullerene-like structures
Sadan, Maya Bar; Houben, Lothar; Enyashin, Andrey N.; Seifert, Gotthard; Tenne, Reshef
2008-01-01
The characterization of nanostructures down to the atomic scale is essential to understand some physical properties. Such a characterization is possible today using direct imaging methods such as aberration-corrected high-resolution transmission electron microscopy (HRTEM), when iteratively backed by advanced modeling produced by theoretical structure calculations and image calculations. Aberration-corrected HRTEM is therefore extremely useful for investigating low-dimensional structures, such as inorganic fullerene-like particles and inorganic nanotubes. The atomic arrangement in these nanostructures can lead to new insights into the growth mechanism or physical properties, where imminent commercial applications are unfolding. This article will focus on two structures that are symmetric and reproducible. The first structure that will be dealt with is the smallest stable symmetric closed-cage structure in the inorganic system, a MoS2 nanooctahedron. It is investigated by means of aberration-corrected microscopy which allowed validating the suggested DFTB-MD model. It will be shown that structures diverging from the energetically most stable structures are present in the laser ablated soot and that the alignment of the different shells is parallel, unlike the bulk material where the alignment is antiparallel. These findings correspond well with the high-energy synthetic route and they provide more insight into the growth mechanism. The second structure studied is WS2 nanotubes, which have already been shown to have a unique structure with very desirable mechanical properties. The joint HRTEM study combined with modeling reveals new information regarding the chirality of the different shells and provides a better understanding of their growth mechanism. PMID:18838681
Atom by atom: HRTEM insights into inorganic nanotubes and fullerene-like structures.
Bar Sadan, Maya; Houben, Lothar; Enyashin, Andrey N; Seifert, Gotthard; Tenne, Reshef
2008-10-14
The characterization of nanostructures down to the atomic scale is essential to understand some physical properties. Such a characterization is possible today using direct imaging methods such as aberration-corrected high-resolution transmission electron microscopy (HRTEM), when iteratively backed by advanced modeling produced by theoretical structure calculations and image calculations. Aberration-corrected HRTEM is therefore extremely useful for investigating low-dimensional structures, such as inorganic fullerene-like particles and inorganic nanotubes. The atomic arrangement in these nanostructures can lead to new insights into the growth mechanism or physical properties, where imminent commercial applications are unfolding. This article will focus on two structures that are symmetric and reproducible. The first structure that will be dealt with is the smallest stable symmetric closed-cage structure in the inorganic system, a MoS(2) nanooctahedron. It is investigated by means of aberration-corrected microscopy which allowed validating the suggested DFTB-MD model. It will be shown that structures diverging from the energetically most stable structures are present in the laser ablated soot and that the alignment of the different shells is parallel, unlike the bulk material where the alignment is antiparallel. These findings correspond well with the high-energy synthetic route and they provide more insight into the growth mechanism. The second structure studied is WS(2) nanotubes, which have already been shown to have a unique structure with very desirable mechanical properties. The joint HRTEM study combined with modeling reveals new information regarding the chirality of the different shells and provides a better understanding of their growth mechanism.
2012-06-01
resolution tunneling electron microscopy (HR-TEM). 2.4 DSSC Assembly Annealed TiO2 nanoparticle photoanodes were placed into 10 mL each of the blackberry ...resolution tunneling electron microscopy, and ultraviolet-visible spectroscopy. After characterization, the NPs were found to vary in shape but had... Blackberry Anthocyanin Extraction Procedure ...............................................................3 2.3 Au Nanoparticle Synthesis
HRTEM low dose: the unfold of the morphed graphene, from amorphous carbon to morphed graphenes.
Calderon, H A; Okonkwo, A; Estrada-Guel, I; Hadjiev, V G; Alvarez-Ramírez, F; Robles Hernández, F C
We present experimental evidence under low-dose conditions transmission electron microscopy for the unfolding of the evolving changes in carbon soot during mechanical milling. The milled soot shows evolving changes as a function of the milling severity or time. Those changes are responsible for the transformation from amorphous carbon to graphenes, graphitic carbon, and highly ordered structures such as morphed graphenes, namely Rh6 and Rh6-II. The morphed graphenes are corrugated layers of carbon with cross-linked covalently nature and sp 2 - or sp 3 -type allotropes. Electron microscopy and numerical simulations are excellent complementary tools to identify those phases. Furthermore, the TEAM 05 microscope is an outstanding tool to resolve the microstructure and prevent any damage to the sample. Other characterization techniques such as XRD, Raman, and XPS fade to convey a true identification of those phases because the samples are usually blends or mixes of the mentioned phases.
NASA Astrophysics Data System (ADS)
Köse, Hilal; Karaal, Şeyma; Aydın, Ali Osman; Akbulut, Hatem
2015-11-01
Free standing zinc oxide (ZnO) and multiwalled carbon nanotube (MWCNT) nanocomposite materials are prepared by a sol gel technique giving a new high capacity anode material for lithium ion batteries. Free-standing ZnO/MWCNT nanocomposite anodes with two different chelating agent additives, triethanolamine (TEA) and glycerin (GLY), yield different electrochemical performances. Field emission gun scanning electron microscopy (FEG-SEM), energy dispersive X-ray spectrometer (EDS), high resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) analyses reveal the produced anode electrodes exhibit a unique structure of ZnO coating on the MWCNT surfaces. Li-ion cell assembly using a ZnO/MWCNT/GLY free-standing anode and Li metal cathode possesses the best discharge capacity, remaining as high as 460 mAh g-1 after 100 cycles. This core-shell structured anode can offer increased energy storage and performance over conventional anodes in Li-ion batteries.
NASA Astrophysics Data System (ADS)
Marušáková, Daniela; Bublíková, Petra; Berka, Jan; Vávrovcová, Zuzana; Burda, Jaroslav
2017-09-01
To understand the degradation process of metal materials which are used in power engineering, appropriate evaluation procedure is necessary to ensure. In that order, the degradation of alloy 800H during the first period of test operation in High Temperature Helium Loop (HTHL) was tested. Experiment was carried out in atmosphere of pure technical helium with purity 4.6 containing only residual concentration of moisture up to 300 vppm. Parameters during the operation test were not constant, process was interrupted several times. The maximum temperature on specimens during this period was 750 °C, average temperature was 460 °C, gas pressure ranged from 3 to 6 MPa and gas flow from 3 to 9 gs-1. Total duration of the test was 264 h. After the exposure the degradation of specimens was investigated by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). Using the technique of Focused Ion Beam (FIB) integrated within SEM the transparent samples with quality surface parameters were obtained for TEM analysis. FIB technique in combination with High Resolution TEM ensured the guaranteed methodology of exposed sample preparation and precise description of changes in this kind of material.
Chandrappan, Jayakrishnan; Murray, Matthew; Kakkar, Tarun; Petrik, Peter; Agocs, Emil; Zolnai, Zsolt; Steenson, D.P.; Jha, Animesh; Jose, Gin
2015-01-01
Chemical dissimilarity of tellurium oxide with silica glass increases phase separation and crystallization tendency when mixed and melted for making a glass. We report a novel technique for incorporating an Er3+-doped tellurite glass composition into silica substrates through a femtosecond (fs) laser generated plasma assisted process. The engineered material consequently exhibits the spectroscopic properties of Er3+-ions, which are unachievable in pure silica and implies this as an ideal material for integrated photonics platforms. Formation of a well-defined metastable and homogeneous glass structure with Er3+-ions in a silica network, modified with tellurite has been characterized using high-resolution cross-sectional transmission electron microscopy (HRTEM). The chemical and structural analyses using HRTEM, Rutherford backscattering spectrometry (RBS) and laser excitation techniques, confirm that such fs-laser plasma implanted glasses may be engineered for significantly higher concentration of Er3+-ions without clustering, validated by the record high lifetime-density product 0.96 × 1019 s.cm−3. Characterization of planar optical layers and photoluminescence emission spectra were undertaken to determine their thickness, refractive indices and photoluminescence properties, as a function of Er3+ concentration via different target glasses. The increased Er3+ content in the target glass enhance the refractive index and photoluminescence intensity of the modified silica layer whilst the lifetime and thickness decrease. PMID:26370060
Formic acid-assisted synthesis of palladium nanocrystals and their electrocatalytic properties.
Wang, Qinchao; Wang, Yiqian; Guo, Peizhi; Li, Qun; Ding, Ruixue; Wang, Baoyan; Li, Hongliang; Liu, Jingquan; Zhao, X S
2014-01-14
Palladium (Pd) nanocrystals have been synthesized by using formic acid as the reducing agent at room temperature. When the concentration of formic acid was increased continuously, the size of Pd nanocrystals first decreased to a minimum and then increased slightly again. The products have been investigated by a series of techniques, including X-ray diffraction, high-resolution transmission electron microscopy (HRTEM), UV-vis absorption, and electrochemical measurements. The formation of Pd nanocrystals is proposed to be closely related to the dynamical imbalance of the growth and dissolution rate of Pd nanocrystals associated with the adsorption of formate ions onto the surface of the intermediates. It is found that small Pd nanocrystals showed blue-shifted adsorption peaks compared with large ones. Pd nanocrystals with the smallest size display the highest electrocatalytic activity for the electrooxidation of formic acid and ethanol on the basis of cyclic voltammetry and chronoamperometric data. It is suggested that both the electrochemical active surface area and the small size effect are the key roles in determining the electrocatalytic performances of Pd nanocrystals. A "dissolution-deposition-aggregation" process is proposed to explain the variation of the electrocatalytic activity during the electrocatalysis according to the HRTEM characterization.
NASA Astrophysics Data System (ADS)
Li, Xiaoru; Peng, Zhi; Yang, Chao; Han, Ping; Song, Guojun; Cong, Longliang
2016-09-01
The polyamide 6 (PA6) nanotubes were prepared by infiltrating the anodic aluminum oxide templates with polymer solution. Crystalline regions in the nanotube walls were detected by high-resolution transmission electron microscopy (HRTEM). X-ray diffraction (XRD), Fast Fourier Transform (FFT) and differential scanning calorimetry (DSC) techniques were employed to investigate crystallization, crystal faces and thermodynamics. It was found that the crystals were transformed from α-form in bulk to γ-form in nanotubes. It was made a detailed analysis in this article. Moreover, schematic diagram for the crystallizing mechanism of PA6 nanotubes was given to explain PA6 molecules how to crystallize in the nano-pores.
Method to obtain carbon nano-onions by pyrolisys of propane
NASA Astrophysics Data System (ADS)
Garcia-Martin, Tomas; Rincon-Arevalo, Pedro; Campos-Martin, Gemma
2013-11-01
We present a new and simple method for carbon nano-onions (CNOs) production which is based on the pyrolysis of Propane. CNOs are originated in a laminar premixed Propane/Oxygen flame of approximately 1.8 of stoichiometric coefficient. The stream of gasses resulting from the combustion drives the carbon particles towards the aluminium surface on which nano-onions are deposited and collected. The structure and size of the deposited carbon onion on the metal wall are characterized by High Resolution Transmission Electron Microscopy technique (HRTEM). The experimental images show the presence of two different types of CNOs. The first particles have diameters in the range of 18-25 nm and the second ones around 10 nm.
Exothermic low temperature sintering of Cu nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mittal, Jagjiwan; Lin, Kwang-Lung, E-mail: matkllin@mail.ncku.edu.tw
2015-11-15
Sintering of the Cu nanoparticle at low temperatures resulted in exothermic behavior after its initiation. The calorimetry study of the heating of a 20 nm copper nanoparticles agglomerate revealed the evolution of 41.17 J/g of heat between 170 °C and 270 °C. High resolution transmission electron microscopy (HRTEM) images indicated that the heat generation was accompanied by sintering. The surface energy of the 20 nm copper nanoparticles was estimated to be 1.23 × 10{sup 3} erg/cm{sup 2} based on the heat released during sintering. The in situ high resolution transmission electron microscope (HRTEM) investigation showed that vigorous sintering occurred betweenmore » 217 and 234 °C, which took place through the dislocation sintering mechanism. - Highlights: • Calorimetry showed exothermic behavior during heating of Cu nanoparticles between 170 and 270 °C. • Heat released due to the sintering of Cu nanoparticles was demonstrated by HRTEM. • Surface energy of 20 nm copper nanoparticles was estimated to be 1.23 × 10{sup 3} erg/cm{sup 2} during sintering. • Growth in crystallite sizes during sintering is disclosed by X-ray diffraction. • In situ HRTEM heating study showed occurrence of sintering through dislocation mechanism.« less
NASA Astrophysics Data System (ADS)
Guo, Haipeng; Liu, Li; Shu, Hongbo; Yang, Xiukang; Yang, Zhenhua; Zhou, Meng; Tan, Jinli; Yan, Zichao; Hu, Hai; Wang, Xianyou
2014-02-01
LiV3O8/polythiophene (LiV3O8/PTh) composite has been chemically synthesized via an in-situ oxidative polymerization method. The structure and morphology of the samples have been characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). LiV3O8/PTh composite shows a single phase in the XRD pattern, but the existence of PTh has been confirmed by FTIR spectra. HRTEM images show that an uniform PTh layer with a thickness of 3-5 nm covered on the surface of LiV3O8. Electrochemical performance of samples has been characterized by the charge/discharge test, cyclic voltammetry (CV), electrochemical impedance spectroscopic studies (EIS) and galvanostatic intermittent titration technique (GITT). The LiV3O8/PTh composite exhibits much better electrochemical performance than bare LiV3O8. The initial discharge capacities of 15 wt.% LiV3O8/PTh composite are 213.3 and 200.3 mAh g-1 with almost no capacity retention after 50 cycles at current densities of 300 and 900 mA g-1, respectively. PTh could enhance electronic conductivity, decrease the charge transfer resistance, increase the lithium diffusion coefficient, and thus improve cycling performance of LiV3O8. All these results demonstrate that the LiV3O8/PTh composite has a promising application as cathode material for lithium ion batteries.
Dupraz, A; Nguyen, T P; Richard, M; Daculsi, G; Passuti, N
1999-04-01
An injectable composite material based on biphasic calcium phosphate (BCP) and a nonionic cellulose ether has been elaborated for use in percutaneous surgery for spine fusion. This paper reports the characterization results of this material by spectroscopic techniques including X-ray diffraction (XRD), infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) fitted with an energy dispersive X-Ray analysis system and high-resolution transmission electron microscopy (HR-TEM). From FTIR and XPS results, it was observed that the adhesion between the polymer and the ceramic might be insured by oxygen bridging developed through an ionic bonding between calcium ions and (C-O) groups of the polymer. Moreover, XPS showed attraction of Ca2+ ions in the polymer matrix, while the ceramic surface was modified in a HPO4(2-) -rich layer. These results suggest a possible dissolution/precipitation process at the interface ceramic/polymer. HR-TEM observations supported this hypothesis, showing a light contrasted fringe at the surface of the ceramic grains in the composite paste. As well, changes in the XRD spectra could indicate a small decrease in the crystal size of the BCP powder through the contact to polymer solution. In addition, SEM observation showed a decrease of the initial BCP granulometry. Aggregates of 80-200 microm seemed to be mostly dissociated in micrograins. The ceramic grains were coated with and bonded between each other by the polymer matrix, which acted as spacer in between the ceramic grains, creating a macroporous-like material structure.
Tin-Platinum catalysts interactions on titania and silica
NASA Astrophysics Data System (ADS)
Nava, N.; Del Angel, P.; Salmones, J.; Baggio-Saitovitch, E.; Santiago, P.
2007-09-01
Pt-Sn was supported on titania and silica, and the resulting interactions between the components in prepared samples and the resulting interactions between the components before and after treatment with hydrogen were characterized by Mössbauer spectroscopy, X-ray diffraction, Rietveld refinement, high-resolution transmission electron microscopy (HRTEM) and catalytic tests data. Results show the presence of Pt and SnO 2 after calcinations, and Pt 3Sn, PtSn and PtSn 3 after reduction. Rietveld analysis shows that some Ti 4+ are replaced by Sn 4+ atoms in the titania structure. Finally, HRTEM and the practically absence of activity observed confirms that metallic platinum is encapsulated.
Synthesis and characterization of RuS2 nanostructures.
Díaz, David; Castillo-Blum, Silvia E; Alvarez-Fregoso, Octavio; Rodríguez-Gattorno, Geonel; Santiago-Jacinto, Patricia; Rendon, Luis; Ortiz-Frade, Luis; León-Paredes, Yolia-Judith
2005-12-08
Small naked ruthenium sulfide nanoparticles (NPs) with narrow size distribution (2.5 +/- 0.4 nm of diameter) were synthesized in DMSO colloidal dispersions, under mild reaction conditions and using commercial RuCl3 as precursor. To test the chemical reactivity with soft and hard bases, fresh presynthesized RuS2 colloids were mixed with triethylamine (N(Et)3) and ammonium tetrathiomolybdate ((NH4)2MoS4) dimethyl sulfoxide solutions. Naked N(Et)3 and [MoS4](2-)-capped RuS2 nanoparticle colloids were characterized using UV-visible electronic absorption and emission spectroscopies and high-resolution transmission electron microscopy (HR-TEM). It has also been shown that capped RuS2-[MoS4]2- nanoparticles yield MoO3 crystalline matrix by means of HR-TEM experiments. The emission spectra of RuS2 and N(Et)3-RuS2 dispersions show that both nanosized materials have strong fluorescence. The existence of the ruthenium precursor species in solution was established by cyclic voltammetry. Moreover, naked RuS2 NPs were mixed with a chemical mixture with composition similar to gasoline (dibenzothiophene (Bz2S, 400 ppm), hexane, and toluene (55:45% v/v)). The reaction mixture consisted of two phases; in the polar phase, we found evidences of a strong interaction of Bz2S and toluene with the naked RuS2 NPs. We have also obtained self-organized thin films of capped N(Et)3- and RuS2-[MoS4]2- nanoparticles. In both cases, the shape and thickness of the resulting thin films were controlled by a dynamic vacuum procedure. The thin films have been characterized by atomic force microscopy, scanning electron microscopy, HR-TEM, energy dispersion spectroscopy, X-ray diffraction, and absorbance and fluorescence spectroscopies.
Luo, Sihai; Zhou, Liucheng; Wang, Xuede; Cao, Xin; Nie, Xiangfan
2018-01-01
As an innovative surface technology for ultrahigh strain-rate plastic deformation, laser shock peening (LSP) was applied to the dual-phase TC11 titanium alloy to fabricate an amorphous and nanocrystalline surface layer at room temperature. X-ray diffraction, transmission electron microscopy, and high-resolution transmission electron microscopy (HRTEM) were used to investigate the microstructural evolution, and the deformation mechanism was discussed. The results showed that a surface nanostructured surface layer was synthesized after LSP treatment with adequate laser parameters. Simultaneously, the behavior of dislocations was also studied for different laser parameters. The rapid slipping, accumulation, annihilation, and rearrangement of dislocations under the laser-induced shock waves contributed greatly to the surface nanocrystallization. In addition, a 10 nm-thick amorphous structure layer was found through HRTEM in the top surface and the formation mechanism was attributed to the local temperature rising to the melting point, followed by its subsequent fast cooling. PMID:29642379
Luo, Sihai; Zhou, Liucheng; Wang, Xuede; Cao, Xin; Nie, Xiangfan; He, Weifeng
2018-04-06
As an innovative surface technology for ultrahigh strain-rate plastic deformation, laser shock peening (LSP) was applied to the dual-phase TC11 titanium alloy to fabricate an amorphous and nanocrystalline surface layer at room temperature. X-ray diffraction, transmission electron microscopy, and high-resolution transmission electron microscopy (HRTEM) were used to investigate the microstructural evolution, and the deformation mechanism was discussed. The results showed that a surface nanostructured surface layer was synthesized after LSP treatment with adequate laser parameters. Simultaneously, the behavior of dislocations was also studied for different laser parameters. The rapid slipping, accumulation, annihilation, and rearrangement of dislocations under the laser-induced shock waves contributed greatly to the surface nanocrystallization. In addition, a 10 nm-thick amorphous structure layer was found through HRTEM in the top surface and the formation mechanism was attributed to the local temperature rising to the melting point, followed by its subsequent fast cooling.
Fullerenes, PAH, Carbon Nanostructures, and Soot in Low Pressure Diffusion Flames
NASA Technical Reports Server (NTRS)
Grieco, William J.; Lafleur, Arthur L.; Rainey, Lenore C.; Taghizadeh, Koli; VanderSande, John B.; Howard, Jack B.
1997-01-01
The formation of fullerenes C60 and C7O is known to occur in premixed laminar benzene/oxygen/argon flames operated at reduced pressures. High resolution transmission electron microscopy (HRTEM) images of material collected from these flames has identified a variety of multishelled nanotubes and fullerene 'onions' as well as some trigonous structures. These fullerenes and nanostructures resemble the material that results from commercial fullerene production systems using graphite vaporization. As a result, combustion is an interesting method for fullerenes synthesis. If commercial scale operation is to be considered, the use of diffusion flames might be safer and less cumbersome than premixed flames. However, it is not known whether diffusion flames produce the types and yields of fullerenes obtained from premixed benzene/oxygen flames. Therefore, the formation of fullerenes and carbon nanostructures, as well as polycyclic aromatic hydrocarbons (PAH) and soot, in acetylene and benzene diffusion flames is being studied using high performance liquid chromatography (HPLC) and high resolution transmission electron microscopy (HRTEM).
Facile synthesis of Co3O4 hexagonal plates by flux method
NASA Astrophysics Data System (ADS)
Han, Ji-Long; Meng, Qing-Fen; Gao, Sheng-Li
2018-01-01
Using a novel flux method, a hexagonal plate of Co3O4 was directly synthesized. In this method, CoCl2·6H2O, NaOH, and the cosolvent H3BO3 were heated to 750 °C for 2 h in a corundum crucible. The products were characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and high-resolution transmission electron microscope (HRTEM). Furthermore, XRD studies indicated that the product consisted of a cubic phase of Co3O4, and the phase existed in a completely crystalline form. Then, SEM results indicated that these hexagonal plates tiered up and they had diameters in the range of 2-10 μm. According to the results of SAED and HRTEM analyses, the interlayer spacing was about 0.24 nm, which corresponds to the interlayer distance of (3 1 1) crystal plane of cubic Co3O4.
Intrinsic magnetic properties of bimetallic nanoparticles elaborated by cluster beam deposition.
Dupuis, V; Khadra, G; Hillion, A; Tamion, A; Tuaillon-Combes, J; Bardotti, L; Tournus, F
2015-11-14
In this paper, we present some specific chemical and magnetic order obtained very recently on characteristic bimetallic nanoalloys prepared by mass-selected Low Energy Cluster Beam Deposition (LECBD). We study how the competition between d-atom hybridization, complex structure, morphology and chemical affinity affects their intrinsic magnetic properties at the nanoscale. The structural and magnetic properties of these nanoalloys were investigated using various experimental techniques that include High Resolution Transmission Electron Microscopy (HRTEM), Superconducting Quantum Interference Device (SQUID) magnetometry, as well as synchrotron techniques such as Extended X-ray Absorption Fine Structure (EXAFS) and X-ray Magnetic Circular Dichroism (XMCD). Depending on the chemical nature of the nanoalloys we observe different magnetic responses compared to their bulk counterparts. In particular, we show how specific relaxation in nanoalloys impacts their magnetic anisotropy; and how finite size effects (size reduction) inversely enhance their magnetic moment.
Motion of 1/3⟨111⟩ dislocations on Σ3 {112} twin boundaries in nanotwinned copper
NASA Astrophysics Data System (ADS)
Lu, N.; Du, K.; Lu, L.; Ye, H. Q.
2014-01-01
The atomic structure of Σ3 {112} ITBs in nanotwinned Cu is investigated by using aberration-corrected high resolution transmission electron microscopy (HRTEM) and in situ HRTEM observations. The Σ3 {112} ITBs are consisted of periodically repeated three partial dislocations. The in situ HRTEM results show that 1/3[111] partial dislocation moves on the Σ3 {112} incoherent twin boundary (ITB), which was accompanied by a migration of the ITB. A dislocation reaction mechanism is proposed for the motion of 1/3[111] Frank partial dislocation, in which the 1/3[111] partial dislocation exchanges its position with twin boundary dislocations in sequence. In this way, the 1/3[111] dislocation can move on the incoherent twin boundary in metals with low stacking fault energy. Meanwhile, the ITB will migrate in its normal direction accordingly. These results provide insight into the reaction mechanism of 1/3[111] dislocations and ITBs and the associated migration of ITBs.
Barthel, Juri; Lentzen, Markus; Thust, Andreas
2017-08-01
In a recent article [1] we examined the influence of the applied electron dose rate on the magnitude of the image contrast in high-resolution transmission electron microscopy (HRTEM). We concluded that the magnitude of the image contrast is not substantially affected by the applied electron dose rate. This result is in obvious contradiction to numerous earlier publications by Kisielowski and coworkers [2-7], who commented our recent article due to this contradiction. The present short communication is a response to the comment of Kisielowski and coworkers on our recent article, where we provide additional arguments supporting our initial findings and conclusions on the magnitude of the image contrast in HRTEM. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Carabali-Sandoval, G. A., Sr.; Castro, T.; Peralta, O.; De la Cruz, W.; Días, J.; Amelines, O.; Rivera-Hernández, M.; Varela, A.; Muñoz-Muñoz, F.; Policroniades, R.; Murillo, G.; Moreno, E.
2014-12-01
The morphology, microstructure and the chemical composition on surface of soot particles were studied by using high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and elastic backscattering spectrometry. In order to obtain freshly soot particles emitted by home-made wood-burning cook stoves, copper grids for Transmission Electron Microscope (TEM) were placed on the last two of an 8-stages MOUDI cascade impactor. The analysis of HRTEM micrographs revealed the nanostructure and the particle size of soot particles. The XPS survey spectra show a large carbon peak around 285 eV and the oxygen signal at 533 eV. Some differences observed in the carbon/oxygen (C/O) ratio of the particles probably depend on the combustion process efficiency of each cook-stove analyzed. The C-1s XPS spectra show an asymmetric broad peak and other with low intensity that corresponds to sp2 and sp3hybridization, which were fitted with a convolution using Gaussian functions. Elastic backscattering technique allows a chemical elemental analysis of samples and confirms the presence of C, O and Si observed by XPS. Additionally, the morphological properties of soot aggregates were analyzed calculating the border-based fractal dimension (Df). Particles exhibit complex shapes with high values of Df. Also, real-time absorption (σabs) and scattering (σsct) coefficients of fine (with aerodynamic diameter < 2.5 µm) soot particles were measured. The trend in σabs and σsct indicate that the cooking process has two important combustion stages which varied in its flaming strength, being vigorous in the first stage and soft in the second one.
NASA Astrophysics Data System (ADS)
Wang, Chengbing; Yang, Shengrong; Wang, Qi; Wang, Zhou; Zhang, Junyan
2008-06-01
Hydrogenated carbon films were grown by a plasma-enhanced chemical vapor deposition (PECVD) technique using CH4 and H2 as feedstock at ambient temperature. The microstructure of the films was characterized by high resolution transmission electron microscopy (HRTEM). The images showed the presence of curved basal planes in fullerene-like arrangements. An apparent amorphous graphene structure with nm-sized packages of basal planes in a turbostratic feature was observed. The fabricated fullerene-like hydrogenated carbon films (FL-C:H) possess superior mechanical properties, i.e. high hardness (19 GPa) and high elasticity (elastic recovery of 85%). More importantly, the films exhibit ultra-low friction (μ = 0.009) under ambient conditions with 20% relative humidity.
Wang, Chengbing; Yang, Shengrong; Wang, Qi; Wang, Zhou; Zhang, Junyan
2008-06-04
Hydrogenated carbon films were grown by a plasma-enhanced chemical vapor deposition (PECVD) technique using CH(4) and H(2) as feedstock at ambient temperature. The microstructure of the films was characterized by high resolution transmission electron microscopy (HRTEM). The images showed the presence of curved basal planes in fullerene-like arrangements. An apparent amorphous graphene structure with nm-sized packages of basal planes in a turbostratic feature was observed. The fabricated fullerene-like hydrogenated carbon films (FL-C:H) possess superior mechanical properties, i.e. high hardness (19 GPa) and high elasticity (elastic recovery of 85%). More importantly, the films exhibit ultra-low friction (μ = 0.009) under ambient conditions with 20% relative humidity.
Tem Observation of Precipitates in Ag-Added Al-Mg-Si Alloys
NASA Astrophysics Data System (ADS)
Nagai, Takeshi; Matsuda, Kenji; Nakamura, Junya; Kawabata, Tokimasa; Marioara, Calin; Andersen, Sigmund J.; Holmestad, Randi; Hirosawa, Shoichi; Horita, Zenji; Terada, Daisuke; Ikeno, Susumu
The influence of addition of the small amount of transition metals to Al-Mg-Si alloy had reported by many researchers. In the previous our work, β' phase in alloys Al — 1.0 mass% Mg2Si -0.5 mass% Ag (Ag-addition) and Al -1.0 mass% Mg2Si (base) were investigated by high resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED), in order to understand the effect of Ag. In addition, the distribution of Ag was investigated by energy filtered mapping and high annular angular dark field scanning transmission electron microscopy (HAADF-STEM). One Ag-containing atomic column was observed per β' unit cell, and the unit cell symmetry is slightly changed as compared with the Ag-free β'. In this work, the microstructure of G.P. zone and β'' phase was investigated by TEM observation, which were formed before β' phase. The deformed sample by high pressure torsion (HPT) technique before aging was also investigated to understand its effect for aging in this alloy.
Visible cathodoluminescence of Er ions in β-Ga(2)O(3) nanowires and microwires.
Nogales, E; Méndez, B; Piqueras, J
2008-01-23
Erbium doped β-Ga(2)O(3) nanowires and microwires have been obtained by a vapour-solid process from an initial mixture of Ga(2)O(3) and Er(2)O(3) powders. X-ray diffraction (XRD) analysis reveals the presence of erbium gallium garnet as well as β-Ga(2)O(3) phases in the microwires. Scanning electron microscopy (SEM) images show that the larger microwires have a nearly rectangular cross-section. Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) analysis show good crystal quality of the β-Ga(2)O(3) nanowires. The nanostructures have been studied by means of the cathodoluminescence technique in the scanning electron microscope. Er intraionic blue, green and red emission lines are observed in luminescence spectra even at room temperature, which confirms the optical activity of the rare earth ions in the grown structures. Mapping of the main 555 nm emission intensity shows a non-homogeneous distribution of Er ions in the microstructures.
Electrochemical Study and Applications of Selective Electrodeposition of Silver on Quantum Dots.
Martín-Yerga, Daniel; Rama, Estefanía Costa; Costa-García, Agustín
2016-04-05
In this work, selective electrodeposition of silver on quantum dots is described. The particular characteristics of the nanostructured silver thus obtained are studied by electrochemical and microscopic techniques. On one hand, quantum dots were found to catalyze the silver electrodeposition, and on the other hand, a strong adsorption between electrodeposited silver and quantum dots was observed, indicated by two silver stripping processes. Nucleation of silver nanoparticles followed different mechanisms depending on the surface (carbon or quantum dots). Voltammetric and confocal microscopy studies showed the great influence of electrodeposition time on surface coating, and high-resolution transmission electron microscopy (HRTEM) imaging confirmed the initial formation of Janus-like Ag@QD nanoparticles in this process. By use of moderate electrodeposition conditions such as 50 μM silver, -0.1 V, and 60 s, the silver was deposited only on quantum dots, allowing the generation of localized nanostructured electrode surfaces. This methodology can also be employed for sensing applications, showing a promising ultrasensitive electrochemical method for quantum dot detection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cingarapu, Sreeram; Yang, Zhiqiang; Sorensen, Christopher M.
We report synthesis of CdSe and CdTe quantum dots (QDs) from the bulk CdSe and CdTe material by evaporation/co-condensation using the solvated metal atom dispersion (SMAD) technique and refined digestive ripening. The outcomes of this new process are (1) the reduction of digestive ripening time by employing ligands (trioctylphosphine oxide (TOPO) and oleylamine (OA)) as capping agent as well as digestive ripening solvent, (2) ability to tune the photoluminescence (PL) from 410 nm to 670 nm, (3) demonstrate the ability of SMAD synthesis technique for other semiconductors (CdTe), (4) direct comparison of CdSe QDs growth with CdTe QDs growth based on digestivemore » ripening times, and (5) enhanced PL quantum yield (QY) of CdSe QDs and CdTe QDs upon covering with a ZnS shell. Further, the merit of this synthesis is the use of bulk CdSe and CdTe as the starting materials, which avoids usage of toxic organometallic compounds, eliminates the hot injection procedure, and size selective precipitation processes. It also allows the possibility of scale up. These QDs were characterized by UV-vis, photoluminescence (PL), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and powder XRD.« less
Narayanan, A Lakshmi; Dhamodaran, M; Solomon, J Samu; Karthikeyan, B; Govindhan, R
2018-02-01
Sensing ability of caffeine interaction with Phe-Phe annotates (PNTs), is presented (Govindhan et al., 2017; Karthikeyan et al., 2014; Tavagnacco et al., 2013; Kennedy et al., 2011; Wang et al., 2017) [1-5] in this data set. Investigation of synthesized caffeine carrying peptide nanotubes are carried out by FT-Raman spectral analysis and high resolution transmission electron microscopy (HR-TEM). Particle size of the caffeine loaded PNTs is < 40 nm. The FT-Raman spectrum signals are enhanced in the region of 400-1700 cm -1 . These data are ideal tool for the applications like biosensing and drug delivery research (DDS).
Role of the Short Distance Order in Glass Reactivity
2018-01-01
In 2005, our group described for the first time the structural characterization at the atomic scale of bioactive glasses and the influence of the glasses’ nanostructure in their reactivity in simulated body fluids. In that study, two bioactive sol-gel glasses with composition 80%SiO2–20%CaO and 80%SiO2–17%CaO–3%P2O5 (in mol-%) were characterized by High-Resolution Transmission Electron Microscopy (HRTEM). Such characterization revealed unknown features of the glasses’ structure at the local scale that allowed the understanding of their different in vitro behaviors as a consequence of the presence or absence of P2O5. Since then, the nanostructure of numerous bioactive glasses, including melt-prepared, sol-gel derived, and mesoporous glasses, was investigated by HRTEM, Nuclear Magnetic Resonance (NMR) spectroscopy, Molecular Dynamics (MD) simulations, and other experimental techniques. These studies have shown that although glasses are amorphous solids, a certain type of short distance order, which greatly influences the in vitro and in vivo reactivity, is always present. This paper reviews the most significant advances in the understanding of bioactive glasses that took place in the last years as a result of the growing knowledge of the glasses’ nanostructure. PMID:29534481
NASA Astrophysics Data System (ADS)
Mdlalose, W. B.; Mokhosi, S. R.; Dlamini, S.; Moyo, T.; Singh, M.
2018-05-01
We report the influence of polymer coatings on structural and magnetic properties of MnFe2O4 and Mn0.5Co0.5Fe2O4 nanoferrites synthesized by glycol thermal technique and then coated with chitosan viz. CHI-MnFe2O4 and CHI-Mn0.5Co0.5Fe2O4. The compounds were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), high-resolution scanning electron microscopy (HRSEM), Mössbauer spectroscopy and magnetization measurements. The powder XRD patterns of naked nanoferrites confirmed single-phase spinel cubic structure with an average crystallite size of 13 nm, while the coated samples exhibited an average particle size of 15 nm. We observed a reduction in lattice parameters with coating. HRTEM results correlated well with XRD results. 57Fe Mössbauer spectra showed ordered magnetic spin states in both nanoferrites. This study shows that coatings have significant effects on the structural and magnetic properties of Mn-nanoferrites. Magnetization studies performed at room temperature in fields up to 14 kOe revealed the superparamagnetic nature of both naked and coated nanoparticles with spontaneous magnetizations at room temperature of 49.2 emu/g for MnFe2O4, 23.6 emu/g for coated CHI-MnFe2O4 nanoparticles, 63.2 emu/g for Mn0.5Co0.5Fe2O4 and 33.2 emu/g for coated CHI-Mn0.5Co0.5Fe2O4 nanoparticles. We observed reduction in coercive fields due to coating. Overall, chitosan-coated manganese and manganese-cobalt nanoferrites present as suitable candidates for biomedical applications owing to physicochemical, and magnetic properties exhibited.
Bright, A N; Yoshida, K; Tanaka, N
2013-01-01
Environmental transmission electron microscopy (ETEM) enables the study of catalytic and other reaction processes as they occur with Angstrom-level resolution. The microscope used is a dedicated ETEM (Titan ETEM, FEI Company) with a differential pumping vacuum system and apertures, allowing aberration corrected high-resolution transmission electron microscopy (HRTEM) imaging to be performed with gas pressures up to 20 mbar in the sample area and with significant advantages over membrane-type E-cell holders. The effect on image resolution of varying the nitrogen gas pressure, electron beam current density and total beam current were measured using information limit (Young's fringes) on a standard cross grating sample and from silicon crystal lattice imaging. As expected, increasing gas pressure causes a decrease in HRTEM image resolution. However, the total electron beam current also causes big changes in the image resolution (lower beam current giving better resolution), whereas varying the beam current density has almost no effect on resolution, a result that has not been reported previously. This behavior is seen even with zero-loss filtered imaging, which we believe shows that the drop in resolution is caused by elastic scattering at gas ions created by the incident electron beam. Suitable conditions for acquiring high resolution images in a gas environment are discussed. Lattice images at nitrogen pressures up to 16 mbar are shown, with 0.12 nm information transfer at 4 mbar. Copyright © 2012 Elsevier B.V. All rights reserved.
Yim, Chul Jin; Unithrattil, Sanjith; Chung, Woon Jin; Im, Won Bin
2013-12-01
Red emitting nanofibers, KGdTa2O7:Eu3+ were synthesized by electrospinning technique followed by heat treatment. As-prepared uniform fiber precursor with diameter ranging from about 700 nm to about 900 nm were calcined after removing organic species by calcination. The fiber surface become rough and diameter decreased to about 250-340 nm range due to decomposition of organic species and formation of inorganic phase. Morphology, structural and photoluminescent properties of fibers were analyzed using thermogravimetric and differential thermal analysis (TG-DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and photoluminescence (PL). TG-DTA analysis indicates that KGdTa2O7:Eu3+ began to crystalize at 520 degrees C. Fibers annealed at 900 degrees C formed well crystallized uniform fibers. Under ultraviolet excitation KGdTa2O7:Eu3+ exhibits red emission due to transitions in 4f states of Eu3+. The excitation band is dominated by the Eu(3+)--O2-charge transfer band peaked at 289 nm. The emission peak is in the region that is ideal for red light emission.
Simulating Lattice Image of Suspended Graphene Taken by Helium Ion Microscopy
NASA Astrophysics Data System (ADS)
Miyamoto, Yoshiyuki; Zhang, Hong; Rubio, Angel
2013-03-01
Atomic scale image in nano-scale helps us to characterize property of graphene, and performance of high-resolution transmission electron microscopy (HRTEM) is significant, so far. While a tool without pre-treatment of samples is demanded in practice. Helium ion microscopy (HIM), firstly reported by Word et. al. in 2006, was applied for monitoring graphene in device structure (Lumme, et. al., 2009). Motivated by recent HIM explorations, we examined the possibility of taking lattice image of suspended graphene by HIM. The intensity of secondary emitted electron is recorded as a profile of scanned He+-beam in HIM measurement. We mimicked this situation by performing electron-ion dynamics based on the first-principles simulation within the time-dependent density functional theory. He+ ion collision on single graphene sheet at several impact points were simulated and we found that the amount of secondary emitted electron from graphene reflected the valence charge distribution of the graphene sheet. Therefore HIM using atomically thin He-beam should be able to provide the lattice image, and we propose that an experiment generating ultra-thin He+ ion beam (Rezeq et. al., 2006) should be combined with HIM technique. All calculations were performed by using the Earth Simulator.
Green synthesis and characterization of graphene nanosheets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tavakoli, Farnosh; Salavati-Niasari, Masoud, E-mail: salavati@kashanu.ac.ir; Department of Inorganic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, P. O. Box. 87317-51167, Islamic Republic of Iran
Highlights: • For the first time, we have synthesized graphene nanosheets in the presence of pomegranate juice. • Here pomegranate juice was used not only as reductant but also as capping agent. • FT-IR, XRD, SEM, EDS and TEM were used to characterize the samples. • According to TEM image, graphene nanosheet is individually exfoliated after stirring for 24 h. • As shown in the TEM image, graphene monolayer is obtained. - Abstract: For the first time, we have successfully synthesized graphene nanosheets in the presence of pomegranate juice. In this approach, pomegranate juice was used not only as reductantmore » but also as capping agent to form graphene nanosheets. At first, the improved Hummer method to oxidize graphite for the synthesis of graphene oxide (GO) was applied, and then the as-produced graphene oxide was reduced by pomegranate juice to form graphene nanosheets. Fourier transformed infrared (FT-IR), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), high resolution transmission electron microscopy (HRTEM), atomic force microscopy (AFM) and raman were used to characterize the samples. The results obtained from the characterization techniques proved high purity of the final products.« less
NASA Astrophysics Data System (ADS)
Ashokkumar, S. P.; Yesappa, L.; Vijeth, H.; Niranjana, M.; Devendrappa, H.
2018-05-01
Polyaniline (PANI) and Polyaniline/CuO nanocomposite have been synthesized by using electrochemical deposition method. The composite was characterized using Fourier transform infra-red spectroscopy (FT-IR) to confirm the chemical interaction changes, micro structural morphology was done by Field Emission Scanning Electronic Microscopy (FESEM) and High Resolution Transmission Electron Microscopy (HRTEM). The dielectric constant and AC conductivity are found to increases with increase in temperature range (303 to 393K), these results shows enhancement in electrical conductivity due to effect of nanocomposite.
Novel Crystalline SiO2 Nanoparticles via Annelids Bioprocessing of Agro-Industrial Wastes
2010-01-01
The synthesis of nanoparticles silica oxide from rice husk, sugar cane bagasse and coffee husk, by employing vermicompost with annelids (Eisenia foetida) is reported. The product (humus) is calcinated and extracted to recover the crystalline nanoparticles. X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and dynamic light scattering (DLS) show that the biotransformation allows creating specific crystalline phases, since equivalent particles synthesized without biotransformation are bigger and with different crystalline structure. PMID:20802789
The microstructures of SCS-6 and SCS-8 SiC reinforcing fibers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sattler, M.L.; Kinney, J.H.; Zywicz, E.
The microstructures of SCS-6 and SCS-8 SiC fibers have been examined and analyzed using high resolution transmission electron microscopy (HRTEM), microdiffraction, parallel electron energy loss spectroscopy (PEELS), x-ray diffraction and x-ray spectroscopy. The results of the study confirm findings from earlier studies wherein the microstructure of the fibers have been described as consisting of {beta}-SiC grown upon a monofilament turbostratic carbon core. The present study, however, provides much more detail regarding this microstructure. For example, PEELS spectroscopy and x-ray microscopy indicate that the composition of the SiC varies smoothly from SiC plus free C near the carbon core to SiCmore » at the midradial boundary. The SiC stoichiometry is roughly preserved from the midradial boundary to the exterior interface. HRTEM, microdiffraction, and dark field images provide evidence that the excess carbon is amorphous free carbon which is most likely situated at the grain boundaries of the SiC. The x-ray microscopy results are also consistent with the presence of two phases near the core which consist of SiC and free carbon having density less than graphite (2.25 g/cc). This complex microstructure may explain the recent observations of nonplanar failure in composites fabricated with SCS fibers.« less
NASA Astrophysics Data System (ADS)
Chang, Jeong Ah; Vithal, Muga; Baek, In Chan; Seok, Sang Il
2009-04-01
Nanosized anatase and rutile TiO 2 having different shape, phase and size have been prepared from aqueous solutions of peroxo titanium complex starting from titanium(IV) isopropoxide (TTIP), acetic acid and hydrogen peroxide (H 2O 2) in water/isopropanol media by a facile sol-gel process. The TiO 2 nanocrystals are characterized by powder X-ray diffraction (XRD), Raman spectroscopy, FT-IR spectroscopy, TEM, high resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) techniques. The influence of pH and the sequence of addition of reaction contents on the phase and morphology of TiO 2 are studied. The reasons for the observation of only anatase and/or mixture of anatase and rutile are given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guedj, C.; CEA, LETI, MINATEC Campus, F-38054 Grenoble; Hung, L.
2014-12-01
The effect of nanocrystal orientation on the energy loss spectra of monoclinic hafnia (m-HfO{sub 2}) is measured by high resolution transmission electron microscopy (HRTEM) and valence energy loss spectroscopy (VEELS) on high quality samples. For the same momentum-transfer directions, the dielectric properties are also calculated ab initio by time-dependent density-functional theory (TDDFT). Experiments and simulations evidence anisotropy in the dielectric properties of m-HfO{sub 2}, most notably with the direction-dependent oscillator strength of the main bulk plasmon. The anisotropic nature of m-HfO{sub 2} may contribute to the differences among VEELS spectra reported in literature. The good agreement between the complex dielectricmore » permittivity extracted from VEELS with nanometer spatial resolution, TDDFT modeling, and past literature demonstrates that the present HRTEM-VEELS device-oriented methodology is a possible solution to the difficult nanocharacterization challenges given in the International Technology Roadmap for Semiconductors.« less
NASA Astrophysics Data System (ADS)
Udhayakumar, Gayathri; Muthukumarasamy, N.; Velauthapillai, Dhayalan; Santhosh, Shanthi Bhupathi
2017-10-01
Highly crystalline zinc incorporated hydroxyapatite (Zn-HAp) nanorods have been synthesized using microwave irradiation method. To improve bioactivity and crystallinity of pure HAp, zinc was incorporated into it. As-synthesized samples were characterized by Fourier transform-infrared spectroscopy (FT-IR), X-ray diffraction, field-emission scanning electron microscopy (FESEM), energy dispersive X-ray analysis (EDAX), high-resolution transmission electron microscopy (HRTEM), and the thermal and crystallinity behavior of Zn-HAp nanoparticle were studied by thermogravimetry (TGA) and differential scanning calorimetry (DSC). Antibacterial activity of the as-synthesized nanorods was evaluated against two prokaryotic strains ( Escherichia coli and Staphylococcus aureus). The FT-IR studies show the presence of hydroxide and phosphate functional groups. HRTEM and FESEM images showed highly crystalline rod-shaped nanoparticles with the diameter of about 50-60 nm. EDAX revealed the presence of Ca, Zn, P, and O in the prepared samples. The crystallinity and thermal stability were further confirmed by TGA-DSC analysis. The biocompatibility evaluation results promoted that the Zn-HAp nanorods are biologically active apatites and potentially promising bone-substitute biomaterials for orthopaedic application.
Structural, magnetic and electronic structure properties of Co doped ZnO nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Shalendra, E-mail: shailuphy@gmail.com; School of Materials Science and Engineering, Changwon National University, Changwon, Gyeongnam 641-773; Song, T.K., E-mail: tksong@changwon.ac.kr
Highlights: • XRD and HR-TEM results show the single phase nature of Co doped ZnO nanoparticles. • XMCD and dc magnetization results indicate the RT-FM in Co doped ZnO nanoparticles. • Co L{sub 3,2} NEXAFS spectra infer that Co ions are in 2+ valence state. • O K edge NEXAFS spectra show that O vacancy increases with Co doping in ZnO. - Abstract: We reported structural, magnetic and electronic structure studies of Co doped ZnO nanoparticles. Doping of Co ions in ZnO host matrix has been studied and confirmed using various methods; such as X-ray diffraction (XRD), field emission scanningmore » electron microscopy (FE-SEM), energy dispersed X-ray (EDX), high resolution transmission electron microscopy (HR-TEM), Fourier transform infrared spectroscopy (FT-IR), near edge X-ray absorption fine structure (NEXAFS) spectroscopy, magnetic hysteresis loop measurements and X-ray magnetic circular dichroism (XMCD). From the XRD and HR-TEM results, it is observed that Co doped ZnO nanoparticles have single phase nature with wurtzite structure and exclude the possibility of secondary phase formation. FE-SEM and TEM micrographs show that pure and Co doped nanoparticles are nearly spherical in shape. O K edge NEXAFS spectra indicate that O vacancies increase with Co doping. The Co L{sub 3,2} edge NEXAFS spectra revealed that Co ions are in 2+ valence state. DC magnetization hysteresis loops and XMCD results clearly showed the intrinsic origin of temperature ferromagnetism in Co doped ZnO nanoparticles.« less
Synthesis of CdSe/ZnS and CdTe/ZnS Quantum Dots: Refined Digestive Ripening
Cingarapu, Sreeram; Yang, Zhiqiang; Sorensen, Christopher M.; ...
2012-01-01
We report synthesis of CdSe and CdTe quantum dots (QDs) from the bulk CdSe and CdTe material by evaporation/co-condensation using the solvated metal atom dispersion (SMAD) technique and refined digestive ripening. The outcomes of this new process are (1) the reduction of digestive ripening time by employing ligands (trioctylphosphine oxide (TOPO) and oleylamine (OA)) as capping agent as well as digestive ripening solvent, (2) ability to tune the photoluminescence (PL) from 410 nm to 670 nm, (3) demonstrate the ability of SMAD synthesis technique for other semiconductors (CdTe), (4) direct comparison of CdSe QDs growth with CdTe QDs growth based on digestivemore » ripening times, and (5) enhanced PL quantum yield (QY) of CdSe QDs and CdTe QDs upon covering with a ZnS shell. Further, the merit of this synthesis is the use of bulk CdSe and CdTe as the starting materials, which avoids usage of toxic organometallic compounds, eliminates the hot injection procedure, and size selective precipitation processes. It also allows the possibility of scale up. These QDs were characterized by UV-vis, photoluminescence (PL), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and powder XRD.« less
Studies on Optical and Electrical Properties of Hafnium Oxide Nanoparticles
NASA Astrophysics Data System (ADS)
Jayaraman, Venkatachalam; Sagadevan, Suresh; Sudhakar, Rajesh
2017-07-01
In this paper, the synthesis and physico-chemical properties of hafnium oxide nanoparticles (HfO2 NPs) are analyzed and reported. The synthesis was carried out by the precipitation route by using hafnium tetrachloride (HfCl4) as precursor material with potassium hydroxide (KOH) dissolved in Millipore water. In the precipitation technique, the chemical reaction is comparatively simple, low-cost and non-toxic compared to other synthetic methods. The synthesized HfO2 NPs were characterized by using powder x-ray diffraction (PXRD), ultraviolet-visible (UV-Vis) spectroscopy, Raman analysis, and high-resolution transmission electron microscopy (HRTEM). The monoclinic structure of the HfO2 NPs was resolved utilizing x-ray diffraction (XRD). The optical properties were studied from the UV-Vis absorption spectrum. The optical band gap of the HfO2NPs was observed to be 5.1 eV. The Raman spectrum shows the presence of HfO2 NPs. The HRTEM image showed that the HfO2 NPs were of spherical shape with an average particle size of around 28 nm. The energy-dispersive x-ray spectroscopy (EDS) spectrum obviously demonstrated the presence of HfO2 NPs. Analysis and studies on the dielectric properties of the HfO2 NPs such as the dielectric constant, the dielectric loss, and alternating current (AC) conductivity were carried out at varying frequencies and temperatures.
Choi, Seungmok; Myung, C. L.; Park, S.
2014-03-05
This study presents a review of the characterization of physical properties, morphology, and nanostructure of particulate emissions from internal combustion engines. Because of their convenience and readiness of measurement, various on-line commercial instruments have been used to measure the mass, number, and size distribution of nano-particles from different engines. However, these on-line commercial instruments have inherent limitations in detailed analysis of chemical and physical properties, morphology, and nanostructure of engine soot agglomerates, information that is necessary to understand the soot formation process in engine combustion, soot particle behavior in after-treatment systems, and health impacts of the nano-particles. For these reasons,more » several measurement techniques used in the carbon research field, i.e., highresolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and Raman spectroscopy, were used for analysis of engine particulate matter (PM). This review covers a brief introduction of several measurement techniques and previous results from engine nano-particle characterization studies using those techniques.« less
Sonocatalytic removal of naproxen by synthesized zinc oxide nanoparticles on montmorillonite.
Karaca, Melike; Kıranşan, Murat; Karaca, Semra; Khataee, Alireza; Karimi, Atefeh
2016-07-01
ZnO/MMT nanocomposite as sonocatalyst was prepared by immobilizing synthesized ZnO on the montmorillonite surface. The characteristics of as-prepared nanocomposite were studied by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM) and X-ray diffraction (XRD) techniques. The synthesized samples were used as a catalyst for sonocatalytic degradation of naproxen. ZnO/MMT catalyst in the presence of ultrasound irradiation was more effective compared to pure ZnO nanoparticles and MMT particles in the sonocatalysis of naproxen. The effect of different operational parameters on the sonocatalytic degradation of naproxen including initial drug concentration, sonocatalyst dosage, solution pH, ultrasonic power and the presence of organic and inorganic scavengers were evaluated. It was found that the presence of the scavengers suppressed the sonocatalytic degradation efficiency. The reusability of the nanocomposite was examined in several consecutive runs, and the degradation efficiency decreased only 2% after 5 repeated runs. The main intermediates of naproxen degradation were determined by gas chromatography-mass spectrometry (GC-Mass). Copyright © 2016 Elsevier B.V. All rights reserved.
Biosynthesis of silver nanoparticles by using Ganoderma-mushroom extract
NASA Astrophysics Data System (ADS)
Ekar, S. U.; Khollam, Y. B.; Koinkar, P. M.; Mirji, S. A.; Mane, R. S.; Naushad, M.; Jadhav, S. S.
2015-03-01
Present study reports the biochemical synthesis of silver nanoparticles (Ag-NPs) from aqueous medium by using the extract of medicinal mushroom Ganoderma, as a reducing and stabilizing agents. The Ag-NPs are prepared at room temperature by the reduction of Ag+ to Ag in aqueous solution of AgNO3. The resultant particles are characterized by using UV-visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy and transmission electron microscopy (TEM) measurement techniques. The formation of Ag-NPs is confirmed by recording the UV-visible absorption spectra for surface plasmon resonance (SPR) where peak around 427 nm. The prominent changes observed in FTIR spectra supported the reduction of Ag+ to Ag. The morphological features of Ag-NPs are evaluated from HRTEM. The spherical Ag-NPs are observed in transmission electron microscopy (TEM) studies. The particle size distribution is found to be nearly uniform with average particle size of 2 nm. The Ag-NPs aged for 15, 30, 60 and 120 days showed no profound effect on the position of SPR peak in UV-visible studies, indicating the protecting/capping ability of medicinal mushroom Ganoderma in the synthesis of Ag-NPs.
Nanoscale solely amorphous layer in silicon wafers induced by a newly developed diamond wheel
Zhang, Zhenyu; Guo, Liangchao; Cui, Junfeng; Wang, Bo; Kang, Renke; Guo, Dongming
2016-01-01
Nanoscale solely amorphous layer is achieved in silicon (Si) wafers, using a developed diamond wheel with ceria, which is confirmed by high resolution transmission electron microscopy (HRTEM). This is different from previous reports of ultraprecision grinding, nanoindentation and nanoscratch, in which an amorphous layer at the top, followed by a crystalline damaged layer beneath. The thicknesses of amorphous layer are 43 and 48 nm at infeed rates of 8 and 15 μm/min, respectively, which is verified using HRTEM. Diamond-cubic Si-I phase is verified in Si wafers using selected area electron diffraction patterns, indicating the absence of high pressure phases. Ceria plays an important role in the diamond wheel for achieving ultrasmooth and bright surfaces using ultraprecision grinding. PMID:27734934
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Rooyen, I. J.; Lillo, T. M.; Wen, H. M.
Advanced microscopic and microanalysis techniques were developed and applied to study irradiation effects and fission product behavior in selected low-enriched uranium oxide/uranium carbide TRISO-coated particles from fuel compacts in six capsules irradiated to burnups of 11.2 to 19.6% FIMA. Although no TRISO coating failures were detected during the irradiation, the fraction of Ag-110m retained in individual particles often varied considerably within a single compact and at the capsule level. At the capsule level Ag-110m release fractions ranged from 1.2 to 38% and within a single compact, silver release from individual particles often spanned a range that extended from 100% retentionmore » to nearly 100% release. In this paper, selected irradiated particles from Baseline, Variant 1 and Variant 3 type fueled TRISO coated particles were examined using Scanning Electron Microscopy, Atom Probe Tomography; Electron Energy Loss Spectroscopy; Precession Electron Diffraction, Transmission Electron Microscopy, Scanning Transmission Electron Microscopy (STEM), High Resolution Electron Microscopy (HRTEM) examinations and Electron Probe Micro-Analyzer. Particle selection in this study allowed for comparison of the fission product distribution with Ag retention, fuel type and irradiation level. Nano sized Ag-containing features were predominantly identified in SiC grain boundaries and/or triple points in contrast with only two sitings of Ag inside a SiC grain in two different compacts (Baseline and Variant 3 fueled compacts). STEM and HRTEM analysis showed evidence of Ag and Pd co-existence in some cases and it was found that fission product precipitates can consist of multiple or single phases. STEM analysis also showed differences in precipitate compositions between Baseline and Variant 3 fuels. A higher density of fission product precipitate clusters were identified in the SiC layer in particles from the Variant 3 compact compared with the Variant 1 compact. Trend analysis shows precipitates were randomly distributed along the perimeter of the IPyC-SiC interlayer but only weakly associated with kernel protrusion and buffer fractures. There has been no evidence that the general release of silver is related to cracks or significant degradation of the microstructure. The results presented in this paper provide new insights to Ag transport mechanism(s) in intact SiC layer of TRISO coated particles.« less
Truong, Quang Duc; Devaraju, Murukanahally Kempaiah; Tomai, Takaaki; Honma, Itaru
2013-10-23
LiCoPO4 cathode materials have been synthesized by a sol-gel route. X-ray diffraction analysis confirmed that LiCoPO4 was well-crystallized in an orthorhombic structure in the Pmna space group. From the high-resolution transmission electron microscopy (HR-TEM) image, the lattice fringes of {001} and {100} are well-resolved. The HR-TEM image and selected area electron diffraction pattern reveal the highly crystalline nature of LiCoPO4 having an ordered olivine structure. The atom-by-atom structure of LiCoPO4 olivine has been observed, for the first time, using high-angle annular dark-field (HAADF) and annual bright-field scanning transmission electron microscopy. We observed the bright contrast in Li columns in the HAADF images and strong contrast in the ABF images, directly indicating the antisite exchange defects in which Co atoms partly occupy the Li sites. The LiCoPO4 cathode materials delivered an initial discharge capacity of 117 mAh/g at a C/10 rate with moderate cyclic performance. The discharge profile of LiCoPO4 shows a plateau at 4.75 V, revealing its importance as a potentially high-voltage cathode. The direct visualization of atom-by-atom structure in this work represents important information for the understanding of the structure of the active cathode materials for Li-ion batteries.
NASA Astrophysics Data System (ADS)
Mukherjee, Moumita; Ghorai, Uttam Kumar; Samanta, Madhupriya; Santra, Angshuman; Das, Gour P.; Chattopadhyay, Kalyan K.
2017-10-01
To improve the photocatalytic performance of metal phthalocyanine based catalyst, Copper Phthalocyanine (CuPc) functionalized reduced graphene oxide (RGO) nanocomposite has been synthesized through a simple chemical approach. The obtained product was characterized by X-ray diffraction technique (XRD), Fourier transform infrared (FTIR) spectroscopy, Ultraviolet-visible spectroscopy (UV-vis) and High resolution transmission electron microscopy (HRTEM). The photocatalytic activity of the RGO/CuPc nanocomposite was performed by the degradation of Rhodamine B (RhB) under visible light irradiation. The photocatalytic studies revealed that the RGO/CuPc nanocomposite exhibits much stronger catalytic behavior than the pristine CuPc nanotube. A plausible mechanism for the photodegradation of Rhodamine B (RhB) was suggested. The RGO wrapped CuPc nanotube composite materials offer great potential as active photocatalysts for degradation of organic pollutions in industrial waste water.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guetaz, Laure; Lopez-Haro, M.; Escribano, S.
Investigation of membrane/electrode assembly (MEA) microstructure has become an essential step to optimize the MEA components and manufacturing processes or to study the MEA degradation. For these investigations, transmission electron microscopy (TEM) is a tool of choice as it provides direct imaging of the different components. TEM is then widely used for analyzing the catalyst nanoparticles and their carbon support. However, the ionomer inside the electrode is more difficult to be imaged. The difficulties come from the fact that the ionomer forms an ultrathin layer surrounding the carbon particles and in addition, these two components, having similar density, present nomore » difference in contrast. In this paper, we show how the recent progresses in TEM techniques as spherical aberration (Cs) corrected HRTEM, electron tomography and X-EDS elemental mapping provide new possibilities for imaging this ionomer network and consequently to study its degradation.« less
NASA Astrophysics Data System (ADS)
Guo, Junmeng; Wang, Yongfu; Liang, Hongyu; Liang, Aimin; Zhang, Junyan
2016-02-01
Fullerene-like hydrogenated carbon (FL-C:H) films as carbon materials were prepared by direct current plasma enhanced chemical vapor deposition (dc-PECVD) technique. The content of FL nanostructure was confirmed by high-resolution transmission electron microscopy (HRTEM), visible Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The effect of fullerene-like nanostructure on the friction behavior of the films was studied using a reciprocating ball-on-flat tribometer in humid environment. It is concluded that the curved FL nanostructure provide the film excellent mechanical properties and friction performance. Interestingly, combining with the results of Raman analyses of the wear debris, we find that new FL nanostructure form during the friction process. These new FL nanostructure may originate from the rapid annealing and stress relaxation of unstable carbon clusters.
NASA Astrophysics Data System (ADS)
Surya, Subramanian; Thangamuthu, Rangasamy; Senthil Kumar, Sakkarapalayam Murugesan; Murugadoss, Govindhasamy
2017-02-01
Dye-sensitized solar cells (DSSCs) have gained widespread attention in recent years because of their low production costs, ease of fabrication process and tuneable optical properties, such as colour and transparency. In this work, we explored a strategy wherein nanoparticles of pure TiO2, TiO2sbnd SnO2 nanocomposite, Sn (10%) doped TiO2 and SnO2 synthesized by the simple chemical precipitation method were employed as photoelectrodes to enhance the photovoltaic conversion efficiency of solar cells. The nanoparticles were characterized by different characterization techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM with EDX), transmission electron microscopy (TEM), high resolution electron microscopy (HR-TEM), UV-Visible absorbance (UV-vis), photoluminescence (PL), thermal gravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS) measurements. Moreover, we also demonstrated the effect of thin compact layer in DSSCs by architecture with various precursor materials of different concentrations. We found that the optimized compact layer material TDIP (titanium diisopropoxide) with a concentration of 0.3 M % is produced the highest efficiency of 2.25% for Sn (10%) doped TiO2 electron transport material (ETM) and 4.38% was achieved for pure TiO2 ETM using SnCl2 compact layer with 0.1 M concentrations.
Structure and properties of electrodeposited nanocrystalline Ni and Ni-Fe alloy continuous foils
NASA Astrophysics Data System (ADS)
Giallonardo, Jason Derek
This research work presents the first comprehensive study on nanocrystalline materials produced in bulk quantities using a novel continuous electrodeposition process. A series of nanocrystalline Ni and Ni-Fe alloy continuous foils were produced and an intensive investigation into their structure and various properties was carried out. High-resolution transmission electron microscopy (HR-TEM) revealed the presence of local strain at high and low angle, and twin boundaries. The cause for these local strains was explained based on the interpretation of non-equilibrium grain boundary structures that result when conditions of compatibility are not satisfied. HR-TEM also revealed the presence of twin faults of the growth type, or "growth faults", which increased in density with the addition of Fe. This observation was found to be consistent with a corresponding increase in the growth fault probabilities determined quantitatively using X-ray diffraction (XRD) pattern analysis. Hardness and Young's modulus were measured by nanoindentation. Hardness followed the regular Hall-Petch behaviour down to a grain size of 20 nm after which an inverse trend was observed. Young's modulus was slightly reduced at grain sizes less than 20 nm and found to be affected by texture. Microstrain based on XRD line broadening was measured for these materials and found to increase primarily with a decrease in grain size or an increase in intercrystal defect density (i.e., grain boundaries and triple junctions). This microstrain is associated with the local strains observed at grain boundaries in the HR-TEM image analysis. A contribution to microstrain from the presence of growth faults in the nanocrystalline Ni-Fe alloys was also noted. The macrostresses for these materials were determined from strain measurements using a two-dimensional XRD technique. At grain sizes less than 20 nm, there was a sharp increase in compressive macrostresses which was also owed to the corresponding increase in intercrystal defects or interfaces in the solid.
NASA Astrophysics Data System (ADS)
Quan, Ying; Liu, Qinfu; Zhang, Shilong; Zhang, Shuai
2018-07-01
The structures of cryptocrystalline graphite (CG) and carbon black (CB) have been analyzed using scanning electron microscopy (SEM), transmission electron microscopy (TEM), organic elemental analysis (OEA), X-ray diffraction (XRD), RAMAN and high-resolution transmission electron microscopy (HRTEM). These results indicate that CG has the same elemental composition as CB, with carbon being the major element present. SL sample (CG with low graphitization degree) and CB exhibit similar microcrystalline structures. CG was shown to contain a layered graphitic structure that was significantly different to the primary spherical particles present in CB. It is proposed that these CG sheets may potentially be reduced and delaminated to afford multilayer graphene structures with improved material properties.
NASA Astrophysics Data System (ADS)
Wu, Wenhui; Xue, Xudong; Jiang, Xudong; Zhang, Yupeng; Wu, Yichu; Pan, Chunxu
2015-05-01
In this paper, the photocatalytic process of TiO2 (P25) is directly characterized by using a positron annihilation lifetime spectroscopy (PALS), high-resolution transmission electron microscopy (HRTEM), Photoluminescence spectroscopy (PL) and UV Raman spectroscopy (Raman). The experimental results reveal that: 1) From PALS measurements, because τ1 and τ2 values and their intensity (I1 and I2) assigned to the different size and amounts of defects, respectively, their variations indicate the formation of different types and amounts of defects during the absorption and degradation. 2) HRTEM observations show that the lattice images become partly blurring when the methylene blue is fully degradated, and clear again after exposed in the air for 30 days. According to the results, we propose a mechanism that the lattice distortion induces the defects as electron capture sites and provides energy for improving photocatalytic process. Meanwhile, the lattice distortion relaxation after exposing in the air for 30 days perfectly explains the gradual deactivation of TiO2, because the smaller vacancy defects grow and agglomerate through the several photocatalytic processes. The instrumental PL and Raman are also used to analyze the samples and approved the results of PALS and HRTEM.
Kim, D -Y; Ghodake, G S; Maile, N C; Kadam, A A; Sung Lee, Dae; Fulari, V J; Shinde, S K
2017-08-29
In this study, hierarchical interconnected nickel cobalt sulfide (NiCo 2 S 4 ) nanosheets were effectively deposited on a flexible stainless steel foil by the chemical bath deposition method (CBD) for high-performance supercapacitor applications. The resulting NiCo 2 S 4 sample was characterized by X-ray powder diffraction (XRD), field emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HR-TEM), and electrochemical measurements. XRD and X-ray photoelectron spectroscopy (XPS) results confirmed the formation of the ternary NiCo 2 S 4 sample with a pure cubic phase. FE-SEM and HR-TEM revealed that the entire foil surface was fully covered with the interconnected nanosheets like surface morphology. The NiCo 2 S 4 nanosheets demonstrated impressive electrochemical characteristics with a specific capacitance of 1155 F g -1 at 10 mV s -1 and superior cycling stability (95% capacity after 2000 cycles). These electrochemical characteristics could be attributed to the higher active area and higher conductivity of the sample. The results demonstrated that the interconnected NiCo 2 S 4 nanosheets are promising as electrodes for supercapacitor and energy storage applications.
NASA Astrophysics Data System (ADS)
Krishna, R.; Jones, A. N.; McDermott, L.; Marsden, B. J.
2015-12-01
Nuclear graphite components are produced from polycrystalline artificial graphite manufacture from a binder and filler coke with approximately 20% porosity. During the operational lifetime, nuclear graphite moderator components are subjected to fast neutron irradiation which contributes to the change of material and physical properties such as thermal expansion co-efficient, young's modulus and dimensional change. These changes are directly driven by irradiation-induced changes to the crystal structure as reflected through the bulk microstructure. It is therefore of critical importance that these irradiation changes and there implication on component property changes are fully understood. This work examines a range of irradiated graphite samples removed from the British Experimental Pile Zero (BEPO) reactor; a low temperature, low fluence, air-cooled Materials Test Reactor which operated in the UK. Raman spectroscopy and high-resolution transmission electron microscopy (HRTEM) have been employed to characterise the effect of increased irradiation fluence on graphite microstructure and understand low temperature irradiation damage processes. HRTEM confirms the structural damage of the crystal lattice caused by irradiation attributed to a high number of defects generation with the accumulation of dislocation interactions at nano-scale range. Irradiation-induced crystal defects, lattice parameters and crystallite size compared to virgin nuclear graphite are characterised using selected area diffraction (SAD) patterns in TEM and Raman Spectroscopy. The consolidated 'D'peak in the Raman spectra confirms the formation of in-plane point defects and reflected as disordered regions in the lattice. The reduced intensity and broadened peaks of 'G' and 'D' in the Raman and HRTEM results confirm the appearance of turbulence and disordering of the basal planes whilst maintaining their coherent layered graphite structure.
Electron radiation damage mechanisms in 2D MoSe2
NASA Astrophysics Data System (ADS)
Lehnert, T.; Lehtinen, O.; Algara-Siller, G.; Kaiser, U.
2017-01-01
The contributions of different damage mechanisms in single-layer MoSe2 were studied by investigating different MoSe2/graphene heterostructures by the aberration-corrected high-resolution transmission electron microscopy (AC-HRTEM) at 80 keV. The damage cross-sections were determined by direct counting of atoms in the AC-HRTEM images. The contributions of damage mechanisms such as knock-on damage or ionization effects were estimated by comparing the damage rates in different heterostructure configurations, similarly to what has been earlier done with MoS2. The behaviour of MoSe2 was found to be nearly identical to that of MoS2, which is an unexpected result, as the knock-on mechanism should be suppressed in MoSe2 due to the high mass of Se, as compared to S.
Fabrication of mesoporous cerium dioxide films by cathodic electrodeposition.
Kim, Young-Soo; Lee, Jin-Kyu; Ahn, Jae-Hoon; Park, Eun-Kyung; Kim, Gil-Pyo; Baeck, Sung-Hyeon
2007-11-01
Mesoporous cerium dioxide (Ceria, CeO2) thin films have been successfully electrodeposited onto ITO-coated glass substrates from an aqueous solution of cerium nitrate using CTAB (Cetyltrimethylammonium Bromide) as a templating agent. The synthesized films underwent detailed characterizations. The crystallinity of synthesized CeO2 film was confirmed by XRD analysis and HR-TEM analysis, and surface morphology was investigated by SEM analysis. The presence of mesoporosity in fabricated films was confirmed by TEM and small angle X-ray analysis. As-synthesized film was observed from XRD analysis and HR-TEM image to have well-crystallized structure of cubic phase CeO2. Transmission electron microscopy and small angle X-ray analysis revealed the presence of uniform mesoporosity with a well-ordered lamellar phase in the CeO2 films electrodeposited with CTAB templating.
Shankara Narayanan, Jeyaraman; Bhuvana, Mohanlal; Dharuman, Venkataraman
2014-08-15
Cationic N-[1-(2,3-Dioleoyloxy)propyl]-N,N,N-trimethylammonium propane (DOTAP) liposome is spherically sandwiched in gold nanoparticle (abbreviated as sDOTAP-AuNP) onto a gold electrode surface. The sDOTAP-AuNP is applied for electrochemical label free DNA sensing and Escherichia coli cell transfection for the first time. Complementary target (named as hybridized), non-complementary target (un-hybridized) and single base mismatch target (named as SMM) hybridized surfaces are discriminated sensitively and selectively in presence of [Fe(CN)6](3-/4-). Double strand specific intercalator methylene blue in combination with [Fe(CN)6](3-) is used to enhance target detection limit down to femtomolar concentration. Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), differential pulse voltammetry (DPV) techniques are used for characterizing DNA sensing. High Resolution Transmission Electron Microscopy (HRTEM), Fourier Transform Infrared Spectroscopy (FTIR), Atomic Force Microscopy (AFM) and Dynamic Light Scattering (DLS) techniques are used to confirm the spherical nature of the sDOTAP-AuNP-DNA composite in solution and on the solid surface. DNA on the sDOTAP-ssDNA is transferred by potential stripping method (+0.2V (Ag/AgCl)) into buffer solution containing E. coli cells. The transfection is confirmed by the contrast images for the transfected and non-transfected cell from Confocal Laser Scanning Microscopy (CLSM). The results demonstrate effectiveness of the electrochemical DNA transfection method developed and could be applied for other cells. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Osman, Mohamed E.; Eid, May M.; Khattab, Om kolthoum H.; El-Hallouty, Salwa M.; El-Marakby, Seham M.; Mahmoud, Doaa A.
2015-09-01
Studying the effect of pH on the biosynthesis of silver/chitosan nanoparticles (Ag/CS NPs) using Aspergillus deflectus and Penicillium pinophilum as reducing agents, showed very weak surface plasmon resonance (SPR) of Ag/CS NPs at certain pH. In this paper, the effect of irradiation on the synthesis of Ag/CS at non-optimum pH was evaluated and thereby, the antimicrobial effect of the biosynthesized Ag/CS NPs. The SPR of the AgNPs was analyzed by UV-visible spectroscopy. The active groups responsible for the reduction and capping of the AgNPs were analyzed by Fourier transform infrared (FTIR), and their shape and size were determined via high resolution transmission electron microscopy (HRTEM) and the dynamic light scattering (DLS) technique. UV/Visible spectroscopy confirmed the appearance of AgNPs’ SPR. Additionally, the FTIR spectroscopy confirmed the Ag/CS NP formation. Data also revealed that increasing both the pH and irradiation dose resulted in a decrease of the Ag/CS NPs’ size. DLS and HRTEM results showed that the best pH for biosynthesis of Ag/Cs is 7.5 at 50 kGy considering the particle size and crystallinity. Also, pH 8.5 gave the best antimicrobial activity of the Ag/CS NPs from Penicillium against both S. aureus and E. coli, while 8.5 and 7.5 were the best in the same order, for Ag/CS from Aspergillus.
Catalyst-layer ionomer imaging of fuel cells
Guetaz, Laure; Lopez-Haro, M.; Escribano, S.; ...
