Sample records for microscopy sem laser

  1. Nanoscale surface characterization using laser interference microscopy

    NASA Astrophysics Data System (ADS)

    Ignatyev, Pavel S.; Skrynnik, Andrey A.; Melnik, Yury A.

    2018-03-01

    Nanoscale surface characterization is one of the most significant parts of modern materials development and application. The modern microscopes are expensive and complicated tools, and its use for industrial tasks is limited due to laborious sample preparation, measurement procedures, and low operation speed. The laser modulation interference microscopy method (MIM) for real-time quantitative and qualitative analysis of glass, metals, ceramics, and various coatings has a spatial resolution of 0.1 nm for vertical and up to 100 nm for lateral. It is proposed as an alternative to traditional scanning electron microscopy (SEM) and atomic force microscopy (AFM) methods. It is demonstrated that in the cases of roughness metrology for super smooth (Ra >1 nm) surfaces the application of a laser interference microscopy techniques is more optimal than conventional SEM and AFM. The comparison of semiconductor test structure for lateral dimensions measurements obtained with SEM and AFM and white light interferometer also demonstrates the advantages of MIM technique.

  2. Tribological performance of femtosecond laser-induced periodic surface structures on titanium and a high toughness bearing steel

    NASA Astrophysics Data System (ADS)

    Bonse, J.; Koter, R.; Hartelt, M.; Spaltmann, D.; Pentzien, S.; Höhm, S.; Rosenfeld, A.; Krüger, J.

    2015-05-01

    Laser-induced periodic surface structures (LIPSS, ripples) were processed on steel (X30CrMoN15-1) and titanium (Ti) surfaces by irradiation in air with linear polarized femtosecond laser pulses with a pulse duration of 30 fs at 790 nm wavelength. For the processing of large LIPSS covered surface areas (5 mm × 5 mm), the laser fluence and the spatial spot overlap were optimized in a sample-scanning geometry. The laser-processed surfaces were characterized by optical microscopy (OM), white light interference microscopy (WLIM) and scanning electron microscopy (SEM). Spatial LIPSS periods between 450 and 600 nm were determined. The nanostructured surface regions were tribologically tested under reciprocal sliding conditions against a 10-mm diameter ball of hardened 100Cr6 steel. Paraffin oil and engine oil were used as lubricants for 1000 sliding cycles at 1 Hz with a normal load of 1.0 N. The corresponding wear tracks were analyzed by OM and SEM. In particular cases, the laser-generated nanostructures endured the tribological treatment. Simultaneously, a significant reduction of the friction coefficient and the wear was observed in the laser-irradiated (LIPSS-covered) areas when compared to the non-irradiated surface. The experiments reveal the potential benefit of laser surface structuring for tribological applications.

  3. Tribological performance of sub-100-nm femtosecond laser-induced periodic surface structures on titanium

    NASA Astrophysics Data System (ADS)

    Bonse, J.; Höhm, S.; Koter, R.; Hartelt, M.; Spaltmann, D.; Pentzien, S.; Rosenfeld, A.; Krüger, J.

    2016-06-01

    Sub-100-nm laser-induced periodic surface structures (LIPSS) were processed on bulk titanium (Ti) surfaces by femtosecond laser pulse irradiation in air (30 fs pulse duration, 790 nm wavelength). The laser peak fluence, the spatial spot overlap, and the number of overscans were optimized in a sample-scanning geometry in order to obtain large surface areas (5 mm × 5 mm) covered homogeneously by the LIPSS. The laser-processed regions were characterized by optical microscopy (OM), white light interference microscopy (WLIM) and scanning electron microscopy (SEM). The friction coefficient of the nanostructured surfaces was tested during 1000 cycles under reciprocal sliding conditions (1 Hz, 1.0 N normal load) against a 10-mm diameter ball of hardened 100Cr6 steel, both in paraffin oil and in engine oil used as lubricants. Subsequently, the corresponding wear tracks were qualified by OM, SEM, and energy dispersive X-ray analyses (EDX). The results of the tribological tests are discussed and compared to that obtained for near wavelength-sized fs-LIPSS, processed under somewhat different irradiation conditions. Some constraints for a beneficial effect of LIPSS on the tribological performance are provided.

  4. Attempt of correlative observation of morphological synaptic connectivity by combining confocal laser-scanning microscope and FIB-SEM for immunohistochemical staining technique.

    PubMed

    Sonomura, Takahiro; Furuta, Takahiro; Nakatani, Ikuko; Yamamoto, Yo; Honma, Satoru; Kaneko, Takeshi

    2014-11-01

    Ten years have passed since a serial block-face scanning electron microscopy (SBF-SEM) method was developed [1]. In this innovative method, samples were automatically sectioned with an ultramicrotome placed inside a scanning electron microscope column, and the block surfaces were imaged one after another by SEM to capture back-scattered electrons. The contrast-inverted images obtained by the SBF-SEM were very similar to those acquired using conventional TEM. SFB-SEM has made easy to acquire image stacks of the transmission electron microscopy (TEM) in the mesoscale, which is taken with the confocal laser-scanning microcopy(CF-LSM).Furthermore, serial-section SEM has been combined with the focused ion beam (FIB) milling method [2]. FIB-incorporated SEM (FIB-SEM) has enabled the acquisition of three-dimensional images with a higher z-axis resolution com- pared to ultramicrotome-equipped SEM.We tried immunocytochemistry for FIB-SEM and correlated this immunoreactivity with that in CF-LSM. Dendrites of neurons in the rat neostriatum were visualized using a recombinant viral vector. Moreover, the thalamostriatal afferent terminals were immunolabeled with Cy5 fluorescence for vesicular glutamate transporter 2 (VGluT2). After detection of the sites of terminals apposed to the dendrites by using CF-LSM, GFP and VGluT2 immunoreactivities were further developed for EM by using immunogold/silver enhancement and immunoperoxidase/diaminobenzidine (DAB) methods, respectively.We showed that conventional immuno-cytochemical staining for TEM was applicable to FIB-SEM. Furthermore, several synaptic contacts, which were thought to exist on the basis of CF-LSM findings, were confirmed with FIB-SEM, revealing the usefulness of the combined method of CF-LSM and FIB-SEM. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Imaging of endodontic biofilms by combined microscopy (FISH/cLSM - SEM).

    PubMed

    Schaudinn, C; Carr, G; Gorur, A; Jaramillo, D; Costerton, J W; Webster, P

    2009-08-01

    Scanning electron microscopy is a useful imaging approach for the visualization of bacterial biofilms in their natural environments including their medical and dental habitats, because it allows for the exploration of large surfaces with excellent resolution of topographic features. Most biofilms in nature, however, are embedded in a thick layer of extracellular matrix that prevents a clear identification of individual bacteria by scanning electron microscopy. The use of confocal laser scanning microscopy on the other hand in combination with fluorescence in situ hybridization enables the visualization of matrix embedded bacteria in multi-layered biofilms. In our study, fluorescence in situ hybridization/confocal laser scanning microscopy and scanning electron microscopy were applied to visualize bacterial biofilm in endodontic root canals. The resulting fluorescence in situ hybridization /confocal laser scanning microscopy and scanning electron microscopy and pictures were subsequently combined into one single image to provide high-resolution information on the location of hidden bacteria. The combined use of scanning electron microscopy and fluorescence in situ hybridization / confocal laser scanning microscopy has the potential to overcome the limits of each single technique.

  6. Correlative microscopy including CLSM and SEM to improve high-speed, high-resolution laser-engraved print and embossing forms

    NASA Astrophysics Data System (ADS)

    Bohrer, Markus; Schweitzer, Michael; Nirnberger, Robert; Weinberger, Bernhard

    2015-10-01

    The industrial market for processing large-scale films has seen dramatic changes since the 1980s and has almost completely been replaced by lasers and digital processes. A commonly used technology for engraving screens, print and embossing forms in the printing industry, well known since then, is the use of RF-excited CO2 lasers with a beam power up to about 1 kW, modulated in accordance to the pattern to be engraved. Future needs for high-security printing (banknotes, security papers, passports, etc.) will require laser engraving of at least half a million or even more structured elements with a depth from some μm up to 500 μm. Industry now wants photorealistic pictures in packaging design, which requires a similar performance. To ensure 'trusted pulses' from the digital process to the print result the use of correlative microscopy (CLSM and SEM) is demonstrated as a complete chain for a correlative print process in this paper.

  7. Broadly Applicable Nanowafer Drug Delivery System for Treating Eye Injuries

    DTIC Science & Technology

    2014-09-01

    the drug molecular transport into the cornea. Intravital laser confocal imaging of the live mouse cornea demonstrating the presence of drug in the...vivo drug release in the mouse cornea by laser confocal fluorescence imaging study revealed that the nanowafers upon instillation on mouse eye were...C) 500nm; (D) 1µm; (E) 1.5µm; and (F) 3µm A B C D E F microscopy (SEM) for the feature integrity and uniformity. The SEM images revealed the presence

  8. Evaluation of laser ablation microtomy for correlative microscopy of hard tissues.

    PubMed

    Boyde, A

    2018-02-27

    Laser ablation machining or microtomy (LAM) is a relatively new approach to producing slide mounted sections of translucent materials. We evaluated the method with a variety of problems from the bone, joint and dental tissues fields where we require thin undecalcified and undistorted sections for correlative light microscopy (LM) and backscattered electron scanning electron microscopy (BSE SEM). All samples were embedded in poly-methylmethacrlate (PMMA) and flat block surfaces had been previously studied by BSE-SEM and confocal scanning light microscopy (CSLM). Most were also studied by X-yay microtomography (XMT). The block surface is stuck to a glass slide with cyanoacrylate adhesive. Setting the section thickness and levelling uses inbuilt optical coherence tomographic imaging. Tight focusing of near-infrared laser radiation in the sectioning plane gives extreme intensities causing photodisruption of material at the focal point. The laser beam is moved by a fast scanner to write a cutting line, which is simultaneously moved by an XY positioning unit to create a sectioning plane. The block is thereby released from the slide, leaving the section stuck to the slide. Light, wet polishing on the finest grade (4000 grit) silicon carbide polishing paper is used to remove a 1-2 μm thick damaged layer at the surface of the section. Sections produced by laser cutting are fine in quality and superior to those produced by mechanical cutting and can be thinner than the 'voxel' in most laboratory X-ray microtomography systems. The present extensive pilot studies have shown that it works to produce samples which we can study by both light and electron microscopy. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.

  9. Assessment of Er:YAG laser for cavity preparation in primary and permanent teeth: a scanning electron microscopy and thermographic study.

    PubMed

    Al-Batayneh, Ola B; Seow, W Kim; Walsh, Laurence J

    2014-01-01

    Most studies of cavity preparation using Er:YAG lasers have employed permanent teeth. This study's purpose was to compare the cutting efficiency of an Er:YAG laser versus diamond burs in primary and permanent teeth in order to measure thermal effects on the pulp and evaluate lased surfaces using scanning electron microscopy (SEM). A total of 80 primary and permanent teeth were used. Crater depths and mass loss were measured after delivering laser pulses at varying energies onto sound or carious enamel or dentin using the Key-3 laser. Control samples were cut using diamond burs in an air turbine handpiece. Thermal changes were measured using miniature thermocouples placed into the pulp chamber. Lased surfaces were evaluated using SEM. Laser ablation crater-like defects were deeper in dentin than enamel at the same pulse energy. Greater ablation rates for dentin and enamel and significantly more efficient removal of carious tooth structure by laser was present in primary teeth. Temperature rises in the pulp did not exceed the 5.5 degrees Celsius threshold in any teeth during laser ablation. The Er:YAG laser is an efficient device for cavity preparations in primary teeth, with no unacceptable increases in temperature detected in this model.

  10. Effects of erbium, chromium:YSGG laser irradiation on root surface: morphological and atomic analytical studies.

    PubMed

    Kimura, Y; Yu, D G; Kinoshita, J; Hossain, M; Yokoyama, K; Murakami, Y; Nomura, K; Takamura, R; Matsumoto, K

    2001-04-01

    The purpose of this study was to investigate the morphological and atomic changes on the root surface by stereoscopy, field emission-scanning electron microscopy (FE-SEM), and energy dispersive X-ray spectroscopy (SEM-EDX) after erbium, chromium:yttrium, scandium, gallium, garnet (Er,Cr:YSGG) laser irradiation in vitro. There have been few reports on morphological and atomic analytical study on root surface by Er,Cr:YSGG laser irradiation. Eighteen extracted human premolar and molar teeth were irradiated on root surfaces at a vertical position with water-air spray by an Er,Cr:YSGG laser at the parameter of 5.0 W and 20 Hz for 5 sec while moving. The samples were then morphologically observed by stereoscopy and FE-SEM and examined atomic-analytically by SEM-EDX. Craters having rough but clean surfaces and no melting or carbonization were observed in the samples. An atomic analytical examination showed that the calcium ratio to phosphorus showed no significant changes between the control and irradiated areas (p > 0.01). These results showed that the Er,Cr:YSGG laser has a good cutting effect on root surface and causes no burning or melting after laser irradiation.

  11. A scanning electron microscopy study of CO2 laser-albumin soldering in the rabbit model.

    PubMed

    Levanon, Daniel; Katzir, Abraham; Ravid, Avi

    2004-12-01

    We sought to assess the rabbit as an experimental animal in the investigation of laser skin soldering. We studied, using the scanning electron microscope (SEM), the surface appearances of experimental incisions made on the rabbit back skin and soldered by CO(2) laser. Laser soldering of incisions in various tissues is a modality of wound healing of a very promising clinical value. At present, more component studies on animals directed at paving the way towards clinical protocols are needed. Surgical incisions on rabbits back skin were bonded using either albumin-assisted CO(2) laser soldering (experimental) or thread suturing (reference). The incisions closed were excised 2, 3, 4, and 5 days postoperatively, and skin surfaces were studied in the SEM. Naked eye inspection and SEM analysis showed that full-length sealing of soldered and sutured incisions was discernible as early as day 2. In the SEM, all incisions were found confluently coated by epidermal cells along the former cut streak. Soldering subserved to bond incisions efficiently, with surface smooth and close to normal skin. On the other hand, the surface of sutured incisions appeared convoluted and its aesthetic quality inferior to that of the former. Some of the days two and three soldered incisions suffered dehiscence on excision, which suggests an incomplete regeneration of tensile strength at this early phase of healing. Sutured incisions tolerated excision, very probably due to the microthread still present in the skin tissue rather than because of breaking strength regained during wound healing. Also, hair stumps re-grown on the skin by day 5 postoperative might impair satisfactory microscopy of bonded incisions. CO(2) laser soldering of incisions on the rabbit back skin effected rapid wound sealing and resulted in smooth scars indistinguishable from normal skin. The rabbit is well suited for this kind of studies, provided that excision of experimental cuts takes place not later than 5 days post-incision so that hair stumps may not grow large enough to jeopardize the quality of scanning electron microscopy.

  12. Scanning electron microscopy (SEM) and X-ray dispersive spectrometry evaluation of direct laser metal sintering surface and human bone interface: a case series.

    PubMed

    Mangano, Carlo; Piattelli, Adriano; Raspanti, Mario; Mangano, Francesco; Cassoni, Alessandra; Iezzi, Giovanna; Shibli, Jamil Awad

    2011-01-01

    Recent studies have shown that direct laser metal sintering (DLMS) produces structures with complex geometry and consequently that allow better osteoconductive properties. The aim of this patient report was to evaluate the early bone response to DLMS implant surface retrieved from human jaws. Four experimental DLMS implants were inserted in the posterior mandible of four patients during conventional dental implant surgery. After 8 weeks, the micro-implants and the surrounding tissue were removed and prepared for scanning electron microscopy (SEM) and histomorphometric analysis to evaluate the bone-implant interface. The SEM and EDX evaluations showed a newly formed tissue composed of calcium and phosphorus. The bone-to-implant contact presented a mean of 60.5 ± 11.6%. Within the limits of this patient report, data suggest that the DLMS surfaces presented a close contact with the human bone after a healing period of 8 weeks.

