A comparative laboratory diagnosis of malaria: microscopy versus rapid diagnostic test kits.
Azikiwe, C C A; Ifezulike, C C; Siminialayi, I M; Amazu, L U; Enye, J C; Nwakwunite, O E
2012-04-01
To compare the two methods of rapid diagnostic tests (RDTs) and microscopy in the diagnosis of malaria. RDTs and microscopy were carried out to diagnose malaria. Percentage malaria parasitaemia was calculated on thin films and all non-acute cases of plasmodiasis with less than 0.001% malaria parasitaemia were regarded as negative. Results were simply presented as percentage positive of the total number of patients under study. The results of RDTs were compared to those of microscopy while those of RDTs based on antigen were compared to those of RDTs based on antibody. Patients' follow-up was made for all cases. All the 200 patients under present study tested positive to RDTs based on malaria antibodies (serum) method (100%). 128 out of 200 tested positive to RDTs based on malaria antigen (whole blood) method (64%), while 118 out of 200 patients under present study tested positive to visual microscopy of Lieshman and diluted Giemsa (59%). All patients that tested positive to microscopy also tested positive to RDTs based on antigen. All patients on the second day of follow-up were non-febrile and had antimalaria drugs. We conclude based on the present study that the RDTs based on malaria antigen (whole blood) method is as specific as the traditional microscopy and even appears more sensitive than microscopy. The RDTs based on antibody (serum) method is unspecific thus it should not be encouraged. It is most likely that Africa being an endemic region, formation of certain levels of malaria antibody may not be uncommon. The present study also supports the opinion that a good number of febrile cases is not due to malaria. We support WHO's report on cost effectiveness of RDTs but, recommend that only the antigen based method should possibly, be adopted in Africa and other malaria endemic regions of the world.
Wang, Yilin; Kanchanawong, Pakorn
2016-12-01
Fluorescence microscopy enables direct visualization of specific biomolecules within cells. However, for conventional fluorescence microscopy, the spatial resolution is restricted by diffraction to ~ 200 nm within the image plane and > 500 nm along the optical axis. As a result, fluorescence microscopy has long been severely limited in the observation of ultrastructural features within cells. The recent development of super resolution microscopy methods has overcome this limitation. In particular, the advent of photoswitchable fluorophores enables localization-based super resolution microscopy, which provides resolving power approaching the molecular-length scale. Here, we describe the application of a three-dimensional super resolution microscopy method based on single-molecule localization microscopy and multiphase interferometry, called interferometric PhotoActivated Localization Microscopy (iPALM). This method provides nearly isotropic resolution on the order of 20 nm in all three dimensions. Protocols for visualizing the filamentous actin cytoskeleton, including specimen preparation and operation of the iPALM instrument, are described here. These protocols are also readily adaptable and instructive for the study of other ultrastructural features in cells.
Boundary fitting based segmentation of fluorescence microscopy images
NASA Astrophysics Data System (ADS)
Lee, Soonam; Salama, Paul; Dunn, Kenneth W.; Delp, Edward J.
2015-03-01
Segmentation is a fundamental step in quantifying characteristics, such as volume, shape, and orientation of cells and/or tissue. However, quantification of these characteristics still poses a challenge due to the unique properties of microscopy volumes. This paper proposes a 2D segmentation method that utilizes a combination of adaptive and global thresholding, potentials, z direction refinement, branch pruning, end point matching, and boundary fitting methods to delineate tubular objects in microscopy volumes. Experimental results demonstrate that the proposed method achieves better performance than an active contours based scheme.
Image scanning fluorescence emission difference microscopy based on a detector array.
Li, Y; Liu, S; Liu, D; Sun, S; Kuang, C; Ding, Z; Liu, X
2017-06-01
We propose a novel imaging method that enables the enhancement of three-dimensional resolution of confocal microscopy significantly and achieve experimentally a new fluorescence emission difference method for the first time, based on the parallel detection with a detector array. Following the principles of photon reassignment in image scanning microscopy, images captured by the detector array were arranged. And by selecting appropriate reassign patterns, the imaging result with enhanced resolution can be achieved with the method of fluorescence emission difference. Two specific methods are proposed in this paper, showing that the difference between an image scanning microscopy image and a confocal image will achieve an improvement of transverse resolution by approximately 43% compared with that in confocal microscopy, and the axial resolution can also be enhanced by at least 22% experimentally and 35% theoretically. Moreover, the methods presented in this paper can improve the lateral resolution by around 10% than fluorescence emission difference and 15% than Airyscan. The mechanism of our methods is verified by numerical simulations and experimental results, and it has significant potential in biomedical applications. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.
Removal of anti-Stokes emission background in STED microscopy by FPGA-based synchronous detection
NASA Astrophysics Data System (ADS)
Castello, M.; Tortarolo, G.; Coto Hernández, I.; Deguchi, T.; Diaspro, A.; Vicidomini, G.
2017-05-01
In stimulated emission depletion (STED) microscopy, the role of the STED beam is to de-excite, via stimulated emission, the fluorophores that have been previously excited by the excitation beam. This condition, together with specific beam intensity distributions, allows obtaining true sub-diffraction spatial resolution images. However, if the STED beam has a non-negligible probability to excite the fluorophores, a strong fluorescent background signal (anti-Stokes emission) reduces the effective resolution. For STED scanning microscopy, different synchronous detection methods have been proposed to remove this anti-Stokes emission background and recover the resolution. However, every method works only for a specific STED microscopy implementation. Here we present a user-friendly synchronous detection method compatible with any STED scanning microscope. It exploits a data acquisition (DAQ) card based on a field-programmable gate array (FPGA), which is progressively used in STED microscopy. In essence, the FPGA-based DAQ card synchronizes the fluorescent signal registration, the beam deflection, and the excitation beam interruption, providing a fully automatic pixel-by-pixel synchronous detection method. We validate the proposed method in both continuous wave and pulsed STED microscope systems.
NASA Astrophysics Data System (ADS)
Yu, Wei; Tian, Xiaolin; He, Xiaoliang; Song, Xiaojun; Xue, Liang; Liu, Cheng; Wang, Shouyu
2016-08-01
Microscopy based on transport of intensity equation provides quantitative phase distributions which opens another perspective for cellular observations. However, it requires multi-focal image capturing while mechanical and electrical scanning limits its real time capacity in sample detections. Here, in order to break through this restriction, real time quantitative phase microscopy based on single-shot transport of the intensity equation method is proposed. A programmed phase mask is designed to realize simultaneous multi-focal image recording without any scanning; thus, phase distributions can be quantitatively retrieved in real time. It is believed the proposed method can be potentially applied in various biological and medical applications, especially for live cell imaging.
High-speed X-ray microscopy by use of high-resolution zone plates and synchrotron radiation.
Hou, Qiyue; Wang, Zhili; Gao, Kun; Pan, Zhiyun; Wang, Dajiang; Ge, Xin; Zhang, Kai; Hong, Youli; Zhu, Peiping; Wu, Ziyu
2012-09-01
X-ray microscopy based on synchrotron radiation has become a fundamental tool in biology and life sciences to visualize the morphology of a specimen. These studies have particular requirements in terms of radiation damage and the image exposure time, which directly determines the total acquisition speed. To monitor and improve these key parameters, we present a novel X-ray microscopy method using a high-resolution zone plate as the objective and the matching condenser. Numerical simulations based on the scalar wave field theory validate the feasibility of the method and also indicate the performance of X-ray microscopy is optimized most with sub-10-nm-resolution zone plates. The proposed method is compatible with conventional X-ray microscopy techniques, such as computed tomography, and will find wide applications in time-resolved and/or dose-sensitive studies such as living cell imaging.
Automated seeding-based nuclei segmentation in nonlinear optical microscopy.
Medyukhina, Anna; Meyer, Tobias; Heuke, Sandro; Vogler, Nadine; Dietzek, Benjamin; Popp, Jürgen
2013-10-01
Nonlinear optical (NLO) microscopy based, e.g., on coherent anti-Stokes Raman scattering (CARS) or two-photon-excited fluorescence (TPEF) is a fast label-free imaging technique, with a great potential for biomedical applications. However, NLO microscopy as a diagnostic tool is still in its infancy; there is a lack of robust and durable nuclei segmentation methods capable of accurate image processing in cases of variable image contrast, nuclear density, and type of investigated tissue. Nonetheless, such algorithms specifically adapted to NLO microscopy present one prerequisite for the technology to be routinely used, e.g., in pathology or intraoperatively for surgical guidance. In this paper, we compare the applicability of different seeding and boundary detection methods to NLO microscopic images in order to develop an optimal seeding-based approach capable of accurate segmentation of both TPEF and CARS images. Among different methods, the Laplacian of Gaussian filter showed the best accuracy for the seeding of the image, while a modified seeded watershed segmentation was the most accurate in the task of boundary detection. The resulting combination of these methods followed by the verification of the detected nuclei performs high average sensitivity and specificity when applied to various types of NLO microscopy images.
Band excitation method applicable to scanning probe microscopy
Jesse, Stephen; Kalinin, Sergei V.
2015-08-04
Scanning probe microscopy may include a method for generating a band excitation (BE) signal and simultaneously exciting a probe at a plurality of frequencies within a predetermined frequency band based on the excitation signal. A response of the probe is measured across a subset of frequencies of the predetermined frequency band and the excitation signal is adjusted based on the measured response.
Band excitation method applicable to scanning probe microscopy
Jesse, Stephen; Kalinin, Sergei V.
2017-01-03
Scanning probe microscopy may include a method for generating a band excitation (BE) signal and simultaneously exciting a probe at a plurality of frequencies within a predetermined frequency band based on the excitation signal. A response of the probe is measured across a subset of frequencies of the predetermined frequency band and the excitation signal is adjusted based on the measured response.
Wide-field two-photon microscopy with temporal focusing and HiLo background rejection
NASA Astrophysics Data System (ADS)
Yew, Elijah Y. S.; Choi, Heejin; Kim, Daekeun; So, Peter T. C.
2011-03-01
Scanningless depth-resolved microscopy is achieved through spatial-temporal focusing and has been demonstrated previously. The advantage of this method is that a large area may be imaged without scanning resulting in higher throughput of the imaging system. Because it is a widefield technique, the optical sectioning effect is considerably poorer than with conventional spatial focusing two-photon microscopy. Here we propose wide-field two-photon microscopy based on spatio-temporal focusing and employing background rejection based on the HiLo microscope principle. We demonstrate the effects of applying HiLo microscopy to widefield temporally focused two-photon microscopy.
Electron microscopy methods in studies of cultural heritage sites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasiliev, A. L., E-mail: a.vasiliev56@gmail.com; Kovalchuk, M. V.; Yatsishina, E. B.
The history of the development and application of scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray microanalysis (EDXMA) in studies of cultural heritage sites is considered. In fact, investigations based on these methods began when electron microscopes became a commercial product. Currently, these methods, being developed and improved, help solve many historical enigmas. To date, electron microscopy combined with microanalysis makes it possible to investigate any object, from parchment and wooden articles to pigments, tools, and objects of art. Studies by these methods have revealed that some articles were made by ancient masters using ancient “nanotechnologies”; hence,more » their comprehensive analysis calls for the latest achievements in the corresponding instrumental methods and sample preparation techniques.« less
Electron microscopy methods in studies of cultural heritage sites
NASA Astrophysics Data System (ADS)
Vasiliev, A. L.; Kovalchuk, M. V.; Yatsishina, E. B.
2016-11-01
The history of the development and application of scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray microanalysis (EDXMA) in studies of cultural heritage sites is considered. In fact, investigations based on these methods began when electron microscopes became a commercial product. Currently, these methods, being developed and improved, help solve many historical enigmas. To date, electron microscopy combined with microanalysis makes it possible to investigate any object, from parchment and wooden articles to pigments, tools, and objects of art. Studies by these methods have revealed that some articles were made by ancient masters using ancient "nanotechnologies"; hence, their comprehensive analysis calls for the latest achievements in the corresponding instrumental methods and sample preparation techniques.
Zhang, Yibo; Wu, Yichen; Zhang, Yun; Ozcan, Aydogan
2016-06-10
Lens-free holographic microscopy can achieve wide-field imaging in a cost-effective and field-portable setup, making it a promising technique for point-of-care and telepathology applications. However, due to relatively narrow-band sources used in holographic microscopy, conventional colorization methods that use images reconstructed at discrete wavelengths, corresponding to e.g., red (R), green (G) and blue (B) channels, are subject to color artifacts. Furthermore, these existing RGB colorization methods do not match the chromatic perception of human vision. Here we present a high-color-fidelity and high-resolution imaging method, termed "digital color fusion microscopy" (DCFM), which fuses a holographic image acquired at a single wavelength with a color-calibrated image taken by a low-magnification lens-based microscope using a wavelet transform-based colorization method. We demonstrate accurate color reproduction of DCFM by imaging stained tissue sections. In particular we show that a lens-free holographic microscope in combination with a cost-effective mobile-phone-based microscope can generate color images of specimens, performing very close to a high numerical-aperture (NA) benchtop microscope that is corrected for color distortions and chromatic aberrations, also matching the chromatic response of human vision. This method can be useful for wide-field imaging needs in telepathology applications and in resource-limited settings, where whole-slide scanning microscopy systems are not available.
NASA Astrophysics Data System (ADS)
Hu, Junbao; Meng, Xin; Wei, Qi; Kong, Yan; Jiang, Zhilong; Xue, Liang; Liu, Fei; Liu, Cheng; Wang, Shouyu
2018-03-01
Wide-field microscopy is commonly used for sample observations in biological research and medical diagnosis. However, the tilting error induced by the oblique location of the image recorder or the sample, as well as the inclination of the optical path often deteriorates the imaging quality. In order to eliminate the tilting in microscopy, a numerical tilting compensation technique based on wavefront sensing using transport of intensity equation method is proposed in this paper. Both the provided numerical simulations and practical experiments prove that the proposed technique not only accurately determines the tilting angle with simple setup and procedures, but also compensates the tilting error for imaging quality improvement even in the large tilting cases. Considering its simple systems and operations, as well as image quality improvement capability, it is believed the proposed method can be applied for tilting compensation in the optical microscopy.
Multi-modal Registration for Correlative Microscopy using Image Analogies
Cao, Tian; Zach, Christopher; Modla, Shannon; Powell, Debbie; Czymmek, Kirk; Niethammer, Marc
2014-01-01
Correlative microscopy is a methodology combining the functionality of light microscopy with the high resolution of electron microscopy and other microscopy technologies for the same biological specimen. In this paper, we propose an image registration method for correlative microscopy, which is challenging due to the distinct appearance of biological structures when imaged with different modalities. Our method is based on image analogies and allows to transform images of a given modality into the appearance-space of another modality. Hence, the registration between two different types of microscopy images can be transformed to a mono-modality image registration. We use a sparse representation model to obtain image analogies. The method makes use of corresponding image training patches of two different imaging modalities to learn a dictionary capturing appearance relations. We test our approach on backscattered electron (BSE) scanning electron microscopy (SEM)/confocal and transmission electron microscopy (TEM)/confocal images. We perform rigid, affine, and deformable registration via B-splines and show improvements over direct registration using both mutual information and sum of squared differences similarity measures to account for differences in image appearance. PMID:24387943
Super-Resolution Scanning Laser Microscopy Based on Virtually Structured Detection
Zhi, Yanan; Wang, Benquan; Yao, Xincheng
2016-01-01
Light microscopy plays a key role in biological studies and medical diagnosis. The spatial resolution of conventional optical microscopes is limited to approximately half the wavelength of the illumination light as a result of the diffraction limit. Several approaches—including confocal microscopy, stimulated emission depletion microscopy, stochastic optical reconstruction microscopy, photoactivated localization microscopy, and structured illumination microscopy—have been established to achieve super-resolution imaging. However, none of these methods is suitable for the super-resolution ophthalmoscopy of retinal structures because of laser safety issues and inevitable eye movements. We recently experimentally validated virtually structured detection (VSD) as an alternative strategy to extend the diffraction limit. Without the complexity of structured illumination, VSD provides an easy, low-cost, and phase artifact–free strategy to achieve super-resolution in scanning laser microscopy. In this article we summarize the basic principles of the VSD method, review our demonstrated single-point and line-scan super-resolution systems, and discuss both technical challenges and the potential of VSD-based instrumentation for super-resolution ophthalmoscopy of the retina. PMID:27480461
Analysis-Preserving Video Microscopy Compression via Correlation and Mathematical Morphology
Shao, Chong; Zhong, Alfred; Cribb, Jeremy; Osborne, Lukas D.; O’Brien, E. Timothy; Superfine, Richard; Mayer-Patel, Ketan; Taylor, Russell M.
2015-01-01
The large amount video data produced by multi-channel, high-resolution microscopy system drives the need for a new high-performance domain-specific video compression technique. We describe a novel compression method for video microscopy data. The method is based on Pearson's correlation and mathematical morphology. The method makes use of the point-spread function (PSF) in the microscopy video acquisition phase. We compare our method to other lossless compression methods and to lossy JPEG, JPEG2000 and H.264 compression for various kinds of video microscopy data including fluorescence video and brightfield video. We find that for certain data sets, the new method compresses much better than lossless compression with no impact on analysis results. It achieved a best compressed size of 0.77% of the original size, 25× smaller than the best lossless technique (which yields 20% for the same video). The compressed size scales with the video's scientific data content. Further testing showed that existing lossy algorithms greatly impacted data analysis at similar compression sizes. PMID:26435032
NASA Astrophysics Data System (ADS)
Zhang, Yibo; Wu, Yichen; Zhang, Yun; Ozcan, Aydogan
2017-03-01
Digital pathology and telepathology require imaging tools with high-throughput, high-resolution and accurate color reproduction. Lens-free on-chip microscopy based on digital in-line holography is a promising technique towards these needs, as it offers a wide field of view (FOV >20 mm2) and high resolution with a compact, low-cost and portable setup. Color imaging has been previously demonstrated by combining reconstructed images at three discrete wavelengths in the red, green and blue parts of the visible spectrum, i.e., the RGB combination method. However, this RGB combination method is subject to color distortions. To improve the color performance of lens-free microscopy for pathology imaging, here we present a wavelet-based color fusion imaging framework, termed "digital color fusion microscopy" (DCFM), which digitally fuses together a grayscale lens-free microscope image taken at a single wavelength and a low-resolution and low-magnification color-calibrated image taken by a lens-based microscope, which can simply be a mobile phone based cost-effective microscope. We show that the imaging results of an H&E stained breast cancer tissue slide with the DCFM technique come very close to a color-calibrated microscope using a 40x objective lens with 0.75 NA. Quantitative comparison showed 2-fold reduction in the mean color distance using the DCFM method compared to the RGB combination method, while also preserving the high-resolution features of the lens-free microscope. Due to the cost-effective and field-portable nature of both lens-free and mobile-phone microscopy techniques, their combination through the DCFM framework could be useful for digital pathology and telepathology applications, in low-resource and point-of-care settings.
Nanoscopy for nanoscience: how super-resolution microscopy extends imaging for nanotechnology.
Johnson, Sam A
2015-01-01
Imaging methods have presented scientists with powerful means of investigation for centuries. The ability to resolve structures using light microscopes is though limited to around 200 nm. Fluorescence-based super-resolution light microscopy techniques of several principles and methods have emerged in recent years and offer great potential to extend the capabilities of microscopy. This resolution improvement is especially promising for nanoscience where the imaging of nanoscale structures is inherently restricted by the resolution limit of standard forms of light microscopy. Resolution can be improved by several distinct approaches including structured illumination microscopy, stimulated emission depletion, and single-molecule positioning methods such as photoactivated localization microscopy and stochastic optical reconstruction microscopy and several derivative variations of each of these. These methods involve substantial differences in the resolutions achievable in the different axes, speed of acquisition, compatibility with different labels, ease of use, hardware complexity, and compatibility with live biological samples. The field of super-resolution imaging and its application to nanotechnology is relatively new and still rapidly developing. An overview of how these methods may be used with nanomaterials is presented with some examples of pioneering uses of these approaches. © 2014 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Hazra, Rajeeb; Viles, Charles L.; Park, Stephen K.; Reichenbach, Stephen E.; Sieracki, Michael E.
1992-01-01
Consideration is given to a model-based method for estimating the spatial frequency response of a digital-imaging system (e.g., a CCD camera) that is modeled as a linear, shift-invariant image acquisition subsystem that is cascaded with a linear, shift-variant sampling subsystem. The method characterizes the 2D frequency response of the image acquisition subsystem to beyond the Nyquist frequency by accounting explicitly for insufficient sampling and the sample-scene phase. Results for simulated systems and a real CCD-based epifluorescence microscopy system are presented to demonstrate the accuracy of the method.
Image Restoration in Cryo-electron Microscopy
Penczek, Pawel A.
2011-01-01
Image restoration techniques are used to obtain, given experimental measurements, the best possible approximation of the original object within the limits imposed by instrumental conditions and noise level in the data. In molecular electron microscopy, we are mainly interested in linear methods that preserve the respective relationships between mass densities within the restored map. Here, we describe the methodology of image restoration in structural electron microscopy, and more specifically, we will focus on the problem of the optimum recovery of Fourier amplitudes given electron microscope data collected under various defocus settings. We discuss in detail two classes of commonly used linear methods, the first of which consists of methods based on pseudoinverse restoration, and which is further subdivided into mean-square error, chi-square error, and constrained based restorations, where the methods in the latter two subclasses explicitly incorporates non-white distribution of noise in the data. The second class of methods is based on the Wiener filtration approach. We show that the Wiener filter-based methodology can be used to obtain a solution to the problem of amplitude correction (or “sharpening”) of the electron microscopy map that makes it visually comparable to maps determined by X-ray crystallography, and thus amenable to comparable interpretation. Finally, we present a semi-heuristic Wiener filter-based solution to the problem of image restoration given sets of heterogeneous solutions. We conclude the chapter with a discussion of image restoration protocols implemented in commonly used single particle software packages. PMID:20888957
Auditing smear microscopy results according to time to detection using the BACTEC™ MGIT™ TB system.
Elsaghier, A A F
2015-09-01
Smear microscopy is a rapid method for the identification of the most infectious patients with mycobacterial infection. Suboptimal smear microscopy may significantly compromise or delay patient isolation and contact tracing. A stringent method for auditing mycobacterial smear results is thus needed. This article proposes an auditing tool based on time to detection (TTD) of culture-positive samples using the automated BACTEC™ MGIT™ 960 TB system. In our study, sputum samples subjected to liquefaction and concentration before staining with a TTD of ≤ 13 days using the BACTEC system should be positive on smear microscopy.
Photothermal imaging scanning microscopy
Chinn, Diane [Pleasanton, CA; Stolz, Christopher J [Lathrop, CA; Wu, Zhouling [Pleasanton, CA; Huber, Robert [Discovery Bay, CA; Weinzapfel, Carolyn [Tracy, CA
2006-07-11
Photothermal Imaging Scanning Microscopy produces a rapid, thermal-based, non-destructive characterization apparatus. Also, a photothermal characterization method of surface and subsurface features includes micron and nanoscale spatial resolution of meter-sized optical materials.
Sevrain, David; Dubreuil, Matthieu; Dolman, Grace Elizabeth; Zaitoun, Abed; Irving, William; Guha, Indra Neil; Odin, Christophe; Le Grand, Yann
2015-01-01
In this paper we analyze a fibrosis scoring method based on measurement of the fibrillar collagen area from second harmonic generation (SHG) microscopy images of unstained histological slices from human liver biopsies. The study is conducted on a cohort of one hundred chronic hepatitis C patients with intermediate to strong Metavir and Ishak stages of liver fibrosis. We highlight a key parameter of our scoring method to discriminate between high and low fibrosis stages. Moreover, according to the intensity histograms of the SHG images and simple mathematical arguments, we show that our area-based method is equivalent to an intensity-based method, despite saturation of the images. Finally we propose an improvement of our scoring method using very simple image processing tools. PMID:25909005
Sevrain, David; Dubreuil, Matthieu; Dolman, Grace Elizabeth; Zaitoun, Abed; Irving, William; Guha, Indra Neil; Odin, Christophe; Le Grand, Yann
2015-04-01
In this paper we analyze a fibrosis scoring method based on measurement of the fibrillar collagen area from second harmonic generation (SHG) microscopy images of unstained histological slices from human liver biopsies. The study is conducted on a cohort of one hundred chronic hepatitis C patients with intermediate to strong Metavir and Ishak stages of liver fibrosis. We highlight a key parameter of our scoring method to discriminate between high and low fibrosis stages. Moreover, according to the intensity histograms of the SHG images and simple mathematical arguments, we show that our area-based method is equivalent to an intensity-based method, despite saturation of the images. Finally we propose an improvement of our scoring method using very simple image processing tools.
Detection of Cryptosporidium and Giardia in clinical laboratories in Europe--a comparative study.
Manser, M; Granlund, M; Edwards, H; Saez, A; Petersen, E; Evengard, B; Chiodini, P
2014-01-01
To determine the routine diagnostic methods used and compare the performance in detection of oocysts of Cryptosporidium species and cysts of Giardia intestinalis in faecal samples by European specialist parasitology laboratories and European clinical laboratories. Two sets of seven formalin-preserved faecal samples, one containing cysts of Giardia intestinalis and the other, containing oocysts of Cryptosporidium, were sent to 18 laboratories. Participants were asked to examine the specimens using their routine protocol for detecting these parasites and state the method(s) used. Eighteen laboratories answered the questionnaire. For detection of Giardia, 16 of them used sedimentation/concentration followed by light microscopy. Using this technique the lower limit of detection of Giardia was 17.2 cysts/mL of faeces in the best performing laboratories. Only three of 16 laboratories used fluorescent-conjugated antibody-based microscopy. For detection of Cryptosporidium acid-fast staining was used by 14 of the 17 laboratories that examined the samples. With this technique the lower limit of detection was 976 oocysts/mL of faeces. Fluorescent-conjugated antibody-based microscopy was used by only five of the 17 laboratories. There was variation in the lower limit of detection of cysts of Giardia and oocysts of Cryptosporidium between laboratories using the same basic microscopic methods. Fluorescent-conjugated antibody-based microscopy was not superior to light microscopy under the conditions of this study. There is a need for a larger-scale multi-site comparison of the methods used for the diagnosis of these parasites and the development of a Europe-wide laboratory protocol based upon its findings. © 2013 The Authors Clinical Microbiology and Infection © 2013 European Society of Clinical Microbiology and Infectious Diseases.
Full information acquisition in scanning probe microscopy and spectroscopy
Jesse, Stephen; Belianinov, Alex; Kalinin, Sergei V.; Somnath, Suhas
2017-04-04
Apparatus and methods are described for scanning probe microscopy and spectroscopy based on acquisition of full probe response. The full probe response contains valuable information about the probe-sample interaction that is lost in traditional scanning probe microscopy and spectroscopy methods. The full probe response is analyzed post data acquisition using fast Fourier transform and adaptive filtering, as well as multivariate analysis. The full response data is further compressed to retain only statistically significant components before being permanently stored.
Yio, M H N; Mac, M J; Wong, H S; Buenfeld, N R
2015-05-01
In this paper, we present a new method to reconstruct large volumes of nontransparent porous materials at submicron resolution. The proposed method combines fluorescence laser scanning confocal microscopy with serial sectioning to produce a series of overlapping confocal z-stacks, which are then aligned and stitched based on phase correlation. The method can be extended in the XY plane to further increase the overall image volume. Resolution of the reconstructed image volume does not degrade with increase in sample size. We have used the method to image cementitious materials, hardened cement paste and concrete and the results obtained show that the method is reliable. Possible applications of the method such as three-dimensional characterization of the pores and microcracks in hardened concrete, three-dimensional particle shape characterization of cementitious materials and three-dimensional characterization of other porous materials such as rocks and bioceramics are discussed. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
Surface modifications with Lissajous trajectories using atomic force microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Wei; Yao, Nan, E-mail: nyao@princeton.edu
2015-09-14
In this paper, we report a method for atomic force microscopy surface modifications with single-tone and multiple-resolution Lissajous trajectories. The tip mechanical scratching experiments with two series of Lissajous trajectories were carried out on monolayer films. The scratching processes with two scan methods have been illustrated. As an application, the tip-based triboelectrification phenomenon on the silicon dioxide surface with Lissajous trajectories was investigated. The triboelectric charges generated within the tip rubbed area on the surface were characterized in-situ by scanning Kelvin force microscopy. This method would provide a promising and cost-effective approach for surface modifications and nanofabrication.
A PCR method based on 18S rRNA gene for detection of malaria parasite in Balochistan.
Shahwani, Zubeda; Aleem, Abdul; Ahmed, Nazeer; Mushtaq, Muhammad; Afridi, Sarwat
2016-12-01
To establish a polymerase chain reaction method based on 18S ribosomal ribonucleic acid gene for the detection of plasmodium deoxyribonucleic acid in patients suffering from malaria symptoms. This cross-sectional study was conducted from September 2013 to October 2014 in district Quetta of Pakistan's Balochistan province. Blood samples were collected from patients suffering from general symptoms of malaria. A polymerase chain reaction-based technique was applied for the diagnosis of malaria and detection of responsible species in the patients who were suspected to carry the parasite. Performance of this polymerase chain reaction method was compared against the microscopy results. Parasite number was also calculated for microscopy positive samples.All samples after the genomic deoxyribonucleic acid isolation were subjected to polymerase chain reaction amplification and agarose gel electrophoresis. Of the 200 samples, 114(57%) were confirmed as positive and 86(43%) as negative for malaria by microscopy. Polymerase chain reaction identified 124(62%) samples as positive and 76(38%) as negative for malaria. The comparative analysis of both diagnostic methods confirmed 109(54.5%) samples as positive by both techniques. Besides, 5(6.58%) samples were identified as false positive and 15(12.1%) samples as false negative by polymerase chain reaction. Sensitivity, specificity and positive predictive values for polymerase chain reaction in comparison to microscopy were 87.98%, 93.42% and 96%, respectively. Polymerase chain reaction-based methods in malaria diagnosis and species identification were found to be more effective than other techniques.
Adaptive segmentation of nuclei in H&S stained tendon microscopy
NASA Astrophysics Data System (ADS)
Chuang, Bo-I.; Wu, Po-Ting; Hsu, Jian-Han; Jou, I.-Ming; Su, Fong-Chin; Sun, Yung-Nien
2015-12-01
Tendiopathy is a popular clinical issue in recent years. In most cases like trigger finger or tennis elbow, the pathology change can be observed under H and E stained tendon microscopy. However, the qualitative analysis is too subjective and thus the results heavily depend on the observers. We develop an automatic segmentation procedure which segments and counts the nuclei in H and E stained tendon microscopy fast and precisely. This procedure first determines the complexity of images and then segments the nuclei from the image. For the complex images, the proposed method adopts sampling-based thresholding to segment the nuclei. While for the simple images, the Laplacian-based thresholding is employed to re-segment the nuclei more accurately. In the experiments, the proposed method is compared with the experts outlined results. The nuclei number of proposed method is closed to the experts counted, and the processing time of proposed method is much faster than the experts'.
An overview of state-of-the-art image restoration in electron microscopy.
Roels, J; Aelterman, J; Luong, H Q; Lippens, S; Pižurica, A; Saeys, Y; Philips, W
2018-06-08
In Life Science research, electron microscopy (EM) is an essential tool for morphological analysis at the subcellular level as it allows for visualization at nanometer resolution. However, electron micrographs contain image degradations such as noise and blur caused by electromagnetic interference, electron counting errors, magnetic lens imperfections, electron diffraction, etc. These imperfections in raw image quality are inevitable and hamper subsequent image analysis and visualization. In an effort to mitigate these artefacts, many electron microscopy image restoration algorithms have been proposed in the last years. Most of these methods rely on generic assumptions on the image or degradations and are therefore outperformed by advanced methods that are based on more accurate models. Ideally, a method will accurately model the specific degradations that fit the physical acquisition settings. In this overview paper, we discuss different electron microscopy image degradation solutions and demonstrate that dedicated artefact regularisation results in higher quality restoration and is applicable through recently developed probabilistic methods. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.
A novel multiphoton microscopy images segmentation method based on superpixel and watershed.
Wu, Weilin; Lin, Jinyong; Wang, Shu; Li, Yan; Liu, Mingyu; Liu, Gaoqiang; Cai, Jianyong; Chen, Guannan; Chen, Rong
2017-04-01
Multiphoton microscopy (MPM) imaging technique based on two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) shows fantastic performance for biological imaging. The automatic segmentation of cellular architectural properties for biomedical diagnosis based on MPM images is still a challenging issue. A novel multiphoton microscopy images segmentation method based on superpixels and watershed (MSW) is presented here to provide good segmentation results for MPM images. The proposed method uses SLIC superpixels instead of pixels to analyze MPM images for the first time. The superpixels segmentation based on a new distance metric combined with spatial, CIE Lab color space and phase congruency features, divides the images into patches which keep the details of the cell boundaries. Then the superpixels are used to reconstruct new images by defining an average value of superpixels as image pixels intensity level. Finally, the marker-controlled watershed is utilized to segment the cell boundaries from the reconstructed images. Experimental results show that cellular boundaries can be extracted from MPM images by MSW with higher accuracy and robustness. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Zhang, Yibo; Wu, Yichen; Zhang, Yun; Ozcan, Aydogan
2016-06-01
Lens-free holographic microscopy can achieve wide-field imaging in a cost-effective and field-portable setup, making it a promising technique for point-of-care and telepathology applications. However, due to relatively narrow-band sources used in holographic microscopy, conventional colorization methods that use images reconstructed at discrete wavelengths, corresponding to e.g., red (R), green (G) and blue (B) channels, are subject to color artifacts. Furthermore, these existing RGB colorization methods do not match the chromatic perception of human vision. Here we present a high-color-fidelity and high-resolution imaging method, termed “digital color fusion microscopy” (DCFM), which fuses a holographic image acquired at a single wavelength with a color-calibrated image taken by a low-magnification lens-based microscope using a wavelet transform-based colorization method. We demonstrate accurate color reproduction of DCFM by imaging stained tissue sections. In particular we show that a lens-free holographic microscope in combination with a cost-effective mobile-phone-based microscope can generate color images of specimens, performing very close to a high numerical-aperture (NA) benchtop microscope that is corrected for color distortions and chromatic aberrations, also matching the chromatic response of human vision. This method can be useful for wide-field imaging needs in telepathology applications and in resource-limited settings, where whole-slide scanning microscopy systems are not available.
Zhang, Yibo; Wu, Yichen; Zhang, Yun; Ozcan, Aydogan
2016-01-01
Lens-free holographic microscopy can achieve wide-field imaging in a cost-effective and field-portable setup, making it a promising technique for point-of-care and telepathology applications. However, due to relatively narrow-band sources used in holographic microscopy, conventional colorization methods that use images reconstructed at discrete wavelengths, corresponding to e.g., red (R), green (G) and blue (B) channels, are subject to color artifacts. Furthermore, these existing RGB colorization methods do not match the chromatic perception of human vision. Here we present a high-color-fidelity and high-resolution imaging method, termed “digital color fusion microscopy” (DCFM), which fuses a holographic image acquired at a single wavelength with a color-calibrated image taken by a low-magnification lens-based microscope using a wavelet transform-based colorization method. We demonstrate accurate color reproduction of DCFM by imaging stained tissue sections. In particular we show that a lens-free holographic microscope in combination with a cost-effective mobile-phone-based microscope can generate color images of specimens, performing very close to a high numerical-aperture (NA) benchtop microscope that is corrected for color distortions and chromatic aberrations, also matching the chromatic response of human vision. This method can be useful for wide-field imaging needs in telepathology applications and in resource-limited settings, where whole-slide scanning microscopy systems are not available. PMID:27283459
NASA Astrophysics Data System (ADS)
Mai, Fei; Chang, Chunqi; Liu, Wenqing; Xu, Weichao; Hung, Yeung S.
2009-10-01
Due to the inherent imperfections in the imaging process, fluorescence microscopy images often suffer from spurious intensity variations, which is usually referred to as intensity inhomogeneity, intensity non uniformity, shading or bias field. In this paper, a retrospective shading correction method for fluorescence microscopy Escherichia coli (E. Coli) images is proposed based on segmentation result. Segmentation and shading correction are coupled together, so we iteratively correct the shading effects based on segmentation result and refine the segmentation by segmenting the image after shading correction. A fluorescence microscopy E. Coli image can be segmented (based on its intensity value) into two classes: the background and the cells, where the intensity variation within each class is close to zero if there is no shading. Therefore, we make use of this characteristics to correct the shading in each iteration. Shading is mathematically modeled as a multiplicative component and an additive noise component. The additive component is removed by a denoising process, and the multiplicative component is estimated using a fast algorithm to minimize the intra-class intensity variation. We tested our method on synthetic images and real fluorescence E.coli images. It works well not only for visual inspection, but also for numerical evaluation. Our proposed method should be useful for further quantitative analysis especially for protein expression value comparison.
A Patch-Based Method for Repetitive and Transient Event Detection in Fluorescence Imaging
Boulanger, Jérôme; Gidon, Alexandre; Kervran, Charles; Salamero, Jean
2010-01-01
Automatic detection and characterization of molecular behavior in large data sets obtained by fast imaging in advanced light microscopy become key issues to decipher the dynamic architectures and their coordination in the living cell. Automatic quantification of the number of sudden and transient events observed in fluorescence microscopy is discussed in this paper. We propose a calibrated method based on the comparison of image patches expected to distinguish sudden appearing/vanishing fluorescent spots from other motion behaviors such as lateral movements. We analyze the performances of two statistical control procedures and compare the proposed approach to a frame difference approach using the same controls on a benchmark of synthetic image sequences. We have then selected a molecular model related to membrane trafficking and considered real image sequences obtained in cells stably expressing an endocytic-recycling trans-membrane protein, the Langerin-YFP, for validation. With this model, we targeted the efficient detection of fast and transient local fluorescence concentration arising in image sequences from a data base provided by two different microscopy modalities, wide field (WF) video microscopy using maximum intensity projection along the axial direction and total internal reflection fluorescence microscopy. Finally, the proposed detection method is briefly used to statistically explore the effect of several perturbations on the rate of transient events detected on the pilot biological model. PMID:20976222
Genetically encoded sensors and fluorescence microscopy for anticancer research
NASA Astrophysics Data System (ADS)
Zagaynova, Elena V.; Shirmanova, Marina V.; Sergeeva, Tatiana F.; Klementieva, Natalia V.; Mishin, Alexander S.; Gavrina, Alena I.; Zlobovskay, Olga A.; Furman, Olga E.; Dudenkova, Varvara V.; Perelman, Gregory S.; Lukina, Maria M.; Lukyanov, Konstantin A.
2017-02-01
Early response of cancer cells to chemical compounds and chemotherapeutic drugs were studied using novel fluorescence tools and microscopy techniques. We applied confocal microscopy, two-photon fluorescence lifetime imaging microscopy and super-resolution localization-based microscopy to assess structural and functional changes in cancer cells in vitro. The dynamics of energy metabolism, intracellular pH, caspase-3 activation during staurosporine-induced apoptosis as well as actin cytoskeleton rearrangements under chemotherapy were evaluated. We have showed that new genetically encoded sensors and advanced fluorescence microscopy methods provide an efficient way for multiparameter analysis of cell activities
Scanning probe recognition microscopy investigation of tissue scaffold properties
Fan, Yuan; Chen, Qian; Ayres, Virginia M; Baczewski, Andrew D; Udpa, Lalita; Kumar, Shiva
2007-01-01
Scanning probe recognition microscopy is a new scanning probe microscopy technique which enables selective scanning along individual nanofibers within a tissue scaffold. Statistically significant data for multiple properties can be collected by repetitively fine-scanning an identical region of interest. The results of a scanning probe recognition microscopy investigation of the surface roughness and elasticity of a series of tissue scaffolds are presented. Deconvolution and statistical methods were developed and used for data accuracy along curved nanofiber surfaces. Nanofiber features were also independently analyzed using transmission electron microscopy, with results that supported the scanning probe recognition microscopy-based analysis. PMID:18203431
Scanning probe recognition microscopy investigation of tissue scaffold properties.
Fan, Yuan; Chen, Qian; Ayres, Virginia M; Baczewski, Andrew D; Udpa, Lalita; Kumar, Shiva
2007-01-01
Scanning probe recognition microscopy is a new scanning probe microscopy technique which enables selective scanning along individual nanofibers within a tissue scaffold. Statistically significant data for multiple properties can be collected by repetitively fine-scanning an identical region of interest. The results of a scanning probe recognition microscopy investigation of the surface roughness and elasticity of a series of tissue scaffolds are presented. Deconvolution and statistical methods were developed and used for data accuracy along curved nanofiber surfaces. Nanofiber features were also independently analyzed using transmission electron microscopy, with results that supported the scanning probe recognition microscopy-based analysis.
Simmert, Steve; Abdosamadi, Mohammad Kazem; Hermsdorf, Gero; Schäffer, Erik
2018-05-28
Optical tweezers combined with various microscopy techniques are a versatile tool for single-molecule force spectroscopy. However, some combinations may compromise measurements. Here, we combined optical tweezers with total-internal-reflection-fluorescence (TIRF) and interference-reflection microscopy (IRM). Using a light-emitting diode (LED) for IRM illumination, we show that single microtubules can be imaged with high contrast. Furthermore, we converted the IRM interference pattern of an upward bent microtubule to its three-dimensional (3D) profile calibrated against the optical tweezers and evanescent TIRF field. In general, LED-based IRM is a powerful method for high-contrast 3D microscopy.
Optimal model-based sensorless adaptive optics for epifluorescence microscopy.
Pozzi, Paolo; Soloviev, Oleg; Wilding, Dean; Vdovin, Gleb; Verhaegen, Michel
2018-01-01
We report on a universal sample-independent sensorless adaptive optics method, based on modal optimization of the second moment of the fluorescence emission from a point-like excitation. Our method employs a sample-independent precalibration, performed only once for the particular system, to establish the direct relation between the image quality and the aberration. The method is potentially applicable to any form of microscopy with epifluorescence detection, including the practically important case of incoherent fluorescence emission from a three dimensional object, through minor hardware modifications. We have applied the technique successfully to a widefield epifluorescence microscope and to a multiaperture confocal microscope.
Clinical diagnosis of oral erosive lichen planus by direct oral microscopy
Drogoszewska, Barbara; Polcyn, Adam; Michcik, Adam
2014-01-01
Introduction Direct oral microscopy is a novel, non-invasive diagnostic technique that aids clinical examination of the oral cavity. The basic principles of this method derive from colposcopy and dermoscopy. The principle is to reveal precancerous lesions of oral mucosae in their subclinical phase in order to begin their treatment as early as possible and prevent malignant transformation. Oral lichen planus (OLP) is an autoimmune, inflammatory, chronic disease affecting oral mucous membranes. Buccal mucosae are most often affected. Aim To describe the in vivo picture of erosive OLP in direct oral microscopy in terms of the pattern and density of subepithelial blood vessels, surface texture, color, transparency and borders of the lesions. The study also demonstrates the utility of the method in the selection of the most appropriate biopsy site. Material and methods A total of 30 patients with erosive OLP were examined. Clinical examination of the oral cavity with the naked eye was performed, followed by direct oral microscopy. The most appropriate biopsy sites based on both examinations were chosen for every individual and biopsies were taken for histopathological evaluation. Results Biopsies obtained based on direct oral microscopy revealed dysplasia in 16 patients (53.3%). Biopsies obtained based on clinical examination with the naked eye revealed dysplasia in 3 cases (10%). Conclusions Direct oral microscopy makes it possible to obtain a repeated picture of erosive OLP and constitutes an alternative to the clinical examination with the naked eye in election of the most appropriate biopsy site. Thus, introduction of the most accurate and early therapy is possible. PMID:25254007
Quantitative DIC microscopy using an off-axis self-interference approach.
Fu, Dan; Oh, Seungeun; Choi, Wonshik; Yamauchi, Toyohiko; Dorn, August; Yaqoob, Zahid; Dasari, Ramachandra R; Feld, Michael S
2010-07-15
Traditional Normarski differential interference contrast (DIC) microscopy is a very powerful method for imaging nonstained biological samples. However, one of its major limitations is the nonquantitative nature of the imaging. To overcome this problem, we developed a quantitative DIC microscopy method based on off-axis sample self-interference. The digital holography algorithm is applied to obtain quantitative phase gradients in orthogonal directions, which leads to a quantitative phase image through a spiral integration of the phase gradients. This method is practically simple to implement on any standard microscope without stringent requirements on polarization optics. Optical sectioning can be obtained through enlarged illumination NA.
Zhou, Yong; Liang, Jinyang; Maslov, Konstantin I.; Wang, Lihong V.
2013-01-01
We propose a cross-correlation-based method to measure blood flow velocity by using photoacoustic microscopy. Unlike in previous auto-correlation-based methods, the measured flow velocity here is independent of particle size. Thus, an absolute flow velocity can be obtained without calibration. We first measured the flow velocity ex vivo, using defibrinated bovine blood. Then, flow velocities in vessels with different structures in a mouse ear were quantified in vivo. We further measured the flow variation in the same vessel and at a vessel bifurcation. All the experimental results indicate that our method can be used to accurately quantify blood velocity in vivo. PMID:24081077
Michael Frei, Dominik; Hodneland, Erlend; Rios-Mondragon, Ivan; Burtey, Anne; Neumann, Beate; Bulkescher, Jutta; Schölermann, Julia; Pepperkok, Rainer; Gerdes, Hans-Hermann; Kögel, Tanja
2015-01-01
Contact-dependent intercellular transfer (codeIT) of cellular constituents can have functional consequences for recipient cells, such as enhanced survival and drug resistance. Pathogenic viruses, prions and bacteria can also utilize this mechanism to spread to adjacent cells and potentially evade immune detection. However, little is known about the molecular mechanism underlying this intercellular transfer process. Here, we present a novel microscopy-based screening method to identify regulators and cargo of codeIT. Single donor cells, carrying fluorescently labelled endocytic organelles or proteins, are co-cultured with excess acceptor cells. CodeIT is quantified by confocal microscopy and image analysis in 3D, preserving spatial information. An siRNA-based screening using this method revealed the involvement of several myosins and small GTPases as codeIT regulators. Our data indicates that cellular protrusions and tubular recycling endosomes are important for codeIT. We automated image acquisition and analysis to facilitate large-scale chemical and genetic screening efforts to identify key regulators of codeIT. PMID:26271723
Optofluidic time-stretch microscopy: recent advances
NASA Astrophysics Data System (ADS)
Lei, Cheng; Nitta, Nao; Ozeki, Yasuyuki; Goda, Keisuke
2018-06-01
Flow cytometry is an indispensable method for valuable applications in numerous fields such as immunology, pathology, pharmacology, molecular biology, and marine biology. Optofluidic time-stretch microscopy is superior to conventional flow cytometry methods for its capability to acquire high-quality images of single cells at a high-throughput exceeding 10,000 cells per second. This makes it possible to extract copious information from cellular images for accurate cell detection and analysis with the assistance of machine learning. Optofluidic time-stretch microscopy has proven its effectivity in various applications, including microalga-based biofuel production, evaluation of thrombotic disorders, as well as drug screening and discovery. In this review, we discuss the principles and recent advances of optofluidic time-stretch microscopy.
Optofluidic time-stretch microscopy: recent advances
NASA Astrophysics Data System (ADS)
Lei, Cheng; Nitta, Nao; Ozeki, Yasuyuki; Goda, Keisuke
2018-04-01
Flow cytometry is an indispensable method for valuable applications in numerous fields such as immunology, pathology, pharmacology, molecular biology, and marine biology. Optofluidic time-stretch microscopy is superior to conventional flow cytometry methods for its capability to acquire high-quality images of single cells at a high-throughput exceeding 10,000 cells per second. This makes it possible to extract copious information from cellular images for accurate cell detection and analysis with the assistance of machine learning. Optofluidic time-stretch microscopy has proven its effectivity in various applications, including microalga-based biofuel production, evaluation of thrombotic disorders, as well as drug screening and discovery. In this review, we discuss the principles and recent advances of optofluidic time-stretch microscopy.
Parallel detecting super-resolution microscopy using correlation based image restoration
NASA Astrophysics Data System (ADS)
Yu, Zhongzhi; Liu, Shaocong; Zhu, Dazhao; Kuang, Cuifang; Liu, Xu
2017-12-01
A novel approach to achieve the image restoration is proposed in which each detector's relative position in the detector array is no longer a necessity. We can identify each detector's relative location by extracting a certain area from one of the detector's image and scanning it on other detectors' images. According to this location, we can generate the point spread functions (PSF) for each detector and perform deconvolution for image restoration. Equipped with this method, the microscope with discretionally designed detector array can be easily constructed without the concern of exact relative locations of detectors. The simulated results and experimental results show the total improvement in resolution with a factor of 1.7 compared to conventional confocal fluorescence microscopy. With the significant enhancement in resolution and easiness for application of this method, this novel method should have potential for a wide range of application in fluorescence microscopy based on parallel detecting.
NASA Astrophysics Data System (ADS)
Lyasnikova, A. V.; Markelova, O. A.; Lyasnikov, V. N.; Dudareva, O. A.
2016-01-01
The method of synthesis of a zinc-substituted hydroxyapatite powder is presented, and the technology of creating coatings by its spraying is described. The results of studies on the morphological, physical, and chemical parameters of a zinc-substituted hydroxyapatite coating by using X-ray analysis, infrared spectroscopy, transmission electron microscopy, optical microscopy, SEM, and other methods are given.
A Method for the Alignment of Heterogeneous Macromolecules from Electron Microscopy
Shatsky, Maxim; Hall, Richard J.; Brenner, Steven E.; Glaeser, Robert M.
2009-01-01
We propose a feature-based image alignment method for single-particle electron microscopy that is able to accommodate various similarity scoring functions while efficiently sampling the two-dimensional transformational space. We use this image alignment method to evaluate the performance of a scoring function that is based on the Mutual Information (MI) of two images rather than one that is based on the cross-correlation function. We show that alignment using MI for the scoring function has far less model-dependent bias than is found with cross-correlation based alignment. We also demonstrate that MI improves the alignment of some types of heterogeneous data, provided that the signal to noise ratio is relatively high. These results indicate, therefore, that use of MI as the scoring function is well suited for the alignment of class-averages computed from single particle images. Our method is tested on data from three model structures and one real dataset. PMID:19166941
Malaria Diagnosis Using a Mobile Phone Polarized Microscope
NASA Astrophysics Data System (ADS)
Pirnstill, Casey W.; Coté, Gerard L.
2015-08-01
Malaria remains a major global health burden, and new methods for low-cost, high-sensitivity, diagnosis are essential, particularly in remote areas with low-resource around the world. In this paper, a cost effective, optical cell-phone based transmission polarized light microscope system is presented for imaging the malaria pigment known as hemozoin. It can be difficult to determine the presence of the pigment from background and other artifacts, even for skilled microscopy technicians. The pigment is much easier to observe using polarized light microscopy. However, implementation of polarized light microscopy lacks widespread adoption because the existing commercial devices have complicated designs, require sophisticated maintenance, tend to be bulky, can be expensive, and would require re-training for existing microscopy technicians. To this end, a high fidelity and high optical resolution cell-phone based polarized light microscopy system is presented which is comparable to larger bench-top polarized microscopy systems but at much lower cost and complexity. The detection of malaria in fixed and stained blood smears is presented using both, a conventional polarized microscope and our cell-phone based system. The cell-phone based polarimetric microscopy design shows the potential to have both the resolution and specificity to detect malaria in a low-cost, easy-to-use, modular platform.
Malaria Diagnosis Using a Mobile Phone Polarized Microscope
Pirnstill, Casey W.; Coté, Gerard L.
2015-01-01
Malaria remains a major global health burden, and new methods for low-cost, high-sensitivity, diagnosis are essential, particularly in remote areas with low-resource around the world. In this paper, a cost effective, optical cell-phone based transmission polarized light microscope system is presented for imaging the malaria pigment known as hemozoin. It can be difficult to determine the presence of the pigment from background and other artifacts, even for skilled microscopy technicians. The pigment is much easier to observe using polarized light microscopy. However, implementation of polarized light microscopy lacks widespread adoption because the existing commercial devices have complicated designs, require sophisticated maintenance, tend to be bulky, can be expensive, and would require re-training for existing microscopy technicians. To this end, a high fidelity and high optical resolution cell-phone based polarized light microscopy system is presented which is comparable to larger bench-top polarized microscopy systems but at much lower cost and complexity. The detection of malaria in fixed and stained blood smears is presented using both, a conventional polarized microscope and our cell-phone based system. The cell-phone based polarimetric microscopy design shows the potential to have both the resolution and specificity to detect malaria in a low-cost, easy-to-use, modular platform. PMID:26303238
Batwala, Vincent; Magnussen, Pascal; Nuwaha, Fred
2010-12-02
Prompt, accurate diagnosis and treatment with artemisinin combination therapy remains vital to current malaria control. Blood film microscopy the current standard test for diagnosis of malaria has several limitations that necessitate field evaluation of alternative diagnostic methods especially in low income countries of sub-Saharan Africa where malaria is endemic. The accuracy of axillary temperature, health centre (HC) microscopy, expert microscopy and a HRP2-based rapid diagnostic test (Paracheck) was compared in predicting malaria infection using polymerase chain reaction (PCR) as the gold standard. Three hundred patients with a clinical suspicion of malaria based on fever and or history of fever from a low and high transmission setting in Uganda were consecutively enrolled and provided blood samples for all tests. Accuracy of each test was calculated overall with 95% confidence interval and then adjusted for age-groups and level of transmission intensity using a stratified analysis. The endpoints were: sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV). This study is registered with Clinicaltrials.gov, NCT00565071. Of the 300 patients, 88(29.3%) had fever, 56(18.7%) were positive by HC microscopy, 47(15.7%) by expert microscopy, 110(36.7%) by Paracheck and 89(29.7%) by PCR. The overall sensitivity >90% was only shown by Paracheck 91.0% [95%CI: 83.1-96.0]. The sensitivity of expert microscopy was 46%, similar to HC microscopy. The superior sensitivity of Paracheck compared to microscopy was maintained when data was stratified for transmission intensity and age. The overall specificity rates were: Paracheck 86.3% [95%CI: 80.9-90.6], HC microscopy 93.4% [95%CI: 89.1-96.3] and expert microscopy 97.2% [95%CI: 93.9-98.9]. The NPV >90% was shown by Paracheck 95.8% [95%CI: 91.9-98.2]. The overall PPV was <88% for all methods. The HRP2-based RDT has shown superior sensitivity compared to microscopy in diagnosis of malaria and may be more suitable for screening of malaria infection.
Hu, D; Sarder, P; Ronhovde, P; Orthaus, S; Achilefu, S; Nussinov, Z
2014-01-01
Inspired by a multiresolution community detection based network segmentation method, we suggest an automatic method for segmenting fluorescence lifetime (FLT) imaging microscopy (FLIM) images of cells in a first pilot investigation on two selected images. The image processing problem is framed as identifying segments with respective average FLTs against the background in FLIM images. The proposed method segments a FLIM image for a given resolution of the network defined using image pixels as the nodes and similarity between the FLTs of the pixels as the edges. In the resulting segmentation, low network resolution leads to larger segments, and high network resolution leads to smaller segments. Furthermore, using the proposed method, the mean-square error in estimating the FLT segments in a FLIM image was found to consistently decrease with increasing resolution of the corresponding network. The multiresolution community detection method appeared to perform better than a popular spectral clustering-based method in performing FLIM image segmentation. At high resolution, the spectral segmentation method introduced noisy segments in its output, and it was unable to achieve a consistent decrease in mean-square error with increasing resolution. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.
Santra, Kalyan; Smith, Emily A.; Petrich, Jacob W.; ...
2016-12-12
It is often convenient to know the minimum amount of data needed in order to obtain a result of desired accuracy and precision. It is a necessity in the case of subdiffraction-limited microscopies, such as stimulated emission depletion (STED) microscopy, owing to the limited sample volumes and the extreme sensitivity of the samples to photobleaching and photodamage. We present a detailed comparison of probability-based techniques (the maximum likelihood method and methods based on the binomial and the Poisson distributions) with residual minimization-based techniques for retrieving the fluorescence decay parameters for various two-fluorophore mixtures, as a function of the total numbermore » of photon counts, in time-correlated, single-photon counting experiments. The probability-based techniques proved to be the most robust (insensitive to initial values) in retrieving the target parameters and, in fact, performed equivalently to 2-3 significant figures. This is to be expected, as we demonstrate that the three methods are fundamentally related. Furthermore, methods based on the Poisson and binomial distributions have the desirable feature of providing a bin-by-bin analysis of a single fluorescence decay trace, which thus permits statistics to be acquired using only the one trace for not only the mean and median values of the fluorescence decay parameters but also for the associated standard deviations. Lastly, these probability-based methods lend themselves well to the analysis of the sparse data sets that are encountered in subdiffraction-limited microscopies.« less
Precisely detecting atomic position of atomic intensity images.
Wang, Zhijun; Guo, Yaolin; Tang, Sai; Li, Junjie; Wang, Jincheng; Zhou, Yaohe
2015-03-01
We proposed a quantitative method to detect atomic position in atomic intensity images from experiments such as high-resolution transmission electron microscopy, atomic force microscopy, and simulation such as phase field crystal modeling. The evaluation of detection accuracy proves the excellent performance of the method. This method provides a chance to precisely determine atomic interactions based on the detected atomic positions from the atomic intensity image, and hence to investigate the related physical, chemical and electrical properties. Copyright © 2014 Elsevier B.V. All rights reserved.
Tranca, D. E.; Stanciu, S. G.; Hristu, R.; Stoichita, C.; Tofail, S. A. M.; Stanciu, G. A.
2015-01-01
A new method for high-resolution quantitative measurement of the dielectric function by using scattering scanning near-field optical microscopy (s-SNOM) is presented. The method is based on a calibration procedure that uses the s-SNOM oscillating dipole model of the probe-sample interaction and quantitative s-SNOM measurements. The nanoscale capabilities of the method have the potential to enable novel applications in various fields such as nano-electronics, nano-photonics, biology or medicine. PMID:26138665
Cryptosporidium is an important waterborne protozoan parasite that can cause severe diarrhea and death in the immunocompromised. Current methods to monitor for Cryptosporidium oocysts in water are microscopy-based USEPA Methods 1622 and 1623. These methods assess total levels o...
Brandt, Luise Ørsted; Schmidt, Anne Lisbeth; Mannering, Ulla; Sarret, Mathilde; Kelstrup, Christian D.; Olsen, Jesper V.; Cappellini, Enrico
2014-01-01
Denmark has an extraordinarily large and well-preserved collection of archaeological skin garments found in peat bogs, dated to approximately 920 BC – AD 775. These objects provide not only the possibility to study prehistoric skin costume and technologies, but also to investigate the animal species used for the production of skin garments. Until recently, species identification of archaeological skin was primarily performed by light and scanning electron microscopy or the analysis of ancient DNA. However, the efficacy of these methods can be limited due to the harsh, mostly acidic environment of peat bogs leading to morphological and molecular degradation within the samples. We compared species assignment results of twelve archaeological skin samples from Danish bogs using Mass Spectrometry (MS)-based peptide sequencing, against results obtained using light and scanning electron microscopy. While it was difficult to obtain reliable results using microscopy, MS enabled the identification of several species-diagnostic peptides, mostly from collagen and keratins, allowing confident species discrimination even among taxonomically close organisms, such as sheep and goat. Unlike previous MS-based methods, mostly relying on peptide fingerprinting, the shotgun sequencing approach we describe aims to identify the complete extracted ancient proteome, without preselected specific targets. As an example, we report the identification, in one of the samples, of two peptides uniquely assigned to bovine foetal haemoglobin, indicating the production of skin from a calf slaughtered within the first months of its life. We conclude that MS-based peptide sequencing is a reliable method for species identification of samples from bogs. The mass spectrometry proteomics data were deposited in the ProteomeXchange Consortium with the dataset identifier PXD001029. PMID:25260035
Assessing resolution in live cell structured illumination microscopy
NASA Astrophysics Data System (ADS)
Pospíšil, Jakub; Fliegel, Karel; Klíma, Miloš
2017-12-01
Structured Illumination Microscopy (SIM) is a powerful super-resolution technique, which is able to enhance the resolution of optical microscope beyond the Abbe diffraction limit. In the last decade, numerous SIM methods that achieve the resolution of 100 nm in the lateral dimension have been developed. The SIM setups with new high-speed cameras and illumination pattern generators allow rapid acquisition of the live specimen. Therefore, SIM is widely used for investigation of the live structures in molecular and live cell biology. Quantitative evaluation of resolution enhancement in a real sample is essential to describe the efficiency of super-resolution microscopy technique. However, measuring the resolution of a live cell sample is a challenging task. Based on our experimental findings, the widely used Fourier ring correlation (FRC) method does not seem to be well suited for measuring the resolution of SIM live cell video sequences. Therefore, the resolution assessing methods based on Fourier spectrum analysis are often used. We introduce a measure based on circular average power spectral density (PSDca) estimated from a single SIM image (one video frame). PSDca describes the distribution of the power of a signal with respect to its spatial frequency. Spatial resolution corresponds to the cut-off frequency in Fourier space. In order to estimate the cut-off frequency from a noisy signal, we use a spectral subtraction method for noise suppression. In the future, this resolution assessment approach might prove useful also for single-molecule localization microscopy (SMLM) live cell imaging.
Global gray-level thresholding based on object size.
Ranefall, Petter; Wählby, Carolina
2016-04-01
In this article, we propose a fast and robust global gray-level thresholding method based on object size, where the selection of threshold level is based on recall and maximum precision with regard to objects within a given size interval. The method relies on the component tree representation, which can be computed in quasi-linear time. Feature-based segmentation is especially suitable for biomedical microscopy applications where objects often vary in number, but have limited variation in size. We show that for real images of cell nuclei and synthetic data sets mimicking fluorescent spots the proposed method is more robust than all standard global thresholding methods available for microscopy applications in ImageJ and CellProfiler. The proposed method, provided as ImageJ and CellProfiler plugins, is simple to use and the only required input is an interval of the expected object sizes. © 2016 International Society for Advancement of Cytometry. © 2016 International Society for Advancement of Cytometry.
Silva, Renata K N R; Pacheco, Flávia T F; Martins, Adson S; Menezes, Joelma F; Costa-Ribeiro, Hugo; Ribeiro, Tereza C M; Mattos, Ângela P; Oliveira, Ricardo R; Soares, Neci M; Teixeira, Márcia C A
2016-12-01
Techniques for Giardia diagnosis based on microscopy are usually applied as routine laboratory testing; however, they typically exhibit low sensitivity. This study aimed to evaluate Giardia duodenalis and other intestinal parasitic infections in different pediatric groups, with an emphasis on the comparison of Giardia diagnostic techniques. Feces from 824 children from different groups (diarrheic, malnourished, with cancer and from day care) were examined by microscopy and ELISA for Giardia, Cryptosporidium sp. and Entamoeba histolytica coproantigen detection. Giardia-positive samples from day-care children, identified by either microscopy or ELISA, were further tested by PCR targeting of the β-giardin and Gdh genes. Statistically significant differences (P<0.05) were observed when comparing the frequency of each protozoan among the groups. Giardia duodenalis was more frequent in day-care children and Cryptosporidium sp. in diarrheic and malnourished groups; infections by Entamoeba histolytica were found only in children with diarrhea. Considering positivity for Giardia by at least one method, ELISA was found to be more sensitive than microscopy (97% versus 55%). To examine discrepancies among the diagnostic methods, 71 Giardia-positive stool samples from day-care children were tested by PCR; of these, DNA was amplified from 51 samples (77.4%). Concordance of positivity between microscopy and ELISA was found for 48 samples, with 43 confirmed by PCR. Parasite DNA was amplified from eleven of the 20 Giardia samples (55%) identified only by ELISA. This study shows the higher sensitivity of ELISA over microscopy for Giardia diagnosis when a single sample is analyzed and emphasizes the need for methods based on coproantigen detection to identify this parasite in diarrheic fecal samples. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yakunin, Alexander N.; Aban'shin, Nikolay P.; Avetisyan, Yuri A.; Akchurin, Georgy G.; Akchurin, Garif G.
2018-04-01
A model for calculating the electrostatic field in the system "probe of a tunnel microscope - a nanostructure based on a DLC film" was developed. A finite-element modeling of the localization of the field was carried out, taking into account the morphological and topological features of the nanostructure. The obtained results and their interpretation contribute to the development of the concepts to the model of tunnel electric transport processes. The possibility for effective usage of the tunneling microscopy methods in the development of new nanophotonic devices is shown.
Serial sectioning methods for 3D investigations in materials science.
Zankel, Armin; Wagner, Julian; Poelt, Peter
2014-07-01
A variety of methods for the investigation and 3D representation of the inner structure of materials has been developed. In this paper, techniques based on slice and view using scanning microscopy for imaging are presented and compared. Three different methods of serial sectioning combined with either scanning electron or scanning ion microscopy or atomic force microscopy (AFM) were placed under scrutiny: serial block-face scanning electron microscopy, which facilitates an ultramicrotome built into the chamber of a variable pressure scanning electron microscope; three-dimensional (3D) AFM, which combines an (cryo-) ultramicrotome with an atomic force microscope, and 3D FIB, which delivers results by slicing with a focused ion beam. These three methods complement one another in many respects, e.g., in the type of materials that can be investigated, the resolution that can be obtained and the information that can be extracted from 3D reconstructions. A detailed review is given about preparation, the slice and view process itself, and the limitations of the methods and possible artifacts. Applications for each technique are also provided. Copyright © 2014 Elsevier Ltd. All rights reserved.
Automated quantitative cytological analysis using portable microfluidic microscopy.
Jagannadh, Veerendra Kalyan; Murthy, Rashmi Sreeramachandra; Srinivasan, Rajesh; Gorthi, Sai Siva
2016-06-01
In this article, a portable microfluidic microscopy based approach for automated cytological investigations is presented. Inexpensive optical and electronic components have been used to construct a simple microfluidic microscopy system. In contrast to the conventional slide-based methods, the presented method employs microfluidics to enable automated sample handling and image acquisition. The approach involves the use of simple in-suspension staining and automated image acquisition to enable quantitative cytological analysis of samples. The applicability of the presented approach to research in cellular biology is shown by performing an automated cell viability assessment on a given population of yeast cells. Further, the relevance of the presented approach to clinical diagnosis and prognosis has been demonstrated by performing detection and differential assessment of malaria infection in a given sample. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Vollnhals, Florian; Audinot, Jean-Nicolas; Wirtz, Tom; Mercier-Bonin, Muriel; Fourquaux, Isabelle; Schroeppel, Birgit; Kraushaar, Udo; Lev-Ram, Varda; Ellisman, Mark H; Eswara, Santhana
2017-10-17
Correlative microscopy combining various imaging modalities offers powerful insights into obtaining a comprehensive understanding of physical, chemical, and biological phenomena. In this article, we investigate two approaches for image fusion in the context of combining the inherently lower-resolution chemical images obtained using secondary ion mass spectrometry (SIMS) with the high-resolution ultrastructural images obtained using electron microscopy (EM). We evaluate the image fusion methods with three different case studies selected to broadly represent the typical samples in life science research: (i) histology (unlabeled tissue), (ii) nanotoxicology, and (iii) metabolism (isotopically labeled tissue). We show that the intensity-hue-saturation fusion method often applied for EM-sharpening can result in serious image artifacts, especially in cases where different contrast mechanisms interplay. Here, we introduce and demonstrate Laplacian pyramid fusion as a powerful and more robust alternative method for image fusion. Both physical and technical aspects of correlative image overlay and image fusion specific to SIMS-based correlative microscopy are discussed in detail alongside the advantages, limitations, and the potential artifacts. Quantitative metrics to evaluate the results of image fusion are also discussed.
Zhang, Jing; Moradi, Emilia; Somekh, Michael G; Mather, Melissa L
2018-01-15
A label-free microscopy method for assessing the differentiation status of stem cells is presented with potential application for characterization of therapeutic stem cell populations. The microscopy system is capable of characterizing live cells based on the use of evanescent wave microscopy and quantitative phase contrast (QPC) microscopy. The capability of the microscopy system is demonstrated by studying the differentiation of live immortalised neonatal mouse neural stem cells over a 15 day time course. Metrics extracted from microscope images are assessed and images compared with results from endpoint immuno-staining studies to illustrate the system's performance. Results demonstrate the potential of the microscopy system as a valuable tool for cell biologists to readily identify the differentiation status of unlabelled live cells.
Breaking the diffraction barrier using coherent anti-Stokes Raman scattering difference microscopy.
Wang, Dong; Liu, Shuanglong; Chen, Yue; Song, Jun; Liu, Wei; Xiong, Maozhen; Wang, Guangsheng; Peng, Xiao; Qu, Junle
2017-05-01
We propose a method to improve the resolution of coherent anti-Stokes Raman scattering microscopy (CARS), and present a theoretical model. The proposed method, coherent anti-Stokes Raman scattering difference microscopy (CARS-D), is based on the intensity difference between two differently acquired images. One being the conventional CARS image, and the other obtained when the sample is illuminated by a doughnut shaped spot. The final super-resolution CARS-D image is constructed by intensity subtraction of these two images. However, there is a subtractive factor between them, and the theoretical model sets this factor to obtain the best imaging effect.
Enumerating viruses by using fluorescence and the nature of the nonviral background fraction.