2015-09-14
Investigation of membrane/electrode assembly (MEA) microstructure has become an essential step to optimize the MEA components and manufacturing processes or to study the MEA degradation. For these investigations, transmission electron microscopy (TEM) is a tool of choice as it provides direct imaging of the different components. TEM is then widely used for analyzing the catalyst nanoparticles and their carbon support. However, the ionomer inside the electrode is more difficult to be imaged. The difficulties come from the fact that the ionomer forms an ultrathin layer surrounding the carbon particles and in addition, these two components, having similar density, present nomore » difference in contrast. In this paper, we show how the recent progresses in TEM techniques as spherical aberration (Cs) corrected HRTEM, electron tomography and X-EDS elemental mapping provide new possibilities for imaging this ionomer network and consequently to study its degradation.« less
NASA Astrophysics Data System (ADS)
Qasim, M.; Singh, Braj R.; Naqvi, A. H.; Paik, P.; Das, D.
2015-07-01
Candida albicans is a diploid fungus that causes common infections such as denture stomatitis, thrush, urinary tract infections, etc. Immunocompromised patients can become severely infected by this fungus. Development of an effective anticandidal agent against this pathogenic fungus, therefore, will be very useful for practical application. In this work, Ag-embedded mesoporous silica nanoparticles (mSiO2@AgNPs) have successfully been synthesized and their anticandidal activities against C. albicans have been studied. The mSiO2@AgNPs nanoparticles (d ˜ 400 nm) were designed using pre-synthesized Ag nanoparticles and tetraethyl orthosilicate (TEOS) as a precursor for SiO2 in the presence of cetyltrimethyl ammonium bromide (CTAB) as an easily removable soft template. A simple, cost-effective, and environmentally friendly approach has been adopted to synthesize silver (Ag) nanoparticles using silver nitrate and leaf extract of Azadirachta indica. The mesopores, with size-equivalent diameter of the micelles (d = 4-6 nm), were generated on the SiO2 surface by calcination after removal of the CTAB template. The morphology and surface structure of mSiO2@AgNPs were characterized through x-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), particle size analysis (PSA), atomic force microscopy (AFM), field emission scanning electron microscopy (FESEM), Brunauer-Emmett-Teller (BET) and high-resolution transmission electron microscopy (HRTEM). The HRTEM micrograph reveals the well-ordered mesoporous structure of the SiO2 sphere. The antifungal activities of mSiO2@AgNPs on the C. albicans cell have been studied through microscopy and are seen to increase with increasing dose of mSiO2@AgNPs, suggesting mSiO2@AgNPs to be a potential antifungal agent for C. albicans 077.
Structural and physical properties of InAlAs quantum dots grown on GaAs
NASA Astrophysics Data System (ADS)
Vasile, B. S.; Daly, A. Ben; Craciun, D.; Alexandrou, I.; Lazar, S.; Lemaître, A.; Maaref, M. A.; Iacomi, F.; Craciun, V.
2018-04-01
Quantum dots (QDs), which have particular physical properties due to the three dimensions confinement effect, could be used in many advanced optoelectronic applications. We investigated the properties of InAlAs/AlGaAs QDs grown by molecular beam epitaxy on GaAs/Al0.5Ga0.5As layers. The optical properties of QDs were studied by low-temperature photoluminescence (PL). Two bandgap transitions corresponding to the X-Sh and X-Ph energy structure were observed. The QDs structure was investigated using high-resolution X-ray diffraction (HRXRD) and high-resolution transmission electron microscopy (HRTEM). HRXRD investigations showed that the layers grew epitaxially on the substrate, with no relaxation. HRTEM investigations confirmed the epitaxial nature of the grown structures. In addition, it was revealed that the In atoms aggregated in some prismatic regions, forming areas of high In concentration, that were still in perfect registry with the substrate.
Crystal-phase intergradation in InAs nanostructures grown by van der Waals heteroepitaxy on graphene
NASA Astrophysics Data System (ADS)
Choi, Ji Eun; Yoo, Jinkyoung; Lee, Donghwa; Hong, Young Joon; Fukui, Takashi
2018-04-01
This study demonstrates the crystal-phase intergradation of InAs nanostructures grown on graphene via van der Waals epitaxy. InAs nanostructures with diverse diameters are yielded on graphene. High-resolution transmission electron microscopy (HR-TEM) reveals two crystallographic features of (i) wurtzite (WZ)-to-zinc blende (ZB) intergradation along the growth direction of InAs nanostructures and (ii) an increased mean fraction of ZB according to diameter increment. Based on the HR-TEM observations, a crystal-phase intergradation diagram is depicted. We discuss how the formation of a WZ-rich phase during the initial growth stage is an effective way of releasing heterointerfacial stress endowed by the lattice mismatch of InAs/graphene for energy minimization in terms of less in-plane lattice mismatching between WZ-InAs and graphene. The WZ-to-ZB evolution is responsible for the attenuation of the bottom-to-top surface charge interaction as growth proceeds.
NASA Astrophysics Data System (ADS)
Wasly, H. S.; El-Sadek, M. S. Abd; Henini, Mohamed
2018-01-01
Influence of synthesis temperature and reaction time on the structural and optical properties of ZnO nanoparticles synthesized by the hydrothermal method was investigated using X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM), energy-dispersive X-ray, Fourier transform infra-red spectroscopy, and UV-visible and fluorescence spectroscopy. The XRD pattern and HR-TEM images confirmed the presence of crystalline hexagonal wurtzite ZnO nanoparticles with average crystallite size in the range 30-40 nm. Their energy gap determined by fluorescence was found to depend on the synthesis temperature and reaction time with values in the range 2.90-3.78 eV. Thermal analysis, thermogravimetric and the differential scanning calorimetry were used to study the thermal reactions and weight loss with heat of the prepared ZnO nanoparticles.
NASA Astrophysics Data System (ADS)
Jia, Huimin; He, Weiwei; Zhang, Beibei; Yao, Lei; Yang, Xiaokai; Zheng, Zhi
2018-05-01
A modified successive ionic layer adsorption and reaction (SILAR) method was developed to fabricate 2D ordered BiOX (X = CI, Br, I) nanosheet array films on FTO substrates at room temperature. The formation of BiOX films were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), UV-vis absorption spectroscopy, and X-ray photoelectron spectroscopy (XPS). The semiconductor surface states determine the type of semiconductor. Although BiOCI, BiOBr and BiOI belong to the bismuth oxyhalide semiconductor family and possess similar crystal and electronic structures, they show different conductivity types due to their respective surface states. Mott-Schottky curve results demonstrate that the BiOCl and BiOI nanosheet arrays display n-type semiconductor properties, while the BiOBr films exhibit p-type semiconductor properties. Assisted by surface photovoltage (SPV) and transient photovoltage (TPV) techniques, the photoinduced charge transfer dynamics on the surface/interface of the BiOX/FTO nanosheet films were systematically and comparatively investigated. As revealed by the results, both the separation and transfer dynamics of the photo-induced carrier are influenced by film thickness.
NASA Astrophysics Data System (ADS)
Zhao, Guoqing; Li, Caifeng; Wu, Xia; Yu, Jingang; Jiang, Xinyu; Hu, Wenjihao; Jiao, Feipeng
2018-03-01
Calcined layered double hydroxides (CLDH) are one of the remarkable photocatalysts passionately studied for photodecolorization of organic dyes. NiFe-CLDH was successfully modified by reduced graphene oxide (RGO) through a facile in situ crystallization technique. The obtained RGO/NiFe-CLDH composites were fully characterized by powder X-ray diffraction (XRD), Scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), Fourier transform infrared (FT-IR), and UV-vis diffuse reflectance spectroscopy (DRS). The results analysis indicated that RGO sheets could work as base course to prompt the growth of LDH crystallites and NiFe-LDH lamellar crystal promiscuously distributed on the sheets with a strong interplay between each other. The photocatalytic performance of RGO/NiFe-CLDH composites toward decolorization of methylene blue tightly depended on the mass fraction of RGO and calcinated temperature. At the RGO weight loading of 1%, calcination temperature of 500 °C, the photocatalytic degradation efficiency of RGO/NiFe-CLDH composites reached 93.0% within 5.0 h. The enhanced activity of RGO/NiFe-CLDH composites may be due to the concerted catalysis effect between two constituents of as-prepared composites.
Catalytic graphitization behavior of phenolic resins by addition of in situ formed nano-Fe particles
NASA Astrophysics Data System (ADS)
Rastegar, H.; Bavand-vandchali, M.; Nemati, A.; Golestani-Fard, F.
2018-07-01
This work presents the catalytic graphitization process of phenolic resins (PR's) by addition of in situ nano-Fe particles as catalyst. Pyrolysis treatments of prepared compositions including various contents of nano-Fe particles were carried out at 600-1200 °C for 3 h under reducing atmosphere and graphitization process were evaluated by different techniques such as X-Ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), High Resolution Transmission Electron Microscopy (HRTEM), Simultaneous Thermal Analysis (STA) and Raman spectroscopy that mainly performed to identify the phase and microstructural analysis, oxidation resistance and extend of graphitized carbon formation. Results indicate that, in situ graphitic carbon development were already observed after firing the samples at 800 °C for 3 h under reducing atmosphere, increasing temperature and amount of nano-Fe led to a more effective graphitization level. In addition, the different nano crystalline carbon shapes such as onion and bamboo like and carbon nanotubes (CNTs) were in situ identified during graphitization process of nano-Fe containing samples. It was suggested that formation of these different nano carbon structures related to nano-Fe catalyst behavior and the carbon shell growth.
NASA Astrophysics Data System (ADS)
Rodríguez-Galván, Andrés; Heredia, Alejandro; Amelines-Sarria, Oscar; Rivera, Margarita; Medina, Luis A.; Basiuk, Vladimir A.
2015-03-01
The attachment of silver nanoclusters (AgNCs) onto single-walled carbon nanotubes (SWNTs) for the formation of integrated fluorescence sites has attracted much attention due their potential applications as biological probes and nanovectors in theragnosis. Here, we report the preparation through assembly of fluorescent quasi 1-D nanomaterial based on SWNTs and silver nanoclusters (AgNCs) non-covalently attached to human serum albumin as biological linker. The fluorescent SWNT-AgNCs-HSA conjugates were characterized by atomic force microscopy, high-resolution transmission electron microscopy (HRTEM), high angle annular dark field scanning TEM (HAADF-STEM), fluorescent and UV-vis spectroscopy. The above techniques confirmed that AgNCs were non-covalently attached onto the external surface of SWNTs. In addition, it was observed that the modification did not affect the optical properties of the synthesized AgNCs since the absorption spectra and fluorescence under UV irradiation (λ = 365 nm) remain the same. The effect of the functionalized systems was tested on mammal red blood cells (RBCs) and it was found that their structural integrity was compromised by the conjugates, limiting their biological and medical applications.
Chemical synthesis and structural characterization of small AuZn nanoparticles
NASA Astrophysics Data System (ADS)
Juárez-Ruiz, E.; Pal, U.; Lombardero-Chartuni, J. A.; Medina, A.; Ascencio, J. A.
2007-03-01
In this paper, we report the aqueous synthesis of bimetallic Au-Zn nanoparticles of different compositions by the simultaneous reduction technique. The stability and atomic configuration of the particles are studied through high-resolution transmission electron microscopy (HRTEM) and UV-Vis optical absorption techniques. Depending on the composition, small bimetallic nanoparticles of 1 15 nm in size were obtained. The average size and size distribution of the bimetallic nanoparticles are seen to be critically dependent on the atomic ratio of the constituting elements Au and Zn. While a 1:1 atomic proportion of Au and Zn produced most stable nanoparticles of smallest average size, nanoparticles produced with higher content of either of the component elements are unstable, inducing agglomeration and coalescence to form elongated structures with uneven morphologies. Au3Zn1 nanoparticles followed a directional growth pattern, producing bimetallic nanorods with multiple crystalline domains. Interestingly, in these rod-like nanostructures, the domains are in well array of solid solution-like bimetallic and pure mono-metallic regions alternatively. Such nanostructures with uneven morphology and compositions might show distinct catalytic selectivity in chemical reactions.
Investigation of radiation hardened SOI wafer fabricated by ion-cut technique
NASA Astrophysics Data System (ADS)
Chang, Yongwei; Wei, Xing; Zhu, Lei; Su, Xin; Gao, Nan; Dong, Yemin
2018-07-01
Total ionizing dose (TID) effect on Silicon-on-Insulator (SOI) wafers due to inherent buried oxide (BOX) is a significant concern as it leads to the degradation of electrical properties of SOI-based devices and circuits, even failures of the systems associated with them. This paper reports the radiation hardening implementation of SOI wafer fabricated by ion-cut technique integrated with low-energy Si+ implantation. The electrical properties and radiation response of pseudo-MOS transistors are analyzed. The results demonstrate that the hardening process can significantly improve the TID tolerance of SOI wafers by generating Si nanocrystals (Si-NCs) within the BOX. The presence of Si-NCs created through Si+ implantation is evidenced by high-resolution transmission electron microscopy (HR-TEM). Under the pass gate (PG) irradiation bias, the anti-radiation properties of H-gate SOI nMOSFETs suggest that the radiation hardened SOI wafers with optimized Si implantation dose can perform effectively in a radiation environment. The radiation hardening process provides an excellent way to reinforce the TID tolerance of SOI wafers.
Wen, C; Ma, Y J
2018-03-01
The determination of atomic structures and further quantitative information such as chemical compositions at atomic scale for semiconductor defects or heteroepitaxial interfaces can provide direct evidence to understand their formation, modification, and/or effects on the properties of semiconductor films. The commonly used method, high-resolution transmission electron microscopy (HRTEM), suffers from difficulty in acquiring images that correctly show the crystal structure at atomic resolution, because of the limitation in microscope resolution or deviation from the Scherzer-defocus conditions. In this study, an image processing method, image deconvolution, was used to achieve atomic-resolution (∼1.0 Å) structure images of small lattice-mismatch (∼1.0%) AlN/6H-SiC (0001) and large lattice-mismatch (∼8.5%) AlSb/GaAs (001) heteroepitaxial interfaces using simulated HRTEM images of a conventional 300-kV field-emission-gun transmission electron microscope under non-Scherzer-defocus conditions. Then, atomic-scale chemical compositions at the interface were determined for the atomic intermixing and Lomer dislocation with an atomic step by analyzing the deconvoluted image contrast. Furthermore, the effect of dynamical scattering on contrast analysis was also evaluated for differently weighted atomic columns in the compositions. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghica, C., E-mail: cghica@infim.ro; Negrea, R. F.; Nistor, L. C.
2014-07-14
In this paper, we analyze the structural distortions observed by transmission electron microscopy in thin epitaxial SrRuO{sub 3} layers used as bottom electrodes in multiferroic coatings onto SrTiO{sub 3} substrates for future multiferroic devices. Regardless of the nature and architecture of the multilayer oxides deposited on the top of the SrRuO{sub 3} thin films, selected area electron diffraction patterns systematically revealed the presence of faint diffraction spots appearing in forbidden positions for the SrRuO{sub 3} orthorhombic structure. High-resolution transmission electron microscopy (HRTEM) combined with Geometric Phase Analysis (GPA) evidenced the origin of these forbidden diffraction spots in the presence ofmore » structurally disordered nanometric domains in the SrRuO{sub 3} bottom layers, resulting from a strain-driven phase transformation. The local high compressive strain (−4% ÷ −5%) measured by GPA in the HRTEM images induces a local orthorhombic to monoclinic phase transition by a cooperative rotation of the RuO{sub 6} octahedra. A further confirmation of the origin of the forbidden diffraction spots comes from the simulated diffraction patterns obtained from a monoclinic disordered SrRuO{sub 3} structure.« less
Practical aspects of the use of the X(2) holder for HRTEM-quality TEM sample preparation by FIB.
van Mierlo, Willem; Geiger, Dorin; Robins, Alan; Stumpf, Matthias; Ray, Mary Louise; Fischione, Paul; Kaiser, Ute
2014-12-01
The X(2) holder enables the effective production of thin, electron transparent samples for high-resolution transmission electron microscopy (HRTEM). Improvements to the X(2) holder for high-quality transmission electron microscopy (TEM) sample preparation are presented in this paper. We discuss the influence of backscattered electrons (BSE) from the sample holder in determining the lamella thickness in situ and demonstrate that a significant improvement in thickness determination can be achieved by comparatively simple means using the relative BSE intensity. We show (using Monte Carlo simulations) that by taking into account the finite collection angle of the electron backscatter detector, an approximately 20% underestimation of the lamella thickness in a silicon sample can be avoided. However, a correct thickness determination for light-element lamellas still remains a problem with the backscatter method; we introduce a more accurate method using the energy dispersive X-ray spectroscopy (EDX) signal for in situ thickness determination. Finally, we demonstrate how to produce a thin lamella with a nearly damage-free surface using the X(2) holder in combination with sub-kV polishing in the Fischione Instruments׳ NanoMill(®) TEM specimen preparation system. Copyright © 2014 Elsevier B.V. All rights reserved.
Cuthbert, Wokadala O; Ray, Suprakas S; Emmambux, Naushad M
2017-07-15
Nanoparticles were isolated from tef and maize starch modified with added stearic acid after pasting at 90°C for 130min. This was followed by thermo-stable alpha-amylase hydrolysis of the paste. The resultant residues were then characterized using X-ray diffraction (XRD), differential scanning calorimetry (DSC), dynamic laser scattering particle size distribution (DLPSD), atomic force microscopy (AFM) and high-resolution transmission electron microscopy (HRTEM). XRD and DSC showed that the isolated residues consisted of amylose-lipid complexes. These complexes were type II with melting temperature above 104°C. DLPSD, AFM and HRTEM showed that the isolated tef and maize starch residues consisted of nanoparticles which became more distinct with increased hydrolysis time. The isolated tef and maize nanoparticles had distinct particles of about 3-10nm and 2.4-6.7nm, respectively and the yield was about 24-30%. The results demonstrated that distinct (physically separate) nanoparticles of less than 10nm can be isolated after formation during pasting of tef and maize starch with stearic acid. The production and isolation of the nanoparticles uses green chemistry principles and these nanoparticles can be used in food and non-food systems as nanofillers. Copyright © 2017 Elsevier Ltd. All rights reserved.
Epitaxial CuInSe2 thin films grown by molecular beam epitaxy and migration enhanced epitaxy
NASA Astrophysics Data System (ADS)
Abderrafi, K.; Ribeiro-Andrade, R.; Nicoara, N.; Cerqueira, M. F.; Gonzalez Debs, M.; Limborço, H.; Salomé, P. M. P.; Gonzalez, J. C.; Briones, F.; Garcia, J. M.; Sadewasser, S.
2017-10-01
While CuInSe2 chalcopyrite materials are mainly used in their polycrystalline form to prepare thin film solar cells, epitaxial layers have been used for the characterization of defects. Typically, epitaxial layers are grown by metal-organic vapor phase epitaxy or molecular beam epitaxy (MBE). Here we present epitaxial layers grown by migration enhanced epitaxy (MEE) and compare the materials quality to MBE grown layers. CuInSe2 layers were grown on GaAs (0 0 1) substrates by co-evaporation of Cu, In, and Se using substrate temperatures of 450 °C, 530 °C, and 620 °C. The layers were characterized by high resolution X-ray diffraction (HR-XRD), high-resolution transmission electron microscopy (HRTEM), Raman spectroscopy, and atomic force microscopy (AFM). HR-XRD and HR-TEM show a better crystalline quality of the MEE grown layers, and Raman scattering measurements confirm single phase CuInSe2. AFM shows the previously observed faceting of the (0 0 1) surface into {1 1 2} facets with trenches formed along the [1 1 0] direction. The surface of MEE-grown samples appears smoother compared to MBE-grown samples, a similar trend is observed with increasing growth temperature.
NASA Astrophysics Data System (ADS)
Padmapriya, G.; Manikandan, A.; Krishnasamy, V.; Jaganathan, Saravana Kumar; Antony, S. Arul
2016-09-01
Spinel NixZn1-xFe2O4 (x = 0.0 to 1.0) nanoparticles were successfully synthesized by a simple microwave combustion method (MCM) using metal nitrates as raw materials and glycine as the fuel. The structural, morphological and opto-magnetic properties of the spinel NixZn1-xFe2O4 ferrites were determined by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), high resolution scanning electron microscopy (HR-SEM), energy dispersive X-ray (EDX) spectroscopy, high resolution transmission electron microscopy (HR-TEM), selected area electron diffraction (SAED) pattern, UV-Visible diffuse reflectance spectroscopy (DRS), photoluminescence (PL) spectroscopy and vibrating sample magnetometer (VSM). Powder XRD, and EDX analysis was confirmed the formation of pure phase of spinel ferrites. HR-SEM and HR-TEM analysis was confirmed the formation of sphere like-particle morphology of the samples with smaller agglomeration. VSM analysis clearly showed the superparamagnetic and ferromagnetic nature of the samples. The Ms value is 3.851 emu/g for undoped ZnFe2O4 sample and it increased with increase in Ni content. Photo-catalytic degradation (PCD) of methylene blue (MB) dye using the samples were carried out and observed good PCD results.
Karthikeyan, G; Sahoo, S; Nayak, G C; Das, C K
2012-03-01
Polyaniline doped by Zn2+ ions was synthesized as nanocomposites with multiwalled carbon nanotubes (MWCNT) by in-situ oxidative polymerization and investigated as electrode material for supercapacitors. The uniform coating of polyaniline on MWCNT was characterized by field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM). The effect of Zn2+ ions on nanocomposites were characterized by Fourier transform infrared (FTIR) spectroscopy. The electrochemical performances were investigated by cyclic voltammetry (CV), constant current charging/discharging cyclic test (CC) and electrochemical impedance spectroscopy (EIS) using a three-electrode system. The doped polyaniline composites show higher specific capacitance and better cyclic stability.
Kim, Gyeong-Man; Asran, Ashraf Sh; Michler, Georg H; Simon, Paul; Kim, Jeong-Sook
2008-12-01
Based on the biomimetic approaches the present work describes a straightforward technique to mimic not only the architecture (the morphology) but also the chemistry (the composition) of the lowest level of the hierarchical organization of bone. This technique uses an electrospinning (ES) process with polyvinyl alcohol (PVA) and hydroxyapatite (HAp) nanoparticles. To determine morphology, crystalline structures and thermal properties of the resulting electrospun fibers with the pure PVA and PVA/HAp nanocomposite (NC) before electrospinning various techniques were employed, including transmission electron microscopy (TEM), high-resolution TEM (HR-TEM), scanning electron microscopy (SEM), x-ray diffraction (XRD), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). In addition, FT-IR spectroscopy was carried out to analyze the complex structural changes upon undergoing electrospinning as well as interactions between HAp and PVA. The morphological and crystallographic investigations revealed that the rod-like HAp nanoparticles exhibit a nanoporous morphology and are embedded within the electrospun fibers. A large number of HAp nanorods are preferentially oriented parallel to the longitudinal direction of the electrospun PVA fibers, which closely resemble the naturally mineralized hard tissues of bones. Due to abundant OH groups present in PVA and HAp nanorods, they strongly interact via hydrogen bonding within the electrospun PVA/HAp NC fibers, which results in improved thermal properties. The unique physiochemical features of the electrospun PVA/HAp NC nanofibers prepared by the ES process will open up a wide variety of future applications related to hard tissue replacement and regeneration (bone and dentin), not limited to coating implants.
HRTEM of microcrystalline opal in chert and porcelanite from the Monterey Formation, California
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cady, S.L.; Wenk, H.R.; Downing, K.H.
Microcrystalline opal was investigated using low-dose transmission electron microscopy (TEM) methods to identify microstructural characteristics and possible phase-transformation mechanisms that accommodate silica diagenesis. High-resolution TEM (HRTEM) revealed that microcrystalline opal in opal-CT chert (>90 wt% silica) and opal-CT porcelanite (50-90 wt% silica) from the Miocene Monterey Formation of California displays various amounts of structural disorder and coherent and incoherent lamellar intergrowths. Species of microfibrous opal identified by HRTEM in early-formed opal-CT chert include length-slow opal-C and unidimensionally disordered length-slow opal-CT ({open_quotes}lussatite{close_quotes}). These fibers often display a microstructure characterized by an aperiodic distribution of highly strained domains that separate ordered domainsmore » located at discrete positions along the direction of the fiber axes. Microfibrous opal occurs as several types of fiber-aggregation forms. TEM revealed that the siliceous matrix in later-formed opal-CT porcelanite consists of equidimensional, nanometer-size opal-CT crystallites and lussatite fibers. Pseudo-orthorhombic tridymite (PO-2) was identified by HRTEM in one sample of opal-CT porcelanite. Burial diagenesis of chert and porcelanite results in the precipitation of opal-C and the epitaxial growth of opal-C domains on opal-CT substrates. Diagenetic maturation of lussatite was identified by TEM in banded opal-CT-quartz chert to occur as a result of solid-state ordering. The primary diagenetic silica phase transformations between noncrystalline opal, microcrystalline opal, and quartz occur predominantly by a series of dissolution-precipitation reactions. However, TEM showed that in banded opal-CT-quartz chert, the epitaxial growth of quartz on microfibrous opal enhances the rate of silica diagenesis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
I. J. van Rooyen; E. Olivier; J. H Neethlin
Electron microscopy examinations of selected coated particles from the first advanced gas reactor experiment (AGR-1) at Idaho National Laboratory (INL) provided important information on fission product distribution and chemical composition. Furthermore, recent research using STEM analysis led to the discovery of Ag at SiC grain boundaries and triple junctions. As these Ag precipitates were nano-sized, high resolution transmission electron microscopy (HRTEM) examination was used to provide more information at the atomic level. This paper describes some of the first HRTEM results obtained by examining a particle from Compact 4-1-1, which was irradiated to an average burnup of 19.26% fissions permore » initial metal atom (FIMA), a time average, volume-averaged temperature of 1072°C; a time average, peak temperature of 1182°C and an average fast fluence of 4.13 x 1021 n/cm2. Based on gamma analysis, it is estimated that this particle may have released as much as 10% of its available Ag-110m inventory during irradiation. The HRTEM investigation focused on Ag, Pd, Cd and U due to the interest in Ag transport mechanisms and possible correlation with Pd, Ag and U previously found. Additionally, Compact 4-1-1 contains fuel particles fabricated with a different fuel carrier gas composition and lower deposition temperatures for the SiC layer relative to the Baseline fabrication conditions, which are expected to reduce the concentration of SiC defects resulting from uranium dispersion. Pd, Ag, and Cd were found to co-exist in some of the SiC grain boundaries and triple junctions whilst U was found to be present in the micron-sized precipitates as well as separately in selected areas at grain boundaries. This study confirmed the presence of Pd both at inter- and intragranular positions; in the latter case specifically at stacking faults. Small Pd nodules were observed at a distance of about 6.5 micron from the inner PyC/SiC interface.« less
NASA Astrophysics Data System (ADS)
Kalaycı, Özlem A.; Duygulu, Özgür; Hazer, Baki
2013-01-01
This study refers to the synthesis and characterization of a novel organic/inorganic hybrid nanocomposite material containing cadmium sulfide (CdS) nanoparticles. For this purpose, a series of polypropylene (PP)-g-polyethylene glycol (PEG), PP-g-PEG comb-type amphiphilic graft copolymers were synthesized. PEGs with Mn = 400, 2000, 3350, and 8000 Da were used and the graft copolymers obtained were coded as PPEG400, PPEG2000, PPEG3350, and PPEG8000. CdS nanoparticles were formed in tetrahydrofuran solution of PP-g-PEG amphiphilic comb-type copolymer by the reaction between aqueous solutions of Na2S and Cd(CH3COO)2 simultaneously. Micelle formation of PPEG2000 comb-type amphiphilic graft copolymer in both solvent/non-solvent (petroleum ether-THF) by transmission electron microscopy (TEM). The optical characteristics, size morphology, phase analysis, and dispersion of CdS nanoparticles embedded in PPEG400, PPEG2000, PPEG3350, and PPEG8000 comb-type amphiphilic graft copolymer micelles were determined by high resolution TEM (HRTEM), energy dispersive spectroscopy, UV-vis spectroscopy, and fluorescence emission spectroscopy techniques. The aggregate size of PPEG2000-CdS is between 10 and 50 nm; however, in the case of PPEG400-CdS, PPEG3350-CdS, and PPEG8000-CdS samples, it is up to approximately 100 nm. The size of CdS quantum dots in the aggregates for PPEG2000 and PPEG8000 samples was observed as 5 nm by HRTEM analysis, and this result was also supported by UV-vis absorbance spectra and fluorescence emission spectra.
Electronic structure, magnetic and structural properties of Ni doped ZnO nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Shalendra, E-mail: shailuphy@gmail.com; Vats, Prashant; Gautam, S.
Highlights: • XRD, and HR-TEM results show the single phase nature of Ni doped ZnO nanoparticles. • dc magnetization results indicate the RT-FM in Ni doped ZnO nanoparticles. • Ni L{sub 3,2} edge NEXAFS spectra infer that Ni ions are in +2 valence state. • O K edge NEXAFS spectra show that O vacancy increases with Ni doping in ZnO. - Abstract: We report structural, magnetic and electronic structural properties of Ni doped ZnO nanoparticles prepared by auto-combustion method. The prepared nanoparticles were characterized by using X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM), near edge X-ray absorption finemore » structure (NEXAFS) spectroscopy, and dc magnetization measurements. The XRD and HR-TEM results indicate that Ni doped ZnO nanoparticles have single phase nature with wurtzite lattice and exclude the presence of secondary phase. NEXAFS measurements performed at Ni L{sub 3,2}-edges indicates that Ni ions are in +2 valence state and exclude the presence of Ni metal clusters. O K-edge NEXAFS spectra indicate an increase in oxygen vacancies with Ni-doping, while Zn L{sub 3,2}-edge show the absence of Zn-vacancies. The magnetization measurements performed at room temperature shows that pure and Ni doped ZnO exhibits ferromagnetic behavior.« less
NASA Astrophysics Data System (ADS)
Demchenko, I. N.; Lawniczak-Jablonska, K.; Kret, S.; Novikov, A. V.; Laval, J.-Y.; Zak, M.; Szczepanska, A.; Yablonskiy, A. N.; Krasilnik, Z. F.
2007-03-01
The local atomic structure of GeSi self-assembled islands buried in a silicon matrix strongly influences the optical properties of such systems. In the present paper this structure was determined by x-ray absorption fine-structure (XAFS) spectroscopy and high resolution transmission electron microscopy (HRTEM) and used to build a schematic description of the band structure model. Quantitative analysis of the extended XAFS (EXAFS) spectrum was performed for three coordination shells around the Ge absorbing atom with multiple scattering taken into account. It was proved that the coordination number of elements in an alloy resulting from EXAFS analysis for all three coordination spheres (i.e. 'mixing degree' parameters) cannot be taken as the concentration of alloy but can be used together with a proper model of the alloy unit cell to calculate a realistic concentration. The fraction of Ge calculated in this way is consistent with HRTEM results. The found model of the unit cell was used to generate a x-ray absorption near edge structure spectrum by ab initio calculations. This approach yielded a spectrum in good agreement with the experimental one. The information gained from XAFS and HRTEM was then used for calculation of the band structure diagram. Results of the calculation are discussed and compared with the experimental photoluminescence spectrum.
Robust graphene membranes in a silicon carbide frame.
Waldmann, Daniel; Butz, Benjamin; Bauer, Sebastian; Englert, Jan M; Jobst, Johannes; Ullmann, Konrad; Fromm, Felix; Ammon, Maximilian; Enzelberger, Michael; Hirsch, Andreas; Maier, Sabine; Schmuki, Patrik; Seyller, Thomas; Spiecker, Erdmann; Weber, Heiko B
2013-05-28
We present a fabrication process for freely suspended membranes consisting of bi- and trilayer graphene grown on silicon carbide. The procedure, involving photoelectrochemical etching, enables the simultaneous fabrication of hundreds of arbitrarily shaped membranes with an area up to 500 μm(2) and a yield of around 90%. Micro-Raman and atomic force microscopy measurements confirm that the graphene layer withstands the electrochemical etching and show that the membranes are virtually unstrained. The process delivers membranes with a cleanliness suited for high-resolution transmission electron microscopy (HRTEM) at atomic scale. The membrane, and its frame, is very robust with respect to thermal cycling above 1000 °C as well as harsh acidic or alkaline treatment.
Formation of MoS2 inorganic fullerenes (IFs) by the reaction of MoO3 nanobelts and S.
Li, Xiao Lin; Li, Ya Dong
2003-06-16
The reaction of MoO3 and S at temperatures higher than 300 degrees C in an argon atmosphere provides a convenient and effective method for the synthesis of MoS2 nanocrystalline substances. MoS2 nanotubes and fullerene-like nanoparticles have been obtained by the reaction at 850 degrees C under well-controlled conditions. The influences of reaction temperature and duration were carefully investigated in this paper. All of the nanostructures were characterized by Xray powder diffraction (XRD), transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM). A stepwise reaction model and rolling mechanism were proposed based on the experimental results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamad, Syed; Nageswara Rao, S. V. S.; Pathak, A. P.
2015-12-15
We report results from our studies on the fabrication and characterization of silicon (Si) nanoparticles (NPs) and nanostructures (NSs) achieved through the ablation of Si target in four different liquids using ∼2 picosecond (ps) pulses. The consequence of using different liquid media on the ablation of Si target was investigated by studying the surface morphology along with material composition of Si based NPs. The recorded mean sizes of these NPs were ∼9.5 nm, ∼37 nm, ∼45 nm and ∼42 nm obtained in acetone, water, dichloromethane (DCM) and chloroform, respectively. The generated NPs were characterized by selected area electron diffraction (SAED),more » high resolution transmission microscopy (HRTEM), Raman spectroscopic techniques and Photoluminescence (PL) studies. SAED, HRTEM and Raman spectroscopy data confirmed that the material composition was Si NPs in acetone, Si/SiO{sub 2} NPs in water, Si-C NPs in DCM and Si-C NPs in chloroform and all of them were confirmed to be polycrystalline in nature. Surface morphological information of the fabricated Si substrates was obtained using the field emission scanning electron microscopic (FESEM) technique. FESEM data revealed the formation of laser induced periodic surface structures (LIPSS) for the case of ablation in acetone and water while random NSs were observed for the case of ablation in DCM and chloroform. Femtosecond (fs) nonlinear optical properties and excited state dynamics of these colloidal Si NPs were investigated using the Z-scan and pump-probe techniques with ∼150 fs (100 MHz) and ∼70 fs (1 kHz) laser pulses, respectively. The fs pump-probe data obtained at 600 nm consisted of single and double exponential decays which were tentatively assigned to electron-electron collisional relaxation (<1 ps) and non-radiative transitions (>1 ps). Large third order optical nonlinearities (∼10{sup −14} e.s.u.) for these colloids have been estimated from Z-scan data at an excitation wavelength of 680 nm suggesting that the colloidal Si NPs find potential applications in photonic devices.« less
Encapsulation efficiency of CdSe/ZnS quantum dots by liposomes determined by thermal lens microscopy
Batalla, Jessica; Cabrera, Humberto; San Martín-Martínez, Eduardo; Korte, Dorota; Calderón, Antonio; Marín, Ernesto
2015-01-01
In this study the encapsulation of core shell carboxyl CdSe/ZnS quantum dots (QDs) by phospholipids liposome complexes is presented. It makes the quantum dots water soluble and photo-stable. Fluorescence self-quenching of the QDs inside the liposomes was observed. Therefore, the thermal lens microscopy (TLM) was found to be an useful tool for measuring the encapsulation efficiency of the QDs by the liposomes, for which an optimum value of 36% was determined. The obtained limit of detection (LOD) for determining QDs concentration by TLM was 0.13 nM. Moreover, the encapsulated QDs showed no prominent cytotoxicity toward Breast cancer cells line MDA-MB-231. This study was supported by UV-visible spectroscopy, high resolution transmission electron microscopy (HRTEM) and dynamic light scattering measurements (DLS). PMID:26504640
The evolvement of pits and dislocations on TiO{sub 2}-B nanowires via oriented attachment growth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao Bin; Chen Feng, E-mail: Fengchen@ecust.edu.c; Qu Wenwu
2009-08-15
TiO{sub 2}-B nanowires were synthesized by an ion exchanging-thermal treatment. The unique morphology of pits and dislocations interspersed on TiO{sub 2}-B nanowires were firstly characterized and studied by high-resolution transmission electron microscopy (HRTEM). Oriented attachment is suggested as an important growth mechanism in the evolvement of pits and dislocations on TiO{sub 2}-B nanowires. Lattice shears and fractures were originally formed during the ion exchanging process of the sodium titanate nanowires, which resulted in the formation of primary crystalline units and vacancies in the layered hydrogen titanate nanowires. Then the (110) lattice planes of TiO{sub 2}-B grown in [110] direction ismore » faster than the other lattice planes, which caused the exhibition of long dislocations on TiO{sub 2}-B nanowires. The enlargement of the vacancies, which was caused by the rearrangement of primary crystalline units, should be the reason of the formation of pits. Additionally, the transformation from TiO{sub 2}-B to anatase could be also elucidated by oriented attachment mechanism. - Graphical abstract: The unique morphology of pits and dislocations on TiO{sub 2}-B nanowires shown in high-resolution transmission electron microscopy (HRTEM) and a proposed evolvement mechanism of pits and dislocations on TiO{sub 2}-B nanowires.« less
NASA Astrophysics Data System (ADS)
Dou, Peng; Kimura, Akihiko; Kasada, Ryuta; Okuda, Takanari; Inoue, Masaki; Ukai, Shigeharu; Ohnuki, Somei; Fujisawa, Toshiharu; Abe, Fujio; Jiang, Shan; Yang, Zhigang
2017-03-01
The nanoparticles in an Al-alloyed high-Cr oxide dispersion strengthened (ODS) ferritic steel with Hf addition, i.e., SOC-16 (Fe-15Cr-2W-0.1Ti-4Al-0.62Hf-0.35Y2O3), have been examined by transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). Relative to an Al-alloyed high-Cr ODS ferritic steel without Hf addition, i.e., SOC-9 (Fe-15.5Cr-2W-0.1Ti-4Al-0.35Y2O3), the dispersion morphology and coherency of the oxide nanoparticles in SOC-16 were significantly improved. Almost all the small nanoparticles (diameter <10 nm) in SOC-16 were found to be consistent with cubic Y2Hf2O7 oxides with the anion-deficient fluorite structure and coherent with the bcc steel matrix. The larger particles (diameter >10 nm) were also mainly identified as cubic Y2Hf2O7 oxides with the anion-deficient fluorite structure. The results presented here are compared with those of SOC-9 with a brief discussion of the underlying mechanisms of the unusual thermal and irradiation stabilities of the oxides as well as the superior strength, excellent irradiation tolerance and extraordinary corrosion resistance of SOC-16.
DOE Office of Scientific and Technical Information (OSTI.GOV)
James C. Hower; Uschi M. Graham; Alan Dozier
2008-11-15
A combination of high-resolution transmission electron microscopy, scanning transmission electron microscopy, and electron energy-loss spectroscopy (HRTEM-STEM-EELS) was used to study fly ashes produced from the combustion of an eastern Kentucky coal at a southeastern-Kentucky wall-fired pulverized coal utility boiler retrofitted for low-NOx combustion. Fly ash was collected from individual hoppers in each row of the electrostatic precipitators (ESP) pollution-control system, with multiple hoppers sampled within each of the three rows. Temperatures within the ESP array range from about 200 {degree}C at the entry to the first row to <150{degree}C at the exit of the third row. HRTEM-STEM-EELS study demonstrated themore » presence of nanoscale (10 s nm) C agglomerates with typical soot-like appearance and others with graphitic fullerene-like nanocarbon structures. The minute carbon agglomerates are typically juxtaposed and intergrown with slightly larger aluminosilicate spheres and often form an ultrathin halo or deposit on the fly ash particles. The STEM-EELS analyses revealed that the nanocarbon agglomerates host even finer (<3 nm) metal and metal oxide particles. Elemental analysis indicated an association of Hg with the nanocarbon. Arsenic, Se, Pb, Co, and traces of Ti and Ba are often associated with Fe-rich particles within the nanocarbon deposits. 57 refs., 5 figs.« less
Imaging active topological defects in carbon nanotubes
NASA Astrophysics Data System (ADS)
Suenaga, Kazu; Wakabayashi, Hideaki; Koshino, Masanori; Sato, Yuta; Urita, Koki; Iijima, Sumio
2007-06-01
A single-walled carbon nanotube (SWNT) is a wrapped single graphene layer, and its plastic deformation should require active topological defects-non-hexagonal carbon rings that can migrate along the nanotube wall. Although in situ transmission electron microscopy (TEM) has been used to examine the deformation of SWNTs, these studies deal only with diameter changes and no atomistic mechanism has been elucidated experimentally. Theory predicts that some topological defects can form through the Stone-Wales transformation in SWNTs under tension at 2,000 K, and could act as a dislocation core. We demonstrate here, by means of high-resolution (HR)-TEM with atomic sensitivity, the first direct imaging of pentagon-heptagon pair defects found in an SWNT that was heated at 2,273 K. Moreover, our in situ HR-TEM observation reveals an accumulation of topological defects near the kink of a deformed nanotube. This result suggests that dislocation motions or active topological defects are indeed responsible for the plastic deformation of SWNTs.
Structural characterization of nano-oxide layers in PtMn based specular spin valves
NASA Astrophysics Data System (ADS)
Zhou, Min; Chen, Lifan; Diao, Zhitao; Park, Chang-Man; Huai, Yiming
2005-05-01
A systematic structure characterization of nano-oxide layers (NOLs) and specular spin valves using x-ray diffraction and high-resolution transmission electron microscopy (HRTEM) has been studied. High-angle x-ray diffraction data show almost identical fcc textures for both natural and plasma NOL spin-valves. Low-angle x-ray reflectivity spectrum shows more deteriorated Kiessig fringes at high incident angles for natural oxide sample, indicating rougher interfaces in natural oxidation than in plasma oxidation. Oxygen exposure plays an important role in NOLs process. Fabricating NOLs without any crystal structure degradation is critical to obtain high MR ratio. HRTEM reveals that oxide clusters mixing with insufficiently oxidized CoFe layers prevailed in natural NOL, and the natural oxidation was inhomogeneous. In contrast, plasma NOL has a thinner, more homogeneously oxidized CoFe layers with sharp interfaces. In plasma NOLs, the structures still maintain CoFe crystal structure. The structures and magnetic correlation of the NOL specular spin valves are discussed.
NASA Technical Reports Server (NTRS)
Pujar, Vijay V.; Cawley, James D.; Levine, S. (Technical Monitor)
2000-01-01
Earlier results from computer simulation studies suggest a correlation between the spatial distribution of stacking errors in the Beta-SiC structure and features observed in X-ray diffraction patterns of the material. Reported here are experimental results obtained from two types of nominally Beta-SiC specimens, which yield distinct XRD data. These samples were analyzed using high resolution transmission electron microscopy (HRTEM) and the stacking error distribution was directly determined. The HRTEM results compare well to those deduced by matching the XRD data with simulated spectra, confirming the hypothesis that the XRD data is indicative not only of the presence and density of stacking errors, but also that it can yield information regarding their distribution. In addition, the stacking error population in both specimens is related to their synthesis conditions and it appears that it is similar to the relation developed by others to explain the formation of the corresponding polytypes.
Effect of cobalt doping on structural and optical properties of ZnO nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, J.; Chanda, A., E-mail: anupamamatsc@gmail.com; Gupta, S.
Cobalt doped ZnO nanoparticles of uniform sizes were prepared by a chemical method using ZnCl{sub 2} and NaOH as the source materials. The formation of Co-doped ZnO nanoparticles was confirmed by transmission electron microscopy (TEM), high resolution TEM (HR-TEM) and selected area electron diffraction (SAED) studies. The optical properties of obtained products were examined using room temperature UV-visible and FTIR spectroscopy. SAED of cobalt doped ZnO nanoparticles shows homogeneous distribution of nanoparticles with hexagonal structure. The HRTEM image of the Co-doped ZnO nanoparticles reveals a clear lattice spacing of 0.52 nm corresponding to the interplanar spacing of wurtzite ZnO (002) plane.more » The absorption band at 857 cm{sup −1} in FTIR spectra confirmed the tetrahedral coordination of Zn and a shift of absorption peak to shorter wavelength region and decrease in absorbance with Co doping.is observed in UV-Visible spectra.« less
Crystal Structure Variations of Sn Nanoparticles upon Heating
NASA Astrophysics Data System (ADS)
Mittal, Jagjiwan; Lin, Kwang-Lung
2018-04-01
Structural changes in Sn nanoparticles during heating below the melting point have been investigated using differential scanning calorimetry (DSC), x-ray diffraction (XRD) analysis, electron diffraction (ED), and high-resolution transmission electron microscopy (HRTEM). DSC revealed that the heat required to melt the nanoparticles (28.43 J/g) was about half compared with Sn metal (52.80 J/g), which was attributed to the large surface energy contribution for the nanoparticles. ED and XRD analyses of the Sn nanoparticles revealed increased intensity for crystal planes having large interplaner distances compared with regular crystal planes with increasing heat treatment temperature (HTT). HRTEM revealed an increase in interlayer spacing at the surface and near joints between nanoparticles with the HTT, leading to an amorphous structure of nanoparticles at the surface at 220°C. These results highlight the changes that occur in the morphology and crystal structure of Sn nanoparticles at the surface and in the interior with increase of the heat treatment temperature.
Spectroscopic investigations on the orientation of 1,4-dibromonaphthalene on silver nanoparticles.
Geetha, K; Umadevi, M; Sathe, G V; Erenler, R
2013-12-01
Silver nanoparticles (Ag NPs) have been prepared by solution combustion method with glycine as fuel. Silver nanoparticles were characterized by X-Ray Diffraction (XRD), High Resolution Transmission Electron Microscopy (HRTEM) and UV-visible spectroscopy. The prepared silver nanoparticles exhibit cubic crystalline structure with grain size of 59 nm. HRTEM image shows that the silver nanoparticles have strain and four-fold symmetry formed by twinning in the crystal structure. The optical adsorption spectrum shows that the surface plasmon resonance peak of silver is observed at 380 nm. The orientation of 1,4-dibromonaphthlaene (1,4-DBrN) on silver nanoparticles has been inferred from nRs and SERS spectral features. The absence of a C-H stretching vibrations, the observed high intense C-H out-of-plane bending modes and high intense C-Br stretching vibration suggest that the 1,4-DBrN molecule may be adsorbed in a 'stand-on' orientation to the surface. Copyright © 2013 Elsevier B.V. All rights reserved.
Bottom-up strategies for the assembling of magnetic systems using nanoclusters
NASA Astrophysics Data System (ADS)
Dupuis, V.; Hillion, A.; Robert, A.; Loiselet, O.; Khadra, G.; Capiod, P.; Albin, C.; Boisron, O.; Le Roy, D.; Bardotti, L.; Tournus, F.; Tamion, A.
2018-05-01
In the frame of the 20th Anniversary of the Journal of Nanoparticle Research (JNR), our aim is to start from the historical context 20 years ago and to give some recent results and perspectives concerning nanomagnets prepared from clusters preformed in the gas phase using the low-energy cluster beam deposition (LECBD) technique. In this paper, we focus our attention on the typical case of Co clusters embedded in various matrices to study interface magnetic anisotropy and magnetic interactions as a function of volume concentrations, and on still current and perspectives through two examples of binary metallic 3d-5d TM (namely CoPt and FeAu) cluster assemblies to illustrate size-related and nanoalloy phenomena on magnetic properties in well-defined mass-selected clusters. The structural and magnetic properties of these cluster assemblies were investigated using various experimental techniques that include high-resolution transmission electron microscopy (HRTEM), superconducting quantum interference device (SQUID) magnetometry, and synchrotron techniques such as extended X-ray absorption fine structure (EXAFS) and X-ray magnetic circular dichroism (XMCD). Depending on the chemical nature of both NPs and matrix, we observe different magnetic responses compared to their bulk counterparts. In particular, we show how finite size effects (size reduction) enhance their magnetic moment and how specific relaxation in nanoalloys can impact their magnetic anisotropy.
Mechanical properties of carbon nanotubes
NASA Astrophysics Data System (ADS)
Salvetat, J.-P.; Bonard, J.-M.; Thomson, N. H.; Kulik, A. J.; Forró, L.; Benoit, W.; Zuppiroli, L.
A variety of outstanding experimental results on the elucidation of the elastic properties of carbon nanotubes are fast appearing. These are based mainly on the techniques of high-resolution transmission electron microscopy (HRTEM) and atomic force microscopy (AFM) to determine the Young's moduli of single-wall nanotube bundles and multi-walled nanotubes, prepared by a number of methods. These results are confirming the theoretical predictions that carbon nanotubes have high strength plus extraordinary flexibility and resilience. As well as summarising the most notable achievements of theory and experiment in the last few years, this paper explains the properties of nanotubes in the wider context of materials science and highlights the contribution of our research group in this rapidly expanding field. A deeper understanding of the relationship between the structural order of the nanotubes and their mechanical properties will be necessary for the development of carbon-nanotube-based composites. Our research to date illustrates a qualitative relationship between the Young's modulus of a nanotube and the amount of disorder in the atomic structure of the walls. Other exciting results indicate that composites will benefit from the exceptional mechanical properties of carbon nanotubes, but that the major outstanding problem of load transfer efficiency must be overcome before suitable engineering materials can be produced.
NASA Astrophysics Data System (ADS)
Qasim, Mohd; Asghar, Khushnuma; Dharmapuri, Gangappa; Das, D.
2017-09-01
In the present work, multifunctional Ni0.5Zn0.5Fe2O4@albumen (NZF@Alb) and doxorubicin-loaded Ni0.5Zn0.5Fe2O4@albumen (NZF@Alb-Dox) core-shell nanoparticles have been prepared by a green and simple method using inexpensive chicken egg albumen and have been characterized for different physiochemical properties. The structural, morphological, thermal, and magnetic properties of the prepared nanoparticles have been investigated by an x-ray diffractometer, high-resolution transmission electron microscopy (HRTEM), field emission scanning electron microscopy, Fourier-transformed infrared, thermogravimetric analysis, and vibrating sample magnetometer techniques. Superparamagnetic Ni0.5Zn0.5Fe2O4 nanoparticles (NZF NPs) with the mean size ˜20 nm were coated with albumen matrix by an ultrasonication process. Inverse fast Fourier transform-assisted HRTEM micrographs and FTIR analysis revealed the coating of amorphous albumen on crystalline NZF NPs. NZF@Alb and NZF@Alb-Dox NPs have the mean size (D50) of ˜100 nm, good stability, and magnetic controllability. Magnetic measurements (field (H)-dependent magnetization (M)) show all samples to be super-paramagnetic in nature. Biocompatibilities of the NZF and NZF@Alb NPs were confirmed by in vitro 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay against RAW 264.7 cells. NZF@Alb NPs have been found to be more biocompatible than bare NZF. In Vitro Dox release behavior from NZF@Alb-Dox NPs has been studied at pH 7.4 and 5, and a sustained and pH-dependent drug release profile were observed. In vitro cytotoxicity or anticancer activity of the blank NZF@Alb NPs, free Dox, and NZF@Alb-Dox NPs against HeLa cells (cancer cell line) were also examined by MTT assay. The obtained results suggest that this scalable egg-albumen-based magnetic nanoformulation is suitable for targeted drug delivery applications. Thus, the present study could be extremely useful for the advancement of albumin-based nanocarrier design and development for biomedical applications such as targeted and controlled delivery of anticancer drugs.
Dong, Sheying; Huang, Guiqi; Su, Meiling; Huang, Tinglin
2015-10-14
We developed two simple, fast, and environmentally friendly methods using carbon aerogel (CA) and magnetic CA (mCA) materials as sorbents for micro-solid-phase extraction (μ-SPE) and magnetic solid-phase extraction (MSPE) techniques. The material performances such as adsorption isotherm, adsorption kinetics, and specific surface area were discussed by N2 adsorption-desorption isotherm measurements, ultraviolet and visible (UV-vis) spectrophotometry, scanning electron microscopy (SEM), and high resolution transmission electron microscopy (HR-TEM). The experimental results proved that the heterogeneities of CA and mCA were well modeled with the Freundlich isotherm model, and the sorption process well followed the pseudo-second-order rate equation. Moreover, plant growth regulators (PGRs) such as kinetin (6-KT), 6-benzylaminopurine (6-BA), 2,4-dichlorophenoxyacetic acid (2,4-D), and uniconazole (UN) in a reservoir raw water sample were selected as the evaluation of applicability for the proposed μ-SPE and MSPE techniques using high performance liquid chromatography (HPLC). The experimental conditions of two methods such as the amount of sorbent, extraction time, pH, salt concentration, and desorption conditions were studied. Under the optimized conditions, two extraction methods provided high recoveries (89-103%), low the limits of detection (LODs) (0.01-0.2 μg L(-1)), and satisfactory analytical features in terms of precision (relative standard deviation, RSD, 1.7-5.1%, n=3). This work demonstrates the feasibility and the potential of CA and mCA materials as sorbents for μ-SPE and MSPE techniques. Besides, it also could serve as a basis for future development of other functional CAs in pretreatment technology and make them valuable for analysis of pollutants in environmental applications.
Synthesis, optical properties and efficient photocatalytic activity of CdO/ZnO hybrid nanocomposite
NASA Astrophysics Data System (ADS)
Reddy, Ch Venkata; Babu, B.; Shim, Jaesool
2018-01-01
Pure CdO, ZnO and CdO/ZnO hybrid nanocomposite photocatalyst were synthesized using simple co-precipitation technique and studied in detail. The synthesized photocatalysts were characterized using several measurements such as X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), surface analysis (BET), diffuse reflectance UV-vis spectroscopy, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, FT-IR, TG-DTA and photoluminescence (PL). The XRD results revealed that the hexagonal and cubic crystal structure of CdO and ZnO nanoparticles. The optical response for the composite showed the presence of separate absorption signature for CdO and ZnO in the visible region at about 510 nm and 360 nm respectively. The CdO/ZnO hybrid nanocomposite photocatalyst exhibited enhanced photocatalytic degradation activity compared to pristine CdO and ZnO. The enhanced photocatalytic activity may be due to the higher specific surface area and significantly reduced the electron-hole recombination rate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Daiwon; Jampani, Prashanth H.; Jayakody, J. R. P.
Chloroamide precursors generated via a simple two-step ammonolysis reaction of transition metal chloride in the liquid phase at room temperature were heat treated in ammonia at moderate temperature to yield nano-sized VN crystallites. Grain growth inhibited by lowering the synthesis temperature (≈400°C) yielded agglomerated powders of spherical crystallites of cubic phase of VN with particle sizes as small as 6nm in diameter. X-ray diffraction, FTIR, mass spectroscopy (MS), and nuclear magnetic resonance (NMR) spectroscopy assessed the ammonolysis and nitridation reaction of the VCl 4-NH 3 system. X-ray Rietveld refinement, the BET technique and high-resolution transmission microscopy (HRTEM), energy dispersive x-raymore » (EDX) and thermogravimetric analysis (TGA) helped assess the crystallographic and microstructural nature of the VN nanocrystals. The surface chemistry and redox reaction leading to the gravimetric pseudo-capacitance value of (≈855 F/g) measured for the VN nanocrystals was determined and validated using FTIR, XPS and cyclic voltammetry analyses.« less
NASA Astrophysics Data System (ADS)
Madrid, Juan Antonio; Lanzón, Marcos
2017-12-01
Adequate synthetic methods to obtain pure Ca(OH)2 nanoparticles are scarcely documented in the literature. This paper presents a complete methodology to obtain highly-pure Ca(OH)2 nanoparticles that are appropriate for strengthening heritage materials. The precipitation synthesis was operated in controlled atmosphere to avoid carbonation by atmospheric CO2. A complete purification method was developed to eliminate the sodium chloride generated in the reaction. Several analytical techniques, such as electrical conductivity, pH, ion chromatography, X-ray diffraction (XRD) and thermogravimetric analysis coupled to mass spectrometry (TGA-MS) were used to analyse both the aqueous medium and solid phase. The amount of material obtained in the synthesis (yield) was quantified throughout the purification procedure. The influence of temperature on the nanoparticles' size and stability was studied by transmission electron microscopy (HRTEM) and sedimentation tests (light scattering). It was found that the synthesis yielded high-purity nanoparticles, whose morphological features were greatly affected by the reaction temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arul, K. Thanigai; Kolanthai, Elayaraja; Manikandan, E.
Highlights: • Rapid technique to synthesize nanorods of magnesium ion incorporated hydroxyapatite. • Enhanced electrical and mechanical properties. • Improved photoluminescence and wettability on magnesium incorporation. • Increased in vitro bioactivity. - Abstract: Nanocrystalline hydroxyapatite (HAp-Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2,} 35 nm) and magnesium (Mg{sup 2+}) ion incorporated HAp were synthesized by microwave technique. XRD (X-ray diffraction), FTIR (Fourier transform infrared spectroscopy), FE-HRTEM (Field emission high resolution transmission electron microscopy), DLS (dynamic light scattering), EDXRF (energy dispersive X-ray fluorescence spectrometry), microhardness, permittivity and alternating current (ac) conductivity, besides the PL (photoluminescence), wettability and in vitro bioactivity of the samples weremore » analysed. EDXRF revealed the Mg{sup 2+} ion incorporation in HAp. The Mg{sup 2+} ion incorporation did not alter the phase but drastically reduced the crystallite size and particle size respectively by 48% and 32%. There was enhanced microhardness (24%) at low level (<13%) and decreased zeta potential of Mg{sup 2+} ion incorporation. The permittivity, ac conductivity, PL, wettability and in vitro bioactivity were enhanced on Mg{sup 2+} ion incorporation. These properties enable them to be a promising candidate for wound healing, bone replacement applications and also as a biosensor.« less
NASA Technical Reports Server (NTRS)
Sola, Francisco; Xia, Zhenhai; Lebrion-Colon, Marisabel; Meador, Michael A.
2012-01-01
The physics of HRTEM image formation and electron diffraction of SWCNT in a polymer matrix were investigated theoretically on the basis of the multislice method, and the optics of a FEG Super TWIN Philips CM 200 TEM operated at 80 kV. The effect of nanocomposite thickness on both image contrast and typical electron diffraction reflections of nanofillers were explored. The implications of the results on the experimental applicability to study dispersion, chirality and diameter of nanofillers are discussed.
Fabrication and structure characterization of te butterfly nanostructures.
Wong, Tailun; She, Guangwei; Cheng, Chun; Li, Wei; Shi, Wensheng; Zhang, Xiaohong; Wang, Ning
2011-12-01
Te nanowires and butterfly nanostructures have been fabricated by template-free electrodeposition (TFED) in aqueous solution. By high-resolution transmission electron microscopy (HRTEM) study, the favored growth directions of the nanowires and the wings of the butterfly nanostructures were determined to be along the [0001] direction of trigonal Te, and the twinning plane of the butterfly nanostructures was (11-22). The cathodoluminescence measurements carried out at different positions of the butterfly nanostructure indicated that the twin boundaries influenced the photoemission efficiency.
Electron microscopy study of gold nanoparticles deposited on transition metal oxides.
Akita, Tomoki; Kohyama, Masanori; Haruta, Masatake
2013-08-20
Many researchers have investigated the catalytic performance of gold nanoparticles (GNPs) supported on metal oxides for various catalytic reactions of industrial importance. These studies have consistently shown that the catalytic activity and selectivity depend on the size of GNPs, the kind of metal oxide supports, and the gold/metal oxide interface structure. Although researchers have proposed several structural models for the catalytically active sites and have identified the specific electronic structures of GNPs induced by the quantum effect, recent experimental and theoretical studies indicate that the perimeter around GNPs in contact with the metal oxide supports acts as an active site in many reactions. Thus, it is of immense importance to investigate the detailed structures of the perimeters and the contact interfaces of gold/metal oxide systems by using electron microscopy at an atomic scale. This Account describes our investigation, at the atomic scale using electron microscopy, of GNPs deposited on metal oxides. In particular, high-resolution transmission electron microscopy (HRTEM) and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) are valuable tools to observe local atomic structures, as has been successfully demonstrated for various nanoparticles, surfaces, and material interfaces. TEM can be applied to real powder catalysts as received without making special specimens, in contrast to what is typically necessary to observe bulk materials. For precise structure analyses at an atomic scale, model catalysts prepared by using well-defined single-crystalline substrates are also adopted for TEM observations. Moreover, aberration-corrected TEM, which has high spatial resolution under 0.1 nm, is a promising tool to observe the interface structure between GNPs and metal oxide supports including oxygen atoms at the interfaces. The oxygen atoms in particular play an important role in the behavior of gold/metal oxide interfaces, because they may participate in catalytic reaction steps. Detailed information about the interfacial structures between GNPs and metal oxides provides valuable structure models for theoretical calculations which can elucidate the local electronic structure effective for activating a reactant molecule. Based on our observations with HRTEM and HAADF-STEM, we report the detailed structure of gold/metal oxide interfaces.
RBS Depth Profiling Analysis of (Ti, Al)N/MoN and CrN/MoN Multilayers.
Han, Bin; Wang, Zesong; Devi, Neena; Kondamareddy, K K; Wang, Zhenguo; Li, Na; Zuo, Wenbin; Fu, Dejun; Liu, Chuansheng
2017-12-01
(Ti, Al)N/MoN and CrN/MoN multilayered films were synthesized on Si (100) surface by multi-cathodic arc ion plating system with various bilayer periods. The elemental composition and depth profiling of the films were investigated by Rutherford backscattering spectroscopy (RBS) using 2.42 and 1.52 MeV Li 2+ ion beams and different incident angles (0°, 15°, 37°, and 53°). The microstructures of (Ti, Al)N/MoN multilayered films were evaluated by X-ray diffraction. The multilayer periods and thickness of the multilayered films were characterized by scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HR-TEM) and then compared with RBS results.
Synthesis of TiO2 nanoparticles by hydrolysis and peptization of titanium isopropoxide solution
NASA Astrophysics Data System (ADS)
Mahata, S.; Mahato, S. S.; Nandi, M. M.; Mondal, B.
2012-07-01
Here we report the synthesis and characterization of a stable suspension of modified titania nanoparticles. Phase-pure TiO2 nanocrystallites with narrow particle-size distributions were selectively prepared by hydrolysis-peptization of modified alkoxide followed by hydrothermal treatment. Autoclaving modified TiO2 in the presence of HNO3 as cooperative catalysts led to the formation of crystalline TiO2 with narrow-sized distribution. Following the hydrothermal treatment at 150°C, X-ray diffraction shows the particles to be exclusively anatase. Synthesized powder is characterized by FT-IR, scanning electron microscopy (FESEM) and transmission electron microscopy (HRTEM). The photocatalytic activity in the degradation of orange-II is quite comparable to good anatase and rutile nanocrystallites.
NASA Astrophysics Data System (ADS)
Suganya, K. S. Uma; Govindaraju, K.; Kumar, V. Ganesh; Dhas, T. Stalin; Karthick, V.; Singaravelu, G.; Elanchezhiyan, M.
2015-06-01
Silver nanoparticles (AgNPs) are synthesized using biological sources due to its high specificity in biomedical applications. Herein, we report the size and shape controlled synthesis of AgNPs using the aqueous extract of blue green alga, Spirulina platensis. Size, shape and elemental composition of AgNPs were characterized using UV-vis spectroscopy, Fluorescence spectroscopy, FT-IR (Fourier Transform-Infrared Spectroscopy), FT-RS (Fourier Transform-Raman Spectroscopy), SEM-EDAX (Scanning Electron Microscopy-Energy Dispersive X-ray analysis) and HR-TEM (High Resolution Transmission Electron Microscopy). AgNPs were stable, well defined and monodispersed (spherical) with an average size of 6 nm. The synthesized AgNPs were tested for its antibacterial potency against isolates obtained from HIV patients.
Colloidal synthesis of monodispersed ZnS and CdS nanocrystals from novel zinc and cadmium complexes
NASA Astrophysics Data System (ADS)
Onwudiwe, Damian C.; Mohammed, Aliyu D.; Strydom, Christien A.; Young, Desmond A.; Jordaan, Anine
2014-06-01
Monodispersed spherical and hexagonal shaped ZnS and CdS nanocrystals respectively, have been synthesized using novel heteroleptic complexes of xanthate (S2CObu) and dithiocarbamate (S2CNMePh). The nanocrystals were prepared via colloidal route and stabilized in hexadecylamine (HDA). The morphology of the as-prepared nanocrystals was characterized using transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), and powdered X-ray diffraction (p-XRD) analysis. An average diameter of 7.2 nm and 8.6 nm were obtained for the ZnS and CdS respectively. The optical properties of the nanoparticles studied by UV-vis and photoluminescence (PL) spectroscopy showed a blue shift in the absorption spectra, and band edge emission respectively.
Structural, optical and dielectric investigation of CdFe2O4 nanoparticles
NASA Astrophysics Data System (ADS)
Sagadevan, Suresh; Pal, Kaushik; Zaman Chowdhury, Zaira; Enamul Hoque, Md
2017-07-01
A simple thermal decomposition technique has been executed for the synthesis of cadmium ferrite (CdFe2O4) nanoparticles. With the help of x-ray diffraction; scanning electron microscopy, energy-dispersive x-ray spectroscopy (EDS) and Fourier transform infrared spectroscopy the prepared nanoparticles were identified. The crystal size of the average particles aggregated and was found approximately to be 10-14 nm by means of XRD studies. However, the results of high-resolution transmission electron microscopy (HR-TEM) investigation ensured distinguished nanoparticles, and also the polycrystalline nature of those nanoparticles was confirmed by selected area diffraction (SAED) patterns. The scanning electron microscopy (SEM) images explored a random distribution of grains within the sample. Thin film surface topology of roughness and surface current measurement were studied by atomic force microscopy (TP-AFM, C-AFM). Hence, from the ultraviolet-visible (UV) spectroscopic absorption illustrated significant optical properties. Moreover, the optical energy band gap (E g) of CdFe2O4 nanoparticle was determined to be 1.74 eV. By studying the variation of dielectric constant and dielectric loss with respect to frequency, the CdFe2O4 nanoparticles electrical properties were analyzed. Analysis in the real and imaginary part of impedance explained their frequency and temperature dependence of the CdFe2O4 nanoparticles. The traditional solution-phase organometallic approach provides an effective way to synthesize high quality hydrophobic semiconductor-CdFe2O4 nanoparticles. Our simple, cost-effective approach is quite general, which is applicable to other nanomaterials, and it utilizes the currently mature in Nano-chemistry. The nanocomposite assemblies’ exhibit strong anisotropic optical and electrical properties are open up new possibilities in remarkable applications for optoelectronics in the near future.
Khan, Arif Ullah; Yuan, Qipeng; Khan, Zia Ul Haq; Ahmad, Aftab; Khan, Faheem Ullah; Tahir, Kamran; Shakeel, Muhammad; Ullah, Sadeeq
2018-05-07
Plants mediated synthesis of noble metal nanoparticles is encountered as a clean, environment friendly, lucrative and benign loom. The current study consists of clean and green synthesis of Silver nanoparticles (AgNPs). Phytoconstituents from Longan (Euphorbia longana Lam.) fruit peel were used to reduce Ag + into AgNPs. Different analytical techniques i.e. UV-vis Spectroscopy, X-ray diffraction spectroscopy (XRD), electron dispersive X-ray (EDX), High-resolution transmission electron microscopy (HRTEM) and Fourier transform infrared spectroscopy (FTIR) were used to analyze the synthesized AgNPs. AgNPs have localized surface plasmon resonance (LSPR) peak at 445 nm which is confirmed by UV-vis spectroscopy. HRTEM showed that the prepared AgNPs are spheroid in shape and well dispersed while XRD results showed that the AgNPs are face centered cubic crystalline. EDX confirmed the elemental composition of AgNPs. The antiproliferative response of AgNPs was assayed by an exhaustive MTT assay. AgNPs showed potent anticancer activity (88%) against breast cancer cells MCF-7. Moreover, the green produced AgNPs effectively scavenged 91% of the stable and harmful 2, 2-diphenyl-1-picrylhydrazyl (DPPH) free radical which confirms its' efficient antioxidant nature. AgNPs have profound photocatalytic degradation (99%) of methylene blue in a short period of time (7 min). The noteworthy biological and photocatalytic responses of the green and cleanly produced AgNPs are encountered to their well dispersion, petite volume and round shaped structure. Copyright © 2018 Elsevier B.V. All rights reserved.
Shih, Ying Tsang; Wu, Mong Kai; Li, Wei Chih; Kuan, Hon; Yang, Jer Ren; Shiojiri, Makoto; Chen, Miin Jang
2009-04-22
This study demonstrates amplified spontaneous emission (ASE) of the ultraviolet (UV) electroluminescence (EL) from ZnO at lambda~380 nm in the n-ZnO/ZnO nanodots-SiO(2) composite/p- Al(0.12)Ga(0.88)N heterojunction light-emitting diode. A SiO(2) layer embedded with ZnO nanodots was prepared on the p-type Al(0.12)Ga(0.88)N using spin-on coating of SiO(2) nanoparticles followed by atomic layer deposition (ALD) of ZnO. An n-type Al-doped ZnO layer was deposited upon the ZnO nanodots-SiO(2) composite layer also by the ALD technique. High-resolution transmission electron microscopy (HRTEM) reveals that the ZnO nanodots embedded in the SiO(2) matrix have diameters of 3-8 nm and the wurtzite crystal structure, which allows the transport of carriers through the thick ZnO nanodots-SiO(2) composite layer. The high quality of the n-ZnO layer was manifested by the well crystallized lattice image in the HRTEM picture and the low-threshold optically pumped stimulated emission. The low refractive index of the ZnO nanodots-SiO(2) composite layer results in the increase in the light extraction efficiency from n-ZnO and the internal optical feedback of UV EL into n-ZnO layer. Consequently, significant enhancement of the UV EL intensity and super-linear increase in the EL intensity, as well as the spectral narrowing, with injection current were observed owing to ASE in the n-ZnO layer.
NASA Astrophysics Data System (ADS)
Kalaiyarasan, Gopi; K, Anusuya; Joseph, James
2017-10-01
Companies processing the milk for the further production of powdered infant formulation normally check the protein level through a test measuring nitrogen content. The addition of melamine which is a nitrogen-rich organic chemical in milk increases the nitrogen content and therefore enhances its apparent protein content. However, the melamine causes kidney failure and death owing to the formation of kidney stone. Thus the determination of melamine in humans and milk products have gained great significance in recent years. The gold nanoclusters (AuNCs) have attracting features due to its unique electronic and optical properties like fluorescence nature. Therefore one can use AuNCs in the field of biosensor, bio-imaging, nanobiotechnology, drug delivery, diagnosis etc. We report, a new ratiometric nanosensor established for the selective and sensitive detection of melamine based optical sensing using glutathione stabilized AuNCs. The AuNCs were characterized by high-resolution transmission electron microscopy (HR-TEM), UV-visible and Photoluminescence (PL) spectroscopic techniques. In the presence of melamine, the PL intensity at 430 nm increases owing to the (turn-on) enhancement in fluorescence, whereas PL intensity at 610 nm decreases due to the melamine-induced aggregation and subsequent aggregation-enhanced emission quenching. The observed changes were ascribed to the hydrogen bonding interaction between melamine and AuNCs, which led to the aggregation of the nanoclusters. This was confirmed by dynamic light scattering and HR-TEM measurements. The present probe showed an extreme selectivity towards the determination of 28.2 μM melamine in the presence of 100-fold excess of common interfering molecules such as Alanine, Glycine, Glucose, Cystine etc. The proposed method was successfully applied to determine melamine in cow milk.
Two-phase nc-TiN/a-(C,CN{sub x}) nanocomposite films: A HRTEM and MC simulation study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, J.; Lu, Y. H.; Hu, X. J.
2013-06-18
The grain growth in two-phase nanocomposite Ti-C{sub x}-N{sub y} thin films grown by reactive close-field unbalanced magnetron sputtering in an Ar-N{sub 2} gas mixture with microstructures comprising of nanocrystalline (nc-) Ti(N,C) phase surrounded by amorphous (a-) (C,CN{sub x}) phase was investigated by a combination of high-resolution transmission electron microscopy (HRTEM) and Monte Carlo (MC) simulations. The HRTEM results revealed that amorphous-free solid solution Ti(C,N) thin films exhibited polycrystallites with different sizes, orientations and irregular shapes. The grain size varied in the range between several nanometers and several decade nanometers. Further increase of C content (up to {approx}19 at.% C) mademore » the amorphous phase wet nanocrystallites, which strongly hindered the growth of nanocrystallites. As a result, more regular Ti(C,N) nanocrystallites with an average size of {approx}5 nm were found to be separated by {approx}0.5-nm amorphous phases. When C content was further increased (up to {approx}48 at.% in this study), thicker amorphous matrices were produced and followed by the formation of smaller sized grains with lognormal distribution. Our MC analysis indicated that with increasing amorphous volume fraction (i.e. increasing C content), the transformation from nc/nc grain boundary (GB)-curvature-driven growth to a/nc GB-curvature-driven growth is directly responsible for the observed grain growth from great inhomogeneity to homogeneity process.« less
NASA Astrophysics Data System (ADS)
Singh, Vandana; Singh, Jadveer; Srivastava, Preeti
2018-04-01
Acacia gum-Fe0Np-silica nanocomposite (GFS1) has been crafted through sol-gel technique using a two-step process that involved the reduction of iron salt to zerovalent iron nanoparticles (Fe0Nps) followed by their impregnation within Acacia gum-silica matrix. GFS1 was characterized using Fourier transform infrared spectroscopy (FTIR), high-resolution transmission electron microscopy (HR-TEM), energy dispersive X-ray analysis (EDX), field emission scanning electron microscopy (FE-SEM), vibrating sample magnetometry (VSM), and X-ray photoelectron spectroscopy (XPS) techniques. GFS1 is decorated with Fe0Nps of 5 nm average size. The VSM study revealed that GFS1 has ferromagnetic nature. GFS1 was used as a heterogeneous Fenton-like catalyst for the degradation of azo dyes using Remazol Brilliant Violet (RBV) dye as a model dye. In first 5 min of operation, > 86% dye degradation was achieved and 94% dye (from 100 mg L-1 dye solution) was successfully degraded in 50 min. The dye degradation followed pseudo-first-order kinetics. The GFS1 performed efficiently well over the wide range of dye concentrations (25-200 mg L-1). The catalyst was reused for eight repeated cycles where 12.5% dye degradation was possible even in the eighth cycle. The catalyst behaved fairly well for the degradation of Metanil Yellow (MY) and Orange G (OG) dyes also. Under the optimum conditions of RBV dye degradation, Metanil Yellow (MY) and Orange G (OG) dyes were degraded to the extent of 97 and 26.3%, respectively.
