Sample records for microscopy sem equipped

  1. DISTRIBUTION SYSTEM SOLIDS - A RESEARCH APPROACH

    EPA Science Inventory

    The U.S. EPA's AWBERC research facility is equipped with capabilities to analyze a variety of solids in support many Laboratory-wide research studies. Techniques available on site include X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microsco...

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooke, Gary A.; Pestovich, John A.; Huber, Heinz J.

    This report presents the results for solid phase characterization (SPC) of solid samples removed from tank 241-C-108 (C-108) on August 12-13,2012, using the off-riser sampler. Samples were received at the 222-S Laboratory on August 13 and were described and photographed. The SPC analyses that were performed include scanning electron microscopy (SEM) using the ASPEX(R)l scanning electron microscope, X-ray diffraction (XRD) using the Rigaku(R) 2 MiniFlex X-ray diffractometer, and polarized light microscopy (PLM) using the Nikon(R) 3 Eclipse Pol optical microscope. The SEM is equipped with an energy dispersive X-ray spectrometer (EDS) to provide chemical information. Gary A. Cooke conducted themore » SEM analysis, John A. Pestovich performed the XRD analysis, and Dr. Heinz J. Huber performed the PLM examination. The results of these analyses are presented here.« less

  3. Image contrast enhancement of Ni/YSZ anode during the slice-and-view process in FIB-SEM.

    PubMed

    Liu, Shu-Sheng; Takayama, Akiko; Matsumura, Syo; Koyama, Michihisa

    2016-03-01

    Focused ion beam-scanning electron microscopy (FIB-SEM) is a widely used and easily operational equipment for three-dimensional reconstruction with flexible analysis volume. It has been using successfully and increasingly in the field of solid oxide fuel cell. However, the phase contrast of the SEM images is indistinct in many cases, which will bring difficulties to the image processing. Herein, the phase contrast of a conventional Ni/yttria stabilized zirconia anode is tuned in an FIB-SEM with In-Lens secondary electron (SE) and backscattered electron detectors. Two accessories, tungsten probe and carbon nozzle, are inserted during the observation. The former has no influence on the contrast. When the carbon nozzle is inserted, best and distinct contrast can be obtained by In-Lens SE detector. This method is novel for contrast enhancement. Phase segmentation of the image can be automatically performed. The related mechanism for different images is discussed. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  4. 1998 Technology Showcase. JOAP International Condition Monitoring Conference.

    DTIC Science & Technology

    1998-04-01

    Systems using Automated SEM/ EDX and New Diagnostic Routines 276 N. W Farrant & T. Luckhurst ADVANCED DIAGNOSTIC SYSTEMS Model-Based Diagnostics of Gas...Microscopy with Energy Dispersive X-Ray (SEM/ EDX ) micro analysis packages and Energy Dispersive X-Ray Fluorescence (EDXRF) analytical equipment. Therqfore...wear particles separated by ferrogram method. a- I WEAR PARTICLE A SLAS 97 (HOME PAGE) Fig I Home Page NONFE;RROUS MATERIAL A wW~ a48 -1, rV fr , ý b

  5. Attempt of correlative observation of morphological synaptic connectivity by combining confocal laser-scanning microscope and FIB-SEM for immunohistochemical staining technique.

    PubMed

    Sonomura, Takahiro; Furuta, Takahiro; Nakatani, Ikuko; Yamamoto, Yo; Honma, Satoru; Kaneko, Takeshi

    2014-11-01

    Ten years have passed since a serial block-face scanning electron microscopy (SBF-SEM) method was developed [1]. In this innovative method, samples were automatically sectioned with an ultramicrotome placed inside a scanning electron microscope column, and the block surfaces were imaged one after another by SEM to capture back-scattered electrons. The contrast-inverted images obtained by the SBF-SEM were very similar to those acquired using conventional TEM. SFB-SEM has made easy to acquire image stacks of the transmission electron microscopy (TEM) in the mesoscale, which is taken with the confocal laser-scanning microcopy(CF-LSM).Furthermore, serial-section SEM has been combined with the focused ion beam (FIB) milling method [2]. FIB-incorporated SEM (FIB-SEM) has enabled the acquisition of three-dimensional images with a higher z-axis resolution com- pared to ultramicrotome-equipped SEM.We tried immunocytochemistry for FIB-SEM and correlated this immunoreactivity with that in CF-LSM. Dendrites of neurons in the rat neostriatum were visualized using a recombinant viral vector. Moreover, the thalamostriatal afferent terminals were immunolabeled with Cy5 fluorescence for vesicular glutamate transporter 2 (VGluT2). After detection of the sites of terminals apposed to the dendrites by using CF-LSM, GFP and VGluT2 immunoreactivities were further developed for EM by using immunogold/silver enhancement and immunoperoxidase/diaminobenzidine (DAB) methods, respectively.We showed that conventional immuno-cytochemical staining for TEM was applicable to FIB-SEM. Furthermore, several synaptic contacts, which were thought to exist on the basis of CF-LSM findings, were confirmed with FIB-SEM, revealing the usefulness of the combined method of CF-LSM and FIB-SEM. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Automated SEM-EDS GSR Analysis for Turkish Ammunitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cakir, Ismail; Uner, H. Bulent

    2007-04-23

    In this work, Automated Scanning Electron Microscopy with Energy Dispersive X-ray Spectrometry (SEM-EDS) was used to characterize 7.65 and 9mm cartridges Turkish ammunition. All samples were analyzed in a SEM Jeol JSM-5600LV equipped BSE detector and a Link ISIS 300 (EDS). A working distance of 20mm, an accelerating voltage of 20 keV and gunshot residue software was used in all analysis. Automated search resulted in a high number of particles analyzed containing gunshot residues (GSR) unique elements (PbBaSb). The obtained data about the definition of characteristic GSR particles was concordant with other studies on this topic.

  7. Micro-Structural Study of Fretting Contact Caused by the Difference of the Tin Plating Thickness

    NASA Astrophysics Data System (ADS)

    Ito, Tetsuya; Sawada, Shigeru; Hattori, Yasuhiro; Saitoh, Yasushi; Tamai, Terutaka; Iida, Kazuo

    In recent years, there has been increasing demand to miniaturize wiring harness connectors in automobiles due to the increasing volume of electronic equipment and the reduction of the installation space allocated for the electronic equipment in automobiles for the comfort of the passengers. With this demand, contact failure caused by the fretting corrosion is expected to become a serious problem. In this report, we examined micro-structural observations of fretting contacts of two different tin plating thicknesses using Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) and so on. Based on the results, we compared the microstructure difference of fretting contact caused by the difference of the tin plating thickness.

  8. Sharing of secondary electrons by in-lens and out-lens detector in low-voltage scanning electron microscope equipped with immersion lens.

    PubMed

    Kumagai, Kazuhiro; Sekiguchi, Takashi

    2009-03-01

    To understand secondary electron (SE) image formation with in-lens and out-lens detector in low-voltage scanning electron microscopy (LV-SEM), we have evaluated SE signals of an in-lens and an out-lens detector in LV-SEM. From the energy distribution spectra of SEs with various boosting voltages of the immersion lens system, we revealed that the electrostatic field of the immersion lens mainly collects electrons with energy lower than 40eV, acting as a low-pass filter. This effect is also observed as a contrast change in LV-SEM images taken by in-lens and out-lens detectors.

  9. Subsurface examination of a foliar biofilm using scanning electron- and focused-ion-beam microscopy

    USDA-ARS?s Scientific Manuscript database

    The dual beam scanning electron microscope, equipped with both a focused ion- and scanning electron- beam (FIB SEM) is a novel tool for the exploration of the subsurface structure of biological tissues. The FIB is capable of removing small cross sections to view the subsurface features and may be s...

  10. Use of fluorescence and scanning electron microscopy as tools in teaching biology

    NASA Astrophysics Data System (ADS)

    Ghosh, Nabarun; Silva, Jessica; Vazquez, Aracely; Das, A. B.; Smith, Don W.

    2011-06-01

    Recent nationwide surveys reveal significant decline in students' interest in Math and Sciences. The objective of this project was to inspire young minds in using various techniques involved in Sciences including Scanning Electron Microscopy. We used Scanning Electron Microscope in demonstrating various types of Biological samples. An SEM Tabletop model in the past decade has revolutionized the use of Scanning Electron Microscopes. Using SEM Tabletop model TM 1000 we studied biological specimens of fungal spores, pollen grains, diatoms, plant fibers, dust mites, insect parts and leaf surfaces. We also used fluorescence microscopy to view, to record and analyze various specimens with an Olympus BX40 microscope equipped with FITC and TRITC fluorescent filters, a mercury lamp source, DP-70 digital camera with Image Pro 6.0 software. Micrographs were captured using bright field microscopy, the fluoresceinisothiocyanate (FITC) filter, and the tetramethylrhodamine (TRITC) filter settings at 40X. A high pressure mercury lamp or UV source was used to excite the storage molecules or proteins which exhibited autofluorescence. We used fluorescent microscopy to confirm the localization of sugar beet viruses in plant organs by viewing the vascular bundles in the thin sections of the leaves and other tissues. We worked with the REU summer students on sample preparation and observation on various samples utilizing the SEM. Critical Point Drying (CPD) and metal coating with the sputter coater was followed before observing some cultured specimen and the samples that were soft in textures with high water content. SEM Top allowed investigating the detailed morphological features that can be used for classroom teaching. Undergraduate and graduate researchers studied biological samples of Arthropods, pollen grains and teeth collected from four species of snakes using SEM. This project inspired the research students to pursue their career in higher studies in science and 45% of the undergraduates participated in this project entered Graduate school.

  11. Optical sectioning and 3D reconstructions as an alternative to scanning electron microscopy for analysis of cell shape.

    PubMed

    Landis, Jacob B; Ventura, Kayla L; Soltis, Douglas E; Soltis, Pamela S; Oppenheimer, David G

    2015-04-01

    Visualizing flower epidermal cells is often desirable for investigating the interaction between flowers and their pollinators, in addition to the broader range of ecological interactions in which flowers are involved. We developed a protocol for visualizing petal epidermal cells without the limitations of the commonly used method of scanning electron microscopy (SEM). Flower material was collected and fixed in glutaraldehyde, followed by dehydration in an ethanol series. Flowers were dissected to collect petals, and subjected to a Histo-Clear series to remove the cuticle. Material was then stained with aniline blue, mounted on microscope slides, and imaged using a compound fluorescence microscope to obtain optical sections that were reconstructed into a 3D image. This optical sectioning method yielded high-quality images of the petal epidermal cells with virtually no damage to cells. Flowers were processed in larger batches than are possible using common SEM methods. Also, flower size was not a limiting factor as often observed in SEM studies. Flowers up to 5 cm in length were processed and mounted for visualization. This method requires no special equipment for sample preparation prior to imaging and should be seen as an alternative method to SEM.

  12. Nanocrystalline diamond coatings for mechanical seals applications.

    PubMed

    Santos, J A; Neto, V F; Ruch, D; Grácio, J

    2012-08-01

    A mechanical seal is a type of seal used in rotating equipment, such as pumps and compressors. It consists of a mechanism that assists the connection of the rotating shaft to the housings of the equipments, preventing leakage or avoiding contamination. A common cause of failure of these devices is end face wear out, thus the use of a hard, smooth and wear resistant coating such as nanocrystalline diamond would be of great importance to improve their working performance and increase their lifetime. In this paper, different diamond coatings were deposited by the HFCVD process, using different deposition conditions. Additionally, the as-grown films were characterized for, quality, morphology and microstructure using scanning electron microscopy (SEM) and Raman spectroscopy. The topography and the roughness of the films were characterized by atomic force microscopy (AFM).

  13. Preliminary results on complex ceramic layers deposition by atmospheric plasma spraying

    NASA Astrophysics Data System (ADS)

    Florea, Costel; Bejinariu, Costicǎ; Munteanu, Corneliu; Cimpoeşu, Nicanor

    2017-04-01

    In this article we obtain thin layers from complex ceramic powders using industrial equipment based on atmospheric plasma spraying. We analyze the influence of the substrate material roughness on the quality of the thin layers using scanning electron microscopy (SEM) and X-ray dispersive energy analyze (EDAX). Preliminary results present an important dependence between the surface state and the structural and chemical homogeneity.

  14. The innovation of cryo-SEM freeze-fracturing methodology demonstrated on high pressure frozen biofilm.

    PubMed

    Hrubanova, Kamila; Nebesarova, Jana; Ruzicka, Filip; Krzyzanek, Vladislav

    2018-07-01

    In this study we present an innovative method for the preparation of fully hydrated samples of microbial biofilms of cultures Staphylococcus epidermidis, Candida parapsilosis and Candida albicans. Cryo-scanning electron microscopy (cryo-SEM) and high-pressure freezing (HPF) rank among cutting edge techniques in the electron microscopy of hydrated samples such as biofilms. However, the combination of these techniques is not always easily applicable. Therefore, we present a method of combining high-pressure freezing using EM PACT2 (Leica Microsystems), which fixes hydrated samples on small sapphire discs, with a high resolution SEM equipped with the widely used cryo-preparation system ALTO 2500 (Gatan). Using a holder developed in house, a freeze-fracturing technique was applied to image and investigate microbial cultures cultivated on the sapphire discs. In our experiments, we focused on the ultrastructure of the extracellular matrix produced during cultivation and the relationships among microbial cells in the biofilm. The main goal of our investigations was the detailed visualization of areas of the biofilm where the microbial cells adhere to the substrate/surface. We show the feasibility of this technique, which is clearly demonstrated in experiments with various freeze-etching times. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. High-resolution imaging by scanning electron microscopy of semithin sections in correlation with light microscopy.

    PubMed

    Koga, Daisuke; Kusumi, Satoshi; Shodo, Ryusuke; Dan, Yukari; Ushiki, Tatsuo

    2015-12-01

    In this study, we introduce scanning electron microscopy (SEM) of semithin resin sections. In this technique, semithin sections were adhered on glass slides, stained with both uranyl acetate and lead citrate, and observed with a backscattered electron detector at a low accelerating voltage. As the specimens are stained in the same manner as conventional transmission electron microscopy (TEM), the contrast of SEM images of semithin sections was similar to TEM images of ultrathin sections. Using this technique, wide areas of semithin sections were also observed by SEM, without the obstruction of grids, which was inevitable for traditional TEM. This study also applied semithin section SEM to correlative light and electron microscopy. Correlative immunofluorescence microscopy and immune-SEM were performed in semithin sections of LR white resin-embedded specimens using a FluoroNanogold-labeled secondary antibody. Because LR white resin is hydrophilic and electron stable, this resin is suitable for immunostaining and SEM observation. Using correlative microscopy, the precise localization of the primary antibody was demonstrated by fluorescence microscopy and SEM. This method has great potential for studies examining the precise localization of molecules, including Golgi- and ER-associated proteins, in correlation with LM and SEM. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Advanced electron microscopy methods for the analysis of MgB2 superconductor

    NASA Astrophysics Data System (ADS)

    Birajdar, B.; Peranio, N.; Eibl, O.

    2008-02-01

    Advanced electron microscopy methods used for the analysis of superconducting MgB2 wires and tapes are described. The wires and tapes were prepared by the powder in tube method using different processing technologies and thoroughly characterised for their superconducting properties within the HIPERMAG project. Microstructure analysis on μm to nm length scales is necessary to understand the superconducting properties of MgB2. For the MgB2 phase analysis on μm scale an analytical SEM, and for the analysis on nm scale a energy-filtered STEM is used. Both the microscopes were equipped with EDX detector and field emission gun. Electron microscopy and spectroscopy of MgB2 is challenging because of the boron analysis, carbon and oxygen contamination, and the presence of large number of secondary phases. Advanced electron microscopy involves, combined SEM, EPMA and TEM analysis with artefact free sample preparation, elemental mapping and chemical quantification of point spectra. Details of the acquisition conditions and achieved accuracy are presented. Ex-situ wires show oxygen-free MgB2 colonies (a colony is a dense arrangement of several MgB2 grains) embedded in a porous and oxygen-rich matrix, introducing structural granularity. In comparison, in-situ wires are generally more dense, but show inhibited MgB2 phase formation with significantly higher fraction of B-rich secondary phases. SiC additives in the in-situ wires forms Mg2Si secondary phases. The advanced electron microscopy has been used to extract the microstructure parameters like colony size, B-rich secondary phase fraction, O mole fraction and MgB2 grain size, and establish a microstructure-critical current density model [1]. In summary, conventional secondary electron imaging in SEM and diffraction contrast imaging in the TEM are by far not sufficient and advanced electron microscopy methods are essential for the analysis of superconducting MgB2 wires and tapes.

  17. Low-Density, Refractory Multi-Principal Element Alloys of the Cr-Nb-Ti-V-Zr System: Microstructure and Phase Analysis (Postprint)

    DTIC Science & Technology

    2012-12-19

    remelted five times, being flipped for each melt, and was in a liquid state for about 5 min during each melting event. The pre- pared cigar -shaped...section surfaces using a 136 Vickers diamond pyramid under a 500 g load applied for 20 s. The micro- structure was analyzed by scanning electron ...microscopy (SEM) using a Quanta 600F scanning electron microscope (FEI, North America NanoPort, Hillsboro, OR) equipped with backscatter electron (BSE

  18. Dual Beam System (SEM/FIB) Equipment for the Kleberg Advanced Microscopy Center

    DTIC Science & Technology

    2015-06-05

    Journal of Applied Physics (04 2015) John E. Sanchez, Ramón Díaz de León, Fernando Mendoza Santoyo, Gabriel González, Miguel José Yacaman, Arturo Ponce...includes PCs and cameras , will have available support for three years. What is Not Covered: This Warranty does not cover high-wear, consumable...110 x 110 mm eucentric stage - Multi-purpose holder - CCD IR camera - In-lens detectors: Lower (T1) and Upper (T2) - SE detector (ET-SED

  19. Application of SEM and EDX in studying biomineralization in plant tissues.

    PubMed

    He, Honghua; Kirilak, Yaowanuj

    2014-01-01

    This chapter describes protocols using formalin-acetic acid-alcohol (FAA) to fix plant tissues for studying biomineralization by means of scanning electron microscopy (SEM) and qualitative energy-dispersive X-ray microanalysis (EDX). Specimen preparation protocols for SEM and EDX mainly include fixation, dehydration, critical point drying (CPD), mounting, and coating. Gold-coated specimens are used for SEM imaging, while gold- and carbon-coated specimens are prepared for qualitative X-ray microanalyses separately to obtain complementary information on the elemental compositions of biominerals. During the specimen preparation procedure for SEM, some biominerals may be dislodged or scattered, making it difficult to determine their accurate locations, and light microscopy is used to complement SEM studies. Specimen preparation protocols for light microscopy generally include fixation, dehydration, infiltration and embedding with resin, microtome sectioning, and staining. In addition, microwave processing methods are adopted here to speed up the specimen preparation process for both SEM and light microscopy.

  20. SAPO-34/AlMCM-41, as a novel hierarchical nanocomposite: preparation, characterization and investigation of synthesis factors using response surface methodology

    NASA Astrophysics Data System (ADS)

    Roohollahi, Hossein; Halladj, Rouein; Askari, Sima; Yaripour, Fereydoon

    2018-06-01

    SAPO-34/AlMCM-41, as a new hierarchical nanocomposite was successfully synthesized via hydrothermal and dry-gel conversion. In an experimental and statistical study, effect of five input parameters including synthesis period, drying temperature, NaOH/Si, water/dried-gel and SAPO% were investigated on range-order degree of mesochannels and the relative crystallinity. X-ray diffraction (XRD) patterns were recorded to characterize the ordered AlMCM-41 and crystalline SAPO-34 structures. Nitrogen adsorption-desorption technique, scanning electron microscopy (SEM), field-emission SEM (FESEM) equipped with an energy-dispersive X-ray spectroscopy (EDS-Map) and transmission electron microscopy (TEM) were used to study the textural properties, morphology and surface elemental composition. Two reduced polynomials were fitted to the responses with good precision. Further, based on analysis of variances, SAPO% and time duration of dry-gel conversion were observed as the most effective parameters on the composite structure. The hierarchical porosity, narrow pore size distribution, high external surface area and large specific pore volume were of interesting characteristics for this novel nanocomposite.

  1. Graphene-supporting films and low-voltage STEM in SEM toward imaging nanobio materials without staining: Observation of insulin amyloid fibrils.

    PubMed

    Ogawa, Takashi; Gang, Geun Won; Thieu, Minh Thu; Kwon, Hyuksang; Ahn, Sang Jung; Ha, Tai Hwan; Cho, Boklae

    2017-05-01

    Utilization of graphene-supporting films and low-voltage scanning transmission electron microscopy (LV-STEM) in scanning electron microscopy (SEM) is shown to be an effective means of observing unstained nanobio materials. Insulin amyloid fibrils, which are implicated as a cause of type II diabetes, are formed in vitro and observed without staining at room temperature. An in-lens cold field-emission SEM, equipped with an additional homemade STEM detector, provides dark field (DF)-STEM images in the low energy range of 5-30keV, together with secondary electron (SE) images. Analysis based on Lenz's theory is used to interpret the experimental results. Graphene films, where the fibrils are deposited, reduce the background level of the STEM images compared with instances when conventional amorphous carbon films are used. Using 30keV, which is lower than that for conventional TEM (100-300keV), together with low detection angles (15-55mrad) enhances the signals from the fibrils. These factors improve image quality, which enables observation of thin fibrils with widths of 7-8nm. STEM imaging clearly reveals a twisted-ribbon structure of a fibril, and SE imaging shows an emphasized striped pattern of the fibril. The LV-STEM in SEM enables acquisition of two types of images of an identical fibril in a single instrument, which is useful for understanding the structure. This study expands the application of SEM to other systems of interest, which is beneficial to a large number of users. The method in this study can be applied to the observation of various nanobio materials and analysis of their native structures, thus contributing to research in materials and life sciences. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Development of Thin Films as Potential Structural Cathodes to Enable Multifunctional Energy-Storage Structural Composite Batteries for the U.S. Army’s Future Force

    DTIC Science & Technology

    2011-09-01

    glancing angle X - ray diffraction (GAXRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), and electrochemical...Emission SEM FWHM full width at half maximum GAXRD glancing angle X - ray diffraction H3COCH2CH2OH 2-methoxyethanol LiMn2O4 lithium manganese oxide...were characterized by scanning electron microscopy (SEM), X - ray diffraction (XRD), and atomic force microscopy (AFM). In addition,

  3. Sliding friction and wear behaviors of surface-coated natural serpentine mineral powders as lubricant additive

    NASA Astrophysics Data System (ADS)

    Zhang, Baosen; Xu, Yi; Gao, Fei; Shi, Peijing; Xu, Binshi; Wu, Yixiong

    2011-01-01

    This work aims to investigate the friction and wear properties of surface-coated natural serpentine powders (SP) suspended in diesel engine oil using an Optimal SRV oscillating friction and wear tester. The worn surface was characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS). Results indicated that the additives can improve the wear resistance and decrease friction coefficient of carbon steel friction couples. The 0.5 wt% content of serpentine powders is found most efficient in reducing friction and wear at the load of 50 N. The SEM and XPS analysis results demonstrate that a tribofilm forms on the worn surface, which is responsible for the decrease in friction and wear, mainly with iron oxides, silicon oxides, graphite and organic compounds.

  4. Microstructural, optical and electrical properties of LaFe0.5Cr0.5O3 perovskite nanostructures

    NASA Astrophysics Data System (ADS)

    Ali, S. Asad; Naseem, Swaleha; Khan, Wasi; Sharma, A.; Naqvi, A. H.

    2016-05-01

    Perovskite nanocrystalline powder of LaFe0.5Cr0.5O3 was synthesized by sol-gel combustion route and characterized by x-ray diffractometer (XRD), scanning electron microscopy (SEM) equipped with EDS, UV-visible and LCR meter at room temperature Rietveld refinement of the XRD data confirms that the sample is in single phase-rhombohedral structure with space group R-3C. SEM micrograph shows clear nanostructure of the sample and EDS ensures the presence of all elements in good stoichiometric. The optical absorption indicates the maximum absorption at 315 nm and optical band gap of 2.94 eV was estimated using Tauc's relation. Dielectric constant (ɛ') and loss were found to decrease with increase in frequencies. The dielectric behavior was explained on the basis of Maxwell-Wagner's two layer model.

  5. Super-resolution for asymmetric resolution of FIB-SEM 3D imaging using AI with deep learning.

    PubMed

    Hagita, Katsumi; Higuchi, Takeshi; Jinnai, Hiroshi

    2018-04-12

    Scanning electron microscopy equipped with a focused ion beam (FIB-SEM) is a promising three-dimensional (3D) imaging technique for nano- and meso-scale morphologies. In FIB-SEM, the specimen surface is stripped by an ion beam and imaged by an SEM installed orthogonally to the FIB. The lateral resolution is governed by the SEM, while the depth resolution, i.e., the FIB milling direction, is determined by the thickness of the stripped thin layer. In most cases, the lateral resolution is superior to the depth resolution; hence, asymmetric resolution is generated in the 3D image. Here, we propose a new approach based on an image-processing or deep-learning-based method for super-resolution of 3D images with such asymmetric resolution, so as to restore the depth resolution to achieve symmetric resolution. The deep-learning-based method learns from high-resolution sub-images obtained via SEM and recovers low-resolution sub-images parallel to the FIB milling direction. The 3D morphologies of polymeric nano-composites are used as test images, which are subjected to the deep-learning-based method as well as conventional methods. We find that the former yields superior restoration, particularly as the asymmetric resolution is increased. Our super-resolution approach for images having asymmetric resolution enables observation time reduction.

  6. Mechanical properties of sol–gel derived SiO2 nanotubes

    PubMed Central

    Antsov, Mikk; Vlassov, Sergei; Dorogin, Leonid M; Vahtrus, Mikk; Zabels, Roberts; Lange, Sven; Lõhmus, Rünno

    2014-01-01

    Summary The mechanical properties of thick-walled SiO2 nanotubes (NTs) prepared by a sol–gel method while using Ag nanowires (NWs) as templates were measured by using different methods. In situ scanning electron microscopy (SEM) cantilever beam bending tests were carried out by using a nanomanipulator equipped with a force sensor in order to investigate plasticity and flexural response of NTs. Nanoindentation and three point bending tests of NTs were performed by atomic force microscopy (AFM) under ambient conditions. Half-suspended and three-point bending tests were processed in the framework of linear elasticity theory. Finite element method simulations were used to extract Young’s modulus values from the nanoindentation data. Finally, the Young’s moduli of SiO2 NTs measured by different methods were compared and discussed. PMID:25383292

  7. Calibration-free quantitative surface topography reconstruction in scanning electron microscopy.

    PubMed

    Faber, E T; Martinez-Martinez, D; Mansilla, C; Ocelík, V; Hosson, J Th M De

    2015-01-01

    This work presents a new approach to obtain reliable surface topography reconstructions from 2D Scanning Electron Microscopy (SEM) images. In this method a set of images taken at different tilt angles are compared by means of digital image correlation (DIC). It is argued that the strength of the method lies in the fact that precise knowledge about the nature of the rotation (vector and/or magnitude) is not needed. Therefore, the great advantage is that complex calibrations of the measuring equipment are avoided. The paper presents the necessary equations involved in the methods, including derivations and solutions. The method is illustrated with examples of 3D reconstructions followed by a discussion on the relevant experimental parameters. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Preparation and characterization of PTFE coating in new polymer quartz piezoelectric crystal sensor for testing liquor products

    NASA Astrophysics Data System (ADS)

    Gu, Yu; Li, Qiang

    2015-07-01

    A new method was developed based on the electron beam vacuum dispersion (EBVD) technology to prepare the PTFE polymer coating of the new polymer quartz piezoelectric crystal sensor for testing liquor products. The new method was applied in the new EBVD equipment which we designed. A real-time system monitoring the polymer coating’s thickness was designed for the new EBVD equipment according to the quartz crystal microbalance (QCM) principle, playing an important role in preparing stable and uniform PTFE polymer coatings of the same thickness. 30 pieces of PTFE polymer coatings on the surface of the quartz crystal basis were prepared with the PTFE polymer ultrafine powder (purity ≥ 99.99%) as the starting material. We obtained 30 pieces of new PTFE polymer sensors. By using scanning electron microscopy (SEM), the structure of the PTFE polymer coating’s column clusters was studied. One sample from the 30 pieces of new PTFE polymer sensors was analysed by SEM in four scales, i.e., 400×, 1000×, 10000×, and 25000×. It was shown that under the condition of high bias voltage and low bias current, uniformly PTFE polymer coating could be achieved, which indicates that the new EBVD equipment is suitable for mass production of stable and uniform polymer coating. Project supported by the National High Technology Research and Development Program of China (Grant No. 2013AA030901).

  9. On the Progress of Scanning Transmission Electron Microscopy (STEM) Imaging in a Scanning Electron Microscope.

    PubMed

    Sun, Cheng; Müller, Erich; Meffert, Matthias; Gerthsen, Dagmar

    2018-04-01

    Transmission electron microscopy (TEM) with low-energy electrons has been recognized as an important addition to the family of electron microscopies as it may avoid knock-on damage and increase the contrast of weakly scattering objects. Scanning electron microscopes (SEMs) are well suited for low-energy electron microscopy with maximum electron energies of 30 keV, but they are mainly used for topography imaging of bulk samples. Implementation of a scanning transmission electron microscopy (STEM) detector and a charge-coupled-device camera for the acquisition of on-axis transmission electron diffraction (TED) patterns, in combination with recent resolution improvements, make SEMs highly interesting for structure analysis of some electron-transparent specimens which are traditionally investigated by TEM. A new aspect is correlative SEM, STEM, and TED imaging from the same specimen region in a SEM which leads to a wealth of information. Simultaneous image acquisition gives information on surface topography, inner structure including crystal defects and qualitative material contrast. Lattice-fringe resolution is obtained in bright-field STEM imaging. The benefits of correlative SEM/STEM/TED imaging in a SEM are exemplified by structure analyses from representative sample classes such as nanoparticulates and bulk materials.

  10. Preparation and Characterization of Cellulose Microcrystalline (MCC) from Fiber of Empty Fruit Bunch Palm Oil

    NASA Astrophysics Data System (ADS)

    Nasution, H.; Yurnaliza; Veronicha; Irmadani; Sitompul, S.

    2017-03-01

    Alpha cellulose which was isolated from cellulose of fiber empty fruit bunch palm oil was hidrolized with hydrochloric acid (2,5N) at 80°C to produce microcrystalline cellulose (MCC). Microcrystalline cellulose is an important additional ingredient in the pharmaceutical, food, cosmetics, and structural composites. In this study, MCC, alpha cellulose, and cellulose were characterized and thereafter were compared. Characterizations were made using some equipment such as x-ray diffraction (XRD), Fourier transform infrared (FTIR), scanning electron microscopy (SEM) and thermogravimetry analyzer (TGA). X-ray diffraction and infrared spectroscopy were studied to determine crystallinity and molecular structure of MCC, where scanning electron microscopy images were conducted for information about morfology of MCC. Meanwhile, thermal resistance of MCC was determined using thermogravimetry analyzer (TGA). From XRD and FTIR, the obtained results showed that the crystalline part was traced on MCC, where the -OH and C-O groups tended to reduced as alpha cellulose has changed to MCC. From SEM the image showed the reduction of particle size of MCC, while the thermal resistance of MCC was found lower as compared with cellulose and alpha cellulose as well, which was attributed to the lower molecular weight of MCC.

  11. Scanning electron microscopy and X-ray energy dispersive spectroscopy - useful tools in the analysis of pharmaceutical products

    NASA Astrophysics Data System (ADS)

    Sarecka-Hujar, Beata; Balwierz, Radoslaw; Ostrozka-Cieslik, Aneta; Dyja, Renata; Lukowiec, Dariusz; Jankowski, Andrzej

    2017-11-01

    The quality of the drug, its purity and identification of degradation products provide the highest quality of pharmaceutical products. The energy dispersive spectroscopy (EDS) method analyses the percentage of each element form as well as their distribution, and morphological characteristics of the drug form. We analysed the usefulness of EDS method in testing orally disintegrating tablets (ODT) with trimetazidine hydrochloride with high resolution scanning electron microscopy (SEM, SUPRA25 Carl Zeiss company) with spectrophotometer equipped with an X-ray energy dispersion (EDAX Company). The samples of the analysed tablets were imaged after applying conductive layers of gold on their surface. In the EDS analysis the compositions of each sample of the obtained tablets were observed to be virtually identical. The differences in the content of carbon and oxygen came from differences in the composition of particular tablets. The presence of gold in the composition resulted from the sputtering the surface of tablets with gold during the analysis. Knowing the composition of the tablet, SEM-EDS method helps to locate and identify the impurities and degradation products of the compounds, leading to a better understanding of the mechanisms of their formation.

  12. Cryo-Scanning Electron Microscopy (SEM) and Scanning Transmission Electron Microscopy (STEM)-in-SEM for Bio- and Organo-Mineral Interface Characterization in the Environment.

    PubMed

    Wille, Guillaume; Hellal, Jennifer; Ollivier, Patrick; Richard, Annie; Burel, Agnes; Jolly, Louis; Crampon, Marc; Michel, Caroline

    2017-12-01

    Understanding biofilm interactions with surrounding substratum and pollutants/particles can benefit from the application of existing microscopy tools. Using the example of biofilm interactions with zero-valent iron nanoparticles (nZVI), this study aims to apply various approaches in biofilm preparation and labeling for fluorescent or electron microscopy and energy dispersive X-ray spectrometry (EDS) microanalysis for accurate observations. According to the targeted microscopy method, biofilms were sampled as flocs or attached biofilm, submitted to labeling using 4',6-diamidino-2-phenylindol, lectins PNA and ConA coupled to fluorescent dye or gold nanoparticles, and prepared for observation (fixation, cross-section, freezing, ultramicrotomy). Fluorescent microscopy revealed that nZVI were embedded in the biofilm structure as aggregates but the resolution was insufficient to observe individual nZVI. Cryo-scanning electron microscopy (SEM) observations showed nZVI aggregates close to bacteria, but it was not possible to confirm direct interactions between nZVI and cell membranes. Scanning transmission electron microscopy in the SEM (STEM-in-SEM) showed that nZVI aggregates could enter the biofilm to a depth of 7-11 µm. Bacteria were surrounded by a ring of extracellular polymeric substances (EPS) preventing direct nZVI/membrane interactions. STEM/EDS mapping revealed a co-localization of nZVI aggregates with lectins suggesting a potential role of EPS in nZVI embedding. Thus, the combination of divergent microscopy approaches is a good approach to better understand and characterize biofilm/metal interactions.

  13. Tetraethylorthosilicate (TEOS) applied in the surface modification of hydroxyapatite to develop polydimethylsiloxane/hydroxyapatite composites.

    PubMed

    Bareiro, O; Santos, L A

    2014-03-01

    Nanometric hydroxyapatite (HAp) particles were modified with 5 or 10 wt.% tetraethylorthosilicate (TEOS) solutions in order to prepare polydimethylsiloxane/hydroxyapatite (PDMS/HAp) composites. The surface modification of the HAp particles was studied by transmission electron spectroscopy (TEM) and by scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS) equipment. The dispersion state of the modified particles in the PDMS matrix was also assessed by SEM. The composite phase composition was characterized by X-ray diffraction (XRD). The composite thermodynamic parameters of cross-linking were analyzed by differential scanning calorimetry (DSC). TEM micrographs and EDS spectra indicated evidence of silica-coating formation on the surface of modified HAp particles. SEM results showed that the HAp particles formed agglomerates in the PDMS matrix. It was found that the introduction of HAp particles into the PDMS changed the enthalpy of cross-linking and the temperature of the beginning of the cross-linking reaction. EDS results indicated that the surface modification of HAp produced composites showing thermodynamic parameters that were more similar to those of unfilled PDMS. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Analysis of pigments from Roman wall paintings found in the "agro centuriato" of Julia Concordia (Italy).

    PubMed

    Mazzocchin, Gian-Antonio; Del Favero, Michela; Tasca, Giovanni

    2007-09-01

    The analysis of wall painting fragments recovered in the "agro centuriato" of Julia Concordia has been carried out by using Scanning Electron Microscopy equipped with an EDS microanalysis detector (SEM-EDS), Infrared Spectroscopy (FTIR) and X-Ray powder Diffraction (XRD). The pigments used have been identified and the data obtained suggest the presence of three rustic villas richly decorated also with Egyptian blue. The presence of white of aragonite suggest that these villas were decorated during the Imperial Age, in agreement with the recovery of high quality materials and a bronze statue.

  15. AlGaN/GaN high electron mobility transistor grown on GaN template substrate by molecule beam epitaxy system

    NASA Astrophysics Data System (ADS)

    Tsai, Jenn-Kai; Chen, Y. L.; Gau, M. H.; Pang, W. Y.; Hsu, Y. C.; Lo, Ikai; Hsieh, C. H.

    2008-03-01

    In this study, AlGaN/GaN high electron mobility transistor (HEMT) structure was grow on GaN template substrate radio frequency plasma assisted molecular beam epitaxy (MBE) equipped with an EPI UNI-Bulb nitrogen plasma source. The undoped GaN template substrate was grown on c-sapphire substrate by metal organic vapor phase epitaxy system (MOPVD). After growth of MOVPE and MBE, the samples are characterized by double crystal X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (SEM), atomic force microscopy (AFM), and Hall effect measurements. We found that the RMS roughness of template substrate play the major role in got the high value of mobility on AlGaN/GaN HEMT. When the roughness was lower than 0.77 nm in a 25 μm x 25 μm area, the mobility of HEMT at the temperature of 77 K was over 10000 cm^2/Vs.

  16. Integration of a high-NA light microscope in a scanning electron microscope.

    PubMed

    Zonnevylle, A C; Van Tol, R F C; Liv, N; Narvaez, A C; Effting, A P J; Kruit, P; Hoogenboom, J P

    2013-10-01

    We present an integrated light-electron microscope in which an inverted high-NA objective lens is positioned inside a scanning electron microscope (SEM). The SEM objective lens and the light objective lens have a common axis and focal plane, allowing high-resolution optical microscopy and scanning electron microscopy on the same area of a sample simultaneously. Components for light illumination and detection can be mounted outside the vacuum, enabling flexibility in the construction of the light microscope. The light objective lens can be positioned underneath the SEM objective lens during operation for sub-10 μm alignment of the fields of view of the light and electron microscopes. We demonstrate in situ epifluorescence microscopy in the SEM with a numerical aperture of 1.4 using vacuum-compatible immersion oil. For a 40-nm-diameter fluorescent polymer nanoparticle, an intensity profile with a FWHM of 380 nm is measured whereas the SEM performance is uncompromised. The integrated instrument may offer new possibilities for correlative light and electron microscopy in the life sciences as well as in physics and chemistry. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  17. Detection of glass particles on bone lesions using SEM-EDS.

    PubMed

    Montoriol, Romain; Guilbeau-Frugier, Céline; Chantalat, Elodie; Roumiguié, Mathieu; Delisle, Marie-Bernadette; Payré, Bruno; Telmon, Norbert; Savall, Frédéric

    2017-09-01

    The problem of identifying the wounding agent in forensic cases is recurrent. Moreover, when several tools are involved, distinguishing the origin of lesions can be difficult. Scanning electron microscopy (SEM)/energy dispersive X-ray analysis (EDS) equipment is increasingly available to the scientific and medical community, and some studies have reported its use in forensic anthropology. However, at our knowledge, no study has reported the use of SEM-EDS in forensic cases involving glass tools, whether in case reports or experiments. We performed an experimental study on human rib fragments, on which we manually created wounds using fragments of window and mirror glass. SEM-EDS was executed on samples without any further preparation on low vacuum mode, then on the same samples after defleshing them completely by boiling them. Window and mirror glass particles were detected on experimental wounds. Both had silica in their spectra, and the opaque side of the mirror contained titanium, allowing for their identification. Boiling and defleshing the bone samples involved a loss of information in terms of the number of wounds detected as positive for glass particles and in the number of glass particles detected, for both window and mirror glass. We suggest the analysis of wounds with suspected glass particles using low vacuum mode and with no defleshment by boiling.

  18. Electron tomography of whole cultured cells using novel transmission electron imaging technique.

    PubMed

    Okumura, Taiga; Shoji, Minami; Hisada, Akiko; Ominami, Yusuke; Ito, Sukehiro; Ushiki, Tatsuo; Nakajima, Masato; Ohshima, Takashi

    2018-01-01

    Since a three-dimensional (3D) cellular ultrastructure is significant for biological functions, it has been investigated using various electron microscopic techniques. Although transmission electron microscopy (TEM)-based techniques are traditionally used, cells must be embedded in resin and sliced into ultrathin sections in sample preparation processes. Block-face observation using a scanning electron microscope (SEM) has also been recently applied to 3D observation of cellular components, but this is a destructive inspection and does not allow re-examination. Therefore, we developed electron tomography using a transmission electron imaging technique called Plate-TEM. With Plate-TEM, the cells cultured directly on a scintillator plate are inserted into a conventional SEM equipped with a Plate-TEM observation system, and their internal structures are observed by detecting scintillation light produced by electrons passing through the cells. This technology has the following four advantages. First, the cells cultured on the plate can be observed at electron-microscopic resolution since they remain on the plate. Second, both surface and internal information can be obtained simultaneously by using electron- and photo-detectors, respectively, because a Plate-TEM detector is installed in an SEM. Third, the cells on the scintillator plate can also be inspected using light microscopy because the plate has transparent features. Finally, correlative observation with other techniques, such as conventional TEM, is possible after Plate-TEM observation because Plate-TEM is a non-destructive analysis technique. We also designed a sample stage to tilt the samples for tomography with Plate-TEM, by which 3D organization of cellular structures can be visualized as a whole cell. In the present study, Mm2T cells were investigated using our tomography system, resulting in 3D visualization of cell organelles such as mitochondria, lipid droplets, and microvilli. Correlative observations with various imaging techniques were also conducted by successive observations with light microscopy, SEM, Plate-TEM, and conventional TEM. Consequently, the Plate-TEM tomography technique encourages understanding of cellular structures at high resolution, which can contribute to cellular biological research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Comparison of SEM and VPSEM imaging techniques with respect to Streptococcus mutans biofilm topography.

    PubMed

    Weber, Kathryn; Delben, Juliana; Bromage, Timothy G; Duarte, Simone

    2014-01-01

    The study compared images of mature Streptococcus mutans biofilms captured at increasing magnification to determine which microscopy method is most acceptable for imaging the biofilm topography and the extracellular polymeric substance (EPS). In vitro S. mutans biofilms were imaged using (1) scanning electron microscopy (SEM), which requires a dehydration process; (2) SEM and ruthenium red (SEM-RR), which has been shown to support the EPS of biofilms during the SEM dehydration; and (3) variable pressure scanning electron microscopy (VPSEM), which does not require the intensive dehydration process of SEM. The dehydration process and high chamber vacuum of both SEM techniques devastated the biofilm EPS, removed supporting structures, and caused cracking on the biofilm surface. The VPSEM offered the most comprehensive representation of the S. mutans biofilm morphology. VPSEM provides similar contrast and focus as the SEM, but the procedure is far less time-consuming, and the use of hazardous chemicals associated with SEM dehydration protocol is avoided with the VPSEM. The inaccurate representations of the biofilm EPS in SEM experimentation is a possible source of inaccurate data and impediments in the study of S. mutans biofilms. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  20. SEM/EDS and optical microscopy analyses of microplastics in ocean trawl and fish guts.

    PubMed

    Wang, Zhong-Min; Wagner, Jeff; Ghosal, Sutapa; Bedi, Gagandeep; Wall, Stephen

    2017-12-15

    Microplastic particles from Atlantic and Pacific Ocean trawls, lab-fed fish guts and ocean fish guts have been characterized using optical microscopy and SEM/EDS in terms of size, morphology, and chemistry. We assessed whether these measurements could serve as a rapid screening process for subsequent identification of the likely microplastic candidates by micro-spectroscopy. Optical microscopy enabled morphological classification of the types of particles or fibers present in the sample, as well as the quantification of particle size ranges and fiber lengths. SEM/EDS analysis was used to rule out non-plastic particles and screen the prepared samples for potential microplastic, based on their element signatures and surface characteristics. Chlorinated plastics such as polyvinyl chloride (PVC) could be easily identified with SEM/EDS due to their unique elemental signatures including chlorine, as could mineral species that are falsely identified as plastics by optical microscopy. Particle morphology determined by optical microscopy and SEM suggests the fish ingested particles contained both degradation fragments from larger plastic pieces and also manufactured microplastics. SEM images of microplastic particle surfaces revealed characteristic cracks consistent with environmental exposure, as well as pigment particles consistent with manufactured materials. Most of the microplastic surfaces in the fish guts and ocean trawls were covered with biofilms, radiolarians, and crustaceans. Many of the fish stomachs contained micro-shell pieces which visually resembled microplastics. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Characterization of Ultra-fine Grained and Nanocrystalline Materials Using Transmission Kikuchi Diffraction

    PubMed Central

    Proust, Gwénaëlle; Trimby, Patrick; Piazolo, Sandra; Retraint, Delphine

    2017-01-01

    One of the challenges in microstructure analysis nowadays resides in the reliable and accurate characterization of ultra-fine grained (UFG) and nanocrystalline materials. The traditional techniques associated with scanning electron microscopy (SEM), such as electron backscatter diffraction (EBSD), do not possess the required spatial resolution due to the large interaction volume between the electrons from the beam and the atoms of the material. Transmission electron microscopy (TEM) has the required spatial resolution. However, due to a lack of automation in the analysis system, the rate of data acquisition is slow which limits the area of the specimen that can be characterized. This paper presents a new characterization technique, Transmission Kikuchi Diffraction (TKD), which enables the analysis of the microstructure of UFG and nanocrystalline materials using an SEM equipped with a standard EBSD system. The spatial resolution of this technique can reach 2 nm. This technique can be applied to a large range of materials that would be difficult to analyze using traditional EBSD. After presenting the experimental set up and describing the different steps necessary to realize a TKD analysis, examples of its use on metal alloys and minerals are shown to illustrate the resolution of the technique and its flexibility in term of material to be characterized. PMID:28447998

  2. Characterization of Ultra-fine Grained and Nanocrystalline Materials Using Transmission Kikuchi Diffraction.

    PubMed

    Proust, Gwénaëlle; Trimby, Patrick; Piazolo, Sandra; Retraint, Delphine

    2017-04-01

    One of the challenges in microstructure analysis nowadays resides in the reliable and accurate characterization of ultra-fine grained (UFG) and nanocrystalline materials. The traditional techniques associated with scanning electron microscopy (SEM), such as electron backscatter diffraction (EBSD), do not possess the required spatial resolution due to the large interaction volume between the electrons from the beam and the atoms of the material. Transmission electron microscopy (TEM) has the required spatial resolution. However, due to a lack of automation in the analysis system, the rate of data acquisition is slow which limits the area of the specimen that can be characterized. This paper presents a new characterization technique, Transmission Kikuchi Diffraction (TKD), which enables the analysis of the microstructure of UFG and nanocrystalline materials using an SEM equipped with a standard EBSD system. The spatial resolution of this technique can reach 2 nm. This technique can be applied to a large range of materials that would be difficult to analyze using traditional EBSD. After presenting the experimental set up and describing the different steps necessary to realize a TKD analysis, examples of its use on metal alloys and minerals are shown to illustrate the resolution of the technique and its flexibility in term of material to be characterized.

  3. Microscale localization and isolation of light emitting imperfections in monocrystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    Gajdoš, Adam; Škvarenina, Lubomír.; Škarvada, Pavel; Macků, Robert

    2017-12-01

    An imperfections or defects may appear in fabricated monocrystalline solar cells. These microstructural imperfections could have impact on the parameters of whole solar cell. The research is divided into two parts, firstly, the detection and localization defects by using several techniques including current-voltage measurement, scanning probe microscopy (SPM), scanning electron microscope (SEM) and electroluminescence. Secondly, the defects isolation by a focused ion beam (FIB) milling and impact of a milling process on solar cells. The defect detection is realized by I-V measurement under reverse biased sample. For purpose of localization, advantage of the fact that defects or imperfections in silicon solar cells emit the visible and near infrared electroluminescence under reverse biased voltage is taken, and CCD camera measurement for macroscopic localization of these spots is applied. After rough macroscopic localization, microscopic localization by scanning probe microscopy combined with a photomultiplier (shadow mapping) is performed. Defect isolation is performed by a SEM equipped with the FIB instrument. FIB uses a beam of gallium ions which modifies crystal structure of a material and may affect parameters of solar cell. As a result, it is interesting that current in reverse biased sample with isolated defect is smaller approximately by 2 orders than current before isolation process.

  4. Non-Noble Metal Oxide Catalysts for Methane Catalytic Combustion: Sonochemical Synthesis and Characterisation

    PubMed Central

    Jędrzejczyk, Roman J.; Dziedzicka, Anna; Kuterasiński, Łukasz; Sitarz, Maciej

    2017-01-01

    The aim of this study was to obtain nanocrystalline mixed metal-oxide–ZrO2 catalysts via a sonochemically-induced preparation method. The effect of a stabiliser’s addition on the catalyst parameters was investigated by several characterisation methods including X-ray Diffraction (XRD), nitrogen adsorption, X-ray fluorescence (XRF), scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectrometer (EDS), transmission electron microscopy (TEM) and µRaman. The sonochemical preparation method allowed us to manufacture the catalysts with uniformly dispersed metal-oxide nanoparticles at the support surface. The catalytic activity was tested in a methane combustion reaction. The activity of the catalysts prepared by the sonochemical method was higher than that of the reference catalysts prepared by the incipient wetness method without ultrasonic irradiation. The cobalt and chromium mixed zirconia catalysts revealed their high activities, which are comparable with those presented in the literature. PMID:28686190

  5. TiO2-V2O5 nanocomposites as alternative energy storage substances for photocatalysts.

    PubMed

    Ngaotrakanwiwat, Pailin; Meeyoo, Vissanu

    2012-01-01

    TiO2-V2O5 was prepared and evaluated as an energy storage material for photocatalysts with high capacity and initial charging rate. The compound was successfully obtained by sol-gel technique and effects of compound composition and calcination temperature on the energy storage ability were investigated. The synthesized compounds were characterized by means of X-ray powder diffraction (XRD), scanning electron microscopy equipped with energy-dispersive X-ray analysis (SEM-EDX) and transmission electron microscopy (TEM). The results reveals that the compound of Ti:V molar ratio equal to 1:0.11 calcined at 550 degrees C exhibited superior energy storage ability than parent substances and 1.7-times higher capacity and 2.3-times higher initial charging rate compared to WO3, indicating that the compound is a remarkable alternative to conventional energy storage substances.

  6. Characterization of As-polluted soils by laboratory X-ray-based techniques coupled with sequential extractions and electron microscopy: the case of Crocette gold mine in the Monte Rosa mining district (Italy).

    PubMed

    Allegretta, Ignazio; Porfido, Carlo; Martin, Maria; Barberis, Elisabetta; Terzano, Roberto; Spagnuolo, Matteo

    2018-06-24

    Arsenic concentration and distribution were studied by combining laboratory X-ray-based techniques (wavelength dispersive X-ray fluorescence (WDXRF), micro X-ray fluorescence (μXRF), and X-ray powder diffraction (XRPD)), field emission scanning electron microscopy equipped with microanalysis (FE-SEM-EDX), and sequential extraction procedure (SEP) coupled to total reflection X-ray fluorescence (TXRF) analysis. This approach was applied to three contaminated soils and one mine tailing collected near the gold extraction plant at the Crocette gold mine (Macugnaga, VB) in the Monte Rosa mining district (Piedmont, Italy). Arsenic (As) concentration, measured with WDXRF, ranged from 145 to 40,200 mg/kg. XRPD analysis evidenced the presence of jarosite and the absence of any As-bearing mineral, suggesting a high weathering grade and strong oxidative conditions. However, small domains of Fe arsenate were identified by combining μXRF with FE-SEM-EDX. SEP results revealed that As was mainly associated to amorphous Fe oxides/hydroxides or hydroxysulfates (50-80%) and the combination of XRPD and FE-SEM-EDX suggested that this phase could be attributed to schwertmannite. On the basis of the reported results, As is scarcely mobile, even if a consistent As fraction (1-3 g As/kg of soil) is still potentially mobilizable. In general, the proposed combination of laboratory X-ray techniques could be successfully employed to unravel environmental issues related to metal(loid) pollution in soil and sediments.

  7. Serial block face scanning electron microscopy--the future of cell ultrastructure imaging.

    PubMed

    Hughes, Louise; Hawes, Chris; Monteith, Sandy; Vaughan, Sue

    2014-03-01

    One of the major drawbacks in transmission electron microscopy has been the production of three-dimensional views of cells and tissues. Currently, there is no one suitable 3D microscopy technique that answers all questions and serial block face scanning electron microscopy (SEM) fills the gap between 3D imaging using high-end fluorescence microscopy and the high resolution offered by electron tomography. In this review, we discuss the potential of the serial block face SEM technique for studying the three-dimensional organisation of animal, plant and microbial cells.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogura, Toshihiko, E-mail: t-ogura@aist.go.jp

    Scanning electron microscopy (SEM) has been widely used to examine biological specimens of bacteria, viruses and proteins. Until now, atmospheric and/or wet biological specimens have been examined using various atmospheric holders or special equipment involving SEM. Unfortunately, they undergo heavy radiation damage by the direct electron beam. In addition, images of unstained biological samples in water yield poor contrast. We recently developed a new analytical technology involving a frequency transmission electric-field (FTE) method based on thermionic SEM. This method is suitable for high-contrast imaging of unstained biological specimens. Our aim was to optimise the method. Here we describe a high-resolutionmore » FTE system based on field-emission SEM; it allows for imaging and nanoscale examination of various biological specimens in water without radiation damage. The spatial resolution is 8 nm, which is higher than 41 nm of the existing FTE system. Our new method can be easily utilised for examination of unstained biological specimens including bacteria, viruses and protein complexes. Furthermore, our high-resolution FTE system can be used for diverse liquid samples across a broad range of scientific fields, e.g. nanoparticles, nanotubes and organic and catalytic materials. - Highlights: • We developed a high-resolution frequency transmission electric-field (FTE) system. • High-resolution FTE system is introduced in the field-emission SEM. • The spatial resolution of high-resolution FTE method is 8 nm. • High-resolution FTE system enables observation of the intact IgM particles in water.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buck, E.C.; Dietz, N.L.; Bates, J.K.

    Uranium contaminated soils from the Fernald Operation Site, Ohio, have been examined by a combination of optical microscopy, scanning electron microscopy with backscattered electron detection (SEM/BSE), and analytical electron microscopy (AEM). A method is described for preparing of transmission electron microscopy (TEM) thin sections by ultramicrotomy. By using these thin sections, SEM and TEM images can be compared directly. Uranium was found in iron oxides, silicates (soddyite), phosphates (autunites), and fluorite. Little uranium was associated with clays. The distribution of uranium phases was found to be inhomogeneous at the microscopic level.

  10. Nanoscale surface characterization using laser interference microscopy

    NASA Astrophysics Data System (ADS)

    Ignatyev, Pavel S.; Skrynnik, Andrey A.; Melnik, Yury A.

    2018-03-01

    Nanoscale surface characterization is one of the most significant parts of modern materials development and application. The modern microscopes are expensive and complicated tools, and its use for industrial tasks is limited due to laborious sample preparation, measurement procedures, and low operation speed. The laser modulation interference microscopy method (MIM) for real-time quantitative and qualitative analysis of glass, metals, ceramics, and various coatings has a spatial resolution of 0.1 nm for vertical and up to 100 nm for lateral. It is proposed as an alternative to traditional scanning electron microscopy (SEM) and atomic force microscopy (AFM) methods. It is demonstrated that in the cases of roughness metrology for super smooth (Ra >1 nm) surfaces the application of a laser interference microscopy techniques is more optimal than conventional SEM and AFM. The comparison of semiconductor test structure for lateral dimensions measurements obtained with SEM and AFM and white light interferometer also demonstrates the advantages of MIM technique.

  11. Metal copper films deposited on cenosphere particles by magnetron sputtering method

    NASA Astrophysics Data System (ADS)

    Yu, Xiaozheng; Xu, Zheng; Shen, Zhigang

    2007-05-01

    Metal copper films with thicknesses from several nanometres to several micrometres were deposited on the surface of cenosphere particles by the magnetron sputtering method under different working conditions. An ultrasonic vibrating generator equipped with a conventional magnetron sputtering apparatus was used to prevent the cenosphere substrates from accumulating during film growth. The surface morphology, the chemical composition, the average grain size and the crystallization of cenosphere particles were characterized by field emission scanning electron microscopy (FE-SEM), inductively coupled plasma-atom emission spectrometer, x-ray photoelectron spectroscopy and x-ray diffraction (XRD) analysis, respectively, before and after the plating process. The results indicate that the copper films were successfully deposited on cenosphere particles. It was found from the FE-SEM results that the films were well compacted and highly uniform in thickness. The XRD results show that the copper film coated on cenospheres has a face centred cubic structure and the crystallization of the film sample increases with increasing sputtering power.

  12. Submerged Arc Stainless Steel Strip Cladding—Effect of Post-Weld Heat Treatment on Thermal Fatigue Resistance

    NASA Astrophysics Data System (ADS)

    Kuo, I. C.; Chou, C. P.; Tseng, C. F.; Lee, I. K.

    2009-03-01

    Two types of martensitic stainless steel strips, PFB-132 and PFB-131S, were deposited on SS41 carbon steel substrate by a three-pass submerged arc cladding process. The effects of post-weld heat treatment (PWHT) on thermal fatigue resistance and hardness were evaluated by thermal fatigue and hardness testing, respectively. The weld metal microstructure was investigated by utilizing optical microscopy, scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM). Results showed that, by increasing the PWHT temperature, hardness decreased but there was a simultaneous improvement in weldment thermal fatigue resistance. During tempering, carbide, such as (Fe, Cr)23C6, precipitated in the weld metals and molybdenum appeared to promote (Fe, Cr, Mo)23C6 formation. The precipitates of (Fe, Cr, Mo)23C6 revealed a face-centered cubic (FCC) structure with fine grains distributed in the microstructure, thereby effectively increasing thermal fatigue resistance. However, by adding nickel, the AC1 temperature decreased, causing a negative effect on thermal fatigue resistance.

  13. A Mobile Nanoscience and Electron Microscopy Outreach Program

    NASA Astrophysics Data System (ADS)

    Coffey, Tonya; Kelley, Kyle

    2013-03-01

    We have established a mobile nanoscience laboratory outreach program in Western NC that puts scanning electron microscopy (SEM) directly in the hands of K-12 students and the general public. There has been a recent push to develop new active learning materials to educate students at all levels about nanoscience and nanotechnology. Previous projects, such as Bugscope, nanoManipulator, or SPM Live! allowed remote access to advanced microscopies. However, placing SEM directly in schools has not often been possible because the cost and steep learning curve of these technologies were prohibitive, making this project quite novel. We have developed new learning modules for a microscopy outreach experience with a tabletop SEM (Hitachi TM3000). We present here an overview of our outreach and results of the assessment of our program to date.

  14. EVALUATION OF COMPUTER-CONTROLLED SCANNING ELECTRON MICROSCOPY APPLIED TO AN AMBIENT URBAN AEROSOL SAMPLE

    EPA Science Inventory


    Recent interest in monitoring and speciation of particulate matter has led to increased application of scanning electron microscopy (SEM) coupled with energy-dispersive x-ray analysis (EDX) to individual particle analysis. SEM/EDX provides information on the size, shape, co...

  15. FIB/SEM and SEM/EDS microstructural analysis of metal-ceramic and zirconia-ceramic interfaces.

    PubMed

    Massimi, F; Merlati, G; Sebastiani, M; Battaini, P; Menghini, P; Bemporad, E

    2012-01-10

    Recently introduced FIB/SEM analysis in microscopy seems to provide a high-resolution characterization of the samples by 3D (FIB) cross-sectioning and (SEM) high resolution imaging. The aim of this study was to apply the FIB/SEM and SEM/EDS analysis to the interfaces of a metal-ceramic vs. two zirconia-ceramic systems. Plate samples of three different prosthetic systems were prepared in the dental lab following the manufacturers' instructions, where metal-ceramic was the result of a ceramic veneering (porcelain-fused-to-metal) and the two zirconia-ceramic systems were produced by the dedicated CAD-CAM procedures of the zirconia cores (both with final sintering) and then veneered by layered or heat pressed ceramics. In a FIB/SEM equipment (also called DualBeam), a thin layer of platinum (1 μm) was deposited on samples surface crossing the interfaces, in order to protect them during milling. Then, increasingly deeper trenches were milled by a focused ion beam, first using a relatively higher and later using a lower ion current (from 9 nA to 0.28 nA, 30KV). Finally, FEG-SEM (5KV) micrographs (1000-50,000X) were acquired. In a SEM the analysis of the morphology and internal microstructure was performed by 13KV secondary and backscattered electrons signals (in all the samples). The compositional maps were then performed by EDS probe only in the metal-ceramic system (20kV). Despite the presence of many voids in all the ceramic layers, it was possible to identify: (1) the grain structures of the metallic and zirconia substrates, (2) the thin oxide layer at the metal-ceramic interface and its interactions with the first ceramic layer (wash technique), (3) the roughness of the two different zirconia cores and their interactions with the ceramic interface, where the presence of zirconia grains in the ceramic layer was reported in two system possibly due to sandblasting before ceramic firing.

  16. Signal-to-noise ratio estimation on SEM images using cubic spline interpolation with Savitzky-Golay smoothing.

    PubMed

    Sim, K S; Kiani, M A; Nia, M E; Tso, C P

    2014-01-01

    A new technique based on cubic spline interpolation with Savitzky-Golay noise reduction filtering is designed to estimate signal-to-noise ratio of scanning electron microscopy (SEM) images. This approach is found to present better result when compared with two existing techniques: nearest neighbourhood and first-order interpolation. When applied to evaluate the quality of SEM images, noise can be eliminated efficiently with optimal choice of scan rate from real-time SEM images, without generating corruption or increasing scanning time. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  17. Two novel approaches to study arthropod anatomy by using dualbeam FIB/SEM.

    PubMed

    Di Giulio, Andrea; Muzzi, Maurizio

    2018-03-01

    Transmission Electron Microscopy (TEM) has always been the conventional method to study arthropod ultrastructure, while the use of Scanning Electron Microscopy (SEM) was mainly devoted to the examination of the external cuticular structures by secondary electrons. The new generation field emission SEMs are capable to generate images at sub-cellular level, comparable to TEM images employing backscattered electrons. The potential of this kind of acquisition becomes very powerful in the dual beam FIB/SEM where the SEM column is combined with a Focused Ion Beam (FIB) column. FIB uses ions as a nano-scalpel to slice samples fixed and embedded in resin, replacing traditional ultramicrotomy. We here present two novel methods, which optimize the use of FIB/SEM for studying arthropod anatomy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Correlation of two-photon in vivo imaging and FIB/SEM microscopy

    PubMed Central

    Blazquez-Llorca, L; Hummel, E; Zimmerman, H; Zou, C; Burgold, S; Rietdorf, J; Herms, J

    2015-01-01

    Advances in the understanding of brain functions are closely linked to the technical developments in microscopy. In this study, we describe a correlative microscopy technique that offers a possibility of combining two-photon in vivo imaging with focus ion beam/scanning electron microscope (FIB/SEM) techniques. Long-term two-photon in vivo imaging allows the visualization of functional interactions within the brain of a living organism over the time, and therefore, is emerging as a new tool for studying the dynamics of neurodegenerative diseases, such as Alzheimer’s disease. However, light microscopy has important limitations in revealing alterations occurring at the synaptic level and when this is required, electron microscopy is mandatory. FIB/SEM microscopy is a novel tool for three-dimensional high-resolution reconstructions, since it acquires automated serial images at ultrastructural level. Using FIB/SEM imaging, we observed, at 10 nm isotropic resolution, the same dendrites that were imaged in vivo over 9 days. Thus, we analyzed their ultrastructure and monitored the dynamics of the neuropil around them. We found that stable spines (present during the 9 days of imaging) formed typical asymmetric contacts with axons, whereas transient spines (present only during one day of imaging) did not form a synaptic contact. Our data suggest that the morphological classification that was assigned to a dendritic spine according to the in vivo images did not fit with its ultrastructural morphology. The correlative technique described herein is likely to open opportunities for unravelling the earlier unrecognized complexity of the nervous system. Lay Description Neuroscience and the understanding of brain functions are closely linked to the technical advances in microscopy. In this study we performed a correlative microscopy technique that offers the possibility to combine 2 photon in vivo imaging and FIB/SEM microscopy. Long term 2 photon in vivo imaging allows the visualization of functional interactions within the brain of a living organism over the time, and therefore, is emerging as a new tool to study the dynamics of neurodegenerative diseases, such as Alzheimer’s disease. However, light microscopy has important limitations in revealing synapses that are the connections between neurons, and for this purpose, the electron microscopy is necessary. FIB/SEM microscopy is a novel tool for three-dimensional (3D) high resolution reconstructions since it acquires automated serial images at ultrastructural level. This correlative technique will open up new horizons and opportunities for unravelling the complexity of the nervous system. PMID:25786682

  19. Minimal resin embedding of multicellular specimens for targeted FIB-SEM imaging.

    PubMed

    Schieber, Nicole L; Machado, Pedro; Markert, Sebastian M; Stigloher, Christian; Schwab, Yannick; Steyer, Anna M

    2017-01-01

    Correlative light and electron microscopy (CLEM) is a powerful tool to perform ultrastructural analysis of targeted tissues or cells. The large field of view of the light microscope (LM) enables quick and efficient surveys of the whole specimen. It is also compatible with live imaging, giving access to functional assays. CLEM protocols take advantage of the features to efficiently retrace the position of targeted sites when switching from one modality to the other. They more often rely on anatomical cues that are visible both by light and electron microscopy. We present here a simple workflow where multicellular specimens are embedded in minimal amounts of resin, exposing their surface topology that can be imaged by scanning electron microscopy (SEM). LM and SEM both benefit from a large field of view that can cover whole model organisms. As a result, targeting specific anatomic locations by focused ion beam-SEM (FIB-SEM) tomography becomes straightforward. We illustrate this application on three different model organisms, used in our laboratory: the zebrafish embryo Danio rerio, the marine worm Platynereis dumerilii, and the dauer larva of the nematode Caenorhabditis elegans. Here we focus on the experimental steps to reduce the amount of resin covering the samples and to image the specimens inside an FIB-SEM. We expect this approach to have widespread applications for volume electron microscopy on multiple model organisms. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Exploring the interior of cuticles and compressions of fossil plants by FIB-SEM milling and image microscopy.

    PubMed

    Sender, L M; Escapa, I; Benedetti, A; Cúneo, R; Diez, J B

    2018-01-01

    We present the first study of cuticles and compressions of fossil leaves by Focused Ion Beam Scanning Electron Microscopy (FIB-SEM). Cavities preserved inside fossil leaf compressions corresponding to substomatal chambers have been observed for the first time and several new features were identified in the cross-section cuts. These results open a new way in the investigation of the three-dimensional structures of both micro- and nanostructural features of fossil plants. Moreover, the application of the FIB-SEM technique to both fossils and extant plant remains represent a new source of taxonomical, palaeoenvironmental and palaeoclimatic information. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  1. Structural, optical and morphological characterization of Cu-doped α-Fe2O3 nanoparticles synthesized through co-precipitation technique

    NASA Astrophysics Data System (ADS)

    Lassoued, Abdelmajid; Lassoued, Mohamed Saber; Dkhil, Brahim; Gadri, Abdellatif; Ammar, Salah

    2017-11-01

    Pure and copper (Cu concentration varying from 2 to 8%) doped hematite (α-Fe2O3) nanocrystals were synthesized through co-precipitation method using simple equipment. X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Fourier Transform Infra-Red (FT-IR), Raman spectroscopy, Differential Thermal Analysis (DTA), Thermo Gravimetric Analysis (TGA) and Ultraviolet-Visible (UV-Vis) techniques were used to characterize the synthesized samples. XRD measurements confirm that all the prepared nanocrystals consist only in nanocrystalline hematite phase. These results along with TEM and SEM show that the size of the nanoparticles decreases with Cu-doping down to 21 nm. FT-IR confirm the phase purity of the nanoparticles synthesized. The Raman spectroscopy was used not only to prove that we synthesized pure and Cu-doped hematite but also to identify their phonon modes. The TGA showed three mass losses, whereas DTA resulted in three endothermic peaks. The UV-Vis absorption measurements confirm that the decrease of particle size is accompanied by a decrease in the band gap value from 2.12 eV for pure α-Fe2O3 down to 1.91 eV for 8% Cu-doped α-Fe2O3. 8% Cu-doped hematite had the smallest size, the best crystallinity and the lowest band gap.

  2. Cell surface and cell outline imaging in plant tissues using the backscattered electron detector in a variable pressure scanning electron microscope

    PubMed Central

    2013-01-01

    Background Scanning electron microscopy (SEM) has been used for high-resolution imaging of plant cell surfaces for many decades. Most SEM imaging employs the secondary electron detector under high vacuum to provide pseudo-3D images of plant organs and especially of surface structures such as trichomes and stomatal guard cells; these samples generally have to be metal-coated to avoid charging artefacts. Variable pressure-SEM allows examination of uncoated tissues, and provides a flexible range of options for imaging, either with a secondary electron detector or backscattered electron detector. In one application, we used the backscattered electron detector under low vacuum conditions to collect images of uncoated barley leaf tissue followed by simple quantification of cell areas. Results Here, we outline methods for backscattered electron imaging of a variety of plant tissues with particular focus on collecting images for quantification of cell size and shape. We demonstrate the advantages of this technique over other methods to obtain high contrast cell outlines, and define a set of parameters for imaging Arabidopsis thaliana leaf epidermal cells together with a simple image analysis protocol. We also show how to vary parameters such as accelerating voltage and chamber pressure to optimise imaging in a range of other plant tissues. Conclusions Backscattered electron imaging of uncoated plant tissue allows acquisition of images showing details of plant morphology together with images of high contrast cell outlines suitable for semi-automated image analysis. The method is easily adaptable to many types of tissue and suitable for any laboratory with standard SEM preparation equipment and a variable-pressure-SEM or tabletop SEM. PMID:24135233

  3. Correlative 3D imaging of Whole Mammalian Cells with Light and Electron Microscopy

    PubMed Central

    Murphy, Gavin E.; Narayan, Kedar; Lowekamp, Bradley C.; Hartnell, Lisa M.; Heymann, Jurgen A. W.; Fu, Jing; Subramaniam, Sriram

    2011-01-01

    We report methodological advances that extend the current capabilities of ion-abrasion scanning electron microscopy (IA–SEM), also known as focused ion beam scanning electron microscopy, a newly emerging technology for high resolution imaging of large biological specimens in 3D. We establish protocols that enable the routine generation of 3D image stacks of entire plastic-embedded mammalian cells by IA-SEM at resolutions of ~10 to 20 nm at high contrast and with minimal artifacts from the focused ion beam. We build on these advances by describing a detailed approach for carrying out correlative live confocal microscopy and IA–SEM on the same cells. Finally, we demonstrate that by combining correlative imaging with newly developed tools for automated image processing, small 100 nm-sized entities such as HIV-1 or gold beads can be localized in SEM image stacks of whole mammalian cells. We anticipate that these methods will add to the arsenal of tools available for investigating mechanisms underlying host-pathogen interactions, and more generally, the 3D subcellular architecture of mammalian cells and tissues. PMID:21907806

  4. Electron microscopy localization and characterization of functionalized composite organic-inorganic SERS nanoparticles on leukemia cells.

    PubMed

    Koh, Ai Leen; Shachaf, Catherine M; Elchuri, Sailaja; Nolan, Garry P; Sinclair, Robert

    2008-12-01

    We demonstrate the use of electron microscopy as a powerful characterization tool to identify and locate antibody-conjugated composite organic-inorganic nanoparticle (COINs) surface enhanced Raman scattering (SERS) nanoparticles on cells. U937 leukemia cells labeled with antibody CD54-conjugated COINs were characterized in their native, hydrated state using wet scanning electron microscopy (SEM) and in their dehydrated state using high-resolution SEM. In both cases, the backscattered electron (BSE) detector was used to detect and identify the silver constituents in COINs due to its high sensitivity to atomic number variations within a specimen. The imaging and analytical capabilities in the SEM were further complemented by higher resolution transmission electron microscopy (TEM) images and scanning Auger electron spectroscopy (AES) data to give reliable and high-resolution information about nanoparticles and their binding to cell surface antigens.

  5. Electron Microscopy of Living Cells During in Situ Fluorescence Microscopy

    PubMed Central

    Liv, Nalan; van Oosten Slingeland, Daan S. B.; Baudoin, Jean-Pierre; Kruit, Pieter; Piston, David W.; Hoogenboom, Jacob P.