Pollard, Peter C
2012-09-01
Bulk fluorescence measurements could be a faster and cheaper way of enumerating viruses than epifluorescence microscopy, flow cytometry, or transmission electron microscopy (TEM). However, since viruses are not imaged, the background fluorescence compromises the signal, and we know little about its nature. In this paper the size ranges of nucleotides that fluoresce in the presence of SYBR gold were determined for wastewater and a range of freshwater samples using a differential filtration method. Fluorescence excitation-emission matrices (FEEMs) showed that >70% of the SYBR fluorescence was in the <10-nm size fraction (background) and was not associated with intact viruses. This was confirmed using TEM. The use of FEEMs to develop a fluorescence-based method for counting viruses is an approach that is fundamentally different from the epifluorescence microscopy technique used for enumerating viruses. This high fluorescence background is currently overlooked, yet it has had a most pervasive influence on the development of a simple fluorescence-based method for quantifying viral abundance in water.
Applying Superresolution Localization-Based Microscopy to Neurons
ZHONG, HAINING
2016-01-01
Proper brain function requires the precise localization of proteins and signaling molecules on a nanometer scale. The examination of molecular organization at this scale has been difficult in part because it is beyond the reach of conventional, diffraction-limited light microscopy. The recently developed method of superresolution, localization-based fluorescent microscopy (LBM), such as photoactivated localization microscopy (PALM) and stochastic optical reconstruction microscopy (STORM), has demonstrated a resolving power at a 10 nm scale and is poised to become a vital tool in modern neuroscience research. Indeed, LBM has revealed previously unknown cellular architectures and organizational principles in neurons. Here, we discuss the principles of LBM, its current applications in neuroscience, and the challenges that must be met before its full potential is achieved. We also present the unpublished results of our own experiments to establish a sample preparation procedure for applying LBM to study brain tissue. PMID:25648102
Bacterial cell identification in differential interference contrast microscopy images.
Obara, Boguslaw; Roberts, Mark A J; Armitage, Judith P; Grau, Vicente
2013-04-23
Microscopy image segmentation lays the foundation for shape analysis, motion tracking, and classification of biological objects. Despite its importance, automated segmentation remains challenging for several widely used non-fluorescence, interference-based microscopy imaging modalities. For example in differential interference contrast microscopy which plays an important role in modern bacterial cell biology. Therefore, new revolutions in the field require the development of tools, technologies and work-flows to extract and exploit information from interference-based imaging data so as to achieve new fundamental biological insights and understanding. We have developed and evaluated a high-throughput image analysis and processing approach to detect and characterize bacterial cells and chemotaxis proteins. Its performance was evaluated using differential interference contrast and fluorescence microscopy images of Rhodobacter sphaeroides. Results demonstrate that the proposed approach provides a fast and robust method for detection and analysis of spatial relationship between bacterial cells and their chemotaxis proteins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balke, Nina; Jesse, Stephen; Yu, Pu
Detection of dynamic surface displacements associated with local changes in material strain provides access to a number of phenomena and material properties. Contact resonance-enhanced methods of atomic force microscopy (AFM) have been shown capable of detecting ~1–3 pm-level surface displacements, an approach used in techniques such as piezoresponse force microscopy, atomic force acoustic microscopy, and ultrasonic force microscopy. Here, based on an analytical model of AFM cantilever vibrations, we demonstrate a guideline to quantify surface displacements with high accuracy by taking into account the cantilever shape at the first resonant contact mode, depending on the tip–sample contact stiffness. The approachmore » has been experimentally verified and further developed for piezoresponse force microscopy (PFM) using well-defined ferroelectric materials. These results open up a way to accurate and precise measurements of surface displacement as well as piezoelectric constants at the pm-scale with nanometer spatial resolution and will allow avoiding erroneous data interpretations and measurement artifacts. Furthermore, this analysis is directly applicable to all cantilever-resonance-based scanning probe microscopy (SPM) techniques.« less
Baroux, Célia; Schubert, Veit
2018-01-01
In situ nucleus and chromatin analyses rely on microscopy imaging that benefits from versatile, efficient fluorescent probes and proteins for static or live imaging. Yet the broad choice in imaging instruments offered to the user poses orientation problems. Which imaging instrument should be used for which purpose? What are the main caveats and what are the considerations to best exploit each instrument's ability to obtain informative and high-quality images? How to infer quantitative information on chromatin or nuclear organization from microscopy images? In this review, we present an overview of common, fluorescence-based microscopy systems and discuss recently developed super-resolution microscopy systems, which are able to bridge the resolution gap between common fluorescence microscopy and electron microscopy. We briefly present their basic principles and discuss their possible applications in the field, while providing experience-based recommendations to guide the user toward best-possible imaging. In addition to raw data acquisition methods, we discuss commercial and noncommercial processing tools required for optimal image presentation and signal evaluation in two and three dimensions.
Balke, Nina; Jesse, Stephen; Yu, Pu; ...
2016-09-15
Detection of dynamic surface displacements associated with local changes in material strain provides access to a number of phenomena and material properties. Contact resonance-enhanced methods of atomic force microscopy (AFM) have been shown capable of detecting ~1–3 pm-level surface displacements, an approach used in techniques such as piezoresponse force microscopy, atomic force acoustic microscopy, and ultrasonic force microscopy. Here, based on an analytical model of AFM cantilever vibrations, we demonstrate a guideline to quantify surface displacements with high accuracy by taking into account the cantilever shape at the first resonant contact mode, depending on the tip–sample contact stiffness. The approachmore » has been experimentally verified and further developed for piezoresponse force microscopy (PFM) using well-defined ferroelectric materials. These results open up a way to accurate and precise measurements of surface displacement as well as piezoelectric constants at the pm-scale with nanometer spatial resolution and will allow avoiding erroneous data interpretations and measurement artifacts. Furthermore, this analysis is directly applicable to all cantilever-resonance-based scanning probe microscopy (SPM) techniques.« less
Characterizing Surfaces of the Wide Bandgap Semiconductor Ilmenite with Scanning Probe Microcopies
NASA Technical Reports Server (NTRS)
Wilkins, R.; Powell, Kirk St. A.
1997-01-01
Ilmenite (FeTiO3) is a wide bandgap semiconductor with an energy gap of about 2.5eV. Initial radiation studies indicate that ilmenite has properties suited for radiation tolerant applications, as well as a variety of other electronic applications. Two scanning probe microscopy methods have been used to characterize the surface of samples taken from Czochralski grown single crystals. The two methods, atomic force microscopy (AFM) and scanning tunneling microscopy (STM), are based on different physical principles and therefore provide different information about the samples. AFM provides a direct, three-dimensional image of the surface of the samples, while STM give a convolution of topographic and electronic properties of the surface. We will discuss the differences between the methods and present preliminary data of each method for ilmenite samples.
Example-Based Super-Resolution Fluorescence Microscopy.
Jia, Shu; Han, Boran; Kutz, J Nathan
2018-04-23
Capturing biological dynamics with high spatiotemporal resolution demands the advancement in imaging technologies. Super-resolution fluorescence microscopy offers spatial resolution surpassing the diffraction limit to resolve near-molecular-level details. While various strategies have been reported to improve the temporal resolution of super-resolution imaging, all super-resolution techniques are still fundamentally limited by the trade-off associated with the longer image acquisition time that is needed to achieve higher spatial information. Here, we demonstrated an example-based, computational method that aims to obtain super-resolution images using conventional imaging without increasing the imaging time. With a low-resolution image input, the method provides an estimate of its super-resolution image based on an example database that contains super- and low-resolution image pairs of biological structures of interest. The computational imaging of cellular microtubules agrees approximately with the experimental super-resolution STORM results. This new approach may offer potential improvements in temporal resolution for experimental super-resolution fluorescence microscopy and provide a new path for large-data aided biomedical imaging.
Albert, Heidi; Nakiyingi, Lydia; Sempa, Joseph; Mbabazi, Olive; Mukkada, Sheena; Nyesiga, Barnabas; Perkins, Mark D.; Manabe, Yukari C.
2013-01-01
Background Light emitting diode (LED) fluorescence microscopy (FM) is an affordable, technology targeted for use in resource-limited settings and recommended for widespread roll-out by the World Health Organization (WHO). We sought to compare the operational performance of three LED FM methods compared to light microscopy in a cohort of HIV-positive tuberculosis (TB) suspects at an urban clinic in a high TB burden country. Methods Two spot specimens collected from TB suspects were included in the study. Smears were stained using auramine O method and read after blinding by three LED-based FM methods by trained laboratory technicians in the Infectious Diseases Institutelaboratory. Leftover portions of the refrigerated sputum specimens were transported to the FIND Tuberculosis Research Laboratory for Ziehl Neelsen (ZN) smear preparation and reading by experienced technologist as well as liquid and solid culture. Results 174 of 627 (27.8%) specimens collected yielded one or more positive mycobacterial cultures. 94.3% (164/174) were M. tuberculosis complex. LED FM was between 7.3–11.0% more sensitive compared to ZN microscopy. Of the 592 specimens examined by all microscopy methods, there was no significant difference in sensitivity between the three LED FM methods. The specificity of the LED FM methods was between 6.1% and 7.7% lower than ZN microscopy (P<0.001), although exclusion of the single poor reader resulted in over 98% specificity for all FM methods. Conclusions Laboratory technicians in routine settings can be trained to use FM which is more sensitive than ZN microscopy. Despite rigorous proficiency testing, there were operator-dependent accuracy issues which highlight the critical need for intensive quality assurance procedures during LED FM implementation. The low sensitivity of FM for HIV-positive individuals particularly those with low CD4 T cell counts, will limit the number of additional patients found by LED FM in countries with high rates of HIV co-infection. PMID:24039780
Yamashiro, Sawako; Watanabe, Naoki
2017-07-06
Live-cell single-molecule imaging was introduced more than a decade ago, and has provided critical information on remodeling of the actin cytoskeleton, the motion of plasma membrane proteins, and dynamics of molecular motor proteins. Actin remodeling has been the best target for this approach because actin and its associated proteins stop diffusing when assembled, allowing visualization of single-molecules of fluorescently-labeled proteins in a state specific manner. The approach based on this simple principle is called Single-Molecule Speckle (SiMS) microscopy. For instance, spatiotemporal regulation of actin polymerization and lifetime distribution of actin filaments can be monitored directly by tracking actin SiMS. In combination with fluorescently labeled probes of various actin regulators, SiMS microscopy has contributed to clarifying the processes underlying recycling, motion and remodeling of the live-cell actin network. Recently, we introduced an electroporation-based method called eSiMS microscopy, with high efficiency, easiness and improved spatiotemporal precision. In this review, we describe the application of live-cell single-molecule imaging to cellular actin dynamics and discuss the advantages of eSiMS microscopy over previous SiMS microscopy.
High-speed bioimaging with frequency-division-multiplexed fluorescence confocal microscopy
NASA Astrophysics Data System (ADS)
Mikami, Hideharu; Harmon, Jeffrey; Ozeki, Yasuyuki; Goda, Keisuke
2017-04-01
We present methods of fluorescence confocal microscopy that enable unprecedentedly high frame rate of > 10,000 fps. The methods are based on a frequency-division multiplexing technique, which was originally developed in the field of communication engineering. Specifically, we achieved a broad bandwidth ( 400 MHz) of detection signals using a dual- AOD method and overcame limitations in frame rate, due to a scanning device, by using a multi-line focusing method, resulting in a significant increase in frame rate. The methods have potential biomedical applications such as observation of sub-millisecond dynamics in biological tissues, in-vivo three-dimensional imaging, and fluorescence imaging flow cytometry.
NASA Astrophysics Data System (ADS)
Kaysheva, A. L.; Pleshakova, T. O.; Kopylov, A. T.; Shumov, I. D.; Iourov, I. Y.; Vorsanova, S. G.; Yurov, Y. B.; Ziborov, V. S.; Archakov, A. I.; Ivanov, Y. D.
2017-10-01
Possibility of detection of target proteins associated with development of autistic disorders in children with use of combined atomic force microscopy and mass spectrometry (AFM/MS) method is demonstrated. The proposed method is based on the combination of affine enrichment of proteins from biological samples and visualization of these proteins by AFM and MS analysis with quantitative detection of target proteins.
Mathematical imaging methods for mitosis analysis in live-cell phase contrast microscopy.
Grah, Joana Sarah; Harrington, Jennifer Alison; Koh, Siang Boon; Pike, Jeremy Andrew; Schreiner, Alexander; Burger, Martin; Schönlieb, Carola-Bibiane; Reichelt, Stefanie
2017-02-15
In this paper we propose a workflow to detect and track mitotic cells in time-lapse microscopy image sequences. In order to avoid the requirement for cell lines expressing fluorescent markers and the associated phototoxicity, phase contrast microscopy is often preferred over fluorescence microscopy in live-cell imaging. However, common specific image characteristics complicate image processing and impede use of standard methods. Nevertheless, automated analysis is desirable due to manual analysis being subjective, biased and extremely time-consuming for large data sets. Here, we present the following workflow based on mathematical imaging methods. In the first step, mitosis detection is performed by means of the circular Hough transform. The obtained circular contour subsequently serves as an initialisation for the tracking algorithm based on variational methods. It is sub-divided into two parts: in order to determine the beginning of the whole mitosis cycle, a backwards tracking procedure is performed. After that, the cell is tracked forwards in time until the end of mitosis. As a result, the average of mitosis duration and ratios of different cell fates (cell death, no division, division into two or more daughter cells) can be measured and statistics on cell morphologies can be obtained. All of the tools are featured in the user-friendly MATLAB®Graphical User Interface MitosisAnalyser. Copyright © 2017. Published by Elsevier Inc.
Brandes, Susanne; Mokhtari, Zeinab; Essig, Fabian; Hünniger, Kerstin; Kurzai, Oliver; Figge, Marc Thilo
2015-02-01
Time-lapse microscopy is an important technique to study the dynamics of various biological processes. The labor-intensive manual analysis of microscopy videos is increasingly replaced by automated segmentation and tracking methods. These methods are often limited to certain cell morphologies and/or cell stainings. In this paper, we present an automated segmentation and tracking framework that does not have these restrictions. In particular, our framework handles highly variable cell shapes and does not rely on any cell stainings. Our segmentation approach is based on a combination of spatial and temporal image variations to detect moving cells in microscopy videos. This method yields a sensitivity of 99% and a precision of 95% in object detection. The tracking of cells consists of different steps, starting from single-cell tracking based on a nearest-neighbor-approach, detection of cell-cell interactions and splitting of cell clusters, and finally combining tracklets using methods from graph theory. The segmentation and tracking framework was applied to synthetic as well as experimental datasets with varying cell densities implying different numbers of cell-cell interactions. We established a validation framework to measure the performance of our tracking technique. The cell tracking accuracy was found to be >99% for all datasets indicating a high accuracy for connecting the detected cells between different time points. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Shabani, H.; Sánchez-Ortiga, E.; Preza, C.
2016-03-01
Surpassing the resolution of optical microscopy defined by the Abbe diffraction limit, while simultaneously achieving optical sectioning, is a challenging problem particularly for live cell imaging of thick samples. Among a few developing techniques, structured illumination microscopy (SIM) addresses this challenge by imposing higher frequency information into the observable frequency band confined by the optical transfer function (OTF) of a conventional microscope either doubling the spatial resolution or filling the missing cone based on the spatial frequency of the pattern when the patterned illumination is two-dimensional. Standard reconstruction methods for SIM decompose the low and high frequency components from the recorded low-resolution images and then combine them to reach a high-resolution image. In contrast, model-based approaches rely on iterative optimization approaches to minimize the error between estimated and forward images. In this paper, we study the performance of both groups of methods by simulating fluorescence microscopy images from different type of objects (ranging from simulated two-point sources to extended objects). These simulations are used to investigate the methods' effectiveness on restoring objects with various types of power spectrum when modulation frequency of the patterned illumination is changing from zero to the incoherent cut-off frequency of the imaging system. Our results show that increasing the amount of imposed information by using a higher modulation frequency of the illumination pattern does not always yield a better restoration performance, which was found to be depended on the underlying object. Results from model-based restoration show performance improvement, quantified by an up to 62% drop in the mean square error compared to standard reconstruction, with increasing modulation frequency. However, we found cases for which results obtained with standard reconstruction methods do not always follow the same trend.
Bukharina, N S; Ivanov, Yu D; Pleshakova, T O; Frantsuzov, P A; Andreeva, E Yu; Kaysheva, A L; Izotov, A A; Pavlova, T I; Ziborov, V S; Radko, S P; Archakov, A I
2015-01-01
A method of atomic force microscopy-based fishing (AFM fishing) has been developed for protein detection in the analyte solution using a chip with an immobilized aptamer. This method is based on the biospecific fishing of a target protein from a bulk solution onto the small AFM chip area with the immobilized aptamer to this protein used as the molecular probe. Such aptamer-based approach allows to increase an AFM image contrast compared to the antibody-based approach. Mass spectrometry analysis used after the biospecific fishing to identify the target protein on the AFM chip has proved complex formation. Use of the AFM chip with the immobilized aptamer avoids interference of the antibody and target protein peaks in a mass spectrum.
Jang, Won Hyuk; Kwon, Soonjae; Shim, Sehwan; Jang, Won-Suk; Myung, Jae Kyung; Yang, Sejung; Park, Sunhoo; Kim, Ki Hean
2018-05-12
Cutaneous radiation injury (CRI) is a skin injury caused by high dose exposure of ionizing radiation (IR). For proper treatment, early detection of CRI before clinical symptoms is important. Optical microscopic techniques such as reflectance confocal microscopy (RCM) and two-photon microscopy (TPM) have been tested as the early diagnosis method by detecting cellular changes. In this study, RCM and TPM were compared in the detection of cellular changes caused by CRI in an in-vivo mouse model. CRI was induced on the mouse hindlimb skin with various IR doses and the injured skin regions were imaged longitudinally by both modalities until the onset of clinical symptoms. Both RCM and TPM detected the changes of epidermal cells and sebaceous glands before clinical symptoms in different optical contrasts. RCM detected changes of cell morphology and scattering property based on light reflection. TPM detected detail changes of cellular structures based on autofluorescence of cells. Since both RCM and TPM were sensitive to the early-stage CRI by using different contrasts, the optimal method for clinical CRI diagnosis could be either individual methods or their combination. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Tracing cell lineages in videos of lens-free microscopy.
Rempfler, Markus; Stierle, Valentin; Ditzel, Konstantin; Kumar, Sanjeev; Paulitschke, Philipp; Andres, Bjoern; Menze, Bjoern H
2018-06-05
In vitro experiments with cultured cells are essential for studying their growth and migration pattern and thus, for gaining a better understanding of cancer progression and its treatment. Recent progress in lens-free microscopy (LFM) has rendered it an inexpensive tool for label-free, continuous live cell imaging, yet there is only little work on analysing such time-lapse image sequences. We propose (1) a cell detector for LFM images based on fully convolutional networks and residual learning, and (2) a probabilistic model based on moral lineage tracing that explicitly handles multiple detections and temporal successor hypotheses by clustering and tracking simultaneously. (3) We benchmark our method in terms of detection and tracking scores on a dataset of three annotated sequences of several hours of LFM, where we demonstrate our method to produce high quality lineages. (4) We evaluate its performance on a somewhat more challenging problem: estimating cell lineages from the LFM sequence as would be possible from a corresponding fluorescence microscopy sequence. We present experiments on 16 LFM sequences for which we acquired fluorescence microscopy in parallel and generated annotations from them. Finally, (5) we showcase our methods effectiveness for quantifying cell dynamics in an experiment with skin cancer cells. Copyright © 2018 Elsevier B.V. All rights reserved.
Yoon, Woong Bae; Kim, Hyunjin; Kim, Kwang Gi; Choi, Yongdoo; Chang, Hee Jin
2016-01-01
Objectives We produced hematoxylin and eosin (H&E) staining-like color images by using confocal laser scanning microscopy (CLSM), which can obtain the same or more information in comparison to conventional tissue staining. Methods We improved images by using several image converting techniques, including morphological methods, color space conversion methods, and segmentation methods. Results An image obtained after image processing showed coloring very similar to that in images produced by H&E staining, and it is advantageous to conduct analysis through fluorescent dye imaging and microscopy rather than analysis based on single microscopic imaging. Conclusions The colors used in CLSM are different from those seen in H&E staining, which is the method most widely used for pathologic diagnosis and is familiar to pathologists. Computer technology can facilitate the conversion of images by CLSM to be very similar to H&E staining images. We believe that the technique used in this study has great potential for application in clinical tissue analysis. PMID:27525165
NASA Astrophysics Data System (ADS)
Arakawa, Mototaka; Mori, Shohei; Kanai, Hiroshi; Nagaoka, Ryo; Horie, Miki; Kobayashi, Kazuto; Saijo, Yoshifumi
2018-07-01
We proposed a robust analysis method for the acoustic properties of biological specimens measured by acoustic microscopy. Reflected pulse signals from the substrate and specimen were converted into frequency domains to obtain sound speed and thickness. To obtain the average acoustic properties of the specimen, parabolic approximation was performed to determine the frequency at which the amplitude of the normalized spectrum became maximum or minimum, considering the sound speed and thickness of the specimens and the operating frequency of the ultrasonic device used. The proposed method was demonstrated for a specimen of malignant melanoma of the skin by using acoustic microscopy attaching a concave transducer with a center frequency of 80 MHz. The variations in sound speed and thickness analyzed by the proposed method were markedly smaller than those analyzed by the method based on an autoregressive model. The proposed method is useful for the analysis of the acoustic properties of bilogical tissues or cells.
Laser scanning saturated structured illumination microscopy based on phase modulation
NASA Astrophysics Data System (ADS)
Huang, Yujia; Zhu, Dazhao; Jin, Luhong; Kuang, Cuifang; Xu, Yingke; Liu, Xu
2017-08-01
Wide-field saturated structured illumination microscopy has not been widely used due to the requirement of high laser power. We propose a novel method called laser scanning saturated structured illumination microscopy (LS-SSIM), which introduces high order of harmonics frequency and greatly reduces the required laser power for SSIM imaging. To accomplish that, an excitation PSF with two peaks is generated and scanned along different directions on the sample. Raw images are recorded cumulatively by a CCD detector and then reconstructed to form a high-resolution image with extended optical transfer function (OTF). Our theoretical analysis and simulation results show that LS-SSIM method reaches a resolution of 0.16 λ, equivalent to 2.7-fold resolution than conventional wide-field microscopy. In addition, LS-SSIM greatly improves the optical sectioning capability of conventional wide-field illumination system by diminishing our-of-focus light. Furthermore, this modality has the advantage of implementation in multi-photon microscopy with point scanning excitation to image samples in greater depths.
NASA Astrophysics Data System (ADS)
Birk, Udo; Szczurek, Aleksander; Cremer, Christoph
2017-12-01
Current approaches to overcome the conventional limit of the resolution potential of light microscopy (of about 200 nm for visible light), often suffer from non-linear effects, which render the quantification of the image intensities in the reconstructions difficult, and also affect the quantification of the biological structure under investigation. As an attempt to face these difficulties, we discuss a particular method of localization microscopy which is based on photostable fluorescent dyes. The proposed method can potentially be implemented as a fast alternative for quantitative localization microscopy, circumventing the need for the acquisition of thousands of image frames and complex, highly dye-specific imaging buffers. Although the need for calibration remains in order to extract quantitative data (such as the number of emitters), multispectral approaches are largely facilitated due to the much less stringent requirements on imaging buffers. Furthermore, multispectral acquisitions can be readily obtained using commercial instrumentation such as e.g. the conventional confocal laser scanning microscope.
SISGR: Room Temperature Single-Molecule Detection and Imaging by Stimulated Emission Microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Xiaoliang Sunney
Single-molecule spectroscopy has made considerable impact on many disciplines including chemistry, physics, and biology. To date, most single-molecule spectroscopy work is accomplished by detecting fluorescence. On the other hand, many naturally occurring chromophores, such as retinal, hemoglobin and cytochromes, do not have detectable fluorescence. There is an emerging need for single-molecule spectroscopy techniques that do not require fluorescence. In the last proposal period, we have successfully demonstrated stimulated emission microscopy, single molecule absorption, and stimulated Raman microscopy based on a high-frequency modulation transfer technique. These first-of-a- kind new spectroscopy/microscopy methods tremendously improved our ability to observe molecules that fluorescence weakly,more » even to the limit of single molecule detection for absorption measurement. All of these methods employ two laser beams: one (pump beam) excites a single molecule to a real or virtual excited state, and the other (probe beam) monitors the absorption/emission property of the single. We extract the intensity change of the probe beam with high sensitivity by implementing a high-frequency phase-sensitive detection scheme, which offers orders of magnitude improvement in detection sensitivity over direct absorption/emission measurement. However, single molecule detection based on fluorescence or absorption is fundamentally limited due to their broad spectral response. It is important to explore other avenues in single molecule detection and imaging which provides higher molecular specificity for studying a wide variety of heterogeneous chemical and biological systems. This proposal aimed to achieve single-molecule detection sensitivity with near resonance stimulated Raman scattering (SRS) microscopy. SRS microscopy was developed in our lab as a powerful technique for imaging heterogeneous samples based on their intrinsic vibrational contrasts, which provides much higher molecular specificity than absorption and fluorescence. Current sensitivity limit of SRS microscopy has not yet reached single molecule detection. We proposed to capitalize on our state-of-the-art SRS microscopy and develop near-resonance enhanced SRS for single molecule detection of carotenoids and heme proteins. The specific aims we pursued are: (1) building the next SRS generation microscope that utilizes near resonance enhancement to allow detection and imaging of single molecules with undetectable fluorescence, such as -carotene. (2) using near-resonance SRS as a contrast mechanism to study dye-sensitize semiconductor interface, elucidating the heterogeneous electron ejection kinetics with high spatial and temporal resolution. (3) studying the binding and unbinding of oxygen in single hemoglobin molecules in order to gain molecular level understanding of the long-standing issue of cooperativity. The new methods developed in the fund period of this grant have advanced the detection sensitivity in many aspects. Near-resonance SRS improved the signal by using shorter wavelengths for SRS microscopy. Frequency modulation and multi-color SRS target the reduction of background to improve the chemical specificity of SRS while maintaining the high imaging speed. Time-domain coherent Raman scattering microscopy targets to reduce the noise floor of coherent Raman microscopy. These methods have already demonstrated first-of-a-kind new applications in biology and medical research. However, we are still one order of magnitude away from single molecule limit. It is important to continue to improve the laser specification and develop new imaging methods to finally achieve label-free single molecule microscopy.« less
2013-01-01
Background Prompt and effective malaria diagnosis not only alleviates individual suffering, but also decreases malaria transmission at the community level. The commonly used diagnostic methods, microscopy and rapid diagnostic tests, are usually insensitive at very low-density parasitaemia. Molecular techniques, on the other hand, allow the detection of low-level, sub-microscopic parasitaemia. This study aimed to explore the presence of sub-microscopic Plasmodium falciparum infections using polymerase chain reaction (PCR). The PCR-based parasite prevalence was compared against microscopy and rapid diagnostic test (RDT). Methods This study used 1,453 blood samples collected from clinical patients and sub-clinical subjects to determine the prevalence of sub-microscopic P. falciparum carriages. Subsets of RDT and microscopy negative blood samples were tested by PCR while all RDT and microscopically confirmed P. falciparum-infected samples were subjected to PCR. Finger-prick blood samples spotted on filter paper were used for parasite genomic DNA extraction. Results The prevalence of sub-microscopic P. falciparum carriage was 19.2% (77/400) (95% CI = 15. 4–23.1). Microscopy-based prevalence of P. falciparum infection was 3.7% (54/1,453) while the prevalence was 6.9% (100/1,453) using RDT alone. Using microscopy and PCR, the estimated parasite prevalence was 20.6% if PCR were performed in 1,453 blood samples. The prevalence was estimated to be 22.7% if RDT and PCR were used. Of 54 microscopically confirmed P. falciparum-infected subjects, PCR detected 90.7% (49/54). Out of 100 RDT-confirmed P. falciparum infections; PCR detected 80.0% (80/100). The sensitivity of PCR relative to microscopy and RDT was, therefore, 90.7% and 80%, respectively. The sensitivity of microscopy and RDT relative to PCR was 16.5 (49/299) and 24.2% (80/330), respectively. The overall PCR-based prevalence of P. falciparum infection was 5.6- and 3.3 fold higher than that determined by microscopy and RDT, respectively. None of the sub-microscopic subjects had severe anaemia, though 29.4% had mild anaemia (10–11.9 g/dl). Conclusions Asymptomatic, low-density malaria infection was common in the study area and PCR may be a better tool for measuring Plasmodium prevalence than microscopy and RDT. The inadequate sensitivity of the diagnostic methods to detect substantial number of sub-microscopic parasitaemia would undoubtedly affect malaria control efforts, making reduction of transmission more difficult. RDT and microscopy-based prevalence studies and subsequent reports of reduction in malaria incidence underestimate the true pictures of P. falciparum infections in the community. PCR, on the other hand, seems to have reasonable sensitivity to detect a higher number of infected subjects with low and sub-microscopic parasite densities than RDTs or microscopy. PMID:24090230
Albert, Heidi; Nakiyingi, Lydia; Sempa, Joseph; Mbabazi, Olive; Mukkada, Sheena; Nyesiga, Barnabas; Perkins, Mark D; Manabe, Yukari C
2013-01-01
Light emitting diode (LED) fluorescence microscopy (FM) is an affordable, technology targeted for use in resource-limited settings and recommended for widespread roll-out by the World Health Organization (WHO). We sought to compare the operational performance of three LED FM methods compared to light microscopy in a cohort of HIV-positive tuberculosis (TB) suspects at an urban clinic in a high TB burden country. Two spot specimens collected from TB suspects were included in the study. Smears were stained using auramine O method and read after blinding by three LED-based FM methods by trained laboratory technicians in the Infectious Diseases Institutelaboratory. Leftover portions of the refrigerated sputum specimens were transported to the FIND Tuberculosis Research Laboratory for Ziehl Neelsen (ZN) smear preparation and reading by experienced technologist as well as liquid and solid culture. 174 of 627 (27.8%) specimens collected yielded one or more positive mycobacterial cultures. 94.3% (164/174) were M. tuberculosis complex. LED FM was between 7.3-11.0% more sensitive compared to ZN microscopy. Of the 592 specimens examined by all microscopy methods, there was no significant difference in sensitivity between the three LED FM methods. The specificity of the LED FM methods was between 6.1% and 7.7% lower than ZN microscopy (P<0.001), although exclusion of the single poor reader resulted in over 98% specificity for all FM methods. Laboratory technicians in routine settings can be trained to use FM which is more sensitive than ZN microscopy. Despite rigorous proficiency testing, there were operator-dependent accuracy issues which highlight the critical need for intensive quality assurance procedures during LED FM implementation. The low sensitivity of FM for HIV-positive individuals particularly those with low CD4 T cell counts, will limit the number of additional patients found by LED FM in countries with high rates of HIV co-infection.
Osoga, Joseph; Waitumbi, John; Guyah, Bernard; Sande, James; Arima, Cornel; Ayaya, Michael; Moseti, Caroline; Morang'a, Collins; Wahome, Martin; Achilla, Rachel; Awinda, George; Nyakoe, Nancy; Wanja, Elizabeth
2017-07-24
Early and accurate diagnosis of malaria is important in treatment as well as in the clinical evaluation of drugs and vaccines. Evaluation of Giemsa-stained smears remains the gold standard for malaria diagnosis, although diagnostic errors and potential bias estimates of protective efficacy have been reported in practice. Plasmodium genus fluorescent in situ hybridization (P-Genus FISH) is a microscopy-based method that uses fluorescent labelled oligonucleotide probes targeted to pathogen specific ribosomal RNA fragments to detect malaria parasites in whole blood. This study sought to evaluate the diagnostic performance of P-Genus FISH alongside Giemsa microscopy compared to quantitative reverse transcription polymerase chain reaction (qRT-PCR) in a clinical setting. Five hundred study participants were recruited prospectively and screened for Plasmodium parasites by P-Genus FISH assay, and Giemsa microscopy. The microscopic methods were performed by two trained personnel and were blinded, and if the results were discordant a third reading was performed as a tie breaker. The diagnostic performance of both methods was evaluated against qRT-PCR as a more sensitive method. The number of Plasmodium positive cases was 26.8% by P-Genus FISH, 33.2% by Giemsa microscopy, and 51.2% by qRT-PCR. The three methods had 46.8% concordant results with 61 positive cases and 173 negative cases. Compared to qRT-PCR the sensitivity and specificity of P-Genus FISH assay was 29.3 and 75.8%, respectively, while microscopy had 58.2 and 93.0% respectively. Microscopy had a higher positive and negative predictive values (89.8 and 68.0% respectively) compared to P-Genus FISH (56.0 and 50.5%). In overall, microscopy had a good measure of agreement (76%, k = 0.51) compared to P-Genus FISH (52%, k = 0.05). The diagnostic performance of P-Genus FISH was shown to be inferior to Giemsa microscopy in the clinical samples. This hinders the possible application of the method in the field despite the many advantages of the method especially diagnosis of low parasite density infections. The P-Genus assay has great potential but application of the method in clinical setting would rely on extensive training of microscopist and continuous proficiency testing.
Molecular counting of membrane receptor subunits with single-molecule localization microscopy
NASA Astrophysics Data System (ADS)
Krüger, Carmen; Fricke, Franziska; Karathanasis, Christos; Dietz, Marina S.; Malkusch, Sebastian; Hummer, Gerhard; Heilemann, Mike
2017-02-01
We report on quantitative single-molecule localization microscopy, a method that next to super-resolved images of cellular structures provides information on protein copy numbers in protein clusters. This approach is based on the analysis of blinking cycles of single fluorophores, and on a model-free description of the distribution of the number of blinking events. We describe the experimental and analytical procedures, present cellular data of plasma membrane proteins and discuss the applicability of this method.
Photometry unlocks 3D information from 2D localization microscopy data.
Franke, Christian; Sauer, Markus; van de Linde, Sebastian
2017-01-01
We developed a straightforward photometric method, temporal, radial-aperture-based intensity estimation (TRABI), that allows users to extract 3D information from existing 2D localization microscopy data. TRABI uses the accurate determination of photon numbers in different regions of the emission pattern of single emitters to generate a z-dependent photometric parameter. This method can determine fluorophore positions up to 600 nm from the focal plane and can be combined with biplane detection to further improve axial localization.
Banneheke, H; Fernandopulle, R; Gunasekara, U; Barua, A; Fernando, N; Wickremasinghe, R
2015-06-01
Wet mount microscopy is the most commonly used diagnostic method for trichomoniasis in clinical diagnostic services all over the world including Sri Lanka due to its availability, simplicity and is relatively inexpensive. However, Trichomonas culture and PCR are the gold standard tests. Unfortunately, neither the culture nor PCR is available for the diagnosis of trichomoniasis in Sri Lanka. Thus, it is important to validate the wet mount microscopy as it is the only available diagnostic test and has not been validated to date in Sri Lanka. The objective was to evaluate the validity and reliability of wet mount microscopy against gold standard Trichomonas culture among clinic based population of reproductive age group women in Western province, Sri Lanka. Women attending hospital and institutional based clinics were enrolled. They were interviewed and high vaginal swabs were taken for laboratory diagnosis by culture and wet mount microscopy. There were 601 participants in the age group of 15-45 years. Wet mount microscopy showed 68% sensitivity, 100% specificity, 100% positive (PPV) and 98% negative predictive values (NPV) (P=0.001, kappa=0.803) respectively against the gold standard culture. The area under the ROC curve was 0.840. Sensitivity of wet mount microscopy is low. However it has high validity and reliability as a specific diagnostic test for trichomoniasis. If it is to be used among women of reproductive age group in Western province, Sri Lanka, a culture method could be adopted as a second test to confirm the negative wet mount for symptomatic patients.
Super-resolution fluorescence microscopy by stepwise optical saturation
Zhang, Yide; Nallathamby, Prakash D.; Vigil, Genevieve D.; Khan, Aamir A.; Mason, Devon E.; Boerckel, Joel D.; Roeder, Ryan K.; Howard, Scott S.
2018-01-01
Super-resolution fluorescence microscopy is an important tool in biomedical research for its ability to discern features smaller than the diffraction limit. However, due to its difficult implementation and high cost, the super-resolution microscopy is not feasible in many applications. In this paper, we propose and demonstrate a saturation-based super-resolution fluorescence microscopy technique that can be easily implemented and requires neither additional hardware nor complex post-processing. The method is based on the principle of stepwise optical saturation (SOS), where M steps of raw fluorescence images are linearly combined to generate an image with a M-fold increase in resolution compared with conventional diffraction-limited images. For example, linearly combining (scaling and subtracting) two images obtained at regular powers extends the resolution by a factor of 1.4 beyond the diffraction limit. The resolution improvement in SOS microscopy is theoretically infinite but practically is limited by the signal-to-noise ratio. We perform simulations and experimentally demonstrate super-resolution microscopy with both one-photon (confocal) and multiphoton excitation fluorescence. We show that with the multiphoton modality, the SOS microscopy can provide super-resolution imaging deep in scattering samples. PMID:29675306
Chung, Sung Hee; Min, Junhong
2009-07-01
Polydimethylsiloxane (PDMS) surface consisting irregular pattern was investigated to develop cell-based biochip using PDMS. PDMS surface was modified with nano- and micro-combined patterns using surface deformation technology. Hydrophobicity of nano-patterned PDMS surface was sustained. Nevertheless it has irregular patterns consisting of micro- and nano-patterns. According to atomic force microscopy (AFM), scanning electron microscopy (SEM) and confocal microscopy results by immunostaining method, human mammary epithelial cells (HMEC) adhered well on irregularly patterned surface without any reagents such as gelatin and collagen, compared to commercial culture dish. It implies PDMS material can be utilized as template for cell-based biochip without any reagents.
Kuroda, Akio; Alexandrov, Maxym; Nishimura, Tomoki; Ishida, Takenori
2016-06-01
A large number of peptides with binding affinity to various inorganic materials have been identified and used as linkers, catalysts, and building blocks in nanotechnology and nanobiotechnology. However, there have been few applications of material-binding peptides in the fluorescence microscopy-based biosensing (FM method) of environmental pollutants. A notable exception is the application of the FM method for the detection of asbestos, a dangerous industrial toxin that is still widely used in many developing countries. This review details the selection and isolation of asbestos-binding proteins and peptides with sufficient specificity to distinguish asbestos from a large variety of safer fibrous materials used as asbestos substitutes. High sensitivity to nanoscale asbestos fibers (30-35 nm in diameter) invisible under conventional phase contrast microscopy can be achieved. The FM method is the basis for developing an automated system for asbestos biosensing that can be used for on-site testing with a portable fluorescence microscope. In the future, the FM method could also become a useful tool for detecting other potentially hazardous nanomaterials in the environment. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Di, Jianglei; Zhao, Jianlin; Sun, Weiwei; Jiang, Hongzhen; Yan, Xiaobo
2009-10-01
Digital holographic microscopy allows the numerical reconstruction of the complex wavefront of samples, especially biological samples such as living cells. In digital holographic microscopy, a microscope objective is introduced to improve the transverse resolution of the sample; however a phase aberration in the object wavefront is also brought along, which will affect the phase distribution of the reconstructed image. We propose here a numerical method to compensate for the phase aberration of thin transparent objects with a single hologram. The least squares surface fitting with points number less than the matrix of the original hologram is performed on the unwrapped phase distribution to remove the unwanted wavefront curvature. The proposed method is demonstrated with the samples of the cicada wings and epidermal cells of garlic, and the experimental results are consistent with that of the double exposure method.
Developing best practice for fungal specimen management: audit of UK microbiology laboratories.
Lasseter, G; Palmer, M; Morgan, J; Watts, J; Yoxall, H; Kibbler, C; McNulty, C
2011-01-01
This study represents an audit of microbiology laboratories in the UK to ascertain whether they are aware of, or follow, the Health Protection Agency (HPA) National Standard Methods Standard Operating Procedure (NSM SOP) for the investigation of dermatological specimens for superficial mycoses, or use a locally adapted version. A questionnaire audit was distributed to 179 NHS microbiology laboratories throughout England, Wales, Scotland and Northern Ireland. The NSM SOP was followed by 92% of laboratories for the microscopy of dermatological samples; light microscopy/ KOH digestion was used by 63% and fluorescence microscopy/KOH digestion by 29% of laboratories. Preliminary reports post-microscopy were issued by 98% of laboratories, with 93% issuing reports within 48 hours. Adherence to the NSM SOP guidelines for culture was low; only 34% of laboratories incubated microscopy-negative specimens for the recommended 14 days, while approximately 60% incubated microscopy-positive specimens for 21 days. The culture medium recommended by the NSM SOP was used in 82% of laboratories. Comments were added to culture reports by 51% of laboratories; most were added manually and comments varied between laboratories. Nail samples were the most common sample received from primary care, followed by skin and hair. These results show no significant difference in the rate of microscopy positives versus culture positives. Microscopy and culture are the easiest and cheapest methods available to UK laboratories for the investigation of suspected superficial fungal infections. Although most laboratories included in this audit claimed to follow the NSM SOP for microscopy and culture, these results show that the techniques used vary throughout the UK. To maximise the service provided to primary care, UK laboratories should use standardise methods based on the NSM SOP.
Vielreicher, M.; Schürmann, S.; Detsch, R.; Schmidt, M. A.; Buttgereit, A.; Boccaccini, A.; Friedrich, O.
2013-01-01
This review focuses on modern nonlinear optical microscopy (NLOM) methods that are increasingly being used in the field of tissue engineering (TE) to image tissue non-invasively and without labelling in depths unreached by conventional microscopy techniques. With NLOM techniques, biomaterial matrices, cultured cells and their produced extracellular matrix may be visualized with high resolution. After introducing classical imaging methodologies such as µCT, MRI, optical coherence tomography, electron microscopy and conventional microscopy two-photon fluorescence (2-PF) and second harmonic generation (SHG) imaging are described in detail (principle, power, limitations) together with their most widely used TE applications. Besides our own cell encapsulation, cell printing and collagen scaffolding systems and their NLOM imaging the most current research articles will be reviewed. These cover imaging of autofluorescence and fluorescence-labelled tissue and biomaterial structures, SHG-based quantitative morphometry of collagen I and other proteins, imaging of vascularization and online monitoring techniques in TE. Finally, some insight is given into state-of-the-art three-photon-based imaging methods (e.g. coherent anti-Stokes Raman scattering, third harmonic generation). This review provides an overview of the powerful and constantly evolving field of multiphoton microscopy, which is a powerful and indispensable tool for the development of artificial tissues in regenerative medicine and which is likely to gain importance also as a means for general diagnostic medical imaging. PMID:23864499
NASA Astrophysics Data System (ADS)
Al-Tabich, A.; Inami, W.; Kawata, Y.; Jablonski, R.; Worasawat, S.; Mimura, H.
2017-05-01
We present a method for three-dimensional intrinsic defect imaging in zinc oxide (ZnO) by spectrally resolved two-photon fluorescence microscopy, based on the previously presented method of observing a photoluminescence distribution in wide-gap semiconductor crystals [Noor et al., Appl. Phys. Lett. 92(16), 161106 (2008)]. A tightly focused light beam radiated by a titanium-sapphire laser is used to obtain a two-photon excitation of selected area of the ZnO sample. Photoluminescence intensity of a specific spectral range is then selected by optical band pass filters and measured by a photomultiplier tube. Reconstruction of the specimen image is done by scanning the volume of interest by a piezoelectric positioning stage and measuring the spectrally resolved photoluminescence intensity at each point. The method has been proved to be effective at locating intrinsic defects of the ZnO crystalline structure in the volume of the crystal. The method was compared with other defect imaging and 3D imaging techniques like scanning tunneling microscopy and confocal microscopy. In both cases, our method shows superior penetration abilities and, as the only method, allows location of the defects of the chosen type in 3D. In this paper, we present the results of oxygen vacancies and zinc antisites imaging in ZnO nanorods.
Yoon, Woong Bae; Kim, Hyunjin; Kim, Kwang Gi; Choi, Yongdoo; Chang, Hee Jin; Sohn, Dae Kyung
2016-07-01
We produced hematoxylin and eosin (H&E) staining-like color images by using confocal laser scanning microscopy (CLSM), which can obtain the same or more information in comparison to conventional tissue staining. We improved images by using several image converting techniques, including morphological methods, color space conversion methods, and segmentation methods. An image obtained after image processing showed coloring very similar to that in images produced by H&E staining, and it is advantageous to conduct analysis through fluorescent dye imaging and microscopy rather than analysis based on single microscopic imaging. The colors used in CLSM are different from those seen in H&E staining, which is the method most widely used for pathologic diagnosis and is familiar to pathologists. Computer technology can facilitate the conversion of images by CLSM to be very similar to H&E staining images. We believe that the technique used in this study has great potential for application in clinical tissue analysis.
Fussell, Andrew L; Mah, Pei Ting; Offerhaus, Herman; Niemi, Sanna-Mari; Salonen, Jarno; Santos, Hélder A; Strachan, Clare
2014-11-01
This study reports the use of variants of coherent anti-Stokes Raman scattering (CARS) microscopy as a novel method for improved physicochemical characterization of drug-loaded silica particles. Ordered mesoporous silica is a biomaterial that can be loaded to carry a number of biochemicals, including poorly water-soluble drugs, by allowing the incorporation of drug into nanometer-sized pores. In this work, the loading of two poorly water-soluble model drugs, itraconazole and griseofulvin, in MCM-41 silica microparticles is characterized qualitatively, using the novel approach of CARS microscopy, which has advantages over other analytical approaches used to date and is non-destructive, rapid, label free, confocal and has chemical and physical specificity. The study investigated the effect of two solvent-based loading methods, namely immersion and rotary evaporation, and microparticle size on the three-dimensional (3-D) distribution of the two loaded drugs. Additionally, hyperspectral CARS microscopy was used to confirm the amorphous nature of the loaded drugs. Z-stacked CARS microscopy suggested that the drug, but not the loading method or particle size range, affected 3-D drug distribution. Hyperspectral CARS confirmed that the drug loaded in the MCM-41 silica microparticles was in an amorphous form. The results show that CARS microscopy and hyperspectral CARS microscopy can be used to provide further insights into the structural nature of loaded mesoporous silica microparticles as biomaterials. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Polarization sensitive localization based super-resolution microscopy with a birefringent wedge
NASA Astrophysics Data System (ADS)
Sinkó, József; Gajdos, Tamás; Czvik, Elvira; Szabó, Gábor; Erdélyi, Miklós
2017-03-01
A practical method has been presented for polarization sensitive localization based super-resolution microscopy using a birefringent dual wedge. The measurement of the polarization degree at the single molecule level can reveal the chemical and physical properties of the local environment of the fluorescent dye molecule and can hence provide information about the sub-diffraction sized structure of biological samples. Polarization sensitive STORM imaging of the F-Actins proved correlation between the orientation of fluorescent dipoles and the axis of the fibril.
Community detection for fluorescent lifetime microscopy image segmentation
NASA Astrophysics Data System (ADS)
Hu, Dandan; Sarder, Pinaki; Ronhovde, Peter; Achilefu, Samuel; Nussinov, Zohar
2014-03-01
Multiresolution community detection (CD) method has been suggested in a recent work as an efficient method for performing unsupervised segmentation of fluorescence lifetime (FLT) images of live cell images containing fluorescent molecular probes.1 In the current paper, we further explore this method in FLT images of ex vivo tissue slices. The image processing problem is framed as identifying clusters with respective average FLTs against a background or "solvent" in FLT imaging microscopy (FLIM) images derived using NIR fluorescent dyes. We have identified significant multiresolution structures using replica correlations in these images, where such correlations are manifested by information theoretic overlaps of the independent solutions ("replicas") attained using the multiresolution CD method from different starting points. In this paper, our method is found to be more efficient than a current state-of-the-art image segmentation method based on mixture of Gaussian distributions. It offers more than 1:25 times diversity based on Shannon index than the latter method, in selecting clusters with distinct average FLTs in NIR FLIM images.
Aberrations and adaptive optics in super-resolution microscopy.
Booth, Martin; Andrade, Débora; Burke, Daniel; Patton, Brian; Zurauskas, Mantas
2015-08-01
As one of the most powerful tools in the biological investigation of cellular structures and dynamic processes, fluorescence microscopy has undergone extraordinary developments in the past decades. The advent of super-resolution techniques has enabled fluorescence microscopy - or rather nanoscopy - to achieve nanoscale resolution in living specimens and unravelled the interior of cells with unprecedented detail. The methods employed in this expanding field of microscopy, however, are especially prone to the detrimental effects of optical aberrations. In this review, we discuss how super-resolution microscopy techniques based upon single-molecule switching, stimulated emission depletion and structured illumination each suffer from aberrations in different ways that are dependent upon intrinsic technical aspects. We discuss the use of adaptive optics as an effective means to overcome this problem. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy.
Widely accessible method for superresolution fluorescence imaging of living systems
Dedecker, Peter; Mo, Gary C. H.; Dertinger, Thomas; Zhang, Jin
2012-01-01
Superresolution fluorescence microscopy overcomes the diffraction resolution barrier and allows the molecular intricacies of life to be revealed with greatly enhanced detail. However, many current superresolution techniques still face limitations and their implementation is typically associated with a steep learning curve. Patterned illumination-based superresolution techniques [e.g., stimulated emission depletion (STED), reversible optically-linear fluorescence transitions (RESOLFT), and saturated structured illumination microscopy (SSIM)] require specialized equipment, whereas single-molecule–based approaches [e.g., stochastic optical reconstruction microscopy (STORM), photo-activation localization microscopy (PALM), and fluorescence-PALM (F-PALM)] involve repetitive single-molecule localization, which requires its own set of expertise and is also temporally demanding. Here we present a superresolution fluorescence imaging method, photochromic stochastic optical fluctuation imaging (pcSOFI). In this method, irradiating a reversibly photoswitching fluorescent protein at an appropriate wavelength produces robust single-molecule intensity fluctuations, from which a superresolution picture can be extracted by a statistical analysis of the fluctuations in each pixel as a function of time, as previously demonstrated in SOFI. This method, which uses off-the-shelf equipment, genetically encodable labels, and simple and rapid data acquisition, is capable of providing two- to threefold-enhanced spatial resolution, significant background rejection, markedly improved contrast, and favorable temporal resolution in living cells. Furthermore, both 3D and multicolor imaging are readily achievable. Because of its ease of use and high performance, we anticipate that pcSOFI will prove an attractive approach for superresolution imaging. PMID:22711840
NASA Astrophysics Data System (ADS)
Wang, Tong-Hong; Chen, Tse-Ching; Teng, Xiao; Liang, Kung-Hao; Yeh, Chau-Ting
2015-08-01
Liver fibrosis assessment by biopsy and conventional staining scores is based on histopathological criteria. Variations in sample preparation and the use of semi-quantitative histopathological methods commonly result in discrepancies between medical centers. Thus, minor changes in liver fibrosis might be overlooked in multi-center clinical trials, leading to statistically non-significant data. Here, we developed a computer-assisted, fully automated, staining-free method for hepatitis B-related liver fibrosis assessment. In total, 175 liver biopsies were divided into training (n = 105) and verification (n = 70) cohorts. Collagen was observed using second harmonic generation (SHG) microscopy without prior staining, and hepatocyte morphology was recorded using two-photon excitation fluorescence (TPEF) microscopy. The training cohort was utilized to establish a quantification algorithm. Eleven of 19 computer-recognizable SHG/TPEF microscopic morphological features were significantly correlated with the ISHAK fibrosis stages (P < 0.001). A biphasic scoring method was applied, combining support vector machine and multivariate generalized linear models to assess the early and late stages of fibrosis, respectively, based on these parameters. The verification cohort was used to verify the scoring method, and the area under the receiver operating characteristic curve was >0.82 for liver cirrhosis detection. Since no subjective gradings are needed, interobserver discrepancies could be avoided using this fully automated method.
Wang, Tong-Hong; Chen, Tse-Ching; Teng, Xiao; Liang, Kung-Hao; Yeh, Chau-Ting
2015-08-11
Liver fibrosis assessment by biopsy and conventional staining scores is based on histopathological criteria. Variations in sample preparation and the use of semi-quantitative histopathological methods commonly result in discrepancies between medical centers. Thus, minor changes in liver fibrosis might be overlooked in multi-center clinical trials, leading to statistically non-significant data. Here, we developed a computer-assisted, fully automated, staining-free method for hepatitis B-related liver fibrosis assessment. In total, 175 liver biopsies were divided into training (n = 105) and verification (n = 70) cohorts. Collagen was observed using second harmonic generation (SHG) microscopy without prior staining, and hepatocyte morphology was recorded using two-photon excitation fluorescence (TPEF) microscopy. The training cohort was utilized to establish a quantification algorithm. Eleven of 19 computer-recognizable SHG/TPEF microscopic morphological features were significantly correlated with the ISHAK fibrosis stages (P < 0.001). A biphasic scoring method was applied, combining support vector machine and multivariate generalized linear models to assess the early and late stages of fibrosis, respectively, based on these parameters. The verification cohort was used to verify the scoring method, and the area under the receiver operating characteristic curve was >0.82 for liver cirrhosis detection. Since no subjective gradings are needed, interobserver discrepancies could be avoided using this fully automated method.
Kim, Byungyeon; Park, Byungjun; Lee, Seungrag; Won, Youngjae
2016-01-01
We demonstrated GPU accelerated real-time confocal fluorescence lifetime imaging microscopy (FLIM) based on the analog mean-delay (AMD) method. Our algorithm was verified for various fluorescence lifetimes and photon numbers. The GPU processing time was faster than the physical scanning time for images up to 800 × 800, and more than 149 times faster than a single core CPU. The frame rate of our system was demonstrated to be 13 fps for a 200 × 200 pixel image when observing maize vascular tissue. This system can be utilized for observing dynamic biological reactions, medical diagnosis, and real-time industrial inspection. PMID:28018724
Salas, Desirée; Le Gall, Antoine; Fiche, Jean-Bernard; Valeri, Alessandro; Ke, Yonggang; Bron, Patrick; Bellot, Gaetan
2017-01-01
Superresolution light microscopy allows the imaging of labeled supramolecular assemblies at a resolution surpassing the classical diffraction limit. A serious limitation of the superresolution approach is sample heterogeneity and the stochastic character of the labeling procedure. To increase the reproducibility and the resolution of the superresolution results, we apply multivariate statistical analysis methods and 3D reconstruction approaches originally developed for cryogenic electron microscopy of single particles. These methods allow for the reference-free 3D reconstruction of nanomolecular structures from two-dimensional superresolution projection images. Since these 2D projection images all show the structure in high-resolution directions of the optical microscope, the resulting 3D reconstructions have the best possible isotropic resolution in all directions. PMID:28811371
Model-based traction force microscopy reveals differential tension in cellular actin bundles.
Soiné, Jérôme R D; Brand, Christoph A; Stricker, Jonathan; Oakes, Patrick W; Gardel, Margaret L; Schwarz, Ulrich S
2015-03-01
Adherent cells use forces at the cell-substrate interface to sense and respond to the physical properties of their environment. These cell forces can be measured with traction force microscopy which inverts the equations of elasticity theory to calculate them from the deformations of soft polymer substrates. We introduce a new type of traction force microscopy that in contrast to traditional methods uses additional image data for cytoskeleton and adhesion structures and a biophysical model to improve the robustness of the inverse procedure and abolishes the need for regularization. We use this method to demonstrate that ventral stress fibers of U2OS-cells are typically under higher mechanical tension than dorsal stress fibers or transverse arcs.
Model-based Traction Force Microscopy Reveals Differential Tension in Cellular Actin Bundles
Soiné, Jérôme R. D.; Brand, Christoph A.; Stricker, Jonathan; Oakes, Patrick W.; Gardel, Margaret L.; Schwarz, Ulrich S.
2015-01-01
Adherent cells use forces at the cell-substrate interface to sense and respond to the physical properties of their environment. These cell forces can be measured with traction force microscopy which inverts the equations of elasticity theory to calculate them from the deformations of soft polymer substrates. We introduce a new type of traction force microscopy that in contrast to traditional methods uses additional image data for cytoskeleton and adhesion structures and a biophysical model to improve the robustness of the inverse procedure and abolishes the need for regularization. We use this method to demonstrate that ventral stress fibers of U2OS-cells are typically under higher mechanical tension than dorsal stress fibers or transverse arcs. PMID:25748431
Correlation of live-cell imaging with volume scanning electron microscopy.
Lucas, Miriam S; Günthert, Maja; Bittermann, Anne Greet; de Marco, Alex; Wepf, Roger
2017-01-01
Live-cell imaging is one of the most widely applied methods in live science. Here we describe two setups for live-cell imaging, which can easily be combined with volume SEM for correlative studies. The first procedure applies cell culture dishes with a gridded glass support, which can be used for any light microscopy modality. The second approach is a flow-chamber setup based on Ibidi μ-slides. Both live-cell imaging strategies can be followed up with serial blockface- or focused ion beam-scanning electron microscopy. Two types of resin embedding after heavy metal staining and dehydration are presented making best use of the particular advantages of each imaging modality: classical en-bloc embedding and thin-layer plastification. The latter can be used only for focused ion beam-scanning electron microscopy, but is advantageous for studying cell-interactions with specific substrates, or when the substrate cannot be removed. En-bloc embedding has diverse applications and can be applied for both described volume scanning electron microscopy techniques. Finally, strategies for relocating the cell of interest are discussed for both embedding approaches and in respect to the applied light and scanning electron microscopy methods. Copyright © 2017 Elsevier Inc. All rights reserved.
Zhang, Yu Shrike; Chang, Jae-Byum; Alvarez, Mario Moisés; Trujillo-de Santiago, Grissel; Aleman, Julio; Batzaya, Byambaa; Krishnadoss, Vaishali; Ramanujam, Aishwarya Aravamudhan; Kazemzadeh-Narbat, Mehdi; Chen, Fei; Tillberg, Paul W; Dokmeci, Mehmet Remzi; Boyden, Edward S; Khademhosseini, Ali
2016-03-15
To date, much effort has been expended on making high-performance microscopes through better instrumentation. Recently, it was discovered that physical magnification of specimens was possible, through a technique called expansion microscopy (ExM), raising the question of whether physical magnification, coupled to inexpensive optics, could together match the performance of high-end optical equipment, at a tiny fraction of the price. Here we show that such "hybrid microscopy" methods--combining physical and optical magnifications--can indeed achieve high performance at low cost. By physically magnifying objects, then imaging them on cheap miniature fluorescence microscopes ("mini-microscopes"), it is possible to image at a resolution comparable to that previously attainable only with benchtop microscopes that present costs orders of magnitude higher. We believe that this unprecedented hybrid technology that combines expansion microscopy, based on physical magnification, and mini-microscopy, relying on conventional optics--a process we refer to as Expansion Mini-Microscopy (ExMM)--is a highly promising alternative method for performing cost-effective, high-resolution imaging of biological samples. With further advancement of the technology, we believe that ExMM will find widespread applications for high-resolution imaging particularly in research and healthcare scenarios in undeveloped countries or remote places.
Using environmental forensic microscopy in exposure science.
Millette, James R; Brown, Richard S; Hill, Whitney B
2008-01-01
Environmental forensic microscopy investigations are based on the methods and procedures developed in the fields of criminal forensics, industrial hygiene and environmental monitoring. Using a variety of microscopes and techniques, the environmental forensic scientist attempts to reconstruct the sources and the extent of exposure based on the physical evidence left behind after particles are exchanged between an individual and the environments he or she passes through. This article describes how environmental forensic microscopy uses procedures developed for environmental monitoring, criminal forensics and industrial hygiene investigations. It provides key references to the interdisciplinary approach used in microscopic investigations. Case studies dealing with lead, asbestos, glass fibers and other particulate contaminants are used to illustrate how environmental forensic microscopy can be very useful in the initial stages of a variety of environmental exposure characterization efforts to eliminate some agents of concern and to narrow the field of possible sources of exposure.
Simulated single molecule microscopy with SMeagol.
Lindén, Martin; Ćurić, Vladimir; Boucharin, Alexis; Fange, David; Elf, Johan
2016-08-01
SMeagol is a software tool to simulate highly realistic microscopy data based on spatial systems biology models, in order to facilitate development, validation and optimization of advanced analysis methods for live cell single molecule microscopy data. SMeagol runs on Matlab R2014 and later, and uses compiled binaries in C for reaction-diffusion simulations. Documentation, source code and binaries for Mac OS, Windows and Ubuntu Linux can be downloaded from http://smeagol.sourceforge.net johan.elf@icm.uu.se Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
Classification of human carcinoma cells using multispectral imagery
NASA Astrophysics Data System (ADS)
Ćinar, Umut; Y. Ćetin, Yasemin; Ćetin-Atalay, Rengul; Ćetin, Enis
2016-03-01
In this paper, we present a technique for automatically classifying human carcinoma cell images using textural features. An image dataset containing microscopy biopsy images from different patients for 14 distinct cancer cell line type is studied. The images are captured using a RGB camera attached to an inverted microscopy device. Texture based Gabor features are extracted from multispectral input images. SVM classifier is used to generate a descriptive model for the purpose of cell line classification. The experimental results depict satisfactory performance, and the proposed method is versatile for various microscopy magnification options.
González Bardeci, Nicolás; Angiolini, Juan Francisco; De Rossi, María Cecilia; Bruno, Luciana; Levi, Valeria
2017-01-01
Fluorescence fluctuation-based methods are non-invasive microscopy tools especially suited for the study of dynamical aspects of biological processes. These methods examine spontaneous intensity fluctuations produced by fluorescent molecules moving through the small, femtoliter-sized observation volume defined in confocal and multiphoton microscopes. The quantitative analysis of the intensity trace provides information on the processes producing the fluctuations that include diffusion, binding interactions, chemical reactions and photophysical phenomena. In this review, we present the basic principles of the most widespread fluctuation-based methods, discuss their implementation in standard confocal microscopes and briefly revise some examples of their applications to address relevant questions in living cells. The ultimate goal of these methods in the Cell Biology field is to observe biomolecules as they move, interact with targets and perform their biological action in the natural context. © 2016 IUBMB Life, 69(1):8-15, 2017. © 2016 International Union of Biochemistry and Molecular Biology.
Jo, Javier A.; Fang, Qiyin; Marcu, Laura
2007-01-01
We report a new deconvolution method for fluorescence lifetime imaging microscopy (FLIM) based on the Laguerre expansion technique. The performance of this method was tested on synthetic and real FLIM images. The following interesting properties of this technique were demonstrated. 1) The fluorescence intensity decay can be estimated simultaneously for all pixels, without a priori assumption of the decay functional form. 2) The computation speed is extremely fast, performing at least two orders of magnitude faster than current algorithms. 3) The estimated maps of Laguerre expansion coefficients provide a new domain for representing FLIM information. 4) The number of images required for the analysis is relatively small, allowing reduction of the acquisition time. These findings indicate that the developed Laguerre expansion technique for FLIM analysis represents a robust and extremely fast deconvolution method that enables practical applications of FLIM in medicine, biology, biochemistry, and chemistry. PMID:19444338
A digital atlas of breast histopathology: an application of web based virtual microscopy
Lundin, M; Lundin, J; Helin, H; Isola, J
2004-01-01
Aims: To develop an educationally useful atlas of breast histopathology, using advanced web based virtual microscopy technology. Methods: By using a robotic microscope and software adopted and modified from the aerial and satellite imaging industry, a virtual microscopy system was developed that allows fully automated slide scanning and image distribution via the internet. More than 150 slides were scanned at high resolution with an oil immersion ×40 objective (numerical aperture, 1.3) and archived on an image server residing in a high speed university network. Results: A publicly available website was constructed, http://www.webmicroscope.net/breastatlas, which features a comprehensive virtual slide atlas of breast histopathology according to the World Health Organisation 2003 classification. Users can view any part of an entire specimen at any magnification within a standard web browser. The virtual slides are supplemented with concise textual descriptions, but can also be viewed without diagnostic information for self assessment of histopathology skills. Conclusions: Using the technology described here, it is feasible to develop clinically and educationally useful virtual microscopy applications. Web based virtual microscopy will probably become widely used at all levels in pathology teaching. PMID:15563669
Lavagnino, Zeno; Sancataldo, Giuseppe; d’Amora, Marta; Follert, Philipp; De Pietri Tonelli, Davide; Diaspro, Alberto; Cella Zanacchi, Francesca
2016-01-01
In the last decade light sheet fluorescence microscopy techniques, such as selective plane illumination microscopy (SPIM), has become a well established method for developmental biology. However, conventional SPIM architectures hardly permit imaging of certain tissues since the common sample mounting procedure, based on gel embedding, could interfere with the sample morphology. In this work we propose an inverted selective plane microscopy system (iSPIM), based on non-linear excitation, suitable for 3D tissue imaging. First, the iSPIM architecture provides flexibility on the sample mounting, getting rid of the gel-based mounting typical of conventional SPIM, permitting 3D imaging of hippocampal slices from mouse brain. Moreover, all the advantages brought by two photon excitation (2PE) in terms of reduction of scattering effects and contrast improvement are exploited, demonstrating an improved image quality and contrast compared to single photon excitation. The system proposed represents an optimal platform for tissue imaging and it smooths the way to the applicability of light sheet microscopy to a wider range of samples including those that have to be mounted on non-transparent surfaces. PMID:27033347
NASA Astrophysics Data System (ADS)
Mahan, Matthew
Microbial keratitis (MK) is an infection of the cornea by pathogenic organisms that causes inflammation and irritation. It can lead to full or partial blindness if left untreated. Current clinical treatment methods rely on high frequency application of topical drugs which are subject to the issues of patient compliance and microbial resistance. In this work, gold nanoparticles (AuNP) were proposed as an alternative treatment method in light-based therapies. Particle formulation methods were investigated and assessed using transmission electron microscopy (TEM) and ultraviolet/visible spectroscopy (UV-Vis). AuNP of 20 nm diameter were used as platforms to attach monoclonal antibodies anti-FLAG or anti-F1 to enhance their cell-targeting ability as well as polyethylene glycol to reduce non-specific binding and protein adsorption. These functionalized particles were qualitatively assessed using UV-Vis. The antibody-functionalized AuNP were then assessed for their ability to attach directly to Pseudomonas aeruginosa, expressing FLAG peptide, or Aspergillus fumigatus, expressing the F1 receptor. Attachment was imaged using dark field microscopy, transmission electron microscopy, and fluorescence microscopy.
Giardiasis: an update review on sensitivity and specificity of methods for laboratorial diagnosis.
Soares, Renata; Tasca, Tiana
2016-10-01
Giardiasis is a major cause of diarrhoea transmitted by ingestion of contaminated water and food with cysts, and it has been spread among people with poor oral hygiene. The traditional diagnosis is performed by identifying trophozoites and cysts of Giardia duodenalis through microscopy of faecal samples. In addition to microscopy, different methods have been validated for giardiasis diagnosis which are based on immunologic and molecular analyses. The aim of this study was to conduct a review of the main methods applied in clinical laboratory for diagnosis of giardiasis, in the last 10years, regarding the specificity and sensitivity criteria. It was observed high variability in the performance of the same methodology across studies; however, several techniques have been considered better than microscopy. The later, although gold standard, presents low sensitivity in cases of low number of cysts in the sample, and the experience of the microscopist must also be considered. We conclude that microscopy should still be held and complementary technique is recommended, in order to provide a reliable diagnosis and a proper treatment of the patient. Copyright © 2016 Elsevier B.V. All rights reserved.
Angeloni, Livia; Reggente, Melania; Passeri, Daniele; Natali, Marco; Rossi, Marco
2018-04-17
Identification of nanoparticles and nanosystems into cells and biological matrices is a hot research topic in nanobiotechnologies. Because of their capability to map physical properties (mechanical, electric, magnetic, chemical, or optical), several scanning probe microscopy based techniques have been proposed for the subsurface detection of nanomaterials in biological systems. In particular, atomic force microscopy (AFM) can be used to reveal stiff nanoparticles in cells and other soft biomaterials by probing the sample mechanical properties through the acquisition of local indentation curves or through the combination of ultrasound-based methods, like contact resonance AFM (CR-AFM) or scanning near field ultrasound holography. Magnetic force microscopy can detect magnetic nanoparticles and other magnetic (bio)materials in nonmagnetic biological samples, while electric force microscopy, conductive AFM, and Kelvin probe force microscopy can reveal buried nanomaterials on the basis of the differences between their electric properties and those of the surrounding matrices. Finally, scanning near field optical microscopy and tip-enhanced Raman spectroscopy can visualize buried nanostructures on the basis of their optical and chemical properties. Despite at a still early stage, these methods are promising for detection of nanomaterials in biological systems as they could be truly noninvasive, would not require destructive and time-consuming specific sample preparation, could be performed in vitro, on alive samples and in water or physiological environment, and by continuously imaging the same sample could be used to dynamically monitor the diffusion paths and interaction mechanisms of nanomaterials into cells and biological systems. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Nanotechnology Approaches to Biology > Nanoscale Systems in Biology. © 2018 Wiley Periodicals, Inc.
Optical and electrical properties of Cu-based all oxide semi-transparent photodetector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Hong-Sik; Patel, Malkeshkumar; Yadav, Pankaj
2016-09-05
Zero-bias operating Cu oxide-based photodetector was achieved by using large-scale available sputtering method. Cu oxide (Cu{sub 2}O or CuO) was used as p-type transparent layer to form a heterojunction by contacting n-type ZnO layer. All metal-oxide materials were employed to realize transparent device at room temperature and showed a high transparency (>75% at 600 nm) with excellent photoresponses. The structural, morphological, optical, and electrical properties of Cu oxides of CuO and Cu{sub 2}O are evaluated in depth by UV-visible spectrometer, X-ray diffraction, scanning electron microscopy, atomic force microscopy, Kelvin probe force microscopy, and Hall measurements. We may suggest a route ofmore » high-functional Cu oxide-based photoelectric devices for the applications in flexible and transparent electronics.« less
Forment, Josep V.; Jackson, Stephen P.