NASA Astrophysics Data System (ADS)
Wang, Xiaodong; Yan, Tao; Liu, Xiaohuan; Ji, Pengge; Sun, Meng; Wei, Dong; Yan, Liangguo; Du, Bin
2016-11-01
Metal-free polymeric catalyst hold great promise owing to their abundant sources, low-cost fabrication and easy processibility. Melem, an important intermediate during condensation of melamine rings to graphitic carbon nitride (g-C3N4), was synthesized by simple solid phase polymerization process. A novel Melem/Zn0.25Cd0.75S composite was fabricated through a facile one-step hydrothermal method. The as-products were characterized by X-ray diffraction (XRD), UV-vis DRS spectroscopy, fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM). The TEM and HRTEM results reveal that Zn0.25Cd0.75S nanoparticles and Melem closely contact with each other to form an intimate interface. The as-prepared composites exhibit significantly enhanced visible light photocatalytic performance for the degradation of Methyl orange (MO) and Bisphenol A (BPA), which could be attributed to the effective photo-induced charges transfer and separation in Melem/Zn0.25Cd0.75S composites. On the basis of radical scavenger experiments, superoxide radicals and holes are suggested to play a critical role in MO degradation over Melem/Zn0.25Cd0.75S heterojunctions. A possible mechanism for charge separation and transfer in the Melem/Zn0.25Cd0.75S composites was proposed to explain the enhanced photocatalytic performance.
As-pyrolyzed sugarcane bagasse possessing exotic field emission properties
NASA Astrophysics Data System (ADS)
Krishnia, Lucky; Yadav, Brajesh S.; Palnitkar, Umesh; Satyam, P. V.; Gupta, Bipin Kumar; Koratkar, Nikhil A.; Tyagi, Pawan K.
2018-06-01
The present study aims to demonstrate the application of sugarcane bagasse as an excellent field emitter. Field emission property of as-pyrolyzed sugarcane bagasse (p-SBg) before and after the plasma treatment has been investigated. It has been observed that electronic nature of p-SBg transformed from semiconducting to metallic after plasma treatment. Maximum current and turn-on field defined at 10 μA/cm2 was found to be 800 μA/cm2 and 2.2 V/μm for as-pyrolyzed sugarcane bagasse (p-SBg) and 25 μA/cm2 and 8.4 V/μm for H2-plasma treated p-SBg. These values are found to be better than the reported values for graphene and activated carbon. In this report, pyrolysis of bagasse has been carried in a thermal chemical vapor deposition (Th-CVD) system in inert argon atmosphere. Scanning electron microscopy (SEM), X-ray Diffraction (XRD), High-resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS) have been used to study the structure of both pre and post plasma-treated p-SBg bagasse's sample. HRTEM study reveals that carbonaceous structures such as 3D-nanographene oxide (3D-NGO), graphite nanodots (GNDs), carbon nanotubes (CNTs), and carbon onions are present in both pre-treated and plasma-treated p-SBg. Hence, we envision that the performed study will be a forwarding step to facilitate the application of p-SBg in display devices.
Otari, Sachin V; Kumar, Manoj; Anwar, Muhammad Zahid; Thorat, Nanasaheb D; Patel, Sanjay K S; Lee, Dongjin; Lee, Jai Hyo; Lee, Jung-Kul; Kang, Yun Chan; Zhang, Liaoyuan
2017-09-08
This article presents novel, rapid, and environmentally benign synthesis method for one-step reduction and decoration of graphene oxide with gold nanoparticles (NAuNPs) by using thermostable antimicrobial nisin peptides to form a gold-nanoparticles-reduced graphene oxide (NAu-rGO) nanocomposite. The formed composite material was characterized by UV/Vis spectroscopy, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, and high-resolution transmission electron microscopy (HR-TEM). HR-TEM analysis revealed the formation of spherical AuNPs of 5-30 nm in size on reduced graphene oxide (rGO) nanosheets. A non-volatile-memory device was prepared based on a solution-processed ZnO thin-film transistor fabricated by inserting the NAu-rGO nanocomposite in the gate dielectric stack as a charge trapping medium. The transfer characteristic of the ZnO thin-film transistor memory device showed large clockwise hysteresis behaviour because of charge carrier trapping in the NAu-rGO nanocomposite. Under positive and negative bias conditions, clear positive and negative threshold voltage shifts occurred, which were attributed to charge carrier trapping and de-trapping in the ZnO/NAu-rGO/SiO 2 structure. Also, the photothermal effect of the NAu-rGO nanocomposites on MCF7 breast cancer cells caused inhibition of ~80% cells after irradiation with infrared light (0.5 W cm -2 ) for 5 min.
Limitations to the Measurement of Oxygen Concentrations by HRTEM Imposed by Surface Roughness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lupini, Andrew R; Chisholm, Matthew F; van Benthem, Klaus
2005-01-01
In an article published in Microscopy and Microanalysis recently (Jia et al., 2004), it was claimed that aberration-corrected high resolution transmission electron microscopy (HRTEM) allows the quantitative measurement of oxygen concentrations in ceramic materials with atomic resolution. Similar claims have recently appeared elsewhere, based on images obtained through aberration correction (Jia et al., 2003; Jia & Urban, 2004) or very high voltages (Zhang et al., 2003). Seeing oxygen columns is a significant achievement of great importance (Spence, 2003) that will doubtlessly allow some exciting new science; however, other models could provide a better explanation for some of the experimental datamore » than variations in the oxygen concentration. Quantification of the oxygen concentrations was attempted by comparing experimental images with simulations in which the fractional occupancy in individual oxygen columns was reduced. The results were interpreted as representing nonstoichiometry within the bulk and at grain boundaries. This is plausible because previous studies have shown that grain boundaries can be nonstoichiometric (Kim et al., 2001), and it is indeed possible that oxygen vacancies are present at boundaries or in the bulk. However, is this the only possible interpretation? We show that for the thicknesses considered a better match to the images is obtained using a simple model of surface damage in which atoms are removed from the surface, which would usually be interpreted as surface damage or local thickness variation (from ion milling, for example).« less
Room Temperature Ferromagnetic Mn:Ge(001).
Lungu, George Adrian; Stoflea, Laura Elena; Tanase, Liviu Cristian; Bucur, Ioana Cristina; Răduţoiu, Nicoleta; Vasiliu, Florin; Mercioniu, Ionel; Kuncser, Victor; Teodorescu, Cristian-Mihail
2013-12-27
We report the synthesis of a room temperature ferromagnetic Mn-Ge system obtained by simple deposition of manganese on Ge(001), heated at relatively high temperature (starting with 250 °C). The samples were characterized by low energy electron diffraction (LEED), scanning tunneling microscopy (STM), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), superconducting quantum interference device (SQUID), and magneto-optical Kerr effect (MOKE). Samples deposited at relatively elevated temperature (350 °C) exhibited the formation of ~5-8 nm diameter Mn₅Ge₃ and Mn 11 Ge₈ agglomerates by HRTEM, while XPS identified at least two Mn-containing phases: the agglomerates, together with a Ge-rich MnGe ~2.5 phase, or manganese diluted into the Ge(001) crystal. LEED revealed the persistence of long range order after a relatively high amount of Mn (100 nm) deposited on the single crystal substrate. STM probed the existence of dimer rows on the surface, slightly elongated as compared with Ge-Ge dimers on Ge(001). The films exhibited a clear ferromagnetism at room temperature, opening the possibility of forming a magnetic phase behind a nearly ideally terminated Ge surface, which could find applications in integration of magnetic functionalities on semiconductor bases. SQUID probed the co-existence of a superparamagnetic phase, with one phase which may be attributed to a diluted magnetic semiconductor. The hypothesis that the room temperature ferromagnetic phase might be the one with manganese diluted into the Ge crystal is formulated and discussed.
Room Temperature Ferromagnetic Mn:Ge(001)
Lungu, George Adrian; Stoflea, Laura Elena; Tanase, Liviu Cristian; Bucur, Ioana Cristina; Răduţoiu, Nicoleta; Vasiliu, Florin; Mercioniu, Ionel; Kuncser, Victor; Teodorescu, Cristian-Mihail
2014-01-01
We report the synthesis of a room temperature ferromagnetic Mn-Ge system obtained by simple deposition of manganese on Ge(001), heated at relatively high temperature (starting with 250 °C). The samples were characterized by low energy electron diffraction (LEED), scanning tunneling microscopy (STM), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), superconducting quantum interference device (SQUID), and magneto-optical Kerr effect (MOKE). Samples deposited at relatively elevated temperature (350 °C) exhibited the formation of ~5–8 nm diameter Mn5Ge3 and Mn11Ge8 agglomerates by HRTEM, while XPS identified at least two Mn-containing phases: the agglomerates, together with a Ge-rich MnGe~2.5 phase, or manganese diluted into the Ge(001) crystal. LEED revealed the persistence of long range order after a relatively high amount of Mn (100 nm) deposited on the single crystal substrate. STM probed the existence of dimer rows on the surface, slightly elongated as compared with Ge–Ge dimers on Ge(001). The films exhibited a clear ferromagnetism at room temperature, opening the possibility of forming a magnetic phase behind a nearly ideally terminated Ge surface, which could find applications in integration of magnetic functionalities on semiconductor bases. SQUID probed the co-existence of a superparamagnetic phase, with one phase which may be attributed to a diluted magnetic semiconductor. The hypothesis that the room temperature ferromagnetic phase might be the one with manganese diluted into the Ge crystal is formulated and discussed. PMID:28788444
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basak, Sushovan, E-mail: sushovanbasak@gmail.com; Das, Hrishikesh, E-mail: hrishichem@gmail.com; Pal, Tapan Kumar, E-mail: tkpal.ju@gmail.com
In order to meet the demand for lighter and more fuel efficient vehicles, a significant attempt is currently being focused toward the substitution of aluminum for steel in the car body structure. It generates vital challenge with respect to the methods of joining to be used for fabrication. However, the conventional fusion joining has its own difficulty owing to formation of the brittle intermetallic phases. In this present study AA6061-T6 of 2 mm and HIF-GA steel sheet of 1 mm thick are metal inert gas (MIG) brazed with 0.8 mm Al–5Si filler wire under three different heat inputs. The effectmore » of the heat inputs on bead geometry, microstructure and joint properties of MIG brazed Al-steel joints were exclusively studied and characterized by X-ray diffraction, field emission scanning electron microscopy (FESEM), electron probe micro analyzer (EPMA) and high resolution transmission electron microscopy (HRTEM) assisted X-ray spectroscopy (EDS) and selective area diffraction pattern. Finally microstructures were correlated with the performance of the joint. Diffusion induced intermetallic thickness measured by FESEM image and concentration profile agreed well with the numerically calculated one. HRTEM assisted EDS study was used to identify the large size FeAl{sub 3} and small size Fe{sub 2}Al{sub 5} type intermetallic compounds at the interface. The growth of these two phases in A2 (heat input: 182 J mm{sup −1}) is attributed to the slower cooling rate with higher diffusion time (~ 61 s) along the interface in comparison to the same for A1 (heat input: 155 J mm{sup −1}) with faster cooling rate and shorter diffusion time (~ 24 s). The joint efficiency as high as 65% of steel base metal is achieved for A2 which is the optimized parameter in the present study. - Highlights: • AA 6061 and HIF-GA could be successfully joined by MIG brazing. • Intermetallics are exclusively studied and characterized by XRD, FESEM and EPMA. • Intermetallic formation by diffusion is worth considering or not. • HRTEM-EDS, SAD pattern identifies the morphologies and size of intermetallics. • A compromise concerning formation of IMC is necessary.« less
NASA Astrophysics Data System (ADS)
Mohseni, Hamidreza
A number of investigators have reported enhancement in oxidation and wear resistant of carbon-carbon composites (CCC) in the presence of protective coating layers. However, application of a surface and subsurface coating system that can preserve its oxidation and wear resistance along with maintaining lubricity at high temperature remains unsolved. To this end, thermodynamically stable protective oxides (ZnO/Al2O3/ZrO2) have been deposited by atomic layer deposition (ALD) to infiltrate porous CCC and graphite foams in order to improve the thermal stability and wear resistance in low and high speed sliding contacts. Characterization of microstructural evolution was achieved by using energy dispersive x-ray spectroscopy (EDS) mapping in scanning electron microscope (SEM) coupled with focused ion beam (FIB), x-ray tomography, high resolution transmission electron microscopy (HRTEM), scanning transmission electron microscopy (STEM) and X-ray diffraction (XRD). Evaluation of the tribological properties of CCC coated with abovementioned ALD thin films were performed by employing low speed pure sliding tribometer and a high speed/frequency reciprocating rig to simulate the fretting wear behavior at ambient temperature and elevated temperatures of 400°C. It was determined with x-ray tomography imaging and EDS mapping that ALD ZnO/Al2O3/ZrO2 nanolaminates and baseline ZrO2 coatings exhibited excellent conformality and pore-filling capabilities down to ˜100 microm and 1.5 mm in the porous CCC and graphite foam, respectively, which were dependent on the exposure time of the ALD precursors. XRD and HRTEM determined the crystalline phases of {0002} textured ZnO (wurtzite), amorphous Al2O3, and {101}-tetragonal ZrO2. Significant improvements up to ˜65% in the sliding and fretting wear factors were determined for the nanolaminates in comparison to the uncoated CCC. A tribochemical sliding-induced mechanically mixed layer (MML) was found to be responsible for these improvements. HRTEM confirmed the presence of a high density of ZnO shear-induced basal stacking faults inside the wear tracks responsible for intrafilm shear velocity accommodation that mitigated friction and wear.
Hosseini, Mir Ghasem; Mahmoodi, Raana
2017-08-15
The Ni@Pt/C electrocatalysts were synthesized using two different methods: with sodium dodecyl sulfate (SDS) and without SDS. The metal loading in synthesized nanocatalysts was 20wt% and the molar ratio of Ni: Pt was 1:1. The structural characterizations of Ni@Pt/C electrocatalysts were investigated by field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HR-TEM). The electrocatalytic activity of Ni@Pt/C electrocatalysts toward BH 4 - oxidation in alkaline medium was studied by means of cyclic voltammetry (CV), chronopotentiometry (CP), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS). The results showed that Ni@Pt/C electrocatalyst synthesized without SDS has superior catalytic activity toward borohydride oxidation (22016.92Ag Pt -1 ) in comparison with a catalyst prepared in the presence of SDS (17766.15Ag Pt -1 ) in NaBH 4 0.1M at 25°C. The Membrane Electrode Assembly (MEA) used in fuel cell set-up was fabricated with catalyst-coated membrane (CCM) technique. The effect of Ni@Pt/C catalysts prepared with two methods as anode catalyst on the performance of direct borohydride-hydrogen peroxide fuel cell was studied. The maximum power density was obtained using Ni@Pt/C catalyst synthesized without SDS at 60°C, 1M NaBH 4 and 2M H 2 O 2 (133.38mWcm -2 ). Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Yang, Luyan; Li, Shuangming; Fan, Kai; Li, Yang; Zhong, Hong; Fu, Hengzhi
2018-06-01
Feathery crystals are an ensemble of twinned dendrites, and are characterized by a unique twin boundary (TB) structure in the solidification pattern of aluminum alloys. In this work, the high-density twinned dendrites of Al-4.5 wt% Cu alloys, produced during the Bridgman solidification, have been studied using electron backscattered diffraction (EBSD) and high-resolution transmission electron microscopy (HRTEM). The experimental results showed that, after systematically decreasing the growth rate from 3000 μm/s to 1 μm/s, the TBs remained stable, while the solute field around the TBs changed significantly. According to the HRTEM results, successive stacking faults were occurred near the TBs at 1 μm/s, while slight distortion was observed around the TBs at 3000 μm/s. The composition analysis revealed an obvious solute enrichment near the TBs. Furthermore, the solute gradient profile within the TBs became smoother with the decrease in the growth speed. This is due to the more sufficient solid-state back diffusion occurring perpendicular to the twin plane after the solidification.
Magnetite and magnetite/silver core/shell nanoparticles with diluted magnet-like behavior
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garza-Navarro, Marco; Torres-Castro, Alejandro, E-mail: alejandro.torrescs@uanl.edu.m; Centro de Innovacion, Investigacion y Desarrollo en Ingenieria y Tecnologia, Universidad Autonoma de Nuevo Leon, Apodaca, Nuevo Leon 66600
2010-01-15
In the present work is reported the use of the biopolymer chitosan as template for the preparation of magnetite and magnetite/silver core/shell nanoparticles systems, following a two step procedure of magnetite nanoparticles in situ precipitation and subsequent silver ions reduction. The crystalline and morphological characteristics of both magnetite and magnetite/silver core/shell nanoparticles systems were analyzed by high resolution transmission electron microscopy (HRTEM) and nanobeam diffraction patterns (NBD). The results of these studies corroborate the core/shell morphology and the crystalline structure of the magnetite core and the silver shell. Moreover, magnetization temperature dependent, M(T), measurements show an unusual diluted magnetic behaviormore » attributed to the dilution of the magnetic ordering in the magnetite and magnetite/silver core/shell nanoparticles systems. - Graphical abstract: Biopolymer chitosan was used as stabilization media to synthesize both magnetite and magnetite/silver core/shell nanoparticles. Results of HRTEM and NBD patterns confirm core/shell morphology of the obtained nanoparticles. It was found that the composites show diluted magnet-like behavior.« less
NASA Astrophysics Data System (ADS)
Selvi, N.; Sankar, S.; Dinakaran, K.
2014-12-01
Nanocrystallites of SnO2 core and dual shells (ZnO, SiO2) coated SnO2 core-shell nanospheres were successfully synthesized by co-precipitation method. The as prepared and annealed samples were characterized by X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR), High resolution transmission electron microscopy (HRTEM) and UV-Vis analysis. XRD pattern confirms the obtained SnO2 core with tetragonal rutile crystalline structure and the shell ZnO with hexagonal structure. FTIR result shows the functional groups present in the samples. The spherical morphology and the formation of the core-shell structures have been confirmed by HRTEM measurements. The UV-Vis showed that band gap is red shifted for as-prepared and the shells coated core-shell samples. From this investigation it can be concluded that the surface modification with different metal and insulating oxides strongly influences the optical properties of the core-shell materials which enhance their potential applications towards optical devices fabrication.
Effect of carbon coating on spontaneous C12A7 whisker formation
NASA Astrophysics Data System (ADS)
Zaikovskii, Vladimir I.; Volodin, Alexander M.; Stoyanovskii, Vladimir O.; Cherepanova, Svetlana V.; Vedyagin, Aleksey A.
2018-06-01
A carbon nanoreactor concept was applied to study the stabilization effect of carbon shell on phase composition and morphology of dodecacalcium hepta-aluminate Ca12Al14O33. The starting C12A7 powder was obtained using aluminum and calcium hydroxides as precursors. Carbon shell was formed by a chemical vapor deposition of divinyl at 550 °C. After the calcination at 1400 °C, the product was characterized by X-ray diffraction analysis (XRD) and high resolution transmission electron microscopy (HRTEM). It was observed for a first time that spontaneous formation of calcium aluminate whiskers take place under the conditions described. Each whisker consists of a 'head' (globular particle of 0.5 microns in diameter) and a 'tail' (prolonged whisker of few microns in length and 0.1-0.2 microns in diameter). According to HRTEM, the 'head' is characterized with microcrystal lattice of Ca12Al14O33 compound. XRD data show the presence of CaAl2O4 phase traces. The 'head' and 'tail' of the whisker are covered with structured graphene layers of 10 nm and 3 nm, correspondingly.
Kinetic mechanism of V-shaped twinning in 3C/4H-SiC heteroepitaxy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xin, Bin; Zhang, Yu-Ming; Jia, Ren-Xu, E-mail: rxjia@mail.xidian.edu.cn
The authors investigated the kinetic mechanism of V-shaped twinning in 3C/4H-SiC heteroepitaxy. A fourfold V-shaped twinning complex was found, and its interface was measured with high-resolution transmission electron microscopy (HRTEM). Two linear coherent boundaries and a nonlinear incoherent boundary (also called the double-position boundary) were observed. On the basis of the HRTEM results, the authors proposed an adatom migration growth model, in which the activation barrier at the coherent boundary is much lower than that at the incoherent boundary. From a kinetic perspective, adatoms are prone to migrate to the side of the boundary with the lower potential energy ifmore » they have sufficient thermal energy to overcome the activation barrier. In the case of a coherent boundary, the growth rates of the domains either side of the boundary can be balanced through the intermigration of adatoms, leading to a linear boundary. Conversely, it is difficult for adatoms to migrate across an incoherent boundary, which results in asynchronous growth rates and a nonlinear boundary.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin, Congfei; Liang, Xiaojuan, E-mail: lxj6126@126
The titanate, is a material of interest for various energy applications, including photovoltaics, catalysts, and high-rate energy storage devices. Herein, its related materials, CuO/CaTi{sub 4}O{sub 9} [CCTO] thin films, were successfully fabricated on SrTiO{sub 3} (100) substrates by RF magnetron sputtering assisted with subsequent oxygen annealing. This obtained CCTO thin films were then systemically studied by X-ray powder diffraction (XRD), atomic force microscopy (AFM), scan electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and high-resolution transmission electron microscopy (HRTEM). It was found that CuO and CaTi{sub 4}O{sub 9} (001) particles were closely accumulated together on the surface of the substrate inmore » the annealing process after comparing with that of the as-prepared thin film, which was verified by SEM and AFM results. Furthermore, we investigated the third-order nonlinear optical (NLO) properties of the as-prepared and annealed CCTO thin film by means of the Z-scan technique using 650 nm femtosecond laser pulse. Post-deposition oxygen annealing was found to modify the morphological characteristics of the films, resulting in enhancing their NLO properties. The observation of NLO performance of annealed CCTO thin film indicates that RF magnetron sputtering is a feasible method for the fabrication of optical thin films, which can be expanded to fabricate other NLO materials from the corresponding dispersions. Naturally, we concluded that the CCTO thin film occupy a better NLO property, and thus enlarge its application in nonlinear optics. - Highlights: • The CCTO thin film was prepared using the RF magnetron sputtering and oxygen annealing. • The film was prepared on the SrTiO{sub 3}(100) substrates with a Ca{sub 2}CuO{sub 3} target. • The oxygen annealing was found can effectively enhance the film quality and NLO property. • The film was characterized using XPS, SEM, AFM, TEM, XRD and Z-scan techniques.« less
Shape-controlled solvothermal synthesis of bismuth subcarbonate nanomaterials
NASA Astrophysics Data System (ADS)
Cheng, Gang; Yang, Hanmin; Rong, Kaifeng; Lu, Zhong; Yu, Xianglin; Chen, Rong
2010-08-01
Much effort has been devoted to the synthesis of novel nanostructured materials because of their unique properties and potential applications. Bismuth subcarbonate ((BiO) 2CO 3) is one of commonly used antibacterial agents against Helicobacter pylori ( H. pylori). Different (BiO) 2CO 3 nanostructures such as cube-like nanoparticles, nanobars and nanoplates, were fabricated from bismuth nitrate via a simple solvothermal method. The nanostructures were characterized by powder X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). It was found that the solvents and precursors have an influence on the morphologies of (BiO) 2CO 3 nanostructures. The possible formation mechanism of different (BiO) 2CO 3 nanostructures fabricated under different conditions was also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahata, S.; Mahato, S. S.; Nandi, M. M.
2012-07-23
Here we report the synthesis and characterization of a stable suspension of modified titania nanoparticles. Phase-pure TiO{sub 2} nanocrystallites with narrow particle-size distributions were selectively prepared by hydrolysis-peptization of modified alkoxide followed by hydrothermal treatment. Autoclaving modified TiO{sub 2} in the presence of HNO3 as cooperative catalysts led to the formation of crystalline TiO{sub 2} with narrow-sized distribution. Following the hydrothermal treatment at 150 Degree-Sign C, X-ray diffraction shows the particles to be exclusively anatase. Synthesized powder is characterized by FT-IR, scanning electron microscopy (FESEM) and transmission electron microscopy (HRTEM). The photocatalytic activity in the degradation of orange-II is quitemore » comparable to good anatase and rutile nanocrystallites.« less
NASA Astrophysics Data System (ADS)
Aouassa, Mansour; Jadli, Imen; Hassayoun, Latifa Slimen; Maaref, Hassen; Panczer, Gerard; Favre, Luc; Ronda, Antoine; Berbezier, Isabelle
2017-12-01
Composition and microstructure of Ge grown on porous silicon (PSi) by Molecular Beam Epitaxy (MBE) at different temperatures are examined using High Resolution Transmission Electron Microscopy (HRTEM) and Raman spectroscopy. Ge grown at 400 °C on PSi buffer produces a planar Ge film with high crystalline quality compared to Ge grown on bulk Si. This result is attributed to the compliant nature of PSi. Increasing growth temperature >600 °C, changes the PSi morphology, increase the Ge/Si intermixing in the pores during Ge growth and lead to obtain a composite SiGe/Si substrate. Ge content in the composite SiGe substrate can controlled via growth temperature. These substrates serve as low cost virtual substrate for high efficiency III-V/Si solar cells.
Oliveira, Marcos L S; Navarro, Orlando G; Crissien, Tito J; Tutikian, Bernardo F; da Boit, Kátia; Teixeira, Elba C; Cabello, Juan J; Agudelo-Castañeda, Dayana M; Silva, Luis F O
2017-10-01
There are multiple elements which enable coal geochemistry: (1) boiler and pollution control system design parameters, (2) temperature of flue gas at collection point, (3) feed coal and also other fuels like petroleum coke, tires and biomass geochemistry and (4) fuel feed particle size distribution homogeneity distribution, maintenance of pulverisers, etc. Even though there is a large number of hazardous element pollutants in the coal-processing industry, investigations on micrometer and nanometer-sized particles including their aqueous colloids formation reactions and their behaviour entering the environment are relatively few in numbers. X-ray diffraction (XRD), High Resolution-Transmission Electron microscopy (HR-TEM)/ (Energy Dispersive Spectroscopy) EDS/ (selected-area diffraction pattern) SAED, Field Emission-Scanning Electron Microscopy (FE-SEM)/EDS and granulometric distribution analysis were used as an integrated characterization techniques tool box to determine both geochemistry and nanomineralogy for coal fly ashes (CFAs) from Brazil´s largest coal power plant. Ultrafine/nano-particles size distribution from coal combustion emissions was estimated during the tests. In addition the iron and silicon content was determined as 54.6% of the total 390 different particles observed by electron bean, results aimed that these two particles represent major minerals in the environment particles normally. These data may help in future investigations to asses human health actions related with nano-particles. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Thambiraj, S.; Ravi Shankaran, D.
2017-08-01
We aimed to develop a simple and low-cost method for the production of high-performance cellulose nanomaterials from renewable and sustainable resources. Here, cellulose microcrystals (CMCs) were prepared by controlled acidic and basic hydrolysis of cotton from textile industry wastes. The resulted CMCs were further converted into cellulose nanocrystals (CNCs) with high crystallinity by acidic hydrolysis. The physicochemical characteristics and morphological feature of CMCs and CNCs were studied by various analytical techniques such as UV-vis spectroscopy, Fourier-transform infrared spectroscopy (FT-IR), Scanning electron microscope (SEM), Fluorescence spectroscopy, Atomic force microscopy (AFM), High-resolution transmission electron microscopy (HR-TEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The isolated CNCs possess a needle-like morphological structure with the longitudinal and lateral dimensions of 180 ± 60 nm, 10 ± 1 nm, respectively. The AFM result reveals that the CNCs have a high aspect ratio of 40 ± 14 nm and the average thickness of 6.5 nm. The XRD and TEM analysis indicate that the synthesized CNCs possess face-centered cubic crystal structure. Preliminary experiments were carried out to fabricate CNCs incorporated poly (vinyl alcohol) (PVA) film. The results suggest that the concept of waste to wealth could be well executed from the prepared CNCs, which have great potential for various applications including bio-sensors, food packaging and drug delivery applications.
Jana, T K; Maji, S K; Pal, A; Maiti, R P; Dolai, T K; Chatterjee, K
2016-10-15
Nanocomposites with multifunctional application prospects have already dragged accelerating interests of materials scientists. Here we present CdS/ZnO nanocomposites with different morphology engineering the precursor molar ratio in a facile wet chemical synthesis route. The materials were structurally and morphologically characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray analysis (EDX) and high-resolution transmission electron microscopy (HRTEM). The growth mechanism of the composite structure with varying molar ratio is delineated with oriented attachment self assemble techniques. Photocatalytic activity of CdS/ZnO nanocomposites with varying morphology were explored for the degradation of rhodamine B (RhB) dye in presence of visible light irradiation and the results reveal that the best catalytic performance arises in CdS/ZnO composite with 1: 1 ratio. The antibacterial efficiency of all nanocomposites were investigated on Escherichia coli, Staphylococcus aureus and Klebsiella pneumonia without light irradiation. Antibacterial activity of CdS/ZnO nanocomposites were studied using the bacteriological test-well diffusion agar method and results showed significant antibacterial activity in CdS/ZnO composite with 1:3 ratio. Overall, CdS/ZnO nanocomposites excel in different potential applications, such as visible light photocatalysis and antimicrobial activity with their tuneable structure. Copyright © 2016 Elsevier Inc. All rights reserved.
Potentiometric Zinc Ion Sensor Based on Honeycomb-Like NiO Nanostructures
Abbasi, Mazhar Ali; Ibupoto, Zafar Hussain; Hussain, Mushtaque; Khan, Yaqoob; Khan, Azam; Nur, Omer; Willander, Magnus
2012-01-01
In this study honeycomb-like NiO nanostructures were grown on nickel foam by a simple hydrothermal growth method. The NiO nanostructures were characterized by field emission electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) techniques. The characterized NiO nanostructures were uniform, dense and polycrystalline in the crystal phase. In addition to this, the NiO nanostructures were used in the development of a zinc ion sensor electrode by functionalization with the highly selective zinc ion ionophore 12-crown-4. The developed zinc ion sensor electrode has shown a good linear potentiometric response for a wide range of zinc ion concentrations, ranging from 0.001 mM to 100 mM, with sensitivity of 36 mV/decade. The detection limit of the present zinc ion sensor was found to be 0.0005 mM and it also displays a fast response time of less than 10 s. The proposed zinc ion sensor electrode has also shown good reproducibility, repeatability, storage stability and selectivity. The zinc ion sensor based on the functionalized NiO nanostructures was also used as indicator electrode in potentiometric titrations and it has demonstrated an acceptable stoichiometric relationship for the determination of zinc ion in unknown samples. The NiO nanostructures-based zinc ion sensor has potential for analysing zinc ion in various industrial, clinical and other real samples. PMID:23202217
Silicon surface passivation by PEDOT: PSS functionalized by SnO2 and TiO2 nanoparticles
NASA Astrophysics Data System (ADS)
García-Tecedor, M.; Karazhanov, S. Zh; Vásquez, G. C.; Haug, H.; Maestre, D.; Cremades, A.; Taeño, M.; Ramírez-Castellanos, J.; González-Calbet, J. M.; Piqueras, J.; You, C. C.; Marstein, E. S.
2018-01-01
In this paper, we present a study of silicon surface passivation based on the use of spin-coated hybrid composite layers. We investigate both undoped poly(3,4-ethylenedioxythiophene)/poly-(styrenesulfonate) (PEDOT:PSS), as well as PEDOT:PSS functionalized with semiconducting oxide nanomaterials (TiO2 and SnO2). The hybrid compound was deposited at room temperature by spin coating—a potentially lower cost, lower processing time and higher throughput alternative compared with the commonly used vacuum-based techniques. Photoluminescence imaging was used to characterize the electronic properties of the Si/PEDOT:PSS interface. Good surface passivation was achieved by PEDOT:PSS functionalized by semiconducting oxides. We show that control of the concentration of semiconducting oxide nanoparticles in the polymer is crucial in determining the passivation performance. A charge carrier lifetime of about 275 μs has been achieved when using SnO2 nanoparticles at a concentration of 0.5 wt.% as a filler in the composite film. X-ray diffraction (XRD), scanning electron microscopy, high resolution transmission electron microscopy (HRTEM), energy dispersive x-ray in an SEM, and μ-Raman spectroscopy have been used for the morphological, chemical and structural characterization. Finally, a simple model of a photovoltaic device based on PEDOT:PSS functionalized with semiconducting oxide nanoparticles has been fabricated and electrically characterized.
Investigation of temperature, catalyst thickness and substrate effects in In2O3 nanostructures
NASA Astrophysics Data System (ADS)
Tuzluca, Fatma Nur; Yesilbag, Yasar Ozkan; Ertugrul, Mehmet
2017-12-01
This study successfully synthesized In2O3 nanotowers (NTs), nanowires (NWs), nanochains (NChs) and nanocrystals (NCs) on n-type Si(100) and quartz substrates at temperature of 900-1000 °C by using Au catalysts via the Chemical Vapor Deposition (CVD) technique. The analyses of experimental results revealed that In2O3 nanostructures (NSs) grew in different morphologies due to variable parameters, such as temperature, thickness of catalyst and substrate type. This was because these In2O3 NSs were formed by both the Vapor-Liquid-Solid (VLS) and the Vapor-Solid (VS) growth mechanisms. For instance, In2O3 NTs and NChs were formed by the VLS growth mechanism; In2O3 NCs were formed by the VS growth mechanism and In2O3 NWs were formed by both the VLS and VS growth mechanisms. Morphology and crystal structures were identified through X-Ray Diffraction (XRD), High Resolution Transmission Electron Microscopy (HRTEM), Field Emission Scanning Electron Microscopy (FESEM) and Energy Dispersive X-Ray Spectroscopy (EDS). Moreover, photoluminescence (PL) peaks of In2O3 NSs were measured to be 367 nm, 470 nm, and 630 nm at room temperature (RT). These measurement results indicated that structural, morphological, compositional and optical properties of synthesized In2O3 NSs correlated with growth parameters.
Silicon surface passivation by PEDOT: PSS functionalized by SnO2 and TiO2 nanoparticles.
García-Tecedor, M; Karazhanov, S Zh; Vásquez, G C; Haug, H; Maestre, D; Cremades, A; Taeño, M; Ramírez-Castellanos, J; González-Calbet, J M; Piqueras, J; You, C C; Marstein, E S
2018-01-19
In this paper, we present a study of silicon surface passivation based on the use of spin-coated hybrid composite layers. We investigate both undoped poly(3,4-ethylenedioxythiophene)/poly-(styrenesulfonate) (PEDOT:PSS), as well as PEDOT:PSS functionalized with semiconducting oxide nanomaterials (TiO 2 and SnO 2 ). The hybrid compound was deposited at room temperature by spin coating-a potentially lower cost, lower processing time and higher throughput alternative compared with the commonly used vacuum-based techniques. Photoluminescence imaging was used to characterize the electronic properties of the Si/PEDOT:PSS interface. Good surface passivation was achieved by PEDOT:PSS functionalized by semiconducting oxides. We show that control of the concentration of semiconducting oxide nanoparticles in the polymer is crucial in determining the passivation performance. A charge carrier lifetime of about 275 μs has been achieved when using SnO 2 nanoparticles at a concentration of 0.5 wt.% as a filler in the composite film. X-ray diffraction (XRD), scanning electron microscopy, high resolution transmission electron microscopy (HRTEM), energy dispersive x-ray in an SEM, and μ-Raman spectroscopy have been used for the morphological, chemical and structural characterization. Finally, a simple model of a photovoltaic device based on PEDOT:PSS functionalized with semiconducting oxide nanoparticles has been fabricated and electrically characterized.
Ti, Ni and TiNi nanoparticles physically synthesized by Ar+ beam milling.
Torres Castro, A; López Cuéllar, E; José Yacamán, M; Ortiz Méndez, U
2008-12-01
When the size of a particle decreases around 100 nm or less, there is a change in properties from those shown in the bulk material. In this work approximately 3 nm nanoparticles of Ni, Ti and TiNi bimetallic are produced using physical vapor deposition (PVD). Nanoparticles are characterized by High Resolution Transmission Electron Microscopy (HRTEM), High Angle Annular Dark Field (HAADF), Electron Diffraction (ED). The results show that all nanoparticles maintain the same crystal structure of bulk material but a change in their lattice parameter is produced.
NiCo2S4 nanorod embedded rGO sheets as electrodes for supercapacitor
NASA Astrophysics Data System (ADS)
Sarkar, Aatreyee; Bera, Supriya; Chakraborty, Amit Kumar
2018-04-01
We report the synthesis of a hybrid nanostructure based on NiCo2S4 and reduced graphene oxide (rGO) following a facile hydrothermal method. X-ray diffraction (XRD), and electron microscopy (FESEM and HRTEM) analyses showed rod-like NiCo2S4 nanostructures embedded in rGO sheets. The electrochemical analysis of the synthesized nanohybrid using cyclic voltammetry (CV) and galvanostatic charge discharge (GCD) revealed specific capacitance of 410 F/gm indicating its suitability as a good electrode material for supercapacitor.
Structural properties of ultrafine Ba-hexaferrite nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makovec, Darko, E-mail: Darko.Makovec@ijs.si; Primc, Darinka; Sturm, Saso
2012-12-15
Crystal structure of ultrafine Ba-hexaferrite (BaFe{sub 12}O{sub 19}) nanoparticles was studied using X-ray diffractometry (XRD), high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectroscopy (EDXS), X-ray absorption fine structure (XAFS), and Moessbauer spectroscopy (MS), to be compared to the structure of larger nanoparticles and the bulk. The nanoparticles were synthesized with hydrothermal treatment of an appropriate suspension of Ba and Fe hydroxides in the presence of a large excess of OH{sup -}. The ultrafine nanoparticles were formed in a discoid shape, {approx}10 nm wide and only {approx}3 nm thick, comparable to the size of the hexagonal unit cell in the c-direction.more » The HRTEM image analysis confirmed the hexaferrite structure, whereas EDXS showed the composition matching the BaFe{sub 12}O{sub 19} formula. XAFS and MS analyses showed considerable disorder of the structure, most probably responsible for the low magnetization. - Graphical abstract: Left: HREM image of an ultrafine Ba-hexaferrite nanoparticle (inset: TEM image of the nanoparticles); Right: the experimental HRTEM image is compared with calculated image and corresponding atomic model. Highlights: Black-Right-Pointing-Pointer Crystal structure of ultrafine Ba-hexaferrite (BaFe{sub 12}O{sub 19}) nanoparticles was compared to the structure of the bulk. Black-Right-Pointing-Pointer Thickness the discoid nanoparticles was comparable to the size of the hexagonal unit cell in the c-direction. Black-Right-Pointing-Pointer Considerable disorder of the nanoparticles' structure is most probably responsible for their low magnetization.« less
NASA Astrophysics Data System (ADS)
Florini, Nikoletta; Dimitrakopulos, George P.; Kioseoglou, Joseph; Pelekanos, Nikos T.; Kehagias, Thomas
2017-04-01
We are briefly reviewing the current status of elastic strain field determination in III-V heteroepitaxial nanostructures, linking finite elements (FE) calculations with quantitative nanoscale imaging and atomistic calculation techniques. III-V semiconductor nanostructure systems of various dimensions are evaluated in terms of their importance in photonic and microelectronic devices. As elastic strain distribution inside nano-heterostructures has a significant impact on the alloy composition, and thus their electronic properties, it is important to accurately map its components both at the interface plane and along the growth direction. Therefore, we focus on the determination of the stress-strain fields in III-V heteroepitaxial nanostructures by experimental and theoretical methods with emphasis on the numerical FE method by means of anisotropic continuum elasticity (CE) approximation. Subsequently, we present our contribution to the field by coupling FE simulations on InAs quantum dots (QDs) grown on (211)B GaAs substrate, either uncapped or buried, and GaAs/AlGaAs core-shell nanowires (NWs) grown on (111) Si, with quantitative high-resolution transmission electron microscopy (HRTEM) methods and atomistic molecular dynamics (MD) calculations. Full determination of the elastic strain distribution can be exploited for band gap tailoring of the heterostructures by controlling the content of the active elements, and thus influence the emitted radiation.
Femtosecond nonlinear optical properties of laser ablated gold nanoparticles in water
NASA Astrophysics Data System (ADS)
Krishnakanth, K. N.; Bharathi, M. S. S.; Hamad, S.; Rao, S. Venugopal
2018-04-01
Femtosecond third order nonlinear optical (NLO) properties of ultrafast laser ablated gold (Au) colloidsin distilled waterare investigatedusing degenerate four wave mixing technique with 50fs pulses at 800nm wavelength. The estimated value of χ(3) obtained for Au nanoparticles is 1.93×10-14 e.s.u. The characterization of the NPs was achieved done using TEM and HR-TEM techniques. We also present the time resolved studies of Au colloids by using DFWM technique in the forward BOXCAR phase matching geometry.
Structure and morphology evolution of silica-modified pseudoboehmite aerogels during heat treatment
NASA Astrophysics Data System (ADS)
Pakharukova, V. P.; Shalygin, A. S.; Gerasimov, E. Yu.; Tsybulya, S. V.; Martyanov, O. N.
2016-01-01
Silica-modified pseudoboehmite aerogels (0, 10, 20 at% of Si) were prepared by sol-gel method followed by supercritical drying. The phase transformations, changes in structure and morphology upon calcination were thoroughly investigated by advanced X-Ray diffraction (XRD) techniques and high-resolution transmission electron microscopy (HRTEM). Obtained pseudoboehmite samples had specific nanostructure: ultrathin two-dimensional (2D) crystallites were loosely packed. The silica dopant drastically enhanced the crystallite anisotropy. Thus, the aerogel with Al:Si atomic ratio of 9:1 consisted of the pseudoboehmite nanosheets with thickness of one unit cell (average dimensions of 14.0×1.2×14.5 nm). The specific nanostructure caused remarkable features of experimental XRD patterns, including anisotropic peak broadening and appearance of forbidden reflection. Direct simulation of XRD patterns with using the Debye Scattering Equation allowed the size and morphology of pseudoboehmite crystallites to be determined. The silica addition strongly delayed formation of γ-alumina and further phase transformations upon calcinaton. Thermal stability of alumina was suggested to be affected by the particle morphology inherited from the pseudoboehmite precursor.
NASA Astrophysics Data System (ADS)
Rajendran, Kalimuthu; Rajendiran, Nagappan
2018-02-01
A simple, economical, and green method for the preparation of water soluble, high fluorescent carbon quantum dots (CQDs) has been prepared via hydrothermal process using jackfruit (Artocarpus heterophyllus) as a carbon source. The optical properties of synthesized CQDs were characterized by UV- visible and fluorescence spectroscopy. Fourier transform infrared spectroscopy (FT-IR), x-ray Diffraction (XRD) and high resolution transmission electron microscopy (HR-TEM) techniques were used to study the composition and size of the CQDs. The prepared CQDs were spherical in shape with an average size of 2.5 nm along with uniform distribution and showed bright bluish green emission properties, without any further surface modification. The prepared CQDs were exhibit high stability at neutral pH and showed high photo-stability under UV light irradiation at 365 nm. The obtained CQDs were effectively utilized as fluorescent probe for highly selective and sensitive detection of Hg2+ and Cr6+ ions in environmental samples with a limit of detection of about 8 and 10 nM respectively.
Thirumalraj, Balamurugan; Rajkumar, Chellakannu; Chen, Shen-Ming; Palanisamy, Selvakumar
2017-01-01
We report a simple new approach for green preparation of gallic acid supported reduced graphene oxide encapsulated gold nanoparticles (GA-RGO/AuNPs) via one-pot hydrothermal method. The as-prepared composites were successfully characterized by using Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray powder diffraction techniques (XRD), scanning electron microscope (SEM), high resolution transmission electron microscopy (HRTEM) and elemental analysis. The GA-RGO/AuNPs modified electrode behaves as a hybrid electrode material for sensitive and selective detection of dopamine (DA) in presence of ascorbic acid (AA) and uric acid (UA). The GA-RGO/AuNPs modified electrode displays an excellent electrocatalytic activity towards the oxidation of DA and exhibits a wide linear response range over the DA concentrations from 0.01–100.3 μM with a detection limit (LOD) of 2.6 nM based on S/N = 3. In addition, the proposed sensor could be applied for the determination of DA in human serum and urine samples for practical analysis. PMID:28128225
NASA Astrophysics Data System (ADS)
Khataee, Alireza; Movafeghi, Ali; Nazari, Fatemeh; Vafaei, Fatemeh; Dadpour, Mohammad Reza; Hanifehpour, Younes; Joo, Sang Woo
2014-12-01
Plants play an important role in the fate of nanoparticles in the environment through their uptake, bioaccumulation, and transfer to trophic chains. However, the impacts of nanoparticles on plants as essential components of all ecosystems are not well documented. In the present study, the toxic effects of l-Cysteine-capped CdS nanoparticles on Spirodela polyrrhiza as an aquatic higher plant species were studied. l-Cysteine-capped CdS nanoparticles were synthesized using hydrothermal method and their characteristics were determined by XRD, SEM, HR-TEM, and FT-IR techniques. The diameter of majority of synthesized nanoparticles was about 15-20 nm. Subsequently, the uptake of l-Cysteine-capped CdS nanoparticles by the plant species was confirmed using epifluorescence microscopy. The activity of peroxidase and superoxide dismutase as antioxidant enzymes was assayed and the relative frond number was calculated in the presence of different concentrations of l-Cysteine-capped CdS nanoparticles. The obtained results revealed the toxic effects of the synthesized nanoparticles on S. polyrrhiza, leading to growth reduction and significant changes in antioxidant enzymes' activity.
NASA Astrophysics Data System (ADS)
Pugazhendhi, S.; Kirubha, E.; Palanisamy, P. K.; Gopalakrishnan, R.
2015-12-01
Development of green route for the synthesis of nanoparticles with plant extracts plays a very important role in nanotechnology without any toxicity chemicals. Herein we report a new approach to synthesize silver nanoparticles (AgNPs) using aqueous extract of Alpinia calcarata root as a reducing as well as stabilizing agent. The crystal structure and purity of the synthesized AgNPs were studied using Powder X-ray Diffraction analysis. The Surface Plasmon Resonance bands of synthesized silver nanoparticles have been obtained and monitored using UV-Visible spectrum. The morphologies of the AgNPs were analyzed using High resolution transmission electron microscopy (HRTEM). The elements present in the A. calcarata extract were determined by the inductively coupled plasma-optical emission Spectrometry (ICP-OES) and Fourier transform infrared spectroscopy (FTIR). Silver nanoparticles from A. calcarata possess very good antimicrobial activity which was confirmed by resazurin dye reduction assay method and thus it is a potential source of antimicrobial agent. The synthesized Ag nanoparticles exhibit good optical nonlinearity and the nonlinear optical studies have been carried out by Z-scan technique.
NASA Astrophysics Data System (ADS)
Thirumalraj, Balamurugan; Rajkumar, Chellakannu; Chen, Shen-Ming; Palanisamy, Selvakumar
2017-01-01
We report a simple new approach for green preparation of gallic acid supported reduced graphene oxide encapsulated gold nanoparticles (GA-RGO/AuNPs) via one-pot hydrothermal method. The as-prepared composites were successfully characterized by using Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray powder diffraction techniques (XRD), scanning electron microscope (SEM), high resolution transmission electron microscopy (HRTEM) and elemental analysis. The GA-RGO/AuNPs modified electrode behaves as a hybrid electrode material for sensitive and selective detection of dopamine (DA) in presence of ascorbic acid (AA) and uric acid (UA). The GA-RGO/AuNPs modified electrode displays an excellent electrocatalytic activity towards the oxidation of DA and exhibits a wide linear response range over the DA concentrations from 0.01-100.3 μM with a detection limit (LOD) of 2.6 nM based on S/N = 3. In addition, the proposed sensor could be applied for the determination of DA in human serum and urine samples for practical analysis.
Comparison of antibacterial activities of Ag@TiO2 and Ag@SiO2 core-shell nanoparticles
NASA Astrophysics Data System (ADS)
Dhanalekshmi, K. I.; Meena, K. S.
2014-07-01
Core-shell type Ag@TiO2 nanoparticles were prepared by one pot simultaneous reduction of AgNO3 and hydrolysis of Ti (IV) isopropoxide and Ag@SiO2 core-shell nanoparticles were prepared by Stober's method. They were characterized by absorption, XRD, and HR-TEM techniques. XRD patterns show the presence of anatase form of TiO2 and amorphous form of SiO2 and the noble metal (Ag). High resolution transmission electron microscopy measurements revealed that their size is below 50 nm. The antibacterial properties of Ag@TiO2 and Ag@SiO2 core-shell nanoparticles against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were examined by the agar diffusion method. As a result E. coli and S. aureus were shown to be substantially inhibited by Ag@TiO2 and Ag@SiO2 core-shell nanoparticles. These results demonstrated that TiO2 and SiO2 supported on the surface of Ag NPs without aggregation was proved to have enhanced antibacterial activity.
Comparison of antibacterial activities of Ag@TiO2 and Ag@SiO2 core-shell nanoparticles.
Dhanalekshmi, K I; Meena, K S
2014-07-15
Core-shell type Ag@TiO2 nanoparticles were prepared by one pot simultaneous reduction of AgNO3 and hydrolysis of Ti (IV) isopropoxide and Ag@SiO2 core-shell nanoparticles were prepared by Stober's method. They were characterized by absorption, XRD, and HR-TEM techniques. XRD patterns show the presence of anatase form of TiO2 and amorphous form of SiO2 and the noble metal (Ag). High resolution transmission electron microscopy measurements revealed that their size is below 50 nm. The antibacterial properties of Ag@TiO2 and Ag@SiO2 core-shell nanoparticles against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were examined by the agar diffusion method. As a result E. coli and S. aureus were shown to be substantially inhibited by Ag@TiO2 and Ag@SiO2 core-shell nanoparticles. These results demonstrated that TiO2 and SiO2 supported on the surface of Ag NPs without aggregation was proved to have enhanced antibacterial activity. Copyright © 2014 Elsevier B.V. All rights reserved.
In situ observation of shear-driven amorphization in silicon crystals.
He, Yang; Zhong, Li; Fan, Feifei; Wang, Chongmin; Zhu, Ting; Mao, Scott X
2016-10-01
Amorphous materials are used for both structural and functional applications. An amorphous solid usually forms under driven conditions such as melt quenching, irradiation, shock loading or severe mechanical deformation. Such extreme conditions impose significant challenges on the direct observation of the amorphization process. Various experimental techniques have been used to detect how the amorphous phases form, including synchrotron X-ray diffraction, transmission electron microscopy (TEM) and Raman spectroscopy, but a dynamic, atomistic characterization has remained elusive. Here, by using in situ high-resolution TEM (HRTEM), we show the dynamic amorphization process in silicon nanocrystals during mechanical straining on the atomic scale. We find that shear-driven amorphization occurs in a dominant shear band starting with the diamond-cubic (dc) to diamond-hexagonal (dh) phase transition and then proceeds by dislocation nucleation and accumulation in the newly formed dh-Si phase. This process leads to the formation of an amorphous Si (a-Si) band, embedded with dh-Si nanodomains. The amorphization of dc-Si via an intermediate dh-Si phase is a previously unknown pathway of solid-state amorphization.
TEM-EELS Investigation of Boron and Phosphorus Passivated 4H-SiC/SiO2 Interface Structures
NASA Astrophysics Data System (ADS)
Klingshirn, Christopher; Taillon, Joshua; Liu, Gang; Dhar, Sarit; Feldman, Leonard; Zheleva, Tsvetanka; Lelis, Aivars; Salamanca-Riba, Lourdes
A high density of electronic defects at the SiC/SiO2 interface adversely affects SiC-based metal oxide semiconductor devices. Various treatments are known to improve device performance. Annealing in a nitric oxide (NO) environment, for example, passivates electronic defects at the interface and raises the carrier mobility in the active region to 35-40 cm2/Vs, but the effect saturates after about 60 minutes of annealing. Passivation with phosphorus or boron improves upon NO by a factor of 2, increasing the mobility to over 90 cm2/Vs.2 We investigate the chemical and structural effects of these treatments on the SiC/SiO2 transition layer using high-resolution transmission electron microscopy (HRTEM) and high angle annular dark field (HAADF). Electron energy loss spectroscopy Spectrum Imaging (EELS SI) collected across the transition region allow identification of the width, composition and types of bonding at the transition layer. Advanced machine learning techniques applied to the EELS data reveal intermediate bonding states within this region. Supported by ARL under Grant No. W911NF1420110.
Ibupoto, Z H; Khun, K; Liu, X; Willander, M
2013-10-01
In this study, we have successfully synthesised CuO bundle of nanowires using simple, cheap and low temperature hydrothermal growth method. The growth parameters such as precursor concentration and time for duration of growth were optimised. The field emission scanning electron microscopy (FESEM) has demonstrated that the CuO bundles of nanowires are highly dense, uniform and perpendicularly oriented to the substrate. The high resolution transmission electron microscopy (HRTEM) has demonstrated that the CuO nanostructures consist of bundle of nanowires and their growth pattern is along the [010] direction. The X-ray diffraction (XRD) technique described that CuO bundle of nanowires possess the monoclinic crystal phase. The surface and chemical composition analyses were carried out with X-ray photoelectron spectroscopy (XPS) technique and the obtained results suggested the pure crystal state of CuO nanostructures. In addition, the CuO nanowires were used for the cholesterol sensing application by immobilising the cholesterol oxidase through electrostatic attraction. The infrared reflection absorption spectroscopy study has also revealed that CuO nanostructures are consisting of only CuO bonding and has also shown the possible interaction of cholesterol oxidase with the sharp edge surface of CuO bundle of nanowires. The proposed cholesterol sensor has demonstrated the wide range of detection of cholesterol with good sensitivity of 33.88±0.96 mV/decade. Moreover, the CuO bundle of nanowires based sensor electrode has revealed good repeatability, reproducibility, stability, selectivity and a fast response time of less than 10s. The cholesterol sensor based on the immobilised cholesterol oxidase has good potential applicability for the determination of cholesterol from the human serum and other biological samples. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Yahui; Zhang, Huayu; Wu, Bowen; Guo, Zhuo
2017-12-01
A kind of coating nanostructure, Ag nanoparticles coated with multilayered reduced graphene oxide (RGO), is fabricated by employing a three-step reduction method in an orderly manner, which is significantly different from the conventional structures that are simply depositing or doping with Ag nanoparticles on RGO via chemical reduction. The as-prepared nanostructure is investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected-area electronic diffraction (SEAD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR). The results show that the obtained Ag/RGO nanostructure is observed to be a perfect coating structure with well dispersed Ag particles, which is responsible for the remarkable oxidation resistance. The results of XPS spectra indicate the content of metallic Ag is far greater than that of Ag oxides despite of prolonged exposure to the air, which fully demonstrate the excellent stability of thus coating nanostructure.
Radha, G; Balakumar, S; Venkatesan, Balaji; Vellaichamy, Elangovan
2015-05-01
This study reports the microwave-assisted synthesis and characterization of nHAp (nano-hydroxyapatite)-alumina composites. The crystalline phase and interaction of alumina with nHAp was analyzed using X-ray diffraction (XRD) and Raman microscopy analysis, respectively. High resolution transmission electron microscopy (HRTEM) micrographs exhibit morphological changes of nHAp composites with increasing alumina concentrations. Microhardness studies reveal the enhanced mechanical strength of nHAp10 and nHAp20 nanocomposites than pure nHAp. In vitro bioactivity of the nanocomposites was studied by immersing samples in simulated body fluid (Hank's solution) for 21 days. The surface of biomineralized samples were analyzed using field emission scanning electron microscopy (FESEM) and energy dispersive X-ray spectroscopy (EDX). Hemolytic assay revealed acceptable compatibility for varying concentrations of all the samples. Cell proliferation assay was systematically investigated for 1 day and 3 days on Saos-2 osteoblast-like cell lines and it was found that nHAp nanocomposites improved the proliferation. Copyright © 2015 Elsevier B.V. All rights reserved.
Zhang, Xiong; Chen, Yao; Yu, Peng; Ma, Yanwei
2010-11-01
In the present work, amorphous manganese oxide nanomaterials have been synthesized by a common hydrothermal method based on the redox reaction between MnO4(-) and Fe(2+) under an acidic condition. The synthesized MnO2 samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and electrochemical studies. XRD results showed that amorphous manganese oxide phase was obtained. XPS quantitative analysis revealed that the atomic ratio of Mn to Fe was 3.5 in the MnO2 samples. TEM images showed the porous structure of the samples. Electrochemical properties of the MnO2 electrodes were studied using cyclic voltammetry and galvanostatic charge-discharge cycling in 1 M Na2SO4 aqueous electrolyte, which showed excellent pseudocapacitance properties. A specific capacitance of 192 Fg(-1) at a current density of 0.5 Ag(-1) was obtained at the potential window from -0.1 to 0.9 V (vs. SCE).
CMC-coated Fe3O4 nanoparticles as new MRI probes for hepatocellular carcinoma
NASA Astrophysics Data System (ADS)
Sitthichai, Sudarat; Pilapong, Chalermchai; Thongtem, Titipun; Thongtem, Somchai
2015-11-01
Pure Fe3O4 nanoparticles and Fe3O4 magnetic nanoparticles (MNPs) coated with carboxymethyl cellulose (CMC) were successfully prepared by co-precipitating of FeCl2·4H2O and FeCl3·6H2O in the solutions containing ammonia at 80 °C for 3 h. Phase, morphology, particle-sized distribution, surface chemistry, and weight loss were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM) including high-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED), thermogravimetric analysis (TGA), and Fourier transform infrared (FTIR) spectroscopy. In this research, CMC-coated Fe3O4 MNPs consisting of Fe2+ and Fe3+ ions with 543.3-mM-1 s-1 high relaxivity were detected and were able to be used for magnetic resonance imaging (MRI) application with very good contrast for targeting hepatocellular carcinoma (HCC) without any further vectorization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pawbake, Amit; Tata Institute of Fundamental Research, Colaba, Mumbai 400 005; Mayabadi, Azam
Highlights: • Boron doped nc-3C-SiC films prepared by HW-CVD using SiH{sub 4}/CH{sub 4}/B{sub 2}H{sub 6}. • 3C-Si-C films have preferred orientation in (1 1 1) direction. • Introduction of boron into SiC matrix retard the crystallanity in the film structure. • Film large number of SiC nanocrystallites embedded in the a-Si matrix. • Band gap values, E{sub Tauc} and E{sub 04} (E{sub 04} > E{sub Tauc}) decreases with increase in B{sub 2}H{sub 6} flow rate. - Abstract: Boron doped nanocrystalline cubic silicon carbide (3C-SiC) films have been prepared by HW-CVD using silane (SiH{sub 4})/methane (CH{sub 4})/diborane (B{sub 2}H{sub 6}) gasmore » mixture. The influence of boron doping on structural, optical, morphological and electrical properties have been investigated. The formation of 3C-SiC films have been confirmed by low angle XRD, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), Fourier transform infra-red (FTIR) spectroscopy and high resolution-transmission electron microscopy (HR-TEM) analysis whereas effective boron doping in nc-3C-SiC have been confirmed by conductivity, charge carrier activation energy, and Hall measurements. Raman spectroscopy and HR-TEM analysis revealed that introduction of boron into the SiC matrix retards the crystallanity in the film structure. The field emission scanning electron microscopy (FE-SEM) and non contact atomic force microscopy (NC-AFM) results signify that 3C-SiC film contain well resolved, large number of silicon carbide (SiC) nanocrystallites embedded in the a-Si matrix having rms surface roughness ∼1.64 nm. Hydrogen content in doped films are found smaller than that of un-doped films. Optical band gap values, E{sub Tauc} and E{sub 04} decreases with increase in B{sub 2}H{sub 6} flow rate.« less
The adsorption of L-phenylalanine on oxidized single-walled carbon nanotubes.
Piao, Lingyu; Liu, Quanrun; Li, Yongdan; Wang, Chen
2009-02-01
A simple and green approach was proceeded to obtain a stable single-walled carbon nanotubes (SWNTs)/L-phenylalanine (Phe) solution. The oxidized SWNTs (OSWNT) were used in this work. The scanning electron microscopy (SEM), High-resolution transmission electron microscopy (HRTEM), Raman spectrometer, Fourier transform-infrared resonance (FT-IR), Ultraviolet-visible (UV-vis) spectroscopy, Thermogravimetric analysis (TGA) and High performance liquid chromatography (HPLC) were joined together to investigate the interaction between OSWNT and Phe. The OSWNT became soluble in the water and formed a stable solution since the Phe was adsorbed. The absorbed amount of Phe on the OSWNT is around 33 wt%. Adsorption of the Phe was mainly carried out on the OSWNT with smaller diameters. The Phe molecules were absorbed on the OSWNT by conjunct interaction of the pi-pi stacking, hydrogen bond and part of covalent bond.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miehe, Gerhard; Lauterbach, Stefan; Kleebe, Hans-Joachim
The high-resolution transmission electron microscopy (HR-TEM) is used to study, in situ, spatially resolved decomposition in individual nanocrystals of metal hydroxides and oxyhydroxides. This case study reports on the decomposition of indium hydroxide (c-In(OH){sub 3}) to bixbyite-type indium oxide (c-In{sub 2}O{sub 3}). The electron beam is focused onto a single cube-shaped In(OH){sub 3} crystal of {l_brace}100{r_brace} morphology with ca. 35 nm edge length and a sequence of HR-TEM images was recorded during electron beam irradiation. The frame-by-frame analysis of video sequences allows for the in situ, time-resolved observation of the shape and orientation of the transformed crystals, which in turnmore » enables the evaluation of the kinetics of c-In{sub 2}O{sub 3} crystallization. Supplementary material (video of the transformation) related to this article can be found online at (10.1016/j.jssc.2012.09.022). After irradiation the shape of the parent cube-shaped crystal is preserved, however, its linear dimension (edge) is reduced by the factor 1.20. The corresponding spotted selected area electron diffraction (SAED) pattern representing zone [001] of c-In(OH){sub 3} is transformed to a diffuse strongly textured ring-like pattern of c-In{sub 2}O{sub 3} that indicates the transformed cube is no longer a single crystal but is disintegrated into individual c-In{sub 2}O{sub 3} domains with the size of about 5-10 nm. The induction time of approximately 15 s is estimated from the time-resolved Fourier transforms. The volume fraction of the transformed phase (c-In{sub 2}O{sub 3}), calculated from the shrinkage of the parent c-In(OH){sub 3} crystal in the recorded HR-TEM images, is used as a measure of the kinetics of c-In{sub 2}O{sub 3} crystallization within the framework of Avrami-Erofeev formalism. The Avrami exponent of {approx}3 is characteristic for a reaction mechanism with fast nucleation at the beginning of the reaction and subsequent three-dimensional growth of nuclei with a constant growth rate. The structural transformation path in reconstructive decomposition of c-In(OH){sub 3} to c-In{sub 2}O{sub 3} is discussed in terms of (i) the displacement of hydrogen atoms that lead to breaking the hydrogen bond between OH groups of [In(OH){sub 6}] octahedra and finally to their destabilization and (ii) transformation of the vertices-shared indium-oxygen octahedra in c-In(OH){sub 3} to vertices- and edge-shared octahedra in c-In{sub 2}O{sub 3}. - Graphical abstract: Frame-by-frame analysis of video sequences recorded of HR-TEM images reveals that a single cube-shaped In(OH){sub 3} nanocrystal with {l_brace}100{r_brace} morphology decomposes into bixbyite-type In{sub 2}O{sub 3} domains while being imaged. The mechanism of this decomposition is evaluated through the analysis of the structural relationship between initial (c-In(OH){sub 3}) and transformed (c-In{sub 2}O{sub 3}) phases and though the kinetics of the decomposition followed via the time-resolved shrinkage of the initial crystal of indium hydroxide. Highlights: Black-Right-Pointing-Pointer In-situ time-resolved High Resolution Transmission Electron Microscopy. Black-Right-Pointing-Pointer Crystallographic transformation path. Black-Right-Pointing-Pointer Kinetics of the decomposition in one nanocrystal.« less
NASA Technical Reports Server (NTRS)
Cady, Sherry L.; Wenk, H.-R.; DeVincenzi, Don (Technical Monitor)
1994-01-01
Microcrystalline opal varieties form as intermediary precipitates during the diagenetic transformation of biogenically precipitated non-crystalline opal (opal-A) to microquartz. With regard to the Monterey Formation of California, X-ray powder diffraction studies have shown that a decrease in the primary d-spacing of opal-CT toward that of cristobalite occurs with increasing diagenesis. The initial timing of opal-CT/quartz formation and the value of the primary opal-CT d-spacing, are influenced by the sediment. lithology. Transmission electron microscopy methods (CTEM/HRTEM) were used to investigate the structure of the diagenetic phases and establish transformation mechanisms between the varieties of microcrystalline opals in charts and porcelanites from the Monterey Formation. HRTEM images revealed that the most common fibrous varieties of microcrystalline opals contain varying amounts of structural disorder. Finite lamellar units of cristobalite-and tridymite-type. layer sequences were found to be randomly stacked in a direction perpendicular to the fiber axis. Disordered and ordered fibers were found to have coprecipitated within the same radial fiber bundles that formed within the matrix of the Most siliceous samples. HRTEM images, which reveal that the fibers within radial and lepispheric fiber bundles branch non-crystallographically, support an earlier proposal that microspheres in chert grow via a spherulitic growth mechanism. A less common variety of opal-CT was found to be characterized by non-parallel (low-angle) stacking sequences that often contain twinned lamellae. Tabular-shaped crystals of orthorhombic tridymite (PO-2) were also identified in the porcelanite samples. A shift in the primary d-spacing of opal-CT has been interpreted as an indication of solid-state ordering g toward a predominantly cristobalite structure, (opal-C). Domains of opal-C were identified as topotactically-oriented overgrowths on discrete Sections of opal-CT fibers and as lamellar domains within relict opal-CT fibers. These findings indicate that the type of transformation mechanism depends upon the primary structural characteristics of the authigenic opaline. varieties that are in turn influenced by the sediment lithology.
NASA Astrophysics Data System (ADS)
Hosseini, M. G.; Mahmoodi, R.
2017-12-01
In this study, core@shell nanoparticles with Ni as a core material and Pt, Pd and Ru as shell materials are synthesized on multiwalled carbon nanotube (MWCNT) as catalyst support using the sequence reduction method. The influence of Ni@Pt, Ni@Pd and Ni@Ru core@shell nanoparticles on MWCNT toward borohydride oxidation in alkaline solution is investigated by various three-electrode electrochemical techniques. Also, the impact of these anodic electrocatalysts on the performance of direct borohydride-hydrogen peroxide fuel cell (DBHPFC) is evaluated. The structural and morphological properties of electrocatalysts are studied by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS). The results of three electrode investigations show that Ni@Pd/MWCNT has excellent catalytic activity since borohydride oxidation current density on Ni@Pd/MWCNT (34773.27 A g-1) is 1.37 and 9.19 times higher than those of Ni@Pt/MWCNT (25347.27 A g-1) and Ni@Ru/MWCNT (3782.83 A g-1), respectively. Also, the energy conversion efficiency and power density of DBHPFC with Ni@Pd/MWCNT (246.82 mW cm-2) increase to 34.27% and 51.53% respect to Ni@Pt/MWCNT (162.24 mW cm-2) and Ni@Ru/MWCNT (119.62 mW cm-2), respectively. This study reveals that Ni@Pd/MWCNT has highest activity toward borohydride oxidation and stability in fuel cell.
Xin, Wenbo; De Rosa, Igor M; Cao, Yang; Yin, Xunqian; Yu, Hang; Ye, Peiyi; Carlson, Larry; Yang, Jenn-Ming
2018-04-19
We report a facile synthesis of Au nanowires (AuNWs) with a high aspect ratio (l/D) of up to 5000 on a plasma activated graphene template with ultrasound assistance. We demonstrate that the ultrasonication induced symmetry breaking of Au clusters facilitates the growth of AuNWs from the embryonic stages. Furthermore, the growth mechanism of AuNWs is systematically investigated using high resolution electron transmission microscopy (HRTEM), which reveals the unique role of the defective graphene template in directing the growth of AuNWs.
Annealing effect and photovoltaic properties of nano-ZnS/textured p-Si heterojunction.
Ji, Liang-Wen; Hsiao, Yu-Jen; Tang, I-Tseng; Meen, Teen-Hang; Liu, Chien-Hung; Tsai, Jenn-Kai; Wu, Tien-Chuan; Wu, Yue-Sian
2013-11-09
The preparation and characterization of heterojunction solar cell with ZnS nanocrystals synthesized by chemical bath deposition method were studied in this work. The ZnS nanocrystals were characterized by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). Lower reflectance spectra were found as the annealing temperature of ZnS film increased on the textured p-Si substrate. It was found that the power conversion efficiency (PCE) of the AZO/ZnS/textured p-Si heterojunction solar cell with an annealing temperature of 250°C was η = 3.66%.
Annealing effect and photovoltaic properties of nano-ZnS/textured p-Si heterojunction
2013-01-01
The preparation and characterization of heterojunction solar cell with ZnS nanocrystals synthesized by chemical bath deposition method were studied in this work. The ZnS nanocrystals were characterized by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). Lower reflectance spectra were found as the annealing temperature of ZnS film increased on the textured p-Si substrate. It was found that the power conversion efficiency (PCE) of the AZO/ZnS/textured p-Si heterojunction solar cell with an annealing temperature of 250°C was η = 3.66%. PMID:24206942
Annealing effect and photovoltaic properties of nano-ZnS/textured p-Si heterojunction
NASA Astrophysics Data System (ADS)
Ji, Liang-Wen; Hsiao, Yu-Jen; Tang, I.-Tseng; Meen, Teen-Hang; Liu, Chien-Hung; Tsai, Jenn-Kai; Wu, Tien-Chuan; Wu, Yue-Sian
2013-11-01
The preparation and characterization of heterojunction solar cell with ZnS nanocrystals synthesized by chemical bath deposition method were studied in this work. The ZnS nanocrystals were characterized by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). Lower reflectance spectra were found as the annealing temperature of ZnS film increased on the textured p-Si substrate. It was found that the power conversion efficiency (PCE) of the AZO/ZnS/textured p-Si heterojunction solar cell with an annealing temperature of 250°C was η = 3.66%.
Uranium migration in spark plasma sintered W/UO2 CERMETS
NASA Astrophysics Data System (ADS)
Tucker, Dennis S.; Wu, Yaqiao; Burns, Jatuporn
2018-03-01
W/UO2 CERMET samples were sintered in a Spark Plasma Sintering (SPS) furnace at various temperature under vacuum and pressure. High Resolution Transmission Electron Microscopy (HRTEM) with Energy Dispersive Spectroscopy (EDS) was performed on the samples to determine interface structures and uranium diffusion from the UO2 particles into the tungsten matrix. Local Electrode Atom Probe (LEAP) was also performed to determine stoichiometry of the UO2 particles. It was seen that uranium diffused approximately 10-15 nm into the tungsten matrix. This is explained in terms of production of oxygen vacancies and Fick's law of diffusion.
NASA Astrophysics Data System (ADS)
Atchudan, Raji; Edison, Thomas Nesakumar Jebakumar Immanuel; Perumal, Suguna; Lee, Yong Rok
2017-01-01
Nitrogen-doped graphitic carbon sheets (N-GCSs) were prepared from the extract of unripe Prunus persica fruit by a direct hydrothermal method. The synthesized N-GCSs were examined by high resolution transmission electron microscopy (HRTEM), nitrogen adsorption-desorption isotherms, X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FT-IR) spectroscopy. HRTEM showed that the synthesized carbon sheets were graphitic with lattice fringes and an inter-layer distance of 0.36 nm. Doping with the nitrogen moiety present over the synthesized GCSs was confirmed by XPS, FT-IR spectroscopy, and energy dispersive X-ray spectroscopy elemental mapping. The fruit extract associated with hydrothermal-carbonization method is economical and eco-friendly with a single step process. The resulting carbon sheets could be modified and are promising candidates for nano-electronic applications, including supercapacitors. The synthesized N-GCSs-2 provided a high specific capacitance of 176 F g-1 at a current density of 0.1 A g-1. This electrode material has excellent cyclic stability, even after 2000 cycles of charge-discharge at a current density of 0.5 A g-1.
Development of Ternary and Quaternary Catalysts for the Electrooxidation of Glycerol
Artem, L. M.; Santos, D. M.; De Andrade, A. R.; Kokoh, K. B.; Ribeiro, J.
2012-01-01
This work consisted in the preparation of platinum-based catalysts supported on carbon (Vulcan XC-72) and investigation of their physicochemical and electrochemical properties. Catalysts of the C/Pt-Ni-Sn-Me (Me = Ru or Ir) type were prepared by the Pechini method at temperature of 350°C. Four different compositions were homemade: C/Pt60Sn10Ni30, C/Pt60Sn10Ni20Ru10, C/Pt60Sn10Ni10Ru20, and C/Pt60Sn10Ni10Ir20. These catalysts were electrochemically and physically characterized by cyclic voltammetry (CV), chronoamperometry (CA) in the presence of glycerol 1.0 mol dm−3, X-ray diffraction (XRD), and high-resolution transmission electron microscopy (HRTEM). XRD results showed the main peaks of face-centered cubic Pt. The particle sizes obtained from XRD and HRTEM experiments were close to values ranging from 3 to 8.5 nm. The CV results indicate behavior typical of Pt-based catalysts in acid medium. The CV and CA data reveal that quaternary catalysts present the highest current density for the electrooxidation of glycerol. PMID:22623905
Structural and morphological peculiarities of hybrid Au/nanodiamond engineered nanostructures
NASA Astrophysics Data System (ADS)
Matassa, Roberto; Orlanducci, Silvia; Reina, Giacomo; Cassani, Maria Cristina; Passeri, Daniele; Terranova, Maria Letizia; Rossi, Marco
2016-08-01
Nanostructured Au nano-platelets have been synthesized from an Au(III) complex by growth process triggered by nanodiamond (ND). An electroless synthetic route has been used to obtain 2D Au/ND architectures, where individual nanodiamond particles are intimately embedded into face-centered cubic Au platelets. The combined use of high resolution transmission electron microscopy (HR-TEM) and selected area electron diffraction (SAED), was able to reveal the unusual organization of these hybrid nanoparticles, ascertaining the existence of preferential crystallographic orientations for both nanocrystalline species and highlighting their mutual locations. Detailed information on the sample microstructure have been gathered by fast Fourier transform (FFT) and inverse fast Fourier transform (IFFT) of HR-TEM images, allowing us to figure out the role of Au defects, able to anchor ND crystallites and to provide specific sites for heteroepitaxial Au growth. Aggregates constituted by coupled ND and Au, represent interesting systems conjugating the best optoelectronics and plasmonics properties of the two different materials. In order to promote realistically the applications of such outstanding Au/ND materials, the cooperative mechanisms at the basis of material synthesis and their influence on the details of the hybrid nanostructures have to be deeply understood.