    2016-01-01

    We present an approach toward dynamic nanoimaging: live fluorescence of cells encapsulated in a bionanoreactor is complemented with in situ scanning electron microscopy (SEM) on an integrated microscope. This allows us to take SEM snapshots on-demand, that is, at a specific location in time, at a desired region of interest, guided by the dynamic fluorescence imaging. We show that this approach enables direct visualization, with EM resolution, of the distribution of bioconjugated quantum dots on cellular extensions during uptake and internalization. PMID:26580231

  6. Microstructural characterization of AA5183 aluminum clad AISI 1018 steel prepared by electro spark deposition

    NASA Astrophysics Data System (ADS)

    Rastkerdar, E.; Aghajani, H.; Kianvash, A.; Sorrell, C. C.

    2018-04-01

    The application of a simple and effective technique, electro spark deposition (ESD), to create aluminum clad steel plate has been studied. AA5183 aluminum rods were used as the rotating electrode for cladding of the AISI 1018 steel. The microstructure of the interfacial zone including the intermetallic compounds (IMC) layer and the clad metal have been investigated by scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS) and transmission electron microscopy (TEM and STEM). According to the results sound aluminum clad with thickness up to 25–30 μm can be achieved. Very thin (<4 μm) IMC layer was formed at the Al/Fe interface and the structural (electron diffraction pattern) and chemical analysis (STEM) conducted by TEM confirmed that the layer is constituted of Fe rich phases, both implying a much improved mechanical properties. Investigation of the orientations of phases at the interfacial zone confirmed absence of any preferred orientation.

  7. Study of SEM preparation artefacts with correlative microscopy: Cell shrinkage of adherent cells by HMDS-drying.

    PubMed

    Katsen-Globa, Alisa; Puetz, Norbert; Gepp, Michael M; Neubauer, Julia C; Zimmermann, Heiko

    2016-11-01

    One of the often reported artefacts during cell preparation to scanning electron microscopy (SEM) is the shrinkage of cellular objects, that mostly occurs at a certain time-dependent stage of cell drying. Various methods of drying for SEM, such as critical point drying, freeze-drying, as well as hexamethyldisilazane (HMDS)-drying, were usually used. The latter becomes popular since it is a low cost and fast method. However, the correlation of drying duration and real shrinkage of objects was not investigated yet. In this paper, cell shrinkage at each stage of preparation for SEM was studied. We introduce a shrinkage coefficient using correlative light microscopy (LM) and SEM of the same human mesenchymal stem cells (hMSCs). The influence of HMDS-drying duration on the cell shrinkage is shown: the longer drying duration, the more shrinkage is observed. Furthermore, it was demonstrated that cell shrinkage is inversely proportional to cultivation time: the longer cultivation time, the more cell spreading area and the less cell shrinkage. Our results can be applicable for an exact SEM quantification of cell size and determination of cell spreading area in engineering of artificial cellular environments using biomaterials. SCANNING 38:625-633, 2016. © 2016 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.

  8. Symposium N: Materials and Devices for Thermal-to-Electric Energy Conversion

    DTIC Science & Technology

    2010-08-24

    X - ray diffraction, transmission electron microscopy, scanning electron microscopy, and dynamic light scattering. Thermal conductivity measurements...SEM), X - ray diffraction (XRD) measurements as well as Raman spectroscopy. The results from these techniques indicate a clear modification...was examined by using scanning electron microscope (SEM; HITACHI S-4500 model) attached with an energy dispersive x - ray spectroscopy. The electrical

  9. Waterborne Superhydrophobic and Superoleophobic Coatings for the Protection of Marble and Sandstone

    PubMed Central

    Aslanidou, Dimitra; Lampakis, Dimitrios

    2018-01-01

    Silica nanoparticles were dispersed in an aqueous emulsion of alkoxy silanes and organic fluoropolymer. The dispersion was sprayed onto white marble and sandstone. The deposited composite coatings exhibited (i) superhydrophobicity and superoleophobicity, as evidenced by the high (>150°) static contact angles of water and oil drops as well as (ii) water and oil repellency according to the low (<7°) corresponding tilt contact angles. Apart from marble and sandstone, the coatings with extreme wetting properties were deposited onto concrete, silk, and paper, thus demonstrating the versatility of the method. The siloxane/fluoropolymer product was characterized using Fourier Transform Infrared Spectroscopy (FT-IR), Raman spectroscopy and Scanning Electron Microscopy equipped with an Energy Dispersive X-ray Spectrometer (SEM-EDX). Moreover, SEM and FT-IR were used to reveal the surface structures of the composite coatings and their transition from superhydrophobicity to superhydrophilicity which occurred after severe thermal treatment. The composite coatings slightly reduced the breathability of marble and sandstone and had practically no optical effect on the colour of the two stones. Moreover, the coatings offered good protection against water penetration by capillarity. PMID:29642652

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popa, C. L.; Ciobanu, C. S.; Predoi, D., E-mail: dpredoi@gmail.com

    The aim of this study was to synthetize new nanoparticles based on methyltrimethoxysilane coated hydroxyapatite (MTHAp) for lead removal in aqueous solutions. The morphological and compositional analysis of MTHAp was investigated by scanning electron microscopy (SEM) equipped with an energy dispersive X-ray spectrometer (EDS). Removal experiments of Pb{sup 2+} ions were carried out in aqueous solutions with controlled concentration of Pb{sup 2+} and at fixed pH of 5. After the removal experiment of Pb{sup 2+} ions from solutions, porous hydroxyapatite nanoparticles were transformed into PbMTHAp-5 via the adsorption of Pb{sup 2+} ions followed by a cation exchange reaction. Our resultsmore » demonstrate that the porous hydroxyapatite nanoparticles can be used as an adsorbent for removing Pb{sup 2+} ions from aqueous solution.« less

  11. Properties of magnetic iron oxides used as materials for wastewater treatment

    NASA Astrophysics Data System (ADS)

    Matei, E.; Predescu, A.; Vasile, E.; Predescu, A.

    2011-07-01

    The paper describes the properties of some nanopowders obtained by coprecipitation and used as adsorbent for wastewater treatment. The Fe3O4 and γ-Fe2O3 nanopowders were obtained using iron salts and NaOH as precipitation agents. D-sorbitol was used to prevent the agglomeration between the nanoparticles. The particle size and distribution were detected using a transmission electron microscopy (TEM) and a scanning electron microscope (SEM) equipped with dispersive analyze system in X radiation energy (EDS). The structure of the iron oxide nanoparticles was characterized by X-ray powder diffraction. Thus, the nanoparticles were characterized and compare in terms of particle size and chemical composition and used for adsorption studies in order to removal hexavalent chromium from waste waters.

  12. Precise and economic FIB/SEM for CLEM: with 2 nm voxels through mitosis.

    PubMed

    Luckner, Manja; Wanner, Gerhard

    2018-05-23

    A portfolio is presented documenting economic, high-resolution correlative focused ion beam scanning electron microscopy (FIB/SEM) in routine, comprising: (i) the use of custom-labeled slides and coverslips, (ii) embedding of cells in thin, or ultra-thin resin layers for correlative light and electron microscopy (CLEM) and (iii) the claim to reach the highest resolution possible with FIB/SEM in xyz. Regions of interest (ROIs) defined in light microscope (LM), can be relocated quickly and precisely in SEM. As proof of principle, HeLa cells were investigated in 3D context at all stages of the cell cycle, documenting ultrastructural changes during mitosis: nuclear envelope breakdown and reassembly, Golgi degradation and reconstitution and the formation of the midzone and midbody.

  13. Ultrasonic atomization and subsequent desolvation for monoclonal antibody (mAb) to the glycoprotein (GP) IIIa receptor into drug eluting stent.

    PubMed

    Wang, G X; Luo, L L; Yin, T Y; Li, Y; Jiang, T; Ruan, C G; Guidoin, R; Chen, Y P; Guzman, R

    2010-01-01

    An eluting-stent system with mAb dispersed in the PLLA (poly (L-lactic acid)) was validated in vitro. Specifically designed spray equipment based on the principle of ultrasonic atomization was used to produce a thin continuous PLLA (poly (L-lactic acid)) polymer coating incorporating monoclonal antibody (mAb). This PLLA coating was observed in light microscopy (LM) and scanning electron microscopy (SEM). The concentration of the monoclonal antibody (mAb) to the platelet glycoprotein (GP) IIIa receptor and the eluting rate were then measured by a radioisotope technique with (125)I-labelled GP IIIa mAb. An in vitro perfusion circuit was designed to evaluate the release rates at different velocities (10 or 20 ml min(-1)). The PLLA coating was thin and transparent, uniformly distributed on the surface of the stent. Three factors influenced its thickness: PLLA concentration, duration and gas pressure. The concentration of mAb was influenced by the duration of absorption and the concentration of the mAb solution; the maximum was 1662.23 + or - 38.83 ng. The eluting rate was fast for the first 2 h, then decreased slowly and attained 80% after 2 weeks. This ultrasonic atomization spray equipment and technological process to prepare protein eluting-stents were proved to be effective and reliable.

  14. Annual Research Report 1 October 1978-30 September 1979.

    DTIC Science & Technology

    1979-01-01

    Roeder, R. G. and Rutter, W. J. Multiple acid polymerases in ribonucleic acid synthesis during sea urchin development. Biochemistry 9: 2543-2554...with ultrastructural transmission electron microscopy (TEM) studies and scanning electron microscopy ( SEM ) stud- ies of lateral ventricular lining and...1I alterations in animals about 100 days after Silastic implantation. SEM studies show flattening and stretching of ependymal cells in the dorsomedial

  15. Carbon abundances, major element chemistry, and mineralogy of hydrated interplanetary dust particles

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Thomas, K. L.; Mckay, D. S.

    1993-01-01

    Hydrated interplanetary dust particles (IDP's) comprise a major fraction of the interplanetary dust particles collected in the stratosphere. While much is known about the mineralogy and chemistry of hydrated IDP's, little is known about the C abundance in this class of IDP's, the nature of the C-bearing phases, and how the C abundance is related to other physical properties of hydrated IDP's. Bulk compositional data (including C and O) for 11 hydrated IDP's that were subsequently examined by the transition electron microscopy (TEM) to determine their mineralogy and mineral chemistry are reported. Our analysis indicates that these hydrated IDP's are strongly enriched in C relative to the most C-rich meteorites. The average abundance of C in these hydrated IDP's is 4X CI chondrite values. The bulk compositions (including C and O) of 11 hydrated IDP's were determined by thin-window, energy-dispersive x ray (EDX) spectroscopy of the uncoated IDP's on Be substrates in the scanning electron microscopy (SEM). As a check on our C measurements, one of the IDP's (L2006H5) was embedded in glassy S, and microtome thin sections were prepared and placed onto Be substrates. Thin-film EDX analyses of multiple thin sections of L2006H5 show good agreement with the bulk value determined in the SEM. Following EDX analysis, the mineralogy and mineral chemistry of each IDP was determined by analyzing ultramicrotome thin sections in a TEM equipped with an EDX spectrometer.

  16. Effect of Calcium Sulphate Nanoparticles on Fusion, Mechanical and Thermal Behaviour Polyvinyl Chloride (pvc)

    NASA Astrophysics Data System (ADS)

    Patil, C. B.; Shisode, P. S.; Kapadi, U. R.; Hundiwale, D. G.; Mahulikar, P. P.

    Calcium Sulphate [CaSO4] was synthesized by in-situ deposition technique and its nano size (60 to 100 nm) was confirmed by Transmission Electron Microscopy (TEM). Composites of the filler CaSO4 (micro and nano) and the matrix poly (vinyl chloride) (PVC) were prepared with different filler loading (0-5 wt. %) by melt mixing. The Brabender torque rheometer equipped with an internal mixer was used for preparation and evaluation of fusion behaviour of composites of different formulations. The effect of nano and micro-CaSO4 content on the structure and properties of composites was studied. The nanostructures and dispersion were studied by wide angle X-ray diffraction (WAXD) and scanning electron microscopy (SEM). The mechanical and thermal properties of PVC/ micro and nano-CaSO4 composites were characterized using Universal Testing Machine (UTM) and Thermo Gravimetric Analyzer (TGA). From the results of WAXD and SEM the flocculation of CaSO4 nanoparticles were observed on the surfaces of PVC matrix. The thermal analysis results showed that the first thermal degradation onset (T onset) of PVC/nano-CaSO4 composites for 1 wt. % of filler were higher as compared with corresponding microcomposites and pristine PVC. However, the tensile strength was decreasing with increasing filler content while, it shows increment in magnitude at 1 and 2 wt. % of nano-CaSO4 as compared with corresponding micro-CaSO4 as well as pristine PVC.

  17. Synthesis, characterization and effect of calcination temperature on phase transformation and photocatalytic activity of Cu,S-codoped TiO 2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Hamadanian, M.; Reisi-Vanani, A.; Majedi, A.

    2010-01-01

    A novel copper and sulfur codoped TiO 2 photocatalyst was synthesized by modified sol-gel method using titanium(IV) isopropoxide, CuCl 2·2H 2O and thiourea as precursors. The samples were characterized by X-ray diffraction (XRD), diffuse reflectance spectroscopy (DRS), scanning electron microscopy equipped with energy dispersive X-ray micro-analysis (SEM-EDX), transmission electron microscopy (TEM) and Fourier transform infrared (FT-IR) analysis. The XRD results showed undoped and Cu,S-codoped TiO 2 nanoparticles only include anatase phase. Effect of calcination temperature showed rutile phase appears in 650 and 700 °C for undoped and 0.1% Cu,S-codoped TiO 2, respectively. The SEM analysis revealed the doping of Cu and S does not leave any change in morphology of the catalyst surface. The increase of copper doping enhanced "red-shift" in the UV-vis absorption spectra. The TEM images confirmed the dopants suppressed the growth of TiO 2 grains. The photocatalytic activity of samples was tested for degradation of methyl orange (MO) solutions. The results showed photocatalytic activity of the catalysts with 0.05% Cu,0.05% S and 0.1% Cu,0.05% S were higher than that of other catalysts under ultraviolet (UV) and visible irradiation, respectively. Because of synergetic effect of S and Cu, the Cu,S-codoped TiO 2 catalyst has higher activity than undoped and Cu or S doped TiO 2 catalysts.

  18. Feature evaluation of complex hysteresis smoothing and its practical applications to noisy SEM images.

    PubMed

    Suzuki, Kazuhiko; Oho, Eisaku

    2013-01-01

    Quality of a scanning electron microscopy (SEM) image is strongly influenced by noise. This is a fundamental drawback of the SEM instrument. Complex hysteresis smoothing (CHS) has been previously developed for noise removal of SEM images. This noise removal is performed by monitoring and processing properly the amplitude of the SEM signal. As it stands now, CHS may not be so utilized, though it has several advantages for SEM. For example, the resolution of image processed by CHS is basically equal to that of the original image. In order to find wide application of the CHS method in microscopy, the feature of CHS, which has not been so clarified until now is evaluated correctly. As the application of the result obtained by the feature evaluation, cursor width (CW), which is the sole processing parameter of CHS, is determined more properly using standard deviation of noise Nσ. In addition, disadvantage that CHS cannot remove the noise with excessively large amplitude is improved by a certain postprocessing. CHS is successfully applicable to SEM images with various noise amplitudes. © Wiley Periodicals, Inc.

  19. Correlative fractography: combining scanning electron microscopy and light microscopes for qualitative and quantitative analysis of fracture surfaces.

    PubMed

    Hein, Luis Rogerio de Oliveira; de Oliveira, José Alberto; de Campos, Kamila Amato

    2013-04-01

    Correlative fractography is a new expression proposed here to describe a new method for the association between scanning electron microscopy (SEM) and light microscopy (LM) for the qualitative and quantitative analysis of fracture surfaces. This article presents a new method involving the fusion of one elevation map obtained by extended depth from focus reconstruction from LM with exactly the same area by SEM and associated techniques, as X-ray mapping. The true topographic information is perfectly associated to local fracture mechanisms with this new technique, presented here as an alternative to stereo-pair reconstruction for the investigation of fractured components. The great advantage of this technique resides in the possibility of combining any imaging methods associated with LM and SEM for the same observed field from fracture surface.

  20. Scanning EM of non-heavy metal stained biosamples: Large-field of view, high contrast and highly efficient immunolabeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuipers, Jeroen; Boer, Pascal de; Giepmans, Ben N.G., E-mail: b.n.g.giepmans@umcg.nl

    Scanning electron microscopy (SEM) is increasing its application in life sciences for electron density measurements of ultrathin sections. These are traditionally analyzed with transmission electron microscopy (TEM); by most labs, SEM analysis still is associated with surface imaging only. Here we report several advantages of SEM for thin sections over TEM, both for structural inspection, as well as analyzing immuno-targeted labels such as quantum dots (QDs) and gold, where we find that QD-labeling is ten times more efficient than gold-labeling. Furthermore, we find that omitting post-staining with uranyl and lead leads to QDs readily detectable over the ultrastructure, but undermore » these conditions ultrastructural contrast was even almost invisible in TEM examination. Importantly, imaging in SEM with STEM detection leads to both outstanding QDs and ultrastructural contrast. STEM imaging is superior over back-scattered electron imaging of these non-contrasted samples, whereas secondary electron detection cannot be used at all. We conclude that examination of ultrathin sections by SEM, which may be immunolabeled with QDs, will allow rapid and straightforward analysis of large fields with more efficient labeling than can be achieved with immunogold. The large fields of view routinely achieved with SEM, but not with TEM, allows straightforward raw data sharing using virtual microscopy, also known as nanotomy when this concerns EM data in the life sciences. - Highlights: • High resolution and large fields of view via nanotomy or virtual microscopy. • Highly relevant for EM‐datasets where information density is high. • Sample preparation with low contrast good for STEM, not TEM. • Quantum dots now stand out in STEM‐based detection. • 10 Times more efficient labeling with quantum dots compared to gold.« less

  1. 3D imaging of cells and tissues by focused ion beam/scanning electron microscopy (FIB/SEM).

    PubMed

    Drobne, Damjana

    2013-01-01

    Integration of a scanning electron microscope (SEM) and focused ion beam (FIB) technology into a single FIB/SEM system permits use of the FIB as a nano-scalpel to reveal site-specific subsurface microstructures which can be examined in great detail by SEM. The FIB/SEM technology is widely used in the semiconductor industry and material sciences, and recently its use in the life sciences has been initiated. Samples for FIB/SEM investigation can be either embedded in a plastic matrix, the traditional means of preparation of transmission electron microscopy (TEM) specimens, or simply dried as in samples prepared for SEM imaging. Currently, FIB/SEM is used in the life sciences for (a) preparation by the lift-out technique of lamella for TEM analysis, (b) tomography of samples embedded in a matrix, and (c) in situ site-specific FIB milling and SEM imaging using a wide range of magnifications. Site-specific milling and imaging has attracted wide interest as a technique in structural research of single eukaryotic and prokaryotic cells, small animals, and different animal tissue, but it still remains to be explored more thoroughly. In the past, preparation of samples for site-specific milling and imaging by FIB/SEM has typically adopted the embedding techniques used for TEM samples, and which have been very well described in the literature. Sample preparation protocols for the use of dried samples in FIB/SEM have been less well investigated. The aim of this chapter is to encourage application of FIB/SEM on dried biological samples. A detailed description of conventional dried sample preparation and FIB/SEM investigation of dried biological samples is presented. The important steps are described and illustrated, and direct comparison between embedded and dried samples of same tissues is provided. The ability to discover links between gross morphology of the tissue or organ, surface characteristics of any selected region, and intracellular structural details on the nanometer scale is an appealing application of electron microscopy in the life sciences and merits further exploration.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buck, E.C.; Cunnane, J.C.; Brown, N.R.

    A combination of optical microscopy, scanning electron microscopy with backscattered electron detection (SEM/BSE), and analytical electron microscopy (AEM) is being used to determine the nature of uranium in soils from the Fernald Environmental Management Project. The information gained from these studies is being used to develop and test remediation technologies. Investigations using SEM have shown that uranium is contained within particles that are typically 1 to 100 {mu}m in diameter. Further analysis with AEM has shown that these uranium-rich regions are made up of discrete uranium-bearing phases. The distribution of these uranium phases was found to be inhomogeneous at themore » microscopic level.« less

  3. Helium ion microscopy and energy selective scanning electron microscopy - two advanced microscopy techniques with complementary applications

    NASA Astrophysics Data System (ADS)

    Rodenburg, C.; Jepson, M. A. E.; Boden, Stuart A.; Bagnall, Darren M.

    2014-06-01

    Both scanning electron microscopes (SEM) and helium ion microscopes (HeIM) are based on the same principle of a charged particle beam scanning across the surface and generating secondary electrons (SEs) to form images. However, there is a pronounced difference in the energy spectra of the emitted secondary electrons emitted as result of electron or helium ion impact. We have previously presented evidence that this also translates to differences in the information depth through the analysis of dopant contrast in doped silicon structures in both SEM and HeIM. Here, it is now shown how secondary electron emission spectra (SES) and their relation to depth of origin of SE can be experimentally exploited through the use of energy filtering (EF) in low voltage SEM (LV-SEM) to access bulk information from surfaces covered by damage or contamination layers. From the current understanding of the SES in HeIM it is not expected that EF will be as effective in HeIM but an alternative that can be used for some materials to access bulk information is presented.

  4. Comparison of selective staining of fungi in paraffin sections by light microscopy, SEM and BEI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berman, E.L.; Laudate, A.; Carter, H.W.

    Paraffin-embedded sections from human tissues with fungi or organisms classified with fungi were studied by light microscopy (LM), scanning electron microscopy (SEM), and the backscatter electron imaging (BEI) mode of the SEM. The fungal organisms selected for study were those familiar to the pathologist on the basis of their appearance in paraffin-embedded material stained with the Gomori-Grocott Chromic Acid Methenamine Silver Stain (GMS). The organisms were Actinomyces, Rhizopus, Cryptococcus, Histoplasma capsulatum, and Coccidia imitis. Sections were stained with the GMS Stain and/or the Becker modification of the GMS Stain (BGMS) and examined in the secondary electron imaging mode (SEI) andmore » BEI mode with an annular backscatter electron detector. This silver staining technique accentuated the wall of fungal organisms, in the backscatter mode. Depending on the fungal organism and type of silver stain employed, the GMS seemed the preferable stain. The advantages of SEM over LM were greater depth of focus and potential range of magnifications. BEI may also be used in conjunction with LM stain for microorganisms to establish their presence.« less

  5. Method for observation of deembedded sections of fish gonad by scanning electron microscopy

    NASA Astrophysics Data System (ADS)

    Mao, Lian-Ju

    2000-09-01

    This article reports a method for examining the intracellular structure of fish gonads using a scanning electron microscope(SEM). The specimen preparation procedure is similar to that for transmission electron microscopy wherein samples cut into semi-thin sections are fixed and embedded in plastic. The embedment matrix was removed by solvents. Risen-free specimens could be observed by SEM. The morphology of matured sperms in the gonad was very clear, and the oocyte internal structures appeared in three-dimensional images. Spheroidal nucleoli and yolk vesicles and several bundles of filaments adhered on the nucleoli could be viewed by SEM for the first time.

  6. [Evaluation of three methods for forensic diatom test].

    PubMed

    Wang, Yuzhong; Zhao, Jian; Li, Peng; Hu, Sunlin; Wang, Huipin; Wang, Huijun; Liu, Chao

    2015-03-01

    To compare the efficacy of three methods for forensic diatom test, namely strong acid digestion-centrifuge enrichment-light microscopy (SD-CE-LM), microwave digestion-membrane filtration-automated scanning electron microscopy (MD-ME-SEM), and microwave digestion-membrane filtration-light microscopy (MD-MF-LM). Sixty samples were randomly divided into 3 groups for diatom test using three methods, and the sample preparation time, degree of digestion and recovery rate of diatoms were compared. The sample preparation time was the shortest with MD-MF-LM and the longest with SD-CE-LM (P<0.05). MD-ME-SEM and MD-MF-LM allowed more thorough tissue digestion than SD-CE-LM. MD-ME-SEM resulted in the highest total recovery rate of diatom, followed by MD-MF-LM and then by SD-CE-LM (P<0.05); the recover rate of different diatom species was the highest with MD-ME-SEM, followed by MD-MF-LM and SD-CE-LM (P<0.05). SD-CE-LM has a low recovery rate of diatoms especially for those with lengths shorter than 40 µm or densities less than 1/5. With a high recovery rate and accuracy in diatom test, MD-ME-SEM is suitable for diagnosis of suspected drowning cases. MD-MF-LM is highly efficient, sensitive and convenient for forensic diatom test.

  7. Sub-50 nm metrology on extreme ultra violet chemically amplified resist—A systematic assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maas, D. J., E-mail: diederik.maas@tno.nl; Herfst, R.; Veldhoven, E. van

    2015-10-15

    With lithographic patterning dimensions decreasing well below 50 nm, it is of high importance to understand metrology at such small scales. This paper presents results obtained from dense arrays of contact holes (CHs) with various Critical Dimension (CD) between 15 and 50 nm, as patterned in a chemically amplified resist using an ASML EUV scanner and measured at ASML and TNO. To determine the differences between various (local) CD metrology techniques, we conducted an experiment using optical scatterometry, CD-Scanning Electron Microscopy (CD-SEM), Helium ion Microscopy (HIM), and Atomic Force Microscopy (AFM). CD-SEM requires advanced beam scan strategies to mitigate samplemore » charging; the other tools did not need that. We discuss the observed main similarities and differences between the various techniques. To this end, we assessed the spatial frequency content in the raw images for SEM, HIM, and AFM. HIM and AFM resolve the highest spatial frequencies, which are attributed to the more localized probe-sample interaction for these techniques. Furthermore, the SEM, HIM, and AFM waveforms are analyzed in detail. All techniques show good mutual correlation, albeit the reported CD values systematically differ significantly. HIM systematically reports a 25% higher CD uniformity number than CD-SEM for the same arrays of CHs, probably because HIM has a higher resolution than the CD-SEM used in this assessment. A significant speed boost for HIM and AFM is required before these techniques are to serve the demanding industrial metrology applications like optical critical dimension and CD-SEM do nowadays.« less

  8. Sub-50 nm metrology on extreme ultra violet chemically amplified resist—A systematic assessment

    NASA Astrophysics Data System (ADS)

    Maas, D. J.; Fliervoet, T.; Herfst, R.; van Veldhoven, E.; Meessen, J.; Vaenkatesan, V.; Sadeghian, H.

    2015-10-01

    With lithographic patterning dimensions decreasing well below 50 nm, it is of high importance to understand metrology at such small scales. This paper presents results obtained from dense arrays of contact holes (CHs) with various Critical Dimension (CD) between 15 and 50 nm, as patterned in a chemically amplified resist using an ASML EUV scanner and measured at ASML and TNO. To determine the differences between various (local) CD metrology techniques, we conducted an experiment using optical scatterometry, CD-Scanning Electron Microscopy (CD-SEM), Helium ion Microscopy (HIM), and Atomic Force Microscopy (AFM). CD-SEM requires advanced beam scan strategies to mitigate sample charging; the other tools did not need that. We discuss the observed main similarities and differences between the various techniques. To this end, we assessed the spatial frequency content in the raw images for SEM, HIM, and AFM. HIM and AFM resolve the highest spatial frequencies, which are attributed to the more localized probe-sample interaction for these techniques. Furthermore, the SEM, HIM, and AFM waveforms are analyzed in detail. All techniques show good mutual correlation, albeit the reported CD values systematically differ significantly. HIM systematically reports a 25% higher CD uniformity number than CD-SEM for the same arrays of CHs, probably because HIM has a higher resolution than the CD-SEM used in this assessment. A significant speed boost for HIM and AFM is required before these techniques are to serve the demanding industrial metrology applications like optical critical dimension and CD-SEM do nowadays.

  9. Electron Microscopy Localization and Characterization of Functionalized Composite Organic-Inorganic SERS Nanoparticles on Leukemia Cells

    PubMed Central

    Koh, Ai Leen; Shachaf, Catherine M.; Elchuri, Sailaja; Nolan, Garry P.; Sinclair, Robert

    2008-01-01

    We demonstrate the use of electron microscopy as a powerful characterization tool to identify and locate antibody-conjugated composite organic-inorganic (COINs) surface enhanced Raman scattering (SERS) nanoparticles on cells. U937 leukemia cells labeled with antibody CD54-conjugated COINs were characterized in their native, hydrated state using wet Scanning Electron Microscopy (SEM) and in their dehydrated state using high-resolution SEM. In both cases, the backscattered electron detector (BSE) was used to detect and identify the silver constituents in COINs due to its high sensitivity to atomic number variations within a specimen. The imaging and analytical capabilities in the SEM were further complemented by higher resolution Transmission Electron Microscope (TEM) images and Scanning Auger Electron Spectroscopy (AES) data to give reliable and high-resolution information about nanoparticles and their binding to cell surface antigens. PMID:18995965

  10. Mechanical characterization of TiO{sub 2} nanofibers produced by different electrospinning techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vahtrus, Mikk; Šutka, Andris; Institute of Silicate Materials, Riga Technical University, P. Valdena 3/7, Riga LV-1048

    2015-02-15

    In this work TiO{sub 2} nanofibers produced by needle and needleless electrospinning processes from the same precursor were characterized and compared using Raman spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and in situ SEM nanomechanical testing. Phase composition, morphology, Young's modulus and bending strength values were found. Weibull statistics was used to evaluate and compare uniformity of mechanical properties of nanofibers produced by two different methods. It is shown that both methods yield nanofibers with very similar properties. - Graphical abstract: Display Omitted - Highlights: • TiO{sub 2} nanofibers were produced by needle and needleless electrospinning processes. •more » Structure was studied by Raman spectroscopy and electron microscopy methods. • Mechanical properties were measured using advanced in situ SEM cantilevered beam bending technique. • Both methods yield nanofibers with very similar properties.« less

  11. Microstructure-Sensitive Investigation of Fracture Using Acoustic Emission Coupled With Electron Microscopy

    NASA Technical Reports Server (NTRS)

    Wisner, Brian; Cabal, Mike; Vanniamparambiland, Prashanth A.; Leser, William; Hochhalter, Jacob; Kontsos, Antonios

    2015-01-01

    A novel technique using Scanning Electron Microscopy (SEM) in conjunction with Acoustic Emission (AE) monitoring is proposed to investigate microstructure-sensitive fatigue and fracture of metals. The coupling between quasi in situ microscopy with actual in situ nondestructive evaluation falls into the ICME framework and the idea of quantitative data-driven characterization of material behavior. To validate the use of AE monitoring inside the SEM chamber, Aluminum 2024-B sharp notch specimen were tested both inside and outside the microscope using a small scale mechanical testing device. Subsequently, the same type of specimen was tested inside the SEM chamber. Load data were correlated with both AE information and observations of microcracks around grain boundaries as well as secondary cracks, voids, and slip bands. The preliminary results are in excellent agreement with similar findings at the mesoscale. Extensions of the application of this novel technique are discussed.

  12. Characterization of calcium crystals in Abelia using x-ray diffraction and electron microscopes

    USDA-ARS?s Scientific Manuscript database

    Localization, chemical composition, and morphology of calcium crystals in leaves and stems of Abelia mosanensis and A. ×grandiflora were analyzed with a variable pressure scanning electron microscope (VP-SEM) equipped with an X-ray diffraction system, low temperature SEM (LT-SEM) and a transmission ...

  13. Utility of fluorescence microscopy in embryonic/fetal topographical analysis.

    PubMed

    Zucker, R M; Elstein, K H; Shuey, D L; Ebron-McCoy, M; Rogers, J M

    1995-06-01

    For topographical analysis of developing embryos, investigators typically rely on scanning electron microscopy (SEM) to provide the surface detail not attainable with light microscopy. SEM is an expensive and time-consuming technique, however, and the preparation procedure may alter morphology and leave the specimen friable. We report that by using a high-resolution compound epifluorescence microscope with inexpensive low-power objectives and the fluorochrome acridine orange, we were able to obtain surface images of fixed or fresh whole rat embryos and fetal palates of considerably greater topographical detail than those obtained using routine light microscopy. Indeed the resulting high-resolution images afford not only superior qualitative documentation of morphological observations, but the capability for detailed morphometry via digitization and computer-assisted image analysis.

  14. Three-dimensional characterization of ODS ferritic steel using by FIB-SEM serial sectioning method.

    PubMed

    Endo, T; Sugino, Y; Ohono, N; Ukai, S; Miyazaki, N; Wang, Y; Ohnuki, S

    2014-11-01

    Considerable attention has been paid to the research of the electron tomography due to determine the three-dimensional (3D) structure of materials [1]. One of the electron tomography techniques, focused ion beam/scanning electron microscopy (FIB-SEM) imaging has advantages of high resolutions (10 nm), large area observation (μm order) and simultaneous energy dispersive x- ray microanalysis (EDS)/ electron backscatter diffraction (EBSD) analysis. The purpose of this study, three-dimensional EBSD analysis of ODS ferritic steel which carried out cold work using FIB-SEM equipment was conducted, and it aimed at analyzing the microstructure obtained there. The zone annealing tests were conducted for ferritic steel [2,3], which were produced through mechanical alloying and hot-extrusion. After zone annealing, specimens were mechanically polished with #400∼4000 emery paper, 1 µm diamond paste and alumina colloidal silica. The serial sectioning and the 3D-electron backscattering diffraction (3D-EBSD) analysis were carried out. We made the micro pillar (30 x 30 x 15 µm). The EBSD measurements were carried out in each layer after serial sectioning at a step size and milling depth was 80 nm with 30 slices. After EBSD analysis, the series of cross-sectional images were aligned according to arbitrarily specified areas and then stacked up to form a volume. Consequently, we obtained the 3D-IPF maps for ODS ferritic steel. In this specimen, the {111} and {001} grains are layered by turns. In addition, the volume fraction value of both plane are similar. The aspect ratio increases with specimen depth. The 3D-EBSD mapping is useful to analysis of the bulk material since this method obtain many microstructure information, such a shape, volume and orientation of the crystal, grain boundary. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. A Thermal Precipitator for Fire Characterization Research

    NASA Technical Reports Server (NTRS)

    Meyer, Marit; Bryg, Vicky

    2008-01-01

    Characterization of the smoke from pyrolysis of common spacecraft materials provides insight for the design of future smoke detectors and post-fire clean-up equipment on the International Space Station. A thermal precipitator was designed to collect smoke aerosol particles for microscopic analysis in fire characterization research. Information on particle morphology, size and agglomerate structure obtained from these tests supplements additional aerosol data collected. Initial modeling for the thermal precipitator design was performed with the finite element software COMSOL Multiphysics, and includes the flow field and heat transfer in the device. The COMSOL Particle Tracing Module was used to determine particle deposition on SEM stubs which include TEM grids. Modeling provided optimized design parameters such as geometry, flow rate and temperatures. Microscopy results from fire characterization research using the thermal precipitator are presented.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaka, Fowzia

    This method describes the characterization of HE powders by Scanning Electron Microscopy (SEM). HE particles are dispersed onto an aluminum standard SEM specimen mount. Electron micrographs are collected at various magnifications (150 to 10,000 X) depending on HE particle size.

  17. A history of scanning electron microscopy developments: towards "wet-STEM" imaging.

    PubMed

    Bogner, A; Jouneau, P-H; Thollet, G; Basset, D; Gauthier, C

    2007-01-01

    A recently developed imaging mode called "wet-STEM" and new developments in environmental scanning electron microscopy (ESEM) allows the observation of nano-objects suspended in a liquid phase, with a few manometers resolution and a good signal to noise ratio. The idea behind this technique is simply to perform STEM-in-SEM, that is SEM in transmission mode, in an environmental SEM. The purpose of the present contribution is to highlight the main advances that contributed to development of the wet-STEM technique. Although simple in principle, the wet-STEM imaging mode would have been limited before high brightness electron sources became available, and needed some progresses and improvements in ESEM. This new technique extends the scope of SEM as a high-resolution microscope, relatively cheap and widely available imaging tool, for a wider variety of samples.

  18. Nail Damage (Severe Onychodystrophy) Induced by Acrylate Glue: Scanning Electron Microscopy and Energy Dispersive X-Ray Investigations

    PubMed Central

    Pinteala, Tudor; Chiriac, Anca Eduard; Rosca, Irina; Larese Filon, Francesca; Pinteala, Mariana; Chiriac, Anca; Podoleanu, Cristian; Stolnicu, Simona; Coros, Marius Florin; Coroaba, Adina

    2017-01-01

    Background Scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) techniques have been used in various fields of medical research, including different pathologies of the nails; however, no studies have focused on obtaining high-resolution microscopic images and elemental analysis of disorders caused by synthetic nails and acrylic adhesives. Methods Damaged/injured fingernails caused by the use of acrylate glue and synthetic nails were investigated using SEM and EDX methods. Results SEM and EDX proved that synthetic nails, acrylic glue, and nails damaged by contact with acrylate glue have a different morphology and different composition compared to healthy human nails. Conclusions SEM and EDX analysis can give useful information about the aspects of topography (surface sample), morphology (shape and size), hardness or reflectivity, and the elemental composition of nails. PMID:28232921

  19. Human cardiac telocytes: 3D imaging by FIB-SEM tomography

    PubMed Central

    Cretoiu, D; Hummel, E; Zimmermann, H; Gherghiceanu, M; Popescu, L M

    2014-01-01

    Telocyte (TC) is a newly identified type of cell in the cardiac interstitium (www.telocytes.com). TCs are described by classical transmission electron microscopy as cells with very thin and long telopodes (Tps; cellular prolongations) having podoms (dilations) and podomers (very thin segments). TCs’ three-dimensional (3D) morphology is still unknown. Cardiac TCs seem to be particularly involved in long and short distance intercellular signalling and, therefore, their 3D architecture is important for understanding their spatial connections. Using focused ion beam scanning electron microscopy (FIB-SEM) we show, for the first time, the whole ultrastructural anatomy of cardiac TCs. 3D reconstruction of cardiac TCs by FIB-SEM tomography confirms that they have long, narrow but flattened (ribbon-like) telopodes, with humps generated by the podoms. FIB-SEM tomography also confirms the network made by TCs in the cardiac interstitium through adherens junctions. This study provides the first FIB-SEM tomography of a human cell type. PMID:25327290

  20. Scanning Tunneling Microscopy, Atomic Force Microscopy, and Related Techniques.

    DTIC Science & Technology

    1992-06-15

    images of the heaoal ekdprotein monolayer pressed powder samples of pismO claim and sea urchin shells found ~ ~ sx inteotrcelwl fDincoccu radioduran...can be in- Semiconductor Substrates. The atomic structure of sem - vastigated using AFM but has not been as extensively re- iconductor-detal interfaces...from SEM mage (D99). Komaica and p-type Si(00) and p-n junctions formed by implantation of ANALYTICAL CHEMISTRY. VOL 84, NO. 12. JILNE 18. 1992 121R

  1. Three-dimensional imaging of adherent cells using FIB/SEM and STEM.

    PubMed

    Villinger, Clarissa; Schauflinger, Martin; Gregorius, Heiko; Kranz, Christine; Höhn, Katharina; Nafeey, Soufi; Walther, Paul

    2014-01-01

    In this chapter we describe three different approaches for three-dimensional imaging of electron microscopic samples: serial sectioning transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM) tomography, and focused ion beam/scanning electron microscopy (FIB/SEM) tomography. With these methods, relatively large volumes of resin-embedded biological structures can be analyzed at resolutions of a few nm within a reasonable expenditure of time. The traditional method is serial sectioning and imaging the same area in all sections. Another method is TEM tomography that involves tilting a section in the electron beam and then reconstruction of the volume by back projection of the images. When the scanning transmission (STEM) mode is used, thicker sections (up to 1 μm) can be analyzed. The third approach presented here is focused ion beam/scanning electron microscopy (FIB/SEM) tomography, in which a sample is repeatedly milled with a focused ion beam (FIB) and each newly produced block face is imaged with the scanning electron microscope (SEM). This process can be repeated ad libitum in arbitrary small increments allowing 3D analysis of relatively large volumes such as eukaryotic cells. We show that resolution of this approach is considerably improved when the secondary electron signal is used. However, the most important prerequisite for three-dimensional imaging is good specimen preparation. For all three imaging methods, cryo-fixed (high-pressure frozen) and freeze-substituted samples have been used.

  2. Scanning electron microscopy fractography analysis of fractured hollow implants.

    PubMed

    Sbordone, Ludovico; Traini, Tonino; Caputi, Sergio; Scarano, Antonio; Bortolaia, Claudia; Piattelli, Adriano

    2010-01-01

    Fracture of the implant is one of the possible complications affecting dental implants; it is a rare event but of great clinical relevance. The aim of the present study was to perform a scanning electron microscopy (SEM) fractography evaluation of 7 International Team for oral Implantology (ITI) hollow implants removed because of fracture. The most common clinical risk factors, such as malocclusion, bruxism, and cantilevers on the prosthesis, were absent. Seven fractured ITI hollow implants were retrieved from 5 patients and were analyzed with the use of SEM. SEM analysis showed typical signs of a cleavage-type fracture. Fractures could be due to an association of multiple factors such as fatigue, inner defects, material electrochemical problems, and tensocorrosion.

  3. New advances in scanning microscopy and its application to study parasitic protozoa.

    PubMed

    de Souza, Wanderley; Attias, Marcia

    2018-07-01

    Scanning electron microscopy has been used to observe and study parasitic protozoa for at least 40 years. However, field emission electron sources, as well as improvements in lenses and detectors, brought the resolution power of scanning electron microscopes (SEM) to a new level. Parallel to the refinement of instruments, protocols for preservation of the ultrastructure, immunolabeling, exposure of cytoskeleton and inner structures of parasites and host cells were developed. This review is focused on protozoan parasites of medical and veterinary relevance, e.g., Toxoplasma gondii, Tritrichomonas foetus, Giardia intestinalis, and Trypanosoma cruzi, compilating the main achievements in describing the fine ultrastructure of their surface, cytoskeleton and interaction with host cells. Two new resources, namely, Helium Ion Microscopy (HIM) and Slice and View, using either Focused Ion Beam (FIB) abrasion or Microtome Serial Sectioning (MSS) within the microscope chamber, combined to backscattered electron imaging of fixed (chemically or by quick freezing followed by freeze substitution and resin embedded samples is bringing an exponential amount of valuable information. In HIM there is no need of conductive coating and the depth of field is much higher than in any field emission SEM. As for FIB- and MSS-SEM, high resolution 3-D models of areas and volumes larger than any other technique allows can be obtained. The main results achieved with all these technological tools and some protocols for sample preparation are included in this review. In addition, we included some results obtained with environmental/low vacuum scanning microscopy and cryo-scanning electron microscopy, both promising, but not yet largely employed SEM modalities. Copyright © 2018. Published by Elsevier Inc.

  4. Characterization of aeroallergen of Texas panhandle using scanning and fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Ghosh, Nabarun; Whiteside, Mandy; Ridner, Chris; Celik, Yasemin; Saadeh, C.; Bennert, Jeff

    2010-06-01

    Aeroallergens cause serious allergic and asthmatic reactions. Characterizing the aeroallergen provides information regarding the onset, duration, and severity of the pollen season that clinicians use to guide allergen selection for skin testing and treatment. Fluorescence Microscopy has useful approaches to understand the structure and function of the microscopic objects. Prepared slides from the pollen were observed under an Olympus BX40 microscope equipped with FITC and TRITC fluorescent filters, a mercury lamp source, an Olympus DP-70 digital camera connected to the computer with Image Pro 6.0 software. Aeroallergens were viewed, recorded and analyzed with DP Manager using the Image Pro 6.0 software. Photographs were taken at bright field, the fluorescein-isothiocyanate (FITC) filter, and the tetramethylrhodamine (TRITC) filter settings at 40X. A high pressure mercury lamp or UV source was used to excite the storage molecules or proteins which exhibited autofluorescence. The FITC filter reveals the green fluorescent proteins (GFP and EGFP), and the TRITC filter for red fluorescent proteins (DsRed). SEM proved to be useful for observing ultra-structural details like pores, colpi, sulci and ornamentations on the pollen surface. Samples were examined with an SEM (TM-1000) after gold coating and Critical Point Drying. Pollen grains were measured using the TM-1000 imaging software that revealed the specific information on the size of colpi or sulci and the distance between the micro-structures. This information can be used for classification and circumscription in Angiosperm taxonomy. Data were correlated clinical studies established at Allergy A.R.T.S. Clinical Research Laboratory.

  5. Correlating microscopy techniques and ToF-SIMS analysis of fully grown mammalian oocytes.

    PubMed

    Gulin, Alexander; Nadtochenko, Victor; Astafiev, Artyom; Pogorelova, Valentina; Rtimi, Sami; Pogorelov, Alexander

    2016-06-20

    The 2D-molecular thin film analysis protocol for fully grown mice oocytes is described using an innovative approach. Time-of-flight secondary ion mass spectrometry (ToF-SIMS), scanning electron microscopy (SEM), atomic force microscopy (AFM) and optical microscopy imaging were applied to the same mice oocyte section on the same sample holder. A freeze-dried mice oocyte was infiltrated into embedding media, e.g. Epon, and then was cut with a microtome and 2 μm thick sections were transferred onto an ITO coated conductive glass. Mammalian oocytes can contain "nucleolus-like body" (NLB) units and ToF-SIMS analysis was used to investigate the NLB composition. The ion-spatial distribution in the cell components was identified and compared with the images acquired by SEM, AFM and optical microscopy. This study presents a significant advancement in cell embryology, cell physiology and cancer-cell biochemistry.

  6. Advantages of indium-tin oxide-coated glass slides in correlative scanning electron microscopy applications of uncoated cultured cells.

    PubMed

    Pluk, H; Stokes, D J; Lich, B; Wieringa, B; Fransen, J

    2009-03-01

    A method of direct visualization by correlative scanning electron microscopy (SEM) and fluorescence light microscopy of cell structures of tissue cultured cells grown on conductive glass slides is described. We show that by growing cells on indium-tin oxide (ITO)-coated glass slides, secondary electron (SE) and backscatter electron (BSE) images of uncoated cells can be obtained in high-vacuum SEM without charging artefacts. Interestingly, we observed that BSE imaging is influenced by both accelerating voltage and ITO coating thickness. By combining SE and BSE imaging with fluorescence light microscopy imaging, we were able to reveal detailed features of actin cytoskeletal and mitochondrial structures in mouse embryonic fibroblasts. We propose that the application of ITO glass as a substrate for cell culture can easily be extended and offers new opportunities for correlative light and electron microscopy studies of adherently growing cells.

  7. Study of corrosion in archaeological gilded irons by Raman imaging and a coupled scanning electron microscope-Raman system.

    PubMed

    Veneranda, Marco; Costantini, Ilaria; de Vallejuelo, Silvia Fdez-Ortiz; Garcia, Laura; García, Iñaki; Castro, Kepa; Azkarate, Agustín; Madariaga, Juan Manuel

    2016-12-13

    In this work, analytical and chemical imaging tools have been applied to the study of a gilded spur found in the medieval necropolis of Erenozar (Bizkaia, Spain). As a first step, a lot of portable equipment has been used to study the object in a non-invasive way. The hand-held energy-dispersive X-ray fluorescence equipment allowed us to characterize the artefact as a rare example of an iron matrix item decorated by means of a fire gilding technique. On the other hand, the use of a portable Raman system helped us to detect the main degradation compounds affecting the spur. Afterwards, further information was acquired in the laboratory by analysing detached fragments. The molecular images obtained using confocal Raman microscopy permitted us to characterize the stratigraphic succession of iron corrosions. Furthermore, the combined use of this technique with a scanning electron microscope (SEM) was achieved owing to the use of a structural and chemical analyser interface. In this way, the molecular characterization, enhanced by the magnification feature of the SEM, allowed us to identify several micrometric degradation compounds. Finally, the effectiveness of one of the most used desalination baths (NaOH) was evaluated by comparing its effects with those provided by a reference bath (MilliQ). The comparison proved that basic treatment avoided any side effects on the spur decorated by fire gilding, compensating for the lack of bibliographic documentation in this field.This article is part of the themed issue 'Raman spectroscopy in art and archaeology'. © 2016 The Author(s).

  8. Study of corrosion in archaeological gilded irons by Raman imaging and a coupled scanning electron microscope-Raman system

    NASA Astrophysics Data System (ADS)

    Veneranda, Marco; Costantini, Ilaria; de Vallejuelo, Silvia Fdez-Ortiz; Garcia, Laura; García, Iñaki; Castro, Kepa; Azkarate, Agustín; Madariaga, Juan Manuel

    2016-12-01

    In this work, analytical and chemical imaging tools have been applied to the study of a gilded spur found in the medieval necropolis of Erenozar (Bizkaia, Spain). As a first step, a lot of portable equipment has been used to study the object in a non-invasive way. The hand-held energy-dispersive X-ray fluorescence equipment allowed us to characterize the artefact as a rare example of an iron matrix item decorated by means of a fire gilding technique. On the other hand, the use of a portable Raman system helped us to detect the main degradation compounds affecting the spur. Afterwards, further information was acquired in the laboratory by analysing detached fragments. The molecular images obtained using confocal Raman microscopy permitted us to characterize the stratigraphic succession of iron corrosions. Furthermore, the combined use of this technique with a scanning electron microscope (SEM) was achieved owing to the use of a structural and chemical analyser interface. In this way, the molecular characterization, enhanced by the magnification feature of the SEM, allowed us to identify several micrometric degradation compounds. Finally, the effectiveness of one of the most used desalination baths (NaOH) was evaluated by comparing its effects with those provided by a reference bath (MilliQ). The comparison proved that basic treatment avoided any side effects on the spur decorated by fire gilding, compensating for the lack of bibliographic documentation in this field. This article is part of the themed issue "Raman spectroscopy in art and archaeology".

  9. Study of corrosion in archaeological gilded irons by Raman imaging and a coupled scanning electron microscope–Raman system

    PubMed Central

    Veneranda, Marco; Costantini, Ilaria; de Vallejuelo, Silvia Fdez-Ortiz; Garcia, Laura; García, Iñaki; Azkarate, Agustín; Madariaga, Juan Manuel

    2016-01-01

    In this work, analytical and chemical imaging tools have been applied to the study of a gilded spur found in the medieval necropolis of Erenozar (Bizkaia, Spain). As a first step, a lot of portable equipment has been used to study the object in a non-invasive way. The hand-held energy-dispersive X-ray fluorescence equipment allowed us to characterize the artefact as a rare example of an iron matrix item decorated by means of a fire gilding technique. On the other hand, the use of a portable Raman system helped us to detect the main degradation compounds affecting the spur. Afterwards, further information was acquired in the laboratory by analysing detached fragments. The molecular images obtained using confocal Raman microscopy permitted us to characterize the stratigraphic succession of iron corrosions. Furthermore, the combined use of this technique with a scanning electron microscope (SEM) was achieved owing to the use of a structural and chemical analyser interface. In this way, the molecular characterization, enhanced by the magnification feature of the SEM, allowed us to identify several micrometric degradation compounds. Finally, the effectiveness of one of the most used desalination baths (NaOH) was evaluated by comparing its effects with those provided by a reference bath (MilliQ). The comparison proved that basic treatment avoided any side effects on the spur decorated by fire gilding, compensating for the lack of bibliographic documentation in this field. This article is part of the themed issue ‘Raman spectroscopy in art and archaeology’. PMID:27799430

  10. Exploiting Process-Related Advantages of Selective Laser Melting for the Production of High-Manganese Steel.

    PubMed

    Haase, Christian; Bültmann, Jan; Hof, Jan; Ziegler, Stephan; Bremen, Sebastian; Hinke, Christian; Schwedt, Alexander; Prahl, Ulrich; Bleck, Wolfgang

    2017-01-11

    Metal additive manufacturing has strongly gained scientific and industrial importance during the last decades due to the geometrical flexibility and increased reliability of parts, as well as reduced equipment costs. Within the field of metal additive manufacturing methods, selective laser melting (SLM) is an eligible technique for the production of fully dense bulk material with complex geometry. In the current study, we addressed the application of SLM for processing a high-manganese TRansformation-/TWinning-Induced Plasticity (TRIP/TWIP) steel. The solidification behavior was analyzed by careful characterization of the as-built microstructure and element distribution using optical and scanning electron microscopy (SEM). In addition, the deformation behavior was studied using uniaxial tensile testing and SEM. Comparison with conventionally produced TRIP/TWIP steel revealed that elemental segregation, which is normally very pronounced in high-manganese steels and requires energy-intensive post processing, is reduced due to the high cooling rates during SLM. Also, the very fast cooling promoted ε- and α'-martensite formation prior to deformation. The superior strength and pronounced anisotropy of the SLM-produced material was correlated with the microstructure based on the process-specific characteristics.

  11. Exploiting Process-Related Advantages of Selective Laser Melting for the Production of High-Manganese Steel

    PubMed Central

    Haase, Christian; Bültmann, Jan; Hof, Jan; Ziegler, Stephan; Bremen, Sebastian; Hinke, Christian; Schwedt, Alexander; Prahl, Ulrich; Bleck, Wolfgang

    2017-01-01

    Metal additive manufacturing has strongly gained scientific and industrial importance during the last decades due to the geometrical flexibility and increased reliability of parts, as well as reduced equipment costs. Within the field of metal additive manufacturing methods, selective laser melting (SLM) is an eligible technique for the production of fully dense bulk material with complex geometry. In the current study, we addressed the application of SLM for processing a high-manganese TRansformation-/TWinning-Induced Plasticity (TRIP/TWIP) steel. The solidification behavior was analyzed by careful characterization of the as-built microstructure and element distribution using optical and scanning electron microscopy (SEM). In addition, the deformation behavior was studied using uniaxial tensile testing and SEM. Comparison with conventionally produced TRIP/TWIP steel revealed that elemental segregation, which is normally very pronounced in high-manganese steels and requires energy-intensive post processing, is reduced due to the high cooling rates during SLM. Also, the very fast cooling promoted ε- and α’-martensite formation prior to deformation. The superior strength and pronounced anisotropy of the SLM-produced material was correlated with the microstructure based on the process-specific characteristics. PMID:28772416

  12. Quantitative light and scanning electron microscopy of ferret sperm.

    PubMed

    Van der Horst, G; Curry, P T; Kitchin, R M; Burgess, W; Thorne, E T; Kwiatkowski, D; Parker, M; Atherton, R W

    1991-11-01

    Sperm were obtained via electroejaculation from Domestic ferret, (Mustela putorius furo), Siberian ferret (M. eversmanni), Black-footed ferret (M. nigripes), and a hybrid between Siberian and Domestic, called the Fitch ferret (M. sp.). Comparisons of sperm were made by four different microscopy techniques to determine whether differences exist among species. First, Nomarski differential interference microscopy could be used to distinguish domestic ferret sperm from the others on the basis of the structure of the posterior part of the acrosome. Second, both silver staining, which demonstrates argentophilic protein distribution, and scanning electron microscopy (SEM), revealed differences among the morphology of sperm for each species; variation in the unique appearance of the acrosome in ferret sperm was detected especially well by SEM. To quantify differences in morphology, five sperm head parameters were measured using image analysis; light microscopy produced significantly larger values than did SEM (all parameters and all species but Fitch), and there were significant differences owing to species for all parameters but one. Generally, our data demonstrate the value of complementary techniques to distinguish among sperm of closely related species and more specifically may help establish evolutionary relationships among the ferret species studied. In addition, they provide baseline data important for the captive breeding of the endangered Black-footed ferret.

  13. Correlative SEM SERS for quantitative analysis of dimer nanoparticles.

    PubMed

    Timmermans, F J; Lenferink, A T M; van Wolferen, H A G M; Otto, C

    2016-11-14

    A Raman microscope integrated with a scanning electron microscope was used to investigate plasmonic structures by correlative SEM-SERS analysis. The integrated Raman-SEM microscope combines high-resolution electron microscopy information with SERS signal enhancement from selected nanostructures with adsorbed Raman reporter molecules. Correlative analysis is performed for dimers of two gold nanospheres. Dimers were selected on the basis of SEM images from multi aggregate samples. The effect of the orientation of the dimer with respect to the polarization state of the laser light and the effect of the particle gap size on the Raman signal intensity is observed. Additionally, calculations are performed to simulate the electric near field enhancement. These simulations are based on the morphologies observed by electron microscopy. In this way the experiments are compared with the enhancement factor calculated with near field simulations and are subsequently used to quantify the SERS enhancement factor. Large differences between experimentally observed and calculated enhancement factors are regularly detected, a phenomenon caused by nanoscale differences between the real and 'simplified' simulated structures. Quantitative SERS experiments reveal the structure induced enhancement factor, ranging from ∼200 to ∼20 000, averaged over the full nanostructure surface. The results demonstrate correlative Raman-SEM microscopy for the quantitative analysis of plasmonic particles and structures, thus enabling a new analytical method in the field of SERS and plasmonics.

  14. Imaging of surface spin textures on bulk crystals by scanning electron microscopy

    NASA Astrophysics Data System (ADS)

    Akamine, Hiroshi; Okumura, So; Farjami, Sahar; Murakami, Yasukazu; Nishida, Minoru

    2016-11-01

    Direct observation of magnetic microstructures is vital for advancing spintronics and other technologies. Here we report a method for imaging surface domain structures on bulk samples by scanning electron microscopy (SEM). Complex magnetic domains, referred to as the maze state in CoPt/FePt alloys, were observed at a spatial resolution of less than 100 nm by using an in-lens annular detector. The method allows for imaging almost all the domain walls in the mazy structure, whereas the visualisation of the domain walls with the classical SEM method was limited. Our method provides a simple way to analyse surface domain structures in the bulk state that can be used in combination with SEM functions such as orientation or composition analysis. Thus, the method extends applications of SEM-based magnetic imaging, and is promising for resolving various problems at the forefront of fields including physics, magnetics, materials science, engineering, and chemistry.

  15. Correlative scanning-transmission electron microscopy reveals that a chimeric flavivirus is released as individual particles in secretory vesicles.

    PubMed

    Burlaud-Gaillard, Julien; Sellin, Caroline; Georgeault, Sonia; Uzbekov, Rustem; Lebos, Claude; Guillaume, Jean-Marc; Roingeard, Philippe

    2014-01-01

    The intracellular morphogenesis of flaviviruses has been well described, but flavivirus release from the host cell remains poorly documented. We took advantage of the optimized production of an attenuated chimeric yellow fever/dengue virus for vaccine purposes to study this phenomenon by microscopic approaches. Scanning electron microscopy (SEM) showed the release of numerous viral particles at the cell surface through a short-lived process. For transmission electron microscopy (TEM) studies of the intracellular ultrastructure of the small number of cells releasing viral particles at a given time, we developed a new correlative microscopy method: CSEMTEM (for correlative scanning electron microscopy - transmission electron microscopy). CSEMTEM analysis suggested that chimeric flavivirus particles were released as individual particles, in small exocytosis vesicles, via a regulated secretory pathway. Our morphological findings provide new insight into interactions between flaviviruses and cells and demonstrate that CSEMTEM is a useful new method, complementary to SEM observations of biological events by intracellular TEM investigations.

  16. Correlative Scanning-Transmission Electron Microscopy Reveals that a Chimeric Flavivirus Is Released as Individual Particles in Secretory Vesicles

    PubMed Central

    Burlaud-Gaillard, Julien; Sellin, Caroline; Georgeault, Sonia; Uzbekov, Rustem; Lebos, Claude; Guillaume, Jean-Marc; Roingeard, Philippe

    2014-01-01

    The intracellular morphogenesis of flaviviruses has been well described, but flavivirus release from the host cell remains poorly documented. We took advantage of the optimized production of an attenuated chimeric yellow fever/dengue virus for vaccine purposes to study this phenomenon by microscopic approaches. Scanning electron microscopy (SEM) showed the release of numerous viral particles at the cell surface through a short-lived process. For transmission electron microscopy (TEM) studies of the intracellular ultrastructure of the small number of cells releasing viral particles at a given time, we developed a new correlative microscopy method: CSEMTEM (for correlative scanning electron microscopy - transmission electron microscopy). CSEMTEM analysis suggested that chimeric flavivirus particles were released as individual particles, in small exocytosis vesicles, via a regulated secretory pathway. Our morphological findings provide new insight into interactions between flaviviruses and cells and demonstrate that CSEMTEM is a useful new method, complementary to SEM observations of biological events by intracellular TEM investigations. PMID:24681578

  17. Characterization of konjac glucomannan-ethyl cellulose film formation via microscopy.

    PubMed

    Xiao, Man; Wan, Li; Corke, Harold; Yan, Wenli; Ni, Xuewen; Fang, Yapeng; Jiang, Fatang

    2016-04-01

    Konjac glucomannan-ethyl cellulose (KGM-EC, 7:3, w/w) blended film shows good mechanical and moisture resistance properties. To better understand the basis for the KGM-EC film formation, optical microscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM) were used to observe the formation of the film from emulsion. Optical microscopy images showed that EC oil droplets were homogeneously dispersed in KGM water phase without obviously coalescence throughout the entire drying process. SEM images showed the surface and cross-sectional structures of samples maintained continuous and homogeneous appearance from the emulsion to dried film. AFM images indicated that KGM molecules entangled EC molecules in the emulsion. Interactions between KGM and EC improved the stability of KGM-EC emulsion, and contributed to uniformed structures of film formation. Based on these output information, a schematic model was built to elucidate KGM-EC film-forming process. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Novel Electrochemical Process for Treatment of Perchlorate in Waste Water

    DTIC Science & Technology

    2011-03-06

    Prepared in Different Processes: (b) in 0.1 M Pyrrole Solution with 0.1 M NaCl at 0.8 V for 20 min; (c) at 0.5 V for 400 s in 0.1 M ClO4- Solution and...polypyrrole Py pyrrole SEM scanning electron microscopy SON statement of need XPS X-ray photoelectron spectroscopy v Acknowledgments This work is...shows the scanning electron microscopy (SEM) images of carbon fiber paper and a CNT array grown on carbon fiber paper. Pyrrole (Py) deposition

  19. X-ray microscopy using reflection targets based on SEM with tungsten filament

    NASA Astrophysics Data System (ADS)

    Liu, Junbiao; Ma, Yutian; Zhao, Weixia; Niu, Geng; Chu, Mingzhang; Yin, Bohua; Han, Li; Liu, Baodong

    2016-10-01

    X-ray MicroandNano imaging is developed based on the conventional x-ray tomography, it can not only provide nondestructive testing with higher resolution measurement, but also be used to examine the material or the structure with low atomic number and low density. The source with micro-focal spot size is one of the key components of x-ray MicroandNano imaging. The focused electron beam from SEM bombarding the metal target can generate x-ray with ultra-small size. It is convenient to set up x-ray microscopy based on SEM for laboratory use. This paper describes a new x-ray microscopy using reflection targets based on FEI Quanta600 SEM with tungsten filament. The flat panel detector is placed outside of the vacuum chamber with 300μm thickness Be-window to isolate vacuum from the air. A stage with 3 DOFs is added to adjust the positions of the target, the SEM's sample stage is used to move sample. And the shape of target is designed as cone with 60° half cone angle to get the maximum x-ray dosage. The attenuation coefficient of Bewindow for x-ray is about 25%. Finally, the line pair card is used to evaluate the resolution and the result shows that the resolution of the system can receive less than 750nm, when the acceleration voltage is 30keV, the beam current is 160nA, the SEM working distance is 5mm and the acquisition time of the detector is 60s.

  20. The detection of metallic residues in skin stab wounds by means of SEM-EDS: A pilot study.

    PubMed

    Palazzo, Elisa; Amadasi, Alberto; Boracchi, Michele; Gentile, Guendalina; Maciocco, Francesca; Marchesi, Matteo; Zoja, Riccardo

    2018-05-01

    The morphological analysis of stab wounds may often not be accurate enough to link it with the type of wounding weapon, but a further evaluation may be performed with the search for metallic residues left during the contact between the instrument and the skin. In this study, Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS) was applied to the study of cadaveric stab wounds performed with kitchen knives composed of iron, chromium and nickel, in order to verify the presence of metallic residues on the wound's edge. Two groups of 10 corpses were selected: group A, including victims of stab wounds and a control group B (died of natural causes). Samplings were performed on the lesions and in intact areas of group A, whereas in group B sampling were performed in non-exposed intact skin. Samples were then analysed with optical microscopy and SEM-EDS. In group A, optical microscopic analysis showed the presence of vital haemorrhagic infiltration, while SEM-EDS showed evidence of microscopic metal traces, isolated or clustered, consisting of iron, chromium and nickel. Moreover, in two cases organic residues of calcium and phosphate were detected, as a probable sign of bone lesion. Control samples (group A in intact areas and group B), were negative for the search of exogenous material to optical microscopy and SEM-EDS. The results show the utility and possible application of the SEM-EDS in theidentification of metallic residues from sharp weapons on the skin. Copyright © 2017 The Chartered Society of Forensic Sciences. Published by Elsevier B.V. All rights reserved.

  1. Counting Synapses Using FIB/SEM Microscopy: A True Revolution for Ultrastructural Volume Reconstruction.

    PubMed

    Merchán-Pérez, Angel; Rodriguez, José-Rodrigo; Alonso-Nanclares, Lidia; Schertel, Andreas; Defelipe, Javier

    2009-01-01

    The advent of transmission electron microscopy (TEM) in the 1950s represented a fundamental step in the study of neuronal circuits. The application of this technique soon led to the realization that the number of synapses changes during the course of normal life, as well as under certain pathological or experimental circumstances. Since then, one of the main goals in neurosciences has been to define simple and accurate methods to estimate the magnitude of these changes. Contrary to analysing single sections, TEM reconstructions are extremely time-consuming and difficult. Therefore, most quantitative studies use stereological methods to define the three-dimensional characteristics of synaptic junctions that are studied in two dimensions. Here, to count the exact number of synapses per unit of volume we have applied a new three-dimensional reconstruction method that involves the combination of focused ion beam milling and scanning electron microscopy (FIB/SEM). We show that the images obtained with FIB/SEM are similar to those obtained with TEM, but with the advantage that FIB/SEM permits serial reconstructions of large volumes of tissue to be generated rapidly and automatically. Furthermore, we compared the estimates of the number of synapses obtained with stereological methods with the values obtained by FIB/SEM reconstructions. We concluded that FIB/SEM not only provides the actual number of synapses per volume but it is also much easier and faster to use than other currently available TEM methods. More importantly, it also avoids most of the errors introduced by stereological methods and overcomes the difficulties associated with these techniques.

  2. Computer-aided screening system for cervical precancerous cells based on field emission scanning electron microscopy and energy dispersive x-ray images and spectra

    NASA Astrophysics Data System (ADS)

    Jusman, Yessi; Ng, Siew-Cheok; Hasikin, Khairunnisa; Kurnia, Rahmadi; Osman, Noor Azuan Bin Abu; Teoh, Kean Hooi

    2016-10-01

    The capability of field emission scanning electron microscopy and energy dispersive x-ray spectroscopy (FE-SEM/EDX) to scan material structures at the microlevel and characterize the material with its elemental properties has inspired this research, which has developed an FE-SEM/EDX-based cervical cancer screening system. The developed computer-aided screening system consisted of two parts, which were the automatic features of extraction and classification. For the automatic features extraction algorithm, the image and spectra of cervical cells features extraction algorithm for extracting the discriminant features of FE-SEM/EDX data was introduced. The system automatically extracted two types of features based on FE-SEM/EDX images and FE-SEM/EDX spectra. Textural features were extracted from the FE-SEM/EDX image using a gray level co-occurrence matrix technique, while the FE-SEM/EDX spectra features were calculated based on peak heights and corrected area under the peaks using an algorithm. A discriminant analysis technique was employed to predict the cervical precancerous stage into three classes: normal, low-grade intraepithelial squamous lesion (LSIL), and high-grade intraepithelial squamous lesion (HSIL). The capability of the developed screening system was tested using 700 FE-SEM/EDX spectra (300 normal, 200 LSIL, and 200 HSIL cases). The accuracy, sensitivity, and specificity performances were 98.2%, 99.0%, and 98.0%, respectively.

  3. Focused ion beam (FIB)/scanning electron microscopy (SEM) in tissue structural research.

    PubMed

    Leser, Vladka; Milani, Marziale; Tatti, Francesco; Tkalec, Ziva Pipan; Strus, Jasna; Drobne, Damjana

    2010-10-01

    The focused ion beam (FIB) and scanning electron microscope (SEM) are commonly used in material sciences for imaging and analysis of materials. Over the last decade, the combined FIB/SEM system has proven to be also applicable in the life sciences. We have examined the potential of the focused ion beam/scanning electron microscope system for the investigation of biological tissues of the model organism Porcellio scaber (Crustacea: Isopoda). Tissue from digestive glands was prepared as for conventional SEM or as for transmission electron microscopy (TEM). The samples were transferred into FIB/SEM for FIB milling and an imaging operation. FIB-milled regions were secondary electron imaged, back-scattered electron imaged, or energy dispersive X-ray (EDX) analyzed. Our results demonstrated that FIB/SEM enables simultaneous investigation of sample gross morphology, cell surface characteristics, and subsurface structures. The same FIB-exposed regions were analyzed by EDX to provide basic compositional data. When samples were prepared as for TEM, the information obtained with FIB/SEM is comparable, though at limited magnification, to that obtained from TEM. A combination of imaging, micro-manipulation, and compositional analysis appears of particular interest in the investigation of epithelial tissues, which are subjected to various endogenous and exogenous conditions affecting their structure and function. The FIB/SEM is a promising tool for an overall examination of epithelial tissue under normal, stressed, or pathological conditions.

  4. Seeing a Mycobacterium-Infected Cell in Nanoscale 3D: Correlative Imaging by Light Microscopy and FIB/SEM Tomography

    PubMed Central

    Beckwith, Marianne Sandvold; Beckwith, Kai Sandvold; Sikorski, Pawel; Skogaker, Nan Tostrup

    2015-01-01

    Mycobacteria pose a threat to the world health today, with pathogenic and opportunistic bacteria causing tuberculosis and non-tuberculous disease in large parts of the population. Much is still unknown about the interplay between bacteria and host during infection and disease, and more research is needed to meet the challenge of drug resistance and inefficient vaccines. This work establishes a reliable and reproducible method for performing correlative imaging of human macrophages infected with mycobacteria at an ultra-high resolution and in 3D. Focused Ion Beam/Scanning Electron Microscopy (FIB/SEM) tomography is applied, together with confocal fluorescence microscopy for localization of appropriately infected cells. The method is based on an Aclar poly(chloro-tri-fluoro)ethylene substrate, micropatterned into an advantageous geometry by a simple thermomoulding process. The platform increases the throughput and quality of FIB/SEM tomography analyses, and was successfully applied to detail the intracellular environment of a whole mycobacterium-infected macrophage in 3D. PMID:26406896

  5. Respiratory assessment of refractory ceramic fibers in a heating technician population.

    PubMed

    Lucas, David; Clamagirand, Vincent; Capellmann, Pascale; Hervé, Agnès; Mauguen, Gilles; Le Mer, Yannik; Jegaden, Dominique

    2018-04-01

    Refractory ceramic fibers (RCF) have been extensively used for insulation in condensing boilers. The aim of this study was to evaluate the respiratory exposure to these fibers among maintenance heating technicians. We first created a working group (Carsat Brittany and Finistère Occupational Health Services) and carried out a sampling strategy. Atmospheric measurements were done during work tasks, and filters were analyzed by phase contrast microscopy (PCM) and scanning electron microscopy (SEM) in French approved laboratories. Four companies were included for a total of 15 days of work. During those 15 workdays, 12 SEM and 21 PCM samples were taken and analyzed. The phase contrast microscopy and SEM average results were 0.04 and 0.004 fibers/cm 3 , respectively. In conclusion, the study confirms heating technician RCF respiratory exposure during maintenance work for both condensation gas boilers and atmospheric boilers. Collective and individual prevention measures should be implemented along with appropriate medical follow-up.

  6. Three-dimensional ultrastructure of osteocytes assessed by focused ion beam-scanning electron microscopy (FIB-SEM).

    PubMed

    Hasegawa, Tomoka; Yamamoto, Tomomaya; Hongo, Hiromi; Qiu, Zixuan; Abe, Miki; Kanesaki, Takuma; Tanaka, Kawori; Endo, Takashi; de Freitas, Paulo Henrique Luiz; Li, Minqi; Amizuka, Norio

    2018-04-01

    The aim of this study is to demonstrate the application of focused ion beam-scanning electron microscopy, FIB-SEM for revealing the three-dimensional features of osteocytic cytoplasmic processes in metaphyseal (immature) and diaphyseal (mature) trabeculae. Tibiae of eight-week-old male mice were fixed with aldehyde solution, and treated with block staining prior to FIB-SEM observation. While two-dimensional backscattered SEM images showed osteocytes' cytoplasmic processes in a fragmented fashion, three-dimensional reconstructions of FIB-SEM images demonstrated that osteocytes in primary metaphyseal trabeculae extended their cytoplasmic processes randomly, thus maintaining contact with neighboring osteocytes and osteoblasts. In contrast, diaphyseal osteocytes extended thin cytoplasmic processes from their cell bodies, which ran perpendicular to the bone surface. In addition, these osteocytes featured thick processes that branched into thinner, transverse cytoplasmic processes; at some point, however, these transverse processes bend at a right angle to run perpendicular to the bone surface. Osteoblasts also possessed thicker cytoplasmic processes that branched off as thinner processes, which then connected with cytoplasmic processes of neighboring osteocytes. Thus, FIB-SEM is a useful technology for visualizing the three-dimensional structures of osteocytes and their cytoplasmic processes.