2016-01-01
Protein accumulation on chromatin has traditionally been studied using immunofluorescence microscopy or biochemical cellular fractionation followed by western immunoblot analysis. As a way to improve the reproducibility of this kind of analysis, make it easier to quantify and allow a stream-lined application in high-throughput screens, we recently combined a classical immunofluorescence microscopy detection technique with flow cytometry1. In addition to the features described above, and by combining it with detection of both DNA content and DNA replication, this method allows unequivocal and direct assignment of cell-cycle distribution of protein association to chromatin without the need for cell culture synchronization. Furthermore, it is relatively quick (no more than a working day from sample collection to quantification), requires less starting material compared to standard biochemical fractionation methods and overcomes the need for flat, adherent cell types that are required for immunofluorescence microscopy. PMID:26226461
Göhler, Daniel; Wessely, Benno; Stintz, Michael; Lazzerini, Giovanni Mattia; Yacoot, Andrew
2017-01-01
Dimensional measurements on nano-objects by atomic force microscopy (AFM) require samples of safely fixed and well individualized particles with a suitable surface-specific particle number on flat and clean substrates. Several known and proven particle preparation methods, i.e., membrane filtration, drying, rinsing, dip coating as well as electrostatic and thermal precipitation, were performed by means of scanning electron microscopy to examine their suitability for preparing samples for dimensional AFM measurements. Different suspensions of nano-objects (with varying material, size and shape) stabilized in aqueous solutions were prepared therefore on different flat substrates. The drop-drying method was found to be the most suitable one for the analysed suspensions, because it does not require expensive dedicated equipment and led to a uniform local distribution of individualized nano-objects. Traceable AFM measurements based on Si and SiO2 coated substrates confirmed the suitability of this technique. PMID:28904839
Fiala, Petra; Göhler, Daniel; Wessely, Benno; Stintz, Michael; Lazzerini, Giovanni Mattia; Yacoot, Andrew
2017-01-01
Dimensional measurements on nano-objects by atomic force microscopy (AFM) require samples of safely fixed and well individualized particles with a suitable surface-specific particle number on flat and clean substrates. Several known and proven particle preparation methods, i.e., membrane filtration, drying, rinsing, dip coating as well as electrostatic and thermal precipitation, were performed by means of scanning electron microscopy to examine their suitability for preparing samples for dimensional AFM measurements. Different suspensions of nano-objects (with varying material, size and shape) stabilized in aqueous solutions were prepared therefore on different flat substrates. The drop-drying method was found to be the most suitable one for the analysed suspensions, because it does not require expensive dedicated equipment and led to a uniform local distribution of individualized nano-objects. Traceable AFM measurements based on Si and SiO 2 coated substrates confirmed the suitability of this technique.
Jacak, Jaroslaw; Schaller, Susanne; Borgmann, Daniela; Winkler, Stephan M
2015-08-01
We here present two new methods for the characterization of fluorescent localization microscopy images obtained from immunostained brain tissue sections. Direct stochastic optical reconstruction microscopy images of 5-HT1A serotonin receptors and glial fibrillary acidic proteins in healthy cryopreserved brain tissues are analyzed. In detail, we here present two image processing methods for characterizing differences in receptor distribution on glial cells and their distribution on neural cells: One variant relies on skeleton extraction and adaptive thresholding, the other on k-means based discrete layer segmentation. Experimental results show that both methods can be applied for distinguishing classes of images with respect to serotonin receptor distribution. Quantification of nanoscopic changes in relative protein expression on particular cell types can be used to analyze degeneration in tissues caused by diseases or medical treatment.
Aberrations and adaptive optics in super-resolution microscopy
Booth, Martin; Andrade, Débora; Burke, Daniel; Patton, Brian; Zurauskas, Mantas
2015-01-01
As one of the most powerful tools in the biological investigation of cellular structures and dynamic processes, fluorescence microscopy has undergone extraordinary developments in the past decades. The advent of super-resolution techniques has enabled fluorescence microscopy – or rather nanoscopy – to achieve nanoscale resolution in living specimens and unravelled the interior of cells with unprecedented detail. The methods employed in this expanding field of microscopy, however, are especially prone to the detrimental effects of optical aberrations. In this review, we discuss how super-resolution microscopy techniques based upon single-molecule switching, stimulated emission depletion and structured illumination each suffer from aberrations in different ways that are dependent upon intrinsic technical aspects. We discuss the use of adaptive optics as an effective means to overcome this problem. PMID:26124194
NASA Astrophysics Data System (ADS)
Miyama, Masamichi J.; Hukushima, Koji
2018-04-01
A sparse modeling approach is proposed for analyzing scanning tunneling microscopy topography data, which contain numerous peaks originating from the electron density of surface atoms and/or impurities. The method, based on the relevance vector machine with L1 regularization and k-means clustering, enables separation of the peaks and peak center positioning with accuracy beyond the resolution of the measurement grid. The validity and efficiency of the proposed method are demonstrated using synthetic data in comparison with the conventional least-squares method. An application of the proposed method to experimental data of a metallic oxide thin-film clearly indicates the existence of defects and corresponding local lattice distortions.
NASA Astrophysics Data System (ADS)
Vasilev, A. A.; Dzidziguri, E. L.; Muratov, D. G.; Zhilyaeva, N. A.; Efimov, M. N.; Karpacheva, G. P.
2018-04-01
Metal-carbon nanocomposites consisting of FeCo alloy nanoparticles dispersed in a carbon matrix were synthesized by the thermal decomposition method of a precursor based on polyvinyl alcohol and metals salts. The synthesized powders were investigated by X-ray diffraction (XRD), X-ray fluorescent spectrometry (XRFS), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Surface characteristics of materials were measured by BET-method. The morphology and dispersity of metal nanoparticles were studied depending on the metals ratio in the composite.
Epidermis area detection for immunofluorescence microscopy
NASA Astrophysics Data System (ADS)
Dovganich, Andrey; Krylov, Andrey; Nasonov, Andrey; Makhneva, Natalia
2018-04-01
We propose a novel image segmentation method for immunofluorescence microscopy images of skin tissue for the diagnosis of various skin diseases. The segmentation is based on machine learning algorithms. The feature vector is filled by three groups of features: statistical features, Laws' texture energy measures and local binary patterns. The images are preprocessed for better learning. Different machine learning algorithms have been used and the best results have been obtained with random forest algorithm. We use the proposed method to detect the epidermis region as a part of pemphigus diagnosis system.
Afshar, Yaser; Sbalzarini, Ivo F.
2016-01-01
Modern fluorescence microscopy modalities, such as light-sheet microscopy, are capable of acquiring large three-dimensional images at high data rate. This creates a bottleneck in computational processing and analysis of the acquired images, as the rate of acquisition outpaces the speed of processing. Moreover, images can be so large that they do not fit the main memory of a single computer. We address both issues by developing a distributed parallel algorithm for segmentation of large fluorescence microscopy images. The method is based on the versatile Discrete Region Competition algorithm, which has previously proven useful in microscopy image segmentation. The present distributed implementation decomposes the input image into smaller sub-images that are distributed across multiple computers. Using network communication, the computers orchestrate the collectively solving of the global segmentation problem. This not only enables segmentation of large images (we test images of up to 1010 pixels), but also accelerates segmentation to match the time scale of image acquisition. Such acquisition-rate image segmentation is a prerequisite for the smart microscopes of the future and enables online data compression and interactive experiments. PMID:27046144
DNA origami-based standards for quantitative fluorescence microscopy.
Schmied, Jürgen J; Raab, Mario; Forthmann, Carsten; Pibiri, Enrico; Wünsch, Bettina; Dammeyer, Thorben; Tinnefeld, Philip
2014-01-01
Validating and testing a fluorescence microscope or a microscopy method requires defined samples that can be used as standards. DNA origami is a new tool that provides a framework to place defined numbers of small molecules such as fluorescent dyes or proteins in a programmed geometry with nanometer precision. The flexibility and versatility in the design of DNA origami microscopy standards makes them ideally suited for the broad variety of emerging super-resolution microscopy methods. As DNA origami structures are durable and portable, they can become a universally available specimen to check the everyday functionality of a microscope. The standards are immobilized on a glass slide, and they can be imaged without further preparation and can be stored for up to 6 months. We describe a detailed protocol for the design, production and use of DNA origami microscopy standards, and we introduce a DNA origami rectangle, bundles and a nanopillar as fluorescent nanoscopic rulers. The protocol provides procedures for the design and realization of fluorescent marks on DNA origami structures, their production and purification, quality control, handling, immobilization, measurement and data analysis. The procedure can be completed in 1-2 d.
Afshar, Yaser; Sbalzarini, Ivo F
2016-01-01
Modern fluorescence microscopy modalities, such as light-sheet microscopy, are capable of acquiring large three-dimensional images at high data rate. This creates a bottleneck in computational processing and analysis of the acquired images, as the rate of acquisition outpaces the speed of processing. Moreover, images can be so large that they do not fit the main memory of a single computer. We address both issues by developing a distributed parallel algorithm for segmentation of large fluorescence microscopy images. The method is based on the versatile Discrete Region Competition algorithm, which has previously proven useful in microscopy image segmentation. The present distributed implementation decomposes the input image into smaller sub-images that are distributed across multiple computers. Using network communication, the computers orchestrate the collectively solving of the global segmentation problem. This not only enables segmentation of large images (we test images of up to 10(10) pixels), but also accelerates segmentation to match the time scale of image acquisition. Such acquisition-rate image segmentation is a prerequisite for the smart microscopes of the future and enables online data compression and interactive experiments.
Hofmann, Matthias C; Whited, Bryce M; Criswell, Tracy; Rylander, Marissa Nichole; Rylander, Christopher G; Soker, Shay; Wang, Ge; Xu, Yong
2012-09-01
A major limitation in tissue engineering is the lack of nondestructive methods that assess the development of tissue scaffolds undergoing preconditioning in bioreactors. Due to significant optical scattering in most scaffolding materials, current microscope-based imaging methods cannot "see" through thick and optically opaque tissue constructs. To address this deficiency, we developed a fiber-optic-based imaging method that is capable of nondestructive imaging of fluorescently labeled cells through a thick and optically opaque scaffold, contained in a bioreactor. This imaging modality is based on the local excitation of fluorescent cells, the acquisition of fluorescence through the scaffold, and fluorescence mapping based on the position of the excitation light. To evaluate the capability and accuracy of the imaging system, human endothelial cells (ECs), stably expressing green fluorescent protein (GFP), were imaged through a fibrous scaffold. Without sacrificing the scaffolds, we nondestructively visualized the distribution of GFP-labeled cells through a ~500 μm thick scaffold with cell-level resolution and distinct localization. These results were similar to control images obtained using an optical microscope with direct line-of-sight access. Through a detailed quantitative analysis, we demonstrated that this method achieved a resolution on the order of 20-30 μm, with 10% or less deviation from standard optical microscopy. Furthermore, we demonstrated that the penetration depth of the imaging method exceeded that of confocal laser scanning microscopy by more than a factor of 2. Our imaging method also possesses a working distance (up to 8 cm) much longer than that of a standard confocal microscopy system, which can significantly facilitate bioreactor integration. This method will enable the nondestructive monitoring of ECs seeded on the lumen of a tissue-engineered vascular graft during preconditioning in vitro, as well as for other tissue-engineered constructs in the future.
Ströhl, Florian; Kaminski, Clemens F
2015-01-16
We demonstrate the reconstruction of images obtained by multifocal structured illumination microscopy, MSIM, using a joint Richardson-Lucy, jRL-MSIM, deconvolution algorithm, which is based on an underlying widefield image-formation model. The method is efficient in the suppression of out-of-focus light and greatly improves image contrast and resolution. Furthermore, it is particularly well suited for the processing of noise corrupted data. The principle is verified on simulated as well as experimental data and a comparison of the jRL-MSIM approach with the standard reconstruction procedure, which is based on image scanning microscopy, ISM, is made. Our algorithm is efficient and freely available in a user friendly software package.
NASA Astrophysics Data System (ADS)
Ströhl, Florian; Kaminski, Clemens F.
2015-03-01
We demonstrate the reconstruction of images obtained by multifocal structured illumination microscopy, MSIM, using a joint Richardson-Lucy, jRL-MSIM, deconvolution algorithm, which is based on an underlying widefield image-formation model. The method is efficient in the suppression of out-of-focus light and greatly improves image contrast and resolution. Furthermore, it is particularly well suited for the processing of noise corrupted data. The principle is verified on simulated as well as experimental data and a comparison of the jRL-MSIM approach with the standard reconstruction procedure, which is based on image scanning microscopy, ISM, is made. Our algorithm is efficient and freely available in a user friendly software package.
NASA Astrophysics Data System (ADS)
Li, Liangliang; Si, Yujuan; Jia, Zhenhong
2018-03-01
In this paper, a novel microscopy mineral image enhancement method based on adaptive threshold in non-subsampled shearlet transform (NSST) domain is proposed. First, the image is decomposed into one low-frequency sub-band and several high-frequency sub-bands. Second, the gamma correction is applied to process the low-frequency sub-band coefficients, and the improved adaptive threshold is adopted to suppress the noise of the high-frequency sub-bands coefficients. Third, the processed coefficients are reconstructed with the inverse NSST. Finally, the unsharp filter is used to enhance the details of the reconstructed image. Experimental results on various microscopy mineral images demonstrated that the proposed approach has a better enhancement effect in terms of objective metric and subjective metric.
Saturated virtual fluorescence emission difference microscopy based on detector array
NASA Astrophysics Data System (ADS)
Liu, Shaocong; Sun, Shiyi; Kuang, Cuifang; Ge, Baoliang; Wang, Wensheng; Liu, Xu
2017-07-01
Virtual fluorescence emission difference microscopy (vFED) has been proposed recently to enhance the lateral resolution of confocal microscopy with a detector array, implemented by scanning a doughnut-shaped pattern. Theoretically, the resolution can be enhanced by around 1.3-fold compared with that in confocal microscopy. For further improvement of the resolving ability of vFED, a novel method is presented utilizing fluorescence saturation for super-resolution imaging, which we called saturated virtual fluorescence emission difference microscopy (svFED). With a point detector array, matched solid and hollow point spread functions (PSF) can be obtained by photon reassignment, and the difference results between them can be used to boost the transverse resolution. Results show that the diffraction barrier can be surpassed by at least 34% compared with that in vFED and the resolution is around 2-fold higher than that in confocal microscopy.
Wang, Xue; Hu, Chenguo; Xiong, Yufeng; Zhang, Cuiling
2013-02-01
Functional carbon nanospheres have been synthesized from analytically pure glucose by a composite-molten-salt (CMS) method. Field emission scanning electron microscopy, transmission electron microscopy, Raman and Fourier transformation infra-red spectroscopy indicate the carbon nanospheres are solid, bond hybridisation (sp2/sp3) and with many functional groups on their surfaces. Amperometric sensor based on the synthesized carbon nanospheres have been fabricated without pretreatment or modification. The detection of hydrogen peroxide exhibits high sensitivity and good selectivity. The electrochemical measurement of these nanospheres demonstrates much superior performance to those of the carbon nanospheres synthesized by hydrothermal method.
QUALITY ASSESSMENT OF CONFOCAL MICROSCOPY SLIDE-BASED SYSTEMS: INSTABLITY
Background: All slide-based fluorescence cytometry detections systems basically include an excitation light source, intermediate optics, and a detection device (CCD or PMT). Occasionally, this equipment becomes unstable, generating unreliable and inferior data. Methods: A num...
Study of the self-organization processes in lead sulfide quantum dots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarasov, S. A., E-mail: SATarasov@mail.ru; Aleksandrova, O. A.; Maksimov, A. I.
A procedure is described for the synthesis of nanoparticles based on lead chalcogenides. The procedure combines the synthesis of colloidal quantum dots (QDs) in aqueous solutions with simultaneous organization of the QDs into ordered arrays. The processes of the self-organization of QDs are analyzed at the nano- and microscopic levels by the photoluminescence method, atomic-force microscopy, and optical microscopy.
Roth, Gary A; Sosa Peña, Maria del Pilar; Neu-Baker, Nicole M; Tahiliani, Sahil; Brenner, Sara A
2015-12-08
Nanomaterials are increasingly prevalent throughout industry, manufacturing, and biomedical research. The need for tools and techniques that aid in the identification, localization, and characterization of nanoscale materials in biological samples is on the rise. Currently available methods, such as electron microscopy, tend to be resource-intensive, making their use prohibitive for much of the research community. Enhanced darkfield microscopy complemented with a hyperspectral imaging system may provide a solution to this bottleneck by enabling rapid and less expensive characterization of nanoparticles in histological samples. This method allows for high-contrast nanoscale imaging as well as nanomaterial identification. For this technique, histological tissue samples are prepared as they would be for light-based microscopy. First, positive control samples are analyzed to generate the reference spectra that will enable the detection of a material of interest in the sample. Negative controls without the material of interest are also analyzed in order to improve specificity (reduce false positives). Samples can then be imaged and analyzed using methods and software for hyperspectral microscopy or matched against these reference spectra in order to provide maps of the location of materials of interest in a sample. The technique is particularly well-suited for materials with highly unique reflectance spectra, such as noble metals, but is also applicable to other materials, such as semi-metallic oxides. This technique provides information that is difficult to acquire from histological samples without the use of electron microscopy techniques, which may provide higher sensitivity and resolution, but are vastly more resource-intensive and time-consuming than light microscopy.
Coakley, K J; Imtiaz, A; Wallis, T M; Weber, J C; Berweger, S; Kabos, P
2015-03-01
Near-field scanning microwave microscopy offers great potential to facilitate characterization, development and modeling of materials. By acquiring microwave images at multiple frequencies and amplitudes (along with the other modalities) one can study material and device physics at different lateral and depth scales. Images are typically noisy and contaminated by artifacts that can vary from scan line to scan line and planar-like trends due to sample tilt errors. Here, we level images based on an estimate of a smooth 2-d trend determined with a robust implementation of a local regression method. In this robust approach, features and outliers which are not due to the trend are automatically downweighted. We denoise images with the Adaptive Weights Smoothing method. This method smooths out additive noise while preserving edge-like features in images. We demonstrate the feasibility of our methods on topography images and microwave |S11| images. For one challenging test case, we demonstrate that our method outperforms alternative methods from the scanning probe microscopy data analysis software package Gwyddion. Our methods should be useful for massive image data sets where manual selection of landmarks or image subsets by a user is impractical. Published by Elsevier B.V.
Direct Microscopy: A Useful Tool to Diagnose Oral Candidiasis in Children and Adolescents.
Marty, Mathieu; Bourrat, Emmanuelle; Vaysse, Frédéric; Bonner, Mark; Bailleul-Forestier, Isabelle
2015-12-01
Oral candidiasis is one of the most common opportunistic fungal infections of the oral cavity in human. Among children, this condition represents one of the most frequent affecting the mucosa. Although most diagnoses are made based on clinical signs and features, a microbiological analysis is sometimes necessary. We performed a literature review on the diagnosis of oral candidiasis to identify the techniques most commonly employed in routine clinical practice. A Medline-PubMed search covering the last 10 years was performed. Microbiological techniques were used in cases requiring confirmation of the clinical diagnosis. In such cases, direct microscopy was the method most commonly used for diagnosing candidiasis. Direct microscopy appears as the method of choice for confirming clinical diagnosis and could become a routine chair-side technique.
Single particle analysis based on Zernike phase contrast transmission electron microscopy.
Danev, Radostin; Nagayama, Kuniaki
2008-02-01
We present the first application of Zernike phase-contrast transmission electron microscopy to single-particle 3D reconstruction of a protein, using GroEL chaperonin as the test specimen. We evaluated the performance of the technique by comparing 3D models derived from Zernike phase contrast imaging, with models from conventional underfocus phase contrast imaging. The same resolution, about 12A, was achieved by both imaging methods. The reconstruction based on Zernike phase contrast data required about 30% fewer particles. The advantages and prospects of each technique are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chitralekha, C. S.; Rasi, Mohammed; Nair, Swapna S., E-mail: swapna.s.nair@gmail.com
A modified sol-gel method was introduced by employing a cost effective novel template to synthesize coaxial one dimensional (1-D) composite nanostructures based on CoFe{sub 2}O{sub 4} (CFO) - K{sub 0.5}Na{sub 0.5}NbO{sub 3} (KNN) and magnetic nanostructures based on CoFe{sub 2}O{sub 4} (CFO). The studies with scanning electron microscopy (SEM) and atomic force microscopy (AFM) revealed that the composite material is characterized by the 1-D tubular structure. The absorption edge is blue shifted for both KNN and CFO nanotubes due to the lattice strain effect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sukhanova, T. E., E-mail: tat-sukhanova@mail.ru; Vylegzhanina, M. E.; Valueva, S. V.
The morphology and electrical properties of biogenic selenium-containing nanosystems based on polyelectrolyte complexes (PECs) were examined using AFM, Kelvin Probe Force and electron microscopy methods. It has been found, that prepared nanostructures significantly differed in their morphological types and parameters. In particular, multilayers capsules can be produced via varying synthesis conditions, especially, the selenium–PEC mass ratio ν. At the “special point” (ν = 0.1), filled and hollow nano- and microcapsules are formed in the system. The multilayer character of the capsules walls is visible in the phase images. Kelvin Probe Force images showed the inhomogeneity of potential distribution in capsulesmore » and outside them.« less
Siegel, Nisan; Storrie, Brian; Bruce, Marc; Brooker, Gary
2015-02-07
FINCH holographic fluorescence microscopy creates high resolution super-resolved images with enhanced depth of focus. The simple addition of a real-time Nipkow disk confocal image scanner in a conjugate plane of this incoherent holographic system is shown to reduce the depth of focus, and the combination of both techniques provides a simple way to enhance the axial resolution of FINCH in a combined method called "CINCH". An important feature of the combined system allows for the simultaneous real-time image capture of widefield and holographic images or confocal and confocal holographic images for ready comparison of each method on the exact same field of view. Additional GPU based complex deconvolution processing of the images further enhances resolution.
In-Process Atomic-Force Microscopy (AFM) Based Inspection
Mekid, Samir
2017-01-01
A new in-process atomic-force microscopy (AFM) based inspection is presented for nanolithography to compensate for any deviation such as instantaneous degradation of the lithography probe tip. Traditional method used the AFM probes for lithography work and retract to inspect the obtained feature but this practice degrades the probe tip shape and hence, affects the measurement quality. This paper suggests a second dedicated lithography probe that is positioned back-to-back to the AFM probe under two synchronized controllers to correct any deviation in the process compared to specifications. This method shows that the quality improvement of the nanomachining, in progress probe tip wear, and better understanding of nanomachining. The system is hosted in a recently developed nanomanipulator for educational and research purposes. PMID:28561747
Reggente, Melania; Passeri, Daniele; Angeloni, Livia; Scaramuzzo, Francesca Anna; Barteri, Mario; De Angelis, Francesca; Persiconi, Irene; De Stefano, Maria Egle; Rossi, Marco
2017-05-04
Detecting stiff nanoparticles buried in soft biological matrices by atomic force microscopy (AFM) based techniques represents a new frontier in the field of scanning probe microscopies, originally developed as surface characterization methods. Here we report the detection of stiff (magnetic) nanoparticles (NPs) internalized in cells by using contact resonance AFM (CR-AFM) employed as a potentially non-destructive subsurface characterization tool. Magnetite (Fe 3 O 4 ) NPs were internalized in microglial cells from cerebral cortices of mouse embryos of 18 days by phagocytosis. Nanomechanical imaging of cells was performed by detecting the contact resonance frequencies (CRFs) of an AFM cantilever held in contact with the sample. Agglomerates of NPs internalized in cells were visualized on the basis of the local increase in the contact stiffness with respect to the surrounding biological matrix. A second AFM-based technique for nanomechanical imaging, i.e., HarmoniX™, as well as magnetic force microscopy and light microscopy were used to confirm the CR-AFM results. Thus, CR-AFM was demonstrated as a promising technique for subsurface imaging of nanomaterials in biological samples.
Cryptosporidium is an important protozoan parasite that continues to cause waterborne disease outbreaks worldwide. Current methods to monitor for Cryptosporidium oocysts in water are microscopy-based USEPA Methods 1622 and 1623. These methods assess total levels of oocysts in s...
Wang, Tong-Hong; Chen, Tse-Ching; Teng, Xiao; Liang, Kung-Hao; Yeh, Chau-Ting
2015-01-01
Liver fibrosis assessment by biopsy and conventional staining scores is based on histopathological criteria. Variations in sample preparation and the use of semi-quantitative histopathological methods commonly result in discrepancies between medical centers. Thus, minor changes in liver fibrosis might be overlooked in multi-center clinical trials, leading to statistically non-significant data. Here, we developed a computer-assisted, fully automated, staining-free method for hepatitis B-related liver fibrosis assessment. In total, 175 liver biopsies were divided into training (n = 105) and verification (n = 70) cohorts. Collagen was observed using second harmonic generation (SHG) microscopy without prior staining, and hepatocyte morphology was recorded using two-photon excitation fluorescence (TPEF) microscopy. The training cohort was utilized to establish a quantification algorithm. Eleven of 19 computer-recognizable SHG/TPEF microscopic morphological features were significantly correlated with the ISHAK fibrosis stages (P < 0.001). A biphasic scoring method was applied, combining support vector machine and multivariate generalized linear models to assess the early and late stages of fibrosis, respectively, based on these parameters. The verification cohort was used to verify the scoring method, and the area under the receiver operating characteristic curve was >0.82 for liver cirrhosis detection. Since no subjective gradings are needed, interobserver discrepancies could be avoided using this fully automated method. PMID:26260921
Diatom Valve Three-Dimensional Representation: A New Imaging Method Based on Combined Microscopies
Ferrara, Maria Antonietta; De Tommasi, Edoardo; Coppola, Giuseppe; De Stefano, Luca; Rea, Ilaria; Dardano, Principia
2016-01-01
The frustule of diatoms, unicellular microalgae, shows very interesting photonic features, generally related to its complicated and quasi-periodic micro- and nano-structure. In order to simulate light propagation inside and through this natural structure, it is important to develop three-dimensional (3D) models for synthetic replica with high spatial resolution. In this paper, we present a new method that generates images of microscopic diatoms with high definition, by merging scanning electron microscopy and digital holography microscopy or atomic force microscopy data. Starting from two digital images, both acquired separately with standard characterization procedures, a high spatial resolution (Δz = λ/20, Δx = Δy ≅ 100 nm, at least) 3D model of the object has been generated. Then, the two sets of data have been processed by matrix formalism, using an original mathematical algorithm implemented on a commercially available software. The developed methodology could be also of broad interest in the design and fabrication of micro-opto-electro-mechanical systems. PMID:27690008
Peng, Li-Qing; Yu, Wen-Yan; Xu, Jing-Jing; Cao, Jun
2018-01-15
A simple, green and effective extraction method, namely, pyridinium ionic liquid- (IL) based liquid-solid extraction (LSE), was first designed to extract the main inorganic and organic iodine compounds (I - , monoiodo-tyrosine (MIT) and diiodo-tyrosine (DIT)). The optimal extraction conditions were as follows: ultrasonic intensity 100W, IL ([EPy]Br) concentration 200mM, extraction time 30min, liquid/solid ratio 10mL/g, and pH value 6.5. The morphologies of Laminaria were studied by scanning electron microscopy and transmission electron microscopy. The recovery values of I - , MIT and DIT from Laminaria were in the range of 88% to 94%, and limits of detection were in the range of 59.40 to 283.6ng/g. The proposed method was applied to the extraction and determination of iodine compounds in three Laminaria. The results showed that IL-based LSE could be a promising method for rapid extraction of bioactive iodine from complex food matrices. Copyright © 2017 Elsevier Ltd. All rights reserved.
Virus Particle Detection by Convolutional Neural Network in Transmission Electron Microscopy Images.
Ito, Eisuke; Sato, Takaaki; Sano, Daisuke; Utagawa, Etsuko; Kato, Tsuyoshi
2018-06-01
A new computational method for the detection of virus particles in transmission electron microscopy (TEM) images is presented. Our approach is to use a convolutional neural network that transforms a TEM image to a probabilistic map that indicates where virus particles exist in the image. Our proposed approach automatically and simultaneously learns both discriminative features and classifier for virus particle detection by machine learning, in contrast to existing methods that are based on handcrafted features that yield many false positives and require several postprocessing steps. The detection performance of the proposed method was assessed against a dataset of TEM images containing feline calicivirus particles and compared with several existing detection methods, and the state-of-the-art performance of the developed method for detecting virus was demonstrated. Since our method is based on supervised learning that requires both the input images and their corresponding annotations, it is basically used for detection of already-known viruses. However, the method is highly flexible, and the convolutional networks can adapt themselves to any virus particles by learning automatically from an annotated dataset.
Two-Photon Fluorescence Microscopy Developed for Microgravity Fluid Physics
NASA Technical Reports Server (NTRS)
Fischer, David G.; Zimmerli, Gregory A.; Asipauskas, Marius
2004-01-01
Recent research efforts within the Microgravity Fluid Physics Branch of the NASA Glenn Research Center have necessitated the development of a microscope capable of high-resolution, three-dimensional imaging of intracellular structure and tissue morphology. Standard optical microscopy works well for thin samples, but it does not allow the imaging of thick samples because of severe degradation caused by out-of-focus object structure. Confocal microscopy, which is a laser-based scanning microscopy, provides improved three-dimensional imaging and true optical sectioning by excluding the out-of-focus light. However, in confocal microscopy, out-of-focus object structure is still illuminated by the incoming beam, which can lead to substantial photo-bleaching. In addition, confocal microscopy is plagued by limited penetration depth, signal loss due to the presence of a confocal pinhole, and the possibility of live-cell damage. Two-photon microscopy is a novel form of laser-based scanning microscopy that allows three-dimensional imaging without many of the problems inherent in confocal microscopy. Unlike one-photon microscopy, it utilizes the nonlinear absorption of two near-infrared photons. However, the efficiency of two-photon absorption is much lower than that of one-photon absorption because of the nonlinear (i.e., quadratic) electric field dependence, so an ultrafast pulsed laser source must typically be employed. On the other hand, this stringent energy density requirement effectively localizes fluorophore excitation to the focal volume. Consequently, two-photon microscopy provides optical sectioning and confocal performance without the need for a signal-limiting pinhole. In addition, there is a reduction in photo-damage because of the longer excitation wavelength, a reduction in background fluorescence, and a 4 increase in penetration depth over confocal methods because of the reduction in Rayleigh scattering.
Molecular characterization of Toxocara spp. from soil of public areas in Ahvaz southwestern Iran.
Khademvatan, Shahram; Abdizadeh, Rahman; Tavalla, Mahdi
2014-07-01
In the present study, the microscopy and polymerase chain reaction methods were used for detection and identification of soil contamination by Toxocara eggs in squares, streets, public parks, and rubbish dumps in Ahvaz, southwestern Iran. A total of 210 soil samples were collected from different parts of the city and examined by microscopy and polymerase chain reaction (PCR) methods, following sodium nitrate flotation. Nucleotide sequencing was performed to confirm the results of the PCR method. Toxocara eggs were found in 64 and 71 soil samples using the microscopy and PCR methods, respectively. The highest contamination rate was observed in the central part of Ahvaz (39.5% and 46.5% by the microscopy and PCR methods, respectively). Based on internal transcribed spacer 2 (ITS2) PCR identification, 28% of the samples were diagnosed as Toxocara cati and 5.7% as Toxocara canis; no mixed contamination was observed. DNA sequencing of the ITS2 gene confirmed our findings. Compared to the conventional microscopic detection following by flotation, used as the gold standard, the PCR method appears to be rapid and sensitive as well as allows analysis of Toxocara spp. isolated from soil independent of the stage of egg development. Therefore, the PCR method appears to be a valuable tool for the diagnosis and differentiation of Toxocara spp. from soil samples in epidemiological studies, and will help the local health systems in effective prevention and control of disease. Copyright © 2014 Elsevier B.V. All rights reserved.
Nonlinear vibrational microscopy
Holtom, Gary R.; Xie, Xiaoliang Sunney; Zumbusch, Andreas
2000-01-01
The present invention is a method and apparatus for microscopic vibrational imaging using coherent Anti-Stokes Raman Scattering or Sum Frequency Generation. Microscopic imaging with a vibrational spectroscopic contrast is achieved by generating signals in a nonlinear optical process and spatially resolved detection of the signals. The spatial resolution is attained by minimizing the spot size of the optical interrogation beams on the sample. Minimizing the spot size relies upon a. directing at least two substantially co-axial laser beams (interrogation beams) through a microscope objective providing a focal spot on the sample; b. collecting a signal beam together with a residual beam from the at least two co-axial laser beams after passing through the sample; c. removing the residual beam; and d. detecting the signal beam thereby creating said pixel. The method has significantly higher spatial resolution then IR microscopy and higher sensitivity than spontaneous Raman microscopy with much lower average excitation powers. CARS and SFG microscopy does not rely on the presence of fluorophores, but retains the resolution and three-dimensional sectioning capability of confocal and two-photon fluorescence microscopy. Complementary to these techniques, CARS and SFG microscopy provides a contrast mechanism based on vibrational spectroscopy. This vibrational contrast mechanism, combined with an unprecedented high sensitivity at a tolerable laser power level, provides a new approach for microscopic investigations of chemical and biological samples.
Improved wavefront correction for coherent image restoration.
Zelenka, Claudius; Koch, Reinhard
2017-08-07
Coherent imaging has a wide range of applications in, for example, microscopy, astronomy, and radar imaging. Particularly interesting is the field of microscopy, where the optical quality of the lens is the main limiting factor. In this article, novel algorithms for the restoration of blurred images in a system with known optical aberrations are presented. Physically motivated by the scalar diffraction theory, the new algorithms are based on Haugazeau POCS and FISTA, and are faster and more robust than methods presented earlier. With the new approach the level of restoration quality on real images is very high, thereby blurring and ringing caused by defocus can be effectively removed. In classical microscopy, lenses with very low aberration must be used, which puts a practical limit on their size and numerical aperture. A coherent microscope using the novel restoration method overcomes this limitation. In contrast to incoherent microscopy, severe optical aberrations including defocus can be removed, hence the requirements on the quality of the optics are lower. This can be exploited for an essential price reduction of the optical system. It can be also used to achieve higher resolution than in classical microscopy, using lenses with high numerical aperture and high aberration. All this makes the coherent microscopy superior to the traditional incoherent in suited applications.
Kim, Dahan; Curthoys, Nikki M.; Parent, Matthew T.; Hess, Samuel T.
2015-01-01
Multi-colour localization microscopy has enabled sub-diffraction studies of colocalization between multiple biological species and quantification of their correlation at length scales previously inaccessible with conventional fluorescence microscopy. However, bleed-through, or misidentification of probe species, creates false colocalization and artificially increases certain types of correlation between two imaged species, affecting the reliability of information provided by colocalization and quantified correlation. Despite the potential risk of these artefacts of bleed-through, neither the effect of bleed-through on correlation nor methods of its correction in correlation analyses has been systematically studied at typical rates of bleed-through reported to affect multi-colour imaging. Here, we present a reliable method of bleed-through correction applicable to image rendering and correlation analysis of multi-colour localization microscopy. Application of our bleed-through correction shows our method accurately corrects the artificial increase in both types of correlations studied (Pearson coefficient and pair correlation), at all rates of bleed-through tested, in all types of correlations examined. In particular, anti-correlation could not be quantified without our bleed-through correction, even at rates of bleed-through as low as 2%. Demonstrated with dichroic-based multi-colour FPALM here, our presented method of bleed-through correction can be applied to all types of localization microscopy (PALM, STORM, dSTORM, GSDIM, etc.), including both simultaneous and sequential multi-colour modalities, provided the rate of bleed-through can be reliably determined. PMID:26185614
Kim, Dahan; Curthoys, Nikki M; Parent, Matthew T; Hess, Samuel T
2013-09-01
Multi-colour localization microscopy has enabled sub-diffraction studies of colocalization between multiple biological species and quantification of their correlation at length scales previously inaccessible with conventional fluorescence microscopy. However, bleed-through, or misidentification of probe species, creates false colocalization and artificially increases certain types of correlation between two imaged species, affecting the reliability of information provided by colocalization and quantified correlation. Despite the potential risk of these artefacts of bleed-through, neither the effect of bleed-through on correlation nor methods of its correction in correlation analyses has been systematically studied at typical rates of bleed-through reported to affect multi-colour imaging. Here, we present a reliable method of bleed-through correction applicable to image rendering and correlation analysis of multi-colour localization microscopy. Application of our bleed-through correction shows our method accurately corrects the artificial increase in both types of correlations studied (Pearson coefficient and pair correlation), at all rates of bleed-through tested, in all types of correlations examined. In particular, anti-correlation could not be quantified without our bleed-through correction, even at rates of bleed-through as low as 2%. Demonstrated with dichroic-based multi-colour FPALM here, our presented method of bleed-through correction can be applied to all types of localization microscopy (PALM, STORM, dSTORM, GSDIM, etc.), including both simultaneous and sequential multi-colour modalities, provided the rate of bleed-through can be reliably determined.
Mahmoudifard, Matin; Soudi, Sara; Soleimani, Masoud; Hosseinzadeh, Simzar; Esmaeili, Elaheh; Vossoughi, Manouchehr
2016-01-01
In this paper we introduce novel strategy for antibody immobilization using high surface area electrospun nanofibrous membrane based on ethyl-3-(3-dimethylaminopropyl)-carbodiimide/N-hydroxysuccinimide (EDC/NHS) coupling chemistry. To present the high performance of proposed biosensors, anti-staphylococcus enterotoxin B (anti-SEB) was used as a model to demonstrate the utility of our proposed system. Polymer solution of polyethersolfone was used to fabricate fine nanofibrous membrane. Moreover, industrial polyvinylidene fluoride membrane and conventional microtiter plate were also used to compare the efficiency of antibody immobilization. Scanning electron microscopy images were taken to study the morphology of the membranes. The surface activation of nanofibrous membrane was done with the help of O2 plasma. PES nanofibrous membrane with carboxyl functional groups for covalent attachment of antibodies were treated by EDC/NHS coupling agent. The quantity of antibody immobilization was measured by enzyme-linked immuno sorbent assay (ELISA) method. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) spectroscopy was performed to confirm the covalent immobilization of antibody on membrane. Atomic force microscopy, scanning electron microscopy and invert fluorescence microscopy were used to analyze the antibody distribution pattern on solid surfaces. Results show that oxygen plasma treatment effectively increased the amount of antibody immobilization through EDC/NHS coupling chemistry. It was found that the use of nanofibrous membrane causes the improved detection signal of ELISA based biosensors in comparison to the standard assay carried out in the 96-well microtiter plate. This method has the potential to improve the ELISA-based biosensor and we believe that this technique can be used in various biosensing methods. Copyright © 2015. Published by Elsevier B.V.
Visual-servoing optical microscopy
Callahan, Daniel E.; Parvin, Bahram
2009-06-09
The present invention provides methods and devices for the knowledge-based discovery and optimization of differences between cell types. In particular, the present invention provides visual servoing optical microscopy, as well as analysis methods. The present invention provides means for the close monitoring of hundreds of individual, living cells over time: quantification of dynamic physiological responses in multiple channels; real-time digital image segmentation and analysis; intelligent, repetitive computer-applied cell stress and cell stimulation; and the ability to return to the same field of cells for long-term studies and observation. The present invention further provides means to optimize culture conditions for specific subpopulations of cells.
Visual-servoing optical microscopy
Callahan, Daniel E [Martinez, CA; Parvin, Bahram [Mill Valley, CA
2011-05-24
The present invention provides methods and devices for the knowledge-based discovery and optimization of differences between cell types. In particular, the present invention provides visual servoing optical microscopy, as well as analysis methods. The present invention provides means for the close monitoring of hundreds of individual, living cells over time; quantification of dynamic physiological responses in multiple channels; real-time digital image segmentation and analysis; intelligent, repetitive computer-applied cell stress and cell stimulation; and the ability to return to the same field of cells for long-term studies and observation. The present invention further provides means to optimize culture conditions for specific subpopulations of cells.
Visual-servoing optical microscopy
Callahan, Daniel E; Parvin, Bahram
2013-10-01
The present invention provides methods and devices for the knowledge-based discovery and optimization of differences between cell types. In particular, the present invention provides visual servoing optical microscopy, as well as analysis methods. The present invention provides means for the close monitoring of hundreds of individual, living cells over time; quantification of dynamic physiological responses in multiple channels; real-time digital image segmentation and analysis; intelligent, repetitive computer-applied cell stress and cell stimulation; and the ability to return to the same field of cells for long-term studies and observation. The present invention further provides means to optimize culture conditions for specific subpopulations of cells.
Boehmite nanostructures preparation by hydrothermal method from anodic aluminium oxide membrane.
Yang, X; Wang, J Y; Pan, H Y
2009-02-01
Boehmite nanostructures were successfully synthesized from porous anodic aluminium oxide (AAO) membrane by a simple and efficient hydro-thermal method. The experiment used high purity alumina as raw material, and the whole reaction process avoided superfluous impurities to be introduced. Thus, the purity of Boehmite products was ensured. The examinations of the morphology and structure were carried out by atomic force microscope (AFM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Composition of the specimens was analyzed using energy dispersive X-ray spectroscope (EDX) and X-ray diffraction (XRD). Based on these observations the growth process was analyzed.
Qin, Chuan; Zhao, Jianlin; Di, Jianglei; Wang, Le; Yu, Yiting; Yuan, Weizheng
2009-02-10
We employed digital holographic microscopy to visually test microoptoelectromechanical systems (MOEMS). The sample is a blazed-angle adjustable grating. Considering the periodic structure of the sample, a local area unwrapping method based on a binary template was adopted to demodulate the fringes obtained by referring to a reference hologram. A series of holograms at different deformation states due to different drive voltages were captured to analyze the dynamic character of the MOEMS, and the uniformity of different microcantilever beams was also inspected. The results show this testing method is effective for a periodic structure.
Merk, Magdalene; Knuechel, Ruth; Perez-Bouza, Alberto
2010-12-20
Fundamental knowledge of microscopic anatomy and pathology has always been an essential part in medical education. The traditional didactic concept comprises theoretical and practical lessons using a light microscope and glass slides. High-speed Internet connections and technical improvement in whole-slide digital microscopy (commonly termed "virtual microscopy") provide a new and attractive approach for both teachers and students. High picture quality and unlimited temporal and spatial availability of histology samples from different fields are key advantages of web-based digital microscopy. In this report we discuss the technical requirements, system efficiency, optical resolution and didactic concept. Furthermore, we present a review of the experience gained in the course of one year based on an analysis of student acceptance. Three groups with a total of 192 students between the 3rd and 5th year of medical studies attending the practical courses of general and advanced histopathology had access to both glass-mounted and digitalized slides. Prior to exams, students were asked to answer an anonymous questionnaire. The results of the study reflect the high acceptance and intensive use of the web-based digital histology by students, thus encouraging the development of further Web-based learning strategies for the teaching of histology and pathology. 2010 Elsevier GmbH. All rights reserved.
Joint Research on Scatterometry and AFM Wafer Metrology
NASA Astrophysics Data System (ADS)
Bodermann, Bernd; Buhr, Egbert; Danzebrink, Hans-Ulrich; Bär, Markus; Scholze, Frank; Krumrey, Michael; Wurm, Matthias; Klapetek, Petr; Hansen, Poul-Erik; Korpelainen, Virpi; van Veghel, Marijn; Yacoot, Andrew; Siitonen, Samuli; El Gawhary, Omar; Burger, Sven; Saastamoinen, Toni
2011-11-01
Supported by the European Commission and EURAMET, a consortium of 10 participants from national metrology institutes, universities and companies has started a joint research project with the aim of overcoming current challenges in optical scatterometry for traceable linewidth metrology. Both experimental and modelling methods will be enhanced and different methods will be compared with each other and with specially adapted atomic force microscopy (AFM) and scanning electron microscopy (SEM) measurement systems in measurement comparisons. Additionally novel methods for sophisticated data analysis will be developed and investigated to reach significant reductions of the measurement uncertainties in critical dimension (CD) metrology. One final goal will be the realisation of a wafer based reference standard material for calibration of scatterometers.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-03
...-Exclusive Licenses: Multi-Focal Structured Illumination Microscopy Systems and Methods AGENCY: National... pertains to a system and method for digital confocal microscopy that rapidly processes enhanced images. In particular, the invention is a method for digital confocal microscopy that includes a digital mirror device...
Su, Hang; Yin, Zhaozheng; Huh, Seungil; Kanade, Takeo
2013-10-01
Phase-contrast microscopy is one of the most common and convenient imaging modalities to observe long-term multi-cellular processes, which generates images by the interference of lights passing through transparent specimens and background medium with different retarded phases. Despite many years of study, computer-aided phase contrast microscopy analysis on cell behavior is challenged by image qualities and artifacts caused by phase contrast optics. Addressing the unsolved challenges, the authors propose (1) a phase contrast microscopy image restoration method that produces phase retardation features, which are intrinsic features of phase contrast microscopy, and (2) a semi-supervised learning based algorithm for cell segmentation, which is a fundamental task for various cell behavior analysis. Specifically, the image formation process of phase contrast microscopy images is first computationally modeled with a dictionary of diffraction patterns; as a result, each pixel of a phase contrast microscopy image is represented by a linear combination of the bases, which we call phase retardation features. Images are then partitioned into phase-homogeneous atoms by clustering neighboring pixels with similar phase retardation features. Consequently, cell segmentation is performed via a semi-supervised classification technique over the phase-homogeneous atoms. Experiments demonstrate that the proposed approach produces quality segmentation of individual cells and outperforms previous approaches. Copyright © 2013 Elsevier B.V. All rights reserved.
Ayogu, E E; Ukwe, C V; Nna, E O
2016-01-01
Current malaria control strategies are based on early diagnosis and appropriate treatment of malaria cases. The study aimed at comparing the performance of blood film microscopy and rapid diagnostic test (RDT) in Plasmodium falciparum detection in patients ≥6 years of age. A total of 154 consecutive pyretic patients aged 6-62 years were enrolled, sampled, and tested for malaria using RDT (first response) and microscopy by Giemsa staining. Genomic DNA was extracted after saponin hemolysis and nested polymerase chain reaction (PCR) was used to detect Plasmodium falciparum. The endpoints were sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). Of the 154 patients, 80 (51.9%) had fever of ≥37.5°C. 106 (68.8%) were positive by First response® , 132 (85.7%) by microscopy, and 121 (78.6%) by PCR. The sensitivity, specificity, PPV, and NPV of first response compared to microscopic method were 82.2%, 100.0%, 100.0%, and 34.3%, respectively, while it was 75.4%, 75.0%, 95.3%, and 31.2%, respectively, when compared to PCR. The sensitivity, specificity, PPV, and NPV of the microscopic method compared to PCR were 92.3%, 50.0%, 90.91%, and 54.5%, respectively. There was a significant difference in the performance of RDT and film microscopy methods (P ≤ 0.05). Microscopy performed better and is more reliable than first response (RDT) in areas with low parasite density among patients ≥6 years of age. Rapid diagnostic tests could be useful in aareas with high parasite density as an alternative to smear microscopy.
Lee, James W.; Thundat, Thomas G.
2005-06-14
An apparatus and method for performing nucleic acid (DNA and/or RNA) sequencing on a single molecule. The genetic sequence information is obtained by probing through a DNA or RNA molecule base by base at nanometer scale as though looking through a strip of movie film. This DNA sequencing nanotechnology has the theoretical capability of performing DNA sequencing at a maximal rate of about 1,000,000 bases per second. This enhanced performance is made possible by a series of innovations including: novel applications of a fine-tuned nanometer gap for passage of a single DNA or RNA molecule; thin layer microfluidics for sample loading and delivery; and programmable electric fields for precise control of DNA or RNA movement. Detection methods include nanoelectrode-gated tunneling current measurements, dielectric molecular characterization, and atomic force microscopy/electrostatic force microscopy (AFM/EFM) probing for nanoscale reading of the nucleic acid sequences.
Colmenares, Juan Carlos; Nair, Vaishakh; Kuna, Ewelina; Łomot, Dariusz
2018-03-01
Formation of thin layers of photocatalyst in photo-microreactor is a challenging work considering the properties of both catalyst and the microchannel material. The deposition of semiconductor materials on fluoropolymer based microcapillary requires the use of economical methods which are also less energy dependent. The current work introduces a new method for depositing nanoparticles of TiO 2 on the inner walls of a hexafluoropropylene tetrafluoroethylene microtube under mild conditions using ultrasound technique. During the ultrasonication process, changes in the polymer surface were observed and characterized using Attenuated Total Reflectance spectroscopy, Scanning Electron Microscopy and Confocal Microscopy. The rough patches form sites for catalyst deposition resulting in the formation of thin layer of TiO 2 nanoparticles in the inner walls of the microtube. The photocatalytic activity of the TiO 2 coated fluoropolymer based microcapillary was evaluated for removal of phenol present in water. Copyright © 2017 Elsevier B.V. All rights reserved.
Photon-counting-based diffraction phase microscopy combined with single-pixel imaging
NASA Astrophysics Data System (ADS)
Shibuya, Kyuki; Araki, Hiroyuki; Iwata, Tetsuo
2018-04-01
We propose a photon-counting (PC)-based quantitative-phase imaging (QPI) method for use in diffraction phase microscopy (DPM) that is combined with a single-pixel imaging (SPI) scheme (PC-SPI-DPM). This combination of DPM with the SPI scheme overcomes a low optical throughput problem that has occasionally prevented us from obtaining quantitative-phase images in DPM through use of a high-sensitivity single-channel photodetector such as a photomultiplier tube (PMT). The introduction of a PMT allowed us to perform PC with ease and thus solved a dynamic range problem that was inherent to SPI. As a proof-of-principle experiment, we performed a comparison study of analogue-based SPI-DPM and PC-SPI-DPM for a 125-nm-thick indium tin oxide (ITO) layer coated on a silica glass substrate. We discuss the basic performance of the method and potential future modifications of the proposed system.
Collection and Extraction of Occupational Air Samples for Analysis of Fungal DNA.
Lemons, Angela R; Lindsley, William G; Green, Brett J
2018-05-02
Traditional methods of identifying fungal exposures in occupational environments, such as culture and microscopy-based approaches, have several limitations that have resulted in the exclusion of many species. Advances in the field over the last two decades have led occupational health researchers to turn to molecular-based approaches for identifying fungal hazards. These methods have resulted in the detection of many species within indoor and occupational environments that have not been detected using traditional methods. This protocol details an approach for determining fungal diversity within air samples through genomic DNA extraction, amplification, sequencing, and taxonomic identification of fungal internal transcribed spacer (ITS) regions. ITS sequencing results in the detection of many fungal species that are either not detected or difficult to identify to species level using culture or microscopy. While these methods do not provide quantitative measures of fungal burden, they offer a new approach to hazard identification and can be used to determine overall species richness and diversity within an occupational environment.
Medeiros, Jansen Fernandes; Almeida, Tatiana Amaral Pires; Silva, Lucyane Bastos Tavares; Rubio, Jose Miguel; Crainey, James Lee; Pessoa, Felipe Arley Costa; Luz, Sergio Luiz Bessa
2015-05-20
Mansonella ozzardi is a poorly understood human filarial parasite with a broad distribution throughout Latin America. Most of what is known about its parasitism has come from epidemiological studies that have estimated parasite incidence using light microscopy. Light microscopy can, however, miss lighter, submicroscopic, infections. In this study we have compared M. ozzardi incidence estimates made using light microscopy, with estimates made using PCR. 214 DNA extracts made from Large Volume Venous Blood Samples (LVVBS) were taken from volunteers from two study sites in the Rio Solimões region: Codajás [n = 109] and Tefé [n = 105] and were subsequently assayed for M. ozzardi parasitism using a diagnostic PCR (Mo-dPCR). Peripheral finger-prick blood samples were taken from the same individuals and used for microscopic examination. Finger-prick blood, taken from individuals from Tefé, was also used for the creation of FTAcard dried blood spots (DBS) that were subsequently subjected to Mo-dPCR. Overall M. ozzardi incidence estimates made with LVVBS PCRs were 1.8 times higher than those made using microscopy (44.9% [96/214] compared with 24.3% [52/214]) and 1.5 times higher than the PCR estimates made from FTAcard DBS (48/105 versus 31/105). PCR-based detection of FTAcard DBS proved 1.3 times more sensitive at diagnosing infections from peripheral blood samples than light microscopy did: detecting 24/105 compared with 31/105. PCR of LVVBS reported the fewest number of false negatives, detecting: 44 of 52 (84.6%) individuals diagnosed by microscopy; 27 of 31 (87.1%) of those diagnosed positive from DBSs and 17 out of 18 (94.4%) of those diagnosed as positive by both alternative methodologies. In this study, Mo-dPCR of LVVBS was by far the most sensitive method of detecting M. ozzardi infections and detected submicroscopic infections. Mo-dPCR FTAcard DBS also provided a more sensitive test for M. ozzardi diagnosis than light microscopy based diagnosis did and thus in settings where only finger-prick assays can be carried-out, it may be a more reliable method of detection. Most existing M. ozzardi incidence estimates, which are often based on light microscope diagnosis, are likely to dramatically underestimate true M. ozzardi parasitism incidence levels.
Siegel, Nisan; Storrie, Brian; Bruce, Marc
2016-01-01
FINCH holographic fluorescence microscopy creates high resolution super-resolved images with enhanced depth of focus. The simple addition of a real-time Nipkow disk confocal image scanner in a conjugate plane of this incoherent holographic system is shown to reduce the depth of focus, and the combination of both techniques provides a simple way to enhance the axial resolution of FINCH in a combined method called “CINCH”. An important feature of the combined system allows for the simultaneous real-time image capture of widefield and holographic images or confocal and confocal holographic images for ready comparison of each method on the exact same field of view. Additional GPU based complex deconvolution processing of the images further enhances resolution. PMID:26839443
Fluorescence confocal microscopy for pathologists.
Ragazzi, Moira; Piana, Simonetta; Longo, Caterina; Castagnetti, Fabio; Foroni, Monica; Ferrari, Guglielmo; Gardini, Giorgio; Pellacani, Giovanni
2014-03-01
Confocal microscopy is a non-invasive method of optical imaging that may provide microscopic images of untreated tissue that correspond almost perfectly to hematoxylin- and eosin-stained slides. Nowadays, following two confocal imaging systems are available: (1) reflectance confocal microscopy, based on the natural differences in refractive indices of subcellular structures within the tissues; (2) fluorescence confocal microscopy, based on the use of fluorochromes, such as acridine orange, to increase the contrast epithelium-stroma. In clinical practice to date, confocal microscopy has been used with the goal of obviating the need for excision biopsies, thereby reducing the need for pathological examination. The aim of our study was to test fluorescence confocal microscopy on different types of surgical specimens, specifically breast, lymph node, thyroid, and colon. The confocal images were correlated to the corresponding histological sections in order to provide a morphologic parallel and to highlight current limitations and possible applications of this technology for surgical pathology practice. As a result, neoplastic tissues were easily distinguishable from normal structures and reactive processes such as fibrosis; the use of fluorescence enhanced contrast and image quality in confocal microscopy without compromising final histologic evaluation. Finally, the fluorescence confocal microscopy images of the adipose tissue were as accurate as those of conventional histology and were devoid of the frozen-section-related artefacts that can compromise intraoperative evaluation. Despite some limitations mainly related to black/white images, which require training in imaging interpretation, this study confirms that fluorescence confocal microscopy may represent an alternative to frozen sections in the assessment of margin status in selected settings or when the conservation of the specimen is crucial. This is the first study to employ fluorescent confocal microscopy on surgical specimens other than the skin and to evaluate the diagnostic capability of this technology from pathologists' viewpoint.
Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging
NASA Astrophysics Data System (ADS)
Wang, Feifei; Liu, Lianqing; Yu, Haibo; Wen, Yangdong; Yu, Peng; Liu, Zhu; Wang, Yuechao; Li, Wen Jung
2016-12-01
Nanoscale correlation of structural information acquisition with specific-molecule identification provides new insight for studying rare subcellular events. To achieve this correlation, scanning electron microscopy has been combined with super-resolution fluorescent microscopy, despite its destructivity when acquiring biological structure information. Here we propose time-efficient non-invasive microsphere-based scanning superlens microscopy that enables the large-area observation of live-cell morphology or sub-membrane structures with sub-diffraction-limited resolution and is demonstrated by observing biological and non-biological objects. This microscopy operates in both non-invasive and contact modes with ~200 times the acquisition efficiency of atomic force microscopy, which is achieved by replacing the point of an atomic force microscope tip with an imaging area of microspheres and stitching the areas recorded during scanning, enabling sub-diffraction-limited resolution. Our method marks a possible path to non-invasive cell imaging and simultaneous tracking of specific molecules with nanoscale resolution, facilitating the study of subcellular events over a total cell period.
Live-cell Imaging of Platelet Degranulation and Secretion Under Flow.
Barendrecht, Arjan D; Verhoef, Johan J F; Pignatelli, Silvia; Pasterkamp, Gerard; Heijnen, Harry F G; Maas, Coen
2017-07-10
Blood platelets are essential players in hemostasis, the formation of thrombi to seal vascular breaches. They are also involved in thrombosis, the formation of thrombi that occlude the vasculature and injure organs, with life-threatening consequences. This motivates scientific research on platelet function and the development of methods to track cell-biological processes as they occur under flow conditions. A variety of flow models are available for the study of platelet adhesion and aggregation, two key phenomena in platelet biology. This work describes a method to study real-time platelet degranulation under flow during activation. The method makes use of a flow chamber coupled to a syringe-pump setup that is placed under a wide-field, inverted, LED-based fluorescence microscope. The setup described here allows for the simultaneous excitation of multiple fluorophores that are delivered by fluorescently labeled antibodies or fluorescent dyes. After live-cell imaging experiments, the cover glasses can be further processed and analyzed using static microscopy (i.e., confocal microscopy or scanning electron microscopy).
Optically-sectioned two-shot structured illumination microscopy with Hilbert-Huang processing.
Patorski, Krzysztof; Trusiak, Maciej; Tkaczyk, Tomasz
2014-04-21
We introduce a fast, simple, adaptive and experimentally robust method for reconstructing background-rejected optically-sectioned images using two-shot structured illumination microscopy. Our innovative data demodulation method needs two grid-illumination images mutually phase shifted by π (half a grid period) but precise phase displacement between two frames is not required. Upon frames subtraction the input pattern with increased grid modulation is obtained. The first demodulation stage comprises two-dimensional data processing based on the empirical mode decomposition for the object spatial frequency selection (noise reduction and bias term removal). The second stage consists in calculating high contrast image using the two-dimensional spiral Hilbert transform. Our algorithm effectiveness is compared with the results calculated for the same input data using structured-illumination (SIM) and HiLo microscopy methods. The input data were collected for studying highly scattering tissue samples in reflectance mode. Results of our approach compare very favorably with SIM and HiLo techniques.
Analysis of gene expression levels in individual bacterial cells without image segmentation.
Kwak, In Hae; Son, Minjun; Hagen, Stephen J
2012-05-11
Studies of stochasticity in gene expression typically make use of fluorescent protein reporters, which permit the measurement of expression levels within individual cells by fluorescence microscopy. Analysis of such microscopy images is almost invariably based on a segmentation algorithm, where the image of a cell or cluster is analyzed mathematically to delineate individual cell boundaries. However segmentation can be ineffective for studying bacterial cells or clusters, especially at lower magnification, where outlines of individual cells are poorly resolved. Here we demonstrate an alternative method for analyzing such images without segmentation. The method employs a comparison between the pixel brightness in phase contrast vs fluorescence microscopy images. By fitting the correlation between phase contrast and fluorescence intensity to a physical model, we obtain well-defined estimates for the different levels of gene expression that are present in the cell or cluster. The method reveals the boundaries of the individual cells, even if the source images lack the resolution to show these boundaries clearly. Copyright © 2012 Elsevier Inc. All rights reserved.
Correlative microscopy of detergent granules.
van Dalen, G; Nootenboom, P; Heussen, P C M
2011-03-01
The microstructure of detergent products for textile cleaning determines to a large extent the physical properties of these products. Correlative microscopy was used to reveal the microstructure by reconciling images obtained by scanning electron microscopy with energy dispersive X-ray analysis, X-ray microtomography and Fourier transform infrared microscopy. These techniques were applied on the same location of a subsample of a spray-dried detergent base powder embedded in polyacrylate. In this way, the three-dimensional internal and external structure of detergent granules could be investigated from milli to nano scale with detailed spatial information about the components present. This will generate knowledge how to design optimal microstructures for laundry products to obtain product properties demanded by the market. This method is also very useful for other powder systems used in a large variety of industries (e.g. for pharmaceutical, food, ceramic and metal industries). © 2010 The Authors Journal of Microscopy © 2010 The Royal Microscopical Society.
Liu, L; Kan, A; Leckie, C; Hodgkin, P D
2017-04-01
Time-lapse fluorescence microscopy is a valuable technology in cell biology, but it suffers from the inherent problem of intensity inhomogeneity due to uneven illumination or camera nonlinearity, known as shading artefacts. This will lead to inaccurate estimates of single-cell features such as average and total intensity. Numerous shading correction methods have been proposed to remove this effect. In order to compare the performance of different methods, many quantitative performance measures have been developed. However, there is little discussion about which performance measure should be generally applied for evaluation on real data, where the ground truth is absent. In this paper, the state-of-the-art shading correction methods and performance evaluation methods are reviewed. We implement 10 popular shading correction methods on two artificial datasets and four real ones. In order to make an objective comparison between those methods, we employ a number of quantitative performance measures. Extensive validation demonstrates that the coefficient of joint variation (CJV) is the most applicable measure in time-lapse fluorescence images. Based on this measure, we have proposed a novel shading correction method that performs better compared to well-established methods for a range of real data tested. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.
Kempen, Paul J; Kircher, Moritz F; de la Zerda, Adam; Zavaleta, Cristina L; Jokerst, Jesse V; Mellinghoff, Ingo K; Gambhir, Sanjiv S; Sinclair, Robert
2015-01-01
The growing use of nanoparticles in biomedical applications, including cancer diagnosis and treatment, demands the capability to exactly locate them within complex biological systems. In this work a correlative optical and scanning electron microscopy technique was developed to locate and observe multi-modal gold core nanoparticle accumulation in brain tumor models. Entire brain sections from mice containing orthotopic brain tumors injected intravenously with nanoparticles were imaged using both optical microscopy to identify the brain tumor, and scanning electron microscopy to identify the individual nanoparticles. Gold-based nanoparticles were readily identified in the scanning electron microscope using backscattered electron imaging as bright spots against a darker background. This information was then correlated to determine the exact location of the nanoparticles within the brain tissue. The nanoparticles were located only in areas that contained tumor cells, and not in the surrounding healthy brain tissue. This correlative technique provides a powerful method to relate the macro- and micro-scale features visible in light microscopy with the nanoscale features resolvable in scanning electron microscopy. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ávila-Orta, Carlos A.; Quiñones-Jurado, Zoe V.; Waldo-Mendoza, Miguel A.; Rivera-Paz, Erika A.; Cruz-Delgado, Víctor J.; Mata-Padilla, José M.; González-Morones, Pablo; Ziolo, Ronald F.
2015-01-01
Isotactic polypropylenes (iPP) with different melt flow indexes (MFI) were used to fabricate nanocomposites (NCs) with 10 wt % loadings of multi-wall carbon nanotubes (MWCNTs) using ultrasound-assisted extrusion methods to determine their effect on the morphology, melt flow, and electrical properties of the NCs. Three different types of iPPs were used with MFIs of 2.5, 34 and 1200 g/10 min. Four different NC fabrication methods based on melt extrusion were used. In the first method melt extrusion fabrication without ultrasound assistance was used. In the second and third methods, an ultrasound probe attached to a hot chamber located at the exit of the die was used to subject the sample to fixed frequency and variable frequency, respectively. The fourth method is similar to the first method, with the difference being that the carbon nanotubes were treated in a fluidized air-bed with an ultrasound probe before being used in the fabrication of the NCs with no ultrasound assistance during extrusion. The samples were characterized by MFI, Optical microscopy (OM), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), electrical surface resistivity, and electric charge. MFI decreases in all cases with addition of MWCNTs with the largest decrease observed for samples with the highest MFI. The surface resistivity, which ranged from 1013 to 105 Ω/sq, and electric charge, were observed to depend on the ultrasound-assisted fabrication method as well as on the melt flow index of the iPP. A relationship between agglomerate size and area ratio with electric charge was found. Several trends in the overall data were identified and are discussed in terms of MFI and the different fabrication methods. PMID:28793686
Du, Cuiling; Zhao, Jie; Fei, Jinbo; Cui, Yue; Li, Junbai
2013-09-01
Doxorubicin, together with the modified polysaccharide (alginate dialdehyde), was used as a wall material to fabricate microcapsules through self-cross-linking by a template method. The microcapsules as-prepared are pH-responsive. Relevant scanning electronic microscopy, atom force microscopy and confocal laser scanning microscopy confirm the morphology of the uniform microcapsules. The spectroscopic results show that the microcapsules are assembled through electrostatic interaction and Schiff's base covalent bonding. Doxorubicin can be released sustainably from the capsules in buffer solution at a lower pH value. The cellular uptake of the microcapsules and drug release induced by acidic microenvironment are time-dependent processes. The cell cytotoxicity experiments in vitro demonstrate that the doxorubicin-based microcapsules have high efficiency to kill the cancer cells. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ultrasound – A new approach for non-woven scaffolds investigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khramtsova, E. A.; Morokov, E. S.; Levin, V. M.
2016-05-18
In this study we verified the method of impulse acoustic microscopy as a tool for scaffold evaluation in tissue engineering investigation. Cellulose diacetate (CDA) non-woven 3D scaffold was used as a model object. Scanning electron microscopy and optical microscopy were used as reference methods in order to realize feasibility of acoustic microscopy method in a regenerative medicine field. Direct comparison of the different methods was carried out.
Study of electromechanical and mechanical properties of bacteria using force microscopy
NASA Astrophysics Data System (ADS)
Reukov, Vladimir; Thompson, Gary; Nikiforov, Maxim; Guo, Senli; Ovchinnikov, Oleg; Jesse, Stephen; Kalinin, Sergei; Vertegel, Alexey
2010-03-01
The application of scanning probe microscopy (SPM) to biological systems has evolved over the past decade into a multimodal and spectroscopic instrument that provides multiple information channels at each spatial pixel acquired. Recently, functional recognition imaging based on differing electromechanical properties between Gram negative and Gram positive bacteria was achieved using artificial neural network analysis of band excitation piezoresponse force microscopy (BEPFM) data. The immediate goal of this project was to study mechanical and electromechanical properties of bacterial systems physiologically-relevant solutions using Band-width Excitation Piezoresponce Force Microscopy (BE PFM) in combination with Force Mapping. Electromechanical imaging in physiological environments will improve the versatility of functional recognition imaging and open the way for application of the rapid BEPFM line mode method to other living cell systems.
Celler, Katherine; Fujita, Miki; Kawamura, Eiko; Ambrose, Chris; Herburger, Klaus; Wasteneys, Geoffrey O.
2016-01-01
Microtubules are required throughout plant development for a wide variety of processes, and different strategies have evolved to visualize and analyze them. This chapter provides specific methods that can be used to analyze microtubule organization and dynamic properties in plant systems and summarizes the advantages and limitations for each technique. We outline basic methods for preparing samples for immunofluorescence labelling, including an enzyme-based permeabilization method, and a freeze-shattering method, which generates microfractures in the cell wall to provide antibodies access to cells in cuticle-laden aerial organs such as leaves. We discuss current options for live cell imaging of MTs with fluorescently tagged proteins (FPs), and provide chemical fixation, high pressure freezing/freeze substitution, and post-fixation staining protocols for preserving MTs for transmission electron microscopy and tomography. PMID:26498784
Low-dose, high-resolution and high-efficiency ptychography at STXM beamline of SSRF
NASA Astrophysics Data System (ADS)
Xu, Zijian; Wang, Chunpeng; Liu, Haigang; Tao, Xulei; Tai, Renzhong
2017-06-01
Ptychography is a diffraction-based X-ray microscopy method that can image extended samples quantitatively while remove the resolution limit imposed by image-forming optical elements. As a natural extension of scanning transmission X-ray microscopy (STXM) imaging method, we developed soft X-ray ptychographic coherent diffraction imaging (PCDI) method at the STXM endstation of BL08U beamline of Shanghai Synchrotron Radiation Facility. Compared to the traditional STXM imaging, the new PCDI method has resulted in significantly lower dose, higher resolution and higher efficiency imaging in our platform. In the demonstration experiments shown here, a spatial resolution of sub-10 nm was obtained for a gold nanowires sample, which is much better than the limit resolution 30 nm of the STXM method, while the radiation dose is only 1/12 of STXM.
Jansen, G J; Wildeboer-Veloo, A C; Tonk, R H; Franks, A H; Welling, G W
1999-09-01
An automated microscopy-based method using fluorescently labelled 16S rRNA-targeted oligonucleotide probes directed against the predominant groups of intestinal bacteria was developed and validated. The method makes use of the Leica 600HR image analysis system, a Kodak MegaPlus camera model 1.4 and a servo-controlled Leica DM/RXA ultra-violet microscope. Software for automated image acquisition and analysis was developed and tested. The performance of the method was validated using a set of four fluorescent oligonucleotide probes: a universal probe for the detection of all bacterial species, one probe specific for Bifidobacterium spp., a digenus-probe specific for Bacteroides spp. and Prevotella spp. and a trigenus-probe specific for Ruminococcus spp., Clostridium spp. and Eubacterium spp. A nucleic acid stain, 4',6-diamidino-2-phenylindole (DAPI), was also included in the validation. In order to quantify the assay-error, one faecal sample was measured 20 times using each separate probe. Thereafter faecal samples of 20 different volunteers were measured following the same procedure in order to quantify the error due to individual-related differences in gut flora composition. It was concluded that the combination of automated microscopy and fluorescent whole-cell hybridisation enables distinction in gut flora-composition between volunteers at a significant level. With this method it is possible to process 48 faecal samples overnight, with coefficients of variation ranging from 0.07 to 0.30.