Ion-induced crystal damage during plasma-assisted MBE growth of GaN layers
NASA Astrophysics Data System (ADS)
Kirchner, V.; Heinke, H.; Birkle, U.; Einfeldt, S.; Hommel, D.; Selke, H.; Ryder, P. L.
1998-12-01
Gallium nitride layers were grown by plasma-assisted molecular-beam epitaxy on (0001)-oriented sapphire substrates using an electron cyclotron resonance (ECR) and a radio frequency (rf) plasma source. An applied substrate bias was varied from -200 to +250 V, resulting in a change of the density and energy of nitrogen ions impinging the growth surface. The layers were investigated by high-resolution x-ray diffractometry and high-resolution transmission electron microscopy (HRTEM). Applying a negative bias during growth has a marked detrimental effect on the crystal perfection of the layers grown with an ECR plasma source. This is indicated by a change in shape and width of (0002) and (202¯5) reciprocal lattice points as monitored by triple axis x-ray measurements. In HRTEM images, isolated basal plane stacking faults were found, which probably result from precipitation of interstitial atoms. The crystal damage in layers grown with a highly negative substrate bias is comparable to that observed for ion implantation processes at orders of magnitude larger ion energies. This is attributed to the impact of ions on the growing surface. None of the described phenomena was observed for the samples grown with the rf plasma source.
Structural and morphological peculiarities of hybrid Au/nanodiamond engineered nanostructures
Matassa, Roberto; Orlanducci, Silvia; Reina, Giacomo; Cassani, Maria Cristina; Passeri, Daniele; Terranova, Maria Letizia; Rossi, Marco
2016-01-01
Nanostructured Au nano-platelets have been synthesized from an Au(III) complex by growth process triggered by nanodiamond (ND). An electroless synthetic route has been used to obtain 2D Au/ND architectures, where individual nanodiamond particles are intimately embedded into face-centered cubic Au platelets. The combined use of high resolution transmission electron microscopy (HR-TEM) and selected area electron diffraction (SAED), was able to reveal the unusual organization of these hybrid nanoparticles, ascertaining the existence of preferential crystallographic orientations for both nanocrystalline species and highlighting their mutual locations. Detailed information on the sample microstructure have been gathered by fast Fourier transform (FFT) and inverse fast Fourier transform (IFFT) of HR-TEM images, allowing us to figure out the role of Au defects, able to anchor ND crystallites and to provide specific sites for heteroepitaxial Au growth. Aggregates constituted by coupled ND and Au, represent interesting systems conjugating the best optoelectronics and plasmonics properties of the two different materials. In order to promote realistically the applications of such outstanding Au/ND materials, the cooperative mechanisms at the basis of material synthesis and their influence on the details of the hybrid nanostructures have to be deeply understood. PMID:27514638
NASA Astrophysics Data System (ADS)
Pankin, I. A.; Polozhentsev, O. E.; Soldatov, M. A.; Bugaev, A. L.; Tsaturyan, A.; Lomachenko, K. A.; Guda, A. A.; Budnyk, A. P.; Lamberti, C.; Soldatov, A. V.
2018-06-01
This article is devoted to the spectroscopic characterization of ZnS-ZnO nanoscale heterostructures synthesized by the microwave-assisted solvothermal method. The synthesized samples were investigated by means of X-ray powder diffraction (XRPD), high energy resolution fluorescence detected X-ray absorption near-edge-structure (HERFD-XANES) spectroscopy, valence-to-core X-ray emission spectroscopy (VtC-XES) and high resolution transmission electron microscopy (HR-TEM) as well as energy dispersive X-ray spectroscopy (EDX). The average crystallite size estimated by the broadening of XRPD peaks increases from 2.7 nm to 3.7 nm in the temperature range from 100 °C to 150 °C. HR-TEM images show that nanoparticles are arranged in aggregates with the 60-200 nm size. Theoretical estimation shows that the systems synthesized at higher temperatures more prone to the agglomeration. The full profile Reitveld analysis of XRPD data reveals the formation of hexagonal zinc sulfide structure, whereas electron diffraction data reveal also the formation of cubic zinc sulfide and claim the polymorphous character of the system. High energy resolution Zn K-edge XANES data unambiguously demonstrate the presence of a certain amount of the zinc oxide which is likely to have an amorphous structure and could not be detected by XRPD. Qualitative analysis of XANES data allows deriving ZnS/ZnO ratio as a function of synthesis temperature. EDX analysis depicts homogeneous distribution of ZnS and amorphous ZnO phases across the conglomerates. A complementary element-selective valence to core X-ray emission spectroscopy evidences formation of two-component system and confirms estimations of ZnS/ZnO fractions obtained by linear combination fit of XANES data.
Characterization and formation of σ/γ interface in Ni-based single crystal superalloys
NASA Astrophysics Data System (ADS)
Ma, Shiyu; Zhang, Jianxin; Li, Xueqiao; Mao, Shengcheng
2017-11-01
High-resolution transmission electron microscopy was used to study interfacial characteristics between the plate-shaped σ phase and the γ phase in a Ni-based single crystal superalloy. The atomic structure of the σ/γ interface constituted by steps was presented. However, the HRTEM micrograph of σ phase is not almost identical with the veritable atomic arrangement of σ phase on the same zone axis. The image formation of HRTEM relies on phase contrast, instead of the amplification of the atomic arrangement. From the simulated HRTEM images, the approximate defocus and thickness of the sample can be got as -3 nm and 6 nm. σ phase has the following crystallographic orientations relations with γ matrix: [0 0 1] γ //[1 1 2] σ , (1 1 0) γ //(1 -1 0) σ , (-1 1 0) γ //(1 1 -1) σ , which can be proved by the stereographic projection. The interfacial steps are made up by (1 1 0) γ and (-1 1 0) γ or (1 -1 0) σ and (1 1 -1) σ . In the interface steps, the length of (-1 1 0) γ //(1 1 -1) σ is longer than (1 1 0) γ //(1 -1 0) σ , which is caused by that distortion factor of (-1 1 0) γ //(1 1 -1)σ is much smaller than that of (1 1 0) γ //(1 -1 0) σ .
Acetate- and thiol-capped monodisperse ruthenium nanoparticles: XPS, XAS, and HRTEM studies.
Chakroune, Nassira; Viau, Guillaume; Ammar, Souad; Poul, Laurence; Veautier, Delphine; Chehimi, Mohamed M; Mangeney, Claire; Villain, Françoise; Fiévet, Fernand
2005-07-19
Monodisperse ruthenium nanoparticles were prepared by reduction of RuCl3 in 1,2-propanediol. The mean particle size was controlled by appropriate choice of the reduction temperature and the acetate ion concentration. Colloidal solutions in toluene were obtained by coating the metal particles with dodecanethiol. High-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and X-ray absorption spectroscopy (XANES and EXAFS for the Ru K-absorption edge) were performed on particles of two different diameters, 2 and 4 nm, and in different environments, polyol/acetate or thiol. For particles stored in polyol/acetate XPS studies revealed superficial oxidation limited to one monolayer and a surface coating containing mostly acetate ions. Analysis of the EXAFS spectra showed both oxygen and ruthenium atoms around the ruthenium atoms with a Ru-Ru coordination number N smaller than the bulk value, as expected for fine particles. In the case of 2 nm acetate-capped particles N is consistent with particles made up of a metallic core and an oxidized monolayer. For 2 nm thiol-coated particles, a Ru-S bond was evidenced by XPS and XAS. For the 4 nm particles XANES and XPS studies showed that most of the ruthenium atoms are in the zerovalent state. Nevertheless, in both cases, when capped with thiol, the Ru-Ru coordination number inferred from EXAFS is much smaller than for particles of the same size stored in polyol. This is attributed to a structural disorganization of the particles by thiol chemisorption. HRTEM studies confirm the marked dependence of the structural properties of the ruthenium particles on their chemical environment; they show the acetate-coated particles to be single crystals, whereas the thiol-coated particles appear to be polycrystalline.
Morphological investigation of nanostructured CoMo catalysts
NASA Astrophysics Data System (ADS)
Pawelec, B.; Castaño, P.; Zepeda, T. A.
2008-04-01
This work reports the morphological investigation of nanostructured sulfided CoMo catalysts by means of high-resolution transmission electron microscopy (HRTEM). The catalysts were supported on Ti-modified hexagonal mesoporous silica (HMS-Ti) and P-modified HMS-Ti (P/HMS-Ti) materials. The oxide precursors were characterized by specific surface area (S BET), temperature-programmed reduction (TPR), diffuse reflectance infrared Fourier transform spectroscopy in the OH region (DRIFTS-OH) and X-ray photoelectron spectroscopy (XPS) in order to elucidate the influence of the impregnation sequence (successive vs. simultaneous) and the effect of P-incorporation into HMS-Ti material on the morphology of calcined CoMo catalysts. Both TPR and XPS measurements indicate that the catalysts prepared by successive impregnation possess well-dispersed MoO 3 and CoO phases, whereas their counterparts prepared by simultaneous impregnation additionally possess the CoMoO 4 phase. For all sulfided catalysts, the presence of MoS 2 phase with particle size in the range 3.3-4.4 nm was confirmed by HRTEM. Catalytic activity was evaluated in the reaction of hydrodesulfurization (HDS) of dibenzothiophene (DBT) carried out in a flow reactor at 593 K and hydrogen pressure of 5.5 MPa. P-incorporation into the HMS-Ti material led to an overall increase in HDS activity and the hydrogenation ability of the sulfided catalysts. All catalysts proved to be stable during 10 h time-on-stream (TOS) operation. The activity of sulfide catalysts in the target reaction depends linearly on the surface exposure of Co species in the oxide precursors, as determined by XPS, and on the morphology of the sulfide form of catalysts (surface density of MoS 2 particles and their sizes) as determined by HRTEM.
NASA Astrophysics Data System (ADS)
Yamada, H.; Matsuoka, T.; Kozuka, H.; Yamazaki, M.; Ohbayashi, K.; Ida, T.
2015-06-01
Two phases of (K,Na)NbO3 (KNN) co-exist in a KNN-based composite lead-free piezoelectric ceramic 0.910(K1-xNax)0.86Ca0.04Li0.02Nb0.85O3-δ-0.042K0.85Ti0.85Nb1.15O5-0.036BaZrO3-0.0016Co3O4- 0.0025Fe2O3-0.0069ZnO system, over a wide range of Na fractions, where 0.56 ≤ x ≤ 0.75. The crystal systems of the two KNN phases are identified to tetragonal and orthorhombic by analyzing the synchrotron powder X-ray diffraction (XRD) data, high-resolution transmission electron microscopy (HR-TEM), and selected-area electron diffraction (SAD). In the range 0.33 ≤ x ≤ 0.50, the main component of the composite system is found to be single-phase KNN with a tetragonal structure. Granular nanodomains of the orthorhombic phase dispersed in the tetragonal matrix have been identified by HR-TEM and SAD for 0.56 ≤ x ≤ 0.75. Only a trace amount of the orthorhombic phase has been found in the SAD patterns at the composition x = 0.56. However, the number of orthorhombic nanodomains gradually increases with increasing Na content up to x < 0.75, as observed from the HR-TEM images. An abrupt increase and agglomeration of the nanodomains are observed at x = 0.75, where weak diffraction peaks of the orthorhombic phase have also become detectable from the XRD data. The maximum value of the electromechanical coupling coefficient, kp = 0.56, has been observed at the composition x = 0.56.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mostaed, A., E-mail: alimostaed@yahoo.com; Saghafian, H.; Mostaed, E.
2013-02-15
The effects of reinforcing particle type (SiC and TiC) on morphology and precipitation hardening behavior of Al–4.5%Cu based nanocomposites synthesized via mechanical milling were investigated in the current work. In order to study the microstructure and morphology of mechanically milled powder, X-ray diffraction technique, scanning electron microscopy and high resolution transmission electron microscopy were utilized. Results revealed that at the early stages of mechanical milling, when reinforcing particles are polycrystal, the alloying process is enhanced more in the case of using the TiC particles as reinforcement. But, at the final stages of mechanical milling, when reinforcing particles are single crystal,more » the alloying process is enhanced more in the case of using the SiC ones. Transmission electron microscopy results demonstrated that Al–4.5 wt.%Cu based nanocomposite powders were synthesized and confirmed that the mutual diffusion of aluminum and copper occurs through the interfacial plane of (200). The hardness results showed that not only does introducing 4 vol.% of reinforcing particles (SiC or TiC) considerably decrease the porosity of the bulk composite samples, but also it approximately doubles the hardness of Al–4.5 wt.%Cu alloy (53.4 HB). Finally, apart from TEM and scanning electron microscopy observation which are localized, a decline in hardness in the TiC and SiC contained samples, respectively, after 1.5 and 2 h aging time at 473 K proves the fact that the size of SiC particles is smaller than the size of the TiC ones. - Highlights: ► HRTEM results show mutual diffusion of Al and Cu occurs through the (200) planes. ► TiC particles enhance alloying process more than the SiC ones at the early stages of MM. ► SiC particles enhance alloying process more than the TiC ones at the final stages of MM.« less
NASA Astrophysics Data System (ADS)
Li, Qiuye; Lu, Gongxuan
Different-shaped one-dimensional (1D) titanic acid nanomaterials (TANs) were prepared by hydrothermal synthesis. By changing the reaction temperature (120, 170 and 200 °C), three kinds of 1D TAN, short-nanotubes (SNT), long-nanotubes (LNT), and nanorods (NR), were obtained. The obtained TANs were characterized by transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), powder X-ray diffraction (XRD), and solid-stated diffuse reflectance UV-vis spectra (UV-vis DRS) techniques. Based on these 1D TAN, Eosin Y-sensitized Pt-loaded TAN were prepared by the in situ impregnation and photo-reduction method. Their photocatalytic activity for hydrogen generation was evaluated in triethanolamine (TEOA) aqueous solution under visible light irradiation (λ ≥ 420 nm). The results indicated that the morphology difference led to a significant variation of photocatalytic performance for hydrogen generation, with the activity order as follows: Eosin Y-sensitized Pt-loaded LNT > Eosin Y-sensitized Pt-loaded NR > Eosin Y-sensitized Pt-loaded SNT. The experimental conditions for photocatalytic hydrogen generation such as Pt loading content, the mass ratio of Eosin Y to TAN, and so on, were optimized. As a result, the highest apparent quantum yields of hydrogen generation for Eosin Y-sensitized Pt-loaded SNT, LNT, and NR were 6.65, 17.36, and 15.04%, respectively. The stability of these photocatalysts and the reaction mechanism of the photocatalytic hydrogen generation are also discussed in detail.
Efficient solar light-driven degradation of Congo red with novel Cu-loaded Fe3O4@TiO2 nanoparticles.
Arora, Priya; Fermah, Alisha; Rajput, Jaspreet Kaur; Singh, Harminder; Badhan, Jigyasa
2017-08-01
In this work, Cu-loaded Fe 3 O 4 @TiO 2 core shell nanoparticles were prepared in a single pot by coating of TiO 2 on Fe 3 O 4 nanoparticles followed by Cu loading. X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HR-TEM), thermogravimetric analysis (TGA), Brunauer-Emmett- Teller (BET), vibrating sample magnetometry (VSM), X-ray photoelectron spectroscopy (XPS), and valence band X-ray photoelectron spectroscopy (VB XPS) techniques were used for characterization of as prepared nanoparticles. Synergism between copper and titania was evaluated by studying the solar light-driven photodegradation of Congo red dye solution in the presence of Fe 3 O 4 @TiO 2 nanoparticles on one side and Cu-loaded Fe 3 O 4 @TiO 2 nanoparticles on the other side. The latter performed better than the former catalyst, indicating the enhanced activity of copper-loaded catalyst. Further photodegradation was studied by three means, i.e., under ultraviolet (UV), refluxing, and solar radiations. Cu-loaded Fe 3 O 4 @TiO 2 enhanced the degradation efficiency of Congo red dye. Thus, Cu act possibly by reducing the band gap of TiO 2 and widening the optical response of semiconductor, as a result of which solar light could be used to carry out photocatalysis. Graphical abstract Photodegradation of congo red over Cu-loaded Fe 3 O 4 @TiO 2 nanoparticles.
Oćwieja, Magdalena; Matras-Postołek, Katarzyna; Maciejewska-Prończuk, Julia; Morga, Maria; Adamczyk, Zbigniew; Sovinska, Svitlana; Żaba, Adam; Gajewska, Marta; Król, Tomasz; Cupiał, Klaudia; Bredol, Michael
2017-10-01
Manganese-doped ZnS quantum dots (QDs) stabilized by cysteamine hydrochloride were successfully synthesized. Their thorough physicochemical characteristics were acquired using UV-Vis absorption and photoluminescence spectroscopy, X-ray diffraction, dynamic light scattering (DLS), transmission electron microscopy (HR-TEM), energy dispersive spectroscopy (EDS) and Fourier transform infrared (FT-IR) spectroscopy. The average particle size, derived from HR-TEM, was 3.1nm, which agrees with the hydrodynamic diameter acquired by DLS, that was equal to 3-4nm, depending on ionic strength. The quantum dots also exhibited a large positive zeta potential varying between 75 and 36mV for ionic strength of 10 -4 and 10 -2 M, respectively (at pH 6.2) and an intense luminescent emission at 590nm. The quantum yield was equal to 31% and the optical band gap energy was equal to 4.26eV. The kinetics of QD monolayer formation on silica substrates (silica sensors and oxidized silicon wafers) under convection-controlled transport was quantitatively evaluated by the quartz crystal microbalance (QCM) and the streaming potential measurements. A high stability of the monolayer for ionic strength 10 -4 and 10 -2 M was confirmed in these measurements. The experimental data were adequately reflected by the extended random sequential adsorption model (eRSA). Additionally, thorough electrokinetic characteristics of the QD monolayers and their stability for various ionic strengths and pH were acquired by streaming potential measurements carried out under in situ conditions. These results were quantitatively interpreted in terms of the three-dimensional (3D) electrokinetic model that furnished bulk zeta potential of particles for high ionic strengths that is impractical by other experimental techniques. It is concluded that these results can be used for designing of biosensors of controlled monolayer structure capable to bind various ligands via covalent as well as electrostatic interactions. Copyright © 2017 Elsevier Inc. All rights reserved.
Kocbach, Anette; Li, Yanjun; Yttri, Karl E; Cassee, Flemming R; Schwarze, Per E; Namork, Ellen
2006-01-01
Background Exposure to ambient particulate matter has been associated with a number of adverse health effects. Particle characteristics such as size, surface area and chemistry seem to influence the negative effects of particles. In this study, combustion particles from vehicle exhaust and wood smoke, currently used in biological experiments, were analysed with respect to microstructure and chemistry. Methods Vehicle exhaust particles were collected in a road tunnel during two seasons, with and without use of studded tires, whereas wood smoke was collected from a stove with single-stage combustion. Additionally, a reference diesel sample (SRM 2975) was analysed. The samples were characterised using transmission electron microscopy techniques (TEM/HRTEM, EELS and SAED). Furthermore, the elemental and organic carbon fractions were quantified using thermal optical transmission analysis and the content of selected PAHs was determined by gas chromatography-mass spectrometry. Results Carbon aggregates, consisting of tens to thousands of spherical primary particles, were the only combustion particles identified in all samples using TEM. The tunnel samples also contained mineral particles originating from road abrasion. The geometric diameters of primary carbon particles from vehicle exhaust were found to be significantly smaller (24 ± 6 nm) than for wood smoke (31 ± 7 nm). Furthermore, HRTEM showed that primary particles from both sources exhibited a turbostratic microstructure, consisting of concentric carbon layers surrounding several nuclei in vehicle exhaust or a single nucleus in wood smoke. However, no differences were detected in the graphitic character of primary particles from the two sources using SAED and EELS. The total PAH content was higher for combustion particles from wood smoke as compared to vehicle exhaust, whereas no source difference was found for the ratio of organic to total carbon. Conclusion Combustion particles from vehicle exhaust and residential wood smoke differ in primary particle diameter, microstructure, and PAH content. Furthermore, the analysed samples seem suitable for assessing the influence of physicochemical characteristics of particles on biological responses. PMID:16390554
CTAB assisted synthesis of tungsten oxide nanoplates as an efficient low temperature NOX sensor
NASA Astrophysics Data System (ADS)
Mehta, Swati S.; Tamboli, Mohaseen S.; Mulla, Imtiaz S.; Suryavanshi, Sharad S.
2018-02-01
Tungsten oxide nanoplates with porous morphology were effectively prepared by acidification using CTAB (HexadeCetyltrimethyl ammonium bromide) as a surfactant. For characterization, the synthesized materials were subjected to X-Ray powder diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), UV-Visible spectroscopy (UV-Vis) and surface area (BET) measurements. The morphology and size of the particles were controlled by solution acidity. The BET results confirmed that the materials are well crystallized and mesoporous in nature. The nanocrystalline powder was used to prepare thick films by screen printing on alumina substrate for the investigation of gas sensing properties. The gas response measurements revealed that the samples acidified using 10 M H2SO4 exhibits highest response of 91% towards NOX at optimum temperature of 200 °C for 100 ppm, and it also exhibits 35% response at room temperature.
Isshiki, T; Nishio, K; Saijo, H; Shiojiri, M; Yabuuchi, Y; Takahashi, N
1993-07-01
Natural (molybdenite) and synthesized molybdenum disulfide crystals have been studied by high-resolution transmission electron microscopy. The image simulation demonstrates that the [0001] and [0110] HRTEM images of hexagonal and rhombohedral MoS2 crystals hardly disclose their stacking sequences, and that the [2110] images can distinguish the Mo and S columns along the incident electron beam and enable one to determine not only the crystal structure but also the fault structure. Observed [0001] images of cleaved molybdenite and synthesized MoS2 crystals, however, reveal the strain field around partial dislocations limiting an extended dislocation. A cross-sectional image of a single molecular (S-Mo-S) layer cleaved from molybdenite has been observed. Synthesized MoS2 flakes which were prepared by grinding have been found to be rhombohedral crystals containing many stacking faults caused by glides between S/S layers.
NASA Astrophysics Data System (ADS)
Pal, Shreyasi; Dutta, Shibsankar; De, Sukanta
2018-05-01
RGO/BiVO4 composites were synthesized by a simple hydrothermal method. The samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HRTEM) and surface analysis (BET). The photocatalytic activity of the as-prepared samples was evaluated by studying the degradation of model dyes rhodamine B (RhB) under visible light. The prepared rGO/BiVO4 composites exhibited higher photocatalytic activity for the degradation of RhB with a maximum removal rate of 86% under visible light irradiation under visible-light irradiation than pure BiVO4 nanoparticles (63%). This behavior could be associated to their higher specific surface area (BET), increased light absorption intensity and the degradation of electron-hole pair recombination in BiVO4 with the introduction of the rGO.
Tahan Latibari, Sara; Mehrali, Mohammad; Mehrali, Mehdi; Mahlia, Teuku Meurah Indra; Metselaar, Hendrik Simon Cornelis
2014-01-01
This study describes the hydrothermal synthesis of a novel carbon/palmitic acid (PA) microencapsulated phase change material (MEPCM). The field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM) images confirm that spherical capsules of uniform size were formed with a mean diameter of 6.42 μm. The melting and freezing temperature were found to be slightly lower than those of pure PA with little undercooling. The composite retained 75% of the latent heat of pure PA. Thermal stability of the MEPCM was found to be better than that of pure PA. The thermal conductivity of MEPCM was increased by as much as 41% at 30°C. Due to its good thermal properties and chemical and mechanical stability, the carbon/PA MEPCM displays a good potential for thermal energy storage systems. PMID:25054179
NASA Astrophysics Data System (ADS)
Poornaprakash, B.; Chalapathi, U.; Purusottam Reddy, B.; Prabhakar Vattikuti, S. V.; Siva Pratap Reddy, M.; Park, Si-Hyun
2018-03-01
The sensible tuning of the structural, optical, and magnetic properties of ZnO nanoparticles (NPs) with suitable doping can enhance their applicability in diverse fields. In this study, we synthesized ZnO NPs with Er (0-4 at%) doping and their elemental, structural, optical, and magnetic properties were studied. Both field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM) studies of the suspensions consist of hexagonal shaped NPs. All the prepared NPs exhibited hexagonal phase as demonstrated by powder x-ray diffraction studies. A blue shift was observed in the Er doped ZnO NPs compared to pure ZnO, indicating the increased optical bandgap. Vibrating sample magnetometer studies exhibited the pure ZnO NPs was typical diamagnetic feature whereas all the Er doped ZnO NPs were paramagnetic feature at 300 K. This is the first paramagnetic report on Er doped ZnO NPs.
Effect of Ce doping on structural, optical and photocatalytic properties of ZnO nano-structures.
Selvam, N Clament Sagaya; Vijaya, J Judith; Kennedy, L John
2014-03-01
A novel self-assembled pure and Ce doped ZnO nano-particles (NPs) were successfully synthesized by a simple low temperature co-precipitation method. The prepared photocatalysts were characterized by X-ray diffraction (XRD), High resolution scanning electron microscopy (HR-SEM), High resolution transmission electron microscopy (HR-TEM), diffuse reflectance spectroscopy (DRS) and Photoluminescence (PL) spectroscopy. The results indicated that the prepared photocatalysts shows a novel morphology, high crystallinity, uniform size distribution, and more defects. Photocatalytic degradation (PCD) of nonylphenol, a potent endocrine disrupting chemical in aqueous medium was investigated. Higher amount of oxygen defects exhibits enhanced PCD of nonylphenol. In addition, the influence of the Ce contents on the structure, morphology, absorption, emission and photocatalytic activity of ZnO nanoparticles (NPs) were investigated systematically. The relative PCD efficiency of pure ZnO, Ce-doped ZnO NPs and commercial TiO2 (Degussa P-25) have also been discussed.
NASA Astrophysics Data System (ADS)
Ying-Zi, Peng; Yang, Song; Xiao-Qiang, Xie; Yuan, Li; Zheng-Hong, Qian; Ru, Bai
2016-05-01
Atomic-layer MoS2 ultrathin films are synthesized using a hot filament chemical vapor deposition method. A combination of atomic force microscopy (AFM), x-ray diffraction (XRD), high-resolution transition electron microscopy (HRTEM), photoluminescence (PL), and x-ray photoelectron spectroscopy (XPS) characterization methods is applied to investigate the crystal structures, valence states, and compositions of the ultrathin film areas. The nucleation particles show irregular morphology, while for a larger size somewhere, the films are granular and the grains have a triangle shape. The films grow in a preferred orientation (002). The HRTEM images present the graphene-like structure of stacked layers with low density of stacking fault, and the interlayer distance of plane is measured to be about 0.63 nm. It shows a clear quasi-honeycomb-like structure and 6-fold coordination symmetry. Room-temperature PL spectra for the atomic layer MoS2 under the condition of right and left circular light show that for both cases, the A1 and B1 direct excitonic transitions can be observed. In the meantime, valley polarization resolved PL spectra are obtained. XPS measurements provide high-purity samples aside from some contaminations from the air, and confirm the presence of pure MoS2. The stoichiometric mole ratio of S/Mo is about 2.0-2.1, suggesting that sulfur is abundant rather than deficient in the atomic layer MoS2 under our experimental conditions. Project supported by the Natural Science Foundation of Zhejiang Province, China (Grant Nos. LY16F040003 and LY16A040007) and the National Natural Science Foundation of China (Grant Nos. 51401069 and 11574067).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Örnek, Ahmet, E-mail: ahmetornek@kafkas.edu.tr; Can, Mustafa; Yeşildağ, Ali
Nanostructured LiCo{sub 1−x}Mn{sub x}PO{sub 4}/C (x = 0 and 0.05) materials were successfully produced as superior quality cathodes by combined sol-gel and carbothermal reduction methods. X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HR-TEM), energy dispersive spectroscopy (EDS), fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma (ICP), cyclic voltammetry (CV) and galvanostatic measurements were applied to determine the phase purity, morphology and electrochemical qualifications. HR-TEM analysis reveals that the thickness of the surface carbon layer of 5 to 10 nm range with the uniform distribution. LiCo{sub 0·95}Mn{sub 0·05}PO{sub 4}/C particles were betweenmore » 40 and 80 nm and the same material exhibits a higher and stable reversible capacity (140 mA h g{sup −1}) with the long voltage plateau (4.76 V). Substitution of Co{sup 2+} with Mn{sup 2+} in LiCoPO{sub 4}/C has an influence on the initial discharge capacity and excellent cycling behaviour. The obtained results have attributed that production dynamics in nano-synthesis, the coating process with proper carbon source and an effective doping represent three parameters to prepare favorable cathode materials. - Highlights: • Structural, morphological and electrochemical effects of Mn doped LiCo{sub 1−x}Mn{sub x}PO{sub 4}–C electrodes are investigated. • Cheap, effective and simple sol-gel assisted carbothermal reduction approach is used. • After 60th cycle, capacity retention is almost 92% for LiCo{sub 0·95}Mn{sub 0.05}PO{sub 4}–C electrode. • Mn-doped sample exhibits distinctive oxidation (4.76 V and 4.12 V) peaks.« less
Alignment control and atomically-scaled heteroepitaxial interface study of GaN nanowires.
Liu, Qingyun; Liu, Baodan; Yang, Wenjin; Yang, Bing; Zhang, Xinglai; Labbé, Christophe; Portier, Xavier; An, Vladimir; Jiang, Xin
2017-04-20
Well-aligned GaN nanowires are promising candidates for building high-performance optoelectronic nanodevices. In this work, we demonstrate the epitaxial growth of well-aligned GaN nanowires on a [0001]-oriented sapphire substrate in a simple catalyst-assisted chemical vapor deposition process and their alignment control. It is found that the ammonia flux plays a key role in dominating the initial nucleation of GaN nanocrystals and their orientation. Typically, significant improvement of the GaN nanowire alignment can be realized at a low NH 3 flow rate. X-ray diffraction and cross-sectional scanning electron microscopy studies further verified the preferential orientation of GaN nanowires along the [0001] direction. The growth mechanism of GaN nanowire arrays is also well studied based on cross-sectional high-resolution transmission electron microscopy (HRTEM) characterization and it is observed that GaN nanowires have good epitaxial growth on the sapphire substrate following the crystallographic relationship between (0001) GaN ∥(0001) sapphire and (101[combining macron]0) GaN ∥(112[combining macron]0) sapphire . Most importantly, periodic misfit dislocations are also experimentally observed in the interface region due to the large lattice mismatch between the GaN nanowire and the sapphire substrate, and the formation of such dislocations will favor the release of structural strain in GaN nanowires. HRTEM analysis also finds the existence of "type I" stacking faults and voids inside the GaN nanowires. Optical investigation suggests that the GaN nanowire arrays have strong emission in the UV range, suggesting their crystalline nature and chemical purity. The achievement of aligned GaN nanowires will further promote the wide applications of GaN nanostructures toward diverse high-performance optoelectronic nanodevices including nano-LEDs, photovoltaic cells, photodetectors etc.
NASA Astrophysics Data System (ADS)
Kumar, Virender; Singh, Kulwinder; Jain, Megha; Manju; Kumar, Akshay; Sharma, Jeewan; Vij, Ankush; Thakur, Anup
2018-06-01
We have carried out a systematic study to investigate the effect of Cu doping on the optical properties of SnO2 nanostructures synthesized by chemical route. Synthesized nanostructures were characterized using X-ray diffraction (XRD), Field emission scanning electron microscopy (FE-SEM), High resolution transmission electron microscopy (HR-TEM), Energy dispersive X-ray spectroscopy, Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, UV-visible and Photoluminescence (PL) spectroscopy. The Rietveld refinement analysis of XRD patterns of Cu-doped SnO2 samples confirmed the formation of single phase tetragonal rutile structure, however some localized distortion was observed for 5 mol% Cu-doped SnO2. Crystallite size was found to decrease with increase in dopant concentration. FE-SEM images indicated change in morphology of samples with doping. HR-TEM images revealed that synthesized nanostructures were nearly spherical and average crystallite size was in the range 12-21 nm. Structural defects, crystallinity and size effects on doping were investigated by Raman spectroscopy and results were complemented by FTIR spectroscopy. Optical band gap of samples was estimated from reflectance spectra. We have shown that band gap of SnO2 can be engineered from 3.62 to 3.82 eV by Cu doping. PL emission intensity increased as the doping concentration increased, which can be attributed to the development of defect states in the forbidden transition region of band gap of SnO2 with doping. We have also proposed a band model owing to defect states in SnO2 to explain the observed PL in Cu doped SnO2 nanostructures.
Shu, Yang; Ando, Teiichi; Yin, Qiyue; Zhou, Guangwen; Gu, Zhiyong
2017-08-31
A binary system of tin/indium (Sn/In) in the form of nanoparticles was investigated for phase transitions and structural evolution at different temperatures and compositions. The Sn/In nanosolder particles in the composition range of 24-72 wt% In were synthesized by a surfactant-assisted chemical reduction method under ambient conditions. The morphology and microstructure of the as-synthesized nanoparticles were analyzed by scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED) and X-ray diffraction (XRD). HRTEM and SAED identified InSn 4 and In, with some Sn being detected by XRD, but no In 3 Sn was observed. The differential scanning calorimetry (DSC) thermographs of the as-synthesized nanoparticles exhibited an endothermic peak at around 116 °C, which is indicative of the metastable eutectic melting of InSn 4 and In. When the nanosolders were subjected to heat treatment at 50-225 °C, the equilibrium phase In 3 Sn appeared while Sn disappeared. The equilibrium state was effectively attained at 225 °C. A Tammann plot of the DSC data of the as-synthesized nanoparticles indicated that the metastable eutectic composition is about 62% In, while that of the DSC data of the 225 °C heat-treated nanoparticles yielded a eutectic composition of 54% In, which confirmed the attainment of the equilibrium state at 225 °C. The phase boundaries estimated from the DSC data of heat-treated Sn/In nanosolder particles matched well with those in the established Sn-In equilibrium phase diagram. The phase transition behavior of Sn/In nanosolders leads to a new understanding of binary alloy particles at the nanoscale, and provides important information for their low temperature soldering processing and applications.
NASA Astrophysics Data System (ADS)
Won, Changdok; Hong, Hanlie; Cheng, Feng; Fang, Qian; Wang, Chaowen; Zhao, Lulu; Churchman, Gordon Jock
2018-03-01
To understand climate changes recorded in the Luochuan loess-palaeosols, Shaanxi province, northwestern China, clay mineralogy was studied using X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), and scanning electron microscopy (SEM) methods. XRD results show that clay mineral compositions in the Luochuan loess-palaeosols are dominantly illite, with minor chlorite, kaolinite, smectite, and illite-smectite mixed-layer clays (I/S). Illite is the most abundant species in the sediments, with a content of 61%-83%. The content of chlorite ranges from 5%-22%, and the content of kaolinite ranges from 5%-19%. Smectite (or I/S) occurs discontinuously along the loess profile, with a content of 0-8%. The Kübler index of illite (IC) ranges from 0.255°-0.491°, and the illite chemical index (ICI) ranges from 0.294-0.394. The CIA values of the loesspalaeosols are 61.9-69.02, and the R3+/(R3+ + R2+ + M+) values are 0.508-0.589. HRTEM observations show that transformation of illite to illite-smectite has occurred in both the loess and palaeosol, suggesting that the Luochuan loess-palaeosols have experienced a certain degree of chemical weathering. The Luochuan loess-palaeosols have the same clay mineral assemblage along the profile. However, the relative contents of clay mineral species, CIA, ICI, and IC values fluctuate frequently along the profile, and all these parameters display a similar trend. Moreover, climate changes suggested by the clay index are consistent with variations in the deep-sea δ18O records and the magnetic susceptibility value, and thus, climate changes in the Luochuan region have been controlled by global climate change.
Kanel, Sushil Raj; Greneche, Jean-Mark; Choi, Heechul
2006-03-15
The removal of As(V), one of the most poisonous groundwater pollutants, by synthetic nanoscale zero-valent iron (NZVI) was studied. Batch experiments were performed to investigate the influence of pH, adsorption kinetics, sorption mechanism, and anionic effects. Field emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HR-TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Mossbauer spectroscopy were used to characterize the particle size, surface morphology, and corrosion layer formation on pristine NZVI and As(V)-treated NZVI. The HR-TEM study of pristine NZVI showed a core-shell-like structure, where more than 90% of the nanoparticles were under 30 nm in diameter. Mössbauer spectroscopy further confirmed its structure in which 19% were in zero-valent state with a coat of 81% iron oxides. The XRD results showed that As(V)-treated NZVI was gradually converted into magnetite/maghemite corrosion products over 90 days. The XPS study confirmed that 25% As(V) was reduced to As(III) by NZVI after 90 days. As(V) adsorption kinetics were rapid and occurred within minutes following a pseudo-first-order rate expression with observed reaction rate constants (Kobs) of 0.02-0.71 min(-1) at various NZVI concentrations. Laser light scattering analysis confirmed that NZVI-As(V) forms an inner-sphere surface complexation. The effects of competing anions revealed that HCO3-, H4SiO4(0), and H2PO4(2-) are potential interfering agents in the As(V) adsorption reaction. Our results suggest that NZVI is a suitable candidate for As(V) remediation.
Facile and fast synthesis of SnS2 nanoparticles by pulsed laser ablation in liquid
NASA Astrophysics Data System (ADS)
Johny, J.; Sepulveda-Guzman, S.; Krishnan, B.; Avellaneda, D.; Shaji, S.
2018-03-01
Nanoparticles (NPs) of tin disulfide (SnS2) were synthesized using pulsed laser ablation in liquid (PLAL) technique. Effects of different liquid media and ablation wavelengths on the morphology and optical properties of the nanoparticles were studied. Nd: YAG laser wavelengths of 532 nm and 1064 nm (frequency 10 Hz and pulse width 10 ns) were used to irradiate SnS2 target immersed in liquid for the synthesis of SnS2 nanoparticles. Here PLAL was a fast synthesis technique, the ablation was only for 30 s. Transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, UV-vis absorption spectroscopy and photoluminescence spectroscopy were used to characterize the SnS2 NPs. TEM images showed that the liquid medium and laser wavelength influence the morphology of the NPs. SAED patterns and high resolution TEM (HRTEM) images confirmed the crystallinity of the particles. XRD and XPS analyses confirmed that SnS2 NPs were having exact crystalline structure and chemical states as that of the target. Raman analysis also supported the results obtained by XRD and XPS. Optical band gaps of the nanocolloids evaluated from their UV-vis absorption spectra were 2.4-3.05 eV. SnS2 NPs were having luminescence spectra in the blue-green region irrespective of the liquid media and ablation wavelength.
NASA Astrophysics Data System (ADS)
Kar, Prasenjit; Sardar, Samim; Liu, Bo; Sreemany, Monjoy; Lemmens, Peter; Ghosh, Srabanti; Pal, Samir Kumar
2016-01-01
Here, we report a facile approach, by the photochemical reduction technique, for in situ synthesis of Au-reduced graphene oxide (Au-RGO) nanohybrids, which demonstrate excellent adsorption capacities and recyclability for a broad range of dyes. High-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) data confirm the successful synthesis of Au-RGO nanohybrids. The effect of several experimental parameters (temperature and pH) variation can effectively control the dye adsorption capability. Furthermore, kinetic adsorption data reveal that the adsorption process follows a pseudo second-order model. The negative value of Gibbs free energy (ΔG0) confirms spontaneity while the positive enthalpy (ΔH0) indicates the endothermic nature of the adsorption process. Picosecond resolved fluorescence technique unravels the excited state dynamical processes of dye molecules adsorbed on the Au-RGO surface. Time resolved fluorescence quenching of Rh123 after adsorption on Au-RGO nanohybrids indicates efficient energy transfer from Rh123 to Au nanoparticles. A prototype device has been fabricated using Au-RGO nanohybrids on a syringe filter (pore size: 0.220 μm) and the experimental data indicate efficient removal of dyes from waste water with high recyclability. The application of this nanohybrid may lead to the development of an efficient reusable adsorbent in portable water purification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ali, Zulfiqar; Cao, Chuanbao, E-mail: cbcao@bit.edu.cn; Butt, Faheem K.
We firstly present a simple thermochemical method to fabricate high-quality Bi{sub 2}Se{sub 3} nanoplatelets with enhanced figure of merit using elemental bismuth and selenium powders as precursors. The crystal structure of as synthesized products is characterized via X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and high resolution transmission electron microscopy (HRTEM) measurements. Morphological and chemical synthetic parameters are investigated through a series of experiments; thickness and composition of the platelets are well controlled in large scale production. Subsequently spark plasma sintering (SPS) is performed to fabricate n-type nanostructured bulk thermoelectric materials. Raman Spectroscopy of the two selected samples with approximatelymore » of 50 and 100 nm thicknesses shows three vibrational modes. The lower thickness sample exhibits the maximum red shift of about 2.17 cm{sup -1} and maximum broadening of about 10 cm{sup -1} by in-plane vibrational mode E{sup 2}{sub g}. The enhanced value of figure of merit ∼0.41 is obtained for pure phase bismuth selenide to the best of our knowledge. We observe metallic conduction behavior while semiconducting behavior for nanostructured bismuth selenide is reported elsewhere which could be due to different synthetic techniques adopted. These results clearly suggest that our adopted synthetic technique has profound effect on the electronic and thermoelectric transport properties of this material.« less
Graphene quantum dot synthesis using nanosecond laser pulses and its comparison to Methylene Blue
NASA Astrophysics Data System (ADS)
Kholikov, Khomidkhodza; Thomas, Zachary; Seyitliyev, Dovletgeldi; Smith, Skylar
A biocompatible photodynamic therapy agent that generates a high amount of singlet oxygen with high water dispersibility and excellent photostability is desirable. In this work, a graphene based biomaterial which is a promising alternative to a standard photosensitizers was produced. Methylene blue was used as a reference photosensitizer. Bacteria deactivation by methylene blue was shown to be inhibited inside human blood due to protein binding. Graphene quantum dots (GQD) were synthesized by irradiating benzene and nickel oxide mixture using nanosecond laser pulses. High resolution transmission electron microscopy (HR-TEM), scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier transform infrared (FTIR) spectroscopy, and nuclear magnetic resonance (NMR) were used for characterization of GQDs. Initial results show graphene quantum dots whose size less than 5 nm were successfully obtained. UV-VIS spectra shows absorption peak around 310 nm. The results of these studies can potentially be used to develop therapies for the eradication of pathogens in open wounds, burns, or skin cancers. New therapies for these conditions are particularly needed when antibiotic-resistant infections are present. NIH KBRIN.
Leroy, Celine Marie; Cardinal, Thierry; Jubera, Veronique; Treguer-Delapierre, Mona; Majimel, Jerome; Manaud, Jean Pierre; Backov, Renal; Boissière, Cedric; Grosso, David; Sanchez, Clement; Viana, Bruno; Pellé, Fabienne
2008-10-06
Herein, Eu(III)-doped 3D mesoscopically ordered arrays of mesoporous and nanocrystalline titania are prepared and studied. The rare-earth-doped titania thin films-synthesized via evaporation-induced self-assembly (EISA)-are characterized by using environmental ellipsoporosimetry, electronic microscopy (i.e. high-resolution scanning electron microscopy, HR-SEM, and transmission electron microscopy, HR-TEM), X-ray diffraction, and luminescence spectroscopy. Structural characterizations show that high europium-ion loadings can be incorporated into the titanium-dioxide walls without destroying the mesoporous arrangement. The luminescence properties of Eu(III) are investigated by using steady-state and time-resolved spectroscopy via excitation of the Eu(III) ions through the titania host. Using Eu(III) luminescence as a probe, the europium-ion sites can be addressed with at least two different environments within the mesoporous framework, namely, a nanocrystalline environment and a glasslike one. Emission fluctuations ((5)D(0)-->(7)F(2)) are observed upon continuous UV excitation in the host matrix. These fluctuations are attributed to charge trapping and appear to be strongly dependent on the amount of europium and the level of crystallinity.
NASA Astrophysics Data System (ADS)
Abraham, Ann Rose; Raneesh, B.; Das, Dipankar; Oluwafemi, Oluwatobi Samuel; Thomas, Sabu; Kalarikkal, Nandakumar
2018-04-01
The electric field control of magnetism in multiferroics is attractive for the realization of ultra-fast and miniaturized low power device applications like nonvolatile memories. Room temperature hybrid multiferroic heterostructures with core-shell (0-0) architecture (ferrite core and ferroelectric shell) were developed via a two-step method. High-Resolution Transmission Electron Microscopy (HRTEM) images confirm the core-shell structure. The temperature dependant magnetization measurements and Mossbauer spectra reveal superparamagnetic nature of the core-shell sample. The ferroelectric hysteresis loops reveal leaky nature of the samples. The results indicate the promising applications of the samples for magneto-electric memories and spintronics.
Pore structure of raw and purified HiPco single-walled carbon nanotubes
NASA Astrophysics Data System (ADS)
Cinke, Martin; Li, Jing; Chen, Bin; Cassell, Alan; Delzeit, Lance; Han, Jie; Meyyappan, M.
2002-10-01
Very high purity single-walled carbon nanotubes (SWNTs) were obtained from HiPco SWNT samples containing Fe particles by a two-step purification process. The raw and purified samples were characterized using high resolution transmission electron microscopy (HRTEM), Raman spectroscopy and thermogravimetric analysis (TGA). The purified sample consists of ˜0.4% Fe and the process does not seem to introduce any additional defects. The N 2 adsorption isotherm studies at 77 K reveal that the total surface area of the purified sample increases to 1587 m 2/g from 567 m 2/g for the raw material, which is the highest value reported for SWNTs.
Directional Etching of Silicon by Silver Nanostructures
NASA Astrophysics Data System (ADS)
Sharma, Pradeep; Wang, Yuh-Lin
2011-02-01
We report directional etching of nanostructures (nanochannels and nanotrenches) into the Si(100) substrates in aqueous HF and H2O2 solution by lithographically defined Ag patterns (nanoparticles, nanorods, and nanorings). The Effect of Ag/Si interface oxide on the directional etching has been studied by etching Ag/SiOx/Si samples of known interface oxide thickness. Based on high resolution transmission electron microscopy (HRTEM) imaging and TEM-energy dispersive X-ray (EDX) spectra of the Ag/Si interfaces, we propose that maintenance of the sub-nanometer oxide at the Ag/Si interfaces and Ag-Si interaction are the key factors which regulate the directional etching of Si.
Structural and Magnetic Response in Bimetallic Core/Shell Magnetic Nanoparticles
Nairan, Adeela; Khan, Usman; Iqbal, Munawar; Khan, Maaz; Javed, Khalid; Riaz, Saira; Naseem, Shahzad; Han, Xiufeng
2016-01-01
Bimagnetic monodisperse CoFe2O4/Fe3O4 core/shell nanoparticles have been prepared by solution evaporation route. To demonstrate preferential coating of iron oxide onto the surface of ferrite nanoparticles X-ray diffraction (XRD), High resolution transmission electron microscope (HR-TEM) and Raman spectroscopy have been performed. XRD analysis using Rietveld refinement technique confirms single phase nanoparticles with average seed size of about 18 nm and thickness of shell is 3 nm, which corroborates with transmission electron microscopy (TEM) analysis. Low temperature magnetic hysteresis loops showed interesting behavior. We have observed large coercivity 15.8 kOe at T = 5 K, whereas maximum saturation magnetization (125 emu/g) is attained at T = 100 K for CoFe2O4/Fe3O4 core/shell nanoparticles. Saturation magnetization decreases due to structural distortions at the surface of shell below 100 K. Zero field cooled (ZFC) and Field cooled (FC) plots show that synthesized nanoparticles are ferromagnetic till room temperature and it has been noticed that core/shell sample possess high blocking temperature than Cobalt Ferrite. Results indicate that presence of iron oxide shell significantly increases magnetic parameters as compared to the simple cobalt ferrite. PMID:28335200
NASA Astrophysics Data System (ADS)
Liu, Xiong; Cheng, Yuming; Li, Xuefeng; Dong, Jinfeng
2018-05-01
In this work, we developed a new type of photo-catalysts composed of the urchin-like cupric oxide (CuO) microparticle and polyvinylidene fluoride (PVDF) hybrid composites by the convenient organic-inorganic hybrid strategy, which show high-efficiency and conveniently recyclable for dye degradation including methylene blue (MB), Congo red (CR), and malachite green (MG) by visible light irradiation. The micro-structural characteristics of urchin-like CuO microparticles are crucial and dominant over the photo-degrading efficiency of hybrid catalyst because of their highly exposed {0 0 2} facet and larger specific surface area. Simultaneously, the intrinsic porous framework of PVDF membrane not only remains the excellent photo-catalytic activity of urchin-like CuO microparticles but also facilitates the enrichment of dyes on the membrane, and thereby synergistically contributing to the photo-catalytic efficiency. The microstructures of both urchin-like CuO microparticles and hybrid catalysts are systematically characterized by various techniques including scanning electron microscopy (SEM), transmission electron microscope (TEM), high-resolution transmission electron microscope (HRTEM), powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and nitrogen adsorption/desorption isotherms, which evidently support the mentioned mechanism.
Cheon, Ja Young; Park, Won Ho
2016-01-01
This articles reports a simple and green method for preparing uniform silver nanoparticles (AgNPs), for which self-polymerized 3,4-dihydroxy-l-phenylalanine (polyDOPA) is used as the reducing and stabilizing agent in aqueous media. The AgNPs functionalized by polyDOPA were analyzed by UV–Vis spectroscopy, high-resolution transmission electron microscopy (HR-TEM), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), Raman spectrophotometry, and X-ray diffraction (XRD) techniques. The results revealed that the polyDOPA-AgNPs with diameters of 25 nm were well dispersed due to the polyDOPA. It was noted that the polyDOPA-AgNPs showed selectivity for Pb2+ and Cu2+ detection with the detection limits for the two ions as low as 9.4 × 10−5 and 8.1 × 10−5 μM, respectively. Therefore, the polyDOPA-AgNPs can be applied to both Pb2+ and Cu2+ detection in real water samples. The proposed method will be useful for colorimetric detection of heavy metal ions in aqueous media. PMID:27916894
NASA Astrophysics Data System (ADS)
Dhanunjaya, M.; Khan, S. A.; Pathak, A. P.; Avasthi, D. K.; Nageswara Rao, S. V. S.
2017-12-01
We report on the swift heavy ion (SHI) irradiation induced crystallization and grain growth of HfO2 nanoparticles (NPs) within the HfO2 thin-films deposited by radio frequency (RF) magnetron sputtering technique. As grown films consisted of amorphous clusters of non-spherical HfO2 NPs. These amorphous clusters are transformed to crystalline grains under 100 MeV Ag ion irradiation. These crystallites are found to be spherical in shape and are well dispersed within the films. The average size of these crystallites is found to increase with fluence. Pristine and irradiated films have been characterized by high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), grazing incident x-ray diffraction (GIXRD) and photo luminescence (PL) measurements. The PL measurements suggested the existence of different types of oxygen related defects in pristine and irradiated samples. The observed results on crystallization and grain growth under the influence of SHI are explained within the framework of thermal spike model. The results are expected to provide useful information for understanding the electronic excitation induced crystallization of nanoparticles and can lead to useful applications in electronic and photonic devices.
NASA Astrophysics Data System (ADS)
Arunachalam, A.; Dhanapandian, S.; Manoharan, C.
2016-02-01
In this work, highly oriented pure and Tin-doped Titanium dioxide (Sn-doped TiO2) with porous nature photoelectrodes were deposited on ITO glass plates using spray pyrolysis technique. The XRD pattern revealed the formation of anatase TiO2 with the maximum intensity of (101) plane while doping 6 at% of Sn. The morphological studies depicted the porous nature with the uniform arrangement of small-sized grains. The presence of tin confirmed with the EDX spectra. The size of particles of 13 nm was observed from High Resolution Transmission Electron Microscopy (HR-TEM) analysis. The average transmittance was about 85% for the doped photoelectrode and was observed for the photoelectrode deposited with 6 at% of tin, with decreased energy band gap. The PL study showed the emission peak at 391 nm. The maximum carrier concentration and Hall mobility was observed for the photoelectrode deposited with 6 at% of tin. With these studies, the DSSCs were prepared separately with the dye extracted from Hibiscus Rosasinesis and Hibiscus Surttasinesis and their efficiency was maximum for the DSSC prepared with 6 at% of tin.
Three dimensional analysis of nanoporous silicon particles for Li-ion batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roiban, Lucian, E-mail: lucian.roiban@insa-lyon.fr
2017-02-15
Bulk nanoporous silicon prepared by top-down method form Li-ion batteries was investigated combining different conventional technique such as nitrogen physisorption and high resolution electron microscopy with electron tomography. It was found that the Si nanorods are forming porous aggregates with a half of the volume of the particle occupied by pores. The nanorods are preferentially oriented along the main axis of the aggregate. The porosity and the lack of compaction between the aggregates provide space for the Si expansion during the lithiation process. It was found that the Si nanorods mainly expose the (111) family plane as an external faces.more » The size distributions of the porous and solid phases in a granule were found to be similar. The pores represent 50% of the total volume of an aggregate. The shape orientation of the particles was quantified and it was found to exhibit a narrow distribution. - Highlights: •Bulk nanoporous silicon for Li-ion batteries is studied by HRTEM and electron tomography. •The crystalline facets of Si nanorods are formed by (111) plains. •The lack of compactness between Si nanorods provides 50% of porous volume. •The Si nanorods are oriented along a preferential axis.« less
NASA Astrophysics Data System (ADS)
Kotoulas, A.; Dendrinou-Samara, C.; Sarafidis, C.; Kehagias, Th.; Arvanitidis, J.; Vourlias, G.; Angelakeris, M.; Kalogirou, Orestis
2017-12-01
A facile and low-cost method for structuring carbon-encapsulated cobalt nanoparticles (Co@C) is presented. Three samples were solvothermally prepared in one step at 220 °C and one in two steps at 200 °C. Three different polyols such as propylene glycol, triethylene glycol, and tetraethylene glycol were used as carbon sources, solvents, and reducing agents. The samples were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and Raman spectroscopy. Concerning the crystal structure of the particles, a mixture of hcp/ fcc Co phases was obtained in three of the samples, independently of the polyol used. The coexistence of cubic and hexagonal phases was revealed both from XRD and high-resolution TEM (HRTEM). The formation of the cubic fcc structure, despite the relatively low reaction temperature, is attributed to the role of the interface between carbon coating and metallic core. The presence of carbon coating was demonstrated by Raman spectrometry, exhibiting the characteristic D and G graphitic bands, and by HRTEM observations. All samples showed ferromagnetic behavior with saturation magnetization up to 158 emu/g and coercivity up to 206 Oe. From the magnetic particle hyperthermia measurements recorded at a frequency of 765 kHz, a maximum SLP value of 241 W/g was obtained.
Characterization of crystal structure features of a SIMOX substrate
NASA Astrophysics Data System (ADS)
Eidelman, K. B.; Shcherbachev, K. D.; Tabachkova, N. Yu.; Podgornii, D. A.; Mordkovich, V. N.
2015-12-01
The SIMOX commercial sample (Ibis corp.) was investigated by a high-resolution X-ray diffraction (HRXRD), a high-resolution transmission electron microscopy (HRTEM) and an Auger electron spectroscopy (AES) to determine its actual parameters (the thickness of the top Si and a continuous buried oxide layer (BOX), the crystalline quality of the top Si layer). Under used implantation conditions, the thickness of the top Si and BOX layers was 200 nm and 400 nm correspondingly. XRD intensity distribution near Si(0 0 4) reciprocal lattice point was investigated. According to the oscillation period of the diffraction reflection curve defined thickness of the overtop silicon layer (220 ± 2) nm. HRTEM determined the thickness of the oxide layer (360 nm) and revealed the presence of Si islands with a thickness of 30-40 nm and a length from 30 to 100 nm in the BOX layer nearby "BOX-Si substrate" interface. The Si islands are faceted by (1 1 1) and (0 0 1) faces. No defects were revealed in these islands. The signal from Si, which corresponds to the particles in an amorphous BOX matrix, was revealed by AES in the depth profiles. Amount of Si single crystal phase at the depth, where the particles are deposited, is about 10-20%.
Filling double-walled carbon nanotubes with WO3 and W nanowires via confined chemical reactions.
Zhao, Keke; Wang, Zhiyong; Shi, Zujin; Gu, Zhennan; Jinj, Zhaoxia
2011-03-01
Carbon nanotubes filled with metals and semiconductors have been regarded as one of the most promising materials for nanodevices. Here, we demonstrate a simple and effective method to produce tungsten trioxide (WO3) and tungsten (W) nanowires with diameters of below 4 nm inside double-walled carbon nanotubes (DWCNTs). First, the precursors, i.e., phosphotungstic acid (HPW, H3PW12O40) molecules, are successfully introduced into DWCNTs. Subsequent decomposition and reduction lead to the formation of WO3 and W nanowires inside DWCNTs. The products were carefully characterized by high-resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy. FTIR spectra provide a direct proof that the HPW molecules enter the DWCNTs as an ionic state, i.e., PW12O40(3-) and H+, instead of the molecular state. HRTEM analysis shows that the diameter of the WO3 nanowires inside DWCNTs is 1.1-2.4 nm with the average length of 16-18 nm, and that for W nanowires is 1.2-3.4 nm with the average length of 15-17 nm. Meanwhile, DWCNTs are doped by the encapsulated WO3 and W nanowires. Tangential band shift in Raman spectra revealed the charge transfer between the nanowires and carbon nanotubes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zehtab Yazdi, Alireza; Roberts, Edward P.L.; Sundararaj, Uttandaraman, E-mail: u.sundararaj@ucalgary.ca
Highlights: • MWCNTs synthesized and electrochemically oxidized to study the formation of GNR • HRTEM, Raman and XPS confirmed no successful unzipping occurred after oxidation • Electrochemical oxidation very unlikely facilitate formation of intercalated MWCNTs - Abstract: Multiwalled carbon nanotubes (MWCNTs) with different geometrical characteristics and chemical doping have been synthesized and electrochemically oxidized to study the possibility of unzipping, and creating graphene nanoribbon (GNR) nanostructures. Modified glassy carbon electrodes of the MWCNTs have been tested in an aqueous electrolyte via anodic scans in a wide range of potentials, followed by keeping at the maximum potential for different times. Themore » microstructural features, structural defects, and functional groups and their elements have been then studied using high resolution transmission electron microscopy (HRTEM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS), respectively. All results have confirmed that no successful unzipping occurs in the MWCNTs after electrochemical oxidation, even for the nitrogen-doped MWCNTs (CN{sub x}-MWCNTs) with reactive nitrogen groups and defective bamboo structures. In contrast to the report by Shinde et al. (J. Am. Chem. Soc. 2011, 133, 4168–4171), it has been concluded that the electrochemical oxidation in aqueous electrolytes is very unlikely to facilitate sufficient incorporation of the intercalated molecules among the walls of the MWCNTs. These molecules are, however, responsible for unzipping of MWCNTs.« less
NASA Astrophysics Data System (ADS)
Atchudan, Raji; Edison, Thomas Nesakumar Jebakumar Immanuel; Sethuraman, Mathur Gopalakrishnan; Lee, Yong Rok
2016-10-01
Highly fluorescent nitrogen-doped carbon dots (N-CDs) were synthesized using the extract of unripe Prunus mume (P. mume) fruit by a simple one step hydrothermal-carbonization method. The N-CDs were synthesized at different pH ranges, 2.3, 5, 7, and 9. The pH of the P. mume extract was adjusted using an aqueous ammonia solution (25%). The optical properties of N-CDs were examined by UV-vis and fluorescence spectroscopy. The N-CDs synthesized at pH 9 emitted high fluorescence intensity compared to other obtained N-CDs. The N-CDs synthesized at pH 9 was further characterized by high resolution transmission electron microscopy (HR-TEM), X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and Fourier transform-infra red (FT-IR) spectroscopy. HR-TEM showed that the average size of the synthesized N-CDs was approximately 9 nm and the interlayer distance was 0.21 nm, which was validated by XRD. The graphitic nature of the synthesized N-CDs were confirmed by Raman spectroscopy. XPS and FT-IR spectroscopy confirmed the doping of the nitrogen moiety over the synthesized CDs. The synthesized nitrogen doped CDs (N-CDs) were low toxicity and were used as a staining probe for fluorescence cell imaging.
NASA Astrophysics Data System (ADS)
Wen, C.; Ge, B. H.; Cui, Y. X.; Li, F. H.; Zhu, J.; Yu, R.; Cheng, Z. Y.
2014-11-01
The stacking faults (SFs) in an AlSb/GaAs (001) interface were investigated using a 300 kV spherical aberration-corrected high-resolution transmission electron microscope (HRTEM). The structure and strain distribution of the single and intersecting (V-shaped) SFs associated with partial dislocations (PDs) were characterized by the [110] HRTEM images and geometric phase analysis, respectively. In the biaxial strain maps ɛxx and ɛyy, a SF can be divided into several sections under different strain states (positive or negative strain values). Furthermore, the strain state for the same section of a SF is in contrast to each other in ɛxx and ɛyy strain maps. The modification in the strain states was attributed to the variation in the local atomic displacements for the SF in the AlSb film on the GaAs substrate recorded in the lattice image. Finally, the single SF was found to be bounded by two 30° PDs. A pair of 30° PDs near the heteroepitaxial interface reacted to form a Lomer-Cottrell sessile dislocation located at the vertices of V-shaped SFs with opposite screw components. The roles of misfit dislocations, such as the PDs, in strain relaxation were also discussed.
Liu, Lequan; Qiao, Botao; Ma, Yubo; Zhang, Juan; Deng, Youquan
2008-05-21
An attempt to prepare ferric hydroxide supported Au subnano clusters via modified co-precipitation without any calcination was made. High resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) have been employed to study the structure and chemical states of these catalysts. No Au species could be observed in the HRTEM image nor from the XRD pattern, suggesting that the sizes of the Au species in and on the ferric hydroxide support were less than or around 1 nm. Chemoselective hydrogenation of aromatic nitro compounds and alpha,beta-unsaturated aldehydes was selected as a probe reaction to examine the catalytic properties of this catalyst. Under the same reaction conditions, such as 100 degrees C and 1 MPa H2 in the hydrogenation of aromatic nitro compounds, a 96-99% conversion (except for 4-nitrobenzonitrile) with 99% selectivity was obtained over the ferric hydroxide supported Au catalyst, and the TOF values were 2-6 times higher than that of the corresponding ferric oxide supported catalyst with 3-5 nm size Au particles. For further evaluation of this Au catalyst in the hydrogenation of citral and cinnamaldehyde, selectivity towards unsaturated alcohols was 2-20 times higher than that of the corresponding ferric oxide Au catalyst.
NASA Astrophysics Data System (ADS)
Pradon, A.; Caldes, M. T.; Petit, P.-E.; La Fontaine, C.; Elkaim, E.; Tessier, C.; Ouvrard, G.; Dumont, E.
2018-03-01
A Li-rich lamellar oxide was cycled at high potential and the relevance of using a constant voltage step (CVS) at the end of the charge, needed for industrial application, was investigated by electrochemical performance, X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). Electrochemical studies at 4.7 and 4.5 V with and without CVS showed that capacity and voltage fading occurred mostly when cells operated at high potential. After cycling, 3D-type defects involving transition metals trapped in lithium layer were observed by HRTEM into the electrode bulk. These defects are responsible for the voltage fading. XRD microstrain parameter was used to evaluate defects rate in aged materials subjected to a CVS, showing more 3D-type defects when cycled at 4.7 V than at 4.5 V. The time spent at high potential at the end of the charge as well as the value of the upper potential limit, are both relevant parameters to voltage decay. The use of a CVS at the end of the charge needs at the same time, a reduced upper potential window in order to minimize 3D-type defects occurrence. Unfortunately, this approach is still not sufficient to prevent voltage fading.
Effects of copper on the preparation and characterization of Na-Ca-P borate glasses.
Shailajha, S; Geetha, K; Vasantharani, P; Sheik Abdul Kadhar, S P
2015-03-05
Glasses in the system Na2O-CaO-B2O3-P2O5: CuO have been prepared by melt quenching at 1200°C and rapidly cooling at room temperature. The structural, optical and thermal properties have been investigated using X-ray diffraction (XRD), ultraviolet-visible (UV-VIS) spectroscopy, thermogravimetric-differential thermal analysis (TG-DTA), Fourier transform infrared (FTIR) spectroscopy, high resolution scanning electron microscopy (HRSEM) with energy dispersive X-ray (EDX) spectroscopy and high resolution transmission electron microscope (HRTEM) with energy dispersive X-ray (EDAX). The amorphous and crystalline nature of these samples was verified by XRD. Glass transition, crystallization and thermal stability were determined by TG-DTA investigations. Direct optical energy band gaps before and after doping with different percents of copper oxide were evaluated from 4.81eV to 2.99eV indicated the role of copper in the glassy matrix by UV spectra. FTIR spectrum reveals characteristic absorption bands due to various groups of triangular and tetrahedral borate network. Due to the amorphous nature, the particles like agglomerates on the glass surface were investigated by the HRSEM analysis. The crystalline nature of the samples in XRD is confirmed by SAED pattern using HRTEM. Copyright © 2014 Elsevier B.V. All rights reserved.
Prajapati, Saumya; Tao, Jinhui; Ruan, Qichao; De Yoreo, James J.; Moradian-Oldak, Janet
2015-01-01
Reconstruction of enamel-like materials is a central topic of research in dentistry and material sciences. The importance of precise proteolytic mechanisms in amelogenesis to form a hard tissue with more than 95% mineral content has already been reported. A mutation in the Matrix Metalloproteinase-20 (MMP-20) gene results in hypomineralized enamel that is thin, disorganized and breaks from the underlying dentin. We hypothesized that the absence of MMP-20 during amelogenesis results in the occlusion of amelogenin in the enamel hydroxyapatite crystals. We used spectroscopy and electron microscopy techniques to qualitatively and quantitatively analyze occluded proteins within the isolated enamel crystals from MMP-20 null and Wild type (WT) mice. Our results showed that the isolated enamel crystals of MMP-20 null mice had more organic macromolecules occluded inside them than enamel crystals from the WT. The crystal lattice arrangements of MMP-20 null enamel crystals analyzed by High Resolution Transmission Electron Microscopy (HRTEM) were found to be significantly different from those of the WT. Raman studies indicated that the crystallinity of the MMP-20 null enamel crystals was lower than that of the WT. In conclusion, we present a novel functional mechanism of MMP-20, specifically prevention of unwanted organic material entrapped in the forming enamel crystals, which occurs as the result of precise amelogenin cleavage. MMP-20 action guides the growth morphology of the forming hydroxyapatite crystals and enhances their crystallinity. Elucidating such molecular mechanisms can be applied in the design of novel biomaterials for future clinical applications in dental restoration or repair. PMID:26513418
Prajapati, Saumya; Tao, Jinhui; Ruan, Qichao; De Yoreo, James J; Moradian-Oldak, Janet
2016-01-01
Reconstruction of enamel-like materials is a central topic of research in dentistry and material sciences. The importance of precise proteolytic mechanisms in amelogenesis to form a hard tissue with more than 95% mineral content has already been reported. A mutation in the Matrix Metalloproteinase-20 (MMP-20) gene results in hypomineralized enamel that is thin, disorganized and breaks from the underlying dentin. We hypothesized that the absence of MMP-20 during amelogenesis results in the occlusion of amelogenin in the enamel hydroxyapatite crystals. We used spectroscopy and electron microscopy techniques to qualitatively and quantitatively analyze occluded proteins within the isolated enamel crystals from MMP-20 null and Wild type (WT) mice. Our results showed that the isolated enamel crystals of MMP-20 null mice had more organic macromolecules occluded inside them than enamel crystals from the WT. The crystal lattice arrangements of MMP-20 null enamel crystals analyzed by High Resolution Transmission Electron Microscopy (HRTEM) were found to be significantly different from those of the WT. Raman studies indicated that the crystallinity of the MMP-20 null enamel crystals was lower than that of the WT. In conclusion, we present a novel functional mechanism of MMP-20, specifically prevention of unwanted organic material entrapped in the forming enamel crystals, which occurs as the result of precise amelogenin cleavage. MMP-20 action guides the growth morphology of the forming hydroxyapatite crystals and enhances their crystallinity. Elucidating such molecular mechanisms can be applied in the design of novel biomaterials for future clinical applications in dental restoration or repair. Copyright © 2015 Elsevier Ltd. All rights reserved.
Atchudan, Raji; Edison, Thomas Nesakumar Jebakumar Immanuel; Perumal, Suguna; Karthikeyan, Dhanapalan; Lee, Yong Rok
2016-09-01
Zinc oxide nanoparticles decorated graphene oxide (ZnO@GO) composite was synthesized by simple solvothermal method where zinc oxide (ZnO) nanoparticles and graphene oxide (GO) were synthesized via simple thermal oxidation and Hummers method, respectively. The obtained materials were thoroughly characterized by various physico-chemical techniques such as X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Raman spectrum shows the intensity of D to G value was close to one which confirms the obtained GO and ZnO@GO composite possesses moderate graphitization. TEM images shows the ZnO nanoparticles mean size of 15±5nm were dispersed over the wrinkled graphene layers. The photocatalytic performance of ZnO@GO composite on degradation of methylene blue (MB) is investigated and the results show that the GO plays an important role in the enhancement of photocatalytic performance. The synthesized ZnO@GO composite achieves a maximum degradation efficiency of 98.5% in a neutral solution under UV-light irradiation for 15min as compared with pure ZnO (degradation efficiency is 49% after 60min of irradiation) due to the increased light absorption, the reduced charge recombination with the introduction of GO. Moreover, the resulting ZnO@GO composite possesses excellent degradation efficiency as compared to ZnO nanoparticles alone on MB. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Deng, Dashen; Feng, Wenlin; Wei, Jianwei; Qin, Xiang; Chen, Rong
2017-11-01
A novel fiber-optic hydrogen sulfide sensor based on a thin-core Mach-Zehnder fiber modal interferometer (TMZFI) is demonstrated and fabricated. This in-line interferometer is composed of a short section of thin-core fiber sandwiched between two standard single mode fibers, and the fast response to hydrogen sulfide is achieved via the construction of tungsten sulfide film on the outside surface of the TMZFI using the dip-coating and calcination technique. The fabricated sensing nanofilm is characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) spectrometer, Fourier transform infrared (FTIR) and spectroscopic analysis technology, etc. Experimental results showed that the WS2 sensing film has a hexagonal structure with a compact and porous morphology. The XPS and FTIR indicate that the existence of two elements (W and S) is demonstrated. With the increasing concentration of hydrogen sulfide, the interference spectra appear blue shift. In addition, a high sensitivity of 18.37 pm/ppm and a good linear relationship are obtained within a measurement range from 0 to 80 ppm. In addition, there is an excellent selectivity for H2S, which has also been proved by the surface adsorption energy results of tungsten sulfide with four gases (H2S, N2, O2 and CO2) by using the density functional theory calculations. This interferometer has the advantages of simple structure, high sensitivity and easy manufacture, and could be used in the safety monitoring field of hydrogen sulfide gas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Youcun, E-mail: chenyc@aqtc.edu.cn; Hu, Lin
2016-07-15
Co{sub 3}O{sub 4} polyhedrons with porous structure have been synthesized simply by annealing Prussian blue analogue (PBA) Co{sub 3}[Co(CN){sub 6}]{sub 2} polyhedrons at 400 °C in air. The product was characterized by a series of techniques, such as X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Transmission Electron Microscopy (TEM), High-resolution TEM (HRTEM), X-ray Photoelectron Spectroscopy (XPS), and Brunauer–Emmett–Teller (BET) gas adsorption. Interestingly, when evaluated as an anode material for lithium-ion batteries (LIBs), the Co{sub 3}O{sub 4} porous polyhedrons manifested high reversible capacity (about 1200 mAh g{sup −1} at 50 mA g{sup −1}) and excellent cycling performance. Moreover, theymore » also exhibited a high specific capacitance of 110 Fg{sup −1} when used as an electrode in the supercapacitor. It is suggested that the special morphology and porous nanostructure lead to the promising electrochemical properties. - Graphical abstract: Novel and complicated mesoporous architectures of Co{sub 3}O{sub 4} have been fabricated by thermal decomposition of Prussian Blue Analog (PBA) Co{sub 3}[Co(CN){sub 6}]{sub 2} polyhedrons which obtained at the room temperature. When Co{sub 3}O{sub 4} product was evaluated for Li-ion batteries (LIBs), they exhibited high reversible capacity of 1000 mAh g{sup −1} with excellent cycle life because of the hollow/porous structure. Display Omitted.« less
NASA Astrophysics Data System (ADS)
Lepoittevin, C.; Malo, S.; Barrier, N.; Nguyen, N.; Van Tendeloo, G.; Hervieu, M.
2008-10-01
Two-ordered perovskites, Bi 1/3Sr 2/3FeO 2.67 and Bi 1/2Ca 1/2FeO 2.75, have been stabilized and characterized by transmission electron microscopy, Mössbauer spectroscopy and X-ray powder diffraction techniques. They both exhibit orthorhombic superstructures, one with a≈ b≈2 ap and c≈3 ap (S.G.: Pb2 n or Pbmn) for the Sr-based compound and one with a≈ b≈2 ap and c≈8 ap (S.G.: B222, Bmm2, B2 mm or Bmmm) for the Ca-based one. The high-resolution transmission electron microscopy (HRTEM) images evidence the existence of one deficient [FeO x] ∞ layer, suggesting that Bi 1/3Sr 2/3FeO 2.67 and Bi 1/2Ca 1/2FeO 2.75 behave differently compared to their Ln-based homolog. The HAADF-STEM images allow to propose a model of cation ordering on the A sites of the perovskite. The Mössbauer analyses confirm the trivalent state of iron and its complex environment with three types of coordination. Both compounds exhibit a high value of resistivity and the inverse molar susceptibility versus temperature curves evidence a magnetic transition at about 730 K for the Bi 1/3Sr 2/3FeO 2.67 and a smooth reversible transition between 590 and 650 K for Bi 1/2Ca 1/2FeO 2.75.