  13. Analysis of Femtosecond Laser Assisted Capsulotomy Cutting Edges and Manual Capsulorhexis Using Environmental Scanning Electron Microscopy

    PubMed Central

    Serrao, Sebastiano; Lombardo, Giuseppe; Desiderio, Giovanni; Buratto, Lucio; Schiano-Lomoriello, Domenico; Pileri, Marco; Lombardo, Marco

    2014-01-01

    Purpose. To investigate the structure and irregularity of the capsulotomy cutting edges created by two femtosecond (FS) laser platforms in comparison with manual continuous circular capsulorhexis (CCC) using environmental scanning electron microscopy (eSEM). Methods. Ten anterior capsulotomies were obtained using two different FS laser cataract platforms (LenSx, n = 5, and Victus, n = 5). In addition, five manual CCC (n = 5) were obtained using a rhexis forceps. The specimens were imaged by eSEM (FEI Quanta 400, OR, USA). Objective metrics, which included the arithmetic mean deviation of the surface (Sa) and the root-mean-square deviation of the surface (Sq), were used to evaluate the irregularity of both the FS laser capsulotomies and the manual CCC cutting edges. Results. Several microirregularities were shown across the FS laser capsulotomy cutting edges. The edges of manually torn capsules were shown, by comparison of Sa and Sq values, to be smoother (P < 0.05) than the FS laser capsulotomy edges. Conclusions. Work is needed to understand whether the FS laser capsulotomy edge microirregularities, not seen in manual CCC, may act as focal points for the concentration of stress that would increase the risk of capsular tear during phacoemulsification as recently reported in the literature. PMID:25505977

  14. Analysis of femtosecond laser assisted capsulotomy cutting edges and manual capsulorhexis using environmental scanning electron microscopy.

    PubMed

    Serrao, Sebastiano; Lombardo, Giuseppe; Desiderio, Giovanni; Buratto, Lucio; Schiano-Lomoriello, Domenico; Pileri, Marco; Lombardo, Marco

    2014-01-01

    Purpose. To investigate the structure and irregularity of the capsulotomy cutting edges created by two femtosecond (FS) laser platforms in comparison with manual continuous circular capsulorhexis (CCC) using environmental scanning electron microscopy (eSEM). Methods. Ten anterior capsulotomies were obtained using two different FS laser cataract platforms (LenSx, n = 5, and Victus, n = 5). In addition, five manual CCC (n = 5) were obtained using a rhexis forceps. The specimens were imaged by eSEM (FEI Quanta 400, OR, USA). Objective metrics, which included the arithmetic mean deviation of the surface (Sa) and the root-mean-square deviation of the surface (Sq), were used to evaluate the irregularity of both the FS laser capsulotomies and the manual CCC cutting edges. Results. Several microirregularities were shown across the FS laser capsulotomy cutting edges. The edges of manually torn capsules were shown, by comparison of Sa and Sq values, to be smoother (P < 0.05) than the FS laser capsulotomy edges. Conclusions. Work is needed to understand whether the FS laser capsulotomy edge microirregularities, not seen in manual CCC, may act as focal points for the concentration of stress that would increase the risk of capsular tear during phacoemulsification as recently reported in the literature.

  15. One step synthesis of porous graphene by laser ablation: A new and facile approach

    NASA Astrophysics Data System (ADS)

    Kazemizadeh, Fatemeh; Malekfar, Rasoul

    2018-02-01

    Porous graphene (PG) was obtained using one step laser process. Synthesis was carried out by laser ablation of nickel-graphite target under ultra-high flow of argon gas. The field emission scanning electron microscopy (FE-SEM) results showed the formation of a porous structure and the transmission electron microscopy (TEM) revealed that the porosity of PGs increase under intense laser irradiation. Structural characterization study using Raman spectroscopy, X-ray powder diffraction (XRD) and selected area electron diffraction (SAED) technique showed that the obtained PGs display high crystalline structure in the form of few layer rhombohedral graphitic arrangement that can be interpreted as the phase prior to the formation of other carbon nanostructures.

  16. The effect of CO2 and Nd:YAP lasers on CAD/CAM Ceramics: SEM, EDS and thermal studies.

    PubMed

    El Gamal, Ahmed; Fornaini, Carlo; Rocca, Jean Paul; Muhammad, Omid H; Medioni, Etienne; Cucinotta, Annamaria; Brulat-Bouchard, Nathalie

    2016-03-31

    The objective of this study was to investigate the interaction of infrared laser light on Computer Aided Design and Computer Aided Manufacturing (CAD/CAM) ceramic surfaces. Sixty CAD/CAM ceramic discs were prepared and divided into two different groups: lithiumdisilicate ceramic (IPSe.maxCADs) and Zirconia ceramic (IPSe.maxZirCADs). The laser irradiation was performed on graphite and non-graphite surfaces with a Carbon Dioxide laser at 5W and 10W power in continuous mode (CW mode) and with Neodymium Yttrium Aluminum Perovskite (Nd:YAP) laser at 10W. Surface textures and compositions were examined using Scanning Electron Microscopy (SEM), and Energy Dispersive Spectroscopy (EDS). Thermal elevation was measured by thermocouple during laser irradiation. The SEM observation showed a rough surface plus cracks and fissures on CO2 10W samples and melting areas in Nd:YAP samples; moreover, with CO2 5W smooth and shallow surfaces were observed. EDS analysis revealed that laser irradiation does not result in modifications of the chemical composition even if minor changes in the atomic mass percentage of the components were registered. Thermocouple showed several thermal changes during laser irradiation. CO2 and Nd:YAP lasers modify CAD/CAM ceramic surface without chemical composition modifications.

  17. Femtosecond laser-induced periodic surface structures on titanium nitride coatings for tribological applications

    NASA Astrophysics Data System (ADS)

    Bonse, J.; Kirner, S. V.; Koter, R.; Pentzien, S.; Spaltmann, D.; Krüger, J.

    2017-10-01

    Titanium nitride (TiN) was coated on different substrate materials, namely pure titanium (Ti), titanium alloy (Ti6Al4V) and steel (100Cr6), generating 2.5 μm thick TiN layers. Using femtosecond laser pulses (30 fs, 790 nm, 1 kHz pulse repetition rate), large surface areas (5 mm × 5 mm) of laser-induced periodic surface structures (LIPSS) with sub-wavelength periods ranging between 470 nm and 600 nm were generated and characterized by optical microscopy (OM), white light interference microscopy (WLIM) and scanning electron microscopy (SEM). In tribological tests, coefficients of friction (COF) of the nanostructured surfaces were determined under reciprocating sliding conditions (1 Hz, 1.0 N normal load) against a 10-mm diameter ball of hardened 100Cr6 steel during 1000 cycles using two different lubricants, namely paraffin oil and engine oil. It turned out that the substrate material, the laser fluence and the lubricant are crucial for the tribological performance. However, friction and wear could not be significantly reduced by LIPSS on TiN layers in comparison to unstructured TiN surfaces. Finally, the resulting wear tracks on the nanostructured surfaces were investigated with respect to their morphology (OM, SEM), depth (WLIM) and chemical composition by energy dispersive X-ray spectroscopy (EDX) and, on one hand, compared with each other, on the other hand, with non-structured TiN surfaces.

  18. Scanning electron microscopic study of the effects of Er:YAG laser on root cementum.

    PubMed

    Fujii, T; Baehni, P C; Kawai, O; Kawakami, T; Matsuda, K; Kowashi, Y

    1998-11-01

    Use of Er:YAG laser has been proposed for the removal of microbial deposits and calculus present on teeth affected by periodontal disease. However, the influence of Er:YAG laser irradiation on root surfaces has not yet been fully investigated. The aim of the present study was to evaluate the effects of Er:YAG laser irradiation on root cementum by scanning electron microscopy (SEM). Specimens were obtained from extracted human periodontally-diseased teeth using a water-cooled high-speed bur. An Er:YAG laser beam was then applied at various powers ranging from 25 to 100 mJ/ pulse/sec. The laser irradiation was performed under water irrigation, with the tip held perpendicular to the root surface in the contact mode. Following laser exposure, specimens were fixed, dehydrated, and dried at critical-point in liquid CO2. After mounting on SEM plates and sputter-coating with gold, the cementum surface was examined by SEM. Observations of the root surface showed a relatively flat surface in control specimens. In Er:YAG exposed specimens, the laser beam created a circular, notched-edge, crater-like defect on the root. The bottom of the lesion showed an irregular and sharp-pointed surface. Subsequently, the specimens were fractured with a sharp scalpel perpendicularly to the surface. SEM observations of these specimens showed a 15 microm layer of damaged tissue within the laser-irradiated cementum. The tissue presented an amorphous appearance and the Sharpey's and matrix fiber bundles were not clearly distinguishable. These observations indicate that cementum tissue could be damaged by Er:YAG laser irradiation.

  19. [Effects of laser welding on bond of porcelain fused cast pure titanium].

    PubMed

    Zhu, Juan-fang; He, Hui-ming; Gao, Bo; Wang, Zhong-yi

    2006-04-01

    To investigate the influence of the laser welding on bond of porcelain fused to cast pure titanium. Twenty cast titanium plates were divided into two groups: laser welded group and control group. The low-fusing porcelain was fused to the laser welded cast pure titanium plates at fusion zone. The bond strength of the porcelain to laser welded cast pure titanium was measured by the three-point bending test. The interface of titanium and porcelain was investigated by scanning electron microscopy (SEM) and energy depressive X-ray detector (EDX). The non-welded titanium plates were used as comparison. No significant difference of the bond strength was found between laser-welded samples [(46.85 +/- 0.76) MPa] and the controls [(41.71 +/- 0.55) MPa] (P > 0.05). The SEM displayed the interface presented similar irregularities with a predominance. The titanium diffused to low-fusing porcelain, while silicon and aluminum diffused to titanium basement. Laser welding does not affect low-fusing porcelain fused to pure titanium.

  20. Antimicrobial activity of biopolymeric thin films containing flavonoid natural compounds and silver nanoparticles fabricated by MAPLE: A comparative study

    NASA Astrophysics Data System (ADS)

    Cristescu, R.; Visan, A.; Socol, G.; Surdu, A. V.; Oprea, A. E.; Grumezescu, A. M.; Chifiriuc, M. C.; Boehm, R. D.; Yamaleyeva, D.; Taylor, M.; Narayan, R. J.; Chrisey, D. B.

    2016-06-01

    The purpose of this study was to investigate the interactions between microorganisms, including the planktonic and adherent organisms, and biopolymer (polyvinylpyrrolidone), flavonoid (quercetin dihydrate and resveratrol)-biopolymer, and silver nanoparticles-biopolymer composite thin films that were deposited using matrix assisted pulsed laser evaporation (MAPLE). A pulsed KrF* excimer laser source was used to deposit the aforementioned composite thin films, which were characterized using Fourier transform infrared spectroscopy (FT-IR), infrared microscopy (IRM), scanning electron microscopy (SEM), Grazing incidence X-ray diffraction (GIXRD) and atomic force microscopy (AFM). The antimicrobial activity of thin films was quantified using an adapted disk diffusion assay against Gram-positive and Gram-negative bacteria strains. FT-IR, AFM and SEM studies confirmed that MAPLE may be used to fabricate thin films with chemical properties corresponding to the input materials as well as surface properties that are appropriate for medical use. The silver nanoparticles and flavonoid-containing films exhibited an antimicrobial activity both against Gram-positive and Gram-negative bacterial strains demonstrating the potential use of these hybrid systems for the development of novel antimicrobial strategies.

  1. Laser Microperforated Biodegradable Microbial Polyhydroxyalkanoate Substrates for Tissue Repair Strategies: An Infrared Microspectroscopy Studey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    G Ellis; P Cano; M Jadraque

    Flexible and biodegradable film substrates prepared by solvent casting from poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBHV) solutions in chloroform were microperforated by ultraviolet laser ablation and subsequently characterized using infrared (IR) microspectroscopy and imaging techniques and scanning electron microscopy (SEM). Both transmission synchrotron IR microspectroscopy and attenuated total reflectance microspectroscopy measurements demonstrate variations in the polymer at the ablated pore rims, including evidence for changes in chemical structure and crystallinity. SEM results on microperforated PHBHV substrates after cell culture demonstrated that the physical and chemical changes observed in the biomaterial did not hinder cell migration through the pores.

  2. Visualization of nanoconstructions with DNA-Aptamers for targeted molecules binding on the surface of screen-printed electrodes

    NASA Astrophysics Data System (ADS)

    Lapin, Ivan N.; Shabalina, Anastasiia V.; Svetlichyi, Valery A.; Kolovskaya, Olga S.

    2018-04-01

    Nanoconstructions of gold nanoparticles (NPs) obtained via pulsed laser ablation in liquid with DNA-aptamer specific to protein tumor marker were visualized on the surface of screen-printed electrode using scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). AuNPs/aptamer nanoconstuctions distribution on the solid surface was studied. More uniform coverage of the carbon electrode surface with the nanoconstuctions was showed in comparison with DNA-aptamer alone on the golden electrode surface. Targeted binding of the tumor marker molecules with the AuNPs/DNA-aptamer nanoconstuctions was approved.

  3. The effect of CO2 and Nd:YAP lasers on CAD/CAM Ceramics: SEM, EDS and thermal studies

    PubMed Central

    Fornaini, Carlo; Rocca, Jean Paul; Muhammad, Omid H; Medioni, Etienne; Cucinotta, Annamaria; Brulat-Bouchard, Nathalie

    2016-01-01

    Background and aims: The objective of this study was to investigate the interaction of infrared laser light on Computer Aided Design and Computer Aided Manufacturing (CAD/CAM) ceramic surfaces. Material and Methods: Sixty CAD/CAM ceramic discs were prepared and divided into two different groups: lithiumdisilicate ceramic (IPSe.maxCADs) and Zirconia ceramic (IPSe.maxZirCADs). The laser irradiation was performed on graphite and non-graphite surfaces with a Carbon Dioxide laser at 5W and 10W power in continuous mode (CW mode) and with Neodymium Yttrium Aluminum Perovskite (Nd:YAP) laser at 10W. Surface textures and compositions were examined using Scanning Electron Microscopy (SEM), and Energy Dispersive Spectroscopy (EDS). Thermal elevation was measured by thermocouple during laser irradiation. Results: The SEM observation showed a rough surface plus cracks and fissures on CO2 10W samples and melting areas in Nd:YAP samples; moreover, with CO2 5W smooth and shallow surfaces were observed. EDS analysis revealed that laser irradiation does not result in modifications of the chemical composition even if minor changes in the atomic mass percentage of the components were registered. Thermocouple showed several thermal changes during laser irradiation. Conclusion: CO2 and Nd:YAP lasers modify CAD/CAM ceramic surface without chemical composition modifications. PMID:27141152

  4. Glass-ceramic coating material for the CO2 laser based sintering of thin films as caries and erosion protection.

    PubMed

    Bilandžić, Marin Dean; Wollgarten, Susanne; Stollenwerk, Jochen; Poprawe, Reinhart; Esteves-Oliveira, Marcella; Fischer, Horst

    2017-09-01

    The established method of fissure-sealing using polymeric coating materials exhibits limitations on the long-term. Here, we present a novel technique with the potential to protect susceptible teeth against caries and erosion. We hypothesized that a tailored glass-ceramic material could be sprayed onto enamel-like substrates to create superior adhesion properties after sintering by a CO 2 laser beam. A powdered dental glass-ceramic material from the system SiO 2 -Na 2 O-K 2 O-CaO-Al 2 O 3 -MgO was adjusted with individual properties suitable for a spray coating process. The material was characterized using X-ray fluorescence analysis (XRF), heating microscopy, dilatometry, scanning electron microscopy (SEM), grain size analysis, biaxial flexural strength measurements, fourier transform infrared spectroscopy (FTIR), and gas pycnometry. Three different groups of samples (each n=10) where prepared: Group A, powder pressed glass-ceramic coating material; Group B, sintered hydroxyapatite specimens; and Group C, enamel specimens (prepared from bovine teeth). Group B and C where spray coated with glass-ceramic powder. All specimens were heat treated using a CO 2 laser beam process. Cross-sections of the laser-sintered specimens were analyzed using laser scanning microscopy (LSM), energy dispersive X-ray analysis (EDX), and SEM. The developed glass-ceramic material (grain size d50=13.1mm, coefficient of thermal expansion (CTE)=13.310 -6 /K) could be spray coated on all tested substrates (mean thickness=160μm). FTIR analysis confirmed an absorption of the laser energy up to 95%. The powdered glass-ceramic material was successfully densely sintered in all sample groups. The coating interface investigation by SEM and EDX proved atomic diffusion and adhesion of the glass-ceramic material to hydroxyapatite and to dental enamel. A glass-ceramic material with suitable absorption properties was successfully sprayed and laser-sintered in thin films on hydroxyapatite as well as on bovine enamel. The presented novel technique of tooth coating with a dental glass-ceramic using a CO 2 -laser holds a great potential as a possible method to protect susceptible teeth against caries and erosion. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  5. 193nm high power lasers for the wide bandgap material processing

    NASA Astrophysics Data System (ADS)

    Fujimoto, Junichi; Kobayashi, Masakazu; Kakizaki, Koji; Oizumi, Hiroaki; Mimura, Toshio; Matsunaga, Takashi; Mizoguchi, Hakaru

    2017-02-01

    Recently infrared laser has faced resolution limit of finer micromachining requirement on especially semiconductor packaging like Fan-Out Wafer Level Package (FO-WLP) and Through Glass Via hole (TGV) which are hard to process with less defect. In this study, we investigated ablation rate with deep ultra violet excimer laser to explore its possibilities of micromachining on organic and glass interposers. These results were observed with a laser microscopy and Scanning Electron Microscope (SEM). As the ablation rates of both materials were quite affordable value, excimer laser is expected to be put in practical use for mass production.