NASA Astrophysics Data System (ADS)
Payne, A.; Ambal, K.; Boehme, C.; Williams, C. C.
2015-05-01
A study of a force detected single-spin magnetic resonance measurement concept with atomic spatial resolution is presented. The method is based upon electrostatic force detection of spin-selection rule controlled single-electron tunneling between two electrically isolated paramagnetic states. Single-spin magnetic resonance detection is possible by measuring the force detected tunneling charge noise on and off spin resonance. Simulation results of this charge noise, based upon physical models of the tunneling and spin physics, are directly compared to measured atomic force microscopy system noise. The results show that the approach could provide single-spin measurement of electrically isolated qubit states with atomic spatial resolution at room temperature.
Vogt, Frederick G; Williams, Glenn R
2012-07-01
Nanocrystalline drug-polymer dispersions are of significant interest in pharmaceutical delivery. The purpose of this work is to demonstrate the applicability of methods based on two-dimensional (2D) and multinuclear solid-state NMR (SSNMR) to a novel nanocrystalline pharmaceutical dispersion of ebselen with polyvinylpyrrolidone-vinyl acetate (PVP-VA), after initial characterization with other techniques. A nanocrystalline dispersion of ebselen with PVP-VA was prepared and characterized by powder X-ray diffraction (PXRD), confocal Raman microscopy and mapping, and differential scanning calorimetry (DSC), and then subjected to detailed 1D and 2D SSNMR analysis involving ¹H, ¹³C, and ⁷⁷Se isotopes and ¹H spin diffusion. PXRD was used to show that dispersion contains nanocrystalline ebselen in the 35-60 nm size range. Confocal Raman microscopy and spectral mapping were able to detect regions where short-range interactions may occur between ebselen and PVP-VA. Spin diffusion effects were analyzed using 2D SSNMR experiments and are able to directly detect interactions between ebselen and the surrounding PVP-VA. The methods used here, particularly the 2D SSNMR methods based on spin diffusion, provided detailed structural information about a nanocrystalline polymer dispersion of ebselen, and should be useful in other studies of these types of materials.
Li, Peipei; Zhao, Zhenjun; Wang, Ying; Xing, Hua; Parker, Daniel M; Yang, Zhaoqing; Baum, Elizabeth; Li, Wenli; Sattabongkot, Jetsumon; Sirichaisinthop, Jeeraphat; Li, Shuying; Yan, Guiyun; Cui, Liwang; Fan, Qi
2014-05-08
Nested PCR is considered a sensitive and specific method for detecting malaria parasites and is especially useful in epidemiological surveys. However, the preparation of DNA templates for PCR is often time-consuming and costly. A simplified PCR method was developed to directly use a small blood filter paper square (2 × 2 mm) as the DNA template after treatment with saponin. This filter paper-based nested PCR method (FP-PCR) was compared to microscopy and standard nested PCR with DNA extracted by using a Qiagen DNA mini kit from filter paper blood spots of 204 febrile cases. The FP-PCR technique was further applied to evaluate malaria infections in 1,708 participants from cross-sectional epidemiological surveys conducted in Myanmar and Thailand. The FP-PCR method had a detection limit of ~0.2 parasites/μL blood, estimated using cultured Plasmodium falciparum parasites. With 204 field samples, the sensitivity of the FP-PCR method was comparable to that of the standard nested PCR method, which was significantly higher than that of microscopy. Application of the FP-PCR method in large cross-sectional studies conducted in Myanmar and Thailand detected 1.9% (12/638) and 6.2% (66/1,070) asymptomatic Plasmodium infections, respectively, as compared to the detection rates of 1.3% (8/638) and 0.04% (4/1,070) by microscopy. This FP-PCR method was much more sensitive than microscopy in detecting Plasmodium infections. It drastically increased the detection sensitivity of asymptomatic infections in cross-sectional surveys conducted in Thailand and Myanmar, suggesting that this FP-PCR method has a potential for future applications in malaria epidemiology studies.
2010-01-01
Background Accurate malaria diagnosis is mandatory for the treatment and management of severe cases. Moreover, individuals with asymptomatic malaria are not usually screened by health care facilities, which further complicates disease control efforts. The present study compared the performances of a malaria rapid diagnosis test (RDT), the thick blood smear method and nested PCR for the diagnosis of symptomatic malaria in the Brazilian Amazon. In addition, an innovative computational approach was tested for the diagnosis of asymptomatic malaria. Methods The study was divided in two parts. For the first part, passive case detection was performed in 311 individuals with malaria-related symptoms from a recently urbanized community in the Brazilian Amazon. A cross-sectional investigation compared the diagnostic performance of the RDT Optimal-IT, nested PCR and light microscopy. The second part of the study involved active case detection of asymptomatic malaria in 380 individuals from riverine communities in Rondônia, Brazil. The performances of microscopy, nested PCR and an expert computational system based on artificial neural networks (MalDANN) using epidemiological data were compared. Results Nested PCR was shown to be the gold standard for diagnosis of both symptomatic and asymptomatic malaria because it detected the major number of cases and presented the maximum specificity. Surprisingly, the RDT was superior to microscopy in the diagnosis of cases with low parasitaemia. Nevertheless, RDT could not discriminate the Plasmodium species in 12 cases of mixed infections (Plasmodium vivax + Plasmodium falciparum). Moreover, the microscopy presented low performance in the detection of asymptomatic cases (61.25% of correct diagnoses). The MalDANN system using epidemiological data was worse that the light microscopy (56% of correct diagnoses). However, when information regarding plasma levels of interleukin-10 and interferon-gamma were inputted, the MalDANN performance sensibly increased (80% correct diagnoses). Conclusions An RDT for malaria diagnosis may find a promising use in the Brazilian Amazon integrating a rational diagnostic approach. Despite the low performance of the MalDANN test using solely epidemiological data, an approach based on neural networks may be feasible in cases where simpler methods for discriminating individuals below and above threshold cytokine levels are available. PMID:20459613
Lee, Wonmok; Ha, Jung-Sook; Ryoo, Nam-Hee
2016-09-01
The cobas u 701, a new automated image-based urine sediment analyzer, was introduced recently. In this study, we compared its performance with that of UF-1000i flow cytometry and manual microscopy in the examination of urine sediments. Precision, linearity, and carry-over were determined for the two urine sediment analyzers. For a comparison of the method, 300 urine samples were examined by the automated analyzers and by manual microscopy using a KOVA chamber. Within-run coefficients of variation (CVs) for the control materials were 7.0-8.8% and 1.7-5.7% for the cobas u 701 and UF-1000i systems, respectively. Between-run CVs were 8.5-9.8% and 2.7-5.4%, respectively. Both instruments showed good linearity and negligible carry-over. For red blood cells (RBC), white blood cells (WBC), and epithelial cells (EPI), the overall concordance rates within one grade of difference among the three methods were good (78.6-86.0%, 88.7-93.8%, and 81.3-90.7%, respectively). The concordance rate for casts was poor (66.5-68.9%). Compared with manual microscopy, the two automated sediment analyzers tested in this study showed satisfactory analytical performances for RBC, WBC, and EPI. However, for other urine sediment particles confirmation by visual microscopy is still required. © 2016 Wiley Periodicals, Inc.
Molteni, Matteo; Magatti, Davide; Cardinali, Barbara; Rocco, Mattia; Ferri, Fabio
2013-01-01
The average pore size ξ0 of filamentous networks assembled from biological macromolecules is one of the most important physical parameters affecting their biological functions. Modern optical methods, such as confocal microscopy, can noninvasively image such networks, but extracting a quantitative estimate of ξ0 is a nontrivial task. We present here a fast and simple method based on a two-dimensional bubble approach, which works by analyzing one by one the (thresholded) images of a series of three-dimensional thin data stacks. No skeletonization or reconstruction of the full geometry of the entire network is required. The method was validated by using many isotropic in silico generated networks of different structures, morphologies, and concentrations. For each type of network, the method provides accurate estimates (a few percent) of the average and the standard deviation of the three-dimensional distribution of the pore sizes, defined as the diameters of the largest spheres that can be fit into the pore zones of the entire gel volume. When applied to the analysis of real confocal microscopy images taken on fibrin gels, the method provides an estimate of ξ0 consistent with results from elastic light scattering data. PMID:23473499
Beyhan, Yunus Emre; Taş Cengiz, Zeynep
2017-08-23
Background/aim: This study included patients who had digestive system complaints between August 2015 and October 2015. The research was designed to compare conventional microscopy with an antigen detection ELISA kit and the TaqMan-based real-time PCR (RT-PCR) technique for detection of Giardia intestinalis in human stool specimens. Materials and methods: Samples were concentrated by formalin-ether sedimentation technique and microscopic examinations were carried out on wet mount slides. A commercially available ELISA kit (Giardia CELISA, Cellabs, Brookvale, Australia) was used for immunoassay. DNA was extracted from fecal samples of about 200 mg using the QIAamp Fast DNA Stool Mini Kit (QIAGEN, Hilden, Germany) and the LightCycler Nano system (Roche Diagnostics, Mannheim, Germany) was used for the TaqMan-based RT-PCR assay. Results: A total of 94 stool samples, 38 of them diagnosed positive (40.4%) and 56 of them diagnosed negative by microscopy, were selected for evaluation by antigen detection and molecular assays. The prevalence of G. intestinalis infection was found as 46.8% (n: 44) and 79.8% (n: 75) by ELISA and RT-PCR, respectively. RT-PCR revealed by far the highest positivity rate compared to the other two methods. The difference between these methods was found to be statistically significant (P < 0.05). In comparison to PCR, the sensitivity and specificity of microscopy and ELISA were 50.7% and 100% and 53.3% and 79%, respectively. Conclusion: RT-PCR seems to be much more sensitive and beneficial for rapid and accurate diagnosis of G. intestinalis in human stools.
Dong, Bing; Booth, Martin J
2018-01-22
In adaptive optical microscopy of thick biological tissue, strong scattering and aberrations can change the effective pupil shape by rendering some Shack-Hartmann spots unusable. The change of pupil shape leads to a change of wavefront reconstruction or control matrix that should be updated accordingly. Modified slope and modal wavefront control methods based on measurements of a Shack-Hartmann wavefront sensor are proposed to accommodate an arbitrarily shaped pupil. Furthermore, we present partial wavefront control methods that remove specific aberration modes like tip, tilt and defocus from the control loop. The proposed control methods were investigated and compared by simulation using experimentally obtained aberration data. The performance was then tested experimentally through closed-loop aberration corrections using an obscured pupil.
Autonomous Scanning Probe Microscopy in Situ Tip Conditioning through Machine Learning.
Rashidi, Mohammad; Wolkow, Robert A
2018-05-23
Atomic-scale characterization and manipulation with scanning probe microscopy rely upon the use of an atomically sharp probe. Here we present automated methods based on machine learning to automatically detect and recondition the quality of the probe of a scanning tunneling microscope. As a model system, we employ these techniques on the technologically relevant hydrogen-terminated silicon surface, training the network to recognize abnormalities in the appearance of surface dangling bonds. Of the machine learning methods tested, a convolutional neural network yielded the greatest accuracy, achieving a positive identification of degraded tips in 97% of the test cases. By using multiple points of comparison and majority voting, the accuracy of the method is improved beyond 99%.
Electrochemical force microscopy
Kalinin, Sergei V.; Jesse, Stephen; Collins, Liam F.; Rodriguez, Brian J.
2017-01-10
A system and method for electrochemical force microscopy are provided. The system and method are based on a multidimensional detection scheme that is sensitive to forces experienced by a biased electrode in a solution. The multidimensional approach allows separation of fast processes, such as double layer charging, and charge relaxation, and slow processes, such as diffusion and faradaic reactions, as well as capturing the bias dependence of the response. The time-resolved and bias measurements can also allow probing both linear (small bias range) and non-linear (large bias range) electrochemical regimes and potentially the de-convolution of charge dynamics and diffusion processes from steric effects and electrochemical reactivity.
Navigating 3D electron microscopy maps with EM-SURFER.
Esquivel-Rodríguez, Juan; Xiong, Yi; Han, Xusi; Guang, Shuomeng; Christoffer, Charles; Kihara, Daisuke
2015-05-30
The Electron Microscopy DataBank (EMDB) is growing rapidly, accumulating biological structural data obtained mainly by electron microscopy and tomography, which are emerging techniques for determining large biomolecular complex and subcellular structures. Together with the Protein Data Bank (PDB), EMDB is becoming a fundamental resource of the tertiary structures of biological macromolecules. To take full advantage of this indispensable resource, the ability to search the database by structural similarity is essential. However, unlike high-resolution structures stored in PDB, methods for comparing low-resolution electron microscopy (EM) density maps in EMDB are not well established. We developed a computational method for efficiently searching low-resolution EM maps. The method uses a compact fingerprint representation of EM maps based on the 3D Zernike descriptor, which is derived from a mathematical series expansion for EM maps that are considered as 3D functions. The method is implemented in a web server named EM-SURFER, which allows users to search against the entire EMDB in real-time. EM-SURFER compares the global shapes of EM maps. Examples of search results from different types of query structures are discussed. We developed EM-SURFER, which retrieves structurally relevant matches for query EM maps from EMDB within seconds. The unique capability of EM-SURFER to detect 3D shape similarity of low-resolution EM maps should prove invaluable in structural biology.
Naddaf, S R; Kishdehi, M; Siavashi, Mr
2011-01-01
The mainstay of diagnosis of relapsing fever (RF) is demonstration of the spirochetes in Giemsa-stained thick blood smears, but during non fever periods the bacteria are very scanty and rarely detected in blood smears by microscopy. This study is aimed to evaluate the sensitivity of different methods developed for detection of low-grade spirochetemia. Animal blood samples with low degrees of spirochetemia were tested with two PCRs and a nested PCR targeting flaB, GlpQ, and rrs genes. Also, a centrifuged-based enrichment method and Giemsa staining were performed on blood samples with various degrees of spirochetemia. The flaB-PCR and nested rrs-PCR turned positive with various degrees of spirochetemia including the blood samples that turned negative with dark-field microscopy. The GlpQ-PCR was positive as far as at least one spirochete was seen in 5-10 microscopic fields. The sensitivity of GlpQ-PCR increased when DNA from Buffy Coat Layer (BCL) was used as template. The centrifuged-based enrichment method turned positive with as low concentration as 50 bacteria/ml blood, while Giemsa thick staining detected bacteria with concentrations ≥ 25000 bacteria/ml. Centrifuged-based enrichment method appeared as much as 500-fold more sensitive than thick smears, which makes it even superior to some PCR assays. Due to simplicity and minimal laboratory requirements, this method can be considered a valuable tool for diagnosis of RF in rural health centers.
Hu, Dandan; Sarder, Pinaki; Ronhovde, Peter; Orthaus, Sandra; Achilefu, Samuel; Nussinov, Zohar
2014-01-01
Inspired by a multi-resolution community detection (MCD) based network segmentation method, we suggest an automatic method for segmenting fluorescence lifetime (FLT) imaging microscopy (FLIM) images of cells in a first pilot investigation on two selected images. The image processing problem is framed as identifying segments with respective average FLTs against the background in FLIM images. The proposed method segments a FLIM image for a given resolution of the network defined using image pixels as the nodes and similarity between the FLTs of the pixels as the edges. In the resulting segmentation, low network resolution leads to larger segments, and high network resolution leads to smaller segments. Further, using the proposed method, the mean-square error (MSE) in estimating the FLT segments in a FLIM image was found to consistently decrease with increasing resolution of the corresponding network. The MCD method appeared to perform better than a popular spectral clustering based method in performing FLIM image segmentation. At high resolution, the spectral segmentation method introduced noisy segments in its output, and it was unable to achieve a consistent decrease in MSE with increasing resolution. PMID:24251410
Walke, Peter; Fujita, Yasuhiko; Peeters, Wannes; Toyouchi, Shuichi; Frederickx, Wout; De Feyter, Steven; Uji-I, Hiroshi
2018-04-26
Tip-enhanced Raman scattering (TERS) microscopy is a unique analytical tool to provide complementary chemical and topographic information of surfaces with nanometric resolution. However, difficulties in reliably producing the necessary metallized scanning probe tips has limited its widespread utilisation, particularly in the case of cantilever-based atomic force microscopy. Attempts to alleviate tip related issues using colloidal or bottom-up engineered tips have so far not reported consistent probes for both Raman and topographic imaging. Here we demonstrate the reproducible fabrication of cantilever-based high-performance TERS probes for both topographic and Raman measurements, based on an approach that utilises noble metal nanowires as the active TERS probe. The tips show 10 times higher TERS contrasts than the most typically used electrochemically-etched tips, and show a reproducibility for TERS greater than 90%, far greater than found with standard methods. We show that TERS can be performed in tapping as well as contact AFM mode, with optical resolutions around or below 15 nm, and with a maximum resolution achieved in tapping-mode of 6 nm. Our work illustrates that superior TERS probes can be produced in a fast and cost-effective manner using simple wet-chemistry methods, leading to reliable and reproducible high-resolution and high-sensitivity TERS, and thus renders the technique applicable for a broad community.
Li, Yang; Bechhoefer, John
2009-01-01
We introduce an algorithm for calculating, offline or in real time and with no explicit system characterization, the feedforward input required for repetitive motions of a system. The algorithm is based on the secant method of numerical analysis and gives accurate motion at frequencies limited only by the signal-to-noise ratio and the actuator power and range. We illustrate the secant-solver algorithm on a stage used for atomic force microscopy.
Ahmad, Mariam; Andersen, Frederik; Brend Bech, Ári; Bendixen, H. Krestian L.; Nawrocki, Patrick R.; Bloch, Anders J.; Bora, Ilkay; Bukhari, Tahreem A.; Bærentsen, Nicolai V.; Carstensen, Jens; Chima, Smeeah; Colberg, Helene; Dahm, Rasmus T.; Daniels, Joshua A.; Dinckan, Nermin; El Idrissi, Mohamed; Erlandsen, Ricci; Førster, Marc; Ghauri, Yasmin; Gold, Mikkel; Hansen, Andreas; Hansen, Kenn; Helmsøe-Zinck, Mathias; Henriksen, Mathias; Hoffmann, Sophus V.; Hyllested, Louise O. H.; Jensen, Casper; Kallenbach, Amalie S.; Kaur, Kirandip; Khan, Suheb R.; Kjær, Emil T. S.; Kristiansen, Bjørn; Langvad, Sylvester; Lund, Philip M.; Munk, Chastine F.; Møller, Theis; Nehme, Ola M. Z.; Nejrup, Mathilde Rove; Nexø, Louise; Nielsen, Simon Skødt Holm; Niemeier, Nicolai; Nikolajsen, Lasse V.; Nøhr, Peter C. T.; Skaarup Ovesen, Jacob; Paustian, Lucas; Pedersen, Adam S.; Petersen, Mathias K.; Poulsen, Camilla M.; Praeger-Jahnsen, Louis; Qureshi, L. Sonia; Schiermacher, Louise S.; Simris, Martin B.; Smith, Gorm; Smith, Heidi N.; Sonne, Alexander K.; Zenulovic, Marko R.; Winther Sørensen, Alma; Vogt, Emil; Væring, Andreas; Westermann, Jonas; Özcan, Sevin B.
2018-01-01
Three series of ionic self-assembled materials based on anionic azo-dyes and cationic benzalkonium surfactants were synthesized and thin films were prepared by spin-casting. These thin films appear isotropic when investigated with polarized optical microscopy, although they are highly anisotropic. Here, three series of homologous materials were studied to rationalize this observation. Investigating thin films of ordered molecular materials relies to a large extent on advanced experimental methods and large research infrastructure. A statement that in particular is true for thin films with nanoscopic order, where X-ray reflectometry, X-ray and neutron scattering, electron microscopy and atom force microscopy (AFM) has to be used to elucidate film morphology and the underlying molecular structure. Here, the thin films were investigated using AFM, optical microscopy and polarized absorption spectroscopy. It was shown that by using numerical method for treating the polarized absorption spectroscopy data, the molecular structure can be elucidated. Further, it was shown that polarized optical spectroscopy is a general tool that allows determination of the molecular order in thin films. Finally, it was found that full control of thermal history and rigorous control of the ionic self-assembly conditions are required to reproducibly make these materials of high nanoscopic order. Similarly, the conditions for spin-casting are shown to be determining for the overall thin film morphology, while molecular order is maintained. PMID:29462883
Kühnel, Miguel R Carro-Temboury Martin; Ahmad, Mariam; Andersen, Frederik; Bech, Ári Brend; Bendixen, H Krestian L; Nawrocki, Patrick R; Bloch, Anders J; Bora, Ilkay; Bukhari, Tahreem A; Bærentsen, Nicolai V; Carstensen, Jens; Chima, Smeeah; Colberg, Helene; Dahm, Rasmus T; Daniels, Joshua A; Dinckan, Nermin; Idrissi, Mohamed El; Erlandsen, Ricci; Førster, Marc; Ghauri, Yasmin; Gold, Mikkel; Hansen, Andreas; Hansen, Kenn; Helmsøe-Zinck, Mathias; Henriksen, Mathias; Hoffmann, Sophus V; Hyllested, Louise O H; Jensen, Casper; Kallenbach, Amalie S; Kaur, Kirandip; Khan, Suheb R; Kjær, Emil T S; Kristiansen, Bjørn; Langvad, Sylvester; Lund, Philip M; Munk, Chastine F; Møller, Theis; Nehme, Ola M Z; Nejrup, Mathilde Rove; Nexø, Louise; Nielsen, Simon Skødt Holm; Niemeier, Nicolai; Nikolajsen, Lasse V; Nøhr, Peter C T; Orlowski, Dominik B; Overgaard, Marc; Ovesen, Jacob Skaarup; Paustian, Lucas; Pedersen, Adam S; Petersen, Mathias K; Poulsen, Camilla M; Praeger-Jahnsen, Louis; Qureshi, L Sonia; Ree, Nicolai; Schiermacher, Louise S; Simris, Martin B; Smith, Gorm; Smith, Heidi N; Sonne, Alexander K; Zenulovic, Marko R; Sørensen, Alma Winther; Sørensen, Karina; Vogt, Emil; Væring, Andreas; Westermann, Jonas; Özcan, Sevin B; Sørensen, Thomas Just
2018-02-15
Three series of ionic self-assembled materials based on anionic azo-dyes and cationic benzalkonium surfactants were synthesized and thin films were prepared by spin-casting. These thin films appear isotropic when investigated with polarized optical microscopy, although they are highly anisotropic. Here, three series of homologous materials were studied to rationalize this observation. Investigating thin films of ordered molecular materials relies to a large extent on advanced experimental methods and large research infrastructure. A statement that in particular is true for thin films with nanoscopic order, where X-ray reflectometry, X-ray and neutron scattering, electron microscopy and atom force microscopy (AFM) has to be used to elucidate film morphology and the underlying molecular structure. Here, the thin films were investigated using AFM, optical microscopy and polarized absorption spectroscopy. It was shown that by using numerical method for treating the polarized absorption spectroscopy data, the molecular structure can be elucidated. Further, it was shown that polarized optical spectroscopy is a general tool that allows determination of the molecular order in thin films. Finally, it was found that full control of thermal history and rigorous control of the ionic self-assembly conditions are required to reproducibly make these materials of high nanoscopic order. Similarly, the conditions for spin-casting are shown to be determining for the overall thin film morphology, while molecular order is maintained.
Gierthmuehlen, Mortimer; Freiman, Thomas M; Haastert-Talini, Kirsten; Mueller, Alexandra; Kaminsky, Jan; Stieglitz, Thomas; Plachta, Dennis T T
2013-01-01
The development of neural cuff-electrodes requires several in vivo studies and revisions of the electrode design before the electrode is completely adapted to its target nerve. It is therefore favorable to simulate many of the steps involved in this process to reduce costs and animal testing. As the restoration of motor function is one of the most interesting applications of cuff-electrodes, the position and trajectories of myelinated fibers in the simulated nerve are important. In this paper, we investigate a method for building a precise neuroanatomical model of myelinated fibers in a peripheral nerve based on images obtained using high-resolution light microscopy. This anatomical model describes the first aim of our "Virtual workbench" project to establish a method for creating realistic neural simulation models based on image datasets. The imaging, processing, segmentation and technical limitations are described, and the steps involved in the transition into a simulation model are presented. The results showed that the position and trajectories of the myelinated axons were traced and virtualized using our technique, and small nerves could be reliably modeled based on of light microscopy images using low-cost OpenSource software and standard hardware. The anatomical model will be released to the scientific community.
Gierthmuehlen, Mortimer; Freiman, Thomas M.; Haastert-Talini, Kirsten; Mueller, Alexandra; Kaminsky, Jan; Stieglitz, Thomas; Plachta, Dennis T. T.
2013-01-01
The development of neural cuff-electrodes requires several in vivo studies and revisions of the electrode design before the electrode is completely adapted to its target nerve. It is therefore favorable to simulate many of the steps involved in this process to reduce costs and animal testing. As the restoration of motor function is one of the most interesting applications of cuff-electrodes, the position and trajectories of myelinated fibers in the simulated nerve are important. In this paper, we investigate a method for building a precise neuroanatomical model of myelinated fibers in a peripheral nerve based on images obtained using high-resolution light microscopy. This anatomical model describes the first aim of our “Virtual workbench” project to establish a method for creating realistic neural simulation models based on image datasets. The imaging, processing, segmentation and technical limitations are described, and the steps involved in the transition into a simulation model are presented. The results showed that the position and trajectories of the myelinated axons were traced and virtualized using our technique, and small nerves could be reliably modeled based on of light microscopy images using low-cost OpenSource software and standard hardware. The anatomical model will be released to the scientific community. PMID:23785485
Bhattacharya, Dipanjan; Singh, Vijay Raj; Zhi, Chen; So, Peter T. C.; Matsudaira, Paul; Barbastathis, George
2012-01-01
Laser sheet based microscopy has become widely accepted as an effective active illumination method for real time three-dimensional (3D) imaging of biological tissue samples. The light sheet geometry, where the camera is oriented perpendicular to the sheet itself, provides an effective method of eliminating some of the scattered light and minimizing the sample exposure to radiation. However, residual background noise still remains, limiting the contrast and visibility of potentially interesting features in the samples. In this article, we investigate additional structuring of the illumination for improved background rejection, and propose a new technique, “3D HiLo” where we combine two HiLo images processed from orthogonal directions to improve the condition of the 3D reconstruction. We present a comparative study of conventional structured illumination based demodulation methods, namely 3Phase and HiLo with a newly implemented 3D HiLo approach and demonstrate that the latter yields superior signal-to-background ratio in both lateral and axial dimensions, while simultaneously suppressing image processing artifacts. PMID:23262684
Bhattacharya, Dipanjan; Singh, Vijay Raj; Zhi, Chen; So, Peter T C; Matsudaira, Paul; Barbastathis, George
2012-12-03
Laser sheet based microscopy has become widely accepted as an effective active illumination method for real time three-dimensional (3D) imaging of biological tissue samples. The light sheet geometry, where the camera is oriented perpendicular to the sheet itself, provides an effective method of eliminating some of the scattered light and minimizing the sample exposure to radiation. However, residual background noise still remains, limiting the contrast and visibility of potentially interesting features in the samples. In this article, we investigate additional structuring of the illumination for improved background rejection, and propose a new technique, "3D HiLo" where we combine two HiLo images processed from orthogonal directions to improve the condition of the 3D reconstruction. We present a comparative study of conventional structured illumination based demodulation methods, namely 3Phase and HiLo with a newly implemented 3D HiLo approach and demonstrate that the latter yields superior signal-to-background ratio in both lateral and axial dimensions, while simultaneously suppressing image processing artifacts.
NASA Astrophysics Data System (ADS)
Inochkin, F. M.; Pozzi, P.; Bezzubik, V. V.; Belashenkov, N. R.
2017-06-01
Superresolution image reconstruction method based on the structured illumination microscopy (SIM) principle with reduced and simplified pattern set is presented. The method described needs only 2 sinusoidal patterns shifted by half a period for each spatial direction of reconstruction, instead of the minimum of 3 for the previously known methods. The method is based on estimating redundant frequency components in the acquired set of modulated images. Digital processing is based on linear operations. When applied to several spatial orientations, the image set can be further reduced to a single pattern for each spatial orientation, complemented by a single non-modulated image for all the orientations. By utilizing this method for the case of two spatial orientations, the total input image set is reduced up to 3 images, providing up to 2-fold improvement in data acquisition time compared to the conventional 3-pattern SIM method. Using the simplified pattern design, the field of view can be doubled with the same number of spatial light modulator raster elements, resulting in a total 4-fold increase in the space-time product. The method requires precise knowledge of the optical transfer function (OTF). The key limitation is the thickness of object layer that scatters or emits light, which requires to be sufficiently small relatively to the lens depth of field. Numerical simulations and experimental results are presented. Experimental results are obtained on the SIM setup with the spatial light modulator based on the 1920x1080 digital micromirror device.
Mappin, Bonnie; Cameron, Ewan; Dalrymple, Ursula; Weiss, Daniel J; Bisanzio, Donal; Bhatt, Samir; Gething, Peter W
2015-11-17
Large-scale mapping of Plasmodium falciparum infection prevalence relies on opportunistic assemblies of infection prevalence data arising from thousands of P. falciparum parasite rate (PfPR) surveys conducted worldwide. Variance in these data is driven by both signal, the true underlying pattern of infection prevalence, and a range of factors contributing to 'noise', including sampling error, differing age ranges of subjects and differing parasite detection methods. Whilst the former two noise components have been addressed in previous studies, the effect of different diagnostic methods used to determine PfPR in different studies has not. In particular, the majority of PfPR data are based on positivity rates determined by either microscopy or rapid diagnostic test (RDT), yet these approaches are not equivalent; therefore a method is needed for standardizing RDT and microscopy-based prevalence estimates prior to use in mapping. Twenty-five recent Demographic and Health surveys (DHS) datasets from sub-Saharan Africa provide child diagnostic test results derived using both RDT and microscopy for each individual. These prevalence estimates were aggregated across level one administrative zones and a Bayesian probit regression model fit to the microscopy- versus RDT-derived prevalence relationship. An errors-in-variables approach was employed to account for sampling error in both the dependent and independent variables. In addition to the diagnostic outcome, RDT type, fever status and recent anti-malarial treatment were extracted from the datasets in order to analyse their effect on observed malaria prevalence. A strong non-linear relationship between the microscopy and RDT-derived prevalence was found. The results of regressions stratified by the additional diagnostic variables (RDT type, fever status and recent anti-malarial treatment) indicate that there is a distinct and consistent difference in the relationship when the data are stratified by febrile status and RDT brand. The relationships defined in this research can be applied to RDT-derived PfPR data to effectively convert them to an estimate of the parasite prevalence expected using microscopy (or vice versa), thereby standardizing the dataset and improving the signal-to-noise ratio. Additionally, the results provide insight on the importance of RDT brands, febrile status and recent anti-malarial treatment for explaining inconsistencies between observed prevalence derived from different diagnostics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plomp, M; Malkin, A J
2008-06-02
Atomic force microscopy provides a unique capability to image high-resolution architecture and structural dynamics of pathogens (e.g. viruses, bacteria and bacterial spores) at near molecular resolution in native conditions. Further development of atomic force microscopy in order to enable the correlation of pathogen protein surface structures with specific gene products is essential to understand the mechanisms of the pathogen life cycle. We have applied an AFM-based immunolabeling technique for the proteomic mapping of macromolecular structures through the visualization of the binding of antibodies, conjugated with nanogold particles, to specific epitopes on Bacillus spore surfaces. This information is generated while simultaneouslymore » acquiring the surface morphology of the pathogen. The immunospecificity of this labeling method was established through the utilization of specific polyclonal and monoclonal antibodies that target spore coat and exosporium epitopes of Bacillus atrophaeus and Bacillus anthracis spores.« less
Optimized graph-based mosaicking for virtual microscopy
NASA Astrophysics Data System (ADS)
Steckhan, Dirk G.; Wittenberg, Thomas
2009-02-01
Virtual microscopy has the potential to partially replace traditional microscopy. For virtualization, the slide is scanned once by a fully automatized robotic microscope and saved digitally. Typically, such a scan results in several hundreds to thousands of fields of view. Since robotic stages have positioning errors, these fields of view have to be registered locally and globally in an additional step. In this work we propose a new global mosaicking method for the creation of virtual slides based on sub-pixel exact phase correlation for local alignment in combination with Prim's minimum spanning tree algorithm for global alignment. Our algorithm allows for a robust reproduction of the original slide even in the presence of views with little to no information content. This makes it especially suitable for the mosaicking of cervical smears. These smears often exhibit large empty areas, which do not contain enough information for common stitching approaches.
Quantification of transendothelial migration using three-dimensional confocal microscopy.
Cain, Robert J; d'Água, Bárbara Borda; Ridley, Anne J
2011-01-01
Migration of cells across endothelial barriers, termed transendothelial migration (TEM), is an important cellular process that underpins the pathology of many disease states including chronic inflammation and cancer metastasis. While this process can be modeled in vitro using cultured cells, many model systems are unable to provide detailed visual information of cell morphologies and distribution of proteins such as junctional markers, as well as quantitative data on the rate of TEM. Improvements in imaging techniques have made microscopy-based assays an invaluable tool for studying this type of detailed cell movement in physiological processes. In this chapter, we describe a confocal microscopy-based method that can be used to assess TEM of both leukocytes and cancer cells across endothelial barriers in response to a chemotactic gradient, as well as providing information on their migration into a subendothelial extracellular matrix, designed to mimic that found in vivo.
3D fluorescence anisotropy imaging using selective plane illumination microscopy.
Hedde, Per Niklas; Ranjit, Suman; Gratton, Enrico
2015-08-24
Fluorescence anisotropy imaging is a popular method to visualize changes in organization and conformation of biomolecules within cells and tissues. In such an experiment, depolarization effects resulting from differences in orientation, proximity and rotational mobility of fluorescently labeled molecules are probed with high spatial resolution. Fluorescence anisotropy is typically imaged using laser scanning and epifluorescence-based approaches. Unfortunately, those techniques are limited in either axial resolution, image acquisition speed, or by photobleaching. In the last decade, however, selective plane illumination microscopy has emerged as the preferred choice for three-dimensional time lapse imaging combining axial sectioning capability with fast, camera-based image acquisition, and minimal light exposure. We demonstrate how selective plane illumination microscopy can be utilized for three-dimensional fluorescence anisotropy imaging of live cells. We further examined the formation of focal adhesions by three-dimensional time lapse anisotropy imaging of CHO-K1 cells expressing an EGFP-paxillin fusion protein.
Chu, Jun; Oh, Young-Hee; Sens, Alex; Ataie, Niloufar; Dana, Hod; Macklin, John J.; Laviv, Tal; Welf, Erik S.; Dean, Kevin M.; Zhang, Feijie; Kim, Benjamin B.; Tang, Clement Tran; Hu, Michelle; Baird, Michelle A.; Davidson, Michael W.; Kay, Mark A.; Fiolka, Reto; Yasuda, Ryohei; Kim, Douglas S.; Ng, Ho-Leung; Lin, Michael Z.
2016-01-01
Orange-red fluorescent proteins (FPs) are widely used in biomedical research for multiplexed epifluorescence microscopy with GFP-based probes, but their different excitation requirements make multiplexing with new advanced microscopy methods difficult. Separately, orange-red FPs are useful for deep-tissue imaging in mammals due to the relative tissue transmissibility of orange-red light, but their dependence on illumination limits their sensitivity as reporters in deep tissues. Here we describe CyOFP1, a bright engineered orange-red FP that is excitable by cyan light. We show that CyOFP1 enables single-excitation multiplexed imaging with GFP-based probes in single-photon and two-photon microscopy, including time-lapse imaging in light-sheet systems. CyOFP1 also serves as an efficient acceptor for resonance energy transfer from the highly catalytic blue-emitting luciferase NanoLuc. An optimized fusion of CyOFP1 and NanoLuc, called Antares, functions as a highly sensitive bioluminescent reporter in vivo, producing substantially brighter signals from deep tissues than firefly luciferase and other bioluminescent proteins. PMID:27240196
Multidirectional Image Sensing for Microscopy Based on a Rotatable Robot.
Shen, Yajing; Wan, Wenfeng; Zhang, Lijun; Yong, Li; Lu, Haojian; Ding, Weili
2015-12-15
Image sensing at a small scale is essentially important in many fields, including microsample observation, defect inspection, material characterization and so on. However, nowadays, multi-directional micro object imaging is still very challenging due to the limited field of view (FOV) of microscopes. This paper reports a novel approach for multi-directional image sensing in microscopes by developing a rotatable robot. First, a robot with endless rotation ability is designed and integrated with the microscope. Then, the micro object is aligned to the rotation axis of the robot automatically based on the proposed forward-backward alignment strategy. After that, multi-directional images of the sample can be obtained by rotating the robot within one revolution under the microscope. To demonstrate the versatility of this approach, we view various types of micro samples from multiple directions in both optical microscopy and scanning electron microscopy, and panoramic images of the samples are processed as well. The proposed method paves a new way for the microscopy image sensing, and we believe it could have significant impact in many fields, especially for sample detection, manipulation and characterization at a small scale.
Ma, Qian; Khademhosseinieh, Bahar; Huang, Eric; Qian, Haoliang; Bakowski, Malina A; Troemel, Emily R; Liu, Zhaowei
2016-08-16
The conventional optical microscope is an inherently two-dimensional (2D) imaging tool. The objective lens, eyepiece and image sensor are all designed to capture light emitted from a 2D 'object plane'. Existing technologies, such as confocal or light sheet fluorescence microscopy have to utilize mechanical scanning, a time-multiplexing process, to capture a 3D image. In this paper, we present a 3D optical microscopy method based upon simultaneously illuminating and detecting multiple focal planes. This is implemented by adding two diffractive optical elements to modify the illumination and detection optics. We demonstrate that the image quality of this technique is comparable to conventional light sheet fluorescent microscopy with the advantage of the simultaneous imaging of multiple axial planes and reduced number of scans required to image the whole sample volume.
Park, Eunyoung; Lee, Cheonghoon; Bisesi, Michael; Lee, Jiyoung
2014-03-01
The disinfection efficiency of peracetic acid (PAA) was investigated on three microbial types using three different methods (filtration-based ATP (adenosine-triphosphate) bioluminescence, quantitative polymerase chain reaction (qPCR), culture-based method). Fecal indicator bacteria (Enterococcus faecium), virus indicator (male-specific (F(+)) coliphages (coliphages)), and protozoa disinfection surrogate (Bacillus subtilis spores (spores)) were tested. The mode of action for spore disinfection was visualized using scanning electron microscopy. The results indicated that PAA concentrations of 5 ppm (contact time: 5 min), 50 ppm (10 min), and 3,000 ppm (5 min) were needed to achieve 3-log reduction of E. faecium, coliphages, and spores, respectively. Scanning electron microscopy observation showed that PAA targets the external layers of spores. The lower reduction rates of tested microbes measured with qPCR suggest that qPCR may overestimate the surviving microbes. Collectively, PAA showed broad disinfection efficiency (susceptibility: E. faecium > coliphages > spores). For E. faecium and spores, ATP bioluminescence was substantially faster (∼5 min) than culture-based method (>24 h) and qPCR (2-3 h). This study suggests PAA as an effective alternative to inactivate broad types of microbial contaminants in water. Together with the use of rapid detection methods, this approach can be useful for urgent situations when timely response is needed for ensuring water quality.
Imaging of surface spin textures on bulk crystals by scanning electron microscopy
NASA Astrophysics Data System (ADS)
Akamine, Hiroshi; Okumura, So; Farjami, Sahar; Murakami, Yasukazu; Nishida, Minoru
2016-11-01
Direct observation of magnetic microstructures is vital for advancing spintronics and other technologies. Here we report a method for imaging surface domain structures on bulk samples by scanning electron microscopy (SEM). Complex magnetic domains, referred to as the maze state in CoPt/FePt alloys, were observed at a spatial resolution of less than 100 nm by using an in-lens annular detector. The method allows for imaging almost all the domain walls in the mazy structure, whereas the visualisation of the domain walls with the classical SEM method was limited. Our method provides a simple way to analyse surface domain structures in the bulk state that can be used in combination with SEM functions such as orientation or composition analysis. Thus, the method extends applications of SEM-based magnetic imaging, and is promising for resolving various problems at the forefront of fields including physics, magnetics, materials science, engineering, and chemistry.
PSD microscopy: a new technique for adaptive local scanning of microscale objects.
Rahimi, Mehdi; Shen, Yantao
2017-01-01
A position-sensitive detector/device (PSD) is a sensor that is capable of tracking the location of a laser beam on its surface. PSDs are used in many scientific instruments and technical applications including but not limited to atomic force microscopy, human eye movement monitoring, mirrors or machine tool alignment, vibration analysis, beam position control and so on. This work intends to propose a new application using the PSD. That is a new microscopy system called scanning PSD microscopy. The working mechanism is about putting an object on the surface of the PSD and fast scanning its area with a laser beam. To achieve a high degree of accuracy and precision, a reliable framework was designed using the PSD. In this work, we first tried to improve the PSD reading and its measurement performance. This was done by minimizing the effects of noise, distortion and other disturbing parameters. After achieving a high degree of confidence, the microscopy system can be implemented based on the improved PSD measurement performance. Later to improve the scanning efficiency, we developed an adaptive local scanning system to scan the whole area of the PSD in a short matter of time. It was validated that our comprehensive and adaptive local scanning method can shorten the scanning time in order of hundreds of times in comparison with the traditional raster scanning without losing any important information about the scanned 2D objects. Methods are also introduced to scan very complicated objects with bifurcations and crossings. By incorporating all these methods, the new microscopy system is capable of scanning very complicated objects in the matter of a few seconds with a resolution that is in order of a few micrometers.
Rizzo, N W; Duncan, K E; Bourett, T M; Howard, R J
2016-08-01
We have refined methods for biological specimen preparation and low-voltage backscattered electron imaging in the scanning electron microscope that allow for observation at continuous magnifications of ca. 130-70 000 X, and documentation of tissue and subcellular ultrastructure detail. The technique, based upon early work by Ogura & Hasegawa (1980), affords use of significantly larger sections from fixed and resin-embedded specimens than is possible with transmission electron microscopy while providing similar data. After microtomy, the sections, typically ca. 750 nm thick, were dried onto the surface of glass or silicon wafer and stained with heavy metals-the use of grids avoided. The glass/wafer support was then mounted onto standard scanning electron microscopy sample stubs, carbon-coated and imaged directly at an accelerating voltage of 5 kV, using either a yttrium aluminum garnet or ExB backscattered electron detector. Alternatively, the sections could be viewed first by light microscopy, for example to document signal from a fluorescent protein, and then by scanning electron microscopy to provide correlative light/electron microscope (CLEM) data. These methods provide unobstructed access to ultrastructure in the spatial context of a section ca. 7 × 10 mm in size, significantly larger than the typical 0.2 × 0.3 mm section used for conventional transmission electron microscopy imaging. Application of this approach was especially useful when the biology of interest was rare or difficult to find, e.g. a particular cell type, developmental stage, large organ, the interface between cells of interacting organisms, when contextual information within a large tissue was obligatory, or combinations of these factors. In addition, the methods were easily adapted for immunolocalizations. © 2015 The Author. Journal of Microscopy published by John Wiley & Sons, Ltd on behalf of the Royal Microscopical Society.
2012-01-01
Background Malaria diagnosis has received renewed interest in recent years, associated with the increasing accessibility of accurate diagnosis through the introduction of rapid diagnostic tests and new World Health Organization guidelines recommending parasite-based diagnosis prior to anti-malarial therapy. However, light microscopy, established over 100 years ago and frequently considered the reference standard for clinical diagnosis, has been neglected in control programmes and in the malaria literature and evidence suggests field standards are commonly poor. Microscopy remains the most accessible method for parasite quantitation, for drug efficacy monitoring, and as a reference of assessing other diagnostic tools. This mismatch between quality and need highlights the importance of the establishment of reliable standards and procedures for assessing and assuring quality. This paper describes the development, function and impact of a multi-country microscopy external quality assurance network set up for this purpose in Asia. Methods Surveys were used for key informants and past participants for feedback on the quality assurance programme. Competency scores for each country from 14 participating countries were compiled for analyses using paired sample t-tests. In-depth interviews were conducted with key informants including the programme facilitators and national level microscopists. Results External assessments and limited retraining through a formalized programme based on a reference slide bank has demonstrated an increase in standards of competence of senior microscopists over a relatively short period of time, at a potentially sustainable cost. The network involved in the programme now exceeds 14 countries in the Asia-Pacific, and the methods are extended to other regions. Conclusions While the impact on national programmes varies, it has translated in some instances into a strengthening of national microscopy standards and offers a possibility both for supporting revival of national microcopy programmes, and for the development of globally recognized standards of competency needed both for patient management and field research. PMID:23095668
Chen, Cheng; Wang, Wei; Ozolek, John A.; Rohde, Gustavo K.
2013-01-01
We describe a new supervised learning-based template matching approach for segmenting cell nuclei from microscopy images. The method uses examples selected by a user for building a statistical model which captures the texture and shape variations of the nuclear structures from a given dataset to be segmented. Segmentation of subsequent, unlabeled, images is then performed by finding the model instance that best matches (in the normalized cross correlation sense) local neighborhood in the input image. We demonstrate the application of our method to segmenting nuclei from a variety of imaging modalities, and quantitatively compare our results to several other methods. Quantitative results using both simulated and real image data show that, while certain methods may work well for certain imaging modalities, our software is able to obtain high accuracy across several imaging modalities studied. Results also demonstrate that, relative to several existing methods, the template-based method we propose presents increased robustness in the sense of better handling variations in illumination, variations in texture from different imaging modalities, providing more smooth and accurate segmentation borders, as well as handling better cluttered nuclei. PMID:23568787
Jarvi, Susan I.; Schultz, Jeffrey J.; Atkinson, Carter T.
2002-01-01
Several polymerase chain reaction (PCR)-based methods have recently been developed for diagnosing malarial infections in both birds and reptiles, but a critical evaluation of their sensitivity in experimentally-infected hosts has not been done. This study compares the sensitivity of several PCR-based methods for diagnosing avian malaria (Plasmodium relictum) in captive Hawaiian honeycreepers using microscopy and a recently developed immunoblotting technique. Sequential blood samples were collected over periods of up to 4.4 yr after experimental infection and rechallenge to determine both the duration and detectability of chronic infections. Two new nested PCR approaches for detecting circulating parasites based on P. relictum 18S rRNA genes and the thrombospondin-related anonymous protein (TRAP) gene are described. The blood smear and the PCR tests were less sensitive than serological methods for detecting chronic malarial infections. Individually, none of the diagnostic methods was 100% accurate in detecting subpatent infections, although serological methods were significantly more sensitive (97%) than either nested PCR (61–84%) or microscopy (27%). Circulating parasites in chronically infected birds either disappear completely from circulation or to drop to intensities below detectability by nested PCR. Thus, the use of PCR as a sole means of detection of circulating parasites may significantly underestimate true prevalence.
Analysis of Shear Bond Strength and Morphology of Er:YAG Laser-Recycled Ceramic Orthodontic Brackets
Han, Ruo-qiao; Ji, Ling-fei; Ling, Chen
2016-01-01
Objective. The aim of this study was to compare the recycling of deboned ceramic brackets via an Er:YAG laser or via the traditional chairside processing methods of flaming and sandblasting; shear bond strength and morphological changes were evaluated in recycled brackets versus new brackets. Materials and Methods. 3M Clarity Self-Ligating Ceramic Brackets with a microcrystalline base were divided into groups subjected to flaming, sandblasting, or exposure to an Er:YAG laser. New ceramic brackets served as a control group. Shear bond strengths were determined with an Electroforce test machine and tested for statistical significance through analysis of variance. Morphological examinations of the recycled ceramic bracket bases were conducted with scanning electron microscopy and confocal laser scanning microscopy. Residue on the bracket base was analyzed with Raman spectroscopy. Results. Faded, dark adhesive was left on recycled bracket bases processed via flaming. Adhesive was thoroughly removed by both sandblasting and exposure to an Er:YAG laser. Compared with new brackets, shear bond strength was lower after sandblasting (p < 0.05), but not after exposure to an Er:YAG laser. The Er:YAG laser caused no damage to the bracket. Conclusion. Er:YAG lasers effectively remove adhesive from the bases of ceramic brackets without damaging them; thus, this method may be preferred over other recycling methods. PMID:27047964
Four-dimensional in vivo X-ray microscopy with projection-guided gating
NASA Astrophysics Data System (ADS)
Mokso, Rajmund; Schwyn, Daniel A.; Walker, Simon M.; Doube, Michael; Wicklein, Martina; Müller, Tonya; Stampanoni, Marco; Taylor, Graham K.; Krapp, Holger G.
2015-03-01
Visualizing fast micrometer scale internal movements of small animals is a key challenge for functional anatomy, physiology and biomechanics. We combine phase contrast tomographic microscopy (down to 3.3 μm voxel size) with retrospective, projection-based gating (in the order of hundreds of microseconds) to improve the spatiotemporal resolution by an order of magnitude over previous studies. We demonstrate our method by visualizing 20 three-dimensional snapshots through the 150 Hz oscillations of the blowfly flight motor.
Formation and anisotropic magnetoresistance of Co/Pt nano-contacts through aluminum oxide barrier
NASA Astrophysics Data System (ADS)
Al-Mahdawi, Muftah; Sahashi, Masashi
2014-01-01
We report on the observation of anisotropic magnetoresistance (AMR) in vertical asymmetric nano-contacts (NCs) made through AlOx nano-oxide layer (NOL) formed by ion-assisted oxidation method in the film stack of Co/AlOx-NOL/Pt. Analysis of NC formation was based on in situ conductive atomic force microscopy and transmission electron microscopy. Depending on the purity of NCs from Al contamination, we observed up to 29% AMR ratio at room temperature.
Design and Optimization of Nanomaterials for Sensing Applications
NASA Astrophysics Data System (ADS)
Sanderson, Robert Noboru
Nanomaterials, materials with one or more of their dimensions on the nanoscale, have emerged as an important field in the development of next-generation sensing systems. Their high surface-to-volume ratio makes them useful for sensing, but also makes them sensitive to processing defects and inherent material defects. To develop and optimize these systems, it is thus necessary to characterize these defects to understand their origin and how to work around them. Scanning probe microscopy (SPM) techniques like atomic force microscopy (AFM) and scanning tunneling microscopy (STM) are important characterization methods which can measure nanoscale topography and electronic structure. These methods are appealing in nanomaterial systems because they are non-damaging and provide local, high-resolution data, and so are capable of detecting nanoscale features such as single defect sites. There are difficulties, however, in the interpretation of SPM data. For instance, AFM-based methods are prone to experimental artifacts due to long-range interactions, such as capacitive crosstalk in Kelvin probe force microscopy (KPFM), and artifacts due to the finite size of the probe tip, such as incorrect surface tracking at steep topographical features. Mechanical characterization (via force spectroscopy) of nanomaterials with significant nanoscale variations, such as tethered lipid bilayer membranes (tLBMs), is also difficult since variations in the bulk system's mechanical behavior must be distinguished from local fluctuations. Additionally, interpretation of STM data is non-trivial due to local variations in electron density in addition to topographical variations. In this thesis we overcome some limitations of SPM methods by supplementing them with additional surface analytical methods as well as computational methods, and we characterize several nanomaterial systems. Current-carrying vapor-liquid-solid Si nanowires (useful for interdigitated-electrode-based sensors) are characterized using finite-element-method (FEM)-supplemented KPFM to retrieve useful information about processing defects, contact resistance, and the primary charge carriers. Next, a tLBM system's stiffness and the stiffness' dependence on tethering molecule concentration is measured using statistical analysis of thousands of AFM force spectra, demonstrating a biosensor-compatible system with a controllable bulk rigidity. Finally, we utilize surface analytical techniques to inform the development of a novel three-dimensional graphene system for sensing applications.
Lorenz, Kevin S.; Salama, Paul; Dunn, Kenneth W.; Delp, Edward J.
2013-01-01
Digital image analysis is a fundamental component of quantitative microscopy. However, intravital microscopy presents many challenges for digital image analysis. In general, microscopy volumes are inherently anisotropic, suffer from decreasing contrast with tissue depth, lack object edge detail, and characteristically have low signal levels. Intravital microscopy introduces the additional problem of motion artifacts, resulting from respiratory motion and heartbeat from specimens imaged in vivo. This paper describes an image registration technique for use with sequences of intravital microscopy images collected in time-series or in 3D volumes. Our registration method involves both rigid and non-rigid components. The rigid registration component corrects global image translations, while the non-rigid component manipulates a uniform grid of control points defined by B-splines. Each control point is optimized by minimizing a cost function consisting of two parts: a term to define image similarity, and a term to ensure deformation grid smoothness. Experimental results indicate that this approach is promising based on the analysis of several image volumes collected from the kidney, lung, and salivary gland of living rodents. PMID:22092443
Laboratory diagnostics of malaria
NASA Astrophysics Data System (ADS)
Siahaan, L.
2018-03-01
Even now, malaria treatment should only be administered after laboratory confirmation. There are several principal methods for diagnosing malaria. All these methods have their disadvantages.Presumptive treatment of malaria is widely practiced where laboratory tests are not readily available. Microscopy of Giemsa-stained thick and thin blood films remains the gold standard for the diagnosis of malaria infection. The technique of slide preparation, staining and reading are well known and standardized, and so is the estimate of the parasite density and parasite stages. Microscopy is not always available or feasible at primary health services in limited resource settings due to cost, lack of skilled manpower, accessories and reagents required. Rapid diagnostic tests (RDTs) are potential tools for parasite-based diagnosis since the tests are accurate in detecting malaria infections and are easy to use. The test is based on the capture of parasite antigen that released from parasitized red blood cells using monoclonal antibodies prepared against malaria antigen target. Polymerase Chain Reaction (PCR), depend on DNA amplification approaches and have higher sensitivity than microscopy. PCR it is not widely used due to the lack of a standardized methodology, high costs, and the need for highly-trained staff.
NASA Astrophysics Data System (ADS)
Sun, Jiasong; Zhang, Yuzhen; Chen, Qian; Zuo, Chao
2017-02-01
Fourier ptychographic microscopy (FPM) is a newly developed super-resolution technique, which employs angularly varying illuminations and a phase retrieval algorithm to surpass the diffraction limit of a low numerical aperture (NA) objective lens. In current FPM imaging platforms, accurate knowledge of LED matrix's position is critical to achieve good recovery quality. Furthermore, considering such a wide field-of-view (FOV) in FPM, different regions in the FOV have different sensitivity of LED positional misalignment. In this work, we introduce an iterative method to correct position errors based on the simulated annealing (SA) algorithm. To improve the efficiency of this correcting process, large number of iterations for several images with low illumination NAs are firstly implemented to estimate the initial values of the global positional misalignment model through non-linear regression. Simulation and experimental results are presented to evaluate the performance of the proposed method and it is demonstrated that this method can both improve the quality of the recovered object image and relax the LED elements' position accuracy requirement while aligning the FPM imaging platforms.
NASA Astrophysics Data System (ADS)
Liang, Xiao; Zang, Yali; Dong, Di; Zhang, Liwen; Fang, Mengjie; Yang, Xin; Arranz, Alicia; Ripoll, Jorge; Hui, Hui; Tian, Jie
2016-10-01
Stripe artifacts, caused by high-absorption or high-scattering structures in the illumination light path, are a common drawback in both unidirectional and multidirectional light sheet fluorescence microscopy (LSFM), significantly deteriorating image quality. To circumvent this problem, we present an effective multidirectional stripe remover (MDSR) method based on nonsubsampled contourlet transform (NSCT), which can be used for both unidirectional and multidirectional LSFM. In MDSR, a fast Fourier transform (FFT) filter is designed in the NSCT domain to shrink the stripe components and eliminate the noise. Benefiting from the properties of being multiscale and multidirectional, MDSR succeeds in eliminating stripe artifacts in both unidirectional and multidirectional LSFM. To validate the method, MDSR has been tested on images from a custom-made unidirectional LSFM system and a commercial multidirectional LSFM system, clearly demonstrating that MDSR effectively removes most of the stripe artifacts. Moreover, we performed a comparative experiment with the variational stationary noise remover and the wavelet-FFT methods and quantitatively analyzed the results with a peak signal-to-noise ratio, showing an improved noise removal when using the MDSR method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Bin
2015-01-01
Optical microscopy imaging of single molecules and single particles is an essential method for studying fundamental biological and chemical processes at the molecular and nanometer scale. The best spatial resolution (~ λ/2) achievable in traditional optical microscopy is governed by the diffraction of light. However, single molecule-based super-localization and super-resolution microscopy imaging techniques have emerged in the past decade. Individual molecules can be localized with nanometer scale accuracy and precision for studying of biological and chemical processes.This work uncovered the heterogeneous properties of the pore structures. In this dissertation, the coupling of molecular transport and catalytic reaction at the singlemore » molecule and single particle level in multilayer mesoporous nanocatalysts was elucidated. Most previous studies dealt with these two important phenomena separately. A fluorogenic oxidation reaction of non-fluorescent amplex red to highly fluorescent resorufin was tested. The diffusion behavior of single resorufin molecules in aligned nanopores was studied using total internal reflection fluorescence microscopy (TIRFM).« less
NASA Astrophysics Data System (ADS)
Cao, Yongze; Kumar, Pawan; Zhao, Yue; Yoshimura, Satoru; Saito, Hitoshi
2018-05-01
Understanding the dynamic magnetization process of magnetic materials is crucial to improving their fundamental properties and technological applications. Here, we propose active magnetic force microscopy for observing reversible and irreversible magnetization processes by stimulating magnetization with an AC magnetic field based on alternating magnetic force microscopy with a sensitive superparamagnetic tip. This approach simultaneously measures sample's DC and AC magnetic fields. We used this microscopy approach to an anisotropic Sr-ferrite (SrF) sintered magnet. This is a single domain type magnet where magnetization mainly changes via magnetic rotation. The proposed method can directly observe the reversible and irreversible magnetization processes of SrF and clearly reveal magnetic domain evolution of SrF (without stimulating magnetization—stimulating reversible magnetization—stimulating irreversible magnetization switching) by slowly increasing the amplitude of the external AC magnetic field. This microscopy approach can evaluate magnetic inhomogeneity and explain the local magnetic process within the permanent magnet.
Application of Nomarski DIC and cathodoluminescence (CL) microscopy to building materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goetze, J., E-mail: goetze@mineral.tu-freiberg.de
2009-07-15
The present study discusses the potential of an integrated application of Nomarski differential interference contrast and cathodoluminescence microscopy for the investigation of building materials such as natural stone, cement, mortar and concrete. Nomarski differential interference contrast microscopy is a modern technique applied in materials sciences to visualize different phases and/or to image the surface relief on the scale of 50 nm. It is based on the principle of beam splitting by a double-crystal prism split, resulting in the superposition of laterally shifted wave fronts. In cathodoluminescence microscopy, the luminescence signal is excited by an electron beam and is generated bymore » different point defects within the material. Therefore, cathodoluminescence is a powerful method to characterize the defect structure of solid materials, to distinguish different phases and to reveal detailed information about their chemical composition. By combining Nomarski differential interference contrast and cathodoluminescence microscopy, textural, crystallographic and chemical information can be obtained from the same sample area in a polished thin section.« less
Molecular dynamics-based refinement and validation for sub-5 Å cryo-electron microscopy maps.
Singharoy, Abhishek; Teo, Ivan; McGreevy, Ryan; Stone, John E; Zhao, Jianhua; Schulten, Klaus
2016-07-07
Two structure determination methods, based on the molecular dynamics flexible fitting (MDFF) paradigm, are presented that resolve sub-5 Å cryo-electron microscopy (EM) maps with either single structures or ensembles of such structures. The methods, denoted cascade MDFF and resolution exchange MDFF, sequentially re-refine a search model against a series of maps of progressively higher resolutions, which ends with the original experimental resolution. Application of sequential re-refinement enables MDFF to achieve a radius of convergence of ~25 Å demonstrated with the accurate modeling of β-galactosidase and TRPV1 proteins at 3.2 Å and 3.4 Å resolution, respectively. The MDFF refinements uniquely offer map-model validation and B-factor determination criteria based on the inherent dynamics of the macromolecules studied, captured by means of local root mean square fluctuations. The MDFF tools described are available to researchers through an easy-to-use and cost-effective cloud computing resource on Amazon Web Services.
Wroble, Julie; Frederick, Timothy; Frame, Alicia; Vallero, Daniel
2017-01-01
Established soil sampling methods for asbestos are inadequate to support risk assessment and risk-based decision making at Superfund sites due to difficulties in detecting asbestos at low concentrations and difficulty in extrapolating soil concentrations to air concentrations. Environmental Protection Agency (EPA)'s Office of Land and Emergency Management (OLEM) currently recommends the rigorous process of Activity Based Sampling (ABS) to characterize site exposures. The purpose of this study was to compare three soil analytical methods and two soil sampling methods to determine whether one method, or combination of methods, would yield more reliable soil asbestos data than other methods. Samples were collected using both traditional discrete ("grab") samples and incremental sampling methodology (ISM). Analyses were conducted using polarized light microscopy (PLM), transmission electron microscopy (TEM) methods or a combination of these two methods. Data show that the fluidized bed asbestos segregator (FBAS) followed by TEM analysis could detect asbestos at locations that were not detected using other analytical methods; however, this method exhibited high relative standard deviations, indicating the results may be more variable than other soil asbestos methods. The comparison of samples collected using ISM versus discrete techniques for asbestos resulted in no clear conclusions regarding preferred sampling method. However, analytical results for metals clearly showed that measured concentrations in ISM samples were less variable than discrete samples.
2017-01-01
Established soil sampling methods for asbestos are inadequate to support risk assessment and risk-based decision making at Superfund sites due to difficulties in detecting asbestos at low concentrations and difficulty in extrapolating soil concentrations to air concentrations. Environmental Protection Agency (EPA)’s Office of Land and Emergency Management (OLEM) currently recommends the rigorous process of Activity Based Sampling (ABS) to characterize site exposures. The purpose of this study was to compare three soil analytical methods and two soil sampling methods to determine whether one method, or combination of methods, would yield more reliable soil asbestos data than other methods. Samples were collected using both traditional discrete (“grab”) samples and incremental sampling methodology (ISM). Analyses were conducted using polarized light microscopy (PLM), transmission electron microscopy (TEM) methods or a combination of these two methods. Data show that the fluidized bed asbestos segregator (FBAS) followed by TEM analysis could detect asbestos at locations that were not detected using other analytical methods; however, this method exhibited high relative standard deviations, indicating the results may be more variable than other soil asbestos methods. The comparison of samples collected using ISM versus discrete techniques for asbestos resulted in no clear conclusions regarding preferred sampling method. However, analytical results for metals clearly showed that measured concentrations in ISM samples were less variable than discrete samples. PMID:28759607
Intravital phosphorescence lifetime imaging of the renal cortex accurately measures renal hypoxia.
Hirakawa, Yosuke; Mizukami, Kiichi; Yoshihara, Toshitada; Takahashi, Ippei; Khulan, Purevsuren; Honda, Tomoko; Mimura, Imari; Tanaka, Tetsuhiro; Tobita, Seiji; Nangaku, Masaomi
2018-06-01
Renal tubulointerstitial hypoxia is recognized as a final common pathway of chronic kidney disease and is considered a promising drug target. However, hypoxia in the tubules is not well examined because of limited detection methods. Here, we devised a method to visualize renal tubular oxygen tension with spatial resolution at a cellular level using the cell-penetrating phosphorescent probe, BTPDM1 (an iridium-based cationic lipophilic dye), and confocal phosphorescence lifetime imaging microscopy to precisely assess renal hypoxia. Imaging with BTPDM1 revealed an oxygen gradient between S1 and S2 segments in mouse kidney. We also demonstrated that our microscopy system can detect subtle changes of hypoxemia and reoxygenation, and the acquired phosphorescence lifetime can be converted to partial pressure of oxygen. This new method allows, for the first time, visualization of intravital oxygen gradients at the renal surface with high spatial resolution. Thus, the confocal phosphorescence lifetime imaging microscopy platform, combined with BTPDM1, will promote an accurate understanding of tissue hypoxia, including renal hypoxia. Copyright © 2018 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Cropotova, Janna; Tylewicz, Urszula; Cocci, Emiliano; Romani, Santina; Dalla Rosa, Marco
2016-03-01
The aim of the present study was to estimate the quality deterioration of apple fillings during storage. Moreover, a potentiality of novel time-saving and non-invasive method based on fluorescence microscopy for prompt ascertainment of non-enzymatic browning initiation in fruit fillings was investigated. Apple filling samples were obtained by mixing different quantities of fruit and stabilizing agents (inulin, pectin and gellan gum), thermally processed and stored for 6-month. The preservation of antioxidant capacity (determined by DPPH method) in apple fillings was indirectly correlated with decrease in total polyphenols content that varied from 34±22 to 56±17% and concomitant accumulation of 5-hydroxymethylfurfural (HMF), ranging from 3.4±0.1 to 8±1mg/kg in comparison to initial apple puree values. The mean intensity of the fluorescence emission spectra of apple filling samples and initial apple puree was highly correlated (R(2)>0.95) with the HMF content, showing a good potentiality of fluorescence microscopy method to estimate non-enzymatic browning. Copyright © 2015 Elsevier Ltd. All rights reserved.
Loop-mediated isothermal PCR (LAMP) for the diagnosis of falciparum malaria.
Paris, Daniel H; Imwong, Mallika; Faiz, Abul M; Hasan, Mahtabuddin; Yunus, Emran Bin; Silamut, Kamolrat; Lee, Sue J; Day, Nicholas P J; Dondorp, Arjen M
2007-11-01
A recently described loop-mediated isothermal polymerase chain reaction (LAMP) for molecular detection of Plasmodium falciparum was compared with microscopy, PfHRP2-based rapid diagnostic test (RDT), and nested polymerase chain reaction (PCR) as the "gold standard" in 115 Bangladeshi in-patients with fever. DNA extraction for LAMP was conducted by conventional methods or simple heating of the sample; test results were either assessed visually or by gel electrophoresis. Conventional DNA extraction followed by gel electrophoresis had the highest agreement with the reference method (81.7%, kappa = 0.64), with a sensitivity (95% CI) of 76.1% (68.3-83.9%), comparable to RDT and microscopy, but a specificity of 89.6% (84.0-95.2%) compared with 100% for RDT and microscopy. DNA extraction by heat treatment deteriorated specificity to unacceptable levels. LAMP enables molecular diagnosis of falciparum malaria in settings with limited technical resources but will need further optimization. The results are in contrast with a higher accuracy reported in an earlier study comparing LAMP with a non-validated PCR method.
Han, Ruo-qiao; Yang, Kai; Ji, Ling-fei; Ling, Chen
2016-01-01
The aim of this study was to compare the recycling of deboned ceramic brackets via an Er:YAG laser or via the traditional chairside processing methods of flaming and sandblasting; shear bond strength and morphological changes were evaluated in recycled brackets versus new brackets. 3M Clarity Self-Ligating Ceramic Brackets with a microcrystalline base were divided into groups subjected to flaming, sandblasting, or exposure to an Er:YAG laser. New ceramic brackets served as a control group. Shear bond strengths were determined with an Electroforce test machine and tested for statistical significance through analysis of variance. Morphological examinations of the recycled ceramic bracket bases were conducted with scanning electron microscopy and confocal laser scanning microscopy. Residue on the bracket base was analyzed with Raman spectroscopy. Faded, dark adhesive was left on recycled bracket bases processed via flaming. Adhesive was thoroughly removed by both sandblasting and exposure to an Er:YAG laser. Compared with new brackets, shear bond strength was lower after sandblasting (p < 0.05), but not after exposure to an Er:YAG laser. The Er:YAG laser caused no damage to the bracket. Er:YAG lasers effectively remove adhesive from the bases of ceramic brackets without damaging them; thus, this method may be preferred over other recycling methods.
Emmerich, F; Thielemann, C
2016-05-20
Multilayers of silicon oxide/silicon nitride/silicon oxide (ONO) are known for their good electret properties due to deep energy traps near the material interfaces, facilitating charge storage. However, measurement of the space charge distribution in such multilayers is a challenge for conventional methods if layer thickness dimensions shrink below 1 μm. In this paper, we propose an atomic force microscope based method to determine charge distributions in ONO layers with spatial resolution below 100 nm. By applying Kelvin probe force microscopy (KPFM) on freshly cleaved, corona-charged multilayers, the surface potential is measured directly along the z-axis and across the interfaces. This new method gives insights into charge distribution and charge movement in inorganic electrets with a high spatial resolution.
NASA Astrophysics Data System (ADS)
Zhen, Fangchen; Ran, Maofei; Chu, Wei; Jiang, Chengfa; Sun, Wenjing
2018-03-01
Pd-Fe3O4 hybrid nanostructures were prepared using a simple one-pot hydrothermal method. The prepared materials were characterized by Fourier transform-infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, inductively coupled plasma, N2 adsorption-desorption, and vibrating sample magnetometry. This self-assembled nanosystem acted as an efficient magnetically recyclable noble metal-based multi-functional nanocatalyst. It showed excellent catalytic activity and stability for the Heck reaction of iodobenzene and styrene under mild conditions. The methods used to prepare the Pd-Fe3O4 catalysts were simple and low-cost, which will be useful for the large-scale development and application of a magnetically recoverable Pd catalyst.