  7. Single organelle dynamics linked to 3D structure by correlative live-cell imaging and 3D electron microscopy.

    PubMed

    Fermie, Job; Liv, Nalan; Ten Brink, Corlinda; van Donselaar, Elly G; Müller, Wally H; Schieber, Nicole L; Schwab, Yannick; Gerritsen, Hans C; Klumperman, Judith

    2018-05-01

    Live-cell correlative light-electron microscopy (live-cell-CLEM) integrates live movies with the corresponding electron microscopy (EM) image, but a major challenge is to relate the dynamic characteristics of single organelles to their 3-dimensional (3D) ultrastructure. Here, we introduce focused ion beam scanning electron microscopy (FIB-SEM) in a modular live-cell-CLEM pipeline for a single organelle CLEM. We transfected cells with lysosomal-associated membrane protein 1-green fluorescent protein (LAMP-1-GFP), analyzed the dynamics of individual GFP-positive spots, and correlated these to their corresponding fine-architecture and immediate cellular environment. By FIB-SEM we quantitatively assessed morphological characteristics, like number of intraluminal vesicles and contact sites with endoplasmic reticulum and mitochondria. Hence, we present a novel way to integrate multiple parameters of subcellular dynamics and architecture onto a single organelle, which is relevant to address biological questions related to membrane trafficking, organelle biogenesis and positioning. Furthermore, by using CLEM to select regions of interest, our method allows for targeted FIB-SEM, which significantly reduces time required for image acquisition and data processing. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Serial block face-scanning electron microscopy: a tool for studying embryonic development at the cell-matrix interface.

    PubMed

    Starborg, Tobias; Kadler, Karl E

    2015-03-01

    Studies of gene regulation, signaling pathways, and stem cell biology are contributing greatly to our understanding of early embryonic vertebrate development. However, much less is known about the events during the latter half of embryonic development, when tissues comprising mostly extracellular matrix (ECM) are formed. The matrix extends far beyond the boundaries of individual cells and is refractory to study by conventional biochemical and molecular techniques; thus major gaps exist in our knowledge of the formation and three-dimensional (3D) organization of the dense tissues that form the bulk of adult vertebrates. Serial block face-scanning electron microscopy (SBF-SEM) has the ability to image volumes of tissue containing numerous cells at a resolution sufficient to study the organization of the ECM. Furthermore, whereas light microscopy was once relatively straightforward and electron microscopy was performed in specialist laboratories, the tables are turned; SBF-SEM is relatively straightforward and is becoming routine in high-end resolution studies of embryonic structures in vivo. In this review, we discuss the emergence of SBF-SEM as a tool for studying embryonic vertebrate development. © 2015 Wiley Periodicals, Inc.

  9. Sub-diffraction-limit localization imaging of a plasmonic nanoparticle pair with wavelength-resolved dark-field microscopy.

    PubMed

    Wei, Lin; Ma, Yanhong; Zhu, Xupeng; Xu, Jianghong; Wang, Yaxin; Duan, Huigao; Xiao, Lehui

    2017-06-29

    In this work, with wavelength-resolved dark-field microscopy, the center-of-mass localization information from nanoparticle pairs (i.e., spherical (45 nm in diameter) and rod (45 × 70 nm) shaped gold nanoparticle pairs with different gap distances and orientations) was explored and compared with the results determined by scanning electron microscopy (SEM) measurements. When the gap distance was less than 20 nm, the scattering spectrum of the nanoparticle pair was seriously modulated by the plasmonic coupling effect. The measured coordinate information determined by the optical method (Gaussian fitting) was not consistent with the true results determined by SEM measurement. A good correlation between the optical and SEM measurements was achieved when the gap distance was further increased (e.g., 20, 40 and 60 nm). Under these conditions, well-defined scattering peaks assigned to the corresponding individual nanoparticles could be distinguished from the obtained scattering spectrum. These results would afford valuable information for the studies on single plasmonic nanoparticle imaging applications with the optical microscopy method such as super-localization imaging, high precision single particle tracking in a crowding environment and so on.

  10. Confirmatory analysis of field-presumptive GSR test sample using SEM/EDS

    NASA Astrophysics Data System (ADS)

    Toal, Sarah J.; Niemeyer, Wayne D.; Conte, Sean; Montgomery, Daniel D.; Erikson, Gregory S.

    2014-09-01

    RedXDefense has developed an automated red-light/green-light field presumptive lead test using a sampling pad which can be subsequently processed in a Scanning Electron Microscope for GSR confirmation. The XCAT's sampling card is used to acquire a sample from a suspect's hands on the scene and give investigators an immediate presumptive as to the presence of lead possibly from primer residue. Positive results can be obtained after firing as little as one shot. The same sampling card can then be sent to a crime lab and processed on the SEM for GSR following ASTM E-1588-10 Standard Guide for Gunshot Residue Analysis by Scanning Electron Microscopy/Energy Dispersive X-Ray Spectrometry, in the same manner as the existing tape lifts currently used in the field. Detection of GSR-characteristic particles (fused lead, barium, and antimony) as small as 0.8 microns (0.5 micron resolution) has been achieved using a JEOL JSM-6480LV SEM equipped with an Oxford Instruments INCA EDS system with a 50mm2 SDD detector, 350X magnification, in low-vacuum mode and in high vacuum mode after coating with carbon in a sputter coater. GSR particles remain stable on the sampling pad for a minimum of two months after chemical exposure (long term stability tests are in progress). The presumptive result provided by the XCAT yields immediate actionable intelligence to law enforcement to facilitate their investigation, without compromising the confirmatory test necessary to further support the investigation and legal case.

  11. Atomic force microscopy imaging of fragments from the Martian meteorite ALH84001

    NASA Technical Reports Server (NTRS)

    Steele, A.; Goddard, D.; Beech, I. B.; Tapper, R. C.; Stapleton, D.; Smith, J. R.

    1998-01-01

    A combination of scanning electron microscopy (SEM) and environmental scanning electron microscopy (ESEM) techniques, as well as atomic force microscopy (AFM) methods has been used to study fragments of the Martian meteorite ALH84001. Images of the same areas on the meteorite were obtained prior to and following gold/palladium coating by mapping the surface of the fragment using ESEM coupled with energy-dispersive X-ray analysis. Viewing of the fragments demonstrated the presence of structures, previously described as nanofossils by McKay et al. (Search for past life on Mars--possible relic biogenic activity in martian meteorite ALH84001. Science, 1996, pp. 924-930) of NASA who used SEM imaging of gold-coated meteorite samples. Careful imaging of the fragments revealed that the observed structures were not an artefact introduced by the coating procedure.

  12. A compilation of cold cases using scanning electron microscopy at the University of Rhode Island

    NASA Astrophysics Data System (ADS)

    Platek, Michael J.; Gregory, Otto J.

    2015-10-01

    Scanning electron microscopy combined with microchemical analysis has evolved into one of the most widely used instruments in forensic science today. In particular, the environmental scanning electron microscope (SEM) in conjunction with energy dispersive spectroscopy (EDS), has created unique opportunities in forensic science in regard to the examination of trace evidence; i.e. the examination of evidence without altering the evidence with conductive coatings, thereby enabling criminalists to solve cases that were previously considered unsolvable. Two cold cases were solved at URI using a JEOL 5900 LV SEM in conjunction with EDS. A cold case murder and a cold missing person case will be presented from the viewpoint of the microscopist and will include sample preparation, as well as image and chemical analysis of the trace evidence using electron microscopy and optical microscopy.

  13. Preliminary Results on the Surface of a New Fe-Based Metallic Material after “In Vivo” Maintaining

    NASA Astrophysics Data System (ADS)

    Săndulache, F.; Stanciu, S.; Cimpoeşu, N.; Stanciu, T.; Cimpoeșu, R.; Enache, A.; Baciu, R.

    2017-06-01

    Abstract A new Fe-based alloy was obtained using UltraCast melting equipment. The alloy, after mechanical processing, was implanted in five rabbit specimens (with respect for the “in-bone” procedure). After 30 days of implantation the samples were recovered and analyzed by weight and surface state meanings. Scanning electron microscopy technique was used to determine the new compounds morphology from the metallic surface and X-ray dispersive energy spectroscopy for chemical analyze results. A bond between the metallic material and biological material of the bone was observed through increasing of sample weight and by SEM images. After the first set of tests, as the samples were extracted and biologically cleaned, the samples were ultrasonically cleaned and re-analyzed in order to establish the stability of the chemical compounds.

  14. New Insights on Subsurface Imaging of Carbon Nanotubes in Polymer Composites via Scanning Electron Microscopy

    NASA Technical Reports Server (NTRS)

    Zhao, Minhua; Ming, Bin; Kim, Jae-Woo; Gibbons, Luke J.; Gu, Xiaohong; Nguyen, Tinh; Park, Cheol; Lillehei, Peter T.; Villarrubia, J. S.; Vladar, Andras E.; hide

    2015-01-01

    Despite many studies of subsurface imaging of carbon nanotube (CNT)-polymer composites via scanning electron microscopy (SEM), significant controversy exists concerning the imaging depth and contrast mechanisms. We studied CNT-polyimide composites and, by threedimensional reconstructions of captured stereo-pair images, determined that the maximum SEM imaging depth was typically hundreds of nanometers. The contrast mechanisms were investigated over a broad range of beam accelerating voltages from 0.3 to 30 kV, and ascribed to modulation by embedded CNTs of the effective secondary electron (SE) emission yield at the polymer surface. This modulation of the SE yield is due to non-uniform surface potential distribution resulting from current flows due to leakage and electron beam induced current. The importance of an external electric field on SEM subsurface imaging was also demonstrated. The insights gained from this study can be generally applied to SEM nondestructive subsurface imaging of conducting nanostructures embedded in dielectric matrices such as graphene-polymer composites, silicon-based single electron transistors, high resolution SEM overlay metrology or e-beam lithography, and have significant implications in nanotechnology.

  15. High-Resolution Scanning Electron Microscopy and Immuno-Gold Labeling of the Nuclear Lamina and Nuclear Pore Complex.

    PubMed

    Goldberg, Martin W

    2016-01-01

    Scanning electron microscopy (SEM) is a technique used to image surfaces. Field emission SEMs (feSEMs) can resolve structures that are ~0.5-1.5 nm apart. FeSEM, therefore is a useful technique for imaging molecular structures that exist at surfaces such as membranes. The nuclear envelope consists of four membrane surfaces, all of which may be accessible for imaging. Imaging of the cytoplasmic face of the outer membrane gives information about ribosomes and cytoskeletal attachments, as well as details of the cytoplasmic peripheral components of the nuclear pore complex, and is the most easily accessed surface. The nucleoplasmic face of the inner membrane is easily accessible in some cells, such as amphibian oocytes, giving valuable details about the organization of the nuclear lamina and how it interacts with the nuclear pore complexes. The luminal faces of both membranes are difficult to access, but may be exposed by various fracturing techniques. Protocols are presented here for the preparation, labeling, and feSEM imaging of Xenopus laevis oocyte nuclear envelopes.

  16. Human cardiac telocytes: 3D imaging by FIB-SEM tomography.

    PubMed

    Cretoiu, D; Hummel, E; Zimmermann, H; Gherghiceanu, M; Popescu, L M

    2014-11-01

    Telocyte (TC) is a newly identified type of cell in the cardiac interstitium (www.telocytes.com). TCs are described by classical transmission electron microscopy as cells with very thin and long telopodes (Tps; cellular prolongations) having podoms (dilations) and podomers (very thin segments). TCs' three-dimensional (3D) morphology is still unknown. Cardiac TCs seem to be particularly involved in long and short distance intercellular signalling and, therefore, their 3D architecture is important for understanding their spatial connections. Using focused ion beam scanning electron microscopy (FIB-SEM) we show, for the first time, the whole ultrastructural anatomy of cardiac TCs. 3D reconstruction of cardiac TCs by FIB-SEM tomography confirms that they have long, narrow but flattened (ribbon-like) telopodes, with humps generated by the podoms. FIB-SEM tomography also confirms the network made by TCs in the cardiac interstitium through adherens junctions. This study provides the first FIB-SEM tomography of a human cell type. © 2014 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  17. Morphology selection for cupric oxide thin films by electrodeposition.

    PubMed

    Dhanasekaran, V; Mahalingam, T; Chandramohan, R

    2011-10-01

    Polycrystalline cupric oxide thin films were deposited using alkaline solution bath employing cathodic electrodeposition method. The thin films were electrodeposited at various solution pH. The surface morphology and elemental analyzes of the films were studied using scanning electron microscopy (SEM) and energy dispersive X-ray analysis, respectively. SEM studies revealed that the surface morphology could be tailored suitably by adjusting the pH value during deposition. Mesh average on multiple lattice mode atomic force microscopy image was obtained and reported. Copyright © 2011 Wiley-Liss, Inc.

  18. Surface characteristics of isopod digestive gland epithelium studied by SEM.

    PubMed

    Millaku, Agron; Leser, Vladka; Drobne, Damjana; Godec, Matjaz; Torkar, Matjaz; Jenko, Monika; Milani, Marziale; Tatti, Francesco

    2010-05-01

    The structure of the digestive gland epithelium of a terrestrial isopod Porcellio scaber has been investigated by conventional scanning electron microscopy (SEM), focused ion beam-scanning electron microscopy (FIB/SEM), and light microscopy in order to provide evidence on morphology of the gland epithelial surface in animals from a stock culture. We investigated the shape of cells, extrusion of lipid droplets, shape and distribution of microvilli, and the presence of bacteria on the cell surface. A total of 22 animals were investigated and we found some variability in the appearance of the gland epithelial surface. Seventeen of the animals had dome-shaped digestive gland "normal" epithelial cells, which were densely and homogeneously covered by microvilli and varying proportions of which extruded lipid droplets. On the surface of microvilli we routinely observed sparsely distributed bacteria of different shapes. Five of the 22 animals had "abnormal" epithelial cells with a significantly altered shape. In three of these animals, the cells were much smaller, partly or completely flat or sometimes pyramid-like. A thick layer of bacteria was detected on the microvillous border, and in places, the shape and size of microvilli were altered. In two animals, hypertrophic cells containing large vacuoles were observed indicating a characteristic intracellular infection. The potential of SEM in morphological investigations of epithelial surfaces is discussed.

  19. SEM-EDX analysis of an unknown "known" white powder found in a shipping container from Peru

    NASA Astrophysics Data System (ADS)

    Albright, Douglas C.

    2009-05-01

    In 2008, an unknown white powder was discovered spilled inside of a shipping container of whole kernel corn during an inspection by federal inspectors in the port of Baltimore, Maryland. The container was detained and quarantined while a sample of the powder was collected and sent to a federal laboratory where it was screened using chromatography for the presence of specific poisons and pesticides with negative results. Samples of the corn kernels and the white powder were forwarded to the Food and Drug Administration, Forensic Chemistry Center for further analysis. Stereoscopic Light Microscopy (SLM), Scanning Electron Microscopy/Energy Dispersive X-ray Spectrometry (SEM/EDX), and Polarized Light Microscopy/Infrared Spectroscopy (PLM-IR) were used in the analysis of the kernels and the unknown powder. Based on the unique particle analysis by SLM and SEM as well as the detection of the presence of aluminum and phosphorous by EDX, the unknown was determined to be consistent with reacted aluminum phosphide (AlP). While commonly known in the agricultural industry, aluminum phosphide is relatively unknown in the forensic community. A history of the use and acute toxicity of this compound along with some very unique SEM/EDX analysis characteristics of aluminum phosphide will be discussed.

  20. FIB-SEM tomography of human skin telocytes and their extracellular vesicles

    PubMed Central

    Cretoiu, Dragos; Gherghiceanu, Mihaela; Hummel, Eric; Zimmermann, Hans; Simionescu, Olga; Popescu, Laurentiu M

    2015-01-01

    We have shown in 2012 the existence of telocytes (TCs) in human dermis. TCs were described by transmission electron microscopy (TEM) as interstitial cells located in non-epithelial spaces (stroma) of many organs (see www.telocytes.com). TCs have very long prolongations (tens to hundreds micrometers) named Telopodes (Tps). These Tps have a special conformation with dilated portions named podoms (containing mitochondria, endoplasmic reticulum and caveolae) and very thin segments (below resolving power of light microscopy), called podomers. To show the real 3D architecture of TC network, we used the most advanced available electron microscope technology: focused ion beam scanning electron microscopy (FIB-SEM) tomography. Generally, 3D reconstruction of dermal TCs by FIB-SEM tomography revealed the existence of Tps with various conformations: (i) long, flattened irregular veils (ribbon-like segments) with knobs, corresponding to podoms, and (ii) tubular structures (podomers) with uneven calibre because of irregular dilations (knobs) – the podoms. FIB-SEM tomography also showed numerous extracellular vesicles (diameter 438.6 ± 149.1 nm, n = 30) released by a human dermal TC. Our data might be useful for understanding the role(s) of TCs in intercellular signalling and communication, as well as for comprehension of pathologies like scleroderma, multiple sclerosis, psoriasis, etc. PMID:25823591

  1. 30 CFR 250.1913 - What criteria for operating procedures must my SEMS program meet?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... precautions must include control technology, personal protective equipment, and measures to be taken if...) Bypassing and flagging out-of-service equipment; (7) Safety and environmental consequences of deviating from your equipment operating limits and steps required to correct or avoid this deviation; (8) Properties...

  2. Optimization study of direct morphology observation by cold field emission SEM without gold coating.

    PubMed

    He, Dan; Fu, Cheng; Xue, Zhigang

    2018-06-01

    Gold coating is a general operation that is generally applied on non-conductive or low conductive materials, during which the morphology of the materials can be examined by scanning electron microscopy (SEM). However, fatal deficiencies in the materials can result in irreversible distortion and damage. The present study directly characterized different low conductive materials such as hydroxyapatite, modified poly(vinylidene fluoride) (PVDF) fiber, and zinc oxide nanopillar by cold field emission scanning electron microscopy (FE-SEM) without a gold coating. According to the characteristics of the low conductive materials, various test conditions, such as different working signal modes, accelerating voltages, electron beam spots, and working distances, were characterized to determine the best morphological observations of each sample. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Applications of synchrotron x-ray diffraction topography to fractography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bilello, J.C.

    1983-01-01

    Fractographs have been taken using a variety of probes each of which produces different types of information. Methods which have been used to examine fracture surfaces include: (a) optical microscopy, particularly interference contrast methods, (b) scanning electron microscopy (SEM), (c) SEM with electron channelling, (d) SEM with selected-area electron channelling, (e) Berg-Barrett (B-B) topography, and now (f) synchrotron x-radiation fractography (SXRF). This review concentrated on the role that x-ray methods can play in such studies. In particular, the ability to nondestructively assess the subsurface microstructure associated with the fracture to depths of the order of 5 to 10 ..mu..m becomesmore » an important attribute for observations of a large class of semi-brittle metals, semiconductors and ceramics.« less

  4. Direct observation for atomically flat and ordered vertical {111} side-surfaces on three-dimensionally figured Si(110) substrate using scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Yang, Haoyu; Hattori, Azusa N.; Ohata, Akinori; Takemoto, Shohei; Hattori, Ken; Daimon, Hiroshi; Tanaka, Hidekazu

    2017-11-01

    A three-dimensional Si{111} vertical side-surface structure on a Si(110) wafer was fabricated by reactive ion etching (RIE) followed by wet-etching and flash-annealing treatments. The side-surface was studied with scanning tunneling microscopy (STM) in atomic scale for the first time, in addition to atomic force microscopy (AFM), scanning electron microscopy (SEM), and low-energy electron diffraction (LEED). AFM and SEM showed flat and smooth vertical side-surfaces without scallops, and STM proved the realization of an atomically-flat 7 × 7-reconstructed structure, under optimized RIE and wet-etching conditions. STM also showed that a step-bunching occurred on the produced {111} side-surface corresponding to a reversely taped side-surface with a tilt angle of a few degrees, but did not show disordered structures. Characteristic LEED patterns from both side- and top-reconstructed surfaces were also demonstrated.

  5. Gaps analysis for CD metrology beyond the 22nm node

    NASA Astrophysics Data System (ADS)

    Bunday, Benjamin; Germer, Thomas A.; Vartanian, Victor; Cordes, Aaron; Cepler, Aron; Settens, Charles

    2013-04-01

    This paper will examine the future for critical dimension (CD) metrology. First, we will present the extensive list of applications for which CD metrology solutions are needed, showing commonalities and differences among the various applications. We will then report on the expected technical limits of the metrology solutions currently being investigated by SEMATECH and others in the industry to address the metrology challenges of future nodes, including conventional CD scanning electron microscopy (CD-SEM) and optical critical dimension (OCD) metrology and new potential solutions such as He-ion microscopy (HeIM, sometimes elsewhere referred to as HIM), CD atomic force microscopy (CD-AFM), CD small-angle x-ray scattering (CD-SAXS), high-voltage scanning electron microscopy (HV-SEM), and other types. A technical gap analysis matrix will then be demonstrated, showing the current state of understanding of the future of the CD metrology space.

  6. Microscopy based studies on the interaction of bio-based silver nanoparticles with Bombyx mori Nuclear Polyhedrosis virus.

    PubMed

    Tamilselvan, Selvaraj; Ashokkumar, Thirunavukkarasu; Govindaraju, Kasivelu

    2017-04-01

    In the present investigation, silver nanoparticles (AgNPs) interactions with Bombyx mori Nuclear Polyhedrosis virus (BmNPV) were characterized using High-Resolution Scanning Electron Microscopy (HR-SEM), Energy Dispersive X-ray Analysis (EDAX), Transmission Electron Microscopy (TEM), Atomic Force Microcopy (AFM) and Confocal Microscope (CM). HR-SEM study reveals that the biosynthesized AgNPs have interacted with BmNPV and were found on the surface. TEM micrographs of normal and viral polyhedra treated with AgNPs showed that the nanoparticles were accumulated in the membrane and it was noted that some of the AgNPs successfully penetrated the membrane by reaching the capsid of BmNPV. AFM and confocal microscopy studies reveal that the disruption in the shell membrane tends to lose its stability due to exposure of AgNPs to BmNPV. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Three-dimensional textures and defects of soft material layering revealed by thermal sublimation.

    PubMed

    Yoon, Dong Ki; Kim, Yun Ho; Kim, Dae Seok; Oh, Seong Dae; Smalyukh, Ivan I; Clark, Noel A; Jung, Hee-Tae

    2013-11-26

    Layering is found and exploited in a variety of soft material systems, ranging from complex macromolecular self-assemblies to block copolymer and small-molecule liquid crystals. Because the control of layer structure is required for applications and characterization, and because defects reveal key features of the symmetries of layered phases, a variety of techniques have been developed for the study of soft-layer structure and defects, including X-ray diffraction and visualization using optical transmission and fluorescence confocal polarizing microscopy, atomic force microscopy, and SEM and transmission electron microscopy, including freeze-fracture transmission electron microscopy. Here, it is shown that thermal sublimation can be usefully combined with such techniques to enable visualization of the 3D structure of soft materials. Sequential sublimation removes material in a stepwise fashion, leaving a remnant layer structure largely unchanged and viewable using SEM, as demonstrated here using a lamellar smectic liquid crystal.

  8. Study of nanoscale structural biology using advanced particle beam microscopy

    NASA Astrophysics Data System (ADS)

    Boseman, Adam J.

    This work investigates developmental and structural biology at the nanoscale using current advancements in particle beam microscopy. Typically the examination of micro- and nanoscale features is performed using scanning electron microscopy (SEM), but in order to decrease surface charging, and increase resolution, an obscuring conductive layer is applied to the sample surface. As magnification increases, this layer begins to limit the ability to identify nanoscale surface structures. A new technology, Helium Ion Microscopy (HIM), is used to examine uncoated surface structures on the cuticle of wild type and mutant fruit flies. Corneal nanostructures observed with HIM are further investigated by FIB/SEM to provide detailed three dimensional information about internal events occurring during early structural development. These techniques are also used to reconstruct a mosquito germarium in order to characterize unknown events in early oogenesis. Findings from these studies, and many more like them, will soon unravel many of the mysteries surrounding the world of developmental biology.

  9. Chapter 14: Electron Microscopy on Thin Films for Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romero, Manuel; Abou-Ras, Daniel; Nichterwitz, Melanie

    2016-07-22

    This chapter overviews the various techniques applied in scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and highlights their possibilities and also limitations. It gives the various imaging and analysis techniques applied on a scanning electron microscope. The chapter shows that imaging is divided into that making use of secondary electrons (SEs) and of backscattered electrons (BSEs), resulting in different contrasts in the images and thus providing information on compositions, microstructures, and surface potentials. Whenever aiming for imaging and analyses at scales of down to the angstroms range, TEM and its related techniques are appropriate tools. In many cases,more » also SEM techniques provide the access to various material properties of the individual layers, not requiring specimen preparation as time consuming as TEM techniques. Finally, the chapter dedicates to cross-sectional specimen preparation for electron microscopy. The preparation decides indeed on the quality of imaging and analyses.« less

  10. The combination of scanning electron and scanning probe microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sapozhnikov, I. D.; Gorbenko, O. M., E-mail: gorolga64@gmail.com; Felshtyn, M. L.

    2016-06-17

    We suggest the SPM module to combine SEM and SPM methods for studying surfaces. The module is based on the original mechanical moving and scanning system. The examples of studies of the steel surface microstructure in both SEM and SPM modes are presented.

  11. Analysis of leaf surfaces using scanning ion conductance microscopy.

    PubMed

    Walker, Shaun C; Allen, Stephanie; Bell, Gordon; Roberts, Clive J

    2015-05-01

    Leaf surfaces are highly complex functional systems with well defined chemistry and structure dictating the barrier and transport properties of the leaf cuticle. It is a significant imaging challenge to analyse the very thin and often complex wax-like leaf cuticle morphology in their natural state. Scanning electron microscopy (SEM) and to a lesser extent Atomic force microscopy are techniques that have been used to study the leaf surface but their remains information that is difficult to obtain via these approaches. SEM is able to produce highly detailed and high-resolution images needed to study leaf structures at the submicron level. It typically operates in a vacuum or low pressure environment and as a consequence is generally unable to deal with the in situ analysis of dynamic surface events at submicron scales. Atomic force microscopy also possess the high-resolution imaging required and can follow dynamic events in ambient and liquid environments, but can over exaggerate small features and cannot image most leaf surfaces due to their inherent roughness at the micron scale. Scanning ion conductance microscopy (SICM), which operates in a liquid environment, provides a potential complementary analytical approach able to address these issues and which is yet to be explored for studying leaf surfaces. Here we illustrate the potential of SICM on various leaf surfaces and compare the data to SEM and atomic force microscopy images on the same samples. In achieving successful imaging we also show that SICM can be used to study the wetting of hydrophobic surfaces in situ. This has potentially wider implications than the study of leaves alone as surface wetting phenomena are important in a range of fundamental and applied studies. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  12. Detailed methodology for high resolution scanning electron microscopy (SEM) of murine malaria parasitized-erythrocytes.

    PubMed

    Hayakawa, Eri H; Matsuoka, Hiroyuki

    2016-10-01

    Scanning electron microscopy (SEM) is a powerful tool used to investigate object surfaces and has been widely applied in both material science and biology. With respect to the study of malaria, SEM revealed that erythrocytes infected with Plasmodium falciparum, a human parasite, display 'knob-like' structures on their surface comprising parasitized proteins. However, detailed methodology for SEM studies of malaria parasites is lacking in the literature making such studies challenging. Here, we provide a step-by-step guide to preparing Plasmodium-infected erythrocytes from two mouse strains for SEM analysis with minimal structural deterioration. We tested three species of murine malaria parasites, P. berghei, P. yoelii, and P. chabaudi, as well as non-parasitized human erythrocytes and P. falciparum-infected erythrocytes for comparisons. Our data demonstrated that the surface structures of parasitized erythrocytes between the three species of murine parasites in the two different strains of mice were indistinguishable and no surface alterations were observed in P. falciparum-erythrocytes. Our SEM observations contribute towards an understanding of the molecular mechanisms of parasite maturation in the erythrocyte cytoplasm and, along with future studies using our detailed methodology, may help to gain insight into the clinical phenomena of human malaria. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  13. The influence of Surelease and sodium alginate on the in-vitro release of tamsulosin hydrochloride in pellet dosage form.

    PubMed

    Kim, Min-Soo; Jun, Seoung Wook; Lee, Sibeum; Lee, Tae Wan; Park, Jeong-Sook; Hwang, Sung-Joo

    2005-06-01

    The objective of this study was to prepare controlled-release pellets containing 0.2 mg tamsulosin hydrochloride using a pelletizer-equipped piston extruder and double-arm counter-rotating rollers with Surelease and sodium alginate. The release of tamsulosin HCl from pellets coated with the commercial aqueous ethylcellulose dispersion (Surelease) was investigated at different coating loads. In addition, the effect of sodium alginate on drug release was investigated by varying the ratio of sodium alginate to microcrystalline cellulose (MCC). Dissolution studies were first performed in 500 mL simulated gastric fluid (pH 1.2) containing 0.003% (w/w) polysorbate 80 and then in simulated intestinal fluids (pH 7.2). The morphology of pellet surfaces and cross sections were examined by scanning electron microscopy (SEM). Apparently, the spherical pellets were prepared using a pelletizer-equipped piston extruder and double-arm counter-rotating rollers. The release profiles of tamsulosin HCl from Surelease-coated pellets were significantly affected by changing the content of Surelease, the pH of the dissolution medium and the ratio of sodium alginate to MCC. The drug release rates not only decreased with increase in the coating load, but also increased when the pH of the dissolution medium was increased from 1.2 to 7.2 regardless of the sodium alginate-to-MCC ratio. Moreover, the drug release rate at pH 7.2 was gradually increased by increasing the ratio of sodium alginate to MCC. SEM showed smooth surfaces of Surelease-coated pellets. These results suggest that Surelease and sodium alginate would be useful excipients in the preparation of controlled-release pellets with the desired release profiles.

  14. Microstructure studies of interdiffusion behavior of U 3Si 2/Zircaloy-4 at 800 and 1000 °C

    DOE PAGES

    He, Lingfeng; Harp, Jason M.; Hoggan, Rita E.; ...

    2017-01-22

    Fuel swelling during normal reactor operations could lead to unfavorable chemical interactions when in contact with its cladding. As new fuel types are developed, it is crucial to understand the interaction behavior between fuel and its cladding. Diffusion experiments between U 3Si 2 and Zricaloy-4 (Zry-4) were conducted at 800 and 1000°C up to 100 hours. The microstructure of pristine U 3Si 2 and U 3Si 2/Zry-4 interdiffusion products were examined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) equipped with an energy dispersive X-ray spectroscopy (EDS) system. The primary interdiffusion product observed at 800°C is ZrSi 2,more » with secondary phases of U-Zr in the Zry-4, and Fe-Cr-W-Zr-Si phases at Zry-4/ZrSi 2 interface and Fe-Cr-U-Si phases at ZrSi 2/U-Si interface. As a result, the primary interdiffusion products at 1000°C were Zr 2Si, U-Zr-Fe-Ni, U, U-Zr, and a low melting point phase U 6Fe.« less

  15. Removal of copper and nickel from water using nanocomposite of magnetic hydroxyapatite nanorods

    NASA Astrophysics Data System (ADS)

    Thanh, Dong Nguyen; Novák, Pavel; Vejpravova, Jana; Vu, Hong Nguyen; Lederer, Jaromír; Munshi, Tasnim

    2018-06-01

    A nanocomposite of magnetic hydroxyapatite was synthesized and tested as an adsorbent for the removal of copper (Cu (II)) and nickel (Ni(II)) from aqueous solution. The adsorbent was investigated using Transmission Electron Microscopy (TEM), Scanning Electron Microscopy equipped with an Energy Dispersive Spectrometer (SEM/EDS), X-ray powder diffraction (XRD) and the Brunauer-Elmet-Teller nitrogen adsorption technique (BET-N2 adsorption). Batch experiments were carried out to determine and compare the adsorption parameters of Fe3O4 and its composite with hydroxyapatite. It was found that the adsorbent is nanostructured and has a specific surface area of 101.2 m2 g-1. The Langmuir adsorption isotherm was found to be an appropriate model to describe the adsorption processes, showing the adsorption capacities of Cu(II) and Ni(II) of 48.78 mg g-1 and 29.07 mg g-1, respectively. In addition to the high adsorption capacity, the fully-adsorbed material could be easily separated from aqueous media using an external magnetic field. These results suggested that the utilization of new hydroxyapatite - Fe3O4 nanocomposite for the removal of Cu(II) and Ni(II) is a promising method in water technology.

  16. Surface modification of hydroturbine steel using friction stir processing

    NASA Astrophysics Data System (ADS)

    Grewal, H. S.; Arora, H. S.; Singh, H.; Agrawal, A.

    2013-03-01

    Friction stir processing (FSP) has proved to be a viable tool for enhancing the mechanical properties of materials, however, the major focus has been upon improving the bulk properties of light metals and their alloys. Hydroturbines are susceptible to damage owing to slurry and cavitation erosion. In this study, FSP of a commonly employed hydroturbine steel, 13Cr4Ni was undertaken. Microstructural characterization of the processed steel was conducted using optical microscopy (OM), scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and electron back scatter diffraction (EBSD) techniques. Mechanical characterization of the steel was undertaken in terms of microhardness and resistance to cavitation erosion (CE). FSP resulted in the refinement of the microstructure with reduction in grain size by a factor of 10. EBSD results confirmed the existence of submicron and ultrafine grained microstructure. The microhardness of the steel was found to enhance by 2.6 times after processing. The processed steel also showed 2.4 times higher resistance against cavitation erosion in comparison to unprocessed steel. The primary erosion mechanism for both the steels was identical in nature, with plastic deformation responsible for the loss of material.

  17. Analysis of Roman age wall paintings found in Pordenone, Trieste and Montegrotto.

    PubMed

    Mazzocchin, G A; Agnoli, F; Salvadori, M

    2004-10-20

    The aim of the present work is the study of many fragments of wall painting from archaeological excavations in three different Roman age sites dating back to the I Century before Common Era: Pordenone (località Torre); Trieste (Crosada) and Padova (Montegrotto). The techniques used were optical microscopy, scanning electron microscopy (SEM), equipped with a EDS microanalysis detector, X-rays powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Fourier transform Raman spectroscopy (FT-Raman) and electron paramagnetic resonance (EPR) spectroscopy. The identified pigments were: cinnabar, hematite, celadonite, glauconite, cuprorivaite (Egyptian blue), yellow and red ochre, calcite, limonite, coal black. In general, the mortar preparation did not correspond to the complex procedure suggested by Vitruvius (De Architectura), but generally showed a porous layer, with crushed grains under the pigment layer. In some cases, two superimposed pigment layers were found: yellow superimposed on both red and pink, black on pink, green on black. The slight differences we found in the use of the pigments in the three studied sites might show that the same technology, culture and taste spread all over the Roman Empire in North Eastern Italy (X(a) Regio Venetia et Histria).

  18. Field emission scanning electron microscopy (FE-SEM) as an approach for nanoparticle detection inside cells.

    PubMed

    Havrdova, M; Polakova, K; Skopalik, J; Vujtek, M; Mokdad, A; Homolkova, M; Tucek, J; Nebesarova, J; Zboril, R

    2014-12-01

    When developing new nanoparticles for bio-applications, it is important to fully characterize the nanoparticle's behavior in biological systems. The most common techniques employed for mapping nanoparticles inside cells include transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM). These techniques entail passing an electron beam through a thin specimen. STEM or TEM imaging is often used for the detection of nanoparticles inside cellular organelles. However, lengthy sample preparation is required (i.e., fixation, dehydration, drying, resin embedding, and cutting). In the present work, a new matrix (FTO glass) for biological samples was used and characterized by field emission scanning electron microscopy (FE-SEM) to generate images comparable to those obtained by TEM. Using FE-SEM, nanoparticle images were acquired inside endo/lysosomes without disruption of the cellular shape. Furthermore, the initial steps of nanoparticle incorporation into the cells were captured. In addition, the conductive FTO glass endowed the sample with high stability under the required accelerating voltage. Owing to these features of the sample, further analyses could be performed (material contrast and energy-dispersive X-ray spectroscopy (EDS)), which confirmed the presence of nanoparticles inside the cells. The results showed that FE-SEM can enable detailed characterization of nanoparticles in endosomes without the need for contrast staining or metal coating of the sample. Images showing the intracellular distribution of nanoparticles together with cellular morphology can give important information on the biocompatibility and demonstrate the potential of nanoparticle utilization in medicine. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. How Hedstrom files fail during clinical use? A retrieval study based on SEM, optical microscopy and micro-XCT analysis.

    PubMed

    Zinelis, Spiros; Al Jabbari, Youssef S

    2018-05-01

    This study was conducted to evaluate the failure mechanism of clinically failed Hedstrom (H)-files. Discarded H-files (n=160) from #8 to #40 ISO sizes were collected from different dental clinics. Retrieved files were classified according to their macroscopic appearance and they were investigated under scanning electron microscopy (SEM) and X-ray micro-computed tomography (mXCT). Then the files were embedded in resin along their longitudinal axis and after metallographic grinding and polishing, studied under an incident light microscope. The macroscopic evaluation showed that small ISO sizes (#08-#15) failed by extensive plastic deformation, while larger sizes (≥#20) tended to fracture. Light microscopy and mXCT results coincided showing that unused and plastically deformed files were free of internal defects, while fractured files demonstrate the presence of intense cracking in the flute region. SEM analysis revealed the presence of striations attributed to the fatigue mechanism. Secondary cracks were also identified by optical microscopy and their distribution was correlated to fatigue under bending loading. Experimental results demonstrated that while overloading of cutting instruments is the predominating failure mechanism of small file sizes (#08-#15), fatigue should be considered the fracture mechanism for larger sizes (≥#20).

  20. An inexpensive approach for bright-field and dark-field imaging by scanning transmission electron microscopy in scanning electron microscopy.

    PubMed

    Patel, Binay; Watanabe, Masashi

    2014-02-01

    Scanning transmission electron microscopy in scanning electron microscopy (STEM-in-SEM) is a convenient technique for soft materials characterization. Various specimen-holder geometries and detector arrangements have been used for bright-field (BF) STEM-in-SEM imaging. In this study, to further the characterization potential of STEM-IN-SEM, a new specimen holder has been developed to facilitate direct detection of BF signals and indirect detection of dark-field (DF) signals without the need for substantial instrument modification. DF imaging is conducted with the use of a gold (Au)-coated copper (Cu) plate attached to the specimen holder which directs highly scattered transmitted electrons to an off-axis yttrium-aluminum-garnet (YAG) detector. A hole in the copper plate allows for BF imaging with a transmission electron (TE) detector. The inclusion of an Au-coated Cu plate enhanced DF signal intensity. Experiments validating the acquisition of true DF signals revealed that atomic number (Z) contrast may be achieved for materials with large lattice spacing. However, materials with small lattice spacing still exhibit diffraction contrast effects in this approach. The calculated theoretical fine probe size is 1.8 nm. At 30 kV, in this indirect approach, DF spatial resolution is limited to 3.2 nm as confirmed experimentally.

  1. GUIDELINES FOR THE APPLICATION OF SEM/EDX ANALYTICAL TECHNIQUES FOR FINE AND COARSE PM SAMPLES

    EPA Science Inventory

    Scanning Electron Microscopy (SEM) coupled with Energy-Dispersive X-ray analysis (EDX) is a powerful tool in the characterization and source apportionment of environmental particulate matter (PM), providing size, chemistry, and morphology of particles as small as a few tenths ...

  2. Safety in the SEM laboratory--1981 update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bance, G.N.; Barber, V.C.; Sholdice, J.A.

    1981-01-01

    The article reviews recent information on hazards as they relate to safety in SEM laboratories. The first section lists the safety equipment that should be available in a SEM laboratory. Flammable and combustible liquids are discussed, and particular warnings are given concerning the fire and explosion risks associated with diethyl ether and diisopropyl ether. The possible hazards associated with electrical equipment, and the risk of X-ray emissions from EM's are briefly outlined. The hazards associated with acute and chronic toxicity of chemicals used in the EM laboratory are discussed. The need to reduce exposure to a growing list of recognizablemore » hazardous chemicals is emphasized. This reduction can be accomplished by more extensive use of functioning fume hoods, and the use of more appropriate and effective protective gloves. Allergies and the hazards of dangerous pathogens in the SEM laboratory are discussed. The explosion and other hazards associated with cryogens, vacuum evaporators, critical point dryers, and compressed gas cylinders are emphasized.« less

  3. Optimizing use of the structural chemical analyser (variable pressure FESEM-EDX Raman spectroscopy) on micro-size complex historical paintings characterization.

    PubMed

    Guerra, I; Cardell, C

    2015-10-01

    The novel Structural Chemical Analyser (hyphenated Raman spectroscopy and scanning electron microscopy equipped with an X-ray detector) is gaining popularity since it allows 3-D morphological studies and elemental, molecular, structural and electronic analyses of a single complex micro-sized sample without transfer between instruments. However, its full potential remains unexploited in painting heritage where simultaneous identification of inorganic and organic materials in paintings is critically yet unresolved. Despite benefits and drawbacks shown in literature, new challenges have to be faced analysing multifaceted paint specimens. SEM-Structural Chemical Analyser systems differ since they are fabricated ad hoc by request. As configuration influences the procedure to optimize analyses, likewise analytical protocols have to be designed ad hoc. This paper deals with the optimization of the analytical procedure of a Variable Pressure Field Emission scanning electron microscopy equipped with an X-ray detector Raman spectroscopy system to analyse historical paint samples. We address essential parameters, technical challenges and limitations raised from analysing paint stratigraphies, archaeological samples and loose pigments. We show that accurate data interpretation requires comprehensive knowledge of factors affecting Raman spectra. We tackled: (i) the in-FESEM-Raman spectroscopy analytical sequence, (ii) correlations between FESEM and Structural Chemical Analyser/laser analytical position, (iii) Raman signal intensity under different VP-FESEM vacuum modes, (iv) carbon deposition on samples under FESEM low-vacuum mode, (v) crystal nature and morphology, (vi) depth of focus and (vii) surface-enhanced Raman scattering effect. We recommend careful planning of analysis strategies prior to research which, although time consuming, guarantees reliable results. The ultimate goal of this paper is to help to guide future users of a FESEM-Structural Chemical Analyser system in order to increase applications. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  4. Effect of shape and thickness of asbestos bundles and fibres on EDS microanalysis: A Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Moro, D.; Valdre, G.

    2016-02-01

    Quantitative microanalysis of tiny asbestos mineral fibres by scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy (SEM-EDS) still represents a complex analytical issue. This complexity arises from the variable fibre shape and small thickness (< 5 μm) compared with the penetration of the incident electron beam. Here, we present the results of Monte Carlo simulations of chrysotile, crocidolite and amosite fibres (and bundles of fibres) of circular and square section and thicknesses from 0.1 μm to 10 μm, to investigate the effect of shape and thickness on SEM-EDS microanalysis. The influence of shape and thickness on the simulated spectrum was investigated for electron beam energies of 5, 15 and 25 keV, respectively. A strong influence of the asbestos bundles and fibres shape and thickness on the detected EDS X-ray intensity was observed. The X-ray intensity trends as a function of fibre thickness showed a non-linear dependence for all the elements and minerals. In general, the X-ray intensities showed a considerable reduction for thicknesses below about 5 μm at 5 keV, 2 μm at 15 keV, and 5 μm at 25 keV. Correction parameters, k-ratios, for the asbestos fibre thickness effect, are reported.

  5. Critical current survival in the YBCO superconducting layer of a delaminated coated conductor

    NASA Astrophysics Data System (ADS)

    Feng, Feng; Fu, Qishu; Qu, Timing; Mu, Hui; Gu, Chen; Yue, Yubin; Wang, Linli; Yang, Zhirong; Han, Zhenghe; Feng, Pingfa

    2018-04-01

    A high-temperature superconducting coated conductor can be practically applied in electric equipment due to its favorable mechanical properties and critical current (I c) performance. However, the coated conductor can easily delaminate because of its poor stress tolerance along the thickness direction. It would be interesting to investigate whether the I c of the delaminated YBa2Cu3O7-δ (YBCO) layer can be preserved. In this study, coated conductor samples manufactured through the metal organic deposition route were delaminated by liquid nitrogen immersion. Delaminated samples, including the YBCO layer and silver stabilizer, were obtained. Delamination occurred inside the YBCO layer and near the YBCO-CeO2 interface, as suggested by the results of scanning electron microscopy (SEM) and x-ray diffraction. A scanning Hall probe system was employed to measure the I c distribution of the original sample and the delaminated sample. It was found that approximately 50% of the I c can be preserved after delamination, which was verified by I c measurements using the four-probe method. Dense and crack-free morphologies of the delaminated surfaces were observed by SEM, which accounts for the I c survival of the delaminated YBCO layer. The potential application of the delaminated sample in superconducting joints was discussed based on the oxygen diffusion estimation.

  6. Corrosion of Nickel-Based Alloys in Ultra-High Temperature Heat Transfer Fluid

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Reddy, Ramana G.

    2017-03-01

    MgCl2-KCl binary system has been proposed to be used as high temperature reactor coolant. Due to its relatively low melting point, good heat capacity and excellent thermal stability, this system can also be used in high operation temperature concentrating solar power generation system as heat transfer fluid (HTF). The corrosion behaviors of nickel based alloys in MgCl2-KCl molten salt system at 1,000 °C were determined based on long-term isothermal dipping test. After 500 h exposure tests under strictly maintained high purity argon gas atmosphere, the weight loss and corrosion rate analysis were conducted. Among all the tested samples, Ni-201 demonstrated the lowest corrosion rate due to the excellent resistance of Ni to high temperature element dissolution. Detailed surface topography and corrosion mechanisms were also determined by using scanning electron microscopy (SEM) equipped with energy dispersive spectrometer (EDS).

  7. Preparation and catalytic performance of copper-containing magnetic catalysts for degradation of azo dye (direct violet).

    PubMed

    Duan, Qiannan; Lee, Jianchao; Chen, Han; Zheng, Yunyun

    2017-12-01

    A novel magnetically separable magnetic activated carbon supporting-copper (MCAC) catalyst for catalytic wet peroxide oxidation (CWPO) was prepared by chemical impregnation. The prepared samples were characterized by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) method, and scanning electron microscopy (SEM) equipped with energy dispersive spectrometry (EDS). The catalytic performance of the catalysts was evaluated by direct violet (D-BL) degradation in CWPO experiments. The influence of preparative and operational parameters (dipping conditions, calcination temperature, catalyst loading H 2 O 2 dosage, pH, reaction temperature, additive salt ions and initial D-BL concentration) on degradation performance of CWPO process was investigated. The resulting MCAC catalyst showed higher reusability in direct violet oxidation than the magnetic activated carbon (MAC). Besides, dynamic tests also showed the maximal degradation rate reached 90.16% and its general decoloring ability of MCAC was 34 mg g -1 for aqueous D-BL.

  8. Low Temperature Synthesis of Cobalt-Chromium Carbide Nanoparticles-Doped Carbon Nanofibers.

    PubMed

    Yousef, Ayman; Brooks, Robert M; Abutaleb, Ahmed; Al-Deyab, Salem S; El-Newehy, Mohamed H

    2018-04-01

    Electrospinning has been used to synthesize cobalt-chromium carbide nanoparticles (NPs)-doped carbon nanofibers (CNFs) (Composite). Electrospun mat comprising of cobalt acetate, chromium acetate and poly(vinyl alcohol) (PVA) has been carbonized at low temperature (850 °C) for 3 h under argon atmosphere to produce the introduced composite. The process was achieved at low temperature due to the presence of cobalt as an activator. Field emission scanning electron microscope (FE-SEM), X-ray diffractometry (XRD), and transmission electron microscopy (TEM) equipped with EDX techniques were used to determine the products characteristics. The results indicated the formation of pure cobalt (Co), Cr7C3 NPs and crystalline CNFs. The Co and Cr7C3 NPs were covered with CNFs. Overall, the proposed NFs open new avenue to prepare different metals-metal carbides-carbon NFs at low temperature and short reaction time.

  9. Analytical Investigation Of Pigments, Ground Layer And Media Of Cartonnage Fragments From Greek Roman Period

    NASA Astrophysics Data System (ADS)

    Afifi, Hala. A. M.

    Some cartonnage fragments from Hawara, Fayoum Excavation were examined to identify pigments, media and grounds. It belonged to the Greek-Roman period. They were studied by X-ray diffraction (XRD), Energy dispersive X ray analysis (EDS) equipped with Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). These techniques were used to identify the composition and morphology of grounds, nature of pigments and media used in cartonnage fragments. The coarse ground layer was composed of calcite and traces of quartz. The fine ground layer used under the pigments directly was composed of calcite only. Carbon black was used as black pigment while lead oxide as red pigment, showing the influence of Roman and Greek pigments on Egyptian art in these later periods. Blue colorant was identified as cuprorivaite and yellow pigment was goethite. Animal glue was used in the four pigments as medium colored.

  10. Corrosion behaviors and effects of corrosion products of plasma electrolytic oxidation coated AZ31 magnesium alloy under the salt spray corrosion test

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Huang, Zhiquan; Yan, Qin; Liu, Chen; Liu, Peng; Zhang, Yi; Guo, Changhong; Jiang, Guirong; Shen, Dejiu

    2016-08-01

    The effects of corrosion products on corrosion behaviors of AZ31 magnesium alloy with a plasma electrolytic oxidation (PEO) coating were investigated under the salt spray corrosion test (SSCT). The surface morphology, cross-sectional microstructure, chemical and phase compositions of the PEO coating were determined using scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction analysis (XRD), respectively. Further, the corrosion process of the samples under the SSCT was examined in a non-aqueous electrolyte (methanol) using electrochemical impedance spectroscopy (EIS) coupled with equivalent circuit. The results show that the inner layer of the coating was destroyed firstly and the corrosion products have significant effects on the corrosion behaviors of the coating. The results above are discussed and an electrochemical corrosion model is proposed in the paper.

  11. Icephobicity of Leaves

    NASA Astrophysics Data System (ADS)

    Kavehpour, H. Pirouz; Shirazi, Elika T.; Alizadeh-Birjandi, Elaheh

    2016-11-01

    Ice adhesion and excessive accumulation on exposed structures and equipment are well known to cause serious problems in cold-climate regions; therefore, the development of coatings that can resist icing can solve many challenges in various areas of industry. This work was inspired by nature and ice-resistivity and superhydrophobicity of plants leaves. Kale is an example of a plant that can be harvested in winter. It shows superhydrophobic behavior, which is normally known as an advantage for cleaning the leaves, but we were able to show that its surface structure and high contact angle of water drops on kale leaves could delay the ice formation process making it a good candidate for an ice-repellent coating. We have performed in-depth experimental analyses on how different plants can prevent icing, and contact angle measurements and scanning electron microscopy (SEM) of the leaves were taken to further mimic their surface morphology.

  12. Characterization of the Etna volcanic emissions through an active biomonitoring technique (moss-bags): part 2--morphological and mineralogical features.

    PubMed

    Calabrese, S; D'Alessandro, W

    2015-01-01

    Volcanic emissions were studied at Mount Etna (Italy) by using moss-bags technique. Mosses were exposed around the volcano at different distances from the active vents to evaluate the impact of volcanic emissions in the atmosphere. Morphology and mineralogy of volcanic particulate intercepted by mosses were investigated using scanning electron microscopy (SEM) equipped with energy dispersive spectrometer (EDS). Particles emitted during passive degassing activity from the two active vents, Bocca Nuova and North East Crater (BNC and NEC), were identified as silicates, sulfates and halide compounds. In addition to volcanic particles, we found evidences also of geogenic, anthropogenic and marine spray input. The study has shown the robustness of this active biomonitoring technique to collect particles, very useful in active volcanic areas characterized by continuous degassing and often not easily accessible to apply conventional sampling techniques. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Healing of broken multiwalled carbon nanotubes using very low energy electrons in SEM: a route toward complete recovery.

    PubMed

    Kulshrestha, Neha; Misra, Abhishek; Hazra, Kiran Shankar; Roy, Soumyendu; Bajpai, Reeti; Mohapatra, Dipti Ranjan; Misra, D S

    2011-03-22

    We report the healing of electrically broken multiwalled carbon nanotubes (MWNTs) using very low energy electrons (3-10 keV) in scanning electron microscopy (SEM). Current-induced breakdown caused by Joule heating has been achieved by applying suitably high voltages. The broken tubes were examined and exposed to electrons of 3-10 keV in situ in SEM with careful maneuvering of the electron beam at the broken site, which results in the mechanical joining of the tube. Electrical recovery of the same tube has been confirmed by performing the current-voltage measurements after joining. This easy approach is directly applicable for the repairing of carbon nanotubes incorporated in ready devices, such as in on-chip horizontal interconnects or on-tip probing applications, such as in scanning tunneling microscopy.

  14. RBS, TEM and SEM Characterization of Gold Nanoclusters in TiO2(110)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shutthanandan, V; Zhang, Yanwen; Wang, Chong M.

    2004-05-01

    Nucleation of gold nanoclusters in TiO2(110) single crystal using ion implantation and subsequent annealing were studied by Rutherford backscattering spectrometry /channeling (RBS/C), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Approximately 1000 Au2+/nm2 was implanted at room temperature in TiO2(110) substrates. TEM and SEM measurements revel that rounded nanoclusters were formed during the implantation. In contrast subsequent annealing in air for 10 hours at 1275 K promoted the formation of faceted (rectangular shaped) Au nano structures in TiO2. RBS channeling measurements further reveled that Au atoms randomly occupied in the host TiO2 lattice during the implantation. However, some ofmore » the gold atoms were moved into the Ti lattice position after annealing.« less

  15. Advantages and Disadvantages of using a Focused Ion Beam to Prepare TEM Samples From Irradiated U-10Mo Monolithic Nuclear Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    B. D. Miller; J. Gan; J. Madden

    2012-05-01

    Transmission electron microscopy (TEM), scanning electron microscopy (SEM), and focused ion beam (FIB) milling were performed on an irradiated U-10Mo monolithic fuel to understand its irradiation microstructure. This is the first reported TEM work of irradiated fuel sample prepared using a FIB. Advantages and disadvantages of using the FIB to create TEM samples from this irradiated fuel will be presented along with some results from the work. Sample preparation techniques used to create SEM and FIB samples from the brittle irradiated monolithic sample will also be discussed.

  16. A new scanning electron microscopy approach to image aerogels at the nanoscale

    NASA Astrophysics Data System (ADS)

    Solá, F.; Hurwitz, F.; Yang, J.

    2011-04-01

    A new scanning electron microscopy (SEM) technique to image poor electrically conductive aerogels is presented. The process can be performed by non-expert SEM users. We showed that negative charging effects on aerogels can be minimized significantly by inserting dry nitrogen gas close to the region of interest. The process involves the local recombination of accumulated negative charges with positive ions generated from ionization processes. This new technique made possible the acquisition of images of aerogels with pores down to approximately 3 nm in diameter using a positively biased Everhart-Thornley (ET) detector.

  17. Bioaccumulation and distribution of selenium in Enterococcus durans.

    PubMed

    Pieniz, Simone; Andreazza, Robson; Mann, Michele Bertoni; Camargo, Flávio; Brandelli, Adriano

    2017-03-01

    Selenium is an essential nutrient for all living organisms. Under appropriate conditions lactic acid bacteria (LAB) are capable for accumulating large amounts of trace elements, such as selenium, and incorporating them into organic compounds. In this study, the capacity of selenium bioaccumulation by Enterococcus durans LAB18s was evaluated. The distribution of organic selenium in selenium-enriched E. durans LAB18s biomass was analyzed, and the highest percentage of organic selenium was found in the fraction of total protein, followed by the fractions of polysaccharides and nucleic acids. When the protein fraction was obtained by different extractions (water, NaCl, ethanol and NaOH) it was demonstrated that alkali-soluble protein showed the higher Selenium content. Analysis of protein fractions by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) revealed that selenium was present in the proteins ranging from 23 to 100kDa. The cells were analyzed by scanning electron microscopy (SEM); scanning electron microscopy/energy dispersive spectrometry (SEM/EDS) and transmission electron microscopy (TEM). SEM, TEM and SEM/EDS showed the morphology, the selenium particles bioaccumulated into and on the cells and the amounts of selenium present into the cells, respectively. Thus, the isolate E. durans LAB18s can be a promising probiotic to be used as selenium-enriched biomass in feed trials. Copyright © 2016 Elsevier GmbH. All rights reserved.

  18. Anterior lens epithelium in intumescent white cataracts - scanning and transmission electron microscopy study.

    PubMed

    Andjelic, Sofija; Drašlar, Kazimir; Hvala, Anastazija; Hawlina, Marko

    2016-02-01

    Our purpose was to study the structure of the lens epithelial cells (LECs) of intumescent white cataracts (IC) in comparison with nuclear cataracts (NC) in order to investigate possible structural reasons for development of IC. The anterior lens capsule (aLC: basement membrane and associated LECs) were obtained from cataract surgery and prepared for scanning electron microscopy (SEM) and transmission electron microscopy (TEM). We observed by SEM that in IC, LEC swelling was pronounced with the clefts surrounding the groups of LECs. Another structural feature was spherical formations, that were observed on the apical side of LEC's, towards the fibre cell layer, both by SEM and TEM. Development of these structures, bulging out from the apical cell membrane of the LEC's and disrupting it, could be followed in steps towards the sphere formation. The degeneration of the lens epithelium and the structures of the aLC in IC similar to Morgagnian globules were also observed. None of these structural changes were observed in NC. We show by SEM and TEM that, in IC, LECs have pronounced structural features not observed in NC. This supports the hypothesis that the disturbed structure of LECs plays a role in water accumulation in the IC lens. We also suggest that, in IC, LECs produce bulging spheres that represent unique structures of degenerated material, extruded from the LEC.

  19. A scanning electron microscopy study of early development in vitro of Contracaecum multipapillatum s.l. (Nematoda: Anisakidae) from a brown pelican (Pelecanus occidentalis) from the Gulf of California, Mexico.

    PubMed

    Molina-Fernández, Dolores; Valles-Vega, Isabel; Hernández-Trujillo, Sergio; Adroher, Francisco Javier; Benítez, Rocío

    2017-10-01

    Eggs obtained from the uteri of female nematodes, genetically identified as Contracaecum multipapillatum s.l., found in a brown pelican (Pelecanus occidentalis) from Bahía de La Paz, Gulf of California, Mexico, were used to study the early developmental stages of this anisakid by scanning electron microscopy (SEM). Egg dimensions were approximately 54 × 45 μm measured by SEM. Observation of the eggs revealed an outer surface of fibrous appearance. The newly hatched larvae were ensheathed and highly motile. Observation with SEM showed that the sheaths of the larvae were striated and revealed an excretory pore and a cleft near the anterior end of the sheath, presumably to facilitate the opening of the sheath for the emergence of the larva. The hatched larvae were placed in nutritive culture medium, where they grew within their sheath, some exsheathing completely 2 weeks later. The surface patterns of the sheath and the cuticle of the exsheathed larvae were clearly different. Although they did not moult during culture, SEM revealed a morphology typical of third-stage larvae of Contracaecum from fish, as previously observed by optical microscopy. Thus, we suggest that newly hatched larvae from eggs of C. multipapillatum are third larval stage but with sheath of the second larval stage, as occuring in other anisakids.

  20. FIB-SEM tomography of human skin telocytes and their extracellular vesicles.

    PubMed

    Cretoiu, Dragos; Gherghiceanu, Mihaela; Hummel, Eric; Zimmermann, Hans; Simionescu, Olga; Popescu, Laurentiu M

    2015-04-01

    We have shown in 2012 the existence of telocytes (TCs) in human dermis. TCs were described by transmission electron microscopy (TEM) as interstitial cells located in non-epithelial spaces (stroma) of many organs (see www.telocytes.com). TCs have very long prolongations (tens to hundreds micrometers) named Telopodes (Tps). These Tps have a special conformation with dilated portions named podoms (containing mitochondria, endoplasmic reticulum and caveolae) and very thin segments (below resolving power of light microscopy), called podomers. To show the real 3D architecture of TC network, we used the most advanced available electron microscope technology: focused ion beam scanning electron microscopy (FIB-SEM) tomography. Generally, 3D reconstruction of dermal TCs by FIB-SEM tomography revealed the existence of Tps with various conformations: (i) long, flattened irregular veils (ribbon-like segments) with knobs, corresponding to podoms, and (ii) tubular structures (podomers) with uneven calibre because of irregular dilations (knobs) - the podoms. FIB-SEM tomography also showed numerous extracellular vesicles (diameter 438.6 ± 149.1 nm, n = 30) released by a human dermal TC. Our data might be useful for understanding the role(s) of TCs in intercellular signalling and communication, as well as for comprehension of pathologies like scleroderma, multiple sclerosis, psoriasis, etc. © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  1. [The "silica" component in the PM10 of an urban site].

    PubMed

    De Berardis, Barbara; Incocciati, Emma; Massera, S; Gargaro, G; Paoletti, L

    2007-01-01

    In vivo and in vitro toxicological studies have shown that the aged fracturated crystalline silica, which is a component of airborne particulate, exerts an important inflammatory action on airways. The evaluation of the concentration level of airborne crystalline silica in an urban area is an important research subject in order to determine the exposure levels of the general population. The aim was to study the seasonal trend of the quartz (the most common form of crystalline silica) concentration levels in the particulate inhalable faction (PM10) in the urban area of Rome. PM10, sampled by a cascade impactor, was analysed by scanning electron microscopy, equipped with a thin-window system for X-ray microanalysis (SEM/EDX) for qualitative analysis. Parallely the concentration levels of quartz in the particulate were determined by X-ray diffractometry (XRD) for quantitative analysis, using the NIOSH 7500 method (NIOSH, 1994). From September 2004 to October 2005 the abundance of silica particles, evaluated by SEM/EDX was in the range 1.6/10.4%, with a concentration level of free crystalline silica in the range 0.25/2.87 microg/mi. The equivalent diameter of silica particles ranged from 0.3 to 10.5 mircom, moreover, more than 87% of particles showed a diameter less than 2.5 microm. The correlations between SEM/EDX and XRD data seem to suggest that the airborne silica particles in the urban location studied consisted mostly of crystalline silica. Moreover, the data suggest the existence of a significant contribution of silica particles due to southwest wind carrying a fine dust from the Sahara desert to Mediterranean Europe.

  2. WEATHERING DEGRADATION OF A POLYURETHANE COATING. (R828081E01)

    EPA Science Inventory

    The degradation of polyurethane topcoat over a chromate pigmented epoxy primer was examined by atomic force microscopy (AFM), scanning electronic microscopy (SEM), X-ray photo-electron spectroscopy (XPS) and Fourier transform infra-red spectroscopy (FTIR) after the coated pane...

  3. Filling the gap: adding super-resolution to array tomography for correlated ultrastructural and molecular identification of electrical synapses at the C. elegans connectome.

    PubMed

    Markert, Sebastian Matthias; Britz, Sebastian; Proppert, Sven; Lang, Marietta; Witvliet, Daniel; Mulcahy, Ben; Sauer, Markus; Zhen, Mei; Bessereau, Jean-Louis; Stigloher, Christian

    2016-10-01

    Correlating molecular labeling at the ultrastructural level with high confidence remains challenging. Array tomography (AT) allows for a combination of fluorescence and electron microscopy (EM) to visualize subcellular protein localization on serial EM sections. Here, we describe an application for AT that combines near-native tissue preservation via high-pressure freezing and freeze substitution with super-resolution light microscopy and high-resolution scanning electron microscopy (SEM) analysis on the same section. We established protocols that combine SEM with structured illumination microscopy (SIM) and direct stochastic optical reconstruction microscopy (dSTORM). We devised a method for easy, precise, and unbiased correlation of EM images and super-resolution imaging data using endogenous cellular landmarks and freely available image processing software. We demonstrate that these methods allow us to identify and label gap junctions in Caenorhabditis elegans with precision and confidence, and imaging of even smaller structures is feasible. With the emergence of connectomics, these methods will allow us to fill in the gap-acquiring the correlated ultrastructural and molecular identity of electrical synapses.

  4. Scanning electron microscopy of clays and clay minerals

    USGS Publications Warehouse

    Bohor, B.F.; Hughes, R.E.

    1971-01-01

    The scanning electron microscope (SEM) proves to be ideally suited for studying the configuration, texture, and fabric of clay samples. Growth mechanics of crystalline units—interpenetration and interlocking of crystallites, crystal habits, twinning, helical growth, and topotaxis—also are uniquely revealed by the SEM.Authigenic kaolins make up the bulk of the examples because their larger crystallite size, better crystallinity, and open texture make them more suited to examination by the SEM than most other clay mineral types.

  5. Soft tissue digestion of Paradiplozoon vaalense for SEM of sclerites and simultaneous molecular analysis.

    PubMed

    Dos Santos, Q M; Avenant-Oldewage, A

    2015-02-01

    Classification of most monogeneans is primarily based on size, shape, and arrangement of haptoral sclerites. These structures are often obscured or misinterpreted when studied using light microscopy, leading to confusion regarding defining characters. Scanning electron microscopy (SEM) has predominantly been used to study haptoral sclerites in smaller monogeneans, focusing on hooks and anchors. In the Diplozoidae, SEM has not been used to study haptoral sclerites. Using new and modified techniques, the sclerites of diplozoids collected in South Africa were successfully studied using SEM. The digestion buffer from a DNA extraction kit was used to digest the surrounding tissue, and Poly-L-lysine-coated and concavity slides were employed to limit the movement and loss of sclerites, with the latter being more user-friendly. In addition to the success of visualizing the sclerites using SEM, the digested tissue from as little as half of the haptor provided viable genetic material for molecular characterization. From the results presented here, the study of the sclerites of larger monogeneans using SEM, including those bearing clamps, is a viable possibility for future research. Also, this method may be beneficial for the study of other, non-haptoral sclerites, such as cirri in other families of monogeneans. During this study, Labeo capensis was noted as a valid host of Paradiplozoon vaalense in a region of the Vaal River where the type host, Labeo umbratus, appears to be absent.

  6. Simulation of FIB-SEM images for analysis of porous microstructures.

    PubMed

    Prill, Torben; Schladitz, Katja

    2013-01-01

    Focused ion beam nanotomography-scanning electron microscopy tomography yields high-quality three-dimensional images of materials microstructures at the nanometer scale combining serial sectioning using a focused ion beam with SEM. However, FIB-SEM tomography of highly porous media leads to shine-through artifacts preventing automatic segmentation of the solid component. We simulate the SEM process in order to generate synthetic FIB-SEM image data for developing and validating segmentation methods. Monte-Carlo techniques yield accurate results, but are too slow for the simulation of FIB-SEM tomography requiring hundreds of SEM images for one dataset alone. Nevertheless, a quasi-analytic description of the specimen and various acceleration techniques, including a track compression algorithm and an acceleration for the simulation of secondary electrons, cut down the computing time by orders of magnitude, allowing for the first time to simulate FIB-SEM tomography. © Wiley Periodicals, Inc.

  7. Physico-chemical and optical properties of combustion-generated particles from coal-fired power plant, automobile and ship engine and charcoal kiln.

    NASA Astrophysics Data System (ADS)

    Kim, Hwajin

    2015-04-01

    Similarities and differences in physico-chemical and optical properties of combustion generated particles from various sources were investigated. Coal-fired power plant, charcoal kiln, automobile and ship engine were major sources, representing combustions of coal, biomass and two different types of diesel, respectively. Scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM) and energy-dispersive X-ray spectroscopy (EDX) equipped with both SEM and HRTEM were used for physico-chemical analysis. Light absorbing properties were assessed using a spectrometer equipped with an integrating sphere. Particles generated from different combustion sources and conditions demonstrate great variability in their morphology, structure and composition. From coal-fired power plant, both fly ash and flue gas were mostly composed of heterogeneously mixed mineral ash spheres, suggesting that the complete combustion was occurred releasing carbonaceous species out at high temperature (1200-1300 °C). Both automobile and ship exhausts from diesel combustions show typical features of soot: concentric circles comprised of closely-packed graphene layers. However, heavy fuel oil (HFO) combusted particles from ship exhaust demonstrate more complex compositions containing different morphology of particles other than soot, e.g., spherical shape of char particles composed of minerals and carbon. Even for the soot aggregates, particles from HFO burning have different chemical compositions; carbon is dominated but Ca (29.8%), S (28.7%), Na(1%), and Mg(1%) are contained, respectively which were not found from particles of automobile emission. This indicates that chemical compositions and burning conditions are significant to determine the fate of particles. Finally, from biomass burning, amorphous and droplet-like carbonaceous particles with no crystallite structure are observed and they are generally formed by the condensation of low volatile species at low-temperature (~300-800 °C) combustion conditions. Depending on burning sources, significantly different optical properties were observed; diesel combustion particles from automobile and ship showed wavelength independent absorbing properties whereas the particles from coal and charcoal kiln combustion showed the enhanced absorption at shorter wavelength which is a brown carbon characteristic. Our findings suggest that source dependent properties and distributions across the globe should be considered when their impacts on climate change and air qualities are discussed.

  8. A simple method for detection of gunshot residue particles from hands, hair, face, and clothing using scanning electron microscopy/wavelength dispersive X-ray (SEM/WDX).

    PubMed

    Kage, S; Kudo, K; Kaizoji, A; Ryumoto, J; Ikeda, H; Ikeda, N

    2001-07-01

    We devised a simple and rapid method for detection of gunshot residue (GSR) particles, using scanning electron microscopy/wavelength dispersive X-ray (SEM/WDX) analysis. Experiments were done on samples containing GSR particles obtained from hands, hair, face, and clothing, using double-sided adhesive coated aluminum stubs (tape-lift method). SEM/WDX analyses for GSR were carried out in three steps: the first step was map analysis for barium (Ba) to search for GSR particles from lead styphnate primed ammunition, or tin (Sn) to search for GSR particles from mercury fulminate primed ammunition. The second step was determination of the location of GSR particles by X-ray imaging of Ba or Sn at a magnification of x 1000-2000 in the SEM, using data of map analysis, and the third step was identification of GSR particles, using WDX spectrometers. Analysis of samples from each primer of a stub took about 3 h. Practical applications were shown for utility of this method.

  9. In situ SEM Study of Lithium Intercalation in individual V 2O 5 Nanowires

    DOE PAGES

    Strelcov, Evgheni; Cothren, Joshua E.; Leonard, Donovan N.; ...

    2015-01-08

    Progress in rational engineering of Li-ion batteries requires better understanding of the electrochemical processes and accompanying transformations in the electrode materials on multiple length scales. In spite of recent progress in utilizing transmission electron microscopy (TEM) to analyze these materials, in situ scanning electron microscopy (SEM) was mostly overlooked as a powerful tool that allows probing these phenomena on the nano and mesoscale. In this paper, we report on in situ SEM study of lithiation in a V 2O 5-based single-nanobelt battery with ionic liquid electrolyte. Coupled with cyclic voltammetry measurements, in situ SEM revealed the peculiarities of subsurface intercalation,more » formation of solid-electrolyte interface (SEI) and electromigration of liquid. We observed that single-crystalline vanadia nanobelts do not undergo large-scale amorphization or fracture during electrochemical cycling, but rather transform topochemically with only a slight shape distortion. Lastly, the SEI layer seems to have significant influence on the lithium ion diffusion and overall capacity of the single-nanobelt battery.« less

  10. External cervical resorption: an analysis using cone beam and microfocus computed tomography and scanning electron microscopy.

    PubMed

    Gunst, V; Mavridou, A; Huybrechts, B; Van Gorp, G; Bergmans, L; Lambrechts, P

    2013-09-01

    To provide a three-dimensional representation of external cervical resorption (ECR) with microscopy, stereo microscopy, cone beam computed tomography (CT), microfocus CT and scanning electron microscopy (SEM). External cervical resorption is an aggressive form of root resorption, leading to a loss of dental hard tissues. This is due to clastic action, activated by a damage of the covering cementum and stimulated probably by infection. Clinically, it is a challenging situation as it is characterized by a late symptomatology. This is due to the pericanalar protection from a resorption-resistant sheet, composed of pre-dentine and surrounding dentine. The clastic activity is often associated with an attempt to repair, seen by the formation of osteoid tissue. Cone beam CT is extremely useful in the diagnoses and treatment planning of ECR. SEM analyses provide a better insight into the activity of osteoclasts. The root canal is surrounded by a layer of dentine that is resistant to resorption. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  11. Helium ion microscopy of Lepidoptera scales.