  6. Femtosecond laser surface texturing of 3D poly-ε-caprolactone matrices for bone tissue engineering applications

    NASA Astrophysics Data System (ADS)

    Daskalova, A.; Bliznakova, I.; Zhelyazkova, A.; Ostrowska, B.; Trifonov, A.; Buchvarov, I.; Avramov, L.; Husinsky, W.

    2018-03-01

    Fibrous 3D matrices were fabricated from poly-ɛ-caprolactone (PCL) by fused deposition modeling. Femtosecond laser irradiation was then used to demonstrate the possibility to affect the porosity of the 3D PCL fiber meshes. The surface characteristics were analyzed by scanning electron microscopy (SEM) and confocal microscopy. The interrelationship was examined between the laser processing parameters (number of pulses, pulse energy applied) and the response of the biomaterial. The formation was demonstrated of well-defined micropores, while the original fiber structure was retained. The study of cells cultivation on the laser-modified scaffolds showed good adhesion compared to a non-modified scaffold. The results obtained showed that femtosecond laser processing can be used as an alternative non-contact tool in enhancing the porosity of artificial constructs, thus influencing the cell adhesion into fibrous meshes.

  7. Laser Cladding of TiAl Intermetallic Alloy on Ti6Al4V -Process Optimization and Properties

    NASA Astrophysics Data System (ADS)

    Cárcel, B.; Serrano, A.; Zambrano, J.; Amigó, V.; Cárcel, A. C.

    In order to improve Ti6Al4V high-temperature resistance and its tribological properties, the deposition of TiAl intermetallic (Ti-48Al-2Cr-2Nb) coating on a Ti6Al4V substrate by coaxial laser cladding has been investigated. Laser cladding by powder injection is an emerging laser material processing technique that allows the deposition of thick protective coatings on substrates,using a high power laser beam as heat source. Laser cladding is a multiple-parameter-dependent process. The main process parameters involved (laser power, powder feeding rate, scanning speed and preheating temperature) has been optimized. The microstructure and geometrical quantities (clad area and dilution) of the coating was characterized by optical microscopy and scanning electron microscopy (SEM). In addition the cooling rate of the clad during the process was measured by a dual-color pyrometer. This result has been related to defectology and mechanical coating properties.

  8. Visualization of laser tattoo removal treatment effects in a mouse model by two-photon microscopy

    PubMed Central

    Jang, Won Hyuk; Yoon, Yeoreum; Kim, Wonjoong; Kwon, Soonjae; Lee, Seunghun; Song, Duke; Choi, Jong Woon; Kim, Ki Hean

    2017-01-01

    Laser tattoo removal is an effective method of eliminating tattoo particles in the skin. However, laser treatment cannot always remove the unwanted tattoo completely, and there are risks of either temporary or permanent side effects. Studies using preclinical animal models could provide detailed information on the effects of laser treatment in the skin, and might help to minimize side effects in clinical practices. In this study, two-photon microscopy (TPM) was used to visualize the laser treatment effects on tattoo particles in both phantom specimens and in vivo mouse models. Fluorescent tattoo ink was used for particle visualization by TPM, and nanosecond (ns) and picosecond (ps) lasers at 532 nm were used for treatment. In phantom specimens, TPM characterized the fragmentation of individual tattoo particles by tracking them before and after the laser treatment. These changes were confirmed by field emission scanning electron microscopy (FE-SEM). TPM was used to measure the treatment efficiency of the two lasers at different laser fluences. In the mouse model, TPM visualized clusters of tattoo particles in the skin and detected their fragmentation after the laser treatment. Longitudinal TPM imaging observed the migration of cells containing tattoo particles after the laser treatment. These results show that TPM may be useful for the assessment of laser tattoo removal treatment in preclinical studies. PMID:28856046

  9. Intraoral laser welding: ultrastructural and mechanical analysis to compare laboratory laser and dental laser.

    PubMed

    Fornaini, Carlo; Passaretti, Francesca; Villa, Elena; Rocca, Jean-Paul; Merigo, Elisabetta; Vescovi, Paolo; Meleti, Marco; Manfredi, Maddalena; Nammour, Samir

    2011-07-01

    The Nd:YAG laser has been used since 1970 in dental laboratories to weld metals on dental prostheses. Recently in several clinical cases, we have suggested that the Nd:YAG laser device commonly utilized in the dental office could be used to repair broken fixed, removable and orthodontic prostheses and to weld metals directly in the mouth. The aim of this work was to evaluate, using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and dynamic mechanical analysis (DMA), the quality of the weld and its mechanical strength, comparing a device normally used in dental laboratory and a device normally used in the dental office for oral surgery, the same as that described for intraoral welding. Metal plates of a Co-Cr-Mo dental alloy and steel orthodontic wires were subjected to four welding procedures: welding without filler metal using the laboratory laser, welding with filler metal using the laboratory laser, welding without filler metal using the office laser, and welding with filler metal using the office laser. The welded materials were then analysed by SEM, EDS and DMA. SEM analysis did not show significant differences between the samples although the plates welded using the office laser without filler metal showed a greater number of fissures than the other samples. EDS microanalysis of the welding zone showed a homogeneous composition of the metals. Mechanical tests showed similar elastic behaviours of the samples, with minimal differences between the samples welded with the two devices. No wire broke even under the maximum force applied by the analyser. This study seems to demonstrate that the welds produced using the office Nd:YAG laser device and the laboratory Nd:YAG laser device, as analysed by SEM, EDS and DMA, showed minimal and nonsignificant differences, although these findings need to be confirmed using a greater number of samples.

  10. Enhancement of the wear resistance and microhardness of aluminum alloy by Nd:YaG laser treatment.

    PubMed

    Hussein, Haitham T; Kadhim, Abdulhadi; Al-Amiery, Ahmed A; Kadhum, Abdul Amir H; Mohamad, Abu Bakar

    2014-01-01

    Influence of laser treatment on mechanical properties, wear resistance, and Vickers hardness of aluminum alloy was studied. The specimens were treated by using Nd:YaG laser of energy 780 mj, wavelength 512 nm, and duration time 8 ns. The wear behavior of the specimens was studied for all specimens before and after treatment by Nd:YaG laser and the dry wear experiments were carried out by sing pinon-disc technique. The specimens were machined as a disk with diameter of 25 mm and circular groove in depth of 3 mm. All specimens were conducted by scanning electron microscopy (SEM), energy-dispersive X-ray fluorescence analysis (EDS), optical microscopy, and Vickers hardness. The results showed that the dry wear rate was decreased after laser hardening and increased Vickers hardness values by ratio of 2.4:1. The results showed that the values of wear rate for samples having circular grooves are less than samples without grooves after laser treatment.

  11. Effects of a pulsed Nd:YAG laser on enamel and dentin

    NASA Astrophysics Data System (ADS)

    Myers, Terry D.

    1990-06-01

    Enamel and dentin samples were exposed extraorally to a pulsed neodymium yttriuma1uminumgarnet (Nd:YAG) laser. The lased samples were observed using both scanning electron microscopy and histological techniques to determine the effects of the laser. The present study has provided the following points: (1) Properly treated, enamel can be 1aser etched to a depth comparable to that achieved with phosphoric acid etching; and (2) both carious and noncarious dentin can be vaporized by the Nd:YAG laser. No cracking or chipping of any enamel or dentin sample was observed histologically or under the SEM.

  12. Correlative SEM SERS for quantitative analysis of dimer nanoparticles.

    PubMed

    Timmermans, F J; Lenferink, A T M; van Wolferen, H A G M; Otto, C

    2016-11-14

    A Raman microscope integrated with a scanning electron microscope was used to investigate plasmonic structures by correlative SEM-SERS analysis. The integrated Raman-SEM microscope combines high-resolution electron microscopy information with SERS signal enhancement from selected nanostructures with adsorbed Raman reporter molecules. Correlative analysis is performed for dimers of two gold nanospheres. Dimers were selected on the basis of SEM images from multi aggregate samples. The effect of the orientation of the dimer with respect to the polarization state of the laser light and the effect of the particle gap size on the Raman signal intensity is observed. Additionally, calculations are performed to simulate the electric near field enhancement. These simulations are based on the morphologies observed by electron microscopy. In this way the experiments are compared with the enhancement factor calculated with near field simulations and are subsequently used to quantify the SERS enhancement factor. Large differences between experimentally observed and calculated enhancement factors are regularly detected, a phenomenon caused by nanoscale differences between the real and 'simplified' simulated structures. Quantitative SERS experiments reveal the structure induced enhancement factor, ranging from ∼200 to ∼20 000, averaged over the full nanostructure surface. The results demonstrate correlative Raman-SEM microscopy for the quantitative analysis of plasmonic particles and structures, thus enabling a new analytical method in the field of SERS and plasmonics.

  13. Nd:YAG Pulsed Laser Assisted Machining of AMS 5708 Waspaloy Alloy

    NASA Astrophysics Data System (ADS)

    Sharifi, Zahra; Shoja-Razavi, Reza; Vafaei, Reza; Hashemi, Sayed Hamid

    2018-03-01

    Due to very high strenght, low thermal conductivity, and high work hardening rate, the machinability of nickel-based superalloys is poor at room temperature. Laser-assisted machining (LAM) can provide a better aspect of machining such alloys. Since the wavelength of Nd:YAG laser is about 1/10th of that of CO2 laser, absorption and heating efficiency of Nd:YAG laser is much higher on metals and especially superalloys. Transmission of Nd:YAG laser through fiber optics to the heating point on the workpiece is a simple task during machining. This makes the LAM process more convenient and practical than the CM process. In this study a model is introduced for LAM of waspaloy, and its machinability is evaluated in terms of ease of material removal. Also, a temperature generation model is introduced for the Nd:YAG laser beam. Furthemore, wear behavior of an uncoated tungsten carbide and the formed chips were compared during the LAM and the CM of waspolay. To study the wear mechanism, the worn cutting tool was studied via scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS). The formed chips were also evaluated via SEM and optical microscopy. Based on the results, the optimum LAM conditions were obtained at a cutting speed of 24 m/min and a feed rate of 0.06 mm/rev when a 400 W laser mean power and 80 Hz frequency are applied. Under these conditions, the temperature ahead of the cutting tool edge on the surface of workpiece was estimated to be 524°C. In comparison with CM, a significant improvement in tool wear and a better chip morphology were achieved through LAM, and also specific cutting energy and surface roughness were reduced by 25 and 20%, respectively.

  14. Sub-wavelength ripples in fused silica after irradiation of the solid/liquid interface with ultrashort laser pulses.

    PubMed

    Böhme, R; Vass, C; Hopp, B; Zimmer, K

    2008-12-10

    Laser-induced backside wet etching (LIBWE) is performed using ultrashort 248 nm laser pulses with a pulse duration of 600 fs to obtain sub-wavelength laser-induced periodic surface structures (LIPSS) on the back surface of fused silica which is in contact with a 0.5 mol l(-1) solution of pyrene in toluene. The LIPSS are strictly one-dimensional patterns, oriented parallel to the polarization of the laser radiation, and have a constant period of about 140 nm at all applied laser fluences (0.33-0.84 J cm(-2)) and pulse numbers (50-1000 pulses). The LIPSS amplitude varies due to the inhomogeneous fluence in the laser spot. The LIPSS are examined with scanning electron microscopy (SEM) and atomic force microscopy (AFM). Their power spectral density (PSD) distribution is analysed at a measured area of 10 µm × 10 µm. The good agreement of the measured and calculated LIPSS periods strongly supports a mechanism based on the interference of surface-scattered and incident waves.

  15. Direct laser interference patterning of ophthalmic polydimethylsiloxane (PDMS) polymers

    NASA Astrophysics Data System (ADS)

    Sola, D.; Lavieja, C.; Orera, A.; Clemente, M. J.

    2018-07-01

    The inscription of diffractive elements in ophthalmic polymers and ocular tissues to induce refractive index changes is of great interest in the fields of Optics and Ophthalmology. In this work fabrication of linear periodic patterns in polydimethylsiloxane (PDMS) intraocular lenses by means of the direct laser interference patterning (DLIP) technique was studied. A Q-Switch Nd:YAG laser coupled to second and third harmonic modules emitting linearly polarized 4 ns pulses at 355 nm with 20 Hz repetition rate was used as the laser source. Laser processing parameters were modified to produce the linear patterns. Processed samples were characterized by means of optical confocal microscopy, Scanning Electron Microscopy SEM, Energy Dispersive X-ray Spectroscopy EDX, Attenuated Total Reflectance-Infrared Spectroscopy ATR-FTIR, and Raman Spectroscopy. Depending on the laser parameters both photo-thermal and photo-chemical damage were observed in the DLIP irradiated areas. Finally, diffractive techniques were used to characterize the diffraction gratings inscribed in the samples resulting in a refractive index change of 1.9 × 10-2 under illumination of a 632.8 nm He-Ne laser.

  16. SEM analysis of enamel surface treated by Er:YAG laser: influence of irradiation distance.

    PubMed

    Souza-Gabriel, A E; Chinelatti, M A; Borsatto, M C; Pécora, J D; Palma-Dibb, R G; Corona, S A M

    2008-07-01

    Depending on the distance of laser tip to dental surface a specific morphological pattern should be expected. However, there have been limited reports that correlate the Er:YAG irradiation distance with dental morphology. To assess the influence of Er:YAG laser irradiation distance on enamel morphology, by means of scanning electron microscopy (SEM). Sixty human third molars were employed to obtain discs (approximately =1 mm thick) that were randomly assigned to six groups (n=10). Five groups received Er:YAG laser irradiation (80 mJ/2 Hz) for 20 s, according to the irradiation distance: 11, 12, 14, 16, or 17 mm and the control group was treated with 37% phosphoric acid for 15 s. The laser-irradiated discs were bisected. One hemi-disc was separated for superficial analysis without subsequent acid etching, and the other one, received the phosphoric acid for 15 s. Samples were prepared for SEM. Laser irradiation at 11 and 12 mm provided an evident ablation of enamel, with evident fissures and some fused areas. At 14, 16 and 17 mm the superficial topography was flatter than in the other distances. The subsequent acid etching on the lased-surface partially removed the disorganized tissue. Er:YAG laser in defocused mode promoted slight morphological alterations and seems more suitable for enamel conditioning than focused irradiation. The application of phosphoric acid on lased-enamel surface, regardless of the irradiation distance, decreased the superficial irregularities.