Planar Diffractive Lenses: Fundamentals, Functionalities, and Applications.
Huang, Kun; Qin, Fei; Liu, Hong; Ye, Huapeng; Qiu, Cheng-Wei; Hong, Minghui; Luk'yanchuk, Boris; Teng, Jinghua
2018-06-01
Traditional objective lenses in modern microscopy, based on the refraction of light, are restricted by the Rayleigh diffraction limit. The existing methods to overcome this limit can be categorized into near-field (e.g., scanning near-field optical microscopy, superlens, microsphere lens) and far-field (e.g., stimulated emission depletion microscopy, photoactivated localization microscopy, stochastic optical reconstruction microscopy) approaches. However, they either operate in the challenging near-field mode or there is the need to label samples in biology. Recently, through manipulation of the diffraction of light with binary masks or gradient metasurfaces, some miniaturized and planar lenses have been reported with intriguing functionalities such as ultrahigh numerical aperture, large depth of focus, and subdiffraction-limit focusing in far-field, which provides a viable solution for the label-free superresolution imaging. Here, the recent advances in planar diffractive lenses (PDLs) are reviewed from a united theoretical account on diffraction-based focusing optics, and the underlying physics of nanofocusing via constructive or destructive interference is revealed. Various approaches of realizing PDLs are introduced in terms of their unique performances and interpreted by using optical aberration theory. Furthermore, a detailed tutorial about applying these planar lenses in nanoimaging is provided, followed by an outlook regarding future development toward practical applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yamashiro, Sawako; Watanabe, Naoki
2017-01-01
Single-molecule speckle (SiMS) microscopy is a powerful method to directly elucidate biochemical reactions in live cells. However, since the signal from an individual fluorophore is extremely faint, the observation area by epi-fluorescence microscopy is restricted to the thin cell periphery to reduce autofluorescence, or only molecules near the plasma membrane are visualized by total internal reflection fluorescence (TIRF) microscopy. Here, we introduce a new actin probe labeled with near infrared (NIR) emissive CF680R dye for easy-to-use, electroporation-based SiMS microscopy (eSiMS) for deep-cell observation. CF680R-labeled actin (CF680R-actin) incorporated into actin structures and showed excellent brightness and photostability suitable for single-molecule imaging. Importantly, the intensity of autofluorescence with respect to SiMS brightness was reduced to approximately 13% compared to DyLight 550-labeled actin (DL550-actin). CF680R-actin enabled the monitoring of actin SiMS in actomyosin bundles associated with adherens junctions (AJs) located at 3.5–4 µm above the basal surfaces of epithelial monolayers. These favorable properties of CF680R-actin extend the application of eSiMS to actin turnover and flow analyses in deep cellular structures. PMID:28671584
Direct observation of single flexible polymers using single stranded DNA†
Brockman, Christopher; Kim, Sun Ju
2012-01-01
Over the last 15 years, double stranded DNA (dsDNA) has been used as a model polymeric system for nearly all single polymer dynamics studies. However, dsDNA is a semiflexible polymer with markedly different molecular properties compared to flexible chains, including synthetic organic polymers. In this work, we report a new system for single polymer studies of flexible chains based on single stranded DNA (ssDNA). We developed a method to synthesize ssDNA for fluorescence microscopy based on rolling circle replication, which generates long strands (>65 kb) of ssDNA containing “designer” sequences, thereby preventing intramolecular base pair interactions. Polymers are synthesized to contain amine-modified bases randomly distributed along the backbone, which enables uniform labelling of polymer chains with a fluorescent dye to facilitate fluorescence microscopy and imaging. Using this approach, we synthesized ssDNA chains with long contour lengths (>30 μm) and relatively low dye loading ratios (~1 dye per 100 bases). In addition, we used epifluorescence microscopy to image single ssDNA polymer molecules stretching in flow in a microfluidic device. Overall, we anticipate that ssDNA will serve as a useful model system to probe the dynamics of polymeric materials at the molecular level. PMID:22956981
Cost-effectiveness of diagnostic for malaria in Extra-Amazon Region, Brazil
2012-01-01
Background Rapid diagnostic tests (RDT) for malaria have been demonstrated to be effective and they should replace microscopy in certain areas. Method The cost-effectiveness of five RDT and thick smear microscopy was estimated and compared. Data were collected on Brazilian Extra-Amazon Region. Data sources included the National Malaria Control Programme of the Ministry of Health, the National Healthcare System reimbursement table, laboratory suppliers and scientific literature. The perspective was that of the Brazilian public health system, the analytical horizon was from the start of fever until the diagnostic results provided to patient and the temporal reference was that of year 2010. Two costing methods were produced, based on exclusive-use microscopy or shared-use microscopy. The results were expressed in costs per adequately diagnosed cases in 2010 U.S. dollars. One-way sensitivity analysis was performed considering key model parameters. Results In the cost-effectiveness analysis with exclusive-use microscopy, the RDT CareStart™ was the most cost-effective diagnostic strategy. Microscopy was the most expensive and most effective, with an additional case adequately diagnosed by microscopy costing US$ 35,550.00 in relation to CareStart™. In opposite, in the cost-effectiveness analysis with shared-use microscopy, the thick smear was extremely cost-effective. Introducing into the analytic model with shared-use microscopy a probability for individual access to the diagnosis, assuming a probability of 100% of access for a public health system user to any RDT and, hypothetically, of 85% of access to microscopy, this test saw its effectiveness reduced and was dominated by the RDT CareStart™. Conclusion The analysis of cost-effectiveness of malaria diagnosis technologies in the Brazilian Extra-Amazon Region depends on the exclusive or shared use of the microscopy. Following the assumptions of this study, shared-use microscopy would be the most cost-effective strategy of the six technologies evaluated. However, if used exclusively for diagnosing malaria, microscopy would be the worst use of resources. Microscopy would not be the most cost-effective strategy, even when structure is shared with other programmes, when the probability of a patient having access to it was reduced. Under these circumstances, the RDT CareStart™ would be the most cost-effective strategy. PMID:23176717
Anti-friction performance of FeS nanoparticle synthesized by biological method
NASA Astrophysics Data System (ADS)
Zhou, Lu Hai; Wei, Xi Cheng; Ma, Zi Jian; Mei, Bin
2017-06-01
FeS nanoparticle is prepared by a biological method. The size, morphology and structure of the FeS nanoparticle are characterized by the means of X-ray diffraction and transmission electron microscopy. The anti-friction behavior of the FeS nanoparticle as a lubricating oil additive is evaluated in the engine oil by using a face-to-face contact mode. The worn surface is characterized by using the scanning electron microscopy and secondary ion mass spectroscopy in order to find the reasons resulting in the reduction of friction coefficient due to the addition of the FeS nanoparticle. The anti-friction mechanism of the FeS nanoparticle is elucidated based on the experimental results.
Near-edge X-ray refraction fine structure microscopy
Farmand, Maryam; Celestre, Richard; Denes, Peter; ...
2017-02-06
We demonstrate a method for obtaining increased spatial resolution and specificity in nanoscale chemical composition maps through the use of full refractive reference spectra in soft x-ray spectro-microscopy. Using soft x-ray ptychography, we measure both the absorption and refraction of x-rays through pristine reference materials as a function of photon energy and use these reference spectra as the basis for decomposing spatially resolved spectra from a heterogeneous sample, thereby quantifying the composition at high resolution. While conventional instruments are limited to absorption contrast, our novel refraction based method takes advantage of the strongly energy dependent scattering cross-section and can seemore » nearly five-fold improved spatial resolution on resonance.« less
A PCR procedure for the detection of Giardia intestinalis cysts and Escherichia coli in lettuce.
Ramirez-Martinez, M L; Olmos-Ortiz, L M; Barajas-Mendiola, M A; Giono Cerezo, S; Avila, E E; Cuellar-Mata, P
2015-06-01
Giardia intestinalis is a pathogen associated with foodborne outbreaks and Escherichia coli is commonly used as a marker of faecal contamination. Implementation of routine identification methods of G. intestinalis is difficult for the analysis of vegetables and the microbiological detection of E. coli requires several days. This study proposes a PCR-based assay for the detection of E. coli and G. intestinalis cysts using crude DNA isolated from artificially contaminated lettuce. The G. intestinalis and E. coli PCR assays targeted the β-giardin and uidA genes, respectively, and were 100% specific. Forty lettuces from local markets were analysed by both PCR and light microscopy and no cysts were detected, the calculated detection limit was 20 cysts per gram of lettuce; however, by PCR, E. coli was detected in eight of ten randomly selected samples of lettuce. These data highlight the need to validate procedures for routine quality assurance. These PCR-based assays can be employed as alternative methods for the detection of G. intestinalis and E. coli and have the potential to allow for the automation and simultaneous detection of protozoa and bacterial pathogens in multiple samples. Significance and impact of the study: There are few studies for Giardia intestinalis detection in food because methods for its identification are difficult for routine implementation. Here, we developed a PCR-based method as an alternative to the direct observation of cysts in lettuce by light microscopy. Additionally, Escherichia coli was detected by PCR and the sanitary quality of lettuce was evaluated using molecular and standard microbiological methods. Using PCR, the detection probability of Giardia cysts inoculated onto samples of lettuce was improved compared to light microscopy, with the advantage of easy automation. These methods may be employed to perform timely and affordable detection of foodborne pathogens. © 2015 The Society for Applied Microbiology.
Jin, Hong-Ying; Li, Da-Wei; Zhang, Na; Gu, Zhen; Long, Yi-Tao
2015-06-10
We demonstrated a practical method to analyze carbohydrate-protein interaction based on single plasmonic nanoparticles by conventional dark field microscopy (DFM). Protein concanavalin A (ConA) was modified on large sized gold nanoparticles (AuNPs), and dextran was conjugated on small sized AuNPs. As the interaction between ConA and dextran resulted in two kinds of gold nanoparticles coupled together, which caused coupling of plasmonic oscillations, apparent color changes (from green to yellow) of the single AuNPs were observed through DFM. Then, the color information was instantly transformed into a statistic peak wavelength distribution in less than 1 min by a self-developed statistical program (nanoparticleAnalysis). In addition, the interaction between ConA and dextran was proved with biospecific recognition. This approach is high-throughput and real-time, and is a convenient method to analyze carbohydrate-protein interaction at the single nanoparticle level efficiently.
Simulation-based Extraction of Key Material Parameters from Atomic Force Microscopy
NASA Astrophysics Data System (ADS)
Alsafi, Huseen; Peninngton, Gray
Models for the atomic force microscopy (AFM) tip and sample interaction contain numerous material parameters that are often poorly known. This is especially true when dealing with novel material systems or when imaging samples that are exposed to complicated interactions with the local environment. In this work we use Monte Carlo methods to extract sample material parameters from the experimental AFM analysis of a test sample. The parameterized theoretical model that we use is based on the Virtual Environment for Dynamic AFM (VEDA) [1]. The extracted material parameters are then compared with the accepted values for our test sample. Using this procedure, we suggest a method that can be used to successfully determine unknown material properties in novel and complicated material systems. We acknowledge Fisher Endowment Grant support from the Jess and Mildred Fisher College of Science and Mathematics,Towson University.
Use of Computer-Generated Holograms in Security Hologram Applications
NASA Astrophysics Data System (ADS)
Bulanovs, A.; Bakanas, R.
2016-10-01
The article discusses the use of computer-generated holograms (CGHs) for the application as one of the security features in the relief-phase protective holograms. An improved method of calculating CGHs is presented, based on ray-tracing approach in the case of interference of parallel rays. Software is developed for the calculation of multilevel phase CGHs and their integration in the application of security holograms. Topology of calculated computer-generated phase holograms was recorded on the photoresist by the optical greyscale lithography. Parameters of the recorded microstructures were investigated with the help of the atomic-force microscopy (AFM) and scanning electron microscopy (SEM) methods. The results of the research have shown highly protective properties of the security elements based on CGH microstructures. In our opinion, a wide use of CGHs is very promising in the structure of complex security holograms for increasing the level of protection against counterfeit.
A general system for automatic biomedical image segmentation using intensity neighborhoods.
Chen, Cheng; Ozolek, John A; Wang, Wei; Rohde, Gustavo K
2011-01-01
Image segmentation is important with applications to several problems in biology and medicine. While extensively researched, generally, current segmentation methods perform adequately in the applications for which they were designed, but often require extensive modifications or calibrations before being used in a different application. We describe an approach that, with few modifications, can be used in a variety of image segmentation problems. The approach is based on a supervised learning strategy that utilizes intensity neighborhoods to assign each pixel in a test image its correct class based on training data. We describe methods for modeling rotations and variations in scales as well as a subset selection for training the classifiers. We show that the performance of our approach in tissue segmentation tasks in magnetic resonance and histopathology microscopy images, as well as nuclei segmentation from fluorescence microscopy images, is similar to or better than several algorithms specifically designed for each of these applications.
Setting Up a Simple Light Sheet Microscope for In Toto Imaging of C. elegans Development
Bertrand, Vincent; Lenne, Pierre-François
2014-01-01
Fast and low phototoxic imaging techniques are pre-requisite to study the development of organisms in toto. Light sheet based microscopy reduces photo-bleaching and phototoxic effects compared to confocal microscopy, while providing 3D images with subcellular resolution. Here we present the setup of a light sheet based microscope, which is composed of an upright microscope and a small set of opto-mechanical elements for the generation of the light sheet. The protocol describes how to build, align the microscope and characterize the light sheet. In addition, it details how to implement the method for in toto imaging of C. elegans embryos using a simple observation chamber. The method allows the capture of 3D two-colors time-lapse movies over few hours of development. This should ease the tracking of cell shape, cell divisions and tagged proteins over long periods of time. PMID:24836407
Kim, Min Jeong; Shin, Yong Cheol; Lee, Jong Ho; Jun, Seung Won; Kim, Chang-Seok; Lee, Yunki; Park, Jong-Chul; Lee, Soo-Hong; Park, Ki Dong; Han, Dong-Wook
2016-01-01
Hydrogels can serve as three-dimensional (3D) scaffolds for cell culture and be readily injected into the body. Recent advances in the image technology for 3D scaffolds like hydrogels have attracted considerable attention to overcome the drawbacks of ordinary imaging technologies such as optical and fluorescence microscopy. Multiphoton microscopy (MPM) is an effective method based on the excitation of two-photons. In the present study, C2C12 myoblasts differentiated in 3D gelatin hydroxyphenylpropionic acid (GHPA) hydrogels were imaged by using a custom-built multiphoton excitation fluorescence microscopy to compare the difference in the imaging capacity between conventional microscopy and MPM. The physicochemical properties of GHPA hydrogels were characterized by using scanning electron microscopy and Fourier-transform infrared spectroscopy. In addition, the cell viability and proliferation of C2C12 myoblasts cultured in the GHPA hydrogels were analyzed by using Live/Dead Cell and CCK-8 assays, respectively. It was found that C2C12 cells were well grown and normally proliferated in the hydrogels. Furthermore, the hydrogels were shown to be suitable to facilitate the myogenic differentiation of C2C12 cells incubated in differentiation media, which had been corroborated by MPM. It was very hard to get clear images from a fluorescence microscope. Our findings suggest that the gelatin-based hydrogels can be beneficially utilized as 3D scaffolds for skeletal muscle engineering and that MPM can be effectively applied to imaging technology for tissue regeneration.
Micropatterning of mammalian cells on inorganic-based nanosponges.
Yang, Chung-Yao; Liao, Tzu-Chun; Shuai, Hung-Hsun; Shen, Tang-Long; Yeh, J Andrew; Cheng, Chao-Min
2012-07-01
Developing artificial scaffolding structures in vitro in order to mimic physiological-relevant situations in vivo is critical in many biological and medical arenas including bone and cartilage generation, biomaterials, small-scale biomedical devices, tissue engineering, as well as the development of nanofabrication methods. We focus on using simple physical principles (photolithography) and chemical techniques (liquid vapor deposition) to build non-cytotoxic scaffolds with a nanometer resolution through using silicon substrates as the backbone. This method merges an optics-based approach with chemical restructuring to modify the surface properties of an IC-compatible material, switching from hydrophilicity to hydrophobicity. Through this nanofabrication-based approach that we developed, hydrophobic oxidized silicon nanosponges were obtained. We then probed cellular responses-examining cytoskeletal and morphological changes in living cells through a combination of fluorescence microscopy and scanning electron microscopy-via culturing Chinese hamster ovary cells, HIG-82 fibroblasts and Madin-Darby canine kidney cells on these silicon nanosponges. This study has demonstrated the potential applications of using these silicon-based nanopatterns such as influencing cellular behaviors at desired locations with a micro-/nanometer level. Copyright © 2012 Elsevier Ltd. All rights reserved.
Vassall, Anna; van Kampen, Sanne; Sohn, Hojoon; Michael, Joy S.; John, K. R.; den Boon, Saskia; Davis, J. Lucian; Whitelaw, Andrew; Nicol, Mark P.; Gler, Maria Tarcela; Khaliqov, Anar; Zamudio, Carlos; Perkins, Mark D.; Boehme, Catharina C.; Cobelens, Frank
2011-01-01
Background Xpert MTB/RIF (Xpert) is a promising new rapid diagnostic technology for tuberculosis (TB) that has characteristics that suggest large-scale roll-out. However, because the test is expensive, there are concerns among TB program managers and policy makers regarding its affordability for low- and middle-income settings. Methods and Findings We estimate the impact of the introduction of Xpert on the costs and cost-effectiveness of TB care using decision analytic modelling, comparing the introduction of Xpert to a base case of smear microscopy and clinical diagnosis in India, South Africa, and Uganda. The introduction of Xpert increases TB case finding in all three settings; from 72%–85% to 95%–99% of the cohort of individuals with suspected TB, compared to the base case. Diagnostic costs (including the costs of testing all individuals with suspected TB) also increase: from US$28–US$49 to US$133–US$146 and US$137–US$151 per TB case detected when Xpert is used “in addition to” and “as a replacement of” smear microscopy, respectively. The incremental cost effectiveness ratios (ICERs) for using Xpert “in addition to” smear microscopy, compared to the base case, range from US$41–$110 per disability adjusted life year (DALY) averted. Likewise the ICERS for using Xpert “as a replacement of” smear microscopy range from US$52–$138 per DALY averted. These ICERs are below the World Health Organization (WHO) willingness to pay threshold. Conclusions Our results suggest that Xpert is a cost-effective method of TB diagnosis, compared to a base case of smear microscopy and clinical diagnosis of smear-negative TB in low- and middle-income settings where, with its ability to substantially increase case finding, it has important potential for improving TB diagnosis and control. The extent of cost-effectiveness gain to TB programmes from deploying Xpert is primarily dependent on current TB diagnostic practices. Further work is required during scale-up to validate these findings. Please see later in the article for the Editors' Summary PMID:22087078
3D multiplexed immunoplasmonics microscopy
NASA Astrophysics Data System (ADS)
Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel
2016-07-01
Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K+ channel subunit KV1.1) on human cancer CD44+ EGFR+ KV1.1+ MDA-MB-231 cells and reference CD44- EGFR- KV1.1+ 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed technology is simple and compatible with standard epi-fluorescence microscopes used in biological and clinical laboratories. Thus, 3D multiplexed immunoplasmonics microscopy is ready for clinical applications as a cost-efficient alternative to immunofluorescence.Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K+ channel subunit KV1.1) on human cancer CD44+ EGFR+ KV1.1+ MDA-MB-231 cells and reference CD44- EGFR- KV1.1+ 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed technology is simple and compatible with standard epi-fluorescence microscopes used in biological and clinical laboratories. Thus, 3D multiplexed immunoplasmonics microscopy is ready for clinical applications as a cost-efficient alternative to immunofluorescence. Electronic supplementary information (ESI) available: Characterization of functionalized nanoparticles by UV-visible-NIR spectroscopy, standard dark field microscopy and reflected light microscopy. Immunofluorescence of cells. See DOI: 10.1039/c6nr01257d
Imaging the beating heart in the mouse using intravital microscopy techniques
Vinegoni, Claudio; Aguirre, Aaron D; Lee, Sungon; Weissleder, Ralph
2017-01-01
Real-time microscopic imaging of moving organs at single-cell resolution represents a major challenge in studying complex biology in living systems. Motion of the tissue from the cardiac and respiratory cycles severely limits intravital microscopy by compromising ultimate spatial and temporal imaging resolution. However, significant recent advances have enabled single-cell resolution imaging to be achieved in vivo. In this protocol, we describe experimental procedures for intravital microscopy based on a combination of thoracic surgery, tissue stabilizers and acquisition gating methods, which enable imaging at the single-cell level in the beating heart in the mouse. Setup of the model is typically completed in 1 h, which allows 2 h or more of continuous cardiac imaging. This protocol can be readily adapted for the imaging of other moving organs, and it will therefore broadly facilitate in vivo high-resolution microscopy studies. PMID:26492138
Automated motion artifact removal for intravital microscopy, without a priori information.
Lee, Sungon; Vinegoni, Claudio; Sebas, Matthew; Weissleder, Ralph
2014-03-28
Intravital fluorescence microscopy, through extended penetration depth and imaging resolution, provides the ability to image at cellular and subcellular resolution in live animals, presenting an opportunity for new insights into in vivo biology. Unfortunately, physiological induced motion components due to respiration and cardiac activity are major sources of image artifacts and impose severe limitations on the effective imaging resolution that can be ultimately achieved in vivo. Here we present a novel imaging methodology capable of automatically removing motion artifacts during intravital microscopy imaging of organs and orthotopic tumors. The method is universally applicable to different laser scanning modalities including confocal and multiphoton microscopy, and offers artifact free reconstructions independent of the physiological motion source and imaged organ. The methodology, which is based on raw data acquisition followed by image processing, is here demonstrated for both cardiac and respiratory motion compensation in mice heart, kidney, liver, pancreas and dorsal window chamber.
Automated motion artifact removal for intravital microscopy, without a priori information
Lee, Sungon; Vinegoni, Claudio; Sebas, Matthew; Weissleder, Ralph
2014-01-01
Intravital fluorescence microscopy, through extended penetration depth and imaging resolution, provides the ability to image at cellular and subcellular resolution in live animals, presenting an opportunity for new insights into in vivo biology. Unfortunately, physiological induced motion components due to respiration and cardiac activity are major sources of image artifacts and impose severe limitations on the effective imaging resolution that can be ultimately achieved in vivo. Here we present a novel imaging methodology capable of automatically removing motion artifacts during intravital microscopy imaging of organs and orthotopic tumors. The method is universally applicable to different laser scanning modalities including confocal and multiphoton microscopy, and offers artifact free reconstructions independent of the physiological motion source and imaged organ. The methodology, which is based on raw data acquisition followed by image processing, is here demonstrated for both cardiac and respiratory motion compensation in mice heart, kidney, liver, pancreas and dorsal window chamber. PMID:24676021
Rohlfing, Torsten; Schaupp, Frank; Haddad, Daniel; Brandt, Robert; Haase, Axel; Menzel, Randolf; Maurer, Calvin R
2005-01-01
Confocal microscopy (CM) is a powerful image acquisition technique that is well established in many biological applications. It provides 3-D acquisition with high spatial resolution and can acquire several different channels of complementary image information. Due to the specimen extraction and preparation process, however, the shapes of imaged objects may differ considerably from their in vivo appearance. Magnetic resonance microscopy (MRM) is an evolving variant of magnetic resonance imaging, which achieves microscopic resolutions using a high magnetic field and strong magnetic gradients. Compared to CM imaging, MRM allows for in situ imaging and is virtually free of geometrical distortions. We propose to combine the advantages of both methods by unwarping CM images using a MRM reference image. Our method incorporates a sequence of image processing operators applied to the MRM image, followed by a two-stage intensity-based registration to compute a nonrigid coordinate transformation between the CM images and the MRM image. We present results obtained using CM images from the brains of 20 honey bees and a MRM image of an in situ bee brain. Copyright 2005 Society of Photo-Optical Instrumentation Engineers.
Nakayama, Motokazu; Shigemune, Naofumi; Tsugukuni, Takashi; Tokuda, Hajime; Miyamoto, Takahisa
2011-07-01
We developed a novel method using indirect staining with cerium chloride for visualization of the catechin derivative epigallocatechin gallate (EGCg) on the surface of particles, i.e., polystyrene beads and bacterial cells, by electron microscopy. The staining method is based on the fact that in an alkaline environment, EGCg produces hydrogen peroxide, and then hydrogen peroxide reacts with cerium, resulting in a cerium hydroperoxide precipitate. This precipitate subsequently reacts with EGCg to produce larger deposits. The amount of precipitate is proportional to the amount of EGCg. Highly EGCg-sensitive Staphylococcus aureus and EGCg-resistant Escherichia coli were treated with EGCg under various pH conditions. Transmission electron microscopy observation showed that the amount of deposits on S. aureus increased with an increase in EGCg concentration. After treating bacterial cells with 0.5mg/mL EGCg (pH 6.0), attachment of EGCg was significantly lower to E. coli than to S. aureus. This is the first report that shows differences in affinity of EGCg to the cell surfaces of Gram-positive and -negative bacteria by electron microscopy. Copyright © 2011 Elsevier B.V. All rights reserved.
Super-resolution Microscopy in Plant Cell Imaging.
Komis, George; Šamajová, Olga; Ovečka, Miroslav; Šamaj, Jozef
2015-12-01
Although the development of super-resolution microscopy methods dates back to 1994, relevant applications in plant cell imaging only started to emerge in 2010. Since then, the principal super-resolution methods, including structured-illumination microscopy (SIM), photoactivation localization microscopy (PALM), stochastic optical reconstruction microscopy (STORM), and stimulated emission depletion microscopy (STED), have been implemented in plant cell research. However, progress has been limited due to the challenging properties of plant material. Here we summarize the basic principles of existing super-resolution methods and provide examples of applications in plant science. The limitations imposed by the nature of plant material are reviewed and the potential for future applications in plant cell imaging is highlighted. Copyright © 2015 Elsevier Ltd. All rights reserved.
FogBank: a single cell segmentation across multiple cell lines and image modalities.
Chalfoun, Joe; Majurski, Michael; Dima, Alden; Stuelten, Christina; Peskin, Adele; Brady, Mary
2014-12-30
Many cell lines currently used in medical research, such as cancer cells or stem cells, grow in confluent sheets or colonies. The biology of individual cells provide valuable information, thus the separation of touching cells in these microscopy images is critical for counting, identification and measurement of individual cells. Over-segmentation of single cells continues to be a major problem for methods based on morphological watershed due to the high level of noise in microscopy cell images. There is a need for a new segmentation method that is robust over a wide variety of biological images and can accurately separate individual cells even in challenging datasets such as confluent sheets or colonies. We present a new automated segmentation method called FogBank that accurately separates cells when confluent and touching each other. This technique is successfully applied to phase contrast, bright field, fluorescence microscopy and binary images. The method is based on morphological watershed principles with two new features to improve accuracy and minimize over-segmentation. First, FogBank uses histogram binning to quantize pixel intensities which minimizes the image noise that causes over-segmentation. Second, FogBank uses a geodesic distance mask derived from raw images to detect the shapes of individual cells, in contrast to the more linear cell edges that other watershed-like algorithms produce. We evaluated the segmentation accuracy against manually segmented datasets using two metrics. FogBank achieved segmentation accuracy on the order of 0.75 (1 being a perfect match). We compared our method with other available segmentation techniques in term of achieved performance over the reference data sets. FogBank outperformed all related algorithms. The accuracy has also been visually verified on data sets with 14 cell lines across 3 imaging modalities leading to 876 segmentation evaluation images. FogBank produces single cell segmentation from confluent cell sheets with high accuracy. It can be applied to microscopy images of multiple cell lines and a variety of imaging modalities. The code for the segmentation method is available as open-source and includes a Graphical User Interface for user friendly execution.
A green method of graphene preparation in an alkaline environment.
Štengl, Václav; Henych, Jiří; Bludská, Jana; Ecorchard, Petra; Kormunda, Martin
2015-05-01
We present a new, simple, quick and ecologically friendly method of exfoliating graphite to produce graphene. The method is based on the intercalation of a permanganate M2MnO4 (M=K, Na, Li), which is formed by the reaction of a manganate MMnO4 with an alkali metal hydroxide MOH. The quality of exfoliation and the morphology were determined using X-ray photoelectron spectroscopy, X-ray diffraction and microscopic techniques, including transmission electron microscopy and atomic force microscopy. We observed that a stable graphene suspension could be prepared under strongly alkaline conditions in the presence of permanganate and ultrasound assistance. The use of only an alkaline environment for the direct preparation of graphene from graphite structures has not been previously described or applied. It was found that such a method of preparation leads to surprisingly high yields and a stable product for hydrophilic graphene applications. Copyright © 2014 Elsevier B.V. All rights reserved.
A novel Kalman filter based video image processing scheme for two-photon fluorescence microscopy
NASA Astrophysics Data System (ADS)
Sun, Wenqing; Huang, Xia; Li, Chunqiang; Xiao, Chuan; Qian, Wei
2016-03-01
Two-photon fluorescence microscopy (TPFM) is a perfect optical imaging equipment to monitor the interaction between fast moving viruses and hosts. However, due to strong unavoidable background noises from the culture, videos obtained by this technique are too noisy to elaborate this fast infection process without video image processing. In this study, we developed a novel scheme to eliminate background noises, recover background bacteria images and improve video qualities. In our scheme, we modified and implemented the following methods for both host and virus videos: correlation method, round identification method, tree-structured nonlinear filters, Kalman filters, and cell tracking method. After these procedures, most of noises were eliminated and host images were recovered with their moving directions and speed highlighted in the videos. From the analysis of the processed videos, 93% bacteria and 98% viruses were correctly detected in each frame on average.
Parsel, Sean M; Gustafson, Steven A; Friedlander, Edward; Shnyra, Alexander A; Adegbulu, Aderosoye J; Liu, Ying; Parrish, Nicole M; Jamal, Syed A; Lofthus, Eve; Ayuk, Leo; Awasom, Charles; Henry, Carolyn J; McArthur, Carole P
2017-04-04
Malaria is a major world health issue and its continued burden is due, in part, to difficulties in the diagnosis of the illness. The World Health Organization recommends confirmatory testing using microscopy-based techniques or rapid diagnostic tests (RDT) for all cases of suspected malaria. In regions where Plasmodium species are indigenous, there are multiple etiologies of fever leading to misdiagnoses, especially in populations where HIV is prevalent and children. To determine the frequency of malaria infection in febrile patients over an 8-month period at the Regional Hospital in Bamenda, Cameroon, we evaluated the clinical efficacy of the Flourescence and Staining Technology (FAST) Malaria stain and ParaLens Advance TM microscopy system (FM) and compared it with conventional bright field microscopy and Giemsa stain (GS). Peripheral blood samples from 522 patients with a clinical diagnosis of "suspected malaria" were evaluated using GS and FM methods. A nested PCR assay was the gold standard to compare the two methods. PCR positivity, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were determined. Four hundred ninety nine samples were included in the final analysis. Of these, 30 were positive via PCR (6.01%) with a mean PPV of 19.62% and 27.99% for GS and FM, respectively. The mean NPV was 95.01% and 95.28% for GS and FM, respectively. Sensitivity was 26.67% in both groups and specificity was 92.78% and 96.21% for GS and FM, respectively. An increased level of diagnostic discrepancy was observed between technicians based upon skill level using GS, which was not seen with FM. The frequency of malarial infections confirmed via PCR among patients presenting with fever and other symptoms of malaria was dramatically lower than that anticipated based upon physicians' clinical suspicions. A correlation between technician skill and accuracy of malaria diagnosis using GS was observed that was less pronounced using FM. Additionally, FM increased the specificity and improved the PPV, suggesting this relatively low cost approach could be useful in resource-limited environments. Anecdotally, physicians were reluctant to not treat all patients symptomatically before results were known and in spite of a negative microscopic diagnosis, highlighting the need for further physician education to avoid this practice of overtreatment. A larger study in an area with a known high prevalence is being planned to compare the two microscopy methods against available RDTs.
NASA Astrophysics Data System (ADS)
Moraczewski, Krzysztof; Rytlewski, Piotr; Malinowski, Rafał; Żenkiewicz, Marian
2015-08-01
The article presents the results of studies and comparison of selected properties of the modified PLA surface layer. The modification was carried out with three methods. In the chemical method, a 0.25 M solution of sodium hydroxide in water and ethanol was utilized. In the plasma method, a 50 W generator was used, which produced plasma in the air atmosphere under reduced pressure. In the laser method, a pulsed ArF excimer laser with fluency of 60 mJ/cm2 was applied. Polylactide samples were examined by using the following techniques: scanning electron microscopy (SEM), atomic force microscopy (AFM), goniometry and X-ray photoelectron spectroscopy (XPS). Images of surfaces of the modified samples were recorded, contact angles were measured, and surface free energy was calculated. Qualitative and quantitative analyses of chemical composition of the PLA surface layer were performed as well. Based on the survey it was found that the best modification results are obtained using the plasma method.
Quantitative phase microscopy via optimized inversion of the phase optical transfer function.
Jenkins, Micah H; Gaylord, Thomas K
2015-10-01
Although the field of quantitative phase imaging (QPI) has wide-ranging biomedical applicability, many QPI methods are not well-suited for such applications due to their reliance on coherent illumination and specialized hardware. By contrast, methods utilizing partially coherent illumination have the potential to promote the widespread adoption of QPI due to their compatibility with microscopy, which is ubiquitous in the biomedical community. Described herein is a new defocus-based reconstruction method that utilizes a small number of efficiently sampled micrographs to optimally invert the partially coherent phase optical transfer function under assumptions of weak absorption and slowly varying phase. Simulation results are provided that compare the performance of this method with similar algorithms and demonstrate compatibility with large phase objects. The accuracy of the method is validated experimentally using a microlens array as a test phase object. Lastly, time-lapse images of live adherent cells are obtained with an off-the-shelf microscope, thus demonstrating the new method's potential for extending QPI capability widely in the biomedical community.
NASA Astrophysics Data System (ADS)
Nikitaev, V. G.; Pronichev, A. N.; Polyakov, E. V.; Zaharenko, Yu V.
2018-01-01
The paper considers the problem of leukocytes segmentation in microscopic images of bone marrow smears for automated diagnosis of the blood system diseases. The method was proposed to solve the problem of segmentation of contacting leukocytes in images of bone marrow smears. The method is based on the analysis of structure of objects of a separation and distances filter in combination with the watershed method and distance transformation method.
Hock, Sabrina; Hasenauer, Jan; Theis, Fabian J
2013-01-01
Diffusion is a key component of many biological processes such as chemotaxis, developmental differentiation and tissue morphogenesis. Since recently, the spatial gradients caused by diffusion can be assessed in-vitro and in-vivo using microscopy based imaging techniques. The resulting time-series of two dimensional, high-resolutions images in combination with mechanistic models enable the quantitative analysis of the underlying mechanisms. However, such a model-based analysis is still challenging due to measurement noise and sparse observations, which result in uncertainties of the model parameters. We introduce a likelihood function for image-based measurements with log-normal distributed noise. Based upon this likelihood function we formulate the maximum likelihood estimation problem, which is solved using PDE-constrained optimization methods. To assess the uncertainty and practical identifiability of the parameters we introduce profile likelihoods for diffusion processes. As proof of concept, we model certain aspects of the guidance of dendritic cells towards lymphatic vessels, an example for haptotaxis. Using a realistic set of artificial measurement data, we estimate the five kinetic parameters of this model and compute profile likelihoods. Our novel approach for the estimation of model parameters from image data as well as the proposed identifiability analysis approach is widely applicable to diffusion processes. The profile likelihood based method provides more rigorous uncertainty bounds in contrast to local approximation methods.
[Embryo selection in IVF/ICSI cycles using time-lapse microscopy and the clinical outcomes].
Chen, Minghao; Huang, Jun; Zhong, Ying; Quan, Song
2015-12-01
To compare the clinical outcomes of embryos selected using time-lapse microscopy and traditional morphological method in IVF/ICSI cycles and evaluate the clinical value of time-lapse microscopy in early embryo monitoring and selection. e retrospectively analyzed the clinical data of 139 IVF/ICSI cycles with embryo selection based on time-lapse monitoring (TLM group, n=68) and traditional morphological method (control group, n=71). The βHCG-positive rate, clinical pregnancy rate and embryo implantation rate were compared between the 2 groups. Subgroup analysis was performed in view of female patients age and the fertilization type. The βHCG-positive rate, clinical pregnancy rate and implantation rate were 66.2%, 61.8% and 47.1% in TLM group, significantly higher than those in the control group (47.9%, 43.7% and 30.3%, respectively; P<0.05). Compared with patients below 30 years of age, patients aged between 31 and 35 years benefited more from time-lapse monitoring with improved clinical outcomes. time-lapse monitoring significantly increased the βHCG-positive rate, clinical pregnancy rate and implantation rate for patients undergoing IVF cycles, but not for those undergoing ICSI or TESA cycles. Compared with those selected using traditional morphological method, the embryos selected with time-lapse microscopy have better clinical outcomes, especially in older patients (31-35 years of age) and in IVF cycles.
Zhao, Ziqing W; Roy, Rahul; Gebhardt, J Christof M; Suter, David M; Chapman, Alec R; Xie, X Sunney
2014-01-14
Superresolution microscopy based on single-molecule centroid determination has been widely applied to cellular imaging in recent years. However, quantitative imaging of the mammalian nucleus has been challenging due to the lack of 3D optical sectioning methods for normal-sized cells, as well as the inability to accurately count the absolute copy numbers of biomolecules in highly dense structures. Here we report a reflected light-sheet superresolution microscopy method capable of imaging inside the mammalian nucleus with superior signal-to-background ratio as well as molecular counting with single-copy accuracy. Using reflected light-sheet superresolution microscopy, we probed the spatial organization of transcription by RNA polymerase II (RNAP II) molecules and quantified their global extent of clustering inside the mammalian nucleus. Spatiotemporal clustering analysis that leverages on the blinking photophysics of specific organic dyes showed that the majority (>70%) of the transcription foci originate from single RNAP II molecules, and no significant clustering between RNAP II molecules was detected within the length scale of the reported diameter of "transcription factories." Colocalization measurements of RNAP II molecules equally labeled by two spectrally distinct dyes confirmed the primarily unclustered distribution, arguing against a prevalent existence of transcription factories in the mammalian nucleus as previously proposed. The methods developed in our study pave the way for quantitative mapping and stoichiometric characterization of key biomolecular species deep inside mammalian cells.
Thermal stability and reduction of iron oxide nanowires at moderate temperatures.
Paolone, Annalisa; Angelucci, Marco; Panero, Stefania; Betti, Maria Grazia; Mariani, Carlo
2014-01-01
The thermal stability of iron oxide nanowires, which were obtained with a hard template method and are promising elements of Li-ion based batteries, has been investigated by means of thermogravimetry, infrared and photoemission spectroscopy measurements. The chemical state of the nanowires is typical of the Fe2O3 phase and the stoichiometry changes towards a Fe3O4 phase by annealing above 440 K. The shape and morphology of the nanowires is not modified by moderate thermal treatment, as imaged by scanning electron microscopy. This complementary spectroscopy-microscopy study allows to assess the temperature limits of these Fe2O3 nanowires during operation, malfunctioning or abuse in advanced Li-ion based batteries.
Concept for room temperature single-spin tunneling force microscopy with atomic spatial resolution
NASA Astrophysics Data System (ADS)
Payne, Adam
A study of a force detected single-spin magnetic resonance measurement concept with atomic spatial resolution is presented. The method is based upon electrostatic force detection of spin-selection rule controlled single electron tunneling between two electrically isolated paramagnetic states. Single-spin magnetic resonance detection is possible by measuring the force detected tunneling charge noise on and off spin resonance. Simulation results of this charge noise, based upon physical models of the tunneling and spin physics, are directly compared to measured atomic force microscopy (AFM) system noise. The results show that the approach could provide single-spin measurement of electrically isolated defect states with atomic spatial resolution at room temperature.
Correlative Stochastic Optical Reconstruction Microscopy and Electron Microscopy
Kim, Doory; Deerinck, Thomas J.; Sigal, Yaron M.; Babcock, Hazen P.; Ellisman, Mark H.; Zhuang, Xiaowei
2015-01-01
Correlative fluorescence light microscopy and electron microscopy allows the imaging of spatial distributions of specific biomolecules in the context of cellular ultrastructure. Recent development of super-resolution fluorescence microscopy allows the location of molecules to be determined with nanometer-scale spatial resolution. However, correlative super-resolution fluorescence microscopy and electron microscopy (EM) still remains challenging because the optimal specimen preparation and imaging conditions for super-resolution fluorescence microscopy and EM are often not compatible. Here, we have developed several experiment protocols for correlative stochastic optical reconstruction microscopy (STORM) and EM methods, both for un-embedded samples by applying EM-specific sample preparations after STORM imaging and for embedded and sectioned samples by optimizing the fluorescence under EM fixation, staining and embedding conditions. We demonstrated these methods using a variety of cellular targets. PMID:25874453
Beckwith, Marianne Sandvold; Beckwith, Kai Sandvold; Sikorski, Pawel; Skogaker, Nan Tostrup
2015-01-01
Mycobacteria pose a threat to the world health today, with pathogenic and opportunistic bacteria causing tuberculosis and non-tuberculous disease in large parts of the population. Much is still unknown about the interplay between bacteria and host during infection and disease, and more research is needed to meet the challenge of drug resistance and inefficient vaccines. This work establishes a reliable and reproducible method for performing correlative imaging of human macrophages infected with mycobacteria at an ultra-high resolution and in 3D. Focused Ion Beam/Scanning Electron Microscopy (FIB/SEM) tomography is applied, together with confocal fluorescence microscopy for localization of appropriately infected cells. The method is based on an Aclar poly(chloro-tri-fluoro)ethylene substrate, micropatterned into an advantageous geometry by a simple thermomoulding process. The platform increases the throughput and quality of FIB/SEM tomography analyses, and was successfully applied to detail the intracellular environment of a whole mycobacterium-infected macrophage in 3D. PMID:26406896
Infrared and Raman Microscopy in Cell Biology
Matthäus, Christian; Bird, Benjamin; Miljković, Miloš; Chernenko, Tatyana; Romeo, Melissa; Diem, Max
2009-01-01
This chapter presents novel microscopic methods to monitor cell biological processes of live or fixed cells without the use of any dye, stains, or other contrast agent. These methods are based on spectral techniques that detect inherent spectroscopic properties of biochemical constituents of cells, or parts thereof. Two different modalities have been developed for this task. One of them is infrared micro-spectroscopy, in which an average snapshot of a cell’s biochemical composition is collected at a spatial resolution of typically 25 mm. This technique, which is extremely sensitive and can collect such a snapshot in fractions of a second, is particularly suited for studying gross biochemical changes. The other technique, Raman microscopy (also known as Raman micro-spectroscopy), is ideally suited to study variations of cellular composition on the scale of subcellular organelles, since its spatial resolution is as good as that of fluorescence microscopy. Both techniques exhibit the fingerprint sensitivity of vibrational spectroscopy toward biochemical composition, and can be used to follow a variety of cellular processes. PMID:19118679
NASA Astrophysics Data System (ADS)
Zanganeh, Navid; Rajabi, Armin; Torabi, Morteza; Allahkarami, Masoud; Moghaddas, Arshak; Sadrnezhaad, S. K.
2014-09-01
This study proposes a common approach for growing multiwall carbon nanotubes (MWCNTs) on nickel nanodeposits. MWCNT growth was performed in two separate stages. In the first stage, nickel nanodeposits were electrodeposited on n-Si(1 1 1):H substrate in the presence of sulfuric acid. Based on atomic force microscopy (AFM) observations, the nickel deposits had a fairly polygonal morphology and were distributed on the prepared n-Si(1 1 1):H substrate. In the second stage, acetylene gas was decomposed on the surfaces of the nickel nanodeposits using chemical vapor deposition method at 700 °C. When carbon is saturated in a catalyst, it acts as a primary nucleating element for MWCNT growth. The structure of the MWCNTs was also investigated using scanning electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction, and Raman spectroscopy. Results showed that the synthesized MWCNTs had a small wall thickness and were formed under the experimental conditions applied to the system.
Magnetic force microscopy with frequency-modulated capacitive tip-sample distance control
NASA Astrophysics Data System (ADS)
Zhao, X.; Schwenk, J.; Mandru, A. O.; Penedo, M.; Baćani, M.; Marioni, M. A.; Hug, H. J.
2018-01-01
In a step towards routinely achieving 10 nm spatial resolution with magnetic force microscopy, we have developed a robust method for active tip-sample distance control based on frequency modulation of the cantilever oscillation. It allows us to keep a well-defined tip-sample distance of the order of 10 nm within better than +/- 0.4 nm precision throughout the measurement even in the presence of energy dissipative processes, and is adequate for single-passage non-contact operation in vacuum. The cantilever is excited mechanically in a phase-locked loop to oscillate at constant amplitude on its first flexural resonance mode. This frequency is modulated by an electrostatic force gradient generated by tip-sample bias oscillating from a few hundred Hz up to a few kHz. The sum of the side bands’ amplitudes is a proxy for the tip-sample distance and can be used for tip-sample distance control. This method can also be extended to other scanning probe microscopy techniques.
Fast segmentation of stained nuclei in terabyte-scale, time resolved 3D microscopy image stacks.
Stegmaier, Johannes; Otte, Jens C; Kobitski, Andrei; Bartschat, Andreas; Garcia, Ariel; Nienhaus, G Ulrich; Strähle, Uwe; Mikut, Ralf
2014-01-01
Automated analysis of multi-dimensional microscopy images has become an integral part of modern research in life science. Most available algorithms that provide sufficient segmentation quality, however, are infeasible for a large amount of data due to their high complexity. In this contribution we present a fast parallelized segmentation method that is especially suited for the extraction of stained nuclei from microscopy images, e.g., of developing zebrafish embryos. The idea is to transform the input image based on gradient and normal directions in the proximity of detected seed points such that it can be handled by straightforward global thresholding like Otsu's method. We evaluate the quality of the obtained segmentation results on a set of real and simulated benchmark images in 2D and 3D and show the algorithm's superior performance compared to other state-of-the-art algorithms. We achieve an up to ten-fold decrease in processing times, allowing us to process large data sets while still providing reasonable segmentation results.
MULTISCALE TENSOR ANISOTROPIC FILTERING OF FLUORESCENCE MICROSCOPY FOR DENOISING MICROVASCULATURE.
Prasath, V B S; Pelapur, R; Glinskii, O V; Glinsky, V V; Huxley, V H; Palaniappan, K
2015-04-01
Fluorescence microscopy images are contaminated by noise and improving image quality without blurring vascular structures by filtering is an important step in automatic image analysis. The application of interest here is to automatically extract the structural components of the microvascular system with accuracy from images acquired by fluorescence microscopy. A robust denoising process is necessary in order to extract accurate vascular morphology information. For this purpose, we propose a multiscale tensor with anisotropic diffusion model which progressively and adaptively updates the amount of smoothing while preserving vessel boundaries accurately. Based on a coherency enhancing flow with planar confidence measure and fused 3D structure information, our method integrates multiple scales for microvasculature preservation and noise removal membrane structures. Experimental results on simulated synthetic images and epifluorescence images show the advantage of our improvement over other related diffusion filters. We further show that the proposed multiscale integration approach improves denoising accuracy of different tensor diffusion methods to obtain better microvasculature segmentation.
Shivanandan, Arun; Unnikrishnan, Jayakrishnan; Radenovic, Aleksandra
2015-01-01
Single Molecule Localization Microscopy techniques like PhotoActivated Localization Microscopy, with their sub-diffraction limit spatial resolution, have been popularly used to characterize the spatial organization of membrane proteins, by means of quantitative cluster analysis. However, such quantitative studies remain challenged by the techniques’ inherent sources of errors such as a limited detection efficiency of less than 60%, due to incomplete photo-conversion, and a limited localization precision in the range of 10 – 30nm, varying across the detected molecules, mainly depending on the number of photons collected from each. We provide analytical methods to estimate the effect of these errors in cluster analysis and to correct for them. These methods, based on the Ripley’s L(r) – r or Pair Correlation Function popularly used by the community, can facilitate potentially breakthrough results in quantitative biology by providing a more accurate and precise quantification of protein spatial organization. PMID:25794150
NASA Astrophysics Data System (ADS)
Yusipovich, Alexander I.; Novikov, Sergey M.; Kazakova, Tatiana A.; Erokhova, Liudmila A.; Brazhe, Nadezda A.; Lazarev, Grigory L.; Maksimov, Georgy V.
2006-09-01
Actual aspects of using a new method of laser interference microscopy (LIM) for studying nerve cells are discussed. The peculiarities of the LIM display of neurons are demonstrated by the example of isolated neurons of a pond snail Lymnaea stagnalis. A comparative analysis of the images of the cell and subcellular structures of a neuron obtained by the methods of interference microscopy, optical transmission microscopy, and confocal microscopy is performed. Various aspects of the application of LIM for studying the lateral dimensions and internal structure of the cytoplasm and organelles of a neuron in cytology and cell physiology are discussed.
A review of state-of-the-art stereology for better quantitative 3D morphology in cardiac research.
Mühlfeld, Christian; Nyengaard, Jens Randel; Mayhew, Terry M
2010-01-01
The aim of stereological methods in biomedical research is to obtain quantitative information about three-dimensional (3D) features of tissues, cells, or organelles from two-dimensional physical or optical sections. With immunogold labeling, stereology can even be used for the quantitative analysis of the distribution of molecules within tissues and cells. Nowadays, a large number of design-based stereological methods offer an efficient quantitative approach to intriguing questions in cardiac research, such as "Is there a significant loss of cardiomyocytes during progression from ventricular hypertrophy to heart failure?" or "Does a specific treatment reduce the degree of fibrosis in the heart?" Nevertheless, the use of stereological methods in cardiac research is rare. The present review article demonstrates how some of the potential pitfalls in quantitative microscopy may be avoided. To this end, we outline the concepts of design-based stereology and illustrate their practical applications to a wide range of biological questions in cardiac research. We hope that the present article will stimulate researchers in cardiac research to incorporate design-based stereology into their study designs, thus promoting an unbiased quantitative 3D microscopy.
Focus measure method based on the modulus of the gradient of the color planes for digital microscopy
NASA Astrophysics Data System (ADS)
Hurtado-Pérez, Román; Toxqui-Quitl, Carina; Padilla-Vivanco, Alfonso; Aguilar-Valdez, J. Félix; Ortega-Mendoza, Gabriel
2018-02-01
The modulus of the gradient of the color planes (MGC) is implemented to transform multichannel information to a grayscale image. This digital technique is used in two applications: (a) focus measurements during autofocusing (AF) process and (b) extending the depth of field (EDoF) by means of multifocus image fusion. In the first case, the MGC procedure is based on an edge detection technique and is implemented in over 15 focus metrics that are typically handled in digital microscopy. The MGC approach is tested on color images of histological sections for the selection of in-focus images. An appealing attribute of all the AF metrics working in the MGC space is their monotonic behavior even up to a magnification of 100×. An advantage of the MGC method is its computational simplicity and inherent parallelism. In the second application, a multifocus image fusion algorithm based on the MGC approach has been implemented on graphics processing units (GPUs). The resulting fused images are evaluated using a nonreference image quality metric. The proposed fusion method reveals a high-quality image independently of faulty illumination during the image acquisition. Finally, the three-dimensional visualization of the in-focus image is shown.
Measuring Mass-Based Hygroscopicity of Atmospheric Particles through in situ Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piens, Dominique` Y.; Kelly, Stephen T.; Harder, Tristan
Quantifying how atmospheric particles interact with water vapor is critical for understanding the effects of aerosols on climate. We present a novel method to measure the mass-based hygroscopicity of particles while characterizing their elemental and carbon functional group compositions. Since mass-based hygroscopicity is insensitive to particle geometry, it is advantageous for probing the hygroscopic behavior of atmospheric particles, which can have irregular morphologies. Combining scanning electron microscopy with energy dispersive X-ray analysis (SEM/EDX), scanning transmission X-ray microscopy (STXM) analysis, and in situ STXM humidification experiments, this method was validated using laboratory-generated, atmospherically relevant particles. Then, the hygroscopicity and elemental compositionmore » of 15 complex atmospheric particles were analyzed by leveraging quantification of C, N, and O from STXM, and complementary elemental quantification from SEM/EDX. We found three types of hygroscopic responses, and correlated high hygroscopicity with Na and Cl content. The mixing state determined for 158 particles broadly agreed with those of the humidified particles, indicating the potential to infer the atmospheric hygroscopic behavior from a selected subset of particles. These methods offer unique quantitative capabilities to characterize and correlate the hygroscopicity and chemistry of individual submicron atmospheric particles.« less
NASA Astrophysics Data System (ADS)
Lee, Sungho; Kim, Tae-Hoon; Kang, Jonghyuk; Yang, Cheol-Woong
2016-12-01
As the feature size of devices continues to decrease, transmission electron microscopy (TEM) is becoming indispensable for measuring the critical dimension (CD) of structures. Semiconductors consist primarily of silicon-based materials such as silicon, silicon dioxide, and silicon nitride, and the electrons transmitted through a plan-view TEM sample provide diverse information about various overlapped silicon-based materials. This information is exceedingly complex, which makes it difficult to clarify the boundary to be measured. Therefore, we propose a simple measurement method using energy-filtered TEM (EF-TEM). A precise and effective measurement condition was obtained by determining the maximum value of the integrated area ratio of the electron energy loss spectrum at the boundary to be measured. This method employs an adjustable slit allowing only electrons with a certain energy range to pass. EF-TEM imaging showed a sharp transition at the boundary when the energy-filter’s passband centre was set at 90 eV, with a slit width of 40 eV. This was the optimum condition for the CD measurement of silicon-based materials involving silicon nitride. Electron energy loss spectroscopy (EELS) and EF-TEM images were used to verify this method, which makes it possible to measure the transistor gate length in a dynamic random access memory manufactured using 35 nm process technology. This method can be adapted to measure the CD of other non-silicon-based materials using the EELS area ratio of the boundary materials.
Aiyenigba, Bolatito; Ojo, Abiodun; Aisiri, Adolor; Uzim, Justus; Adeusi, Oluwole; Mwenesi, Halima
2017-01-01
Rapid and precise diagnosis of malaria is an essential element in effective case management and control of malaria. Malaria microscopy is used as the gold standard for malaria diagnosis, however results remain poor as positivity rate in Nigeria is consistently over 90%. The United States President's Malaria Initiative (PMI) through the Malaria Action Program for States (MAPS) supported selected states in Nigeria to build capacity for malaria microscopy. This study demonstrates the effectiveness of in-service training on malaria microscopy amongst medical laboratory scientists. The training was based on the World Health Organization (WHO) basic microscopy training manual. The 10-day training utilized a series of didactic lectures and examination of teaching slides using a CX 21 Olympus binocular microscope. All 108 medical laboratory scientists trained from 2012 to 2015 across five states in Nigeria supported by PMI were included in the study. Evaluation of the training using a pre-and post-test method was based on written test questions; reading photographic slide images of malaria parasites; and prepared slides. There was a significant improvement in the mean written pre-and post-tests scores from 37.9% (95% CI 36.2-39.6%) to 70.7% (95% CI 68.4-73.1%) ( p < 0.001). The mean counting post-test score improved significantly from 4.2% (95% CI 2.6-5.7%) to 27.9% (95% CI 25.3-30.5%) ( p < 0.001). Mean post-test score for computer-based picture speciation test (63.0%) and picture detection test (89.2%) were significantly higher than the mean post-test score for slide reading speciation test (38.3%) and slide reading detection test (70.7%), p < 0.001 in both cases. Parasite detection and speciation using enhanced visual imaging was significantly improved compared with using direct microscopy. Regular in-service training and provision of functional and high resolution microscopes are needed to ensure quality routine malaria microscopy.
Meurs, Lynn; Brienen, Eric; Mbow, Moustapha; Ochola, Elizabeth A; Mboup, Souleymane; Karanja, Diana M S; Secor, W Evan; Polman, Katja; van Lieshout, Lisette
2015-01-01
The current reference test for the detection of S. mansoni in endemic areas is stool microscopy based on one or more Kato-Katz stool smears. However, stool microscopy has several shortcomings that greatly affect the efficacy of current schistosomiasis control programs. A highly specific multiplex real-time polymerase chain reaction (PCR) targeting the Schistosoma internal transcriber-spacer-2 sequence (ITS2) was developed by our group a few years ago, but so far this PCR has been applied mostly on urine samples. Here, we performed more in-depth evaluation of the ITS2 PCR as an alternative method to standard microscopy for the detection and quantification of Schistosoma spp. in stool samples. Microscopy and PCR were performed in a Senegalese community (n = 197) in an area with high S. mansoni transmission and co-occurrence of S. haematobium, and in Kenyan schoolchildren (n = 760) from an area with comparatively low S. mansoni transmission. Despite the differences in Schistosoma endemicity the PCR performed very similarly in both areas; 13-15% more infections were detected by PCR when comparing to microscopy of a single stool sample. Even when 2-3 stool samples were used for microscopy, PCR on one stool sample detected more infections, especially in people with light-intensity infections and in children from low-risk schools. The low prevalence of soil-transmitted helminthiasis in both populations was confirmed by an additional multiplex PCR. The ITS2-based PCR was more sensitive than standard microscopy in detecting Schistosoma spp. This would be particularly useful for S. mansoni detection in low transmission areas, and post-control settings, and as such improve schistosomiasis control programs, epidemiological research, and quality control of microscopy. Moreover, it can be complemented with other (multiplex real-time) PCRs to detect a wider range of helminths and thus enhance effectiveness of current integrated control and elimination strategies for neglected tropical diseases.
Probing fibronectin–antibody interactions using AFM force spectroscopy and lateral force microscopy
Kulik, Andrzej J; Lee, Kyumin; Pyka-Fościak, Grazyna; Nowak, Wieslaw
2015-01-01
Summary The first experiment showing the effects of specific interaction forces using lateral force microscopy (LFM) was demonstrated for lectin–carbohydrate interactions some years ago. Such measurements are possible under the assumption that specific forces strongly dominate over the non-specific ones. However, obtaining quantitative results requires the complex and tedious calibration of a torsional force. Here, a new and relatively simple method for the calibration of the torsional force is presented. The proposed calibration method is validated through the measurement of the interaction forces between human fibronectin and its monoclonal antibody. The results obtained using LFM and AFM-based classical force spectroscopies showed similar unbinding forces recorded at similar loading rates. Our studies verify that the proposed lateral force calibration method can be applied to study single molecule interactions. PMID:26114080
Adult stem cell lineage tracing and deep tissue imaging
Fink, Juergen; Andersson-Rolf, Amanda; Koo, Bon-Kyoung
2015-01-01
Lineage tracing is a widely used method for understanding cellular dynamics in multicellular organisms during processes such as development, adult tissue maintenance, injury repair and tumorigenesis. Advances in tracing or tracking methods, from light microscopy-based live cell tracking to fluorescent label-tracing with two-photon microscopy, together with emerging tissue clearing strategies and intravital imaging approaches have enabled scientists to decipher adult stem and progenitor cell properties in various tissues and in a wide variety of biological processes. Although technical advances have enabled time-controlled genetic labeling and simultaneous live imaging, a number of obstacles still need to be overcome. In this review, we aim to provide an in-depth description of the traditional use of lineage tracing as well as current strategies and upcoming new methods of labeling and imaging. [BMB Reports 2015; 48(12): 655-667] PMID:26634741
Theoretical study of carbon-based tips for scanning tunnelling microscopy.
González, C; Abad, E; Dappe, Y J; Cuevas, J C
2016-03-11
Motivated by recent experiments, we present here a detailed theoretical analysis of the use of carbon-based conductive tips in scanning tunnelling microscopy. In particular, we employ ab initio methods based on density functional theory to explore a graphitic, an amorphous carbon and two diamond-like tips for imaging with a scanning tunnelling microscope (STM), and we compare them with standard metallic tips made of gold and tungsten. We investigate the performance of these tips in terms of the corrugation of the STM images acquired when scanning a single graphene sheet. Moreover, we analyse the impact of the tip-sample distance and show that it plays a fundamental role in the resolution and symmetry of the STM images. We also explore in depth how the adsorption of single atoms and molecules in the tip apexes modifies the STM images and demonstrate that, in general, it leads to an improved image resolution. The ensemble of our results provides strong evidence that carbon-based tips can significantly improve the resolution of STM images, as compared to more standard metallic tips, which may open a new line of research in scanning tunnelling microscopy.
Reconstruction of Mammary Gland Structure Using Three-Dimensional Computer-Based Microscopy
2001-08-01
Segmentation of Mammary Gland Ductal Structure Using Geometric Methods. P.l.’s Malladi R . and Ortiz de Solorzano C. Submitted to the LBNL Laboratory...mammary gland biology". Fernandez-Gonzalez, R ., Jones A., Garcia-Rodriguez E., Knowles D., Sudar D. Ortiz de Solorzano, C. Proceedings of Microscopy...the text. 25 3DRcn4rclr FieC4 eto m oosOtosMCUCP suto 5 2 3p4 eto 6 ’lw r 26o W ~Fl. Case Section Area Tools Opt~ons Micoscope
Real space mapping of Li-ion transport in amorphous Si anodes with nanometer resolution.
Balke, Nina; Jesse, Stephen; Kim, Yoongu; Adamczyk, Leslie; Tselev, Alexander; Ivanov, Ilia N; Dudney, Nancy J; Kalinin, Sergei V
2010-09-08
The electrical bias driven Li-ion motion in silicon anode materials in thin film battery heterostructures is investigated using electrochemical strain microscopy (ESM), which is a newly developed scanning probe microscopy based characterization method. ESM utilizes the intrinsic link between bias-controlled Li-ion concentration and molar volume of electrode materials, providing the capability for studies on the sub-20 nm scale, and allows the relationship between Li-ion flow and microstructure to be established. The evolution of Li-ion transport during the battery charging is directly observed.
Simulating contrast inversion in atomic force microscopy imaging with real-space pseudopotentials
NASA Astrophysics Data System (ADS)
Lee, Alex J.; Sakai, Yuki; Chelikowsky, James R.
2017-02-01
Atomic force microscopy (AFM) measurements have reported contrast inversions for systems such as Cu2N and graphene that can hamper image interpretation and characterization. Here, we apply a simulation method based on ab initio real-space pseudopotentials to gain an understanding of the tip-sample interactions that influence the inversion. We find that chemically reactive tips induce an attractive binding force that results in the contrast inversion. We find that the inversion is tip height dependent and not observed when using less reactive CO-functionalized tips.
Gant, Patricia; Ghasemi, Foad; Maeso, David; Munuera, Carmen; López-Elvira, Elena; Frisenda, Riccardo; De Lara, David Pérez; Rubio-Bollinger, Gabino; Garcia-Hernandez, Mar
2017-01-01
We study mechanically exfoliated nanosheets of franckeite by quantitative optical microscopy. The analysis of transmission-mode and epi-illumination-mode optical microscopy images provides a rapid method to estimate the thickness of the exfoliated flakes at first glance. A quantitative analysis of the optical contrast spectra by means of micro-reflectance allows one to determine the refractive index of franckeite over a broad range of the visible spectrum through a fit of the acquired spectra to a model based on the Fresnel law. PMID:29181292
Nathan, B; Appiah, J; Saunders, P; Heron, D; Nichols, T; Brum, R; Alexander, S; Baraitser, P; Ison, C
2015-03-01
In the UK, despite its low sensitivity, wet mount microscopy is often the only method of detecting Trichomonas vaginalis infection. A study was conducted in symptomatic women to compare the performance of five methods for detecting T. vaginalis: an in-house polymerase chain reaction (PCR); Aptima T. vaginalis kit; OSOM ®Trichomonas Rapid Test; culture and microscopy. Symptomatic women underwent routine testing; microscopy and further swabs were taken for molecular testing, OSOM and culture. A true positive was defined as a sample that was positive for T. vaginalis by two or more different methods. Two hundred and forty-six women were recruited: 24 patients were positive for T. vaginalis by two or more different methods. Of these 24 patients, 21 patients were detected by real-time PCR (sensitivity 88%); 22 patients were detected by the Aptima T. vaginalis kit (sensitivity 92%); 22 patients were detected by OSOM (sensitivity 92%); nine were detected by wet mount microscopy (sensitivity 38%); and 21 were detected by culture (sensitivity 88%). Two patients were positive by just one method and were not considered true positives. All the other detection methods had a sensitivity to detect T. vaginalis that was significantly greater than wet mount microscopy, highlighting the number of cases that are routinely missed even in symptomatic women if microscopy is the only diagnostic method available. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Unconventional methods of imaging: computational microscopy and compact implementations
NASA Astrophysics Data System (ADS)
McLeod, Euan; Ozcan, Aydogan
2016-07-01
In the past two decades or so, there has been a renaissance of optical microscopy research and development. Much work has been done in an effort to improve the resolution and sensitivity of microscopes, while at the same time to introduce new imaging modalities, and make existing imaging systems more efficient and more accessible. In this review, we look at two particular aspects of this renaissance: computational imaging techniques and compact imaging platforms. In many cases, these aspects go hand-in-hand because the use of computational techniques can simplify the demands placed on optical hardware in obtaining a desired imaging performance. In the first main section, we cover lens-based computational imaging, in particular, light-field microscopy, structured illumination, synthetic aperture, Fourier ptychography, and compressive imaging. In the second main section, we review lensfree holographic on-chip imaging, including how images are reconstructed, phase recovery techniques, and integration with smart substrates for more advanced imaging tasks. In the third main section we describe how these and other microscopy modalities have been implemented in compact and field-portable devices, often based around smartphones. Finally, we conclude with some comments about opportunities and demand for better results, and where we believe the field is heading.
D'Andrea, Lucio; Amenós, Montse; Rodríguez-Concepción, Manuel
2014-01-01
Plant cells are unique among eukaryotic cells because of the presence of plastids, including chloroplasts and chromoplasts. Chloroplasts are found in green tissues and harbor the photosynthetic machinery (including chlorophyll molecules), while chromoplasts are present in non-photosynthetic tissues and accumulate large amounts of carotenoids. During tomato fruit development, chloroplasts are converted into chromoplasts that accumulate high levels of lycopene, a linear carotenoid responsible for the characteristic red color of ripe fruit. Here, we describe a simple and fast method to detect both types of fully differentiated plastids (chloroplasts and chromoplasts), as well as intermediate stages, in fresh tomato fruits. The method is based on the differential autofluorescence of chlorophylls and carotenoids (lycopene) detected by Confocal Laser Scanning Microscopy.
Arvand, Majid; Sayyar Ardaki, Masoomeh
2017-09-15
A new nanocomposite film constructed of poly-l-cysteine/zinc oxide nanoparticles-electrospun copper oxide nanofibers (PLC/ZnO-NPs-CuO-NFs) was prepared on the surface of the graphite electrode (GE). The novel electrode was successfully applied for the simultaneous determination of guanine (G) and adenine (A), two of the most important components of DNA and RNA. The PLC/ZnO-NPs-CuO-NFs/GE enhanced the anodic peak currents of the purine bases conspicuously and could determine them sensitively and separately in 0.1 M phosphate buffer solution at the physiological pH (7.0). The synthesized nanofibers, nanoparticles and nanocomposite were characterized by different methods such as Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), X-ray diffraction (XRD) and energy dispersive X-ray analysis (EDS). Under the optimum operating conditions, linear calibration curves were obtained in the range of 0.05-6.78 and 0.01-3.87 μM with a detection limit of 12.48 and 1.25 nM for G and A, respectively. The proposed method was applied to quantify A and G in three different DNA samples with satisfactory results. In addition, damage to human blood double-stranded DNA (dsDNA) and DNA purine bases (liberated in previously hydrolyzed human blood dsDNA) caused by UV-C and UV-B were evaluated. The results demonstrated that the proposed biosensing platform not only provides a novel and sensitive approach to detecting DNA damage, but also can be used for simultaneous determination of purine bases and major products of DNA oxidative damage. Copyright © 2017 Elsevier B.V. All rights reserved.
Inhomogeneity Based Characterization of Distribution Patterns on the Plasma Membrane
Paparelli, Laura; Corthout, Nikky; Wakefield, Devin L.; Sannerud, Ragna; Jovanovic-Talisman, Tijana; Annaert, Wim; Munck, Sebastian
2016-01-01
Cell surface protein and lipid molecules are organized in various patterns: randomly, along gradients, or clustered when segregated into discrete micro- and nano-domains. Their distribution is tightly coupled to events such as polarization, endocytosis, and intracellular signaling, but challenging to quantify using traditional techniques. Here we present a novel approach to quantify the distribution of plasma membrane proteins and lipids. This approach describes spatial patterns in degrees of inhomogeneity and incorporates an intensity-based correction to analyze images with a wide range of resolutions; we have termed it Quantitative Analysis of the Spatial distributions in Images using Mosaic segmentation and Dual parameter Optimization in Histograms (QuASIMoDOH). We tested its applicability using simulated microscopy images and images acquired by widefield microscopy, total internal reflection microscopy, structured illumination microscopy, and photoactivated localization microscopy. We validated QuASIMoDOH, successfully quantifying the distribution of protein and lipid molecules detected with several labeling techniques, in different cell model systems. We also used this method to characterize the reorganization of cell surface lipids in response to disrupted endosomal trafficking and to detect dynamic changes in the global and local organization of epidermal growth factor receptors across the cell surface. Our findings demonstrate that QuASIMoDOH can be used to assess protein and lipid patterns, quantifying distribution changes and spatial reorganization at the cell surface. An ImageJ/Fiji plugin of this analysis tool is provided. PMID:27603951
Assessment of cardiac fibrosis: a morphometric method comparison for collagen quantification.