    PubMed

    Boden, Stuart A; Asadollahbaik, Asa; Rutt, Harvey N; Bagnall, Darren M

    2012-01-01

    In this report, helium ion microscopy (HIM) is used to study the micro and nanostructures responsible for structural color in the wings of two species of Lepidotera from the Papilionidae family: Papilio ulysses (Blue Mountain Butterfly) and Parides sesostris (Emerald-patched Cattleheart). Electronic charging of uncoated scales from the wings of these butterflies, due to the incident ion beam, is successfully neutralized, leading to images displaying a large depth-of-field and a high level of surface detail, which would normally be obscured by traditional coating methods used for scanning electron microscopy (SEM). The images are compared with those from variable pressure SEM, demonstrating the superiority of HIM at high magnifications. In addition, the large depth-of-field capabilities of HIM are exploited through the creation of stereo pairs that allows the exploration of the third dimension. Furthermore, the extraction of quantitative height information which matches well with cross-sectional transmission electron microscopy measurements from the literature is demonstrated. © Wiley Periodicals, Inc.

  12. Qualitative and quantitative interpretation of SEM image using digital image processing.

    PubMed

    Saladra, Dawid; Kopernik, Magdalena

    2016-10-01

    The aim of the this study is improvement of qualitative and quantitative analysis of scanning electron microscope micrographs by development of computer program, which enables automatic crack analysis of scanning electron microscopy (SEM) micrographs. Micromechanical tests of pneumatic ventricular assist devices result in a large number of micrographs. Therefore, the analysis must be automatic. Tests for athrombogenic titanium nitride/gold coatings deposited on polymeric substrates (Bionate II) are performed. These tests include microshear, microtension and fatigue analysis. Anisotropic surface defects observed in the SEM micrographs require support for qualitative and quantitative interpretation. Improvement of qualitative analysis of scanning electron microscope images was achieved by a set of computational tools that includes binarization, simplified expanding, expanding, simple image statistic thresholding, the filters Laplacian 1, and Laplacian 2, Otsu and reverse binarization. Several modifications of the known image processing techniques and combinations of the selected image processing techniques were applied. The introduced quantitative analysis of digital scanning electron microscope images enables computation of stereological parameters such as area, crack angle, crack length, and total crack length per unit area. This study also compares the functionality of the developed computer program of digital image processing with existing applications. The described pre- and postprocessing may be helpful in scanning electron microscopy and transmission electron microscopy surface investigations. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  13. Differentiating Pseudomonas sp. strain ADP cells in suspensions and biofilms using Raman spectroscopy and scanning electron microscopy.

    PubMed

    Henry, Victoria A; Jessop, Julie L P; Peeples, Tonya L

    2017-02-01

    High quality spectra of Pseudomonas sp. strain ADP in the planktonic and biofilm state were obtained using Raman microspectroscopy. These spectra enabled the identification of key differences between free and biofilm cells in the fingerprint region of Raman spectra in the nucleic acid, carbohydrate, and protein regions. Scanning electron microscopy (SEM) enabled detailed visualization of ADP biofilm with confirmation of associated extracellular matrix structure. Following extraction and Raman analysis of extracellular polymeric substances, Raman spectral differences between free and biofilm cells were largely attributed to the contribution of extracellular matrix components produced in mature biofilms. Raman spectroscopy complemented with SEM proves to be useful in distinguishing physiological properties among cells of the same species. Graphical Abstract Raman spectroscopy complemented with SEM proves to be useful in distinguishing physiological properties among cells of the same species.

  14. A comparative study of heterostructured CuO/CuWO4 nanowires and thin films

    NASA Astrophysics Data System (ADS)

    Polyakov, Boris; Kuzmin, Alexei; Vlassov, Sergei; Butanovs, Edgars; Zideluns, Janis; Butikova, Jelena; Kalendarev, Robert; Zubkins, Martins

    2017-12-01

    A comparative study of heterostructured CuO/CuWO4 core/shell nanowires and double-layer thin films was performed through X-ray diffraction, confocal micro-Raman spectroscopy and electron (SEM and TEM) microscopies. The heterostructures were produced using a two-step process, starting from a deposition of amorphous WO3 layer on top of CuO nanowires and thin films by reactive DC magnetron sputtering and followed by annealing at 650 °C in air. The second step induced a solid-state reaction between CuO and WO3 oxides through a thermal diffusion process, revealed by SEM-EDX analysis. Morphology evolution of core/shell nanowires and double-layer thin films upon heating was studied by electron (SEM and TEM) microscopies. A formation of CuWO4 phase was confirmed by X-ray diffraction and confocal micro-Raman spectroscopy.

  15. Preparation of highly hydrophobic cotton fabrics by modification with bifunctional silsesquioxanes in the sol-gel process

    NASA Astrophysics Data System (ADS)

    Przybylak, Marcin; Maciejewski, Hieronim; Dutkiewicz, Agnieszka

    2016-11-01

    The surface modification of cotton fabrics was carried out using two types of bifunctional fluorinated silsesquioxanes with different ratios of functional groups. The modification was performed either by one- or two-step process. Two methods, the sol-gel and the dip coating method were used in different configurations. The heat treatment and the washing process were applied after modification. The wettability of cotton fabric was evaluated by measuring water contact angles (WCA). Changes in the surface morphology were examined by scanning electron microscopy (SEM, SEM-LFD) and atomic force microscopy (AFM). Moreover, the modified fabrics were subjected to analysis of elemental composition of the applied coatings using SEM-EDS techniques. Highly hydrophobic textiles were obtained in all cases studied and one of the modifications resulted in imparting superhydrophobic properties. Most of impregnated textiles remained hydrophobic even after multiple washing process which shows that the studied modification is durable.

  16. Scanning electron microscope cathodoluminescence imaging of subgrain boundaries, twins and planar deformation features in quartz

    NASA Astrophysics Data System (ADS)

    Hamers, M. F.; Pennock, G. M.; Drury, M. R.

    2017-04-01

    The study of deformation features has been of great importance to determine deformation mechanisms in quartz. Relevant microstructures in both growth and deformation processes include dislocations, subgrains, subgrain boundaries, Brazil and Dauphiné twins and planar deformation features (PDFs). Dislocations and twin boundaries are most commonly imaged using a transmission electron microscope (TEM), because these cannot directly be observed using light microscopy, in contrast to PDFs. Here, we show that red-filtered cathodoluminescence imaging in a scanning electron microscope (SEM) is a useful method to visualise subgrain boundaries, Brazil and Dauphiné twin boundaries. Because standard petrographic thin sections can be studied in the SEM, the observed structures can be directly and easily correlated to light microscopy studies. In contrast to TEM preparation methods, SEM techniques are non-destructive to the area of interest on a petrographic thin section.

  17. Evaluating bandgap distributions of carbon nanotubes via scanning electron microscopy imaging of the Schottky barriers.

    PubMed

    He, Yujun; Zhang, Jin; Li, Dongqi; Wang, Jiangtao; Wu, Qiong; Wei, Yang; Zhang, Lina; Wang, Jiaping; Liu, Peng; Li, Qunqing; Fan, Shoushan; Jiang, Kaili

    2013-01-01

    We show that the Schottky barrier at the metal-single walled carbon nanotube (SWCNT) contact can be clearly observed in scanning electron microscopy (SEM) images as a bright contrast segment with length up to micrometers due to the space charge distribution in the depletion region. The lengths of the charge depletion increase with the diameters of semiconducting SWCNTs (s-SWCNTs) when connected to one metal electrode, which enables direct and efficient evaluation of the bandgap distributions of s-SWCNTs. Moreover, this approach can also be applied for a wide variety of semiconducting nanomaterials, adding a new function to conventional SEM.

  18. Three-dimensional architecture of ribosomal DNA within barley nucleoli revealed with electron microscopy.

    PubMed

    Iwano, Megumi; Che, Fang-Sik; Takayama, Seiji; Fukui, Kiichi; Isogai, Akira

    2003-01-01

    To elucidate the topological positioning of ribosomal RNA genes (rDNA) and nucleolar structure in three dimensions, we examined the localization of rDNA using in situ hybridization (ISH) analysis by scanning electron microscopy (SEM). The rDNA genes within the three-dimensional architecture of nucleoli were detected on chromatin fibers that connect a thick strand-like structure and a protrusion of rDNA into the inner nuclear hole where the nucleolus is formed. This novel use of ISH together with SEM is useful for the analysis of nucleolar structure in detail. Furthermore, rDNA was detected at the periphery of the fibrillar centers (FCs) of the nucleolus using immuno-gold labeling together with transmission electron microscopy (TEM). In situ hybridization with TEM confirmed that rDNA is naked and thus active in the FCs of nucleoli; ISH with SEM confirmed that rDNA is not covered with ribonucleo proteins at the protruding point and is thus inactive. We also show that the distribution pattern of FCs differs from sample to sample. These results indicate that rDNA is transcribed dynamically in a time- and region-specific manner over the course of the cell cycle.

  19. Microstructural observation of fuel cell catalyst inks by Cryo-SEM and Cryo-TEM.

    PubMed

    Shimanuki, Junichi; Takahashi, Shinichi; Tohma, Hajime; Ohma, Atsushi; Ishihara, Ayumi; Ito, Yoshiko; Nishino, Yuri; Miyazawa, Atsuo

    2017-06-01

    In order to improve the electricity generation performance of fuel cell electric vehicles, it is necessary to optimize the microstructure of the catalyst layer of a polymer electrolyte fuel cell. The catalyst layer is formed by a wet coating process using catalyst inks. Therefore, it is very important to observe the microstructure of the catalyst ink. In this study, the morphology of carbon-supported platinum (Pt/C) particles in catalyst inks with a different solvent composition was investigated by cryogenic scanning electron microscopy (cryo-SEM). In addition, the morphology of the ionomer, which presumably influences the formation of agglomerated Pt/C particles in a catalyst ink, was investigated by cryogenic transmission electron microscopy (cryo-TEM). The results of a cryo-SEM observation revealed that the agglomerated Pt/C particles tended to become coarser with a higher 1-propanol (NPA) weight fraction. The results of a cryo-TEM observation indicated that the actual ionomer dispersion in a catalyst ink formed a network structure different from that of the ionomer in the solvent. © The Author 2017. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. The ultrastructure of mono- and holocentric plant centromeres: an immunological investigation by structured illumination microscopy and scanning electron microscopy.

    PubMed

    Wanner, Gerhard; Schroeder-Reiter, Elizabeth; Ma, Wei; Houben, Andreas; Schubert, Veit

    2015-12-01

    The spatial distribution of the three centromere-associated proteins α-tubulin, CENH3, and phosphorylated histone H2A (at threonine 120, H2AThr120ph) was analysed by indirect immunodetection at monocentric cereal chromosomes and at the holocentric chromosomes of Luzula elegans by super-resolution light microscopy and scanning electron microscopy (SEM). Using structured illumination microscopy (SIM) as the super-resolution technique on squashed specimens and SEM on uncoated isolated specimens, the three-dimensional (3D) distribution of the proteins was visualized at the centromeres. Technical aspects of 3D SEM are explained in detail. We show that CENH3 forms curved "pads" mainly around the lateral centromeric region in the primary constriction of metacentric chromosomes. H2AThr120ph is present in both the primary constriction and in the pericentromere. α-tubulin-labeled microtubule bundles attach to CENH3-containing chromatin structures, either in single bundles with a V-shaped attachment to the centromere or in split bundles to bordering pericentromeric flanks. In holocentric L. elegans chromosomes, H2AThr120ph is located predominantly in the centromeric groove of each chromatid as proven by subsequent FIB/FESEM ablation and 3D reconstruction. α-tubulin localizes to the edges of the groove. In both holocentric and monocentric chromosomes, no additional intermediate structures between microtubules and the centromere were observed. We established models of the distribution of CENH3, H2AThr120ph and the attachment sites of microtubules for metacentric and holocentric plant chromosomes.

  1. GAGG:ce single crystalline films: New perspective scintillators for electron detection in SEM.

    PubMed

    Bok, Jan; Lalinský, Ondřej; Hanuš, Martin; Onderišinová, Zuzana; Kelar, Jakub; Kučera, Miroslav

    2016-04-01

    Single crystal scintillators are frequently used for electron detection in scanning electron microscopy (SEM). We report gadolinium aluminum gallium garnet (GAGG:Ce) single crystalline films as a new perspective scintillators for the SEM. For the first time, the epitaxial garnet films were used in a practical application: the GAGG:Ce scintillator was incorporated into a SEM scintillation electron detector and it showed improved image quality. In order to prove the GAGG:Ce quality accurately, the scintillation properties were examined using electron beam excitation and compared with frequently used scintillators in the SEM. The results demonstrate excellent emission efficiency of the GAGG:Ce single crystalline films together with their very fast scintillation decay useful for demanding SEM applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. A Simulation of the Topographic Contrast in the SEM

    NASA Astrophysics Data System (ADS)

    Kotera, Masatoshi; Fujiwara, Takafumi; Suga, Hiroshi; Wittry, David B.

    1990-10-01

    A simulation model is presented to analyze the topographic contast in the scanning electron microscope (SEM). This simulation takes into account all major mechanisms from signal generation to signal detection in the SEM. The calculated result shows that the resolution of the secondary electron image is better than that of the backscattered electron image for 1 and 3 keV primary electrons incident on an Al target. An asymmetric intensity profile of a signal at a topographic pattern, usually found in the SEM equipped with the Everhart-Thornley detector, is mainly due to the asymmetric profile of the backscattered electron signal.

  3. The development and advantages of helium ion microscopy for the study of block copolymer nanopatterns

    NASA Astrophysics Data System (ADS)

    Bell, Alan P.; Senthamaraikannan, Ramsankar; Ghoshal, Tandra; Chaudhari, Atul; Leeson, Michael; Morris, Mick A.

    2015-03-01

    Helium ion microscopy (HIM) has been used to study nanopatterns formed in block copolymer (BCP) thin films. Owing to its' small spot size, minimal forward scattering of the incident ion and reduced velocity compared to electrons of comparable energy, HIM has considerable advantages and provides pattern information and resolution not attainable with other commercial microscopic techniques. In order to realize the full potential of BCP nanolithography in producing high density ultra-small features, the dimensions and geometry of these BCP materials will need to be accurately characterized through pattern formation, development and pattern transfer processes. The preferred BCP pattern inspection techniques (to date) are principally atomic force microscopy (AFM) and secondary electron microscopy (SEM) but suffer disadvantages in poor lateral resolution (AFM) and the ability to discriminate individual polymer domains (SEM). SEM suffers from reduced resolution when a more surface sensitive low accelerating voltage is used and low surface signal when a high accelerating voltage is used. In addition to these drawbacks, SEM can require the use of a conductive coating on these insulating materials and this reduces surface detail as well as increasing the dimensions of coated features. AFM is limited by the dimensions of the probe tip and a skewing of lateral dimension results. This can be eliminated through basic geometry for large sparse features, but when dense small features need to be characterized AFM lacks reliability. With this in mind, BCP inspection by HIM can offer greater insight into block ordering, critical dimensions and, critically, line edge roughness (LER) a critical parameter whose measurement is well suited to HIM because of its' enhanced edge contrast. In this work we demonstrate the resolution capabilities of HIM using various BCP systems (lamellar and cylinder structures). Imaging of BCP patterns of low molecular weight (MW)/low feature size which challenges the resolution of HIM technique. Further, studies of BCP patterns with domains of similar chemistry will be presented demonstrating the superior chemical contrast compared to SEM. From the data, HIM excels as a BCP inspection tool in four distinct areas. Firstly, HIM offers higher resolution at standard imaging conditions than SEM. Secondly, the signal generated from He+ is more surface sensitive and enables visualization of features that cannot be resolved using SEM. Thirdly; superior chemical contrast enables the imaging of un etched samples with almost identical chemical composition. Finally, dimensional measurement accuracy is high and consistent with requirements for advanced lithographic masks.

  4. Symposium LL: Nanowires--Synthesis Properties Assembly and Application

    DTIC Science & Technology

    2010-09-10

    dedicated hard x - ray microscopy beamline is operated in partnership with the Advanced Photon Source to provide fluorescence, diffraction, and...characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X - ray diffraction (XRD) measurements, proving it to be...Investigation of Preferred Growth Direction of GaN Nanorods by Synchrotron X - ray Reciprocal Space Mapping. Yuri Sohn1, Sanghwa Lee1, Chinkyo Kim1 and Dong

  5. SEM Analysis of Surface Impact on Biofilm Antibiotic Treatment.

    PubMed

    Gomes, Luciana Calheiros; Mergulhão, Filipe José

    2017-01-01

    The aim of this work was to use scanning electron microscopy (SEM) to investigate the effect of ampicillin treatment on Escherichia coli biofilms formed on two surface materials with different properties, silicone (SIL) and glass (GLA). Epifluorescence microscopy (EM) was initially used to assess biofilm formation and killing efficiency on both surfaces. This technique showed that higher bacterial colonization was obtained in the hydrophobic SIL than in the hydrophilic GLA. It has also shown that higher biofilm inactivation was attained for GLA after the antibiotic treatment (7-log reduction versus 1-log reduction for SIL). Due to its high resolution and magnification, SEM enabled a more detailed analysis of the antibiotic effect on biofilm cells, complementing the killing efficiency information obtained by EM. SEM micrographs revealed that ampicillin-treated cells have an elongated form when compared to untreated cells. Additionally, it has shown that different materials induced different levels of elongation on cells exposed to antibiotic. Biofilms formed on GLA showed a 37% higher elongation than those formed on SIL. Importantly, cell elongation was related to viability since ampicillin had a higher bactericidal effect on GLA-formed biofilms. These findings raise the possibility of using SEM for understanding the efficacy of antimicrobial treatments by observation of biofilm morphology.

  6. Depth-section imaging of swine kidney by spectrally encoded microscopy

    NASA Astrophysics Data System (ADS)

    Liao, Jiuling; Gao, Wanrong

    2016-10-01

    The kidneys are essential regulatory organs whose main function is to regulate the balance of electrolytes in the blood, along with maintaining pH homeostasis. The study of the microscopic structure of the kidney will help identify kidney diseases associated with specific renal histology change. Spectrally encoded microscopy (SEM) is a new reflectance microscopic imaging technique in which a grating is used to illuminate different positions along a line on the sample with different wavelengths, reducing the size of system and imaging time. In this paper, a SEM device is described which is based on a super luminescent diode source and a home-built spectrometer. The lateral resolution was measured by imaging the USAF resolution target. The axial response curve was obtained as a reflect mirror was scanned through the focal plane axially. In order to test the feasibility of using SEM for depth-section imaging of an excised swine kidney tissue, the images of the samples were acquired by scanning the sample at 10 μm per step along the depth direction. Architectural features of the kidney tissue could be clearly visualized in the SEM images, including glomeruli and blood vessels. Results from this study suggest that SEM may be useful for locating regions with probabilities of kidney disease or cancer.

  7. Studies of Al-Ti Alloys by SEM

    NASA Astrophysics Data System (ADS)

    Yildiz, K.; Atici, Y.; Keşlİ Oǧlu, K.; Yaşar, E.

    2007-04-01

    Al-Ti (1, 2 wt. %) alloys were investigated by Scanning Electron Microscopy (SEM). SEM observations and energy-dispersive x-ray analyses (EDX) showed that the phase structure of Al-Ti (1 %) alloy at 165 μm/s is composed of Al matrix and C, Ni, Fe and Si particles and the Al-Ti (1 %) alloys at 16 and 8 μm/s have only the Al matrix and C particles. It was also found that the Al-Ti (2 %) form the Al matrix and intermetallic TiAl.

  8. MORPHOLOGICAL CHANGES IN POLYURETHANE COATINGS ON EXPOSURE TO WATER. (R828081E01)

    EPA Science Inventory

    When a polyurethane self-priming coating on a sol-gel treated aluminum panel was immersed in dilute Harrison's solution, subsequent change of the polyurethane coating surface was inspected with atomic force microscopy (AFM) and scanning electron microscopy (SEM). After immersi...

  9. Conductive Polymer Blends

    DTIC Science & Technology

    1988-04-26

    FIGURES Figure 1. Schematic of the suspension copolymerization approach ................ 8 Figure 2. SEM micrograph of fracture surface near molded...micrograph of fracture surface near molded edge of sample 1430-58b.............................................................. 18 Figure 12. SEM... caprolactam . The caprolactam (11.3 g) was placed in a large tube equipped with a nitrogen inlet, and heated under nitrogen to 80*C, whereupon

  10. The Interior Analysis and 3-D Reconstruction of Internally-Mixed Light-Absorbing Atmospheric Particles

    NASA Astrophysics Data System (ADS)

    Conny, J. M.; Collins, S. M.; Anderson, I.; Herzing, A.

    2010-12-01

    Carbon-containing atmospheric particles may either absorb solar or outgoing long-wave radiation or scatter solar radiation, and thus, affect Earth’s radiative balance in multiple ways. Light-absorbing carbon that is common in urban air particles such as industrial coke dust, road dust, and diesel soot, often exists in the same particle with other phases that contain, for example, aluminum, calcium, iron, and sulfur. While the optical properties of atmospheric particles in general depend on overall particle size and shape, the inhomogeneity of chemical phases within internally-mixed particles may also greatly affect particle optical properties. In this study, a series of microscopic approaches were used to identify individual light-absorbing coarse-mode particles and to assess their interior structure and composition. Particle samples were collected in 2004 from one of the U.S. EPA’s Los Angeles Particulate Matter Supersites, and were likely affected substantially by road dust and construction dust. First, bright-field and dark-field light microscopy and computer-controlled scanning electron microscopy (SEM) with energy-dispersive x-ray spectroscopy (EDX) were used to distinguish predominantly light-absorbing carbonaceous particles from other particle types such as mineral dust, sea salt, and brake wear. Second, high-resolution SEM-EDX elemental mapping of individual carbonaceous particles was used to select particles with additional elemental phases that exhibited spatial inhomogeneity. Third, focused ion-beam SEM (FIB-SEM) with EDX was used to slice through selected particles to expose interior surfaces and to determine the spatial distribution of element phases throughout the particles. Fourth, study of the interior phases of a particle was augmented by the transmission electron microscopy (TEM) of a thin section of the particle prepared by FIB-SEM. Here, electron energy loss spectroscopy with TEM was used to study chemical bonding in the carbonaceous phase. Finally, automated serial slicing and imaging in the FIB-SEM generated a stack of secondary electron images of the particles’ interior surfaces that allowed for the 3-D reconstruction of the particles, a process known as FIB tomography. Interior surface of light-absorbing carbonaceous particle from FIB-SEM analysis.

  11. Automated Transmission-Mode Scanning Electron Microscopy (tSEM) for Large Volume Analysis at Nanoscale Resolution

    PubMed Central

    Kuwajima, Masaaki; Mendenhall, John M.; Lindsey, Laurence F.; Harris, Kristen M.

    2013-01-01

    Transmission-mode scanning electron microscopy (tSEM) on a field emission SEM platform was developed for efficient and cost-effective imaging of circuit-scale volumes from brain at nanoscale resolution. Image area was maximized while optimizing the resolution and dynamic range necessary for discriminating key subcellular structures, such as small axonal, dendritic and glial processes, synapses, smooth endoplasmic reticulum, vesicles, microtubules, polyribosomes, and endosomes which are critical for neuronal function. Individual image fields from the tSEM system were up to 4,295 µm2 (65.54 µm per side) at 2 nm pixel size, contrasting with image fields from a modern transmission electron microscope (TEM) system, which were only 66.59 µm2 (8.160 µm per side) at the same pixel size. The tSEM produced outstanding images and had reduced distortion and drift relative to TEM. Automated stage and scan control in tSEM easily provided unattended serial section imaging and montaging. Lens and scan properties on both TEM and SEM platforms revealed no significant nonlinear distortions within a central field of ∼100 µm2 and produced near-perfect image registration across serial sections using the computational elastic alignment tool in Fiji/TrakEM2 software, and reliable geometric measurements from RECONSTRUCT™ or Fiji/TrakEM2 software. Axial resolution limits the analysis of small structures contained within a section (∼45 nm). Since this new tSEM is non-destructive, objects within a section can be explored at finer axial resolution in TEM tomography with current methods. Future development of tSEM tomography promises thinner axial resolution producing nearly isotropic voxels and should provide within-section analyses of structures without changing platforms. Brain was the test system given our interest in synaptic connectivity and plasticity; however, the new tSEM system is readily applicable to other biological systems. PMID:23555711

  12. Characterizing the surface roughness of thermomechanical pulp fibers with atomic force microscopy

    Treesearch

    Rebecca Snell; Leslie H. Groom; Timothy G. Rials

    2001-01-01

    Loblolly pine, separated into mature and juvenile portions, was refined at various pressures (4, 8 and 12 bar). Fiber surfaces were investigated using a Scanning Electron Microscope (SEM) and an Atomic Force Microscope (AFM). Refiner pressure had a significant effect on the fiber surefaces. SEM images showed an apparent increase in surface roughness with increased...

  13. Electron Microscopy of Ebola Virus-Infected Cells.

    PubMed

    Noda, Takeshi

    2017-01-01

    Ebola virus (EBOV) replicates in host cells, where both viral and cellular components show morphological changes during the process of viral replication from entry to budding. These steps in the replication cycle can be studied using electron microscopy (EM), including transmission electron microscopy (TEM) and scanning electron microscopy (SEM), which is one of the most useful methods for visualizing EBOV particles and EBOV-infected cells at the ultrastructural level. This chapter describes conventional methods for EM sample preparation of cultured cells infected with EBOV.

  14. Use of scanning electron microscopy and microanalysis to determine chloride content of concrete and raw materials.

    DOT National Transportation Integrated Search

    2013-02-01

    Standard sample sets of cement and mortar formulations with known levels of Cl as well as concrete samples subject to Cl diffusion were all prepared for and analyzed with scanning electron microscopy (SEM) and electron microprobe (EPMA). Using x-ray ...

  15. Scanning Electron Microscopy (SEM) Procedure for HE Powders on a Zeiss Sigma HD VP SEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaka, F.

    This method describes the characterization of inert and HE materials by the Zeiss Sigma HD VP field emission Scanning Electron Microscope (SEM). The SEM uses an accelerated electron beam to generate high-magnification images of explosives and other materials. It is fitted with five detectors (SE, Inlens, STEM, VPSE, HDBSD) to enable imaging of the sample via different secondary electron signatures, angles, and energies. In addition to imaging through electron detection, the microscope is also fitted with two Oxford Instrument Energy Dispersive Spectrometer (EDS) 80 mm detectors to generate elemental constituent spectra and two-dimensional maps of the material being scanned.

  16. FIB-SEM imaging of carbon nanotubes in mouse lung tissue.

    PubMed

    Købler, Carsten; Saber, Anne Thoustrup; Jacobsen, Nicklas Raun; Wallin, Håkan; Vogel, Ulla; Qvortrup, Klaus; Mølhave, Kristian

    2014-06-01

    Ultrastructural characterisation is important for understanding carbon nanotube (CNT) toxicity and how the CNTs interact with cells and tissues. The standard method for this involves using transmission electron microscopy (TEM). However, in particular, the sample preparation, using a microtome to cut thin sample sections for TEM, can be challenging for investigation of regions with agglomerations of large and stiff CNTs because the CNTs cut with difficulty. As a consequence, the sectioning diamond knife may be damaged and the uncut CNTs are left protruding from the embedded block surface excluding them from TEM analysis. To provide an alternative to ultramicrotomy and subsequent TEM imaging, we studied focused ion beam scanning electron microscopy (FIB-SEM) of CNTs in the lungs of mice, and we evaluated the applicability of the method compared to TEM. FIB-SEM can provide serial section volume imaging not easily obtained with TEM, but it is time-consuming to locate CNTs in the tissue. We demonstrate that protruding CNTs after ultramicrotomy can be used to locate the region of interest, and we present FIB-SEM images of CNTs in lung tissue. FIB-SEM imaging was applied to lung tissue from mice which had been intratracheally instilled with two different multiwalled CNTs; one being short and thin, and the other longer and thicker. FIB-SEM was found to be most suitable for detection of the large CNTs (Ø ca. 70 nm), and to be well suited for studying CNT agglomerates in biological samples which is challenging using standard TEM techniques.

  17. Electrophoretic deposition of hydroxyapatite-hexagonal boron nitride composite coatings on Ti substrate.

    PubMed

    Göncü, Yapıncak; Geçgin, Merve; Bakan, Feray; Ay, Nuran

    2017-10-01

    In this study, commercial pure titanium samples were coated with nano hydroxyapatite-nano hexagonal boron nitride (nano HA-nano hBN) composite by electrophoretic deposition (EPD). The effect of process parameters (applied voltage, deposition time and solid concentration) on the coating morphology, thickness and the adhesion behavior were studied systematically and crack free nano hBN-nano HA composite coating production was achieved for developing bioactive coatings on titanium substrates for orthopedic applications. For the examination of structural and morphological characteristics of the coating surfaces, various complementary analysis methods were performed. For the structural characterization, XRD and Raman Spectroscopy were used while, Scanning Electron Microscopy (SEM) equipped with an energy dispersive spectrometer (EDS) and Transmission Electron Microscopy (TEM) techniques were carried out for revealing the morphological characterization. The results showed that nano HA-nano hBN were successfully deposited on Ti surface with uniform, crack-free coating by EPD. The amounts of hBN in suspension are considered to have no effect on coating thickness. By adding hBN into HA, the morphology of HA did not change and hBN has no significant effect on porous structure. These nanostructured surfaces are expected to be suitable for proliferation of cells and have high potential for bioactive materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Interdiffusion behaviors of iron aluminide coatings on China low activation martensitic steel

    NASA Astrophysics Data System (ADS)

    Zhu, X. X.; Yang, H. G.; Yuan, X. M.; Zhao, W. W.; Zhan, Q.

    2014-12-01

    The iron aluminide coating on China Low Activation Martensitic (CLAM) steel was prepared by pack cementation and subsequent heat treatment. A surface Fe2Al5 layer was formed on CLAM substrate by pack cementation process with Fe2Al5 donor powder and NH4Cl activator. Diffusion heat treatment was performed in order to allow the phase transformation from Fe2Al5 to a phase with lower aluminum content. Morphology and composition of the coatings were characterized by optical microscopy (OM), scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS), glow discharge optical emission spectroscopy (GDOES) and X-ray diffraction (XRD). There is a need to study the interdiffusion behaviors in these Al containing systems, as a basis for controlling the formation and subsequent degradation of the coating. In this paper, a predictive model was developed to describe the phase transformation of Fe2Al5 as a function of processing parameters. The Wagner's equation was used to calculate the interdiffusion coefficients based on the analysis of the Al concentration profiles. The results showed that the interdiffusion coefficients in the FeAl and α-Fe(Al) phase strongly depends on Al content and showed a maximum at about 28 at.% Al.

  19. Analysis of Particulate and Fiber Debris Samples Returned from the International Space Station

    NASA Technical Reports Server (NTRS)

    Perry, Jay L.; Coston, James E.

    2014-01-01

    During the period of International Space Station (ISS) Increments 30 and 31, crewmember reports cited differences in the cabin environment relating to particulate matter and fiber debris compared to earlier experience as well as allergic responses to the cabin environment. It was hypothesized that a change in the cabin atmosphere's suspended particulate matter load may be responsible for the reported situation. Samples were collected and returned to ground-based laboratories for assessment. Assessments included physical classification, optical microscopy and photographic analysis, and scanning electron microscopy (SEM) evaluation using energy dispersive X-ray spectrometry (EDS) methods. Particular points of interest for assessing the samples were for the presence of allergens, carbon dioxide removal assembly (CDRA) zeolite dust, and FGB panel fibers. The results from the physical classification, optical microscopy and photographic analysis, and SEM EDS analysis are presented and discussed.

  20. Microstructures of Ni-AlN composite coatings prepared by pulse electrodeposition technology

    NASA Astrophysics Data System (ADS)

    Xia, Fafeng; Xu, Huibin; Liu, Chao; Wang, Jinwu; Ding, Junjie; Ma, Chunhua

    2013-04-01

    Ni-AlN composite coating was fabricated onto the surface of steel substrates by using pulse electrodeposition (PED) technique in this work. The effect of pulse current on the nucleation and growth of grains was investigated using transmission electronic microscopy (TEM), X-ray diffraction (XRD), scanning electronic microscopy (SEM) and atomic force microscopy (AFM), respectively. The results show that the contents of AlN nanoparticles increase with density of pulse current and on-duty ratio of pulse current increasing. Whereas the size of nickel grains decreases with density of pulse current increasing and on-duty ratio of pulse current decreasing. Ni-AlN composite coating consists of crystalline nickel (˜68 nm) and AlN particles (˜38 nm). SEM and AFM observations show that the composite coatings obtained by PED showed more compact surfaces and less grain sizes, whereas those obtained by direct current electrodepositing have rougher surfaces and bigger grain sizes.

  1. The application of scanning electron microscopy to fractography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brooks, C.R.; McGill, B.L.

    1994-10-01

    Many failures involve fracture, and determination of the fracture process is a key factor in understanding the failure. This is frequently accomplished by characterizing the topography of the fracture surface. Scanning electron microscopy has a prominent role in fractography due to three features of the scanning electron microscope (SEM): high resolution, great depth of field, and the ability to obtain chemical information via analysis of the X-rays generated by the electrons. A qualitative treatment is presented of the interaction of electrons with a sample and the effect of the SEM operating parameters on image formation, quality, and X-ray analysis. Fractographsmore » are presented to illustrate these features of scanning electron microscopy and to illustrate the limitations and precautions in obtaining fractographs and x-ray analyses. The review is concluded with examples of fracture surface features of metallic, ceramic, and polymeric materials.« less

  2. Water-mediated solid-state transformation of a polymorphic drug during aqueous-based drug-layer coating of pellets.

    PubMed

    Lust, Andres; Lakio, Satu; Vintsevits, Julia; Kozlova, Jekaterina; Veski, Peep; Heinämäki, Jyrki; Kogermann, Karin

    2013-11-01

    During aqueous drug-layer coating, drug substance(s) are exposed to water and elevated temperatures which can lead to water-mediated process induced transformations (PITs). The effects of aqueous drug-layer coating of pellets (Cellets(®)) on the anhydrous piroxicam, PRX, were investigated in the miniaturized coating equipment and with free films. Hydroxypropyl methylcellulose (HPMC) was used as a carrier coating polymer. Free films were prepared by using an in-house small-scale rotating plate system equipped with an atomization air nozzle. Raman spectroscopy, X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM) were used to characterize the solid-state properties and surface morphology of the pellets and free films. The results showed that anhydrous PRX form I (AH) and monohydrate (MH) were stable during drug-layer coating, but amorphous PRX in solid dispersion (SD) crystallized as MH already after 10 min of coating. Furthermore, the increase in a dissolution rate was achieved from the drug-layer coated inert pellets compared to powder forms. In conclusion, water-mediated solid-state PITs of amorphous PRX is evident during aqueous-based drug-layer coating of pellets, and solid-state change can be verified using Raman spectroscopy. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Elucidation of Compression-Induced Surface Crystallization in Amorphous Tablets Using Sum Frequency Generation (SFG) Microscopy.

    PubMed

    Mah, Pei T; Novakovic, Dunja; Saarinen, Jukka; Van Landeghem, Stijn; Peltonen, Leena; Laaksonen, Timo; Isomäki, Antti; Strachan, Clare J

    2017-05-01

    To investigate the effect of compression on the crystallization behavior in amorphous tablets using sum frequency generation (SFG) microscopy imaging and more established analytical methods. Tablets containing neat amorphous griseofulvin with/without excipients (silica, hydroxypropyl methylcellulose acetate succinate (HPMCAS), microcrystalline cellulose (MCC) and polyethylene glycol (PEG)) were prepared. They were analyzed upon preparation and storage using attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, scanning electron microscopy (SEM) and SFG microscopy. Compression-induced crystallization occurred predominantly on the surface of the neat amorphous griseofulvin tablets, with minimal crystallinity being detected in the core of the tablets. The presence of various types of excipients was not able to mitigate the compression-induced surface crystallization of the amorphous griseofulvin tablets. However, the excipients affected the crystallization rate of amorphous griseofulvin in the core of the tablet upon compression and storage. SFG microscopy can be used in combination with ATR-FTIR spectroscopy and SEM to understand the crystallization behaviour of amorphous tablets upon compression and storage. When selecting excipients for amorphous formulations, it is important to consider the effect of the excipients on the physical stability of the amorphous formulations.

  4. Multi-scale Observation of Biological Interactions of Nanocarriers: from Nano to Macro

    PubMed Central

    Jin, Su-Eon; Bae, Jin Woo; Hong, Seungpyo

    2010-01-01

    Microscopic observations have played a key role in recent advancements in nanotechnology-based biomedical sciences. In particular, multi-scale observation is necessary to fully understand the nano-bio interfaces where a large amount of unprecedented phenomena have been reported. This review describes how to address the physicochemical and biological interactions of nanocarriers within the biological environments using microscopic tools. The imaging techniques are categorized based on the size scale of detection. For observation of the nano-scale biological interactions of nanocarriers, we discuss atomic force microscopy (AFM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). For the micro to macro-scale (in vitro and in vivo) observation, we focus on confocal laser scanning microscopy (CLSM) as well as in vivo imaging systems such as magnetic resonance imaging (MRI), superconducting quantum interference devices (SQUIDs), and IVIS®. Additionally, recently developed combined techniques such as AFM-CLSM, correlative Light and Electron Microscopy (CLEM), and SEM-spectroscopy are also discussed. In this review, we describe how each technique helps elucidate certain physicochemical and biological activities of nanocarriers such as dendrimers, polymers, liposomes, and polymeric/inorganic nanoparticles, thus providing a toolbox for bioengineers, pharmaceutical scientists, biologists, and research clinicians. PMID:20232368

  5. X-ray microscopy as an approach to increasing accuracy and efficiency of serial block-face imaging for correlated light and electron microscopy of biological specimens.

    PubMed

    Bushong, Eric A; Johnson, Donald D; Kim, Keun-Young; Terada, Masako; Hatori, Megumi; Peltier, Steven T; Panda, Satchidananda; Merkle, Arno; Ellisman, Mark H

    2015-02-01

    The recently developed three-dimensional electron microscopic (EM) method of serial block-face scanning electron microscopy (SBEM) has rapidly established itself as a powerful imaging approach. Volume EM imaging with this scanning electron microscopy (SEM) method requires intense staining of biological specimens with heavy metals to allow sufficient back-scatter electron signal and also to render specimens sufficiently conductive to control charging artifacts. These more extreme heavy metal staining protocols render specimens light opaque and make it much more difficult to track and identify regions of interest (ROIs) for the SBEM imaging process than for a typical thin section transmission electron microscopy correlative light and electron microscopy study. We present a strategy employing X-ray microscopy (XRM) both for tracking ROIs and for increasing the efficiency of the workflow used for typical projects undertaken with SBEM. XRM was found to reveal an impressive level of detail in tissue heavily stained for SBEM imaging, allowing for the identification of tissue landmarks that can be subsequently used to guide data collection in the SEM. Furthermore, specific labeling of individual cells using diaminobenzidine is detectable in XRM volumes. We demonstrate that tungsten carbide particles or upconverting nanophosphor particles can be used as fiducial markers to further increase the precision and efficiency of SBEM imaging.

  6. X-ray Microscopy as an Approach to Increasing Accuracy and Efficiency of Serial Block-face Imaging for Correlated Light and Electron Microscopy of Biological Specimens

    PubMed Central

    Bushong, Eric A.; Johnson, Donald D.; Kim, Keun-Young; Terada, Masako; Hatori, Megumi; Peltier, Steven T.; Panda, Satchidananda; Merkle, Arno; Ellisman, Mark H.

    2015-01-01

    The recently developed three-dimensional electron microscopic (EM) method of serial block-face scanning electron microscopy (SBEM) has rapidly established itself as a powerful imaging approach. Volume EM imaging with this scanning electron microscopy (SEM) method requires intense staining of biological specimens with heavy metals to allow sufficient back-scatter electron signal and also to render specimens sufficiently conductive to control charging artifacts. These more extreme heavy metal staining protocols render specimens light opaque and make it much more difficult to track and identify regions of interest (ROIs) for the SBEM imaging process than for a typical thin section transmission electron microscopy correlative light and electron microscopy study. We present a strategy employing X-ray microscopy (XRM) both for tracking ROIs and for increasing the efficiency of the workflow used for typical projects undertaken with SBEM. XRM was found to reveal an impressive level of detail in tissue heavily stained for SBEM imaging, allowing for the identification of tissue landmarks that can be subsequently used to guide data collection in the SEM. Furthermore, specific labeling of individual cells using diaminobenzidine is detectable in XRM volumes. We demonstrate that tungsten carbide particles or upconverting nanophosphor particles can be used as fiducial markers to further increase the precision and efficiency of SBEM imaging. PMID:25392009

  7. Analytical investigation of Mudéjar polychrome on the carpentry in the Casa de Pilatos palace in Seville using non-destructive XRF and complementary techniques

    NASA Astrophysics Data System (ADS)

    Garrote, M. A.; Robador, M. D.; Perez-Rodriguez, J. L.

    2017-02-01

    The pigments, execution technique and repainting used on the polychrome wood ceilings and doors in the Casa de Pilatos (Seville, Spain) were studied using portable X-ray fluorescence equipment. Cross-sections of small samples were also analysed by optical microscopy, SEM with EDX analysis, micro-Raman and micro-infrared spectroscopy and X-ray diffraction. These carpentry works are magnificent examples of the Mudéjar art made in Spain in the early 16th century. Portable X-ray fluorescence gave good information on the different components of the polychrome. The SEM-EDX study of the surfaces of small samples gave information on their components and also characterized the compounds that had been deposited or formed by environmental contamination or by the alteration of some pigments. The SEM-EDX study of cross-sections facilitated the characterization of all layers and pigments from the support to the most external layer. The following pigments were characterized: red (cinnabar/vermillion, lead oxide, iron oxides and orpiment/realgar), black (carbon black), white (white lead and titanium barium white), yellow-orange-red-brown (orpiment/realgar and iron oxides), green (chromium oxide), blue (indigo blue and ultramarine blue), and gilding (gold leaf on bole). False gold, bronze and brass were also found. The pigments were applied with the oil painting technique over a support layer that had been primed with animal glue. This support layer was gypsum in some cases and white lead in others. This study is essential to the polychrome conservation of the studied artwork, and it will help clarify uncertainties in the history and painting of Mudéjar art.

  8. Analytical investigation of Mudéjar polychrome on the carpentry in the Casa de Pilatos palace in Seville using non-destructive XRF and complementary techniques.

    PubMed

    Garrote, M A; Robador, M D; Perez-Rodriguez, J L

    2017-02-15

    The pigments, execution technique and repainting used on the polychrome wood ceilings and doors in the Casa de Pilatos (Seville, Spain) were studied using portable X-ray fluorescence equipment. Cross-sections of small samples were also analysed by optical microscopy, SEM with EDX analysis, micro-Raman and micro-infrared spectroscopy and X-ray diffraction. These carpentry works are magnificent examples of the Mudéjar art made in Spain in the early 16th century. Portable X-ray fluorescence gave good information on the different components of the polychrome. The SEM-EDX study of the surfaces of small samples gave information on their components and also characterized the compounds that had been deposited or formed by environmental contamination or by the alteration of some pigments. The SEM-EDX study of cross-sections facilitated the characterization of all layers and pigments from the support to the most external layer. The following pigments were characterized: red (cinnabar/vermillion, lead oxide, iron oxides and orpiment/realgar), black (carbon black), white (white lead and titanium barium white), yellow-orange-red-brown (orpiment/realgar and iron oxides), green (chromium oxide), blue (indigo blue and ultramarine blue), and gilding (gold leaf on bole). False gold, bronze and brass were also found. The pigments were applied with the oil painting technique over a support layer that had been primed with animal glue. This support layer was gypsum in some cases and white lead in others. This study is essential to the polychrome conservation of the studied artwork, and it will help clarify uncertainties in the history and painting of Mudéjar art. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Analysis of rare earth elements in coal fly ash using laser ablation inductively coupled plasma mass spectrometry and scanning electron microscopy

    NASA Astrophysics Data System (ADS)

    Thompson, Robert L.; Bank, Tracy; Montross, Scott; Roth, Elliot; Howard, Bret; Verba, Circe; Granite, Evan

    2018-05-01

    Reference standard NIST SRM 1633b and FA 345, a fly ash sample from an eastern U.S. coal power plant, were analyzed to determine and quantify the mineralogical association of rare earth elements (REE). These analyses were completed using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and a scanning electron microscope, equipped with an energy-dispersive X-ray spectrometer (SEM-EDS). Internal standardization was avoided by quantifying elemental concentrations by normalizing to 100% oxides. Mineral grains containing elevated REE concentrations were found in diverse chemical environments, but were most commonly found in regions where Al and Si were predominant. Dividing the spot analyses into time segments yielded plots that showed the REE content changing over time as individual mineral grains were being ablated. SEM-EDS images of FA 345 confirmed the trends that were found in the LA-ICP-MS results. Small grains of apatite, monazite, or zircon were frequently observed as free mineral grains or embedded in amorphous aluminosilicate glass and were not associated with ferrous particles. This finding is consistent with previous reports that magnetic enrichment may be an effective way of concentrating non-magnetic REE phases. Furthermore, aggressive mechanical and chemical-based separation schemes will be required to separate and recover REE from aluminosilicate glass.

  10. TiO2-BASED Composite Films for the Photodegradation of Oxytetracycline

    NASA Astrophysics Data System (ADS)

    Li, Hui; Guan, Ling-Xiao; Feng, Ji-Jun; Li, Fang; Yao, Ming-Ming

    2015-02-01

    The spread of the antibiotic oxytetracycline (OTC) has been thought as a threat to the safety of drinking water. In this paper, the photocatalytic activity of the nanocrystalline Fe/Ca co-doped TiO2-SiO2 composite film for the degradation of OTC was studied. The films were characterized by field emission scanning electron microscopy (FE-SEM) equipped with energy-dispersive spectroscopy (EDS), N2 adsorption/desorption isotherms, photoluminescence (PL) spectra, and UV-Vis diffraction reflectance absorption spectra (DRS). The FE-SEM results indicated that the Fe/Ca co-doped TiO2-SiO2 film was composed of smaller nanoparticles compared to pure TiO2 or TiO2-SiO2 film. The BET surface area results showed that the specific surface area of the pure TiO2, TiO2-SiO2 and Ca2+/Fe3+ co-doped TiO2-SiO2 is 118.3 m2g-1, 294.3 m2g-1 and 393.7 m2g-1, respectively. The DRS and PL spectra revealed that the Fe/Ca co-doped TiO2-SiO2 film had strong visible light adsorption and diminished electrons/holes recombination. Experimental results showed that the Fe/Ca co-doped TiO2-SiO2 film is effective in the degradation of OTC under both UV and visible light irradiation.

  11. In situ fatigue loading stage inside scanning electron microscope

    NASA Technical Reports Server (NTRS)

    Telesman, Jack; Kantzos, Peter; Brewer, David

    1988-01-01

    A fatigue loading stage inside a scanning electron microscopy (SEM) was developed. The stage allows dynamic and static high-magnification and high-resolution viewing of the fatigue crack initiation and crack propagation processes. The loading stage is controlled by a closed-loop servohydraulic system. Maximum load is 1000 lb (4450 N) with test frequencies ranging up to 30 Hz. The stage accommodates specimens up to 2 inches (50 mm) in length and tolerates substantial specimen translation to view the propagating crack. At room temperature, acceptable working resolution is obtainable for magnifications ranging up to 10,000X. The system is equipped with a high-temperature setup designed for temperatures up to 2000 F (1100 C). The signal can be videotaped for further analysis of the pertinent fatigue damage mechanisms. The design allows for quick and easy interchange and conversion of the SEM from a loading stage configuration to its normal operational configuration and vice versa. Tests are performed entirely in the in-situ mode. In contrast to other designs, the NASA design has greatly extended the life of the loading stage by not exposing the bellows to cyclic loading. The loading stage was used to investigate the fatigue crack growth mechanisms in the (100)-oriented PWA 1480 single-crystal, nickel-based supperalloy. The high-magnification observations revealed the details of the crack growth processes.

  12. Multimodal Hierarchical Imaging of Serial Sections for Finding Specific Cellular Targets within Large Volumes

    PubMed Central

    Wacker, Irene U.; Veith, Lisa; Spomer, Waldemar; Hofmann, Andreas; Thaler, Marlene; Hillmer, Stefan; Gengenbach, Ulrich; Schröder, Rasmus R.

    2018-01-01

    Targeting specific cells at ultrastructural resolution within a mixed cell population or a tissue can be achieved by hierarchical imaging using a combination of light and electron microscopy. Samples embedded in resin are sectioned into arrays consisting of ribbons of hundreds of ultrathin sections and deposited on pieces of silicon wafer or conductively coated coverslips. Arrays are imaged at low resolution using a digital consumer like smartphone camera or light microscope (LM) for a rapid large area overview, or a wide field fluorescence microscope (fluorescence light microscopy (FLM)) after labeling with fluorophores. After post-staining with heavy metals, arrays are imaged in a scanning electron microscope (SEM). Selection of targets is possible from 3D reconstructions generated by FLM or from 3D reconstructions made from the SEM image stacks at intermediate resolution if no fluorescent markers are available. For ultrastructural analysis, selected targets are finally recorded in the SEM at high-resolution (a few nanometer image pixels). A ribbon-handling tool that can be retrofitted to any ultramicrotome is demonstrated. It helps with array production and substrate removal from the sectioning knife boat. A software platform that allows automated imaging of arrays in the SEM is discussed. Compared to other methods generating large volume EM data, such as serial block-face SEM (SBF-SEM) or focused ion beam SEM (FIB-SEM), this approach has two major advantages: (1) The resin-embedded sample is conserved, albeit in a sliced-up version. It can be stained in different ways and imaged with different resolutions. (2) As the sections can be post-stained, it is not necessary to use samples strongly block-stained with heavy metals to introduce contrast for SEM imaging or render the tissue blocks conductive. This makes the method applicable to a wide variety of materials and biological questions. Particularly prefixed materials e.g., from biopsy banks and pathology labs, can directly be embedded and reconstructed in 3D. PMID:29630046

  13. Infiltration of CdTe nano crystals into a ZnO wire vertical matrix by using the isothermal closed space technique

    NASA Astrophysics Data System (ADS)

    Larramendi, S.; Vaillant Roca, Lidice; Saint-Gregoire, Pierre; Ferraz Dias, Johnny; Behar, Moni

    2017-10-01

    A ZnO nanorod structure was grown by the hydrothermal method and interpenetrated with CdTe using the isothermal closed space sublimation technique. The obtained structure was studied by using the Rutherford backscattering spectrometry (RBS), Scanning Electron Microscopy (SEM), High Resolution Transmission Electron Microscopy (HRTEM). The X-ray Diffraction (XRD) technique confirmed the presence of CdTe nanocrystals (NCs) of very small size formed on the surface and in the interspaces between the ZnO nanorods. The RBS observations together with the SEM observations give information on the obtained structure. Finally the photoluminescence studies show a strong energy confinement effect on the grown CdTe NCs.

  14. Study of environmental biodegradation of LDPE films in soil using optical and scanning electron microscopy.

    PubMed

    Mumtaz, Tabassum; Khan, M R; Hassan, Mohd Ali

    2010-07-01

    An outdoor soil burial test was carried out to evaluate the degradation of commercially available LDPE carrier bags in natural soil for up to 2 years. Biodegradability of low density polyethylene films in soil was monitored using both optical and scanning electron microscopy (SEM). After 7-9 months of soil exposure, microbial colonization was evident on the film surface. Exposed LDPE samples exhibit progressive changes towards degradation after 17-22 months. SEM images reveal signs of degradation such as exfoliation and formation of cracks on film leading to disintegration. The possible degradation mode and consequences on the use and disposal of LDPE films is discussed. Copyright 2010 Elsevier Ltd. All rights reserved.

  15. Thickness determination of few-layer hexagonal boron nitride films by scanning electron microscopy and Auger electron spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutter, P., E-mail: psutter@bnl.gov; Sutter, E.

    2014-09-01

    We assess scanning electron microscopy (SEM) and Auger electron spectroscopy (AES) for thickness measurements on few-layer hexagonal boron nitride (h-BN), the layered dielectric of choice for integration with graphene and other two-dimensional materials. Observations on h-BN islands with large, atomically flat terraces show that the secondary electron intensity in SEM reflects monolayer height changes in films up to least 10 atomic layers thickness. From a quantitative analysis of AES data, the energy-dependent electron escape depth in h-BN films is deduced. The results show that AES is suitable for absolute thickness measurements of few-layer h-BN of 1 to 6 layers.

  16. New Approach to Image Aerogels by Scanning Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Solá, Francisco; Hurwitz, Frances; Yang, Jijing

    2011-03-01

    A new scanning electron microscopy (SEM) technique to image poor electrically conductive aerogels is presented. The process can be performed by non-expert SEM users. We showed that negative charging effects on aerogels can be minimized significantly by inserting dry nitrogen gas close to the region of interest. The process involves the local recombination of accumulated negative charges with positive ions generated from ionization processes. This new technique made possible the acquisition of images of aerogels with pores down to approximately 3nm in diameter using a positively biased Everhart-Thornley (E-T) detector. Well-founded concepts based on known models will also be presented with the aim to explain the results qualitatively.

  17. Viewing Integrated-Circuit Interconnections By SEM

    NASA Technical Reports Server (NTRS)

    Lawton, Russel A.; Gauldin, Robert E.; Ruiz, Ronald P.

    1990-01-01

    Back-scattering of energetic electrons reveals hidden metal layers. Experiment shows that with suitable operating adjustments, scanning electron microscopy (SEM) used to look for defects in aluminum interconnections in integrated circuits. Enables monitoring, in situ, of changes in defects caused by changes in temperature. Gives truer picture of defects, as etching can change stress field of metal-and-passivation pattern, causing changes in defects.

  18. FIB/SEM technology and high-throughput 3D reconstruction of dendritic spines and synapses in GFP-labeled adult-generated neurons.

    PubMed

    Bosch, Carles; Martínez, Albert; Masachs, Nuria; Teixeira, Cátia M; Fernaud, Isabel; Ulloa, Fausto; Pérez-Martínez, Esther; Lois, Carlos; Comella, Joan X; DeFelipe, Javier; Merchán-Pérez, Angel; Soriano, Eduardo

    2015-01-01

    The fine analysis of synaptic contacts is usually performed using transmission electron microscopy (TEM) and its combination with neuronal labeling techniques. However, the complex 3D architecture of neuronal samples calls for their reconstruction from serial sections. Here we show that focused ion beam/scanning electron microscopy (FIB/SEM) allows efficient, complete, and automatic 3D reconstruction of identified dendrites, including their spines and synapses, from GFP/DAB-labeled neurons, with a resolution comparable to that of TEM. We applied this technology to analyze the synaptogenesis of labeled adult-generated granule cells (GCs) in mice. 3D reconstruction of dendritic spines in GCs aged 3-4 and 8-9 weeks revealed two different stages of dendritic spine development and unexpected features of synapse formation, including vacant and branched dendritic spines and presynaptic terminals establishing synapses with up to 10 dendritic spines. Given the reliability, efficiency, and high resolution of FIB/SEM technology and the wide use of DAB in conventional EM, we consider FIB/SEM fundamental for the detailed characterization of identified synaptic contacts in neurons in a high-throughput manner.

  19. FIB/SEM technology and high-throughput 3D reconstruction of dendritic spines and synapses in GFP-labeled adult-generated neurons

    PubMed Central

    Bosch, Carles; Martínez, Albert; Masachs, Nuria; Teixeira, Cátia M.; Fernaud, Isabel; Ulloa, Fausto; Pérez-Martínez, Esther; Lois, Carlos; Comella, Joan X.; DeFelipe, Javier; Merchán-Pérez, Angel; Soriano, Eduardo

    2015-01-01

    The fine analysis of synaptic contacts is usually performed using transmission electron microscopy (TEM) and its combination with neuronal labeling techniques. However, the complex 3D architecture of neuronal samples calls for their reconstruction from serial sections. Here we show that focused ion beam/scanning electron microscopy (FIB/SEM) allows efficient, complete, and automatic 3D reconstruction of identified dendrites, including their spines and synapses, from GFP/DAB-labeled neurons, with a resolution comparable to that of TEM. We applied this technology to analyze the synaptogenesis of labeled adult-generated granule cells (GCs) in mice. 3D reconstruction of dendritic spines in GCs aged 3–4 and 8–9 weeks revealed two different stages of dendritic spine development and unexpected features of synapse formation, including vacant and branched dendritic spines and presynaptic terminals establishing synapses with up to 10 dendritic spines. Given the reliability, efficiency, and high resolution of FIB/SEM technology and the wide use of DAB in conventional EM, we consider FIB/SEM fundamental for the detailed characterization of identified synaptic contacts in neurons in a high-throughput manner. PMID:26052271

  20. Surface topography of hairy cell leukemia cells compared to other leukemias as seen by scanning electron microscopy.

    PubMed

    Polliack, Aaron; Tadmor, Tamar

    2011-06-01

    This short review deals with the ultrastructural surface architecture of hairy cell leukemia (HCL) compared to other leukemic cells, as seen by scanning electron microscopy (SEM). The development of improved techniques for preparing blood cells for SEM in the 1970s readily enabled these features to be visualized more accurately. This review returns us to the earlier history of SEM, when the surface topography of normal and neoplastic cells was visualized and reported for the first time, in an era before the emergence and use of monoclonal antibodies and flow cytometry, now used routinely to define cells by their immunophenotype. Surface microvilli are characteristic for normal and leukemic lymphoid cells, myelo-monocytic cells lack microvilli and show surface ruffles, while leukemic plasma and myeloma cells and megakaryocytes display large surface blebs. HCL cell surfaces are complex and typically 'hybrid' in nature, displaying both lymphoid and monocytic features with florid ruffles of varying sizes interspersed with clumps of short microvilli cytoplasm. The surface features of other leukemic cells and photomicrographs of immuno-SEM labeling of cells employing antibodies and colloidal gold, reported more than 20 years ago, are shown.

  1. Scanning electron microscopy (SEM) evaluation of sealing ability of MTA and EndoSequence as root-end filling materials with chitosan and carboxymethyl chitosan (CMC) as retrograde smear layer removing agents.

    PubMed

    Nagesh, Bolla; Jeevani, Eppala; Sujana, Varri; Damaraju, Bharagavi; Sreeha, Kaluvakolanu; Ramesh, Penumaka

    2016-01-01

    The purpose of this study was to evaluate the sealing ability of mineral trioxide aggregate (MTA) and EndoSequence with chitosan and carboxymethyl chitosan (CMC) as retrograde smear layer removing agents using scanning electron microscopy (SEM). Forty human single rooted teeth were taken. Crowns were decoronated and canals were obturated. Apically roots were resected and retrograde cavities were done. Based on the type of retrograde material placed and the type of smear layer removal agent used for retrograde cavities, they were divided into four groups (N = 10): Group I chitosan with EndoSequence, group II chitosan with MTA, group III CMC with EndoSequence, and Group IV CMC with MTA. All the samples were longitudinally sectioned, and the SEM analysis was done for marginal adaptation. Kruskal-Wallis and Mann-Witney analysis tests. SEM images showed the presence of less gaps in group III, i.e., CMC with EndoSequence when compared to other groups with statistically significant difference. Within the limited scope of this study, it was concluded that EndoSequence as retrograde material showed better marginal sealing ability.

  2. Low temperature–scanning electron microscopy to evaluate morphology and predation of Scolothrips sexmaculatus Pergande (Thysanoptera: Thripidae) against spider mites (Acari: Tetranychidae: Tetranychus species)

    USDA-ARS?s Scientific Manuscript database

    This paper evaluates the potential usefulness of low temperature-scanning electron microscopy (LT-SEM) to evaluate morphology and predation behavior of the six-spotted thrips (Scolothrips sexmaculatus Pergande) against the two-spotted spider mite (Tetranychus urticae (Koch)). Morphological features...

  3. Determination of precursor sites for pitting corrosion of polycrystalline titanium by using different techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garfias-Mesias, L.F.; Alodan, M.; James, P.I.

    1998-06-01

    Scanning electrochemical microscopy (SECM) in ferrocyanide and bromide solutions was used to locate active sites (pitting precursors) on polycrystalline Ti where oxidation of Br{sup {minus}} and Fe(CN){sub 6}{sup 4{minus}} was possible. Analysis of the electrochemically active sites was done by using electron microscopy (SEM), energy dispersive X-ray analysis (EDX), atomic force microscopy (AFM), and in situ confocal laser scanning microscopy (CLSM). In most cases, the active sites were found to be associated with particles (inclusions) which contained mainly Al and Si; however, some other areas not associated with particles were also found to be active. Although the size of themore » inclusions was normally smaller than 20 {micro}m, as revealed by SEM and AFM imaging, in some cases larger particles were also found. Pitting corrosion tests in bromide solution at potentials above 1.5 V{sub SCE} followed by EDX analysis inside the pits and in situ CLSM observation, confirmed that most of the localized attack started in the areas where particles had been located.« less

  4. Characterization of Sulfur and Nanostructured Sulfur Battery Cathodes in Electron Microscopy Without Sublimation Artifacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levin, Barnaby D. A.; Zachman, Michael J.; Werner, Jörg G.

    Abstract Lithium sulfur (Li–S) batteries have the potential to provide higher energy storage density at lower cost than conventional lithium ion batteries. A key challenge for Li–S batteries is the loss of sulfur to the electrolyte during cycling. This loss can be mitigated by sequestering the sulfur in nanostructured carbon–sulfur composites. The nanoscale characterization of the sulfur distribution within these complex nanostructured electrodes is normally performed by electron microscopy, but sulfur sublimates and redistributes in the high-vacuum conditions of conventional electron microscopes. The resulting sublimation artifacts render characterization of sulfur in conventional electron microscopes problematic and unreliable. Here, we demonstratemore » two techniques, cryogenic transmission electron microscopy (cryo-TEM) and scanning electron microscopy in air (airSEM), that enable the reliable characterization of sulfur across multiple length scales by suppressing sulfur sublimation. We use cryo-TEM and airSEM to examine carbon–sulfur composites synthesized for use as Li–S battery cathodes, noting several cases where the commonly employed sulfur melt infusion method is highly inefficient at infiltrating sulfur into porous carbon hosts.« less

  5. Sparse imaging for fast electron microscopy

    NASA Astrophysics Data System (ADS)

    Anderson, Hyrum S.; Ilic-Helms, Jovana; Rohrer, Brandon; Wheeler, Jason; Larson, Kurt

    2013-02-01

    Scanning electron microscopes (SEMs) are used in neuroscience and materials science to image centimeters of sample area at nanometer scales. Since imaging rates are in large part SNR-limited, large collections can lead to weeks of around-the-clock imaging time. To increase data collection speed, we propose and demonstrate on an operational SEM a fast method to sparsely sample and reconstruct smooth images. To accurately localize the electron probe position at fast scan rates, we model the dynamics of the scan coils, and use the model to rapidly and accurately visit a randomly selected subset of pixel locations. Images are reconstructed from the undersampled data by compressed sensing inversion using image smoothness as a prior. We report image fidelity as a function of acquisition speed by comparing traditional raster to sparse imaging modes. Our approach is equally applicable to other domains of nanometer microscopy in which the time to position a probe is a limiting factor (e.g., atomic force microscopy), or in which excessive electron doses might otherwise alter the sample being observed (e.g., scanning transmission electron microscopy).

  6. The dynamic improvement methods of energy efficiency and reliability of oil production submersible electric motors

    NASA Astrophysics Data System (ADS)

    Romanov, V. S.; Goldstein, V. G.

    2018-01-01

    In the organization of production and operation of submersible electric motors (ESP), as the most essential element of electric submersible plants (ESP) in the oil industry, it is necessary to consider specific operating conditions. The submersible electric motors (SEM) as most essential element of electrosubmersible installations (EI) in oil branch accounting of operation specific conditions is necessary in the process production and operation. They are determined by the conditions under which the EPU is operated. They are defined by the EPU operation conditions. For a complete picture the current state of the SED fleet in oil production, the results of its statistical analysis are given. For a comprehensive idea of the SEM park current state the results of statistical analysis are given in oil production. Currently, assessed the performance of submersible equipment produced by major manufacturers. Currently the operational characteristics assessment of the submersible equipment released by the main producers is given. It is stated that standard equipment cannot fully ensure efficient operation with the help of serial EIs, therefore new technologies and corresponding equipment are required to be developed. It is noted that the standard equipment could not provide fully effective operation by means of serial ESP therefore new technologies development and the corresponding equipment are required.

  7. Snow crystal imaging using scanning electron microscopy: III. Glacier ice, snow and biota

    USGS Publications Warehouse

    Rango, A.; Wergin, W.P.; Erbe, E.F.; Josberger, E.G.

    2000-01-01

    Low-temperature scanning electron microscopy (SEM) was used to observe metamorphosed snow, glacial firn, and glacial ice obtained from South Cascade Glacier in Washington State, USA. Biotic samples consisting of algae (Chlamydomonas nivalis) and ice worms (a species of oligochaetes) were also collected and imaged. In the field, the snow and biological samples were mounted on copper plates, cooled in liquid nitrogen, and stored in dry shipping containers which maintain a temperature of -196??C. The firn and glacier ice samples were obtained by extracting horizontal ice cores, 8 mm in diameter, at different levels from larger standard glaciological (vertical) ice cores 7.5 cm in diameter. These samples were cooled in liquid nitrogen and placed in cryotubes, were stored in the same dry shipping container, and sent to the SEM facility. In the laboratory, the samples were sputter coated with platinum and imaged by a low-temperature SEM. To image the firn and glacier ice samples, the cores were fractured in liquid nitrogen, attached to a specimen holder, and then imaged. While light microscope images of snow and ice are difficult to interpret because of internal reflection and refraction, the SEM images provide a clear and unique view of the surface of the samples because they are generated from electrons emitted or reflected only from the surface of the sample. In addition, the SEM has a great depth of field with a wide range of magnifying capabilities. The resulting images clearly show the individual grains of the seasonal snowpack and the bonding between the snow grains. Images of firn show individual ice crystals, the bonding between the crystals, and connected air spaces. Images of glacier ice show a crystal structure on a scale of 1-2 mm which is considerably smaller than the expected crystal size. Microscopic air bubbles, less than 15 ??m in diameter, clearly marked the boundaries between these crystal-like features. The life forms associated with the glacier were easily imaged and studied. The low-temperature SEM sample collecting and handling methods proved to be operable in the field; the SEM analysis is applicable to glaciological studies and reveals details unattainable by conventional light microscopic methods.Low temperature scanning electron microscopy (SEM) was used to observe metamorphosed snow, glacial firn, and glacial ice obtained from South Cascade Glacier in Washington State, USA. Biotic samples consisting of algae and ice worms were also collected and imaged. The SEM images provide a clear and unique view of the surface of the samples because they are generated from electrons emitted or reflected only from the surface of the sample. The SEM has a great depth of field with a wide range of magnifying capabilities.

  8. Characterization of Pu-238 Heat Source Granule Containment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richardson, Paul Dean II; Sanchez, Joey Leo; Wall, Angelique Dinorah

    The Milliwatt Radioisotopic Themoelectric Generator (RTG) provides power for permissive-action links. Essentially these are nuclear batteries that convert thermal energy to electrical energy using a doped silicon-germanium thermopile. The thermal energy is provided by a heat source made of 238Pu, in the form of 238PuO 2 granules. The granules are contained by 3 layers of encapsulation. A thin T-111 liner surrounds the 238PuO 2 granules and protects the second layer (strength member) from exposure to the fuel granules. An outer layer of Hastalloy-C protects the T-111 from oxygen embrittlement. The T-111 strength member is considered the critical component in thismore » 238PuO 2 containment system. Any compromise in the strength member seen during destructive testing required by the RTG surveillance program is characterized. The T-111 strength member is characterized through Scanning Electron Microscopy (SEM), and Metallography. SEM is used in the Secondary Electron mode to reveal possible grain boundary deformation and/or cracking in the region of the strength member weld. Deformation and cracking uncovered by SEM are further characterized by Metallography. Metallography sections are mounted and polished, observed using optical microscopy, then documented in the form of microphotographs. SEM mat further be used to examine polished Metallography mounts to characterize elements using the SEM mode of Energy Dispersive X-ray spectroscopy (EDS).« less

  9. Evaluation of environmental scanning electron microscopy for analysis of Proteus mirabilis crystalline biofilms in situ on urinary catheters

    PubMed Central

    Holling, Nina; Dedi, Cinzia; Jones, Caroline E; Hawthorne, Joseph A; Hanlon, Geoffrey W; Salvage, Jonathan P; Patel, Bhavik A; Barnes, Lara M; Jones, Brian V

    2014-01-01

    Proteus mirabilis is a common cause of catheter-associated urinary tract infections and frequently leads to blockage of catheters due to crystalline biofilm formation. Scanning electron microscopy (SEM) has proven to be a valuable tool in the study of these unusual biofilms, but entails laborious sample preparation that can introduce artefacts, undermining the investigation of biofilm development. In contrast, environmental scanning electron microscopy (ESEM) permits imaging of unprocessed, fully hydrated samples, which may provide much insight into the development of P. mirabilis biofilms. Here, we evaluate the utility of ESEM for the study of P. mirabilis crystalline biofilms in situ, on urinary catheters. In doing so, we compare this to commonly used conventional SEM approaches for sample preparation and imaging. Overall, ESEM provided excellent resolution of biofilms formed on urinary catheters and revealed structures not observed in standard SEM imaging or previously described in other studies of these biofilms. In addition, we show that energy-dispersive X-ray spectroscopy (EDS) may be employed in conjunction with ESEM to provide information regarding the elemental composition of crystalline structures and demonstrate the potential for ESEM in combination with EDS to constitute a useful tool in exploring the mechanisms underpinning crystalline biofilm formation. PMID:24786314

  10. Imaging single atoms using secondary electrons with an aberration-corrected electron microscope.

    PubMed

    Zhu, Y; Inada, H; Nakamura, K; Wall, J

    2009-10-01

    Aberration correction has embarked on a new frontier in electron microscopy by overcoming the limitations of conventional round lenses, providing sub-angstrom-sized probes. However, improvement of spatial resolution using aberration correction so far has been limited to the use of transmitted electrons both in scanning and stationary mode, with an improvement of 20-40% (refs 3-8). In contrast, advances in the spatial resolution of scanning electron microscopes (SEMs), which are by far the most widely used instrument for surface imaging at the micrometre-nanometre scale, have been stagnant, despite several recent efforts. Here, we report a new SEM, with aberration correction, able to image single atoms by detecting electrons emerging from its surface as a result of interaction with the small probe. The spatial resolution achieved represents a fourfold improvement over the best-reported resolution in any SEM (refs 10-12). Furthermore, we can simultaneously probe the sample through its entire thickness with transmitted electrons. This ability is significant because it permits the selective visualization of bulk atoms and surface ones, beyond a traditional two-dimensional projection in transmission electron microscopy. It has the potential to revolutionize the field of microscopy and imaging, thereby opening the door to a wide range of applications, especially when combined with simultaneous nanoprobe spectroscopy.

  11. A new fish scale-derived scaffold for corneal regeneration.

    PubMed

    Lin, Chien Chen; Ritch, Robert; Lin, Shang Ming; Ni, Mei-Hui; Chang, Yu-Chung; Lu, Yi Lung; Lai, Hong Ji; Lin, Feng-Huei

    2010-02-26

    The purpose of this study is to develop a novel scaffold, derived from fish scales, as an alternative functional material with sufficient mechanical strength for corneal regenerative applications. Fish scales, which are usually considered as marine wastes, were acellularized, decalcified and fabricated into collagen scaffolds. The microstructure of the acellularized scaffold was imaged by scanning electron microscopy (SEM). The acellularization and decalcification treatments did not affect the naturally 3-dimentional, highly centrally-oriented micropatterned structure of the material. To assess the cytocompatibility of the scaffold with corneal cells, rabbit corneal cells were cultured on the scaffold and examined under SEM and confocal microscopy at different time periods. Rapid cell proliferation and migration on the scaffold were observed under SEM and confocal microscopy. The highly centrally-oriented micropatterned structure of the scaffold was beneficial for efficient nutrient and oxygen supply to the cells cultured in the three-dimensional matrices, and therefore it is useful for high-density cell seeding and spreading. Collectively, we demonstrate the superior cellular conductivity of the newly developed material. We provide evidences for the feasibility of the scaffold as a template for corneal cells growth and migration, and thus the fish scale-derived scaffold can be developed as a promising material for tissue-engineering of cornea.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strelcov, Evgheni; Cothren, Joshua E.; Leonard, Donovan N.