  17. Characterization of perovskite film prepared by pulsed laser deposition on ferritic stainless steel using microscopic and optical methods

    NASA Astrophysics Data System (ADS)

    Durda, E.; Jaglarz, J.; Kąc, S.; Przybylski, K.; El Kouari, Y.

    2016-06-01

    The perovskite La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF48) film was deposited on Crofer 22 APU ferritic stainless steel by pulsed laser deposition (PLD). Morphological studies of the sample were performed using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Information about film thickness and surface topography of the film and the steel substrate were obtained using following optical methods: spectroscopic ellipsometry (SE), bidirectional reflection distribution function (BRDF) and total integrated reflectometry (TIS). In particular, the BRDF study, being complementary to atomic force microscopy, yielded information about surface topography. Using the previously mentioned methods, the following statistic surface parameters were determined: root-mean square (rms) roughness and autocorrelation length by determining the power spectral density (PSD) function of surface irregularities.

  18. Laser engravings as reason for mechanical failure of titanium-alloyed total hip stems.

    PubMed

    Kluess, Daniel; Steinhauser, Erwin; Joseph, Micheal; Koch, Ursula; Ellenrieder, Martin; Mittelmeier, Wolfram; Bader, Rainer

    2015-07-01

    Two revisions of broken β-titanium total hip stems had to be performed in our hospital after 2 and 4 years in situ. Since both fractures were located at the level of a laser engraving, a failure analysis was conducted. Both retrieved hip stems were disinfected and collected in our retrieval database after patient's signed agreement. Each fragment was macroscopically photographed. Fracture surfaces were analyzed using scanning electron microscopy (SEM). Quantification of element content was conducted using energy dispersive X-ray (EDX) analysis. Both stems show fatigue fracture, as displayed by the lines of rest on the fracture surface. The origin of fracture was identified directly at the laser engraving of the company logo at both stems by means of SEM. The EDX analysis showed an oxygen level beneath the laser engraving about twice as high as in the substrate, causing material embrittlement. Laser engravings need to be reduced to a minimum of necessary information, and should be placed at locations with minimum mechanical load. Biomechanical analyses are recommended to identify less loaded areas in implant components to avoid such implant failures.

  19. Femtosecond laser ablation of cemented carbides: properties and tribological applications

    NASA Astrophysics Data System (ADS)

    Dumitru, G.; Romano, V.; Weber, H. P.; Gerbig, Y.; Haefke, H.; Bruneau, S.; Hermann, J.; Sentis, M.

    Laser ablation with fs laser pulses was performed in air on cobalt cemented tungsten carbide by means of a Ti : sapphire laser (800 nm, 100 fs). Small and moderate fluences (2, 5, 10 J/cm2) and up to 5×104 pulses per irradiated spot were used to drill holes with aspect ratios up to 10. Cross-section cuts from laser-irradiated samples were produced and they were analysed with optical microscopy and SEM. EDX analyses were carried out on selected zones. Quasi-cylindrical holes were found for 2 J/cm2, whereas for 5 and 10 J/cm2 irregular shapes (lobes, bottoms wider than hole entrances) were found to occur after a given number of incident pulses. Layers with modified structure were evidenced at pore walls. SEM revealed a denser structure, while EDX analyses showed uniform and almost similar contents of W, C, and Co in these layers. As a direct application, patterning of coated WC-Co was carried out with 2 J/cm2 and 100 pulses per pore. The resulted surfaces were tribologically tested and these tests revealed an improved friction and wear behaviour.

  20. Quality of corneal lamellar cuts quantified using atomic force microscopy

    PubMed Central

    Ziebarth, Noël M.; Dias, Janice; Hürmeriç, Volkan; Shousha, Mohamed Abou; Yau, Chiyat Ben; Moy, Vincent T.; Culbertson, William; Yoo, Sonia H.

    2012-01-01

    PURPOSE To quantify the cut quality of lamellar dissections made with the femtosecond laser using atomic force microscopy (AFM). SETTING Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA. DESIGN Experimental study. METHODS Experiments were performed on 3 pairs of human cadaver eyes. The cornea was thinned to physiologic levels by placing the globe, cornea side down, in 25% dextran for 24 hours. The eyes were reinflated to normal pressures by injecting a balanced salt solution into the vitreous cavity. The eyes were placed in a holder, the epithelium was removed, and the eyes were cut with a Visumax femtosecond laser. The energy level was 180 nJ for the right eye and 340 nJ for the left eye of each pair. The cut depths were 200 μm, 300 μm, and 400 μm, with the cut depth maintained for both eyes of each pair. A 12.0 mm trephination was then performed. The anterior portion of the lamellar surface was placed in a balanced salt solution and imaged with AFM. As a control, the posterior surface was placed in 2% formalin and imaged with environmental scanning electron microscopy (SEM). Four quantitative parameters (root-mean-square deviation, average deviation, skewness, kurtosis) were calculated from the AFM images. RESULTS From AFM, the 300 μm low-energy cuts were the smoothest. Similar results were seen qualitatively in the environmental SEM images. CONCLUSION Atomic force microscopy provided quantitative information on the quality of lamellar dissections made using a femtosecond laser, which is useful in optimizing patient outcomes in refractive and lamellar keratoplasty surgeries. PMID:23141078

  1. Laser micro-processing of amorphous and partially crystalline Cu45Zr48Al7 alloy

    NASA Astrophysics Data System (ADS)

    Aqida, S. N.; Brabazon, D.; Naher, S.; Kovacs, Z.; Browne, D. J.

    2010-11-01

    This paper presents a microstructural study of laser micro-processed high-purity Cu45Zr48Al7 alloys prepared by arc melting and Cu-mould casting. Microprocessing of the Cu45Zr48Al7 alloy was performed using a Rofin DC-015 diffusion-cooled CO2 slab laser system with 10.6-μm wavelength. The laser was defocused to a spot size of 0.2 mm on the sample surface. The laser parameters were set to give 300- and 350-W peak power, 30% duty cycle and a 3000-Hz laser pulse repetition frequency (PRF). About 100-micrometer-wide channels were scribed on the surfaces of disk-shaped amorphous and partially crystalline samples at traverse speeds of 500 and 5000 mm/min. These channels were analysed using scanning electron microscopy (SEM) and 2D stylus profilometry. The metallographic study and profile of these processed regions are discussed in terms of the applied laser processing parameters. The SEM micrographs showed that striation marks developed at the edge and inside these regions as a result of the laser processing. The results from this work showed that microscale features can be produced on the surface of amorphous Cu-Zr-Al alloys by CO2 laser processing.

  2. Morphological and ultrastructural comparative analysis of bone tissue after Er:YAG laser and surgical drill osteotomy.

    PubMed

    Panduric, Dragana Gabric; Juric, Ivona Bago; Music, Svetozar; Molčanov, Krešimir; Sušic, Mato; Anic, Ivica

    2014-07-01

    The purpose of this study was to analyze morphological, chemical, and crystallographic changes of bone tissue after osteotomy performed with an erbium:yttrium-aluminium-garnet (Er:YAG) laser and a low speed pilot drill. Bone blocks were prepared from porcine ribs, and on each block, two tunnel preparations were performed using the Er:YAG laser (pulse energy: 1000 mJ, pulse duration: 300 μs, pulse repetition rate: 20 Hz) or the low-speed surgical pilot drill. The morphological changes of the cortical and the spongious surface of the tunnel preparations were analyzed under the field emission scanning electron microscopy (FE-SEM) at low and high resolution. The distribution and the level of chemical elements in the treated surfaces were evaluated by qualitative and semiquantitative energy dispersive x-ray analysis (SEM-EDX). Diffraction x-ray analysis was used to detect any differences and thermally induced modifications of hydroxyapatite crystals. FE-SEM revealed sharp edges of the Er:YAG preparations, with empty intertrabecular spaces and no signs of carbonization. In the drill group, the surface of the preparations was smooth, completely covered with smear layer and microcracks, and with hairy-like irregularities on the edges. SEM-EDX analysis did not reveal any differences in the number of specific chemical elements between the laser and the drill group. There were no thermally induced modifications of hydroxyapatite crystal structure in the bone tissue in either group. The Er:YAG laser ablation did not cause any chemical or crystallographic changes of the bone tissue. Compared with the drill, Er:YAG laser created well-defined edges of the preparations, and cortical bone had no smear layer.

  3. Passive optical limiting studies of nanostructured Cu doped ZnO-PVA composite thin films

    NASA Astrophysics Data System (ADS)

    Tamgadge, Y. S.; Sunatkari, A. L.; Talwatkar, S. S.; Pahurkar, V. G.; Muley, G. G.

    2016-01-01

    We prepared undoped and Cu doped ZnO semiconducting nanoparticles (NPs) by chemical co-precipitation method and obtained Cu doped ZnO-polyvinyl alcohol (PVA) nanocomposite thin films by spin coating to investigate third order nonlinear optical and optical limiting properties under cw laser excitation. Powder samples of NPs were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive spectroscopy, transmission electron microscopy, ultraviolet-visible (UV-vis) and Fourier transform infrared spectroscopy. XRD pattern and FE-SEM micrograph revealed the presence of hexagonal wurtzite phase ZnO NPs having uniform morphology with average particle size of 20 nm. The presence of excitons and absorption peaks in the range 343-360 nm, revealed by UV-vis study, were attributed to excitons in n = 1 quantum state. Third order NLO properties of all composite thin films were investigated by He-Ne continuous wave (cw) laser of wavelength 632.8 nm using Z-scan technique. Thermally stimulated enhanced values of nonlinear refraction and absorption coefficients were obtained which may be attributed to self-defocusing effect, reverse saturable absorption, weak free carrier absorption and surface states properties originated from thermo optic effect. Optical limiting properties have been studied using cw diode laser of wavelength 808 nm and results are presented.

  4. Laser-ablative fabrication of nanoparticle inks for 3D inkjetprinting of multifunctional coatings

    NASA Astrophysics Data System (ADS)

    Ionin, A. A.; Ivanova, A. K.; Khmel'nitskii, R. A.; Klevkov, Yu V.; Kudryashov, S. I.; Mel'nik, N. N.; Nastulyavichus, A. A.; Rudenko, A. A.; Saraeva, I. N.; Smirnov, N. A.; Zayarny, D. A.

    2017-12-01

    We report the fabrication of multifunctional coatings via inkjet printing using water-based nanoinks in the form of selenium (Se) and gold (Au) nanoparticle (NP) colloids, prepared by laser ablation of solid targets in deionized water or 50%-isopropyl alcohol solution. Nanoparticles and NP-based coatings were deposited onto silver films, magnetronsputtered to silica-glass substrates, and characterized by means of scanning and transmission electron microscopy (SEM, TEM), UV-vis-IR, Raman and energy-dispersive X-ray spectroscopies.

  5. Laser sintered thin layer graphene and cubic boron nitride reinforced nickel matrix nanocomposites

    NASA Astrophysics Data System (ADS)

    Hu, Zengrong; Tong, Guoquan

    2015-10-01

    Laser sintered thin layer graphene (Gr)-cubic boron nitride (CBN)-Ni nanocomposites were fabricated on AISI 4140 plate substrate. The composites fabricating process, composites microstructure and mechanical properties were studied. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman spectroscopy were employed to study the micro structures and composition of the composites. XRD and Raman tests proved that graphene and CBN were dispersed in the nanocomposites. Nanoindentation test results indicate the significant improvements were achieved in the composites mechanical properties.

  6. Enhancement of the Wear Resistance and Microhardness of Aluminum Alloy by Nd:YaG Laser Treatment

    PubMed Central

    Hussein, Haitham T.; Kadhim, Abdulhadi; Al-Amiery, Ahmed A.; Kadhum, Abdul Amir H.; Mohamad, Abu Bakar

    2014-01-01

    Influence of laser treatment on mechanical properties, wear resistance, and Vickers hardness of aluminum alloy was studied. The specimens were treated by using Nd:YaG laser of energy 780 mj, wavelength 512 nm, and duration time 8 ns. The wear behavior of the specimens was studied for all specimens before and after treatment by Nd:YaG laser and the dry wear experiments were carried out by sing pinon-disc technique. The specimens were machined as a disk with diameter of 25 mm and circular groove in depth of 3 mm. All specimens were conducted by scanning electron microscopy (SEM), energy-dispersive X-ray florescence analysis (EDS), optical microscopy, and Vickers hardness. The results showed that the dry wear rate was decreased after laser hardening and increased Vickers hardness values by ratio of 2.4 : 1. The results showed that the values of wear rate for samples having circular grooves are less than samples without grooves after laser treatment. PMID:25136694

  7. The effect of high-power plasma flows on tungsten plates with multilayer films of tungsten nanoparticles

    NASA Astrophysics Data System (ADS)

    Gorokhov, M. V.; Kozhevin, V. M.; Yavsin, D. A.; Voronin, A. V.; Gurevich, S. A.

    2017-04-01

    We have experimentally studied the action of high-power plasma flows on pure tungsten plates covered with multilayer films of tungsten nanoparticles formed by the method of laser electrodeposition. The samples were irradiated using a plasma gun producing hydrogen (helium) plasma flows with power density up to 35 GW/cm2. The resulting surface morphology was studied by scanning electron microscopy (SEM). SEM data showed that tungsten plates coated by nanoparticles are more resistant to the formation of microcracks than are pure tungsten plates.

  8. Structural analysis of zeolite NaA synthesized by a cost-effective hydrothermal method using kaolin and its use as water softener.

    PubMed

    Loiola, A R; Andrade, J C R A; Sasaki, J M; da Silva, L R D

    2012-02-01

    Zeolite 4A (LTA) has been successfully synthesized by a hydrothermal method, where kaolin was used as silica and alumina source. The synthesized zeolite was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), laser granulometry, and FTIR spectroscopy. XRD data from the Rietveld refinement method confirmed only one crystallographic phase. Zeolite A morphology was observed by SEM analysis, and it showed well-defined crystals with slightly different sizes but with the same cubic shape. Particle size distribution of the crystals was confirmed by laser granulometry, whereas FTIR spectroscopy revealed significant structural differences between the starting material and the final zeolite product used as water softener. Copyright © 2010 Elsevier Inc. All rights reserved.

  9. Modification of graphene oxide by laser irradiation: a new route to enhance antibacterial activity

    NASA Astrophysics Data System (ADS)

    Buccheri, Maria A.; D'Angelo, Daniele; Scalese, Silvia; Spanò, Simon F.; Filice, Simona; Fazio, Enza; Compagnini, Giuseppe; Zimbone, Massimo; Brundo, Maria V.; Pecoraro, Roberta; Alba, Anna; Sinatra, Fulvia; Rappazzo, Giancarlo; Privitera, Vittorio

    2016-06-01

    The antibacterial activity and possible toxicity of graphene oxide and laser-irradiated graphene oxide (iGO) were investigated. Antibacterial activity was tested on Escherichia coli and shown to be higher for GO irradiated for at least three hours, which seems to be correlated to the resulting morphology of laser-treated GO and independent of the kind and amount of oxygen functionalities. X-ray photoelectron spectroscopy, Raman spectroscopy, dynamic light scattering and scanning electron microscopy (SEM) show a reduction of the GO flakes size after visible laser irradiation, preserving considerable oxygen content and degree of hydrophilicity. SEM images of the bacteria after the exposure to the iGO flakes confirm membrane damage after interaction with the laser-modified morphology of GO. In addition, a fish embryo toxicity test on zebrafish displayed that neither mortality nor sublethal effects were caused by the different iGO solutions, even when the concentration was increased up to four times higher than the one effective in reducing the bacteria survival. The antibacterial properties and the absence of toxicity make the visible laser irradiation of GO a promising option for water purification applications.