Schipke, Julia; Brandenberger, Christina; Rajces, Alexandra; Manninger, Martin; Alogna, Alessio; Post, Heiner; Mühlfeld, Christian
2017-04-01
Fibrotic remodeling of the heart is a frequent condition linked to various diseases and cardiac dysfunction. Collagen quantification is an important objective in cardiac fibrosis research; however, a variety of different histological methods are currently used that may differ in accuracy. Here, frequently applied collagen quantification techniques were compared. A porcine model of early stage heart failure with preserved ejection fraction was used as an example. Semiautomated threshold analyses were imprecise, mainly due to inclusion of noncollagen structures or failure to detect certain collagen deposits. In contrast, collagen assessment by automated image analysis and light microscopy (LM)-stereology was more sensitive. Depending on the quantification method, the amount of estimated collagen varied and influenced intergroup comparisons. PicroSirius Red, Masson's trichrome, and Azan staining protocols yielded similar results, whereas the measured collagen area increased with increasing section thickness. Whereas none of the LM-based methods showed significant differences between the groups, electron microscopy (EM)-stereology revealed a significant collagen increase between cardiomyocytes in the experimental group, but not at other localizations. In conclusion, in contrast to the staining protocol, section thickness and the quantification method being used directly influence the estimated collagen content and thus, possibly, intergroup comparisons. EM in combination with stereology is a precise and sensitive method for collagen quantification if certain prerequisites are considered. For subtle fibrotic alterations, consideration of collagen localization may be necessary. Among LM methods, LM-stereology and automated image analysis are appropriate to quantify fibrotic changes, the latter depending on careful control of algorithm and comparable section staining. NEW & NOTEWORTHY Direct comparison of frequently applied histological fibrosis assessment techniques revealed a distinct relation of measured collagen and utilized quantification method as well as section thickness. Besides electron microscopy-stereology, which was precise and sensitive, light microscopy-stereology and automated image analysis proved to be appropriate for collagen quantification. Moreover, consideration of collagen localization might be important in revealing minor fibrotic changes. Copyright © 2017 the American Physiological Society.
Polarization Control via He-Ion Beam Induced Nanofabrication in Layered Ferroelectric Semiconductors
Belianinov, Alex; Iberi, Vighter; Tselev, Alexander; ...
2016-02-23
Rapid advanced in nanoscience rely on continuous improvements of matter manipulation at near atomic scales. Currently, well characterized, robust, resist-based lithography carries the brunt of the nanofabrication process. However, use of local electron, ion and physical probe methods is also expanding, driven largely by their ability to fabricate without the multi-step preparation processes that can result in contamination from resists and solvents. Furthermore, probe based methods extend beyond nanofabrication to nanomanipulation and imaging, vital ingredients to rapid transition to prototyping and testing of layered 2D heterostructured devices. In this work we demonstrate that helium ion interaction, in a Helium Ionmore » Microscope (HIM), with the surface of bulk copper indium thiophosphate CuM IIIP 2X 6 (M = Cr, In; X= S, Se), (CITP) results in the control of ferroelectric domains, and growth of cylindrical nanostructures with enhanced conductivity; with material volumes scaling with the dosage of the beam. The nanostructures are oxygen rich, sulfur poor, and with the copper concentration virtually unchanged as confirmed by Energy Dispersive X-ray (EDX). Scanning Electron Microscopy (SEM) imaging contrast as well as Scanning Microwave Microscopy (SMM) measurements suggest enhanced conductivity in the formed particle, whereas Atomic Force Microscopy (AFM) measurements indicate that the produced structures have lower dissipation and a lower Young s modulus.« less
Dao, Lam; Glancy, Brian; Lucotte, Bertrand; Chang, Lin-Ching; Balaban, Robert S; Hsu, Li-Yueh
2015-01-01
SUMMARY This paper investigates a post-processing approach to correct spatial distortion in two-photon fluorescence microscopy images for vascular network reconstruction. It is aimed at in vivo imaging of large field-of-view, deep-tissue studies of vascular structures. Based on simple geometric modeling of the object-of-interest, a distortion function is directly estimated from the image volume by deconvolution analysis. Such distortion function is then applied to sub volumes of the image stack to adaptively adjust for spatially varying distortion and reduce the image blurring through blind deconvolution. The proposed technique was first evaluated in phantom imaging of fluorescent microspheres that are comparable in size to the underlying capillary vascular structures. The effectiveness of restoring three-dimensional spherical geometry of the microspheres using the estimated distortion function was compared with empirically measured point-spread function. Next, the proposed approach was applied to in vivo vascular imaging of mouse skeletal muscle to reduce the image distortion of the capillary structures. We show that the proposed method effectively improve the image quality and reduce spatially varying distortion that occurs in large field-of-view deep-tissue vascular dataset. The proposed method will help in qualitative interpretation and quantitative analysis of vascular structures from fluorescence microscopy images. PMID:26224257
A robust collagen scoring method for human liver fibrosis by second harmonic microscopy.
Guilbert, Thomas; Odin, Christophe; Le Grand, Yann; Gailhouste, Luc; Turlin, Bruno; Ezan, Frédérick; Désille, Yoann; Baffet, Georges; Guyader, Dominique
2010-12-06
Second Harmonic Generation (SHG) microscopy offers the opportunity to image collagen of type I without staining. We recently showed that a simple scoring method, based on SHG images of histological human liver biopsies, correlates well with the Metavir assessment of fibrosis level (Gailhouste et al., J. Hepatol., 2010). In this article, we present a detailed study of this new scoring method with two different objective lenses. By using measurements of the objectives point spread functions and of the photomultiplier gain, and a simple model of the SHG intensity, we show that our scoring method, applied to human liver biopsies, is robust to the objective's numerical aperture (NA) for low NA, the choice of the reference sample and laser power, and the spatial sampling rate. The simplicity and robustness of our collagen scoring method may open new opportunities in the quantification of collagen content in different organs, which is of main importance in providing diagnostic information and evaluation of therapeutic efficiency.
Peculiarities of studying an isolated neuron by the method of laser interference microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yusipovich, Alexander I; Kazakova, Tatiana A; Erokhova, Liudmila A
2006-09-30
Actual aspects of using a new method of laser interference microscopy (LIM) for studying nerve cells are discussed. The peculiarities of the LIM display of neurons are demonstrated by the example of isolated neurons of a pond snail Lymnaea stagnalis. A comparative analysis of the images of the cell and subcellular structures of a neuron obtained by the methods of interference microscopy, optical transmission microscopy, and confocal microscopy is performed. Various aspects of the application of LIM for studying the lateral dimensions and internal structure of the cytoplasm and organelles of a neuron in cytology and cell physiology are discussed.more » (laser biology)« less
A Modular Hierarchical Approach to 3D Electron Microscopy Image Segmentation
Liu, Ting; Jones, Cory; Seyedhosseini, Mojtaba; Tasdizen, Tolga
2014-01-01
The study of neural circuit reconstruction, i.e., connectomics, is a challenging problem in neuroscience. Automated and semi-automated electron microscopy (EM) image analysis can be tremendously helpful for connectomics research. In this paper, we propose a fully automatic approach for intra-section segmentation and inter-section reconstruction of neurons using EM images. A hierarchical merge tree structure is built to represent multiple region hypotheses and supervised classification techniques are used to evaluate their potentials, based on which we resolve the merge tree with consistency constraints to acquire final intra-section segmentation. Then, we use a supervised learning based linking procedure for the inter-section neuron reconstruction. Also, we develop a semi-automatic method that utilizes the intermediate outputs of our automatic algorithm and achieves intra-segmentation with minimal user intervention. The experimental results show that our automatic method can achieve close-to-human intra-segmentation accuracy and state-of-the-art inter-section reconstruction accuracy. We also show that our semi-automatic method can further improve the intra-segmentation accuracy. PMID:24491638
Ghosal, Sayan; Gannepalli, Anil; Salapaka, Murti
2017-08-11
In this article, we explore methods that enable estimation of material properties with the dynamic mode atomic force microscopy suitable for soft matter investigation. The article presents the viewpoint of casting the system, comprising of a flexure probe interacting with the sample, as an equivalent cantilever system and compares a steady-state analysis based method with a recursive estimation technique for determining the parameters of the equivalent cantilever system in real time. The steady-state analysis of the equivalent cantilever model, which has been implicitly assumed in studies on material property determination, is validated analytically and experimentally. We show that the steady-state based technique yields results that quantitatively agree with the recursive method in the domain of its validity. The steady-state technique is considerably simpler to implement, however, slower compared to the recursive technique. The parameters of the equivalent system are utilized to interpret storage and dissipative properties of the sample. Finally, the article identifies key pitfalls that need to be avoided toward the quantitative estimation of material properties.
Correlative Imaging of Fluorescent Proteins in Resin-Embedded Plant Material1
Bell, Karen; Mitchell, Steve; Paultre, Danae; Posch, Markus; Oparka, Karl
2013-01-01
Fluorescent proteins (FPs) were developed for live-cell imaging and have revolutionized cell biology. However, not all plant tissues are accessible to live imaging using confocal microscopy, necessitating alternative approaches for protein localization. An example is the phloem, a tissue embedded deep within plant organs and sensitive to damage. To facilitate accurate localization of FPs within recalcitrant tissues, we developed a simple method for retaining FPs after resin embedding. This method is based on low-temperature fixation and dehydration, followed by embedding in London Resin White, and avoids the need for cryosections. We show that a palette of FPs can be localized in plant tissues while retaining good structural cell preservation, and that the polymerized block face can be counterstained with cell wall probes. Using this method we have been able to image green fluorescent protein-labeled plasmodesmata to a depth of more than 40 μm beneath the resin surface. Using correlative light and electron microscopy of the phloem, we were able to locate the same FP-labeled sieve elements in semithin and ultrathin sections. Sections were amenable to antibody labeling, and allowed a combination of confocal and superresolution imaging (three-dimensional-structured illumination microscopy) on the same cells. These correlative imaging methods should find several uses in plant cell biology. PMID:23457228
Studies of reaction geometry in oxidation and reduction of the alkaline silver electrode
NASA Technical Reports Server (NTRS)
Butler, E. A.; Blackham, A. U.
1971-01-01
Two methods of surface area estimations of sintered silver electrodes have given roughness factors of 58 and 81. One method is based on constant current oxidation, the other is based on potentiostatic oxidation. Examination of both wire and sintered silver electrodes via scanning electron microscopy at various stages of oxidation have shown that important structural features are mounds of oxide. In potentiostatic oxidations these appear to form on sites instantaneously nucleated while in constant current oxidations progressive nucleation is indicated.
Wide-field imaging through scattering media by scattered light fluorescence microscopy
NASA Astrophysics Data System (ADS)
Zhou, Yulan; Li, Xun
2017-08-01
To obtain images through scattering media, scattered light fluorescence (SLF) microscopy that utilizes the optical memory effect has been developed. However, the small field of view (FOV) of SLF microscopy limits its application. In this paper, we have introduced a re-modulation method to achieve wide-field imaging through scattering media by SLF microscopy. In the re-modulation method, to raster scan the focus across the object plane, the incident wavefront is re-modulated via a spatial light modulator (SLM) in the updated phase compensation calculated using the optimized iterative algorithm. Compared with the conventional optical memory effect method, the re-modulation method can greatly increase the FOV of a SLF microscope. With the phase compensation theoretically calculated, the process of updating the phase compensation of a high speed SLM is fast. The re-modulation method does not increase the imaging time. The re-modulation method is, therefore, expected to make SLF microscopy have much wider applications in biology, medicine and physiology.
Jia, Peng-Fei; Li, Hong-Ju; Yang, Wei-Cai
2017-01-01
Peroxisome is an essential single-membrane bound organelle in most eukaryotic cells and functions in diverse cellular processes. De novo formation, division, and turnover of peroxisomes contribute to its biogenesis, morphology, and population regulation. In plants, peroxisome plays multiple roles, including metabolism, development, and stress response. Defective peroxisome biogenesis and development retard plant growth, adaption, and reproduction. Through tracing the subcellular localization of fluorescent reporter tagged matrix protein of peroxisome, fluorescence microscopy is a reliable and fast way to detect peroxisome biogenesis. Further fine-structural observation of peroxisome by TEM enables researchers to observe the detailed ultrastructure of its morphology and spatial contact with other organelles. Pollen grain is a specialized structure where two small sperm cells are enclosed in the cytoplasm of a large vegetative cell. Two features make pollen grain a good system to study peroxisome biogenesis: indispensable requirement of peroxisome for germination on the stigma and homogeneity. Here, we describe the methods of studying peroxisome biogenesis in Arabidopsis pollen grains by fluorescent live-imaging with confocal laser scanning microscopy (CLSM) and by DAB-staining based transmission electron microscopy (TEM).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morawski, Ireneusz; Institute of Experimental Physics, University of Wrocław, pl. M. Borna 9, 50-204 Wrocław; Spiegelberg, Richard
A method which allows scanning tunneling microscopy (STM) tip biasing independent of the sample bias during frequency modulated atomic force microscopy (AFM) operation is presented. The AFM sensor is supplied by an electronic circuit combining both a frequency shift signal and a tunneling current signal by means of an inductive coupling. This solution enables a control of the tip potential independent of the sample potential. Individual tip biasing is specifically important in order to implement multi-tip STM/AFM applications. An extensional quartz sensor (needle sensor) with a conductive tip is applied to record simultaneously topography and conductivity of the sample. Themore » high resonance frequency of the needle sensor (1 MHz) allows scanning of a large area of the surface being investigated in a reasonably short time. A recipe for the amplitude calibration which is based only on the frequency shift signal and does not require the tip being in contact is presented. Additionally, we show spectral measurements of the mechanical vibration noise of the scanning system used in the investigations.« less
Meza, Daphne; Wang, Danni; Wang, Yu; Borwege, Sabine; Sanai, Nader; Liu, Jonathan T C
2015-04-01
Fluorescence image-guided surgery (FIGS), with contrast provided by 5-ALA-induced PpIX, has been shown to enable a higher extent of resection of high-grade gliomas. However, conventional FIGS with low-power microscopy lacks the sensitivity to aid in low-grade glioma (LGG) resection because PpIX signal is weak and sparse in such tissues. Intraoperative high-resolution microscopy of PpIX fluorescence has been proposed as a method to guide LGG resection, where sub-cellular resolution allows for the visualization of sparse and punctate mitochondrial PpIX production in tumor cells. Here, we assess the performance of three potentially portable high-resolution microscopy techniques that may be used for the intraoperative imaging of human LGG tissue samples with PpIX contrast: high-resolution fiber-optic microscopy (HRFM), high-resolution wide-field microscopy (WFM), and dual-axis confocal (DAC) microscopy. Thick unsectioned human LGG tissue samples (n = 7) with 5-ALA-induced PpIX contrast were imaged using three imaging techniques (HRFM, WFM, DAC). The average signal-to-background ratio (SBR) was then calculated for each imaging modality (5 images per tissue, per modality). HRFM provides the ease of use and portability of a flexible fiber bundle, and is simple and inexpensive to build. However, in most cases (6/7), HRFM is not capable of detecting PpIX signal from LGGs due to high autofluorescence, generated by the fiber bundle under laser illumination at 405 nm, which overwhelms the PpIX signal and impedes its visualization. WFM is a camera-based method possessing high lateral resolution but poor axial resolution, resulting in sub-optimal image contrast. Consistent successful detection of PpIX signal throughout our human LGG tissue samples (n = 7), with an acceptable image contrast (SBR >2), was only achieved using DAC microscopy, which offers superior image resolution and contrast that is comparable to histology, but requires a laser-scanning mechanism to achieve optical sectioning. © 2015 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ababkov, Nikolai, E-mail: n.ababkov@rambler.ru; Smirnov, Alexander, E-mail: galvas.kem@gmail.com
The present paper presents comparative analysis of measurement results of acoustic and magnetic properties in long working metal of boiler drums and the results obtained by methods of electronic microscopy. The structure of the metal sample from the fracture zone to the base metal (metal working sample long) and the center of the base metal before welding (weld metal sample) was investigated by electron microscopy. Studies performed by spectral acoustic, magnetic noise and electron microscopic methods were conducted on the same plots and the same samples of long working and weld metal of high-pressure boiler drums. The analysis of researchmore » results showed high sensitivity of spectral-acoustic and magnetic-noise methods to definition changes of microstructure parameters. Practical application of spectral-acoustic and magnetic noise NDT method is possible for the detection of irregularities and changes in structural and phase state of the long working and weld metal of boiler drums, made of a special molybdenum steel (such as 20M). The above technique can be used to evaluate the structure and physical-mechanical properties of the long working metal of boiler drums in the energy sector.« less
Boundary segmentation for fluorescence microscopy using steerable filters
NASA Astrophysics Data System (ADS)
Ho, David Joon; Salama, Paul; Dunn, Kenneth W.; Delp, Edward J.
2017-02-01
Fluorescence microscopy is used to image multiple subcellular structures in living cells which are not readily observed using conventional optical microscopy. Moreover, two-photon microscopy is widely used to image structures deeper in tissue. Recent advancement in fluorescence microscopy has enabled the generation of large data sets of images at different depths, times, and spectral channels. Thus, automatic object segmentation is necessary since manual segmentation would be inefficient and biased. However, automatic segmentation is still a challenging problem as regions of interest may not have well defined boundaries as well as non-uniform pixel intensities. This paper describes a method for segmenting tubular structures in fluorescence microscopy images of rat kidney and liver samples using adaptive histogram equalization, foreground/background segmentation, steerable filters to capture directional tendencies, and connected-component analysis. The results from several data sets demonstrate that our method can segment tubular boundaries successfully. Moreover, our method has better performance when compared to other popular image segmentation methods when using ground truth data obtained via manual segmentation.
A high-level 3D visualization API for Java and ImageJ.
Schmid, Benjamin; Schindelin, Johannes; Cardona, Albert; Longair, Mark; Heisenberg, Martin
2010-05-21
Current imaging methods such as Magnetic Resonance Imaging (MRI), Confocal microscopy, Electron Microscopy (EM) or Selective Plane Illumination Microscopy (SPIM) yield three-dimensional (3D) data sets in need of appropriate computational methods for their analysis. The reconstruction, segmentation and registration are best approached from the 3D representation of the data set. Here we present a platform-independent framework based on Java and Java 3D for accelerated rendering of biological images. Our framework is seamlessly integrated into ImageJ, a free image processing package with a vast collection of community-developed biological image analysis tools. Our framework enriches the ImageJ software libraries with methods that greatly reduce the complexity of developing image analysis tools in an interactive 3D visualization environment. In particular, we provide high-level access to volume rendering, volume editing, surface extraction, and image annotation. The ability to rely on a library that removes the low-level details enables concentrating software development efforts on the algorithm implementation parts. Our framework enables biomedical image software development to be built with 3D visualization capabilities with very little effort. We offer the source code and convenient binary packages along with extensive documentation at http://3dviewer.neurofly.de.
Rapid diagnostic tests for malaria at sites of varying transmission intensity in Uganda.
Hopkins, Heidi; Bebell, Lisa; Kambale, Wilson; Dokomajilar, Christian; Rosenthal, Philip J; Dorsey, Grant
2008-02-15
In Africa, fever is often treated presumptively as malaria, resulting in misdiagnosis and the overuse of antimalarial drugs. Rapid diagnostic tests (RDTs) for malaria may allow improved fever management. We compared RDTs based on histidine-rich protein 2 (HRP2) and RDTs based on Plasmodium lactate dehydrogenase (pLDH) with expert microscopy and PCR-corrected microscopy for 7000 patients at sites of varying malaria transmission intensity across Uganda. When all sites were considered, the sensitivity of the HRP2-based test was 97% when compared with microscopy and 98% when corrected by PCR; the sensitivity of the pLDH-based test was 88% when compared with microscopy and 77% when corrected by PCR. The specificity of the HRP2-based test was 71% when compared with microscopy and 88% when corrected by PCR; the specificity of the pLDH-based test was 92% when compared with microscopy and >98% when corrected by PCR. Based on Plasmodium falciparum PCR-corrected microscopy, the positive predictive value (PPV) of the HRP2-based test was high (93%) at all but the site with the lowest transmission rate; the pLDH-based test and expert microscopy offered excellent PPVs (98%) for all sites. The negative predictive value (NPV) of the HRP2-based test was consistently high (>97%); in contrast, the NPV for the pLDH-based test dropped significantly (from 98% to 66%) as transmission intensity increased, and the NPV for expert microscopy decreased significantly (99% to 54%) because of increasing failure to detect subpatent parasitemia. Based on the high PPV and NPV, HRP2-based RDTs are likely to be the best diagnostic choice for areas with medium-to-high malaria transmission rates in Africa.
MISTICA: Minimum Spanning Tree-based Coarse Image Alignment for Microscopy Image Sequences
Ray, Nilanjan; McArdle, Sara; Ley, Klaus; Acton, Scott T.
2016-01-01
Registration of an in vivo microscopy image sequence is necessary in many significant studies, including studies of atherosclerosis in large arteries and the heart. Significant cardiac and respiratory motion of the living subject, occasional spells of focal plane changes, drift in the field of view, and long image sequences are the principal roadblocks. The first step in such a registration process is the removal of translational and rotational motion. Next, a deformable registration can be performed. The focus of our study here is to remove the translation and/or rigid body motion that we refer to here as coarse alignment. The existing techniques for coarse alignment are unable to accommodate long sequences often consisting of periods of poor quality images (as quantified by a suitable perceptual measure). Many existing methods require the user to select an anchor image to which other images are registered. We propose a novel method for coarse image sequence alignment based on minimum weighted spanning trees (MISTICA) that overcomes these difficulties. The principal idea behind MISTICA is to re-order the images in shorter sequences, to demote nonconforming or poor quality images in the registration process, and to mitigate the error propagation. The anchor image is selected automatically making MISTICA completely automated. MISTICA is computationally efficient. It has a single tuning parameter that determines graph width, which can also be eliminated by way of additional computation. MISTICA outperforms existing alignment methods when applied to microscopy image sequences of mouse arteries. PMID:26415193
MISTICA: Minimum Spanning Tree-Based Coarse Image Alignment for Microscopy Image Sequences.
Ray, Nilanjan; McArdle, Sara; Ley, Klaus; Acton, Scott T
2016-11-01
Registration of an in vivo microscopy image sequence is necessary in many significant studies, including studies of atherosclerosis in large arteries and the heart. Significant cardiac and respiratory motion of the living subject, occasional spells of focal plane changes, drift in the field of view, and long image sequences are the principal roadblocks. The first step in such a registration process is the removal of translational and rotational motion. Next, a deformable registration can be performed. The focus of our study here is to remove the translation and/or rigid body motion that we refer to here as coarse alignment. The existing techniques for coarse alignment are unable to accommodate long sequences often consisting of periods of poor quality images (as quantified by a suitable perceptual measure). Many existing methods require the user to select an anchor image to which other images are registered. We propose a novel method for coarse image sequence alignment based on minimum weighted spanning trees (MISTICA) that overcomes these difficulties. The principal idea behind MISTICA is to reorder the images in shorter sequences, to demote nonconforming or poor quality images in the registration process, and to mitigate the error propagation. The anchor image is selected automatically making MISTICA completely automated. MISTICA is computationally efficient. It has a single tuning parameter that determines graph width, which can also be eliminated by the way of additional computation. MISTICA outperforms existing alignment methods when applied to microscopy image sequences of mouse arteries.
Patwary, Nurmohammed; Preza, Chrysanthe
2015-01-01
A depth-variant (DV) image restoration algorithm for wide field fluorescence microscopy, using an orthonormal basis decomposition of DV point-spread functions (PSFs), is investigated in this study. The efficient PSF representation is based on a previously developed principal component analysis (PCA), which is computationally intensive. We present an approach developed to reduce the number of DV PSFs required for the PCA computation, thereby making the PCA-based approach computationally tractable for thick samples. Restoration results from both synthetic and experimental images show consistency and that the proposed algorithm addresses efficiently depth-induced aberration using a small number of principal components. Comparison of the PCA-based algorithm with a previously-developed strata-based DV restoration algorithm demonstrates that the proposed method improves performance by 50% in terms of accuracy and simultaneously reduces the processing time by 64% using comparable computational resources. PMID:26504634
Localization-based super-resolution imaging meets high-content screening.
Beghin, Anne; Kechkar, Adel; Butler, Corey; Levet, Florian; Cabillic, Marine; Rossier, Olivier; Giannone, Gregory; Galland, Rémi; Choquet, Daniel; Sibarita, Jean-Baptiste
2017-12-01
Single-molecule localization microscopy techniques have proven to be essential tools for quantitatively monitoring biological processes at unprecedented spatial resolution. However, these techniques are very low throughput and are not yet compatible with fully automated, multiparametric cellular assays. This shortcoming is primarily due to the huge amount of data generated during imaging and the lack of software for automation and dedicated data mining. We describe an automated quantitative single-molecule-based super-resolution methodology that operates in standard multiwell plates and uses analysis based on high-content screening and data-mining software. The workflow is compatible with fixed- and live-cell imaging and allows extraction of quantitative data like fluorophore photophysics, protein clustering or dynamic behavior of biomolecules. We demonstrate that the method is compatible with high-content screening using 3D dSTORM and DNA-PAINT based super-resolution microscopy as well as single-particle tracking.
Kuipers, Jeroen; Kalicharan, Ruby D; Wolters, Anouk H G; van Ham, Tjakko J; Giepmans, Ben N G
2016-05-25
Large-scale 2D electron microscopy (EM), or nanotomy, is the tissue-wide application of nanoscale resolution electron microscopy. Others and we previously applied large scale EM to human skin pancreatic islets, tissue culture and whole zebrafish larvae(1-7). Here we describe a universally applicable method for tissue-scale scanning EM for unbiased detection of sub-cellular and molecular features. Nanotomy was applied to investigate the healthy and a neurodegenerative zebrafish brain. Our method is based on standardized EM sample preparation protocols: Fixation with glutaraldehyde and osmium, followed by epoxy-resin embedding, ultrathin sectioning and mounting of ultrathin-sections on one-hole grids, followed by post staining with uranyl and lead. Large-scale 2D EM mosaic images are acquired using a scanning EM connected to an external large area scan generator using scanning transmission EM (STEM). Large scale EM images are typically ~ 5 - 50 G pixels in size, and best viewed using zoomable HTML files, which can be opened in any web browser, similar to online geographical HTML maps. This method can be applied to (human) tissue, cross sections of whole animals as well as tissue culture(1-5). Here, zebrafish brains were analyzed in a non-invasive neuronal ablation model. We visualize within a single dataset tissue, cellular and subcellular changes which can be quantified in various cell types including neurons and microglia, the brain's macrophages. In addition, nanotomy facilitates the correlation of EM with light microscopy (CLEM)(8) on the same tissue, as large surface areas previously imaged using fluorescent microscopy, can subsequently be subjected to large area EM, resulting in the nano-anatomy (nanotomy) of tissues. In all, nanotomy allows unbiased detection of features at EM level in a tissue-wide quantifiable manner.
Kuipers, Jeroen; Kalicharan, Ruby D.; Wolters, Anouk H. G.
2016-01-01
Large-scale 2D electron microscopy (EM), or nanotomy, is the tissue-wide application of nanoscale resolution electron microscopy. Others and we previously applied large scale EM to human skin pancreatic islets, tissue culture and whole zebrafish larvae1-7. Here we describe a universally applicable method for tissue-scale scanning EM for unbiased detection of sub-cellular and molecular features. Nanotomy was applied to investigate the healthy and a neurodegenerative zebrafish brain. Our method is based on standardized EM sample preparation protocols: Fixation with glutaraldehyde and osmium, followed by epoxy-resin embedding, ultrathin sectioning and mounting of ultrathin-sections on one-hole grids, followed by post staining with uranyl and lead. Large-scale 2D EM mosaic images are acquired using a scanning EM connected to an external large area scan generator using scanning transmission EM (STEM). Large scale EM images are typically ~ 5 - 50 G pixels in size, and best viewed using zoomable HTML files, which can be opened in any web browser, similar to online geographical HTML maps. This method can be applied to (human) tissue, cross sections of whole animals as well as tissue culture1-5. Here, zebrafish brains were analyzed in a non-invasive neuronal ablation model. We visualize within a single dataset tissue, cellular and subcellular changes which can be quantified in various cell types including neurons and microglia, the brain's macrophages. In addition, nanotomy facilitates the correlation of EM with light microscopy (CLEM)8 on the same tissue, as large surface areas previously imaged using fluorescent microscopy, can subsequently be subjected to large area EM, resulting in the nano-anatomy (nanotomy) of tissues. In all, nanotomy allows unbiased detection of features at EM level in a tissue-wide quantifiable manner. PMID:27285162
Andrade, Bruno B; Reis-Filho, Antonio; Barros, Austeclino M; Souza-Neto, Sebastião M; Nogueira, Lucas L; Fukutani, Kiyoshi F; Camargo, Erney P; Camargo, Luís M A; Barral, Aldina; Duarte, Angelo; Barral-Netto, Manoel
2010-05-06
Accurate malaria diagnosis is mandatory for the treatment and management of severe cases. Moreover, individuals with asymptomatic malaria are not usually screened by health care facilities, which further complicates disease control efforts. The present study compared the performances of a malaria rapid diagnosis test (RDT), the thick blood smear method and nested PCR for the diagnosis of symptomatic malaria in the Brazilian Amazon. In addition, an innovative computational approach was tested for the diagnosis of asymptomatic malaria. The study was divided in two parts. For the first part, passive case detection was performed in 311 individuals with malaria-related symptoms from a recently urbanized community in the Brazilian Amazon. A cross-sectional investigation compared the diagnostic performance of the RDT Optimal-IT, nested PCR and light microscopy. The second part of the study involved active case detection of asymptomatic malaria in 380 individuals from riverine communities in Rondônia, Brazil. The performances of microscopy, nested PCR and an expert computational system based on artificial neural networks (MalDANN) using epidemiological data were compared. Nested PCR was shown to be the gold standard for diagnosis of both symptomatic and asymptomatic malaria because it detected the major number of cases and presented the maximum specificity. Surprisingly, the RDT was superior to microscopy in the diagnosis of cases with low parasitaemia. Nevertheless, RDT could not discriminate the Plasmodium species in 12 cases of mixed infections (Plasmodium vivax + Plasmodium falciparum). Moreover, the microscopy presented low performance in the detection of asymptomatic cases (61.25% of correct diagnoses). The MalDANN system using epidemiological data was worse that the light microscopy (56% of correct diagnoses). However, when information regarding plasma levels of interleukin-10 and interferon-gamma were inputted, the MalDANN performance sensibly increased (80% correct diagnoses). An RDT for malaria diagnosis may find a promising use in the Brazilian Amazon integrating a rational diagnostic approach. Despite the low performance of the MalDANN test using solely epidemiological data, an approach based on neural networks may be feasible in cases where simpler methods for discriminating individuals below and above threshold cytokine levels are available.
Analysis of Point Based Image Registration Errors With Applications in Single Molecule Microscopy
Cohen, E. A. K.; Ober, R. J.
2014-01-01
We present an asymptotic treatment of errors involved in point-based image registration where control point (CP) localization is subject to heteroscedastic noise; a suitable model for image registration in fluorescence microscopy. Assuming an affine transform, CPs are used to solve a multivariate regression problem. With measurement errors existing for both sets of CPs this is an errors-in-variable problem and linear least squares is inappropriate; the correct method being generalized least squares. To allow for point dependent errors the equivalence of a generalized maximum likelihood and heteroscedastic generalized least squares model is achieved allowing previously published asymptotic results to be extended to image registration. For a particularly useful model of heteroscedastic noise where covariance matrices are scalar multiples of a known matrix (including the case where covariance matrices are multiples of the identity) we provide closed form solutions to estimators and derive their distribution. We consider the target registration error (TRE) and define a new measure called the localization registration error (LRE) believed to be useful, especially in microscopy registration experiments. Assuming Gaussianity of the CP localization errors, it is shown that the asymptotic distribution for the TRE and LRE are themselves Gaussian and the parameterized distributions are derived. Results are successfully applied to registration in single molecule microscopy to derive the key dependence of the TRE and LRE variance on the number of CPs and their associated photon counts. Simulations show asymptotic results are robust for low CP numbers and non-Gaussianity. The method presented here is shown to outperform GLS on real imaging data. PMID:24634573
NASA Astrophysics Data System (ADS)
Córdoba, Rosa; Lorenzoni, Matteo; Pablo-Navarro, Javier; Magén, César; Pérez-Murano, Francesc; María De Teresa, José
2017-11-01
The implementation of three-dimensional (3D) nano-objects as building blocks for the next generation of electro-mechanical, memory and sensing nano-devices is at the forefront of technology. The direct writing of functional 3D nanostructures is made feasible by using a method based on focused ion beam induced deposition (FIBID). We use this technique to grow horizontally suspended tungsten nanowires and then study their nano-mechanical properties by three-point bending method with atomic force microscopy. These measurements reveal that these nanowires exhibit a yield strength up to 12 times higher than that of the bulk tungsten, and near the theoretical value of 0.1 times the Young’s modulus (E). We find a size dependence of E that is adequately described by a core-shell model, which has been confirmed by transmission electron microscopy and compositional analysis at the nanoscale. Additionally, we show that experimental resonance frequencies of suspended nanowires (in the MHz range) are in good agreement with theoretical values. These extraordinary mechanical properties are key to designing electro-mechanically robust nanodevices based on FIBID tungsten nanowires.
Molecular dynamics-based refinement and validation for sub-5 Å cryo-electron microscopy maps
Singharoy, Abhishek; Teo, Ivan; McGreevy, Ryan; Stone, John E; Zhao, Jianhua; Schulten, Klaus
2016-01-01
Two structure determination methods, based on the molecular dynamics flexible fitting (MDFF) paradigm, are presented that resolve sub-5 Å cryo-electron microscopy (EM) maps with either single structures or ensembles of such structures. The methods, denoted cascade MDFF and resolution exchange MDFF, sequentially re-refine a search model against a series of maps of progressively higher resolutions, which ends with the original experimental resolution. Application of sequential re-refinement enables MDFF to achieve a radius of convergence of ~25 Å demonstrated with the accurate modeling of β-galactosidase and TRPV1 proteins at 3.2 Å and 3.4 Å resolution, respectively. The MDFF refinements uniquely offer map-model validation and B-factor determination criteria based on the inherent dynamics of the macromolecules studied, captured by means of local root mean square fluctuations. The MDFF tools described are available to researchers through an easy-to-use and cost-effective cloud computing resource on Amazon Web Services. DOI: http://dx.doi.org/10.7554/eLife.16105.001 PMID:27383269
Double-clad photonic crystal fiber coupler for compact nonlinear optical microscopy imaging.
Fu, Ling; Gu, Min
2006-05-15
A 1 x 2 double-clad photonic crystal fiber coupler is fabricated by the fused tapered method, showing a low excess loss of 1.1 dB and a splitting ratio of 97/3 over the entire visible and near-infrared wavelength range. In addition to the property of splitting the laser power, the double-clad feature of the coupler facilitates the separation of a near-infrared single-mode beam from a visible multimode beam, which is ideal for nonlinear optical microscopy imaging. In conjunction with a gradient-index lens, this coupler is used to construct a miniaturized microscope based on two-photon fluorescence and second-harmonic generation. Three-dimensional nonlinear optical images demonstrate potential applications of the coupler to compact all-fiber and nonlinear optical microscopy and endoscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xi, Xiaoning; Tittmann, Bernhard; Kim, Seong H.
An atomic force microscopy based nanoindentation method was employed to study how the structure of cellulose microfibril packing and matrix polymers affect elastic modulus of fully hydrated primary plant cell walls. The isolated, single-layered abaxial epidermis cell wall of an onion bulb was used as a test system since the cellulose microfibril packing in this cell wall is known to vary systematically from inside to outside scales and the most abundant matrix polymer, pectin, can easily be altered through simple chemical treatments such as ethylenediaminetetraacetic acid and calcium ions. Experimental results showed that the pectin network variation has significant impactsmore » on the cell wall modulus, and not the cellulose microfibril packing.« less
NASA Astrophysics Data System (ADS)
Masrournia, Mahboube; Montazarolmahdi, Maliheh; Sani, Faramarz Aliasghari
2017-07-01
Determination of dextrose in peritoneal dialysis with a method based on silver nanoparticles (AgNPs) formation was investigated. In a green chemistry method, silver nanoparticles (AgNPs) were synthesized in the natural polymeric matrix of gelatin. The nanoparticles were characterized with UV-Vis spectroscopy and transmission electron microscopy (TEM). Absorbance signal of AgNPs could be applied to determine the various concentrations of dextrose solutions. Drop wise and ultrasonic methods were used and compared with each other. The dynamic range of methods with limit of detection and relative standard deviations were obtained. Results for real sample (peritoneal dialysis) were satisfied.
Feng, Xiangsong; Fu, Ziao; Kaledhonkar, Sandip; Jia, Yuan; Shah, Binita; Jin, Amy; Liu, Zheng; Sun, Ming; Chen, Bo; Grassucci, Robert A; Ren, Yukun; Jiang, Hongyuan; Frank, Joachim; Lin, Qiao
2017-04-04
We describe a spraying-plunging method for preparing cryoelectron microscopy (cryo-EM) grids with vitreous ice of controllable, highly consistent thickness using a microfluidic device. The new polydimethylsiloxane (PDMS)-based sprayer was tested with apoferritin. We demonstrate that the structure can be solved to high resolution with this method of sample preparation. Besides replacing the conventional pipetting-blotting-plunging method, one of many potential applications of the new sprayer is in time-resolved cryo-EM, as part of a PDMS-based microfluidic reaction channel to study short-lived intermediates on the timescale of 10-1,000 ms. Published by Elsevier Ltd.
Nooshadokht, Maryam; Kalantari-Khandani, Behjat; Sharifi, Iraj; Kamyabi, Hossein; Liyanage, Namal P M; Lagenaur, Laurel A; Kagnoff, Martin F; Singer, Steven M; Babaei, Zahra; Solaymani-Mohammadi, Shahram
2017-10-01
Human infection with the protozoan parasite Giardia duodenalis is one the most common parasitic diseases worldwide. Higher incidence rates of giardiasis have been reported from human subjects with multiple debilitating chronic conditions, including hypogammaglobulinemia and common variable immunodeficiency (CVID). In the current study, stool specimens were collected from 199 individuals diagnosed with HIV or cancer and immunocompetent subjects. The sensitivity of microscopy-based detection on fresh stool preparations, trichrome staining and stool antigen immunodetection for the diagnosis of G. duodenalis were 36%, 45.5% and 100%, respectively when compared with a highly sensitive stool-based PCR method as the gold standard. Further multilocus molecular analyses using glutamate dehydrogenase (gdh) and triose phosphate isomerase (tpi) loci demonstrated that the AI genotype of G. duodenalis was the most prevalent, followed by the AII genotype and mixed (AI+B) infections. We concluded that stool antigen immunodetection-based immunoassays and stool-based PCR amplification had comparable sensitivity and specificity for the diagnosis of G. duodenalis infections in these populations. Stool antigen detection-based diagnostic modalities are rapid and accurate and may offer alternatives to conventional microscopy and PCR-based diagnostic methods for the diagnosis of G. duodenalis in human subjects living with HIV or cancer. Copyright © 2017. Published by Elsevier B.V.
Villeneuve-Faure, C; Boudou, L; Makasheva, K; Teyssedre, G
2017-12-15
To understand the physical phenomena occurring at metal/dielectric interfaces, determination of the charge density profile at nanoscale is crucial. To deal with this issue, charges were injected applying a DC voltage on lateral Al-electrodes embedded in a SiN x thin dielectric layer. The surface potential induced by the injected charges was probed by Kelvin probe force microscopy (KPFM). It was found that the KPFM frequency mode is a better adapted method to probe accurately the charge profile. To extract the charge density profile from the surface potential two numerical approaches based on the solution to Poisson's equation for electrostatics were investigated: the second derivative model method, already reported in the literature, and a new 2D method based on the finite element method (FEM). Results highlight that the FEM is more robust to noise or artifacts in the case of a non-flat initial surface potential. Moreover, according to theoretical study the FEM appears to be a good candidate for determining charge density in dielectric films with thicknesses in the range from 10 nm to 10 μm. By applying this method, the charge density profile was determined at nanoscale, highlighting that the charge cloud remains close to the interface.
He, Wanzhong; Kivork, Christine; Machinani, Suman; Morphew, Mary K.; Gail, Anna M.; Tesar, Devin B.; Tiangco, Noreen E.; McIntosh, J. Richard; Bjorkman, Pamela J.
2007-01-01
We have developed methods to locate individual ligands that can be used for electron microscopy studies of dynamic events during endocytosis and subsequent intracellular trafficking. The methods are based on enlargement of 1.4 nm Nanogold attached to an endocytosed ligand. Nanogold, a small label that does not induce misdirection of ligand-receptor complexes, is ideal for labeling ligands endocytosed by live cells, but is too small to be routinely located in cells by electron microscopy. Traditional pre-embedding enhancement protocols to enlarge Nanogold are not compatible with high pressure freezing/freeze substitution fixation (HPF/FSF), the most accurate method to preserve ultrastructure and dynamic events during trafficking. We have developed an improved enhancement procedure for chemically-fixed samples that reduced autonucleation, and a new pre-embedding gold-enlarging technique for HPF/FSF samples that preserved contrast and ultrastructure and can be used for high-resolution tomography. We evaluated our methods using labeled Fc as a ligand for the neonatal Fc receptor. Attachment of Nanogold to Fc did not interfere with receptor binding or uptake, and gold-labeled Fc could be specifically enlarged to allow identification in 2D projections and in tomograms. These methods should be broadly applicable to many endocytosis and transcytosis studies. PMID:17723309
NASA Astrophysics Data System (ADS)
Villeneuve-Faure, C.; Boudou, L.; Makasheva, K.; Teyssedre, G.
2017-12-01
To understand the physical phenomena occurring at metal/dielectric interfaces, determination of the charge density profile at nanoscale is crucial. To deal with this issue, charges were injected applying a DC voltage on lateral Al-electrodes embedded in a SiN x thin dielectric layer. The surface potential induced by the injected charges was probed by Kelvin probe force microscopy (KPFM). It was found that the KPFM frequency mode is a better adapted method to probe accurately the charge profile. To extract the charge density profile from the surface potential two numerical approaches based on the solution to Poisson’s equation for electrostatics were investigated: the second derivative model method, already reported in the literature, and a new 2D method based on the finite element method (FEM). Results highlight that the FEM is more robust to noise or artifacts in the case of a non-flat initial surface potential. Moreover, according to theoretical study the FEM appears to be a good candidate for determining charge density in dielectric films with thicknesses in the range from 10 nm to 10 μm. By applying this method, the charge density profile was determined at nanoscale, highlighting that the charge cloud remains close to the interface.
In vivo pump-probe microscopy of melanoma and pigmented lesions
NASA Astrophysics Data System (ADS)
Wilson, Jesse W.; Degan, Simone; Mitropoulos, Tanya; Selim, M. Angelica; Zhang, Jennifer Y.; Warren, Warren S.
2012-03-01
A growing number of dermatologists and pathologists are concerned that the rapidly rising incidence of melanoma reflects not a true 'epidemic' but an increasing tendency to overdiagnose pigmented lesions. Addressing this problem requires both a better understanding of early-stage melanoma and new diagnostic criteria based on more than just cellular morphology and architecture. Here we present a method for in-vivo optical microscopy that utilizes pump-probe spectroscopy to image the distribution of the two forms of melanin in skin: eumelanin and pheomelanin. Images are acquired in a scanning microscope with a sensitive modulation transfer technique by analyzing back-scattered probe light with a lock-in amplifier. Early-stage melanoma is studied in a human skin xenografted mouse model. Individual melanocytes have been observed, in addition to pigmented keratinocytes. Combining the pump-probe images simultaneously with other noninvasive laser microscopy methods (confocal reflectance, multiphoton autofluorescence, and second harmonic generation) allows visualization of the skin architecture, framing the functional pump-probe image in the context of the surrounding tissue morphology. It is found that pump-probe images of melanin can be acquired with low peak intensities, enabling wide field-of-view pigmentation surveys. Finally, we investigate the diagnostic potential of the additional chemical information available from pump-probe microscopy.
Liang, Li; Zhao, Zhongzhen; Kang, Tingguo
2014-01-01
Background: The technique of microscopy has been applied for identification of Chinese materia medica (CMM) since decades. However, very few scientific publications report the combination of conventional microscopy and high performance liquid chromatography (HPLC) techniques for further application to quality assessment of CMM. Objective: The objective of this study is to analyze the quality of the dried root tuber of Polygonum multiflorum Thunb. (Heshouwu) and to establish the relationships between 2,3,5,4’-tetrahydroxystilbene-2-O-β-glucoside, combined anthraquinone (CAQ) and quantity of clusters of calcium oxalate. Materials and Methods: In this study, microscopy and HPLC techniques were applied to assess the quality of P. multiflorum Thunb., and SPSS software was used to establish the relationship between microscopic characteristics and chemical components. Results: The results showed close and direct correlations between the quantity of clusters of calcium oxalate in P. multiflorum Thunb. and the contents of 2,3,5,4’-tetrahydroxystilbene-2-O-β-glucoside and CAQ. From these results, it can be deduced that Polygoni Multiflori Radix with a higher quantity of clusters of calcium oxalate should be of better quality. Conclusion: The established method can be helpful for evaluating the quality of CMM based upon the identification and quantitation of chemical and ergastic substance of cells. PMID:25422540
Simple glucose reduction route for one-step synthesis of copper nanofluids
NASA Astrophysics Data System (ADS)
Shenoy, U. Sandhya; Shetty, A. Nityananda
2014-01-01
One-step method has been employed in the synthesis of copper nanofluids. Copper nitrate is reduced by glucose in the presence of sodium lauryl sulfate. The synthesized particles are characterized by X-ray diffraction technique for the phase structure; electron diffraction X-ray analysis for chemical composition; transmission electron microscopy and field emission scanning electron microscopy for the morphology; Fourier-transform infrared spectroscopy and ultraviolet-visible spectroscopy for the analysis of ingredients of the solution. Thermal conductivity, sedimentation and rheological measurements have also been carried out. It is found that the reaction parameters have considerable effect on the size of the particle formed and rate of the reaction. The techniques confirm that the synthesized particles are copper. The reported method showed promising increase in the thermal conductivity of the base fluid and is found to be reliable, simple and cost-effective method for preparing heat transfer fluids with higher stability.
NASA Astrophysics Data System (ADS)
Zhang, Xiaolei; Zhang, Xiangchao; Xu, Min; Zhang, Hao; Jiang, Xiangqian
2018-03-01
The measurement of microstructured components is a challenging task in optical engineering. Digital holographic microscopy has attracted intensive attention due to its remarkable capability of measuring complex surfaces. However, speckles arise in the recorded interferometric holograms, and they will degrade the reconstructed wavefronts. Existing speckle removal methods suffer from the problems of frequency aliasing and phase distortions. A reconstruction method based on the antialiasing shift-invariant contourlet transform (ASCT) is developed. Salient edges and corners have sparse representations in the transform domain of ASCT, and speckles can be recognized and removed effectively. As subsampling in the scale and directional filtering schemes is avoided, the problems of frequency aliasing and phase distortions occurring in the conventional multiscale transforms can be effectively overcome, thereby improving the accuracy of wavefront reconstruction. As a result, the proposed method is promising for the digital holographic measurement of complex structures.
Imaging Chromosome Separation in Mouse Oocytes by Responsive 3D Confocal Timelapse Microscopy.
Lane, Simon I R; Crouch, Stephen; Jones, Keith T
2017-01-01
Accurate chromosome segregation is necessary so that genetic material is equally shared among daughter cells. However, maturing mammalian oocytes are particularly prone to chromosome segregation errors, making them a valuable tool for identifying the causes of mis-segregation. Factors such as aging, cohesion loss, DNA damage, and the roles of a plethora of kinetochore and cell cycle-related proteins are involved. To study chromosome segregation in oocytes in a live setting is an imaging challenge that requires advanced techniques. Here we describe a method for examining chromosomes in live oocytes in detail as they undergo maturation. Our method is based on tracking the "center of brightness" of fluorescently labeled chromosomes. Here we describe how to set up our software and run experiments on a Leica TCS SP8 confocal microscope, but the method would be transferable to other microscopes with computer-aided microscopy.
Intravital assessment of myelin molecular order with polarimetric multiphoton microscopy
NASA Astrophysics Data System (ADS)
Turcotte, Raphaël; Rutledge, Danette J.; Bélanger, Erik; Dill, Dorothy; Macklin, Wendy B.; Côté, Daniel C.
2016-08-01
Myelin plays an essential role in the nervous system and its disruption in diseases such as multiple sclerosis may lead to neuronal death, thus causing irreversible functional impairments. Understanding myelin biology is therefore of fundamental and clinical importance, but no tools currently exist to describe the fine spatial organization of myelin sheaths in vivo. Here we demonstrate intravital quantification of the myelin molecular structure using a microscopy method based on polarization-resolved coherent Raman scattering. Developmental myelination was imaged noninvasively in live zebrafish. Longitudinal imaging of individual axons revealed changes in myelin organization beyond the diffraction limit. Applied to promyelination drug screening, the method uniquely enabled the identification of focal myelin regions with differential architectures. These observations indicate that the study of myelin biology and the identification of therapeutic compounds will largely benefit from a method to quantify the myelin molecular organization in vivo.
Quantitative Image Restoration in Bright Field Optical Microscopy.
Gutiérrez-Medina, Braulio; Sánchez Miranda, Manuel de Jesús
2017-11-07
Bright field (BF) optical microscopy is regarded as a poor method to observe unstained biological samples due to intrinsic low image contrast. We introduce quantitative image restoration in bright field (QRBF), a digital image processing method that restores out-of-focus BF images of unstained cells. Our procedure is based on deconvolution, using a point spread function modeled from theory. By comparing with reference images of bacteria observed in fluorescence, we show that QRBF faithfully recovers shape and enables quantify size of individual cells, even from a single input image. We applied QRBF in a high-throughput image cytometer to assess shape changes in Escherichia coli during hyperosmotic shock, finding size heterogeneity. We demonstrate that QRBF is also applicable to eukaryotic cells (yeast). Altogether, digital restoration emerges as a straightforward alternative to methods designed to generate contrast in BF imaging for quantitative analysis. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Sobieranski, Antonio C; Inci, Fatih; Tekin, H Cumhur; Yuksekkaya, Mehmet; Comunello, Eros; Cobra, Daniel; von Wangenheim, Aldo; Demirci, Utkan
2017-01-01
In this paper, an irregular displacement-based lensless wide-field microscopy imaging platform is presented by combining digital in-line holography and computational pixel super-resolution using multi-frame processing. The samples are illuminated by a nearly coherent illumination system, where the hologram shadows are projected into a complementary metal-oxide semiconductor-based imaging sensor. To increase the resolution, a multi-frame pixel resolution approach is employed to produce a single holographic image from multiple frame observations of the scene, with small planar displacements. Displacements are resolved by a hybrid approach: (i) alignment of the LR images by a fast feature-based registration method, and (ii) fine adjustment of the sub-pixel information using a continuous optimization approach designed to find the global optimum solution. Numerical method for phase-retrieval is applied to decode the signal and reconstruct the morphological details of the analyzed sample. The presented approach was evaluated with various biological samples including sperm and platelets, whose dimensions are in the order of a few microns. The obtained results demonstrate a spatial resolution of 1.55 µm on a field-of-view of ≈30 mm2. PMID:29657866
NASA Astrophysics Data System (ADS)
Tian, Lei; Waller, Laura
2017-05-01
Microscope lenses can have either large field of view (FOV) or high resolution, not both. Computational microscopy based on illumination coding circumvents this limit by fusing images from different illumination angles using nonlinear optimization algorithms. The result is a Gigapixel-scale image having both wide FOV and high resolution. We demonstrate an experimentally robust reconstruction algorithm based on a 2nd order quasi-Newton's method, combined with a novel phase initialization scheme. To further extend the Gigapixel imaging capability to 3D, we develop a reconstruction method to process the 4D light field measurements from sequential illumination scanning. The algorithm is based on a 'multislice' forward model that incorporates both 3D phase and diffraction effects, as well as multiple forward scatterings. To solve the inverse problem, an iterative update procedure that combines both phase retrieval and 'error back-propagation' is developed. To avoid local minimum solutions, we further develop a novel physical model-based initialization technique that accounts for both the geometric-optic and 1st order phase effects. The result is robust reconstructions of Gigapixel 3D phase images having both wide FOV and super resolution in all three dimensions. Experimental results from an LED array microscope were demonstrated.
Bankston, Theresa E; Stone, Melani C; Carta, Giorgio
2008-04-25
This work provides the theoretical foundation and a range of practical application examples of a recently developed method to measure protein mass transfer in adsorbent particles using refractive index-based optical microscopy. A ray-theoretic approach is first used to predict the behavior of light traveling through a particle during transient protein adsorption. When the protein concentration gradient in the particle is sharp, resulting in a steep refractive index gradient, the rays bend and intersect, thereby concentrating light in a sharp ring that marks the position of the adsorption front. This behavior is observed when mass transfer is dominated by pore diffusion and the adsorption isotherm is highly favorable. Applications to protein cation-exchange, hydrophobic interaction, and affinity adsorption are then considered using, as examples, the three commercial, agarose-based stationary phases SP-Sepharose-FF, Butyl Sepharose 4FF, and MabSelect. In all three cases, the method provides results that are consistent with measurements based on batch adsorption and previously published data confirming its utility for the determination of protein mass transfer kinetics under a broad range of practically relevant conditions.
Zhao, Ziqing W.; Roy, Rahul; Gebhardt, J. Christof M.; Suter, David M.; Chapman, Alec R.; Xie, X. Sunney
2014-01-01
Superresolution microscopy based on single-molecule centroid determination has been widely applied to cellular imaging in recent years. However, quantitative imaging of the mammalian nucleus has been challenging due to the lack of 3D optical sectioning methods for normal-sized cells, as well as the inability to accurately count the absolute copy numbers of biomolecules in highly dense structures. Here we report a reflected light-sheet superresolution microscopy method capable of imaging inside the mammalian nucleus with superior signal-to-background ratio as well as molecular counting with single-copy accuracy. Using reflected light-sheet superresolution microscopy, we probed the spatial organization of transcription by RNA polymerase II (RNAP II) molecules and quantified their global extent of clustering inside the mammalian nucleus. Spatiotemporal clustering analysis that leverages on the blinking photophysics of specific organic dyes showed that the majority (>70%) of the transcription foci originate from single RNAP II molecules, and no significant clustering between RNAP II molecules was detected within the length scale of the reported diameter of “transcription factories.” Colocalization measurements of RNAP II molecules equally labeled by two spectrally distinct dyes confirmed the primarily unclustered distribution, arguing against a prevalent existence of transcription factories in the mammalian nucleus as previously proposed. The methods developed in our study pave the way for quantitative mapping and stoichiometric characterization of key biomolecular species deep inside mammalian cells. PMID:24379392
A Microfluidic Platform for Correlative Live-Cell and Super-Resolution Microscopy
Tam, Johnny; Cordier, Guillaume Alan; Bálint, Štefan; Sandoval Álvarez, Ángel; Borbely, Joseph Steven; Lakadamyali, Melike
2014-01-01
Recently, super-resolution microscopy methods such as stochastic optical reconstruction microscopy (STORM) have enabled visualization of subcellular structures below the optical resolution limit. Due to the poor temporal resolution, however, these methods have mostly been used to image fixed cells or dynamic processes that evolve on slow time-scales. In particular, fast dynamic processes and their relationship to the underlying ultrastructure or nanoscale protein organization cannot be discerned. To overcome this limitation, we have recently developed a correlative and sequential imaging method that combines live-cell and super-resolution microscopy. This approach adds dynamic background to ultrastructural images providing a new dimension to the interpretation of super-resolution data. However, currently, it suffers from the need to carry out tedious steps of sample preparation manually. To alleviate this problem, we implemented a simple and versatile microfluidic platform that streamlines the sample preparation steps in between live-cell and super-resolution imaging. The platform is based on a microfluidic chip with parallel, miniaturized imaging chambers and an automated fluid-injection device, which delivers a precise amount of a specified reagent to the selected imaging chamber at a specific time within the experiment. We demonstrate that this system can be used for live-cell imaging, automated fixation, and immunostaining of adherent mammalian cells in situ followed by STORM imaging. We further demonstrate an application by correlating mitochondrial dynamics, morphology, and nanoscale mitochondrial protein distribution in live and super-resolution images. PMID:25545548
Method for semi-automated microscopy of filtration-enriched circulating tumor cells.
Pailler, Emma; Oulhen, Marianne; Billiot, Fanny; Galland, Alexandre; Auger, Nathalie; Faugeroux, Vincent; Laplace-Builhé, Corinne; Besse, Benjamin; Loriot, Yohann; Ngo-Camus, Maud; Hemanda, Merouan; Lindsay, Colin R; Soria, Jean-Charles; Vielh, Philippe; Farace, Françoise
2016-07-14
Circulating tumor cell (CTC)-filtration methods capture high numbers of CTCs in non-small-cell lung cancer (NSCLC) and metastatic prostate cancer (mPCa) patients, and hold promise as a non-invasive technique for treatment selection and disease monitoring. However filters have drawbacks that make the automation of microscopy challenging. We report the semi-automated microscopy method we developed to analyze filtration-enriched CTCs from NSCLC and mPCa patients. Spiked cell lines in normal blood and CTCs were enriched by ISET (isolation by size of epithelial tumor cells). Fluorescent staining was carried out using epithelial (pan-cytokeratins, EpCAM), mesenchymal (vimentin, N-cadherin), leukocyte (CD45) markers and DAPI. Cytomorphological staining was carried out with Mayer-Hemalun or Diff-Quik. ALK-, ROS1-, ERG-rearrangement were detected by filter-adapted-FISH (FA-FISH). Microscopy was carried out using an Ariol scanner. Two combined assays were developed. The first assay sequentially combined four-color fluorescent staining, scanning, automated selection of CD45(-) cells, cytomorphological staining, then scanning and analysis of CD45(-) cell phenotypical and cytomorphological characteristics. CD45(-) cell selection was based on DAPI and CD45 intensity, and a nuclear area >55 μm(2). The second assay sequentially combined fluorescent staining, automated selection of CD45(-) cells, FISH scanning on CD45(-) cells, then analysis of CD45(-) cell FISH signals. Specific scanning parameters were developed to deal with the uneven surface of filters and CTC characteristics. Thirty z-stacks spaced 0.6 μm apart were defined as the optimal setting, scanning 82 %, 91 %, and 95 % of CTCs in ALK-, ROS1-, and ERG-rearranged patients respectively. A multi-exposure protocol consisting of three separate exposure times for green and red fluorochromes was optimized to analyze the intensity, size and thickness of FISH signals. The semi-automated microscopy method reported here increases the feasibility and reliability of filtration-enriched CTC assays and can help progress towards their validation and translation to the clinic.
Flaberg, Emilie; Sabelström, Per; Strandh, Christer; Szekely, Laszlo
2008-01-01
Background Confocal laser scanning microscopy has revolutionized cell biology. However, the technique has major limitations in speed and sensitivity due to the fact that a single laser beam scans the sample, allowing only a few microseconds signal collection for each pixel. This limitation has been overcome by the introduction of parallel beam illumination techniques in combination with cold CCD camera based image capture. Methods Using the combination of microlens enhanced Nipkow spinning disc confocal illumination together with fully automated image capture and large scale in silico image processing we have developed a system allowing the acquisition, presentation and analysis of maximum resolution confocal panorama images of several Gigapixel size. We call the method Extended Field Laser Confocal Microscopy (EFLCM). Results We show using the EFLCM technique that it is possible to create a continuous confocal multi-colour mosaic from thousands of individually captured images. EFLCM can digitize and analyze histological slides, sections of entire rodent organ and full size embryos. It can also record hundreds of thousands cultured cells at multiple wavelength in single event or time-lapse fashion on fixed slides, in live cell imaging chambers or microtiter plates. Conclusion The observer independent image capture of EFLCM allows quantitative measurements of fluorescence intensities and morphological parameters on a large number of cells. EFLCM therefore bridges the gap between the mainly illustrative fluorescence microscopy and purely quantitative flow cytometry. EFLCM can also be used as high content analysis (HCA) instrument for automated screening processes. PMID:18627634
Correlative Super-Resolution Microscopy: New Dimensions and New Opportunities.
Hauser, Meghan; Wojcik, Michal; Kim, Doory; Mahmoudi, Morteza; Li, Wan; Xu, Ke
2017-06-14
Correlative microscopy, the integration of two or more microscopy techniques performed on the same sample, produces results that emphasize the strengths of each technique while offsetting their individual weaknesses. Light microscopy has historically been a central method in correlative microscopy due to its widespread availability, compatibility with hydrated and live biological samples, and excellent molecular specificity through fluorescence labeling. However, conventional light microscopy can only achieve a resolution of ∼300 nm, undercutting its advantages in correlations with higher-resolution methods. The rise of super-resolution microscopy (SRM) over the past decade has drastically improved the resolution of light microscopy to ∼10 nm, thus creating exciting new opportunities and challenges for correlative microscopy. Here we review how these challenges are addressed to effectively correlate SRM with other microscopy techniques, including light microscopy, electron microscopy, cryomicroscopy, atomic force microscopy, and various forms of spectroscopy. Though we emphasize biological studies, we also discuss the application of correlative SRM to materials characterization and single-molecule reactions. Finally, we point out current limitations and discuss possible future improvements and advances. We thus demonstrate how a correlative approach adds new dimensions of information and provides new opportunities in the fast-growing field of SRM.
Frequency domain phase-shifted confocal microscopy (FDPCM) with array detection
NASA Astrophysics Data System (ADS)
Ge, Baoliang; Huang, Yujia; Fang, Yue; Kuang, Cuifang; Xiu, Peng; Liu, Xu
2017-09-01
We proposed a novel method to reconstruct images taken by array detected confocal microscopy without prior knowledge about its detector distribution. The proposed frequency domain phase-shifted confocal microscopy (FDPCM) shifts the image from each detection channel to its corresponding place by substituting the phase information in Fourier domain. Theoretical analysis shows that our method could approach the resolution nearly twofold of wide-field microscopy. Simulation and experiment results are also shown to verify the applicability and effectiveness of our method. Compared to Airyscan, our method holds the advantage of simplicity and convenience to be applied to array detectors with different structure, which makes FDPCM have great potential in the application of biomedical observation in the future.
Pal, Rahul; Yang, Jinping; Ortiz, Daniel; Qiu, Suimin; Resto, Vicente; McCammon, Susan; Vargas, Gracie
2015-01-01
The epithelial-connective tissue interface (ECTI) plays an integral role in epithelial neoplasia, including oral squamous cell carcinoma (OSCC). This interface undergoes significant alterations due to hyperproliferating epithelium that supports the transformation of normal epithelium to precancers and cancer. We present a method based on nonlinear optical microscopy to directly assess the ECTI and quantify dysplastic alterations using a hamster model for oral carcinogenesis. Neoplastic and non-neoplastic normal mucosa were imaged in-vivo by both multiphoton autofluorescence microscopy (MPAM) and second harmonic generation microscopy (SHGM) to obtain cross-sectional reconstructions of the oral epithelium and lamina propria. Imaged sites were biopsied and processed for histopathological grading and measurement of ECTI parameters. An ECTI shape parameter was calculated based on deviation from the linear geometry (ΔLinearity) seen in normal mucosa was measured using MPAM-SHGM and histology. The ECTI was readily visible in MPAM-SHGM and quantitative shape analysis showed ECTI deformation in dysplasia but not in normal mucosa. ΔLinearity was significantly (p < 0.01) higher in dysplasia (0.41±0.24) than normal (0.11±0.04) as measured in MPAM-SHGM and results were confirmed in histology which showed similar trends in ΔLinearity. Increase in ΔLinearity was also statistically significant for different grades of dysplasia. In-vivo ΔLinearity measurement alone from microscopy discriminated dysplasia from normal tissue with 87.9% sensitivity and 97.6% specificity, while calculations from histology provided 96.4% sensitivity and 85.7% specificity. Among other quantifiable architectural changes, a progressive statistically significant increase in epithelial thickness was seen with increasing grade of dysplasia. MPAM-SHGM provides new noninvasive ways for direct characterization of ECTI which may be used in preclinical studies to investigate the role of this interface in early transformation. Further development of the method may also lead to new diagnostic approaches to differentiate non-neoplastic tissue from precancers and neoplasia, possibly with other cellular and layer based indicators of abnormality.
The combination of scanning electron and scanning probe microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sapozhnikov, I. D.; Gorbenko, O. M., E-mail: gorolga64@gmail.com; Felshtyn, M. L.
2016-06-17
We suggest the SPM module to combine SEM and SPM methods for studying surfaces. The module is based on the original mechanical moving and scanning system. The examples of studies of the steel surface microstructure in both SEM and SPM modes are presented.
NASA Astrophysics Data System (ADS)
Lien, Chi-Hsiang; Lin, Chun-Yu; Chen, Shean-Jen; Chien, Fan-Ching
2017-02-01
A three-dimensional (3D) single fluorescent particle tracking strategy based on temporal focusing multiphoton excitation microscopy (TFMPEM) combined with astigmatism imaging is proposed for delivering nanoscale-level axial information that reveals 3D trajectories of single fluorospheres in the axially-resolved multiphoton excitation volume without z-axis scanning. It provides the dynamical ability by measuring the diffusion coefficient of fluorospheres in glycerol solutions with a position standard deviation of 14 nm and 21 nm in the lateral and axial direction and a frame rate of 100 Hz. Moreover, the optical trapping force based on the TFMPEM is minimized to avoid the interference in the tracing measurements compared to that in the spatial focusing MPE approaches. Therefore, we presented a three dimensional single particle tracking strategy to overcome the limitation of the time resolution of the multiphoton imaging using fast frame rate of TFMPEM, and provide three dimensional locations of multiple particles using an astigmatism method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yiyi; Wang, Junli; Qi, Shengli
In this report, a series of composite films consisting of polyimide as the matrix and multi-wall carbon nanotubes as the filler (PI/MWCNTs) were prepared in a water-based method with the use of triethylamine. Their dielectric properties were tested under frequency of between 100 Hz and 10 MHz, and it was revealed that the permittivity value behaved interestingly around the percolation threshold (8.01% in volume). The water-based method ensured that fillers had high dispersibility in the matrix before percolation, which led to a relatively high dielectric constant (284.28). However, the overlapping caused by excess MWCNTs created pathways for electrons inside the matrix, turningmore » the permittivity to negative. The former phenomenon was highly congruent with the percolation power law, while the latter could be explained by the Drude Model. AC conductivity was measured for more supportive information. Additionally, scanning electron microscopy and transmission electron microscopy were employed to record MWCNTs' microscopic distribution and morphology at the percolation threshold.« less
Martinez, G T; Rosenauer, A; De Backer, A; Verbeeck, J; Van Aert, S
2014-02-01
High angle annular dark field scanning transmission electron microscopy (HAADF STEM) images provide sample information which is sensitive to the chemical composition. The image intensities indeed scale with the mean atomic number Z. To some extent, chemically different atomic column types can therefore be visually distinguished. However, in order to quantify the atomic column composition with high accuracy and precision, model-based methods are necessary. Therefore, an empirical incoherent parametric imaging model can be used of which the unknown parameters are determined using statistical parameter estimation theory (Van Aert et al., 2009, [1]). In this paper, it will be shown how this method can be combined with frozen lattice multislice simulations in order to evolve from a relative toward an absolute quantification of the composition of single atomic columns with mixed atom types. Furthermore, the validity of the model assumptions are explored and discussed. © 2013 Published by Elsevier B.V. All rights reserved.
Arigovindan, Muthuvel; Shaevitz, Joshua; McGowan, John; Sedat, John W; Agard, David A
2010-03-29
We address the problem of computational representation of image formation in 3D widefield fluorescence microscopy with depth varying spherical aberrations. We first represent 3D depth-dependent point spread functions (PSFs) as a weighted sum of basis functions that are obtained by principal component analysis (PCA) of experimental data. This representation is then used to derive an approximating structure that compactly expresses the depth variant response as a sum of few depth invariant convolutions pre-multiplied by a set of 1D depth functions, where the convolving functions are the PCA-derived basis functions. The model offers an efficient and convenient trade-off between complexity and accuracy. For a given number of approximating PSFs, the proposed method results in a much better accuracy than the strata based approximation scheme that is currently used in the literature. In addition to yielding better accuracy, the proposed methods automatically eliminate the noise in the measured PSFs.
Analysis of gene expression levels in individual bacterial cells without image segmentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwak, In Hae; Son, Minjun; Hagen, Stephen J., E-mail: sjhagen@ufl.edu
2012-05-11
Highlights: Black-Right-Pointing-Pointer We present a method for extracting gene expression data from images of bacterial cells. Black-Right-Pointing-Pointer The method does not employ cell segmentation and does not require high magnification. Black-Right-Pointing-Pointer Fluorescence and phase contrast images of the cells are correlated through the physics of phase contrast. Black-Right-Pointing-Pointer We demonstrate the method by characterizing noisy expression of comX in Streptococcus mutans. -- Abstract: Studies of stochasticity in gene expression typically make use of fluorescent protein reporters, which permit the measurement of expression levels within individual cells by fluorescence microscopy. Analysis of such microscopy images is almost invariably based on amore » segmentation algorithm, where the image of a cell or cluster is analyzed mathematically to delineate individual cell boundaries. However segmentation can be ineffective for studying bacterial cells or clusters, especially at lower magnification, where outlines of individual cells are poorly resolved. Here we demonstrate an alternative method for analyzing such images without segmentation. The method employs a comparison between the pixel brightness in phase contrast vs fluorescence microscopy images. By fitting the correlation between phase contrast and fluorescence intensity to a physical model, we obtain well-defined estimates for the different levels of gene expression that are present in the cell or cluster. The method reveals the boundaries of the individual cells, even if the source images lack the resolution to show these boundaries clearly.« less
30 CFR 57.5001 - Exposure limits for airborne contaminants.
Code of Federal Regulations, 2014 CFR
2014-07-01
... contrast microscopy (PCM) using the OSHA Reference Method in OSHA's asbestos standard found in 29 CFR 1910... further analyzed using transmission electron microscopy according to NIOSH Method 7402 or a method at...