    Progress in rational engineering of Li-ion batteries requires better understanding of the electrochemical processes and accompanying transformations in the electrode materials on multiple length scales. In spite of recent progress in utilizing transmission electron microscopy (TEM) to analyze these materials, in situ scanning electron microscopy (SEM) was mostly overlooked as a powerful tool that allows probing these phenomena on the nano and mesoscale. In this paper, we report on in situ SEM study of lithiation in a V 2O 5-based single-nanobelt battery with ionic liquid electrolyte. Coupled with cyclic voltammetry measurements, in situ SEM revealed the peculiarities of subsurface intercalation,more » formation of solid-electrolyte interface (SEI) and electromigration of liquid. We observed that single-crystalline vanadia nanobelts do not undergo large-scale amorphization or fracture during electrochemical cycling, but rather transform topochemically with only a slight shape distortion. Lastly, the SEI layer seems to have significant influence on the lithium ion diffusion and overall capacity of the single-nanobelt battery.« less

  13. Electron microscopy of the amphibian model systems Xenopus laevis and Ambystoma mexicanum.

    PubMed

    Kurth, Thomas; Berger, Jürgen; Wilsch-Bräuninger, Michaela; Kretschmar, Susanne; Cerny, Robert; Schwarz, Heinz; Löfberg, Jan; Piendl, Thomas; Epperlein, Hans H

    2010-01-01

    In this chapter we provide a set of different protocols for the ultrastructural analysis of amphibian (Xenopus, axolotl) tissues, mostly of embryonic origin. For Xenopus these methods include: (1) embedding gastrulae and tailbud embryos into Spurr's resin for TEM, (2) post-embedding labeling of methacrylate (K4M) and cryosections through adult and embryonic epithelia for correlative LM and TEM, and (3) pre-embedding labeling of embryonic tissues with silver-enhanced nanogold. For the axolotl (Ambystoma mexicanum) we present the following methods: (1) SEM of migrating neural crest (NC) cells; (2) SEM and TEM of extracellular matrix (ECM) material; (3) Cryo-SEM of extracellular matrix (ECM) material after cryoimmobilization; and (4) TEM analysis of hyaluronan using high-pressure freezing and HABP labeling. These methods provide exemplary approaches for a variety of questions in the field of amphibian development and regeneration, and focus on cell biological issues that can only be answered with fine structural imaging methods, such as electron microscopy. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. SEM and AFM studies of dip-coated CuO nanofilms.

    PubMed

    Dhanasekaran, V; Mahalingam, T; Ganesan, V

    2013-01-01

    Cupric oxide (CuO) semiconducting thin films were prepared at various copper sulfate concentrations by dip coating. The copper sulfate concentration was varied to yield films of thicknesses in the range of 445-685 nm by surface profilometer. X-ray diffraction patterns revealed that the deposited films were polycrystalline in nature with monoclinic structure of (-111) plane. The surface morphology and topography of monoclinic-phase CuO thin films were examined using scanning electron microscopy (SEM) and atomic force microscopy (AFM), respectively. Surface roughness profile was plotted using WSxM software and the estimated surface roughness was about ∼19.4 nm at 30 mM molar concentration. The nanosheets shaped grains were observed by SEM and AFM studies. The stoichiometric compound formation was observed at 30 mM copper sulfate concentration prepared film by EDX. The indirect band gap energy of CuO films was increased from 1.08 to 1.20 eV with the increase of copper sulfate concentrations. Copyright © 2012 Wiley Periodicals, Inc.

  15. Scanning electron microscopical and cross-sectional analysis of extraterrestrial carbonaceous nanoglobules

    NASA Astrophysics Data System (ADS)

    Garvie, Laurence A. J.; Baumgardner, Grant; Buseck, Peter R.

    2008-05-01

    Carbonaceous nanoglobules are ubiquitous in carbonaceous chondrite (CC) meteorites. The Tagish Lake (C2) meteorite is particularly intriguing in containing an abundance of nanoglobules, with a wider range of forms and sizes than encountered in other CC meteorites. Previous studies by transmission electron microscopy (TEM) have provided a wealth of information on chemistry and structure. In this study low voltage scanning electron microscopy (SEM) was used to characterize the globule forms and external structures. The internal structure of the globules was investigated after sectioning by focused ion beam (FIB) milling. The FIB-SEM analysis shows that the globules range from solid to hollow. Some hollow globules show a central open core, with adjoining smaller cores. The FIB with an SEM is a valuable tool for the analysis of extraterrestrial materials, even of sub-micron-sized "soft" carbonaceous particles. The rapid site-specific cross-sectioning capabilities of the FIB allow the preservation of the internal morphology of the nanoglobules, with minimal damage or alteration of the unsectioned areas.

  16. Scanning electron microscopy (SEM) and X-ray dispersive spectrometry evaluation of direct laser metal sintering surface and human bone interface: a case series.

    PubMed

    Mangano, Carlo; Piattelli, Adriano; Raspanti, Mario; Mangano, Francesco; Cassoni, Alessandra; Iezzi, Giovanna; Shibli, Jamil Awad

    2011-01-01

    Recent studies have shown that direct laser metal sintering (DLMS) produces structures with complex geometry and consequently that allow better osteoconductive properties. The aim of this patient report was to evaluate the early bone response to DLMS implant surface retrieved from human jaws. Four experimental DLMS implants were inserted in the posterior mandible of four patients during conventional dental implant surgery. After 8 weeks, the micro-implants and the surrounding tissue were removed and prepared for scanning electron microscopy (SEM) and histomorphometric analysis to evaluate the bone-implant interface. The SEM and EDX evaluations showed a newly formed tissue composed of calcium and phosphorus. The bone-to-implant contact presented a mean of 60.5 ± 11.6%. Within the limits of this patient report, data suggest that the DLMS surfaces presented a close contact with the human bone after a healing period of 8 weeks.

  17. Improvement in the Characterization of the 2099 Al-Li Alloy by FE-SEM

    NASA Astrophysics Data System (ADS)

    Brodusch, Nicolas; Trudeau, Michel L.; Michaud, Pierre; Brochu, Mathieu; Rodrigue, Lisa; Boselli, Julien; Gauvin, Raynald

    This paper describes how state-of-the-art Field-Emission Scanning Electron Microscopy (FE-SEM) can contribute to the characterization of the 2099 aluminum-lithium alloy, and metallic alloys in general. Investigations were carried out on bulk and thinned samples. BSE imaging at 3kV and STEM imaging at 30kV along with highly efficient microanalysis permitted to correlate experimental and expected structures. Although our results confirm previous studies, this work points out possible substitutions of Mg and Zn with Li, Al and Cu in the T1 precipitates. Zinc and magnesium are also present in "rice grain" shaped precipitates at the grain boundaries. The versatility of the FE-SEM is highlighted in that it can provide information at the macro and micro scales with relevant details. Its ability to probe the distribution of precipitates from nano-to micro-sizes throughout the matrix makes Field-Emission Scanning Electron Microscopy a suitable technique for the characterization of metallic alloys.

  18. Quality improvement of environmental secondary electron detector signal using helium gas in variable pressure scanning electron microscopy.

    PubMed

    Oho, Eisaku; Suzuki, Kazuhiko; Yamazaki, Sadao

    2007-01-01

    The quality of the image signal obtained from the environmental secondary electron detector (ESED) employed in a variable pressure (VP) SEM can be dramatically improved by using helium gas. The signal-to-noise ratio (SNR) increases gradually in the range of the pressures that can be used in our modified SEM. This method is especially useful in low-voltage VP SEM as well as in a variety of SEM operating conditions, because helium gas can more or less maintain the amount of unscattered primary electrons. In order to measure the SNR precisely, a digital scan generator system for obtaining two images with identical views is employed as a precondition.

  19. Friction stir welding joint of dissimilar materials between AZ31B magnesium and 6061 aluminum alloys: Microstructure studies and mechanical characterizations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohammadi, J.; Behnamian, Y.; Mostafaei, A., E-mail: amir.mostafaei@gmail.com

    2015-03-15

    Friction stir welding is an efficient manufacturing method for joining dissimilar alloys, which can dramatically reduce grain sizes and offer high mechanical joint efficiency. Lap FSW joints between dissimilar AZ31B and Al 6061 alloy sheets were made at various tool rotation and travel speeds. Rotation and travel speeds varied between 560–1400 r/min and 16–40 mm/min respectively, where the ratio between these parameters was such that nearly constant pitch distances were applied during welding. X-ray diffraction pattern (XRD), optical microscopy images (OM), electron probe microanalysis (EPMA) and scanning electron microscopy equipped with an energy-dispersive X-ray spectroscopy (SEM-EDS) were used to investigatemore » the microstructures of the joints welded. Intermetallic phases including Al{sub 12}Mg{sub 17} (γ) and Al{sub 3}Mg{sub 2} (β) were detected in the weld zone (WZ). For different tool rotation speeds, the morphology of the microstructure in the stir zone changed significantly with travel speed. Lap shear tensile test results indicated that by simultaneously increasing the tool rotation and travel speeds to 1400 r/min and 40 mm/min, the joint tensile strength and ductility reached a maximum. Microhardness measurements and tensile stress–strain curves indicated that mechanical properties were affected by FSW parameters and mainly depended on the formation of intermetallic compounds in the weld zone. In addition, a debonding failure mode in the Al/Mg dissimilar weld nugget was investigated by SEM and surface fracture studies indicated that the presence of intermetallic compounds in the weld zone controlled the failure mode. XRD analysis of the fracture surface indicated the presence of brittle intermetallic compounds including Al{sub 12}Mg{sub 17} (γ) and Al{sub 3}Mg{sub 2} (β). - Highlights: • Dissimilar Al/Mg joint was obtained by lap friction stir welding technique. • Effect of rotation and travel speeds on the formation of intermetallic compounds • Microstructure and chemical studies including metallography, XRD, SEM-EDS, and EPMA • Mechanical property tests such as stress–strain curves, failure load and hardness • IMCs as Al{sub 3}Mg{sub 2} and Al{sub 12}Mg{sub 17} were identified in weld nugget and at Al/Mg interface.« less

  20. Low-cost mercury (II) ion sensor by biosynthesized gold nanoparticles (AuNPs)

    NASA Astrophysics Data System (ADS)

    Guerrero, Jet G.; Candano, Gabrielle Jackie; Mendoza, Aileen Nicole; Paderanga, Marciella; Cardino, Krenz John; Locsin, Alessandro; Bibon, Cherilou

    2017-11-01

    Biosynthesis of gold nanoparticles has attracted the curiosity of scientists over the past few decades. Nanoparticles have been proven to exhibit enhanced properties and offer a variety of applications in different fields of study. Utilizing nanoparticles instead of bulky equipment and noxious chemicals has become more convenient; reagents needed for synthesis have been proven to be benign (mostly aqueous solutions) and are cost-effective. In this study, gold nanoparticles were biosynthesized using guyabano (Annonamuricata) peel samples as the source of reducing agents. The optimum concentration ratio of gold chloride to guyabano extract was determined to be 1:7. Characterization studies were accomplished using UV Vis Spectroscopy, Fourier Transform Electron Microscopy (FTIR) and Scanning Electron Microscopy (SEM). Spectroscopic maximum absorbance was found to be at 532 nm thereby confirming the presence of gold nanoparticles. Hydroxyl (O-H stretching), carbonyl (C=O stretching), and amide (N-H stretching) functional groups shown in the FTIR spectra are present on possible reducing agents such as phenols, alkaloids, and saponins found in the plant extract. SEM images revealed spherical shaped nanoparticles with mean diameter of 23.18 nm. It was observed that the bio-synthesized AuNPs were selective to mercury ions through uniform color change from wine red to yellow. A novel smartphone-based mercury (II) ions assay was developed using the gold nanoparticles. A calibration curve correlated the analytical response (Red intensity) to the concentrations of Hg 2+ ions. Around 94% of the variations in the intensity is accounted for by the variations in the concentration of mercury (II) ions suggesting a good linear relationship between the two variables. A relative standard deviation (RSD) of less than 1% was achieved at all individual points. The metal sensor displayed a sensitivity of 0.039 R.I./ppm with an LOD of 93.79 ppm. Thus, the bio-fabricated gold nanoparticles can be utilized as a possible sensor for mercury (II) ions in solution.

  1. Hydrothermal synthesis of highly crystalline RuS{sub 2} nanoparticles as cathodic catalysts in the methanol fuel cell and hydrochloric acid electrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yanjuan; College of Material Science and Engineering, Key Laboratory of Automobile Materials of Ministry of Education, Jilin University, 2699 Qianjin Street, Changchun 130012; Li, Nan, E-mail: lin@jlu.edu.cn

    2015-05-15

    Highlights: • Highly crystalline RuS{sub 2} nanoparticles have been first synthesized by a “one-step” hydrothermal method. • The product presents a pure cubic phase of stoichiometric ratio RuS{sub 2} with average particle size of 14.8 nm. • RuS{sub 2} nanoparticles were used as cathodic catalysts in methanol fuel cell and hydrochloric acid electrolysis. • The catalyst outperforms commercial Pt/C in methanol tolerance and stability towards Cl{sup −}. - Abstract: Highly crystalline ruthenium sulfide (RuS{sub 2}) nanoparticles have been first synthesized by a “one-step” hydrothermal method at 400 °C, using ruthenium chloride and thiourea as reactants. The products were characterized bymore » powder X-ray diffraction (XRD), scanning electron microscopy/energy disperse spectroscopy (SEM/EDS), thermo gravimetric-differential thermal analyze (TG-DTA), transmission electron microscopy equipped with selected area electron diffraction (TEM/SAED). Fourier transform infrared spectra (IR), and X-ray photoelectron spectroscopy (XPS). XRD result illustrates that the highly crystalline product presents a pure cubic phase of stoichiometric ratio RuS{sub 2} and the average particle size is 14.8 nm. SEM and TEM images display the products have irregular shape of 6–25 nm. XPS analyst indicates that the sulfur exists in the form of S{sub 2}{sup 2−}. Cyclic voltammetry (CV), rotating disk electrode (RDE), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) measurements are conducted to evaluate the electrocatalytic activity and stability of the highly crystalline RuS{sub 2} nanoparticles in oxygen reduction reaction (ORR) for methanol fuel cell and hydrochloric acid electrolysis. The results illustrate that RuS{sub 2} is active towards oxygen reduction reaction. Although the activity of RuS{sub 2} is lower than that of Pt/C, the RuS{sub 2} catalyst outperforms commercial Pt/C in methanol tolerance and stability towards Cl{sup −}.« less

  2. Photothermal inactivation of bacteria on plasmonic nanostructures

    NASA Astrophysics Data System (ADS)

    Santos, Greggy M.; Ibañez de Santi Ferrara, Felipe; Zhao, Fusheng; Rodrigues, Debora F.; Shih, Wei-Chuan

    2016-03-01

    Hospital-acquired bacterial infections are frequently associated with the pathogenic biofilms on surfaces of devices and instruments used in medical procedures. The utilization of thermal plasmonic agents is an innovative approach for sterilizing hospital equipment and for in vivo therapeutic treatment of bacterial infection. A photothermal inactivation technique via array of nanoporous gold disks (NPGDs) has been developed by irradiating near infrared (NIR) light onto deposited bacterial cells (Escherichia coli, Bacillus subtilis, Exiguobacterium AT1B) on the surface of metal nanostructure. The physical and photothermal properties of the NPGD substrate were investigated using topographical scanning electron microscopy (SEM) and thermographic infrared imaging. Bacterial viability studies on NPGD substrates irradiated with and without NIR light were evaluated using a fluorescence-based two-component stain assay. The results show that the heat generated from the NPGD substrate promotes high cell death counts (~100%) at short exposure durations (<25 s) even for thermally-resistant bacterial strains. The photothermal effects on NPGD substrate can lead to point-of-care applications.

  3. Investigation of electrical studies of spinel FeCo2O4 synthesized by sol-gel method

    NASA Astrophysics Data System (ADS)

    Lobo, Laurel Simon; Kalainathan, S.; Kumar, A. Ruban

    2015-12-01

    In this work, spinel FeCo2O4 is synthesized by sol-gel method using succinic acid as a chelating agent at 900 °C. The structural, spectroscopic and morphological characterization was carried out by using X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR) and Scanning Electron Microscopy equipped with Energy Dispersive X-ray spectrometer (SEM-EDX). The M-H loop at room temperature confirms the ferromagnetic property of the sample. The frequency and temperature dependence of dielectric constant (εʹ) and dielectric loss (tan δ) shows the presence of Maxwell-Wagner relaxation in the sample due to the presence of oxygen vacancy. Nyquist plot for frequency and temperature domain signifies the presence of grain effect, grain boundary effect and electrode interface in the conduction process. Electric modulus under suppression of electrode polarization shows the grain and grain boundary effects. The electrode polarization is observed in the lower frequency range of the conductivity graph.

  4. Effects of metal binder on the microstructure and mechanical properties of Al2O3-based micro-nanocomposite ceramic tool material

    NASA Astrophysics Data System (ADS)

    Ni, Xiu-ying; Zhao, Jun; Sun, Jia-lin; Gong, Feng; Li, Zuo-li

    2017-07-01

    The Al2O3-(W,Ti)C composites with Ni and Mo additions varying from 0vol% to 12vol% were prepared via hot pressing sintering under 30 MPa. The microstructure was investigated via X-ray diffraction (XRD) and scanning electron microscopy (SEM) equipped with energy dispersive spectrometry (EDS). Mechanical properties such as flexural strength, fracture toughness, and Vickers hardness were also measured. Results show that the main phases A12O3 and (W,Ti)C were detected by XRD. Compound MoNi also existed in sintered nanocomposites. The fracture modes of the nanocomposites were both intergranular and transgranular fractures. The plastic deformation of metal particles and crack bridging were the main toughening mechanisms. The maximum flexural strength and fracture toughness were obtained for 9vol% and 12vol% additions of Ni and Mo, respectively. The hardness of the composites reduced gradually with increasing content of metals Ni and Mo.

  5. New findings on tarsonemid mites (Prostigmata: Tarsonemidae) under the LT-SEM (Low Temperature Scanning Electron Microscopy) – The case of genera Daidalotarsonemus and Excelsotarsonemus

    USDA-ARS?s Scientific Manuscript database

    Daidalotarsonemus De Leon and Excelsotarsonemus Ochoa & Naskrecki are tarsonemids considered to be plant inhabiting genera. Both present complex structured bodies which are very difficult to be interpreted by traditional light microscopy techniques. Due to this most of the papers published have pres...

  6. Observing Tin-Lead Alloys by Scanning Electron Microscopy: A Physical Chemistry Experiment Investigating Macro-Level Behaviors and Micro-Level Structures

    ERIC Educational Resources Information Center

    Wang, Yue; Xu, Xinhua; Wu, Meifen; Hu, Huikang; Wang, Xiaogang

    2015-01-01

    Scanning electron microscopy (SEM) was introduced into undergraduate physical chemistry laboratory curriculum to help students observe the phase composition and morphology characteristics of tin-lead alloys and thus further their understanding of binary alloy phase diagrams. The students were captivated by this visual analysis method, which…

  7. Elemental distribution analysis of urinary crystals.

    PubMed

    Fazil Marickar, Y M; Lekshmi, P R; Varma, Luxmi; Koshy, Peter

    2009-10-01

    Various crystals are seen in human urine. Some of them, particularly calcium oxalate dihydrate, are seen normally. Pathological crystals indicate crystal formation initiating urinary stones. Unfortunately, many of the relevant crystals are not recognized in light microscopic analysis of the urinary deposit performed in most of the clinical laboratories. Many crystals are not clearly identifiable under the ordinary light microscopy. The objective of the present study was to perform scanning electron microscopic (SEM) assessment of various urinary deposits and confirm the identity by elemental distribution analysis (EDAX). 50 samples of urinary deposits were collected from urinary stone clinic. Deposits containing significant crystalluria (more than 10 per HPF) were collected under liquid paraffin in special containers and taken up for SEM studies. The deposited crystals were retrieved with appropriate Pasteur pipettes, and placed on micropore filter paper discs. The fluid was absorbed by thicker layers of filter paper underneath and discs were fixed to brass studs. They were then gold sputtered to 100 A and examined under SEM (Jeol JSM 35C microscope). When crystals were seen, their morphology was recorded by taking photographs at different angles. At appropriate magnification, EDAX probe was pointed to the crystals under study and the wave patterns analyzed. Components of the crystals were recognized by utilizing the data. All the samples analyzed contained significant number of crystals. All samples contained more than one type of crystal. The commonest crystals encountered included calcium oxalate monohydrate (whewellite 22%), calcium oxalate dihydrate (weddellite 32%), uric acid (10%), calcium phosphates, namely, apatite (4%), brushite (6%), struvite (6%) and octocalcium phosphate (2%). The morphological appearances of urinary crystals described were correlated with the wavelengths obtained through elemental distribution analysis. Various urinary crystals that are not reported under light microscopy could be recognized by SEM-EDAX combination. EDAX is a significant tool for recognizing unknown crystals not identified by ordinary light microscopy or SEM alone.

  8. Fabrication and Characterization of Multi-Walled Carbon Nanotube (MWCNT) and Ni-Coated Multi-Walled Carbon Nanotube (Ni-MWCNT) Repair Patches for Carbon Fiber Reinforced Composite Systems

    NASA Technical Reports Server (NTRS)

    Johnson, Brienne; Caraccio, Anne; Tate, LaNetra; Jackson, Dionne

    2011-01-01

    Multi-walled carbon nanotube (MWCNT)/epoxy and nickel-coated multi-walled carbon nanotube (Ni-MWCNT)/epoxy systems were fabricated into carbon fiber composite repair patches via vacuum resin infusion. Two 4 ply patches were manufactured with fiber orientations of [90/ 90/ 4590] and [0/90/ +45/ -45]. Prior to resin infusion, the MWCNT/Epoxy system and NiMWCNT/ epoxy systems were optimized for dispersion quality. Scanning electron microscopy (SEM) and optical microscopy (OM) were used to determine the presence ofcarbon nanotubes and assess dispersion quality. Decomposition temperatures were determined via thermogravametric analysis (TGA). SEM and TGA were also used to evaluate the composite repair patches.

  9. A facile synthesis of metal nanoparticle - graphene composites for better absorption of solar radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Bindu; Mulla, Rafiq; Rabinal, M. K., E-mail: mkrabinal@yahoo.com

    2015-06-24

    Herein, a facile chemical approach has been adopted to prepare silver nanoparticles (AgNPs)- graphene (G) composite to study photothermal effect. Sodium borohydride (SBH), a strong reducing agent has been selected for this work. Effect of SBH concentrations on optical behavior of AgNPs-G composite was also investigated. Resultant materials were characterized by various techniques including X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), optical absorption, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). SEM micrographs confirm wrapping of AgNPs into graphene whereas XRD analysis reveals their particle size variation between 47 nm to 69 nm. Optical studies throw a light on theirmore » strong absorption behavior towards solar radiation.« less

  10. [Preparation of polyelectrolyte microcapsules contained gold nanoparticles].

    PubMed

    Sun, Ya-jie; Zhu, Jia-bi; Zheng, Chun-li

    2010-03-01

    In this work, polyelectrolyte microcapsules containing gold nanoparticles were prepared via layer by layer assembly. Gold nanoparticles and poly (allyamine hydrochloride) (PAH) were coated on the CaCO3 microparticles. And then EDTA was used to remove the CaCO3 core. Scanning electron microscopy (SEM) was used to characterize the surface of microcapsules. SEM images indicate that the microcapsules and the polyelectrolyte multilayer were deposited on the surface of CaCO3 microparticles. FITC-bovine serum albumin (FITC-BSA, 2 mg) was incorporated in the CaCO3 microparticles by co-precipitation. Fluorescence microscopy was used to observe the fluorescence intensity of microcapsules. The encapsulation efficiency was (34.31 +/- 2.44) %. The drug loading was (43.75 +/- 3.12) mg g(-1).

  11. Correlative multi-scale characterization of a fine grained Nd-Fe-B sintered magnet.

    PubMed

    Sasaki, T T; Ohkubo, T; Hono, K; Une, Y; Sagawa, M

    2013-09-01

    The Nd-rich phases in pressless processed fine grained Nd-Fe-B sintered magnets have been characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and three dimensional atom probe tomography (3DAP). The combination of the backscattered electron (BSE) and in-lens secondary electron (IL-SE) images in SEM led to an unambiguous identification of four types of Nd-rich phases, NdOx, Ia3 type phase, which is isostructural to Nd₂O₃, dhcp-Nd and Nd₁Fe₄B₄. In addition, the 3DAP analysis of thin Nd-rich grain boundary layer indicate that the coercivity has a close correlation with the chemistry of the grain boundary phase. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Synthesis of TiN/a-Si3N4 thin film by using a Mather type dense plasma focus system

    NASA Astrophysics Data System (ADS)

    Hussain, T.; R., Ahmad; Khalid, N.; A. Umar, Z.; Hussnain, A.

    2013-05-01

    A 2.3 kJ Mather type pulsed plasma focus device was used for the synthesis of a TiN/a-Si3N4 thin film at room temperature. The film was characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The XRD pattern confirms the growth of polycrystalline TiN thin film. The XPS results indicate that the synthesized film is non-stoichiometric and contains titanium nitride, silicon nitride, and a phase of silicon oxy-nitride. The SEM and AFM results reveal that the surface of the synthesized film is quite smooth with 0.59 nm roughness (root-mean-square).

  13. Determination of element composition and extraterrestrial material occurrence in moss and lichen samples from King George Island (Antarctica) using reactor neutron activation analysis and SEM microscopy.

    PubMed

    Mróz, Tomasz; Szufa, Katarzyna; Frontasyeva, Marina V; Tselmovich, Vladimir; Ostrovnaya, Tatiana; Kornaś, Andrzej; Olech, Maria A; Mietelski, Jerzy W; Brudecki, Kamil

    2018-01-01

    Seven lichens (Usnea antarctica and U. aurantiacoatra) and nine moss samples (Sanionia uncinata) collected in King George Island were analyzed using instrumental neutron activation analysis, and concentration of major and trace elements was calculated. For some elements, the concentrations observed in moss samples were higher than corresponding values reported from other sites in the Antarctica, but in the lichens, these were in the same range of concentrations. Scanning electron microscopy (SEM) and statistical analysis showed large influence of volcanic-origin particles. Also, the interplanetary cosmic particles (ICP) were observed in investigated samples, as mosses and lichens are good collectors of ICP and micrometeorites.

  14. Electron tomography and cryo-SEM characterization reveals novel ultrastructural features of host-parasite interaction during Chlamydia abortus infection.

    PubMed

    Wilkat, M; Herdoiza, E; Forsbach-Birk, V; Walther, P; Essig, A

    2014-08-01

    Chlamydia (C.) abortus is a widely spread pathogen among ruminants that can be transmitted to women during pregnancy leading to severe systemic infection with consecutive abortion. As a member of the Chlamydiaceae, C. abortus shares the characteristic feature of an obligate intracellular biphasic developmental cycle with two morphological forms including elementary bodies (EBs) and reticulate bodies (RBs). In contrast to other chlamydial species, C. abortus ultrastructure has not been investigated yet. To do so, samples were fixed by high-pressure freezing and processed by different electron microscopic methods. Freeze-substituted samples were analysed by transmission electron microscopy, scanning transmission electron microscopical tomography and immuno-electron microscopy, and freeze-fractured samples were analysed by cryo-scanning electron microscopy. Here, we present three ultrastructural features of C. abortus that have not been reported up to now. Firstly, the morphological evidence that C. abortus is equipped with the type three secretion system. Secondly, the accumulation and even coating of whole inclusion bodies by membrane complexes consisting of multiple closely adjacent membranes which seems to be a C. abortus specific feature. Thirdly, the formation of small vesicles in the periplasmic space of RBs in the second half of the developmental cycle. Concerning the time point of their formation and the fact that they harbour chlamydial components, these vesicles might be morphological correlates of an intermediate step during the process of redifferentiation of RBs into EBs. As this feature has also been shown for C. trachomatis and C. pneumoniae, it might be a common characteristic of the family of Chlamydiaceae.

  15. Evaluation of poly (vinyl alcohol) based cryogel-zinc oxide nanocomposites for possible applications as wound dressing materials.

    PubMed

    Chaturvedi, Archana; Bajpai, Anil K; Bajpai, Jaya; K Singh, Sunil

    2016-08-01

    In this investigation cryogels composed of poly (vinyl alcohol) (PVA) were prepared by repeated freeze thaw method followed by in situ precipitation of zinc oxide nanoparticles within the cryogel networks. Fourier transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD), Energy dispersive X-ray spectroscopy (EDX) were used to characterize the nanocomposites. The morphologies of native PVA cryogels and PVA cryogel-ZnO nanocomposites were observed by scanning electron microscopy (SEM), transmission electron microscopy (TEM) techniques. The SEM analysis suggested that cryogels show a well-defined porous morphology whereas TEM micrographs revealed the presence of nearly spherical and well separated zinc oxide nanoparticles with diameter<100nm. XRD results showed all relevant Bragg's reflections for crystal structure of zinc oxide nanoparticles. Thermo gravimetric-differential thermal analysis (TG-DTA) was conducted to evaluate thermal stability of the nanocomposites. Mechanical properties of nanocomposites were determined in terms of tensile strength and percent elongation. Biocompatible nature was ascertained by anti-haemolytic activity, bovine serum albumin (blood protein) adsorption and in vitro cytotoxicity tests. The prepared nanocomposites were also investigated for swelling and deswelling behaviours. The results revealed that both the swelling and deswelling process depend on the chemical composition of the nanocomposites, number of freeze-thaw cycles, pH and temperature of the swelling medium. The developed biocompatible PVA cryogel-ZnO nanocomposites were also tested for antibacterial activities against both Gram-negative and Gram-positive bacteria. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Silicifying Biofilm Exopolymers on a Hot-Spring Microstromatolite: Templating Nanometer-Thick Laminae

    NASA Astrophysics Data System (ADS)

    Handley, Kim M.; Turner, Sue J.; Campbell, Kathleen A.; Mountain, Bruce W.

    2008-08-01

    Exopolymeric substances (EPS) are an integral component of microbial biofilms; however, few studies have addressed their silicification and preservation in hot-spring deposits. Through comparative analyses with the use of a range of microscopy techniques, we identified abundant EPS significant to the textural development of spicular, microstromatolitic, siliceous sinter at Champagne Pool, Waiotapu, New Zealand. Examination of biofilms coating sinter surfaces by confocal laser scanning microscopy (CLSM), environmental scanning electron microscopy (ESEM), cryo-scanning electron microscopy (cryo-SEM), and transmission electron microscopy (TEM) revealed contraction of the gelatinous EPS matrix into films (approximately 10 nm thick) or fibrillar structures, which is common in conventional SEM analyses and analogous to products of naturally occurring desiccation. Silicification of fibrillar EPS contributed to the formation of filamentous sinter. Matrix surfaces or dehydrated films templated sinter laminae (nanometers to microns thick) that, in places, preserved fenestral voids beneath. Laminae of similar thickness are, in general, common to spicular geyserites. This is the first report to demonstrate EPS templation of siliceous stromatolite laminae. Considering the ubiquity of biofilms on surfaces in hot-spring environments, EPS silicification studies are likely to be important to a better understanding of the origins of laminae in other modern and ancient stromatolitic sinters, and EPS potentially may serve as biosignatures in extraterrestrial rocks.

  17. Spatial Resolution in Scanning Electron Microscopy and Scanning Transmission Electron Microscopy Without a Specimen Vacuum Chamber.

    PubMed

    Nguyen, Kayla X; Holtz, Megan E; Richmond-Decker, Justin; Muller, David A

    2016-08-01

    A long-standing goal of electron microscopy has been the high-resolution characterization of specimens in their native environment. However, electron optics require high vacuum to maintain an unscattered and focused probe, a challenge for specimens requiring atmospheric or liquid environments. Here, we use an electron-transparent window at the base of a scanning electron microscope's objective lens to separate column vacuum from the specimen, enabling imaging under ambient conditions, without a specimen vacuum chamber. We demonstrate in-air imaging of specimens at nanoscale resolution using backscattered scanning electron microscopy (airSEM) and scanning transmission electron microscopy. We explore resolution and contrast using Monte Carlo simulations and analytical models. We find that nanometer-scale resolution can be obtained at gas path lengths up to 400 μm, although contrast drops with increasing gas path length. As the electron-transparent window scatters considerably more than gas at our operating conditions, we observe that the densities and thicknesses of the electron-transparent window are the dominant limiting factors for image contrast at lower operating voltages. By enabling a variety of detector configurations, the airSEM is applicable to a wide range of environmental experiments including the imaging of hydrated biological specimens and in situ chemical and electrochemical processes.

  18. Fungal-Induced Deterioration of Mural Paintings: In Situ and Mock-Model Microscopy Analyses.

    PubMed

    Unković, Nikola; Grbić, Milica Ljaljević; Stupar, Miloš; Savković, Željko; Jelikić, Aleksa; Stanojević, Dragan; Vukojević, Jelena

    2016-04-01

    Fungal deterioration of frescoes was studied in situ on a selected Serbian church, and on a laboratory model, utilizing standard and newly implemented microscopy techniques. Scanning electron microscopy (SEM) with energy-dispersive X-ray confirmed the limestone components of the plaster. Pigments used were identified as carbon black, green earth, iron oxide, ocher, and an ocher/cinnabar mixture. In situ microscopy, applied via a portable microscope ShuttlePix P-400R, proved very useful for detection of invisible micro-impairments and hidden, symptomless, microbial growth. SEM and optical microscopy established that observed deterioration symptoms, predominantly discoloration and pulverization of painted layers, were due to bacterial filaments and fungal hyphal penetration, and formation of a wide range of fungal structures (i.e., melanized hyphae, chlamydospores, microcolonial clusters, Cladosporium-like conidia, and Chaetomium perithecia and ascospores). The all year-round monitoring of spontaneous and induced fungal colonization of a "mock painting" in controlled laboratory conditions confirmed the decisive role of humidity level (70.18±6.91% RH) in efficient colonization of painted surfaces, as well as demonstrated increased bioreceptivity of painted surfaces to fungal colonization when plant-based adhesives (ilinocopie, murdent), compared with organic adhesives of animal origin (bone glue, egg white), are used for pigment sizing.

  19. Spatial Resolution in Scanning Electron Microscopy and Scanning Transmission Electron Microscopy Without a Specimen Vacuum Chamber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Kayla X.; Holtz, Megan E.; Richmond-Decker, Justin

    2016-07-25

    Abstract A long-standing goal of electron microscopy has been the high-resolution characterization of specimens in their native environment. However, electron optics require high vacuum to maintain an unscattered and focused probe, a challenge for specimens requiring atmospheric or liquid environments. Here, we use an electron-transparent window at the base of a scanning electron microscope’s objective lens to separate column vacuum from the specimen, enabling imaging under ambient conditions, without a specimen vacuum chamber. We demonstrate in-air imaging of specimens at nanoscale resolution using backscattered scanning electron microscopy (airSEM) and scanning transmission electron microscopy. We explore resolution and contrast using Montemore » Carlo simulations and analytical models. We find that nanometer-scale resolution can be obtained at gas path lengths up to 400μm, although contrast drops with increasing gas path length. As the electron-transparent window scatters considerably more than gas at our operating conditions, we observe that the densities and thicknesses of the electron-transparent window are the dominant limiting factors for image contrast at lower operating voltages. By enabling a variety of detector configurations, the airSEM is applicable to a wide range of environmental experiments including the imaging of hydrated biological specimens andin situchemical and electrochemical processes.« less

  20. Determination of anisotropy and multimorphology in fly ash based geopolymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, M. Irfan, E-mail: mirfanwazir@gmail.com; Azizli, Khairun, E-mail: khairun-azizli@petronas.com.my; Sufian, Suriati, E-mail: suriati@petronas.com.my

    2015-07-22

    In this study, Malaysian coal fly ash-based geopolymers were investigated for its morphology and chemical composition using scanning electron microscopy coupled with energy dispersive X-rays (SEM-EDX). Geopolymer was synthesized using sodium hydroxide as activator. SEM studies revealed multiphasous structure of the material, composed of geopolymeric gel, partially reacted fly ashparticles and selectively leached particles. EDX analysis confirmed the chemical composition of different regions. Infra red spectroscopic studies supported the SEM-EDX analysis by confirming presence of unreacted quartzite and mullite in geopolymers. It is concluded that geopolymers possese a non uniform chemistry through out the structure.

  1. Determination of anisotropy and multimorphology in fly ash based geopolymers

    NASA Astrophysics Data System (ADS)

    Khan, M. Irfan; Azizli, Khairun; Sufian, Suriati; Man, Zakaria; Siyal, Ahmer Ali; Ullah, Hafeez

    2015-07-01

    In this study, Malaysian coal fly ash-based geopolymers were investigated for its morphology and chemical composition using scanning electron microscopy coupled with energy dispersive X-rays (SEM-EDX). Geopolymer was synthesized using sodium hydroxide as activator. SEM studies revealed multiphasous structure of the material, composed of geopolymeric gel, partially reacted fly ashparticles and selectively leached particles. EDX analysis confirmed the chemical composition of different regions. Infra red spectroscopic studies supported the SEM-EDX analysis by confirming presence of unreacted quartzite and mullite in geopolymers. It is concluded that geopolymers possese a non uniform chemistry through out the structure.

  2. One-dimensional nanoferroic rods; synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Ahmed, M. A.; Seddik, U.; Okasha, N.; Imam, N. G.

    2015-11-01

    One-dimensional nanoferroic rods of BaTiO3 were synthesized by improved citrate auto-combustion technology using tetrabutyl titanate. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), transmission electron microscopy (TEM), atomic force microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR) have been used to characterize the prepared sample. The results indicated that the crystal structure of BaTiO3 is tetragonal phase with an average crystallite size of 47 nm. SEM image gives a cauliflower-like morphology of the agglomerated nanorods. The stoichiometry of the chemical composition of the BaTiO3 ceramic was confirmed by EDX. TEM micrograph exhibited that BaTiO3 nanoparticles have rod-like shape with an average length of 120 nm and width of 43 nm. AFM was used to investigate the surface topography and its roughness. The topography image in 3D showed that the BaTiO3 particles have a rod shape with an average particle size of 116 nm which in agreement with 3D TEM result.

  3. Mineralogy of mine waste at the Vermont Asbestos Group mine, Belvidere Mountain, Vermont

    USGS Publications Warehouse

    Levitan, D.M.; Hammarstrom, J.M.; Gunter, M.E.; Seal, R.R.; Chou, I.-Ming; Piatak, N.M.

    2009-01-01

    Samples from the surfaces of waste piles at the Vermont Asbestos Group mine in northern Vermont were studied to determine their mineralogy, particularly the presence and morphology of amphiboles. Analyses included powder X-ray diffraction (XRD), optical microscopy, scanning electron microscopy (SEM), electron probe microanalysis (EPMA), and Raman spectroscopy. Minerals identified by XRD were serpentine-group minerals, magnetite, chlorite, quartz, olivine, pyroxene, and brucite; locally, mica and carbonates were also present. Raman spectroscopy distinguished antigorite and chrysotile, which could not be differentiated using XRD. Long-count, short-range XRD scans of the (110) amphibole peak showed trace amounts of amphibole in most samples. Examination of amphiboles in tailings by optical microscopy, SEM, and EPMA revealed non-fibrous amphiboles compositionally classified as edenite, magnesiohornblende, magnesiokatophorite, and pargasite. No fibrous amphibole was found in the tailings, although fibrous tremolite was identified in a sample of host rock. Knowledge of the mineralogy at the site may lead to better understanding of potential implications for human health and aid in designing a remediation plan.

  4. Ultrananocrystalline diamond-coated nanoporous membranes support SK-N-SH neuroblastoma endothelial cell attachment.

    PubMed

    Yang, Kai-Hung; Nguyen, Alexander K; Goering, Peter L; Sumant, Anirudha V; Narayan, Roger J

    2018-06-06

    Ultrananocrystalline diamond (UNCD) has been demonstrated to have attractive features for biomedical applications and can be combined with nanoporous membranes for applications in drug delivery systems, biosensing, immunoisolation and single molecule analysis. In this study, free-standing nanoporous UNCD membranes with pore sizes of 100 or 400 nm were fabricated by directly depositing ultrathin UNCD films on nanoporous silicon nitride membranes and then etching away silicon nitride using reactive ion etching. Successful deposition of UNCD on the substrate with a novel process was confirmed with Raman spectroscopy, X-ray photoelectron spectroscopy, cross-section scanning electron microscopy (SEM) and transmission electron microscopy. Both sample types exhibited uniform geometry and maintained a clear hexagonal pore arrangement. Cellular attachment of SK-N-SH neuroblastoma endothelial cells was examined using confocal microscopy and SEM. Attachment of SK-N-SH cells onto UNCD membranes on both porous regions and solid surfaces was shown, indicating the potential use of UNCD membranes in biomedical applications such as biosensors and tissue engineering scaffolds.

  5. Fungi and bacteria involved in desert varnish formation

    NASA Technical Reports Server (NTRS)

    Taylor-George, S.; Palmer, F.; Staley, J. T.; Curtiss, B.; Adams, J. B.; Borns, D. J.

    1983-01-01

    Desert varnish is a coating of ferromanganese oxides and clays that develops on rock surfaces in arid to semi-arid regions. Active respiration but not photosynthesis was detected on varnished rock surfaces from the Sonoran Desert. Light microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations, and cultivation experiments indicate that both fungi, primarily dematiaceous hyphomycetes, and bacteria are found on and within desert varnish coatings from the arid regions studied. Some fungi grow as microcolonial fungi (MCF) on rocks, and microscopic observations suggest MCF become incorporated in the varnish coating. SEM-EDAX (energy dispersive X-ray systems) analyses indicate the MCF contain 3 of the characteristic elements of varnish: iron, aluminum, and silicon. In some locations, MCF are also enriched in manganese relative to the rock substratum. Furthermore, some of the dematiaceous hyphomycetes that have been cultivated are able to oxidize manganese under laboratory conditions. It is possible that manganese-oxidizing bacteria, which are found in varnish, also play an important role in varnish formation.

  6. Synthesis and characterization of bovine femur bone hydroxyapatite containing silver nanoparticles for the biomedical applications

    NASA Astrophysics Data System (ADS)

    Nirmala, R.; Sheikh, Faheem A.; Kanjwal, Muzafar A.; Lee, John Hwa; Park, Soo-Jin; Navamathavan, R.; Kim, Hak Yong

    2011-05-01

    Bovine femur bone hydroxyapatite (HA) containing silver (Ag) nanoparticles was synthesized by thermal decomposition method and subsequent reduction of silver nitrate with N, N-dimethylformamide (DMF) in the presence of poly(vinylacetate) (PVAc). The structural, morphological, and chemical properties of the HA-Ag nanoparticles were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). TEM images showed that the Ag nanoparticles with size ranging from 8 to 20 nm and were arranged at the periphery of HA crystals. Bactericidal activity of HA-Ag with different concentration of Ag nanoparticles immobilized on the surface of HA was investigated against gram-positive Staphylococcus aureus ( S. aureus, non-MRSA), Methicillin resistant S. aureus (MRSA) and gram-negative Escherichia coli ( E. coli) by the disc diffusion susceptibility test. The HA-Ag nanoparticles showed that broad spectrum activity against non-MRSA, MRSA, and E. coli bacterial strains.

  7. A combination of a SEM technique and X-ray microanalysis for studying the spore germination process of Clostridium tyrobutyricum.

    PubMed

    Bassi, Daniela; Cappa, Fabrizio; Cocconcelli, Pier Sandro

    2009-06-01

    Clostridium tyrobutyricum is an anaerobic bacterium responsible for late blowing defects during cheese ripening and it is of scientific interest for biological hydrogen production. A scanning electron microscopy (SEM) coating technique and X-ray microanalysis were developed to analyze the architecture and chemical composition of spores upon germination in response to environmental changes. In addition, we investigated the effects of different compounds on this process. Agents and environmental conditions inducing germination were characterized monitoring changes in optical density (OD). Among all tested conditions, the greatest drop in OD(625) (57.4%) was obtained when spores were incubated in l-alanine/l-lactate buffer, pH 4.6. In addition, a carbon-coating SEM technique and X-ray microanalysis were used to observe the architecture of spores and to examine calcium dipicolinate release. Conditions inducing C. tyrobutyricum spore germination were identified and SEM X-ray microanalysis clearly distinguished germinating from dormant spores. We confirmed that calcium dipicolinate release is one of the first events occurring. These microscopy methods could be considered sensitive tools for evaluating morphological and chemical changes in spores of C. tyrobutyricum during the initial phase of germination. Information gathered from this work may provide new data for further research on germination.

  8. Quantifying Golgi structure using EM: combining volume-SEM and stereology for higher throughput.

    PubMed

    Ferguson, Sophie; Steyer, Anna M; Mayhew, Terry M; Schwab, Yannick; Lucocq, John Milton

    2017-06-01

    Investigating organelles such as the Golgi complex depends increasingly on high-throughput quantitative morphological analyses from multiple experimental or genetic conditions. Light microscopy (LM) has been an effective tool for screening but fails to reveal fine details of Golgi structures such as vesicles, tubules and cisternae. Electron microscopy (EM) has sufficient resolution but traditional transmission EM (TEM) methods are slow and inefficient. Newer volume scanning EM (volume-SEM) methods now have the potential to speed up 3D analysis by automated sectioning and imaging. However, they produce large arrays of sections and/or images, which require labour-intensive 3D reconstruction for quantitation on limited cell numbers. Here, we show that the information storage, digital waste and workload involved in using volume-SEM can be reduced substantially using sampling-based stereology. Using the Golgi as an example, we describe how Golgi populations can be sensed quantitatively using single random slices and how accurate quantitative structural data on Golgi organelles of individual cells can be obtained using only 5-10 sections/images taken from a volume-SEM series (thereby sensing population parameters and cell-cell variability). The approach will be useful in techniques such as correlative LM and EM (CLEM) where small samples of cells are treated and where there may be variable responses. For Golgi study, we outline a series of stereological estimators that are suited to these analyses and suggest workflows, which have the potential to enhance the speed and relevance of data acquisition in volume-SEM.

  9. Faults and foibles of quantitative scanning electron microscopy/energy dispersive x-ray spectrometry (SEM/EDS)

    NASA Astrophysics Data System (ADS)

    Newbury, Dale E.; Ritchie, Nicholas W. M.

    2012-06-01

    Scanning electron microscopy with energy dispersive x-ray spectrometry (SEM/EDS) is a powerful and flexible elemental analysis method that can identify and quantify elements with atomic numbers > 4 (Be) present as major constituents (where the concentration C > 0.1 mass fraction, or 10 weight percent), minor (0.01<= C <= 0.1) and trace (C < 0.01, with a minimum detectable limit of ~+/- 0.0005 - 0.001 under routine measurement conditions, a level which is analyte and matrix dependent ). SEM/EDS can select specimen volumes with linear dimensions from ~ 500 nm to 5 μm depending on composition (masses ranging from ~ 10 pg to 100 pg) and can provide compositional maps that depict lateral elemental distributions. Despite the maturity of SEM/EDS, which has a history of more than 40 years, and the sophistication of modern analytical software, the method is vulnerable to serious shortcomings that can lead to incorrect elemental identifications and quantification errors that significantly exceed reasonable expectations. This paper will describe shortcomings in peak identification procedures, limitations on the accuracy of quantitative analysis due to specimen topography or failures in physical models for matrix corrections, and quantitative artifacts encountered in xray elemental mapping. Effective solutions to these problems are based on understanding the causes and then establishing appropriate measurement science protocols. NIST DTSA II and Lispix are open source analytical software available free at www.nist.gov that can aid the analyst in overcoming significant limitations to SEM/EDS.

  10. Chapter 24: Strategic Energy Management (SEM) Evaluation Protocol. The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, James

    Strategic energy management (SEM) focuses on achieving energy-efficiency improvements through systematic and planned changes in facility operations, maintenance, and behaviors (OM&B) and capital equipment upgrades in large energy-using facilities, including industrial buildings, commercial buildings, and multi-facility organizations such as campuses or communities. Facilities can institute a spectrum of SEM actions, ranging from a simple process for regularly identifying energy-savings actions, to establishing a formal, third-party recognized or certified SEM framework for continuous improvement of energy performance. In general, SEM programs that would be considered part of a utility program will contain a set of energy-reducing goals, principles, and practices emphasizingmore » continuous improvements in energy performance or savings through energy management and an energy management system (EnMS).« less

  11. Comparison of 3D cellular imaging techniques based on scanned electron probes: Serial block face SEM vs. Axial bright-field STEM tomography.

    PubMed

    McBride, E L; Rao, A; Zhang, G; Hoyne, J D; Calco, G N; Kuo, B C; He, Q; Prince, A A; Pokrovskaya, I D; Storrie, B; Sousa, A A; Aronova, M A; Leapman, R D

    2018-06-01

    Microscopies based on focused electron probes allow the cell biologist to image the 3D ultrastructure of eukaryotic cells and tissues extending over large volumes, thus providing new insight into the relationship between cellular architecture and function of organelles. Here we compare two such techniques: electron tomography in conjunction with axial bright-field scanning transmission electron microscopy (BF-STEM), and serial block face scanning electron microscopy (SBF-SEM). The advantages and limitations of each technique are illustrated by their application to determining the 3D ultrastructure of human blood platelets, by considering specimen geometry, specimen preparation, beam damage and image processing methods. Many features of the complex membranes composing the platelet organelles can be determined from both approaches, although STEM tomography offers a higher ∼3 nm isotropic pixel size, compared with ∼5 nm for SBF-SEM in the plane of the block face and ∼30 nm in the perpendicular direction. In this regard, we demonstrate that STEM tomography is advantageous for visualizing the platelet canalicular system, which consists of an interconnected network of narrow (∼50-100 nm) membranous cisternae. In contrast, SBF-SEM enables visualization of complete platelets, each of which extends ∼2 µm in minimum dimension, whereas BF-STEM tomography can typically only visualize approximately half of the platelet volume due to a rapid non-linear loss of signal in specimens of thickness greater than ∼1.5 µm. We also show that the limitations of each approach can be ameliorated by combining 3D and 2D measurements using a stereological approach. Copyright © 2018. Published by Elsevier Inc.

  12. Investigation of quartz grain surface textures by atomic force microscopy for forensic analysis.

    PubMed

    Konopinski, D I; Hudziak, S; Morgan, R M; Bull, P A; Kenyon, A J

    2012-11-30

    This paper presents a study of quartz sand grain surface textures using atomic force microscopy (AFM) to image the surface. Until now scanning electron microscopy (SEM) has provided the primary technique used in the forensic surface texture analysis of quartz sand grains as a means of establishing the provenance of the grains for forensic reconstructions. The ability to independently corroborate the grain type classifications is desirable and provides additional weight to the findings of SEM analysis of the textures of quartz grains identified in forensic soil/sediment samples. AFM offers a quantitative means of analysis that complements SEM examination, and is a non-destructive technique that requires no sample preparation prior to scanning. It therefore has great potential to be used for forensic analysis where sample preservation is highly valuable. By taking quantitative topography scans, it is possible to produce 3D representations of microscopic surface textures and diagnostic features for examination. Furthermore, various empirical measures can be obtained from analysing the topography scans, including arithmetic average roughness, root-mean-square surface roughness, skewness, kurtosis, and multiple gaussian fits to height distributions. These empirical measures, combined with qualitative examination of the surfaces can help to discriminate between grain types and provide independent analysis that can corroborate the morphological grain typing based on the surface textures assigned using SEM. Furthermore, the findings from this study also demonstrate that quartz sand grain surfaces exhibit a statistically self-similar fractal nature that remains unchanged across scales. This indicates the potential for a further quantitative measure that could be utilised in the discrimination of quartz grains based on their provenance for forensic investigations. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  13. Imaging connected porosity of crystalline rock by contrast agent-aided X-ray microtomography and scanning electron microscopy.

    PubMed

    Kuva, J; Sammaljärvi, J; Parkkonen, J; Siitari-Kauppi, M; Lehtonen, M; Turpeinen, T; Timonen, J; Voutilainen, M

    2018-04-01

    We set out to study connected porosity of crystalline rock using X-ray microtomography and scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS) with caesium chloride as a contrast agent. Caesium is an important radionuclide regarding the final deposition of nuclear waste and also forms dense phases that can be readily distinguished by X-ray microtomography and SEM-EDS. Six samples from two sites, Olkiluoto (Finland) and Grimsel (Switzerland), where transport properties of crystalline rock are being studied in situ, were investigated using X-ray microtomography and SEM-EDS. The samples were imaged with X-ray microtomography, immersed in a saturated caesium chloride (CsCl) solution for 141, 249 and 365 days and imaged again with X-ray microtomography. CsCl inside the samples was successfully detected with X-ray microtomography and it had completely penetrated all six samples. SEM-EDS elemental mapping was used to study the location of caesium in the samples in detail with quantitative mineral information. Precipitated CsCl was found in the connected pore space in Olkiluoto veined gneiss and in lesser amounts in Grimsel granodiorite. Only a very small amount of precipitated CsCl was observed in the Grimsel granodiorite samples. In Olkiluoto veined gneiss caesium was found in pinitised areas of cordierite grains. In the pinitised areas caesium was found in notable excess compared to chloride, possibly due to the combination of small pore size and negatively charged surfaces. In addition, elevated concentrations of caesium were found in kaolinite and sphalerite phases. The findings concerning the location of CsCl were congruent with X-ray microtomography. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  14. Evaluation of environmental scanning electron microscopy for analysis of Proteus mirabilis crystalline biofilms in situ on urinary catheters.

    PubMed

    Holling, Nina; Dedi, Cinzia; Jones, Caroline E; Hawthorne, Joseph A; Hanlon, Geoffrey W; Salvage, Jonathan P; Patel, Bhavik A; Barnes, Lara M; Jones, Brian V

    2014-06-01

    Proteus mirabilis is a common cause of catheter-associated urinary tract infections and frequently leads to blockage of catheters due to crystalline biofilm formation. Scanning electron microscopy (SEM) has proven to be a valuable tool in the study of these unusual biofilms, but entails laborious sample preparation that can introduce artefacts, undermining the investigation of biofilm development. In contrast, environmental scanning electron microscopy (ESEM) permits imaging of unprocessed, fully hydrated samples, which may provide much insight into the development of P. mirabilis biofilms. Here, we evaluate the utility of ESEM for the study of P. mirabilis crystalline biofilms in situ, on urinary catheters. In doing so, we compare this to commonly used conventional SEM approaches for sample preparation and imaging. Overall, ESEM provided excellent resolution of biofilms formed on urinary catheters and revealed structures not observed in standard SEM imaging or previously described in other studies of these biofilms. In addition, we show that energy-dispersive X-ray spectroscopy (EDS) may be employed in conjunction with ESEM to provide information regarding the elemental composition of crystalline structures and demonstrate the potential for ESEM in combination with EDS to constitute a useful tool in exploring the mechanisms underpinning crystalline biofilm formation. © 2014 The Authors. FEMS Microbiology Letters published by John Wiley & Sons Ltd on behalf of Federation of European Microbiological Societies.

  15. In-situ High Temperature Phase Transformations in Ceramics

    DTIC Science & Technology

    2009-07-28

    microscopy - SEM and transmission electron microscopy - TEM), have identified important microstructural considerations, such as the critical ...particularly with judicial design of the critical particle size and microstructure.12, 47, 48 Likewise, preliminary work indicates the possibility of high...toughening of fiber reinforced, fibrous monolithic or laminated ceramic matrix composites.49, 50 enstatite was above a 7 μm critical grain size

  16. Adequacy of surface analytical tools for studying the tribology of ceramics

    NASA Technical Reports Server (NTRS)

    Sliney, H. E.

    1986-01-01

    Surface analytical tools are very beneficial in tribological studies of ceramics. Traditional methods of optical microscopy, XRD, XRF, and SEM should be combined with newer surface sensitive techniques especially AES and XPS. ISS and SIMS can also be useful in providing additional compositon details. Tunneling microscopy and electron energy loss spectroscopy are less known techniques that may also prove useful.

  17. Immunogold scanning electron microscopy can reveal the polysaccharide architecture of xylem cell walls

    PubMed Central

    Sun, Yuliang; Juzenas, Kevin

    2017-01-01

    Abstract Immunofluorescence microscopy (IFM) and immunogold transmission electron microscopy (TEM) are the two main techniques commonly used to detect polysaccharides in plant cell walls. Both are important in localizing cell wall polysaccharides, but both have major limitations, such as low resolution in IFM and restricted sample size for immunogold TEM. In this study, we have developed a robust technique that combines immunocytochemistry with scanning electron microscopy (SEM) to study cell wall polysaccharide architecture in xylem cells at high resolution over large areas of sample. Using multiple cell wall monoclonal antibodies (mAbs), this immunogold SEM technique reliably localized groups of hemicellulosic and pectic polysaccharides in the cell walls of five different xylem structures (vessel elements, fibers, axial and ray parenchyma cells, and tyloses). This demonstrates its important advantages over the other two methods for studying cell wall polysaccharide composition and distribution in these structures. In addition, it can show the three-dimensional distribution of a polysaccharide group in the vessel lateral wall and the polysaccharide components in the cell wall of developing tyloses. This technique, therefore, should be valuable for understanding the cell wall polysaccharide composition, architecture and functions of diverse cell types. PMID:28398585

  18. Phonon shift in chemically exfoliated WS2 nanosheet

    NASA Astrophysics Data System (ADS)

    Sarkar, Abdus Salam; Pal, Suman Kalyan

    2018-04-01

    We have synthesized few layer WS2 nanosheets in a low boiling point solvent. Few layer of WS2 sheets are characterized by various techniques such as UV-visible and Raman spectroscopy, transmission electron microscopy (TEM), atomic force microscopy (AFM) and scanning electron microscopy (SEM). UV-Vis absorption spectra confirm the well dispersed in isopropyl alcohol. SEM and TEM images indicate the sheet like morphology of WS2. Atomic force microscopy image and room temperature Raman spectroscopy confirm the exfoliation of few layer (4-5 layer) of WS2. Further, Raman spectroscopy was used as a meteorology tool to determine the temperature co-efficient. We have systematically investigated the temperature dependent Raman spectroscopic behavior of few layer WS2. Our results depict the softening of the Raman modes E12g in plane vibration and A1g out of plane vibration with increasing the temperature from 77 K to 300 K. Softening of the Raman modes could be explained in terms of the double resonance which is active in the layered materials. The observed temperature coefficients for two Raman peaks E12g and A1g, are - 0.022 cm-1 and -0.009 cm-1, respectively.

  19. Quantification of silver nanoparticle uptake and distribution within individual human macrophages by FIB/SEM slice and view.

    PubMed

    Guehrs, Erik; Schneider, Michael; Günther, Christian M; Hessing, Piet; Heitz, Karen; Wittke, Doreen; López-Serrano Oliver, Ana; Jakubowski, Norbert; Plendl, Johanna; Eisebitt, Stefan; Haase, Andrea

    2017-03-21

    Quantification of nanoparticle (NP) uptake in cells or tissues is very important for safety assessment. Often, electron microscopy based approaches are used for this purpose, which allow imaging at very high resolution. However, precise quantification of NP numbers in cells and tissues remains challenging. The aim of this study was to present a novel approach, that combines precise quantification of NPs in individual cells together with high resolution imaging of their intracellular distribution based on focused ion beam/ scanning electron microscopy (FIB/SEM) slice and view approaches. We quantified cellular uptake of 75 nm diameter citrate stabilized silver NPs (Ag 75 Cit) into an individual human macrophage derived from monocytic THP-1 cells using a FIB/SEM slice and view approach. Cells were treated with 10 μg/ml for 24 h. We investigated a single cell and found in total 3138 ± 722 silver NPs inside this cell. Most of the silver NPs were located in large agglomerates, only a few were found in clusters of fewer than five NPs. Furthermore, we cross-checked our results by using inductively coupled plasma mass spectrometry and could confirm the FIB/SEM results. Our approach based on FIB/SEM slice and view is currently the only one that allows the quantification of the absolute dose of silver NPs in individual cells and at the same time to assess their intracellular distribution at high resolution. We therefore propose to use FIB/SEM slice and view to systematically analyse the cellular uptake of various NPs as a function of size, concentration and incubation time.

  20. Chromium immobilization by extra- and intraradical fungal structures of arbuscular mycorrhizal symbioses.

    PubMed

    Wu, Songlin; Zhang, Xin; Sun, Yuqing; Wu, Zhaoxiang; Li, Tao; Hu, Yajun; Lv, Jitao; Li, Gang; Zhang, Zhensong; Zhang, Jing; Zheng, Lirong; Zhen, Xiangjun; Chen, Baodong

    2016-10-05

    Arbuscular mycorrhizal (AM) fungi can enhance plant Cr tolerance through immobilizing Cr in mycorrhizal roots. However, the detailed processes and mechanisms are unclear. The present study focused on cellular distribution and speciation of Cr in both extraradical mycelium (ERM) and mycorrhizal roots exposed to Cr(VI) by using field emission scanning electron microscopy equipped with energy dispersive X-ray spectrometer (FE-SEM-EDS), scanning transmission soft X-ray microscopy (STXM) and X-ray absorption fine structure (XAFS) spectroscopy techniques. We found that amounts of particles (possibly extracellular polymeric substances, EPS) were produced on the AM fungal surface upon Cr(VI) stress, which contributed greatly to Cr(VI) reduction and immobilization. With EDS of the surface of AM fungi exposed to various Cr(VI) levels, a positive correlation between Cr and P was revealed, suggesting that phosphate groups might act as counter ions of Cr(III), which was also confirmed by the XAFS analysis. Besides, STXM and XAFS analyses showed that Cr(VI) was reduced to Cr(III) in AM fungal structures (arbuscules, intraradical mycelium, etc.) and cell walls in mycorrhizal roots, and complexed possibly with carboxyl groups or histidine analogues. The present work provided evidence of Cr immobilization on fungal surface and in fungal structures in mycorrhizal roots at a cellular level, and thus unraveled the underlying mechanisms by which AM symbiosis immobilize Cr. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Electron Microscopist | Center for Cancer Research

    Cancer.gov

    PROGRAM DESCRIPTION The Cancer Research Technology Program (CRTP) develops and implements emerging technology, cancer biology expertise and research capabilities to accomplish NCI research objectives. The CRTP is an outward-facing, multi-disciplinary hub purposed to enable the external cancer research community and provides dedicated support to NCI’s intramural Center for Cancer Research (CCR). The dedicated units provide electron microscopy, protein characterization, protein expression, optical microscopy and genetics. These research efforts are an integral part of CCR at the Frederick National Laboratory for Cancer Research (FNLCR). CRTP scientists also work collaboratively with intramural NCI investigators to provide research technologies and expertise. KEY ROLES/RESPONSIBILITIES - THIS POSITION IS CONTINGENT UPON FUNDING APPROVAL The Electron Microscopist will: Operate ultramicrotomes (Leica) and other instrumentation related to the preparation of embedded samples for EM (TEM and SEM) Operate TEM microscopes, (specifically Hitachi, FEI T20 and FEI T12) as well as SEM microscopes (Hitachi); task will include loading samples, screening, and performing data collection for a variety of samples: from cells to proteins Manage maintenance for the TEM and SEM microscopes Provide technical advice to investigators on sample preparation and data collection

  2. Scanning Electron Microscopy-Energy-Dispersive X-Ray (SEM/EDX): A Rapid Diagnostic Tool to Aid the Identification of Burnt Bone and Contested Cremains.

    PubMed

    Ellingham, Sarah T D; Thompson, Tim J U; Islam, Meez

    2018-03-01

    This study investigates the use of Scanning electron microscopy-energy-dispersive X-ray (SEM-EDX) as a diagnostic tool for the determination of the osseous origin of samples subjected to different temperatures. Sheep (Ovis aries) ribs of two experimental groups (fleshed and defleshed) were burned at temperatures of between 100°C and 1100°C in 100°C increments and subsequently analyzed with the SEM-EDX to determine the atomic percentage of present elements. Three-factor ANOVA analysis showed that neither the exposure temperature, nor whether the burning occurred with or without soft tissue present had any significant influence on the bone's overall elemental makeup (p > 0.05). The Ca/P ratio remained in the osseous typical range of between 1.6 and 2.58 in all analyzed samples. This demonstrates that even faced with high temperatures, the overall gross elemental content and atomic percentage of elements in bone remain stable, creating a unique "fingerprint" for osseous material, even after exposure to extreme conditions. © 2017 American Academy of Forensic Sciences.

  3. Mechanical and structural characterizations of gamma- and alpha-alumina nanofibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vahtrus, Mikk; Umalas, Madis; Polyakov, Boris

    2015-09-15

    We investigate the applicability of alumina nanofibers as a potential reinforcement material in ceramic matrix compounds by comparing the mechanical properties of individual nanofibers before and after annealing at 1400 °C. Mechanical testing is performed inside a scanning electron microscope (SEM), which enables observation in real time of the deformation and fracture of the fibers under loading, thereby providing a close-up inspection of the freshly fractured area in vacuum. Improvement of both the Young's modulus and the breaking strength for annealed nanofibers is demonstrated. Mechanical testing is supplemented with the structural characterization of the fibers before and after annealing usingmore » SEM, transmission electron microscopy and X-ray diffraction methods. - Highlights: • Mechanical properties of individual alumina nanofibers were measured using in situ SEM cantilevered beam bending technique. • Improvement of mechanical properties of the alumina fibers after annealing at 1400 °C is demonstrated. • Formation of branched structures is demonstrated and their mechanical properties are studied. • XRD and electron microscopy were used for structural characterization of untreated and annealed nanofibers.« less

  4. Morphological changes in diseased cementum layers: a scanning electron microscopy study.

    PubMed

    Bilgin, E; Gürgan, C A; Arpak, M Nejat; Bostanci, H S; Güven, K

    2004-05-01

    The aim of this study was to compare the morphological changes that occurred in root cementum layers due to periodontal disease by using scanning electron microscopy (SEM). Ninety-two periodontally hopeless teeth extracted from 29 patients were studied. Measurements of probing depth (PD) and clinical attachment loss (CAL) were taken prior to extractions. After the longitudinal fracturing process of root specimens, healthy and diseased cementum layers of roots were evaluated by SEM for the thickness of the cementum and the morphological changes in collagen fibers. The result of SEM evaluation revealed a significant ( P < 0.001) decrease in the thickness of cementum layer on the diseased root surfaces compared to the healthy surfaces. There were denser and conspicuous collagen fibers with their interfibrillar matrix in cementum layers on the healthy root surfaces compared to the diseased surfaces. Within the limits of this study, the thickness of cementum layers in diseased areas was found to be significantly less than that in the healthy areas of root surfaces. However, there exist variations in the density and visibility of cemental fibers between individuals and within the individual.

  5. Intercalated chitosan/hydroxyapatite nanocomposites: Promising materials for bone tissue engineering applications.

    PubMed

    Nazeer, Muhammad Anwaar; Yilgör, Emel; Yilgör, Iskender

    2017-11-01

    Preparation and characterization of chitosan/hydroxyapatite (CS/HA) nanocomposites displaying an intercalated structure is reported. Hydroxyapatite was synthesized through sol-gel process. Formic acid was introduced as a new solvent to obtain stable dispersions of nano-sized HA particles in polymer solution. CS/HA dispersions with HA contents of 5, 10 and 20% by weight were prepared. Self-assembling of HA nanoparticles during the drying of the solvent cast films led to the formation of homogeneous CS/HA nanocomposites. Composite films were analyzed by scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive X-rays (EDX) analysis, Fourier transform infrared (FTIR) spectroscopy, X-rays diffraction (XRD) analysis and thermogravimetric analysis (TGA). SEM and AFM confirmed the presence of uniformly distributed HA nanoparticles on the chitosan matrix surface. XRD patterns and cross-sectional SEM images showed the formation of layered nanocomposites. Complete degradation of chitosan matrix in TGA experiments, led to the formation of nanoporous 3D scaffolds containing hydroxyapatite, β-tricalcium phosphate and calcium pyrophosphate. CS/HA composites can be considered as promising materials for bone tissue engineering applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Phagocytosis of PLGA Microparticles in Rat Peritoneal Exudate Cells: A Time-Dependent Study

    NASA Astrophysics Data System (ADS)

    Gomes, Anderson De Jesus; Nain Lunardi, Claure; Henrique Caetano, Flávio; Orive Lunardi, Laurelúcia; da Hora Machado, Antonio Eduardo

    2006-07-01

    With the purpose of enhancing the efficacy of microparticle-encapsulated therapeutic agents, in this study we evaluated the phagocytic ability of rat peritoneal exudate cells and the preferential location of poly(D,L-lactide-co-glycolic acid) (PLGA) microparticles inside these cells. The microparticles used were produced by a solvent evaporation method and were characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). Size distribution analysis using DLS and SEM showed that the particles were spherical, with diameters falling between 0.5 and 1.5 [mu]m. Results from cell adhesion by SEM assay, indicated that the PLGA microparticles are not toxic to cells and do not cause any distinct damage to them as confirmed by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay. Among the large variety of cell populations found in the peritoneal exudates (neutrophils, eosinophils, monocytes, and macrophages), TEM showed that only the latter phagocytosed PLGA microparticles, in a time-dependent manner. The results obtained indicate that the microparticles studied show merits as possible carriers of drugs for intracellular delivery.

  7. A new look at lunar soil collected from the sea of tranquility during the Apollo 11 mission.

    PubMed

    Kiely, Carol; Greenberg, Gary; Kiely, Christopher J

    2011-02-01

    Complementary state-of-the-art optical, scanning electron, and X-ray microscopy techniques have been used to study the morphology of Apollo 11 lunar soil particles (10084-47). The combination of innovative lighting geometries with image processing of a through focal series of images has allowed us to obtain a unique collection of high-resolution light micrographs of these fascinating particles. Scanning electron microscopy (SEM) stereo-pair imaging has been exploited to illustrate some of the unique morphological properties of lunar regolith. In addition, for the first time, X-ray micrographs with submicron resolution have been taken of individual particles using X-ray ultramicroscopy (XuM). This SEM-based technique lends itself readily to the imaging of pores, cracks, and inclusions and allows the internal structure of an entire particle to be viewed. Rotational SEM and XuM movies have also been constructed from a series of images collected at sequential angles through 360°. These offer a new and insightful view of these complex particles providing size, shape, and spatial information on many of their internal features.

  8. Hydroxyapatite nanocrystals: simple preparation, characterization and formation mechanism.

    PubMed

    Mohandes, Fatemeh; Salavati-Niasari, Masoud; Fathi, Mohammadhossein; Fereshteh, Zeinab

    2014-12-01

    Crystalline hydroxyapatite (HAP) nanoparticles and nanorods have been successfully synthesized via a simple precipitation method. To control the shape and particle size of HAP nanocrystals, coordination ligands derived from 2-hydroxy-1-naphthaldehyde were first prepared, characterized by Fourier transform infrared (FT-IR) and proton nuclear magnetic resonance ((1)H-NMR) spectroscopies, and finally applied in the synthesis process of HAP. On the other hand, the HAP nanocrystals were also characterized by several techniques including powder X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). According to the FE-SEM and TEM micrographs, it was found that the morphology and crystallinity of the HAP powders depended on the coordination mode of the ligands. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Development of regenerated cellulose/halloysites nanocomposites via ionic liquids.

    PubMed

    Hanid, Nurbaiti Abdul; Wahit, Mat Uzir; Guo, Qipeng; Mahmoodian, Shaya; Soheilmoghaddam, Mohammad

    2014-01-01

    In this study, regenerated cellulose/halloysites (RC/HNT) nanocomposites with different nanofillers loading were fabricated by dissolving the cellulose in 1-ethyl-3-methylimidazolium chloride (EMIMCl) ionic liquid. The films were prepared via solution casting method and were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The mechanical properties were investigated by tensile testing. It clearly displayed a good enhancement of both tensile strength and Young's modulus with HNT loading up to 5 wt%. As the HNT loadings increased to 5 wt%, the thermal behaviour and water resistance rate was also increased. The TEM and SEM images also depicted even dispersion of the HNT and a good intertubular interaction between the HNT and the cellulose matrix. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Synthesis and characterization of dextran-coated iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Predescu, Andra Mihaela; Matei, Ecaterina; Berbecaru, Andrei Constantin; Pantilimon, Cristian; Drăgan, Claudia; Vidu, Ruxandra; Predescu, Cristian; Kuncser, Victor

    2018-03-01

    Synthesis and characterization of iron oxide nanoparticles coated with a large molar weight dextran for environmental applications are reported. The first experiments involved the synthesis of iron oxide nanoparticles which were coated with dextran at different concentrations. The synthesis was performed by a co-precipitation technique, while the coating of iron oxide nanoparticles was carried out in solution. The obtained nanoparticles were characterized by using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction spectrometry, Fourier transform infrared spectroscopy and superconducting quantum interference device magnetometry. The results demonstrated a successful coating of iron oxide nanoparticles with large molar weight dextran, of which agglomeration tendency depended on the amount of dextran in the coating solution. SEM and TEM observations have shown that the iron oxide nanoparticles are of about 7 nm in size.

  11. Determination of semicarbazide in fish by molecularly imprinted stir bar sorptive extraction coupled with high performance liquid chromatography.