  10. Skeletal stem cell and bone implant interactions are enhanced by LASER titanium modification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sisti, Karin E., E-mail: karinellensisti@gmail.com; Biomaterials Group, Institute of Chemistry, São Paulo State University; Federal University of Mato Grosso do Sul

    Purpose: To evaluate the osteo-regenerative potential of Titanium (Ti) modified by Light Amplification by Stimulated Emission of Radiation (LASER) beam (Yb-YAG) upon culture with human Skeletal Stem Cells (hSSCs{sup 1}). Methods: Human skeletal cell populations were isolated from the bone marrow of haematologically normal patients undergoing primary total hip replacement following appropriate consent. STRO-1{sup +} hSSC{sup 1} function was examined for 10 days across four groups using Ti discs: i) machined Ti surface group in basal media (Mb{sup 2}), ii) machined Ti surface group in osteogenic media (Mo{sup 3}), iii) LASER-modified Ti group in basal media (Lb{sup 4}) and, iv)more » LASER-modified Ti group in osteogenic media (Lo{sup 5}). Molecular analysis and qRT-PCR as well as functional analysis including biochemistry (DNA, Alkaline Phosphatase (ALP{sup 6}) specific activity), live/dead immunostaining (Cell Tracker Green (CTG{sup 7})/Ethidium Homodimer-1 (EH-1{sup 8})), and fluorescence staining (for vinculin and phalloidin) were undertaken. Inverted, confocal and Scanning Electron Microscopy (SEM) approaches were used to characterise cell adherence, proliferation, and phenotype. Results: Enhanced cell spreading and morphological rearrangement, including focal adhesions were observed following culture of hSSCs{sup 1} on LASER surfaces in both basal and osteogenic conditions. Biochemical analysis demonstrated enhanced ALP{sup 6} specific activity on the hSSCs{sup 1}-seeded on LASER-modified surface in basal culture media. Molecular analysis demonstrated enhanced ALP{sup 6} and osteopontin expression on titanium LASER treated surfaces in basal conditions. SEM, inverted microscopy and confocal laser scanning microscopy confirmed extensive proliferation and migration of human bone marrow stromal cells on all surfaces evaluated. Conclusions: LASER-modified Ti surfaces modify the behaviour of hSSCs.{sup 1} In particular, SSC{sup 1} adhesion, osteogenic gene expression, cell morphology and cytoskeleton structure were affected. The current studies show Ti LASER modification can enhance the osseointegration between Ti and skeletal cells, with important implications for orthopaedic application. - Highlights: • Bone stem cells on LASER Ti surface display enhanced cell growth and viability. • Bone stem cells on LASER Ti surface exhibit marked biocompatibility. • Human bone stem cells on LASER Ti surface exhibit altered morphology. • LASER Ti enhance osteogenic differentiation of human bone skeletal stem cells. • LASER Ti provides a unique approach to enhance osseointegration with the material.« less

  11. Solution-Based Synthesis of Crystalline Silicon from Liquid Silane through Laser and Chemical Annealing

    DOE PAGES

    Iyer, Ganjigunte R. S.; Hobbie, Erik K.; Guruvenket, Srinivasan; ...

    2012-05-23

    We report a solution process for the synthesis of crystalline silicon from the liquid silane precursor cyclohexasilane (Si 6H 12). Polysilane films were crystallized through thermal and laser annealing, with plasma hydrogenation at atmospheric pressure generating further structural changes in the films. The evolution from amorphous to microcrystalline is characterized using scanning electron microscopy (SEM), atomic force microscopy (AFM), Raman spectroscopy and impedance spectroscopy. A four-decade enhancement in the electrical conductivity is attributed to a disorder-order transition in a bonded Si network. Lastly, our results demonstrate a potentially attractive approach that employs a solution process coupled with ambient post-processing tomore » produce crystalline silicon thin films.« less

  12. Growth and structure of Bi 0.5(Na 0.7K 0.2Li 0.1) 0.5TiO 3 thin films prepared by pulsed laser deposition technique

    NASA Astrophysics Data System (ADS)

    Lu, Lei; Xiao, Dingquan; Lin, Dunmin; Zhang, Yongbin; Zhu, Jianguo

    2009-02-01

    Bi 0.5(Na 0.7K 0.2Li 0.1) 0.5TiO 3 (BNKLT) thin films were prepared on Pt/Ti/SiO 2/Si substrates by pulsed laser deposition (PLD) technique. The films prepared were examined by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The effects of the processing parameters, such as oxygen pressure, substrate temperature and laser power, on the crystal structure, surface morphology, roughness and deposition rates of the thin films were investigated. It was found that the substrate temperature of 600 °C and oxygen pressure of 30 Pa are the optimized technical parameters for the growth of textured film, and all the thin films prepared have granular structure, homogeneous grain size and smooth surfaces.

  13. Production of microscale particles from fish bone by gas flow assisted laser ablation

    NASA Astrophysics Data System (ADS)

    Boutinguiza, M.; Lusquiños, F.; Comesaña, R.; Riveiro, A.; Quintero, F.; Pou, J.

    2007-12-01

    Recycled wastes from fish and seafood can constitute a source of precursor material for different applications in the biomedical field such as bone fillers or precursor material for bioceramic coatings to improve the osteointegration of metallic implants. In this work, fish bones have been used directly as target in a laser ablation system. A pulsed Nd:YAG laser was used to ablate the fish bone material and a transverse air flow was used to extract the ablated material out of the interaction zone. The particles collected at a filter were in the micro and nanoscale range. The morphology as well as the composition of the obtained particles were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and transmission electron microscopy (TEM). The results reveal that the composition of the analyzed particles is similar to that of the inorganic part of the fish bone.

  14. Laser-induced Multi-energy Processing in Diamond Growth

    DTIC Science & Technology

    2012-05-01

    microscopy (SEM) and energy dispersive X - ray (EDX) measurements, Drs. Yi Liu and Shah Valloppilly from Nebraska Center for Materials and Nanoscience...NCMN) at UNL for help on X - Ray diffraction (XRD) measurements, and Professor Steve W. Martin and Dr. Young Sik Kim from the Department of Material...spectroscopy and X - ray diffraction ................... 62 4.4 Conclusions

  15. Reshaping and Customization of SMILE-Derived Biological Lenticules for Intrastromal Implantation.

    PubMed

    Damgaard, Iben Bach; Riau, Andri Kartasasmita; Liu, Yu-Chi; Tey, Min Li; Yam, Gary Hin-Fai; Mehta, Jodhbir Singh

    2018-05-01

    To evaluate the feasibility of excimer laser reshaping of biological lenticules available after small incision lenticule extraction (SMILE). Fresh and cryopreserved SMILE-derived human lenticules underwent excimer laser ablation for stromal reshaping. The treatment effects in the lasered group were compared with the nonlasered group with respect to changes in surface functional groups (by Fourier transform infrared spectroscopy [FTIR]) and surface morphology (by scanning electron microscopy [SEM] and atomic force microscopy [AFM]). Ten SMILE-derived porcine lenticules, five nonlasered (107-μm thick, -6 diopter [D] spherical power) and five excimer lasered (50% thickness reduction), were implanted into a 120-μm stromal pocket of 10 porcine eyes. Corneal thickness and topography were assessed before and after implantation. FTIR illustrated prominent changes in the lipid profile. The collagen structure was also affected by the laser treatment but to a lesser extent. SEM exhibited a more regular surface for the lasered lenticules, confirmed by the lower mean Rz value (290.1 ± 96.1 nm vs. 380.9 ± 92.6 nm, P = 0.045) on AFM. The lasered porcine lenticules were thinner than the nonlasered controls during overhydration (132 ± 26 μm vs. 233 ± 23 μm, P < 0.001) and after 5 hours in a moist chamber (46 ± 3 μm vs. 57 ± 3 μm, P < 0.001). After implantation, the nonlasered group showed a tendency toward a greater increase in axial keratometry (6.63 ± 2.17 D vs. 5.60 ± 3.79 D, P = 0.613) and elevation (18.6 ± 15.4 vs. 15.2 ± 5.5, P = 0.656) than the lasered group. Excimer laser ablation may be feasible for thinning and reshaping of SMILE-derived lenticules before reimplantation or allogenic transplantation. However, controlled lenticule dehydration before ablation is necessary in order to allow stromal thinning.

  16. Determination of precursor sites for pitting corrosion of polycrystalline titanium by using different techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garfias-Mesias, L.F.; Alodan, M.; James, P.I.

    1998-06-01

    Scanning electrochemical microscopy (SECM) in ferrocyanide and bromide solutions was used to locate active sites (pitting precursors) on polycrystalline Ti where oxidation of Br{sup {minus}} and Fe(CN){sub 6}{sup 4{minus}} was possible. Analysis of the electrochemically active sites was done by using electron microscopy (SEM), energy dispersive X-ray analysis (EDX), atomic force microscopy (AFM), and in situ confocal laser scanning microscopy (CLSM). In most cases, the active sites were found to be associated with particles (inclusions) which contained mainly Al and Si; however, some other areas not associated with particles were also found to be active. Although the size of themore » inclusions was normally smaller than 20 {micro}m, as revealed by SEM and AFM imaging, in some cases larger particles were also found. Pitting corrosion tests in bromide solution at potentials above 1.5 V{sub SCE} followed by EDX analysis inside the pits and in situ CLSM observation, confirmed that most of the localized attack started in the areas where particles had been located.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atanasov, Petar A., E-mail: paatanas@ie.bas.bg; Nedyalkov, Nikolay N.; Valova, Eugenia I.

    We present an experimental analysis on surface structuring of polydimethylsiloxane films with UV (263 nm) femtosecond laser pulses, in air. Laser processed areas are analyzed by optical microscopy, SEM, and μ-Raman spectroscopy. The laser-treated sample shows the formation of a randomly nanostructured surface morphology. μ-Raman spectra, carried out at both 514 and 785 nm excitation wavelengths, prior and after laser treatment allow evidencing the changes in the sample structure. The influence of the laser fluence on the surface morphology is studied. Finally, successful electro-less metallization of the laser-processed sample is achieved, even after several months from the laser-treatment contrary to previous observationmore » with nanosecond pulses. Our findings address the effectiveness of fs-laser treatment and chemical metallization of polydimethylsiloxane films with perspective technological interest in micro-fabrication devices for MEMS and nano-electromechanical systems.« less

  18. Improving the Thermal Shock Resistance of Thermal Barrier Coatings Through Formation of an In Situ YSZ/Al2O3 Composite via Laser Cladding

    NASA Astrophysics Data System (ADS)

    Soleimanipour, Zohre; Baghshahi, Saeid; Shoja-razavi, Reza

    2017-04-01

    In the present study, laser cladding of alumina on the top surface of YSZ thermal barrier coatings (TBC) was conducted via Nd:YAG pulsed laser. The thermal shock behavior of the TBC before and after laser cladding was modified by heating at 1000 °C for 15 min and quenching in cold water. Phase analysis, microstructural evaluation and elemental analysis were performed using x-ray diffractometry, scanning electron microscopy (SEM), and energy-dispersive spectroscopy. The results of thermal shock tests indicated that the failure in the conventional YSZ (not laser clad) and the laser clad coatings happened after 200 and 270 cycles, respectively. The SEM images of the samples showed that delamination and spallation occurred in both coatings as the main mechanism of failure. Formation of TGO was also observed in the fractured cross section of the samples, which is also a main reason for degradation. Thermal shock resistance in the laser clad coatings improved about 35% after cladding. The improvement is due to the presence of continuous network cracks perpendicular to the surface in the clad layer and also the thermal stability and high melting point of alumina in Al2O3/ZrO2 composite.

  19. Enamel alteration following tooth bleaching and remineralization.

    PubMed

    Coceska, Emilija; Gjorgievska, Elizabeta; Coleman, Nichola J; Gabric, Dragana; Slipper, Ian J; Stevanovic, Marija; Nicholson, John W

    2016-06-01

    The purpose of this study was to compare the effects of professional tooth whitening agents containing highly concentrated hydrogen peroxide (with and without laser activation), on the enamel surface; and the potential of four different toothpastes to remineralize any alterations. The study was performed on 50 human molars, divided in two groups: treated with Opalescence(®) Boost and Mirawhite(®) Laser Bleaching. Furthermore, each group was divided into five subgroups, a control one and 4 subgroups remineralized with: Mirasensitive(®) hap+, Mirawhite(®) Gelleѐ, GC Tooth Mousse™ and Mirafluor(®) C. The samples were analysed by SEM/3D-SEM-micrographs, SEM/EDX-qualitative analysis and SEM/EDX-semiquantitative analysis. The microphotographs show that both types of bleaching cause alterations: emphasized perikymata, erosions, loss of interprizmatic substance; the laser treatment is more aggressive and loss of integrity of the enamel is determined by shearing off the enamel rods. In all samples undergoing remineralization deposits were observed, those of toothpastes based on calcium phosphate technologies seem to merge with each other and cover almost the entire surface of the enamel. Loss of integrity and minerals were detected only in the line-scans of the sample remineralized with GC Tooth Mousse™. The semiquantitative EDX analysis of individual elements in the surface layer of the enamel indicates that during tooth-bleaching with HP statistically significant loss of Na and Mg occurs, whereas the bleaching in combination with a laser leads to statistically significant loss of Ca and P. The results undoubtedly confirm that teeth whitening procedures lead to enamel alterations. In this context, it must be noted that laser bleaching is more aggressive for dental substances. However, these changes are reversible and can be repaired by application of remineralization toothpastes. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  20. Multi-scale Observation of Biological Interactions of Nanocarriers: from Nano to Macro

    PubMed Central

    Jin, Su-Eon; Bae, Jin Woo; Hong, Seungpyo

    2010-01-01

    Microscopic observations have played a key role in recent advancements in nanotechnology-based biomedical sciences. In particular, multi-scale observation is necessary to fully understand the nano-bio interfaces where a large amount of unprecedented phenomena have been reported. This review describes how to address the physicochemical and biological interactions of nanocarriers within the biological environments using microscopic tools. The imaging techniques are categorized based on the size scale of detection. For observation of the nano-scale biological interactions of nanocarriers, we discuss atomic force microscopy (AFM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). For the micro to macro-scale (in vitro and in vivo) observation, we focus on confocal laser scanning microscopy (CLSM) as well as in vivo imaging systems such as magnetic resonance imaging (MRI), superconducting quantum interference devices (SQUIDs), and IVIS®. Additionally, recently developed combined techniques such as AFM-CLSM, correlative Light and Electron Microscopy (CLEM), and SEM-spectroscopy are also discussed. In this review, we describe how each technique helps elucidate certain physicochemical and biological activities of nanocarriers such as dendrimers, polymers, liposomes, and polymeric/inorganic nanoparticles, thus providing a toolbox for bioengineers, pharmaceutical scientists, biologists, and research clinicians. PMID:20232368

  1. Laser-Based Surface Modification of Microstructure for Carbon Fiber-Reinforced Plastics

    NASA Astrophysics Data System (ADS)

    Yang, Wenfeng; Sun, Ting; Cao, Yu; Li, Shaolong; Liu, Chang; Tang, Qingru

    2018-05-01

    Bonding repair is a powerful feature of carbon fiber-reinforced plastics (CFRP). Based on the theory of interface bonding, the interface adhesion strength and reliability of the CFRP structure will be directly affected by the microscopic features of the CFRP surface, including the microstructure, physical, and chemical characteristics. In this paper, laser-based surface modification was compared to Peel-ply, grinding, and polishing to comparatively evaluate the surface microstructure of CFRP. The surface microstructure, morphology, fiber damage, height and space parameters were investigated by scanning electron microscopy (SEM) and laser confocal microscopy (LCM). Relative to the conventional grinding process, laser modification of the CFRP surface can result in more uniform resin removal and better processing control and repeatability. This decreases the adverse impact of surface fiber fractures and secondary damage. The surface properties were significantly optimized, which has been reflected such things as the obvious improvement of surface roughness, microstructure uniformity, and actual area. The improved surface microstructure based on laser modification is more conducive to interface bonding of CFRP structure repair. This can enhance the interfacial adhesion strength and reliability of repair.