30 CFR 57.5001 - Exposure limits for airborne contaminants.
Code of Federal Regulations, 2013 CFR
2013-07-01
... contrast microscopy (PCM) using the OSHA Reference Method in OSHA's asbestos standard found in 29 CFR 1910... further analyzed using transmission electron microscopy according to NIOSH Method 7402 or a method at...
30 CFR 57.5001 - Exposure limits for airborne contaminants.
Code of Federal Regulations, 2012 CFR
2012-07-01
... contrast microscopy (PCM) using the OSHA Reference Method in OSHA's asbestos standard found in 29 CFR 1910... further analyzed using transmission electron microscopy according to NIOSH Method 7402 or a method at...
30 CFR 57.5001 - Exposure limits for airborne contaminants.
Code of Federal Regulations, 2011 CFR
2011-07-01
... contrast microscopy (PCM) using the OSHA Reference Method in OSHA's asbestos standard found in 29 CFR 1910... further analyzed using transmission electron microscopy according to NIOSH Method 7402 or a method at...
2011-01-01
Background During pregnancy, malaria infection with Plasmodium falciparum or Plasmodium vivax is related to adverse maternal health and poor birth outcomes. Diagnosis of malaria, during pregnancy, is complicated by the absence or low parasite densities in peripheral blood. Diagnostic methods, other than microscopy, are needed for detection of placental malaria. Therefore, the diagnostic accuracy of rapid diagnostic tests (RDTs), detecting antigen, and molecular techniques (PCR), detecting DNA, for the diagnosis of Plasmodium infections in pregnancy was systematically reviewed. Methods MEDLINE, EMBASE and Web of Science were searched for studies assessing the diagnostic accuracy of RDTs, PCR, microscopy of peripheral and placental blood and placental histology for the detection of malaria infection (all species) in pregnant women. Results The results of 49 studies were analysed in metandi (Stata), of which the majority described P. falciparum infections. Although both placental and peripheral blood microscopy cannot reliably replace histology as a reference standard for placental P. falciparum infection, many studies compared RDTs and PCR to these tests. The proportion of microscopy positives in placental blood (sensitivity) detected by peripheral blood microscopy, RDTs and PCR are respectively 72% [95% CI 62-80], 81% [95% CI 55-93] and 94% [95% CI 86-98]. The proportion of placental blood microscopy negative women that were negative in peripheral blood microscopy, RDTs and PCR (specificity) are 98% [95% CI 95-99], 94% [95% CI 76-99] and 77% [95% CI 71-82]. Based on the current data, it was not possible to determine if the false positives in RDTs and PCR are caused by sequestered parasites in the placenta that are not detected by placental microscopy. Conclusion The findings suggest that RDTs and PCR may have good performance characteristics to serve as alternatives for the diagnosis of malaria in pregnancy, besides any other limitations and practical considerations concerning the use of these tests. Nevertheless, more studies with placental histology as reference test are urgently required to reliably determine the accuracy of RDTs and PCR for the diagnosis of placental malaria. P. vivax-infections have been neglected in diagnostic test accuracy studies of malaria in pregnancy. PMID:22035448
Isotropic differential phase contrast microscopy for quantitative phase bio-imaging.
Chen, Hsi-Hsun; Lin, Yu-Zi; Luo, Yuan
2018-05-16
Quantitative phase imaging (QPI) has been investigated to retrieve optical phase information of an object and applied to biological microscopy and related medical studies. In recent examples, differential phase contrast (DPC) microscopy can recover phase image of thin sample under multi-axis intensity measurements in wide-field scheme. Unlike conventional DPC, based on theoretical approach under partially coherent condition, we propose a new method to achieve isotropic differential phase contrast (iDPC) with high accuracy and stability for phase recovery in simple and high-speed fashion. The iDPC is simply implemented with a partially coherent microscopy and a programmable thin-film transistor (TFT) shield to digitally modulate structured illumination patterns for QPI. In this article, simulation results show consistency of our theoretical approach for iDPC under partial coherence. In addition, we further demonstrate experiments of quantitative phase images of a standard micro-lens array, as well as label-free live human cell samples. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Schulz, Georg; Waschkies, Conny; Pfeiffer, Franz; Zanette, Irene; Weitkamp, Timm; David, Christian; Müller, Bert
2012-11-01
Imaging modalities including magnetic resonance imaging and X-ray computed tomography are established methods in daily clinical diagnosis of human brain. Clinical equipment does not provide sufficient spatial resolution to obtain morphological information on the cellular level, essential for applying minimally or non-invasive surgical interventions. Therefore, generic data with lateral sub-micrometer resolution have been generated from histological slices post mortem. Sub-cellular spatial resolution, lost in the third dimension as a result of sectioning, is obtained using magnetic resonance microscopy and micro computed tomography. We demonstrate that for human cerebellum grating-based X-ray phase tomography shows complementary contrast to magnetic resonance microscopy and histology. In this study, the contrast-to-noise values of magnetic resonance microscopy and phase tomography were comparable whereas the spatial resolution in phase tomography is an order of magnitude better. The registered data with their complementary information permit the distinct segmentation of tissues within the human cerebellum.
Label-free imaging of gold nanoparticles in single live cells by photoacoustic microscopy
NASA Astrophysics Data System (ADS)
Tian, Chao; Qian, Wei; Shao, Xia; Xie, Zhixing; Cheng, Xu; Liu, Shengchun; Cheng, Qian; Liu, Bing; Wang, Xueding
2016-03-01
Gold nanoparticles (AuNPs) have been extensively explored as a model nanostructure in nanomedicine and have been widely used to provide advanced biomedical research tools in diagnostic imaging and therapy. Due to the necessity of targeting AuNPs to individual cells, evaluation and visualization of AuNPs in the cellular level is critical to fully understand their interaction with cellular environment. Currently imaging technologies, such as fluorescence microscopy and transmission electron microscopy all have advantages and disadvantages. In this paper, we synthesized AuNPs by femtosecond pulsed laser ablation, modified their surface chemistry through sequential bioconjugation, and targeted the functionalized AuNPs with individual cancer cells. Based on their high optical absorption contrast, we developed a novel, label-free imaging method to evaluate and visualize intracellular AuNPs using photoacoustic microscopy (PAM). Preliminary study shows that the PAM imaging technique is capable of imaging cellular uptake of AuNPs in vivo at single-cell resolution, which provide an important tool for the study of AuNPs in nanomedicine.
Gerbich, Therese M.; Rana, Kishan; Suzuki, Aussie; Schaefer, Kristina N.; Heppert, Jennifer K.; Boothby, Thomas C.; Allbritton, Nancy L.; Gladfelter, Amy S.; Maddox, Amy S.
2018-01-01
Fluorescence microscopy is a powerful approach for studying subcellular dynamics at high spatiotemporal resolution; however, conventional fluorescence microscopy techniques are light-intensive and introduce unnecessary photodamage. Light-sheet fluorescence microscopy (LSFM) mitigates these problems by selectively illuminating the focal plane of the detection objective by using orthogonal excitation. Orthogonal excitation requires geometries that physically limit the detection objective numerical aperture (NA), thereby limiting both light-gathering efficiency (brightness) and native spatial resolution. We present a novel live-cell LSFM method, lateral interference tilted excitation (LITE), in which a tilted light sheet illuminates the detection objective focal plane without a sterically limiting illumination scheme. LITE is thus compatible with any detection objective, including oil immersion, without an upper NA limit. LITE combines the low photodamage of LSFM with high resolution, high brightness, and coverslip-based objectives. We demonstrate the utility of LITE for imaging animal, fungal, and plant model organisms over many hours at high spatiotemporal resolution. PMID:29490939
Facile method to stain the bacterial cell surface for super-resolution fluorescence microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gunsolus, Ian L.; Hu, Dehong; Mihai, Cosmin
A method to fluorescently stain the surfaces of both Gram-negative and Gram-positive bacterial cells compatible with super-resolution fluorescence microscopy is presented. This method utilizes a commercially-available fluorescent probe to label primary amines at the surface of the cell. We demonstrate efficient staining of two bacterial strains, the Gram-negative Shewanella oneidensis MR-1 and the Gram-positive Bacillus subtilis 168. Using structured illumination microscopy and stochastic optical reconstruction microscopy, which require high quantum yield or specialized dyes, we show that this staining method may be used to resolve the bacterial cell surface with sub-diffraction-limited resolution. We further use this method to identify localizationmore » patterns of nanomaterials, specifically cadmium selenide quantum dots, following interaction with bacterial cells.« less
NASA Astrophysics Data System (ADS)
Kulikov, D. A.; Potapov, A. A.; Rassadin, A. E.; Stepanov, A. V.
2017-10-01
In the paper, methods of verification of models for growth of solid state surface by means of atomic force microscopy are suggested. Simulation of growth of fractals with cylindrical generatrix on the solid state surface is presented. Our mathematical model of this process is based on generalization of the Kardar-Parisi-Zhang equation. Corner stones of this generalization are both conjecture of anisotropy of growth of the surface and approximation of small angles. The method of characteristics has been applied to solve the Kardar-Parisi-Zhang equation. Its solution should be considered up to the gradient catastrophe. The difficulty of nondifferentiability of fractal initial generatrix has been overcome by transition from a mathematical fractal to a physical one.
Lai, Yiu Wai; Krause, Michael; Savan, Alan; Thienhaus, Sigurd; Koukourakis, Nektarios; Hofmann, Martin R; Ludwig, Alfred
2011-10-01
A high-throughput characterization technique based on digital holography for mapping film thickness in thin-film materials libraries was developed. Digital holographic microscopy is used for fully automatic measurements of the thickness of patterned films with nanometer resolution. The method has several significant advantages over conventional stylus profilometry: it is contactless and fast, substrate bending is compensated, and the experimental setup is simple. Patterned films prepared by different combinatorial thin-film approaches were characterized to investigate and demonstrate this method. The results show that this technique is valuable for the quick, reliable and high-throughput determination of the film thickness distribution in combinatorial materials research. Importantly, it can also be applied to thin films that have been structured by shadow masking.
Functional Scanning Probe Imaging of Nanostructured Solar Energy Materials.
Giridharagopal, Rajiv; Cox, Phillip A; Ginger, David S
2016-09-20
From hybrid perovskites to semiconducting polymer/fullerene blends for organic photovoltaics, many new materials being explored for energy harvesting and storage exhibit performance characteristics that depend sensitively on their nanoscale morphology. At the same time, rapid advances in the capability and accessibility of scanning probe microscopy methods over the past decade have made it possible to study processing/structure/function relationships ranging from photocurrent collection to photocarrier lifetimes with resolutions on the scale of tens of nanometers or better. Importantly, such scanning probe methods offer the potential to combine measurements of local structure with local function, and they can be implemented to study materials in situ or devices in operando to better understand how materials evolve in time in response to an external stimulus or environmental perturbation. This Account highlights recent advances in the development and application of scanning probe microscopy methods that can help address such questions while filling key gaps between the capabilities of conventional electron microscopy and newer super-resolution optical methods. Focusing on semiconductor materials for solar energy applications, we highlight a range of electrical and optoelectronic scanning probe microscopy methods that exploit the local dynamics of an atomic force microscope tip to probe key properties of the solar cell material or device structure. We discuss how it is possible to extract relevant device properties using noncontact scanning probe methods as well as how these properties guide materials development. Specifically, we discuss intensity-modulated scanning Kelvin probe microscopy (IM-SKPM), time-resolved electrostatic force microscopy (trEFM), frequency-modulated electrostatic force microscopy (FM-EFM), and cantilever ringdown imaging. We explain these developments in the context of classic atomic force microscopy (AFM) methods that exploit the physics of cantilever motion and photocarrier generation to provide robust, nanoscale measurements of materials physics that are correlated with device operation. We predict that the multidimensional data sets made possible by these types of methods will become increasingly important as advances in data science expand capabilities and opportunities for image correlation and discovery.
Dahlström, C; Allem, R; Uesaka, T
2011-02-01
We have developed a new method for characterizing microstructures of paper coating using argon ion beam milling technique and field emission scanning electron microscopy. The combination of these two techniques produces extremely high-quality images with very few artefacts, which are particularly suited for quantitative analyses of coating structures. A new evaluation method has been developed by using marker-controlled watershed segmentation technique of the secondary electron images. The high-quality secondary electron images with well-defined pores makes it possible to use this semi-automatic segmentation method. One advantage of using secondary electron images instead of backscattered electron images is being able to avoid possible overestimation of the porosity because of the signal depth. A comparison was made between the new method and the conventional method using greyscale histogram thresholding of backscattered electron images. The results showed that the conventional method overestimated the pore area by 20% and detected around 5% more pores than the new method. As examples of the application of the new method, we have investigated the distributions of coating binders, and the relationship between local coating porosity and base sheet structures. The technique revealed, for the first time with direct evidence, the long-suspected coating non-uniformity, i.e. binder migration, and the correlation between coating porosity versus base sheet mass density, in a straightforward way. © 2010 The Authors Journal compilation © 2010 The Royal Microscopical Society.
Wavelet-based tracking of bacteria in unreconstructed off-axis holograms.
Marin, Zach; Wallace, J Kent; Nadeau, Jay; Khalil, Andre
2018-03-01
We propose an automated wavelet-based method of tracking particles in unreconstructed off-axis holograms to provide rough estimates of the presence of motion and particle trajectories in digital holographic microscopy (DHM) time series. The wavelet transform modulus maxima segmentation method is adapted and tailored to extract Airy-like diffraction disks, which represent bacteria, from DHM time series. In this exploratory analysis, the method shows potential for estimating bacterial tracks in low-particle-density time series, based on a preliminary analysis of both living and dead Serratia marcescens, and for rapidly providing a single-bit answer to whether a sample chamber contains living or dead microbes or is empty. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Dong, Biqin; Almassalha, Luay Matthew; Urban, Ben E.; Nguyen, The-Quyen; Khuon, Satya; Chew, Teng-Leong; Backman, Vadim; Sun, Cheng; Zhang, Hao F.
2017-02-01
Distinguishing minute differences in spectroscopic signatures is crucial for revealing the fluorescence heterogeneity among fluorophores to achieve a high molecular specificity. Here we report spectroscopic photon localization microscopy (SPLM), a newly developed far-field spectroscopic imaging technique, to achieve nanoscopic resolution based on the principle of single-molecule localization microscopy while simultaneously uncovering the inherent molecular spectroscopic information associated with each stochastic event (Dong et al., Nature Communications 2016, in press). In SPLM, by using a slit-less monochromator, both the zero-order and the first-order diffractions from a grating were recorded simultaneously by an electron multiplying charge-coupled device to reveal the spatial distribution and the associated emission spectra of individual stochastic radiation events, respectively. As a result, the origins of photon emissions from different molecules can be identified according to their spectral differences with sub-nm spectral resolution, even when the molecules are within close proximity. With the newly developed algorithms including background subtraction and spectral overlap unmixing, we established and tested a method which can significantly extend the fundamental spatial resolution limit of single molecule localization microscopy by molecular discrimination through spectral regression. Taking advantage of this unique capability, we demonstrated improvement in spatial resolution of PALM/STORM up to ten fold with selected fluorophores. This technique can be readily adopted by other research groups to greatly enhance the optical resolution of single molecule localization microscopy without the need to modify their existing staining methods and protocols. This new resolving capability can potentially provide new insights into biological phenomena and enable significant research progress to be made in the life sciences.
Single-exposure quantitative phase imaging in color-coded LED microscopy.
Lee, Wonchan; Jung, Daeseong; Ryu, Suho; Joo, Chulmin
2017-04-03
We demonstrate single-shot quantitative phase imaging (QPI) in a platform of color-coded LED microscopy (cLEDscope). The light source in a conventional microscope is replaced by a circular LED pattern that is trisected into subregions with equal area, assigned to red, green, and blue colors. Image acquisition with a color image sensor and subsequent computation based on weak object transfer functions allow for the QPI of a transparent specimen. We also provide a correction method for color-leakage, which may be encountered in implementing our method with consumer-grade LEDs and image sensors. Most commercially available LEDs and image sensors do not provide spectrally isolated emissions and pixel responses, generating significant error in phase estimation in our method. We describe the correction scheme for this color-leakage issue, and demonstrate improved phase measurement accuracy. The computational model and single-exposure QPI capability of our method are presented by showing images of calibrated phase samples and cellular specimens.
Phenotypic Antimicrobial Susceptibility Testing with Deep Learning Video Microscopy.
Yu, Hui; Jing, Wenwen; Iriya, Rafael; Yang, Yunze; Syal, Karan; Mo, Manni; Grys, Thomas E; Haydel, Shelley E; Wang, Shaopeng; Tao, Nongjian
2018-05-15
Timely determination of antimicrobial susceptibility for a bacterial infection enables precision prescription, shortens treatment time, and helps minimize the spread of antibiotic resistant infections. Current antimicrobial susceptibility testing (AST) methods often take several days and thus impede these clinical and health benefits. Here, we present an AST method by imaging freely moving bacterial cells in urine in real time and analyzing the videos with a deep learning algorithm. The deep learning algorithm determines if an antibiotic inhibits a bacterial cell by learning multiple phenotypic features of the cell without the need for defining and quantifying each feature. We apply the method to urinary tract infection, a common infection that affects millions of people, to determine the minimum inhibitory concentration of pathogens from both bacteria spiked urine and clinical infected urine samples for different antibiotics within 30 min and validate the results with the gold standard broth macrodilution method. The deep learning video microscopy-based AST holds great potential to contribute to the solution of increasing drug-resistant infections.
Trägårdh, Johanna; Gersen, Henkjan
2013-07-15
We show how a combination of near-field scanning optical microscopy with crossed beam spectral interferometry allows a local measurement of the spectral phase and amplitude of light propagating in photonic structures. The method only requires measurement at the single point of interest and at a reference point, to correct for the relative phase of the interferometer branches, to retrieve the dispersion properties of the sample. Furthermore, since the measurement is performed in the spectral domain, the spectral phase and amplitude could be retrieved from a single camera frame, here in 70 ms for a signal power of less than 100 pW limited by the dynamic range of the 8-bit camera. The method is substantially faster than most previous time-resolved NSOM methods that are based on time-domain interferometry, which also reduced problems with drift. We demonstrate how the method can be used to measure the refractive index and group velocity in a waveguide structure.
Species-specific detection of processed animal proteins in feed by Raman spectroscopy.
Mandrile, Luisa; Amato, Giuseppina; Marchis, Daniela; Martra, Gianmario; Rossi, Andrea Mario
2017-08-15
The existing European Regulation (EC n° 51/2013) prohibits the use of animals meals in feedstuffs in order to prevent Bovine Spongiform Encephalopathy infection and diffusion, however the legislation is rapidly moving towards a partial lifting of the "feed ban" and the competent control organisms are urged to develop suitable analytical methods able to avoid food safety incidents related to animal origin products. The limitations of the official methods (i.e. light microscopy and Polymerase Chain Reaction) suggest exploring new analytic ways to get reliable results in a short time. The combination of spectroscopic techniques with optical microscopy allows the development of an individual particle method able to meet both selectivity and sensitivity requirements (0.1%w/w). A spectroscopic method based on Fourier Transform micro-Raman spectroscopy coupled with Discriminant Analysis is here presented. This approach could be very useful for in-situ applications, such as customs inspections, since it drastically reduces time and costs of analysis. Copyright © 2017. Published by Elsevier Ltd.
A combined method for correlative 3D imaging of biological samples from macro to nano scale
NASA Astrophysics Data System (ADS)
Kellner, Manuela; Heidrich, Marko; Lorbeer, Raoul-Amadeus; Antonopoulos, Georgios C.; Knudsen, Lars; Wrede, Christoph; Izykowski, Nicole; Grothausmann, Roman; Jonigk, Danny; Ochs, Matthias; Ripken, Tammo; Kühnel, Mark P.; Meyer, Heiko
2016-10-01
Correlative analysis requires examination of a specimen from macro to nano scale as well as applicability of analytical methods ranging from morphological to molecular. Accomplishing this with one and the same sample is laborious at best, due to deformation and biodegradation during measurements or intermediary preparation steps. Furthermore, data alignment using differing imaging techniques turns out to be a complex task, which considerably complicates the interconnection of results. We present correlative imaging of the accessory rat lung lobe by combining a modified Scanning Laser Optical Tomography (SLOT) setup with a specially developed sample preparation method (CRISTAL). CRISTAL is a resin-based embedding method that optically clears the specimen while allowing sectioning and preventing degradation. We applied and correlated SLOT with Multi Photon Microscopy, histological and immunofluorescence analysis as well as Transmission Electron Microscopy, all in the same sample. Thus, combining CRISTAL with SLOT enables the correlative utilization of a vast variety of imaging techniques.
Measuring mass-based hygroscopicity of atmospheric particles through in situ imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piens, Dominique S.; Kelly, Stephen T.; Harder, Tristan H.
Quantifying how atmospheric particles interact with water vapor is critical for understanding the effects of aerosols on climate. We present a novel method to measure the mass-based hygroscopicity of particles while characterizing their elemental and carbon functional group compositions. Since mass-based hygroscopicity is insensitive to particle geometry, it is advantageous for probing the hygroscopic behavior of atmospheric particles, which can have irregular morphologies. Combining scanning electron microscopy with energy dispersive X-ray analysis (SEM/EDX), scanning transmission X-ray microscopy (STXM) analysis, and in situ STXM humidification experiments, this method was validated using laboratory-generated, atmospherically relevant particles. Then, the hygroscopicity and elemental compositionmore » of 15 complex atmospheric particles were analyzed by leveraging quantification of C, N, and O from STXM, and complementary elemental quantification from SEM/EDX. We found three types of hygroscopic responses, and correlated high hygroscopicity with Na and Cl content. The mixing state of 158 other particles from the sample broadly agreed with those of the humidified particles, indicating the potential to infer atmospheric hygroscopic behavior from a selected subset of particles. As a result, these methods offer unique quantitative capabilities to characterize and correlate the hygroscopicity and chemistry of individual submicrometer atmospheric particles.« less
Measuring mass-based hygroscopicity of atmospheric particles through in situ imaging
Piens, Dominique S.; Kelly, Stephen T.; Harder, Tristan H.; ...
2016-04-18
Quantifying how atmospheric particles interact with water vapor is critical for understanding the effects of aerosols on climate. We present a novel method to measure the mass-based hygroscopicity of particles while characterizing their elemental and carbon functional group compositions. Since mass-based hygroscopicity is insensitive to particle geometry, it is advantageous for probing the hygroscopic behavior of atmospheric particles, which can have irregular morphologies. Combining scanning electron microscopy with energy dispersive X-ray analysis (SEM/EDX), scanning transmission X-ray microscopy (STXM) analysis, and in situ STXM humidification experiments, this method was validated using laboratory-generated, atmospherically relevant particles. Then, the hygroscopicity and elemental compositionmore » of 15 complex atmospheric particles were analyzed by leveraging quantification of C, N, and O from STXM, and complementary elemental quantification from SEM/EDX. We found three types of hygroscopic responses, and correlated high hygroscopicity with Na and Cl content. The mixing state of 158 other particles from the sample broadly agreed with those of the humidified particles, indicating the potential to infer atmospheric hygroscopic behavior from a selected subset of particles. As a result, these methods offer unique quantitative capabilities to characterize and correlate the hygroscopicity and chemistry of individual submicrometer atmospheric particles.« less
Holmes, T J; Liu, Y H
1989-11-15
A maximum likelihood based iterative algorithm adapted from nuclear medicine imaging for noncoherent optical imaging was presented in a previous publication with some initial computer-simulation testing. This algorithm is identical in form to that previously derived in a different way by W. H. Richardson "Bayesian-Based Iterative Method of Image Restoration," J. Opt. Soc. Am. 62, 55-59 (1972) and L. B. Lucy "An Iterative Technique for the Rectification of Observed Distributions," Astron. J. 79, 745-765 (1974). Foreseen applications include superresolution and 3-D fluorescence microscopy. This paper presents further simulation testing of this algorithm and a preliminary experiment with a defocused camera. The simulations show quantified resolution improvement as a function of iteration number, and they show qualitatively the trend in limitations on restored resolution when noise is present in the data. Also shown are results of a simulation in restoring missing-cone information for 3-D imaging. Conclusions are in support of the feasibility of using these methods with real systems, while computational cost and timing estimates indicate that it should be realistic to implement these methods. Itis suggested in the Appendix that future extensions to the maximum likelihood based derivation of this algorithm will address some of the limitations that are experienced with the nonextended form of the algorithm presented here.
Comparison of direct and indirect methods of measuring airborne chrysotile fibre concentration.
Eypert-Blaison, Celine; Veissiere, Sylvie; Rastoix, Olivier; Kauffer, Edmond
2010-01-01
Transmission electron microscopy observations most frequently form a basis for estimating asbestos fibre concentration in the environment and in buildings with asbestos-containing materials. Sampled fibres can be transferred to microscope grids by applying either a direct [ISO (1995) Draft International ISO/DIS 10312. Ambient air. Determination of asbestos fibres. Direct transfer transmission electron microscopy procedure. Geneva, Switzerland: International Standardization Organization] or an indirect [AFNOR (1996) Détermination de la concentration en fibres d'amiante par microscopie électronique à transmission-Méthode indirecte. Cedex, France: AFNOR, p. 42; ISO (1997) Draft International ISO/DIS 13794. Ambient air. Determination of asbestos fibres. Indirect-transfer transmission electron microscopy procedure. Geneva, Switzerland: International Standardization Organization] method. In the latter case, ISO Standard 13794 recommends filtering calcination residues either on a polycarbonate (PC) filter (PC indirect method) or on a cellulose ester (CE) membrane (CE indirect method). The PC indirect method requires that fibres deposited on a PC filter be covered by a carbon layer, whereas in the CE indirect method, the CE membrane has to be directly processed using a method described in ISO Standard 10312. The purpose of this study was to compare results obtained using, on the one hand, direct preparation methods and, on the other hand, PC indirect or CE indirect methods, for counting asbestos fibres deposited on filters as a result of liquid filtration or air sampling. In direct method-based preparation, we observed that an etching time of 6-14 min does not affect the measured densities, except for fibres <1 microm deposited by liquid filtration. Moreover, in all cases, the direct method gives higher densities than the PC indirect method because of possible fibre disappearance when using the carbon evaporator implemented in the PC indirect method. The CE membrane used for sample preparation in the CE indirect method is collapsed prior to passing it through the carbon evaporator, so the fibres are less likely to disappear at this stage. We then note that the resulting fibre densities for chrysotile-loaded filters prepared using the direct method are close to those obtained with filters prepared using the CE indirect method. Our study therefore shows that, under the implemented experimental conditions, the PC and CE indirect preparation methods described in ISO Standard 13794 are not equivalent.
Ashraf, Sania; Kao, Angie; Hugo, Cecilia; Christophel, Eva M; Fatunmbi, Bayo; Luchavez, Jennifer; Lilley, Ken; Bell, David
2012-10-24
Malaria diagnosis has received renewed interest in recent years, associated with the increasing accessibility of accurate diagnosis through the introduction of rapid diagnostic tests and new World Health Organization guidelines recommending parasite-based diagnosis prior to anti-malarial therapy. However, light microscopy, established over 100 years ago and frequently considered the reference standard for clinical diagnosis, has been neglected in control programmes and in the malaria literature and evidence suggests field standards are commonly poor. Microscopy remains the most accessible method for parasite quantitation, for drug efficacy monitoring, and as a reference of assessing other diagnostic tools. This mismatch between quality and need highlights the importance of the establishment of reliable standards and procedures for assessing and assuring quality. This paper describes the development, function and impact of a multi-country microscopy external quality assurance network set up for this purpose in Asia. Surveys were used for key informants and past participants for feedback on the quality assurance programme. Competency scores for each country from 14 participating countries were compiled for analyses using paired sample t-tests. In-depth interviews were conducted with key informants including the programme facilitators and national level microscopists. External assessments and limited retraining through a formalized programme based on a reference slide bank has demonstrated an increase in standards of competence of senior microscopists over a relatively short period of time, at a potentially sustainable cost. The network involved in the programme now exceeds 14 countries in the Asia-Pacific, and the methods are extended to other regions. While the impact on national programmes varies, it has translated in some instances into a strengthening of national microscopy standards and offers a possibility both for supporting revival of national microcopy programmes, and for the development of globally recognized standards of competency needed both for patient management and field research.
NASA Astrophysics Data System (ADS)
Yancey Piens, D.; Kelly, S. T.; OBrien, R. E.; Wang, B.; Petters, M. D.; Laskin, A.; Gilles, M. K.
2014-12-01
The hygroscopic behavior of atmospheric aerosols influences their optical and cloud-nucleation properties, and therefore affects climate. Although changes in particle size as a function of relative humidity have often been used to quantify the hygroscopic behavior of submicron aerosol particles, it has been noted that calculations of hygroscopicity based on size contain error due to particle porosity, non-ideal volume additivity and changes in surface tension. We will present a method to quantify the hygroscopic behavior of submicron aerosol particles based on changes in mass, rather than size, as a function of relative humidity. This method results from a novel experimental approach combining scanning transmission x-ray microscopy with near-edge x-ray absorption fine spectroscopy (STXM/NEXAFS), as well as scanning electron microscopy with energy dispersive x-ray spectroscopy (SEM/EDX) on the same individual particles. First, using STXM/NEXAFS, our methods are applied to aerosol particles of known composition ‒ for instance ammonium sulfate, sodium bromide and levoglucosan ‒ and validated by theory. Then, using STXM/NEXAFS and SEM/EDX, these methods are extended to mixed atmospheric aerosol particles collected in the field at the DOE Atmospheric Radiation Measurement (ARM) Climate Research Facility at the Southern Great Planes sampling site in Oklahoma, USA. We have observed and quantified a range of hygroscopic behaviors which are correlated to the composition and morphology of individual aerosol particles. These methods will have implications for parameterizing aerosol mixing state and cloud-nucleation activity in atmospheric models.
Automated classification of cell morphology by coherence-controlled holographic microscopy
NASA Astrophysics Data System (ADS)
Strbkova, Lenka; Zicha, Daniel; Vesely, Pavel; Chmelik, Radim
2017-08-01
In the last few years, classification of cells by machine learning has become frequently used in biology. However, most of the approaches are based on morphometric (MO) features, which are not quantitative in terms of cell mass. This may result in poor classification accuracy. Here, we study the potential contribution of coherence-controlled holographic microscopy enabling quantitative phase imaging for the classification of cell morphologies. We compare our approach with the commonly used method based on MO features. We tested both classification approaches in an experiment with nutritionally deprived cancer tissue cells, while employing several supervised machine learning algorithms. Most of the classifiers provided higher performance when quantitative phase features were employed. Based on the results, it can be concluded that the quantitative phase features played an important role in improving the performance of the classification. The methodology could be valuable help in refining the monitoring of live cells in an automated fashion. We believe that coherence-controlled holographic microscopy, as a tool for quantitative phase imaging, offers all preconditions for the accurate automated analysis of live cell behavior while enabling noninvasive label-free imaging with sufficient contrast and high-spatiotemporal phase sensitivity.
Compact, cost-effective and field-portable microscope prototype based on MISHELF microscopy
NASA Astrophysics Data System (ADS)
Sanz, Martín; Picazo-Bueno, José Ángel; Granero, Luis; García, Javier; Micó, Vicente
2017-02-01
We report on a reduced cost, portable and compact prototype design of lensless holographic microscope with an illumination/detection scheme based on wavelength multiplexing, working with single hologram acquisition and using a fast convergence algorithm for image processing. All together, MISHELF (initials coming from Multi-Illumination Single-Holographic-Exposure Lensless Fresnel) microscopy allows the recording of three Fresnel domain diffraction patterns in a single camera snap-shot incoming from illuminating the sample with three coherent lights at once. Previous implementations have proposed an illumination/detection procedure based on a tuned (illumination wavelengths centered at the maximum sensitivity of the camera detection channels) configuration but here we report on a detuned (non-centered ones) scheme resulting in prototype miniaturization and cost reduction. Thus, MISHELF microscopy in combination with a novel and fast iterative algorithm allows high-resolution (μm range) phase-retrieved (twin image elimination) quantitative phase imaging of dynamic events (video rate recording speed). The performance of this microscope prototype is validated through experiments using both amplitude (USAF resolution test) and complex (live swine sperm cells and flowing microbeads) samples. The proposed method becomes in an alternative instrument improving some capabilities of existing lensless microscopes.
Automated classification of cell morphology by coherence-controlled holographic microscopy.
Strbkova, Lenka; Zicha, Daniel; Vesely, Pavel; Chmelik, Radim
2017-08-01
In the last few years, classification of cells by machine learning has become frequently used in biology. However, most of the approaches are based on morphometric (MO) features, which are not quantitative in terms of cell mass. This may result in poor classification accuracy. Here, we study the potential contribution of coherence-controlled holographic microscopy enabling quantitative phase imaging for the classification of cell morphologies. We compare our approach with the commonly used method based on MO features. We tested both classification approaches in an experiment with nutritionally deprived cancer tissue cells, while employing several supervised machine learning algorithms. Most of the classifiers provided higher performance when quantitative phase features were employed. Based on the results, it can be concluded that the quantitative phase features played an important role in improving the performance of the classification. The methodology could be valuable help in refining the monitoring of live cells in an automated fashion. We believe that coherence-controlled holographic microscopy, as a tool for quantitative phase imaging, offers all preconditions for the accurate automated analysis of live cell behavior while enabling noninvasive label-free imaging with sufficient contrast and high-spatiotemporal phase sensitivity. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Compact, cost-effective and field-portable microscope prototype based on MISHELF microscopy
Sanz, Martín; Picazo-Bueno, José Ángel; Granero, Luis; García, Javier; Micó, Vicente
2017-01-01
We report on a reduced cost, portable and compact prototype design of lensless holographic microscope with an illumination/detection scheme based on wavelength multiplexing, working with single hologram acquisition and using a fast convergence algorithm for image processing. All together, MISHELF (initials coming from Multi-Illumination Single-Holographic-Exposure Lensless Fresnel) microscopy allows the recording of three Fresnel domain diffraction patterns in a single camera snap-shot incoming from illuminating the sample with three coherent lights at once. Previous implementations have proposed an illumination/detection procedure based on a tuned (illumination wavelengths centered at the maximum sensitivity of the camera detection channels) configuration but here we report on a detuned (non-centered ones) scheme resulting in prototype miniaturization and cost reduction. Thus, MISHELF microscopy in combination with a novel and fast iterative algorithm allows high-resolution (μm range) phase-retrieved (twin image elimination) quantitative phase imaging of dynamic events (video rate recording speed). The performance of this microscope prototype is validated through experiments using both amplitude (USAF resolution test) and complex (live swine sperm cells and flowing microbeads) samples. The proposed method becomes in an alternative instrument improving some capabilities of existing lensless microscopes. PMID:28233829
Magnetoacoustic microscopic imaging of conductive objects and nanoparticles distribution
NASA Astrophysics Data System (ADS)
Liu, Siyu; Zhang, Ruochong; Luo, Yunqi; Zheng, Yuanjin
2017-09-01
Magnetoacoustic tomography has been demonstrated as a powerful and low-cost multi-wave imaging modality. However, due to limited spatial resolution and detection efficiency of magnetoacoustic signal, full potential of the magnetoacoustic imaging remains to be tapped. Here we report a high-resolution magnetoacoustic microscopy method, where magnetic stimulation is provided by a compact solenoid resonance coil connected with a matching network, and acoustic reception is realized by using a high-frequency focused ultrasound transducer. Scanning the magnetoacoustic microscopy system perpendicularly to the acoustic axis of the focused transducer would generate a two-dimensional microscopic image with acoustically determined lateral resolution. It is analyzed theoretically and demonstrated experimentally that magnetoacoustic generation in this microscopic system depends on the conductivity profile of conductive objects and localized distribution of superparamagnetic iron magnetic nanoparticles, based on two different but related implementations. The lateral resolution is characterized. Directional nature of magnetoacoustic vibration and imaging sensitivity for mapping magnetic nanoparticles are also discussed. The proposed microscopy system offers a high-resolution method that could potentially map intrinsic conductivity distribution in biological tissue and extraneous magnetic nanoparticles.
Fast Segmentation of Stained Nuclei in Terabyte-Scale, Time Resolved 3D Microscopy Image Stacks
Stegmaier, Johannes; Otte, Jens C.; Kobitski, Andrei; Bartschat, Andreas; Garcia, Ariel; Nienhaus, G. Ulrich; Strähle, Uwe; Mikut, Ralf
2014-01-01
Automated analysis of multi-dimensional microscopy images has become an integral part of modern research in life science. Most available algorithms that provide sufficient segmentation quality, however, are infeasible for a large amount of data due to their high complexity. In this contribution we present a fast parallelized segmentation method that is especially suited for the extraction of stained nuclei from microscopy images, e.g., of developing zebrafish embryos. The idea is to transform the input image based on gradient and normal directions in the proximity of detected seed points such that it can be handled by straightforward global thresholding like Otsu’s method. We evaluate the quality of the obtained segmentation results on a set of real and simulated benchmark images in 2D and 3D and show the algorithm’s superior performance compared to other state-of-the-art algorithms. We achieve an up to ten-fold decrease in processing times, allowing us to process large data sets while still providing reasonable segmentation results. PMID:24587204
NASA Astrophysics Data System (ADS)
Miot, Jennyfer; Benzerara, Karim; Kappler, Andreas
2014-05-01
Microbe-mineral interactions occur in diverse modern environments, from the deep sea and subsurface rocks to soils and surface aquatic environments. They may have played a central role in the geochemical cycling of major (e.g., C, Fe, Ca, Mn, S, P) and trace (e.g., Ni, Mo, As, Cr) elements over Earth's history. Such interactions include electron transfer at the microbe-mineral interface that left traces in the rock record. Geomicrobiology consists in studying interactions at these organic-mineral interfaces in modern samples and looking for traces of past microbe-mineral interactions recorded in ancient rocks. Specific tools are required to probe these interfaces and to understand the mechanisms of interaction between microbes and minerals from the scale of the biofilm to the nanometer scale. In this review, we focus on recent advances in electron microscopy, in particular in cryoelectron microscopy, and on a panel of electrochemical and synchrotron-based methods that have recently provided new understanding and imaging of the microbe-mineral interface, ultimately opening new fields to be explored.
Wischhusen, Jennifer; Padilla, Frederic
2017-07-01
Targeted microbubbles (MBs) are ultrasound contrast agents that are functionalized with a ligand for ultrasound molecular imaging of endothelial markers. Novel targeted MBs are characterized in vitro by incubation in protein-coated wells, followed by binding quantification by microscopy or ultrasound imaging. Both methods provide operator-dependent results: Between 3 and 20 fields of view from a heterogeneous sample are typically selected for analysis by microscopy, and in ultrasound imaging, different acoustic settings affect signal intensities. This study proposes a new method to reproducibly quantify MB binding based on enzyme-linked immunosorbent assay (ELISA), in which bound MBs are revealed with an enzyme-linked antibody. MB-ELISA was adapted to in vitro static binding assays, incubating the MBs in inverted position or by agitation, and compared with microscopy. The specificity and sensitivity of MB-ELISA enable the reliable quantification of MB binding in a rapid, high-throughput and whole-well analysis, facilitating the characterization of new targeted contrast agents. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Nho, Hyun Woo; Kalegowda, Yogesh; Shin, Hyun-Joon; Yoon, Tae Hyun
2016-01-01
For the structural characterization of the polystyrene (PS)-based photonic crystals (PCs), fast and direct imaging capabilities of full field transmission X-ray microscopy (TXM) were demonstrated at soft X-ray energy. PS-based PCs were prepared on an O2-plasma treated Si3N4 window and their local structures and defects were investigated using this label-free TXM technique with an image acquisition speed of ~10 sec/frame and marginal radiation damage. Micro-domains of face-centered cubic (FCC (111)) and hexagonal close-packed (HCP (0001)) structures were dominantly found in PS-based PCs, while point and line defects, FCC (100), and 12-fold symmetry structures were also identified as minor components. Additionally, in situ observation capability for hydrated samples and 3D tomographic reconstruction of TXM images were also demonstrated. This soft X-ray full field TXM technique with faster image acquisition speed, in situ observation, and 3D tomography capability can be complementally used with the other X-ray microscopic techniques (i.e., scanning transmission X-ray microscopy, STXM) as well as conventional characterization methods (e.g., electron microscopic and optical/fluorescence microscopic techniques) for clearer structure identification of self-assembled PCs and better understanding of the relationship between their structures and resultant optical properties. PMID:27087141
Synchrotron-based X-ray microscopic studies for bioeffects of nanomaterials.
Zhu, Ying; Cai, Xiaoqing; Li, Jiang; Zhong, Zengtao; Huang, Qing; Fan, Chunhai
2014-04-01
There have been increasing interests in studying biological effects of nanomaterials, which are nevertheless faced up with many challenges due to the nanoscale dimensions and unique chemical properties of nanomaterials. Synchrotron-based X-ray microscopy, an advanced imaging technology with high spatial resolution and excellent elemental specificity, provides a new platform for studying interactions between nanomaterials and living systems. In this article, we review the recent progress of X-ray microscopic studies on bioeffects of nanomaterials in several living systems including cells, model organisms, animals and plants. We aim to provide an overview of the state of the art, and the advantages of using synchrotron-based X-ray microscopy for characterizing in vitro and in vivo behaviors and biodistribution of nanomaterials. We also expect that the use of a combination of new synchrotron techniques should offer unprecedented opportunities for better understanding complex interactions at the nano-biological interface and accounting for unique bioeffects of nanomaterials. Synchrotron-based X-ray microscopy is a non-destructive imaging technique that enables high resolution spatial mapping of metals with elemental level detection methods. This review summarizes the current use and perspectives of this novel technique in studying the biology and tissue interactions of nanomaterials. Copyright © 2014 Elsevier Inc. All rights reserved.
Advantages of Live Microscope Video for Laboratory and Teaching Applications
ERIC Educational Resources Information Center
Michels, Kristin K.; Michels, Zachary D.; Hotchkiss, Sara C.
2016-01-01
Although spatial reasoning and penetrative thinking skills are essential for many disciplines, these concepts are difficult for students to comprehend. In microscopy, traditional educational materials (i.e., photographs) are static. Conversely, video-based training methods convey dimensionality. We implemented a real-time digital video imaging…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Chi, E-mail: chizheung@gmail.com; Xu, Yiqing; Wei, Xiaoming
2014-07-28
Time-stretch microscopy has emerged as an ultrafast optical imaging concept offering the unprecedented combination of the imaging speed and sensitivity. However, dedicated wideband and coherence optical pulse source with high shot-to-shot stability has been mandated for time-wavelength mapping—the enabling process for ultrahigh speed wavelength-encoded image retrieval. From the practical point of view, exploiting methods to relax the stringent requirements (e.g., temporal stability and coherence) for the source of time-stretch microscopy is thus of great value. In this paper, we demonstrated time-stretch microscopy by reconstructing the time-wavelength mapping sequence from a wideband incoherent source. Utilizing the time-lens focusing mechanism mediated bymore » a narrow-band pulse source, this approach allows generation of a wideband incoherent source, with the spectral efficiency enhanced by a factor of 18. As a proof-of-principle demonstration, time-stretch imaging with the scan rate as high as MHz and diffraction-limited resolution is achieved based on the wideband incoherent source. We note that the concept of time-wavelength sequence reconstruction from wideband incoherent source can also be generalized to any high-speed optical real-time measurements, where wavelength is acted as the information carrier.« less
New approach for the quantification of processed animal proteins in feed using light microscopy.
Veys, P; Baeten, V
2010-07-01
A revision of European Union's total feed ban on animal proteins in feed will need robust quantification methods, especially for control analyses, if tolerance levels are to be introduced, as for fishmeal in ruminant feed. In 2006, a study conducted by the Community Reference Laboratory for Animal Proteins in feedstuffs (CRL-AP) demonstrated the deficiency of the official quantification method based on light microscopy. The study concluded that the method had to be revised. This paper puts forward an improved quantification method based on three elements: (1) the preparation of permanent slides with an optical adhesive preserving all morphological markers of bones necessary for accurate identification and precision counting; (2) the use of a counting grid eyepiece reticle; and (3) new definitions for correction factors for the estimated portions of animal particles in the sediment. This revised quantification method was tested on feeds adulterated at different levels with bovine meat and bone meal (MBM) and fishmeal, and it proved to be effortless to apply. The results obtained were very close to the expected values of contamination levels for both types of adulteration (MBM or fishmeal). Calculated values were not only replicable, but also reproducible. The advantages of the new approach, including the benefits of the optical adhesive used for permanent slide mounting and the experimental conditions that need to be met to implement the new method correctly, are discussed.
Hybrid statistics-simulations based method for atom-counting from ADF STEM images.
De Wael, Annelies; De Backer, Annick; Jones, Lewys; Nellist, Peter D; Van Aert, Sandra
2017-06-01
A hybrid statistics-simulations based method for atom-counting from annular dark field scanning transmission electron microscopy (ADF STEM) images of monotype crystalline nanostructures is presented. Different atom-counting methods already exist for model-like systems. However, the increasing relevance of radiation damage in the study of nanostructures demands a method that allows atom-counting from low dose images with a low signal-to-noise ratio. Therefore, the hybrid method directly includes prior knowledge from image simulations into the existing statistics-based method for atom-counting, and accounts in this manner for possible discrepancies between actual and simulated experimental conditions. It is shown by means of simulations and experiments that this hybrid method outperforms the statistics-based method, especially for low electron doses and small nanoparticles. The analysis of a simulated low dose image of a small nanoparticle suggests that this method allows for far more reliable quantitative analysis of beam-sensitive materials. Copyright © 2017 Elsevier B.V. All rights reserved.
Fungal Rhinosinusitis: Microbiological and Histopathological Perspective
Singh, Ajay Kumar; Verma, Nitya; Khare, Vineeta; Ahamad, Abrar; Verma, Virendra; Agarwal, S.P
2017-01-01
Introduction On the basis of histopathology Fungal Rhinosinusitis (FRS) is categorized into non-invasive (allergic fungal rhinosinusitis, fungal ball) and invasive (acute invasive, chronic invasive and granulomatous invasive fungal sinusitis). This differentiation helps to decide the treatment. Role of latest molecular methods such as PCR and conventional methods such as KOH microscopy and culture also needs to be evaluated. Therefore, in this study we planned to categorise fungal rhinosinusitis on the basis of histopathology and compare it with other methods such as PCR, culture and KOH microscopy. Aim To analyse fungal rhinosinusitis cases by both histopathologically and microbiologically. Materials and Methods A total of 76 clinically suspected fungal rhinosinusitis cases were included in the study. The tissue of suspected cases were processed and examined by KOH microscopy, histopathologically, culture and PCR. Histopathological examination was done by PAS, GMS and H&E stain. Results FRS was diagnosed in 37 (48.68%) cases out of 76 clinically suspected cases of FRS. In which 17 (22.3%) cases were positive by direct microscopy, 21 (27.6%) by culture, 27 (35.5%) by PCR and 14 (18.42%) by histopathology. Approximately 14 cases of FRS were classified according to histopathology; 10 (71.3%) as non-invasive FRS. Out of these 10, 9 (64.2%) were classified as AFRS and 1 (7.14%) as fungal ball. Only 4 cases (28.5%) were diagnosed with invasive FRS. Out of these 4 cases, 2 (14.2%) were of chronic invasive fungal rhinosinusitis, 1 (7.14%) was of granulomatous invasive fungal rhinosinusitis and 1 (7.14%) was of acute fulminant invasive fungal rhinosinusitis. Allergic Fungal Rhinosinusitis (AFRS) is the most common type of FRS. Aspergillus flavus was found to be the most common fungi causing FRS. Conclusion Diagnosis should not be based on the single method. It should be done by both histopathological and microbiological methods, especially for those cases which are difficult to diagnose. PMID:28892889
Selvakumar, N; Murthy, B N; Prabhakaran, E; Sivagamasundari, S; Vasanthan, Samuel; Perumal, M; Govindaraju, R; Chauhan, L S; Wares, Fraser; Santha, T; Narayanan, P R
2005-02-01
Assessment of 12 microscopy centers in a tuberculosis unit by blinded checking of eight sputum smears selected by using a lot quality assurance sampling (LQAS) method and by unblinded checking of all positive and five negative slides, among the slides examined in a month in a microscopy centre, revealed that the LQAS method can be implemented in the field to monitor the performance of acid-fast bacillus microscopy centers in national tuberculosis control programs.
Selvakumar, N.; Murthy, B. N.; Prabhakaran, E.; Sivagamasundari, S.; Vasanthan, Samuel; Perumal, M.; Govindaraju, R.; Chauhan, L. S.; Wares, Fraser; Santha, T.; Narayanan, P. R.
2005-01-01
Assessment of 12 microscopy centers in a tuberculosis unit by blinded checking of eight sputum smears selected by using a lot quality assurance sampling (LQAS) method and by unblinded checking of all positive and five negative slides, among the slides examined in a month in a microscopy centre, revealed that the LQAS method can be implemented in the field to monitor the performance of acid-fast bacillus microscopy centers in national tuberculosis control programs. PMID:15695704
Electron Microscopy of Ebola Virus-Infected Cells.
Noda, Takeshi
2017-01-01
Ebola virus (EBOV) replicates in host cells, where both viral and cellular components show morphological changes during the process of viral replication from entry to budding. These steps in the replication cycle can be studied using electron microscopy (EM), including transmission electron microscopy (TEM) and scanning electron microscopy (SEM), which is one of the most useful methods for visualizing EBOV particles and EBOV-infected cells at the ultrastructural level. This chapter describes conventional methods for EM sample preparation of cultured cells infected with EBOV.
Introduction to Modern Methods in Light Microscopy.
Ryan, Joel; Gerhold, Abby R; Boudreau, Vincent; Smith, Lydia; Maddox, Paul S
2017-01-01
For centuries, light microscopy has been a key method in biological research, from the early work of Robert Hooke describing biological organisms as cells, to the latest in live-cell and single-molecule systems. Here, we introduce some of the key concepts related to the development and implementation of modern microscopy techniques. We briefly discuss the basics of optics in the microscope, super-resolution imaging, quantitative image analysis, live-cell imaging, and provide an outlook on active research areas pertaining to light microscopy.
FALCON: fast and unbiased reconstruction of high-density super-resolution microscopy data
NASA Astrophysics Data System (ADS)
Min, Junhong; Vonesch, Cédric; Kirshner, Hagai; Carlini, Lina; Olivier, Nicolas; Holden, Seamus; Manley, Suliana; Ye, Jong Chul; Unser, Michael
2014-04-01
Super resolution microscopy such as STORM and (F)PALM is now a well known method for biological studies at the nanometer scale. However, conventional imaging schemes based on sparse activation of photo-switchable fluorescent probes have inherently slow temporal resolution which is a serious limitation when investigating live-cell dynamics. Here, we present an algorithm for high-density super-resolution microscopy which combines a sparsity-promoting formulation with a Taylor series approximation of the PSF. Our algorithm is designed to provide unbiased localization on continuous space and high recall rates for high-density imaging, and to have orders-of-magnitude shorter run times compared to previous high-density algorithms. We validated our algorithm on both simulated and experimental data, and demonstrated live-cell imaging with temporal resolution of 2.5 seconds by recovering fast ER dynamics.
FALCON: fast and unbiased reconstruction of high-density super-resolution microscopy data
Min, Junhong; Vonesch, Cédric; Kirshner, Hagai; Carlini, Lina; Olivier, Nicolas; Holden, Seamus; Manley, Suliana; Ye, Jong Chul; Unser, Michael
2014-01-01
Super resolution microscopy such as STORM and (F)PALM is now a well known method for biological studies at the nanometer scale. However, conventional imaging schemes based on sparse activation of photo-switchable fluorescent probes have inherently slow temporal resolution which is a serious limitation when investigating live-cell dynamics. Here, we present an algorithm for high-density super-resolution microscopy which combines a sparsity-promoting formulation with a Taylor series approximation of the PSF. Our algorithm is designed to provide unbiased localization on continuous space and high recall rates for high-density imaging, and to have orders-of-magnitude shorter run times compared to previous high-density algorithms. We validated our algorithm on both simulated and experimental data, and demonstrated live-cell imaging with temporal resolution of 2.5 seconds by recovering fast ER dynamics. PMID:24694686
Imaging latex–carbon nanotube composites by subsurface electrostatic force microscopy
Patel, Sajan; Petty, Clayton W.; Krafcik, Karen Lee; ...
2016-09-08
Electrostatic modes of atomic force microscopy have shown to be non-destructive and relatively simple methods for imaging conductors embedded in insulating polymers. Here we use electrostatic force microscopy to image the dispersion of carbon nanotubes in a latex-based conductive composite, which brings forth features not observed in previously studied systems employing linear polymer films. A fixed-potential model of the probe-nanotube electrostatics is presented which in principle gives access to the conductive nanoparticle's depth and radius, and the polymer film dielectric constant. Comparing this model to the data results in nanotube depths that appear to be slightly above the film–air interface.more » Furthermore, this result suggests that water-mediated charge build-up at the film–air interface may be the source of electrostatic phase contrast in ambient conditions.« less
Yildirim, Turgay; Matthäus, Christian; Press, Adrian T; Schubert, Stephanie; Bauer, Michael; Popp, Jürgen; Schubert, Ulrich S
2017-10-01
A primary amino-functionalized methyl methacrylate-based statistical copolymer is covalently coupled with retinoic acid (RA) and a fluorescent dye (DY590) in order to investigate the feasibility of the RA containing polymeric nanoparticles for Raman imaging studies and to study the possible selectivity of RA for hepatic stellate cells via intravital microscopy. Cationic nanoparticles are prepared by utilizing the nanoprecipitation method using modified polymers. Raman studies show that RA functional nanoparticles can be detectable in all tested cells without any need of additional label. Moreover, intravital microscopy indicates that DY590 is eliminated through the hepatobiliary route but not if used as covalently attached tracing molecule for nanoparticles. However, it is a suitable probe for sensitive detection of polymeric nanoparticles. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pinter, Stephen Z; Kim, Dae-Ro; Hague, M Nicole; Chambers, Ann F; MacDonald, Ian C; Lacefield, James C
2014-08-01
Flow quantification with high-frequency (>20 MHz) power Doppler ultrasound can be performed objectively using the wall-filter selection curve (WFSC) method to select the cutoff velocity that yields a best-estimate color pixel density (CPD). An in vivo video microscopy system (IVVM) is combined with high-frequency power Doppler ultrasound to provide a method for validation of CPD measurements based on WFSCs in mouse testicular vessels. The ultrasound and IVVM systems are instrumented so that the mouse remains on the same imaging platform when switching between the two modalities. In vivo video microscopy provides gold-standard measurements of vascular diameter to validate power Doppler CPD estimates. Measurements in four image planes from three mice exhibit wide variation in the optimal cutoff velocity and indicate that a predetermined cutoff velocity setting can introduce significant errors in studies intended to quantify vascularity. Consistent with previously published flow-phantom data, in vivo WFSCs exhibited three characteristic regions and detectable plateaus. Selection of a cutoff velocity at the right end of the plateau yielded a CPD close to the gold-standard vascular volume fraction estimated using IVVM. An investigator can implement the WFSC method to help adapt cutoff velocity to current blood flow conditions and thereby improve the accuracy of power Doppler for quantitative microvascular imaging. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Sijia; Sa, Ruhan; Maguire, Orla; Minderman, Hans; Chaudhary, Vipin
2015-03-01
Cytogenetic abnormalities are important diagnostic and prognostic criteria for acute myeloid leukemia (AML). A flow cytometry-based imaging approach for FISH in suspension (FISH-IS) was established that enables the automated analysis of several log-magnitude higher number of cells compared to the microscopy-based approaches. The rotational positioning can occur leading to discordance between spot count. As a solution of counting error from overlapping spots, in this study, a Gaussian Mixture Model based classification method is proposed. The Akaike information criterion (AIC) and Bayesian information criterion (BIC) of GMM are used as global image features of this classification method. Via Random Forest classifier, the result shows that the proposed method is able to detect closely overlapping spots which cannot be separated by existing image segmentation based spot detection methods. The experiment results show that by the proposed method we can obtain a significant improvement in spot counting accuracy.
Lin, Yi-Zhen; Ou, Da-Liang; Chang, Hsin-Yuan; Lin, Wei-Yu; Hsu, Chiun; Chang, Po-Ling
2017-09-01
The family of microRNAs (miRNAs) not only plays an important role in gene regulation but is also useful for the diagnosis of diseases. A reliable method with high sensitivity may allow researchers to detect slight fluctuations in ultra-trace amounts of miRNA. In this study, we propose a sensitive imaging method for the direct probing of miR-10b (miR-10b-3p, also called miR-10b*) and its target ( HOXD10 mRNA) in fixed cells based on the specific recognition of molecular beacons combined with highly inclined and laminated optical sheet (HILO) fluorescence microscopy. The designed dye-quencher-labelled molecular beacons offer excellent efficiencies of fluorescence resonance energy transfer that allow us to detect miRNA and the target mRNA simultaneously in hepatocellular carcinoma cells using HILO fluorescence microscopy. Not only can the basal trace amount of miRNA be observed in each individual cell, but the obtained images also indicate that this method is useful for monitoring the fluctuations in ultra-trace amounts of miRNA when the cells are transfected with a miRNA precursor or a miRNA inhibitor (anti-miR). Furthermore, a reasonable causal relation between the miR-10b and HOXD10 expression levels was observed in miR-10b* precursor-transfected cells and miR-10b* inhibitor-transfected cells. The trends of the miRNA alterations obtained using HILO microscopy completely matched the RT-qPCR data and showed remarkable reproducibility (the coefficient of variation [CV] = 0.86%) and sensitivity (<1.0 fM). This proposed imaging method appears to be useful for the simultaneous visualisation of ultra-trace amounts of miRNA and target mRNA and excludes the procedures for RNA extraction and amplification. Therefore, the visualisation of miRNA and the target mRNA should facilitate the exploration of the functions of ultra-trace amounts of miRNA in fixed cells in biological studies and may serve as a powerful tool for diagnoses based on circulating cancer cells.
Belianinov, Alex; Iberi, Vighter; Tselev, Alexander; Susner, Michael A; McGuire, Michael A; Joy, David; Jesse, Stephen; Rondinone, Adam J; Kalinin, Sergei V; Ovchinnikova, Olga S
2016-03-23
Rapid advances in nanoscience rely on continuous improvements of material manipulation at near-atomic scales. Currently, the workhorse of nanofabrication is resist-based lithography and its various derivatives. However, the use of local electron, ion, and physical probe methods is expanding, driven largely by the need for fabrication without the multistep preparation processes that can result in contamination from resists and solvents. Furthermore, probe-based methods extend beyond nanofabrication to nanomanipulation and to imaging which are all vital for a rapid transition to the prototyping and testing of devices. In this work we study helium ion interactions with the surface of bulk copper indium thiophosphate CuM(III)P2X6 (M = Cr, In; X= S, Se), a novel layered 2D material, with a Helium Ion Microscope (HIM). Using this technique, we are able to control ferrielectric domains and grow conical nanostructures with enhanced conductivity whose material volumes scale with the beam dosage. Compared to the copper indium thiophosphate (CITP) from which they grow, the nanostructures are oxygen rich, sulfur poor, and with virtually unchanged copper concentration as confirmed by energy-dispersive X-ray spectroscopy (EDX). Scanning electron microscopy (SEM) imaging contrast as well as scanning microwave microscopy (SMM) measurements suggest enhanced conductivity in the formed particles, whereas atomic force microscopy (AFM) measurements indicate that the produced structures have lower dissipation and are softer as compared to the CITP.
Facile synthesis of α-Fe{sub 2}O{sub 3} nanoparticles for high-performance CO gas sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cuong, Nguyen Duc, E-mail: nguyenduccuong@hueuni.edu.vn; Faculty of Hospitality and Tourism, Hue University, 22 Lam Hoang, Vy Da Ward, Hue City; Khieu, Dinh Quang
2015-08-15
Highlights: • We have demonstrated a facile method to prepare Fe{sub 2}O{sub 3} nanoparticles. • The gas sensing properties of α-Fe{sub 2}O{sub 3} have been invested. • The results show potential application of α-Fe{sub 2}O{sub 3} NPs for CO sensors in environmental monitoring. - Abstract: Iron oxide nanoparticles (NPs) were prepared via a simple hydrothermal method for high performance CO gas sensor. The synthesized α-Fe{sub 2}O{sub 3} NPs were characterized by X-ray diffraction, nitrogen adsorption/desorption isotherm, scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and selected area electron diffraction (SAED). The SEM, TEM results revealedmore » that obtained α-Fe{sub 2}O{sub 3} particles had a peanut-like geometry with hemispherical ends. The response of the α-Fe{sub 2}O{sub 3} NPs based sensor to carbon monoxide (CO) and various concentrations of other gases were measured at different temperatures. It found that the sensor based on the peanut-like α-Fe{sub 2}O{sub 3} NPs exhibited high response, fast response–recovery, and good selectivity to CO at 300 °C. The experimental results clearly demonstrated the potential application of α-Fe{sub 2}O{sub 3} NPs as a good sensing material in the fabrication of CO sensor.« less
Eberhardt, S H; Marone, F; Stampanoni, M; Büchi, F N; Schmidt, T J
2014-11-01
Synchrotron-based X-ray tomographic microscopy is investigated for imaging the local distribution and concentration of phosphoric acid in high-temperature polymer electrolyte fuel cells. Phosphoric acid fills the pores of the macro- and microporous fuel cell components. Its concentration in the fuel cell varies over a wide range (40-100 wt% H3PO4). This renders the quantification and concentration determination challenging. The problem is solved by using propagation-based phase contrast imaging and a referencing method. Fuel cell components with known acid concentrations were used to correlate greyscale values and acid concentrations. Thus calibration curves were established for the gas diffusion layer, catalyst layer and membrane in a non-operating fuel cell. The non-destructive imaging methodology was verified by comparing image-based values for acid content and concentration in the gas diffusion layer with those from chemical analysis.
Ni, Xuewen; Ke, Fan; Xiao, Man; Wu, Kao; Kuang, Ying; Corke, Harold; Jiang, Fatang
2016-11-01
Konjac glucomannan (KGM)-based aerogels were prepared using a combination of sol-gel and freeze-drying methods. Preparation conditions were chosen to control ice crystal growth and aerogel structure formation. The ice crystals formed during pre-freezing were observed by low temperature polarizing microscopy, and images of aerogel pores were obtained by scanning electron microscopy. The size of ice crystals were calculated and size distribution maps were drawn, and similarly for aerogel pores. Results showed that ice crystal growth and aerogel pore sizes may be controlled by varying pre-freezing temperatures, KGM concentration and glyceryl monostearate concentration. The impact of pre-freezing temperatures on ice crystal growth was explained as combining ice crystal growth rate with nucleation rate, while the impacts of KGM and glyceryl monostearate concentration on ice crystal growth were interpreted based on their influences on sol network structure. Copyright © 2016 Elsevier B.V. All rights reserved.
Frequency division multiplexed multi-color fluorescence microscope system
NASA Astrophysics Data System (ADS)
Le, Vu Nam; Yang, Huai Dong; Zhang, Si Chun; Zhang, Xin Rong; Jin, Guo Fan
2017-10-01
Grayscale camera can only obtain gray scale image of object, while the multicolor imaging technology can obtain the color information to distinguish the sample structures which have the same shapes but in different colors. In fluorescence microscopy, the current method of multicolor imaging are flawed. Problem of these method is affecting the efficiency of fluorescence imaging, reducing the sampling rate of CCD etc. In this paper, we propose a novel multiple color fluorescence microscopy imaging method which based on the Frequency division multiplexing (FDM) technology, by modulating the excitation lights and demodulating the fluorescence signal in frequency domain. This method uses periodic functions with different frequency to modulate amplitude of each excitation lights, and then combine these beams for illumination in a fluorescence microscopy imaging system. The imaging system will detect a multicolor fluorescence image by a grayscale camera. During the data processing, the signal obtained by each pixel of the camera will be processed with discrete Fourier transform, decomposed by color in the frequency domain and then used inverse discrete Fourier transform. After using this process for signals from all of the pixels, monochrome images of each color on the image plane can be obtained and multicolor image is also acquired. Based on this method, this paper has constructed and set up a two-color fluorescence microscope system with two excitation wavelengths of 488 nm and 639 nm. By using this system to observe the linearly movement of two kinds of fluorescent microspheres, after the data processing, we obtain a two-color fluorescence dynamic video which is consistent with the original image. This experiment shows that the dynamic phenomenon of multicolor fluorescent biological samples can be generally observed by this method. Compared with the current methods, this method can obtain the image signals of each color at the same time, and the color video's frame rate is consistent with the frame rate of the camera. The optical system is simpler and does not need extra color separation element. In addition, this method has a good filtering effect on the ambient light or other light signals which are not affected by the modulation process.
Tiley, J S; Viswanathan, G B; Shiveley, A; Tschopp, M; Srinivasan, R; Banerjee, R; Fraser, H L
2010-08-01
Precipitates of the ordered L1(2) gamma' phase (dispersed in the face-centered cubic or FCC gamma matrix) were imaged in Rene 88 DT, a commercial multicomponent Ni-based superalloy, using energy-filtered transmission electron microscopy (EFTEM). Imaging was performed using the Cr, Co, Ni, Ti and Al elemental L-absorption edges in the energy loss spectrum. Manual and automated segmentation procedures were utilized for identification of precipitate boundaries and measurement of precipitate sizes. The automated region growing technique for precipitate identification in images was determined to measure accurately precipitate diameters. In addition, the region growing technique provided a repeatable method for optimizing segmentation techniques for varying EFTEM conditions. (c) 2010 Elsevier Ltd. All rights reserved.
Walther, T; Wang, X
2016-05-01
Based on Monte Carlo simulations of X-ray generation by fast electrons we calculate curves of effective sensitivity factors for analytical transmission electron microscopy based energy-dispersive X-ray spectroscopy including absorption and fluorescence effects, as a function of Ga K/L ratio for different indium and gallium containing compound semiconductors. For the case of InGaN alloy thin films we show that experimental spectra can thus be quantified without the need to measure specimen thickness or density, yielding self-consistent values for quantification with Ga K and Ga L lines. The effect of uncertainties in the detector efficiency are also shown to be reduced. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
Maruyama, Kenichi; Ohkawa, Hiroyuki; Ogawa, Sho; Ueda, Akio; Niwa, Osamu; Suzuki, Koji
2006-03-15
We have already reported a method for fabricating ultramicroelectrodes (Suzuki, K. JP Patent, 2004-45394, 2004). This method is based on the selective chemical etching of optical fibers. In this work, we undertake a detailed investigation involving a combination of etched optical fibers with various types of tapered tip (protruding-shape, double- (or pencil-) shape and triple-tapered electrode) and insulation with electrophoretic paint. Our goal is to establish a method for fabricating nanometer-sized optical fiber electrodes with high reproducibility. As a result, we realized pencil-shaped and triple-tapered electrodes that had radii in the nanometer range with high reproducibility. These nanometer-sized electrodes showed well-defined sigmoidal curves and stable diffusion-limited responses with cyclic voltammetry. The pencil-shaped optical fiber, which has a conical tip with a cone angle of 20 degrees , was effective for controlling the electrode radius. The pencil-shaped electrodes had higher reproducibility and smaller electrode radii (r(app) < 1.0 nm) than those of other etched optical fiber electrodes. By using a pencil-shaped electrode with a 105-nm radius as a probe, we obtained simultaneous electrochemical and optical images of an implantable interdigitated array electrode. We achieved nanometer-scale resolution with a combination of scanning electrochemical microscopy SECM and optical microscopy. The resolution of the electrochemical and optical images indicated sizes of 300 and 930 nm, respectively. The neurites of living PC12 cells were also successfully imaged on a 1.6-microm scale by using the negative feedback mode of an SECM.
Butterworth, Alice S; Robertson, Alan J; Ho, Mei-Fong; Gatton, Michelle L; McCarthy, James S; Trenholme, Katharine R
2011-04-18
Obtaining single parasite clones is required for many techniques in malaria research. Cloning by limiting dilution using microscopy-based assessment for parasite growth is an arduous and labor-intensive process. An alternative method for the detection of parasite growth in limiting dilution assays is using a commercial ELISA histidine-rich protein II (HRP2) detection kit. Detection of parasite growth was undertaken using HRP2 ELISA and compared to thick film microscopy. An HRP2 protein standard was used to determine the detection threshold of the HRP2 ELISA assay, and a HRP2 release model was used to extrapolate the amount of parasite growth required for a positive result. The HRP2 ELISA was more sensitive than microscopy for detecting parasite growth. The minimum level of HRP2 protein detection of the ELISA was 0.11 ng/ml. Modeling of HRP2 release determined that 2,116 parasites are required to complete a full erythrocytic cycle to produce sufficient HRP2 to be detected by the ELISA. Under standard culture conditions this number of parasites is likely to be reached between 8 to 14 days of culture. This method provides an accurate and simple way for the detection of parasite growth in limiting dilution assays, reducing time and resources required in traditional methods. Furthermore the method uses spent culture media instead of the parasite-infected red blood cells, enabling culture to continue. © 2011 Butterworth et al; licensee BioMed Central Ltd.