Al-Gharabli, Samer; Hamad, Eyad; Saket, Munib; Abu El-Rub, Ziad; Arafat, Hassan; Kujawski, Wojciech; Kujawa, Joanna
2018-05-07
Advanced ceramic materials with a well-defined nano-architecture of their surfaces were formed by applying a two-step procedure. Firstly, a primary amine was docked on the ordered nanotubular ceramic surface via a silanization process. Subsequently, single-wall carbon nanotubes (SWCNTs) were covalently grafted onto the surface via an amide building block. Physicochemical (e.g., hydrophobicity, and surface free energy (SFE)), mechanical, and tribological properties of the developed membranes were improved significantly. The design, preparation, and extended characterization of the developed membranes are presented. Tools such as high-resolution transmission electron microscopy (HR-TEM), single-area electron diffraction (SAED) analysis, microscopy, tribology, nano-indentation, and Raman spectroscopy, among other techniques, were utilized in the characterization of the developed membranes. As an effect of hydrophobization, the contact angles (CAs) changed from 38° to 110° and from 51° to 95° for the silanization of ceramic membranes 20 (CM20) and CM100, respectively. SWCNT functionalization reduced the CAs to 72° and 66° for ceramic membranes carbon nanotubes 20 (CM-CNT-20) and CM-CNT-100, respectively. The mechanical properties of the developed membranes improved significantly. From the nanotribological study, Young’s modulus increased from 3 to 39 GPa for CM-CNT-20 and from 43 to 48 GPa for pristine CM-CNT-100. Furthermore, the nanohardness increased by about 80% after the attachment of CNTs for both types of ceramics. The proposed protocol within this work for the development of functionalized ceramic membranes is both simple and efficient.
NASA Astrophysics Data System (ADS)
Miehe, Gerhard; Lauterbach, Stefan; Kleebe, Hans-Joachim; Gurlo, Aleksander
2013-02-01
The high-resolution transmission electron microscopy (HR-TEM) is used to study, in situ, spatially resolved decomposition in individual nanocrystals of metal hydroxides and oxyhydroxides. This case study reports on the decomposition of indium hydroxide (c-In(OH)3) to bixbyite-type indium oxide (c-In2O3). The electron beam is focused onto a single cube-shaped In(OH)3 crystal of {100} morphology with ca. 35 nm edge length and a sequence of HR-TEM images was recorded during electron beam irradiation. The frame-by-frame analysis of video sequences allows for the in situ, time-resolved observation of the shape and orientation of the transformed crystals, which in turn enables the evaluation of the kinetics of c-In2O3 crystallization. Supplementary material (video of the transformation) related to this article can be found online at 10.1016/j.jssc.2012.09.022. After irradiation the shape of the parent cube-shaped crystal is preserved, however, its linear dimension (edge) is reduced by the factor 1.20. The corresponding spotted selected area electron diffraction (SAED) pattern representing zone [001] of c-In(OH)3 is transformed to a diffuse strongly textured ring-like pattern of c-In2O3 that indicates the transformed cube is no longer a single crystal but is disintegrated into individual c-In2O3 domains with the size of about 5-10 nm. The induction time of approximately 15 s is estimated from the time-resolved Fourier transforms. The volume fraction of the transformed phase (c-In2O3), calculated from the shrinkage of the parent c-In(OH)3 crystal in the recorded HR-TEM images, is used as a measure of the kinetics of c-In2O3 crystallization within the framework of Avrami-Erofeev formalism. The Avrami exponent of ˜3 is characteristic for a reaction mechanism with fast nucleation at the beginning of the reaction and subsequent three-dimensional growth of nuclei with a constant growth rate. The structural transformation path in reconstructive decomposition of c-In(OH)3 to c-In2O3 is discussed in terms of (i) the displacement of hydrogen atoms that lead to breaking the hydrogen bond between OH groups of [In(OH)6] octahedra and finally to their destabilization and (ii) transformation of the vertices-shared indium-oxygen octahedra in c-In(OH)3 to vertices- and edge-shared octahedra in c-In2O3.
NASA Astrophysics Data System (ADS)
Mathubala, G.; Manikandan, A.; Arul Antony, S.; Ramar, P.
2016-06-01
Nickel doped spinel manganese ferrite (NixMn1-xFe2O4: x = 0.0-1.0) nanoparticles were prepared successfully by a superficial microwave irradiation technique using urea as the fuel. Powder X-ray diffraction (XRD) analysis was recognized the configuration of single phase spinel structure of NixMn1-xFe2O4. Debye Sherrer's formula was used to calculate the average crystallite size of the samples, which were found in the range of 15-20 nm. High resolution scanning electron microscopy (HR-SEM) was used to analyze the surface morphology of the samples, which showed the particle like-morphology with smaller agglomeration, and it was also confirmed by high resolution transmission electron microscopy (HR-TEM). Energy dispersive X-ray (EDX) analysis confirmed the elemental composition, which also evidence for the formation of single pure phase. Microwave heating method produced well crystalline nature of the products, which was confirmed by selected area electron diffraction (SAED) analysis. UV-Visible diffuse reflectance spectra (DRS) were used to calculate the energy band gap and the observed values are increased slightly from 2.05 eV to 2.44 eV with increasing the Ni-dapant. Magnetic characterization of the samples were analyzed by room temperature vibrating sample magnetometer (VSM) technique and the observed magnetization (Ms) values are decreased with increasing Ni content, due to the different magnetic moments of Mn2+ and Ni2+ cations. Photocatalytic degradation (PCD) of methylene blue dye was carried out by self designed photo-catalytic reactor. It was observed that PCD efficiency is increased with increase in concentration of Ni and the sample Ni0.6Mn0.4Fe2O4 shows better photocatalytic activity (96.73%) than other samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamada, H., E-mail: hide-yamada@mg.ngkntk.co.jp; Matsuoka, T.; Kozuka, H.
Two phases of (K,Na)NbO{sub 3} (KNN) co-exist in a KNN-based composite lead-free piezoelectric ceramic 0.910(K{sub 1−x}Na{sub x}){sub 0.86}Ca{sub 0.04}Li{sub 0.02}Nb{sub 0.85}O{sub 3−δ}–0.042K{sub 0.85}Ti{sub 0.85}Nb{sub 1.15}O{sub 5} –0.036BaZrO{sub 3}–0.0016Co{sub 3}O{sub 4}– 0.0025Fe{sub 2}O{sub 3}–0.0069ZnO system, over a wide range of Na fractions, where 0.56 ≤ x ≤ 0.75. The crystal systems of the two KNN phases are identified to tetragonal and orthorhombic by analyzing the synchrotron powder X-ray diffraction (XRD) data, high-resolution transmission electron microscopy (HR-TEM), and selected-area electron diffraction (SAD). In the range 0.33 ≤ x ≤ 0.50, the main component of the composite system is found to be single-phase KNN with a tetragonal structure. Granular nanodomains ofmore » the orthorhombic phase dispersed in the tetragonal matrix have been identified by HR-TEM and SAD for 0.56 ≤ x ≤ 0.75. Only a trace amount of the orthorhombic phase has been found in the SAD patterns at the composition x = 0.56. However, the number of orthorhombic nanodomains gradually increases with increasing Na content up to x < 0.75, as observed from the HR-TEM images. An abrupt increase and agglomeration of the nanodomains are observed at x = 0.75, where weak diffraction peaks of the orthorhombic phase have also become detectable from the XRD data. The maximum value of the electromechanical coupling coefficient, k{sub p} = 0.56, has been observed at the composition x = 0.56.« less
Crystallization kinetics of the Cu{sub 50}Zr{sub 50} metallic glass under isothermal conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Qian; Jian, Zengyun, E-mail: jianzengyun@xatu.edu.cn; Xu, Junfeng
2016-12-15
Amorphous structure of the melt-spun Cu{sub 50}Zr{sub 50} amorphous alloy ribbons were confirmed by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HR-TEM). Isothermal crystallization kinetics of these alloy ribbons were investigated using differential scanning calorimetry (DSC). Besides, Arrhenius and Johnson-Mehl-Avrami (JMA) equations were utilized to obtain the isothermal crystallization kinetic parameters. As shown in the results, the local activation energy E{sub α} decreases by a large margin at the crystallized volume fraction α<0.1, which proves that crystallization process is increasingly easy. In addition, the local activation energy E{sub α} is basically constant at 0.1
NASA Astrophysics Data System (ADS)
Xie, Guoqiang; Ohashi, Osamu; Song, Minghui; Mitsuishi, Kazutaka; Furuya, Kazuo
2005-02-01
The microstructure of interfaces between powder particles in Al-Mg alloy specimens sintered by pulse electric-current sintering (PECS) process was characterized using high resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray spectroscopy (EDS). The crystalline precipitates with nano-size in the interface were observed in all of Al-Mg alloy specimens. The composition was determined to be MgAl 2O 4 or MgO, or both of them, which depended on Mg content in alloy powder and sintering temperature. The precipitates were suggested to contribute to reduction reaction of Mg with oxide films originally covered at powder particles surface.
Optimization of the behavior of CTAB coated cobalt ferrite nanoparticles
NASA Astrophysics Data System (ADS)
Kumari, Mukesh; Bhatnagar, Mukesh Chander
2018-05-01
In this work, we have synthesized cetyltrimethyl ammonium bromide (CTAB) mixed cobalt ferrite (CoFe2O4) nanoparticles (NPs) using sol-gel auto-combustion method taking a different weight percent ratio of CTAB i.e., 0%, 1%, 2%, 3% and 4% with respect to metal nitrates. The morphological, structural and magnetic properties of these NPs are characterized by high resolution transmitted electron microscopy (HRTEM), X-ray diffraction (XRD), Raman spectrometer and physical property measurement system (PPMS). It has been found that saturation magnetization of cobalt ferrite increases with increase in crystalline size of the NPs. Saturation magnetization and crystallite size both were found to be lowest in the case of sample containing 2% CTAB.
Formation of interconnections between carbon nanotubes and copper using tin solder
NASA Astrophysics Data System (ADS)
Mittal, Jagjiwan; Lina, Kwang-Lung
2013-06-01
A process is developed for connecting Multiwalled carbon nanotubes (MWCNTs) between Cu terminals using tin solder. Connections were made on the Cu grid after heating the Sn coated nanotubes above the melting point of tin. High resolution transmission electron microscopy (HRTEM) micrographs demonstrated the joining by CNTs either as straight between two sides or on the one side after bending in the middle. The connections were found to be stable in air and electron beam under TEM observations. Energy dispersive X-ray (EDX) study showed that the formation of intermetallic compound η-C6Sn5 was responsible for the formation and stability of joints between Cu and MWCNT.
Nano-size defects in arsenic-implanted HgCdTe films: a HRTEM study
NASA Astrophysics Data System (ADS)
Bonchyk, O. Yu.; Savytskyy, H. V.; Swiatek, Z.; Morgiel, Y.; Izhnin, I. I.; Voitsekhovskii, A. V.; Korotaev, A. G.; Mynbaev, K. D.; Fitsych, O. I.; Varavin, V. S.; Dvoretsky, S. A.; Marin, D. V.; Yakushev, M. V.
2018-02-01
Radiation damage and its transformation under annealing were studied with bright-field and high-resolution transmission electron microscopy for arsenic-implanted HgCdTe films with graded-gap surface layers. In addition to typical highly defective layers in as-implanted material, a 50 nm-thick sub-surface layer with very low defect density was observed. The main defects in other layers after implantation were dislocation loops, yet after arsenic activation annealing, the dominating defects were single dislocations. Transport (from depth to surface), transformation and annihilation of radiation-induced defects were observed as a result of annealing, with the depth with the maximum defect density decreasing from 110 to 40 nm.
Silica coating of nanoparticles by the sonogel process.
Chen, Quan; Boothroyd, Chris; Tan, Gim Hong; Sutanto, Nelvi; Soutar, Andrew McIntosh; Zeng, Xian Ting
2008-02-05
A modified aqueous sol-gel route was developed using ultrasonic power for the silica coating of indium tin oxide (ITO) nanoparticles. In this approach, organosilane with an amino functional group was first used to cover the surface of as-received nanoparticles. Subsequent silica coating was initiated and sustained under power ultrasound irradiation in an aqueous mixture of surface-treated particles and epoxy silane. This process resulted in a thin but homogeneous coverage of silica on the particle surface. Particles coated with a layer of silica show better dispersability in aqueous and organic media compared with the untreated powder. Samples were characterized by high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and the zeta potential.
NASA Astrophysics Data System (ADS)
Xie, Guoqiang; Ohashi, Osamu; Song, Minghui; Furuya, Kazuo; Noda, Tetsuji
2003-03-01
The microstructure of the bonding interfaces between particles in aluminum (Al) powder sintered specimens by the pulse electric-current sintering (PECS) process was observed, using conventional transmission electron microscopy (CTEM) and high-resolution transmission electron microscopy (HRTEM). The behavior of oxide film at the interface between Al particles and its effect on properties of the sintered specimens were investigated. The results showed there were two kinds of bonding interfaces in the sintered specimens, namely, the direct metal/metal bonding and the metal/oxide film layer/metal bonding interface. By increasing the fraction of the direct metal/metal bonding interfaces, the tensile strength of the sintered specimens increased, and the electrical resistivity decreased. By increasing the loading pressure at higher sintering temperatures or increasing the sintering temperature under loading pressure, the breakdown of oxide film was promoted. The broken oxide film debris was dispersed in aluminum metal near the bonding interfaces between particles.
Synthesis of core-shell iron nanoparticles via a new (novel) approach
NASA Astrophysics Data System (ADS)
Chaudhary, Rakesh P.; Koymen, Ali R.
2014-03-01
Carbon-encapsulated iron (Fe) nanoparticles were synthesized by a newly developed method in toluene. Transmission Electron Microscopy (TEM) and High Resolution Transmission Electron Microscopy (HRTEM) of the as prepared sample reveal that core-shell nanostructures have been formed with Fe as core and graphitic carbon as shell. Fe nanoparticles with diameter 11nm to 102 nm are encapsulated by 6-8 nm thick graphitic carbon layers. There was no iron carbide formation observed between the Fe core and the graphitic shell. The Fe nanoparticles have body centered cubic (bcc) crystal structure. The magnetic hysteresis loop of the as synthesized powder at room temperature showed a saturation magnetization of 9 Am2 kg-1. After thermal treatment crystalline order of the samples improved and hence saturation magnetization increased to 24 Am2kg-1. We foresee that the carbon-encapsulated Fe nanoparticles are biologically friendly and could have potential applications in Magnetic Resonance Imaging (MRI) and Photothermal cancer therapy.
Vertically aligned N-doped CNTs growth using Taguchi experimental design
NASA Astrophysics Data System (ADS)
Silva, Ricardo M.; Fernandes, António J. S.; Ferro, Marta C.; Pinna, Nicola; Silva, Rui F.
2015-07-01
The Taguchi method with a parameter design L9 orthogonal array was implemented for optimizing the nitrogen incorporation in the structure of vertically aligned N-doped CNTs grown by thermal chemical deposition (TCVD). The maximization of the ID/IG ratio of the Raman spectra was selected as the target value. As a result, the optimal deposition configuration was NH3 = 90 sccm, growth temperature = 825 °C and catalyst pretreatment time of 2 min, the first parameter having the main effect on nitrogen incorporation. A confirmation experiment with these values was performed, ratifying the predicted ID/IG ratio of 1.42. Scanning electron microscopy (SEM) characterization revealed a uniform completely vertically aligned array of multiwalled CNTs which individually exhibit a bamboo-like structure, consisting of periodically curved graphitic layers, as depicted by high resolution transmission electron microscopy (HRTEM). The X-ray photoelectron spectroscopy (XPS) results indicated a 2.00 at.% of N incorporation in the CNTs in pyridine-like and graphite-like, as the predominant species.
NASA Astrophysics Data System (ADS)
Magesh, G.; Bhoopathi, G.; Nithya, N.; Arun, A. P.; Ranjith Kumar, E.
2018-05-01
Chitosan/ZnO nanocomposites was synthesized by in-situ chemical precipitation method. The effect of polysaccharide Chitosan concentration (0.1 g, 0.5 g, 1 g and 3 g) was investigated by X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM) with Energy dispersive spectroscopy (EDX), High Resolution Transmission Electron Microscopy (HRTEM), UV-visible (UV), Fourier Transform Infrared (FTIR) and Photoluminescence Spectroscopy (PL). XRD pattern confirms the hexagonal wurtzite structure of the Chitosan/ZnO nanocomposites. The structural morphology and the elemental composition of the samples were analysed by FESEM and EDX respectively. From TEM analysis, it is observed that the particles in spindle shape morphology with average particle size ranges 10-20 nm. UV-Vis analysis reveals that the Chitosan concentration affect the absorption band edge and shift towards lower wavelength. The oxygen vacancy induced photoluminescence of ZnO nanoparticles was observed and its intensity decreases by tuning the Chitosan concentration.
Characterization and Evaluation of Ti-Zr-V Non-evaporable Getter Films Used in Vacuum Systems
NASA Astrophysics Data System (ADS)
Ferreira, M. J.; Seraphim, R. M.; Ramirez, A. J.; Tabacniks, M. H.; Nascente, P. A. P.
Among several methods used to obtain ultra-high vacuum (UHV) for particles accelerators chambers, it stands out the internal coating with metallic films capable of absorbing gases, called NEG (non-evaporable getter). Usually these materials are constituted by elements of great chemical reactivity and solubility (such as Ti, Zr, and V), at room temperature for oxygen and other gases typically found in UHV, such as H2, CO, and CO2. Gold and ternary Ti-Zr-V films were produced by magnetron sputtering, and their composition, structure, morphology, and aging characteristics were characterized by energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), field emission gun sc anning electronmicroscopy (FEG-SEM), atomic force microscopy (AFM), high resolution transmission electron microscopy (HRTEM). The comparison between the produced films and commercial samples indicated that the desirable characteristics depend on the nanometric structure of the films and that this structure is sensitive to the heat treatments.
Highly branched RuO2 Nanorods on Electrospun TiO2 Nanofibers toward Electrochemical Catalysts
NASA Astrophysics Data System (ADS)
Cho, Yukyung; Kim, Su-Jin; Lee, Nam-Suk; Kim, Myung Hwa; Lee, Youngmi
2014-03-01
We report a facile growth route to synthesize hierarchically grown single crystalline metallic RuO2 nanorods on electrospun TiO2 nanofibers via a combination of a simple vapour phase transport process with an electrospinning process. This synthetic strategy could be very useful to design a variety of highly branched network architectures of the functional hetero-nanostructures for electrochemical applications. Particularly, Ruthenium oxide (RuO2) 1-dimensional nanostructures can be used as the effective catalysts or electrochemical electrode materials. Thus, we first synthesize TiO2 nanofibers from mixture of titanium isopropoxide precursor and polymer and then ruthenium hydroxide precursor on TiO2 nanofibers are transformed into RuO2 nanorods by thermal treatment at 250oC in air. The crystalline structures of products are confirmed using scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) spectrum, Raman spectroscopy, and high resolution electron microscopy (HRTEM). The fundamental electrochemical performances are examined using cyclic voltammetry (CV).
The preparation and cathodoluminescence of ZnS nanowires grown by chemical vapor deposition
NASA Astrophysics Data System (ADS)
Huang, Meng-Wen; Cheng, Yin-Wei; Pan, Ko-Ying; Chang, Chen-Chuan; Shieu, F. S.; Shih, Han C.
2012-11-01
Single crystal ZnS nanowires were successfully synthesized in large quantities on Si (1 0 0) substrates by simple thermal chemical vapor deposition without using any catalyst. The morphology, composition, and crystal structure were characterized by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), and cathodoluminescence (CL) spectroscopy. SEM observations show that the nanowires have diameters about 20-50 nm and lengths up to several tens of micrometers. XRD and TEM results confirmed that the nanowires exhibited both wurtzite and zinc blende structures with growth directions aligned along [0 0 0 2] and [1 1 1], respectively. The CL spectrum revealed emission bands in the UV and blue regions. The blue emissions at 449 and ˜581 nm were attributed to surface states and impurity-related defects of the nanowires, respectively. The perfect crystal structure of the nanowires indicates their potential applications in nanotechnology and in the fabrication of nanodevices.
NASA Astrophysics Data System (ADS)
Pal, Shreyasi; Dutta, Shibsankar; De, Sukanta
2018-04-01
A facile hydrothermal method has been adopted to synthesize pure MoS2 nanosheets and MoS2/rGO nanosheets hybrid. The samples were characterized using field emission scanning electron microscopy (FESEM), transmission electron microscopy (HRTEM), X-ray diffraction spectroscopy (XRD), Brunauer-Emmett-Teller (BET). The photocatalytic performance and reusability of MoS2 nanosheets and MoS2/rGO hybrids was evaluated by discoloring of RhB under visible light irradiation. Results indicated that MoS2/rGO photocatalysts with large surface area of 69.5 m2 g-1 could completely degrade 50 mL of 8 mg L-1 RhB aqueous solution in 90 min with excellent recycling and structural stability as compared with pure MoS2 nanosheets (53%). Such enhanced performance could be explained due to the high surface area, enhanced light absorption and the increased dye adsorptivity and reduced electron-hole pair recombination with the presence of rGO.
Wu, Jyh Ming; Chen, Yi-Ru; Lin, Yu-Hung
2011-03-01
We are the first group to use a simple direct ultraviolet light (UV, λ=365 nm, I=76 mW cm(-2)) in a decomposition process to fabricate ZnO nanowires on a flexible substrate using a zinc acetylacetonate hydrate precursor in ambient air. ZnO nanocrystal (or nanowire) production only requires three to ten minutes. A field emission scanning electron microscopy (FESEM) image reveals a high aspect ratio of the ZnO nanowires, which are grown on a substrate with a diameter of ∼50-100 nm, and a length of up to several hundred microns. High resolution transmission electron microscopy (HRTEM) images reveal that the nanowires consist of many single crystalline ZnO nanoparticles that grow along the c axis, which suggests an oriented attachment process. A potential application for flexible UV photodetectors was investigated using a UV lamp (λ=365 nm, I=2.34 mW cm(-2)). A significant ratio of photocurrent to dark current--around 11,300%--was achieved.
NASA Astrophysics Data System (ADS)
Su, Shui-Hsiang; Kong, Hsieng-Jen; Tseng, Chun-Lung; Chen, Guan-Yu
2018-01-01
In the article, we describe the etching mechanism of indium-tin oxide (ITO) film, which was wet-etched using a solution of hydrochloric acid (HCl) and ferric chloride (FeCl3). The etching mechanism is analyzed at various etching durations of ITO films by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), and selective area diffraction (SAD) analysis. In comparison with the crystalline phase of SnO2, the In2O3 phase can be more easily transformed to In3+ and can form an inverted conical structure during the etching process. By adjusting the etching duration, the residual ITO is completely removed to show a designed pattern. This is attributed to the negative Gibbs energy of In2O3 transformed to In3+. The result also corresponds to the finding of energy-dispersive X-ray spectroscopy (EDS) analysis that the Sn/In ratio increases with increasing etching duration.
Synthesis of BiOCl nanosheets with oxygen vacancies for the improved photocatalytic properties
NASA Astrophysics Data System (ADS)
Cai, Yujie; Li, Dongya; Sun, Jingyu; Chen, Mengdie; Li, Yirui; Zou, Zhongwei; Zhang, Hua; Xu, Haiming; Xia, Dongsheng
2018-05-01
The square-sharped BiOCl nanosheets with oxygen vacancies were successfully synthesized via a facile hydrothermal route using xylitol as surfactant. The as-prepared BiOCl samples were characterized by Powder X-ray Diffractometer (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), UV-Vis diffuse reflectance spectra (DRS), Brunauer-Emmett-Teller (BET), X-ray photoelectron spectroscopy (XPS) and Electron spin resonance (ESR). The as-prepared samples were phase-pure with the width and the thickness were about 50-400 nm and 20-50 nm respectively. Besides, the photodegradation performances showed the BiOCl nanosheets with 0.1 g concentration of xylitol (BOC-1) had the best photocatalytic activity under visible light due to its special polycrystalline structure, grain boundary and an optimum concentration of oxygen vacancies. The h+ and radO2- were the two main active species during the photocatalytic process and the possible photocatalytic mechanism was proposed.
Green synthesis of gold nanoparticles using aqueous extract of Dillenia indica
NASA Astrophysics Data System (ADS)
Sett, Arghya; Gadewar, Manoj; Sharma, Pragya; Deka, Manab; Bora, Utpal
2016-06-01
In this study, we report a novel method of gold nanoparticle (AuNP) synthesis using aqueous fruit extract of Dillenia indica. The phytochemicals present in the fruit extract act as an effective reducing and capping agent to synthesize AuNPs. The synthesized AuNPs were characterized by spectrophotometry, transmission electron microscopy (TEM), x-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy. TEM studies revealed the particles of various sizes and mainly spherical in shape. Selected-area electron diffraction (SAED) patterns and high-resolution transmission electron microscopy (HRTEM) images confirmed the crystallinity of the particles. The XRD patterns showed peaks at (111), (200), (220) which exhibited preferential orientation of the AuNPs as face-centered cubic crystal. FTIR measurements confirmed the coating of phenolic compounds on the AuNPs indicating a possible role of biomolecules for the capping and efficient stabilization of the AuNPs. The synthesized AuNPs did not show any form of cytotoxicity in the normal fibroblast cell line L929.
Hajihashemi, R; Rashidi, Ali M; Alaie, M; Mohammadzadeh, R; Izadi, N
2014-11-01
Nano-composite of multiwall carbon nanotube, decorated with NiFe2O4 nanoparticles (NiFe2O4-MWCNT), was synthesized using the sol-gel method. NiFe2O4-MWCNTs were characterized using different methods such as X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), atomic force microscopy (AFM) and vibrating sample magnetometer (VSM). The average size of the crystallites is 23.93 nm. The values of the saturation magnetization (MS), coercivity (HC) and retentivity (MR) of NiFe2O4-MWCNTs are obtained as 15 emu g(-1), 21Oe and 5 emu g(-1), respectively. In this research, NiFe2O4-MWCNT thin films were prepared with the spin-coating method. These thin films were used as the H2S gas sensor. The results suggest the possibility of the utilization of NiFe2O4-MWCNT nano-composite, as the H2S detector. The sensor shows appropriate response towards 100 ppm of H2S at 300°C. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yi, Zao; Tan, Xiulan; Niu, Gao; Xu, Xibin; Li, Xibo; Ye, Xin; Luo, Jiangshan; Luo, Binchi; Wu, Weidong; Tang, Yongjian; Yi, Yougen
2012-05-01
Dendritic Ag-Pd bimetallic nanostructures have been synthesized on the surface of Cu foil via a multi-stage galvanic replacement reaction (MGRR) of Ag dendrites in a Na2PdCl4 solution. After five stages of replacement reaction, one obtained structures with protruding Ag-Pd flakes; these will mature into many porous structures with a few Ag atoms that are left over dendrites. The dendritic Ag-Pd bimetallic nanostructures were characterized by transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray (EDX), selected area electron diffraction (SAED) and X-ray photoelectron spectroscopy (XPS). The morphology of the products strongly depended on the stage of galvanic replacement reaction and reaction temperature. The morphology and composition-dependent surface-enhanced Raman scattering (SERS) of the as-synthesized Ag-Pd bimetallic nanostructures were investigated. The effectiveness of these dendritic Ag-Pd bimetallic nanostructures on the surface of Cu foil as substrates toward SERS detection was evaluated by using rhodamine 6G (R6G) as a probe molecule. The results indicate that as-synthesized dendritic Ag-Pd bimetallic nanostructures are good candidates for SERS spectroscopy.
Microstructure of Reaction Zone Formed During Diffusion Bonding of TiAl with Ni/Al Multilayer
NASA Astrophysics Data System (ADS)
Simões, Sónia; Viana, Filomena; Koçak, Mustafa; Ramos, A. Sofia; Vieira, M. Teresa; Vieira, Manuel F.
2012-05-01
In this article, the characterization of the interfacial structure of diffusion bonding a TiAl alloy is presented. The joining surfaces were modified by Ni/Al reactive multilayer deposition as an alternative approach to conventional diffusion bonding. TiAl substrates were coated with alternated Ni and Al nanolayers. The nanolayers were deposited by dc magnetron sputtering with 14 nm of period (bilayer thickness). Joining experiments were performed at 900 °C for 30 and 60 min with a pressure of 5 MPa. Cross sections of the joints were prepared for characterization of their interfaces by scanning electron microscopy (SEM), transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), high resolution TEM (HRTEM), energy dispersive x-ray spectroscopy (EDS), and electron backscatter diffraction (EBSD). Several intermetallic compounds form at the interface, assuring the bonding of the TiAl. The interface can be divided into three distinct zones: zone 1 exhibits elongated nanograins, very small equiaxed grains are observed in zone 2, while zone 3 has larger equiaxed grains. EBSD analysis reveals that zone 1 corresponds to the intermetallic Al2NiTi and AlNiTi, and zones 2 and 3 to NiAl.
Second-harmonic generation of ZnO nanoparticles synthesized by laser ablation of solids in liquids
NASA Astrophysics Data System (ADS)
Rocha-Mendoza, Israel; Camacho-López, Santiago; Luna-Palacios, Yryx Y.; Esqueda-Barrón, Yasmín; Camacho-López, Miguel A.; Camacho-López, Marco; Aguilar, Guillermo
2018-02-01
We report the synthesis of small zinc oxide nanoparticles (ZnO NPs) based colloidal suspensions and the study of second-harmonic generation from aggregated ZnO NPs deposited on glass substrates. The colloidal suspensions were obtained using the laser ablation of solids in liquids technique, ablating a Zn solid target immersed in acetone as the liquid medium, with ns-laser pulses (1064 nm) of a Nd-YAG laser. The per pulse laser fluence, the laser repetition rate frequency and the ablation time were kept constant. The absorption evolution of the obtained suspensions was optically characterized through absorption spectroscopy until stabilization. Raman spectroscopy, SEM and HRTEM were used to provide evidence of the ZnO NPs structure. HRTEM results showed that 5-8 nm spheroids ZnO NPs were obtained. Strong second-harmonic signal is obtained from random ZnO monocrystalline NPs and from aggregated ZnO NPs, suggesting that the high efficiency of the nonlinear process may not depend on the NPs size or aggregation state.
Biomineralogy and Morphology of the Marine Iron-oxidizing Bacterium Mariprofundus ferrooxydans
NASA Astrophysics Data System (ADS)
Chan, C. S.; Emerson, D.; Edwards, K. J.
2006-12-01
Mariprofundus ferrooxydans strain PV-1 is a lithoautotrophic iron-oxidizing proteobacterium isolated from the Loihi Seamount in Hawaii. As cells grow, they form filaments upon which iron minerals are deposited. Based on similarities in morphology, these structures appear to accumulate and form the bulk of iron mats at Loihi. Furthermore, Mariprofundus has been observed in a number of other seafloor mat samples (e.g. by microscopy and 16S rRNA gene sequencing of East Pacific Rise samples, C. M. Santelli unpublished data), suggesting that the occurrence of Mariprofundus is widespread. To learn about the effect of Mariprofundus on iron cycling, we are studying the processes by which it oxidizes iron and influences iron mineral formation. We are conducting studies on the spatial relationships between the cells, stalks, and minerals using scanning and transmission electron microscopy (SEM and TEM). Identification and imaging of stalk-bound, nanometer-sized iron oxyhydroxide minerals is being performed by high-resolution transmission electron microscopy (HRTEM). We have developed sample preparation methods to preserve in vivo spatial relationships, involving direct colonization of sample holders in cultures and in the environment. Method development has been performed on stalk-forming, iron-oxidizing Gallionella ferruginea cultures and terrestrial iron mats. Gallionella is morphologically and physiologically very similar to Mariprofundus, although 16S rRNA gene phylogeny shows that they are not closely related. Comparison of the terrestrial and marine iron-oxidizing bacteria (FeOB) gives us insight into adaptations that are particular to marine iron-oxidizers and those that are common to all FeOB. Light and fluorescence microscopy of Mariprofundus cultures has shown that a single bean-shaped cell lies at the end of each filament. SEM and TEM results have revealed that the filament is ribbon-like, sometimes twisted as with the classic Gallionella stalk, but sometimes not. Filaments formed in culture have been measured at 0.5 and 1.7 microns in width and as long as 70 microns. They are composed of a varying number of parallel subfilaments, each approximately 70 nm in width. HRTEM observations show that lightly-mineralized filaments are covered in nanometer-size, poorly crystalline, and possibly amorphous iron oxyhydroxides, which likely represent an early stage in filament mineralization. Highly-mineralized filaments are coated in lepidocrocite and akaganeite (both iron oxyhydroxides), in random crystallographic orientations. The more crystalline minerals probably result from recrystallization of the initially-deposited FeOOH and continued precipitation on the filament. We will revisit Loihi in October to collect fresh, undisturbed samples for electron microscopy, in order to compare cultured and natural samples. This work is being performed in conjunction with genomic and protein analyses aimed at identifying the genes involved in iron oxidation.
NASA Astrophysics Data System (ADS)
Wang, Lu; Ji, Hongmei; Zhu, Feng; Chen, Zhi; Yang, Yang; Jiang, Xuefan; Pinto, João; Yang, Gang
2013-07-01
Here, we first provide a facile ultrasonic-assisted synthesis of SnO using SnCl2 and the organic solvent of ethanolamine (ETA). The moderate alkalinity of ETA and ultrasound play very important roles in the synthesis of SnO. After the hydrolysis of the intermediate of ETA-Sn(ii), the as-synthesized SnO nanoclusters undergo assembly, amalgamation, and preferential growth to microplates in hydrothermal treatment. The as-synthesized SnO was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), ultraviolet-visible absorption spectroscopy (UV-vis) and X-ray diffraction (XRD). To explore its potential applications in energy storage, SnO was fabricated into a supercapacitor electrode and characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge-discharge measurements. The as-synthesized SnO exhibits remarkable pseudocapacitive activity including high specific capacitance (208.9 F g-1 at 0.1 A g-1), good rate capability (65.8 F g-1 at 40 A g-1), and excellent cycling stability (retention 119.3% after 10 000 cycles) for application in supercapacitors. The capacitive behavior of SnO with various crystal morphologies was observed by fitted EIS using an equivalent circuit. The novel synthetic route for SnO is a convenient and potential way to large-scale production of microplates which is expected to be applicable in the synthesis of other metal oxide nanoparticles.Here, we first provide a facile ultrasonic-assisted synthesis of SnO using SnCl2 and the organic solvent of ethanolamine (ETA). The moderate alkalinity of ETA and ultrasound play very important roles in the synthesis of SnO. After the hydrolysis of the intermediate of ETA-Sn(ii), the as-synthesized SnO nanoclusters undergo assembly, amalgamation, and preferential growth to microplates in hydrothermal treatment. The as-synthesized SnO was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), ultraviolet-visible absorption spectroscopy (UV-vis) and X-ray diffraction (XRD). To explore its potential applications in energy storage, SnO was fabricated into a supercapacitor electrode and characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge-discharge measurements. The as-synthesized SnO exhibits remarkable pseudocapacitive activity including high specific capacitance (208.9 F g-1 at 0.1 A g-1), good rate capability (65.8 F g-1 at 40 A g-1), and excellent cycling stability (retention 119.3% after 10 000 cycles) for application in supercapacitors. The capacitive behavior of SnO with various crystal morphologies was observed by fitted EIS using an equivalent circuit. The novel synthetic route for SnO is a convenient and potential way to large-scale production of microplates which is expected to be applicable in the synthesis of other metal oxide nanoparticles. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr00951c
NASA Astrophysics Data System (ADS)
Jiang, M.; Wang, D. D.; Chen, Z. Q.; Kimura, S.; Yamashita, Y.; Mori, A.; Uedono, A.
2013-01-01
Undoped ZnO single crystals were implanted with 300 keV Si+ ions to a dose of 6 × 1016 cm-2. A combination of X-ray diffraction (XRD), positron annihilation, Raman scattering, high resolution transmission electron microscopy (HRTEM), and photoluminescence (PL) was used to study the microstructure evolution after implantation and subsequent annealing. A very large increase of Doppler broadening S parameters in Si+-implanted region was detected by using a slow positron beam, indicating that vacancy clusters or microvoids are induced by implantation. The S parameters increase further after annealing up to 700 °C, suggesting agglomeration of these vacancies or microvoids to larger size. Most of these defects are removed after annealing up to 1100 °C. The other measurements such as XRD, Raman scattering, and PL all indicate severe damage and even disordered structure induced by Si+ implantation. The damage and disordered lattice shows recovery after annealing above 700 °C. Amorphous regions are observed by HRTEM measurement, directly testifies that amorphous phase is induced by Si+ implantation in ZnO. Analysis of the S - W correlation and the coincidence Doppler broadening spectra gives direct evidence of SiO2 precipitates in the sample annealed at 700 °C, which strongly supports the chemical effect of Si ions on the amorphization of ZnO lattice.
Metal-passivated PbS nanoparticles: fabrication and characterization.
Tchaplyguine, M; Mikkelä, M-H; Mårsell, E; Polley, C; Mikkelsen, A; Zhang, W; Yartsev, A; Hetherington, C J D; Wallenberg, L R; Björneholm, O
2017-03-08
Organic-shell-free PbS nanoparticles have been produced in the size range relevant for quantum-dot solar cells (QDSCs) by a vapor aggregation method involving magnetron reactive sputtering. This method creates a beam of free 5-10 nm particles in a vacuum. The dimensions of the particles were estimated after their deposition on a substrate by imaging them using ex situ SEM and HRTEM electron microscopy. The particle structure and chemical composition could be deduced "on the fly", prior to deposition, using X-ray photoelectron spectroscopy (XPS) with tunable synchrotron radiation. Our XPS results suggest that under certain conditions it is possible to fabricate particles with a semiconductor core and 1 to 2 monolayer shells of metallic lead. For this case the absolute energy of the highest occupied molecular orbital (HOMO) in PbS has been determined to be (5.0 ± 0.5) eV below the vacuum level. For such particles deposited on a substrate HRTEM has confirmed the XPS-based conclusions on the crystalline PbS structure of the semiconductor core. Absorption spectroscopy on the deposited film has given a value of ∼1 eV for the lowest exciton. Together with the valence XPS results this has allowed us to reconstruct the energy level scheme of the particles. The results obtained are discussed in the context of the properties of PbS QDSCs.
NASA Astrophysics Data System (ADS)
Kumari, Kalpana; Ram, S.; Kotnala, R. K.
2018-03-01
In this investigation, we explore a facile synthesis of Fe3BO6 in the form of small crystallites in the specific shape of nanotubes crystallized from a supercooled liquid Fe2O3-B2O3 precursor. This study includes high resolution transmission electron microscopy (HRTEM) images, magnetic, optical, and impedance properties of the sample. HRTEM images reveal small tubes of Fe3BO6 of 20 nm diameter. A well resolved hysteresis loop appears at 5 K in which the magnetization does not saturate even up to as high field as 50 kOe. It means that the Fe3BO6 nanotubes behave as highly antiferromagnetic in nature in which the surface spins do not align along the field so easily. The temperature dependent impedance describes an ionic Fe3BO6 conductor with a reasonably small activation energy Ea ˜ 0.33 eV. Impedance formalism in terms of a Cole-Cole plot shows a deviation from an ideal Debye-like behavior. We have also reported that electronic absorption spectra are over a spectral range 200-800 nm of wavelengths in order to find out how a bonded surface layer present on the Fe3BO6 crystallites tunes the 3d → 3d electronic transitions in Fe3+ ions.
NASA Astrophysics Data System (ADS)
Badía-Romano, L.; Rubín, J.; Magén, C.; Bürgler, D. E.; Bartolomé, J.
2014-07-01
The morphology and the quantitative composition of the Fe-Si interface layer forming at each Fe layer of a (Fe/Si)3 multilayer have been determined by means of conversion electron Mössbauer spectroscopy (CEMS) and high-resolution transmission electron microscopy (HRTEM). For the CEMS measurements, each layer was selected by depositing the Mössbauer active 57Fe isotope with 95% enrichment. Samples with Fe layers of nominal thickness dFe = 2.6 nm and Si spacers of dSi = 1.5 nm were prepared by thermal evaporation onto a GaAs(001) substrate with an intermediate Ag(001) buffer layer. HRTEM images showed that Si layers grow amorphous and the epitaxial growth of the Fe is good only for the first deposited layer. The CEMS spectra show that at all Fe/Si and Si/Fe interfaces a paramagnetic c-Fe1-xSi phase is formed, which contains 16% of the nominal Fe deposited in the Fe layer. The bottom Fe layer, which is in contact with the Ag buffer, also contains α-Fe and an Fe1-xSix alloy that cannot be attributed to a single phase. In contrast, the other two layers only comprise an Fe1-xSix alloy with a Si concentration of ≃0.15, but no α-Fe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bandhu, A.; Sutradhar, S.; Mukherjee, S.
Highlights: • Maghemite nanoparticles were prepared by a modified co-precipitation method. • Nanoparticles were then successfully coated with pepsin for bio-functionlization. • XRD and Mössbauer spectra confirmed the maghemite phase of the nanoparticles. • Magnetic data were analysed to evaluate particle size, anisotropy etc. - Abstract: Maghemite nanoparticles (γ-Fe{sub 2}O{sub 3}) are prepared by co-precipitation method. To obtain bio-functionalized magnetic nanoparticles for magnetically controlled drug delivery, the prepared nanoparticles are successfully coated with pepsin, a bio-compatible polymer and digestive enzyme. Crystallographic phase of the nanoparticles is confirmed by X-ray diffractograms (XRD), high resolution transmission electron microscopy (HRTEM) and {sup 57}Femore » Mössbauer spectrometry. The average size of nanoparticles/nanocrystallites is estimated from the (3 1 1) peak of the XRD pattern using Debye–Scherrer formula. Results of HRTEM of coated and bare samples are in good agreement with those extracted from the XRD analysis. The dynamic magnetic properties are observed and different quantities viz., coercive field, magnetization, remanence, hysteresis losses etc., are estimated, which confirmed the presence of superparamagnetic relaxation of nanoparticles. Mössbauer spectra of the samples recorded at both 300 and 77 K, confirmed that the majority of particles are maghemite together with a very small fraction of magnetite nanoparticles.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Minghua, E-mail: mhli@ustb.edu.cn; Department of Electrical Engineering, University of California, Los Angeles, California 90095; Lu, Jinhui
2016-04-15
We studied the thermal stability of perpendicular magnetic anisotropy (PMA) in Ta/Mo/CoFeB/MgO/Ta films with and without inserted Mo layers. In the absence of a Mo layer, the films show PMA at annealing temperatures below 300 °C. On the other hand, the insertion of a Mo layer preserves PMA at annealing temperatures of up to 500 °C; however, a higher annealing temperature leads to the collapse of PMA. X-ray photoelectron spectroscopy (XPS) and high-resolution transmission electron microscopy (HRTEM) were used to study the microstructure of the films to understand the deterioration of PMA. The XPS results show that the segregation ofmore » Ta is partly suppressed by inserting a Mo layer. Once inserted, Mo does not remain at the interface of Ta and CoFeB but migrates to the surface of the films. The HRTEM results show that the crystallization of the MgO (001) texture is improved owing to the higher annealing temperature of the Mo inserted sample. A smooth and clear CoFeB/MgO interface is evident. The inserted Mo layer not only helps to obtain sharper and smoother interfaces but also contributes to the crystallization after the higher annealing temperature of films.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chi, C.-C.; Hsiao, C.-H.; Ouyang, Chuenhou, E-mail: houyang@mx.nthu.edu.tw
2015-05-07
Significant efforts towards understanding bi-magnetic core-shell nanoparticles are underway currently as they provide a pathway towards properties unavailable with single-phased systems. Recently, we have demonstrated that the magnetism of γ-Fe2O3/CoO core-shell nanoparticles, in particular, at high temperatures, originates essentially from an interfacial doped iron-oxide layer that is formed by the migration of Co{sup 2+} from the CoO shell into the surface layers of the γ-Fe2O3 core [Skoropata et al., Phys. Rev. B 89, 024410 (2014)]. To examine directly the nature of the intermixed layer, we have used high-resolution transmission electron microscopy (HRTEM) and first-principles calculations to examine the impact ofmore » the core-shell intermixing at the atomic level. By analyzing the HRTEM images and energy dispersive spectra, the level and nature of intermixing was confirmed, mainly as doping of Co into the octahedral site vacancies of γ-Fe2O3. The average Co doping depths for different processing temperatures (150 °C and 235 °C) were 0.56 nm and 0.78 nm (determined to within 5% through simulation), respectively, establishing that the amount of core-shell intermixing can be altered purposefully with an appropriate change in synthesis conditions. Through first-principles calculations, we find that the intermixing phase of γ-Fe2O3 with Co doping is ferromagnetic, with even higher magnetization as compared to that of pure γ-Fe2O3. In addition, we show that Co doping into different octahedral sites can cause different magnetizations. This was reflected in a change in overall nanoparticle magnetization, where we observed a 25% reduction in magnetization for the 235 °C versus the 150 °C sample, despite a thicker intermixed layer.« less
Resolution Quality and Atom Positions in Sub-?ngstr?m Electron Microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Keefe, Michael A.; Allard Jr, Lawrence Frederick; Blom, Douglas Allen
2005-01-01
John Cowley pioneered use of transmission electron microscopy (TEM) for high-resolution imaging and helped spur improvements in resolution that enabled researchers to pinpoint the positions of all but the lightest atoms within a crystal structure. Sub-{angstrom} capabilities allow imaging of even the lightest atoms. Initially achieved with software aberration correction (focal-series reconstruction of the specimen exit-surface wave), sub-{angstrom} imaging will become commonplace for next-generation electron microscopes with hardware-corrected lenses and monochromated electron beams. Currently, advanced HR-TEMs can image columns of light atoms (carbon, oxygen, nitrogen) in complex structures, including the lithium atoms present in battery materials. The ability to determinemore » whether an image peak represents one single atom (or atom column) instead of several depends on the resolution of the HR-(S)TEM. Rayleigh's resolution criterion, an accepted standard in optics, was derived as a means for judging when two image intensity peaks from two sources of light (stars) are distinguishable from a single source. Atom spacings closer than the Rayleigh limit have been resolved in HR-TEM, suggesting that it may be useful to consider other limits, such as the Sparrow resolution criterion. From the viewpoint of the materials scientist, it is important to be able to use the image to determine whether an image feature represents one or more atoms (resolution), and where the atoms (or atom columns) are positioned relative to one another (resolution quality). When atoms and the corresponding image peaks are separated by more than the Rayleigh limit of the HR-(S)TEM, it is possible to adjust imaging parameters so that relative peak positions in the image correspond to relative atom positions in the specimen. When atoms are closer than the Rayleigh limit, we must find the relationship of the peak position to the atom position by peak fitting or, if we have a suitable model, by image simulation.« less
Anti-bacteria activity of carbon nanotubes grown on trimetallic catalyst
NASA Astrophysics Data System (ADS)
Ibrahim, S. O.; Abdulkareem, A. S.; Isah, K. U.; Ahmadu, U.; Bankole, M. T.; Kariim, I.
2018-06-01
Trimetallic catalyst was prepared using wet impregnation method to produce carbon nanotubes (CNTs) through the method of catalytic chemical vapor deposition (CCVD). Characterization of the developed catalyst and CNTs were carried out using thermogravimetric analysis (TGA), x-ray diffraction (XRD), specific surface area Brunauer-Emmett-Teller (BET), Fourier-transform infrared spectroscopy (FTIR), high-resolution scanning electron microscopy (HRSEM)/energy dispersive x-ray spectroscopy (EDS) and high-resolution transmission electron microscopy (HRTEM)/selected area electron diffraction (SAED). The BET and TGA analysis indicated that the catalyst has a high surface area and is thermally stable. The FTIR of the developed catalyst shows notable functional group with presence of unbound water. The HRSEM of the catalyst revealed agglomerated, homogeneous and porous particles while the HRSEM/HRTEM of the produced CNTs gave the formation of long strand of multiwalled carbon nanotubes (MWCNTs), and homogeneous crystalline fringe like structure with irregular diameter. EDS revealed the dominance of carbon in the elemental composition. XRD/SAED patterns of the catalyst suggest high dispersion of the metallic particles in the catalyst mixture while that of the CNTs confirmed that the produced MWCNTs were highly graphitized and crystalline in nature with little structural defects. The anti-bacteria activity of the produced MWCNTs on Klebsiella pneumoneae, Escherichia coli, and Pseudomonas aeruginosa was also carried out. It was observed that the produced MWCNTs have an inhibitory property on bacteria; Escherichia coli and Klebsiella pneumoneae from zero day ( and ) through to twelfth day (Nil count) respectively. It has no effect on Pseudomonas aeruginosa with too numerous to count at zero-sixth day, but a breakdown in its growth at ninth-twelfth day (). This study implied that MWCNTs with varying diameter and well-ordered nano-structure can be produced from catalyst via CCVD method, and it can be recommended that the MWCNTs can be used to treat infected media contaminated with Klebsiella pneumoneae, Escherichia coli, and Pseudomonas aeruginosa.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spanjers, Charles S.; Sim, Richard S.; Sturgis, Nicholas P.
2015-10-30
The structures of ZnO-supported Ni catalysts were explored with in situ X-ray absorption spectroscopy, temperature-programmed reduction, X-ray diffraction, high-resolution transmission electron microscopy (HRTEM), scanning transmission electron microscopy, and electron energy loss spectroscopy. Calcination of nickel nitrate on a nanoparticulate ZnO support at 450 °C results in the formation of Zn-doped NiO (ca. N₀̣̣₈₅ Zn₀̣̣₁₅O) nanoparticles with the rock salt crystal structure. Subsequent in situ reduction monitored by X-ray absorption near-edge structure (XANES) at the Ni K edge reveals a direct transformation of the Zn-doped NiO nanoparticles to a face-centered cubic alloy, Ni 1-xZn x, at ~400 °C with x increasingmore » with increasing temperature. Both in situ XANES and ex situ HRTEM provide evidence for intermetallic β₁-NiZn formation at ~550 °C. In comparison to a Ni/SiO₂ catalyst, Ni/ZnO necessitates a higher temperature for the reduction of Ni II to Ni⁰, which highlights the strong interaction between Ni and the ZnO support. The catalytic activity for acetylene removal from an ethylene feed stream is decreased by a factor of 20 on Ni/ZnO in comparison to Ni/SiO₂. The decrease in catalytic activity of Ni/ZnO is accompanied by a reduced absolute selectivity to ethylene. H–D exchange measurements demonstrate a reduced ability of Ni/ZnO to dissociate hydrogen in comparison to Ni/SiO₂.These results of the catalytic experiments suggest that the catalytic properties are controlled, in part, by the zinc oxide support and stress the importance of reporting absolute ethylene selectivity for the catalytic semihydrogenation of acetylene in excess ethylene.« less
Physicochemical and optical properties of combustion-generated particles from Ship Diesel Engines
NASA Astrophysics Data System (ADS)
Kim, H.; Jeong, S.; Jin, H. C.; Kim, J. Y.
2015-12-01
Shipping contributes significantly to the anthropogenic burden of particulate matter (PM), and is among the world's highest polluting combustion sources per fuel consumed. Moreover, ships are a highly concentrated source of pollutants which are emitted into clean marine environments (e.g., Artic region). Shipping utilizes heavy fuel oil (HFO) which is less distilled compared to fuels used on land and few investigations on shipping related PM properties are available. BC is one of the dominant combustion products of ship diesel engines and its chemical and microphysical properties have a significant impact on climate by influencing the amount of albedo reduction on bright surfaces such as in polar regions. We have carried out a campaign to characterize the PM emissions from medium-sized marine engines in Gunsan, Jeonbuk Institute of Automotive Technology. The properties of ship-diesel PM have characterized depending on (1) fuel sulfur content (HFO vs. ULSD) and (2) engine conditions (Running state vs. Idling state). Scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectroscopy (EDX) equipped with HRTEM and Raman spectroscopy were used for physicochemical analysis. Optical properties, which are ultimately linked to the snow/ice albedo decrease impacting climate, were assessed as well. PM generated under high engine temperature conditions had typical features of soot, e.g., concentric circles comprised of closely packed graphene layers, however PM generated by the idling state at low combustion temperature was characterized by amorphous and droplet-like carbonaceous particles with no crystalline structure. Significant differences in optical properties depending on the combustion conditions were also observed. Particles from running conditions showed wavelength-independent absorbing properties, whereas the particles from idling conditions showed enhanced absorption at shorter wavelengths, which is characteristic of brown carbon. Regarding different fuel types, distinctive structure differences were not observed, but EDX results showed that PM generated by HFO combustion has sulfur content in PM whereas ULSD generated 100% carbon composed PM.
NASA Astrophysics Data System (ADS)
Patra, Astam K.; Kundu, Sudipta K.; Bhaumik, Asim; Kim, Dukjoon
2015-12-01
We have developed a new green chemical approach for the shape-controlled synthesis of single-crystalline hematite nanocrystals in aqueous medium. FESEM, HRTEM and SAED techniques were used to determine the morphology and crystallographic orientations of each nanocrystal and its exposed facets. PXRD and HRTEM techniques revealed that the nanocrystals are single crystalline in nature; twins and stacking faults were not detected in these nanocrystals. The structural, vibrational, and electronic spectra of these nanocrystals were highly dependent on their shape. Different shaped hematite nanocrystals with distinct crystallographic planes have been synthesized under similar reaction conditions, which can be desired as a model for the purpose of properties comparison with the nanocrystals prepared under different reaction conditions. Here we investigated the photocatalytic performance of these different shaped-nanocrystals for methyl orange degradation in the presence of white light (λ > 420 nm). In this study, we found that the density of surface Fe3+ ions in particular facets was the key factor for the photocatalytic activity and was higher on the bitruncated-dodecahedron shape nanocrystals by coexposed {104}, {100} and {001} facets, attributing to higher catalytic activity. The catalytic activity of different exposed facet nanocrystals were as follows: {104} + {100} + {001} (bitruncated-dodecahedron) > {101} + {001} (bitruncated-octahedron) > {001} + {110} (nanorods) > {012} (nanocuboid) which provided the direct evidence of exposed facet-driven photocatalytic activity. The nanocrystals were easily recoverable using an external magnet and reused at least six times without significant loss of its catalytic activity.We have developed a new green chemical approach for the shape-controlled synthesis of single-crystalline hematite nanocrystals in aqueous medium. FESEM, HRTEM and SAED techniques were used to determine the morphology and crystallographic orientations of each nanocrystal and its exposed facets. PXRD and HRTEM techniques revealed that the nanocrystals are single crystalline in nature; twins and stacking faults were not detected in these nanocrystals. The structural, vibrational, and electronic spectra of these nanocrystals were highly dependent on their shape. Different shaped hematite nanocrystals with distinct crystallographic planes have been synthesized under similar reaction conditions, which can be desired as a model for the purpose of properties comparison with the nanocrystals prepared under different reaction conditions. Here we investigated the photocatalytic performance of these different shaped-nanocrystals for methyl orange degradation in the presence of white light (λ > 420 nm). In this study, we found that the density of surface Fe3+ ions in particular facets was the key factor for the photocatalytic activity and was higher on the bitruncated-dodecahedron shape nanocrystals by coexposed {104}, {100} and {001} facets, attributing to higher catalytic activity. The catalytic activity of different exposed facet nanocrystals were as follows: {104} + {100} + {001} (bitruncated-dodecahedron) > {101} + {001} (bitruncated-octahedron) > {001} + {110} (nanorods) > {012} (nanocuboid) which provided the direct evidence of exposed facet-driven photocatalytic activity. The nanocrystals were easily recoverable using an external magnet and reused at least six times without significant loss of its catalytic activity. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06509g
NASA Astrophysics Data System (ADS)
Nawaz, S.; Roy, S.; Tulapurkar, A. A.; Palkar, V. R.
2017-03-01
Magnetoelectric multiferroic PbTi0.5Fe0.5O3 films are deposited on a ⟨100⟩ conducting p-Si substrate without any buffer layer by using pulsed laser deposition and characterized for possible non-volatile memory applications. Their crystalline structure and surface morphology were characterized by using x-ray diffraction and AFM techniques. HRTEM was employed to determine the film-substrate interface. The electronic structure of the film was investigated by XPS, and no signature of metal was found for all the elements. The chemical shift of the Ti 2p XPS peak is attributed to the replacement of Ti with Fe in the PbTiO3 matrix. Piezoelectric force microscopy (PFM) results indicate the 180° phase shift of ferroelectric polarization. The upward self-polarization phenomenon is also observed in the PFM study. Magnetic and magneto-electric coupling measurements were carried out to confirm the magnetic nature and electro-magnetic coupling characteristics. C-V measurements exhibit clock-wise hysteresis loops with a maximum memory window of 1.2 V and a sweep voltage of ±7 V. This study could influence the fabrication of silicon compatible multiple memory device structures.
Kar, Prasenjit; Sardar, Samim; Alarousu, Erkki; Sun, Jingya; Seddigi, Zaki S; Ahmed, Saleh A; Danish, Ekram Y; Mohammed, Omar F; Pal, Samir Kumar
2014-08-11
Protoporphyrin IX-zinc oxide (PP-ZnO) nanohybrids have been synthesized for applications in photocatalytic devices. High-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and steady-state infrared, absorption, and emission spectroscopies have been used to analyze the structural details and optical properties of these nanohybrids. Time-resolved fluorescence and transient absorption techniques have been applied to study the ultrafast dynamic events that are key to photocatalytic activities. The photocatalytic efficiency under visible-light irradiation in the presence of naturally abundant iron(III) and copper(II) ions has been found to be significantly retarded in the former case, but enhanced in the latter case. More importantly, femtosecond (fs) transient absorption data have clearly demonstrated that the residence of photoexcited electrons from the sensitizer PP in the centrally located iron moiety hinders ground-state bleach recovery of the sensitizer, affecting the overall photocatalytic rate of the nanohybrid. The presence of copper(II) ions, on the other hand, offers additional stability against photobleaching and eventually enhances the efficiency of photocatalysis. In addition, we have also explored the role of UV light in the efficiency of photocatalysis and have rationalized our observations from femtosecond- to picosecond-resolved studies. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Morphology and structure of TixOy nanoparticles generated by femtosecond laser ablation in water
NASA Astrophysics Data System (ADS)
Donėlienė, Jolanta; Rudzikas, Matas; Rades, Steffi; Dörfel, Ilona; Peplinski, Burkhard; Sahre, Mario; Pellegrino, Francesco; Maurino, Valter; Ulbikas, Juras; Galdikas, Algirdas; Hodoroaba, Vasile-Dan
2018-04-01
In this work femto-second pulsed laser ablation in liquid (PLAL) procedure for the generation of titanium oxide nanoparticles (NP) is reported with the purpose of understanding morphology and structure of the newly generated NPs. Ablation duration was varied for optimization of NP generation processes between 10 and 90 min. Surface morphology of NPs as well as their size and shape (distribution) were analysed by various complementary electron microscopy techniques, i.e. SEM, TSEM and TEM. The crystalline structure of titanium oxide particles was investigated by XRD (two instruments operated in different geometries) and HR-TEM. Concentration of generated titanium oxide NPs in liquid was analysed by ICP-MS. A mix of crystalline (mainly anatase), partly crystalline and amorphous spherical titanium oxide NPs can be reported having a mean size between 10 and 20 nm, which is rather independent of the laser ablation (LA) duration. A second component consisting of irregularly shaped, but crystalline titanium oxide nanostructures is co-generated in the LA water, with more pronounced occurrence at longer LA times. The provenance of this component is assigned to those spherical particles generated in suspension and passing through the converging laser beam, being hence subject to secondary irradiation effects, e. g. fragmentation.
Sun, Zhiming; Park, Yuri; Zheng, Shuilin; Ayoko, Godwin A; Frost, Ray L
2013-10-15
An Arizona SAz-2 calcium montmorillonite was modified by a typical dialkyl cationic surfactant (didodecyldimethylammonium bromide, abbreviated to DDDMA) through direct ion exchange. The obtained organoclays were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), high-resolution thermogravimetric analysis (HR-TG), and infrared emission spectroscopy (IES). The intercalation of surfactants greatly increased the basal spacing of the interlayers and the conformation arrangement of the loaded surfactant were assessed based on the XRD and TEM measurements. This work shows that the dialkyl surfactant can be directly intercalated into the montmorillonite without first undergoing Na(+) exchange. Moreover, the thermal stability of organoclays and the different arrangements of the surfactant molecules intercalated in the SAz-2 Ca-montmorillonite were determined by a combination of TG and IES techniques. The detailed conformational ordering of different intercalated surfactants under different conditions was also studied. The surfactant molecule DDDMA has proved to be thermally stable even at 400°C which indicates that the prepared organoclay is stable to significantly high temperatures. This study offers new insights into the structure and thermal stabilities of SAz-2 Ca-montmorillonite modified with DDDMA. The experimental results also confirm the potential applications of organic SAz-2 Ca-montmorillonites as adsorbents and polymer-clay nanocomposites. Copyright © 2013 Elsevier Inc. All rights reserved.
New Porous Crystals of Extended Metal-Catecholates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hmadeh, Mohamad; Lu, Zheng; Liu, Zheng
To date, the links of robust and highly porous metal organic frameworks (MOFs) have been largely limited to carboxylate,(1) imidazolate,(2) other azolates,(3) or sulfonate.(4) Although catecholate organic units are well-known and are employed heavily for metal chelation in biology,(5) only the simple 1,2,4,5-tetrahydroxybenzene (H6C6O4)(6) or 1,4-dihydroxy-benzoquinone and their homologues (H2C6X2O4, e.g., X = Cl, Br, NO2 and CH3) have been explored and incorporated into extended frameworks (Scheme S1 in the Supporting Information).(7) Herein, we describe linking the highly conjugated tricatecholate, 2,3,6,7,10,11-hexahydroxytriphenylene (H12C18O6, HHTP), with Co(II) and Ni(II) ions into two-dimensional porous extended frameworks. These new crystalline materials, termed metal-catecholates (M-CATs),more » were characterized by X-ray diffraction techniques (single crystal for Co-CAT-1, and powder for Ni-CAT-1) and high-resolution transmission electron microscopy (HR-TEM) studies (for Ni-CAT-1). We demonstrate their high chemical stability (in aqueous and non-aqueous media), thermal stability, and porosity. Cu-CAT-1 microcrystalline material showed high electrical conductivity and charge storage capacity.« less
Liu, B S; Wan, Z Y; Wang, F; Zhan, Y P; Tian, M; Cheung, A S C
2014-02-28
Using a sol-gel method, SmMeOx/MCM-41 or SBA-15 (Me=Fe, Co and Zn) and corresponding unsupported sorbents were prepared. The desulfurization performance of these sorbents was evaluated over a fixed-bed reactor and the effects of reaction temperature, feed and sorbent composition on desulfurization performance were studied. Samarium-based sorbents used to remove H2S from hot coal gas were reported for the first time. The results of successive sulfidation/regeneration cycles revealed that SmFeO3/SBA-15 sorbent was suitable for desulfurization of hot coal gas in the chemical industry. The formation of elemental sulfur during both sulfidation and regeneration processes depended strongly on the catalytic action of Sm2O2S species, which was confirmed for the first time via high sensitive time of flight mass spectrometer (TOF-MS) using 6%vol(18)O2/Ar regeneration gas and can reduce markedly procedural complexity. The sorbents were characterized using N2-adsorption, high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), temperature-programmed reduction of H2 (H2-TPR), thermogravimetry (TG) and time-of-flight mass spectrometry (TOF-MS) techniques. Copyright © 2014 Elsevier B.V. All rights reserved.
Interfacial scanning tunneling spectroscopy (STS) of chalcogenide/metal hybrid nanostructure
NASA Astrophysics Data System (ADS)
Saad, Mahmoud M.; Abdallah, Tamer; Easawi, Khalid; Negm, Sohair; Talaat, Hassan
2015-05-01
The electronic structure at the interface of chalcogenide/metal hybrid nanostructure (CdSe-Au tipped) had been studied by UHV scanning tunneling spectroscopy (STS) technique at room temperature. This nanostructure was synthesized by a phase transfer chemical method. The optical absorption of this hybrid nanostructure was recorded, and the application of the effective mass approximation (EMA) model gave dimensions that were confirmed by the direct measurements using the scanning tunneling microscopy (STM) as well as the high-resolution transmission electron microscope (HRTEM). The energy band gap obtained by STS agrees with the values obtained from the optical absorption. Moreover, the STS at the interface of CdSe-Au tipped hybrid nanostructure between CdSe of size about 4.1 ± 0.19 nm and Au tip of size about 3.5 ± 0.29 nm shows a band bending about 0.18 ± 0.03 eV in CdSe down in the direction of the interface. Such a result gives a direct observation of the electron accumulation at the interface of CdSe-Au tipped hybrid nanostructure, consistent with its energy band diagram. The presence of the electron accumulation at the interface of chalcogenides with metals has an important implication for hybrid nanoelectronic devices and the newly developed plasmon/chalcogenide photovoltaic solar energy conversion.
Ra, Yong-Ho; Navamathavan, R; Park, Ji-Hyeon; Lee, Cheul-Ro
2013-03-01
This article describes the growth and device characteristics of vertically aligned high-quality uniaxial p-GaN/InxGa1-xN/GaN multiple quantum wells (MQW)/n-GaN nanowires (NWs) on Si(111) substrates grown by metal-organic chemical vapor deposition (MOCVD) technique. The resultant nanowires (NWs), with a diameter of 200-250 nm, have an average length of 2 μm. The feasibility of growing high-quality NWs with well-controlled indium composition MQW structure is demonstrated. These resultant NWs grown on Si(111) substrates were utilized for fabricating vertical-type light-emitting diodes (LEDs). The steep and intense photoluminescence (PL) and cathodoluminescence (CL) spectra are observed, based on the strain-free NWs on Si(111) substrates. High-resolution transmission electron microscopy (HR-TEM) analysis revealed that the MQW NWs are grown along the c-plane with uniform thickness. The current-voltage (I-V) characteristics of these NWs exhibited typical p-n junction LEDs and showed a sharp onset voltage at 2.75 V in the forward bias. The output power is linearly increased with increasing current. The result indicates that the pulsed MOCVD technique is an effective method to grow uniaxial p-GaN/InxGa1-xN/GaN MQW/n-GaN NWs on Si(111), which is more advantageous than other growth techniques, such as molecular beam epitaxy. These results suggest the uniaxial NWs are promising to allow flat-band quantum structures, which can enhance the efficiency of LEDs.
NASA Astrophysics Data System (ADS)
Bhande, Rashmi M.; Khobragade, C. N.; Mane, R. S.; Bhande, S.
2013-01-01
In this study, enhanced synergistic bioactivity of zinc oxide nanoparticles (ZnO NPs) with β-lactam antibiotics were evaluated against a panel of clinically isolated extended spectrum β-lactamase producers implicated in urinary tract infections. Chemically synthesized zinc oxide nanoparticles (15 nm) were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high resolution transmittance electron microscopy (HR-TEM), selective area electron diffraction (SAED), X-ray photoelectron spectroscopy (XPS), and UV-Visible spectrophotometry techniques. The antimicrobial potency (10 ± 0.66, 12, 11.33 ± 1.10, and 0.7 ± 0.66 mm inhibiting zone) and minimum inhibitory concentrations (80, 60, 30, 50 μg/ml) of ZnO NPs were tested separately whereas time-kill and membrane leakage assays were evaluated in combination with ZnO NPs+ cefotaxime, ampicillin, ceftriaxone, cefepime against the β-lactamase producer strains of E. coli, K. pneumoniae, S. paucimobilis, and P. aeruginosa, respectively. Time-kill curve dynamics of ZnO NPs with β-lactam antibiotics revealed enhanced bactericidal activity (50, 85, 58, 50 % fold inhibition) by delaying the exponential and stationary phases of all isolates when tested separately. Posttime-kill effect was studied on cell membrane by assaying leakage of reducing sugars (130.2, 124.7, 137, and 115.8 μg/bacterial dry weight of 1 mg (μg/mg) and proteins (15, 10, 16, 18 μg/mg). These assays revealed that membrane leakage was due to synergism of ZnO NPs+ β-lactam antibiotics which successfully damage cell membrane thereby leading to death of all ESBL producers. The results demonstrate the utilization of ZnO NPs as a potentiator of β-lactam antibiotics and suggest the possibility to use nanoparticles in a combination therapy to treat UTI.
Natural attenuation of arsenic in the environment by immobilization in nanostructured hematite.
Freitas, Erico T F; Montoro, Luciano A; Gasparon, Massimo; Ciminelli, Virginia S T
2015-11-01
Iron (hydr)oxides are known to play a major role in arsenic fixation in the environment. The mechanisms for long-term fixation into their crystal structure, however, remain poorly understood, especially arsenic partitioning behavior during transformation from amorphous to crystalline phases under natural conditions. In this study, these mechanisms are investigated in Fe-Al-oxisols exposed over a period of 10 years to a sulfide concentrate in tailings impoundments. The spatial resolution necessary to investigate the markedly heterogeneous nanoscale phases found in the oxisols was achieved by combining three different, high resolution electron microscopy techniques - Nano-Beam Electron Diffraction (NBD), Electron Energy-Loss Spectroscopy (EELS), and High Resolution Transmission Electron Microscopy (HRTEM). Arsenic (1.6±0.5 wt.%) was unambiguously and precisely identified in mesocrystals of Al-hematite with an As/Fe atomic ratio of 0.026±0.006. The increase in the c-axis (c=1.379±0.009 nm) compared to standard hematite (c=1.372 nm) is consistent with the presence of arsenic in the Al-hematite structure. The As-bearing Al-hematite is interpreted as a secondary phase formed from oxyhydroxides, such as ferrihydrite, during the long-term exposure to the sulfide tailings. The proposed mechanism of arsenic fixation in the Al-hematite structure involves adsorption onto Al-ferrihydrite nanoparticles, followed by Al-ferrihydrite aggregation by self-assembly oriented attachment and coalescence that ultimately produces Al-hematite mesocrystals. Our results illustrate for the first time the process of formation of stable arsenic bearing Al-hematite for the long-term immobilization of arsenic in environmental samples. Copyright © 2015 Elsevier Ltd. All rights reserved.
Schick, Isabel; Lorenz, Steffen; Gehrig, Dominik; Schilmann, Anna-Maria; Bauer, Heiko; Panthöfer, Martin; Fischer, Karl; Strand, Dennis; Laquai, Frédéric; Tremel, Wolfgang
2014-02-12
Monodisperse multifunctional and nontoxic Au@MnO Janus particles with different sizes and morphologies were prepared by a seed-mediated nucleation and growth technique with precise control over domain sizes, surface functionalization, and dye labeling. The metal oxide domain could be coated selectively with a thin silica layer, leaving the metal domain untouched. In particular, size and morphology of the individual (metal and metal oxide) domains could be controlled by adjustment of the synthetic parameters. The SiO2 coating of the oxide domain allows biomolecule conjugation (e.g., antibodies, proteins) in a single step for converting the photoluminescent and superparamagnetic Janus nanoparticles into multifunctional efficient vehicles for theranostics. The Au@MnO@SiO2 Janus particles were characterized using high-resolution transmission electron microscopy (HR-)TEM, powder X-ray diffraction (PXRD), optical (UV-vis) spectroscopy, confocal laser fluorescence scanning microscopy (CLSM), and dynamic light scattering (DLS). The functionalized nanoparticles were stable in buffer solution or serum, showing no indication of aggregation. Biocompatibility and potential biomedical applications of the Au@MnO@SiO2 Janus particles were assayed by a cell viability analysis by coincubating the Au@MnO@SiO2 Janus particles with Caki 1 and HeLa cells. Time-resolved fluorescence spectroscopy in combination with CLSM revealed the silica-coated Au@MnO@SiO2 Janus particles to be highly two-photon active; no indication for an electronic interaction between the dye molecules incorporated in the silica shell surrounding the MnO domains and the attached Au domains was found; fluorescence quenching was observed when dye molecules were bound directly to the Au domains.
NASA Astrophysics Data System (ADS)
Dominika Dybowska, Agnieszka; Luciene Maltoni, Katia; Piella, Jordi; Najorka, Jens; Puntes, Victor; Valsami-Jones, Eugenia
2015-04-01
Stability and reactivity of minerals change as a particle size function, which makes mineral nanoparticles (defined here as <100 nm) fundamentally distinct from the larger size materials. Naturally occurring mineral nanoparticles contribute to many biogeochemical processes, however much remains to be learnt about these materials, their size dependent behavior and environmental significance. Advances in analytical, imaging and spectroscopic techniques made it now possible to study such particles; however we still have limited knowledge of their chemical, structural and morphological identity and reactivity, in particular in soils. The aim of this research was to characterize the naturally occurring nanoparticles in three soils from Brazil central region. The samples were collected in the A horizon, treated with H2O2 to remove organic material, dispersed in ultrasonic bath and wet sieved (53 µm) to remove the sand fraction. The clay fraction was collected by siphoning the supernatant, conditioned in 1000 ml cylinder, according to the Stock's law. This fraction was further processed by re-suspension in water, sonication and repeated centrifugation, to separate the fraction smaller than 100nm. This material, called here the soil "nanofraction", was analyzed using a range of techniques: 1) nanoparticle size/morphology and crystallinity with Transmission Electron Microscopy (TEM operateing in scanning (HAADF-STEM) and High Resolution (HRTEM) mode), 2) size distribution in water with Dynamic Light Scattering (DLS) and surface charge estimated from electrophoretic mobility measurements 3) crystal phase and crystallite size with X-ray Diffraction (XRD) 4) Chemical composition by quantitative analysis of elements (e.g., Si, Fe, Al, Ti) and their spatial distribution with HRTEM/EDS elemental mappings. The nanofraction had an average hydrodynamic particle diameter ranging from 83 to 92nm with a low polydispersity index of 0.13-0.17 and was found highly stable in aqueous suspension (no change in average particle size up to several months of storage). Particle surface charge (in water) ranged from -31mV to -34.5mV (pH = 5.7 - 6.2), this reflects the predominantly negative surface charge of kaolinites in soil environment effectively screening the positive charge of Fe oxides. Kaolinites appeared as single crystals (pseudo hexagonal platelets) while Fe oxides occurred mostly as micro-aggregates, with individual particles often not morphologically distinct with particle size <10nm. In addition, several anatase (TiO2) nanoparticles were also found. Both kaolinites and Fe oxides nanoparticles were crystalline, as evidenced from XRD measurements and HRTEM imaging. Distinction between different crystalline forms of Fe oxides (mainly hematite and goethite) was only possible with XRD, which revealed also subtle differences in mineralogical composition of the clay fraction (<2µm) and nanofraction (<100nm). The kaolinite's crystallite size (calculated from XRD data) was found to range 14-17nm in the nanofraction and 26-50nm in the clay fraction. For hematite, it was 13nm in the nanofraction and ranged from 21-30nm in the clay fraction. Such small particles can be expected to play an important role in soil sorption processes with implications on nutrient and contaminant cycling. Identification and understanding of the properties of naturally occurring nanoparticles in soils can therefore help soil scientists to better understand retention/mobilization of nutrients and pollutants in soils.