  2. Fabrication of naphthalocyanine nanoparticles by laser ablation in liquid and application to contrast agents for photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Yanagihara, Ryuga; Asahi, Tsuyoshi; Ishibashi, Yukihide; Odawara, Osamu; Wada, Hiroyuki

    2018-03-01

    Naphthalocyanine nanoparticles were prepared by laser ablation in liquid using second-harmonics of nanosecond Nd:YAG laser as an excitation light sauce at various laser fluence, and the properties of naphthalocyanine nanoparticles, such as shape, size, zeta potential, chemical structure and optical absorption were examined. The scanning electron microscopy (SEM) and dynamic light scattering (DLS) measurements showed that the particle size of the nanoparticles could be controlled by the laser fluence. The IR spectra of the nanoparticles indicated the formation of carboxylate anion species at laser fluences above 100 mJ/cm2, which will result the zeta potential of the nanoparticles depending on the laser fluence. We also examined the potential application to contrast agents for photoacoustic, and confirmed that the naphthalocyanine nanoparticles generated a strong photoacoustic signal.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pariona, Moises Meza, E-mail: mmpariona@uepg.br; Teleginski, Viviane; Santos, Kelly dos

    Laser beam welding has recently been incorporated into the fabrication process of aircraft and automobile structures. Surface roughness is an important parameter of product quality that strongly affects the performance of mechanical parts, as well as production costs. This parameter influences the mechanical properties such as fatigue behavior, corrosion resistance, creep life, etc., and other functional characteristics such as friction, wear, light reflection, heat transmission, lubrification, electrical conductivity, etc. The effects of laser surface remelting (LSR) on the morphology of Al-Fe aerospace alloys were examined before and after surface treatments, using optical microscopy (OM), scanning electron microscopy (SEM), low-angle X-raymore » diffraction (LA-XRD), atomic force microscopy (AFM), microhardness measurements (Vickers hardness), and cyclic voltammetry. This analysis was performed on both laser-treated and untreated sanded surfaces, revealing significant differences. The LA-XRD analysis revealed the presence of alumina, simple metals and metastable intermetallic phases, which considerably improved the microhardness of laser-remelted surfaces. The morphology produced by laser surface remelting enhanced the microstructure of the Al-Fe alloys by reducing their roughness and increasing their hardness. The treated surfaces showed passivity and stability characteristics in the electrolytic medium employed in this study. - Highlights: Black-Right-Pointing-Pointer The samples laser-treated and untreated showed significant differences. Black-Right-Pointing-Pointer The La-XRD revealed the presence of alumina in Al-1.5 wt.% Fe. Black-Right-Pointing-Pointer The laser-treated reducing the roughness and increasing the hardness. Black-Right-Pointing-Pointer The laser-treated surfaces showed characteristic passive in the electrolytic medium. Black-Right-Pointing-Pointer The laser-treated is a promising technique for applications technological.« less

  4. Laser Processing of Metals and Polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singaravelu, Senthilraja

    2012-05-01

    A laser offers a unique set of opportunities for precise delivery of high quality coherent energy. This energy can be tailored to alter the properties of material allowing a very flexible adjustment of the interaction that can lead to melting, vaporization, or just surface modification. Nowadays laser systems can be found in nearly all branches of research and industry for numerous applications. Sufficient evidence exists in the literature to suggest that further advancements in the field of laser material processing will rely significantly on the development of new process schemes. As a result they can be applied in various applicationsmore » starting from fundamental research on systems, materials and processes performed on a scientific and technical basis for the industrial needs. The interaction of intense laser radiation with solid surfaces has extensively been studied for many years, in part, for development of possible applications. In this thesis, I present several applications of laser processing of metals and polymers including polishing niobium surface, producing a superconducting phase niobium nitride and depositing thin films of niobium nitride and organic material (cyclic olefin copolymer). The treated materials were examined by scanning electron microscopy (SEM), electron probe microanalysis (EPMA), atomic force microscopy (AFM), high resolution optical microscopy, surface profilometry, Fourier transform infrared spectroscopy (FTIR) and x-ray diffraction (XRD). Power spectral density (PSD) spectra computed from AFM data gives further insight into the effect of laser melting on the topography of the treated niobium.« less

  5. Nanoclay/Polymer Composite Powders for Use in Laser Sintering Applications: Effects of Nanoclay Plasma Treatment

    NASA Astrophysics Data System (ADS)

    Almansoori, Alaa; Majewski, Candice; Rodenburg, Cornelia

    2017-11-01

    Plasma-etched nanoclay-reinforced Polyamide 12 (PA12) powder is prepared with its intended use in selective laser sintering (LS) applications. To replicate the LS process we present a downward heat sintering (DHS) process, carried out in a hot press, to fabricate tensile test specimens from the composite powders. The DHS parameters are optimized through hot stage microscopy, which reveal that the etched clay (EC)-based PA12 (EC/PA12) nanocomposite powder melts at a temperature 2°C higher than that of neat PA12, and 1-3°C lower than that of the nonetched clay-based nanocompsite (NEC/PA12 composite). We show that these temperature differences are critical to successful LS. The distribution of EC and NEC onto PA12 is investigated by scanning electron microscopy (SEM). SEM images show clearly that the plasma treatment prevents the micron-scale aggregation of the nanoclay, resulting in an improved elastic modulus of EC/PA12 when compared with neat PA12 and NEC/PA12. Moreover, the reduction in elongation at break for EC/PA12 is less pronounced than for NEC/PA12.

  6. Biocompatibility of the micro-patterned NiTi surface produced by femtosecond laser

    NASA Astrophysics Data System (ADS)

    Liang, Chunyong; Wang, Hongshui; Yang, Jianjun; Li, Baoe; Yang, Yang; Li, Haipeng

    2012-11-01

    Biocompatibility of the micro-patterned NiTi surface produced by femtosecond laser (FSL) was studied in this work. The surface characteristics of the laser treated NiTi alloys were investigated by scanning electron microscopy (SEM), atom force microscopy (AFM), X-ray diffractometry (XRD) and X-ray photoelectron spectrum (XPS). The biocompatibility was evaluated by in vitro cell culture test. The results showed that, grooves, ripples, which covered by nanoparticles were formed on the sample surfaces, and the Ni/Ti ratio on the alloy surface increased with increasing laser energy. The crystal structure was not changed by laser treatment. However, the cell culture test proved that the micro-patterns induced by FSL were beneficial to improve the biocompatibility of NiTi alloys: the growth of osteoblasts oriented along the grooves, a large amount of synapses and filopodias were formed due to the ripples, holes and nanoparticles on the alloy surface, and the proliferation rate and alkaline phosphatase (ALP) content of cells were increased after FSL treatment. However, due to the toxicity of Ni ions on cell growth, the NiTi alloy surface should not be treated by laser fluence of more than 3.82 J/cm2 to obtain the ideal biocompatibility.

  7. Comparison of tensile bond strengths of four one-bottle self-etching adhesive systems with Er:YAG laser-irradiated dentin.

    PubMed

    Jiang, Qianzhou; Chen, Minle; Ding, Jiangfeng

    2013-12-01

    This study aimed to investigate the interaction of current one-bottle self-etching adhesives and Er:YAG laser with dentin using a tensile bond strength (TBS) test and scanning electron microscopy (SEM) in vitro. Two hundred and thirteen dentin discs were randomly distributed to the Control Group using bur cutting and to the Laser Group using an Er:YAG laser (200 mJ, VSP, 20 Hz). The following adhesives were investigated: one two-step total-etch adhesive [Prime & Bond NT (Dentsply)] and four one-step self-etch adhesives [G-Bond plus (GC), XENO V (Dentsply), iBond Self Etch (Heraeus) and Adper Easy One (3 M ESPE)]. Samples were restored with composite resin, and after 24-hour storage in distilled water, subjected to the TBS test. For morphological analysis, 12 dentin specimens were prepared for SEM. No significant differences were found between the control group and laser group (p = 0.899); dentin subjected to Prime & Bond NT, XENOV and Adper Easy One produced higher TBS. In conclusion, this study indicates that Er:YAG laser-prepared dentin can perform as well as bur on TBS, and some of the one-step one-bottle adhesives are comparable to the total-etch adhesives in TBS on dentin.

  8. Influence of wavelength on the laser removal of lichens colonizing heritage stone

    NASA Astrophysics Data System (ADS)

    Sanz, M.; Oujja, M.; Ascaso, C.; Pérez-Ortega, S.; Souza-Egipsy, V.; Fort, R.; de los Rios, A.; Wierzchos, J.; Cañamares, M. V.; Castillejo, M.

    2017-03-01

    Laser irradiation of lichen thalli on heritage stones serves for the control of epilithic and endolithic biological colonizations. In this work we investigate rock samples from two quarries traditionally used as source of monumental stone, sandstone from Valonsadero (Soria, Spain) and granite from Alpedrete (Madrid, Spain), in order to find conditions for efficient laser removal of lichen thalli that ensure preservation of the lithic substrate. The samples presented superficial areas colonized by different types of crustose lichens, i.e. Candelariella vitellina, Aspicilia viridescens, Rhizocarpon disporum and Protoparmeliopsis muralis in Valonsadero samples and P. cf. bolcana and A. cf. contorta in Alpedrete samples. A comparative laser cleaning study was carried out on the mentioned samples with ns Q-switched Nd:YAG laser pulses of 1064 nm (fundamental radiation), 355 nm (3rd harmonic) and 266 nm (4th harmonic) and sequences of IR-UV pulses. A number of techniques such as UV-Vis absorption spectroscopy, stereomicroscopy, scanning electron microscopy (SEM) at low vacuum, SEM with backscattered electron imaging (SEM-BSE), electron dispersive spectroscopy (EDS) and FT-Raman spectroscopy were employed to determine the best laser irradiation conditions and to detect possible structural, morphological and chemical changes on the irradiated surfaces. The results show that the laser treatment does not lead to the complete removal of the studied lichen thalli, although clearly induces substantial damage, in the form of loss of the lichen upper cortex and damage to the algal layer. In the medium term these alterations could result in the destruction of the lichen thalli, thus providing a degree of control of the biodeterioration processes of the lithic substrate and reducing the chances of subsequent lichen recolonization.

  9. Nanoparticles generated by laser in liquids as contrast medium and radiotherapy intensifiers

    NASA Astrophysics Data System (ADS)

    Restuccia, Nancy; Torrisi, Lorenzo

    2018-01-01

    The synthesis of Au and Ag nanoparticles (NP) though laser ablation in liquids as a function the laser parameters is presented. Spherical NPs with diameter distribution within 1 and 100 nm were prepared by laser ablation in water. The nanoparticles characterization was performed using optical spectroscopy and electronic microscopy (SEM and TEM) measurements. Studies of the possible use of metallic nanoparticles as intensifier of diagnostics imaging contrast medium and absorbing dose from ionizing radiations in traditional radiotherapy and protontherapy are presented. Examples of in vitro (in tissue equivalent materials) and in vivo (in mice), were conducted thank to simulation programs permitting to evaluate the enhancement of efficiency in imaging and therapy as a function of the NPs concentrations and irradiation conditions.

  10. Effects of erbium-and chromium-doped yttrium scandium gallium garnet and diode lasers on the surfaces of restorative dental materials: a scanning electron microscope study.

    PubMed

    Hatipoglu, M; Barutcigil, C

    2015-01-01

    The aim of this study is to evaluate the potential effects of laser irradiation, which is commonly performed in periodontal surgery, on the surfaces of restorative materials. Five different restorative dental materials were used in this study, as follows: (1) Resin composite, (2) poly acid-modified resin composite (compomer), (3) conventional glass ionomer cement (GIC), (4) resin-modified glass ionomer cement (RMGIC), and (5) amalgam. Four cylindrical samples (8 mm diameter, 2 mm height) were prepared for each restorative material. In addition, four freshly extracted, sound human incisors teeth were selected. Two different laser systems commonly used in periodontal surgery were examined in this study: A 810 nm diode laser at a setting of 1 W with continuous-phase laser irradiation for 10 s, and an erbium-and chromium-doped yttrium scandium gallium garnet (Er, Cr: YSGG) laser at settings of 2.5 W, 3.25 W, and 4 W with 25 Hz laser irradiation for 10 s. Scanning electron microscopy (SEM) analysis was performed to evaluate the morphology and surface deformation of the restorative materials and tooth surfaces. According to the SEM images, the Er, Cr: YSGG laser causes irradiation markings that appear as demineralized surfaces on tooth samples. The Er, Cr: YSGG laser also caused deep defects on composite, compomer, and RMGIC surfaces because of its high power, and the ablation was deeper for these samples. High-magnification SEM images of GIC samples showed the melting and combustion effects of the Er, Cr: YSGG laser, which increased as the laser power was increased. In amalgam samples, neither laser left significant harmful effects at the lowest power setting. The diode laser did cause irradiation markings, but they were insignificant compared with those left by the Er, Cr: YSGG laser on the surfaces of the different materials and teeth. Within the limitations of this study, it can be concluded that Er, Cr: YSGG laser irradiation could cause distortions of the surfaces of restorative materials. Diode lasers can be preferred for periodontal surgery.

  11. [Laser Raman spectral investigations of the carbon structure of LiFePO4/C cathode material].

    PubMed

    Yang, Chao; Li, Yong-Mei; Zhao, Quan-Feng; Gan, Xiang-Kun; Yao, Yao-Chun

    2013-10-01

    In the present paper, Laser Raman spectral was used to study the carbon structure of LiFePO4/C positive material. The samples were also been characterized by X-ray diffraction (XRD), scanning electron microscope(SEM), selected area electron diffraction (SEAD) and resistivity test. The result indicated that compared with the sp2/sp3 peak area ratios the I(D)/I(G) ratios are not only more evenly but also exhibited some similar rules. However, the studies indicated that there exist differences of I(D)/ I(G) ratios and sp2/sp3 peak area ratios among different points in the same sample. And compared with the samples using citric acid or sucrose as carbon source, the sample which was synthetized with mixed carbon source (mixed by citric acid and sucrose) exhibited higher I(D)/I(G) ratios and sp2/sp3 peak area ratios. Also, by contrast, the differences of I(D)/I(G) ratios and sp2/sp3 peak area ratios among different points in the same sample are less than the single carbon source samples' datas. In the scanning electron microscopy (sem) and transmission electron microscopy (sem) images, we can observed the uneven distributions of carbon coating of the primary particles and the secondary particles, this may be the main reason for not being uniform of difference data in the same sample. The obvious discreteness will affect the normal use of Raman spectroscopy in these tests.