Multifunctional scanning ion conductance microscopy
Page, Ashley; Unwin, Patrick R.
2017-01-01
Scanning ion conductance microscopy (SICM) is a nanopipette-based technique that has traditionally been used to image topography or to deliver species to an interface, particularly in a biological setting. This article highlights the recent blossoming of SICM into a technique with a much greater diversity of applications and capability that can be used either standalone, with advanced control (potential–time) functions, or in tandem with other methods. SICM can be used to elucidate functional information about interfaces, such as surface charge density or electrochemical activity (ion fluxes). Using a multi-barrel probe format, SICM-related techniques can be employed to deposit nanoscale three-dimensional structures and further functionality is realized when SICM is combined with scanning electrochemical microscopy (SECM), with simultaneous measurements from a single probe opening up considerable prospects for multifunctional imaging. SICM studies are greatly enhanced by finite-element method modelling for quantitative treatment of issues such as resolution, surface charge and (tip) geometry effects. SICM is particularly applicable to the study of living systems, notably single cells, although applications extend to materials characterization and to new methods of printing and nanofabrication. A more thorough understanding of the electrochemical principles and properties of SICM provides a foundation for significant applications of SICM in electrochemistry and interfacial science. PMID:28484332
Quantification of whey in fluid milk using confocal Raman microscopy and artificial neural network.
Alves da Rocha, Roney; Paiva, Igor Moura; Anjos, Virgílio; Furtado, Marco Antônio Moreira; Bell, Maria José Valenzuela
2015-06-01
In this work, we assessed the use of confocal Raman microscopy and artificial neural network as a practical method to assess and quantify adulteration of fluid milk by addition of whey. Milk samples with added whey (from 0 to 100%) were prepared, simulating different levels of fraudulent adulteration. All analyses were carried out by direct inspection at the light microscope after depositing drops from each sample on a microscope slide and drying them at room temperature. No pre- or posttreatment (e.g., sample preparation or spectral correction) was required in the analyses. Quantitative determination of adulteration was performed through a feed-forward artificial neural network (ANN). Different ANN configurations were evaluated based on their coefficient of determination (R2) and root mean square error values, which were criteria for selecting the best predictor model. In the selected model, we observed that data from both training and validation subsets presented R2>99.99%, indicating that the combination of confocal Raman microscopy and ANN is a rapid, simple, and efficient method to quantify milk adulteration by whey. Because sample preparation and postprocessing of spectra were not required, the method has potential applications in health surveillance and food quality monitoring. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Dong, Biqin; Li, Hao; Zhang, Zhen; Zhang, Kevin; Chen, Siyu; Sun, Cheng; Zhang, Hao F
2015-01-01
Photoacoustic microscopy (PAM) is an attractive imaging tool complementary to established optical microscopic modalities by providing additional molecular specificities through imaging optical absorption contrast. While the development of optical resolution photoacoustic microscopy (ORPAM) offers high lateral resolution, the acoustically-determined axial resolution is limited due to the constraint in ultrasonic detection bandwidth. ORPAM with isometric spatial resolution along both axial and lateral direction is yet to be developed. Although recently developed sophisticated optical illumination and reconstruction methods offer improved axial resolution in ORPAM, the image acquisition procedures are rather complicated, limiting their capabilities for high-speed imaging and being easily integrated with established optical microscopic modalities. Here we report an isometric ORPAM based on an optically transparent micro-ring resonator ultrasonic detector and a commercial inverted microscope platform. Owing to the superior spatial resolution and the ease of integrating our ORPAM with established microscopic modalities, single cell imaging with extrinsic fluorescence staining, intrinsic autofluorescence, and optical absorption can be achieved simultaneously. This technique holds promise to greatly improve the accessibility of PAM to the broader biomedical researchers.
NASA Astrophysics Data System (ADS)
Widiarto, S.; Yuwono, S. D.; Rochliadi, A.; Arcana, I. M.
2017-02-01
Cassava peel is an agro-industrial waste which is available in huge quantities in Lampung Province of Indonesia. This work was conducted to evaluate the potential of cassava peel as a source of cellulose and nanocellulose. Cellulose was extracted from cassava peel by using different chemical treatment, and the nanocellulose was prepared by hydrolysis with the use of sulfuric acid. The best methods of cellulose extraction from cassava peels are using alkali treatment followed by a bleaching process. The cellulose yield from this methods was 17.8% of dry base cassava peel, while the yield from nitric and sulfuric methods were about 10.78% and 10.32% of dry base cassava peel respectively. The hydrolysis was performed at the temperature of 50 °C for 2 hours. The intermediate reaction product obtained after each stage of the treatments was characterized. Fourier transform infrared spectroscopy showed the removal of non-cellulosic constituent. X-ray Diffraction (XRD) analysis revealed that the crystallinity of cellulose increased after hydrolysis. Morphological investigation was performed using Scanning Electron Microscopy (SEM). The size of particle was confirmed by Particle Size Analyzer (PSA) and Transmission Electron Microscopy (TEM).
Naing, Nyi Nyi; Li, Sam Fong Yau; Lee, Hian Kee
2016-01-04
A facile method of extraction using porous membrane protected micro-solid phase extraction (μ-SPE) with a graphene-based sorbent followed by high performance liquid chromatography-ultraviolet detector was developed. The reduced graphene oxide (r-GO) (1mg), synthesized from graphite oxide, was enclosed in a polypropylene bag representing the μ-SPE device, which was used for the extraction of estrogens such as estrone, 17β-estradiol, 17α-ethynylestradiol and diethylstilbestrol in water. The r-GO obtained was identified and characterized by Fourier transform infrared, transmission electron microscopy, scanning electron microscopy and thermogravimetric analysis. The sorbent was loaded with sodium dodecyl sulfate by sonication to prevent agglomeration in aqueous solution. With this method, low limits of detection of between 0.24 and 0.52 ng L(-1) were achieved. For estrogen analysis a linear calibration range of 0.01-100 μg L(-1) was obtained, with the coefficients of determination (r(2)) higher than 0.992. This proposed method was successfully applied to determine estrogens in water. Copyright © 2015 Elsevier B.V. All rights reserved.
Uniformly thinned optical fibers produced via HF etching with spectral and microscopic verification.
Bal, Harpreet K; Brodzeli, Zourab; Dragomir, Nicoleta M; Collins, Stephen F; Sidiroglou, Fotios
2012-05-01
A method for producing uniformly thinned (etched) optical fibers is described, which can also be employed to etch optical fibers containing a Bragg grating (FBG) uniformly for evanescent-field-based sensing and other applications. Through a simple modification of this method, the fabrication of phase-shifted FBGs based on uneven etching is also shown. The critical role of how a fiber is secured is shown, and the success of the method is illustrated, by differential interference contrast microscopy images of uniformly etched FBGs. An etched FBG sensor for the monitoring of the refractive index of different glycerin solutions is demonstrated.
Aase, Audun; Hajdusek, Ondrej; Øines, Øivind; Quarsten, Hanne; Wilhelmsson, Peter; Herstad, Tove K; Kjelland, Vivian; Sima, Radek; Jalovecka, Marie; Lindgren, Per-Eric; Aaberge, Ingeborg S
2016-01-01
A modified microscopy protocol (the LM-method) was used to demonstrate what was interpreted as Borrelia spirochetes and later also Babesia sp., in peripheral blood from patients. The method gained much publicity, but was not validated prior to publication, which became the purpose of this study using appropriate scientific methodology, including a control group. Blood from 21 patients previously interpreted as positive for Borrelia and/or Babesia infection by the LM-method and 41 healthy controls without known history of tick bite were collected, blinded and analysed for these pathogens by microscopy in two laboratories by the LM-method and conventional method, respectively, by PCR methods in five laboratories and by serology in one laboratory. Microscopy by the LM-method identified structures claimed to be Borrelia- and/or Babesia in 66% of the blood samples of the patient group and in 85% in the healthy control group. Microscopy by the conventional method for Babesia only did not identify Babesia in any samples. PCR analysis detected Borrelia DNA in one sample of the patient group and in eight samples of the control group; whereas Babesia DNA was not detected in any of the blood samples using molecular methods. The structures interpreted as Borrelia and Babesia by the LM-method could not be verified by PCR. The method was, thus, falsified. This study underlines the importance of doing proper test validation before new or modified assays are introduced.
Osman, Mamoun M M; Nour, Bakri Y M; Sedig, Mohamed F; De Bes, Laura; Babikir, Adil M; Mohamedani, Ahmed A; Mens, Petra F
2010-12-01
Rapid diagnostic tests (RDTs) are promoted for the diagnosis of malaria in many countries. The question arises whether laboratories where the current method of diagnosis is microscopy should also switch to RDT. This problem was studied in Kassala, Sudan where the issue of switching to RDT is under discussion. Two hundred and three blood samples were collected from febrile patients suspected of having malaria. These were subsequently analysed with microscopy, RDT (SD Bioline P.f/P.v) and PCR for the detection and identification of Plasmodium parasites. Malaria parasites were detected in 36 blood samples when examined microscopically, 54 (26.6%) samples were found positive for malaria parasites by RDT, and 44 samples were positive by PCR. Further analysis showed that the RDT used in our study resulted in a relatively high number of false positive samples. When microscopy was compared with PCR, an agreement of 96.1% and k = 0.88 (sensitivity 85.7% and specificity 100%) was found. However, when RDT was compared with PCR, an agreement of only 81.2 and k = 0.48 (sensitivity 69% and specificity 84%) was found. PCR has proven to be one of the most specific and sensitive diagnostic methods, particularly for malaria cases with low parasitaemia. However, this technique has limitations in its routine use under resource-limited conditions, such as our study location. At present, based on these results, microscopy remains the best option for routine diagnosis of malaria in Kassala, eastern Sudan. © 2010 Blackwell Publishing Ltd.
Pipeline for illumination correction of images for high-throughput microscopy.
Singh, S; Bray, M-A; Jones, T R; Carpenter, A E
2014-12-01
The presence of systematic noise in images in high-throughput microscopy experiments can significantly impact the accuracy of downstream results. Among the most common sources of systematic noise is non-homogeneous illumination across the image field. This often adds an unacceptable level of noise, obscures true quantitative differences and precludes biological experiments that rely on accurate fluorescence intensity measurements. In this paper, we seek to quantify the improvement in the quality of high-content screen readouts due to software-based illumination correction. We present a straightforward illumination correction pipeline that has been used by our group across many experiments. We test the pipeline on real-world high-throughput image sets and evaluate the performance of the pipeline at two levels: (a) Z'-factor to evaluate the effect of the image correction on a univariate readout, representative of a typical high-content screen, and (b) classification accuracy on phenotypic signatures derived from the images, representative of an experiment involving more complex data mining. We find that applying the proposed post-hoc correction method improves performance in both experiments, even when illumination correction has already been applied using software associated with the instrument. To facilitate the ready application and future development of illumination correction methods, we have made our complete test data sets as well as open-source image analysis pipelines publicly available. This software-based solution has the potential to improve outcomes for a wide-variety of image-based HTS experiments. © 2014 The Authors. Journal of Microscopy published by John Wiley & Sons Ltd on behalf of Royal Microscopical Society.
Superresolution microscopy for microbiology
Coltharp, Carla; Xiao, Jie
2014-01-01
Summary This review provides a practical introduction to superresolution microscopy from the perspective of microbiological research. Because of the small sizes of bacterial cells, superresolution methods are particularly powerful and suitable for revealing details of cellular structures that are not resolvable under conventional fluorescence light microscopy. Here we describe the methodological concepts behind three major categories of super-resolution light microscopy: photoactivated localization microscopy (PALM) and stochastic optical reconstruction microscopy (STORM), structured illumination microscopy (SIM) and stimulated emission-depletion (STED) microscopy. We then present recent applications of each of these techniques to microbial systems, which have revealed novel conformations of cellular structures and described new properties of in vivo protein function and interactions. Finally, we discuss the unique issues related to implementing each of these superresolution techniques with bacterial specimens and suggest avenues for future development. The goal of this review is to provide the necessary technical background for interested microbiologists to choose the appropriate super-resolution method for their biological systems, and to introduce the practical considerations required for designing and analysing superresolution imaging experiments. PMID:22947061
Lensfree On-Chip Microscopy and Tomography for Bio-Medical Applications
Isikman, Serhan O.; Bishara, Waheb; Mudanyali, Onur; Sencan, Ikbal; Su, Ting-Wei; Tseng, Derek; Yaglidere, Oguzhan; Sikora, Uzair; Ozcan, Aydogan
2012-01-01
Lensfree on-chip holographic microscopy is an emerging technique that offers imaging of biological specimens over a large field-of-view without using any lenses or bulky optical components. Lending itself to a compact, cost-effective and mechanically robust architecture, lensfree on-chip holographic microscopy can offer an alternative toolset addressing some of the emerging needs of microscopic analysis and diagnostics in low-resource settings, especially for telemedicine applications. In this review, we summarize the latest achievements in lensfree optical microscopy based on partially coherent on-chip holography, including portable telemedicine microscopy, cell-phone based microscopy and field-portable optical tomographic microscopy. We also discuss some of the future directions for telemedicine microscopy and its prospects to help combat various global health challenges. PMID:24478572
Nyindodo-Ogari, Lilian; Schwartzbach, Steven D; Skalli, Omar; Estraño, Carlos E
2016-01-01
Confocal fluorescence microscopy and electron microscopy (EM) are complementary methods for studying the intracellular localization of proteins. Confocal fluorescence microscopy provides a rapid and technically simple method to identify the organelle in which a protein localizes but only EM can identify the suborganellular compartment in which that protein is present. Confocal fluorescence microscopy, however, can provide information not obtainable by EM but required to understand the dynamics and interactions of specific proteins. In addition, confocal fluorescence microscopy of cells transfected with a construct encoding a protein of interest fused to a fluorescent protein tag allows live cell studies of the subcellular localization of that protein and the monitoring in real time of its trafficking. Immunostaining methods for confocal fluorescence microscopy are also faster and less involved than those for EM allowing rapid optimization of the antibody dilution needed and a determination of whether protein antigenicity is maintained under fixation conditions used for EM immunogold labeling. This chapter details a method to determine by confocal fluorescence microscopy the intracellular localization of a protein by transfecting the organism of interest, in this case Giardia lamblia, with the cDNA encoding the protein of interest and then processing these organisms for double label immunofluorescence staining after chemical fixation. Also presented is a method to identify the organelle targeting information in the presequence of a precursor protein, in this case the presequence of the precursor to the Euglena light harvesting chlorophyll a/b binding protein of photosystem II precursor (pLHCPII), using live cell imaging of mammalian COS7 cells transiently transfected with a plasmid encoding a pLHCPII presequence fluorescent protein fusion and stained with organelle-specific fluorescent dyes.
Hendriksen, Ilse C. E.; Mtove, George; Pedro, Alínia José; Gomes, Ermelinda; Silamut, Kamolrat; Lee, Sue J.; Mwambuli, Abraham; Gesase, Samwel; Reyburn, Hugh; Day, Nicholas P. J.; White, Nicholas J.; von Seidlein, Lorenz
2011-01-01
Background. Rapid diagnostic tests (RDTs) now play an important role in the diagnosis of falciparum malaria in many countries where the disease is endemic. Although these tests have been extensively evaluated in uncomplicated falciparum malaria, reliable data on their performance for diagnosing potentially lethal severe malaria is lacking. Methods. We compared a Plasmodium falciparum histidine-rich-protein2 (PfHRP2)–based RDT and a Plasmodium lactate dehydrogenase (pLDH)–based RDT with routine microscopy of a peripheral blood slide and expert microscopy as a reference standard for the diagnosis of severe malaria in 1898 children who presented with severe febrile illness at 2 centers in Mozambique and Tanzania. Results. The overall sensitivity, specificity, positive predictive value, and negative predictive values of the PfHRP2-based test were 94.0%, 70.9%, 85.4%, and 86.8%, respectively, and for the pLDH-based test, the values were 88.0%, 88.3%, 93.2%, and 80.3%, respectively. At parasite counts <1000 parasites/μL (n = 173), sensitivity of the pLDH-based test was low (45.7%), compared with that of the PfHRP2-based test (69.9%). Both RDTs performed better than did the routine slide reading in a clinical laboratory as assessed in 1 of the centers. Conclusion. The evaluated PfHRP2-based RDT is an acceptable alternative to routine microscopy for diagnosing severe malaria in African children and performed better than did the evaluated pLDH-based RDT. PMID:21467015
2010-01-01
Background In areas with limited structure in place for microscopy diagnosis, rapid diagnostic tests (RDT) have been demonstrated to be effective. Method The cost-effectiveness of the Optimal® and thick smear microscopy was estimated and compared. Data were collected on remote areas of 12 municipalities in the Brazilian Amazon. Data sources included the National Malaria Control Programme of the Ministry of Health, the National Healthcare System reimbursement table, hospitalization records, primary data collected from the municipalities, and scientific literature. The perspective was that of the Brazilian public health system, the analytical horizon was from the start of fever until the diagnostic results provided to patient and the temporal reference was that of year 2006. The results were expressed in costs per adequately diagnosed cases in 2006 U.S. dollars. Sensitivity analysis was performed considering key model parameters. Results In the case base scenario, considering 92% and 95% sensitivity for thick smear microscopy to Plasmodium falciparum and Plasmodium vivax, respectively, and 100% specificity for both species, thick smear microscopy is more costly and more effective, with an incremental cost estimated at US$549.9 per adequately diagnosed case. In sensitivity analysis, when sensitivity and specificity of microscopy for P. vivax were 0.90 and 0.98, respectively, and when its sensitivity for P. falciparum was 0.83, the RDT was more cost-effective than microscopy. Conclusion Microscopy is more cost-effective than OptiMal® in these remote areas if high accuracy of microscopy is maintained in the field. Decision regarding use of rapid tests for diagnosis of malaria in these areas depends on current microscopy accuracy in the field. PMID:20937094
Correlative Fluorescence and Electron Microscopy
Schirra, Randall T.; Zhang, Peijun
2014-01-01
Correlative fluorescence and electron microscopy (CFEM) is a multimodal technique that combines dynamic and localization information from fluorescence methods with ultrastructural data from electron microscopy, to give new information about how cellular components change relative to the spatiotemporal dynamics within their environment. In this review, we will discuss some of the basic techniques and tools of the trade for utilizing this attractive research method, which is becoming a very powerful tool for biology labs. The information obtained from correlative methods has proven to be invaluable in creating consensus between the two types of microscopy, extending the capability of each, and cutting the time and expense associate with using each method separately for comparative analysis. The realization of the advantages of these methods in cell biology have led to rapid improvement in the protocols and have ushered in a new generation of instruments to reach the next level of correlation – integration. PMID:25271959
NASA Astrophysics Data System (ADS)
Sams, Michael; Silye, Rene; Göhring, Janett; Muresan, Leila; Schilcher, Kurt; Jacak, Jaroslaw
2014-01-01
We present a cluster spatial analysis method using nanoscopic dSTORM images to determine changes in protein cluster distributions within brain tissue. Such methods are suitable to investigate human brain tissue and will help to achieve a deeper understanding of brain disease along with aiding drug development. Human brain tissue samples are usually treated postmortem via standard fixation protocols, which are established in clinical laboratories. Therefore, our localization microscopy-based method was adapted to characterize protein density and protein cluster localization in samples fixed using different protocols followed by common fluorescent immunohistochemistry techniques. The localization microscopy allows nanoscopic mapping of serotonin 5-HT1A receptor groups within a two-dimensional image of a brain tissue slice. These nanoscopically mapped proteins can be confined to clusters by applying the proposed statistical spatial analysis. Selected features of such clusters were subsequently used to characterize and classify the tissue. Samples were obtained from different types of patients, fixed with different preparation methods, and finally stored in a human tissue bank. To verify the proposed method, samples of a cryopreserved healthy brain have been compared with epitope-retrieved and paraffin-fixed tissues. Furthermore, samples of healthy brain tissues were compared with data obtained from patients suffering from mental illnesses (e.g., major depressive disorder). Our work demonstrates the applicability of localization microscopy and image analysis methods for comparison and classification of human brain tissues at a nanoscopic level. Furthermore, the presented workflow marks a unique technological advance in the characterization of protein distributions in brain tissue sections.
Monitoring of nucleophosmin oligomerization in live cells.
Holoubek, Ales; Heřman, Petr; Sýkora, Jan; Brodská, Barbora; Humpolíčková, Jana; Kráčmarová, Markéta; Gášková, Dana; Hof, Martin; Kuželová, Kateřina
2018-06-14
Oligomerization plays a crucial role in the function of nucleophosmin (NPM), an abundant nucleolar phosphoprotein. Two dual-color methods based on modern fluorescence confocal microscopy are applied for tracking NPM aggregates in live cells: cross-correlation Number and Brightness analysis (ccN&B) combined with pulsed interleaved excitation (PIE) and fluorescence-lifetime imaging microscopy (FLIM) utilizing resonance energy transfer (FRET). HEK-293T cells were transfected with mixture of plasmids designed for tagging with fluorescent proteins so that the cells express mixed population of NPM labeled either with eGFP or mRFP1. We observe joint oligomers formed from the fluorescently labeled NPM. Having validated the in vivo methods, we study an effect of substitutions in cysteine 21 (Cys21) of the NPM N-terminus on the oligomerization to demonstrate applicability of the methods. Inhibitory effect of mutations of the Cys21 to nonpolar Ala or to aromatic Phe on the oligomerization was reported in literature using in vitro semi-native electrophoresis. However, we do not detect any break-up of the joint NPM oligomers due to the Cys21 mutations in live cells. In vivo microscopy observations are supported by an in vitro method, the GFP-Trap immunoprecipitation assay. Our results therefore show importance of utilizing several methods for detection of biologically relevant protein aggregates. In vivo monitoring of the NPM oligomerization, a potential cancer therapy target, by the presented methods offers a new way to monitor effects of drugs that are tested as NPM oligomerization inhibitors directly in live cells. © 2018 IOP Publishing Ltd.
Univariate and multivariate methods for chemical mapping of cervical cancer cells
NASA Astrophysics Data System (ADS)
Duraipandian, Shiyamala; Zheng, Wei; Huang, Zhiwei
2012-01-01
Visualization of cells and subcellular organelles are currently carried out using available microscopy methods such as cryoelectron microscopy, and fluorescence microscopy. These methods require external labeling using fluorescent dyes and extensive sample preparations to access the subcellular structures. However, Raman micro-spectroscopy provides a non-invasive, label-free method for imaging the cells with chemical specificity at sub-micrometer spatial resolutions. The scope of this paper is to image the biochemical/molecular distributions in cells associated with cancerous changes. Raman map data sets were acquired from the human cervical carcinoma cell lines (HeLa) after fixation under 785 nm excitation wavelength. The individual spectrum was recorded by raster-scanning the laser beam over the sample with 1μm step size and 10s exposure time. Images revealing nucleic acids, lipids and proteins (phenylalanine, amide I) were reconstructed using univariate methods. In near future, the small pixel to pixel variations will also be imaged using different multivariate methods (PCA, clustering (HCA, K-means, FCM)) to determine the main cellular constitutions. The hyper-spectral image of cell was reconstructed utilizing the spectral contrast at different pixels of the cell (due to the variation in the biochemical distribution) without using fluorescent dyes. Normal cervical squamous cells will also be imaged in order to differentiate normal and cancer cells of cervix using the biochemical changes in different grades of cancer. Based on the information obtained from the pseudo-color maps, constructed from the hyper-spectral cubes, the primary cellular constituents of normal and cervical cancer cells were identified.
Batwala, Vincent; Magnussen, Pascal; Nuwaha, Fred
2011-12-19
In Uganda, parasite-based diagnosis is recommended for every patient suspected to have malaria before prescribing anti-malarials. However, the majority of patients are still treated presumptively especially in low-level health units. The feasibility of implementing parasite-based diagnosis for uncomplicated malaria in rural health centres (HCs) was investigated with a view to recommending measures for scaling up the policy. Thirty HCs were randomized to implement parasite-based diagnosis based on rapid diagnostic tests [RDTs] (n = 10), blood microscopy (n = 10) and presumptive diagnosis (control arm) (n = 10). Feasibility was assessed by comparing the proportion of patients who received parasite-based diagnosis; with a positive malaria parasite-based diagnosis who received artemether-lumefantrine (AL); with a negative malaria parasite-based diagnosis who received AL; and patient waiting time. Clinicaltrials.gov: NCT00565071. 102, 087 outpatients were enrolled. Patients were more likely to be tested in the RDT 44, 565 (96.6%) than in microscopy arm 19, 545 (60.9%) [RR: 1.59]. RDTs reduced patient waiting time compared to microscopy and were more convenient to health workers and patients. Majority 23, 804 (99.7%) in presumptive arm were prescribed AL. All (100%) of patients who tested positive for malaria in RDT and microscopy arms were prescribed anti-malarials. Parasitological-based diagnosis significantly reduced AL prescription in RDT arm [RR: 0.62] and microscopy arm [RR: 0.72] compared to presumptive treatment. Among patients not tested in the two intervention arms, 12, 044 (96.1%) in microscopy and 965 (61.6%) in RDT arm were treated with AL [RR: 1.56]. Overall 10, 558 (29.4%) with negative results [5, 110 (23.4%) in RDT and 5, 448 (39.0%) in microscopy arms] were prescribed AL. It was more feasible to implement parasite-based diagnosis for malaria using RDT than with microscopy. A high proportion of patients with negative malaria results are still prescribed anti-malarials. There is need to increase access to parasite-based diagnosis where microscopy is used. In order to fully harness the benefits of parasitological confirmation of malaria, it is necessary to reduce the prescription of anti-malarials in negative patients.
NASA Astrophysics Data System (ADS)
Leepheng, Piyawan; Suramitr, Songwut; Phromyothin, Darinee
2017-09-01
The schiff base was synthesized by 2,5-thiophenedicarboxaldehyde and 1,2,4-thiadiazole-3,5-diamine with condensation method. There was modified on carbon paste electrode (CPE) and Printed circuit board (PCB) gold electrode for determination silver ion. The schiff base modified electrodes was characterized by atomic force microscopy (AFM) and scanning electron microscopy (SEM), respectively. The electrochemical study was reported by cyclic voltammetry method and impedance spectroscopy using modified electrode as working electrode, platinum wire and Ag/AgCl as counter electrode and reference electrode, respectively. The modified electrodes have suitable detection for Ag+. The determination of silver ions using the modified electrodes depended linearly on Ag+ concentration in the range 1×10-10 M to 1×10-7 M, with cyclic voltammetry sensitivity were 2.51×108 μAM-1 and 1.88×108 μAM-1 for PCB gold electrode and CPE electrode, respectively, limits of detection were 5.33×10-9 M and 1.99×10-8 M for PCB gold electrode and CPE electrode, respectively. The modified electrodes have high accuracy, inexpensive and can applied to detection Ag+ in real samples.
Tan, Kaeling; Roberts, Anthony J.; Chonofsky, Mark; Egan, Martin J.; Reck-Peterson, Samara L.
2014-01-01
The timely delivery of membranous organelles and macromolecules to specific locations within the majority of eukaryotic cells depends on microtubule-based transport. Here we describe a screening method to identify mutations that have a critical effect on intracellular transport and its regulation using mutagenesis, multicolor-fluorescence microscopy, and multiplex genome sequencing. This screen exploits the filamentous fungus Aspergillus nidulans, which has many of the advantages of yeast molecular genetics but uses long-range microtubule-based transport in a manner more similar to metazoan cells. Using this method, we identified seven mutants that represent novel alleles of components of the intracellular transport machinery: specifically, kinesin-1, cytoplasmic dynein, and the dynein regulators Lis1 and dynactin. The two dynein mutations identified in our screen map to dynein's AAA+ catalytic core. Single-molecule studies reveal that both mutations reduce dynein's velocity in vitro. In vivo these mutants severely impair the distribution and velocity of endosomes, a known dynein cargo. In contrast, another dynein cargo, the nucleus, is positioned normally in these mutants. These results reveal that different dynein functions have distinct stringencies for motor performance. PMID:24403603
Noise models for low counting rate coherent diffraction imaging.
Godard, Pierre; Allain, Marc; Chamard, Virginie; Rodenburg, John
2012-11-05
Coherent diffraction imaging (CDI) is a lens-less microscopy method that extracts the complex-valued exit field from intensity measurements alone. It is of particular importance for microscopy imaging with diffraction set-ups where high quality lenses are not available. The inversion scheme allowing the phase retrieval is based on the use of an iterative algorithm. In this work, we address the question of the choice of the iterative process in the case of data corrupted by photon or electron shot noise. Several noise models are presented and further used within two inversion strategies, the ordered subset and the scaled gradient. Based on analytical and numerical analysis together with Monte-Carlo studies, we show that any physical interpretations drawn from a CDI iterative technique require a detailed understanding of the relationship between the noise model and the used inversion method. We observe that iterative algorithms often assume implicitly a noise model. For low counting rates, each noise model behaves differently. Moreover, the used optimization strategy introduces its own artefacts. Based on this analysis, we develop a hybrid strategy which works efficiently in the absence of an informed initial guess. Our work emphasises issues which should be considered carefully when inverting experimental data.
Sové, Richard J; Drakos, Nicole E; Fraser, Graham M; Ellis, Christopher G
2018-05-25
Red blood cell oxygen saturation is an important indicator of oxygen supply to tissues in the body. Oxygen saturation can be measured by taking advantage of spectroscopic properties of hemoglobin. When this technique is applied to transmission microscopy, the calculation of saturation requires determination of incident light intensity at each pixel occupied by the red blood cell; this value is often approximated from a sequence of images as the maximum intensity over time. This method often fails when the red blood cells are moving too slowly, or if hematocrit is too large since there is not a large enough gap between the cells to accurately calculate the incident intensity value. A new method of approximating incident light intensity is proposed using digital inpainting. This novel approach estimates incident light intensity with an average percent error of approximately 3%, which exceeds the accuracy of the maximum intensity based method in most cases. The error in incident light intensity corresponds to a maximum error of approximately 2% saturation. Therefore, though this new method is computationally more demanding than the traditional technique, it can be used in cases where the maximum intensity-based method fails (e.g. stationary cells), or when higher accuracy is required. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
2010-01-01
Background Many countries are scaling up malaria interventions towards elimination. This transition changes demands on malaria diagnostics from diagnosing ill patients to detecting parasites in all carriers including asymptomatic infections and infections with low parasite densities. Detection methods suitable to local malaria epidemiology must be selected prior to transitioning a malaria control programme to elimination. A baseline malaria survey conducted in Temotu Province, Solomon Islands in late 2008, as the first step in a provincial malaria elimination programme, provided malaria epidemiology data and an opportunity to assess how well different diagnostic methods performed in this setting. Methods During the survey, 9,491 blood samples were collected and examined by microscopy for Plasmodium species and density, with a subset also examined by polymerase chain reaction (PCR) and rapid diagnostic tests (RDTs). The performances of these diagnostic methods were compared. Results A total of 256 samples were positive by microscopy, giving a point prevalence of 2.7%. The species distribution was 17.5% Plasmodium falciparum and 82.4% Plasmodium vivax. In this low transmission setting, only 17.8% of the P. falciparum and 2.9% of P. vivax infected subjects were febrile (≥38°C) at the time of the survey. A significant proportion of infections detected by microscopy, 40% and 65.6% for P. falciparum and P. vivax respectively, had parasite density below 100/μL. There was an age correlation for the proportion of parasite density below 100/μL for P. vivax infections, but not for P. falciparum infections. PCR detected substantially more infections than microscopy (point prevalence of 8.71%), indicating a large number of subjects had sub-microscopic parasitemia. The concordance between PCR and microscopy in detecting single species was greater for P. vivax (135/162) compared to P. falciparum (36/118). The malaria RDT detected the 12 microscopy and PCR positive P. falciparum, but failed to detect 12/13 microscopy and PCR positive P. vivax infections. Conclusion Asymptomatic malaria infections and infections with low and sub-microscopic parasite densities are highly prevalent in Temotu province where malaria transmission is low. This presents a challenge for elimination since the large proportion of the parasite reservoir will not be detected by standard active and passive case detection. Therefore effective mass screening and treatment campaigns will most likely need more sensitive assays such as a field deployable molecular based assay. PMID:20822506
Red Blood Cell Count Automation Using Microscopic Hyperspectral Imaging Technology.
Li, Qingli; Zhou, Mei; Liu, Hongying; Wang, Yiting; Guo, Fangmin
2015-12-01
Red blood cell counts have been proven to be one of the most frequently performed blood tests and are valuable for early diagnosis of some diseases. This paper describes an automated red blood cell counting method based on microscopic hyperspectral imaging technology. Unlike the light microscopy-based red blood count methods, a combined spatial and spectral algorithm is proposed to identify red blood cells by integrating active contour models and automated two-dimensional k-means with spectral angle mapper algorithm. Experimental results show that the proposed algorithm has better performance than spatial based algorithm because the new algorithm can jointly use the spatial and spectral information of blood cells.
NASA Astrophysics Data System (ADS)
Maes, Thomas; Jessop, Rebecca; Wellner, Nikolaus; Haupt, Karsten; Mayes, Andrew G.
2017-03-01
A new approach is presented for analysis of microplastics in environmental samples, based on selective fluorescent staining using Nile Red (NR), followed by density-based extraction and filtration. The dye adsorbs onto plastic surfaces and renders them fluorescent when irradiated with blue light. Fluorescence emission is detected using simple photography through an orange filter. Image-analysis allows fluorescent particles to be identified and counted. Magnified images can be recorded and tiled to cover the whole filter area, allowing particles down to a few micrometres to be detected. The solvatochromic nature of Nile Red also offers the possibility of plastic categorisation based on surface polarity characteristics of identified particles. This article details the development of this staining method and its initial cross-validation by comparison with infrared (IR) microscopy. Microplastics of different sizes could be detected and counted in marine sediment samples. The fluorescence staining identified the same particles as those found by scanning a filter area with IR-microscopy.
Atomic force microscopy-based characterization and design of biointerfaces
NASA Astrophysics Data System (ADS)
Alsteens, David; Gaub, Hermann E.; Newton, Richard; Pfreundschuh, Moritz; Gerber, Christoph; Müller, Daniel J.
2017-03-01
Atomic force microscopy (AFM)-based methods have matured into a powerful nanoscopic platform, enabling the characterization of a wide range of biological and synthetic biointerfaces ranging from tissues, cells, membranes, proteins, nucleic acids and functional materials. Although the unprecedented signal-to-noise ratio of AFM enables the imaging of biological interfaces from the cellular to the molecular scale, AFM-based force spectroscopy allows their mechanical, chemical, conductive or electrostatic, and biological properties to be probed. The combination of AFM-based imaging and spectroscopy structurally maps these properties and allows their 3D manipulation with molecular precision. In this Review, we survey basic and advanced AFM-related approaches and evaluate their unique advantages and limitations in imaging, sensing, parameterizing and designing biointerfaces. It is anticipated that in the next decade these AFM-related techniques will have a profound influence on the way researchers view, characterize and construct biointerfaces, thereby helping to solve and address fundamental challenges that cannot be addressed with other techniques.
Preparation of antimicrobial fabric using magnesium-based PET masterbatch
NASA Astrophysics Data System (ADS)
Zhu, Yimin; Wang, Ying; Sha, Lin; Zhao, Jiao
2017-12-01
The magnesium-based antimicrobial polyethylene terephthalate (PET) masterbatch (MAPM) was extruded from twin screw extruder by melting-and-mixing method, using magnesium-based antimicrobial agent (MAA) as the functional material for the first time. The magnesium-based antimicrobial fabric (MAPF) was prepared using MAPM and pure PET resin by high-speed melt-spinning technology and weaving technology for the first time. The materials used in this work were healthy to human body and friendly to environment. The characteristics of MAA, MAPM and MAPF were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). When the MAPM (MAA) content reached to 25 wt.% (5 wt.%) in MAPF, the MAA had excellent dispersion and compatibility in MAPF, and the MAPF had good physico-mechanical properties. Then the MAPF presented excellent spinnability and antimicrobial property against Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), Candida albicans (C. albicans) and Aspergillus niger (A. niger), with pretty good laundering durability.
Maes, Thomas; Jessop, Rebecca; Wellner, Nikolaus; Haupt, Karsten; Mayes, Andrew G.
2017-01-01
A new approach is presented for analysis of microplastics in environmental samples, based on selective fluorescent staining using Nile Red (NR), followed by density-based extraction and filtration. The dye adsorbs onto plastic surfaces and renders them fluorescent when irradiated with blue light. Fluorescence emission is detected using simple photography through an orange filter. Image-analysis allows fluorescent particles to be identified and counted. Magnified images can be recorded and tiled to cover the whole filter area, allowing particles down to a few micrometres to be detected. The solvatochromic nature of Nile Red also offers the possibility of plastic categorisation based on surface polarity characteristics of identified particles. This article details the development of this staining method and its initial cross-validation by comparison with infrared (IR) microscopy. Microplastics of different sizes could be detected and counted in marine sediment samples. The fluorescence staining identified the same particles as those found by scanning a filter area with IR-microscopy. PMID:28300146
Intracellular in situ labeling of TiO2 nanoparticles for fluorescence microscopy detection
Brown, Koshonna; Thurn, Ted; Xin, Lun; Liu, William; Bazak, Remon; Chen, Si; Lai, Barry; Vogt, Stefan; Jacobsen, Chris; Paunesku, Tatjana; Woloschak, Gayle E.
2018-01-01
Titanium dioxide (TiO2) nanoparticles are produced for many different purposes, including development of therapeutic and diagnostic nanoparticles for cancer detection and treatment, drug delivery, induction of DNA double-strand breaks, and imaging of specific cells and subcellular structures. Currently, the use of optical microscopy, an imaging technique most accessible to biology and medical pathology, to detect TiO2 nanoparticles in cells and tissues ex vivo is limited with low detection limits, while more sensitive imaging methods (transmission electron microscopy, X-ray fluorescence microscopy, etc.) have low throughput and technical and operational complications. Herein, we describe two in situ post-treatment labeling approaches to stain TiO2 nanoparticles taken up by the cells. The first approach utilizes fluorescent biotin and fluorescent streptavidin to label the nanoparticles before and after cellular uptake; the second approach is based on the copper-catalyzed azide-alkyne cycloaddition, the so-called Click chemistry, for labeling and detection of azide-conjugated TiO2 nanoparticles with alkyne-conjugated fluorescent dyes such as Alexa Fluor 488. To confirm that optical fluorescence signals of these nanoparticles match the distribution of the Ti element, we used synchrotron X-ray fluorescence microscopy (XFM) at the Advanced Photon Source at Argonne National Laboratory. Titanium-specific XFM showed excellent overlap with the location of optical fluorescence detected by confocal microscopy. Therefore, future experiments with TiO2 nanoparticles may safely rely on confocal microscopy after in situ nanoparticle labeling using approaches described here. PMID:29541425
Intracellular in situ labeling of TiO2 nanoparticles for fluorescence microscopy detection.
Brown, Koshonna; Thurn, Ted; Xin, Lun; Liu, William; Bazak, Remon; Chen, Si; Lai, Barry; Vogt, Stefan; Jacobsen, Chris; Paunesku, Tatjana; Woloschak, Gayle E
2018-01-01
Titanium dioxide (TiO 2 ) nanoparticles are produced for many different purposes, including development of therapeutic and diagnostic nanoparticles for cancer detection and treatment, drug delivery, induction of DNA double-strand breaks, and imaging of specific cells and subcellular structures. Currently, the use of optical microscopy, an imaging technique most accessible to biology and medical pathology, to detect TiO 2 nanoparticles in cells and tissues ex vivo is limited with low detection limits, while more sensitive imaging methods (transmission electron microscopy, X-ray fluorescence microscopy, etc.) have low throughput and technical and operational complications. Herein, we describe two in situ post-treatment labeling approaches to stain TiO 2 nanoparticles taken up by the cells. The first approach utilizes fluorescent biotin and fluorescent streptavidin to label the nanoparticles before and after cellular uptake; the second approach is based on the copper-catalyzed azide-alkyne cycloaddition, the so-called Click chemistry, for labeling and detection of azide-conjugated TiO 2 nanoparticles with alkyne-conjugated fluorescent dyes such as Alexa Fluor 488. To confirm that optical fluorescence signals of these nanoparticles match the distribution of the Ti element, we used synchrotron X-ray fluorescence microscopy (XFM) at the Advanced Photon Source at Argonne National Laboratory. Titanium-specific XFM showed excellent overlap with the location of optical fluorescence detected by confocal microscopy. Therefore, future experiments with TiO 2 nanoparticles may safely rely on confocal microscopy after in situ nanoparticle labeling using approaches described here.
Functional Scanning Probe Imaging of Nanostructured Solar Energy Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giridharagopal, Rajiv; Cox, Phillip A.; Ginger, David S.
From hybrid perovskites to semiconducting polymer/fullerene blends for organic photovoltaics, many new materials being explored for energy harvesting and storage exhibit performance characteristics that depend sensitively on their nanoscale morphology. At the same time, rapid advances in the capability and accessibility of scanning probe microscopy methods over the past decade have made it possible to study processing/structure/function relationships ranging from photocurrent collection to photocarrier lifetimes with resolutions on the scale of tens of nanometers or better. Importantly, such scanning probe methods offer the potential to combine measurements of local structure with local function, and they can be implemented to studymore » materials in situ or devices in operando to better understand how materials evolve in time in response to an external stimulus or environmental perturbation. This Account highlights recent advances in the development and application of scanning probe microscopy methods that can help address such questions while filling key gaps between the capabilities of conventional electron microscopy and newer super-resolution optical methods. Focusing on semiconductor materials for solar energy applications, we highlight a range of electrical and optoelectronic scanning probe microscopy methods that exploit the local dynamics of an atomic force microscope tip to probe key properties of the solar cell material or device structure. We discuss how it is possible to extract relevant device properties using noncontact scanning probe methods as well as how these properties guide materials development. Specifically, we discuss intensity-modulated scanning Kelvin probe microscopy (IM-SKPM), time-resolved electrostatic force microscopy (trEFM), frequency-modulated electrostatic force microscopy (FM-EFM), and cantilever ringdown imaging. We explain these developments in the context of classic atomic force microscopy (AFM) methods that exploit the physics of cantilever motion and photocarrier generation to provide robust, nanoscale measurements of materials physics that are correlated with device operation. We predict that the multidimensional data sets made possible by these types of methods will become increasingly important as advances in data science expand capabilities and opportunities for image correlation and discovery.« less
Functional Scanning Probe Imaging of Nanostructured Solar Energy Materials
Giridharagopal, Rajiv; Cox, Phillip A.; Ginger, David S.
2016-08-30
From hybrid perovskites to semiconducting polymer/fullerene blends for organic photovoltaics, many new materials being explored for energy harvesting and storage exhibit performance characteristics that depend sensitively on their nanoscale morphology. At the same time, rapid advances in the capability and accessibility of scanning probe microscopy methods over the past decade have made it possible to study processing/structure/function relationships ranging from photocurrent collection to photocarrier lifetimes with resolutions on the scale of tens of nanometers or better. Importantly, such scanning probe methods offer the potential to combine measurements of local structure with local function, and they can be implemented to studymore » materials in situ or devices in operando to better understand how materials evolve in time in response to an external stimulus or environmental perturbation. This Account highlights recent advances in the development and application of scanning probe microscopy methods that can help address such questions while filling key gaps between the capabilities of conventional electron microscopy and newer super-resolution optical methods. Focusing on semiconductor materials for solar energy applications, we highlight a range of electrical and optoelectronic scanning probe microscopy methods that exploit the local dynamics of an atomic force microscope tip to probe key properties of the solar cell material or device structure. We discuss how it is possible to extract relevant device properties using noncontact scanning probe methods as well as how these properties guide materials development. Specifically, we discuss intensity-modulated scanning Kelvin probe microscopy (IM-SKPM), time-resolved electrostatic force microscopy (trEFM), frequency-modulated electrostatic force microscopy (FM-EFM), and cantilever ringdown imaging. We explain these developments in the context of classic atomic force microscopy (AFM) methods that exploit the physics of cantilever motion and photocarrier generation to provide robust, nanoscale measurements of materials physics that are correlated with device operation. We predict that the multidimensional data sets made possible by these types of methods will become increasingly important as advances in data science expand capabilities and opportunities for image correlation and discovery.« less
Rstom, Silvia Arroyo; Libório, Lorena Silva; Paschoal, Francisco Macedo
2015-01-01
In vivo Confocal Microscopy is a method for non-invasive, real-time visualization of microscopic structures and cellular details of the epidermis and dermis, which has a degree of resolution similar to that obtained with histology. We present a case of cutaneous melanoma in which diagnosis was aided by confocal microscopy examination. We also correlate the observed features with the dermoscopic and histopathological findings. Confocal microscopy proved to be an useful adjunct to dermoscopy, playing an important role as a method 'between clinical evaluation and histopathology'. PMID:26131877
Challenges and complexities of multifrequency atomic force microscopy in liquid environments.
Solares, Santiago D
2014-01-01
This paper illustrates through numerical simulation the complexities encountered in high-damping AFM imaging, as in liquid enviroments, within the specific context of multifrequency atomic force microscopy (AFM). The focus is primarily on (i) the amplitude and phase relaxation of driven higher eigenmodes between successive tip-sample impacts, (ii) the momentary excitation of non-driven higher eigenmodes and (iii) base excitation artifacts. The results and discussion are mostly applicable to the cases where higher eigenmodes are driven in open loop and frequency modulation within bimodal schemes, but some concepts are also applicable to other types of multifrequency operations and to single-eigenmode amplitude and frequency modulation methods.
Lifting degeneracy in holographic characterization of colloidal particles using multi-color imaging.
Ruffner, David B; Cheong, Fook Chiong; Blusewicz, Jaroslaw M; Philips, Laura A
2018-05-14
Micrometer sized particles can be accurately characterized using holographic video microscopy and Lorenz-Mie fitting. In this work, we explore some of the limitations in holographic microscopy and introduce methods for increasing the accuracy of this technique with the use of multiple wavelengths of laser illumination. Large high index particle holograms have near degenerate solutions that can confuse standard fitting algorithms. Using a model based on diffraction from a phase disk, we explain the source of these degeneracies. We introduce multiple color holography as an effective approach to distinguish between degenerate solutions and provide improved accuracy for the holographic analysis of sub-visible colloidal particles.
Resolution enhancement of wide-field interferometric microscopy by coupled deep autoencoders.
Işil, Çağatay; Yorulmaz, Mustafa; Solmaz, Berkan; Turhan, Adil Burak; Yurdakul, Celalettin; Ünlü, Selim; Ozbay, Ekmel; Koç, Aykut
2018-04-01
Wide-field interferometric microscopy is a highly sensitive, label-free, and low-cost biosensing imaging technique capable of visualizing individual biological nanoparticles such as viral pathogens and exosomes. However, further resolution enhancement is necessary to increase detection and classification accuracy of subdiffraction-limited nanoparticles. In this study, we propose a deep-learning approach, based on coupled deep autoencoders, to improve resolution of images of L-shaped nanostructures. During training, our method utilizes microscope image patches and their corresponding manual truth image patches in order to learn the transformation between them. Following training, the designed network reconstructs denoised and resolution-enhanced image patches for unseen input.
Artificially structured thin-film materials and interfaces.
Narayanamurti, V
1987-02-27
The ability to artificially structure new materials on an atomic scale by using advanced crystal growth methods such as molecular beam epitaxy and metal-organic chemical vapor deposition has recently led to the observation of unexpected new physical phenomena and to the creation of entirely new classes of devices. In particular, the growth of materials of variable band gap in technologically important semiconductors such as GaAs, InP, and silicon will be reviewed. Recent results of studies of multilayered structures and interfaces based on the use of advanced characterization techniques such as high-resolution transmission electron microscopy and scanning tunneling microscopy will be presented.
Thermal analysis and microstructural characterization of Mg-Al-Zn system alloys
NASA Astrophysics Data System (ADS)
Król, M.; Tański, T.; Sitek, W.
2015-11-01
The influence of Zn amount and solidification rate on the characteristic temperature of the evaluation of magnesium dendrites during solidification at different cooling rates (0.6-2.5°C) were examined by thermal derivative analysis (TDA). The dendrite coherency point (DCP) is presented with a novel approach based on second derivative cooling curve. Solidification behavior was examined via one thermocouple thermal analysis method. Microstructural assessments were described by optical light microscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy. These studies showed that utilization of d2T/dt2 vs. the time curve methodology provides for analysis of the dendrite coherency point
Structure and conformational dynamics of scaffolded DNA origami nanoparticles
2017-05-08
all-atom molecular dynamics and coarse-grained finite element modeling to DX-based nanoparticles to elucidate their fine-scale and global conforma... finite element (FE) modeling approach CanDo is also routinely used to predict the 3D equilibrium conformation of programmed DNA assemblies based on a...model with both experimental cryo-electron microscopy (cryo-EM) data and all-atom modeling. MATERIALS AND METHODS Lattice-free finite element model
Introduction: A Symposium in Honor of Professor Sir John Meurig Thomas
NASA Astrophysics Data System (ADS)
Gai, P. L.; Saka, H.; Tomokiyo, Y.; Boyes, E. D.
2002-02-01
This issue is dedicated to Professor Sir John Meurig Thomas for his renowned contributions to electron microscopy in the chemical sciences. It is a collection of peer-reviewed leading articles in electron microscopy, based on the presentations at the Microscopy and Microanalysis (M&M) 2000 symposium, which was held to honor Professor Thomas's exceptional scientific leadership and wide-ranging fundamental contributions in the chemical applications of electron microscopy.The issue contains key papers by leading international researchers on the recent developments and applications of electron microscopy in the solid state and liquid state sciences. They include synthesis and characterization of silicon nitride nanorods, nanostructures of amorphous silica, electron microscopy studies of nanoscale structure and chemistry of Pt-Ru electrocatalysts of interest in direct methanol fuel cells, development of in situ wet-environmental transmission electron microscopy for the first nanoscale studies of dynamic liquid-catalyst reactions, strain analysis of silicon by finite element method and energy filtering convergent beam electron diffraction, applications of chemistry with electron microscopy, bismuth nanowires for applications in nanoelectronics technology, synthesis and characterization of quantum dots for superlattices and in situ electron microscopy at very high temperatures to study the motion of W5Si3 on [alpha][beta]-SiN3 substrates.We thank all the participants, including the invited speakers, contributors, and session chairs, who made the symposium successful. We also thank the authors and reviewers of the papers who worked assiduously towards the publication of this issue.We are very grateful to the Microscopy Society of America (MSA) for providing the opportunity to honor Professor Sir John Meurig Thomas. Organizational support from the MSA is also gratefully acknowledged.We thank Charles E. Lyman, editor in chief of Microscopy and Microanalysis for coordinating the publication of this issue and the entire journal staff for their efforts.
Rodríguez, José-Rodrigo; Turégano-López, Marta; DeFelipe, Javier; Merchán-Pérez, Angel
2018-01-01
Semithin sections are commonly used to examine large areas of tissue with an optical microscope, in order to locate and trim the regions that will later be studied with the electron microscope. Ideally, the observation of semithin sections would be from mesoscopic to nanoscopic scales directly, instead of using light microscopy and then electron microscopy (EM). Here we propose a method that makes it possible to obtain high-resolution scanning EM images of large areas of the brain in the millimeter to nanometer range. Since our method is compatible with light microscopy, it is also feasible to generate hybrid light and electron microscopic maps. Additionally, the same tissue blocks that have been used to obtain semithin sections can later be used, if necessary, for transmission EM, or for focused ion beam milling and scanning electron microscopy (FIB-SEM). PMID:29568263
Rodríguez, José-Rodrigo; Turégano-López, Marta; DeFelipe, Javier; Merchán-Pérez, Angel
2018-01-01
Semithin sections are commonly used to examine large areas of tissue with an optical microscope, in order to locate and trim the regions that will later be studied with the electron microscope. Ideally, the observation of semithin sections would be from mesoscopic to nanoscopic scales directly, instead of using light microscopy and then electron microscopy (EM). Here we propose a method that makes it possible to obtain high-resolution scanning EM images of large areas of the brain in the millimeter to nanometer range. Since our method is compatible with light microscopy, it is also feasible to generate hybrid light and electron microscopic maps. Additionally, the same tissue blocks that have been used to obtain semithin sections can later be used, if necessary, for transmission EM, or for focused ion beam milling and scanning electron microscopy (FIB-SEM).
Oriero, Eniyou C; Okebe, Joseph; Jacobs, Jan; Van Geertruyden, Jean-Pierre; Nwakanma, Davis; D'Alessandro, Umberto
2015-10-09
New diagnostic tools to detect reliably and rapidly asymptomatic and low-density malaria infections are needed as their treatment could interrupt transmission. Isothermal amplification techniques are being explored for field diagnosis of malaria. In this study, a novel molecular tool (loop-mediated isothermal amplification-LAMP) targeting the apicoplast genome of Plasmodium falciparum was evaluated for the detection of asymptomatic malaria-infected individuals in a rural setting in The Gambia. A blood was collected from 341 subjects (median age 9 years, range 1-68 years) screened for malaria. On site, a rapid diagnostic test (RDT, SD Bioline Malaria Antigen P.f) was performed, thick blood films (TBF) slides for microscopy were prepared and dry blood spots (DBS) were collected on Whatman(®) 903 Specimen collection paper. The TBF and DBS were transported to the field laboratory where microscopy and LAMP testing were performed. The latter was done on DNA extracted from the DBS using a crude (methanol/heating) extraction method. A laboratory-based PCR amplification was done on all the samples using DNA extracted with the Qiagen kit and its results were taken as reference for all the other tests. Plasmodium falciparum malaria prevalence was 37 % (127/341) as detected by LAMP, 30 % (104/341) by microscopy and 37 % (126/341) by RDT. Compared to the reference PCR method, sensitivity was 92 % for LAMP, 78 % for microscopy, and 76 % for RDT; specificity was 97 % for LAMP, 99 % for microscopy, and 88 % for RDT. Area under the receiver operating characteristic (ROC) curve in comparison with the reference standard was 0.94 for LAMP, 0.88 for microscopy and 0.81 for RDT. Turn-around time for the entire LAMP assay was approximately 3 h and 30 min for an average of 27 ± 9.5 samples collected per day, compared to a minimum of 10 samples an hour per operator by RDT and over 8 h by microscopy. The LAMP assay could produce reliable results the same day of the screening. It could detect a higher proportion of low density malaria infections than the other methods tested and may be used for large campaigns of systematic screening and treatment.
Colello, Raymond J; Tozer, Jordan; Henderson, Scott C
2012-01-01
Photoconversion, the method by which a fluorescent dye is transformed into a stable, osmiophilic product that can be visualized by electron microscopy, is the most widely used method to enable the ultrastructural analysis of fluorescently labeled cellular structures. Nevertheless, the conventional method of photoconversion using widefield fluorescence microscopy requires long reaction times and results in low-resolution cell targeting. Accordingly, we have developed a photoconversion method that ameliorates these limitations by adapting confocal laser scanning microscopy to the procedure. We have found that this method greatly reduces photoconversion times, as compared to conventional wide field microscopy. Moreover, region-of-interest scanning capabilities of a confocal microscope facilitate the targeting of the photoconversion process to individual cellular or subcellular elements within a fluorescent field. This reduces the area of the cell exposed to light energy, thereby reducing the ultrastructural damage common to this process when widefield microscopes are employed. © 2012 by John Wiley & Sons, Inc.
Determining absolute protein numbers by quantitative fluorescence microscopy.
Verdaasdonk, Jolien Suzanne; Lawrimore, Josh; Bloom, Kerry
2014-01-01
Biological questions are increasingly being addressed using a wide range of quantitative analytical tools to examine protein complex composition. Knowledge of the absolute number of proteins present provides insights into organization, function, and maintenance and is used in mathematical modeling of complex cellular dynamics. In this chapter, we outline and describe three microscopy-based methods for determining absolute protein numbers--fluorescence correlation spectroscopy, stepwise photobleaching, and ratiometric comparison of fluorescence intensity to known standards. In addition, we discuss the various fluorescently labeled proteins that have been used as standards for both stepwise photobleaching and ratiometric comparison analysis. A detailed procedure for determining absolute protein number by ratiometric comparison is outlined in the second half of this chapter. Counting proteins by quantitative microscopy is a relatively simple yet very powerful analytical tool that will increase our understanding of protein complex composition. © 2014 Elsevier Inc. All rights reserved.
Etheridge, Thomas J.; Boulineau, Rémi L.; Herbert, Alex; Watson, Adam T.; Daigaku, Yasukazu; Tucker, Jem; George, Sophie; Jönsson, Peter; Palayret, Matthieu; Lando, David; Laue, Ernest; Osborne, Mark A.; Klenerman, David; Lee, Steven F.; Carr, Antony M.
2014-01-01
Development of single-molecule localization microscopy techniques has allowed nanometre scale localization accuracy inside cells, permitting the resolution of ultra-fine cell structure and the elucidation of crucial molecular mechanisms. Application of these methodologies to understanding processes underlying DNA replication and repair has been limited to defined in vitro biochemical analysis and prokaryotic cells. In order to expand these techniques to eukaryotic systems, we have further developed a photo-activated localization microscopy-based method to directly visualize DNA-associated proteins in unfixed eukaryotic cells. We demonstrate that motion blurring of fluorescence due to protein diffusivity can be used to selectively image the DNA-bound population of proteins. We designed and tested a simple methodology and show that it can be used to detect changes in DNA binding of a replicative helicase subunit, Mcm4, and the replication sliding clamp, PCNA, between different stages of the cell cycle and between distinct genetic backgrounds. PMID:25106872
A user's guide to localization-based super-resolution fluorescence imaging.
Dempsey, Graham T
2013-01-01
Advances in far-field fluorescence microscopy over the past decade have led to the development of super-resolution imaging techniques that provide more than an order of magnitude improvement in spatial resolution compared to conventional light microscopy. One such approach, called Stochastic Optical Reconstruction Microscopy (STORM) uses the sequential, nanometer-scale localization of individual fluorophores to reconstruct a high-resolution image of a structure of interest. This is an attractive method for biological investigation at the nanoscale due to its relative simplicity, both conceptually and practically in the laboratory. Like most research tools, however, the devil is in the details. The aim of this chapter is to serve as a guide for applying STORM to the study of biological samples. This chapter will discuss considerations for choosing a photoswitchable fluorescent probe, preparing a sample, selecting hardware for data acquisition, and collecting and analyzing data for image reconstruction. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Malashchenko, V.; Zyubin, A.; Babak, S.; Lavrova, A.
2017-04-01
We consider the method of confocal microscopy as a convenient instrument for determination of chemical compounds in biological tissues and cells. In particular, we study the dynamics of adenosine triphosphate (ATP) concentration that could be used as a bio-marker of energy metabolism pathologies at the treatment of acute lymphoblastic leukaemia (ALL). On the basis of data obtained by the confocal microscopy, the values of ATP concentration have been calculated for each case. Possible correlations with other characteristics of pathology processes obtained from plasma of leukemia patients show that ATP value could be a prognostic factor of the treatment success. The role of ATP in the drug metabolism switching is also discussed within the context of kinetic modelling of metabolism processes leading to the production of 6-Thioguanosine monophosphate, which is a principal acting agent in chemotherapy.
NASA Astrophysics Data System (ADS)
Li, Gongxin; Li, Peng; Wang, Yuechao; Wang, Wenxue; Xi, Ning; Liu, Lianqing
2014-07-01
Scanning Ion Conductance Microscopy (SICM) is one kind of Scanning Probe Microscopies (SPMs), and it is widely used in imaging soft samples for many distinctive advantages. However, the scanning speed of SICM is much slower than other SPMs. Compressive sensing (CS) could improve scanning speed tremendously by breaking through the Shannon sampling theorem, but it still requires too much time in image reconstruction. Block compressive sensing can be applied to SICM imaging to further reduce the reconstruction time of sparse signals, and it has another unique application that it can achieve the function of image real-time display in SICM imaging. In this article, a new method of dividing blocks and a new matrix arithmetic operation were proposed to build the block compressive sensing model, and several experiments were carried out to verify the superiority of block compressive sensing in reducing imaging time and real-time display in SICM imaging.
Simultaneous multicolor imaging of wide-field epi-fluorescence microscopy with four-bucket detection
Park, Kwan Seob; Kim, Dong Uk; Lee, Jooran; Kim, Geon Hee; Chang, Ki Soo
2016-01-01
We demonstrate simultaneous imaging of multiple fluorophores using wide-field epi-fluorescence microscopy with a monochrome camera. The intensities of the three lasers are modulated by a sinusoidal waveform in order to excite each fluorophore with the same modulation frequency and a different time-delay. Then, the modulated fluorescence emissions are simultaneously detected by a camera operating at four times the excitation frequency. We show that two different fluorescence beads having crosstalk can be clearly separated using digital processing based on the phase information. In addition, multiple organelles within multi-stained single cells are shown with the phase mapping method, demonstrating an improved dynamic range and contrast compared to the conventional fluorescence image. These findings suggest that wide-field epi-fluorescence microscopy with four-bucket detection could be utilized for high-contrast multicolor imaging applications such as drug delivery and fluorescence in situ hybridization. PMID:27375944
NASA Astrophysics Data System (ADS)
Guthoff, Rudolf F.; Zhivov, Andrey; Stachs, Oliver
2010-02-01
The aim of the study was to produce two-dimensional reconstruction maps of the living corneal sub-basal nerve plexus by in vivo laser scanning confocal microscopy in real time. CLSM source data (frame rate 30Hz, 384x384 pixel) were used to create large-scale maps of the scanned area by selecting the Automatic Real Time (ART) composite mode. The mapping algorithm is based on an affine transformation. Microscopy of the sub-basal nerve plexus was performed on normal and LASIK eyes as well as on rabbit eyes. Real-time mapping of the sub-basal nerve plexus was performed in large-scale up to a size of 3.2mm x 3.2mm. The developed method enables a real-time in vivo mapping of the sub-basal nerve plexus which is stringently necessary for statistically firmed conclusions about morphometric plexus alterations.
Analysis of Particulate and Fiber Debris Samples Returned from the International Space Station
NASA Technical Reports Server (NTRS)
Perry, Jay L.; Coston, James E.
2014-01-01
During the period of International Space Station (ISS) Increments 30 and 31, crewmember reports cited differences in the cabin environment relating to particulate matter and fiber debris compared to earlier experience as well as allergic responses to the cabin environment. It was hypothesized that a change in the cabin atmosphere's suspended particulate matter load may be responsible for the reported situation. Samples were collected and returned to ground-based laboratories for assessment. Assessments included physical classification, optical microscopy and photographic analysis, and scanning electron microscopy (SEM) evaluation using energy dispersive X-ray spectrometry (EDS) methods. Particular points of interest for assessing the samples were for the presence of allergens, carbon dioxide removal assembly (CDRA) zeolite dust, and FGB panel fibers. The results from the physical classification, optical microscopy and photographic analysis, and SEM EDS analysis are presented and discussed.
NASA Astrophysics Data System (ADS)
Chen, Q.; Rice, A. F.
2005-03-01
Scanning Probe Recognition Microscopy is a new scanning probe capability under development within our group to reliably return to and directly interact with a specific nanobiological feature of interest. In previous work, we have successfully recognized and classified tubular versus globular biological objects from experimental atomic force microscope images using a method based on normalized central moments [ref. 1]. In this paper we extend this work to include recognition schemes appropriate for cellular and sub-cellular structures. Globular cells containing tubular actin filaments are under investigation. Thus there are differences in external/internal shapes and scales. Continuous Wavelet Transform with a differential Gaussian mother wavelet is employed for multi- scale analysis. [ref. 1] Q. Chen, V. Ayres and L. Udpa, ``Biological Investigation Using Scanning Probe Recognition Microscopy,'' Proceedings 3rd IEEE Conference on Nanotechnology, vol. 2, p 863-865 (2003).
In situ mechanical characterization of the cell nucleus by atomic force microscopy.
Liu, Haijiao; Wen, Jun; Xiao, Yun; Liu, Jun; Hopyan, Sevan; Radisic, Milica; Simmons, Craig A; Sun, Yu
2014-04-22
The study of nuclear mechanical properties can provide insights into nuclear dynamics and its role in cellular mechanotransduction. While several methods have been developed to characterize nuclear mechanical properties, direct intracellular probing of the nucleus in situ is challenging. Here, a modified AFM (atomic force microscopy) needle penetration technique is demonstrated to mechanically characterize cell nuclei in situ. Cytoplasmic and nuclear stiffness were determined based on two different segments on the AFM indentation curves and were correlated with simultaneous confocal Z-stack microscopy reconstructions. On the basis of direct intracellular measurement, we show that the isolated nuclei from fibroblast-like cells exhibited significantly lower Young's moduli than intact nuclei in situ. We also show that there is in situ nucleus softening in the highly metastatic bladder cancer cell line T24 when compared to its less metastatic counterpart RT4. This technique has potential to become a reliable quantitative measurement tool for intracellular mechanics studies.
Wang, Xueju; Pan, Zhipeng; Fan, Feifei; ...
2015-09-10
We present an application of the digital image correlation (DIC) method to high-resolution transmission electron microscopy (HRTEM) images for nanoscale deformation analysis. The combination of DIC and HRTEM offers both the ultrahigh spatial resolution and high displacement detection sensitivity that are not possible with other microscope-based DIC techniques. We demonstrate the accuracy and utility of the HRTEM-DIC technique through displacement and strain analysis on amorphous silicon. Two types of error sources resulting from the transmission electron microscopy (TEM) image noise and electromagnetic-lens distortions are quantitatively investigated via rigid-body translation experiments. The local and global DIC approaches are applied for themore » analysis of diffusion- and reaction-induced deformation fields in electrochemically lithiated amorphous silicon. As a result, the DIC technique coupled with HRTEM provides a new avenue for the deformation analysis of materials at the nanometer length scales.« less
Ebenstein, Yuval; Gassman, Natalie; Kim, Soohong; Weiss, Shimon
2011-01-01
Atomic force microscopy (AFM) and fluorescence microscopy are widely used for the study of protein-DNA interactions. While AFM excels in its ability to elucidate structural detail and spatial arrangement, it lacks the ability to distinguish between similarly sized objects in a complex system. This information is readily accessible to optical imaging techniques via site-specific fluorescent labels, which enable the direct detection and identification of multiple components simultaneously. Here, we show how the utilization of semiconductor quantum dots (QDs), serving as contrast agents for both AFM topography and fluorescence imaging, facilitates the combination of both imaging techniques, and with the addition of a flow based DNA extension method for sample deposition, results in a powerful tool for the study of protein-DNA complexes. We demonstrate the inherent advantages of this novel combination of techniques by imaging individual RNA polymerases (RNAP) on T7 genomic DNA. PMID:19452448
Image recovery from defocused 2D fluorescent images in multimodal digital holographic microscopy.
Quan, Xiangyu; Matoba, Osamu; Awatsuji, Yasuhiro
2017-05-01
A technique of three-dimensional (3D) intensity retrieval from defocused, two-dimensional (2D) fluorescent images in the multimodal digital holographic microscopy (DHM) is proposed. In the multimodal DHM, 3D phase and 2D fluorescence distributions are obtained simultaneously by an integrated system of an off-axis DHM and a conventional epifluorescence microscopy, respectively. This gives us more information of the target; however, defocused fluorescent images are observed due to the short depth of field. In this Letter, we propose a method to recover the defocused images based on the phase compensation and backpropagation from the defocused plane to the focused plane using the distance information that is obtained from a 3D phase distribution. By applying Zernike polynomial phase correction, we brought back the fluorescence intensity to the focused imaging planes. The experimental demonstration using fluorescent beads is presented, and the expected applications are suggested.
75 FR 34096 - Application(s) for Duty-Free Entry of Scientific Instruments
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-16
... dynamin, using negative stain nad cryo-electron microscopy methods. Justification for Duty-Free Entry..., using negative stain nad cryo-electron microscopy methods. Justification for Duty-Free Entry: There are...
An AFM-based pit-measuring method for indirect measurements of cell-surface membrane vesicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xiaojun; Department of Biotechnology, Nanchang University, Nanchang, Jiangxi 330031; Chen, Yuan
2014-03-28
Highlights: • Air drying induced the transformation of cell-surface membrane vesicles into pits. • An AFM-based pit-measuring method was developed to measure cell-surface vesicles. • Our method detected at least two populations of cell-surface membrane vesicles. - Abstract: Circulating membrane vesicles, which are shed from many cell types, have multiple functions and have been correlated with many diseases. Although circulating membrane vesicles have been extensively characterized, the status of cell-surface membrane vesicles prior to their release is less understood due to the lack of effective measurement methods. Recently, as a powerful, micro- or nano-scale imaging tool, atomic force microscopy (AFM)more » has been applied in measuring circulating membrane vesicles. However, it seems very difficult for AFM to directly image/identify and measure cell-bound membrane vesicles due to the similarity of surface morphology between membrane vesicles and cell surfaces. Therefore, until now no AFM studies on cell-surface membrane vesicles have been reported. In this study, we found that air drying can induce the transformation of most cell-surface membrane vesicles into pits that are more readily detectable by AFM. Based on this, we developed an AFM-based pit-measuring method and, for the first time, used AFM to indirectly measure cell-surface membrane vesicles on cultured endothelial cells. Using this approach, we observed and quantitatively measured at least two populations of cell-surface membrane vesicles, a nanoscale population (<500 nm in diameter peaking at ∼250 nm) and a microscale population (from 500 nm to ∼2 μm peaking at ∼0.8 μm), whereas confocal microscopy only detected the microscale population. The AFM-based pit-measuring method is potentially useful for studying cell-surface membrane vesicles and for investigating the mechanisms of membrane vesicle formation/release.« less