NASA Astrophysics Data System (ADS)
Krutyakov, Yurii A.; Zherebin, Pavel M.; Kudrinskiy, Alexey A.; Zubavichus, Yan V.; Presniakov, Mikhail Yu; Yapryntsev, Alexey D.; Karabtseva, Anastasia V.; Mikhaylov, Dmitry M.; Lisichkin, Georgii V.
2016-09-01
A simple synthetic procedure for high-stable dispersions of porous composite Ag/AgCl nanoparticles stabilized with amphoteric surfactant sodium tallow amphopolycarboxyglycinate has been proposed for the first time. The prepared samples were characterized by UV-vis spectroscopy, x-ray powder diffraction (XRD), x-ray photoelectron spectroscopy, small area electron diffraction (SAED), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and electron probe micro-analysis. In addition, measurements (carried out at the Kurchatov synchrotron radiation source stations) of the Ag K-edge extended x-ray absorption fine structure (EXAFS) and x-ray absorption near edge structure (XANES) spectra and XRD of the prepared nanoparticles have been performed. The obtained results suggest that small-sized Ag clusters are homogeneously distributed in the mass of the AgCl nanoparticle (~80 nm) formed during the synthesis. The Ag/AgCl dispersion demonstrates photocatalytic activity (with respect to methyl orange) and high bactericidal activity against E. coli. This activity is superior to the activity of both Ag and AgCl nanoparticles stabilized by the same surfactant. Thus, porous composite Ag/AgCl nanoparticles can be used as a multifunctional agent that is able to remove both pollutants and bacterium from water.
NASA Astrophysics Data System (ADS)
Wang, Q.; Li, B.
2017-09-01
A unique architecture of idiomorphic and highly crystalline BaTiO3 particle layers directly grown on a porous titanium sponge substrate was successfully achieved for the first time using a facile molten salt method at a relatively low temperature of 700 °C. Specifically, the low-melting KCl-NaCl eutectic salts and barium hydroxide octahydrate were employed as the reaction medium and barium source, respectively. Powder X-ray diffraction (XRD), scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and UV-vis diffuse reflectance spectrophotometry were used to characterize the structure, morphology and optical property of the obtained samples. The results revealed that the flux-grown tetragonal BaTiO3 products had well-defined and uniform morphology with an average size of 300 nm and a band gap of ∼3.16 eV. Based on XRD, EDS, SEM, and TEM, the possible formation mechanism responsible for the well-developed architecture of BaTiO3 particle layers was proposed and discussed. Furthermore, the photocatalytic activity of the flux-grown BaTiO3 products for organic pollutant degradation under simulated sunlight irradiation was also investigated.
Rodríguez-León, Ericka; Íñiguez-Palomares, Ramón A; Navarro, Rosa Elena; Rodríguez-Beas, César; Larios-Rodríguez, Eduardo; Alvarez-Cirerol, Francisco J; Íñiguez-Palomares, Claudia; Ramírez-Saldaña, Maricela; Hernández Martínez, Javier; Martínez-Higuera, Aarón; Galván-Moroyoqui, José Manuel; Martínez-Soto, Juan Manuel
2017-08-21
We synthesized silver nanoparticles using Rumex hymenosepalus root extract (Rh). Nanoparticles were subjected to a purification process and final product is a composite of Rh and silver nanoparticles (AgNPsC). Transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were used to perform a microstructure study. Additionally, two fractions (RhA and RhB) were obtained from the original extract by filtration with tetrahydrofuran (THF); both fractions were analyzed using UV-Vis spectroscopy, Fourier transform infrared spectroscopy (FT-IR), and 2,2-diphenyl-1-picrylhydrazyl (DPPH); total polyphenol content was also determined. Separate inhibition tests for AgNPsC and RhA and RhB were applied to Gram-positive bacteria, Gram-negative bacteria, and yeast (Candida albicans) using the well diffusion method. Extract fractions were found to have inhibitory effects only over Gram-positive bacteria, and silver nanoparticles showed inhibitory effects over all the evaluated microorganisms. Cytotoxicity was evaluated using the tetrazolium dye (MTT) assay in mononuclear peripheral blood cells. In addition, we assessment AgNPsC in THP-1 monocyte cell line, using the cell viability estimation by trypan blue dye exclusion test (TB) and Live/Dead (LD) cell viability assays by confocal microscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Zhe; Cao, Minhua, E-mail: caomh@bit.edu.cn; Key Laboratory of Cluster Science, Ministry of Education of China, Department of Chemistry, Beijing Institute of Technology, Beijing 100081
Research highlights: {yields} Novel Bi{sub 2}S{sub 3} hierarchical nanostructures self-assembled by nanorods are successfully synthesized in mild benzyl alcohol system under hydrothermal conditions. {yields} The hierarchical nanostructures exhibit a flower-like shape. {yields} PVP plays an important role for the formation of the hierarchical nanostructures. {yields} Bi{sub 2}S{sub 3} film prepared from the flower-like hierarchical nanostructures exhibits good hydrophobic properties. -- Abstract: Novel Bi{sub 2}S{sub 3} hierarchical nanostructures self-assembled by nanorods are successfully synthesized in mild benzyl alcohol system under hydrothermal conditions. The hierarchical nanostructures exhibit a flower-like shape. X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), scanning electron microscopy (SEM), transmissionmore » electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and selected area electron diffraction (SAED) were used to characterize the as-synthesized samples. Meanwhile, the effect of various experimental parameters including the concentration of reagents and reaction time on final product has been investigated. In our experiment, PVP plays an important role for the formation of the hierarchical nanostructures and the possible mechanism was proposed. In addition, Bi{sub 2}S{sub 3} film prepared from the flower-like hierarchical nanostructures exhibits good hydrophobic properties, which may bring nontrivial functionalities and may have some promising applications in the future.« less
NASA Astrophysics Data System (ADS)
Abbaslou, Reza Malek; Vosoughi, Vahid; Dalai, Ajay K.
2017-10-01
Carbon nanotubes (CNTs) are different from other porous substrates such as activated carbon due to their high external surfaces. This structural feature can lead in some uncertainties in the results of nitrogen adsorption analysis for characterization of CNTs. In this paper, the results of microscopic analyses and nitrogen adsorption method for characterization of carbon nanotubes were compared. Five different types of CNTs with different structures were either synthesized or purchased. The CNT samples were characterized by high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM) and N2 adsorption analysis. The comparisons between the results from the microscopic analyses and N2 adsorption showed that the total pore volume and BET surface measurements include the internal and external porosity of CNTs. Therefore, the interpretation of N2 adsorption data required accurate TEM analysis. In addition, the evaluation of pore size distribution curves from all CNT samples in this study and several instances in the literature revealed the presence of a common peak in the range of 2-5 nm. This peak does not explain the inner pore size distribution. The presence of this common peak can be attributed to the strong adsorption of N2 on the junction of touched and crossed nanotubes.
Synthesis of graphene oxide and reduced graphene oxide by needle platy natural vein graphite
NASA Astrophysics Data System (ADS)
Rathnayake, R. M. N. M.; Wijayasinghe, H. W. M. A. C.; Pitawala, H. M. T. G. A.; Yoshimura, Masamichi; Huang, Hsin-Hui
2017-01-01
Among natural graphite varieties, needle platy vein graphite (NPG) has very high purity. Therefore, it is readily used to prepare graphene oxide (GO) and reduced graphene oxide (rGO). In this study, GO and rGO were prepared using chemical oxidation and reduction process, respectively. The synthesized materials were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FTIR) spectroscopy. XRD studies confirmed the increase of the interlayer spacing of GO and rGO in between 3.35 to 8.66 A°. AFM studies showed the layer height of rGO to be 1.05 nm after the reduction process. TEM micrographs clearly illustrated that the prepared GO has more than 25 layers, while the rGO has only less than 15 layers. Furthermore, the effect of chemical oxidation and reduction processes on surface morphology of graphite were clearly observed in FESEM micrographs. The calculated RO/C of GO and rGO using XPS analysis are 5.37% and 1.77%, respectively. The present study revealed the successful and cost effective nature of the chemical oxidation, and the reduction processes for the production of GO and rGO out of natural vein graphite.
Wavelength-Controlled Photodetector Based on Single CdSSe Nanobelt
NASA Astrophysics Data System (ADS)
Li, Xinmin; Tan, Qiuhong; Feng, Xiaobo; Wang, Qianjin; Liu, Yingkai
2018-06-01
CdSSe nanobelts (NBs) are synthesized by thermal evaporation and then characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL), and cathodoluminescence (CL). It is found that the CdSSe NBs have a good morphology and microstructure without defects. CL is sensitive to the defects of CdSSe NBs; thus, we can select single nanobelt with homogeneous CL emission to prepare a detector. Based on it, the photodetector of single CdSSe NB was developed and its photoelectric properties were investigated in detail. It is found that under illumination of white light and at the bias voltage of 1 V, the photocurrent of a single CdSSe nanobelt device is 1.60 × 10-7 A, the dark current is 1.96 × 10-10 A, and the ratio of light current to dark one is 816. In addition, the CdSSe nanobelt detector has high photoelectric performance with spectral responsivity of 10.4 AW-1 and external quantum efficiency (EQE) of 19.1%. Its rise/decay time is about 1.62/4.70 ms. This work offers a novel strategy for design wavelength-controlled photodetectors by adjusting their compositions.
Wavelength-Controlled Photodetector Based on Single CdSSe Nanobelt.
Li, Xinmin; Tan, Qiuhong; Feng, Xiaobo; Wang, Qianjin; Liu, Yingkai
2018-06-07
CdSSe nanobelts (NBs) are synthesized by thermal evaporation and then characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL), and cathodoluminescence (CL). It is found that the CdSSe NBs have a good morphology and microstructure without defects. CL is sensitive to the defects of CdSSe NBs; thus, we can select single nanobelt with homogeneous CL emission to prepare a detector. Based on it, the photodetector of single CdSSe NB was developed and its photoelectric properties were investigated in detail. It is found that under illumination of white light and at the bias voltage of 1 V, the photocurrent of a single CdSSe nanobelt device is 1.60 × 10 -7 A, the dark current is 1.96 × 10 -10 A, and the ratio of light current to dark one is 816. In addition, the CdSSe nanobelt detector has high photoelectric performance with spectral responsivity of 10.4 AW -1 and external quantum efficiency (EQE) of 19.1%. Its rise/decay time is about 1.62/4.70 ms. This work offers a novel strategy for design wavelength-controlled photodetectors by adjusting their compositions.
Wen, Zhenliang; Wang, Zihao; Chen, Jingdi; Zhong, Shengnan; Hu, Yimin; Wang, Jianhua; Zhang, Qiqing
2016-06-01
The application of hydroxyapatite (HAP) in different fields depends greatly on its morphology, composition and structure. Besides, the main inorganic building blocks of human bones and teeth are also HAP. Therefore, accurate shape and aggregation control and of hydroxyapatite particles will be of great interest. Herein, oriented bundles of flowerlike HAP nanorods were successfully prepared through hydrothermal treatment without acid-base regulation, with the mono-alkyl phosphate (MAP) and sodium citrate as surfactant and chelating agent, respectively. The prepared samples were characterized by the X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and zeta potential, the pH value and conductivity value of suspension were characterized by pH meter and conductivity measurement. The results showed that the MAP and citrate play an important role in assembly of HAP nanorods without acid-base regulation. Citrate calcium complex could decompose slowly and release citrate ions at hydrothermal conditions. Besides, the further decomposition of citrate ions could release aconitic acid as the reaction time prolongs. Moreover, the possible scheme for the formation process was discussed in detail. Copyright © 2016 Elsevier B.V. All rights reserved.
Oseghe, Ekemena Oghenovoh; Ndungu, Patrick Gathura; Jonnalagadda, Sreekanth Babu
2015-01-01
Mesoporous 20 wt% Mn/TiO2 nanocomposites were synthesized adopting modified sol-gel method at different pH (pH = 2, 7 and 11) conditions and calcined at 400 °C. Based on the characteristics of the 20 wt% Mn/TiO2 nanocomposites synthesized at pH 11, same procedure was adopted for the synthesis of different wt% Mn/TiO2. The nanocomposite samples and their surface properties were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), mapping, inductively coupled plasma optical emission spectrometry (ICP-OES), Fourier transform infrared (FTIR), and fluorescence spectrometry. The nanocomposites existed in the anatase phase of TiO2 with no peak assigned to Mn on the diffractogram. The photocatalytic activities of the materials were evaluated by monitoring degradation of a model dye (methylene blue (MB)) in presence of visible light and ozone. The nanocomposite synthesized under neutral condition (pH = 7) exhibited the best photocatalytic activity resulting from its relatively smaller crystal size (5.98 nm) and larger pore volume (0.30 cm(3)/g). One percentage of weight Mn/TiO2 showed 100% decolouration of MB in the presence of O3 after 100 min.
Adur, Alaknanda J; Nandini, N; Shilpashree Mayachar, K; Ramya, R; Srinatha, N
2018-06-01
Silver nanoparticles were prepared through eco-friendly, cost effective, bio-mediated technique using anaerobically digested Parthenium hysterophorous digested slurry (PDS) for the first time. The synthesized nanoparticles were characterized through different techniques such as UV-Vis spectrophotometer for optical properties; X-ray diffractometer (XRD), high resolution transmission electron spectroscopy (HR-TEM) and Fourier Transform Infra Red (FTIR) Spectroscopy for structural property investigations. It was observed that the prepared silver nanoparticles were crystallized in face centered cubic crystal structure with an average particle size of 19 nm as confirmed from XRD. Also HR-TEM studies reveal the formation of nano-sized silver particles with face centered cubic nano structure. In addition, absorption spectra exhibit Surface Plasmon Resonance (SPR) which suggests the formation of silver nanoparticles. FTIR results show the presence of different characteristic functional groups and their stretching / bending vibrations in turn responsible for the bioreduction of silver ions in Parthenium digested slurry. Further investigations on antimicrobial activity were done by subjecting the synthesized silver nanoparticles on E-coli and Pseudomonas as marker organisms for the group of gram negative bacteria by well plate method on enrichment media. The result obtained shows a clear zone of inhibition confirming the antibacterial activity. Overall, the investigated results confirm the biosynthesized silver nanoparticles are potential candidates for antimicrobial activity applications. Copyright © 2018 Elsevier B.V. All rights reserved.
Facile Synthesis and Characterization of ZrO₂ Nanoparticles via Modified Co-Precipitation Method.
Ramachandran, M; Subadevi, R; Liu, Wei-Ren; Sivakumar, M
2018-01-01
The crystalline Zirconium oxide (ZrO2) nano particles were synthesized using optimized content of Zirconium nitrate (Zr(NO3)2·3H2O) with varying KOH concentration (0.5, 1 and 1.5 M) by co-precipitation method. The thermal history of the precursor was carefully analyzed through Thermogravimetric (TG/DTA) measurement. The as prepared samples were characterized to ensure structural, functional, morphological, compositional, chemical composition and band gap by X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FTIR), Laser Raman, scanning electron microscopy (SEM), High resolution Transverse Electron Microscopy (HR-TEM), X-ray photo electron spectroscopy (XPS), EDX, Photo luminescence spectroscopy (PL). The monoclinic structure with space group P21/c has been confirmed from XRD (JCPDS 89-9066). The Zr-O stretching vibration and Zr-O2-Zr bending vibrations were confirmed through FTIR analysis. The well dispersed particles with spherical morphology were confirmed through SEM and TEM analysis. The oxidation states of Zr, O and C were confirmed through XPS analysis. The oxygen vacancies and band gap of the particles were investigated through PL analysis.
NASA Astrophysics Data System (ADS)
Yu, Jie; Ni, Yonghong; Zhai, Muheng
2018-01-01
Transition metal and its oxide composite nanomaterials are attracting increasing research interest due to their superior properties and extensive applications in many fields. In this paper, Ni-NiO@C nanocomposites were successfully synthesized in one step via a simple solution-combustion route, employing NiCl2 as the Ni source, oxygen in the atmosphere as the oxygen source, and ethanol as the solvent. The final product was characterized by powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDS), (high resolution) transmission electron microscopy (TEM/HRTEM), and Raman spectra. N2 gas sorption-desorption experiments uncovered that the BET surface area of Ni-NiO@C nanocomposites reached 161.9 m2 g-1, far higher than 34.2 m2 g-1 of Ni-NiO. The electrochemical measurement showed that the as-produced Ni-NiO@C nanocomposites presented better catalytic activity for the electro-oxidation of methanol than Ni-NiO and NiO, which provides a new catalyst selection for the electro-oxidation of methanol.
Naumann, Meike; Schäfer, Christian; Brandner, Armin; Hofmann, Heiko J; Claus, Peter
2011-01-01
Summary Polymethylmethacrylate (PMMA)/ceria composite fibres were synthesized by using a sequential combination of polymer electrospinning, spray-coating with a sol, and a final calcination step to yield microstructured ceria tubes, which are composed of nanocrystalline ceria particles. The PMMA template is removed from the organic/inorganic hybrid material by radio frequency (rf) plasma etching followed by calcination of the ceramic green-body fibres. Microsized ceria (CeO2) tubes, with a diameter of ca. 0.75 µm, composed of nanocrystalline agglomerated ceria particles were thus obtained. The 1-D ceramic ceria material was characterized by X-ray diffraction, scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), UV–vis and photoluminescence spectroscopy (PL), as well as thermogravimetric analysis (TGA). Its catalytic performance was studied in the direct carboxylation of methanol with carbon dioxide leading to dimethyl carbonate [(CH3O)2CO, DMC], which is widely employed as a phosgene and dimethyl sulfate substitute, and as well as a fuel additive. PMID:22259761
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Hai; University of Chinese Academy of Sciences, Beijing 100049; Lv, Baoliang, E-mail: lbl604@sxicc.ac.cn
2014-12-15
Graphical abstract: Co{sub 3}O{sub 4} nanowires with excellent ammonium perchlorate catalytic decomposition property were synthesized via a methanamide-assisted hydrolysis and subsequent dissolution–recrystallization process in the presence of methanamide. - Abstract: Co{sub 3}O{sub 4} nanowires, with the length of tens of micrometers and the width of several hundred nanometers, were produced by a hydrothermal treatment and a post-anneal process. X-ray diffraction (XRD) result showed that the Co{sub 3}O{sub 4} nanowires belong to cubic crystal system. Scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM) analysis indicated that the Co{sub 3}O{sub 4} nanowires, composed by single crystalline nanoparticles, were of polycrystallinemore » nature. On the basis of time-dependent experiments, methanamide-assisted hydrolysis and subsequent dissolution–recrystallization process were used to explain the precursors' formation process of the polycrystalline Co{sub 3}O{sub 4} nanowires. The TGA experiments showed that the as-obtained Co{sub 3}O{sub 4} nanowires can catalyze the thermal decomposition of ammonium perchlorate (AP) effectively.« less
Tian, Feng-Yu; Hou, Dongfang; Zhang, Wei-Min; Qiao, Xiu-Qing; Li, Dong-Sheng
2017-10-24
A novel heterostructure catalyst of Ni 2 P/Ni 12 P 5 has been fabricated through a simple solvothermal method by modifying the molar ratio of the initial raw materials. The products are characterized by X-ray powder diffraction (XRD), field emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HRTEM), nitrogen adsorption and X-ray photoelectron spectroscopy (XPS). It is found that the two phases, Ni 2 P and Ni 12 P 5 , are interlaced with one another in the as-formed nanocomposite, resulting in more interfaces. The bi-phase catalyst exhibits a markedly enhanced catalytic activity in the reduction of 4-nitrophenol, as compared to that of single Ni 2 P or Ni 12 P 5 . The enhanced catalytic activity can be attributed to the unique n-n series effects, which result in the increased ease of electron transfer over the Ni 2 P/Ni 12 P 5 bi-phase catalyst.
HYDROTHERMAL SYNTHESIS OF α-MoO3 NANORODS FOR NO2 DETECTION
NASA Astrophysics Data System (ADS)
Bai, Shouli; Chen, Song; Tian, Yuan; Luo, Ruixian; Li, Dianqing; Chen, Aifan
2012-12-01
Thermodynamically stable molybdenum trioxide nanorods have been successfully synthesized by a simple hydrothermal process. The product exhibits high-quality, single-crystalline layered orthorhombic structure (α-MoO3), and aspect ratio over 20 by characterizations of X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM) and Fourier transform infrared (FT-IR). The growth mechanism of α-MoO3 nanorods can be understood by electroneutral and dehydration reaction, which is highly dependent on solution acidity and hydrothermal temperature. The sensing tests show that the sensor based on MoO3 nanorods exhibits high sensitivity to NO2 and is not interferred by CO and CH4, which makes this kind sensor a competitive candidate for NO2 detection. The intrinsic sensing performance of MoO3 maybe arise from its nonstoichiometry of MoO3 owing to the presence of Mo5+ and oxygen vacancy in MoO3 lattice, which has been confirmed by X-ray photoelectron spectroscopy (XPS) analysis. The sensing mechanism of MoO3 for NO2 is also discussed.
Iyyappan, E; Wilson, P; Sheela, K; Ramya, R
2016-06-01
Hydroxyapatite (HA) particles were synthesized using Ca(NO3)2·4H2O and (NH4)2HPO4 as precursors with varying contents of non-ionic surfactant viz., triton X-100 (organic modifier) via co-precipitation method followed by hydrothermal treatment. The prepared HA particles have been characterized by X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FT-IR), Energy Dispersive X-ray Analysis (EDX), High Resolution Scanning Electron Microscopy (HRSEM), High Resolution Transmission Electron Microscopy (HRTEM) and Nitrogen adsorption-desorption experiments. The XRD and FTIR studies indicate the formation of HA phase in all the synthesized samples. The specific roles of triton X-100 and hydrothermal treatment in dispersing and in directing the crystal growth respectively have been discussed by comparing the observations from individual experiments using triton X-100 and hydrothermal treatment with that of combined protocol involving both. The plausible mechanism for the individual roles of both triton X-100 and hydrothermal treatment have been proposed. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tasfy, Sara Faiz Hanna, E-mail: miss25208@gmail.com; Zabidi, Noor Asmawati Mohd, E-mail: noorasmawati-mzabidi@petronas.com.my; Shaharun, Maizatul Shima, E-mail: maizats@petronas.com.my
The effects of SBA-15 support morphology on the activity of Cu/ZnO catalyst in the hydrogenation of CO{sub 2} to methanol was investigated. In the hydrogenation of CO{sub 2} to methanol at 210°C, 2.25 MPa, H{sub 2}/CO{sub 2} ratio of three remarkable difference was obtained using Cu/ZnO catalyst supported on SBA-15 with different morphology. The catalysts were characterized using N{sub 2}-adsorption, field emission scanning microscopy (FESEM/EDX), transmission electron microscopy (HRTEM), and temperature-programmed reduction (TPR). Characterization of the catalyst showed that support morphology, surface area, metals dispersion, and reducibility influenced the catalytic performance. On the fiber-shaped SBA-15, copper dispersion was 29 % whereasmore » on the spherical-shaped SBA-15, the dispersion was 20 %. The experimental results showed that the catalyst supported over fiber-shaped SBA-15 exhibit higher CO{sub 2} conversion (13.96 %) and methanol selectivity (91.32 %) compare to catalyst supported over spherical-shaped SBA-15.« less
Mohamed, Mona A; El-Gendy, Dalia M; Ahmed, Nashaat; Banks, Craig E; Allam, Nageh K
2018-03-15
Adenine-functionalized spongy graphene (FSG) composite, fabricated via a facile and green synthetic method, has been explored as a potential electrocatalyst toward the electroanalytical sensing of codeine phosphate (COD). The synthesized composite is characterized using Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray powder diffraction, UV-vis absorption spectroscopy, scanning electron microscopy, high resolution transmission electron microscopy (HRTEM), and thermogravimetric analysis. The FSG was electrically wired via modification upon screen-printed (macro electrode) sensors, which behave as a hybrid electrode material for the sensitive and selective codeine phosphate (COD) determination in the presence of paracetamol (PAR) and caffeine (CAF). The FSG- modified sensor showed an excellent electrocatalytic response towards the sensing of COD with a wide linear response range of 2.0 × 10 -8 -2.0 × 10 -4 M and a detection limit (LOD) of 5.8 × 10 -9 M, indicating its potential for the sensing of COD in clinical samples and pharmaceutical formulations. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Xiaoqiang; Hao, Junying; Xie, Yuntao
2016-08-01
Polymeric amorphous carbon films were prepared by radio frequency (R.F. 13.56 MHz) magnetron sputtering deposition. The microstructure evolution of the deposited polymeric films induced by silicon (Si) and aluminum(Al) doping were scrutinized through infrared spectroscopy, multi-wavelength Raman spectroscopy, scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). The comparative results show that Si doping can enhance polymerization and Al doping results in an increase in the ordered carbon clusters. Si and Al co-doping into polymeric films leads to the formation of an unusual dual nanostructure consisting of cross-linked polymer-like hydrocarbon chains and fullerene-like carbon clusters. The super-high elasticity and super-low friction coefficients (<0.002) under a high vacuum were obtained through Si and Al co-doping into the films. Unconventionally, the co-doped polymeric films exhibited a superior wear resistance even though they were very soft. The relationship between the microstructure and properties of the polymeric amorphous carbon films with different elements doping are also discussed in detail.
Oxidation of UC: An in situ high temperature environmental scanning electron microscopy study
NASA Astrophysics Data System (ADS)
Gasparrini, Claudia; Podor, Renaud; Horlait, Denis; Rushton, Michael J. D.; Fiquet, Olivier; Lee, William Edward
2017-10-01
In situ HT-ESEM oxidation of sintered UC fragments revealed the morphological changes occurring during the transformation between UC to UO2 and UO2 to U3O8 at 723-848 K and in an atmosphere of 10-100 Pa O2. Two main oxidation pathways were revealed. Oxidation at 723 K in atmospheres ≤25 Pa O2 showed the transformation from UC to UO2+x, as confirmed by post mortem HRTEM analysis. This oxidation pathway was comprised of three steps: (i) an induction period, where only surface UC particles oxidised, (ii) a sample area expansion accompanied by crack formation and propagation, (iii) a stabilisation of the total crack length inferring that crack propagation had stopped. Samples oxidised under 50 Pa O2 at 723 K and at 773-848 K for 10-100 Pa O2 showed an "explosive" oxidation pathway: (i) sample area expansion occurred as soon as oxygen was inserted into the chamber and crack propagation and crack length followed an exponential law; (ii) cracks propagated as a network and the oxide layer fragmented, (iii) an "explosion" occurred causing a popcorn-like transformation, typical for oxidation from UO2 to U3O8. HRTEM characterisation revealed U3O8 preferentially grow in the [001] direction. The explosive growth, triggered by ignition of UC, proceeded as a self-propagating high-temperature synthesis reaction, with a propagation speed of 150-500 ± 50 μm/s.
Varga, E; Pusztai, P; Óvári, L; Oszkó, A; Erdőhelyi, A; Papp, C; Steinrück, H-P; Kónya, Z; Kiss, J
2015-10-28
The interaction of CeO2-supported Rh, Co and bimetallic Rh-Co nanoparticles, which are active catalysts in hydrogen production via steam reforming of ethanol, a process related to renewable energy generation, was studied by X-ray diffraction (XRD), high resolution electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and low energy ion scattering (LEIS). Furthermore, diffuse reflectance infrared spectroscopy (DRIFTS) of adsorbed CO as a probe molecule was used to characterize the morphology of metal particles. At small loadings (0.1%), Rh is in a much dispersed state on ceria, while at higher contents (1-5%), Rh forms 2-8 nm particles. Between 473-673 K pronounced oxygen transfer from ceria to Rh is observed and at 773 K significant agglomeration of Rh occurs. On reduced ceria, XPS indicates a possible electron transfer from Rh to ceria. The formation of smaller ceria crystallites upon loading with Co was concluded from XRD and HRTEM; for 10% Co, the CeO2 particle size decreased from 27.6 to 10.7 nm. A strong dissolution of Co into ceria and a certain extent of encapsulation by ceria were deduced by XRD, XPS and LEIS. In the bimetallic system, the presence of Rh enhances the reduction of cobalt and ceria. During thermal treatments, reoxidation of Co occurs, and Rh agglomeration as well as oxygen migration from ceria to Rh are hindered in the presence of cobalt.
Limbach, F.; Gotschke, T.; Stoica, T.; ...
2011-01-01
InGaN/GaN nanowire (NW) heterostructures grown by plasma assisted molecular beam epitaxy were studied in comparison to their GaN and InGaN counterparts. The InGaN/GaN heterostructure NWs are composed of a GaN NW, a thin InGaN shell, and a multifaceted InGaN cap wrapping the top part of the GaN NW. High-resolution transmission electron microscopy (HRTEM) images taken from different parts of a InGaN/GaN NW show a wurtzite structure of the GaN core and the epitaxial InGaN shell around it, while additional crystallographic domains are observed whithin the InGaN cap region. Large changes in the lattice parameter along the wire, from pure GaNmore » to higher In concentration demonstrate the successful growth of a complex InGaN/GaN NW heterostructure. Photoluminescence (PL) spectra of these heterostructure NW ensembles show rather broad and intense emission peak at 2.1 eV. However, μ-PL spectra measured on single NWs reveal a reduced broadening of the visible luminescence. The analysis of the longitudinal optical phonon Raman peak position and its shape reveal a variation in the In content between 20% and 30%, in agreement with the values estimated by PL and HRTEM investigations. The reported studies are important for understanding of the growth and properties of NW heterostructures suitable for applications in optoelectronics and photovoltaics.« less
NASA Astrophysics Data System (ADS)
Limbach, F.; Gotschke, T.; Stoica, T.; Calarco, R.; Sutter, E.; Ciston, J.; Cusco, R.; Artus, L.; Kremling, S.; Höfling, S.; Worschech, L.; Grützmacher, D.
2011-01-01
InGaN/GaN nanowire (NW) heterostructures grown by plasma assisted molecular beam epitaxy were studied in comparison to their GaN and InGaN counterparts. The InGaN/GaN heterostructure NWs are composed of a GaN NW, a thin InGaN shell, and a multifaceted InGaN cap wrapping the top part of the GaN NW. High-resolution transmission electron microscopy (HRTEM) images taken from different parts of a InGaN/GaN NW show a wurtzite structure of the GaN core and the epitaxial InGaN shell around it, while additional crystallographic domains are observed whithin the InGaN cap region. Large changes in the lattice parameter along the wire, from pure GaN to higher In concentration demonstrate the successful growth of a complex InGaN/GaN NW heterostructure. Photoluminescence (PL) spectra of these heterostructure NW ensembles show rather broad and intense emission peak at 2.1 eV. However, μ-PL spectra measured on single NWs reveal a reduced broadening of the visible luminescence. The analysis of the longitudinal optical phonon Raman peak position and its shape reveal a variation in the In content between 20% and 30%, in agreement with the values estimated by PL and HRTEM investigations. The reported studies are important for understanding of the growth and properties of NW heterostructures suitable for applications in optoelectronics and photovoltaics.
Umamaheswari, C; Lakshmanan, A; Nagarajan, N S
2018-01-01
The present study reports, novel and greener method for synthesis of gold nanoparticles (AuNPs) using 5,7-dihydroxy-6-metoxy-3 ' ,4 ' methylenedioxyisoflavone (Dalspinin), isolated from the roots of Dalbergia coromandeliana was carried out for the first time. The synthesized gold nanoparticles were characterized by UV-Vis spectroscopy, high resolution transmission electron microscopy (HR-TEM), selected area electron diffraction (SAED), Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). The observed surface plasmon resonance (SPR) at 532nm in the UV-Vis absorption spectrum indicates the formation of gold nanoparticles. The powder XRD and SAED pattern for synthesized gold nanoparticles confirms crystalline nature. The HR-TEM images showed that the AuNPs formed were small in size, highly monodispersed and spherical in shape. The average particle sizes of the AuNPs are found to be ~10.5nm. The prepared AuNPs were found to be stable for more than 5months without any aggregation. The catalytic degradation studies of the synthesized AuNPs towards degradation of congo red and methyl orange, showed good catalytic in the complete degradation of both the dyes. The reduction catalyzed by gold nanoparticles followed the pseudo-first order kinetics, with a rate constant of 4.5×10 -3 s -1 (R 2 =0.9959) and 1.7×10 -3 s -1 (R 2 =0.9918) for congo red (CR) and methyl orange (MO), respectively. Copyright © 2017. Published by Elsevier B.V.
Redirected charge transport arising from diazonium grafting of carbon coated LiFePO4.
Madec, L; Seid, K A; Badot, J-C; Humbert, B; Moreau, P; Dubrunfaut, O; Lestriez, B; Guyomard, D; Gaubicher, J
2014-11-07
The morphological and the electrical properties of carbon coated LiFePO4 (LFPC) active material functionalized by 4-ethynylbenzene tetrafluoroboratediazonium salt were investigated. For this purpose, FTIR, Raman, XPS, High Resolution Transmission Electron Microscopy (HRTEM) and Broadband Dielectric Spectroscopy (BDS) were considered. Electronic conductivities of LFPC samples at room temperature were found to decrease in a large frequency range upon simple immersion in polar solvents and to decrease further upon functionalization. Due to their high dipole moment, strongly physisorbed molecules detected by XPS likely add barriers to electron hopping. Significant alteration of the carbon coating conductivity was only observed, however, upon functionalization. This effect is most presumably associated with an increase in the sp(3) content determined by Raman spectroscopy, which is a strong indication of the formation of a covalent bond between the organic layer and the carbon coating. In this case, the electron flux appears to be redirected and relayed by short-range (intra chain) and long-range (inter chain) electron transport through molecular oligomers anchored at the LFPC surface. The latter are controlled by tunnelling and slightly activated hopping, which enable higher conductivity at low temperature (T < 250 K). Alteration of the electron transport within the carbon coating also allows detection of a relaxation phenomenon that corresponds to small polaron hopping in bulk LiFePO4. XPS and HRTEM images allow a clear correlation of these findings with the island type oligomeric structure of grafted molecules.
Ezhilarasi, A Angel; Vijaya, J Judith; Kaviyarasu, K; Maaza, M; Ayeshamariam, A; Kennedy, L John
2016-11-01
Green protocols for the synthesis of nickel oxide nanoparticles using Moringa oleifera plant extract has been reported in the present study as they are cost effective and ecofriendly, moreover this paper records that the nickel oxide (NiO) nanoparticles prepared from green method shows better cytotoxicity and antibacterial activity. The NiO nanoparticles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), High resolution transmission electron microscopy (HRTEM), Energy dispersive X-ray analysis (EDX), and Photoluminescence spectroscopy (PL). The formation of a pure nickel oxide phase was confirmed by XRD and FTIR. The synthesized NiO nanoparticles was single crystalline having face centered cubic phase and has two intense photoluminescence emissions at 305.46nm and 410nm. The formation of nano- and micro-structures was confirmed by HRTEM. The in-vitro cytotoxicity and cell viability of human cancer cell HT-29 (Colon Carcinoma cell lines) and antibacterial studies against various bacterial strains were studied with various concentrations of nickel oxide nanoparticles prepared from Moringa oleifera plant extract. MTT assay measurements on cell viability and morphological studies proved that the synthesized NiO nanoparticles posses cytotoxic activity against human cancer cells and the various zones of inhibition (mm), obtained revealed the effective antibacterial activity of NiO nanoparticles against various Gram positive and Gram negative bacterial pathogens. Copyright © 2016 Elsevier B.V. All rights reserved.
Structural stability of coplanar 1T-2H superlattice MoS2 under high energy electron beam.
Reshmi, S; Akshaya, M V; Satpati, Biswarup; Basu, Palash Kumar; Bhattacharjee, K
2018-05-18
Coplanar heterojunctions composed of van der Waals layered materials with different structural polymorphs have drawn immense interest recently due to low contact resistance and high carrier injection rate owing to low Schottky barrier height. Present research has largely focused on efficient exfoliation of these layered materials and their restacking to achieve better performances. We present here a microwave assisted easy, fast and efficient route to induce high concentration of metallic 1T phase in the original 2H matrix of exfoliated MoS 2 layers and thus facilitating the formation of a 1T-2H coplanar superlattice phase. High resolution transmission electron microscopy (HRTEM) investigations reveal formation of highly crystalline 1T-2H hybridized structure with sharp interface and disclose the evidence of surface ripplocations within the same exfoliated layer of MoS 2 . In this work, the structural stability of 1T-2H superlattice phase during HRTEM measurements under an electron beam of energy 300 keV is reported. This structural stability could be either associated to the change in electronic configuration due to induction of the restacked hybridized phase with 1T- and 2H-regions or to the formation of the surface ripplocations. Surface ripplocations can act as an additional source of scattering centers to the electron beam and also it is possible that a pulse train of propagating ripplocations can sweep out the defects via interaction from specific areas of MoS 2 sheets.
Cysteine-functionalized silica-coated magnetite nanoparticles as potential nanoadsorbents
NASA Astrophysics Data System (ADS)
Enache, Daniela F.; Vasile, Eugenia; Simonescu, Claudia M.; Răzvan, Anca; Nicolescu, Alina; Nechifor, Aurelia-Cristina; Oprea, Ovidiu; Pătescu, Rodica-Elena; Onose, Cristian; Dumitru, Florina
2017-09-01
Fe3O4, Fe3O4@SiO2, and Fe3O4@SiO2@ICPTES-cysteine MNPs have been prepared by the deposition of silica onto magnetite nanoparticles via controlled hydrolysis of TEOS. The new formed silica surface has been functionalized by grafting 3-(triethoxysilyl) propyl isocyanate (ICPTES) and, subsequently, by condensation of isocyanate moiety with cysteine. The morphology of magnetic silica nanoparticles has been investigated by FTIR, PXRD, TEM-HRTEM/SEM/EDX as well as TG experiments. HRTEM microscopy revealed that the Fe3O4, Fe3O4@SiO2 and Fe3O4@SiO2@ICPTES-cysteine nanoparticles are all of spherical shape with particle of ca. 10-30 nm diameters and the silica-coated magnetites have a core-shell structure. Fe3O4, Fe3O4@SiO2, and Fe3O4@SiO2@ICPTES-cysteine MNPs have been tested for their sorption capacity of Pb(II) from synthetic aqueous solutions and the influence of pH solution, contact time, initial heavy metal ion concentrations, and adsorption isotherms on the sorption behavior were also studied. The kinetic studies revealed that the Pb(II) sorption process is mainly controlled by chemical mechanisms. Fe3O4@SiO2@ICPTES-cysteine, with a sorption capacity of 81.8 mg Pb(II)/g, has the potential to be an efficient Pb(II) adsorbent.
Structural stability of coplanar 1T-2H superlattice MoS2 under high energy electron beam
NASA Astrophysics Data System (ADS)
Reshmi, S.; Akshaya, M. V.; Satpati, Biswarup; Basu, Palash Kumar; Bhattacharjee, K.
2018-05-01
Coplanar heterojunctions composed of van der Waals layered materials with different structural polymorphs have drawn immense interest recently due to low contact resistance and high carrier injection rate owing to low Schottky barrier height. Present research has largely focused on efficient exfoliation of these layered materials and their restacking to achieve better performances. We present here a microwave assisted easy, fast and efficient route to induce high concentration of metallic 1T phase in the original 2H matrix of exfoliated MoS2 layers and thus facilitating the formation of a 1T-2H coplanar superlattice phase. High resolution transmission electron microscopy (HRTEM) investigations reveal formation of highly crystalline 1T-2H hybridized structure with sharp interface and disclose the evidence of surface ripplocations within the same exfoliated layer of MoS2. In this work, the structural stability of 1T-2H superlattice phase during HRTEM measurements under an electron beam of energy 300 keV is reported. This structural stability could be either associated to the change in electronic configuration due to induction of the restacked hybridized phase with 1T- and 2H-regions or to the formation of the surface ripplocations. Surface ripplocations can act as an additional source of scattering centers to the electron beam and also it is possible that a pulse train of propagating ripplocations can sweep out the defects via interaction from specific areas of MoS2 sheets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, X.J., E-mail: lixj@alum.imr.ac.cn
During the deposition of diamond films on Ti alloy substrates, titanium carbide is a common precipitated phase, preferentially formed at the interfacial region. However, in this case, the precipitation of an ordered structure of titanium carbide has not been reported. In our work, a long periodic ordered structure of TiC has been observed at the deposited diamond film/Ti alloy interface by high resolution transmission electron microscopy (HRTEM). The long periodic ordered structure is identified as 6H-type. The formation mechanism is revealed by comparative studies on the different structures of TiC precipitated under different diamond deposition conditions in terms of depositionmore » time, atmosphere and temperature. A large number of carbon vacancies in the interfacial precipitated TiC phase are verified through electron energy loss spectroscopy (EELS) quantification analysis. However, an ordered arrangement of these carbon vacancies occurs only when the interfacial stress is large enough to induce the precipitation of 6H-type TiC. The supplementary analysis by X-ray diffraction (XRD) further confirms that additional diffraction peaks presented in the XRD patterns are corresponding to the precipitation of 6H-type TiC. - Highlights: •Different structures of TiC are observed during deposited diamond on Ti alloy. •One is common NaCl structure, the other is periodic structure. •The periodic structure is identified as 6H-type by HRTEM. •Carbon vacancies are verified to always exist in the TiC phase. •The precipitation of 6H-type TiC is mainly affected by interfacial stress.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lei; Yu, Youxing, E-mail: yuyouxing@buaa.edu.cn; Gao, Tenghua
FePt and (FePt){sub 91.2}Ag{sub 8.8} alloy films were deposited by magnetron sputtering. The average coercivity of (FePt){sub 91.2}Ag{sub 8.8} films reaches 8.51 × 10{sup 5} A/m, which is 0.63 × 10{sup 5} A/m higher than that of the corresponding FePt films. Ag addition effectively promotes the FePt L1{sub 0} ordering transition at a relatively low annealing temperature of 400 °C. The promotion mechanism was investigated by using in situ high-resolution transmission electron microscopy (HRTEM) and ex situ X-ray absorption fine structure (XAFS). The concurrence of ordering transition and Ag segregation in FePtAg alloy films was first observed by using in situ heating HRTEM. The time-resolved evolution revealsmore » more details on the role of Ag addition in FePt low-temperature ordering. Ex situ XAFS results further confirm that Ag replaces Fe sites in the as-deposited films and segregates from FePt-Ag solid solution phase through annealing at elevated temperatures. The segregation of Ag atoms leaves vacancies in the grain. The vacancy formation is believed to accelerate the diffusion of Fe and Pt atoms, which is critical for the L1{sub 0} ordering transition.« less
Mahmood, Syed; Mandal, Uttam Kumar; Chatterjee, Bappaditya
2018-05-05
Raloxifene HCl belongs to a class of selective estrogen receptor modulators (SERMs) which is used for the management of breast cancer. The major problem reported with raloxifene is its poor bioavailability which is only up to 2%. The main objective of the present work was to formulate raloxifene loaded ethosomal preparation for transdermal application and compare it with an oral formulation of the drug. Five ethosomal formulations with different concentrations of ethanol and a conventional liposomes formulation were prepared by rotary evaporation method. The prepared systems were characterised by high resolution transmission electron microscopy (HRTEM), force emission electron microscopy (FESEM), atomic force microscopy (AFM), X-ray diffraction (XRD) and 31 P NMR study. All these advanced characterization study established that the ethosome formulation was well defined by its size, shape and its bilayer formation. Transdermal flux of the optimized ethosome formulation was 22.14 ± 0.83 µg/ml/cm 2 which was 21 times higher when compared to the conventional liposomes. Confocal microscopy study revealed an enhanced permeation of coumarin-6 dye loaded ethosomes to much deeper layers of skin when compared with conventional liposomes. The gel was found to be pseudoplastic with elastic behaviour. In-vivo studies on rats showed a higher bioavailability of RXL (157% times) for ethosomal formulation when compared with the oral formulation. In conclusion, RXL loaded ethosomal formulation via transdermal route showed superior drug delivery properties as compared to oral formulation. Copyright © 2018 Elsevier B.V. All rights reserved.
Willander, M; Nur, O; Zhao, Q X; Yang, L L; Lorenz, M; Cao, B Q; Zúñiga Pérez, J; Czekalla, C; Zimmermann, G; Grundmann, M; Bakin, A; Behrends, A; Al-Suleiman, M; El-Shaer, A; Che Mofor, A; Postels, B; Waag, A; Boukos, N; Travlos, A; Kwack, H S; Guinard, J; Le Si Dang, D
2009-08-19
Zinc oxide (ZnO), with its excellent luminescent properties and the ease of growth of its nanostructures, holds promise for the development of photonic devices. The recent advances in growth of ZnO nanorods are discussed. Results from both low temperature and high temperature growth approaches are presented. The techniques which are presented include metal-organic chemical vapour deposition (MOCVD), vapour phase epitaxy (VPE), pulse laser deposition (PLD), vapour-liquid-solid (VLS), aqueous chemical growth (ACG) and finally the electrodeposition technique as an example of a selective growth approach. Results from structural as well as optical properties of a variety of ZnO nanorods are shown and analysed using different techniques, including high resolution transmission electron microscopy (HR-TEM), scanning electron microscopy (SEM), photoluminescence (PL) and cathodoluminescence (CL), for both room temperature and for low temperature performance. These results indicate that the grown ZnO nanorods possess reproducible and interesting optical properties. Results on obtaining p-type doping in ZnO micro- and nanorods are also demonstrated using PLD. Three independent indications were found for p-type conducting, phosphorus-doped ZnO nanorods: first, acceptor-related CL peaks, second, opposite transfer characteristics of back-gate field effect transistors using undoped and phosphorus doped wire channels, and finally, rectifying I-V characteristics of ZnO:P nanowire/ZnO:Ga p-n junctions. Then light emitting diodes (LEDs) based on n-ZnO nanorods combined with different technologies (hybrid technologies) are suggested and the recent electrical, as well as electro-optical, characteristics of these LEDs are shown and discussed. The hybrid LEDs reviewed and discussed here are mainly presented for two groups: those based on n-ZnO nanorods and p-type crystalline substrates, and those based on n-ZnO nanorods and p-type amorphous substrates. Promising electroluminescence characteristics aimed at the development of white LEDs are demonstrated. Although some of the presented LEDs show visible emission for applied biases in excess of 10 V, optimized structures are expected to provide the same emission at much lower voltage. Finally, lasing from ZnO nanorods is briefly reviewed. An example of a recent whispering gallery mode (WGM) lasing from ZnO is demonstrated as a way to enhance the stimulated emission from small size structures.
Chandra, Navin; Singh, Deepesh Kumar; Sharma, Meenakshi; Upadhyay, Ravi Kant; Amritphale, S S; Sanghi, S K
2010-02-15
For the first time, single reverse microemulsion-assisted direct precipitation route has been successfully used to synthesize tetragonal zirconia nanoparticles in narrow size range. The synthesized powder was characterized using FT-IR, XRD and HRTEM techniques. The zirconia nanoparticles obtained were spherical in shape and has narrow particle size distribution in the range of 13-31nm and crystallite size in the range of 13-23nm. Copyright 2009 Elsevier Inc. All rights reserved.
STEM_CELL: a software tool for electron microscopy: part 2--analysis of crystalline materials.
Grillo, Vincenzo; Rossi, Francesca
2013-02-01
A new graphical software (STEM_CELL) for analysis of HRTEM and STEM-HAADF images is here introduced in detail. The advantage of the software, beyond its graphic interface, is to put together different analysis algorithms and simulation (described in an associated article) to produce novel analysis methodologies. Different implementations and improvements to state of the art approach are reported in the image analysis, filtering, normalization, background subtraction. In particular two important methodological results are here highlighted: (i) the definition of a procedure for atomic scale quantitative analysis of HAADF images, (ii) the extension of geometric phase analysis to large regions up to potentially 1μm through the use of under sampled images with aliasing effects. Copyright © 2012 Elsevier B.V. All rights reserved.
Microstructures, mechanical behavior and strengthening mechanism of TiSiCN nanocomposite films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Wei; Liu, Ping; Xue, Zenghui
Recently, the arguments have existed in the strengthening mechanism and microstructural model of the nanocomposite film due to lack of the convincible experimental evidences. In this investigation, the quarternary TiSiCN nanocomposite films with the different C and Si contents are synthesized by the reactive-magnetron-sputtering technique. The TiSiCN film is characterized as the nanocomposite structure with the TiN nanocrystallites surrounded by the (Si 3N 4 + C + CN x) interface phase. When the C/Si content ratio is 2:2, the TiSiCN nanocomposite film is remarkably strengthened with the maximal hardness and elastic modulus of 46.1 GPa and 425 GPa, respectively. Meanwhile,more » the (Si 3N 4 + C + CN x) interfaces exhibit as a crystallized form, which can coordinate the growth misorientations and maintain the coherently epitaxial growth between the TiN nanocrystallites and interfaces. Through the high-resolution transmission electron microscopy (HRTEM) observations, this investigation firstly provides the direct experimental evidence for the crystallized feature of the interfaces when the TiSiCN nanocomposite film is strengthened, suggesting that the strengthening effect of the TiSiCN nanocomposite film can be attributed to the coherent-interface strengthening mechanism, which is expressed as the “nc-TiN/c-Si 3N 4/c-C/c-CN x” model.« less
NASA Astrophysics Data System (ADS)
Salaheldin, Hosam I.
2018-06-01
In this study, silver nanoparticles (SNPs) were synthesised in an aqueous solution of corn starch. To fabricate the SNPs, reaction conditions, such as varying silver nitrate () concentration, time, temperature and solution pH of the reaction, were optimized. Since, the optimum reaction conditions were found 1 mmo l‑1, 15 min and , respectively. Then, to study the role of pH on SNP synthesis, varying pH values of the solution (3, 5, 7, 9 and 11) were investigated. Subsequently, the obtained silver/starch nanocomposites were characterised using different techniques. The x-ray diffraction (XRD) results revealed that the particles were face-centred cubic (FCC), and had an average particle size of 7.5 nm. This was confirmed by high-resolution transmission electron microscopy (HR-TEM) images. Moreover, the synthesised SNPs, at different pH values, were used as nanocatalyst for the reduction of 4-nitrophenol to 4-aminophenol in the presence of sodium borohydride. Under optimum reaction conditions, the higher catalytic activity was obtained with SNPs synthesised at pH 11 compared to lower pH of 7 or 9. Therefore, the rapid, reproducible, cost-effective silver/starch nanocomposite can be widely used for various applications such as drug manufacturing (e.g. analgesics and antipyretics) and the removal of pollutants from wastewater.
Microstructures, mechanical behavior and strengthening mechanism of TiSiCN nanocomposite films
Li, Wei; Liu, Ping; Xue, Zenghui; ...
2017-05-18
Recently, the arguments have existed in the strengthening mechanism and microstructural model of the nanocomposite film due to lack of the convincible experimental evidences. In this investigation, the quarternary TiSiCN nanocomposite films with the different C and Si contents are synthesized by the reactive-magnetron-sputtering technique. The TiSiCN film is characterized as the nanocomposite structure with the TiN nanocrystallites surrounded by the (Si 3N 4 + C + CN x) interface phase. When the C/Si content ratio is 2:2, the TiSiCN nanocomposite film is remarkably strengthened with the maximal hardness and elastic modulus of 46.1 GPa and 425 GPa, respectively. Meanwhile,more » the (Si 3N 4 + C + CN x) interfaces exhibit as a crystallized form, which can coordinate the growth misorientations and maintain the coherently epitaxial growth between the TiN nanocrystallites and interfaces. Through the high-resolution transmission electron microscopy (HRTEM) observations, this investigation firstly provides the direct experimental evidence for the crystallized feature of the interfaces when the TiSiCN nanocomposite film is strengthened, suggesting that the strengthening effect of the TiSiCN nanocomposite film can be attributed to the coherent-interface strengthening mechanism, which is expressed as the “nc-TiN/c-Si 3N 4/c-C/c-CN x” model.« less
ZnO nanoparticles via Moringa oleifera green synthesis: Physical properties & mechanism of formation
NASA Astrophysics Data System (ADS)
Matinise, N.; Fuku, X. G.; Kaviyarasu, K.; Mayedwa, N.; Maaza, M.
2017-06-01
The research work involves the development of better and reliable method for the bio-fabrication of Zinc oxide nanoparticles through green method using Moringa Oleifera extract as an effective chelating agent. The electrochemical activity, crystalline structure, morphology, isothermal behavior, chemical composition and optical properties of ZnO nanoparticles were studied using various characterization techniques i.e. Cyclic voltammetry (CV), X-ray powder diffraction (XRD), High resolution transmission electron microscopy (HRTEM), Selected area electron diffraction (SEAD), Differential scanning calorimetry/thermogravimetric analysis (DSC/TGA), Fourier Transform Infrared analysis (FTIR) and Ultraviolet spectroscopy studies (UV-vis). The electrochemical analysis proved that the ZnO nano has high electrochemical activity without any modifications and therefore are considered as a potential candidate in electrochemical applications. The XRD pattern confirmed the crystallinity and pure phase of the sample. DSC/TGA analysis of ZnO sample (before anneal) revealed three endothermic peaks around 140.8 °C, 223.7 °C and 389.5 °C. These endothermic peaks are attributed to the loss of volatile surfactant, conversion of zinc hydroxide to zinc oxide nanoparticles and transformation of zinc oxide into zinc nanoparticles. Mechanisms of formation of the ZnO nanoparticles via the chemical reaction of the Zinc nitrate precursor with the bioactive compounds of the Moringa oleifera are proposed for each of the major family compounds: Vitamins, Flavonoids, and Phenolic acids.
Synthesis and Characterization of Mercaptoacetic Acid Capped Cadmium Sulphide Quantum Dots.
Wageh, S; Maize, Mai; Donia, A M; Al-Ghamdi, Ahmed A; Umar, Ahmad
2015-12-01
This paper reports the facile synthesis and detailed characterization of mercaptoacetic acid capped cadmium sulphide (CdS) quantum dots using various cadmium precursors. The mercaptoacetic acid capped CdS quantum dots were prepared by facile and simple wet chemical method and characterized by several techniques such as energy dispersive spectroscopy (EDS), X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, UV-vis. spectroscopy, photoluminescence spectroscopy, high-resolution transmission microscopy (HRTEM) and thremogravimetric analysis. The EDS studies revealed that the prepared quantum dots possess higher atomic percentage of sulfur compared to cadmium due to the coordination of thiolate to the quantum dots surfaces. The X-ray and absorption analyses exhibited that the size of quantum dots prepared by cadmium acetate is larger than the quantum dots prepared by cadmium chloride and cadmium nitrate. The increase in size can be attributed to the low stability constant of cadmium acetate in comparison with cadmium chloride and cadmium nitrate. The FTIR and thermogravimetric analysis showed that the nature of capping molecule on the surface of quantum dots are different depending on the cadmium precursors which affect the emission from CdS quantum dots. Photoemission spectroscopy revealed that the emission of quantum dots prepared by cadmium acetate has high intensity band edge emission along with low intensity trapping state emission. However the CdS quantum dots prepared by cadmium chloride and cadmium nitrate produced only trapping state emissions.
Sánchez-Peña, Nazly E; Narváez-Semanate, José L; Pabón-Patiño, Daniela; Fernández-Mera, Javier E; Oliveira, Marcos L S; da Boit, Kátia; Tutikian, Bernardo F; Crissien, Tito J; Pinto, Diana C; Serrano, Iván D; Ayala, Claudia I; Duarte, Ana L; Ruiz, José D; Silva, Luis F O
2018-01-01
The present study is focused on the chemical and nano-mineralogical characterization of sludge from gold mine activities, in order to put forward diverse solution alternatives, where lack of knowledge has been found. The sample was collected from "La Estrella" mine of Suarez, located in Department of Cauca, south-west Colombia. The sludge micro-structure and chemical composition were analyzed using a high resolution transmission electron microscopy (HR-TEM) equipped with a dispersive X-ray detector (EDS). X-ray diffraction technique was employed to identify the mineralogical phases present in the sludge. Additional mineralogical characterization was done by using RAMAN spectroscopy. Main findings points to its potential to be used as a fertilizer, this is why, mine sludge contains macronutrients such as P, Ca and S, together with micronutrients like Cu. However, the presence of goethite could decrease the mobilization of nutrients to soils, thus additional alternatives, for instance, a mixture with humus or another material containing Humic Acids should be done, in order to minimizing its retention effect. Additionally, another possible uses to explore could be as construction and ceramic material or in the wastewater treatment for nutrient retention and organic material removal. Rutile (TiO 2 nanoparticles) particles have been also detected, what could cause health concern due to its nanoparticle toxic character, mainly during gold extraction process. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kiatkoski Kaminski, Renata Cristina; Caetano, Bruno Leonardo; Magnani, Marina; Meneau, Florian; Rochet, Amélie; Santilli, Celso Valentim; Briois, Valérie; Bourgaux, Claudie
2018-01-01
ZnO/ZnS heterostructures have emerged as an attractive approach for tailoring the properties of particles comprising these semiconductors. They can be synthesized using low temperature sol-gel routes. The present work yields insight into the mechanisms involved in the formation of ZnO/ZnS nanostructures. ZnO colloidal suspensions, prepared by hydrolysis and condensation of a Zn acetate precursor solution, were allowed to react with an ethanolic thioacetamide solution (TAA) as sulfur source. The reactions were monitored in situ by Small Angle X-ray Scattering (SAXS) and UV-vis spectroscopy, and the final colloidal suspensions were characterized by High Resolution Transmission Electron Microscopy (HRTEM). The powders extracted at the end of the reactions were analyzed by X-ray Absorption spectroscopy (XAS) and X-ray diffraction (XRD). Depending on TAA concentration, different nanostructures were revealed. ZnO and ZnS phases were mainly obtained at low and high TAA concentrations, respectively. At intermediate TAA concentrations, we evidenced the formation of ZnO/ZnS heterostructures. ZnS formation could take place via direct crystal growth involving Zn ions remaining in solution and S ions provided by TAA and/or chemical conversion of ZnO to ZnS. The combination of all the characterization techniques was crucial to elucidate the reaction steps and the nature of the final products. PMID:29360735
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kogawa, M.; Watson, E. B.; Ewing, R. C.
Lead-doped zircon crystals, which were synthesized under three different conditions (Watson et al. 1997): dry at 1430 °C at atmospheric pressure without P2O5; wet at 900 °C at 1.5 GPa in the presence of P2O5; and wet at 800 °C at 1.0 GPa without P2O5, have been investigated to understand the mechanisms of Pb incorporation into zircon at the sub-micrometer scale, using various electron microscopy techniques including high-resolution transmission electron microscopy (HRTEM) and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). Four different mechanisms in which Pb may be incorporated into zircon have been identified. In the P-free synthesis, Pb-oxidemore » hydrate particles, 50–200 nm in size, are embedded in zircon. Each Pb-particle is associated with a single vesicle, ~50 nm. Lead in the zircon structure is possibly incorporated under the detection limit value of energy-dispersive X-ray analysis (EDX) by means of: (1) Zr4+ = Pb2+ + 2H+ at less than ~0.1 wt%. In the system with P, Pb-phases occur in three different forms: Pb-rich domains concentrated along cleavage planes or grain boundaries without any evident crystal form; numerous Pb-phosphate particles, as large as 100 nm, embedded heterogeneously in the zircon crystal; and homogeneous distribution of Pb in the zircon structure at less than ~1 wt% as determined by EDX. These results suggest that charge balance is maintained by the xenotime-type coupled substitution: (2) Zr4+ + 2Si4+ = Pb2+ + 2P5+ with a possible minor contribution from mechanism 1. The apparent solubility limit of Pb, <1 wt%, is constrained mainly by the xenotime-type coupled substitution mechanism, which is probably due to increasing strain at higher Pb-concentrations. The presence of Pb2+ in natural zircon is consistent with the low-level Pb allowed by substitution mechanism 2, with only a minor contribution from substitution mechanism 1, the latter of which causes distortion in the local structure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salili, S.M.; School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran; Ataie, A., E-mail: aataie@ut.ac.ir
This research aimed to synthesize nanostructured strontium-doped lanthanum manganite, La{sub 0.8}Sr{sub 0.2}MnO{sub 3} (LSMO), with its Curie temperature (T{sub c}) adjusted to the therapeutic range, through a mechanothermal route. In order to investigate the effect of heat treatment temperature and duration on the resulting crystallite size, morphology, magnetic behavior and Curie temperature, the starting powder mixture was milled in a planetary ball mill before being subsequently heat treated at distinct temperatures for different time lengths. The composition, morphology, and magnetic behavior were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopymore » (HRTEM), selected area electron diffraction (SAED) and vibrating sample magnetometer (VSM). In addition, magnetic properties were further investigated using an alternating current (AC) susceptometer and thermo-magnetic analyzer. 20 h of milling produced a crystallite size reduction leading to a decrease in the heat treatment temperature of LSMO synthesis to 800 °C. Moreover, SEM analysis has shown the morphology of a strong agglomeration of fine nanoparticles. HRTEM showed clear lattice fringes of high crystallinity. The mean crystallite and particle size of 20-hour milled sample heat treated at 1100 °C for 10 h are relatively 69 and 100 nm, respectively. The VSM data at room temperature, indicated a paramagnetic behavior for samples heat treated at 800 °C. However, by increasing heat treatment temperature to 1100 °C, LSMO indicates a ferromagnetic behavior with well-adjusted Curie temperature of 320 K, suitable for hyperthermia applications. Also, reentrant spin glass (RSG) behavior has been found in heat treated samples. The particles are coated with (3-aminopropyl) triethoxysilane (APTES) for biocompatibility purposes; Fourier transform infrared spectroscopy (FTIR) and thermo-gravimetric analysis (TGA) are used for further confirmation of APTES coating. - Highlights: • La{sub 0.8}Sr{sub 0.2}MnO{sub 3} nanoparticles were synthesized via a mechanothermal route. • We report a significant reduction in the heat treatment temperature. • The Curie temperature was tuned within the therapeutic range. • The particles were coated with (3-aminopropyl) triethoxysilane for biocompatibility purposes.« less
Effect of organic fuels on surface area and photocatalytic activity of scheelite CaWO4 nanoparticles
NASA Astrophysics Data System (ADS)
Manjunath, Kusuma; Gujjarahalli Thimmanna, Chandrappa
2018-03-01
Discrete nanoscale calcium tungstate (CaWO4) nanoparticles with exquisite photocatalytic activities were synthesized through ultra-rapid solution combustion route. Here, we aim to study the effect of different fuels on the synthesis of CaWO4 nanoparticles which lead to improve the characteristic properties and morphological evolution of the powders. From BET surface area measurement, it is observed that CaWO4 nanoparticles synthesized by using citric acid as fuel exhibits relatively large surface area (31.78 m2 g‑1) as compared to other fuels. The powder x-ray diffraction (PXRD) studies reveal that CaWO4 nanoparticles belong to scheelite type tetragonal system. The morphology of CaWO4 nanoparticles investigated using scanning electron microscopy (SEM) reveals that the powders are highly porous and agglomerated. Transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) images of the CaWO4 nanoparticles show that a well-dispersed nearly oval-shaped nanoparticles with variable dimensions and lattice spacing that depends on the type of fuels used in the synthesis. The selected area electron diffraction (SAED) patterns of CaWO4 nanoparticles exhibit several concentric rings with bright spots indicating the polycrystalline nature of the powders. Investigation on photocatalytic activity of CaWO4 nanoparticles synthesized using citric acid shows highest (∼93%) degradation of methylene blue (MB).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Rabindar K.; Reddy, G. B.
In this work, we have successfully developed plasma assisted paste sublimation route to deposit vertically aligned MoO{sub 3} nanoflakes (NFs) on nickel coated glass substrate in oxygen plasma ambience with the assistant of Ni thin layer as a catalyst. In our case, sublimation source (Mo strip surface) is resistively heated by flowing current across it. The structural, morphological, and optical properties of NFs have been investigated systematically using x-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) with selected area electron diffraction (SAED), High resolution transmission electron microscopy (HRTEM), micro-Raman spectroscopy, and Photoluminescence (PL) spectroscopy. Studies reveal thatmore » the presence of oxygen plasma and the nickel thin layer are very essential for the growth of vertically aligned NFs. The observed results divulge that α-MoO{sub 3} NFs are deposited uniformly on large scale with very high aspect (height/thickness) ratio more than 30 and well aligned along [0 k 0] crystallographic direction where k is even (2, 4, 6). Raman spectrum shows a significant size effect on the vibrational property of MoO{sub 3} nanoflakes. The PL spectrum of MoO{sub 3} NFs was recorded at room temperature and four prominent peaks at 365 nm, 395 nm, 452 nm, and 465 nm corresponding to UV-visible region were observed. In this paper, a three step growth strategy for the formation of MoO{sub 3} NFs has been proposed in detail.« less
Novel mesoporous FeAl bimetal oxides for As(III) removal: Performance and mechanism.
Ding, Zecong; Fu, Fenglian; Cheng, Zihang; Lu, Jianwei; Tang, Bing
2017-02-01
In this study, novel mesoporous FeAl bimetal oxides were successfully synthesized, characterized, and employed for As(III) removal. Batch experiments were conducted to investigate the effects of Fe/Al molar ratio, dosage, and initial solution pH values on As(III) removal. The results showed that the FeAl bimetal oxide with Fe/Al molar ratio 4:1 (shorten as FeAl-4) can quickly remove As(III) from aqueous solution in a wide pH range. The FeAl-4 before and after reaction with As(III) was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HR-TEM) and selected area electron diffraction (SAED), Brunauer-Emmett-Teller (BET) surface area measurement, and X-ray photoelectron spectroscopy (XPS). The BET results showed that the original FeAl-4 with a high surface area of 223.9 m 2 /g was a mesoporous material. XPS analysis indicated that the surface of FeAl-4 possessed a high concentration of M-OH (where M represents Fe and Al), which was beneficial to the immobility of As(III). The excellent performance of FeAl-4 makes it a potentially attractive material for As(III) removal from aqueous solution. Copyright © 2016 Elsevier Ltd. All rights reserved.
Facile synthesis of α-Fe{sub 2}O{sub 3} nanoparticles for high-performance CO gas sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cuong, Nguyen Duc, E-mail: nguyenduccuong@hueuni.edu.vn; Faculty of Hospitality and Tourism, Hue University, 22 Lam Hoang, Vy Da Ward, Hue City; Khieu, Dinh Quang
2015-08-15
Highlights: • We have demonstrated a facile method to prepare Fe{sub 2}O{sub 3} nanoparticles. • The gas sensing properties of α-Fe{sub 2}O{sub 3} have been invested. • The results show potential application of α-Fe{sub 2}O{sub 3} NPs for CO sensors in environmental monitoring. - Abstract: Iron oxide nanoparticles (NPs) were prepared via a simple hydrothermal method for high performance CO gas sensor. The synthesized α-Fe{sub 2}O{sub 3} NPs were characterized by X-ray diffraction, nitrogen adsorption/desorption isotherm, scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and selected area electron diffraction (SAED). The SEM, TEM results revealedmore » that obtained α-Fe{sub 2}O{sub 3} particles had a peanut-like geometry with hemispherical ends. The response of the α-Fe{sub 2}O{sub 3} NPs based sensor to carbon monoxide (CO) and various concentrations of other gases were measured at different temperatures. It found that the sensor based on the peanut-like α-Fe{sub 2}O{sub 3} NPs exhibited high response, fast response–recovery, and good selectivity to CO at 300 °C. The experimental results clearly demonstrated the potential application of α-Fe{sub 2}O{sub 3} NPs as a good sensing material in the fabrication of CO sensor.« less
Campbell, Kayleen; Craig, Duncan Q M; McNally, Tony
2008-11-03
Composites of paracetamol loaded poly(ethylene glycol) (PEG) with a naturally derived and partially synthetic layered silicate (nanoclay) were prepared using hot-melt extrusion. The extent of dispersion and distribution of the paracetamol and nanoclay in the PEG matrix was examined using a combination of field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM) and wide-angle X-ray diffraction (WAXD). The paracetamol polymorph was shown to be well dispersed in the PEG matrix and the nanocomposite to have a predominately intercalated and partially exfoliated morphology. The form 1 monoclinic polymorph of the paracetamol was unaltered after the melt mixing process. The crystalline behaviour of the PEG on addition of both paracetamol and nanoclay was investigated using differential scanning calorimetry (DSC) and polarised hot-stage optical microscopy. The crystalline content of PEG decreased by up to 20% when both drug and nanoclay were melt blended with PEG, but the average PEG spherulite size increased by a factor of 4. The time taken for 100% release of paracetamol from the PEG matrix and corresponding diffusion coefficients were significantly retarded on addition of low loadings of both naturally occurring and partially synthetic nanoclays. The dispersed layered silicate platelets encase the paracetamol molecules, retarding diffusion and altering the dissolution behaviour of the drug molecule in the PEG matrix.
Patete, Jonathan M.; Wong, Stanislaus S.; Scofield, Megan E.; ...
2015-05-30
LiFePO₄ materials have become increasingly popular as a cathode material due to the many benefits they possess including thermal stability, durability, low cost, and long life span. Nevertheless, to broaden the general appeal of this material for practical electrochemical applications, it would be useful to develop a relatively mild, reasonably simple synthesis method of this cathode material. Herein, we describe a generalizable, 2-step methodology of sustainably synthesizing LiFePO₄ by incorporating a template-based, ambient, surfactantless, seedless, U-tube protocol in order to generate size and morphologically tailored, crystalline, phase-pure nanowires. The purity, composition, crystallinity, and intrinsic quality of these wires were systematicallymore » assessed using transmission electron microscopy TEM, HRTEM, SEM, XRD, SAED, EDAX and high-resolution synchrotron XRD. From these techniques, we were able to determine that there is an absence of defects present in our wires, supporting the viability of our synthetic approach. Electrochemical analysis was also employed to assess their electrochemical activity. Although our nanowires do not contain any noticeable impurities, we attribute their less than optimal electrochemical rigor to differences in the chemical bonding between our LiFePO₄ nanowires and their bulk-like counterparts. Specifically, we demonstrate for the first time experimentally that the Fe-O3 chemical bond plays an important role in determining the overall conductivity of the material, an assertion which is further supported by recent first principles calculations. Nonetheless, our ambient, solution-based synthesis technique is capable of generating highly crystalline and phase-pure energy-storage-relevant nanowires that can be tailored so as to fabricate different sized materials of reproducible, reliable morphology.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solla, E.L., E-mail: esolla@uvigo.es
Herein, we report on the micro- and nanostructure of the calcium phosphate coating produced by pulsed laser deposition (PLD), using focused ion beam (FIB) lamella sample preparation and transmission electron microscopy (TEM) as the characterization technique. The initial selected area electron diffraction (SAED) data demonstrated the presence of hydroxyapatite (HA) over any other possible calcium phosphate crystalline structure and the polycrystalline nature of the coating. Moreover, the SAED analyses showed clear textured ring patterns coherent with the presence of a preferred orientation in the HA nano-crystal growth. The SAED data also indicated that the coating appears to be textured inmore » the 〈002〉 crystalline direction. Dark-field images obtained using 002 as the working reflection showed a clear oriented crystal growth in columns, from bottom to top. These columns have a peculiar arrangement of nano-crystals since, in some cases, the preferred orientation appears to start at a certain distance from the substrate. Direct d-spacing measurements on high-resolution TEM images provided further proof of the presence of an HA nano-crystal structure. The reported data may be of interest in the future to adjust the microstructure of the HA coatings. - Highlights: •The FIB lift-out technique allows a very site-specific sample preparation method for HRTEM analysis. •It also permits a fast assessment of the HA coating thickness and elemental composition (EDS). •The coatings exhibit a nano-crystalline nature, with a texturing effect along the 002 planes. •PLD is suitable for the production of crystalline c-axis oriented hydroxyapatite coatings. •The crystalline HA phase in the PLD coating is very similar to the present in bone.« less
Capturing the Surface Texture and Shape of Pollen: A Comparison of Microscopy Techniques
Sivaguru, Mayandi; Mander, Luke; Fried, Glenn; Punyasena, Surangi W.
2012-01-01
Research on the comparative morphology of pollen grains depends crucially on the application of appropriate microscopy techniques. Information on the performance of microscopy techniques can be used to inform that choice. We compared the ability of several microscopy techniques to provide information on the shape and surface texture of three pollen types with differing morphologies. These techniques are: widefield, apotome, confocal and two-photon microscopy (reflected light techniques), and brightfield and differential interference contrast microscopy (DIC) (transmitted light techniques). We also provide a first view of pollen using super-resolution microscopy. The three pollen types used to contrast the performance of each technique are: Croton hirtus (Euphorbiaceae), Mabea occidentalis (Euphorbiaceae) and Agropyron repens (Poaceae). No single microscopy technique provided an adequate picture of both the shape and surface texture of any of the three pollen types investigated here. The wavelength of incident light, photon-collection ability of the optical technique, signal-to-noise ratio, and the thickness and light absorption characteristics of the exine profoundly affect the recovery of morphological information by a given optical microscopy technique. Reflected light techniques, particularly confocal and two-photon microscopy, best capture pollen shape but provide limited information on very fine surface texture. In contrast, transmitted light techniques, particularly differential interference contrast microscopy, can resolve very fine surface texture but provide limited information on shape. Texture comprising sculptural elements that are spaced near the diffraction limit of light (∼250 nm; NDL) presents an acute challenge to optical microscopy. Super-resolution structured illumination microscopy provides data on the NDL texture of A. repens that is more comparable to textural data from scanning electron microscopy than any other optical microscopy technique investigated here. Maximizing the recovery of morphological information from pollen grains should lead to more robust classifications, and an increase in the taxonomic precision with which ancient vegetation can be reconstructed. PMID:22720050
Arul, Velusamy; Edison, Thomas Nesakumar Jebakumar Immanuel; Lee, Yong Rok; Sethuraman, Mathur Gopalakrishnan
2017-03-01
In this work, a simple hydrothermal route for the synthesis of fluorescent nitrogen doped carbon dots (N-CDs) is reported. The Hylocereus undatus (H. undatus) extract and aqueous ammonia are used as carbon and nitrogen source, respectively. The optical properties of synthesized N-CDs are analyzed using UV-Visible (UV-Vis) and fluorescence spectroscopy. The surface morphology, elemental composition, crystallinity and functional groups present in the N-CDs are examined using high resolution transmission electron microscopy (HR-TEM) with energy dispersive spectroscopy (EDS), selected area electron diffraction (SAED), X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy, respectively. The synthesized N-CDs emit strong blue fluorescence at 400nm under the excitation of 320nm. Further, the excitation dependent emission properties are also observed from the fluorescence of synthesized N-CDs. The HR-TEM results reveal that synthesized N-CDs are in spherical shape with average diameter of 2.5nm. The XRD pattern exhibits, the graphitic nature of synthesized N-CDs. The doping of nitrogen is confirmed from the EDS and FT-IR studies. The cytotoxicity and biocompatibility of N-CDs are evaluated through MTT assay on L-929 (Lymphoblastoid-929) and MCF-7 (Michigan Cancer Foundation-7) cells. The results indicate that the fluorescent N-CDs show less cytotoxicity and good biocompatibility on both L-929 and MCF-7 cells. Moreover, the N-CDs show excellent catalytic activity towards the reduction of methylene blue by sodium borohydride. Copyright © 2017 Elsevier B.V. All rights reserved.