  12. Microhardness and morphological changes induced by Nd:Yag laser on dental enamel: an in vitro study.

    PubMed

    Bedini, Rossella; Manzon, Licia; Fratto, Giovanni; Pecci, Raffaella

    2010-01-01

    The aim of this work was a scanning electron microscopy (SEM) evaluation of the hardness and morphological changes of enamel irradiated by neodymium: yttrium aluminium garnet (Nd:YAG) laser with different energy levels. Twenty-eight human teeth samples were divided into 4 groups: control, where enamel surface was not lased, and 3 test treated with 3 different levels of energy power 0.6, 1.2 and 2.4 Watt, respectively. In each group, 5 samples underwent Vickers micro-hardness test and 2 samples were processed for SEM. No significant differences between treated and non treated samples were found by micro-hardness test. However, by SEM, test samples showed a rougher enamel surface than control. Specifically, the 0.6 Watt treated samples showed vertical scratches and glass-like areas, while in the other 2 groups enamel surface was covered by craters and cracks. These findings suggest that enamel should be lased at a low energy level to preserve its integrity and reduce demineralization, and thus for dental caries prevention purposes; while high energy level creates a retentive surface suitable for sealant or composite anchorage.

  13. Functionalized antibiofilm thin coatings based on PLA-PVA microspheres loaded with usnic acid natural compounds fabricated by MAPLE

    NASA Astrophysics Data System (ADS)

    Grumezescu, Valentina; Socol, Gabriel; Grumezescu, Alexandru Mihai; Holban, Alina Maria; Ficai, Anton; Truşcǎ, Roxana; Bleotu, Coralia; Balaure, Paul Cǎtǎlin; Cristescu, Rodica; Chifiriuc, Mariana Carmen

    2014-05-01

    We report the fabrication of thin coatings of PLA-PVA microspheres loaded with usnic acid by matrix assisted pulsed laser evaporation (MAPLE) onto Ti substrate. The obtained coatings have been physico-chemically characterized by scanning electron microscopy (SEM) and infrared microscopy (IRM). In vitro biological assays have been performed in order to evaluate the influence of fabricated microsphere thin coatings on the Staphylococcus aureus biofilm development as well as their biocompatibility. SEM micrographs have revealed a uniform morphology of thin coatings, while IRM investigations have proved both the homogeneity and functional groups integrity of prepared thin coatings. The obtained microsphere-based thin coatings have proved to be efficient vehicles for usnic acid natural compound with antibiofilm activity, as demonstrated by the inhibitory activity on S. aureus mature biofilm development, opening new perspectives for the prevention and therapy associated to biofilm related infections.

  14. Characterization of toners and inkjets by laser ablation spectrochemical methods and Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Trejos, Tatiana; Corzo, Ruthmara; Subedi, Kiran; Almirall, José

    2014-02-01

    Detection and sourcing of counterfeit currency, examination of counterfeit security documents and determination of authenticity of medical records are examples of common forensic document investigations. In these cases, the physical and chemical composition of the ink entries can provide important information for the assessment of the authenticity of the document or for making inferences about common source. Previous results reported by our group have demonstrated that elemental analysis, using either Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) or Laser Ablation Induced Breakdown Spectroscopy (LIBS), provides an effective, practical and robust technique for the discrimination of document substrates and writing inks with minimal damage to the document. In this study, laser-based methods and Scanning Electron Microscopy-Energy Dispersive X-Ray Spectroscopy (SEM-EDS) methods were developed, optimized and validated for the forensic analysis of more complex inks such as toners and inkjets, to determine if their elemental composition can differentiate documents printed from different sources and to associate documents that originated from the same printing source. Comparison of the performance of each of these methods is presented, including the analytical figures of merit, discrimination capability and error rates. Different calibration strategies resulting in semi-quantitative and qualitative analysis, comparison methods (match criteria) and data analysis and interpretation tools were also developed. A total of 27 black laser toners originating from different manufacturing sources and/or batches were examined to evaluate the discrimination capability of each method. The results suggest that SEM-EDS offers relatively poor discrimination capability for this set (~ 70.7% discrimination of all the possible comparison pairs or a 29.3% type II error rate). Nonetheless, SEM-EDS can still be used as a complementary method of analysis since it has the advantage of being non-destructive to the sample in addition to providing imaging capabilities to further characterize toner samples by their particle morphology. Laser sampling methods resulted in an improvement of the discrimination between different sources with LIBS producing 89% discrimination and LA-ICP-MS resulting in 100% discrimination. In addition, a set of 21 black inkjet samples was examined by each method. The results show that SEM-EDS is not appropriate for inkjet examinations since their elemental composition is typically below the detection capabilities with only sulfur detected in this set, providing only 47.4% discrimination between possible comparison pairs. Laser sampling methods were shown to provide discrimination greater than 94% for this same inkjet set with false exclusion and false inclusion rates lower than 4.1% and 5.7%, for LA-ICP-MS and LIBS respectively. Overall these results confirmed the utility of the examination of printed documents by laser-based micro-spectrochemical methods. SEM-EDS analysis of toners produced a limited utility for discrimination within sources but was not an effective tool for inkjet ink discrimination. Both LA-ICP-MS and LIBS can be used in forensic laboratories to chemically characterize inks on documents and to complement the information obtained by conventional methods and enhance their evidential value.

  15. Nano-sized graphene flakes: insights from experimental synthesis and first principles calculations.

    PubMed

    Lin, Pin-Chun; Chen, Yi-Rui; Hsu, Kuei-Ting; Lin, Tzu-Neng; Tung, Kuo-Lun; Shen, Ji-Lin; Liu, Wei-Ren

    2017-03-01

    In this study, we proposed a cost-effective method for preparing graphene nano-flakes (GNFs) derived from carbon nanotubes (CNTs) via three steps (pressing, homogenization and sonication exfoliation processes). Scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), laser scattering, as well as ultraviolet-visible and photoluminescence (PL) measurements were carried out. The results indicated that the size of as-synthesized GNFs was approximately 40-50 nm. Furthermore, we also used first principles calculations to understand the transformation from CNTs to GNFs from the viewpoints of the edge formation energies of GNFs in different shapes and sizes. The corresponding photoluminescence measurements of GNFs were carried out in this work.

  16. Formation of aggregated nanoparticle spheres through femtosecond laser surface processing

    NASA Astrophysics Data System (ADS)

    Tsubaki, Alfred T.; Koten, Mark A.; Lucis, Michael J.; Zuhlke, Craig; Ianno, Natale; Shield, Jeffrey E.; Alexander, Dennis R.

    2017-10-01

    A detailed structural and chemical analysis of a class of self-organized surface structures, termed aggregated nanoparticle spheres (AN-spheres), created using femtosecond laser surface processing (FLSP) on silicon, silicon carbide, and aluminum is reported in this paper. AN-spheres are spherical microstructures that are 20-100 μm in diameter and are composed entirely of nanoparticles produced during femtosecond laser ablation of material. AN-spheres have an onion-like layered morphology resulting from the build-up of nanoparticle layers over multiple passes of the laser beam. The material properties and chemical composition of the AN-spheres are presented in this paper based on scanning electron microscopy (SEM), focused ion beam (FIB) milling, transmission electron microscopy (TEM), and energy dispersive x-ray spectroscopy (EDX) analysis. There is a distinct difference in the density of nanoparticles between concentric rings of the onion-like morphology of the AN-sphere. Layers of high-density form when the laser sinters nanoparticles together and low-density layers form when nanoparticles redeposit while the laser ablates areas surrounding the AN-sphere. The dynamic nature of femtosecond laser ablation creates a variety of nanoparticles that make-up the AN-spheres including Si/C core-shell, nanoparticles that directly fragmented from the base material, nanoparticles with carbon shells that retarded oxidation, and amorphous, fully oxidized nanoparticles.

  17. Laser-driven flyer application in thin film dissimilar materials welding and spalling

    NASA Astrophysics Data System (ADS)

    Wang, Huimin; Wang, Yuliang

    2017-10-01

    This paper applied a low cost method to pack and drive laser-driven flyer in the applications of welding and spalling. The laser system has the maximum energy of 3.1 J, which is much lower than that used in the previous study. The chemical release energy from the ablative layer was estimated as 3.7 J. The flying characteristic of laser-driven flyer was studied by measuring the flyer velocity at different locations with photonic Doppler velocimetry (PDV). The application of laser-driven flyer in welding Al and Cu was investigated at different laser spot size. Weld strength was measured with the peel test. Weld interface was characterized with optical microscopy (OM) and scanning electron microscopy (SEM). The study of application of laser-driven flyer in spalling was carried out for both brittle and ductile materials. The impact pressure was calculated based on the Hugoniot data. The amount of spalling was not only related to the impact pressure but also related to the duration of impact pressure. The fractography of spalled fracture surface was studied and revealed that the fracture mode was related to the strain rate. The spall strength of Cu 110, Al 1100 and Ni 201was measured and was consistent with the literature data.

  18. Comparison of nerve trimming with the Er:YAG laser and steel knife

    NASA Astrophysics Data System (ADS)

    Josephson, G. D.; Bass, Lawrence S.; Kasabian, A. K.

    1995-05-01

    Best outcome in nerve repair requires precise alignment and minimization of scar at the repair interface. Surgeons attempt to create the sharpest cut surface at the nerve edge prior to approximation. Pulsed laser modalities are being investigated in several medical applications which require precise atraumatic cutting. We compared nerve trimming with the Er:YAG laser (1375 J/cm2) to conventional steel knife trimming prior to neurorrhaphy. Sprague- Dawley rats were anesthetized with ketamine and xylazine. Under operating microscope magnification the sciatic nerve was dissected and transected using one of the test techniques. In the laser group, the pulses were directed axially across the nerve using a stage which fixed laser fiber/nerve distance and orientation. Specimens were sent for scanning electron microscopy (SEM) at time zero. Epineurial repairs were performed with 10 - 0 nylon simple interrupted sutures. At intervals to 90 days, specimens were harvested and sectioned longitudinally and axially for histologic examination. Time zero SEM revealed clean cuts in both groups but individual axons were clearly visible in all laser specimens. Small pits were also visible on the cut surface of laser treated nerves. No significant differences in nerve morphology were seen during healing. Further studies to quantify axon counts, and functional outcome will be needed to assess this technique of nerve trimming. Delivery system improvements will also be required, to make the technique clinically practical.

  19. Excimer laser assisted very fast exfoliation and reduction of graphite oxide at room temperature under air ambient for Supercapacitors electrode

    NASA Astrophysics Data System (ADS)

    Malek Hosseini, S. M. B.; Baizaee, S. M.; Naderi, Hamid Reza; Dare Kordi, Ali

    2018-01-01

    Excimer laser was used for reduction and exfoliation of graphite oxide (GO) at room temperature under air ambient. The prepared excimer laser reduced graphite oxide (XLRGO) is characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), nitrogen adsorption/desorption (BET method), X-ray diffraction (XRD), X-ray photoemission spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and UV-vis absorption techniques for surface, structural functional groups and band gap analysis. Electrochemical properties are investigated using cyclic voltammetry, galvanostatic charge-discharge, electrochemical impedance spectroscopy (EIS) and continues cyclic voltammetry (CCV) in 0.5 M Na2SO4 as electrolyte. Electrochemical investigations revealed that XLRGO electrode has enhanced supercapacitive performance including specific capacitance of 299 F/g at a scan rate of 2 mV/s. Furthermore, CCV measurement showed that XLRGO electrode kept 97.8% of its initial capacitance/capacity after 4000 cycles. The obtained results from electrochemical investigations confirm that the reduction of GO by using an excimer laser produces high-quality graphene for supercapacitor applications without the need for additional operations.

  20. Disinfection of Streptococcus mutans biofilm by a non-thermal atmospheric plasma brush

    NASA Astrophysics Data System (ADS)

    Hong, Qing; Dong, Xiaoqing; Chen, Meng; Xu, Yuanxi; Sun, Hongmin; Hong, Liang; Wang, Yong; Yu, Qingsong

    2016-07-01

    This study investigated the argon plasma treatment effect on disinfecting dental biofilm by using an atmospheric pressure plasma brush. Streptococcus mutans biofilms were developed for 3 days on the surfaces of hydroxyapatite (HA) discs, which were used to simulate human tooth enamel. After plasma treatment, cell viability in the S. mutans biofilms was characterized by using 3-(4,5-dimethylazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and confocal laser scanning microscopy (CLSM). Compared with the untreated control group, about 90% bacterial reduction in the biofilms was observed after 1 min plasma treatment. Scanning electron microscopy (SEM) examination indicated severe cell damages occurred on the top surface of the plasma treated biofilms. Confocal laser scanning microscopy (CLSM) showed that plasma treatment was effective as deep as 20 µm into the biofilms. When combined with antibiotic treatment using 0.2% chlorhexidine digluconate solution, the plasma treatment became more effective and over 96% bacterial reduction was observed with 1 min plasma treatment.

  1. Comparison of some effects of modification of a polylactide surface layer by chemical, plasma, and laser methods

    NASA Astrophysics Data System (ADS)

    Moraczewski, Krzysztof; Rytlewski, Piotr; Malinowski, Rafał; Żenkiewicz, Marian

    2015-08-01

    The article presents the results of studies and comparison of selected properties of the modified PLA surface layer. The modification was carried out with three methods. In the chemical method, a 0.25 M solution of sodium hydroxide in water and ethanol was utilized. In the plasma method, a 50 W generator was used, which produced plasma in the air atmosphere under reduced pressure. In the laser method, a pulsed ArF excimer laser with fluency of 60 mJ/cm2 was applied. Polylactide samples were examined by using the following techniques: scanning electron microscopy (SEM), atomic force microscopy (AFM), goniometry and X-ray photoelectron spectroscopy (XPS). Images of surfaces of the modified samples were recorded, contact angles were measured, and surface free energy was calculated. Qualitative and quantitative analyses of chemical composition of the PLA surface layer were performed as well. Based on the survey it was found that the best modification results are obtained using the plasma method.

  2. Silicifying Biofilm Exopolymers on a Hot-Spring Microstromatolite: Templating Nanometer-Thick Laminae

    NASA Astrophysics Data System (ADS)

    Handley, Kim M.; Turner, Sue J.; Campbell, Kathleen A.; Mountain, Bruce W.

    2008-08-01

    Exopolymeric substances (EPS) are an integral component of microbial biofilms; however, few studies have addressed their silicification and preservation in hot-spring deposits. Through comparative analyses with the use of a range of microscopy techniques, we identified abundant EPS significant to the textural development of spicular, microstromatolitic, siliceous sinter at Champagne Pool, Waiotapu, New Zealand. Examination of biofilms coating sinter surfaces by confocal laser scanning microscopy (CLSM), environmental scanning electron microscopy (ESEM), cryo-scanning electron microscopy (cryo-SEM), and transmission electron microscopy (TEM) revealed contraction of the gelatinous EPS matrix into films (approximately 10 nm thick) or fibrillar structures, which is common in conventional SEM analyses and analogous to products of naturally occurring desiccation. Silicification of fibrillar EPS contributed to the formation of filamentous sinter. Matrix surfaces or dehydrated films templated sinter laminae (nanometers to microns thick) that, in places, preserved fenestral voids beneath. Laminae of similar thickness are, in general, common to spicular geyserites. This is the first report to demonstrate EPS templation of siliceous stromatolite laminae. Considering the ubiquity of biofilms on surfaces in hot-spring environments, EPS silicification studies are likely to be important to a better understanding of the origins of laminae in other modern and ancient stromatolitic sinters, and EPS potentially may serve as biosignatures in extraterrestrial rocks.

  3. Microstructure and corrosion resistance of TC2 Ti alloy by laser cladding with Ti/TiC/TiB2 powders

    NASA Astrophysics Data System (ADS)

    Diao, Yunhua; Zhang, Kemin

    2015-10-01

    In the present work, a TiC/TiB2 composite coating was produced onto a TC2 Ti alloy by laser cladding with Ti/TiC/TiB2 powders. The surface microstructure, phase components and compositions were characterized with methods of optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffractometry (XRD), and energy dispersive spectrometry (EDS). The cladding layer is consisted of Ti, TiC and TiB2. And the surface microhardness was measured. After laser cladding, a maximum hardness of 1100 HV is achieved in the laser cladding surface layer, which is more three times higher than that of the TC2 substrate (∼300 HV). Due to the formation of TiC and TiB2 intermetallic compounds in the alloyed region and grain refinement, the microhardness of coating is higher than TC2 Ti alloy. In this paper, the corrosion property of matrix material and treated samples were both measured in NaCl (3.5 wt%) aqueous solution. From the result we can see that the laser cladding specimens' corrosion property is clearly becoming better than that of the substrate.