    PubMed

    Tang, Tang; Wei, Fangdi; Wang, Xu; Ma, Yujie; Song, Yueyue; Ma, Yunsu; Song, Quan; Xu, Guanhong; Cen, Yao; Hu, Qin

    2018-02-15

    A novel molecularly imprinted stir bar (MI-SB) for sorptive extraction of semicarbazide (SEM) was prepared in present paper. The coating of the stir bar was characterized by scanning electron microscopy, Fourier-transform infrared spectroscopy, dynamic adsorption and static adsorption tests. The saturated adsorption of MI-SB was about 4 times over that of non-imprinted stir bar (NI-SB). The selectivity of MI-SB for SEM was much better than NI-SB. A method to determine SEM was established by coupling MI-SB sorptive extraction with HPLC-UV. The liner range was 1-100ng/mL for SEM with a correlation coefficient of 0.9985. The limit of detection was about 0.59ng/mL, which was below the minimum required performance limit of SEM in meat products regulated by European Union. The method was applied to the determination of SEM in fish samples with satisfactory results. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Cheap non-toxic non-corrosive method of glass cleaning evaluated by contact angle, AFM, and SEM-EDX measurements.

    PubMed

    Dey, Tania; Naughton, Daragh

    2017-05-01

    Glass surface cleaning is the very first step in advanced coating deposition and it also finds use in conserving museum objects. However, most of the wet chemical methods of glass cleaning use toxic and corrosive chemicals like concentrated sulfuric acid (H 2 SO 4 ), piranha (a mixture of concentrated sulfuric acid and 30% hydrogen peroxide), and hydrogen fluoride (HF). On the other hand, most of the dry cleaning techniques like UV-ozone, plasma, and laser treatment require costly instruments. In this report, five eco-friendly wet chemical methods of glass cleaning were evaluated in terms of contact angle (measured by optical tensiometer), nano-scale surface roughness (measured by atomic force microscopy or AFM), and elemental composition (measured by energy dispersive x-ray spectroscopy or SEM-EDX). These glass cleaning methods are devoid of harsh chemicals and costly equipment, hence can be applied in situ in close proximity with plantation such as greenhouse or upon subtle objects such as museum artifacts. Out of these five methods, three methods are based on the chemical principle of chelation. It was found that the citric acid cleaning method gave the greatest change in contact angle within the hydrophilic regime (14.25° for new glass) indicating effective cleansing and the least surface roughness (0.178 nm for new glass) indicating no corrosive effect. One of the glass sample showed unique features which were traced backed to the history of the glass usage.

  13. Effect of minerals on accumulation of Cs by fungus Saccaromyces cerevisiae.

    PubMed

    Ohnuki, Toshihiko; Sakamoto, Fuminori; Yamasaki, Shinya; Kozai, Naofumi; Shiotsu, Hiroyuki; Utsunomiya, Satoshi; Watanabe, Naoko; Kozaki, Tamotsu

    2015-06-01

    The accumulation of Cs by unicellular fungus of Saccharomyces cerevisiae in the presence of minerals has been studied to elucidate the role of microorganisms in the migration of radioactive Cs in the environment. Two different types of experiments were employed: experiments using stable Cs to examine the effect of a carbon source on the accumulation of Cs, and accumulation experiments of radioactive Cs from agar medium containing (137)Cs and zeolite, vermiculite, phlogopite, smectite, mica, or illite as mineral supplements. In the former type of experiments, the Cs-accumulated cells were analyzed by scanning electron microscopy equipped with energy dispersive X-ray analysis (SEM-EDS). In the latter type, the radioactivity in the yeast cells was measured by an autoradiography technique. When a carbon source was present, higher amounts of Cs accumulated in the cells than in the resting condition without a carbon source. Analyses with SEM-EDS showed that no mineral formed on the cell surface. These results indicate that the yeast cells accumulate Cs by adsorption on the cell surface and intracellular accumulation. In the presence of minerals in the agar medium, the radioactivity in the yeast cells was in the order of mica > smectite, illite > vermiculite, phlogopite, zeolite. This order is inversely correlated to the ratio of the concentration of radioactive Cs between the minerals and the medium solution. These results strongly suggest that the yeast accumulates radioactive Cs competitively with minerals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Correlative two-photon and serial block face scanning electron microscopy in neuronal tissue using 3D near-infrared branding maps.

    PubMed

    Lees, Robert M; Peddie, Christopher J; Collinson, Lucy M; Ashby, Michael C; Verkade, Paul

    2017-01-01

    Linking cellular structure and function has always been a key goal of microscopy, but obtaining high resolution spatial and temporal information from the same specimen is a fundamental challenge. Two-photon (2P) microscopy allows imaging deep inside intact tissue, bringing great insight into the structural and functional dynamics of cells in their physiological environment. At the nanoscale, the complex ultrastructure of a cell's environment in tissue can be reconstructed in three dimensions (3D) using serial block face scanning electron microscopy (SBF-SEM). This provides a snapshot of high resolution structural information pertaining to the shape, organization, and localization of multiple subcellular structures at the same time. The pairing of these two imaging modalities in the same specimen provides key information to relate cellular dynamics to the ultrastructural environment. Until recently, approaches to relocate a region of interest (ROI) in tissue from 2P microscopy for SBF-SEM have been inefficient or unreliable. However, near-infrared branding (NIRB) overcomes this by using the laser from a multiphoton microscope to create fiducial markers for accurate correlation of 2P and electron microscopy (EM) imaging volumes. The process is quick and can be user defined for each sample. Here, to increase the efficiency of ROI relocation, multiple NIRB marks are used in 3D to target ultramicrotomy. A workflow is described and discussed to obtain a data set for 3D correlated light and electron microscopy, using three different preparations of brain tissue as examples. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Synthesis and structural characterization of polyaniline/cobalt chloride composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asha, E-mail: arana5752@gmail.com; Goyal, Sneh Lata; Kishore, Nawal

    2016-05-23

    Polyaniline (PANI) and PANI /cobalt chloride composites were synthesized by in situ chemical oxidative polymerization of aniline with CoCl{sub 2}.6H{sub 2}O using ammonium peroxidisulphate as an oxidant. These composites were characterized by X-ray diffraction (XRD) and Scanning electron microscopy (SEM). The XRD study reveals that both PANI and composites are amorphous. The XRD and SEM results confirm the presence of cobalt chloride in the composites.

  16. SEM visualization of glycosylated surface molecules using lectin-coated microspheres

    NASA Technical Reports Server (NTRS)

    Duke, J.; Janer, L.; Campbell, M.

    1985-01-01

    There are several techniques currently used to localize glycosylated surface molecules by scanning electron microscopy (Grinnell, 1980; Molday, 1976; Linthicum and Sell, 1975; Nicolson, 1974; Lo Buglio, et al, 1972). A simple and rapid method, using a modification of Grinnell's technique is reported here. Essentially, microspheres coated with Concavalin A are used to bind to glycosylated regions of the palatal shelf epithelium and are visualized in the scanning electron microscope (SEM).

  17. Antibacterial activity and mode of action of ε-polylysine against Escherichia coli O157:H7.

    PubMed

    Zhang, Xiaowei; Shi, Ce; Liu, Zuojia; Pan, Fengguang; Meng, Rizeng; Bu, Xiujuan; Xing, Heqin; Deng, Yanhong; Guo, Na; Yu, Lu

    2018-04-10

    Gram-negative Escherichia coli O157:H7 were chosen as model bacteria to evaluate the antimicrobial mechanism of ε-polylysine (ε-PL). The antibacterial activity of ε-PL was detected by measuring the minimum inhibitory concentration values as well as the time-kill curve. The membrane integrity was determined by ultraviolet (UV) absorption, membrane potential (MP) assay and flow cytometry (FCM) experiments. The permeability of the inner membrane was detected by β-galactosidase activity assay. Furthermore, electron microscopy [scanning electron microscopy (SEM) and transmission electron microscopy (TEM)] was utilized to observe bacterial morphology. These results demonstrated that ε-PL showed its antibacterial activity by changing the integrity and permeability of cell membranes, leading to rapid cell death. The electron microscopy analysis (SEM and TEM) results indicated that the bacterial cell morphology, membrane integrity and permeability were spoiled when the E. coli O157:H7 cells were exposed to minimum inhibitory concentrations of ε-PL (16 µg ml -1 ). In addition, the bacterial membrane was damaged more severely when the concentration of ε-PL was increased. The present study investigated the antimicrobial mechanism of ε-PL by measuring the content of cytoplasmic β-galactosidase, proteins and DNA. In addition, SEM and TEM were carried out to assess the mechanism. These results show that ε-PL has the ability to decrease the content of large molecules, cellular soluble proteins and nucleic acids associated with increasing the content of cytoplasmic β-galactosidase in supernatant by causing damage to the cell membranes. Consequently, the use of ε-PL as a natural antimicrobial agent should eventually become an appealing method in the field of food preservation.

  18. Biocomposite Plasma-Sprayed Coatings Based on Zinc-Substituted Hydroxyapatite: Structure, Properties, and Prospects of Application

    NASA Astrophysics Data System (ADS)

    Lyasnikova, A. V.; Markelova, O. A.; Lyasnikov, V. N.; Dudareva, O. A.

    2016-01-01

    The method of synthesis of a zinc-substituted hydroxyapatite powder is presented, and the technology of creating coatings by its spraying is described. The results of studies on the morphological, physical, and chemical parameters of a zinc-substituted hydroxyapatite coating by using X-ray analysis, infrared spectroscopy, transmission electron microscopy, optical microscopy, SEM, and other methods are given.

  19. Morphological study of the TK cholangiocarcinoma cell line with three-dimensional cell culture.

    PubMed

    Akiyoshi, Kohei; Kamada, Minori; Akiyama, Nobutake; Suzuki, Masafumi; Watanabe, Michiko; Fujioka, Kouki; Ikeda, Keiichi; Mizuno, Shuichi; Manome, Yoshinobu

    2014-04-01

    Cholangiocarcinoma is an intractable carcinoma originating from the bile duct epithelium. To gain an understanding of the cell biology of cholangiocarcinoma, in vitro cell culture is valuable. However, well‑characterized cell lines are limited. In the present study, the morphology of the TK cholangiocarcinoma cell line was analyzed by three‑dimensional culture. Dispersed TK cells were injected into a gelatin mesh scaffold and cultivated for 3‑20 days. The morphology of the TK cells was investigated by phase‑contrast microscopy, optical microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). TK cells were observed to proliferate three-dimensionally in the scaffold. The cells exhibited a globoid structure and attached to the scaffold. The SEM observation demonstrated typical microvilli and plicae on the surface of the structure. Light microscopy and TEM confirmed intercellular and cell‑to‑scaffold attachment in the three‑dimensional mesh. The culture also exhibited the formation of a duct-like structure covered by structured microvilli. In conclusion, three‑dimensional culture of TK cells demonstrated the morphological characteristics of cholangiocarcinoma in vitro. Production of high levels of carbohydrate antigen (CA)19‑9, CA50 and carcinoembryonic antigen was previously confirmed in the TK cell line. As a characteristic morphology was demonstrated in the present study, the TK cholangiocarcinoma cell line may be useful as an experimental model for further study of cholangiocarcinoma.

  20. Microscale reconstruction of biogeochemical substrates using multimode X-ray tomography and scanning electron microscopy

    NASA Astrophysics Data System (ADS)

    Miller, M.; Miller, E.; Liu, J.; Lund, R. M.; McKinley, J. P.

    2012-12-01

    X-ray computed tomography (CT), scanning electron microscopy (SEM), electron microprobe analysis (EMP), and computational image analysis are mature technologies used in many disciplines. Cross-discipline combination of these imaging and image-analysis technologies is the focus of this research, which uses laboratory and light-source resources in an iterative approach. The objective is to produce images across length scales, taking advantage of instrumentation that is optimized for each scale, and to unify them into a single compositional reconstruction. Initially, CT images will be collected using both x-ray absorption and differential phase contrast modes. The imaged sample will then be physically sectioned and the exposed surfaces imaged and characterized via SEM/EMP. The voxel slice corresponding to the physical sample surface will be isolated computationally, and the volumetric data will be combined with two-dimensional SEM images along CT image planes. This registration step will take advantage of the similarity between the X-ray absorption (CT) and backscattered electron (SEM) coefficients (both proportional to average atomic number in the interrogated volume) as well as the images' mutual information. Elemental and solid-phase distributions on the exposed surfaces, co-registered with SEM images, will be mapped using EMP. The solid-phase distribution will be propagated into three-dimensional space using computational methods relying on the estimation of compositional distributions derived from the CT data. If necessary, solid-phase and pore-space boundaries will be resolved using X-ray differential phase contrast tomography, x-ray fluorescence tomography, and absorption-edge microtomography at a light-source facility. Computational methods will be developed to register and model images collected over varying scales and data types. Image resolution, physically and dynamically, is qualitatively different for the electron microscopy and CT methodologies. Routine CT images are resolved at 10-20 μm, while SEM images are resolved at 10-20 nm; grayscale values vary according to collection time and instrument sensitivity; and compositional sensitivities via EMP vary in interrogation volume and scale. We have so far successfully registered SEM imagery within a multimode tomographic volume and have used standard methods to isolate pore space within the volume. We are developing a three-dimensional solid-phase identification and registration method that is constrained by bulk-sample X-ray diffraction Rietveld refinements. The results of this project will prove useful in fields that require the fine-scale definition of solid-phase distributions and relationships, and could replace more inefficient methods for making these estimations.

  1. Characterization of Pu-238 heat source granule containment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richardson Ii, P D; Thronas, D L; Romero, J P

    2008-01-01

    The Milliwatt Radioisotopic Thermoelectric Generator (RTG) provides power for permissive-action links. These nuclear batteries convert thermal energy to electrical energy using a doped silicon-germanium thermopile. The thermal energy is provided by a heat source made of {sup 238}Pu, in the form of {sup 238}PuO{sub 2} granules. The granules are contained in 3 layers of encapsulation. A thin T-111 liner surrounds the {sup 238}PuO{sub 2} granules and protects the second layer (strength member) from exposure to the fuel granules. The T-111 strength member contains the fuel under impact condition. An outer clad of Hastelloy-C protects the T-111 from oxygen embrittlement. Themore » T-111 strength member is considered the critical component in this {sup 238}PuO{sub 2} containment system. Any compromise in the strength member is something that needs to be characterized. Consequently, the T-111 strength member is characterized upon it's decommissioning through Scanning Electron Microscopy (SEM), and Metallography. SEM is used in Secondary Electron mode to reveal possible grain boundary deformation and/or cracking in the region of the strength member weld. Deformation and cracking uncovered by SEM are further characterized by Metallography. Metallography sections are mounted and polished, observed using optical microscopy, then documented in the form of photomicrographs. SEM may further be used to examine polished Metallography mounts to characterize elements using the SEM mode of Energy Dispersive X-ray Spectroscopy (EDS). This paper describes the characterization of the metallurgical condition of decommissioned RTG heat sources.« less

  2. Magnetic whiskers of p-aminobenzoic acid and their use for preparation of filled and microchannel silicone rubbers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Semenov, V. V., E-mail: vvsemenov@iomc.ras.ru; Loginova, V. V.; Zolotareva, N. V.

    A thin cobalt layer has been formed on the surface of p-aminobenzoic acid whiskers by chemical vapor deposition (CVD). The metallized crystals have been oriented in liquid polydimethylsiloxane rubber by applying a dc magnetic field. After vulcanization, the filler has been removed by processing in an alcohol solution of trifluoroacetic acid. The cobalt deposition on the surface of the organic compound and the properties of metallized whiskers are investigated by optical microscopy, scanning electron microscopy (SEM), and atomic force microscopy (AFM).

  3. A scanning electron microscopy study of the macro-crystalline structure of 2-(2,4-dinitrobenzyl) pyridine

    NASA Technical Reports Server (NTRS)

    Ware, Jacqueline; Hammond, Ernest C., Jr.

    1989-01-01

    The compound, 2-(2,4-dinitrobenzyl) pyridine, was synthesized in the laboratory; an introductory level electron microscopy study of the macro-crystalline structure was conducted using the scanning electron microscope (SEM). The structure of these crystals was compared with the macrostructure of the crystal of 2-(2,4-dinitrobenzyl) pyridinium bromide, the hydrobromic salt of the compound which was also synthesized in the laboratory. A scanning electron microscopy crystal study was combined with a study of the principle of the electron microscope.

  4. Ultrastructural characters of a Physarum melleum on living leaves of Dendrobium candidum in China*

    PubMed Central

    Zhang, Jing-ze; Liu, Lu-ning; Fiore-Donno, Anna-Maria; Xu, Tong

    2007-01-01

    A known species, Physarum melleum, was found fruiting on living leaves of Dendrobium candidum, which was collected in China in 2004. Its morphological characters were revealed by light microscopy (LM), environmental scanning electron microscopy (ESEM) and scanning electron microscopy (SEM). Character variations were distinguished by its olive-yellow peridium and its always thinner capillitium containing globulose granular material between the large calcareous nodes. The calcium carbonate granules, deposited on stalks, peridium and hypothallus as well as within stalks, were globose and smooth. PMID:18257124

  5. [Script crossing in scanning electron microscopy].

    PubMed

    Oehmichen, M; von Kortzfleisch, D; Hegner, B

    1989-01-01

    A case of mixed script in which ball point-pen ink was contaminated with typewriting prompted a survey of the literature and a systematic SEM study of mixed script with various writing instruments or inks. Mixed scripts produced with the following instruments or inks were investigated: pencil, ink/India ink, ball-pint pen, felt-tip pen, copied script and typewriter. This investigation showed SEM to be the method of choice for visualizing overlying scripts produced by different writing instruments or inks.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guener, M.; Gueler, E.; Aktas, H.

    Kinetic, morphological and some thermal properties of thermally induced and deformation-induced martensite were studied in a Fe-32%Ni-0.4%Cr alloy. Scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and compression deformation test techniques were used for these studies. SEM observations revealed the occurrence of both athermal and isothermal martensitic transformation kinetics for producing a lenticular martensite morphology for different homogenization conditions of the prior austenite phase. The DSC measurement results showed a fair agreement with those of previous studies on ferrous alloys.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vilches, J.; Lopez, A.; Martinez, M.C.

    This paper discusses the value of scanning electron microscopy (SEM) and x-ray microanalysis in the classification of craniopharyngiomas. This neoplasm shows epithelial nest, cords of cuboid cells, foci of squamous metaplasia, and microcystic degeneration. SEM reveals that the epithelial cysts are lined with elongated cells that possess numerous microvilli and blebs and that some cysts are lined with polyhedral cells. The microvilli are interpreted as characteristic of the fast growing craniopharyngiomas. A microanalytical study of the calcified areas reveals the presence of magnesium, phosphorus, and calcium.

  8. Room Temperature Elastic Moduli and Vickers Hardness of Hot-Pressed LLZO Cubic Garnet

    DTIC Science & Technology

    2012-01-01

    polishing compounds, Leco, St. Joseph, MI). X - ray diffraction and scanning electron microscopy (SEM) The microstructure of the hot-pressed specimens...was examined on uncoated fracture surfaces by SEM with an accelerating voltage of 1 and 3 kV. Phase purity was evaluated from X - ray diffraction data...the micro- structure appeared to be homogenous for the two hot- pressed LLZO specimens included in this study (Fig. 1). X - ray diffraction confirmed that

  9. Deep learning and shapes similarity for joint segmentation and tracing single neurons in SEM images

    NASA Astrophysics Data System (ADS)

    Rao, Qiang; Xiao, Chi; Han, Hua; Chen, Xi; Shen, Lijun; Xie, Qiwei

    2017-02-01

    Extracting the structure of single neurons is critical for understanding how they function within the neural circuits. Recent developments in microscopy techniques, and the widely recognized need for openness and standardization provide a community resource for automated reconstruction of dendritic and axonal morphology of single neurons. In order to look into the fine structure of neurons, we use the Automated Tape-collecting Ultra Microtome Scanning Electron Microscopy (ATUM-SEM) to get images sequence of serial sections of animal brain tissue that densely packed with neurons. Different from other neuron reconstruction method, we propose a method that enhances the SEM images by detecting the neuronal membranes with deep convolutional neural network (DCNN) and segments single neurons by active contour with group shape similarity. We joint the segmentation and tracing together and they interact with each other by alternate iteration that tracing aids the selection of candidate region patch for active contour segmentation while the segmentation provides the neuron geometrical features which improve the robustness of tracing. The tracing model mainly relies on the neuron geometrical features and is updated after neuron being segmented on the every next section. Our method enables the reconstruction of neurons of the drosophila mushroom body which is cut to serial sections and imaged under SEM. Our method provides an elementary step for the whole reconstruction of neuronal networks.

  10. Structural diversity of nuptial pads in Phyllomedusinae (Amphibia: Anura: Hylidae).

    PubMed

    Luna, Maria Celeste; Taboada, Carlos; Baêta, Délio; Faivovich, Julián

    2012-07-01

    We studied the morphological variation of the nuptial pads using light microscopy and scanning electron microscopy (SEM) in 26 species of phyllomedusines (Anura: Hylidae), representing the five currently recognized genera. All phyllomedusines have single nuptial pads with dark colored epidermal projections (EPs). Spine-shaped EPs occur in Cruziohyla calcarifer, Phrynomedusa appendiculata and in one species of Phasmahyla. The other species have roundish EPs. The density of the EPs on the pad is variable. Species in the Phyllomedusa hypochondrialis Group have EPs with a density that varies between 764 ± 58/mm(2) and 923 ± 160/mm(2). In all other studied species (including the Phyllomedusa burmeisteri and Phyllomedusa perinesos groups, Phyllomedusa camba, Phyllomedusa boliviana, Phyllomedusa sauvagii, Phyllomedusa bicolor, and Phyllomedusa tomopterna) the density of EPs varies between 108 ± 20/mm(2) and 552 ± 97/mm(2). Pores were observed with SEM in C. calcarifer, Agalychnis lemur, Agalychnis moreletii, but its presence is confirmed through histological sections on several other species. Its visibility using SEM seems to be related with the level of separation between adjacent EPs. The pores in the four studied species of Agalychnis are shown with SEM and histological sections to have a characteristic epidermal rim, that is absent in the otherphyllomedusines. Unlike most previous reports on breeding glands, those of phyllomedusines are alcian blue positive, indicating the presence of acidic mucosubstances on its secretions. Copyright © 2012 Wiley Periodicals, Inc.

  11. A multimodal microcharacterisation of trace-element zonation and crystallographic orientation in natural cassiterite by combining cathodoluminescence, EBSD, EPMA and contribution of confocal Raman-in-SEM imaging.

    PubMed

    Wille, G; Lerouge, C; Schmidt, U

    2018-01-16

    In cassiterite, tin is associated with metals (titanium, niobium, tantalum, indium, tungsten, iron, manganese, mercury). Knowledge of mineral chemistry and trace-element distribution is essential for: the understanding of ore formation, the exploration phase, the feasibility of ore treatment, and disposal/treatment of tailings after the exploitation phase. However, the availability of analytical methods make these characterisations difficult. We present a multitechnical approach to chemical and structural data that includes scanning electron microscopy (SEM)-based imaging and microanalysis techniques such as: secondary and backscattered electrons, cathodoluminescence (CL), electron probe microanalyser (EPMA), electron backscattered diffraction (EBSD) and confocal Raman-imaging integrated in a SEM (RISE). The presented results show the complementarity of the used analytical techniques. SEM, CL, EBSD, EPMA provide information from the interaction of an electron beam with minerals, leading to atomistic information about their composition, whereas RISE, Raman spectroscopy and imaging completes the studies with information about molecular vibrations, which are sensitive to structural modifications of the minerals. The correlation of Raman bands with the presence/absence of Nb, Ta, Fe (heterovalent substitution) and Ti (homovalent substitution) is established at a submicrometric scale. Combination of the different techniques makes it possible to establish a direct link between chemical and crystallographic data of cassiterite. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.

  12. Mineralogical Characterization of Hispano-Moresque Glazes: A µ-Raman and Scanning Electron Microscopy with X-Ray Energy Dispersive Spectrometry (SEM-EDS) Study.

    PubMed

    Coentro, Susana; da Silva, Rui C; Relvas, Cátia; Ferreira, Teresa; Mirão, José; Pleguezuelo, Alfonso; Trindade, Rui; Muralha, Vânia S F

    2018-06-05

    This work explores the combination of µ-Raman spectroscopy and scanning electron microscopy with X-ray energy dispersive spectrometry (SEM-EDS) for the study of the glazes in 15th-16th century Hispano-Moresque architectural tiles. These are high lead glazes that can be tin-opacified or transparent, and present five colors: tin-white, cobalt-blue, copper-green, iron-amber, and manganese-brown. They are generally homogenous and mineral inclusions are mostly concentrated in the glaze-ceramic interface. Through SEM-EDS, these inclusions were observed and chemically analyzed, whereas µ-Raman allowed their identification on a molecular level. K-feldspars, wollastonite and diopside were the most common compounds, as well as cassiterite agglomerates that render the glaze opaque. Malayaite was identified in green glazes, and andradite and magnesioferrite in amber glazes. Co-Ni-ferrites were identified in blue glazes, as well as Ni-Fe-olivines. Manganese-brown is the color where most compounds were identified: bustamite, jacobsite, hausmannite, braunite, and kentrolite. Through the µ-Raman analysis of different areas in large inclusions previously observed by SEM, it was possible to identify intermediate phases that illustrate the reaction process that occurs between the color-conferring compounds and the surrounding lead glaze. Furthermore, the obtained results allowed inference of the raw materials and firing temperatures used on the manufacture of these tiles.

  13. AFM and SEM study of the effects of etching on IPS-Empress 2 TM dental ceramic

    NASA Astrophysics Data System (ADS)

    Luo, X.-P.; Silikas, N.; Allaf, M.; Wilson, N. H. F.; Watts, D. C.

    2001-10-01

    The aim of this study was to investigate the effects of increasing etching time on the surface of the new dental material, IPS-Empress 2 TM glass ceramic. Twenty one IPS-Empress 2 TM glass ceramic samples were made from IPS-Empress 2 TM ingots through lost-wax, hot-pressed ceramic fabrication technology. All samples were highly polished and cleaned ultrasonically for 5 min in acetone before and after etching with 9.6% hydrofluoric acid gel. The etching times were 0, 10, 20, 30, 60, 90 and 120 s respectively. Microstructure was analysed by scanning electron microscopy (SEM) and atomic force microscopy (AFM) was used to evaluate the surface roughness and topography. Observations with SEM showed that etching with hydrofluoric acid resulted in preferential dissolution of glass matrix, and that partially supported crystals within the glass matrix were lost with increasing etching time. AFM measurements indicated that etching increased the surface roughness of the glass-ceramic. A simple least-squares linear regression was used to establish a relationship between surface roughness parameters ( Ra, RMS), and etching time, for which r2>0.94. This study demonstrates the benefits of combining two microscopic methods for a better understanding of the surface. SEM showed the mode of action of hydrofluoric acid on the ceramic and AFM provided valuable data regarding the extent of surface degradation relative to etching time.

  14. Microscopy and microanalysis 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bailey, G.W.; Corbett, J.M.; Dimlich, R.V.W.

    1996-12-31

    The Proceedings of this Annual Meeting contain paper of members from the three societies. These proceedings emphasizes the common research interests and attempts to eliminate some unwanted overlap. Topics covered are: microscopic analysis of animals with altered gene expression and in-situ gene and antibody localizations, high-resolution elemental mapping of nucleoprofein interactions, plant biology and pathology, quantitative HREM analysis of perfect and defected materials, computational methods for TEM image analysis, high-resolution FESM in materials research, frontiers in polymer microscopy and microanalysis, oxidation and corrosion, micro XRD and XRF, molecular microspectroscopy and spectral imaging, advances in confocal and multidimensional light microscopy, analyticalmore » electron microscopy in biology, correlative microscopy in biological sciences, grain-boundary microengineering, surfaces and interfaces, telepresence microscopy in education and research, MSA educational outreach, quantitative electron probe microanalysis, frontiers of analytical electron microscopy, critical issues in ceramic microstructures, dynamic organization of the cell, pathology, microbiology, high-resolution biological and cryo SEM, and scanning-probe microscopy.« less

  15. Stable tetragonal phase and magnetic properties of Fe-doped HfO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Sales, T. S. N.; Cavalcante, F. H. M.; Bosch-Santos, B.; Pereira, L. F. D.; Cabrera-Pasca, G. A.; Freitas, R. S.; Saxena, R. N.; Carbonari, A. W.

    2017-05-01

    In this paper, the effect in structural and magnetic properties of iron doping with concentration of 20% in hafnium dioxide (HfO2) nanoparticles is investigated. HfO2 is a wide band gap oxide with great potential to be used as high-permittivity gate dielectrics, which can be improved by doping. Nanoparticle samples were prepared by sol-gel chemical method and had their structure, morphology, and magnetic properties, respectively, investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) with electron back scattering diffraction (EBSD), and magnetization measurements. TEM and SEM results show size distribution of particles in the range from 30 nm to 40 nm with small dispersion. Magnetization measurements show the blocking temperature at around 90 K with a strong paramagnetic contribution. XRD results show a major tetragonal phase (94%).

  16. Nata de coco (NDC) hydrogel as nanoreactors for preparation iron nanoparticles (FeNps) from ferrocenium reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andarini, Mellissa; Lazim, Azwan

    This study focuses on hydrogel as nano template to produce iron nanoparticles (FeNps). Radical polymerization was used to synthesize the hydrogel from nata de coco (NDC-g-PAA). Ferrocenium (FcCL) with 1 × 10{sup −4} g/ml has successfully incorporated with NDC-g-PAA hydrogel system and reduce using sodium hydroxide (NaOH) at different concentrations. Transmission electron microscopy (TEM) result demonstrates that the size of FeNps produced was about 5 – 20 nm. Morphological analysis of hydrogel is carried out by scanning electron microscopy (SEM), SEM-EDEX is used to determine percentage of iron (Fe) in hydrogel. The results offer a wide range of application inmore » various areas, especially the use of hydrogel system as a responsive template.« less

  17. Preparation and Effect of Gamma Radiation on The Properties and Biodegradability of Poly(Styrene/Starch) Blends

    NASA Astrophysics Data System (ADS)

    Ali, H. E.; Abdel Ghaffar, A. M.

    2017-01-01

    Biodegradable blends based on Poly(styrene/starch) Poly(Sty/Starch) were prepared by the casting method using different contents of starch in the range of 0-20 wt% aiming at preparing disposable packaging materials. The prepared bio-blends were Characterized by Fourier transform infrared (FTIR), swelling behavior, mechanical properties, thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). It was found that the swelling behavior slightly increased with increasing starch content and not exceeding 7.5%. The results showed that by increasing irradiation dose up to 5 kGy, the mechanical properties of the prepared PSty/10 wt% Starch blend film modified than other blend films, and hence it is selected. Also the water resistant increased, by irradiation of the selected PSty/10 wt% Starch blend film. The intermolecular hydrogen bonding interaction between Starch and PSty of the PSty/10 wt% Starch blend film promote a more homogenous blend film as shown in scanning electron microscopy (SEM). The prepared Poly(Sty/Starch) blends with different compositions and the selected irradiated PSty/10 wt% Starch blend were subjected to biodegradation in soil burial tests for 6 months using two different types of soils; agricultural and desert soils, then analyzed gravimetrically and by scanning electron microscopy (SEM). The results suggested that there is a possibility of using irradiated PSty/10 wt% Starch at a dose of 5 kGy as a potential candidate for packaging material.

  18. Scanning electron microscopy analysis of hair index on Karachi's population for social and professional appearance enhancement.

    PubMed

    Ali, N; Zohra, R R; Qader, S A U; Mumtaz, M

    2015-06-01

    Hair texture, appearance and pigment play an important role in social and professional communication and maintaining an overall appearance. This study was especially designed for morphological assessment of hair damage caused to Karachi's population due to natural factors and cosmetic treatments using scanning electron microscopy (SEM) technique. Hair samples under the study of synthetic factor's effect were given several cosmetic treatments (hot straightened, bleached, synthetic dyed and henna dyed) whereas samples under natural factor's effect (variation in gender, age and pigmentation) were left untreated. Morphological assessment was performed using SEM technique. Results obtained were statistically analysed using minitab 16 and spss 18 softwares. Scanning electron microscopy images revealed less number of cuticular scales in males than females of same age although size of cuticular scales was found to be larger in males than in females. Mean hair index of white hair was greater than black hair of the same head as it is comparatively newly originated. Tukey's method revealed that among cosmetic treatments, bleaching and synthetic henna caused most of the damage to the hair. Statistical evaluation of results obtained from SEM analysis revealed that human scalp hair index show morphological variation with respect to age, gender, hair pigmentation, chemical and physical treatments. Individuals opting for cosmetic treatments could clearly visualize the extent of hair damage these may cause in long run. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  19. Balantioides coli: morphological and ultrastructural characteristics of pig and non-human primate isolates.

    PubMed

    Barbosa, Alynne da Silva; Barbosa, Helene Santos; Souza, Sandra Maria de Oliveira; Dib, Laís Verdan; Uchôa, Claudia Maria Antunes; Bastos, Otilio Machado Pereira; Amendoeira, Maria Regina Reis

    2018-06-26

    Balantioides coli is a ciliated protozoon that inhabits the intestine of pigs, non-human primates and humans. Light microscopy studies have described over 50 species of the genus Balantioides but their validity is in doubt. Due to the limited information about this genus, this study is aimed to identify morphological characteristics of Balantioides coli isolated using fluorescence microscopy and both scanning (SEM) and transmission electron microscopy (TEM). Trophozoites isolated from the feces of pig and macaque were washed and subjected to centrifugation. These cells were fixed with paraformaldehyde for immunofluorescence. Other aliquots of these trophozoites were fixed with glutaraldehyde, post fixed with osmium tetroxide and processed for SEM and TEM. Immunofluorescence studies revealed microtubules with a longitudinal distribution to the main axis of the parasite and in the constitution of cilia. SEM demonstrated a high concentration of cilia covering the oral apparatus and a poor presence of such structures in cytopyge. TEM revealed in the plasma membrane, several associated structures were observed to delineate the cellular cortex and mucocysts. The cytoskeleton of the oral region was observed in detail and had an organization pattern consisting of microtubules, which formed files and nematodesmal networks. Organelles such as hydrogenosomes like and peroxisomes were observed close to the cortex. Macronuclei were observed, but structures that were consistent with micronuclei were not identified. Ultrastructural morphological analysis of isolates confirms its similarity to Balantioides coli. In this study were identified structures that had not yet been described, such as hydrogenosomes like and cytoskeletal structures.

  20. Scanning Electron Microscopic Hair Shaft Analysis in Ectodermal Dysplasia Syndromes.

    PubMed

    Hirano-Ali, Stefanie A; Reed, Ashley M; Rowan, Brandon J; Sorrells, Timothy; Williams, Judith V; Pariser, David M; Hood, Antoinette F; Salkey, Kimberly

    2015-01-01

    The objective of the current study was to catalog hair shaft abnormalities in individuals with ectodermal dysplasia (ED) syndromes using scanning electron microscopy (SEM) and to compare the findings with those in unaffected controls. This is the second of a two-part study, the first of which used light microscopy as the modality and was previously published. Scanning electron microscopy was performed in a blinded manner on hair shafts from 65 subjects with seven types of ED syndromes and 41 unaffected control subjects. Assessment was performed along the length of the shaft and in cross section. Hair donations were collected at the 28th Annual National Family Conference held by the National Foundation for Ectodermal Dysplasia. Control subjects were recruited from a private dermatology practice and an academic children's hospital outpatient dermatology clinic. SEM identified various pathologic hair shaft abnormalities in each type of ED and in control patients. When hairs with all types of ED were grouped together and compared with those of control patients, the difference in the presence of small diameter and shallow and deep grooves was statistically significant (p < 0.05). When the EDs were separated according to subtype, statistically significant findings were also seen. SEM is a possible adjuvant tool in the diagnosis of ED syndromes. There are significant differences, with high specificity, between the hairs of individuals with ED and those of control subjects and between subtypes. © 2015 Wiley Periodicals, Inc.

  1. Serial Section Scanning Electron Microscopy (S3EM) on Silicon Wafers for Ultra-Structural Volume Imaging of Cells and Tissues

    PubMed Central

    Horstmann, Heinz; Körber, Christoph; Sätzler, Kurt; Aydin, Daniel; Kuner, Thomas

    2012-01-01

    High resolution, three-dimensional (3D) representations of cellular ultrastructure are essential for structure function studies in all areas of cell biology. While limited subcellular volumes have been routinely examined using serial section transmission electron microscopy (ssTEM), complete ultrastructural reconstructions of large volumes, entire cells or even tissue are difficult to achieve using ssTEM. Here, we introduce a novel approach combining serial sectioning of tissue with scanning electron microscopy (SEM) using a conductive silicon wafer as a support. Ribbons containing hundreds of 35 nm thick sections can be generated and imaged on the wafer at a lateral pixel resolution of 3.7 nm by recording the backscattered electrons with the in-lens detector of the SEM. The resulting electron micrographs are qualitatively comparable to those obtained by conventional TEM. S3EM images of the same region of interest in consecutive sections can be used for 3D reconstructions of large structures. We demonstrate the potential of this approach by reconstructing a 31.7 µm3 volume of a calyx of Held presynaptic terminal. The approach introduced here, Serial Section SEM (S3EM), for the first time provides the possibility to obtain 3D ultrastructure of large volumes with high resolution and to selectively and repetitively home in on structures of interest. S3EM accelerates process duration, is amenable to full automation and can be implemented with standard instrumentation. PMID:22523574

  2. Serial section scanning electron microscopy (S3EM) on silicon wafers for ultra-structural volume imaging of cells and tissues.

    PubMed

    Horstmann, Heinz; Körber, Christoph; Sätzler, Kurt; Aydin, Daniel; Kuner, Thomas

    2012-01-01

    High resolution, three-dimensional (3D) representations of cellular ultrastructure are essential for structure function studies in all areas of cell biology. While limited subcellular volumes have been routinely examined using serial section transmission electron microscopy (ssTEM), complete ultrastructural reconstructions of large volumes, entire cells or even tissue are difficult to achieve using ssTEM. Here, we introduce a novel approach combining serial sectioning of tissue with scanning electron microscopy (SEM) using a conductive silicon wafer as a support. Ribbons containing hundreds of 35 nm thick sections can be generated and imaged on the wafer at a lateral pixel resolution of 3.7 nm by recording the backscattered electrons with the in-lens detector of the SEM. The resulting electron micrographs are qualitatively comparable to those obtained by conventional TEM. S(3)EM images of the same region of interest in consecutive sections can be used for 3D reconstructions of large structures. We demonstrate the potential of this approach by reconstructing a 31.7 µm(3) volume of a calyx of Held presynaptic terminal. The approach introduced here, Serial Section SEM (S(3)EM), for the first time provides the possibility to obtain 3D ultrastructure of large volumes with high resolution and to selectively and repetitively home in on structures of interest. S(3)EM accelerates process duration, is amenable to full automation and can be implemented with standard instrumentation.

  3. Silver nanoparticle production by Rhizopus stolonifer and its antibacterial activity against extended spectrum {beta}-lactamase producing (ESBL) strains of Enterobacteriaceae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banu, Afreen; Rathod, Vandana, E-mail: drvandanarathod@rediffmail.com; Ranganath, E.

    Highlights: {yields} Silver nanoparticle production by using Rhizopus stolonifer. {yields} Antibacterial activity of silver nanoparticles against extended spectrum {beta}-lactamase producing (ESBL) strains of Enterobacteriaceae. {yields} Synergistic effect of antibiotics with silver nanoparticles towards ESBL-strains. {yields} Characterization of silver nanoparticles made by UV-vis spectra, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transformed infrared (FTIR) spectroscopy, atomic force microscopy (AFM). -- Abstract: This report focuses on the synthesis of silver nanoparticles using the fungus, Rhizopus stolonifer and its antimicrobial activity. Research in nanotechnology highlights the possibility of green chemistry pathways to produce technologically important nanomaterials. Characterization of newly synthesized silvermore » nanoparticles was made by UV-visible absorption spectroscopy, scanning electron microscope (SEM), transmission electron microscope (TEM), Fourier transform infrared (FTIR) spectroscopy and atomic force microscope (AFM). TEM micrograph revealed the formation of spherical nanoparticles with size ranging between 3 and 20 nm. The biosynthesized silver nanoparticles (AgNPs) showed excellent antibacterial activity against ESBL-strains which includes E. coli, Proteus. sp. and Klebsiella sp.« less

  4. Contribution of Microchemical Surface Analysis of Archaeological Artefacts

    NASA Astrophysics Data System (ADS)

    Mousser, H.; Madani, A.; Amri, R.; Mousser, A.; Darchen, A.

    2009-11-01

    Museum CIRTA of the town of Constantine has a collection of more than 35000 coins and statuettes going back to Numide, Roman, Republican, Vandal and Byzantine times and is struck in the name of the cities, of the kingdoms and the empires. Surface analysis of these coins gives information about the chemical composition and leads to recommendations for restoration and preservations. This work is a contribution of microchemical surface study of coin with the effigy of the Numide King Massinissa (Constantine between 3rd and 2nd century before Jesus Christ). The photographic and scanning electron microscopy coupled with energy dispersive spectrometry (SEM + EDS) and diffraction of X-ray (DRX) was used. The optic microscopy (OMP) and SEM pictures of coins showed heterogeneous surface. Scanning electron microscopy coupled with energy dispersive spectrometry identified three basic metals copper (46.06%), antimony (17.74%) and lead (12.06%), (Weight Percentage). The DRX identifies stages (copper and lead) and their crystalline oxides Bindheimite (Pb2Sb2O7) and Bystromite (MgSb2O6) on the coin's surface.

  5. Antimicrobial activity of biopolymeric thin films containing flavonoid natural compounds and silver nanoparticles fabricated by MAPLE: A comparative study

    NASA Astrophysics Data System (ADS)

    Cristescu, R.; Visan, A.; Socol, G.; Surdu, A. V.; Oprea, A. E.; Grumezescu, A. M.; Chifiriuc, M. C.; Boehm, R. D.; Yamaleyeva, D.; Taylor, M.; Narayan, R. J.; Chrisey, D. B.

    2016-06-01

    The purpose of this study was to investigate the interactions between microorganisms, including the planktonic and adherent organisms, and biopolymer (polyvinylpyrrolidone), flavonoid (quercetin dihydrate and resveratrol)-biopolymer, and silver nanoparticles-biopolymer composite thin films that were deposited using matrix assisted pulsed laser evaporation (MAPLE). A pulsed KrF* excimer laser source was used to deposit the aforementioned composite thin films, which were characterized using Fourier transform infrared spectroscopy (FT-IR), infrared microscopy (IRM), scanning electron microscopy (SEM), Grazing incidence X-ray diffraction (GIXRD) and atomic force microscopy (AFM). The antimicrobial activity of thin films was quantified using an adapted disk diffusion assay against Gram-positive and Gram-negative bacteria strains. FT-IR, AFM and SEM studies confirmed that MAPLE may be used to fabricate thin films with chemical properties corresponding to the input materials as well as surface properties that are appropriate for medical use. The silver nanoparticles and flavonoid-containing films exhibited an antimicrobial activity both against Gram-positive and Gram-negative bacterial strains demonstrating the potential use of these hybrid systems for the development of novel antimicrobial strategies.

  6. Characterization of two-dimensional hexagonal boron nitride using scanning electron and scanning helium ion microscopy

    NASA Astrophysics Data System (ADS)

    Guo, Hongxuan; Gao, Jianhua; Ishida, Nobuyuki; Xu, Mingsheng; Fujita, Daisuke

    2014-01-01

    Characterization of the structural and physical properties of two-dimensional (2D) materials, such as layer number and inelastic mean free path measurements, is very important to optimize their synthesis and application. In this study, we characterize the layer number and morphology of hexagonal boron nitride (h-BN) nanosheets on a metallic substrate using field emission scanning electron microscopy (FE-SEM) and scanning helium ion microscopy (HIM). Using scanning beams of various energies, we could analyze the dependence of the intensities of secondary electrons on the thickness of the h-BN nanosheets. Based on the interaction between the scanning particles (electrons and helium ions) and h-BN nanosheets, we deduced an exponential relationship between the intensities of secondary electrons and number of layers of h-BN. With the attenuation factor of the exponential formula, we calculate the inelastic mean free path of electrons and helium ions in the h-BN nanosheets. Our results show that HIM is more sensitive and consistent than FE-SEM for characterizing the number of layers and morphology of 2D materials.

  7. Biofunctional composite coating architectures based on polycaprolactone and nanohydroxyapatite for controlled corrosion activity and enhanced biocompatibility of magnesium AZ31 alloy.

    PubMed

    Zomorodian, A; Garcia, M P; Moura E Silva, T; Fernandes, J C S; Fernandes, M H; Montemor, M F

    2015-03-01

    In this work a biofunctional composite coating architecture for controlled corrosion activity and enhanced cellular adhesion of AZ31 Mg alloys is proposed. The composite coating consists of a polycaprolactone (PCL) matrix modified with nanohydroxyapatite (HA) applied over a nanometric layer of polyetherimide (PEI). The protective properties of the coating were studied by electrochemical impedance spectroscopy (EIS), a non-disturbing technique, and the coating morphology was investigated by field emission scanning electron microscopy (FE-SEM). The results show that the composite coating protects the AZ31 substrate. The barrier properties of the coating can be optimized by changing the PCL concentration. The presence of nanohydroxyapatite particles influences the coating morphology and decreases the corrosion resistance. The biocompatibility was assessed by studying the response of osteoblastic cells on coated samples through resazurin assay, confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). The results show that the polycaprolactone to hydroxyapatite ratio affects the cell behavior and that the presence of hydroxyapatite induces high osteoblastic differentiation. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Reactive Brazing of Carbon-Carbon Composites to Titanium

    NASA Technical Reports Server (NTRS)

    Shpargel, Tarah; Singh, M.; Morscher, Gregory; Asthana, Rajiv

    2004-01-01

    The Ti-metal/C-C composite joints were formed by reactive brazing with three commercial brazes, namely, Cu-ABA, TiCuNi, and TiCuSil. The joint microstructures were examined using optical microscopy, and scanning electron microscopy (SEM) coupled with energy dispersive spectrometry (EDS). The results of the microstructure analysis indicate solute redistribution across the joint and possible metallurgical bond formation via interdiffusion, which led to good wetting and spreading.

  9. Facile synthesis of silicon nanowire-nanopillar superhydrophobic structures

    NASA Astrophysics Data System (ADS)

    Roy, Abhijit; Satpati, Biswarup

    2018-04-01

    We have used metal assisted chemical etching (MACE) method to produce silicon (Si) nanowire-nanopillar array. Nanowire-nanopillar combined structures show higher degree of hydrophobicity compared to its nanowire (Si-NW) counterparts. The rate of etching is depended on initial metal deposition. The structural analysis was carried out using scanning electron microscopy (SEM) in combination with transmission electron microscopy (TEM) to determine different parameters like etching direction, crystallinity etc.

  10. Active Metal Brazing of Carbon-Carbon Composites to Titanium

    NASA Technical Reports Server (NTRS)

    Singh, M.; Shpargel, T. P.; Morscher, G.; Asthana, R.

    2004-01-01

    The Ti-metal/C-C composite joints were formed by reactive brazing with three commercial brazes, namely, Cu-ABA, TiCuNi, and TiCuSil. The joint microstructures were examined using optical microscopy, and scanning electron microscopy (SEM) coupled with energy dispersive spectrometry (EDS). The results of the microstructure analysis indicate solute redistribution across the joint which led to good wetting, spreading, and metallurgical bond formation via interdiffusion.

  11. Microcontact Printing via a Polymer-Induced Liquid-Precursor (PILP) Process

    DTIC Science & Technology

    2002-04-01

    applications that require high performance mechanical, electrical and/or optical properties resulting from controlled nano- and microstructural design...salts. The cover-slips were examined by optical microscopy, and then gold coated for scanning electron microscopy on a SEM JEOL JSM 6400 instrument [5...applications in the realm of biomimicry . Controlled growth of crystals with specific orientation can be achieved via the functional groups on the substrate

  12. Faceting, composition and crystal phase evolution in III-V antimonide nanowire heterostructures revealed by combining microscopy techniques.

    PubMed

    Xu, Tao; Dick, Kimberly A; Plissard, Sébastien; Nguyen, Thanh Hai; Makoudi, Younes; Berthe, Maxime; Nys, Jean-Philippe; Wallart, Xavier; Grandidier, Bruno; Caroff, Philippe

    2012-03-09

    III-V antimonide nanowires are among the most interesting semiconductors for transport physics, nanoelectronics and long-wavelength optoelectronic devices due to their optimal material properties. In order to investigate their complex crystal structure evolution, faceting and composition, we report a combined scanning electron microscopy (SEM), transmission electron microscopy (TEM), and scanning tunneling microscopy (STM) study of gold-nucleated ternary InAs/InAs(1-x)Sb(x) nanowire heterostructures grown by molecular beam epitaxy. SEM showed the general morphology and faceting, TEM revealed the internal crystal structure and ternary compositions, while STM was successfully applied to characterize the oxide-free nanowire sidewalls, in terms of nanofaceting morphology, atomic structure and surface composition. The complementary use of these techniques allows for correlation of the morphological and structural properties of the nanowires with the amount of Sb incorporated during growth. The addition of even a minute amount of Sb to InAs changes the crystal structure from perfect wurtzite to perfect zinc blende, via intermediate stacking fault and pseudo-periodic twinning regimes. Moreover, the addition of Sb during the axial growth of InAs/InAs(1-x)Sb(x) heterostructure nanowires causes a significant conformal lateral overgrowth on both segments, leading to the spontaneous formation of a core-shell structure, with an Sb-rich shell.

  13. Green synthesis of gold nanoparticles using Stevia rebaudiana leaf extracts: Characterization and their stability.

    PubMed

    Sadeghi, Babak; Mohammadzadeh, M; Babakhani, B

    2015-07-01

    Various methods invented and developed for the synthesis of gold nanoparticles that increases daily consumed. According to this method, including potential environmental pollution problems and the complexity of the synthesis, in this study, the feasibility of using the leaves extract of Stevia rebaudiana (SR) for the reduction of gold ions to nanoparticles form have been studied. Stevia leaves were used to prepare the aqueous extract for this study. Gold nanoparticles were characterized with different techniques such as UV-vis spectroscopy, FT-IR spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Transmission electron microscopy experiments showed that these nanoparticles are spherical and uniformly distributed and its size is from 5 to 20 nm. FT-IR spectroscopy revealed that gold nanoparticles were functionalized with biomolecules that have primary amine group (NH2), carbonyl group, OH groups and other stabilizing functional groups. X-ray diffraction pattern showed high purity and face centered cubic structure of gold nanoparticles with size of 17 nm. The scanning electron microscopy (SEM) implies the right of forming gold nanoparticles. The results, confirm that gold nanoparticles have synthesized by the leaves extract of S. rebaudiana (SR). Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Microscopy Characterization of Silica-Rich Agrowastes to be used in Cement Binders: Bamboo and Sugarcane Leaves.

    PubMed

    Roselló, Josefa; Soriano, Lourdes; Santamarina, M Pilar; Akasaki, Jorge L; Melges, José Luiz P; Payá, Jordi

    2015-10-01

    Agrowastes are produced worldwide in huge quantities and they contain interesting elements for producing inorganic cementing binders, especially silicon. Conversion of agrowastes into ash is an interesting way of yielding raw material used in the manufacture of low-CO2 binders. Silica-rich ashes are preferred for preparing inorganic binders. Sugarcane leaves (Saccharum officinarum, SL) and bamboo leaves (Bambusa vulgaris, BvL and Bambusa gigantea, BgL), and their corresponding ashes (SLA, BvLA, and BgLA), were chosen as case studies. These samples were analyzed by means of optical microscopy, Cryo-scanning electron microscopy (SEM), SEM, and field emission scanning electron microscopy. Spodograms were obtained for BvLA and BgLA, which have high proportions of silicon, but no spodogram was obtained for SLA because of the low silicon content. Different types of phytoliths (specific cells, reservoirs of silica in plants) in the studied leaves were observed. These phytoliths maintained their form after calcination at temperatures in the 350-850°C range. Owing to the chemical composition of these ashes, they are of interest for use in cements and concrete because of their possible pozzolanic reactivity. However, the presence of significant amounts of K and Cl in the prepared ashes implies a limitation of their applications.

  15. Oceanic Whitecaps and Associated, Bubble-Mediated, Air-Sea Exchange Processes

    DTIC Science & Technology

    1992-10-01

    experiments performed in laboratory conditions using Air-Sea Exchange Monitoring System (A-SEMS). EXPERIMENTAL SET-UP In a first look, the Air-Sea Exchange...Model 225, equipped with a Model 519 plug-in module. Other complementary information on A-SEMS along with results from first tests and calibration...between 9.50C and 22.40C within the first 24 hours after transferring the water sample into laboratory conditions. The results show an enhancement of

  16. High resolution SEM characterization of nano-precipitates in ODS steels.

    PubMed

    Jóźwik, Iwona; Strojny-Nędza, Agata; Chmielewski, Marcin; Pietrzak, Katarzyna; Kurpaska, Łukasz; Nosewicz, Szymon

    2018-05-01

    The performance of the present-day scanning electron microscopy (SEM) extends far beyond delivering electronic images of the surface topography. Oxide dispersion strengthened (ODS) steel is on of the most promising materials for the future nuclear fusion reactor because of its good radiation resistance, and higher operation temperature up to 750°C. The microstructure of ODS should not exceed tens of nm, therefore there is a strong need in a fast and reliable technique for their characterization. In this work, the results of low-kV SEM characterization of nanoprecipitates formed in the ODS matrix are presented. Application of highly sensitive photo-diode BSE detector in SEM imaging allowed for the registration of single nm-sized precipitates in the vicinity of the ODS alloys. The composition of the precipitates has been confirmed by TEM-EDS. © 2018 Wiley Periodicals, Inc.

  17. Special raster scanning for reduction of charging effects in scanning electron microscopy.

    PubMed

    Suzuki, Kazuhiko; Oho, Eisaku

    2014-01-01

    A special raster scanning (SRS) method for reduction of charging effects is developed for the field of SEM. Both a conventional fast scan (horizontal direction) and an unusual scan (vertical direction) are adopted for acquiring raw data consisting of many sub-images. These data are converted to a proper SEM image using digital image processing techniques. About sharpness of the image and reduction of charging effects, the SRS is compared with the conventional fast scan (with frame-averaging) and the conventional slow scan. Experimental results show the effectiveness of SRS images. By a successful combination of the proposed scanning method and low accelerating voltage (LV)-SEMs, it is expected that higher-quality SEM images can be more easily acquired by the considerable reduction of charging effects, while maintaining the resolution. © 2013 Wiley Periodicals, Inc.

  18. Secretory glands and microvascular systems imaged in aqueous solution by atmospheric scanning electron microscopy (ASEM).

    PubMed

    Yamazawa, Toshiko; Nakamura, Naotoshi; Sato, Mari; Sato, Chikara

    2016-12-01

    Exocrine glands, e.g., salivary and pancreatic glands, play an important role in digestive enzyme secretion, while endocrine glands, e.g., pancreatic islets, secrete hormones that regulate blood glucose levels. The dysfunction of these secretory organs immediately leads to various diseases, such as diabetes or Sjögren's syndrome, by poorly understood mechanisms. Gland-related diseases have been studied by optical microscopy (OM), and at higher resolution by transmission electron microscopy (TEM) of Epon embedded samples, which necessitates hydrophobic sample pretreatment. Here, we report the direct observation of tissue in aqueous solution by atmospheric scanning electron microscopy (ASEM). Salivary glands, lacrimal glands, and pancreas were fixed, sectioned into slabs, stained with phosphotungstic acid (PTA), and inspected in radical scavenger d-glucose solution from below by an inverted scanning electron microscopy (SEM), guided by optical microscopy from above to target the tissue substructures. A 2- to 3-µm specimen thickness was visualized by the SEM. In secretory cells, cytoplasmic vesicles and other organelles were clearly imaged at high resolution, and the former could be classified according to the degree of PTA staining. In islets of Langerhans, the microvascular system used as an outlet by the secretory cells was also clearly observed. Microvascular system is also critically involved in the onset of diabetic complications and was clearly visible in subcutaneous tissue imaged by ASEM. The results suggest the use of in-solution ASEM for histology and to study vesicle secretion systems. Further, the high-throughput of ASEM makes it a potential tool for the diagnosis of exocrine and endocrine-related diseases. © 2016 Wiley Periodicals, Inc.

  19. New airtight transfer box for SEM experiments: Application to lithium and sodium metals observation and analyses.

    PubMed

    Stephant, Nicolas; Grissa, Rabeb; Guillou, Fanch; Bretaudeau, Mickaël; Borjon-Piron, Yann; Guillet, Jacques; Moreau, Philippe

    2018-04-18

    The surface of some materials reacts very quickly on contact with air, either because it is oxidized or because it gets humidity from the air. For the sake of original surface observation by scanning electron microscopy (SEM), we conceived an airtight transfer box to keep the samples under vacuum from the place of manufacturing to the SEM chamber. This object is designed to fit in all the models of SEM including those provided with an airlock chamber. The design is voluntarily simplified to allow the manufacturing of the object by a standard mechanical workshop. The transfer box can be easily opened by gravity inside the SEM and allows the preservation of the best vacuum inside, before opening. SEM images and energy dispersive spectroscopy (EDX) analyses of metallic lithium and sodium samples are presented prior and after exposure to the air. X-ray Photoelectron Spectroscopy (XPS) analyses of all samples are also discussed in order to investigate the chemical environments of the detected elements. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. In Situ Characterization of Boehmite Particles in Water Using Liquid SEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Juan; Arey, Bruce W.; Yang, Li

    In situ imaging and elemental analysis of boehmite (AlOOH) particles in water is realized using the System for Analysis at the Liquid Vacuum Interface (SALVI) and Scanning Electron Microscopy (SEM). This paper describes the method and key steps in integrating the vacuum compatible SAVLI to SEM and obtaining secondary electron (SE) images of particles in liquid in high vacuum. Energy dispersive x-ray spectroscopy (EDX) is used to obtain elemental analysis of particles in liquid. A synthesized AlOOH particle is used as a model in the liquid SEM illustration. Our results demonstrate that particles can be imaged in the SE modemore » with good resolution. The AlOOH EDX spectrum shows significant signal from the Al compared with deionized water and the empty channel control. In situ liquid SEM is a powerful technique to study particles in liquid with many exciting applications. This procedure aims to provide technical details in how to conduct liquid SEM imaging and EDX analysis using SALVI and reduce potential pitfalls using this approach for other researchers.« less

  1. Conversion of Propellant Grade Picrite to Spherical Nitroguanidine, an Insensitive Filler for Melt-Cast TNT Formulations

    DTIC Science & Technology

    1991-09-01

    problem with the solvent/non-solvent process reported by ICT is the inability to recycle the mother liquors. Apparently "strawberries" or " sea urchins ...inevitable for the foreseeable future. Exceptions could include lower production rate items such as sea mines or missile warheads, or speLfic nunitions where...Leitz Orthomat 35 mm automatic camera on polaroid film type 667, Magnification ranged up to X42. 14K 1* Scanning Electron Microscopy ( SEM ) SEM was

  2. Symposium on Automation, Robotics and Advanced Computing for the National Space Program (2nd) Held in Arlington, Virginia on 9-11 March 1987

    DTIC Science & Technology

    1988-02-28

    enormous investment in software. This is an area extremely important objective. We need additional where better methodologies , tools and theories...microscopy (SEM) and optical mi- [131 Hanson, A., et a. "A Methodology for the Develop- croscopy. Current activities include the study of SEM im- ment...through a phased knowledge engineering methodology Center (ARC) and NASA Johnson Space Center consisting of: prototype knowledge base develop- iJSC

  3. Broadly Applicable Nanowafer Drug Delivery System for Treating Eye Injuries

    DTIC Science & Technology

    2014-09-01

    the drug molecular transport into the cornea. Intravital laser confocal imaging of the live mouse cornea demonstrating the presence of drug in the...vivo drug release in the mouse cornea by laser confocal fluorescence imaging study revealed that the nanowafers upon instillation on mouse eye were...C) 500nm; (D) 1µm; (E) 1.5µm; and (F) 3µm A B C D E F microscopy (SEM) for the feature integrity and uniformity. The SEM images revealed the presence

  4. A new method using Scanning Electron Microscopy (SEM) for preparation of anisopterous odonates.

    PubMed

    Del Palacio, Alejandro; Sarmiento, Patricia Laura; Javier, Muzón

    2017-10-01

    Anisopterous odonate male's secondary genitalia is a complex of several structures, among them the vesica spermalis is the most informative with important specific characters. The observation of those characters, mostly of membranous nature, is difficult in the Scanning Electron Microscope due to dehydration and metallization processes. In this contribution, we discuss a new and low cost procedure for the observation of these characters in the SEM, compatible with the most common agents used for preserving specimens. © 2017 Wiley Periodicals, Inc.

  5. Study of SEM induced current and voltage contrast modes to assess semiconductor reliability

    NASA Technical Reports Server (NTRS)

    Beall, J. R.

    1976-01-01

    The purpose of the scanning electron microscopy study was to review the failure history of existing integrated circuit technologies to identify predominant failure mechanisms, and to evaluate the feasibility of their detection using SEM application techniques. The study investigated the effects of E-beam irradiation damage and contamination deposition rates; developed the necessary methods for applying the techniques to the detection of latent defects and weaknesses in integrated circuits; and made recommendations for applying the techniques.

  6. Preparation of high-quality planar FeRh thin films for in situ TEM investigations

    NASA Astrophysics Data System (ADS)

    Almeida, Trevor P.; McGrouther, Damien; Pivak, Yevheniy; Perez Garza, Hector Hugo; Temple, Rowan; Massey, Jamie; Marrows, Christopher H.; McVitie, Stephen

    2017-10-01

    The preparation of a planar FeRh thin film using a focused ion beam (FIB) secondary electron microscope (SEM) for the purpose of in situ transmission electron microscopy (TEM) is presented. A custom SEM stub with 45° faces allows for the transfer and milling of the sample on a TEM heating chip, whilst Fresnel imaging within the TEM revealed the presence of the magnetic domain walls, confirming the quality of the FIB-prepared sample.

  7. New and little known feather mites (Acari)

    USDA-ARS?s Scientific Manuscript database

    Feather mites (Acari: Astigmata) were analyzed with low temperature scanning electron microscopy (LT-SEM), including the description of three new species: Plicatalloptes atrichogynus sp. nov. (Analgoidea: Alloptidae) from the Neotropical cormorant Phalacrocorax brasilianus (Gmelin, 1789) (Pelecanifo...

  8. Conductive resins improve charging and resolution of acquired images in electron microscopic volume imaging

    PubMed Central

    Nguyen, Huy Bang; Thai, Truc Quynh; Saitoh, Sei; Wu, Bao; Saitoh, Yurika; Shimo, Satoshi; Fujitani, Hiroshi; Otobe, Hirohide; Ohno, Nobuhiko

    2016-01-01

    Recent advances in serial block-face imaging using scanning electron microscopy (SEM) have enabled the rapid and efficient acquisition of 3-dimensional (3D) ultrastructural information from a large volume of biological specimens including brain tissues. However, volume imaging under SEM is often hampered by sample charging, and typically requires specific sample preparation to reduce charging and increase image contrast. In the present study, we introduced carbon-based conductive resins for 3D analyses of subcellular ultrastructures, using serial block-face SEM (SBF-SEM) to image samples. Conductive resins were produced by adding the carbon black filler, Ketjen black, to resins commonly used for electron microscopic observations of biological specimens. Carbon black mostly localized around tissues and did not penetrate cells, whereas the conductive resins significantly reduced the charging of samples during SBF-SEM imaging. When serial images were acquired, embedding into the conductive resins improved the resolution of images by facilitating the successful cutting of samples in SBF-SEM. These results suggest that improving the conductivities of resins with a carbon black filler is a simple and useful option for reducing charging and enhancing the resolution of images obtained for volume imaging with SEM. PMID:27020327

  9. Efficient electrochemical degradation of multiwall carbon nanotubes.

    PubMed

    Reipa, Vytas; Hanna, Shannon K; Urbas, Aaron; Sander, Lane; Elliott, John; Conny, Joseph; Petersen, Elijah J

    2018-07-15

    As the production mass of multiwall carbon nanotubes (MWCNT) increases, the potential for human and environmental exposure to MWCNTs may also increase. We have shown that exposing an aqueous suspension of pristine MWCNTs to an intense oxidative treatment in an electrochemical reactor, equipped with an efficient hydroxyl radical generating Boron Doped Diamond (BDD) anode, leads to their almost complete mineralization. Thermal optical transmittance analysis showed a total carbon mass loss of over two orders of magnitude due to the electrochemical treatment, a result consistent with measurements of the degraded MWCNT suspensions using UV-vis absorbance. Liquid chromatography data excludes substantial accumulation of the low molecular weight reaction products. Therefore, up to 99% of the initially suspended MWCNT mass is completely mineralized into gaseous products such as CO 2 and volatile organic carbon. Scanning electron microscopy (SEM) images show sporadic opaque carbon clusters suggesting the remaining nanotubes are transformed into structure-less carbon during their electrochemical mineralization. Environmental toxicity of pristine and degraded MWCNTs was assessed using Caenorhabditis elegans nematodes and revealed a major reduction in the MWCNT toxicity after treatment in the electrochemical flow-by reactor. Published by Elsevier B.V.

  10. Paper-based Devices for Isolation and Characterization of Extracellular Vesicles

    PubMed Central

    Chen, Chihchen; Lin, Bo-Ren; Hsu, Min-Yen; Cheng, Chao-Min

    2015-01-01

    Extracellular vesicles (EVs), membranous particles released from various types of cells, hold a great potential for clinical applications. They contain nucleic acid and protein cargo and are increasingly recognized as a means of intercellular communication utilized by both eukaryote and prokaryote cells. However, due to their small size, current protocols for isolation of EVs are often time consuming, cumbersome, and require large sample volumes and expensive equipment, such as an ultracentrifuge. To address these limitations, we developed a paper-based immunoaffinity platform for separating subgroups of EVs that is easy, efficient, and requires sample volumes as low as 10 μl. Biological samples can be pipetted directly onto paper test zones that have been chemically modified with capture molecules that have high affinity to specific EV surface markers. We validate the assay by using scanning electron microscopy (SEM), paper-based enzyme-linked immunosorbent assays (P-ELISA), and transcriptome analysis. These paper-based devices will enable the study of EVs in the clinic and the research setting to help advance our understanding of EV functions in health and disease. PMID:25867034

  11. Investigation of dielectric behavior of the PVC/BaTiO3 composite in low-frequencies

    NASA Astrophysics Data System (ADS)

    Berrag, A.; Belkhiat, S.; Madani, L.

    2018-04-01

    Polyvinyl chloride (PVC) is widely used as insulator in electrical engineering especially as cable insulation sheaths. In order to improve the dielectric properties, polymers are mixed with ceramics. In this paper, PVC composites with different weight percentages 2 wt.%, 5 wt.%, 8 wt.% and 10 wt.% were prepared and investigated. Loss index (𝜀″) and dielectric constant (𝜀‧) have been measured using an impedance analyzer RLC. Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) equipped with energy dispersive X-ray (EDX) have been used as characterization techniques. The incorporation of BaTiO3 does not modify the crystallinity and the morphology of the PVC but reduces the space charges, therefore the dielectric losses. The frequency response analysis has been followed in the frequency ranges (20-140 Hz and 115-1 MHz). Relaxation frequencies have been evaluated in each frequency range. Experimental measurements have been validated using Cole-Cole’s model. Experimental results show well that BaTiO3 as a filler improves the dielectric properties of PVC.

  12. Natural fibre reinforced non-asbestos organic non-metallic friction composites: effect of abaca fibre on mechanical and tribological behaviour

    NASA Astrophysics Data System (ADS)

    Liu, Yucheng; Ma, Yunhai; Che, Junjian; Duanmu, Lingjian; Zhuang, Jian; Tong, Jin

    2018-05-01

    To obtain a natural fibre reinforced non-asbestos organic non-metallic friction composite with good wear resistance and environmental-friendly performances, friction composites reinforced with different lengths of abaca fibre were fabricated by a compression molder equipment and evaluated by using a constant-speed friction test machine. The worn surface morphologies were observed and analyzed using a Scanning Electron Microscopy (SEM). Experimental results show that the length of abaca fibre had no significant effect on the density and hardness, but was obvious on impact strength. The impact strength increased and then decreased with the increasing of length of abaca fibres. Abaca fibres, especially short fibre (lengths of 5 mm, 10 mm), could improve the wear resistance of the friction composites. Meanwhile, the increase of test temperature could result in the increasing of wear rates of the friction composites. A large amount of secondary plateaux presented on the worn surface of specimens FC1 and FC2 which showe relatively smooth worn surfaces and yield the better wear resistance performance.

  13. Experimental investigation on the spiral trepanning of K24 superalloy with femtosecond laser

    NASA Astrophysics Data System (ADS)

    Wang, Maolu; Yang, Lijun; Zhang, Shuai; Wang, Yang

    2018-05-01

    Film cooling holes are crucial for improving the performance of the aviation engine. In the paper, the processing of the film cooling holes on K24 superalloy by femtosecond laser is investigated. By comparing the three different drilling methods, the spiral trepanning method is chosen, and all the drilling experiments are carried out in this way. The experimental results show that the drilling of femtosecond laser pulses has distinct merits against that of the traditional long pulse laser, which can realize the "cold" processing with less recasting layer and less crack. The influence of each process parameter on roundness and taper, which are the important parameters to measure the quality of holes, is analyzed in detail, and the method to decrease it is proposed. To further reduce the recasting layer, the processing quality of the inner wall of the micro hole is investigated by scanning electron microscopy (SEM) equipped with energy disperse spectroscopy (EDS), the mechanism of the femtosecond laser interaction with K24 superalloy is further revealed. The investigation to the film hole machining by femtosecond laser has important practical significance.

  14. Novel methods of stabilization of Raney-Nickel catalyst for fuel-cell electrodes

    NASA Astrophysics Data System (ADS)

    Al-Saleh, M. A.; Sleem-Ur-Rahman; Kareemuddin, S. M. M. J.; Al-Zakri, A. S.

    Two new methods of stabilizing Raney-Nickel (Raney-Ni) catalyst for making fuel-cell anodes were studied. In the first method, the catalyst was oxidized with aqueous H 2O 2 solution, while in the second, oxygen/air (O 2/air) was used in a slurry reactor. Effects of different concentrations of H 2O 2 (5-25 wt.%) and different pressures (10-20 psig) of gas were investigated. The stabilized catalyst was characterized using BET surface area, scanning electron microscopy (SEM) and X-ray diffraction (XRD). The catalyst was used in fuel-cell anodes and the electrochemical performance was determined in an alkaline half-cell. The results were compared with electrodes prepared using conventionally stabilized catalysts. The hydrogen peroxide-treated catalyst has higher BET surface area and produces electrodes with lower polarization. In addition to this, H 2O 2 treatment is convenient, fast and needs simple equipment which involves no instrumentation. Use of oxygen in a slurry reactor to stabilize the catalyst is also convenient but electrode performance is relatively poor.

  15. Effect of Post-Braze Heat Treatment on the Microstructure and Shear Strength of Cemented Carbide and Steel Using Ag-Based Alloy

    NASA Astrophysics Data System (ADS)

    Winardi, Y.; Triyono; Muhayat, N.

    2018-03-01

    The aim of the present study was to investigate the effect temperature of heat treatment process on the interfacial microstructure and mechanical properties of cemented carbide/carbon steel single lap joint brazed using Ag based alloy filler metal. The brazing process was carried out using torch brazing. Heat treatment process was carried out in induction furnace on the temperature of 700, 725, and 750°C, for 30 minutes. Microstructural examinations and phase analysis were performed using scanning electron microscopy (SEM) equipped with energy dispersion spectrometry (EDS). Shear strength of the joints was measured by the universal testing machine. The results of the microstructural analyses of the brazed area indicate that the increase temperature of treatment lead to the increase of solid solution phase of enrichted Cu. Based on EDS test, the carbon elements spread to all brazed area, which is disseminated by base metals. Shear strength joint is increased with temperature treatment. The highest shear strength of the brazed joint was 214,14 MPa when the heated up at 725°C.

  16. Sorbents with high efficiency for CO2 capture based on amines-supported carbon for biogas upgrading.

    PubMed

    Pino, Lidia; Italiano, Cristina; Vita, Antonio; Fabiano, Concetto; Recupero, Vincenzo

    2016-10-01

    Sorbents for CO 2 capture have been prepared by wet impregnation of a commercial active carbon (Ketjen-black, Akzo Nobel) with two CO 2 -philic compounds, polyethylenimine (PEI) and tetraethylenepentamine (TEPA), respectively. The effects of amine amount (from 10 to 70wt.%), CO 2 concentration in the feed, sorption temperature and gas hourly space velocity on the CO 2 capture performance have been investigated. The sorption capacity has been evaluated using the breakthrough method, with a fixed bed reactor equipped with on line gas chromatograph. The samples have been characterized by N 2 adsorption-desorption, scanning electron microscopy and energy dispersive X-ray (SEM/EDX). A promising CO 2 sorption capacity of 6.90 mmol/g sorbent has been obtained with 70wt.% of supported TEPA at 70°C under a stream containing 80vol% of CO 2 . Sorption tests, carried out with simulated biogas compositions (CH 4 /CO 2 mixtures), have revealed an appreciable CO 2 separation selectivity; stable performance was maintained for 20 adsorption-desorption cycles. Copyright © 2016. Published by Elsevier B.V.