El-Sherbiny, Ibrahim M; El-Shibiny, Ayman; Salih, Ehab
2016-07-01
This study reports the photo-induced green synthesis and antimicrobial assessment of poly(ɛ-caprolactone)/curcumin/grape leaf extract-Ag hybrid nanoparticles (PCL/Cur/GLE-Ag NPs). PCL/Cur/GLE NPs were synthesized via emulsion-solvent evaporation in the presence of PVA as a capping agent, then used as active nano-supports for the green synthesis and stabilization of AgNPs on their surfaces. Both Cur and GLE were selected and incorporated into the PCL nano-supports due to their reported promising antimicrobial activity that would further enhance that of the synthesized AgNPs. The developed PCL/Cur/GLE NPs and PCL/Cur/GLE-Ag hybrid NPs were characterized using UV-visible spectrophotometry, high resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD). HRTEM images showed that the PCL/Cur/GLE NPs are monodispersed and spherical with size of about 270nm, and the AgNPs were formed mainly on their surfaces with average size in the range 10-30nm. The synthesized AgNPs were found to be crystalline as shown by XRD patterns with fcc phase oriented along the (111), (200), (220) and (311) planes. The antimicrobial characteristics of the newly developed NPs were investigated against gram-positive and gram-negative bacteria in addition to two fungal strains. The results demonstrated that the PCL/Cur/GLE-Ag hybrid NPs have a potential antimicrobial activity against pathogenic bacterial species and could be considered as an alternative antibacterial agent. Copyright © 2016 Elsevier B.V. All rights reserved.
Kinetics of Cd(ii) adsorption and desorption on ferrihydrite: experiments and modeling.
Liang, Yuzhen; Tian, Lei; Lu, Yang; Peng, Lanfang; Wang, Pei; Lin, Jingyi; Cheng, Tao; Dang, Zhi; Shi, Zhenqing
2018-05-15
The kinetics of Cd(ii) adsorption/desorption on ferrihydrite is an important process affecting the fate, transport, and bioavailability of Cd(ii) in the environment, which was rarely systematically studied and understood at quantitative levels. In this work, a combination of stirred-flow kinetic experiments, batch adsorption equilibrium experiments, high-resolution transmission electron microscopy (HR-TEM), and mechanistic kinetic modeling were used to study the kinetic behaviors of Cd(ii) adsorption/desorption on ferrihydrite. HR-TEM images showed the open, loose, and sponge-like structure of ferrihydrite. The batch adsorption equilibrium experiments revealed that higher pH and initial metal concentration increased Cd(ii) adsorption on ferrihydrite. The stirred-flow kinetic results demonstrated the increased adsorption rate and capacity as a result of the increased pH, influent concentration, and ferrihydrite concentration. The mechanistic kinetic model successfully described the kinetic behaviors of Cd(ii) during the adsorption and desorption stages under various chemistry conditions. The model calculations showed that the adsorption rate coefficients varied as a function of solution chemistry, and the relative contributions of the weak and strong ferrihydrite sites for Cd(ii) binding varied with time at different pH and initial metal concentrations. Our model is able to quantitatively assess the contributions of each individual ferrihydrite binding site to the overall Cd(ii) adsorption/desorption kinetics. This study provided insights into the dynamic behavior of Cd(ii) and a predictive modeling tool for Cd(ii) adsorption/desorption kinetics when ferrihydrite is present, which may be helpful for the risk assessment and management of Cd contaminated sites.
NASA Astrophysics Data System (ADS)
Cherkova, S. G.; Volodin, V. A.; Cherkov, A. G.; Antonenko, A. Kh; Kamaev, G. N.; Skuratov, V. A.
2017-08-01
Light-emitting nanoclusters were formed in Si/SiO2 multilayer structures irradiated with 167 MeV Xe ions to the doses of 1011-3 × 1014 cm-2 and annealed in the forming-gas at 500 °C and in nitrogen at 800-1100 °C, 30 min. The thicknesses were ~4 nm or ~7-8 for the Si, and ~10 nm for the SiO2 layers. The structures were studied using photoluminescence (PL), Raman spectroscopy, and the cross-sectional high resolution transmission electron microscopy (HRTEM). As-irradiated samples showed the PL, correlating with the growth of the ion doses. HRTEM found the layers to be partly disintegrated. The thickness of the amorphous Si layer was crucial. For 4 nm thick Si layers the PL was peaking at ~490 nm, and quenched by the annealing. It was ascribed to the structural imperfections. For the thicker Si layers the PL was peaking at ~600 nm and was attributed to the Si-rich nanoclusters in silicon oxide. The annealing increases the PL intensity and shifts the band to ~790 nm, typical of Si nanocrystals. Its intensity was proportional to the dose. Raman spectra confirmed the nanocrystals formation. All the results obtained evidence the material melting in the tracks for 10-11-10-10 s providing thereby fast diffusivities of the atoms. The thicker Si layers provide more excess Si to create the nanoclusters via a molten state diffusion.
NASA Astrophysics Data System (ADS)
Rajkumar, K. S.; Kanipandian, N.; Thirumurugan, R.
2016-01-01
The increasing use of nano based-products induces the potential hazards from their manufacture, transportation, waste disposal and management processes. In this report, we emphasized the acute toxicity of silver nanoparticles (AgNPs) using freshwater fish Labeo rohita as an aquatic animal model. The AgNPs were synthesized using chemical reduction method and the formation of AgNPs was monitored by UV-Visible spectroscopy analysis. The functional groups, crystaline nature and morphological characterizations were carried out by fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM) analysis. UV-Vis range was observed at 420 nm and XRD pattern showed that the particles are crystalline nature. HRTEM analysis revealed that the morphology of particles was spherical and size ranges between 50 and 100 nm. This investigation was extended to determine the potential acute toxicity, L. rohita was treated orally with the lethal concentration (LC50) of AgNPs. The antioxidative responses were studied in the three major tissues such as gill, liver and muscle of L. rohita. The results of this investigation showed that increasing the concentration of AgNPs led to bioaccumulation of AgNPs in the major tissues. The haematological parameters showed significant alterations in the treated fish. The histological changes caused by chemically synthesized AgNPs demonstrated the damages in the tissues, primary lamella and blood vessels of L. rohita. The histological study also displayed the formation of vacuolation in liver and muscle when compared with untreated tissues (control) of L. rohita.
High luminescent L-cysteine capped CdTe quantum dots prepared at different reaction times
NASA Astrophysics Data System (ADS)
Kiprotich, Sharon; Onani, Martin O.; Dejene, Francis B.
2018-04-01
This paper reports a facile synthesis route of high luminescent L-cysteine capped CdTe quantum dots (QDs). The effect of reaction time on the growth mechanism, optical and physical properties of the CdTe QDs was investigated in order to find the suitability of them towards optical and medical applications. The representative high-resolution transmission microscopy (HRTEM) analysis showed that the as-obtained CdTe QDs appeared as spherical particles with excellent monodispersity. The images exhibited clear lattice fringes which are indicative of good crystallinity. The X-ray diffraction (XRD) pattern displayed polycrystalline nature of the QDs which correspond well to zinc blende phase of bulk CdTe. The crystallite sizes calculated from the Scherrer equation were less than 10 nm for different reaction times which were in close agreement with the values estimated from HRTEM. An increase in reaction time improved crystallinity of the sample as explained by highest peak intensity of the XRD supported by the photoluminescence emission spectra which showed high intensity at a longer growth time. It was observed that for prolonged growth time the emission bands were red shifted from about 517-557 nm for 5-180 min of reaction time due to increase in particle sizes. Ultraviolet and visible analysis displayed well-resolved absorption bands which were red shifted upon an increase in reaction time. There was an inverse relation between the band gap and reaction time. Optical band gap decreases from 3.98 to 2.59 eV with the increase in reaction time from 15 to 180 min.
Li, Wei; Livi, Kenneth J T; Xu, Wenqian; Siebecker, Matthew G; Wang, Yujun; Phillips, Brian L; Sparks, Donald L
2012-11-06
To better understand the sequestration of toxic metals such as nickel (Ni), zinc (Zn), and cobalt (Co) as layered double hydroxide (LDH) phases in soils, we systematically examined the presence of Al and the role of mineral dissolution during Zn sorption/precipitation on γ-Al(2)O(3) (γ-alumina) at pH 7.5 using extended X-ray absorption fine structure spectroscopy (EXAFS), high-resolution transmission electron microscopy (HR-TEM), synchrotron-radiation powder X-ray diffraction (SR-XRD), and (27)Al solid-state NMR. The EXAFS analysis indicates the formation of Zn-Al LDH precipitates at Zn concentration ≥0.4 mM, and both HR-TEM and SR-XRD reveal that these precipitates are crystalline. These precipitates yield a small shoulder at δ(Al-27) = +12.5 ppm in the (27)Al solid-state NMR spectra, consistent with the mixed octahedral Al/Zn chemical environment in typical Zn-Al LDHs. The NMR analysis provides direct evidence for the existence of Al in the precipitates and the migration from the dissolution of γ-alumina substrate. To further address this issue, we compared the Zn sorption mechanism on a series of Al (hydr)oxides with similar chemical composition but differing dissolubility using EXAFS and TEM. These results suggest that, under the same experimental conditions, Zn-Al LDH precipitates formed on γ-alumina and corundum but not on less soluble minerals such as bayerite, boehmite, and gibbsite, which point outs that substrate mineral surface dissolution plays an important role in the formation of Zn-Al LDH precipitates.
A simple and facile synthesis of MPA capped CdSe and CdSe/CdS core/shell nanoparticles
NASA Astrophysics Data System (ADS)
Sukanya, D.; Sagayaraj, P.
2015-06-01
II-VI semiconductor nanostructures, in particular, CdSe quantum dots have drawn a lot of attention because of their promising potential applications in biological tagging, photovoltaic, display devices etc. due to their excellent optical properties, high emission quantum yield, size dependent emission wavelength and high photostability. In this paper, we describe the synthesis and properties of mercaptopropionic acid capped CdSe and CdSe/CdS nanoparticles through a simple and efficient co-precipitation method followed by hydrothermal treatment. The growth process, characterization and the optical absorption as a function of wavelength for the synthesized MPA capped CdSe and CdSe/CdS nanoparticles have been determined using X-ray diffraction study (XRD), Ultraviolet-Visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FT-IR) and High Resolution Transmission Electron Microscopy (HRTEM).
Wet Chemical Synthesis of SnS/Graphene Nanocomposites for High Performance Supercapacitor Electrodes
NASA Astrophysics Data System (ADS)
Ravuri, Syamsai; Pandey, Chandan Abhishek; Ramchandran, R.; Jeon, Soon Kwan; Grace, Andrews Nirmala
A series of SnS/Graphene (SnS/G) nanocomposites at various concentrations of graphene were synthesized by a wet chemical route and the prepared composites were analyzed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), High Resolution Transmission Electron Microscopy (HRTEM) for its structural and morphological investigation. Results show that the prepared SnS nanoparticles in the composite are ˜30nm sized and uniformly dispersed on graphene sheets. To test the supercapacitance behavior, electrochemical measurements were carried out in 6M KOH electrolyte. A maximum specific capacitance of 984F/g was observed for SnS/G-c at 5mVs-1 scan rate. Galvanostatic charge/discharge curves showed an excellent cyclic stability with higher charge/discharge duration, and hence could be used for high performance supercapacitor applications.
NASA Astrophysics Data System (ADS)
Chabri, Sumit; Bera, S.; Mondal, B. N.; Basumallick, A.; Chattopadhyay, P. P.
2017-03-01
Microstructure and magnetic behavior of nanocrystalline 50Cu-40Co-10Si (at%) alloy prepared by mechanical alloying and subsequent isothermal annealing in the temperature range of 450-650 °C have been studied. Phase evolution during mechanical alloying and isothermal annealing is characterized by X-ray diffraction (XRD), differential thermal analyzer (DTA), high resolution transmission electron microscopy (HRTEM) and magnetic measurement. Addition of Si has been found to facilitate the metastable alloying of Co in Cu resulting into the formation of single phase solid solution having average grain size of 9 nm after ball milling for 50 h duration. Annealing of the ball milled alloy improves the magnetic properties significantly and best combination of magnetic properties has been obtained after annealing at 550 °C for 1 h duration.
Hybrid magnetic materials formed by ferritin intercalated into a layered double hydroxide
NASA Astrophysics Data System (ADS)
Clemente-León, Miguel; Coronado, Eugenio; Primo, Vicent; Ribera, Antonio; Soriano-Portillo, Alejandra
2008-12-01
A hybrid magnetic material formed by ferritin intercalated into a layered double hydroxide (LDH) of Mg and Al (Mg/Al molar ratio 2) is prepared and characterized through powder X-ray diffraction (XRD), thermogravimetric analysis (TGA), Fourier transform infrared (FT-IR) spectroscopy, electron probe microanalysis (EPMA) and high resolution transmission electron microscopy (HRTEM). One observes an enhancement in the thermal stability of the ferritin molecules when they are inserted in the layered material. Magnetic measurements of the hybrid material exhibit the typical superparamagnetic behaviour of the ferritin molecule. On the other hand, the intercalation of ferritin into the LDH guarantees a homogeneous dispersion of the ferritin molecules, which do not aggregate even after calcination of the sample. This feature allows obtaining well-dispersed magnetic metal oxide nanoparticles upon calcination of the hybrid material.
Chen, Bailin; Jiang, Huijian; Zhu, Yan; Cammers, Arthur; Selegue, John P
2005-03-30
We follow the evolution of polyoxomolybdate nanoparticles in suspensions derived from the keplerate (NH4)42[MoVI72MoV60O372(CH3CO2)30(H2O)72].ca..300H2O.ca..10CH3CO2NH4 ({Mo132}) by flow field-flow fractionation (FlFFF) to monitor the particle-size distribution in situ, atomic force and high-resolution transmission electron microscopy (AFM, SEM, and HRTEM) to confirm particle sizes, inductively coupled plasma-optical emission spectrometry (ICP-OES) to determine the Mo content of the FlFFF-separated fractions, and UV/visible spectroscopy to confirm the identity of the species in suspension. We observe the formation of 3-75-nm polyoxomolybdate particles in suspension and the dynamic growth of {Mo132} crystals.
Desorption of Furfural from Bimetallic Pt-Fe Oxides/Alumina Catalysts.
Dimas-Rivera, Gloria Lourdes; de la Rosa, Javier Rivera; Lucio-Ortiz, Carlos J; De Los Reyes Heredia, José Antonio; González, Virgilio González; Hernández, Tomás
2014-01-20
In this work, the desorption of furfural, which is a competitive intermediate during the production of biofuel and valuable aromatic compounds, was studied using pure alumina, as well as alumina impregnated with iron and platinum oxides both individually and in combination, using thermogravimetric analysis (TGA). The bimetallic sample exhibited the lowest desorption percentage for furfural. High-resolution transmission electron microscopy (HRTEM) imaging revealed the intimate connection between the iron and platinum oxide species on the alumina support. The mechanism of furfural desorption from the Pt-Fe/Al₂O₃ 0.5%-0.5% sample was determined using physisorbed furfural instead of chemisorbed furfural; this mechanism involved the oxidation of the C=O group on furfural by the catalyst. The oxide nanoparticles on γ-Al₂O₃ support helped to stabilize the furfural molecule on the surface.
Desorption of Furfural from Bimetallic Pt-Fe Oxides/Alumina Catalysts
Dimas-Rivera, Gloria Lourdes; de la Rosa, Javier Rivera; Lucio-Ortiz, Carlos J.; De los Reyes Heredia, José Antonio; González, Virgilio González; Hernández, Tomás
2014-01-01
In this work, the desorption of furfural, which is a competitive intermediate during the production of biofuel and valuable aromatic compounds, was studied using pure alumina, as well as alumina impregnated with iron and platinum oxides both individually and in combination, using thermogravimetric analysis (TGA). The bimetallic sample exhibited the lowest desorption percentage for furfural. High-resolution transmission electron microscopy (HRTEM) imaging revealed the intimate connection between the iron and platinum oxide species on the alumina support. The mechanism of furfural desorption from the Pt-Fe/Al2O3 0.5%-0.5% sample was determined using physisorbed furfural instead of chemisorbed furfural; this mechanism involved the oxidation of the C=O group on furfural by the catalyst. The oxide nanoparticles on γ-Al2O3 support helped to stabilize the furfural molecule on the surface. PMID:28788472
The electronic properties of SWNTs intercalated by electron acceptors
NASA Astrophysics Data System (ADS)
Chernysheva, M. V.; Kiseleva, E. A.; Verbitskii, N. I.; Eliseev, A. A.; Lukashin, A. V.; Tretyakov, Yu. D.; Savilov, S. V.; Kiselev, N. A.; Zhigalina, O. M.; Kumskov, A. S.; Krestinin, A. V.; Hutchison, J. L.
2008-05-01
Here we report synthesis of Chal@SWNT nanocomposites (where Chal=S, Se and Te) and the impact of the intercalated electron-acceptor compounds on the electronic properties of SWNTs. The chalcogens were introduced to the channels of single-walled carbon nanotubes by molten media technique via impregnation of pre-opened SWNTs with melted guest compounds in vacuum. HRTEM imaging confirms the filling of nanotube channels by continuous nanostructures of corresponding chalcogens. The strong influence of incorporated matter on the electronic properties of the SWNTs was detected by Raman spectroscopy.
NASA Astrophysics Data System (ADS)
Zhang, Jinfeng; Lv, Jiali; Dai, Kai; Liang, Changhao; Liu, Qi
2018-02-01
In this work, we have developed a simple synthetic approach of nanosheet-assembled BiOCl/BiOBr microspheres by an ethylene glycol (EG)-assisted hydrothermal method. The crystalline form, morphology, chemical composition, optical performance and surface area of BiOCl/BiOBr microspheres were identified using X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution TEM (HRTEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy spectra (EDX), UV-vis diffuse reflectance spectroscopy (DRS) analysis, high resolution X-ray photoelectron spectra (XPS) and N2 adsorption-desorption isotherms. BiOCl/BiOBr microspheres were nanosheet-assembled particles, which possessed visible light absorption under LED light irridation. Additionally, the methylene blue (MB) photodegradation performance of different BiOCl/BiOBr microspheres irradiated under 410 nm LED light arrays were investigated, the results exhibited that as-prepared BiOCl/BiOBr products showed higher catalytic effiency than pure BiOCl or BiOBr. By optimizing the composition ration of the BiOCl and BiOBr, up to 93% degradation rate can be obtained in the 40%BiOCl/BiOBr microspheres. Finally, the photocatalytic mechanism of BiOCl/BiOBr microspheres had been proposed.
Microbial reduction of uranium (VI) by Bacillus sp. dwc-2: A macroscopic and spectroscopic study.
Li, Xiaolong; Ding, Congcong; Liao, Jiali; Du, Liang; Sun, Qun; Yang, Jijun; Yang, Yuanyou; Zhang, Dong; Tang, Jun; Liu, Ning
2017-03-01
The microbial reduction of U(VI) by Bacillus sp. dwc-2, isolated from soil in Southwest China, was explored using transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and X-ray absorption near edge spectroscopy (XANES). Our studies indicated that approximately 16.0% of U(VI) at an initial concentration of 100mg/L uranium nitrate could be reduced by Bacillus sp. dwc-2 at pH8.2 under anaerobic conditions at room temperature. Additionally, natural organic matter (NOM) played an important role in enhancing the bioreduction of U(VI) by Bacillus sp. dwc-2. XPS results demonstrated that the uranium presented mixed valence states (U(VI) and U(IV)) after bioreduction, which was subsequently confirmed by XANES. Furthermore, the TEM and high resolution transmission electron microscopy (HRTEM) analysis suggested that the reduced uranium was bioaccumulated mainly within the cell and as a crystalline structure on the cell wall. These observations implied that the reduction of uranium may have a significant effect on its fate in the soil environment in which these bacterial strains occur. Copyright © 2016. Published by Elsevier B.V.
Bedi, Ankita; Singh, Braj Raj; Deshmukh, Sunil K; Aggarwal, Nisha; Barrow, Colin J; Adholeya, Alok
2018-05-01
In this study, an ecofriendly and economically viable waste management approach have been attempted towards the biosynthesis of agriculturally important nanoparticles from jarosite waste. Aspergillus terreus strain J4 isolated from jarosite (waste from Debari Zinc Smelter, Udaipur, India), showed good leaching efficiency along with nanoparticles (NPs) formation under ambient conditions. Fourier-transform infrared spectroscopy (FT-IR) and transmission electron microscopy (TEM) confirmed the formation of NPs. Energy dispersive X-ray spectroscopy (EDX analysis) showed strong signals for zinc, iron, calcium and magnesium, with these materials being leached out. TEM analysis and high resolution transmission electron microscopy (HRTEM) showed semi-quasi spherical particles having average size of 10-50nm. Thus, a novel biomethodology was developed using fungal cell-free extract for bioleaching and subsequently nanoconversion of the waste materials into nanostructured form. These biosynthesized nanoparticles were tested for their efficacy on seed emergence activity of wheat (Triticum aestivum) seeds and showed enhanced growth at concentration of 20ppm. These nanomaterials are expected to enhance plant growth properties and being targeted as additives in soil fertility and crop productivity enhancement. Copyright © 2017. Published by Elsevier B.V.
Saravanakumar, Arthanari; Peng, Mei Mei; Ganesh, Mani; Jayaprakash, Jayabalan; Mohankumar, Murugan; Jang, Hyun Tae
2017-09-01
Low cost and eco-friendly green synthesis of silver nanoparticles (AgNPs) from silver nitrate (AgNO 3 ) using Prunus japonica leaves extract as reducing agent by a simple method at room temperature. The biosynthesized nanoparticles (NPs) were characterized by UV-Vis, tunneling electron microscopy (HR-TEM), scanning electron microscopy (SEM) coupled with X-ray energy dispersive spectrophotometer (EDAX), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). In UV-Vis spectroscopy results, the λ max was observed at 441 nm. The AgNPs synthesized were spherical, hexagonal, and irregular in shapes. The EDAX and XRD spectrum confirmed the presence of silver ions and crystalline nature of synthesized AgNPs. FTIR showed the functional groups such as C = O, N-H and C-N groups involved in the reduction of Ag + to Ag. 2, 2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay was performed and it showed the percentage inhibition in concentration-dependent manner. The synthesized AgNPs showed antibacterial activity against Escherichia coli, Proteus vulgaris, Staphylococcus aureus and Bacillus cereus to different extents and the higher activity was observed in Proteus vulgaris.
NASA Astrophysics Data System (ADS)
Nayek, C.; Manna, K.; Imam, A. A.; Alqasrawi, A. Y.; Obaidat, I. M.
2018-02-01
Understanding the size dependent magnetic anisotropy of iron oxide nanoparticles is essential for the successful application of these nanoparticles in several technological and medical fields. PEG-coated iron oxide (Fe3O4) nanoparticles with core diameters of 12 nm, 15 nm, and 16 nm were synthesized by the usual co-precipitation method. The morphology and structure of the nanoparticles were investigated using transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), and X-ray diffraction (XRD). Magnetic measurements were conducted using a SQUID. The effective magnetic anisotropy was calculated using two methods from the magnetization measurements. In the first method the zero-field-cooled magnetization versus temperature measurements were used at several applied magnetic fields. In the second method we used the temperature-dependent coercivity curves obtained from the zero-field-cooled magnetization versus magnetic field hysteresis loops. The role of the applied magnetic field on the effective magnetic anisotropy, calculated form the zero-field-cooled magnetization versus temperature measurements, was revealed. The size dependence of the effective magnetic anisotropy constant Keff obtained by the two methods are compared and discussed.
Duan, Wenyuan; Zhao, Mingshu; Shen, Junfang; Zhao, Suixin; Song, Xiaoping
2017-09-28
Herein, olivine LiFePO 4 covered with graphene and carbon layers is prepared via a sol-gel method, followed by calcination, and the resultant composite is used as a cathode material in aqueous rechargeable lithium-ion batteries (ARLBs). The phase structure and morphology of the composite are characterized via X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and specific surface area analysis (BET). The ARLB system is fabricated using LiFePO 4 /C/graphene as the cathode and a zinc anode in 1 mol L -1 ZnSO 4 ·7H 2 O and saturated LiNO 3 aqueous solution without dissolved oxygen, which delivers a capacity of 153 mA h g -1 at 0.5C rate. Even at a 50C rate, it maintains a capacity of 95 mA h g -1 after 200 cycles. The excellent rate capabilities show that this cathode material exhibits good electrochemical performance and this novel ARLB has great potential in the fields of energy storage and high power sources.
NASA Astrophysics Data System (ADS)
Dhar, Sukanta; Mandal, Sourav; Das, Gourab; Mukhopadhyay, Sumita; Pratim Ray, Partha; Banerjee, Chandan; Barua, Asok Kumar
2015-08-01
A novel fluorinated phosphorus doped silicon oxide based nanocrystalline material have been used to prepare heterojunction solar cells on flat p-type crystalline silicon (c-Si) Czochralski (CZ) wafers. The n-type nc-SiO:F:H material were deposited by radio frequency plasma enhanced chemical vapor deposition. Deposited films were characterized in detail by using atomic force microscopy (AFM), high resolution transmission electron microscopy (HRTEM), Raman, fourier transform infrared spectroscopy (FTIR) and optoelectronics properties have been studied using temperature dependent conductivity measurement, Ellipsometry, UV-vis spectrum analysis etc. It is observed that the cell fabricated with fluorinated silicon oxide emitter showing higher initial efficiency (η = 15.64%, Jsc = 32.10 mA/cm2, Voc = 0.630 V, FF = 0.77) for 1 cm2 cell area compare to conventional n-a-Si:H emitter (14.73%) on flat c-Si wafer. These results indicate that n type nc-SiO:F:H material is a promising candidate for heterojunction solar cell on p-type crystalline wafers. The high Jsc value is associated with excellent quantum efficiencies at short wavelengths (<500 nm).
Grumezescu, Alexandru Mihai; Chifiriuc, Mariana Carmen; Saviuc, Crina; Grumezescu, Valentina; Hristu, Radu; Mihaiescu, Dan Eduard; Stanciu, George A; Andronescu, Ecaterina
2012-12-01
The aim of the present study was to demonstrate that Fe(3)O(4)/oleic acid core/shell nanostructures could be used as systems for stabilizing the Eugenia carryophyllata essential oil (EO) on catheter surface pellicles, in order to improve their resistance to fungal colonization. EO microwave assisted extraction was performed in a Neo-Clevenger (related) device and its chemical composition was settled by GC-MS analysis. Fe(3)O(4)/oleic acid-core/shell nanoparticles (NP) were obtained by a precipitation method under microwave condition. High resolution transmission electron microscopy (HR-TEM) was used as a primary characterization method. The NPs were processed to achieve a core/shell/EO coated-shell nanosystem further used for coating the inner surface of central venous catheter samples. The tested fungal strains have been recently isolated from different clinical specimens. The biofilm architecture was assessed by confocal laser scanning microscopy (CLSM). Our results claim the usage of hybrid nanomaterial (core/shell/coated-shell) for the stabilization of E. carryophyllata EO, which prevented or inhibited the fungal biofilm development on the functionalized catheter, highlighting the opportunity of using these nanosystems to obtain improved, anti-biofilm coatings for biomedical applications.
Synthesis and electrochemical properties of NiO nanospindles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Hai; University of Chinese Academy of Sciences, Beijing 100049; Lv, Baoliang, E-mail: lbl604@sxicc.ac.cn
2014-02-01
Graphical abstract: NiO nanospindles with a different electrochemical activity as compared to those previous reports were synthesized via an agglomeration–dissolution–recrystallization growth process without the addition of any surfactant. - Highlights: • NiO nanospindles were synthesized without the addition of any surfactant. • The agglomeration–dissolution–recrystallization growth process was used to explain the precursors’ formation process of the spindle-like NiO. • As-obtained spindle-like NiO showed a different electrochemical activity as compared to those previous reports. - Abstract: NiO nanospindles were successfully synthesized via a hydrothermal and post-treatment method. The as-synthesized nanospindles were about several hundred nanometers in width and about one micrometermore » in length. X-ray diffraction (XRD) analysis revealed that the spindle-like structure was cubic NiO phase crystalline. Scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM) analysis indicated that these NiO nanospindles were of single crystal nature. On the basis of time-dependent experiments, a possible agglomeration–dissolution–recrystallization growth process was proposed to explain the formation process of the spindle-like precursors. The cyclic voltammetry (CV) measurement showed that the as-prepared spindle-like NiO exhibited a pseudo-capacitance behavior.« less
NASA Astrophysics Data System (ADS)
Ben Daly, A.; Craciun, D.; Laura Ursu, E.; Lemaître, A.; Maaref, M. A.; Iacomi, F.; Vasile, B. S.; Craciun, V.
2017-10-01
We present the effects of AlGaAs alloy composition on InAlAs quantum dots (QDs) optical and structural properties. Photoluminescence (PL) analysis of samples having a variety of aluminium composition values covering type-II transitions clearly in QDs showed the presence of two transitions X-Sh and X-Ph. High-resolution X-ray diffraction (HRXRD) investigations showed that the layers grew epitaxially on the GaAs substrate, with no relaxation regardless the Al content of AlGaAs layer. From the reciprocal space map (RSM) investigation around (004) and (115) diffraction peaks, it was shown that the InAlAs layer is fully strained, the in-plane lattice parameters (a and b, a = b) being identical to those of GaAs substrate, while the c lattice parameter was dependent on the In and Al concentrations, being larger than that of the substrate. High-resolution transmission electronic microscopy (HRTEM) investigations confirmed that films grew epitaxially on the GaAs substrate with no visible dislocations or other major defects within the InAlAs/GaAlAs QDs structure.
Atomic Step Formation on Sapphire Surface in Ultra-precision Manufacturing
Wang, Rongrong; Guo, Dan; Xie, Guoxin; Pan, Guoshun
2016-01-01
Surfaces with controlled atomic step structures as substrates are highly relevant to desirable performances of materials grown on them, such as light emitting diode (LED) epitaxial layers, nanotubes and nanoribbons. However, very limited attention has been paid to the step formation in manufacturing process. In the present work, investigations have been conducted into this step formation mechanism on the sapphire c (0001) surface by using both experiments and simulations. The step evolutions at different stages in the polishing process were investigated with atomic force microscopy (AFM) and high resolution transmission electron microscopy (HRTEM). The simulation of idealized steps was constructed theoretically on the basis of experimental results. It was found that (1) the subtle atomic structures (e.g., steps with different sawteeth, as well as steps with straight and zigzag edges), (2) the periodicity and (3) the degree of order of the steps were all dependent on surface composition and miscut direction (step edge direction). A comparison between experimental results and idealized step models of different surface compositions has been made. It has been found that the structure on the polished surface was in accordance with some surface compositions (the model of single-atom steps: Al steps or O steps). PMID:27444267
Teng, Minmin; Wang, Hongtao; Li, Fengting; Zhang, Bingru
2011-03-01
Mesoporous polyvinylpyrrolidone (PVP)/SiO(2) composite nanofiber membranes functionalized with thioether groups have been fabricated by a combination method of sol-gel process and electrospinning. The precursor sol was synthesized by one-step co-condensation of tetraethyl orthosilicate (TEOS) and 1,4-bis(triethoxysilyl)propane tetrasulfide (BTESPTS, (CH(3)CH(2)O)(3)Si(CH(2))(3)S-S-S-S(CH(2))(3)Si-(OCH(2)CH(3))(3)), with the triblock copolymer poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (P123, EO(20)PO(70)EO(20)) as template. After the addition of PVP, nanofiber membranes were prepared by electrospinning. The membranes were characterized by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM) images, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), N(2) adsorption-desorption isotherms, and an Elementar Vario EL analyzer. The composites were used as highly selective adsorbents for Hg(2+) due to the modification with thioether groups (-S-), and were conveniently separated from the waste water. The composite could be regenerated through acidification. Copyright © 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ghosh, Siddharth; Awasthi, Manohar; Ghosh, Moumita; Seibt, Michael; Niehaus, Thomas A.
2016-12-01
Luminescent carbon nanodots (CND) are a recent addition to the family of carbon nanostructures. Interestingly, a large group of CNDs are fluorescent in the visible spectrum and possess single dipole emitters with potential applications in super-resolution microscopy, quantum information science, and optoelectronics. There is a large diversity of CND’s size as well as a strong variability of edge topology and functional groups in real samples. This hampers a direct comparison of experimental and theoretical findings that is necessary to understand the unusual photophysics of these systems. Here, we derive atomistic models of finite sized (<2.5 nm) CNDs from high resolution transmission electron microscopy (HRTEM) which are studied using approximate time-dependent density functional theory. The atomistic models are found to be primarily two-dimensional (2D) and can hence be categorised as graphene quantum dots (GQD). The GQD model structures that are presented here show excitation energies in the visible spectrum matching previous single GQD level photoluminescence studies. We also present the effect of edge hydroxyl and carboxyl functional groups on the absorption spectrum. Overall, the study reveals the atomistic origin of CNDs photoluminescence in the visible range.
Yuan, Xiaoya; Zhou, Chao; Jing, Qiuye; Tang, Qi; Mu, Yuanhua; Du, An-ke
2016-01-01
Graphitic-C3N4 nanosheets (CN)/ZnO photocatalysts (CN/ZnO) with different CN loadings were successfully prepared via a simple precipitation-calcination in the presence of exfoliated C3N4 nanosheets. Their morphology and structure were thoroughly characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), UV-Vis diffuse reflectance spectroscopy (DRS) and photoluminescence spectra (PL). The results showed that hexagonal wurzite-phase ZnO nanoparticles were randomly distributed onto the CN nanosheets with a well-bonded interface between the two components in the CN/ZnO composites. The performance of the photocatalytic Cr(VI) reduction indicated that CN/ZnO exhibited better photocatalytic activity than pure ZnO under visible-light irradiation and the photocatalyst composite with a lower loading of CN sheets eventually displayed higher activity. The enhanced performance of CN/ZnO photocatalysts could be ascribed to the increased absorption of the visible light and the effective transfer and separation of the photogenerated charge carriers. PMID:28335301
NASA Astrophysics Data System (ADS)
Dupont, L.; Hervieu, M.; Rousse, G.; Masquelier, C.; Palacín, M. R.; Chabre, Y.; Tarascon, J. M.
2000-12-01
Transmission electron microscopy (TEM) measurements were performed on electrochemically partially delithiated prepared spinel Li1-xMn2O4 samples. The potential-composition profile of LiMn2O4 exhibits (besides the two plateaus at 4.05 and 4.1 V) two additional redox steps of identical capacity at 4.5 and 3.3/3.95 V. We found by TEM studies that these extra steps are the signature of a reversible phase transition between LiMn2O4 spinel type structure and a new Li1-xMn2O4 double hexagonal (DH) type structure (a≈5.8 Å, c≈8.9 Å, P63mc). The latter is isotypic with DH LiFeSnO4. Selected area electron diffraction (SAED) and high-resolution transmission electron microscopy (HRTEM) made it possible to identify the mechanism by which this cubic-DH phase transition occurs within a particle. Based on the structural findings the origin as well as the similar electrochemical capacity of the 3.3/3.95 and 4.5 V anomalies are explained.
Direct nucleation of silver nanoparticles on graphene sheet.
Singh, Manoj K; Titus, E; Krishna, R; Hawaldar, R R; Goncalves, G; Marques, P A A P; Gracio, J
2012-08-01
Silver (Ag) nanoparticles were synthesized on the surface of graphene sheet by the simultaneous reduction of Ag+ and graphene oxide (GO) in the presence of simple reducing agent, hydrazine hydrate (N2H4 x H2O). Both the Ag+ and GO were reduced and Ag+ was nucleated onto graphene. GO flakes were prepared by conventional chemical exfoliation method and in the presence of strong acidic medium of potassium chlorate. Silver nanoparticles were prepared using 0.01 M AgNO3 solution. The reduced GO sheet decorated with Ag is referred as G-Ag sample. G-Ag was characterized by FTIR (Fourier transform infrared) spectroscopy using GO as standard. An explicit alkene peak appeared around 1625 cm(-1) was observed in G-Ag sample. Besides, the characteristic carbonyl and hydroxyl peaks shows well reduction of GO. The FTIR therefore confirms the direct interaction of Ag into Graphene. SEM (scanning electron microscopy) and TEM (transmission electron microscopy) analysis were performed for morphological probing. The average size of Ag nanoparticles was confirmed by around 5-10 nm by the high-resolution TEM (HRTEM). The Ag quantum dots incorporated nanocomposite material could become prominent candidate for diverse applications including photovoltaic, catalysis, and biosensors etc.
Fast Preparation of Porous MnO/C Microspheres as Anode Materials for Lithium-Ion Batteries
Su, Jing; Liang, Hao; Gong, Xian-Nian; Lv, Xiao-Yan; Long, Yun-Fei; Wen, Yan-Xuan
2017-01-01
Porous MnO/C microspheres have been successfully fabricated by a fast co-precipitation method in a T-shaped microchannel reactor. The structures, compositions, and electrochemical performances of the obtained MnO/C microspheres are characterized by X-ray diffraction, field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (HRTEM), Brunauer–Emmett–Teller analysis, charge-discharge testing, cyclic voltammograms, and electrochemical impedance spectra. Experimental results reveal that the as-prepared MnO/C, with a specific surface area of 96.66 m2·g−1 and average pore size of 24.37 nm, exhibits excellent electrochemical performance, with a discharge capacity of 655.4 mAh·g−1 after cycling 50 times at 1 C and capacities of 808.3, 743.7, 642.6, 450.1, and 803.1 mAh·g−1 at 0.2, 0.5, 1, 2, and 0.2 C, respectively. Moreover, the controlled method of using a microchannel reactor, which can produce larger specific surface area porous MnO/C with improved cycling performance by shortening lithium-ion diffusion distances, can be easily applied in real production on a large scale. PMID:28587120
Atomic Step Formation on Sapphire Surface in Ultra-precision Manufacturing
NASA Astrophysics Data System (ADS)
Wang, Rongrong; Guo, Dan; Xie, Guoxin; Pan, Guoshun
2016-07-01
Surfaces with controlled atomic step structures as substrates are highly relevant to desirable performances of materials grown on them, such as light emitting diode (LED) epitaxial layers, nanotubes and nanoribbons. However, very limited attention has been paid to the step formation in manufacturing process. In the present work, investigations have been conducted into this step formation mechanism on the sapphire c (0001) surface by using both experiments and simulations. The step evolutions at different stages in the polishing process were investigated with atomic force microscopy (AFM) and high resolution transmission electron microscopy (HRTEM). The simulation of idealized steps was constructed theoretically on the basis of experimental results. It was found that (1) the subtle atomic structures (e.g., steps with different sawteeth, as well as steps with straight and zigzag edges), (2) the periodicity and (3) the degree of order of the steps were all dependent on surface composition and miscut direction (step edge direction). A comparison between experimental results and idealized step models of different surface compositions has been made. It has been found that the structure on the polished surface was in accordance with some surface compositions (the model of single-atom steps: Al steps or O steps).
Durai, Prabhu; Chinnasamy, Arulvasu; Gajendran, Babu; Ramar, Manikandan; Pappu, Srinivasan; Kasivelu, Govindaraju; Thirunavukkarasu, Ashokkumar
2014-09-12
Metallic nanoparticles are major concern, particularly silver nanoparticles (AgNPs) are used in various applications. In the present investigation, we report a novel strategy with biological approach for synthesis of AgNPs using sodium para-hydroxybenzoate tetrahydrate (SPHT) isolated from Vitex negundo leaves. The synthesized SPHT-AgNPs were characterized by UV-vis spectroscopy, high resolution transmission electron microscopy (HRTEM) with selected area electron diffraction (SAED) pattern, field emission scanning electron microscopy (FESEM) with energy-dispersive X-ray spectroscopy (EDX), zeta potential and Fourier transform infrared spectroscopy (FT-IR) analysis. The various pH and temperature were evaluated to find their stability effects on SPHT-AgNPs synthesis peak at 430 nm. The size of SPHT-AgNPs were ranging from 26 to 39 nm and were spherical in shape. The hydroxyl and carboxylic functional groups from bio-reducing mediators of SPHT have a stronger ability towards synthesis of AgNPs, which was confirmed using FT-IR spectrum. In addition, anticancer activity were determined by MTT assay, Annexin V-FITC/PI and cell cycle analysis. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Formation mechanisms for the dominant kinks with different angles in InP nanowires.
Zhang, Minghuan; Wang, Fengyun; Wang, Chao; Wang, Yiqian; Yip, SenPo; Ho, Johnny C
2014-01-01
The morphologies and microstructures of kinked InP nanowires (NWs) prepared by solid-source chemical vapor deposition method were examined using scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). Statistical analysis and structural characterization reveal that four different kinds of kinks are dominant in the grown InP NWs with a bending angle of approximately 70°, 90°, 110°, and 170°, respectively. The formation mechanisms of these kinks are discussed. Specifically, the existence of kinks with bending angles of approximately 70° and 110° are mainly attributed to the occurrence of stacking faults and nanotwins in the NWs, which could easily form by the glide of {111} planes, while approximately 90° kinks result from the local amorphorization of InP NWs. Also, approximately 170° kinks are mainly caused by small-angle boundaries, where the insertion of extra atomic planes could make the NWs slightly bent. In addition, multiple kinks with various angles are also observed. Importantly, all these results are beneficial to understand the formation mechanisms of kinks in compound semiconductor NWs, which could guide the design of nanostructured materials, morphologies, microstructures, and/or enhanced mechanical properties.
Formation mechanisms for the dominant kinks with different angles in InP nanowires
2014-01-01
The morphologies and microstructures of kinked InP nanowires (NWs) prepared by solid-source chemical vapor deposition method were examined using scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). Statistical analysis and structural characterization reveal that four different kinds of kinks are dominant in the grown InP NWs with a bending angle of approximately 70°, 90°, 110°, and 170°, respectively. The formation mechanisms of these kinks are discussed. Specifically, the existence of kinks with bending angles of approximately 70° and 110° are mainly attributed to the occurrence of stacking faults and nanotwins in the NWs, which could easily form by the glide of {111} planes, while approximately 90° kinks result from the local amorphorization of InP NWs. Also, approximately 170° kinks are mainly caused by small-angle boundaries, where the insertion of extra atomic planes could make the NWs slightly bent. In addition, multiple kinks with various angles are also observed. Importantly, all these results are beneficial to understand the formation mechanisms of kinks in compound semiconductor NWs, which could guide the design of nanostructured materials, morphologies, microstructures, and/or enhanced mechanical properties. PMID:24910572
DOE Office of Scientific and Technical Information (OSTI.GOV)
Njoku, Chima Benjamin; Ndungu, Patrick Gathura, E-mail: ndungup@ukzn.ac.za
2015-08-15
Highlights: • Ce{sub 0.8}Sm{sub 0.2}Fe{sub 0.9}Ir{sub 0.03}Co{sub 0.07}O{sub 3−δ} was synthesized using sol–gel methods. • Material was thoroughly characterized using Raman, FTIR, XRD, HRTEM, SEM, and TGA. • Electrochemical performance showed the materials are a promising new cathode material for low temperature SOFC. - Abstract: A novel perovskite material, Ce{sub 0.8}Sm{sub 0.2}Fe{sub 0.9}Ir{sub 0.03}Co{sub 0.07}O{sub 3−δ} was synthesized using a sol–gel technique. The materials were calcined at temperatures of 800 °C, 900 °C, and 1000 °C and then characterized using X-ray diffraction, Raman and infrared spectroscopy, high resolution transmission electron microscopy and scanning electron microscopy (SEM). The particle sizes andmore » crystallite sizes increased with increasing calcination temperature and formed perovskite type materials with some separate magnetite and iridium oxide. The powders were used to assemble button cells using samarium doped ceria as the electrolyte and NiO/SDC as the anode materials. The electrochemical properties were investigated using a Fiaxell open flanges test set-up and a Nuvant™ Powerstat-05 potentiostat/galvanostat. The Ce{sub 0.8}Sm{sub 0.2}Fe{sub 0.9}Ir{sub 0.03}Co{sub 0.07}O{sub 3−δ} cathode material calcined at 1000 °C exhibited the most promising performance, with a maximum power density of 0.400 W/cm{sup 2}, a current density of 0.8 A/cm{sup 2}, and a corresponding area specific resistance of 0.247 Ωcm{sup 2} at 500 °C. The button cells were reasonably stable over15 h.« less
Balachandran, Yekkuni L.; Girija, Shanmugam; Selvakumar, Rajendran; Tongpim, Saowanit; Gutleb, Arno C.; Suriyanarayanan, Sarvajeyakesavalu
2013-01-01
Generally, limited research is extended in studying stability and applicational properties of silver nanoparticles (Ag NPs) synthesized by adopting ‘green chemistry’ protocol. In this work, we report on the synthesis of stable Ag NPs using plant-derived materials such as leaf extract of Neem (Azadirachta indica) and biopolymer pectin from apple peel. In addition, the applicational properties of Ag NPs such as surface-enhanced Raman scattering (SERS) and antibacterial efficiencies were also investigated. As-synthesized nanoparticles (NPs) were characterized using various instrumentation techniques. Both the plant materials (leaf extract and biopolymer) favored the synthesis of well-defined NPs capped with biomaterials. The NPs were spherical in shape with an average particle size between 14-27 nm. These bio-NPs exhibited colloidal stability in most of the suspended solutions such as water, electrolyte solutions (NaCl; NaNO3), biological solution (bovine serum albumin), and in different pH solutions (pH 7; 9) for a reasonable time period of 120 hrs. Both the bio-NPs were observed to be SERS active through displaying intrinsic SERS signals of the Raman probe molecule (Nile blue A). The NPs were effective against the Escherichia coli bacterium when tested in nutrient broth and agar medium. Scanning and high-resolution transmission electron microscopy (SEM and HRTEM) images confirmed cellular membrane damage of nanoparticle treated E. coli cells. These environmental friendly template Ag NPs can be used as an antimicrobial agent and also for SERS based analytical applications. PMID:24130832
Sun, Xiaohan; He, Jiang; Yang, Shenghong; Zheng, Mingda; Wang, Yingying; Ma, Shuang; Zheng, Haipeng
2017-10-01
Green, economical and effective method was developed for synthesis of fluorescent carbon dots (CDs), using one-pot hydrothermal treatment of Lycii Fructus. Optical and structural properties of the CDs have been extensively studied by UV-visible and fluorescence spectroscopic, x-ray diffraction (XRD) techniques, transmission electron microscopy (TEM) and high resolution TEM (HRTEM). Surface functionality and composition of CDs has been illustrated by Fourier transform infrared spectroscopy (FTIR), x-ray photoelectron spectroscopy (XPS) spectra and elemental analysis. The fabricated CDs possess stable fluorescent properties. The fluorescent quantum yield of the CDs can reach 17.2%. The prepared CDs emitted a broad fluorescence between 415 and 545nm and their fluorescence was tuned by changing excitation wavelength. Meanwhile, the fluorescence intensity of the CDs could be significantly quenched by Fe 3+ (turn-off). The CDs exhibit captivating sensitivity and selectivity toward Fe 3+ with a linear range from 0 to 30μM and a detection limit of 21nM. The prepared CDs were successfully applied to the determination of Fe 3+ in the urine samples, the water samples from the from the Yellow River and living HeLa (Henrietta Lacks) cells. Moreover, the low-toxicity and excellent biocompatibility of the CDs were evaluated through MTT assay on HeLa cells. The CDs were also employed as fluorescent probes for multicolor imaging of HeLa cells successfully. Copyright © 2017 Elsevier B.V. All rights reserved.
Barahuie, Farahnaz; Saifullah, Bullo; Dorniani, Dena; Fakurazi, Sharida; Karthivashan, Govindarajan; Hussein, Mohd Zobir; Elfghi, Fawzi M
2017-05-01
We have synthesized graphene oxide using improved Hummer's method in order to explore the potential use of the resulting graphene oxide as a nanocarrier for an active anticancer agent, chlorogenic acid (CA). The synthesized graphene oxide and chlorogenic acid-graphene oxide nanocomposite (CAGO) were characterized using Fourier transform infrared (FTIR) spectroscopy, thermogravimetry and differential thermogravimetry analysis, Raman spectroscopy, powder X-ray diffraction (PXRD), UV-vis spectroscopy and high resolution transmission electron microscopy (HRTEM) techniques. The successful conjugation of chlorogenic acid onto graphene oxide through hydrogen bonding and π-π interaction was confirmed by Raman spectroscopy, FTIR analysis and X-ray diffraction patterns. The loading of CA in the nanohybrid was estimated to be around 13.1% by UV-vis spectroscopy. The release profiles showed favourable, sustained and pH-dependent release of CA from CAGO nanocomposite and conformed well to the pseudo-second order kinetic model. Furthermore, the designed anticancer nanohybrid was thermally more stable than its counterpart. The in vitro cytotoxicity results revealed insignificant toxicity effect towards normal cell line, with a viability of >80% even at higher concentration of 50μg/mL. Contrarily, CAGO nanocomposite revealed enhanced toxic effect towards evaluated cancer cell lines (HepG2 human liver hepatocellular carcinoma cell line, A549 human lung adenocarcinoma epithelial cell line, and HeLa human cervical cancer cell line) compared to its free form. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Díaz-Reyes, J.; Contreras-Rascón, J. I.; Galván-Arellano, M.; Arias-Cerón, J. S.; Gutiérrez-Arias, J. E. M.; Flores-Mena, J. E.; Morín-Castillo, M. M.
2016-12-01
Pb2 +-doped CdS nanofilms are prepared using the growth technique chemical bath deposition (CBD) under optimum conditions lead acetate at the reservoir temperature of 20 ± 2 °C. The Pb2+ molar concentration was in the range 0.0 ≤ x ≤ 0.19.67, which was determined by energy-dispersive X-ray spectroscopy (EDS). The X-ray diffraction results show that the films are of PbS-CdS composites with individual CdS and PbS planes. The X-ray diffraction (XRD) analysis and Raman scattering reveal that CdS-deposited films showed the zincblende (ZB) crystalline phase. The average grain size of the CdS films ranged from 1.21 to 6.67 nm that was determined by the Debye-Scherrer equation from ZB (111) direction, and it was confirmed by high-resolution transmission electron microscopy (HRTEM). Raman scattering shows that the lattice dynamics is characteristic of bimodal behaviour and the multipeaks adjust of the first optical longitudinal mode for the Pb2+-doped CdS denotes the Raman shift of the characteristic peak in the range of 305-298 cm-1 of the CdS crystals, which is associated with the lead ion incorporation. The films exhibit three direct bandgaps, 2.44 eV attributed to CdS; the other varies continuously from 1.67 to 1.99 eV and another disappears as Pb2+ molar fraction increases.
Prusty, Kalyani; Swain, Sarat K
2018-04-01
Herein, novel biodegradable, stimuli responsive, chemically cross-linked and porous polyacrylamide/dextran (PAM/D) nanohydrogels hybrid composites are synthesized by in situ polymerization technique with incorporation of reduced nano silver. The interaction of nano silver with PAM in presence of dextran is investigated by Fourier transforms infrared spectroscopy (FTIR) and X-ray diffraction (XRD) studies. The elemental composition of the hybrid nanohydrogels is studied by X-ray photoelectron spectroscopy (XPS) whereas; the surface morphology of nanohydrogels hybrid composites is studied by field emission scanning electron microscope (FESEM) by which, it is observed that, the silver nanoparticles are homogeneously dispersed throughout the nanohydrogel network. From high resolution transmission electron microscopy (HRTEM), the average size of silver nanoparticles is found to be 20nm. The swelling, deswelling and water retention properties of nanohydrogels hybrid composites are measured in order to investigate the release rate of the ornidazole drugs. The in vitro release rate of ornidazole drugs is found to be 98.5% in 6h. The antibacterial activities and the cytotoxicity tests along with positive and negative control of hybrid nanohydrogels are investigated. The loss modulus, gain modulus and complex viscosities are determined from rheological behaviour of the nanohydrogels. It is found that, the value of tanδ varies from 0.1 to 0.8. Nano silver decorated PAM/D nanohydrogels are stable, nontoxic with antibacterial behaviour may be suitable for drugs delivery vehicle. Copyright © 2017 Elsevier B.V. All rights reserved.
Electrical response from nanocomposite PDMS-Ag NPs generated by in situ laser ablation in solution
NASA Astrophysics Data System (ADS)
Kalyva, Maria; Kumar, Susmit; Brescia, Rosaria; Petroni, Simona; La Tegola, Carola; Bertoni, Giovanni; De Vittorio, Massimo; Cingolani, Roberto; Athanassiou, Athanassia
2013-01-01
Laser ablation technique is employed in order to generate polydimethylsiloxane (PDMS)/Ag NPs in situ, starting from a silver target in a solution of PDMS prepolymer and toluene. The produced surfactant-free nanoparticles are characterized by high resolution transmission electron microscopy (HRTEM) and scanning TEM-high angle annular dark field (STEM-HAADF) imaging modes, showing the majority of them to be of the order of 4 nm in diameter with a small percentage of larger Ag-AgCl multidomain NPs, embedded into a PDMS matrix. Low concentrations of carbon onion-like nanoparticles or larger fibers are also formed in the toluene-PDMS prepolymer solution. In accordance with this, UV-vis spectra shows no peak from silver NPs; their small size and their coverage by the PDMS matrix suppresses the signal of surface plasmon absorption. Inductively coupled plasma measurements reveal that the concentration of silver in the polymer is characteristically low, ˜0.001% by weight. The electrical properties of the PDMS nanocomposite films are modified, with current versus voltage (I-V) measurements showing a low current of up to a few tenths of a pA at 5 V. The surface resistivity of the films is found to be up to ˜1010 Ω/sq. Under pressure (e.g. stress) applied by a dynamic mechanical analyzer (DMA), the I-V measurements demonstrate the current decreasing during the elastic deformation, and increasing during the plastic deformation.
Review of advanced imaging techniques
Chen, Yu; Liang, Chia-Pin; Liu, Yang; Fischer, Andrew H.; Parwani, Anil V.; Pantanowitz, Liron
2012-01-01
Pathology informatics encompasses digital imaging and related applications. Several specialized microscopy techniques have emerged which permit the acquisition of digital images (“optical biopsies”) at high resolution. Coupled with fiber-optic and micro-optic components, some of these imaging techniques (e.g., optical coherence tomography) are now integrated with a wide range of imaging devices such as endoscopes, laparoscopes, catheters, and needles that enable imaging inside the body. These advanced imaging modalities have exciting diagnostic potential and introduce new opportunities in pathology. Therefore, it is important that pathology informaticists understand these advanced imaging techniques and the impact they have on pathology. This paper reviews several recently developed microscopic techniques, including diffraction-limited methods (e.g., confocal microscopy, 2-photon microscopy, 4Pi microscopy, and spatially modulated illumination microscopy) and subdiffraction techniques (e.g., photoactivated localization microscopy, stochastic optical reconstruction microscopy, and stimulated emission depletion microscopy). This article serves as a primer for pathology informaticists, highlighting the fundamentals and applications of advanced optical imaging techniques. PMID:22754737
Wang, Lu; Ji, Hongmei; Zhu, Feng; Chen, Zhi; Yang, Yang; Jiang, Xuefan; Pinto, João; Yang, Gang
2013-08-21
Here, we first provide a facile ultrasonic-assisted synthesis of SnO using SnCl2 and the organic solvent of ethanolamine (ETA). The moderate alkalinity of ETA and ultrasound play very important roles in the synthesis of SnO. After the hydrolysis of the intermediate of ETA-Sn(II), the as-synthesized SnO nanoclusters undergo assembly, amalgamation, and preferential growth to microplates in hydrothermal treatment. The as-synthesized SnO was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), ultraviolet-visible absorption spectroscopy (UV-vis) and X-ray diffraction (XRD). To explore its potential applications in energy storage, SnO was fabricated into a supercapacitor electrode and characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge-discharge measurements. The as-synthesized SnO exhibits remarkable pseudocapacitive activity including high specific capacitance (208.9 F g(-1) at 0.1 A g(-1)), good rate capability (65.8 F g(-1) at 40 A g(-1)), and excellent cycling stability (retention 119.3% after 10,000 cycles) for application in supercapacitors. The capacitive behavior of SnO with various crystal morphologies was observed by fitted EIS using an equivalent circuit. The novel synthetic route for SnO is a convenient and potential way to large-scale production of microplates which is expected to be applicable in the synthesis of other metal oxide nanoparticles.
NASA Astrophysics Data System (ADS)
Karki, Hem Prakash; Ojha, Devi Prashad; Joshi, Mahesh Kumar; Kim, Han Joo
2018-03-01
A silver loaded hematite (Fe3O4) and antimony doped tin oxide (ATO) magnetic nano-composite (Ag-Fe3O4/ATO) was successfully synthesized by in situ one pot green and facile hydrothermal process. The formation of nano-composite, its structure, morphology, and stability were characterized by field emission scanning electron microscopy (FE-SEM), high resolution transmission electron microscopy (HRTEM), electron diffraction spectroscopy (EDS), elemental mapping by high resolution scanning transmission electron microscopy (STEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infra-red spectroscopy (FTIR). UV-vis spectroscopy was used to monitor the catalytic reduction of p-nitrophenol (PNP) into p-aminophenol (PAP) in presence of Ag-Fe3O4/ATO nano-composite with excess of sodium borohydride (NaBH4). The pseudo-first order kinetic equation could describe the reduction of p-nitrophenol with excess of NaBH4. For the first time, ATO surface was used for hydrothermal growth of silver and iron oxide magnetic nanoparticles. The in situ growth of these nanoparticles provided an effective bonding of components of the nano-composite over the surface of ATO nanoparticles. This nano-composite exhibited easy synthesis, high stability, cost effective and rapid separation using external magnet. The excellent catalytic and anti-bacterial activity of as-synthesized silver nano-composite makes it potential nano-catalyst for waste water treatment as well as biomedical application.
Shape-controlled synthesis and properties of dandelion-like manganese sulfide hollow spheres
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Wei; State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083; Chen, Gen
2012-09-15
Graphical abstract: Dandelion-like MnS hollow spheres assembled with nanorods could be successfully synthesized in large quantities through a simple and convenient hydrothermal synthetic method under mild conditions using soluble hydrated manganese chloride as Mn source, L-cysteine as both a precipitator and complexing reagent. The dandelion-like MnS hollow spheres might have potential applications in microdevices and magnetic cells. Highlights: ► MnS hollow spheres assembled with nanorods could be synthesized. ► The morphologies and sizes of final products could be controlled. ► Possible formation mechanism of MnS hollow spheres is proposed. -- Abstract: Dandelion-like gamma-manganese (II) sulfide (MnS) hollow spheres assembled withmore » nanorods have been prepared via a hydrothermal process in the presence of L-cysteine and polyvinylpyrrolidone (PVP). L-cysteine was employed as not only sulfur source, but also coordinating reagent for the synthesis of dandelion-like MnS hollow spheres. The morphology, structure and properties of as-prepared products have been investigated in detail by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), selected area electron diffraction (SAED), high-resolution transmission electron microscopy (HRTEM) and photoluminescence spectra (PL). The probable formation mechanism of as-prepared MnS hollow spheres was discussed on the basis of the experimental results. This strategy may provide an effective method for the fabrication of other metal sulfides hollow spheres.« less
NASA Astrophysics Data System (ADS)
Kalam, Abul; Al-Sehemi, Abdullah G.; Assiri, Mohammed; Du, Gaohui; Ahmad, Tokeer; Ahmad, Irfan; Pannipara, M.
2018-03-01
Different grads of magnetic nano-scaled cobalt ferrites (CoFe2O4) photocatalysts were synthesized by modified Solvothermal (MST) process with and without polysaccharide. The indigenously synthesized photocatalysts were characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), thermo gravimetric analysis (TGA), Fourier transform infrared (FT-IR), UV-visible (UV-vis) spectroscopy and N2 adsorption-desorption isotherm method. The Fourier transform infrared spectroscopy study showed the Fe-O stretching vibration 590-619 cm-1, confirming the formation of metal oxide. The crystallite size of the synthesized photocatalysts was found in the range between 20.0 and 30.0 nm. The surface area of obtained magnetic nanoparticles is found to be reasonably high in the range of 63.0-76.0 m2/g. The results shown that only MST-2 is the most active catalyst for photo-Fenton like scheme for fast photodegradation action of methylene blue dye, this is possible due to optical band gap estimated of 2.65 eV. Captivatingly the percentage of degradation efficiency increases up to 80% after 140 min by using MST-2 photocatalyst. Photocatalytic degradation of methylene blue (MB) dye under visible light irradiation with cobalt ferrite magnetic nanoparticles followed first order kinetic constant and rate constant of MST-2 is almost 2.0 times greater than MST-1 photocatalyst.
Iron oxyhydroxide mineralization on microbial extracellular polysaccharides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, Clara S.; Fakra, Sirine C.; Edwards, David C.
2010-06-22
Iron biominerals can form in neutral pH microaerophilic environments where microbes both catalyze iron oxidation and create polymers that localize mineral precipitation. In order to classify the microbial polymers that influence FeOOH mineralogy, we studied the organic and mineral components of biominerals using scanning transmission X-ray microscopy (STXM), micro X-ray fluorescence ({mu}XRF) microscopy, and high-resolution transmission electron microscopy (HRTEM). We focused on iron microbial mat samples from a creek and abandoned mine; these samples are dominated by iron oxyhydroxide-coated structures with sheath, stalk, and filament morphologies. In addition, we characterized the mineralized products of an iron-oxidizing, stalk-forming bacterial culture isolatedmore » from the mine. In both natural and cultured samples, microbial polymers were found to be acidic polysaccharides with carboxyl functional groups, strongly spatially correlated with iron oxyhydroxide distribution patterns. Organic fibrils collect FeOOH and control its recrystallization, in some cases resulting in oriented crystals with high aspect ratios. The impact of polymers is particularly pronounced as the materials age. Synthesis experiments designed to mimic the biomineralization processes show that the polysaccharide carboxyl groups bind dissolved iron strongly but release it as mineralization proceeds. Our results suggest that carboxyl groups of acidic polysaccharides are produced by different microorganisms to create a wide range of iron oxyhydroxide biomineral structures. The intimate and potentially long-term association controls the crystal growth, phase, and reactivity of iron oxyhydroxide nanoparticles in natural systems.« less
Lin, Hsien-Sheng; Shi, Jen-Bin; Peng, Cheng-Ming; Zheng, Bo-Chi; Cheng, Fu-Chou; Lee, Ming-Way; Lee, Hsuan-Wei; Wu, Po-Feng; Liu, Yi-Jui
2018-04-19
In this study, alpha nickel sulfide (α-NiS) nanosphere films have been successfully synthesized by electroplating the nickel nanosheet film on the indium tin oxide (ITO) glass substrate and sulfuring nickel-coated ITO glass substrate. First, we electrodeposited the nickel nanosheet films on the ITO glass substrates which were cut into a 0.5 × 1 cm 2 size. Second, the nanosheet nickel films were annealed in vacuum-sealed glass ampoules with sulfur sheets at different annealing temperatures (300, 400, and 500 °C) for 4 h in vacuum-sealed glass ampoules. The α-NiS films were investigated by using X-ray diffraction (XRD), variable vacuum scanning electron microscopy (VVSEM), field emission scanning electron microscopy/energy dispersive spectrometer (FE-SEM/EDS), cyclic voltammogram (CV), electrochemical impedance spectroscopy (EIS), ultraviolet/visible/near-infrared (UV/Visible/NIR) spectra, and photoluminescence (PL) spectra. Many nanospheres were observed on the surface of the α-NiS films at the annealing temperature 400 °C for 4 h. We also used the high-resolution transmission electron microscopy (HR-TEM) for the analysis of the α-NiS nanospheres. We demonstrated that our α-NiS nanosphere film had a linear current response to different glucose concentrations. Additionally, our α-NiS nanosphere films were preserved at room temperature for five and a half years and were still useful for detecting glucose at low concentration.
NASA Astrophysics Data System (ADS)
Lin, Hsien-Sheng; Shi, Jen-Bin; Peng, Cheng-Ming; Zheng, Bo-Chi; Cheng, Fu-Chou; Lee, Ming-Way; Lee, Hsuan-Wei; Wu, Po-Feng; Liu, Yi-Jui
2018-04-01
In this study, alpha nickel sulfide (α-NiS) nanosphere films have been successfully synthesized by electroplating the nickel nanosheet film on the indium tin oxide (ITO) glass substrate and sulfuring nickel-coated ITO glass substrate. First, we electrodeposited the nickel nanosheet films on the ITO glass substrates which were cut into a 0.5 × 1 cm2 size. Second, the nanosheet nickel films were annealed in vacuum-sealed glass ampoules with sulfur sheets at different annealing temperatures (300, 400, and 500 °C) for 4 h in vacuum-sealed glass ampoules. The α-NiS films were investigated by using X-ray diffraction (XRD), variable vacuum scanning electron microscopy (VVSEM), field emission scanning electron microscopy/energy dispersive spectrometer (FE-SEM/EDS), cyclic voltammogram (CV), electrochemical impedance spectroscopy (EIS), ultraviolet/visible/near-infrared (UV/Visible/NIR) spectra, and photoluminescence (PL) spectra. Many nanospheres were observed on the surface of the α-NiS films at the annealing temperature 400 °C for 4 h. We also used the high-resolution transmission electron microscopy (HR-TEM) for the analysis of the α-NiS nanospheres. We demonstrated that our α-NiS nanosphere film had a linear current response to different glucose concentrations. Additionally, our α-NiS nanosphere films were preserved at room temperature for five and a half years and were still useful for detecting glucose at low concentration.
Growth, characterization and device development in monocrystalline diamond films
NASA Astrophysics Data System (ADS)
Davis, R. F.; Glass, J. T.; Nemanich, R. J.; Bozeman, S. P.; Sowers, A. T.
1995-06-01
Experimental and theoretical studies concerned with interface interactions of diamond with Si, Ni, and Ni3Si substrates have been conducted. Oriented diamond films deposited on (100) Si were characterized by polar Raman, polar x-ray diffraction (XRD), and cross-sectional high resolution transmission electron microscopy (HRTEM). These sutides showed that the diamond(100)/Si(100) interface adopted the 3:2-match arrangement rather than a 45 deg rotation. Extended Hueckel tight-binding (EHTB) electronic structure calculations for a model system revealed that the interface interaction favors the 3:2-match arrangement. Growth on polycrystalline Ni3Si resulted in oriented diamond particles; under the same growth conditions, graphite was formed on the nickel substrate. Our EHTB electronic structure calculations showed that the (111) and (100) surfaces of Ni3Si have a strong preference for diamond nucleation over graphite nucleation, but this was not the case for the (111) and (100) surfaces of Ni.
Solvothermal synthesis of nickel-tungsten sulfides for 2-propanol dehydration.
Gómez-Gutiérrez, Claudia M; Luque, P A; Guerra-Rivas, G; López-Sánchez, J A; Armenta, M A; Quintana, J M; Olivas, A
2015-01-01
The bimetallic nickel-tungsten catalysts were prepared via solvothermal method. The X-ray Diffractometer (XRD) analysis revealed that the corresponding peaks at 14°, 34°, and 58° were for tungsten disulfide (WS2 ) hexagonal phase. The catalysts displayed different crystalline phase with nickel addition, and as an effect the WS2 surface area decreased from 74.7 to 2.0 m(2) g(--1) . In this sense, high-resolution transmission electron microscopy (HRTEM) showed the layers set in direction (002) with an onion-like morphology, and in the center of the particles there is a large amount of nickel contained with 6-8 layers covering it. The catalytic dehydration of 2-propanol was selective to propene in 100% at 250 °C for the sample with 0.7 of atomic ratio of Ni/Ni + W. © Wiley Periodicals, Inc.
Study of GaN nanorods converted from β-Ga2O3
NASA Astrophysics Data System (ADS)
Li, Yuewen; Xiong, Zening; Zhang, Dongdong; Xiu, Xiangqian; Liu, Duo; Wang, Shuang; Hua, Xuemei; Xie, Zili; Tao, Tao; Liu, Bin; Chen, Peng; Zhang, Rong; Zheng, Youdou
2018-05-01
We report here high-quality β-Ga2O3 nanorods (NRs) grown on sapphire substrates by hydrothermal method. Ammoniating the β-Ga2O3 NRs results in strain-free wurtzite gallium nitride (GaN) NRs. It was shown by XRD and Raman spectroscopy that β-Ga2O3 was partially converted to GaN/β-Ga2O3 at 1000 °C and then completely converted to GaN NRs at 1050 °C, as confirmed by high-resolution transmission electron microscopy (HRTEM). There is no band-edge emission of β-Ga2O3 in the cathodoluminescence spectrum, and only a deep-level broad emission observed at 3.68-3.73 eV. The band edge emission (3.39 eV) of GaN NRs converted from β-Ga2O3 can also be observed.
Phase stability and microstructures of high entropy alloys ion irradiated to high doses
NASA Astrophysics Data System (ADS)
Xia, Songqin; Gao, Michael C.; Yang, Tengfei; Liaw, Peter K.; Zhang, Yong
2016-11-01
The microstructures of AlxCoCrFeNi (x = 0.1, 0.75 and 1.5 in molar ratio) high entropy alloys (HEAs) irradiated at room temperature with 3 MeV Au ions at the highest fluence of 105, 91, and 81 displacement per atom, respectively, were studied. Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) analyses show that the initial microstructures and phase composition of all three alloys are retained after ion irradiation and no phase decomposition is observed. Furthermore, it is demonstrated that the disordered face-centered cubic (FCC) and disordered body-centered cubic (BCC) phases show much less defect cluster formation and structural damage than the NiAl-type ordered B2 phase. This effect is explained by higher entropy of mixing, higher defect formation/migration energies, substantially lower thermal conductivity, and higher atomic level stress in the disordered phases.
Ge nanocrystals embedded in ultrathin Si3N4 multilayers with SiO2 barriers
NASA Astrophysics Data System (ADS)
Bahariqushchi, R.; Gundogdu, Sinan; Aydinli, A.
2017-04-01
Multilayers of germanium nanocrystals (NCs) embedded in thin films of silicon nitride matrix separated with SiO2 barriers have been fabricated using plasma enhanced chemical vapor deposition (PECVD). SiGeN/SiO2 alternating bilayers have been grown on quartz and Si substrates followed by post annealing in Ar ambient from 600 to 900 °C. High resolution transmission electron microscopy (HRTEM) as well as Raman spectroscopy show good crystallinity of Ge confined to SiGeN layers in samples annealed at 900 °C. Strong compressive stress for SiGeN/SiO2 structures were observed through Raman spectroscopy. Size, as well as NC-NC distance were controlled along the growth direction for multilayer samples by varying the thickness of bilayers. Visible photoluminescence (PL) at 2.3 and 3.1 eV with NC size dependent intensity is observed and possible origin of PL is discussed.
Structural and mechanical characterization of hybrid metallic-inorganic nanosprings
NASA Astrophysics Data System (ADS)
Habtoun, Sabrina; Houmadi, Said; Reig, Benjamin; Pouget, Emilie; Dedovets, Dmytro; Delville, Marie-Hélène; Oda, Reiko; Cristiano, Fuccio; Bergaud, Christian
2017-10-01
Silica nanosprings (NS) are fabricated by a sol-gel deposition of silica precursors onto a template made of self-assembled organic chiral nanostructures. They are deposited and assembled on microstructured silicon substrates, and then metallized and clamped in a single lithography-free step using a focused ion beam (FIB). The resulting suspended hybrid metallic/inorganic NS are then characterized with high-resolution transmission electron microscopy (HRTEM) and scanning TEM/energy-dispersive X-ray spectroscopy (STEM/EDX), showing the atomic structure of the metallic layer. Three-point bending tests are also carried out using an atomic force microscope (AFM) and supported by finite element method (FEM) simulation with COMSOL Multiphysics allowing the characterization of the mechanical behavior and the estimation of the stiffness of the resulting NS. The information obtained on the structural and mechanical properties of the NS is discussed for future nano-electro-mechanical system (NEMS) applications.
Permatasari, Fitri Aulia; Aimon, Akfiny Hasdi; Iskandar, Ferry; Ogi, Takashi; Okuyama, Kikuo
2016-01-01
Graphene quantum dots (GQDs) containing N atoms were successfully synthesized using a facile, inexpensive, and environmentally friendly hydrothermal reaction of urea and citric acid, and the effect of the GQDs’ C–N configurations on their photoluminescence (PL) properties were investigated. High-resolution transmission electron microscopy (HR-TEM) images confirmed that the dots were spherical, with an average diameter of 2.17 nm. X-ray photoelectron spectroscopy (XPS) analysis indicated that the C–N configurations of the GQDs substantially affected their PL intensity. Increased PL intensity was obtained in areas with greater percentages of pyridinic-N and lower percentages of pyrrolic-N. This enhanced PL was attributed to delocalized π electrons from pyridinic-N contributing to the C system of the GQDs. On the basis of energy electron loss spectroscopy (EELS) and UV-Vis spectroscopy analyses, we propose a PL mechanism for hydrothermally synthesized GQDs. PMID:26876153
Atchudan, Raji; Edison, Thomas Nesakumar Jebakumar Immanuel; Lee, Yong Rok
2016-11-15
This paper reports the robust hydrothermal synthesis of nitrogen doped carbon dots (N-CDs) using the unripe fruit of Prunus persica (peach) as the carbon precursor and aqueous ammonia as the nitrogen source. The optical properties of synthesized N-CDs were characterized by ultraviolet visible (UV-Vis) and fluorescence spectroscopy techniques. The synthesized N-CDs were emitted blue light when excitated with a portable UV lamp. The materials with the optical properties were characterized further by high resolution transmission electron microscope (HRTEM), X-ray diffraction (XRD), Raman, Fourier transform infrared (FT-IR) and X-ray photoelectron spectroscopy (XPS). The mean size of the N-CDs was approximately 8nm, as calculated from the HRTEM image. The d-spacing of N-CDs, calculated using Bragg law, was approximately 0.21nm, which was consistent with the interlayer distance calculated from the HRTEM image. FT-IR spectroscopy and XPS revealed the presence of the phytoconstituents functionalities of peach fruit over the N-CDs surface and a high level of nitrogen doping on carbon dots (CDs) was confirmed by XPS studies. These results suggest that the unripe fruit extract of peach is an ideal candidate for the preparation of N-CDs. The resulting N-CDs showed excellent optical properties in water. The synthesized N-CDs exhibited a high fluorescence quantum yield and low cytotoxicity, and can be used as fluorescence imaging probes. In addition, the N-CDs were catalytically activite towards the oxygen reduction reaction (ORR). The N-CDs exhibited good catalytic activity in an alkaline medium (0.1M KOH) with a remarkable ORR of approximately 0.72V vs reversible hydrogen electrode (RHE), and O2 reduction follows mainly a 2 electron pathway by being reduced to hydrogen peroxide. The 2-electron reduction pathway is used in industry for H2O2 production. Copyright © 2016 Elsevier Inc. All rights reserved.
Synthesis of ZnO thin film by sol-gel spin coating technique for H2S gas sensing application
NASA Astrophysics Data System (ADS)
Nimbalkar, Amol R.; Patil, Maruti G.
2017-12-01
In this present work, zinc oxide (ZnO) thin film synthesized by a simple sol-gel spin coating technique. The structural, morphology, compositional, microstructural, optical, electrical and gas sensing properties of the film were studied by using XRD, FESEM, EDS, XPS, HRTEM, Raman, FTIR and UV-vis techniques. The ZnO thin film shows hexagonal wurtzite structure with a porous structured morphology. Gas sensing performance of synthesized ZnO thin film was tested initially for H2S gas at different operating temperatures as well as concentrations. The maximum gas response is achieved towards H2S gas at 300 °C operating temperature, at 100 ppm gas concentration as compared to other gases like CH3OH, Cl2, NH3, LPG, CH3COCH3, and C2H5OH with a good stability.
NASA Astrophysics Data System (ADS)
Jabeen, Uzma; Adhikari, Tham; Shah, Syed Mujtaba; Pathak, Dinesh; Wagner, Tomas; Nunzi, Jean-Michel
2017-06-01
Zinc sulphide (ZnS) and Cu-doped ZnS nanoparticles were synthesized by the wet chemical method. The nanoparticles were characterized by UV-visible, fluorescence, fourier transform infra-red (FTIR) spectrometry, X-ray diffraction (XRD), X-ray photoelectron spectrometry (XPS), field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM). Scanning electron microscopy supplemented with EDAX was employed to observe the morphology and chemical composition of the un-doped and doped samples. A significant blue shift of the absorption band with respect to the un-doped zinc sulphide was sighted by increasing the Cu concentration in the doped sample with decreasing the size of nanoparticles. Consequently, the band gap was tuned from 3.13 to 3.49 eV due to quantum confinement. The green emission arises from the recombination between the shallow donor level (sulfur vacancy) and the t2 level of Cu2+. However, the fluorescence emission spectrum of the undoped ZnS nanoparticles was deconvoluted into two bands, which are centered at 419 and 468 nm. XRD analysis showed that the nanomaterials were in cubic crystalline state. XRD peaks show that there were no massive crystalline distortions in the crystal lattice when the Cu concentration (0.05-0.1 M) was increased in the ZnS lattice. However, in the case of Cu-doped samples (0.15-0.2 M), the XRD pattern showed an additional peak at 37° due to incomplete substitution occurring during the experimental reaction step. A comparative study of surfaces of undoped and Cu-doped ZnS nanoparticles were investigated using X-ray photoelectron spectroscopy (XPS). The synthesized nanomaterial in combination with poly(3-hexylthiophene) (P3HT) was used in the fabrication of solar cells. The devices with ZnS nanoparticles showed an efficiency of 0.31%. The overall power conversion efficiency of the solar cells at 0.1 M Cu content in doped ZnS nanoparticles was found to be 1.6 times higher than the reference device (P3HT:ZnS). Furthermore, atomic force microscopy and X-ray diffraction techniques were employed to study morphology and packing behavior of blends of nanocrystals and polymer respectively. Contribution to the topical issue "Materials for Energy harvesting, conversion and storage II (ICOME 2016)", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui
Dielectric relaxation of NdMnO{sub 3} nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saha, Sujoy, E-mail: sahasujoy3@gmail.com; Chanda, Sadhan; Dutta, Alo
2013-11-15
Graphical abstract: (a) TEM image of particle distribution of NMO. (b) HRTEM image of a single NMO particle under 4,000,000× magnification. (c) SAED pattern of a single NMO nanoparticle. - Highlights: • NdMnO{sub 3} nanoparticles are synthesized by sol–gel process. • TEM micrograph shows a granular characteristic with an average particle size of ∼50 nm. • HRTEM is consistent with the spacing between the (2 0 0) planes of the orthorhombic NdMnO{sub 3}. • Band gap is found to be 4.4 eV. • Cole–Cole model has been used to explain the dielectric relaxation in the material. • The activation energymore » of the material is found to be ∼0.43 eV. - Abstract: The neodymium manganate (NdMnO{sub 3}) nanoparticles are synthesized by the sol–gel process. The phase formation and particle size of the sample are determined by X-ray diffraction analysis and transmission electron microscopy. The band gap of the material is obtained by UV–visible absorption spectroscopy using Tauc relation. Dielectric properties of the sample have been investigated in the frequency range from 42 Hz to 1 MHz and in the temperature range from 303 K to 573 K. The dielectric relaxation peaks are observed in the frequency dependent dielectric loss spectra. The Cole–Cole model is used to explain the dielectric relaxation mechanism of the material. The complex impedance plane plot confirms the existence of both the grain and grain-boundary contribution to the relaxation. The temperature dependence of both grain and grain-boundary resistances follow the Arrhenius law with the activation energy of 0.427 and 0.431 eV respectively. The frequency-dependent conductivity spectra follow the power law.« less
NASA Astrophysics Data System (ADS)
Del Rosso, T.; Louro, S. R. W.; Deepak, F. L.; Romani, E. C.; Zaman, Q.; Tahir; Pandoli, O.; Cremona, M.; Freire Junior, F. L.; De Beule, P. A. A.; De St. Pierre, T.; Aucelio, R. Q.; Mariotto, G.; Gemini-Piperni, S.; Ribeiro, A. R.; Landi, S. M.; Magalhães, A.
2018-05-01
Ligand-free carbynoid-encapsulated gold nanocomposites (Au@Carbynoid NCs) with blue-shifted localized surface plasmon resonance (LSPR) have been synthesized by CO2 recycling induced by pulsed laser ablation (PLA) of a solid gold target in aqueous solution with NaOH at pH 7.0. High Resolution Transmission Electron Microscopy (HRTEM) images at not destructive acceleration voltage of 80 kV revealed carbynoid nanocrystals around the gold core, associated to the intense bond length alternation (BLA) Raman mode of the carbon atomic wires (CAWs), centered at 2124 cm-1, observed in the Surface Enhanced Raman Scattering (SERS) spectra. It was verified that interlinking process with sp to sp2 conversion of the CAWs is induced both by high acceleration voltage in HRTEM and high irradiance of the excitation beam used in SERS measurements. Post synthesis mixing of Pluronic-F127 copolymer with pre-synthesized Au@Carbynoid NCs allows the formation of a fully biocompatible colloidal solution of Au@Carbynoid/Copolymer NCs. SERS investigation highlights that the Raman band of the BLA mode can be used as efficient Raman tag to monitor the functionalization of the NCs with the copolymer. The biocompatibility of the NCs was demonstrated performing a study of cytotoxicity using human skin fibroblasts. As proof of principle, it was demonstrated that the photodynamic activity of the bifunctional Au@Carbynoid/PF127 NCs in the presence of chlorin e6 (Ce6) drug can be enhanced inducing the aggregation state of the colloidal suspension. The stability of the colloidal dispersions of Au@Carbynoid NCs functionalized with Pluronic-F127 is verified after centrifugation in PBS (0.15 mol L-1 NaCl) solutions, confirming the possibility to use the green carbynoid based NCs as drug-carrier in biological applications.
Magdalane, C Maria; Kaviyarasu, K; Vijaya, J Judith; Siddhardha, Busi; Jeyaraj, B
2016-10-01
We report the synthesis of high quality CeO2-CdO binary metal oxide nanocomposites were synthesized by a simple chemical precipitation and hydrothermal method. Cerium nitrate and cadmium nitrate were used as precursors. Composition, structure and morphology of the nanocomposites were analyzed by X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). XRD pattern proves that the final product has cubic phase and the particle size diameter of the nanocomposites are 27nm, XRD results also indicated that the crystalline properties of the nanocomposite were improved without affecting the parent lattice, FESEM analysis indicates that the product is composed of spherical particles in clusters. The morphological and optical properties of CeO2-CdO nanosamples were characterized by HRTEM and DRS spectroscopy. The IR results showed high purity of products and indicated that the nanocomposites are made up of CeO2 and CdO bonds. Absorption spectra exhibited an upward shift in characteristic peaks caused by the addition of transition metal oxide, suggesting that crystallinity of both the metal oxide is improved due to specific doping level. TGA plots further confirmed the purity and stability of nanomaterials prepared. Hence the nanocomposite has cubic crystal lattice and form a homogeneous solid structure. From the result, Cd(2+) ions are embedded in the cubic crystal lattice of ceria. The growth rate increases which are ascribed to the cationic doping with a lower valence cation. Ce-Cd binary metal oxide nanocomposites showed antibacterial activity, it showed the better growth inhibition towards p.aeruginosa. Exploit of photodegradation and photocatalytic activity of large scale synthesis of CeO2-CdO binary metal oxide nanocomposites was reported. Copyright © 2016 Elsevier B.V. All rights reserved.
Le Borgne, Vincent; Agati, Marta; Boninelli, Simona; Castrucci, Paola; De Crescenzi, Maurizio; Dolbec, Richard; El Khakani, My Ali
2017-07-14
We report on a method for the extraction of silicon nanowires (SiNWs) from the by-product of a plasma torch based spheroidization process of silicon. This by-product is a nanopowder which consists of a mixture of SiNWs and silicon particles. By optimizing a centrifugation based process, we were able to extract substantial amounts of highly pure Si nanomaterials (mainly SiNWs and Si nanospheres (SiNSs)). While the purified SiNWs were found to have typical outer diameters in the 10-15 nm range and lengths of up to several μm, the SiNSs have external diameters in the 10-100 nm range. Interestingly, the SiNWs are found to have a thinner Si core (2-5 nm diam.) and an outer silicon oxide shell (with a typical thickness of ∼5-10 nm). High resolution transmission electron microscopy (HRTEM) observations revealed that many SiNWs have a continuous cylindrical core, whereas others feature a discontinuous core consisting of a chain of Si nanocrystals forming a sort of 'chaplet-like' structures. These plasma-torch-produced SiNWs are highly pure with no trace of any metal catalyst, suggesting that they mostly form through SiO-catalyzed growth scheme rather than from metal-catalyzed path. The extracted Si nanostructures are shown to exhibit a strong photoluminescence (PL) which is found to blue-shift from 950 to 680 nm as the core size of the Si nanostructures decreases from ∼5 to ∼3 nm. This near IR-visible PL is shown to originate from quantum confinement (QC) in Si nanostructures. Consistently, the sizes of the Si nanocrystals directly determined from HRTEM images corroborate well with those expected by QC theory.
NASA Astrophysics Data System (ADS)
Le Borgne, Vincent; Agati, Marta; Boninelli, Simona; Castrucci, Paola; De Crescenzi, Maurizio; Dolbec, Richard; El Khakani, My Ali
2017-07-01
We report on a method for the extraction of silicon nanowires (SiNWs) from the by-product of a plasma torch based spheroidization process of silicon. This by-product is a nanopowder which consists of a mixture of SiNWs and silicon particles. By optimizing a centrifugation based process, we were able to extract substantial amounts of highly pure Si nanomaterials (mainly SiNWs and Si nanospheres (SiNSs)). While the purified SiNWs were found to have typical outer diameters in the 10-15 nm range and lengths of up to several μm, the SiNSs have external diameters in the 10-100 nm range. Interestingly, the SiNWs are found to have a thinner Si core (2-5 nm diam.) and an outer silicon oxide shell (with a typical thickness of ˜5-10 nm). High resolution transmission electron microscopy (HRTEM) observations revealed that many SiNWs have a continuous cylindrical core, whereas others feature a discontinuous core consisting of a chain of Si nanocrystals forming a sort of ‘chaplet-like’ structures. These plasma-torch-produced SiNWs are highly pure with no trace of any metal catalyst, suggesting that they mostly form through SiO-catalyzed growth scheme rather than from metal-catalyzed path. The extracted Si nanostructures are shown to exhibit a strong photoluminescence (PL) which is found to blue-shift from 950 to 680 nm as the core size of the Si nanostructures decreases from ˜5 to ˜3 nm. This near IR-visible PL is shown to originate from quantum confinement (QC) in Si nanostructures. Consistently, the sizes of the Si nanocrystals directly determined from HRTEM images corroborate well with those expected by QC theory.
NASA Astrophysics Data System (ADS)
Wang, J.; Guo, J. P.; Yi, J. J.; Huang, Q. G.; Li, H. M.; Li, Y. F.; Gao, K. J.; Yang, W. T.
2014-08-01
This paper reports the preparation of coral-shaped topological morphology nascent polyethylene (PE) particles promoted by the novel heterogeneous non-metallocene catalyst (m-CH3PhO)TiCl3/carbon nanotubes (CNTs), with AlEt3 used as a cocatalyst. Scanning electron microscope (SEM), high resolution transmission electron microscope (HR-TEM) and inductively coupled plasma (ICP) emission spectroscopy were used to determine the morphology of the catalyst particles and the content of (m-CH3PhO)TiCl3. The carbon nanotube surface was treated with Grignard Reagent prior to reacting with (m-CH3PhO)TiCl3. The catalyst system could effectively catalyze ethylene polymerization and ethylene with 1- hexene copolymerization, the catalytic activity could reach up to 5.8 kg/((gTi)h). Morphology of the obtained polymer particles by SEM and HR-TEM technique revealed that the nascent polyethylene particles looked like coral shape in micro-size. The multiwalled carbon nanotubes (MWCNTs) supported catalysts polymerized ethylene to form polymer nanocomposite in situ. The microscopic examination of this nanocomposite revealed that carbon nanoparticles in PE matrix had a good distribution and the cryogenically fractured surface was ductile-like when polymerization time was 2 min.
NASA Astrophysics Data System (ADS)
Bhatti, Asif Ali; Oguz, Mehmet; Yilmaz, Mustafa
2018-03-01
New one pot mesoporous hybrid material containing iron nanoparticles fabricated with chitosan and p-sulfonato dansyl calix[4]arene composite (Fe3O4@Chitosan-pSDCalix) has been susccessfully synthesized. These mesoporous fluorescence iron nanoparticles were applied for the detection and removal of environmentally toxic Hg2+ ion from aqueous media. Different techniques were applied to confirm the preparation of Fe3O4@Chitosan-pSDCalix such as HRTEM, TGA/DTA, FTIR and XRD. Synthesized nanoparticles have average size of 17 nm with pore size of 0.19 nm as revealed from HRTEM images. Fluorescence study follow the photoinduced electron transfer process after addition of Hg2+ in the solution with decrease in intensity. Confocal microscope images were also acquired to confirm the presence of Hg2+ on nanoparticles. Adsorption study suggests that the removal of Hg2+ from aqueous media follows Langmuir adsorption isotherm. These studies suggest the synthesized Fe3O4@Chitosan-pSDCalix is an efficient hybrid material for the detection and removal of Hg2+ ion from aqueous media, and that it can also be used in biomolecules for the detection of toxic metal ions.
2008-10-08
of reactant to ferrocene and xylene, a liquid carbon source, results in longer nanostructures in larger amount as shown in Fig. 2(g). These samples...with 6.5 mol% ferrocene and 100 mol% xylene. The flow rate was (e) 0.195 ml/hr, (f) 0.98 ml/hr, and (g) 1.95 ml/hr. (d) and (h) are HR-TEM images of...and ferrocene . The flow rate was (a) 0.195 ml/hr and (b) 1.95 ml/hr........................ 19 Fig. A-5. STEM EDS analysis of the CF specimen after
NASA Astrophysics Data System (ADS)
Kim, Hwajin
2015-04-01
Similarities and differences in physico-chemical and optical properties of combustion generated particles from various sources were investigated. Coal-fired power plant, charcoal kiln, automobile and ship engine were major sources, representing combustions of coal, biomass and two different types of diesel, respectively. Scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM) and energy-dispersive X-ray spectroscopy (EDX) equipped with both SEM and HRTEM were used for physico-chemical analysis. Light absorbing properties were assessed using a spectrometer equipped with an integrating sphere. Particles generated from different combustion sources and conditions demonstrate great variability in their morphology, structure and composition. From coal-fired power plant, both fly ash and flue gas were mostly composed of heterogeneously mixed mineral ash spheres, suggesting that the complete combustion was occurred releasing carbonaceous species out at high temperature (1200-1300 °C). Both automobile and ship exhausts from diesel combustions show typical features of soot: concentric circles comprised of closely-packed graphene layers. However, heavy fuel oil (HFO) combusted particles from ship exhaust demonstrate more complex compositions containing different morphology of particles other than soot, e.g., spherical shape of char particles composed of minerals and carbon. Even for the soot aggregates, particles from HFO burning have different chemical compositions; carbon is dominated but Ca (29.8%), S (28.7%), Na(1%), and Mg(1%) are contained, respectively which were not found from particles of automobile emission. This indicates that chemical compositions and burning conditions are significant to determine the fate of particles. Finally, from biomass burning, amorphous and droplet-like carbonaceous particles with no crystallite structure are observed and they are generally formed by the condensation of low volatile species at low-temperature (~300-800 °C) combustion conditions. Depending on burning sources, significantly different optical properties were observed; diesel combustion particles from automobile and ship showed wavelength independent absorbing properties whereas the particles from coal and charcoal kiln combustion showed the enhanced absorption at shorter wavelength which is a brown carbon characteristic. Our findings suggest that source dependent properties and distributions across the globe should be considered when their impacts on climate change and air qualities are discussed.
Combustion Synthesis of Fullerenes and Fullerenic Nanostructures In Microgravity
NASA Technical Reports Server (NTRS)
Howard, Jack B.; Brooker, John E. (Technical Monitor)
2002-01-01
The objectives of the proposed research were to determine the effects of gravity on fullerenes formation in flames and, based on the observed effects, to develop fundamental understanding of fullerenes formation and to identify engineering principles for fullerenes production. The research method consisted of the operation of laminar diffusion flames under normal- and reduced-gravity conditions, and the collection from the flames and subsequent analysis of condensables including any fullerenes present, using coupled high performance liquid chromatography/mass spectrometry and high resolution transmission electron microscopy. The focus included fullerene molecules C60 and C70 and fullerenic nanostructures including tubes, spherules and other shapes. The normal-gravity experiments were performed at MIT and complementary reduced-gravity experiments were to have been contributed by NASA. The independent variables of interest are gravity, fuel type, fuel/oxygen ratio, pressure, gas velocity at burner, diluent type and concentration. Given the large number of variables and the absence of data on either fullerene formation in diffusion flames or gravitational effects on fullerene formation in diffusion or premixed flames, the first part of the work was exploratory while the later part involved detailed study of the most interesting mechanisms. Samples of condensable material from laminar low pressure benzene/argon/oxygen diffusion flames were collected and analyzed by high-performance liquid chromatography to determine the yields of fullerenes, and by high-resolution transmission electron microscopy (HRTEM) to characterize the fullerenic material, i.e., curved-layer nanostructures, on and within the soot particles. The highest concentration of fullerenes was always detected just above the visible stoichiometric surface of a flame. The percentage of fullerenes in the condensable material increases with decreasing pressure. The overall highest amount of fullerenes was found for a surprisingly high dilution fuel with argon. The maximum flame temperature seems to be of minor importance in fullerene formation. The HRTEM analysis of the soot showed an increase of the curvature of the carbon layers, and hence increased fullerenic character. After this maximum, the curvature decreases. In addition to the soot, the samples included fullerenic nanostructures, such as tubes and spheroids including highly-ordered multilayered or onion-like structures. The soot itself shows highly ordered regions that appear to have been cells of ongoing fullerenic nanostructure formation.
NASA Astrophysics Data System (ADS)
Vattikuti, S. V. Prabhakar; Ngo, Ich-Long; Byon, Chan
2016-11-01
In this work, we report the synthesis of CdS-incorporated porous WS2 by a simple hydrothermal method. The structural, morphological, and optical properties of the samples were examined by X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR), high resolution X-ray photoelectron spectroscopy (XPS) and UV-visible spectrometry. The photocatalytic activities were established for degradation of crystal violet (CV) under UV and visible light irradiation. The CdS-incorporated porous WS2 hybrid demonstrated high photocatalytic activity for degradation of CV pollutant compared to pure CdS nanoparticles and porous WS2 sheets. This result implies that the CdS-incorporated porous WS2 promoted more electron-hole pair transformation under UV and visible light irradiation. This significant enhancement of photocatalytic efficiency of CdS-incorporated porous WS2 photocatalyst under visible light can be ascribed to the presence of CdS nanospheres on the meshed-like WS2 sheets which potentially improves absorption in the visible range enabled by surface plasmon resonance effect of CdS nanospheres. The photostability and reusability of the CdS-porous WS2 were examined through recycling experiments.
NASA Astrophysics Data System (ADS)
Bae, Joon Woo; Lim, Jae-Won; Mimura, Kouji; Uchikoshi, Masahito; Miyazaki, Takamichi; Isshiki, Minoru
2010-03-01
Metal-insulator-metal (MIM) capacitors were fabricated using ZrO 2 films and the effects of structural and native defects of the ZrO 2 films on the electrical and dielectric properties were investigated. For preparing ZrO 2 films, Zr films were deposited on Pt/Si substrates by ion beam deposition (IBD) system with/without substrate bias voltages and oxidized at 200 °C for 60 min under 0.1 MPa O 2 atmosphere with/without UV light irradiation ( λ = 193 nm, Deep UV lamp). The ZrO 2(˜12 nm) films on Pt(˜100 nm)/Si were characterized by X-ray diffraction pattern (XRD), field emission scanning electron microscopy (FE-SEM) and high-resolution transmission electron microscopy (HRTEM), capacitance-voltage ( C- V) and current-voltage ( I- V) measurements were carried out on MIM structures. ZrO 2 films, fabricated by oxidizing the Zr film deposited with substrate bias voltage under UV light irradiation, show the highest capacitance (784 pF) and the lowest leakage current density. The active oxygen species formed by UV irradiation are considered to play an important role in the reduction of the leakage current density, because they can reduce the density of oxygen vacancies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiong, Ying; Wang, Bing; Hu, Wenyuan
2015-07-15
Novel erythrocyte-like Y-doped PbWO{sub 4} mesocrystals with average diameter and thickness of 1.5 and 0.7 μm are fabricated via a facile co-precipitation route at room temperature in the ethylene glycol (EG)-water mixed solvent. Time-dependent samples centrifuged at different times are carefully characterized by powder X-ray diffraction (pXRD), field-emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HRTEM) and Raman spectrum. The possible formation mechanism for the novel erythrocyte-like mesocrystals is proposed on the basis of these observations. The photocatalytic activity of the Y-doped PbWO{sub 4} mesocrystals is further investigated in terms of the degradation of the acid orange II undermore » UV irradiation. This simple and environment-friendly strategy presented here offers promising route for the synthesis of other inorganic materials with unique morphologies and interesting properties. - Graphical abstract: Display Omitted - Highlights: • Novel erythrocyte-like Y-doped PbWO{sub 4} mesocrystals are firstly synthesized via a facile co-precipitation route. • The mesocrystals are assembled by small nanoparticles a common crystallographic fashion. • The erythrocyte-like mesocrystals exhibit well photocatalytic activity. • A recrystallization-growth-oriented attachment formation mechanism is proposed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Ruixue; Chen, Kezheng, E-mail: dxb@sdu.edu.cn; Liao, Zhongmiao
Highlights: ► Hydroxyapatite hierarchical microstructures have been synthesized by a facile method. ► The morphology and size of the building units of 3D structures can be controlled. ► The hydroxyapatite with 3D structure is morphologically and structurally stable up to 800 °C. - Abstract: Hydroxyapatite (HAp) hierarchical microstructures with novel 3D morphology were prepared through a template- and surfactant-free hydrothermal homogeneous precipitation method. Field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), and X-ray diffraction (XRD) were used to characterize the morphology and composition of the synthesized products. Interestingly, the obtained HAp with 3D structure is composed ofmore » one-dimensional (1D) nanorods or two-dimensional (2D) nanoribbons, and the length and morphology of these building blocks can be controlled through controlling the pH of the reaction. The building blocks are single crystalline and have different preferential orientation growth under different pH conditions. At low pH values, octacalcium phosphate (OCP) phase formed first and then transformed into HAp phase due to the increased pH value caused by the decomposition of urea. The investigation on the thermal stability reveals that the prepared HAp hierarchical microstructures are morphologically and structurally stable up to 800 °C.« less
Aksit, Mahmut; Hoselton, Benjamin C; Kim, Ha Jun; Ha, Don-Hyung; Robinson, Richard D
2013-09-25
Extremely long, electrically conductive, ductile, free-standing nanosheets of water-stabilized KxCoO2·yH2O are synthesized using the sol-gel and electric-field induced kinetic-demixing (SGKD) process. Room temperature in-plane resistivity of the KxCoO2·yH2O nanosheets is less than ~4.7 mΩ·cm, which corresponds to one of the lowest resistivity values reported for metal oxide nanosheets. The synthesis produces tens of thousands of very high aspect ratio (50,000:50,000:1 = length/width/thickness), millimeter length nanosheets stacked into a macro-scale pellet. Free-standing nanosheets up to ~50 μm long are readily delaminated from the stacked nanosheets. High-resolution transmission electron microscopy (HR-TEM) studies of the free-standing nanosheets indicate that the delaminated pieces consist of individual nanosheet crystals that are turbostratically stacked. X-ray diffraction (XRD) studies confirm that the nanosheets are stacked in perfect registry along their c-axis. Scanning electron microscopy (SEM) based statistical analysis show that the average thickness of the nanosheets is ~13 nm. The nanosheets show ductility with a bending radius as small as ~5 nm.
NASA Astrophysics Data System (ADS)
Cui, Yunkang; Chen, Jing; Di, Yunsong; Zhang, Xiaobing; Lei, Wei
2017-12-01
In this paper, a facile method to fabricate the flexible field emission devices (FEDs) based on SiC nanostructure emitters by a thermal evaporation method has been demonstrated. The composition characteristics of SiC nanowires was characterized by X-ray diffraction (XRD), selected area electron diffraction (SAED) and energy dispersive X-ray spectrometer (EDX), while the morphology was revealed by field emission scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). The results showed that the SiC nanowires grew along the [111] direction with the diameter of ˜110 nm and length of˜30 μm. The flexible FEDs have been fabricated by transferring and screen-printing the SiC nanowires onto the flexible substrates exhibited excellent field emission properties, such as the low turn-on field (˜0.95 V/μm) and threshold field (˜3.26 V/μm), and the high field enhancement factor (β=4670). It is worth noting the current density degradation can be controlled lower than 2% per hour during the stability tests. In addition, the flexible FEDs based on SiC nanowire emitters exhibit uniform bright emission modes under bending test conditions. As a result, this strategy is very useful for its potential application in the commercial flexible FEDs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Canevari, Thiago C., E-mail: tccanevari@gmail.com; Prado, Thiago M.; Cincotto, Fernando H.
Highlights: • Hybrid material, SiO{sub 2}/MWCNTs containing ruthenium phthalocyanine (RuPc) synthesized in situ. • Silica containing multi-walled carbon nanotube partially oriented. • Determination of pesticide fenitrothion in orange juice. - Abstract: This paper reports on the determination of the pesticide fenitrothion using a glassy carbon electrode modified with silica-coated, multi-walled, partially oriented carbon nanotubes, SiO{sub 2}/MWCNTs, containing ruthenium phthalocyanine (RuPc) synthesized in situ. The hybrid SiO{sub 2}/MWCNTs/RuPc material was characterized by UV–vis absorption spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM) and differential pulse voltammetry. The modified electrode showed well-defined peaks in the presencemore » of fenitrothion in acetate buffer, pH 4.5, with a sensitivity of 0.0822 μA μM{sup −1} mm{sup −2} and a detection limit of 0.45 ppm. Notably, the modified SiO{sub 2}/MWCNTs/RuPc electrodes with did not suffer from significant influences in the presence of other organophosphorus pesticides during the determination of the fenitrothion pesticide. Moreover, this modified electrode showed excellent performance in the determination of fenitrothion in orange juice.« less
Singhal, Chaitali; Ingle, Aviraj; Chakraborty, Dhritiman; Pn, Anoop Krishna; Pundir, C S; Narang, Jagriti
2017-05-01
An impedimetric genosensor was fabricated for detection of hepatitis C virus (HCV) genotype 1 in serum, based on hybridization of the probe with complementary target cDNA from sample. To achieve it, probe DNA complementary to HCVgene was immobilized on the surface of methylene blue (MB) doped silica nanoparticles MB@SiNPs) modified fluorine doped tin oxide (FTO) electrode. The synthesized MB@SiNPs was characterized using scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) pattern. This modified electrode (ssDNA/MB@SiNPs/FTO) served both as a signal amplification platform (due to silica nanoparticles (SiNPs) as well as an electrochemical indicator (due to methylene blue (MB)) for the detection of the HCV DNA in patient serum sample. The genosensor was optimized and evaluated. The sensor showed a dynamic linear range 100-10 6 copies/mL, with a detection limit of 90 copies/mL. The sensor was applied for detection of HCV in sera of hepatitis patient and could be renewed. The half life of the sensor was 4 weeks. The MB@SiNPs/FTO electrode could be used for preparation of other gensensors also. Copyright © 2017 Elsevier B.V. All rights reserved.
Wu, Zhongbiao; Sheng, Zhongyi; Liu, Yue; Wang, Haiqiang; Tang, Nian; Wang, Jie
2009-05-30
Pd-modified TiO(2) prepared by thermal impregnation method was used in this study for photocatalytic oxidation of NO in gas phase. The physico-chemical properties of Pd/TiO(2) catalysts were characterized by X-ray diffraction analysis (XRD), Brunauer-Emmett-Teller measurements (BET), X-ray photoelectron spectrum analysis (XPS), transmission electron microscopy (TEM), high resolution-transmission electron microscopy (HR-TEM), UV-vis diffuse reflectance spectra (UV-vis DRS) and photoluminescence spectra (PL). It was found that Pd dopant existed as PdO particles in as-prepared photocatalysts. The results of PL spectra indicated that the photogenerated electrons and holes were efficiently separated after Pd doping. During in situ XPS study, it was found that the content of hydroxyl groups on the surface of Pd/TiO(2) increased when the catalyst was irradiated by UV light, which could result in the improvement of photocatalytic activity. The activity test showed that the optimum Pd dopant content was 0.05 wt.%. And the maximum conversion of NO was about 72% higher than that of P25 when the initial concentration of NO was 200 ppm, which showed that Pd/TiO(2) photocatalysts could be potentially applied to oxidize higher concentration of NO.
NASA Astrophysics Data System (ADS)
Zhao, Rongjun; Li, Kejin; Wang, Zhezhe; Xing, Xinxin; Wang, Yude
2018-01-01
Zinc oxide nanoparticles with the different Cd doping contents were prepared by with a surfactant-mediated method in this paper. The effects of Cd doping on the gas sensing properties of the ZnO nanoparticles were studied. The morphology and microstructure of as-prepared samples were characterized by X-ray diffraction (XRD); scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high-resolution TEM (HRTEM), respectively. The results reveal that all the products are the high crystalline hexagonal wurtzite ZnO crystal structure. The gas-sensing characteristics of the Cd doped ZnO nanoparticles for volatile organic compounds (VOCs) were investigated. At its optimal operation temperature of 300 °C, the sensing properties of the Cd doped ZnO nanoparticles for n-butanol gas exhibit a high-performance gas sensing performances including high gas response, good selectivity, response/recovery time, and repeatability as well as stability. Especially, its response reaches 130 for 100 ppm n-butanol of ZnO nanoparticles with 2.5% Cd doping. Those values demonstrate the potential of using as-prepared Cd doped ZnO nanoparticles for n-butanol gas detection, making them to be promising candidates for practical detectors to n-butanol gas. Apart from these, the mechanism related to the advanced properties was also investigated and presented.
Yang, Manman; Wang, Zongyuan; Wang, Wei; Liu, Chang-Jun
2014-01-01
Argon glow discharge has been employed as a cheap, environmentally friendly, and convenient electron source for simultaneous reduction of HAuCl4 and PdCl2 on the anodic aluminum oxide (AAO) substrate. The thermal imaging confirms that the synthesis is operated at room temperature. The reduction is conducted with a short time (30 min) under the pressure of approximately 100 Pa. This room-temperature electron reduction operates in a dry way and requires neither hydrogen nor extra heating nor chemical reducing agent. The analyses using X-ray photoelectron spectroscopy (XPS) confirm all the metallic ions have been reduced. The characterization with X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) shows that AuPd alloyed nanoparticles are formed. There also exist some highly dispersed Au and Pd monometallic particles that cannot be detected by XRD and transmission electron microscopy (TEM) because of their small particle sizes. The observed AuPd alloyed nanoparticles are spherical with an average size of 14 nm. No core-shell structure can be observed. The room-temperature electron reduction can be operated in a larger scale. It is an easy way for the synthesis of AuPd alloyed nanoparticles.
Xia, Lei; Xu, Lin; Song, Jian; Xu, Ru; Liu, Dali; Dong, Biao; Song, Hongwei
2015-01-01
The CuO inverse opal photonic crystals (IOPCs) were synthesized by the sol-gel method and modified with CdS quantum dots by successive ionic layer adsorption and reaction (SILAR). CdS QDs modified CuO IOPCs FTO electrodes of different SILAR cycles were fabricated and their electrochemical properties were studied by cyclic voltammetry (CV) and chronoamperometry (I–t). Structure and morphology of the samples were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), high-resolution TEM (HRTEM), Energy-dispersive X-ray analysis (EDX) and X-ray diffraction pattern (XRD). The result indicated that the structure of IOPCs and loading of CdS QDs could greatly improve the electrochemical properties. Three SILAR cycles of CdS QDs sensitization was the optimum condition for preparing electrodes, it exhibited a sensitivity of 4345 μA mM-1 cm-2 to glucose with a 0.15 μM detection limit (S/N= 3) and a linear range from 0.15 μM to 0.5 mM under a working potential of +0.7 V. It also showed strong stability, good reproducibility, excellent selectivity and fast amperometric response. This work provides a promising approach for realizing excellent photoelectrochemical nonenzymatic glucose biosensor of similar composite structure. PMID:26042520
Graphene-Supported Spinel CuFe2O4 Composites: Novel Adsorbents for Arsenic Removal in Aqueous Media
La, Duong Duc; Nguyen, Tuan Anh; Jones, Lathe A.; Bhosale, Sheshanath V.
2017-01-01
A graphene nanoplate-supported spinel CuFe2O4 composite (GNPs/CuFe2O4) was successfully synthesized by using a facile thermal decomposition route. Scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), Electron Dispersive Spectroscopy (EDS), X-ray diffraction (XRD) and X-ray Photoelectron Spectroscopy (XPS) were employed to characterize the prepared composite. The arsenic adsorption behavior of the GNPs/CuFe2O4 composite was investigated by carrying out batch experiments. Both the Langmuir and Freundlich models were employed to describe the adsorption isotherm, where the sorption kinetics of arsenic adsorption by the composite were found to be pseudo-second order. The selectivity of the adsorbent toward arsenic over common metal ions in water was also demonstrated. Furthermore, the reusability and regeneration of the adsorbent were investigated by an assembled column filter test. The GNPs/CuFe2O4 composite exhibited significant, fast adsorption of arsenic over a wide range of solution pHs with exceptional durability, selectivity, and recyclability, which could make this composite a very promising candidate for effective removal of arsenic from aqueous solution. The highly sensitive adsorption of the material toward arsenic could be potentially employed for arsenic sensing. PMID:28587257
Electrochemical Sensing of Dopamine, Uric Acid and Ascorbic Acid Using tRGO-TiO2 Nanocomposites.
Rajamani, A R; Kannan, Rajesh; Krishnan, Sruthy; Ramakrishnan, S; Raj, S Mohan; Kumaresan, D; Kothurkar, Nikhil; Rangarajan, Murali
2015-07-01
This work reports a graphene-based nonenzymatic electrochemical sensing platform for the detection of dopamine (DA), uric acid (UA), and ascorbic acid (AA). Graphene oxide, synthesized by modified Hummers method, was thermally reduced in an induction furnace at 200 °C in an Ar-H2 atmosphere to obtain thermally reduced graphene oxide (tRGO). Nanocomposites of tRGO-TiO2 were obtained by a hydrothermal method, and were characterized using Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and X-ray diffraction (XRD). FTIR spectra showed Ti-O-C peaks, indicating covalent linkage between the TiO2 nanoparticles and the reduced graphene oxide sheets. Glassy carbon electrode (GCE) was modified with the nanocomposite (tRGO-TiO2-GCE), and the modified electrode could detect dopamine (DA: 1 to 1000 µM), uric acid (UA: 1 to 900 µM), and ascorbic acid (AA: 10 to 1000 µM) in each other's presence over wide ranges, with adequate separation in peak potentials. Differential pulse voltammetry experiments yielded linear responses with sensitivities of 133.18, 33.96, and 155.59 µA mM(-1) cm(-2) for DA, UA, and AA, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huynh, T. T. D.; Petit, A.; Semmar, N., E-mail: nadjib.semmar@univ-orleans.fr
2015-11-09
Laser-induced periodic surface structures (LIPSS) were formed on Cu/Si or Cu/glass thin films using Nd:YAG laser beam (40 ps, 10 Hz, and 30 mJ/cm{sup 2}). The study of ablation threshold is always achieved over melting when the variation of the number of pulses increases from 1 to 1000. But the incubation effect is leading to reduce the threshold of melting as increasing the number of laser pulse. Also, real time reflectivity signals exhibit typical behavior to stress the formation of a liquid phase during the laser-processing regime and helps to determine the threshold of soft ablation. Atomic Force Microscopy (AFM) analyses have shownmore » the topology of the micro-crater containing regular spikes with different height. Transmission Electron Microscopy (TEM) allows finally to show three distinguished zones in the close region of isolated protrusions. The central zone is a typical crystallized area of few nanometers surrounded by a mixed poly-crystalline and amorphous area. Finally, in the region far from the protrusion zone, Cu film shows an amorphous structure. The real time reflectivity, AFM, and HR-TEM analyses evidence the formation of a liquid phase during the LIPSS formation in the picosecond regime.« less
Wei, Liang; Chen, Yongjuan; Zhao, Jialin
2013-01-01
Summary In this study, NiS/ZnIn2S4 nanocomposites were successfully prepared via a facile two-step hydrothermal process. The as-prepared samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). Their photocatalytic performance for hydrogen evolution under visible light irradiation was also investigated. It was found that the photocatalytic hydrogen evolution activity over hexagonal ZnIn2S4 can be significantly increased by loading NiS as a co-catalyst. The formation of a good junction between ZnIn2S4 and NiS via the two step hydrothermal processes is beneficial for the directional migration of the photo-excited electrons from ZnIn2S4 to NiS. The highest photocatalytic hydrogen evolution rate (104.7 μmol/h), which is even higher than that over Pt/ZnIn2S4 nanocomposite (77.8 μmol/h), was observed over an optimum NiS loading amount of 0.5 wt %. This work demonstrates a high potential of the developing of environmental friendly, cheap noble-metal-free co-catalyst for semiconductor-based photocatalytic hydrogen evolution. PMID:24455453
Polyimide encapsulated lithium-rich cathode material for high voltage lithium-ion battery.
Zhang, Jie; Lu, Qingwen; Fang, Jianhua; Wang, Jiulin; Yang, Jun; NuLi, Yanna
2014-10-22
Lithium-rich materials represented by xLi2MnO3·(1 - x)LiMO2 (M = Mn, Co, Ni) are attractive cathode materials for lithium-ion battery due to their high specific energy and low cost. However, some drawbacks of these materials such as poor cycle and rate capability remain to be addressed before applications. In this study, a thin polyimide (PI) layer is coated on the surface of Li1.2Ni0.13Mn0.54Co0.13O2 (LNMCO) by a polyamic acid (PAA) precursor with subsequently thermal imidization process. X-ray diffraction (XRD), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HR-TEM) results confirm the successful formation of a PI layer (∼3 nm) on the surface of LNMCO without destruction of its main structure. X-ray photoelectron spectroscopy (XPS) spectra show a slight shift of the Mn valence state from Mn(IV) to Mn(III) in the PI-LNMCO treated at 450 °C, elucidating that charge transfer takes place between the PI layer and LNMCO surface. Electrochemical performances of LNMCO including cyclic stability and rate capability are evidently improved by coating a PI nanolayer, which effectively separates the cathode material from the electrolyte and stabilizes their interface at high voltage.
Tin-decorated ruthenium nanoparticles: a way to tune selectivity in hydrogenation reaction
NASA Astrophysics Data System (ADS)
Bonnefille, Eric; Novio, Fernando; Gutmann, Torsten; Poteau, Romuald; Lecante, Pierre; Jumas, Jean-Claude; Philippot, Karine; Chaudret, Bruno
2014-07-01
Two series of ruthenium nanoparticles stabilized either by a polymer (polyvinylpyrrolidone; Ru/PVP) or a ligand (bisdiphenylphosphinobutane; Ru/dppb) were reacted with tributyltin hydride [(n-C4H9)3SnH] leading to tin-decorated ruthenium nanoparticles, Ru/PVP/Sn and Ru/dppb/Sn. The Sn/Ru molar ratio was varied in order to study the influence of the surface tin content on the properties of these new nanoparticles, by comparison with Ru/PVP and Ru/dppb. Besides HRTEM and WAXS analyses, spectroscopic techniques (IR, NMR and Mössbauer) combined with theoretical calculations and a simple catalytic test (styrene hydrogenation) allowed us to evidence the formation of μ3-bridging ``SnR'' groups on the ruthenium surface as well as to rationalize their influence on surface chemistry and catalytic activity.Two series of ruthenium nanoparticles stabilized either by a polymer (polyvinylpyrrolidone; Ru/PVP) or a ligand (bisdiphenylphosphinobutane; Ru/dppb) were reacted with tributyltin hydride [(n-C4H9)3SnH] leading to tin-decorated ruthenium nanoparticles, Ru/PVP/Sn and Ru/dppb/Sn. The Sn/Ru molar ratio was varied in order to study the influence of the surface tin content on the properties of these new nanoparticles, by comparison with Ru/PVP and Ru/dppb. Besides HRTEM and WAXS analyses, spectroscopic techniques (IR, NMR and Mössbauer) combined with theoretical calculations and a simple catalytic test (styrene hydrogenation) allowed us to evidence the formation of μ3-bridging ``SnR'' groups on the ruthenium surface as well as to rationalize their influence on surface chemistry and catalytic activity. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr00791c
Electrospinning of single wall carbon nanotube reinforced aligned fibrils and yarns
NASA Astrophysics Data System (ADS)
Lam, Hoa Le
Commercial carbon fibers produced from a polyacrylonitrile (PAN) precursor have reached their performance limit. The approach in this study involves the use of single carbon nanotubes (SWNT) with an ultra-high elastic modulus of approximately ˜1 TPa and tensile strength of ˜37 GPa at a breaking strain of ˜6% to reinforce PAN. In order to translate these extraordinary properties to a higher order structure, the need for a media to carry and assemble the SWNT into continuous fibers or yarns is necessary. Effective translation of properties can only be achieved through uniform distribution of SWNT and their alignment in the fiber axis. This has been one of the major challenges since SWNTs tend to agglomerate due to high van der Waals attraction between tubes. It is the goal of this study to develop dispersion technique(s) for the SWNT and process them into aligned fibers utilizing the electrospinning process. The electrospun nanofibers were then characterized by various techniques such as ESEM, Raman microspectroscopy, HRTEM, and tensile testing. Composite nanofibers containing various contents of SWNT up to 10 wt. % with diameter ranging from 40--300 nm were successfully electrospun through varying the polymer concentration and spinning parameters. The inclusion of SWNTs and their alignment in the fiber axis were confirmed by Raman microspectroscopy, polarized Raman and HRETEM. The failure mechanism of the nanofibers was investigated by HRTEM through fiber surface fracture. A two stage rupture mechanism was observed where crazing initiates at a surface defect followed by SWNTs pulling out of the PAN matrix. Such mechanisms consume energy therefore strengthening and toughening the fibers. Mechanical drawing of the fiber prior to heat treatment induced molecular orientation resulting in oriented graphite layers in the carbonized fibers. This study has established a processing base and characterization techniques to support the design and development of SWNT reinforced PAN-derived carbon nanofibers. The encouraging results from this study suggest a promising pathway to produce the next generation of high performance CNT reinforced carbon nanofibers. This would help in translating of the remarkable properties of SWNT to macroscopic applications, thus filling the dimensional and properties gap between nanoscopic and macroscopic structures.
Microscopy techniques in flavivirus research.
Chong, Mun Keat; Chua, Anthony Jin Shun; Tan, Terence Tze Tong; Tan, Suat Hoon; Ng, Mah Lee
2014-04-01
The Flavivirus genus is composed of many medically important viruses that cause high morbidity and mortality, which include Dengue and West Nile viruses. Various molecular and biochemical techniques have been developed in the endeavour to study flaviviruses. However, microscopy techniques still have irreplaceable roles in the identification of novel virus pathogens and characterization of morphological changes in virus-infected cells. Fluorescence microscopy contributes greatly in understanding the fundamental viral protein localizations and virus-host protein interactions during infection. Electron microscopy remains the gold standard for visualizing ultra-structural features of virus particles and infected cells. New imaging techniques and combinatory applications are continuously being developed to push the limit of resolution and extract more quantitative data. Currently, correlative live cell imaging and high resolution three-dimensional imaging have already been achieved through the tandem use of optical and electron microscopy in analyzing biological specimens. Microscopy techniques are also used to measure protein binding affinities and determine the mobility pattern of proteins in cells. This chapter will consolidate on the applications of various well-established microscopy techniques in flavivirus research, and discuss how recently developed microscopy techniques can potentially help advance our understanding in these membrane viruses. Copyright © 2013 Elsevier Ltd. All rights reserved.
A genosensor for detection of consensus DNA sequence of Dengue virus using ZnO/Pt-Pd nanocomposites.
Singhal, Chaitali; Pundir, C S; Narang, Jagriti
2017-11-15
An electrochemical genosensor based on Zinc oxide/platinum-palladium (ZnO/Pt-Pd) modified fluorine doped tin oxide (FTO) glass plate was fabricated for detection of consensus DNA sequence of Dengue virus (DENV) using methylene blue (MB) as an intercalating agent. To achieve it, probe DNA (PDNA) was immobilized on the surface of ZnO/Pt-Pd nanocomposites modified FTO electrode. The synthesized nano-composites were characterized by high resolution transmission electron microscopy (HRTEM), energy dispersive X-ray analysis (EDX), atomic force microscopy (AFM), scanning electron microscopy (SEM), UV-Vis spectroscopy, X-ray diffraction (XRD) analysis and Fourier transform infra-red (FTIR) spectroscopy. This PDNA modified electrode (PDNA/ZnO/Pt-Pd/FTO) served as a signal amplification platform for the detection of the target hybridized DNA (TDNA). The hybridization between PDNA and TDNA was detected by reduction in current, generated by interaction of anionic mediator, i.e., methylene blue (MB) with free guanine (3'G) of ssDNA. The sensor showed a dynamic linear range of 1 × 10 -6 M to 100 × 10 -6 M with LOD as 4.3 × 10 -5 M and LOQ as 9.5 × 10 -5 M. Till date, majorly serotype specific biosensors for dengue detection have been developed. The genosensor reported here eliminates the possibility of false result as in case of serotype specific DNA sensor. This is the report where conserved sequences present in all the serotypes of Dengue virus has been employed for fabrication of a genosensor. Copyright © 2017 Elsevier B.V. All rights reserved.
Dual function of EDTA with silver nanoparticles for root canal treatment-A novel modification.
Martinez-Andrade, Juan M; Avalos-Borja, Miguel; Vilchis-Nestor, Alfredo R; Sanchez-Vargas, Luis O; Castro-Longoria, Ernestina
2018-01-01
The chelating and antimicrobial capacity of a novel modification of 17% EDTA with silver nanoparticles (AgNPs) (EDTA-AgNPs) was evaluated in-vitro for root canal treatment (RCT). The EDTA-AgNPs solution was characterized by UV-Vis spectroscopy, ζ-potential and high-resolution transmission electron microscopy (HRTEM). Antimicrobial capacity was evaluated against Candida albicans and Staphylococcus aureus in planktonic and biofilm cells by broth macrodilution (24 h) and XTT assays, (1, 10 and 30 min) respectively. The chelating capacity of EDTA-AgNPs was assessed indirectly (smear layer removal) and directly (demineralizing effect) in bovine dentin at two silver concentrations, 16 and 512 μg/ml at 1 and 10 minutes of exposure time. Smear layer removal was evaluated by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The demineralizing effect was determined by atomic absorption spectroscopy (AAS), microhardness test (MH) and X-ray diffractometer (XRD). Synthesized AgNPs were quasi-spherical in shape with an average size of 13.09 ± 8.05 nm. 17% EDTA-AgNPs was effective to inhibit C. albicans and S. aureus in planktonic and biofilm cultures. The smear layer removal and demineralizing effect were similar between 17% EDTA-AgNPs and 17% EDTA treatments. The 17% EDTA-AgNPs solution proved to be an effective antimicrobial agent, and has a similar chelating capacity to 17% EDTA alone. These in-vitro studies strongly suggest that EDTA-AgNPs could be used for effective smear layer removal, having an antimicrobial effect at the same time during RCT.
Castro-Longoria, E; Trejo-Guillén, K; Vilchis-Nestor, A R; Avalos-Borja, M; Andrade-Canto, S B; Leal-Alvarado, D A; Santamaría, J M
2014-02-01
Salvinia minima Baker is a small floating aquatic fern that is efficient for the removal and storage of heavy metals such as lead and cadmium. In this study, we report that lead removal by S. minima causes large accumulation of lead inside the cells in the form of nanoparticles (PbNPs). The accumulation pattern of lead was analyzed in both, submerged root-like modified fronds (here named "roots"), and in its aerial leaf-like fronds ("leaves"). Analysis by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM) confirmed the biosynthesis of PbNPs by the plant. In both, roots and leaves, PbNPs were found to accumulate almost exclusively at the cell wall and closely associated to the cell membrane. Two types of PbNPs shapes were found in cells of both tissues, those associated to the cell wall were quasi-spherical with 17.2±4.2 nm of diameter, while those associated to the cell membrane/cytoplasm were elongated. Elongated particles were 53.7±29.6 nm in length and 11.1±2.4 nm wide. Infrared spectroscopy (IR) results indicate that cellulose, lignin and pectin are the major components that may be acting as the reducing agents for lead ions; these findings strongly suggest the potential use of this fern to further explore the bio-assisted synthesis of heavy metal nanostructures. Copyright © 2013 Elsevier B.V. All rights reserved.
Dual function of EDTA with silver nanoparticles for root canal treatment–A novel modification
Martinez-Andrade, Juan M.; Avalos-Borja, Miguel; Vilchis-Nestor, Alfredo R.; Sanchez-Vargas, Luis O.
2018-01-01
The chelating and antimicrobial capacity of a novel modification of 17% EDTA with silver nanoparticles (AgNPs) (EDTA-AgNPs) was evaluated in-vitro for root canal treatment (RCT). The EDTA-AgNPs solution was characterized by UV-Vis spectroscopy, ζ-potential and high-resolution transmission electron microscopy (HRTEM). Antimicrobial capacity was evaluated against Candida albicans and Staphylococcus aureus in planktonic and biofilm cells by broth macrodilution (24 h) and XTT assays, (1, 10 and 30 min) respectively. The chelating capacity of EDTA-AgNPs was assessed indirectly (smear layer removal) and directly (demineralizing effect) in bovine dentin at two silver concentrations, 16 and 512 μg/ml at 1 and 10 minutes of exposure time. Smear layer removal was evaluated by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The demineralizing effect was determined by atomic absorption spectroscopy (AAS), microhardness test (MH) and X-ray diffractometer (XRD). Synthesized AgNPs were quasi-spherical in shape with an average size of 13.09 ± 8.05 nm. 17% EDTA-AgNPs was effective to inhibit C. albicans and S. aureus in planktonic and biofilm cultures. The smear layer removal and demineralizing effect were similar between 17% EDTA-AgNPs and 17% EDTA treatments. The 17% EDTA-AgNPs solution proved to be an effective antimicrobial agent, and has a similar chelating capacity to 17% EDTA alone. These in-vitro studies strongly suggest that EDTA-AgNPs could be used for effective smear layer removal, having an antimicrobial effect at the same time during RCT. PMID:29346398
Shape and crystallographic orientation of nanodiamonds for quantum sensing.
Ong, S Y; Chipaux, M; Nagl, A; Schirhagl, R
2017-05-03
Nanodiamonds with dimensions down to a few tens of nanometers containing nitrogen-vacancy (NV) color centers have revealed their potential as powerful and versatile quantum sensors with a unique combination of spatial resolution and sensitivity. The NV centers allow transducing physical properties, such as strain, temperature, and electric or magnetic field, to an optical transition that can be detected in the single photon range. For example, this makes it possible to sense a single electron spin or a few nuclear spins by detecting their magnetic resonance. The location and orientation of these defects with respect to the diamond surface play a crucial role in interpreting the data and predicting their sensitivities. Despite its relevance, the geometry of these nanodiamonds has never been thoroughly investigated. Without accurate data, spherical models have been applied to interpret or predict results in the past. With the use of High Resolution Transmission Electron Microscopy (HR-TEM), Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM), we investigated nanodiamonds with an average hydrodynamic diameter of 25 nm (the most common type for quantum sensing) and found a flake-like geometry, with 23.2 nm and 4.5 nm being the average lateral and vertical dimensions. We have also found evidence for a preferred crystallographic orientation of the main facet in the (110) direction. Furthermore, we discuss the consequences of this difference in geometry on diamond-based applications. Shape not only influences the creation efficiency of nitrogen-vacancy centers and their quantum coherence properties (and thus sensing performance), but also the optical properties of the nanodiamonds, their interaction with living cells, and their surface chemistry.
Application of scanning acoustic microscopy to advanced structural ceramics
NASA Technical Reports Server (NTRS)
Vary, Alex; Klima, Stanley J.
1987-01-01
A review is presentod of research investigations of several acoustic microscopy techniques for application to structural ceramics for advanced heat engines. Results obtained with scanning acoustic microscopy (SAM), scanning laser acoustic microscopy (SLAM), scanning electron acoustic microscopy (SEAM), and photoacoustic microscopy (PAM) are compared. The techniques were evaluated on research samples of green and sintered monolithic silicon nitrides and silicon carbides in the form of modulus-of-rupture bars containing deliberately introduced flaws. Strengths and limitations of the techniques are described with emphasis on statistics of detectability of flaws that constitute potential fracture origins.
NASA Astrophysics Data System (ADS)
Kumar, Sanjeev; Mahajan, Mani; Singh, Rajinder; Mahajan, Aman
2018-02-01
In this report, silver nanoparticles (Ag NPs) anchored reduced graphene oxide (rGO) sheets (rGO/Ag) nanohybrid has been explored as anode material in direct methanol fuel cells (DMFCs). The synthesized rGO/Ag nanohybrid is characterized by XRD, XPS, FTIR spectroscopy and HRTEM techniques. Cyclic voltammograms demonstrate that the rGO/Ag nanohybrid exhibits higher electrocatalytic activity in comparison to rGO sheets for methanol oxidation reaction (MOR). This enhancement is attributed to the synergetic effect produced by the presence of more active sites provided by Ag NPs anchored on a conducting network of large surface area rGO sheets.
NASA Astrophysics Data System (ADS)
Anbarasu, G.; Malathy, M.; Karthikeyan, P.; Rajavel, R.
2017-09-01
Silica functionalized Cu(II) acetylacetonate Schiff base complex via the one pot reaction of silica functionalized 3-aminopropyltriethoxysilane with acetyl acetone and copper acetate has been reported. The synthesized material was well characterized by analytical techniques such as FT-IR, UV-DRS, XRD, SEM-EDX, HR-TEM, EPR, ICP-AES and BET analysis. The characterization results confirmed the grafting of Cu(II) Schiff base complex on the silica surface. The catalytic activity of synthesized silica functionalized Cu(II) acetylacetonate Schiff base complex was evaluated through the oxidative condensation reaction of benzyl alcohol to imine.
Progress in the Correlative Atomic Force Microscopy and Optical Microscopy
Zhou, Lulu; Cai, Mingjun; Tong, Ti; Wang, Hongda
2017-01-01
Atomic force microscopy (AFM) has evolved from the originally morphological imaging technique to a powerful and multifunctional technique for manipulating and detecting the interactions between molecules at nanometer resolution. However, AFM cannot provide the precise information of synchronized molecular groups and has many shortcomings in the aspects of determining the mechanism of the interactions and the elaborate structure due to the limitations of the technology, itself, such as non-specificity and low imaging speed. To overcome the technical limitations, it is necessary to combine AFM with other complementary techniques, such as fluorescence microscopy. The combination of several complementary techniques in one instrument has increasingly become a vital approach to investigate the details of the interactions among molecules and molecular dynamics. In this review, we reported the principles of AFM and optical microscopy, such as confocal microscopy and single-molecule localization microscopy, and focused on the development and use of correlative AFM and optical microscopy. PMID:28441775
Effects of aspect ratio of multi-walled carbon nanotubes on coal washery waste water treatment.
Aliyu, Ahmed; Kariim, Ishaq; Abdulkareem, Saka Ambali
2017-11-01
The dependency of adsorption behaviour on the aspect ratio of multi-walled carbon nanotubes (MWCNTs) has been explored. In this study, effect of growth temperature on yield and aspect ratio of MWCNTs by catalytic chemical vapour deposition (CCVD) method is reported. The result revealed that yield and aspect ratio of synthesised MWCNTs strongly depend on the growth temperature during CCVD operation. The resulting MWCNTs were characterized by High Resolution Transmission Electron Microscope (HRTEM), Dynamic Light Scattering (DLS) and X-ray diffraction (XRD) techniques to determine it diameter, hydrodynamic diameter and crystallinity respectively. Aspect ratio and length of the grown MWCNTs were determined from the HRTEM images with the hydrodynamic diameter using the modified Navier-Stokes and Stokes-Einstein equations. The effect of the prepared MWCNTs dosage were investigated on the Turbidity, Iron (Fe) and Lead (Pb) removal efficiency of coal washery effluent. The MWCNTs with higher length (58.17 μm) and diameter (71 nm) tend to show high turbidity and Fe removal, while MWCNTs with lower length (38.87 μm) and diameter (45 nm) tend to show high removal of Pb. Hence, the growth temperature during CCVD operation shows a great effluence on the aspect ratio of MWCNTs which determines it area of applications. Copyright © 2017 Elsevier Ltd. All rights reserved.
Structure and morphology evolution of silica-modified pseudoboehmite aerogels during heat treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pakharukova, V.P., E-mail: verapakh@catalysis.ru; Novosibirsk State University, Pirogova Street 2, 630090 Novosibirsk; Research and Educational Center for Energy Efficient Catalysis, Novosibirsk State University, Novosibirsk 630090
Silica-modified pseudoboehmite aerogels (0, 10, 20 at% of Si) were prepared by sol–gel method followed by supercritical drying. The phase transformations, changes in structure and morphology upon calcination were thoroughly investigated by advanced X-Ray diffraction (XRD) techniques and high-resolution transmission electron microscopy (HRTEM). Obtained pseudoboehmite samples had specific nanostructure: ultrathin two-dimensional (2D) crystallites were loosely packed. The silica dopant drastically enhanced the crystallite anisotropy. Thus, the aerogel with Al:Si atomic ratio of 9:1 consisted of the pseudoboehmite nanosheets with thickness of one unit cell (average dimensions of 14.0×1.2×14.5 nm). The specific nanostructure caused remarkable features of experimental XRD patterns, includingmore » anisotropic peak broadening and appearance of forbidden reflection. Direct simulation of XRD patterns with using the Debye Scattering Equation allowed the size and morphology of pseudoboehmite crystallites to be determined. The silica addition strongly delayed formation of γ-alumina and further phase transformations upon calcinaton. Thermal stability of alumina was suggested to be affected by the particle morphology inherited from the pseudoboehmite precursor. - Graphical abstract: Pseudoboehmite samples had specific nanostructure: ultrathin two-dimensional (2D) crystallites were loosely packed. - Highlights: • Silica-doped boehmites were prepared by sol–gel method with supercritical drying. • Ultrathin two-dimensional crystallites of pseudoboehmite were obtained. • Changes in structure and morphology upon calcination were studied. • Simulation of XRD patterns was performed with use of the Debye Scattering Equation. • Thermal stability of alumina depended on morphology inherited from pseudoboehmite.« less
Kraus, Max-Joseph; Seifert, Jan; Strasser, Erwin F; Gawaz, Meinrad; Schäffer, Tilman E; Rheinlaender, Johannes
2016-09-01
Many conventional microscopy techniques for investigating platelet morphology such as electron or fluorescence microscopy require highly invasive treatment of the platelets such as fixation, drying and metal coating or staining. Here, we present two unique but entirely different microscopy techniques for direct morphology analysis of live, unstained platelets: scanning ion conductance microscopy (SICM) and robotic dark-field microscopy (RDM). We demonstrate that both techniques allow for a quantitative evaluation of the morphological features of live adherent platelets. We show that their morphology can be quantified by both techniques using the same geometric parameters and therefore can be directly compared. By imaging the same identical platelets subsequently with SICM and RDM, we found that area, perimeter and circularity of the platelets are directly correlated between SICM and dark-field microscopy (DM), while the fractal dimension (FD) differed between the two microscopy techniques. We show that SICM and RDM are both valuable tools for the ex vivo investigation of the morphology of live platelets, which might contribute to new insights into the physiological and pathophysiological role of platelet spreading.
Covalent modification and exfoliation of graphene oxide using ferrocene
NASA Astrophysics Data System (ADS)
Avinash, M. B.; Subrahmanyam, K. S.; Sundarayya, Y.; Govindaraju, T.
2010-09-01
Large scale preparation of single-layer graphene and graphene oxide is of great importance due to their potential applications. We report a simple room temperature method for the exfoliation of graphene oxide using covalent modification of graphene oxide with ferrocene to obtain single-layer graphene oxide sheets. The samples were characterized by FESEM, HRTEM, AFM, EDAX, FT-IR, Raman and Mössbauer spectroscopic studies. HRTEM micrograph of the covalently modified graphene oxide showed increased interlayer spacing of ~2.4 nm due to ferrocene intercalation. The presence of single-layer graphene oxide sheets were confirmed by AFM studies. The covalently modified ferrocene-graphene oxide composite showed interesting magnetic behavior.Large scale preparation of single-layer graphene and graphene oxide is of great importance due to their potential applications. We report a simple room temperature method for the exfoliation of graphene oxide using covalent modification of graphene oxide with ferrocene to obtain single-layer graphene oxide sheets. The samples were characterized by FESEM, HRTEM, AFM, EDAX, FT-IR, Raman and Mössbauer spectroscopic studies. HRTEM micrograph of the covalently modified graphene oxide showed increased interlayer spacing of ~2.4 nm due to ferrocene intercalation. The presence of single-layer graphene oxide sheets were confirmed by AFM studies. The covalently modified ferrocene-graphene oxide composite showed interesting magnetic behavior. Electronic supplementary information (ESI) available: Magnetic data; AFM images; TEM micrographs; and Mössbauer spectroscopic data. See DOI: 10.1039/c0nr00024h
In vivo correlation mapping microscopy
NASA Astrophysics Data System (ADS)
McGrath, James; Alexandrov, Sergey; Owens, Peter; Subhash, Hrebesh; Leahy, Martin
2016-04-01
To facilitate regular assessment of the microcirculation in vivo, noninvasive imaging techniques such as nailfold capillaroscopy are required in clinics. Recently, a correlation mapping technique has been applied to optical coherence tomography (OCT), which extends the capabilities of OCT to microcirculation morphology imaging. This technique, known as correlation mapping optical coherence tomography, has been shown to extract parameters, such as capillary density and vessel diameter, and key clinical markers associated with early changes in microvascular diseases. However, OCT has limited spatial resolution in both the transverse and depth directions. Here, we extend this correlation mapping technique to other microscopy modalities, including confocal microscopy, and take advantage of the higher spatial resolution offered by these modalities. The technique is achieved as a processing step on microscopy images and does not require any modification to the microscope hardware. Results are presented which show that this correlation mapping microscopy technique can extend the capabilities of conventional microscopy to enable mapping of vascular networks in vivo with high spatial resolution in both the transverse and depth directions.
Reinecke, Benjamin N.; Kuhl, Kendra P.; Ogasawara, Hirohito; ...
2015-12-31
We report on the electronic structure of Au (gold) nanoparticles supported onto TiO 2 with a goal of elucidating the most important effects that contribute to their high catalytic activity. We synthesize and characterize with high resolution transmission electron microscopy (HRTEM) 3.4, 5.3, and 9.5 nm diameter TiO 2-supported Au nanoparticles with nearly spherical shape and measure their valence band using Au 5d subshell sensitive hard X-ray photoelectron spectroscopy (HAXPES) conducted at Spring-8. Based on density functional theory (DFT) calculations of various Au surface structures, we interpret the observed changes in the Au 5d valence band structure as a functionmore » of size in terms of an increasing percentage of Au atoms at corners/edges for decreasing particle size. Finally, this work elucidates how Au coordination number impacts the electronic structure of Au nanoparticles, ultimately giving rise to their well-known catalytic activity.« less
NASA Astrophysics Data System (ADS)
Govindhan, R.; Karthikeyan, B.
2018-03-01
Recognition of xanthine alkaloid caffeine with 3,5-bis(trifluoromethyl)benzylamine derived peptide nanotubes (BTTPNTs) through chemical interaction have been achieved through the host-guest like interaction. DFT simulation is carried out for caffeine interacted with BTTPNTs system and also experimentally characterized by ultraviolet-visible (UV-vis) absorbance, confocal Raman spectra (CRS) with microscopic imaging (CRM), FT-Raman, surface enhanced Raman scattering (SERS), UV-diffuse reflectance spectra (UV-DRS), high resolution transmission electron microscopy (HR-TEM) and cyclic voltammetry (CV) studies. The results are used to examine the morphologies, size of the nanostructure and study of its interaction with the caffeine molecule. The results show that BTTPNTs is having potential for sensing the caffeine molecules through the binding occurred from the NH2 of tyrosine moiety of the BTTPNTs. This intermolecular association through face-to-face stacking of BTTPNTs is explained by detailed DFT calculations.
NASA Astrophysics Data System (ADS)
Jiang, Xiaofan; Ma, Zhongyuan; Yang, Huafeng; Yu, Jie; Wang, Wen; Zhang, Wenping; Li, Wei; Xu, Jun; Xu, Ling; Chen, Kunji; Huang, Xinfan; Feng, Duan
2014-09-01
Adding a resistive switching functionality to a silicon microelectronic chip is a new challenge in materials research. Here, we demonstrate that unipolar and electrode-independent resistive switching effects can be realized in the annealed Si-rich SiNx/SiNy multilayers with high on/off ratio of 109. High resolution transmission electron microscopy reveals that for the high resistance state broken pathways composed of discrete nanocrystalline silicon (nc-Si) exist in the Si nitride multilayers. While for the low resistance state the discrete nc-Si regions is connected, forming continuous nc-Si pathways. Based on the analysis of the temperature dependent I-V characteristics and HRTEM photos, we found that the break-and-bridge evolution of nc-Si pathway is the origin of resistive switching memory behavior. Our findings provide insights into the mechanism of the resistive switching behavior in nc-Si films, opening a way for it to be utilized as a material in Si-based memories.
Vertical Si nanowire arrays fabricated by magnetically guided metal-assisted chemical etching
NASA Astrophysics Data System (ADS)
Chun, Dong Won; Kim, Tae Kyoung; Choi, Duyoung; Caldwell, Elizabeth; Kim, Young Jin; Paik, Jae Cheol; Jin, Sungho; Chen, Renkun
2016-11-01
In this work, vertically aligned Si nanowire arrays were fabricated by magnetically guided metal-assisted directional chemical etching. Using an anodized aluminum oxide template as a shadow mask, nanoscale Ni dot arrays were fabricated on an Si wafer to serve as a mask to protect the Si during the etching. For the magnetically guided chemical etching, we deposited a tri-layer metal catalyst (Au/Fe/Au) in a Swiss-cheese configuration and etched the sample under the magnetic field to improve the directionality of the Si nanowire etching and increase the etching rate along the vertical direction. After the etching, the nanowires were dried with minimal surface-tension-induced aggregation by utilizing a supercritical CO2 drying procedure. High-resolution transmission electron microscopy (HR-TEM) analysis confirmed the formation of single-crystal Si nanowires. The method developed here for producing vertically aligned Si nanowire arrays could find a wide range of applications in electrochemical and electronic devices.
Bulk oxygen vacancies enriched TiO2 and its enhanced visible photocatalytic performance
NASA Astrophysics Data System (ADS)
Xu, Liming; Ma, Xujun; Sun, Na; Chen, Feng
2018-05-01
Via a vacuum thermal treatment, oxygen vacancy (Ov) was introduced into TiO2 bulk lattice during the phase transformation from amorphous TiO2 to anatase. High-resolution transmission electron microscopy (HRTEM), Raman spectra and X-ray diffraction (XRD) confirm the involvement of Ov causes more violent changes in both bulk and surface structure. Electron paramagnetic resonance (EPR) demonstrated as-obtained V350 gets about a 40-times enhanced Ov signal compared with pure TiO2 (A350) and a 10-times larger signal than that of common Ov modified TiO2 (A450-V350), which clearly illustrates the high concentration of Ov in its bulk lattice. The much enriched Ovs in both bulk and surface lattices of TiO2 help V350 get an enhanced capacity in either visible light harvest or photocarriers generation. And a much higher visible photocatalytic activity for Aicd Orange 7 degradation was finally achieved by V350.
Kameche, Farid; Ngo, Anh-Tu; Salzemann, Caroline; Cordeiro, Marco; Sutter, Eli; Petit, Christophe
2015-11-14
Co(x)Pt(100-x) nanoalloys have been synthesized by two different chemical processes either at high or at low temperature. Their physical properties and the order/disorder phase transition induced by annealing have been investigated depending on the route of synthesis. It is demonstrated that the chemical synthesis at high temperature allows stabilization of the fcc structure of the native nanoalloys while the soft chemical approach yields mainly poly or non crystalline structure. As a result the approach of the order/disorder phase transition is strongly modified as observed by high-resolution transmission electron microscopy (HR-TEM) studies performed during in situ annealing of the different nanoalloys. The control of the nanocrystallinity leads to significant decrease in the chemical ordering temperature as the ordered structure is observed at temperatures as low as 420 °C. This in turn preserves the individual nanocrystals and prevents their coalescence usually observed during the annealing necessary for the transition to an ordered phase.
Synthesis and Luminescence Properties of Core/Shell ZnS:Mn/ZnO Nanoparticles.
Jiang, Daixun; Cao, Lixin; Liu, Wei; Su, Ge; Qu, Hua; Sun, Yuanguang; Dong, Bohua
2009-01-01
In this paper the influence of ZnO shell thickness on the luminescence properties of Mn-doped ZnS nanoparticles is studied. Transmission electron microscopy (TEM) images showed that the average diameter of ZnS:Mn nanoparticles is around 14 nm. The formation of ZnO shells on the surface of ZnS:Mn nanoparticles was confirmed by X-ray diffraction (XRD) patterns, high-resolution TEM (HRTEM) images, and X-ray photoelectron spectroscopy (XPS) measurements. A strong increase followed by a gradual decline was observed in the room temperature photoluminescence (PL) spectra with the thickening of the ZnO shell. The photoluminescence excitation (PLE) spectra exhibited a blue shift in ZnO-coated ZnS:Mn nanoparticles compared with the uncoated ones. It is shown that the PL enhancement and the blue shift of optimum excitation wavelength are led by the ZnO-induced surface passivation and compressive stress on the ZnS:Mn cores.
Optical and magnetic properties of zinc oxide quantum dots doped with cobalt and lanthanum.
Yu, Shiyong; Zhao, Jing; Su, Hai-Quan
2013-06-01
Cobalt and Lanthanum-doped ZnO QDs are synthesized by a modified sol-gel method under atmospheric conditions. The as-prepared quantum dots are characterized by X-ray powder diffraction (XRD), energy dispersive X-ray (EDX) analysis and high resolution transmission electron microscopy (HRTEM). The optical properties of the products are studied by fluorescent spectroscopy. With a proper Co and La doping, these nanoparticles possess exceptionally small size and enhanced fluorescence. Hysteresis loops of un-doped ZnO QDs and Co and La-doped ZnO QDs indicate that both the samples show ferromagnetic behavior at room temperature. Finally, these nanoparticles can label the BGC 803 cells successfully in short time and present no evidence of toxicity or adverse affect on cell growth even at the concentration up to 1 mM. We expect that the as-prepared Co and La-doped ZnO QDs can provide a better reliability of the collected data and find promising applications in biological, medical and other fields.
Electromagnetic wave absorbing properties and hyperfine interactions of Fe—Cu—Nb—Si—B nanocomposites
NASA Astrophysics Data System (ADS)
Han, Man-Gui; Guo, Wei; Wu, Yan-Hui; Liu, Min; Magundappa, L. Hadimani
2014-08-01
The Fe—Cu—Nb—Si—B alloy nanocomposite containing two ferromagnetic phases (amorphous phase and nanophase phase) is obtained by properly annealing the as-prepared alloys. High resolution transmission electron microscopy (HR-TEM) images show the coexistence of these two phases. It is found that Fe—Si nanograins are surrounded by the retained amorphous ferromagnetic phase. Mössbauer spectroscopy measurements show that the nanophase is the D03-type Fe—Si phase, which is employed to find the atomic fractions of resonant 57Fe atoms in these two phases. The microwave permittivity and permeability spectra of Fe—Cu—Nb—Si—B nanocomposite are measured in the frequency range of 0.5 GHz-10 GHz. Large relative microwave permeability values are obtained. The results show that the absorber containing the nanocomposite flakes with a volume fraction of 28.59% exhibits good microwave absorption properties. The reflection loss of the absorber is less than -10 dB in a frequency band of 1.93 GHz-3.20 GHz.