  17. Three-dimensional reconstruction of highly complex microscopic samples using scanning electron microscopy and optical flow estimation.

    PubMed

    Baghaie, Ahmadreza; Pahlavan Tafti, Ahmad; Owen, Heather A; D'Souza, Roshan M; Yu, Zeyun

    2017-01-01

    Scanning Electron Microscope (SEM) as one of the major research and industrial equipment for imaging of micro-scale samples and surfaces has gained extensive attention from its emerge. However, the acquired micrographs still remain two-dimensional (2D). In the current work a novel and highly accurate approach is proposed to recover the hidden third-dimension by use of multi-view image acquisition of the microscopic samples combined with pre/post-processing steps including sparse feature-based stereo rectification, nonlocal-based optical flow estimation for dense matching and finally depth estimation. Employing the proposed approach, three-dimensional (3D) reconstructions of highly complex microscopic samples were achieved to facilitate the interpretation of topology and geometry of surface/shape attributes of the samples. As a byproduct of the proposed approach, high-definition 3D printed models of the samples can be generated as a tangible means of physical understanding. Extensive comparisons with the state-of-the-art reveal the strength and superiority of the proposed method in uncovering the details of the highly complex microscopic samples.

  18. Microstructural characterization of Ti-6Al-4V alloy subjected to the duplex SMAT/plasma nitriding.

    PubMed

    Pi, Y; Faure, J; Agoda-Tandjawa, G; Andreazza, C; Potiron, S; Levesque, A; Demangel, C; Retraint, D; Benhayoune, H

    2013-09-01

    In this study, microstructural characterization of Ti-6Al-4V alloy, subjected to the duplex surface mechanical attrition treatment (SMAT)/nitriding treatment, leading to improve its mechanical properties, was carried out through novel and original samples preparation methods. Instead of acid etching which is limited for morphological characterization by scanning electron microscopy (SEM), an original ion polishing method was developed. Moreover, for structural characterization by transmission electron microscopy (TEM), an ion milling method based with the use of two ions guns was also carried out for cross-section preparation. To demonstrate the efficiency of the two developed methods, morphological investigations were done by traditional SEM and field emission gun SEM. This was followed by structural investigations through selected area electron diffraction (SAED) coupled with TEM and X-ray diffraction techniques. The results demonstrated that ionic polishing allowed to reveal a variation of the microstructure according to the surface treatment that could not be observed by acid etching preparation. TEM associated to SAED and X-ray diffraction provided information regarding the nanostructure compositional changes induced by the duplex SMAT/nitriding process. Copyright © 2013 Wiley Periodicals, Inc.

  19. Measuring surface topography with scanning electron microscopy. I. EZEImage: a program to obtain 3D surface data.

    PubMed

    Ponz, Ezequiel; Ladaga, Juan Luis; Bonetto, Rita Dominga

    2006-04-01

    Scanning electron microscopy (SEM) is widely used in the science of materials and different parameters were developed to characterize the surface roughness. In a previous work, we studied the surface topography with fractal dimension at low scale and two parameters at high scale by using the variogram, that is, variance vs. step log-log graph, of a SEM image. Those studies were carried out with the FERImage program, previously developed by us. To verify the previously accepted hypothesis by working with only an image, it is indispensable to have reliable three-dimensional (3D) surface data. In this work, a new program (EZEImage) to characterize 3D surface topography in SEM has been developed. It uses fast cross correlation and dynamic programming to obtain reliable dense height maps in a few seconds which can be displayed as an image where each gray level represents a height value. This image can be used for the FERImage program or any other software to obtain surface topography characteristics. EZEImage also generates anaglyph images as well as characterizes 3D surface topography by means of a parameter set to describe amplitude properties and three functional indices for characterizing bearing and fluid properties.

  20. Scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDX) and aerosol time-of-flight mass spectrometry (ATOFMS) single particle analysis of metallurgy plant emissions.

    PubMed

    Arndt, J; Deboudt, K; Anderson, A; Blondel, A; Eliet, S; Flament, P; Fourmentin, M; Healy, R M; Savary, V; Setyan, A; Wenger, J C

    2016-03-01

    The chemical composition of single particles deposited on industrial filters located in three different chimneys of an iron-manganese (Fe-Mn) alloy manufacturing plant have been compared using aerosol time-of-flight mass spectrometry (ATOFMS) and scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDX). Very similar types of particles were observed using both analytical techniques. Calcium-containing particles dominated in the firing area of the sintering unit, Mn and/or Al-bearing particles were observed at the cooling area of the sintering unit, while Mn-containing particles were dominant at the smelting unit. SEM-EDX analysis of particles collected downstream of the industrial filters showed that the composition of the particles emitted from the chimneys is very similar to those collected on the filters. ATOFMS analysis of ore samples was also performed to identify particulate emissions that could be generated by wind erosion and manual activities. Specific particle types have been identified for each emission source (chimneys and ore piles) and can be used as tracers for source apportionment of ambient PM measured in the vicinity of the industrial site. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Microstructural analysis of 800H steel exposed at test operation in HTHL by using FIB-SEM and HRTEM techniques

    NASA Astrophysics Data System (ADS)

    Marušáková, Daniela; Bublíková, Petra; Berka, Jan; Vávrovcová, Zuzana; Burda, Jaroslav

    2017-09-01

    To understand the degradation process of metal materials which are used in power engineering, appropriate evaluation procedure is necessary to ensure. In that order, the degradation of alloy 800H during the first period of test operation in High Temperature Helium Loop (HTHL) was tested. Experiment was carried out in atmosphere of pure technical helium with purity 4.6 containing only residual concentration of moisture up to 300 vppm. Parameters during the operation test were not constant, process was interrupted several times. The maximum temperature on specimens during this period was 750 °C, average temperature was 460 °C, gas pressure ranged from 3 to 6 MPa and gas flow from 3 to 9 gs-1. Total duration of the test was 264 h. After the exposure the degradation of specimens was investigated by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). Using the technique of Focused Ion Beam (FIB) integrated within SEM the transparent samples with quality surface parameters were obtained for TEM analysis. FIB technique in combination with High Resolution TEM ensured the guaranteed methodology of exposed sample preparation and precise description of changes in this kind of material.

  2. Reduced graphene oxide-induced recrystallization of NiS nanorods to nanosheets and the improved Na-storage properties.

    PubMed

    Pan, Qin; Xie, Jian; Zhu, Tiejun; Cao, Gaoshao; Zhao, Xinbing; Zhang, Shichao

    2014-04-07

    Preparation of two-dimensional (2D) graphene-like materials is currently an emerging field in materials science since the discovery of single-atom-thick graphene prepared by mechanical cleavage. In this work, we proposed a new method to prepare 2D NiS, where reduced graphene oxide (rGO) was found to induce the recrystallization of NiS from nanorods to nanosheets in a hydrothermal process. The process and mechanism of recrystallization have been clarified by various characterization techniques, including scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS) mapping, and X-ray photoelectron spectroscopy (XPS). The characterization of ex situ NiS/rGO products by SEM and EDS mapping indicates that the recrystallization of NiS from nanorods to nanosheets is realized actually through an exfoliation process, while the characterization of in situ NiS/rGO products by SEM, TEM, and EDS mapping reveals the exfoliation process. The XPS result demonstrates that hydrothermally assisted chemical bonding occurs between NiS and rGO, which induces the exfoliation of NiS nanorods into nanosheets. The obtained NiS/rGO composite shows promising Na-storage properties.

  3. A correlative approach for combining microCT, light and transmission electron microscopy in a single 3D scenario

    PubMed Central

    2013-01-01

    Background In biomedical research, a huge variety of different techniques is currently available for the structural examination of small specimens, including conventional light microscopy (LM), transmission electron microscopy (TEM), confocal laser scanning microscopy (CLSM), microscopic X-ray computed tomography (microCT), and many others. Since every imaging method is physically limited by certain parameters, a correlative use of complementary methods often yields a significant broader range of information. Here we demonstrate the advantages of the correlative use of microCT, light microscopy, and transmission electron microscopy for the analysis of small biological samples. Results We used a small juvenile bivalve mollusc (Mytilus galloprovincialis, approximately 0.8 mm length) to demonstrate the workflow of a correlative examination by microCT, LM serial section analysis, and TEM-re-sectioning. Initially these three datasets were analyzed separately, and subsequently they were fused in one 3D scene. This workflow is very straightforward. The specimen was processed as usual for transmission electron microscopy including post-fixation in osmium tetroxide and embedding in epoxy resin. Subsequently it was imaged with microCT. Post-fixation in osmium tetroxide yielded sufficient X-ray contrast for microCT imaging, since the X-ray absorption of epoxy resin is low. Thereafter, the same specimen was serially sectioned for LM investigation. The serial section images were aligned and specific organ systems were reconstructed based on manual segmentation and surface rendering. According to the region of interest (ROI), specific LM sections were detached from the slides, re-mounted on resin blocks and re-sectioned (ultrathin) for TEM. For analysis, image data from the three different modalities was co-registered into a single 3D scene using the software AMIRA®. We were able to register both the LM section series volume and TEM slices neatly to the microCT dataset, with small geometric deviations occurring only in the peripheral areas of the specimen. Based on co-registered datasets the excretory organs, which were chosen as ROI for this study, could be investigated regarding both their ultrastructure as well as their position in the organism and their spatial relationship to adjacent tissues. We found structures typical for mollusc excretory systems, including ultrafiltration sites at the pericardial wall, and ducts leading from the pericardium towards the kidneys, which exhibit a typical basal infolding system. Conclusions The presented approach allows a comprehensive analysis and presentation of small objects regarding both the overall organization as well as cellular and subcellular details. Although our protocol involves a variety of different equipment and procedures, we maintain that it offers savings in both effort and cost. Co-registration of datasets from different imaging modalities can be accomplished with high-end desktop computers and offers new opportunities for understanding and communicating structural relationships within organisms and tissues. In general, the correlative use of different microscopic imaging techniques will continue to become more widespread in morphological and structural research in zoology. Classical TEM serial section investigations are extremely time consuming, and modern methods for 3D analysis of ultrastructure such as SBF-SEM and FIB-SEM are limited to very small volumes for examination. Thus the re-sectioning of LM sections is suitable for speeding up TEM examination substantially, while microCT could become a key-method for complementing ultrastructural examinations. PMID:23915384

  4. Use of light, scanning electron microscopy and bioassays to evaluate parasitism by entomopathogenic fungi of the red scale insect of palms (Phoenicococcus marlatti Ckll., 1899).

    PubMed

    Asensio, L; Lopez-Llorca, L V; López-Jiménez, J A

    2005-01-01

    We have evaluated the parasitism of the red scale insect of the date palm (Phoenicococcus marlatti) by entomopathogenic fungi, using light microscopy (LM), scanning electron microscopy (SEM) and low temperature scanning electron microscopy (LTSEM). Beauveria bassiana, Lecanicillium dimorphum and Lecanicillium cf. psalliotae, were inoculated directly on the scale insects or on insect infested plant material. We found that L. dimorphum and L. cf. psalliotae developed on plant material and on scale insects, making infection structures. B. bassiana was a bad colonizer of date palm leaves (Phoenix dactylifera L.) and did not parasite the scale insects.

  5. Airborne asbestos in Colorado public schools.

    PubMed

    Chadwick, D A; Buchan, R M; Beaulieu, H J

    1985-02-01

    Levels of airborne asbestos for six Colorado public school facilities with sprayed-on asbestos materials were documented using three analytical techniques. Phase contrast microscopy showed levels up to the thousandths of a fiber per cubic centimeter (f/cc), scanning electron microscopy (SEM) up to the hundredths of a f/cc, and transmission electron microscopy coupled to selected area electron diffraction and energy dispersive X-ray analysis (TEM-SAED-EDXA) up to the tenths of an asbestos f/cc. Phase contrast microscopy was found to be an inadequate analytical technique for documenting the levels of airborne asbestos fibers in the schools: only large fibers which were not embedded in the filter were counted, and asbestos fibers were not distinguished from nonasbestos.

  6. Abrasion Testing of Products Containing Nanomaterials, SOP-R-2: Scientific Operating Procedure Series: Release (R)

    DTIC Science & Technology

    2016-04-01

    characterized by different methods such as Scanning Electron Microscopy (SEM) or Transmission Electron Microscopy (TEM) and other methods . ERDC SR-16...the surface coating and substrate material used. Adaptations to this test method can be used with a range of nanomaterial / polymer products in which...material rather than the presence of nanomaterial (Golanski et al. 2011). After particles are released, proper characterization is essential to

  7. Nano-siRNA Particles and Combination Therapies for Ovarian Tumor Targeting

    DTIC Science & Technology

    2014-08-01

    products altered in serous OC cell lines was completed using western blot. We decided not to use SKOV3 in our studies due to two recent...Assembly of the Organic and Inorganic Products of Transcription. Small 2014, 10, 1623-1633. 16 Roh, Y. H., Lee, J. B., Shopsowitz, K. E... product was further studied using various microscopy techniques. Scanning electron microscopy (SEM) images showed that the ODN composite microparticles

  8. Gunshot residue testing in suicides: Part I: Analysis by scanning electron microscopy with energy-dispersive X-ray.

    PubMed

    Molina, D Kimberley; Martinez, Michael; Garcia, James; DiMaio, Vincent J M

    2007-09-01

    Several different methods can be employed to test for gunshot residue (GSR) on a deceased person's hands, including scanning electron microscopy with energy-dispersive x-ray spectroscopy (SEM-EDX) and inductively coupled plasma-atomic emission spectrometry (ICP-AES). Each of these techniques has been extensively studied, especially on living individuals. The current studies (Part I and Part II) were designed to compare the use and utility of the different GSR testing techniques in a medical examiner setting. In Part I, the hands of deceased persons who died from undisputed suicidal handgun wounds were tested for GSR by SEM-EDX over a 4-year period. A total of 116 cases were studied and analyzed for caliber of weapon, proximity of wound, and results of GSR testing, including spatial deposition upon the hands. It was found that in only 50% of cases with a known self-inflicted gunshot wound was SEM-EDX positive for at least 1 specific particle for GSR. In 18% of the cases there was a discernible pattern (spatial distribution) of the particles on the hand such that the manner in which the weapon was held could be determined. Since only 50% of cases where the person is known to have fired a weapon immediately prior to death were positive for GSR by SEM-EDX, this test should not be relied upon to determine whether a deceased individual has discharged a firearm. Furthermore, in only 18% of cases was a discernible pattern present indicating how the firearm was held. The low sensitivity, along with the low percentage of cases with a discernible pattern, limits the usefulness of GSR test results by SEM-EDX in differentiating self-inflicted from non-self-inflicted wounds.

  9. Comparison of two dental implant surface modifications on implants with same macrodesign: an experimental study in the pelvic sheep model.

    PubMed

    Ernst, Sabrina; Stübinger, Stefan; Schüpbach, Peter; Sidler, Michéle; Klein, Karina; Ferguson, Stephen J; von Rechenberg, Brigitte

    2015-08-01

    The aim of this study was to compare two different surfaces of one uniform macro-implant design in order to focus exclusively on the osseointegration properties after 2, 4 and 8 weeks and to discuss the animal model chosen. In six mature sheep, n = 36 implants with a highly crystalline and phosphate-enriched anodized titanium oxide surface (TiU) and n = 36 implants with a hydrophilic, sandblasted, large grit and acid-etched surface (SLA) were placed in the pelvic bone. TiU implants were custom-made to match the SLA implant design. The implant stability and bone-to-implant contact (BIC) were assessed by resonance frequency (ISQ), backscatter scanning electron microscopy (B-SEM), light microscopy (LM), micro-CT and intravital fluorochrome staining. Biomechanical removal torque testing was performed. Overall, no statistically significant differences in BIC total (trabecular + cortical) between TiU and SLA were found via LM and B-SEM. BIC values (B-SEM; LM) in both groups revealed a steady rise in trabecular bone attachment to the implant surface after 2, 4 and 8 weeks. In the 2- to 4-week time interval in the TiU group (P = 0.005) as well as in the SLA group (P = 0.01), a statistically significant increase in BIC trabecular could be observed via LM. B-SEM values confirmed the statistically significant increase for TiU (P = 0.001). In both groups, BIC trabecular values after 8 weeks were significantly higher (P ≤ 0.05) than after 2 weeks (B-SEM; LM). Biomechanical data confirmed the histological data. The two surfaces proved comparable osseointegration in this sheep model. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Scanning electron microscopy study of new bone formation following small and large defects preserved with xenografts supplemented with pamidronate-A pilot study in Fox-Hound dogs at 4 and 8 weeks.

    PubMed

    Lozano-Carrascal, Naroa; Satorres-Nieto, Marta; Delgado-Ruiz, Rafael; Maté-Sánchez de Val, José Eduardo; Gehrke, Sergio Alexandre; Gargallo-Albiol, Jorge; Calvo-Guirado, José Luis

    2017-01-01

    The aim of the present study was to evaluate the feasibility of SEM and EDX microanalysis on evaluating the effect of porcine xenografts (MP3 ® ) supplemented with pamidronate during socket healing. Mandibular second premolars (P2) and first molars (M1) were extracted from six Beagle dogs. P2 were categorized as small defects (SD) and M1 as large defects (LD). Four random groups were created: SC (small control defects with MP3 ® ), ST (small test defects MP3 ® +pamidronate), LC (large control defects with MP3 ® ), and LT (large test defects MP3 ® +pamidronate). At four and eight weeks of healing the samples were evaluated fisically through scanning electron microscopy (SEM), and chemical element mapping was carried out by Energy dispersive X-ray spectroscopy (EDX). After four weeks of healing, SEM and EDX analysis revealed more mineralized bone in ST and LT groups compared with control groups (p<0.05). After eight weeks, Ca/P ratios were slightly higher for small defects (groups SC and ST); in SEM description, in both control and test groups, trabecular bone density was similar to the adjacent mineralized cortical bone. Within the limitations of this experimental study, SEM description and EDX elemental microanalysis have demonstrated to be useful techniques to assess bone remodelling of small and large defects. Both techniques show increased bone formation in test groups (MP3 ® modified with pamidronate) after four and eight weeks of healing. Copyright © 2016 Elsevier GmbH. All rights reserved.

  11. Facile Isolation of Adsorbent-Free Long and Highly-Pure Chirality-Selected Semiconducting Single-Walled Carbon Nanotubes Using A Hydrogen-bonding Supramolecular Polymer.

    PubMed

    Toshimitsu, Fumiyuki; Nakashima, Naotoshi

    2015-12-14

    The ideal form of semiconducting-single-walled carbon nanotubes (sem-SWNTs) for science and technology is long, defect-free, chirality pure and chemically pure isolated narrow diameter tubes. While various techniques to solubilize and purify sem-SWNTs have been developed, many of them targeted only the chiral- or chemically-purity while sacrificing the sem-SWNT intrinsic structural identities by applying strong ultra-sonication and/or chemical modifications. Toward the ultimate purification of the sem-SWNTs, here we report a mild-conditioned extraction of the sem-SWNTs using removable supramolecular hydrogen-bonding polymers (HBPs) that are composed of dicarboxylic- or diaminopyridyl-fluorenes with ~70%-(8,6)SWNT selective extraction. Replacing conventional strong sonication techniques by a simple shaking using HPBs was found to provide long sem-SWNTs (>2.0 μm) with a very high D/G ratio, which was determined by atomic force microscopy observations. The HBPs were readily removed from the nanotube surfaces by an outer stimulus, such as a change in the solvent polarities, to provide chemically pure (8,6)-enriched sem-SWNTs. We also describe molecular mechanics calculations to propose possible structures for the HBP-wrapped sem-SWNTs, furthermore, the mechanism of the chiral selectivity for the sorted sem-SWNTs is well explained by the relationship between the molecular surface area and mass of the HBP/SWNT composites.

  12. Observation of Live Ticks (Haemaphysalis flava) by Scanning Electron Microscopy under High Vacuum Pressure

    PubMed Central

    Ishigaki, Yasuhito; Nakamura, Yuka; Oikawa, Yosaburo; Yano, Yasuhiro; Kuwabata, Susumu; Nakagawa, Hideaki; Tomosugi, Naohisa; Takegami, Tsutomu

    2012-01-01

    Scanning electron microscopes (SEM), which image sample surfaces by scanning with an electron beam, are widely used for steric observations of resting samples in basic and applied biology. Various conventional methods exist for SEM sample preparation. However, conventional SEM is not a good tool to observe living organisms because of the associated exposure to high vacuum pressure and electron beam radiation. Here we attempted SEM observations of live ticks. During 1.5×10−3 Pa vacuum pressure and electron beam irradiation with accelerated voltages (2–5 kV), many ticks remained alive and moved their legs. After 30-min observation, we removed the ticks from the SEM stage; they could walk actively under atmospheric pressure. When we tested 20 ticks (8 female adults and 12 nymphs), they survived for two days after SEM observation. These results indicate the resistance of ticks against SEM observation. Our second survival test showed that the electron beam, not vacuum conditions, results in tick death. Moreover, we describe the reaction of their legs to electron beam exposure. These findings open the new possibility of SEM observation of living organisms and showed the resistance of living ticks to vacuum condition in SEM. These data also indicate, for the first time, the usefulness of tick as a model system for biology under extreme condition. PMID:22431980

  13. High resolution SEM imaging of gold nanoparticles in cells and tissues.

    PubMed

    Goldstein, A; Soroka, Y; Frušić-Zlotkin, M; Popov, I; Kohen, R

    2014-12-01

    The growing demand of gold nanoparticles in medical applications increases the need for simple and efficient characterization methods of the interaction between the nanoparticles and biological systems. Due to its nanometre resolution, modern scanning electron microscopy (SEM) offers straightforward visualization of metallic nanoparticles down to a few nanometre size, almost without any special preparation step. However, visualization of biological materials in SEM requires complicated preparation procedure, which is typically finished by metal coating needed to decrease charging artefacts and quick radiation damage of biomaterials in the course of SEM imaging. The finest conductive metal coating available is usually composed of a few nanometre size clusters, which are almost identical to the metal nanoparticles employed in medical applications. Therefore, SEM monitoring of metal nanoparticles within cells and tissues is incompatible with the conventional preparation methods. In this work, we show that charging artefacts related to non-conductive biological specimen can be successfully eliminated by placing the uncoated biological sample on a conductive substrate. By growing the cells on glass pre-coated with a chromium layer, we were able to observe the uptake of 10 nm gold nanoparticles inside uncoated and unstained macrophages and keratinocytes cells. Imaging in back scattered electrons allowed observation of gold nanoparticles located inside the cells, while imaging in secondary electron gave information on gold nanoparticles located on the surface of the cells. By mounting a skin cross-section on an improved conductive holder, consisting of a silicon substrate coated with copper, we were able to observe penetration of gold nanoparticles of only 5 nm size through the skin barrier in an uncoated skin tissue. The described method offers a convenient modification in preparation procedure for biological samples to be analyzed in SEM. The method provides high conductivity without application of surface coating and requires less time and a reduced use of toxic chemicals. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  14. Leaching behaviour of and Cs disposition in a UMo powellite glass-ceramic

    NASA Astrophysics Data System (ADS)

    Vance, E. R.; Davis, J.; Olufson, K.; Gregg, D. J.; Blackford, M. G.; Griffiths, G. R.; Farnan, I.; Sullivan, J.; Sprouster, D.; Campbell, C.; Hughes, J.

    2014-05-01

    A UMo powellite glass-ceramic designed by French workers to immobilise Mo-rich intermediate-level waste was found to be quite leach resistant in water at 90 °C with the dissolution of Cs, Mo, Na, B and Ca not exceeding 2 g/L in normalised PCT tests. 133Cs solid state nuclear magnetic resonance and scanning electron microscopy (SEM) showed the Cs to inhabit the glass phase. The microstructures were not greatly affected by cooling rates between 1 and 5 °C/min or by introducing 10 times as much Cs and Sr. Protracted leach tests at 90 °C showed surface alteration as evidenced by SEM and particularly transmission electron microscopy; the main alteration phase was a Zn aluminosilicate but several other alteration phases were evident. Voidage in the alteration layers was indicated from enhanced lifetimes in positron annihilation lifetime spectroscopy.

  15. In Situ Formation of Decavanadate-Intercalated Layered Double Hydroxide Films on AA2024 and their Anti-Corrosive Properties when Combined with Hybrid Sol Gel Films

    PubMed Central

    Wu, Junsheng; Peng, Dongdong; He, Yuntao; Du, Xiaoqiong; Zhang, Zhan; Zhang, Bowei; Li, Xiaogang; Huang, Yizhong

    2017-01-01

    A layered double hydroxide (LDH) film was formed in situ on aluminum alloy 2024 through a urea hydrolysis method, and a decavanadate-intercalated LDH (LDH-V) film fabricated through the dip coating method. The microstructural and morphological characteristics were investigated by scanning electron microscopy (SEM). The corrosion-resistant performance was analyzed by electrochemical impedance spectroscopy (EIS), scanning electrochemical microscopy (SECM), and a salt-spray test (SST).The SEM results showed that a complete and defect-free surface was formed on the LDH-VS film. The anticorrosion results revealed that the LDH-VS film had better corrosion-resistant properties than the LDH-S film, especially long-term corrosion resistance. The mechanism of corrosion protection was proposed to consist of the self-healing effect of the decavanadate intercalation and the shielding effect of the sol-gel film. PMID:28772785

  16. High-performance anode based on porous Co3O4 nanodiscs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Anqiang; Wang, Yaping; Xu, Wu

    2014-06-01

    In this article, two-dimensional, Co3O4 hexagonal nanodiscs are prepared using a hydrothermal method without surfactants. X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) have been employed to characterize the structural properties. As revealed by the SEM and TEM experiments, the thickness of our as-fabricated Co3O4 hexagonal nanodiscs is about 20 nm, and the pore diameters range from several nanometers to 30 nm. As an anode for lithium-ion batteries, porous Co3O4 nanodiscs exhibit an average discharge voltage of ~1 V (Vs. Li/Li+) and a high specific charge capacity of 1161 mAh g-1 after 100 cycles. They alsomore » demonstrate excellent rate performance and high Coloumbic efficiency at various rates. These results indicate that porous Co3O4 nanodiscs are good candidates as anode materials for lithium-ion batteries.« less

  17. Nanosilver particle formation on a high surface area titanate.

    PubMed

    Shi, Meng; Lin, Christopher C H; Wu, Lan; Holt, Christopher M B; Mitlin, David; Kuznicki, Steven M

    2010-12-01

    Titanium based molecular sieves, such as ETS-10, have the ability to exchange silver ions and subsequently support self assembly of stable silver nanoparticles when heated. We report that a high surface area sodium titanate (resembling ETS-2) displays a similar ability to self template silver nanoparticles on its surface. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) show high concentrations of silver nanoparticles on the surface of this sodium titanate, formed by thermal reduction of exchanged silver cations. The nanoparticles range in size from 4 to 12 nm, centered at around 6 nm. In addition to SEM and TEM, XRD and surface area analysis were used to characterize the material. The results indicate that this sodium titanate has a high surface area (>263 m2/g), and high ion exchange capacity for silver (30+ wt%) making it an excellent substrate for the exchange and generation of uniform, high-density silver nanoparticles.

  18. Large-scale synthesis and growth habit of 3-D flower-like crystal of PbTe

    NASA Astrophysics Data System (ADS)

    Zhou, Nan; Chen, Gang; Yang, Xi; Zhang, Xiaosong

    2012-02-01

    In this paper, 3-D flower-like crystal of PbTe was successfully synthesized using Pb(CH3COO)2·3H2O and Na2TeO3 as precursors under hydrothermal conditions, and characterized by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction pattern (XRD). The reaction parameters that influenced the evolution of PbTe synthesis and morphology were investigated. It was shown that the flower-like crystal of PbTe was composed of a nucleus with eight pods. A possible growth mechanism was proposed based on the calculation of the surface energies of PbTe and the SEM observation. Furthermore, the temperature-dependent transport properties of 3-D flower-like crystal of PbTe specimen have been evaluated with an average thermoelectric power of 120 S cm-1 and electrical conductivity of 220 μV K-1 at 740 K.

  19. Use of scanning electron microscopy to monitor nanofibre/cell interaction in digestive epithelial cells.

    PubMed

    Millaku, Agron; Drobne, Damjana; Torkar, Matjaz; Novak, Sara; Remškar, Maja; Pipan-Tkalec, Živa

    2013-09-15

    We provide data obtained by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) on the interaction of ingested tungsten nanofibers with epithelial cells of the digestive tubes of a test organism Porcellio scaber. Conventional toxicity endpoints including feeding behaviour, weight loss and mortality were also measured in each investigated animal. No toxicity was detected in any of exposed animals after 14 days of feeding on tungsten nanofiber dosed food, but when nanofibers enter the digestive system they can react with epithelial cells of the digestive tubes, becoming physically inserted into the cells. In this way, nanofibers can injure the epithelial cells of digestive gland tubes when they are ingested with food. Our SEM data suggest that peristaltic forces may have an important role, not predicted by in vitro experiments, in the interactions of nanomaterials with digestive intestinal cells. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Nanostructured zirconium phosphate as ion exchanger: Synthesis, size dependent property and analytical application in radiochemical separation.

    PubMed

    Chakraborty, Rajesh; Bhattacharaya, Koustava; Chattopadhyay, Pabitra

    2014-02-01

    Nanostructured zirconium phosphates (ZPs) of different sizes were synthesized using Tritron X-100 (polyethylene glycol-p-isooctylphenyl ether) surfactant. The materials were characterized by FTIR and powdered X-ray diffraction (XRD). The structural and morphological details of the material were established by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The SEM study was followed by energy dispersive spectroscopic analysis (EDS) for elemental analysis of the sample. The particle sizes were determined by dynamic light scattering (DLS) method. Ion exchange capacity of these nanomaterials towards different metal ions was measured and size-dependent ion exchange property of the materials was investigated thoroughly. The nanomaterial of the smallest size (ca. 21.04nm) was employed to separate carrier-free (137m)Ba from (137)Cs in column chromatographic technique using 1.0M HNO3 as eluting agent at pH=5. © 2013 Elsevier Ltd. All rights reserved.

  1. Physicochemical properties of micelles of poly(styrene-b-[3-(methacryloylamino)propyl]trimethylammonium chloride-b-ethylene oxide) in aqueous solutions.

    PubMed

    Liu, Jingjing; Liu, Dian; Yokoyama, Yuuichi; Yusa, Shin-Ichi; Nakashima, Kenichi

    2009-01-20

    Polymeric micelles from a new triblock copolymer, polystyrene-block-poly[(3-(methacryloylamino)propyl)trimethylammonium chloride]-block-poly(ethylene oxide) (PS-b-PMAPTAC-b-PEO), were prepared in aqueous solutions and characterized by various techniques including dynamic light scattering (DLS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and fluorescence spectroscopy. The micelle consists of a PS core, PMAPTAC shell, and PEO corona. It was revealed by SEM and DLS measurements that the micelles have a spherical structure with a hydrodynamic diameter about 75 nm. The addition of tungstate to the micellar solution caused a morphological change in the micelles from extended to shrunken spheres, which can be attributed to the fact that electrostatic repulsion among the cationic PMAPTAC blocks is canceled by the negative charge of the bound tungstate ions. Effective incorporation of tungstate ions into the micelles were confirmed by TEM and zeta-potential measurements.

  2. Investigation of CuInSe2 nanowire arrays with core-shell structure electrodeposited at various duty cycles into anodic alumina templates

    NASA Astrophysics Data System (ADS)

    Cheng, Yu-Song; Wang, Na-Fu; Tsai, Yu-Zen; Lin, Jia-Jun; Houng, Mau-Phon

    2017-02-01

    Copper indium selenide (CuInSe2) nanowire (NW) arrays were prepared at various electrolyte duty cycles by filling anodic alumina templates through the pulsed electrodeposition technique. X-ray diffraction and scanning electron microscopy (SEM) images showed that the nucleation mechanism of CuInSe2 NW arrays was affected by the electrodeposition duty cycle. Moreover, SEM images showed that the diameter and length of the NWs were 80 nm and 2 μm, respectively. Furthermore, PEDOT/CuInSe2 NW core-shell arrays were fabricated using surfactant-modified CuInSe2 NW surfaces showing the lotus effect. Transmission electron microscopy images confirmed that a core-shell structure was achieved. Current-voltage plots revealed that the CuInSe2 NW arrays were p-type semiconductors; moreover, the core-shell structure improved the diode ideality factor from 3.91 to 2.63.

  3. Helium Ion Microscopy (HIM) for the imaging of biological samples at sub-nanometer resolution

    NASA Astrophysics Data System (ADS)

    Joens, Matthew S.; Huynh, Chuong; Kasuboski, James M.; Ferranti, David; Sigal, Yury J.; Zeitvogel, Fabian; Obst, Martin; Burkhardt, Claus J.; Curran, Kevin P.; Chalasani, Sreekanth H.; Stern, Lewis A.; Goetze, Bernhard; Fitzpatrick, James A. J.

    2013-12-01

    Scanning Electron Microscopy (SEM) has long been the standard in imaging the sub-micrometer surface ultrastructure of both hard and soft materials. In the case of biological samples, it has provided great insights into their physical architecture. However, three of the fundamental challenges in the SEM imaging of soft materials are that of limited imaging resolution at high magnification, charging caused by the insulating properties of most biological samples and the loss of subtle surface features by heavy metal coating. These challenges have recently been overcome with the development of the Helium Ion Microscope (HIM), which boasts advances in charge reduction, minimized sample damage, high surface contrast without the need for metal coating, increased depth of field, and 5 angstrom imaging resolution. We demonstrate the advantages of HIM for imaging biological surfaces as well as compare and contrast the effects of sample preparation techniques and their consequences on sub-nanometer ultrastructure.

  4. Helium Ion Microscopy (HIM) for the imaging of biological samples at sub-nanometer resolution.

    PubMed

    Joens, Matthew S; Huynh, Chuong; Kasuboski, James M; Ferranti, David; Sigal, Yury J; Zeitvogel, Fabian; Obst, Martin; Burkhardt, Claus J; Curran, Kevin P; Chalasani, Sreekanth H; Stern, Lewis A; Goetze, Bernhard; Fitzpatrick, James A J

    2013-12-17

    Scanning Electron Microscopy (SEM) has long been the standard in imaging the sub-micrometer surface ultrastructure of both hard and soft materials. In the case of biological samples, it has provided great insights into their physical architecture. However, three of the fundamental challenges in the SEM imaging of soft materials are that of limited imaging resolution at high magnification, charging caused by the insulating properties of most biological samples and the loss of subtle surface features by heavy metal coating. These challenges have recently been overcome with the development of the Helium Ion Microscope (HIM), which boasts advances in charge reduction, minimized sample damage, high surface contrast without the need for metal coating, increased depth of field, and 5 angstrom imaging resolution. We demonstrate the advantages of HIM for imaging biological surfaces as well as compare and contrast the effects of sample preparation techniques and their consequences on sub-nanometer ultrastructure.

  5. Hollow raspberry-like PdAg alloy nanospheres: High electrocatalytic activity for ethanol oxidation in alkaline media

    NASA Astrophysics Data System (ADS)

    Peng, Cheng; Hu, Yongli; Liu, Mingrui; Zheng, Yixiong

    2015-03-01

    Palladium-silver (PdAg) alloy nanospheres with unique structure were prepared using a one-pot procedure based on the galvanic replacement reaction. Their electrocatalytic activity for ethanol oxidation in alkaline media was evaluated. The morphology and crystal structure of the samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). Electrochemical characterization techniques, including cyclic voltammetry (CV) and chronoamperometry (CA) measurements were used to analyze the electrochemical performance of the PdAg alloy nanospheres. The SEM and TEM images showed that the PdAg alloy nanospheres exhibit a hierarchical nanostructure with hollow interiors and porous walls. Compared to the commercial Pd/C catalyst, the as-prepared PdAg alloy nanospheres exhibit superior electrocatalytic activity and stability towards ethanol electro-oxidation in alkaline media, showing its potential as a new non-Pt electro-catalyst for direct alcohol fuel cells (DAFCs).

  6. Functionalized antibiofilm thin coatings based on PLA-PVA microspheres loaded with usnic acid natural compounds fabricated by MAPLE

    NASA Astrophysics Data System (ADS)

    Grumezescu, Valentina; Socol, Gabriel; Grumezescu, Alexandru Mihai; Holban, Alina Maria; Ficai, Anton; Truşcǎ, Roxana; Bleotu, Coralia; Balaure, Paul Cǎtǎlin; Cristescu, Rodica; Chifiriuc, Mariana Carmen

    2014-05-01

    We report the fabrication of thin coatings of PLA-PVA microspheres loaded with usnic acid by matrix assisted pulsed laser evaporation (MAPLE) onto Ti substrate. The obtained coatings have been physico-chemically characterized by scanning electron microscopy (SEM) and infrared microscopy (IRM). In vitro biological assays have been performed in order to evaluate the influence of fabricated microsphere thin coatings on the Staphylococcus aureus biofilm development as well as their biocompatibility. SEM micrographs have revealed a uniform morphology of thin coatings, while IRM investigations have proved both the homogeneity and functional groups integrity of prepared thin coatings. The obtained microsphere-based thin coatings have proved to be efficient vehicles for usnic acid natural compound with antibiofilm activity, as demonstrated by the inhibitory activity on S. aureus mature biofilm development, opening new perspectives for the prevention and therapy associated to biofilm related infections.

  7. First oxygen from lunar basalt

    NASA Technical Reports Server (NTRS)

    Gibson, M. A.; Knudsen, C. W.; Brueneman, D. J.; Kanamori, H.; Ness, R. O.; Sharp, L. L.; Brekke, D. W.; Allen, C. C.; Morris, R. V.; Keller, L. P.

    1993-01-01

    The Carbotek/Shimizu process to produce oxygen from lunar soils has been successfully demonstrated on actual lunar samples in laboratory facilities at Carbotek with Shimizu funding and support. Apollo sample 70035 containing approximately 25 percent ilmenite (FeTiO3) was used in seven separate reactions with hydrogen varying temperature and pressure: FeTiO3 + H2 yields Fe + TiO2 + H2O. The experiments gave extremely encouraging results as all ilmenite was reduced in every experiment. The lunar ilmenite was found to be about twice as reactive as terrestrial ilmenite samples. Analytical techniques of the lunar and terrestrial ilmenite experiments performed by NASA Johnson Space Center include iron Mossbauer spectroscopy (FeMS), optical microscopy, SEM, TEM, and XRD. The Energy and Environmental Research Center at the University of North Dakota performed three SEM techniques (point count method, morphology determination, elemental mapping), XRD, and optical microscopy.

  8. Synthesis and microstructural studies of annealed Cu(2)O/Cu(x)S bilayer as transparent electrode material for photovoltaic and energy storage devices.

    PubMed

    Taleatu, B A; Arbab, E A A; Omotoso, E; Mola, G T

    2014-10-01

    Cu2 O thin film and a transparent bilayer have been fabricated by electrodeposition method. The growths were obtained in potentiostatic mode with gradual degradation of anodic current. X-ray diffraction (XRD) study showed that the bilayer is polycrystalline and it possesses mixture of different crystallite phases of copper oxides. Surface morphology of the films was investigated by scanning electron microscopy (SEM). The SEM images revealed that the films were uniformly distributed and the starting material (Cu2 O) had cubical structure. Grains agglomeration and crystallinity were enhanced by annealing. Optical studies indicated that all the samples have direct allowed transition. Energy band gap of the bilayer film was reduced by annealing treatment thus corroborating quantum confinement upshot. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  9. APT mass spectrometry and SEM data for CdTe solar cells

    DOE PAGES

    Li, Chen; Paudel, Naba R.; Yan, Yanfa; ...

    2016-03-16

    Atom probe tomography (APT) data acquired from a CAMECA LEAP 4000 XHR for the CdS/CdTe interface for a non-CdCl 2 treated CdTe solar cell as well as the mass spectrum of an APT data set including a GB in a CdCl 2-treated CdTe solar cell are presented. Scanning electron microscopy (SEM) data showing the evolution of sample preparation for APT and scanning transmission electron microscopy (STEM) electron beam induced current (EBIC) are also presented. As a result, these data show mass spectrometry peak decomposition of Cu and Te within an APT dataset, the CdS/CdTe interface of an untreated CdTe solarmore » cell, preparation of APT needles from the CdS/CdTe interface in superstrate grown CdTe solar cells, and the preparation of a cross-sectional STEM EBIC sample.« less

  10. Biosynthesis of palladium nanoparticles using Saccharomyces cerevisiae extract and its photocatalytic degradation behaviour

    NASA Astrophysics Data System (ADS)

    Sriramulu, Mohana; Sumathi, Shanmugam

    2018-06-01

    In this article, we have discussed the biosynthesis of palladium nanoparticles (PdNPs) using aqueous Saccharomyces cerevisiae extract and its photocatalytic application. The biosynthesised PdNPs were characterised by UV-Vis spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FTIR), x-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDX) and Atomic force microscopy (AFM). The formation of PdNPs was confirmed from the disappearance of the peak at 405 nm in the UV-Vis spectrum. Agglomerated and hexagonal shaped PdNPs were noted by SEM. FTIR was performed to identify the biomolecules responsible for the synthesis of PdNPs. Bioactive compounds in the yeast extract acted as secondary metabolites which facilitated the formation of PdNPs. The yeast synthesised PdNPs degraded 98% of direct blue 71 dye photochemically within 60 min under UV light.

  11. Scanning Electron Microscopy Investigation of a Sample Depth Profile Through the Martian Meteorite Nakhla

    NASA Technical Reports Server (NTRS)

    Toporski, Jan; Steele, Andrew; Westall, Frances; McKay, David S.

    2000-01-01

    The ongoing scientific debate as to whether or not the Martian meteorite ALH84001 contained evidence of possible biogenic activities showed the need to establish consistent methods to ascertain the origin of such evidence. To distinguish between terrestrial organic material/microbial contaminants and possible indigenous microbiota within meteorites is therefore crucial. With this in mind a depth profile consisting of four samples from a new sample allocation of Martian meteorite Nakhla was investigated using scanning electron microscopy (SEM) and energy dispersive X-ray analysis. SEM imaging of freshly broken fractured chips revealed structures strongly recent terrestrial microorganisms, in some cases showing evidence of active growth. This conclusion was supported by EDX analysis, which showed the presence of carbon associated with these structures, we concluded that these structures represent recent terrestrial contaminants rather than structures indigenous to the meteorite. Page

  12. Fabrication of Ti-0.48Al Alloy by Centrifugal Casting.

    PubMed

    Park, Jong Bum; Lee, Jung-Il; Ryu, Jeong Ho

    2018-09-01

    Many of the unique properties of TiAl alloys that make are attractive for use in high-temperature structural applications also make it challenging to process them into useful products. Cast TiAl is rapidly nearing commercialization, particularly in the vehicle industry, owing to its low production cost. In this study, the centrifugal casting of a TiAl (Ti-48%Al, mole fraction) turbocharger was simulated and an experimental casting was created in vacuum using an induction melting furnace coupled to a ceramic composite mold. Numerical simulation results agreed with the experiment. The crystal structure, microstructure, and chemical composition of the TiAl prepared by centrifugal casting were studied by X-ray diffractometry, optical microscopy, field emission scanning electron microscopy (FE-SEM) and energy dispersive spectroscopy (EDS). FE-SEM and EDS examinations of the TiAl casting revealed that the thickness of the oxide layer (α-case) was typically less than 35 μm.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lan, Xiaodong; Wu, Hong, E-mail: wuhong927@126.com

    Metallic glass composite coatings Ti{sub 45}Cu{sub 41}Ni{sub 9}Zr{sub 5} and Ti{sub 45}Cu{sub 41}Ni{sub 6}Zr{sub 5}Sn{sub 3} (at.%) on a Ti-30Nb-5Ta-7Zr (wt.%) (TNTZ) alloy were prepared by laser cladding. The microstructures of the coatings were characterized by means of X-ray diffractometry (XRD), scanning electron microscopy (SEM) equipped with energy dispersive X-ray analyzer (EDXA), and transmission electron microscopy (TEM). Results indicated that the coatings have an amorphous structure embedded with a few nanocrystalline phases and dendrites. A partial substitution of Ni by Sn can improve the glass forming ability of Ti-base metallic glass system, and induce the formation of nano-sized Ni{sub 2}SnTimore » phase during the cyclic laser heating. The tribological behavior of both the substrate and the coatings was investigated in detail. A significant improvement in both the hardness and the wear resistance of the coatings was achieved with the addition of Sn. The relationship between the wear resistance and the microstructures of the coatings was discussed. - Highlights: •Ti-based metallic glass composite coatings were prepared by laser cladding. •The wear resistance is greatly improved by laser cladding of composite coatings. •Substitution of Ni by Sn increases GFA and wear resistance of the coatings. •A good balance of crystalline/amorphous phases improves the wear resistance. •Adhesive wear serves as the dominant wear mechanism of the composite coatings.« less

  14. Presence of biofilm containing viable multiresistant organisms despite terminal cleaning on clinical surfaces in an intensive care unit.

    PubMed

    Vickery, K; Deva, A; Jacombs, A; Allan, J; Valente, P; Gosbell, I B

    2012-01-01

    Despite recent attention to surface cleaning and hand hygiene programmes, multiresistant organisms (MROs) continue to be isolated from the hospital environment. Biofilms, consisting of bacteria embedded in exopolymeric substances (EPS) are difficult to remove due to their increased resistance to detergents and disinfectants, and periodically release free-swimming planktonic bacteria back into the environment which may may act as an infection source. To establish whether reservoirs of MROs exist in the environment as biofilms. Following terminal cleaning, equipment and furnishings were removed aseptically from an intensive care unit (ICU) and subjected to culture and scanning electron microscopy (SEM). Samples were placed in 5 mL of tryptone soya broth, sonicated for 5 min before plate culture on horse blood agar, Brillance MRSA and Brilliance VRE agar plates. Samples for SEM were fixed in 3% glutaraldehyde and hexamethyldisilizane (HMDS) prior to sputter-coating with gold and examination in an electron microscope. Biofilm was demonstrated visually on the sterile supply bucket, the opaque plastic door, the venetian blind cord, and the sink rubber, whereas EPS alone was seen on the curtain. Viable bacteria were grown from three samples, including MRSA from the venetian blind cord and the curtain. Biofilm containing MROs persist on clinical surfaces from an ICU despite terminal cleaning, suggesting that current cleaning practices are inadequate to control biofilm development. The presence of MROs being protected within these biofilms may be the mechanism by which MROs persist within the hospital environment. Copyright © 2011 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  15. Ultrastructure of chemoreceptive tarsal sensilla in an armored harvestman and evidence of olfaction across Laniatores (Arachnida, Opiliones).

    PubMed

    Gainett, Guilherme; Michalik, Peter; Müller, Carsten H G; Giribet, Gonzalo; Talarico, Giovanni; Willemart, Rodrigo H

    2017-03-01

    Harvestmen (Arachnida, Opiliones) are especially dependent on chemical cues and are often regarded as animals that rely mainly on contact chemoreception. Information on harvestman sensilla is scarce when compared to other arachnid orders, especially concerning internal morphology. Using scanning (SEM) and transmission (TEM) electron microscopy, we investigated tarsal sensilla on the distal tarsomeres (DT) of all leg pairs in Heteromitobates discolor (Laniatores, Gonyleptidae). Furthermore, we explored the typological diversity of sensilla present on the DT I and II in members of the suborder Laniatores, which include two thirds of the formally described opilionid fauna, using species from 17 families representing all main laniatorian lineages. Our data revealed that DT I and II of H. discolor are equipped with wall-pored falciform hairs (two types), wall-pored sensilla chaetica (two types) and tip-pored sensilla chaetica, while DT III and IV are mainly covered with trichomes (non-sensory) and tip-pored sensilla chaetica. The ultrastructural characteristics support an olfactory function for all wall-pored sensilla and a dual gustatory/mechanoreceptive function for tip-pored sensilla chaetica. Based on our comparative SEM survey, we show that wall-pored sensilla occur in all investigated Laniatores, demonstrating their widespread occurrence in the suborder and highlighting the importance of both legs I and II as the sensory appendages of laniatorean harvestmen. Our results provide the first morphological evidence for olfactory receptors in Laniatores and suggest that olfaction is more important for harvestmen than previously thought. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Fabrication and nanoscale characterization of magnetic multilayer nanowires

    NASA Astrophysics Data System (ADS)

    Elawayeb, Mohamed

    Magnetic multilayers nanowires are scientifically fascinating and have potential industrial applications in many areas of advanced nanotechnology. These applications arise due to the nanoscale dimensions of nanostructures that lead to unique physical properties. Magnetic multilayer nanowires have been successfully produced by electrodeposition into templates. Anodic Aluminium Oxide (AAO) membranes were used as templates in this process; the templates were fabricated by anodization method in acidic solutions at a fixed voltage. The fabrication method of a range of magnetic multilayer nanowires is described in this study and their structure and dimensions were analyzed using scanning electron microscope (SEM), Transmission electron microscope (TEM) and scanning transmission electron microscopy (STEM). This study is focused on the first growth of NiFe/Pt and NiFe/Fe magnetic multilayer nanowires, which were successfully fabricated by pulse electrodeposition into the channels of porous anodic aluminium oxide (AAO) templates, and characterized at the nanoscale. Individual nanowires have uniform structure and regular periodicity. The magnetic and nonmagnetic layers are polycrystalline, with randomly oriented fcc lattice structure crystallites. Chemical compositions of the individual nanowires were analyzed using TEM equipped with energy-dispersive x-ray analysis (EDX) and electron energy loss spectrometry (EELS). The electrical and magnetoresistance properties of individual magnetic multilayer nanowires have been measured inside a SEM using two sharp tip electrodes attached to in situ nanomanipulators and a new electromagnet technique. The giant magnetoresistance (GMR) effect of individual magnetic multilayer nanowires was measured in the current - perpendicular to the plane (CPP) geometry using a new in situ method at variable magnetic field strength and different orientations..

  17. Is scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDS) quantitative?

    PubMed

    Newbury, Dale E; Ritchie, Nicholas W M

    2013-01-01

    Scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDS) is a widely applied elemental microanalysis method capable of identifying and quantifying all elements in the periodic table except H, He, and Li. By following the "k-ratio" (unknown/standard) measurement protocol development for electron-excited wavelength dispersive spectrometry (WDS), SEM/EDS can achieve accuracy and precision equivalent to WDS and at substantially lower electron dose, even when severe X-ray peak overlaps occur, provided sufficient counts are recorded. Achieving this level of performance is now much more practical with the advent of the high-throughput silicon drift detector energy dispersive X-ray spectrometer (SDD-EDS). However, three measurement issues continue to diminish the impact of SEM/EDS: (1) In the qualitative analysis (i.e., element identification) that must precede quantitative analysis, at least some current and many legacy software systems are vulnerable to occasional misidentification of major constituent peaks, with the frequency of misidentifications rising significantly for minor and trace constituents. (2) The use of standardless analysis, which is subject to much broader systematic errors, leads to quantitative results that, while useful, do not have sufficient accuracy to solve critical problems, e.g. determining the formula of a compound. (3) EDS spectrometers have such a large volume of acceptance that apparently credible spectra can be obtained from specimens with complex topography that introduce uncontrolled geometric factors that modify X-ray generation and propagation, resulting in very large systematic errors, often a factor of ten or more. © Wiley Periodicals, Inc.

  18. FIB/SEM technology and Alzheimer's disease: three-dimensional analysis of human cortical synapses.

    PubMed

    Blazquez-Llorca, Lidia; Merchán-Pérez, Ángel; Rodríguez, José-Rodrigo; Gascón, Jorge; DeFelipe, Javier

    2013-01-01

    The quantification and measurement of synapses is a major goal in the study of brain organization in both health and disease. Serial section electron microscopy (EM) is the ideal method since it permits the direct quantification of crucial features such as the number of synapses per unit volume or the distribution and size of synapses. However, a major limitation is that obtaining long series of ultrathin sections is extremely time-consuming and difficult. Consequently, quantitative EM studies are scarce and the most common method employed to estimate synaptic density in the human brain is indirect, by counting at the light microscopic level immunoreactive puncta using synaptic markers. The recent development of automatic EM methods in experimental animals, such as the combination of focused ion beam milling and scanning electron microscopy (FIB/SEM), are opening new avenues. Here we explored the utility of FIB/SEM to examine the cerebral cortex of Alzheimer's disease patients. We found that FIB/SEM is an excellent tool to study in detail the ultrastructure and alterations of the synaptic organization of the human brain. Using this technology, it is possible to reconstruct different types of plaques and the surrounding neuropil to find new aspects of the pathological process associated with the disease, namely; to count the exact number and types of synapses in different regions of the plaques, to study the spatial distribution of synapses, and to analyze the morphology and nature of the various types of dystrophic neurites and amyloid deposits.

  19. Volume determination of irregularly-shaped quasi-spherical nanoparticles.

    PubMed

    Attota, Ravi Kiran; Liu, Eileen Cherry

    2016-11-01

    Nanoparticles (NPs) are widely used in diverse application areas, such as medicine, engineering, and cosmetics. The size (or volume) of NPs is one of the most important parameters for their successful application. It is relatively straightforward to determine the volume of regular NPs such as spheres and cubes from a one-dimensional or two-dimensional measurement. However, due to the three-dimensional nature of NPs, it is challenging to determine the proper physical size of many types of regularly and irregularly-shaped quasi-spherical NPs at high-throughput using a single tool. Here, we present a relatively simple method that determines a better volume estimate of NPs by combining measurements from their top-down projection areas and peak heights using two tools. The proposed method is significantly faster and more economical than the electron tomography method. We demonstrate the improved accuracy of the combined method over scanning electron microscopy (SEM) or atomic force microscopy (AFM) alone by using modeling, simulations, and measurements. This study also exposes the existence of inherent measurement biases for both SEM and AFM, which usually produce larger measured diameters with SEM than with AFM. However, in some cases SEM measured diameters appear to have less error compared to AFM measured diameters, especially for widely used IS-NPs such as of gold, and silver. The method provides a much needed, proper high-throughput volumetric measurement method useful for many applications. Graphical Abstract The combined method for volume determination of irregularly-shaped quasi-spherical nanoparticles.

  20. Enhanced EDX images by fusion of multimodal SEM images using pansharpening techniques.

    PubMed

    Franchi, G; Angulo, J; Moreaud, M; Sorbier, L

    2018-01-01

    The goal of this paper is to explore the potential interest of image fusion in the context of multimodal scanning electron microscope (SEM) imaging. In particular, we aim at merging the backscattered electron images that usually have a high spatial resolution but do not provide enough discriminative information to physically classify the nature of the sample, with energy-dispersive X-ray spectroscopy (EDX) images that have discriminative information but a lower spatial resolution. The produced images are named enhanced EDX. To achieve this goal, we have compared the results obtained with classical pansharpening techniques for image fusion with an original approach tailored for multimodal SEM fusion of information. Quantitative assessment is obtained by means of two SEM images and a simulated dataset produced by a software based on PENELOPE. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  1. Sol-gel synthesis, phase composition, morphological and structural characterization of Ca10(PO4)6(OH)2: XRD, FTIR, SEM, 3D SEM and solid-state NMR studies

    NASA Astrophysics Data System (ADS)

    Kareiva, Simonas; Klimavicius, Vytautas; Momot, Aleksandr; Kausteklis, Jonas; Prichodko, Aleksandra; Dagys, Laurynas; Ivanauskas, Feliksas; Sakirzanovas, Simas; Balevicius, Vytautas; Kareiva, Aivaras

    2016-09-01

    Aqueous sol-gel chemistry route based on ammonium-hydrogen phosphate as the phosphorus precursor, calcium acetate monohydrate as source of calcium ions, and 1,2-ethylendiaminetetraacetic acid (EDTA), or 1,2-diaminocyclohexanetetracetic acid (DCTA), or tartaric acid (TA), or ethylene glycol (EG), or glycerol (GL) as complexing agents have been used to prepare calcium hydroxyapatite (Ca10(PO4)6(OH)2, CHAp). The phase transformations, composition, and structural changes in the polycrystalline samples were studied by infrared spectroscopy (FTIR), X-ray powder diffraction analysis (XRD), and scanning electron microscopy (SEM). The local short-range (nano- and mezo-) scale effects in CHAp were studied using solid-state NMR spectroscopy. The spatial 3D data from the SEM images of CHAp samples obtained by TA, EG and GL sol-gel routes were recovered for the first time to our knowledge.

  2. Enhanced FIB-SEM systems for large-volume 3D imaging.

    PubMed

    Xu, C Shan; Hayworth, Kenneth J; Lu, Zhiyuan; Grob, Patricia; Hassan, Ahmed M; García-Cerdán, José G; Niyogi, Krishna K; Nogales, Eva; Weinberg, Richard J; Hess, Harald F

    2017-05-13

    Focused Ion Beam Scanning Electron Microscopy (FIB-SEM) can automatically generate 3D images with superior z-axis resolution, yielding data that needs minimal image registration and related post-processing. Obstacles blocking wider adoption of FIB-SEM include slow imaging speed and lack of long-term system stability, which caps the maximum possible acquisition volume. Here, we present techniques that accelerate image acquisition while greatly improving FIB-SEM reliability, allowing the system to operate for months and generating continuously imaged volumes > 10 6 µm 3 . These volumes are large enough for connectomics, where the excellent z resolution can help in tracing of small neuronal processes and accelerate the tedious and time-consuming human proofreading effort. Even higher resolution can be achieved on smaller volumes. We present example data sets from mammalian neural tissue, Drosophila brain, and Chlamydomonas reinhardtii to illustrate the power of this novel high-resolution technique to address questions in both connectomics and cell biology.

  3. 40 CFR 61.146 - Standard for spraying.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Microscopy, except as provided in paragraph (c) of this section. (b) For spray-on application of materials..., subpart E, 40 CFR part 763, section 1, Polarized Light Microscopy, on equipment and machinery, except as...

  4. 40 CFR 61.146 - Standard for spraying.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Microscopy, except as provided in paragraph (c) of this section. (b) For spray-on application of materials..., subpart E, 40 CFR part 763, section 1, Polarized Light Microscopy, on equipment and machinery, except as...

  5. 40 CFR 61.146 - Standard for spraying.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Microscopy, except as provided in paragraph (c) of this section. (b) For spray-on application of materials..., subpart E, 40 CFR part 763, section 1, Polarized Light Microscopy, on equipment and machinery, except as...

  6. 40 CFR 61.146 - Standard for spraying.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Microscopy, except as provided in paragraph (c) of this section. (b) For spray-on application of materials..., subpart E, 40 CFR part 763, section 1, Polarized Light Microscopy, on equipment and machinery, except as...

  7. 40 CFR 61.146 - Standard for spraying.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Microscopy, except as provided in paragraph (c) of this section. (b) For spray-on application of materials..., subpart E, 40 CFR part 763, section 1, Polarized Light Microscopy, on equipment and machinery, except as...

  8. The surface topography of the choroid plexus. Environmental, low and high vacuum scanning electron microscopy.

    PubMed

    Mestres, Pedro; Pütz, Norbert; Garcia Gómez de Las Heras, Soledad; García Poblete, Eduardo; Morguet, Andrea; Laue, Michael

    2011-05-01

    Environmental scanning electron microscopy (ESEM) allows the examination of hydrated and dried specimens without a conductive metal coating which could be advantageous in the imaging of biological and medical objects. The aim of this study was to assess the performance and benefits of wet-mode and low vacuum ESEM in comparison to high vacuum scanning electron microscopy (SEM) using the choroid plexus of chicken embryos as a model, an organ of the brain involved in the formation of cerebrospinal fluid in vertebrates. Specimens were fixed with or without heavy metals and examined directly or after critical point drying with or without metal coating. For wet mode ESEM freshly excised specimens without any pre-treatment were also examined. Conventional high vacuum SEM revealed the characteristic morphology of the choroid plexus cells at a high resolution and served as reference. With low vacuum ESEM of dried but uncoated samples the structure appeared well preserved but charging was a problem. It could be reduced by a short beam dwell time and averaging of images or by using the backscattered electron detector instead of the gaseous secondary electron detector. However, resolution was lower than with conventional SEM. Wet mode imaging was only possible with tissue that had been stabilized by fixation. Not all surface details (e.g. microvilli) could be visualized and other structures, like the cilia, were deformed. In summary, ESEM is an additional option for the imaging of bio-medical samples but it is problematic with regard to resolution and sample stability during imaging. Copyright © 2011 Elsevier GmbH. All rights reserved.

  9. Physical disintegration of biochar: An overlooked process

    USDA-ARS?s Scientific Manuscript database

    Data collected from both artificially and field (naturally) weathered biochar suggest that a potentially significant pathway of biochar disappearance is through physical breakdown of the biochar structure. Through scanning electron microscopy (SEM) we characterized this physical weathering which inc...

  10. Simple route to (NH4)xWO3 nanorods for near infrared absorption

    NASA Astrophysics Data System (ADS)

    Guo, Chongshen; Yin, Shu; Dong, Qiang; Sato, Tsugio

    2012-05-01

    Described here is how to synthesize one-dimensional ammonium tungsten bronze ((NH4)xWO3) by a facile solvothermal approach in which ethylene glycol and acetic acid were employed as solvents and ammonium paratungstate was used as a starting material, as well as how to develop the near infrared absorption properties of (NH4)xWO3 nanorods for application as a solar light control filter. The as-obtained product was characterized by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermogravimetry (TG), atomic force microscope (AFM) and UV-Vis-NIR spectra. The SEM and TEM images clearly revealed that the obtained sample possessed rod/fiber-like morphologies with diameters around 120 nm. As determined by UV-Vis-NIR optical measurement, the thin film consisted of (NH4)xWO3 nanoparticles, which can selectively transmit most visible lights, but strongly absorb the near-infrared (NIR) lights and ultraviolet rays. These interesting optical properties make the (NH4)xWO3 nanorods suitable for the solar control windows.Described here is how to synthesize one-dimensional ammonium tungsten bronze ((NH4)xWO3) by a facile solvothermal approach in which ethylene glycol and acetic acid were employed as solvents and ammonium paratungstate was used as a starting material, as well as how to develop the near infrared absorption properties of (NH4)xWO3 nanorods for application as a solar light control filter. The as-obtained product was characterized by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermogravimetry (TG), atomic force microscope (AFM) and UV-Vis-NIR spectra. The SEM and TEM images clearly revealed that the obtained sample possessed rod/fiber-like morphologies with diameters around 120 nm. As determined by UV-Vis-NIR optical measurement, the thin film consisted of (NH4)xWO3 nanoparticles, which can selectively transmit most visible lights, but strongly absorb the near-infrared (NIR) lights and ultraviolet rays. These interesting optical properties make the (NH4)xWO3 nanorods suitable for the solar control windows. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr30612c

  11. Production of zinc oxide nanowires power with precisely defined morphology

    NASA Astrophysics Data System (ADS)

    Mičová, Júlia; Remeš, Zdeněk; Chan, Yu-Ying

    2017-12-01

    The interest about zinc oxide is increasing thanks to its unique chemical and physical properties. Our attention has focused on preparation powder of 1D nanostructures of ZnO nanowires with precisely defined morphology include characterization size (length and diameter) and shape controlled in the scanning electron microscopy (SEM). We have compared results of SEM with dynamic light scattering (DLS) technique. We have found out that SEM method gives more accurate results. We have proposed transformation process from ZnO nanowires on substrates to ZnO nanowires powder by ultrasound peeling to colloid followed by lyophilization. This method of the mass production of the ZnO nanowires powder has some advantages: simplicity, cost effective, large-scale and environment friendly.

  12. Three-dimensional characterization of pigment dispersion in dried paint films using focused ion beam-scanning electron microscopy.

    PubMed

    Lin, Jui-Ching; Heeschen, William; Reffner, John; Hook, John

    2012-04-01

    The combination of integrated focused ion beam-scanning electron microscope (FIB-SEM) serial sectioning and imaging techniques with image analysis provided quantitative characterization of three-dimensional (3D) pigment dispersion in dried paint films. The focused ion beam in a FIB-SEM dual beam system enables great control in slicing paints, and the sectioning process can be synchronized with SEM imaging providing high quality serial cross-section images for 3D reconstruction. Application of Euclidean distance map and ultimate eroded points image analysis methods can provide quantitative characterization of 3D particle distribution. It is concluded that 3D measurement of binder distribution in paints is effective to characterize the order of pigment dispersion in dried paint films.

  13. Evaluation of laser ablation microtomy for correlative microscopy of hard tissues.

    PubMed

    Boyde, A

    2018-02-27

    Laser ablation machining or microtomy (LAM) is a relatively new approach to producing slide mounted sections of translucent materials. We evaluated the method with a variety of problems from the bone, joint and dental tissues fields where we require thin undecalcified and undistorted sections for correlative light microscopy (LM) and backscattered electron scanning electron microscopy (BSE SEM). All samples were embedded in poly-methylmethacrlate (PMMA) and flat block surfaces had been previously studied by BSE-SEM and confocal scanning light microscopy (CSLM). Most were also studied by X-yay microtomography (XMT). The block surface is stuck to a glass slide with cyanoacrylate adhesive. Setting the section thickness and levelling uses inbuilt optical coherence tomographic imaging. Tight focusing of near-infrared laser radiation in the sectioning plane gives extreme intensities causing photodisruption of material at the focal point. The laser beam is moved by a fast scanner to write a cutting line, which is simultaneously moved by an XY positioning unit to create a sectioning plane. The block is thereby released from the slide, leaving the section stuck to the slide. Light, wet polishing on the finest grade (4000 grit) silicon carbide polishing paper is used to remove a 1-2 μm thick damaged layer at the surface of the section. Sections produced by laser cutting are fine in quality and superior to those produced by mechanical cutting and can be thinner than the 'voxel' in most laboratory X-ray microtomography systems. The present extensive pilot studies have shown that it works to produce samples which we can study by both light and electron microscopy. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.

  14. Quantitative Secondary Electron Detector (QSED)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nayak, Subu; Joy, David C.

    2013-12-31

    Research is proposed to investigate the feasibility of applying recent advances in semiconductor technology to fabricate direct digital Quantitative Secondary Electron Detectors (QSED) for scanning electron microscopes (SEMs). If successful, commercial versions of the QSED would transform the SEM into a quantitative, metrological system with enhanced capabilities that, in turn, would broaden research horizons across industries. This project will be conducted in collaboration with Dr. David C Joy at the University of Tennessee, who has demonstrated limited (to the 1keV range) digital collection of the energy from backscattered signals in a SEM using a modified silicon drift detector. Several detectormore » configurations will be fabricated and tested for sensitivities, background noise reduction, DC offset elimination, and metrological capabilities (linearity, accuracy, etc.) against a set of commercially important performance criteria to ascertain concept feasibility. Once feasibility is proven, the solid state digital device array and its switching frequency will be scaled-up, in Phase II, to improve temporal resolution. If successful, this work will produce a crucial advancement in electron microscopy with wide-ranging applications. The following are key advantages anticipated from direct digital QSED: 1. High signal-to-noise ratio will improve SEM resolution in nano-scale, which is critical for dimensional metrology in any application. 2. Quantitative measurement will enhance process control and design validation in semiconductors, photo-voltaics, bio-medical devices and catalysts; and will improve accuracy in predicting the reliability and the lifecycle of materials across industries. 3. Video and dynamic-imaging capabilities will advance study in nano-scale phenomena in a variety of industries, including pharmaceutical and semiconductor materials. 4. Lower cost will make high-performing electron microscopes affordable to more researchers. 5. Compact size and ease of integration with imaging software will enable customers to retrofit and upgrade existing SEM equipment. ScienceTomorrow’s direct digital QSED concept has generated enthusiastic interest among a number of microscope makers, service companies, and microscope users. The company has offers of support from several companies. The roles these companies would play in supporting the project are described in the proposal. The proposed QSED advance sits squarely in the middle of ScienceTomorrow’s mission to provide next-generation technology solutions to today’s critical problems and, if successful, will further the company’s business strategy by launching an advanced, high-margin product that will enable the company and its partners to create at least 17 net-new jobs by the end of 2018.« less

  15. Nanocrystals of [Cu3(btc)2] (HKUST-1): a combined time-resolved light scattering and scanning electron microscopy study.

    PubMed

    Zacher, Denise; Liu, Jianing; Huber, Klaus; Fischer, Roland A

    2009-03-07

    The formation of [Cu(3)(btc)(2)] (HKUST-1; btc = 1,3,5-benzenetricarboxylate) nanocrystals from a super-saturated mother solution at room temperature was monitored by time-resolved light scattering (TLS); the system is characterized by a rapid growth up to a size limit of 200 nm within a few minutes, and the size and shape of the crystallites were also determined by scanning electron microscopy (SEM).

  16. Photosynthetic microorganism-mediated synthesis of akaganeite (beta-FeOOH) nanorods.

    PubMed

    Brayner, Roberta; Yéprémian, Claude; Djediat, Chakib; Coradin, Thibaud; Herbst, Fréderic; Livage, Jacques; Fiévet, Fernand; Couté, Alain

    2009-09-01

    Common Anabaena and Calothrix cyanobacteria and Klebsormidium green algae are shown to form intracellularly akaganeite beta-FeOOH nanorods of well-controlled size and unusual morphology at room temperature. X-ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy X-ray energy dispersive spectrometry (SEM-EDS) analyses are used to investigate particle structure, size, and morphology. A mechanism involving iron-siderophore complex formation is proposed and compared with iron biomineralization in magnetotactic bacteria.

  17. Pulsed-Plasma Physical Vapor Deposition Approach Toward the Facile Synthesis of Multilayer and Monolayer Graphene for Anticoagulation Applications.

    PubMed

    Vijayaraghavan, Rajani K; Gaman, Cezar; Jose, Bincy; McCoy, Anthony P; Cafolla, Tony; McNally, Patrick J; Daniels, Stephen

    2016-02-01

    We demonstrate the growth of multilayer and single-layer graphene on copper foil using bipolar pulsed direct current (DC) magnetron sputtering of a graphite target in pure argon atmosphere. Single-layer graphene (SG) and few-layer graphene (FLG) films are deposited at temperatures ranging from 700 °C to 920 °C within <30 min. We find that the deposition and post-deposition annealing temperatures influence the layer thickness and quality of the graphene films formed. The films were characterized using atomic force microscopy (AFM), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and optical transmission spectroscopy techniques. Based on the above studies, a diffusion-controlled mechanism was proposed for the graphene growth. A single-step whole blood assay was used to investigate the anticoagulant activity of graphene surfaces. Platelet adhesion, activation, and morphological changes on the graphene/glass surfaces, compared to bare glass, were analyzed using fluorescence microscopy and SEM techniques. We have found significant suppression of the platelet adhesion, activation, and aggregation on the graphene-covered surfaces, compared to the bare glass, indicating the anticoagulant activity of the deposited graphene films. Our production technique represents an industrially relevant method for the growth of SG and FLG for various applications including the biomedical field.

  18. A New Method for Qualitative Multi-scale Analysis of Bacterial Biofilms on Filamentous Fungal Colonies Using Confocal and Electron Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miquel Guennoc, Cora; Rose, Christophe; Guinnet, Frédéric

    Bacterial biofilms frequently form on fungal surfaces and can be involved in numerous bacterial-fungal interaction processes, such as metabolic cooperation, competition, or predation. The study of biofilms is important in many biological fields, including environmental science, food production, and medicine. However, few studies have focused on such bacterial biofilms, partially due to the difficulty of investigating them. Most of the methods for qualitative and quantitative biofilm analyses described in the literature are only suitable for biofilms forming on abiotic surfaces or on homogeneous and thin biotic surfaces, such as a monolayer of epithelial cells. While laser scanning confocal microscopy (LSCM)more » is often used to analyze in situ and in vivo biofilms, this technology becomes very challenging when applied to bacterial biofilms on fungal hyphae, due to the thickness and the three dimensions of the hyphal networks. To overcome this shortcoming, we developed a protocol combining microscopy with a method to limit the accumulation of hyphal layers in fungal colonies. Using this method, we were able to investigate the development of bacterial biofilms on fungal hyphae at multiple scales using both LSCM and scanning electron microscopy (SEM). Furthermore, this report describes the protocol, including microorganism cultures, bacterial biofilm formation conditions, biofilm staining, and LSCM and SEM visualizations.« less

  19. Characterizing nanoscale topography of the aortic heart valve basement membrane for tissue engineering heart valve scaffold design.

    PubMed

    Brody, Sarah; Anilkumar, Thapasimuthu; Liliensiek, Sara; Last, Julie A; Murphy, Christopher J; Pandit, Abhay

    2006-02-01

    A fully effective prosthetic heart valve has not yet been developed. A successful tissue-engineered valve prosthetic must contain a scaffold that fully supports valve endothelial cell function. Recently, topographic features of scaffolds have been shown to influence the behavior of a variety of cell types and should be considered in rational scaffold design and fabrication. The basement membrane of the aortic valve endothelium provides important parameters for tissue engineering scaffold design. This study presents a quantitative characterization of the topographic features of the native aortic valve endothelial basement membrane; topographical features were measured, and quantitative data were generated using scanning electron microscopy (SEM), atomic force microscopy (AFM), transmission electron microscopy (TEM), and light microscopy. Optimal conditions for basement membrane isolation were established. Histological, immunohistochemical, and TEM analyses following decellularization confirmed basement membrane integrity. SEM and AFM photomicrographs of isolated basement membrane were captured and quantitatively analyzed. The basement membrane of the aortic valve has a rich, felt-like, 3-D nanoscale topography, consisting of pores, fibers, and elevations. All features measured were in the sub-100 nm range. No statistical difference was found between the fibrosal and ventricular surfaces of the cusp. These data provide a rational starting point for the design of extracellular scaffolds with nanoscale topographic features that mimic those found in the native aortic heart valve basement membrane.

  20. Characterization of the Roman curse tablet

    NASA Astrophysics Data System (ADS)

    Liu, Wen; Zhang, Boyang; Fu, Lin

    2017-08-01

    The Roman curse tablet, produced in ancient Rome period, is a metal plate that inscribed with curses. In this research, several techniques were used to find out the physical structure and chemical composition of the Roman curse tablet, and testified the hypothesis that whether the tablet is made of pure lead or lead alloy. A sample of Roman Curse Tablet from the Johns Hopkins Archaeological Museum was analyzed using several different characterization techniques to determine the physical structure and chemical composition. The characterization techniques used were including optical microscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), and differential scanning calorimetry (DSC). Because of the small sample size, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and X-ray fluorescence (XRF) cannot test the sample. Results from optical microscopy and SEM, enlarged images of the sample surface were studied. The result revealed that the sample surface has a rough, non-uniform, and grainy surface. AFM provides three-dimensional topography of the sample surface, studying the sample surface in atomic level. DSC studies the thermal property, which is most likely a lead-alloy, not a pure lead. However, none of these tests indicated anything about the chemical composition. Future work will be required due to the lack of measures finding out its chemical composition. Therefore, from these characterization techniques above, the Roman curse tablet sample is consisted of lead alloy, not pure lead.

  1. Characterizing Nanoscale Topography of the Aortic Heart Valve Basement Membrane for Tissue Engineering Heart Valve Scaffold Design

    PubMed Central

    BRODY, SARAH; ANILKUMAR, THAPASIMUTHU; LILIENSIEK, SARA; LAST, JULIE A.; MURPHY, CHRISTOPHER J.; PANDIT, ABHAY

    2016-01-01

    A fully effective prosthetic heart valve has not yet been developed. A successful tissue-engineered valve prosthetic must contain a scaffold that fully supports valve endothelial cell function. Recently, topographic features of scaffolds have been shown to influence the behavior of a variety of cell types and should be considered in rational scaffold design and fabrication. The basement membrane of the aortic valve endothelium provides important parameters for tissue engineering scaffold design. This study presents a quantitative characterization of the topographic features of the native aortic valve endothelial basement membrane; topographical features were measured, and quantitative data were generated using scanning electron microscopy (SEM), atomic force microscopy (AFM), transmission electron microscopy (TEM), and light microscopy. Optimal conditions for basement membrane isolation were established. Histological, immunohistochemical, and TEM analyses following decellularization confirmed basement membrane integrity. SEM and AFM photomicrographs of isolated basement membrane were captured and quantitatively analyzed. The basement membrane of the aortic valve has a rich, felt-like, 3-D nanoscale topography, consisting of pores, fibers, and elevations. All features measured were in the sub-100 nm range. No statistical difference was found between the fibrosal and ventricular surfaces of the cusp. These data provide a rational starting point for the design of extracellular scaffolds with nanoscale topographic features that mimic those found in the native aortic heart valve basement membrane. PMID:16548699

  2. Identification of a Multicomponent Traditional Herbal Medicine by HPLC-MS and Electron and Light Microscopy.

    PubMed

    Liu, Ju-Han; Cheng, Yung-Yi; Hsieh, Chen-Hsi; Tsai, Tung-Hu

    2017-12-15

    Commercial pharmaceutical herbal products have enabled people to take traditional Chinese medicine (TCM) in a convenient and accessible form. However, the quantity and quality should be additionally inspected. To address the issue, a combination of chemical and physical inspection methods were developed to evaluate the amount of an herbal formula, Xiang-Sha-Liu-Jun-Zi-Tang (XSLJZT), in clinical TCM practice. A high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS) method with electrospray ionization was developed to measure the herbal biomarkers of guanosine, atractylenolide III, glycyrrhizic acid, dehydrocostus lactone, hesperidin, and oleanolic acid from XSLJZT. Scanning electron microscopy (SEM) photographs and light microscopy photographs with Congo red and iodine-KI staining were used to identify the cellulose fibers and starch content. Furthermore, solubility analysis, swelling power test, and crude fiber analysis were contributed to measure the starch additive in pharmaceutical products. The results demonstrated large variations in the chemical components of different pharmaceutical brands. The SEM photographs revealed that the starch was oval, smooth, and granular, and that the raw herbal powder appears stripy, stretched, and filiform. The stained light microscopy photographs of all of the pharmaceutical products showed added starch and raw herbal powder as extenders. The developed chemical and physical methods provide a standard operating procedure for the quantity control of the herbal pharmaceutical products of XSLJZT.

  3. Ultrastructural analysis of testicular tissue and sperm by transmission and scanning electron microscopy.

    PubMed

    Chemes, Hector E

    2013-01-01

    Transmission electron microscopy (TEM) studies have provided the basis for an in-depth understanding of the cell biology and normal functioning of the testis and male gametes and have opened the way to characterize the functional role played by specific organelles in spermatogenesis and sperm function. The development of the scanning electron microscope (SEM) extended these boundaries to the recognition of cell and organ surface features and the architectural array of cells and tissues. The merging of immunocytochemical and histochemical approaches with electron microscopy has completed a series of technical improvements that integrate structural and functional features to provide a broad understanding of cell biology in health and disease. With these advances the detailed study of the intricate structural and molecular organization as well as the chemical composition of cellular organelles is now possible. Immunocytochemistry is used to identify proteins or other components and localize them in specific cells or organelles with high specificity and sensitivity, and histochemistry can be used to understand their function (i.e., enzyme activity). When these techniques are used in conjunction with electron microscopy their resolving power is further increased to subcellular levels. In the present chapter we will describe in detail various ultrastructural techniques that are now available for basic or translational research in reproductive biology and reproductive medicine. These include TEM, ultrastructural immunocytochemistry, ultrastructural histochemistry, and SEM.

  4. A New Method for Qualitative Multi-scale Analysis of Bacterial Biofilms on Filamentous Fungal Colonies Using Confocal and Electron Microscopy

    DOE PAGES

    Miquel Guennoc, Cora; Rose, Christophe; Guinnet, Frédéric; ...

    2017-01-01

    Bacterial biofilms frequently form on fungal surfaces and can be involved in numerous bacterial-fungal interaction processes, such as metabolic cooperation, competition, or predation. The study of biofilms is important in many biological fields, including environmental science, food production, and medicine. However, few studies have focused on such bacterial biofilms, partially due to the difficulty of investigating them. Most of the methods for qualitative and quantitative biofilm analyses described in the literature are only suitable for biofilms forming on abiotic surfaces or on homogeneous and thin biotic surfaces, such as a monolayer of epithelial cells. While laser scanning confocal microscopy (LSCM)more » is often used to analyze in situ and in vivo biofilms, this technology becomes very challenging when applied to bacterial biofilms on fungal hyphae, due to the thickness and the three dimensions of the hyphal networks. To overcome this shortcoming, we developed a protocol combining microscopy with a method to limit the accumulation of hyphal layers in fungal colonies. Using this method, we were able to investigate the development of bacterial biofilms on fungal hyphae at multiple scales using both LSCM and scanning electron microscopy (SEM). Furthermore, this report describes the protocol, including microorganism cultures, bacterial biofilm formation conditions, biofilm staining, and LSCM and SEM visualizations.« less

  5. The detection of Giardia muris and Giardia lamblia cysts by immunofluorescence in animal tissues and fecal samples subjected to cycles of freezing and thawing.

    PubMed

    Erlandsen, S L; Sherlock, L A; Bemrick, W J

    1990-04-01

    The effects of freezing and thawing on the detection of selected Giardia spp. cysts were investigated using immunofluorescence, bright field microscopy, and low voltage scanning electron microscopy (SEM). Giardia muris cysts were obtained from either animal carcasses, fecal pellets, or isolated cyst preparations, whereas Giardia lamblia cysts were isolated from fecal samples. These samples were stained using an immunofluorescence technique after 1-3 freezing (-16 C) and thawing (20 C) cycles. Cysts were detected successfully by immunofluorescence in all samples. However, in those samples subjected to freeze-thawing, the cyst walls often became distorted and then were not detectable by bright field microscopy. Low voltage SEM demonstrated that the filaments in the distorted cyst wall underwent rearrangements of interfilament spacing. Quantitation of cyst recovery after freezing and thawing demonstrated that a substantial loss occurred after 1 cycle of alternating temperature when low concentrations of cysts were used, but not with high concentrations of cysts. Cyst recovery, after 3 freezing and thawing cycles, was dramatically lowered irrespective of the initial cyst concentration. These results demonstrated that immunofluorescence was an effective technique for the detection of Giardia spp. cysts in frozen samples and would suggest that freezing and thawing of fecal samples could prevent the detection of cysts when only bright field microscopy was employed.

  6. Standardized Polyalthia longifolia leaf extract (PLME) inhibits cell proliferation and promotes apoptosis: The anti-cancer study with various microscopy methods.

    PubMed

    Vijayarathna, Soundararajan; Chen, Yeng; Kanwar, Jagat R; Sasidharan, Sreenivasan

    2017-07-01

    Over the years a number of microscopy methods have been developed to assess the changes in cells. Some non-invasive techniques such as holographic digital microscopy (HDM), which although does not destroy the cells, but helps to monitor the events that leads to initiation of apoptotic cell death. In this study, the apoptogenic property and the cytotoxic effect of P. longifolia leaf methanolic extract (PLME) against the human cervical carcinoma cells (HeLa) was studied using light microscope (LM), holographic digital microscopy (HDM), scanning electron microscope (SEM) and transmission electron microscope (TEM). The average IC 50 value of PLME against HeLa cells obtained by MTT and CyQuant assay was 22.00μg/mL at 24h. However, noncancerous Vero cells tested with PLME exhibited no cytotoxicity with the IC 50 value of 51.07μg/mL at 24h by using MTT assay. Cytological observations showed nuclear condensation, cell shrinkage, multinucleation, abnormalities of mitochondrial cristae, membrane blebbing, disappearance of microvilli and filopodia, narrowing of lamellipodia, holes, formation of numerous smaller vacuoles, cytoplasmic extrusions and formation of apoptotic bodies as confirmed collectively by HDM, LM, SEM and TEM. In conclusion, PLME was able to produce distinctive morphological features of HeLa cell death that corresponds to apoptosis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. A study on the stability and green synthesis of silver nanoparticles using Ziziphora tenuior (Zt) extract at room temperature.

    PubMed

    Sadeghi, Babak; Gholamhoseinpoor, F

    2015-01-05

    Biomolecules present in plant extracts can be used to reduce metal ions to nanoparticles in a single-step green synthesis process. This biogenic reduction of metal ion to base metal is quite rapid, readily conducted at room temperature and pressure, and easily scaled up. Mediated Synthesis by plant extracts is environmentally benign. The involved reducing agents include the various water soluble plant metabolites (e.g. alkaloids, phenolic compounds, terpenoids) and co-enzymes. Silver (Ag) nanoparticles have the particular focus of plant-based syntheses. Extracts of a diverse range of Ziziphora tenuior (Zt) have been successfully used in making nanoparticles. The aim of this study was to investigate the antioxidant properties of this plant and its ability to synthesize silver nanoparticles. Z.tenuior leaves were used to prepare the aqueous extract for this study. Silver nanoparticles were characterized with different techniques such as UV-vis spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), Scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Transmission electron microscopy experiments showed that these nanoparticles are spherical and uniformly distributed and its size is from 8 to 40 nm. FT-IR spectroscopy revealed that silver nanoparticles were functionalized with biomolecules that have primary amine group (NH₂), carbonyl group, -OH groups and other stabilizing functional groups. X-ray diffraction pattern showed high purity and face centered cubic structure of silver nanoparticles with size of 38 nm. In addition to plant extracts, live plants can be used for the synthesis. Here were view the methods of making nanoparticles using plant extracts. The scanning electron microscopy (SEM) implies the right of forming silver nanoparticles. The results of TEM, SEM, FT-IR, UV-VIS and XRD confirm that the leaves extract of Zt can synthesis silver nanoparticles. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Silk fibroin/gold nanocrystals: a new example of biopolymer-based nanocomposites

    NASA Astrophysics Data System (ADS)

    Noinville, S.; Garnier, A.; Courty, A.

    2017-05-01

    The dispersion of nanoparticles in ordered polymer nanostructures can provide control over particle location and orientation, and pave the way for tailored nanomaterials that have enhanced mechanical, electrical, or optical properties. Here we used silk fibroin, a natural biopolymer, to embed gold nanocrystals (NCs), so as to obtain well-ordered structures such as nanowires and self-assembled triangular nanocomposites. Monodisperse gold NCs synthesized in organic media are mixed to silk fibroin and the obtained nanocomposites are characterized by UV-visible spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (FE-SEM), atomic force microscopy (AFM) and Infrared spectroscopy. The optical properties study of gold NCs and silk-gold nanocomposites shows that the Surface Plasmon band is blue shifted compared to gold NCs. The size and shape of NCs gold superlattices can be well controlled by the presence of silk fibroin giving nanowires and also self-assembled triangular nanocomposites as characterized by TEM, FE-SEM and AFM. The strong interaction between gold NCs and silk fibroin is also revealed by the conformation change of silk protein in presence of gold NCs, as shown by FTIR analysis. The formation of such ordered nanocomposites (gold NCs/silk fibroin) will provide new nanoplasmonic devices.

  9. Imaging interactions of metal oxide nanoparticles with macrophage cells by ultra-high resolution scanning electron microscopy techniques.

    PubMed

    Plascencia-Villa, Germán; Starr, Clarise R; Armstrong, Linda S; Ponce, Arturo; José-Yacamán, Miguel

    2012-11-01

    Use of engineered metal oxide nanoparticles in a plethora of biological applications and custom products has warned about some possible dose-dependent cytotoxic effects. Macrophages are key components of the innate immune system used to study possible toxic effects and internalization of different nanoparticulate materials. In this work, ultra-high resolution field emission scanning electron microscopy (FE-SEM) was used to offer new insights into the dynamical processes of interaction of nanomaterials with macrophage cells dosed with different concentrations of metal oxide nanoparticles (CeO(2), TiO(2) and ZnO). The versatility of FE-SEM has allowed obtaining a detailed characterization of processes of adsorption and endocytosis of nanoparticles, by using advanced analytical and imaging techniques on complete unstained uncoated cells, including secondary electron imaging, high-sensitive backscattered electron imaging, X-ray microanalysis and stereoimaging. Low voltage BF/DF-STEM confirmed nanoparticle adsorption and internalization into endosomes of CeO(2) and TiO(2), whereas ZnO develop apoptosis after 24 h of interaction caused by dissolution and invasion of cell nucleus. Ultra-high resolution scanning electron microscopy techniques provided new insights into interactions of inorganic nanoparticles with macrophage cells with high spatial resolution.

  10. Microanalytical study of a ferrous agricultural tool recovered from a historical site in Rio de Janeiro

    NASA Astrophysics Data System (ADS)

    Campos, G. N.; Solórzano, I. G.

    The present work has as its objective a microanalytical study of a metallic archeological artifact using methods of optical microscopy (MO), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The object of the study corresponds to an agricultural tool (a hoe) from the Brazilian colonial period, dating from the late XVIII century, removed from an archeological site (Sítio Rochedo) in excavations conducted by researchers of the Brazilian Archeological Institute. Sample preparation required a meticulous procedure in view of the fragility of the object. The hoe has been suffering the action of oxidation-corrosion over the years, thereby making the impregnation of mineral sediments possible. A detailed metallographic analysis, coupled with spectroscopic SEM and TEM measurements, allows one to conclude that the hoe was made of puddle iron, retaining significant amount of slag. The hoe was probably made by African slaves who had metallurgical knowledge acquired from their ancestors under Portuguese colonization. The equi-axial microstructure of ferrite grains, together with the alignment of slag inclusions, strongly suggest a metal forming procedure conducted on low-carbon puddled iron, followed by heat treatment and then cooling at a slow rate.

  11. Preparation of isolated nuclei from K 562 haemopoietic cell line for high resolution scanning electron microscopy.

    PubMed

    Reipert, S; Reipert, B M; Allen, T D

    1994-09-01

    The aim of the work is to visualise nuclear pore complexes (NPCs) in mammalian cells by high resolution scanning electron microscopy. A detergent-free isolation protocol was employed to obtain clean nuclei from the haemopoietic cell line K 562. Nuclear isolation was performed by mechanical homogenisation under hypotonic conditions followed by purification of the nuclear fraction. The isolated nuclei were attached to silicon chips, fixed, critical point dried, and sputter coated with a thin film (3-4 nm) of tantalum. Analysis of the nuclear surface by scanning electron microscopy (SEM) revealed a strong sensitivity of the outer nuclear membrane (ONM) to disruption during the isolation procedure. A significant reduction of the characteristic pattern of damage to the ONM was achieved by means of an isopicnic centrifugation on an isoosmolar balanced Percoll gradient. Analysis of the population of isolated nuclei by flow cytometry showed no signs of cell cycle specific losses of nuclei during isolation. The SEM investigations of the morphology of the nuclear envelope (NE) and of substructural details of NPCs and polyribosomes were performed using an in-lens field emission scanning electron microscope.

  12. Synthesis, Optical and Structural Properties of Copper Sulfide Nanocrystals from Single Molecule Precursors

    PubMed Central

    Ajibade, Peter A.; Botha, Nandipha L.

    2017-01-01

    We report the synthesis and structural studies of copper sulfide nanocrystals from copper (II) dithiocarbamate single molecule precursors. The precursors were thermolysed in hexadecylamine (HDA) to prepare HDA-capped CuS nanocrystals. The optical properties of the nanocrystals studied using UV–visible and photoluminescence spectroscopy showed absorption band edges at 287 nm that are blue shifted, and the photoluminescence spectra show emission curves that are red-shifted with respect to the absorption band edges. These shifts are as a result of the small crystallite sizes of the nanoparticles leading to quantum size effects. The structural studies were carried out using powder X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and atomic force microscopy. The XRD patterns indicates that the CuS nanocrystals are in hexagonal covellite crystalline phases with estimated particles sizes of 17.3–18.6 nm. The TEM images showed particles with almost spherical or rod shapes, with average crystallite sizes of 3–9.8 nm. SEM images showed morphology with ball-like microspheres on the surfaces, and EDS spectra confirmed the presence of CuS nanoparticles. PMID:28336865

  13. A combined optical, SEM and STM study of growth spirals on the polytypic cadmium iodide crystals

    NASA Astrophysics Data System (ADS)

    Singh, Rajendra; Samanta, S. B.; Narlikar, A. V.; Trigunayat, G. C.

    2000-05-01

    Some novel results of a combined sequential study of growth spirals on the basal surface of the richly polytypic CdI 2 crystals by optical microscopy, scanning electron microscopy (SEM) and scanning tunneling microscopy (STM) are presented and discussed. Under the high resolution and magnification achieved in the scanning electron microscope, the growth steps of large heights seen in the optical micrographs are found to have a large number of additional steps of smaller heights existing between any two adjacent large height growth steps. When further seen by a scanning tunneling microscope, which provides still higher resolution, sequences of unit substeps, each of height equal to the unit cell height of the underlying polytype, are revealed to exist on the surface. Several large steps also lie between the unit steps, with heights equal to an integral multiple of either the unit cell height of the underlying polytype or the thickness of a molecular sheet I-Cd-I. It is suggested that initially a giant screw dislocation may form by brittle fracture of the crystal platelet, which may gradually decompose into numerous unit dislocations during subsequent crystal growth.

  14. Using transmission electron microscopy and 3View® to determine collagen fibril size and three-dimensional organization

    PubMed Central

    Mironov, Aleksandr; Cootes, Timothy F.; Holmes, David F.; Kadler, Karl E.

    2017-01-01

    Collagen fibrils are the major tensile element in vertebrate tissues where they occur as ordered bundles in the extracellular matrix. Abnormal fibril assembly and organization results in scarring, fibrosis, poor wound healing and connective tissue diseases. Transmission electron microscopy (TEM) is used to assess formation of the fibrils, predominantly by measuring fibril diameter. Here we describe an enhanced protocol for measuring fibril diameter as well as fibril-volume-fraction, mean fibril length, fibril cross-sectional shape, and fibril 3D organization that are also major determinants of tissue function. Serial section TEM (ssTEM) has been used to visualize fibril 3D-organization in vivo. However, serial block face-scanning electron microscopy (SBF-SEM) has emerged as a time-efficient alternative to ssTEM. The protocol described below is suitable for preparing tissues for TEM and SBF-SEM (by 3View®). We demonstrate the power of 3View® for studying collagen fibril organization in vivo and show how to find and track individual fibrils. Time scale: ~8 days from isolating the tissue to having a 3D image stack. PMID:23807286

  15. Tribological performance of sub-100-nm femtosecond laser-induced periodic surface structures on titanium

    NASA Astrophysics Data System (ADS)

    Bonse, J.; Höhm, S.; Koter, R.; Hartelt, M.; Spaltmann, D.; Pentzien, S.; Rosenfeld, A.; Krüger, J.

    2016-06-01

    Sub-100-nm laser-induced periodic surface structures (LIPSS) were processed on bulk titanium (Ti) surfaces by femtosecond laser pulse irradiation in air (30 fs pulse duration, 790 nm wavelength). The laser peak fluence, the spatial spot overlap, and the number of overscans were optimized in a sample-scanning geometry in order to obtain large surface areas (5 mm × 5 mm) covered homogeneously by the LIPSS. The laser-processed regions were characterized by optical microscopy (OM), white light interference microscopy (WLIM) and scanning electron microscopy (SEM). The friction coefficient of the nanostructured surfaces was tested during 1000 cycles under reciprocal sliding conditions (1 Hz, 1.0 N normal load) against a 10-mm diameter ball of hardened 100Cr6 steel, both in paraffin oil and in engine oil used as lubricants. Subsequently, the corresponding wear tracks were qualified by OM, SEM, and energy dispersive X-ray analyses (EDX). The results of the tribological tests are discussed and compared to that obtained for near wavelength-sized fs-LIPSS, processed under somewhat different irradiation conditions. Some constraints for a beneficial effect of LIPSS on the tribological performance are provided.

  16. Green synthesis and characterization of graphene nanosheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tavakoli, Farnosh; Salavati-Niasari, Masoud, E-mail: salavati@kashanu.ac.ir; Department of Inorganic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, P. O. Box. 87317-51167, Islamic Republic of Iran

    Highlights: • For the first time, we have synthesized graphene nanosheets in the presence of pomegranate juice. • Here pomegranate juice was used not only as reductant but also as capping agent. • FT-IR, XRD, SEM, EDS and TEM were used to characterize the samples. • According to TEM image, graphene nanosheet is individually exfoliated after stirring for 24 h. • As shown in the TEM image, graphene monolayer is obtained. - Abstract: For the first time, we have successfully synthesized graphene nanosheets in the presence of pomegranate juice. In this approach, pomegranate juice was used not only as reductantmore » but also as capping agent to form graphene nanosheets. At first, the improved Hummer method to oxidize graphite for the synthesis of graphene oxide (GO) was applied, and then the as-produced graphene oxide was reduced by pomegranate juice to form graphene nanosheets. Fourier transformed infrared (FT-IR), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), high resolution transmission electron microscopy (HRTEM), atomic force microscopy (AFM) and raman were used to characterize the samples. The results obtained from the characterization techniques proved high purity of the final products.« less

  17. Imaging of endodontic biofilms by combined microscopy (FISH/cLSM - SEM).

    PubMed

    Schaudinn, C; Carr, G; Gorur, A; Jaramillo, D; Costerton, J W; Webster, P

    2009-08-01

    Scanning electron microscopy is a useful imaging approach for the visualization of bacterial biofilms in their natural environments including their medical and dental habitats, because it allows for the exploration of large surfaces with excellent resolution of topographic features. Most biofilms in nature, however, are embedded in a thick layer of extracellular matrix that prevents a clear identification of individual bacteria by scanning electron microscopy. The use of confocal laser scanning microscopy on the other hand in combination with fluorescence in situ hybridization enables the visualization of matrix embedded bacteria in multi-layered biofilms. In our study, fluorescence in situ hybridization/confocal laser scanning microscopy and scanning electron microscopy were applied to visualize bacterial biofilm in endodontic root canals. The resulting fluorescence in situ hybridization /confocal laser scanning microscopy and scanning electron microscopy and pictures were subsequently combined into one single image to provide high-resolution information on the location of hidden bacteria. The combined use of scanning electron microscopy and fluorescence in situ hybridization / confocal laser scanning microscopy has the potential to overcome the limits of each single technique.

  18. Electron microscopy methods in studies of cultural heritage sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasiliev, A. L., E-mail: a.vasiliev56@gmail.com; Kovalchuk, M. V.; Yatsishina, E. B.

    The history of the development and application of scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray microanalysis (EDXMA) in studies of cultural heritage sites is considered. In fact, investigations based on these methods began when electron microscopes became a commercial product. Currently, these methods, being developed and improved, help solve many historical enigmas. To date, electron microscopy combined with microanalysis makes it possible to investigate any object, from parchment and wooden articles to pigments, tools, and objects of art. Studies by these methods have revealed that some articles were made by ancient masters using ancient “nanotechnologies”; hence,more » their comprehensive analysis calls for the latest achievements in the corresponding instrumental methods and sample preparation techniques.« less

  19. Electron microscopy methods in studies of cultural heritage sites

    NASA Astrophysics Data System (ADS)

    Vasiliev, A. L.; Kovalchuk, M. V.; Yatsishina, E. B.

    2016-11-01

    The history of the development and application of scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray microanalysis (EDXMA) in studies of cultural heritage sites is considered. In fact, investigations based on these methods began when electron microscopes became a commercial product. Currently, these methods, being developed and improved, help solve many historical enigmas. To date, electron microscopy combined with microanalysis makes it possible to investigate any object, from parchment and wooden articles to pigments, tools, and objects of art. Studies by these methods have revealed that some articles were made by ancient masters using ancient "nanotechnologies"; hence, their comprehensive analysis calls for the latest achievements in the corresponding instrumental methods and sample preparation techniques.

  20. Preparation of curcumin-loaded pluronic F127/chitosan nanoparticles for cancer therapy

    NASA Astrophysics Data System (ADS)

    Phuc Le, Thi Minh; Phuc Pham, Van; Lua Dang, Thi Minh; Huyen La, Thi; Hanh Le, Thi; Huan Le, Quang

    2013-06-01

    Nanoparticles (NPs) have been proven to be an effective delivery system with few side effects for anticancer drugs. In this study, curcumin-loaded NPs have been prepared by an ionic gelation method using chitosan (Chi) and pluronic®F-127 (PF) as carriers to deliver curcumin to the target cancer cells. Prepared NPs were characterized using Zetasizer, fluorescence microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Our results showed that the encapsulation efficiency of curcumin was approximately 50%. The average size of curcumin-loaded PF/Chi NPs was 150.9 nm, while the zeta potential was 5.09 mV. Cellular uptake of curcumin-loaded NPs into HEK293 cells was confirmed by fluorescence microscopy.

  1. Surface characterization of LDEF carbon fiber/polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Grammer, Holly L.; Wightman, James P.; Young, Philip R.; Slemp, Wayne S.

    1995-01-01

    XPS (x-ray photoelectron spectroscopy) and SEM (scanning electron microscopy) analysis of both carbon fiber/epoxy matrix and carbon fiber/polysulfone matrix composites revealed significant changes in the surface composition as a result of exposure to low-earth orbit. The carbon 1s curve fit XPS analysis in conjunction with the SEM photomicrographs revealed significant erosion of the polymer matrix resins by atomic oxygen to expose the carbon fibers of the composite samples. This erosion effect on the composites was seen after 10 months in orbit and was even more obvious after 69 months.

  2. The effect of high-power plasma flows on tungsten plates with multilayer films of tungsten nanoparticles

    NASA Astrophysics Data System (ADS)

    Gorokhov, M. V.; Kozhevin, V. M.; Yavsin, D. A.; Voronin, A. V.; Gurevich, S. A.

    2017-04-01

    We have experimentally studied the action of high-power plasma flows on pure tungsten plates covered with multilayer films of tungsten nanoparticles formed by the method of laser electrodeposition. The samples were irradiated using a plasma gun producing hydrogen (helium) plasma flows with power density up to 35 GW/cm2. The resulting surface morphology was studied by scanning electron microscopy (SEM). SEM data showed that tungsten plates coated by nanoparticles are more resistant to the formation of microcracks than are pure tungsten plates.

  3. Recent advances in 3D SEM surface reconstruction.

    PubMed

    Tafti, Ahmad P; Kirkpatrick, Andrew B; Alavi, Zahrasadat; Owen, Heather A; Yu, Zeyun

    2015-11-01

    The scanning electron microscope (SEM), as one of the most commonly used instruments in biology and material sciences, employs electrons instead of light to determine the surface properties of specimens. However, the SEM micrographs still remain 2D images. To effectively measure and visualize the surface attributes, we need to restore the 3D shape model from the SEM images. 3D surface reconstruction is a longstanding topic in microscopy vision as it offers quantitative and visual information for a variety of applications consisting medicine, pharmacology, chemistry, and mechanics. In this paper, we attempt to explain the expanding body of the work in this area, including a discussion of recent techniques and algorithms. With the present work, we also enhance the reliability, accuracy, and speed of 3D SEM surface reconstruction by designing and developing an optimized multi-view framework. We then consider several real-world experiments as well as synthetic data to examine the qualitative and quantitative attributes of our proposed framework. Furthermore, we present a taxonomy of 3D SEM surface reconstruction approaches and address several challenging issues as part of our future work. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. In Situ Characterization of Boehmite Particles in Water Using Liquid SEM.

    PubMed

    Yao, Juan; Arey, Bruce W; Yang, Li; Zhang, Fei; Komorek, Rachel; Chun, Jaehun; Yu, Xiao-Ying

    2017-09-27

    In situ imaging and elemental analysis of boehmite (AlOOH) particles in water is realized using the System for Analysis at the Liquid Vacuum Interface (SALVI) and Scanning Electron Microscopy (SEM). This paper describes the method and key steps in integrating the vacuum compatible SAVLI to SEM and obtaining secondary electron (SE) images of particles in liquid in high vacuum. Energy dispersive x-ray spectroscopy (EDX) is used to obtain elemental analysis of particles in liquid and control samples including deionized (DI) water only and an empty channel as well. Synthesized boehmite (AlOOH) particles suspended in liquid are used as a model in the liquid SEM illustration. The results demonstrate that the particles can be imaged in the SE mode with good resolution (i.e., 400 nm). The AlOOH EDX spectrum shows significant signal from the aluminum (Al) when compared with the DI water and the empty channel control. In situ liquid SEM is a powerful technique to study particles in liquid with many exciting applications. This procedure aims to provide technical know-how in order to conduct liquid SEM imaging and EDX analysis using SALVI and to reduce potential pitfalls when using this approach.

  5. Environmental scanning electron microscope imaging examples related to particle analysis.

    PubMed

    Wight, S A; Zeissler, C J

    1993-08-01

    This work provides examples of some of the imaging capabilities of environmental scanning electron microscopy applied to easily charged samples relevant to particle analysis. Environmental SEM (also referred to as high pressure or low vacuum SEM) can address uncoated samples that are known to be difficult to image. Most of these specimens are difficult to image by conventional SEM even when coated with a conductive layer. Another area where environmental SEM is particularly applicable is for specimens not compatible with high vacuum, such as volatile specimens. Samples from which images were obtained that otherwise may not have been possible by conventional methods included fly ash particles on an oiled plastic membrane impactor substrate, a one micrometer diameter fiber mounted on the end of a wire, uranium oxide particles embedded in oil-bearing cellulose nitrate, teflon and polycarbonate filter materials with collected air particulate matter, polystyrene latex spheres on cellulosic filter paper, polystyrene latex spheres "loosely" sitting on a glass slide, and subsurface tracks in an etched nuclear track-etch detector. Surface charging problems experienced in high vacuum SEMs are virtually eliminated in the low vacuum SEM, extending imaging capabilities to samples previously difficult to use or incompatible with conventional methods.

  6. Evaluation of intracameral injection of ranibizumab and bevacizumab on the corneal endothelium by scanning electron microscopy.

    PubMed

    Ari, Seyhmus; Nergiz, Yusuf; Aksit, Ihsan; Sahin, Alparslan; Cingu, Kursat; Caca, Ihsan

    2015-03-01

    To evaluate the effects of intracameral injection of ranibizumab and bevacizumab on the corneal endothelium by scanning electron microscopy (SEM). Twenty-eight female rabbits were randomly divided into four equal groups. Rabbits in groups 1 and 2 underwent intracameral injection of 1 mg/0.1 mL and 0.5 mg/0.05 mL ranibizumab, respectively; group 3 was injected with 1.25 mg/0.05 mL bevacizumab. All three groups were injected with a balanced salt solution (BSS) into the anterior chamber of the left (fellow) eye. None of the rabbits in group 4 underwent an injection. Corneal thickness and intraocular pressure were measured before the injections, on the first day, and in the first month after injection. The rabbits were sacrificed and corneal tissues were excised in the first month after injection. Specular microscopy was used for the corneal endothelial cell count. Endothelial cell density was assessed and comparisons drawn between the groups and the control. Micrographs were recorded for SEM examination. The structure of the corneal endothelial cells, the junctional area of the cell membrane, the distribution of microvillus, and the cell morphology of the eyes that underwent intracameral injection of vascular endothelial growth factor (VEGF), BSS, and the control group were compared. Corneal thickness and intraocular pressure were not significantly different between the groups that underwent anti-VEGF or BSS injection and the control group on the first day and in the first month of injection. The corneal endothelial cell count was significantly diminished in all three groups; predominantly in group 1 and 2 (P<0.05). The SEM examination revealed normal corneal endothelial histology in group 3 and the control group. Eyes in group 1 exhibited indistinctness of corneal endothelial cell borders, microvillus loss in the luminal surface, excessive blebbing, and disintegration of intercellular junctions. In group 2, the cell structure of the corneal endothelium and intercellular junctions were normal. However, a relative reduction was observed in the microvillus density of endothelial cells. Although eyes in group 3 were morphologically similar to fellow eyes and the control group, disarrangement in endothelial cell borders was evident. The SEM examination pointed out deterioration in endothelial cell morphology after intracameral injection of 1 and 0.5 mg ranizumab. However, the effects of intracameral bevacizumab injection on corneal endothelial cells were similar to those found in fellow eyes and the control group. Further large-scale studies that examine the cellular changes by transmission electron microscopy are required to support the results of the present study that evaluates the structural changes in endothelial cells by SEM.

  7. Effects of surface chemistry on hot corrosion life

    NASA Technical Reports Server (NTRS)

    Fryxell, R. E.; Gupta, B. K.

    1984-01-01

    Hot corrosion life prediction methodology based on a combination of laboratory test data and field service turbine components, which show evidence of hot corrosion, were examined. Components were evaluated by optical metallography, scanning electron microscopy (SEM), and electron micropulse (EMP) examination.

  8. Room temperature chemical synthesis of lead selenide thin films with preferred orientation

    NASA Astrophysics Data System (ADS)

    Kale, R. B.; Sartale, S. D.; Ganesan, V.; Lokhande, C. D.; Lin, Yi-Feng; Lu, Shih-Yuan

    2006-11-01

    Room temperature chemical synthesis of PbSe thin films was carried out from aqueous ammoniacal solution using Pb(CH3COO)2 as Pb2+ and Na2SeSO3 as Se2- ion sources. The films were characterized by a various techniques including, X-ray diffraction (XRD), energy dispersive X-ray analysis (EDAX), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HR-TEM), selected area electron diffraction (SAED), Fast Fourier transform (FFT) and UV-vis-NIR techniques. The study revealed that the PbSe thin film consists of preferentially oriented nanocubes with energy band gap of 0.5 eV.

  9. Application of He ion microscopy for material analysis

    NASA Astrophysics Data System (ADS)

    Altmann, F.; Simon, M.; Klengel, R.

    2009-05-01

    Helium ion beam microscopy (HIM) is a new high resolution imaging technique. The use of Helium ions instead of electrons enables none destructive imaging combined with contrasts quite similar to that from Gallium ion beam imaging. The use of very low probe currents and the comfortable charge compensation using low energy electrons offer imaging of none conductive samples without conductive coating. An ongoing microelectronic sample with Gold/Aluminum interconnects and polymer electronic devices were chosen to evaluate HIM in comparison to scanning electron microscopy (SEM). The aim was to look for key applications of HIM in material analysis. Main focus was on complementary contrast mechanisms and imaging of none conductive samples.

  10. Surfactant-free bio-synthesised Tio2 nanorods from Turbinaria conoides-a study on photocatalytic and anti-bacterial activity

    NASA Astrophysics Data System (ADS)

    Subhapriya, S.; Gomathipriya, P.

    2018-06-01

    In this study, Titania nanorods were synthesised from aqueous extract of Turbinaria conoides (brown seaweeds) (TiO2NRs-TC) under surfactant free medium. The photocatalytic activity of the synthesised nanorods was tested towards the photocatalytic decolourization using simulated dye wastewater containing Navy Blue HER (NBHER). The synthesised Titania nanorods were characterized by using x-ray diffraction (XRD), UV–visible spectroscopy (UV–vis), Scanning Electron Microscopy (SEM), Energy Dispersive Spectrophotometer (EDS) and Transmission Electron Microscopy (TEM). XRD pattern confirms the anatase phase formation and HR-SEM micrograph shows the presence of rod like structure with the size of about 50 nm. TEM analysis proves the rod like structure with a size of 45–50 nm which was in agreement with the XRD analysis and HR-SEM images. EDS and XDS confirmed the formation of Titania nanoparticles. The formation of TiO2NRs-TC has a beneficial influence on the dye Navy blue HER photodegradation. TiO2-TC nano rods also show superior photocatalytic ability in hydrogen generation (2.1 mmol/h‑1g‑1). The antibacterial activity of the synthesised nanoparticles was examined using disc diffusion method which showed diverse susceptibility of microorganisms to the Titania nanoparticles.

  11. Characterization of wood dust from furniture by scanning electron microscopy and energy-dispersive x-ray analysis.

    PubMed

    Gómez Yepes, Milena Elizabeth; Cremades, Lázaro V

    2011-01-01

    Study characterized and analyzed form factor, elementary composition and particle size of wood dust, in order to understand its harmful health effects on carpenters in Quindío (Colombia). Once particle characteristics (size distributions, aerodynamic equivalent diameter (D(α)), elemental composition and shape factors) were analyzed, particles were then characterized via scanning electron microscopy (SEM) in conjunction with energy dispersive X-ray analysis (EDXRA). SEM analysis of particulate matter showed: 1) cone-shaped particle ranged from 2.09 to 48.79 µm D(α); 2) rectangular prism-shaped particle from 2.47 to 72.9 µm D(α); 3) cylindrically-shaped particle from 2.5 to 48.79 µm D(α); and 4) spherically-shaped particle from 2.61 to 51.93 µm D(α). EDXRA reveals presence of chemical elements from paints and varnishes such as Ca, K, Na and Cr. SEM/EDXRA contributes in a significant manner to the morphological characterization of wood dust. It is obvious that the type of particles sampled is a complex function of shapes and sizes of particles. Thus, it is important to investigate the influence of particles characteristics, morphology, shapes and D(α) that may affect the health of carpenters in Quindío.

  12. A Golden Drachma From Bruttia: Counterfeit Money Revealed By Scanning Electron Microscopy and Cathodoluminescence.

    NASA Astrophysics Data System (ADS)

    Pingitore, Valentino; Barberio, Marianna; Oliva, Antonino; Noce, Nicoletta; Gattuso, Caterina; Davoli, Mariano

    Diagnostic studies performed on an ancient coin are presented in order to find if the coin is authentic or is a coinage proof. Our investigation includes Scanning Electron Microscopy - Energy Dispersive X-ray (SEM-EDX) and Cathodoluminescence (CL). The coin is a Drachma representing on the obverse the portrait of Poseidon and, on the reverse the figure of Anfitrite riding a seahorse while Eros is shooting an arrow. The coin is well known in the numismatic studies and originals can also be found in Catanzaro, Naples or Milan museums. The EDX analysis, executed on narrow points of the surface, revealed Pb and Cu as main components of the coin on both sides: 51% of Pb and 35% of Cu their weight and surprisingly on both sides traces of gold was found. The maximum dimensions and the percentage in weight of the small revealed gold spots were respectively on the order of 20 μm and 95%. At the same time luminescence emission induced by electron bombardment (CL) on these spots was executed. This analysis confirmed SEM results, though the presence of Au was more evident than in SEM analysis. In fact CL analysis showed a little presence of Au throughout the sample surface.

  13. Kaolinite flocculation induced by smectite addition - a transmission X-ray microscopic study.

    PubMed

    Zbik, Marek S; Song, Yen-Fang; Frost, Ray L

    2010-09-01

    The influence of smectite addition on kaolinite suspensions in water was investigated by transmission X-ray microscopy (TXM) and Scanning Electron Microscopy (SEM). Sedimentation test screening was also conducted. Micrographs were processed by the STatistic IMage Analysing (STIMAN) program and structural parameters were calculated. From the results of the sedimentation tests important influences of small smectite additions to about 3wt.% on kaolinite suspension flocculation has been found. In order to determine the reason for this smectite impact on kaolinite suspension, macroscopic behaviour micro-structural examination using Transmission X-ray Microscope (TXM) and SEM has been undertaken. TXM & SEM micrographs of freeze-dried kaolinite-smectite suspensions with up to 20% smectite showed a high degree of orientation of the fabric made of highly oriented particles and greatest density when 3wt.% of smectite was added to the 10wt.% dense kaolinite suspension. In contrast, suspensions containing pure kaolinite do not show such platelet mutual orientation but homogenous network of randomly oriented kaolinite platelets. This suggests that in kaolinite-smectite suspensions, smectite forms highly oriented basic framework into which kaolinite platelets may bond in face to face preferential contacts strengthening structure and allowing them to show plastic behaviour which is cause of platelets orientation. Copyright 2010 Elsevier Inc. All rights reserved.

  14. Recent Advances on In Situ SEM Mechanical and Electrical Characterization of Low-Dimensional Nanomaterials.

    PubMed

    Jiang, Chenchen; Lu, Haojian; Zhang, Hongti; Shen, Yajing; Lu, Yang

    2017-01-01

    In the past decades, in situ scanning electron microscopy (SEM) has become a powerful technique for the experimental study of low-dimensional (1D/2D) nanomaterials, since it can provide unprecedented details for individual nanostructures upon mechanical and electrical stimulus and thus uncover the fundamental deformation and failure mechanisms for their device applications. In this overview, we summarized recent developments on in situ SEM-based mechanical and electrical characterization techniques including tensile, compression, bending, and electrical property probing on individual nanostructures, as well as the state-of-the-art electromechanical coupling analysis. In addition, the advantages and disadvantages of in situ SEM tests were also discussed with some possible solutions to address the challenges. Furthermore, critical challenges were also discussed for the development and design of robust in situ SEM characterization platform with higher resolution and wider range of samples. These experimental efforts have offered in-depth understanding on the mechanical and electrical properties of low-dimensional nanomaterial components and given guidelines for their further structural and functional applications.

  15. Recent Advances on In Situ SEM Mechanical and Electrical Characterization of Low-Dimensional Nanomaterials

    PubMed Central

    Jiang, Chenchen; Lu, Haojian; Zhang, Hongti

    2017-01-01

    In the past decades, in situ scanning electron microscopy (SEM) has become a powerful technique for the experimental study of low-dimensional (1D/2D) nanomaterials, since it can provide unprecedented details for individual nanostructures upon mechanical and electrical stimulus and thus uncover the fundamental deformation and failure mechanisms for their device applications. In this overview, we summarized recent developments on in situ SEM-based mechanical and electrical characterization techniques including tensile, compression, bending, and electrical property probing on individual nanostructures, as well as the state-of-the-art electromechanical coupling analysis. In addition, the advantages and disadvantages of in situ SEM tests were also discussed with some possible solutions to address the challenges. Furthermore, critical challenges were also discussed for the development and design of robust in situ SEM characterization platform with higher resolution and wider range of samples. These experimental efforts have offered in-depth understanding on the mechanical and electrical properties of low-dimensional nanomaterial components and given guidelines for their further structural and functional applications. PMID:29209445

  16. SD-SEM: sparse-dense correspondence for 3D reconstruction of microscopic samples.

    PubMed

    Baghaie, Ahmadreza; Tafti, Ahmad P; Owen, Heather A; D'Souza, Roshan M; Yu, Zeyun

    2017-06-01

    Scanning electron microscopy (SEM) imaging has been a principal component of many studies in biomedical, mechanical, and materials sciences since its emergence. Despite the high resolution of captured images, they remain two-dimensional (2D). In this work, a novel framework using sparse-dense correspondence is introduced and investigated for 3D reconstruction of stereo SEM images. SEM micrographs from microscopic samples are captured by tilting the specimen stage by a known angle. The pair of SEM micrographs is then rectified using sparse scale invariant feature transform (SIFT) features/descriptors and a contrario RANSAC for matching outlier removal to ensure a gross horizontal displacement between corresponding points. This is followed by dense correspondence estimation using dense SIFT descriptors and employing a factor graph representation of the energy minimization functional and loopy belief propagation (LBP) as means of optimization. Given the pixel-by-pixel correspondence and the tilt angle of the specimen stage during the acquisition of micrographs, depth can be recovered. Extensive tests reveal the strength of the proposed method for high-quality reconstruction of microscopic samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. 3DSEM++: Adaptive and intelligent 3D SEM surface reconstruction.

    PubMed

    Tafti, Ahmad P; Holz, Jessica D; Baghaie, Ahmadreza; Owen, Heather A; He, Max M; Yu, Zeyun

    2016-08-01

    Structural analysis of microscopic objects is a longstanding topic in several scientific disciplines, such as biological, mechanical, and materials sciences. The scanning electron microscope (SEM), as a promising imaging equipment has been around for decades to determine the surface properties (e.g., compositions or geometries) of specimens by achieving increased magnification, contrast, and resolution greater than one nanometer. Whereas SEM micrographs still remain two-dimensional (2D), many research and educational questions truly require knowledge and facts about their three-dimensional (3D) structures. 3D surface reconstruction from SEM images leads to remarkable understanding of microscopic surfaces, allowing informative and qualitative visualization of the samples being investigated. In this contribution, we integrate several computational technologies including machine learning, contrario methodology, and epipolar geometry to design and develop a novel and efficient method called 3DSEM++ for multi-view 3D SEM surface reconstruction in an adaptive and intelligent fashion. The experiments which have been performed on real and synthetic data assert the approach is able to reach a significant precision to both SEM extrinsic calibration and its 3D surface modeling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Multi-modal Registration for Correlative Microscopy using Image Analogies

    PubMed Central

    Cao, Tian; Zach, Christopher; Modla, Shannon; Powell, Debbie; Czymmek, Kirk; Niethammer, Marc

    2014-01-01

    Correlative microscopy is a methodology combining the functionality of light microscopy with the high resolution of electron microscopy and other microscopy technologies for the same biological specimen. In this paper, we propose an image registration method for correlative microscopy, which is challenging due to the distinct appearance of biological structures when imaged with different modalities. Our method is based on image analogies and allows to transform images of a given modality into the appearance-space of another modality. Hence, the registration between two different types of microscopy images can be transformed to a mono-modality image registration. We use a sparse representation model to obtain image analogies. The method makes use of corresponding image training patches of two different imaging modalities to learn a dictionary capturing appearance relations. We test our approach on backscattered electron (BSE) scanning electron microscopy (SEM)/confocal and transmission electron microscopy (TEM)/confocal images. We perform rigid, affine, and deformable registration via B-splines and show improvements over direct registration using both mutual information and sum of squared differences similarity measures to account for differences in image appearance. PMID:24387943

  19. Phase control of austenitic chrome-nickel steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korkh, M. K., E-mail: KorkhMK@imp.uran.ru; Davidov, D. I., E-mail: davidov@imp.uran.ru; Korkh, J. V., E-mail: Korkh@imp.uran.ru

    2015-10-27

    The paper presents the results of the comparative study of the possibilities of different structural and magnetic methods for detection and visualization of the strain-induced martensitic phase in low carbon austenitic chromium-nickel steel. Results of TEM, SEM, optical microscopy, atomic and magnetic force microscopy, and magnetic measurements are presented. Amount of the magnetic strain-induced martensite was estimated. We pioneered magnetic force microscopic images of the single domain cluster distribution of the strain-induced martensite in austenite-ferrite materials.

  20. Overcoming Ehrlich-Schwöbel barrier in (1 1 1)A GaAs molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Ritzmann, Julian; Schott, Rüdiger; Gross, Katherine; Reuter, Dirk; Ludwig, Arne; Wieck, Andreas D.

    2018-01-01

    In this work, we first study the effect of different growth parameters on the molecular beam epitaxy (MBE) growth of GaAs layers on (1 1 1)A oriented substrates. After that we present a method for the MBE growth of atomically smooth layers by sequences of growth and annealing phases. The samples exhibit low surface roughness and good electrical properties shown by atomic force microscopy (AFM), scanning electron microscopy (SEM) and van-der-Pauw Hall measurements.

  1. Surfactant-Templated Mesoporous Metal Oxide Nanowires

    DOE PAGES

    Luo, Hongmei; Lin, Qianglu; Baber, Stacy; ...

    2010-01-01

    We demore » monstrate two approaches to prepare mesoporous metal oxide nanowires by surfactant assembly and nanoconfinement via sol-gel or electrochemical deposition. For example, mesoporous Ta 2 O 5 and zeolite nanowires are prepared by block copolymer Pluronic 123-templated sol-gel method, and mesoporous ZnO nanowires are prepared by electrodeposition in presence of anionic surfactant sodium dodecyl sulfate (SDS) surfactant, in porous membranes. The morphologies of porous nanowires are studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses.« less

  2. Room-temperature synthesis and photoluminescence of hexagonal CePO4 nanorods

    NASA Astrophysics Data System (ADS)

    Zhu, J.; Zhang, K.; Zhao, H. Y.

    2018-01-01

    Hexagonal CePO4 nanorods were synthesized via a simple chemical precipitation route at room-temperature without the presence of surfactants and then characterized by powder X-ray diffraction (XRD), energy-dispersive X-ray (EDX) spectrometry, scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet-visible (UV-vis) absorption and photoluminescence (PL) spectroscopy. Hexagonal CePO4 nanorods exhibit strong ultraviolet absorption and ultraviolet luminescence, which correspond to the electronic transitions between 4f and 5d state of Ce3+ ions.

  3. Short review on chemical bath deposition of thin film and characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mugle, Dhananjay, E-mail: dhananjayforu@gmail.com; Jadhav, Ghanshyam, E-mail: ghjadhav@rediffmail.com

    2016-05-06

    This reviews the theory of early growth of the thin film using chemical deposition methods. In particular, it critically reviews the chemical bath deposition (CBD) method for preparation of thin films. The different techniques used for characterizations of the chemically films such as X-ray diffractometer (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Electrical conductivity and Energy Dispersive Spectroscopy (EDS) are discussed. Survey shows the physical and chemical properties solely depend upon the time of deposition, temperature of deposition.

  4. Elucidating the Wavelength Dependence of Phonon Scattering in Nanoparticle-Matrix Composites using Phonon Spectroscopy

    DTIC Science & Technology

    2016-07-11

    composites with x - ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Rutherford backscattering spectroscopy...RBS), particle-induced x - ray emission (PIXE), and energy dispersive x - ray spectroscopy (EDX). This work complements earlier works on CdSe...sample shows only In2Se3 and CdIn2Se4 XRD peaks (Figure 1.4e), it is stoichiometrically   Figure 1.4. X - ray diffraction patterns of (a) γ-In2Se3

  5. A Photomicrography Primer.

    ERIC Educational Resources Information Center

    Davidson, Michael W.

    1991-01-01

    Describes techniques and equipment which allows school microscopes to perform crossed-polarized light microscopy, reflected light microscopy, and photomicrography. Provides information on using chemicals from a high school stockroom to view crystals, viewing integrated circuits, and capturing images on film. Lists possible independent student…

  6. Phosphate Remediation and Recovery using Iron Oxide-based Adsorbents

    EPA Science Inventory

    E33-modified sorbents for the removal of phosphate from lake water was investigated in this study. E33-modified sorbents were synthesized by coating with manganese and nanoparticles. Characterization was done by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-...

  7. NON-UNIFORM COPPER CORROSION: RESEARCH UPDATE

    EPA Science Inventory

    Pinhole leaks due to copper pitting corrosion are a major cause of home plumbing failure. This study documents cases of copper pitting corrosion found in homes supplied by Butler County Environmental Services in Ohio. SEM. XRD, and optical microscopy were used to document pit s...

  8. Clavicipitaceous anamorphic endophytes in Hordeum germplasm

    Treesearch

    A. Dan Wilson

    2007-01-01

    The incidence of clavicipitaceous anamorphic endophytes, non-choke inducing endosymbiotic fungi of the genus Neotyphodium that systemically infect grasses, in eighteen Hordeum species from the U.S. National Plant Germplasm System was examined using light and Scanning Electron Microscopy (SEM). Seventeen plant inventory accessions...

  9. Changes in surface characteristics of two different resin composites after 1 year water storage: An SEM and AFM study.

    PubMed

    Tekçe, Neslihan; Pala, Kansad; Demirci, Mustafa; Tuncer, Safa

    2016-11-01

    To evaluate changes in surface characteristics of two different resin composites after 1 year of water storage using a profilometer, Vickers hardness, scanning electron microscopy (SEM), and atomic force microscopy (AFM). A total of 46 composite disk specimens (10 mm in diameter and 2 mm thick) were fabricated using Clearfil Majesty Esthetic and Clearfil Majesty Posterior (Kuraray Medical Co, Tokyo, Japan). Ten specimens from each composite were used for surface roughness and microhardness tests (n = 10). For each composite, scanning electron microscope (SEM, n = 2) and atomic force microscope (AFM, n = 1) images were obtained after 24 h and 1 year of water storage. The data were analyzed using two-way analysis of variance and a post-hoc Bonferroni test. Microhardness values of Clearfil Majesty Esthetic decreased significantly (78.15-63.74, p = 0.015) and surface roughness values did not change after 1 year of water storage (0.36-0.39, p = 0.464). Clearfil Majesty Posterior microhardness values were quite stable (138.74-137.25, p = 0.784), and surface roughness values increased significantly (0.39-0.48, p = 0.028) over 1 year. One year of water storage caused microhardness values for Clearfil Majesty Esthetic to decrease and the surface roughness of Clearfil Majesty Posterior increased. AFM and SEM images demonstrated surface detoration of the materials after 1 year and ensured similar results with the quantitative test methods. SCANNING 38:694-700, 2016. © 2016 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.

  10. Correlated Raman micro-spectroscopy and scanning electron microscopy analyses of flame retardants in environmental samples: a micro-analytical tool for probing chemical composition, origin and spatial distribution.

    PubMed

    Ghosal, Sutapa; Wagner, Jeff

    2013-07-07

    We present correlated application of two micro-analytical techniques: scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS) and Raman micro-spectroscopy (RMS) for the non-invasive characterization and molecular identification of flame retardants (FRs) in environmental dusts and consumer products. The SEM/EDS-RMS technique offers correlated, morphological, molecular, spatial distribution and semi-quantitative elemental concentration information at the individual particle level with micrometer spatial resolution and minimal sample preparation. The presented methodology uses SEM/EDS analyses for rapid detection of particles containing FR specific elements as potential indicators of FR presence in a sample followed by correlated RMS analyses of the same particles for characterization of the FR sub-regions and surrounding matrices. The spatially resolved characterization enabled by this approach provides insights into the distributional heterogeneity as well as potential transfer and exposure mechanisms for FRs in the environment that is typically not available through traditional FR analysis. We have used this methodology to reveal a heterogeneous distribution of highly concentrated deca-BDE particles in environmental dust, sometimes in association with identifiable consumer materials. The observed coexistence of deca-BDE with consumer material in dust is strongly indicative of its release into the environment via weathering/abrasion of consumer products. Ingestion of such enriched FR particles in dust represents a potential for instantaneous exposure to high FR concentrations. Therefore, correlated SEM/RMS analysis offers a novel investigative tool for addressing an area of important environmental concern.

  11. Tracing outbreaks of Streptococcus equi infection (strangles) in horses using sequence variation in the seM gene and pulsed-field gel electrophoresis.

    PubMed

    Lindahl, Susanne; Söderlund, Robert; Frosth, Sara; Pringle, John; Båverud, Viveca; Aspán, Anna

    2011-11-21

    Strangles is a serious respiratory disease in horses caused by Streptococcus equi subspecies equi (S. equi). Transmission of the disease occurs by direct contact with an infected horse or contaminated equipment. Genetically, S. equi strains are highly homogenous and differentiation of strains has proven difficult. However, the S. equi M-protein SeM contains a variable N-terminal region and has been proposed as a target gene to distinguish between different strains of S. equi and determine the source of an outbreak. In this study, strains of S. equi (n=60) from 32 strangles outbreaks in Sweden during 1998-2003 and 2008-2009 were genetically characterized by sequencing the SeM protein gene (seM), and by pulsed-field gel electrophoresis (PFGE). Swedish strains belonged to 10 different seM types, of which five have not previously been described. Most were identical or highly similar to allele types from strangles outbreaks in the UK. Outbreaks in 2008/2009 sharing the same seM type were associated by geographic location and/or type of usage of the horses (racing stables). Sequencing of the seM gene generally agreed with pulsed-field gel electrophoresis profiles. Our data suggest that seM sequencing as a epidemiological tool is supported by the agreement between seM and PFGE and that sequencing of the SeM protein gene is more sensitive than PFGE in discriminating strains of S. equi. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Contrast of Backscattered Electron SEM Images of Nanoparticles on Substrates with Complex Structure

    PubMed Central

    Müller, Erich; Fritsch-Decker, Susanne; Hettler, Simon; Störmer, Heike; Weiss, Carsten; Gerthsen, Dagmar

    2017-01-01

    This study is concerned with backscattered electron scanning electron microscopy (BSE SEM) contrast of complex nanoscaled samples which consist of SiO2 nanoparticles (NPs) deposited on indium-tin-oxide covered bulk SiO2 and glassy carbon substrates. BSE SEM contrast of NPs is studied as function of the primary electron energy and working distance. Contrast inversions are observed which prevent intuitive interpretation of NP contrast in terms of material contrast. Experimental data is quantitatively compared with Monte-Carlo- (MC-) simulations. Quantitative agreement between experimental data and MC-simulations is obtained if the transmission characteristics of the annular semiconductor detector are taken into account. MC-simulations facilitate the understanding of NP contrast inversions and are helpful to derive conditions for optimum material and topography contrast. PMID:29109816

  13. Contrast of Backscattered Electron SEM Images of Nanoparticles on Substrates with Complex Structure.

    PubMed

    Kowoll, Thomas; Müller, Erich; Fritsch-Decker, Susanne; Hettler, Simon; Störmer, Heike; Weiss, Carsten; Gerthsen, Dagmar

    2017-01-01

    This study is concerned with backscattered electron scanning electron microscopy (BSE SEM) contrast of complex nanoscaled samples which consist of SiO 2 nanoparticles (NPs) deposited on indium-tin-oxide covered bulk SiO 2 and glassy carbon substrates. BSE SEM contrast of NPs is studied as function of the primary electron energy and working distance. Contrast inversions are observed which prevent intuitive interpretation of NP contrast in terms of material contrast. Experimental data is quantitatively compared with Monte-Carlo- (MC-) simulations. Quantitative agreement between experimental data and MC-simulations is obtained if the transmission characteristics of the annular semiconductor detector are taken into account. MC-simulations facilitate the understanding of NP contrast inversions and are helpful to derive conditions for optimum material and topography contrast.

  14. SEM observation on microbial like structure in the ferromanganese crust from the western Pacific Magellan Seamount

    NASA Astrophysics Data System (ADS)

    Yang, K.; Park, H.; Baik, H.; Kim, J.; Park, K. R.; Yoon, J.; Kim, J. W.

    2016-12-01

    Understanding the biogeochemical process in the Fe-Mn crust layer is important to reconstruct the paleo-environment when the Fe-Mn crust layer forms. Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Electron Energy Loss Spectroscopy (EELS), and Polymerase Chain Reaction (PCR) were utilized to determine the redox states of Fe/Mn and microbial diversity at each layer. Samples were dredged from the western Pacific Magellan Seamount (OSM11) that consists of five well-defined layers from the rim (L1) to the core (L5). Some microbial like structures of sheath-like with filaments (L1 - L3), capsule-shaped (L2), fossilized coccolith mounds with phosphatized globules (L4), and bean-shaped (L4) were detected in entire layers. The cross sectional observation of bean-shaped microbe like structures encrusted with Fe-vernadite (L3) by Scanning Transmission Electron Microscopy (STEM) and Focused Ion Beam (FIB) technique revealed 1-μm diameter cavity in the center and porous structures of encrusting Fe-vernadite in periphery. Moreover, the organic carbon in the center cavity compared with inorganic C (from carbonate) in periphery was differentiated by C-K edge EELS spectra, suggesting that the microbe used to occupy. Indeed, the PCR analysis indicated the presence of functional gene (cumA; 1056bp & coxC; 810bp) association with Mn & Fe oxidizer that promote the formation of the crust. The cloning and sequencing of DNA PCR fragments revealed the appearance of geobacter species in L3 (G. sulfurreducens and G. lovleyi). The DNA molecular biological analysis and SEM direct observations suggest the evidence of biotic process in the formation of Fe-Mn crust.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amusan, Akinwumi A., E-mail: akinwumi.amusan@ovgu.de; Kalkofen, Bodo; Burte, Edmund P.

    Silver (Ag) layers were deposited by remote plasma enhanced atomic layer deposition (PALD) using Ag(fod)(PEt{sub 3}) (fod = 2,2-dimethyl-6,6,7,7,8,8,8-heptafluorooctane-3,5-dionato) as precursor and hydrogen plasma on silicon substrate covered with thin films of SiO{sub 2}, TiN, Ti/TiN, Co, Ni, and W at different deposition temperatures from 70  to 200 °C. The deposited silver films were analyzed by x-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) with energy dispersive x-ray spectroscopy, four point probe measurement, ellipsometric measurement, x-ray fluorescence (XRF), and x-ray diffraction (XRD). XPS revealed pure Ag with carbon and oxygen contamination close to the detectionmore » limit after 30 s argon sputtering for depositions made at 120 and 200 °C substrate temperatures. However, an oxygen contamination was detected in the Ag film deposited at 70 °C after 12 s argon sputtering. A resistivity of 5.7 × 10{sup −6} Ω cm was obtained for approximately 97 nm Ag film on SiO{sub 2}/Si substrate. The thickness was determined from the SEM cross section on the SiO{sub 2}/Si substrate and also compared with XRF measurements. Polycrystalline cubic Ag reflections were identified from XRD for PALD Ag films deposited at 120 and 200 °C. Compared to W surface, where poor adhesion of the films was found, Co, Ni, TiN, Ti/TiN and SiO{sub 2} surfaces had better adhesion for silver films as revealed by SEM, TEM, and AFM images.« less

  16. Scanning Electron Microscopy and Energy-Dispersive X-Ray Spectroscopy as a Valuable Tool to Investigate the Ultra-High-Molecular-Weight Polyethylene Wear Mechanisms and Debris in Hip Implants.

    PubMed

    Schappo, Henrique; Gindri, Izabelle M; Cubillos, Patrícia O; Maru, Marcia M; Salmoria, Gean V; Roesler, Carlos R M

    2018-01-01

    The use of scanning electron microscopy (SEM) and energy-dispersive spectrometry (EDS) was investigated to understand the wear mechanisms from a metal-on-polyethylene bearing couple. Morphological features of femoral head acetabular liner, and isolated particles resulting from hip wear testing were evaluated. EDS was proposed to investigate the polymeric nature of the particles isolated from the wear testing. In this work, 28-mm conventional ultra-high-molecular-weight polyethylene acetabular liners paired with metallic heads were tested in a hip wear simulator over 2 million cycles. SEM-EDS was employed to investigate wear mechanisms on hip implant components and associated wear debris. SEM showed worn surfaces for both hip components, and a significant volume of ultra-high-molecular-weight polyethylene wear particles resulting from hip wear testing. Particles were classified into 3 groups, which were then correlated to wear mechanisms. Group I had particles with smooth surfaces, group II consisted of particles with rough surfaces, and group III comprised aggregate-like particles. Group I EDS revealed that particles from groups I and II had a high C/O ratio raising a concern about the particle source. On the other hand, particles from group III had a low C/O ratio, supporting the hypothesis that they resulted from the wear of acetabular liner. Most of particles identified in group III were in the biologically active size range (0.3 to 20 μm). The use of optical and electron microscopy enabled the morphological characterization of worn surfaces and wear debris, while EDS was essential to elucidate the chemical composition of isolated debris. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Nanorods, nanospheres, nanocubes: Synthesis, characterization and catalytic activity of nanoferrites of Mn, Co, Ni, Part-89

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Supriya; Srivastava, Pratibha; Singh, Gurdip, E-mail: gsingh4us@yahoo.com

    2013-02-15

    Graphical abstract: Prepared nanoferrites were characterized by FE-SEM and bright field TEM micrographs. The catalytic effect of these nanoferrites was evaluated on the thermal decomposition of ammonium perchlorate using TG and TG–DSC techniques. The kinetics of thermal decomposition of AP was evaluated using isothermal TG data by model fitting as well as isoconversional method. Display Omitted Highlights: ► Synthesis of ferrite nanostructures (∼20.0 nm) by wet-chemical method under different synthetic conditions. ► Characterization using XRD, FE-SEM, EDS, TEM, HRTEM and SAED pattern. ► Catalytic activity of ferrite nanostructures on AP thermal decomposition by thermal techniques. ► Burning rate measurements ofmore » CSPs with ferrite nanostructures. ► Kinetics of thermal decomposition of AP + nanoferrites. -- Abstract: In this paper, the nanoferrites of Mn, Co and Ni were synthesized by wet chemical method and characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive, X-ray spectra (EDS), transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HR-TEM). It is catalytic activity were investigated on the thermal decomposition of ammonium perchlorate (AP) and composite solid propellants (CSPs) using thermogravimetry (TG), TG coupled with differential scanning calorimetry (TG–DSC) and ignition delay measurements. Kinetics of thermal decomposition of AP + nanoferrites have also been investigated using isoconversional and model fitting approaches which have been applied to data for isothermal TG decomposition. The burning rate of CSPs was considerably enhanced by these nanoferrites. Addition of nanoferrites to AP led to shifting of the high temperature decomposition peak toward lower temperature. All these studies reveal that ferrite nanorods show the best catalytic activity superior to that of nanospheres and nanocubes.« less

  18. Scanning electron microscopy of Strongylus spp. in zebra.

    PubMed

    Els, H J; Malan, F S; Scialdo-Krecek, R C

    1983-12-01

    The external ultrastructure of the anterior and posterior extremities of the nematodes, Strongylus asini , Strongylus vulgaris, Strongylus equinus and Strongylus edentatus, was studied with scanning electron microscopy (SEM). Fresh specimens of S. asini were collected from the caecum, ventral colon and vena portae of Equus burchelli and Equus zebra hartmannae ; S. vulgaris from the caecum, colon and arteria ileocolica of E. burchelli ; S. equinus from the ventral colon of E. z. hartmannae and S. edentatus from the caecum and ventral colon of both zebras , during surveys of parasites in zebras in the Etosha Game Reserve, South West Africa/Namibia, and the Kruger National Park, Republic of South Africa. The worms were cleaned, fixed and mounted by standard methods and photographed in a JEOL JSM - 35C scanning electron microscope (SEM) operating at 12kV . The SEM showed the following differences: the tips of the external leaf-crowns varied and were fine and delicate in S. asini , coarse and broad in S. vulgaris and, in S. equinus and S. edentatus, closely adherent, separating into single elements for half their length. The excretory pores showed only slight variation, and the morphology of the copulatory bursae did not differ from those seen with light microscopy. The genital cones differed markedly: S. asini had a ventral triangular projection and laterally 2 finger-like projections: in S. vulgaris there were numerous bosses on the lateral and ventral aspects of the cone; in S. equinus 2 finger-like processes projected laterocaudally ; and in S. edentatus 2 pairs of papilla-like processes projected laterally on the ventral aspects, and a pair of rounded projections and a pair of hair-like structures adorned the dorsal aspects.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. An ethanol-based fixation method for anatomical and micro-morphological characterization of leaves of various tree species.

    PubMed

    Chieco, C; Rotondi, A; Morrone, L; Rapparini, F; Baraldi, R

    2013-02-01

    The use of formalin constitutes serious health hazards for laboratory workers. We investigated the suitability and performance of the ethanol-based fixative, FineFIX, as a substitute for formalin for anatomical and cellular structure investigations of leaves by light microscopy and for leaf surface and ultrastructural analysis by scanning electron microscopy (SEM). We compared the anatomical features of leaf materials prepared using conventional formalin fixation with the FineFIX. Leaves were collected from ornamental tree species commonly used in urban areas. FineFIX was also compared with glutaraldehyde fixation and air drying normally used for scanning electron microscopy to develop a new method for evaluating leaf morphology and microstructure in three ornamental tree species. The cytological features of the samples processed for histological analysis were well preserved by both fixatives as demonstrated by the absence of nuclear swelling or shrinkage, cell wall detachment or tissue flaking, and good presentation of cytoplasmic vacuolization. In addition, good preservation of surface details and the absence of shrinkage artefacts confirmed the efficacy of FineFIX fixation for SEM analysis. Cuticular wax was preserved only in air dried samples. Samples treated with chemical substances during the fixation and dehydration phases showed various alterations of the wax structures. In some air dried samples a loss of turgidity of the cells was observed that caused general wrinkling of the epidermal surfaces. Commercial FineFIX is an adequate substitute for formalin in histology and it can be applied successfully also for SEM investigation, while reducing the health risks of glutaraldehyde or other toxic fixatives. To investigate the potential for plants to absorb and capture particulates in air, which requires preservation of the natural morphology of trichomes and epicuticular waxes, a combination of FineFIX fixation and air drying is recommended.

  20. Evaluating the Whitening and Microstructural Effects of a Novel Whitening Strip on Porcelain and Composite Dental Materials

    PubMed Central

    Takesh, Thair; Sargsyan, Anik; Lee, Matthew; Anbarani, Afarin; Ho, Jessica; Wilder-Smith, Petra

    2017-01-01

    Aims The aim of this project was to evaluate the effects of 2 different whitening strips on color, microstructure and roughness of tea stained porcelain and composite surfaces. Methods 54 porcelain and 72 composite chips served as samples for timed application of over-the-counter (OTC) test or control dental whitening strips. Chips were divided randomly into three groups of 18 porcelain and 24 composite chips each. Of these groups, 1 porcelain and 1 composite set served as controls. The remaining 2 groups were randomized to treatment with either Oral Essentials® Whitening Strips or Crest® 3D White Whitestrips™. Sample surface structure was examined by light microscopy, profilometry and Scanning Electron Microscopy (SEM). Additionally, a reflectance spectrophotometer was used to assess color changes in the porcelain and composite samples over 24 hours of whitening. Data points were analyzed at each time point using ANOVA. Results In the light microscopy and SEM images, no discrete physical defects were observed in any of the samples at any time points. However, high-resolution SEM images showed an appearance of increased surface roughness in all composite samples. Using profilometry, significantly increased post-whitening roughness was documented in the composite samples exposed to the control bleaching strips. Composite samples underwent a significant and equivalent shift in color following exposure to Crest® 3D White Whitestrips™ and Oral Essentials® Whitening Strips. Conclusions A novel commercial tooth whitening strip demonstrated a comparable beaching effect to a widely used OTC whitening strip. Neither whitening strip caused physical defects in the sample surfaces. However, the control strip caused roughening of the composite samples whereas the test strip did not. PMID:29226023

Top