  4. Morphological changes produced by acid dissolution in Er:YAG laser irradiated dental enamel.

    PubMed

    Manuela Díaz-Monroy, Jennifer; Contreras-Bulnes, Rosalía; Fernando Olea-Mejía, Oscar; Emma Rodríguez-Vilchis, Laura; Sanchez-Flores, Ignacio

    2014-06-01

    Several scientific reports have shown the effects of Er:YAG laser irradiation on enamel morphology. However, there is lack of information regarding the morphological alterations produced by the acid attack on the irradiated surfaces. The aim of this study was to evaluate the morphological changes produced by acid dissolution in Er:YAG laser irradiated dental enamel. Forty-eight enamel samples were divided into four groups (n = 12). GI (control); Groups II, III, and IV were irradiated with Er:YAG at 100 mJ (12.7 J/cm(2) ), 200 mJ (25.5 J/cm(2) ), and 300 mJ (38.2 J/cm(2) ), respectively, at 10 Hz without water irrigation. Enamel morphology was evaluated before-irradiation, after-irradiation, and after-acid dissolution, by scanning electron microscopy (SEM). Sample coating was avoided and SEM analysis was performed in a low-vacuum mode. To facilitate the location of the assessment area, a reference point was marked. Morphological changes produced by acid dissolution of irradiated enamel were observed, specifically on laser-induced undesired effects. These morphological changes were from mild to severe, depending on the presence of after-irradiation undesired effects. © 2014 Wiley Periodicals, Inc.

  5. Doxorubicin-loaded Zein in situ gel for interstitial chemotherapy.

    PubMed

    Cao, Xiaoying; Geng, Jianning; Su, Suwen; Zhang, Linan; Xu, Qian; Zhang, Li; Xie, Yinghua; Wu, Shaomei; Sun, Yongjun; Gao, Zibin

    2012-01-01

    A novel drug delivery system of doxorubicin (DOX)-loaded Zein in situ gel for interstitial chemotherapy was investigated in this study. The possible mechanisms of drug release were described according to morphological analysis by optical microscopy and scanning electronic microscope (SEM). In vitro and in vivo anti-tumor activity studies showed that DOX-loaded Zein in situ gel was superior to DOX solution. Local pharmacokinetics in tumor tissue was studied by quantitative analysis with confocal laser scanning microscopy (CLSM) combined with microdialysis technology. A pharmacokinetics mathematical model of DOX-loaded Zein in situ gel in tumors was then built.

  6. Layer-by-layer modification of thin-film metal-semiconductor multilayers with ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Romashevskiy, S. A.; Tsygankov, P. A.; Ashitkov, S. I.; Agranat, M. B.

    2018-05-01

    The surface modifications in a multilayer thin-film structure (50-nm alternating layers of Si and Al) induced by a single Gaussian-shaped femtosecond laser pulse (350 fs, 1028 nm) in the air are investigated by means of atomic-force microscopy (AFM), scanning electron microscopy (SEM), and optical microscopy (OM). Depending on the laser fluence, various modifications of nanometer-scale metal and semiconductor layers, including localized formation of silicon/aluminum nanofoams and layer-by-layer removal, are found. While the nanofoams with cell sizes in the range of tens to hundreds of nanometers are produced only in the two top layers, layer-by-layer removal is observed for the four top layers under single pulse irradiation. The 50-nm films of the multilayer structure are found to be separated at their interfaces, resulting in a selective removal of several top layers (up to 4) in the form of step-like (concentric) craters. The observed phenomenon is associated with a thermo-mechanical ablation mechanism that results in splitting off at film-film interface, where the adhesion force is less than the bulk strength of the used materials, revealing linear dependence of threshold fluences on the film thickness.

  7. Biofunctional composite coating architectures based on polycaprolactone and nanohydroxyapatite for controlled corrosion activity and enhanced biocompatibility of magnesium AZ31 alloy.

    PubMed

    Zomorodian, A; Garcia, M P; Moura E Silva, T; Fernandes, J C S; Fernandes, M H; Montemor, M F

    2015-03-01

    In this work a biofunctional composite coating architecture for controlled corrosion activity and enhanced cellular adhesion of AZ31 Mg alloys is proposed. The composite coating consists of a polycaprolactone (PCL) matrix modified with nanohydroxyapatite (HA) applied over a nanometric layer of polyetherimide (PEI). The protective properties of the coating were studied by electrochemical impedance spectroscopy (EIS), a non-disturbing technique, and the coating morphology was investigated by field emission scanning electron microscopy (FE-SEM). The results show that the composite coating protects the AZ31 substrate. The barrier properties of the coating can be optimized by changing the PCL concentration. The presence of nanohydroxyapatite particles influences the coating morphology and decreases the corrosion resistance. The biocompatibility was assessed by studying the response of osteoblastic cells on coated samples through resazurin assay, confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). The results show that the polycaprolactone to hydroxyapatite ratio affects the cell behavior and that the presence of hydroxyapatite induces high osteoblastic differentiation. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Evaluation of shear bond strength of porcelain bonded to laser welded titanium surface and determination of mode of bond failure.

    PubMed

    Patil, Narendra P; Dandekar, Minal; Nadiger, Ramesh K; Guttal, Satyabodh S

    2010-09-01

    The aim of this study was to evaluate the shear bond strength of porcelain to laser welded titanium surface and to determine the mode of bond failure through scanning electron microscopy (SEM) and energy dispersive spectrophotometry (EDS). Forty five cast rectangular titanium specimens with the dimension of 10 mm x 8 mm x 1 mm were tested. Thirty specimens had a perforation of 2 mm diameter in the centre. These were randomly divided into Group A and B. The perforations in the Group B specimens were repaired by laser welding using Cp Grade II titanium wire. The remaining 15 specimens were taken as control group. All the test specimens were layered with low fusing porcelain and tested for shear bond strength. The debonded specimens were subjected to SEM and EDS. Data were analysed with 1-way analysis of variance and Student's t-test for comparison among the different groups. One-way analysis of variance (ANOVA) showed no statistically significant difference in shear bond strength values at a 5% level of confidence. The mean shear bond strength values for control group, Group A and B was 8.4 +/- 0.5 Mpa, 8.1 +/- 0.4 Mpa and 8.3 +/- 0.3 Mpa respectively. SEM/EDS analysis of the specimens showed mixed and cohesive type of bond failure. Within the limitations of the study laser welding did not have any effect on the shear bond strength of porcelain bonded to titanium.

  9. Comparative study of the surface characteristics, microstructure, and magnetic retentive forces of laser-welded dowel-keepers and cast dowel-keepers for use with magnetic attachments.

    PubMed

    Chao, Yonglie; Du, Li; Yang, Ling

    2005-05-01

    Information regarding the merits and problems associated with connecting a keeper to a dowel and coping using a laser welding technique has not been explored extensively in the dental literature. This in vitro study compared the surface characteristics, microstructure, and magnetic retentive forces for a dowel and coping-keeper mechanism fabricated using a laser welding process and a cast-to casting technique. Five cast-to and 6 laser-welded dowel and coping-keeper specimens were tested. Using 5 freestanding keepers as the control group, the surface characteristics and microstructures of the specimens were examined by means of stereomicroscopy, metallographic microscopy, and scanning electron microscopy (SEM). Energy-dispersive spectroscopic (EDS) microanalysis with SEM provided elemental concentration information for the test specimens. The vertical magnetic retentive forces (N) of the 3 groups were measured using a universal testing machine. The results were statistically compared using 1-way analysis of variance and the Newman-Keuls multiple range test (alpha =.05). The laser-welded dowel-keeper generally maintained its original surface smoothness as well as the original microstructure. Elements diffused readily through the fusion zone. The surface of the cast dowel-keeper became rough with the formation of an oxide layer, the microstructure changed, and there was only limited elemental diffusion in the fusion zone. The average vertical magnetic retentive force of the laser-welded group, the cast group, and the control group were 4.2 +/- 0.2 N, 3.8 +/- 0.3 N, and 5.6 +/- 0.3 N, respectively. Statistically significant differences in vertical magnetic retentive force were found between the control group and both the laser-welded and cast groups (P <.01). Compared with the cast dowel-keepers, the average vertical magnetic retentive force of the laser-welded dowel-keepers was significantly higher (P <.05). The laser welding technique had less influence on the surface characteristics, the microstructure, and the magnetic retentive forces of keepers relative to techniques that incorporate a keeper at the time of cast dowel and coping fabrication.

  10. Microstructures and Dry Sliding Wear Resistance of the Laser Ceramics Composite Coating on Pure Ti

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Zhang, Yuanbin; Luo, Hui; Huo, Yushuang

    2012-06-01

    In this study, Al-Ti-Co was used to improve the surface performance of pure Ti. Laser cladding is an important surface modification technique, which can be used to improve the surface performance of pure Ti. Laser cladding of the Al-Ti-Co + TiB2 pre-placed powders on pure Ti can form ceramics reinforced the composite coating, which improved the wear resistance of the substrate. Characteristics of the composite coating were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), microhardness and wear tests. And the laser-cladded coating can also have major dilution from the substrate. Due to the action of the fine grain strengthening and the phase constituent, the wear resistance and microhardness of pure Ti surface were greatly improved.

  11. Intensive care unit environmental surfaces are contaminated by multidrug-resistant bacteria in biofilms: combined results of conventional culture, pyrosequencing, scanning electron microscopy, and confocal laser microscopy.

    PubMed

    Hu, H; Johani, K; Gosbell, I B; Jacombs, A S W; Almatroudi, A; Whiteley, G S; Deva, A K; Jensen, S; Vickery, K

    2015-09-01

    Hospital-associated infections cause considerable morbidity and mortality, and are expensive to treat. Organisms causing these infections can be sourced from the inanimate environment around a patient. Could the difficulty in eradicating these organisms from the environment be because they reside in dry surface biofilms? The intensive care unit (ICU) of a tertiary referral hospital was decommissioned and the opportunity to destructively sample clinical surfaces was taken in order to investigate whether multidrug-resistant organisms (MDROs) had survived the decommissioning process and whether they were present in biofilms. The ICU had two 'terminal cleans' with 500 ppm free chlorine solution; items from bedding, surrounds, and furnishings were then sampled with cutting implements. Sections were sonicated in tryptone soya broth and inoculated on to chromogenic plates to demonstrate MDROs, which were confirmed with the Vitek2 system. Genomic DNA was extracted directly from ICU samples, and subjected to polymerase chain reaction (PCR) for femA to detect Staphylococcus aureus and the microbiome by bacterial tag-encoded FLX amplicon pyrosequencing. Confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM) were performed on environmental samples. Multidrug-resistant bacteria were cultured from 52% (23/44) of samples cultured. S. aureus PCR was positive in 50%. Biofilm was demonstrated in 93% (41/44) of samples by CLSM and/or SEM. Pyrosequencing demonstrated that the biofilms were polymicrobial and contained species that had multidrug-resistant strains. Dry surface biofilms containing MDROs are found on ICU surfaces despite terminal cleaning with chlorine solution. How these arise and how they might be removed requires further study. Copyright © 2015 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  12. Nanosecond laser-induced back side wet etching of fused silica with a copper-based absorber liquid

    NASA Astrophysics Data System (ADS)

    Lorenz, Pierre; Zehnder, Sarah; Ehrhardt, Martin; Frost, Frank; Zimmer, Klaus; Schwaller, Patrick

    2014-03-01

    Cost-efficient machining of dielectric surfaces with high-precision and low-roughness for industrial applications is still challenging if using laser-patterning processes. Laser induced back side wet etching (LIBWE) using UV laser pulses with liquid heavy metals or aromatic hydrocarbons as absorber allows the fabrication of well-defined, nm precise, free-form surfaces with low surface roughness, e.g., needed for optical applications. The copper-sulphatebased absorber CuSO4/K-Na-Tartrate/NaOH/formaldehyde in water is used for laser-induced deposition of copper. If this absorber can also be used as precursor for laser-induced ablation, promising industrial applications combining surface structuring and deposition within the same setup could be possible. The etching results applying a KrF excimer (248 nm, 25 ns) and a Nd:YAG (1064 nm, 20 ns) laser are compared. The topography of the etched surfaces were analyzed by scanning electron microscopy (SEM), white light interferometry (WLI) as well as laser scanning microscopy (LSM). The chemical composition of the irradiated surface was studied by energy-dispersive X-ray spectroscopy (EDX) and Fourier transform infrared spectroscopy (FT-IR). For the discussion of the etching mechanism the laser-induced heating was simulated with finite element method (FEM). The results indicate that the UV and IR radiation allows micro structuring of fused silica with the copper-based absorber where the etching process can be explained by the laser-induced formation of a copper-based absorber layer.

  13. Limitations of using Raman microscopy for the analysis of high-content-carbon-filled ethylene propylene diene monomer rubber.

    PubMed

    Ghanbari-Siahkali, Afshin; Almdal, Kristoffer; Kingshott, Peter

    2003-12-01

    The effects of laser irradiation on changes to the surface chemistry and structure of a commercially available ethylene propylene diene monomer (EPDM) rubber sample after Raman microscopy analysis was investigated. The Raman measurements were carried out with different levels of laser power on the sample, ranging from 4.55 mW to 0.09 mW. The surface of the EPDM was analyzed before and after laser exposure using X-ray photoelectron spectroscopy (XPS) and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. The techniques have surface probe depths of approximately < or = 10 nm and 1 microm, respectively. Both sets of analysis show that ingredients of the blended EPDM rubber "bloom" to the surface as a result of local heating that takes place due to the absorption of laser by carbon black during the Raman analysis. Scanning electron microscopy (SEM) analysis was also performed on the Raman analyzed areas to visually illustrate the effects created due to laser light exposure (i.e., burning marks). The change in surface chemistry also occurs in regions a few millimeters from the exposed sites, indicating that the effect is quite long range. However, this phenomenon has no major influence, as far as XPS or ATR-FTIR results disclose, on the backbone structure of the rubber sample. The results indicate that precautions should be taken when analyzing complex blended polymer samples using Raman spectroscopy.

  14. Laser cleaning treatment of burnt paintings

    NASA Astrophysics Data System (ADS)

    Antonopoulou-Athera, N.; Chatzitheodoridis, E.; Doulgerides, M.; Evangelatos, Ch.; Serafetinides, A. A.; Terlixi, A.

    2015-01-01

    Three samples taken from two paintings partly burned by fire are investigated for cleaning with lasers. The paintings belong to the collection of the National Gallery of Athens and were made by the great Greek artist Konstantinos Parthenis. To remove the damaged surface and achieve an acceptable restoration result, the optimum combination of fluence and wavelength are sought. Seven different wavelengths with a set of fluences where used, i.e., the five harmonics of a Nd:YAG laser (1064, 532, 355, 266, and 213 nm), a TEA 10.6 μm CO2 and a free running laser Er:YAG 2.94 μm. Characterization was performed prior and after the cleaning process by optical and electron microscopy and analysis (SEM/BSE EDS), as well as X-Ray Diffraction (XRD). The results of this work indicate that the wavelength in the visible spectrum (532 nm) with fluences between 0.1-0.4J/cm2 show the optimum cleaning. The optical microscopy observation shows that with these laser parameters the burnt layer was preferentially removed, exposing the original colors that Parthenis had used in these paintings. Electron microscopy imaging and chemical analysis revealed that the original texture and materials of these samples are preserved after irradiation. Since the damage varies along the surface of the painting, more experiments should be performed in order to find and optimize the full cleaning and characterization process for the homogeneous cleaning of the whole surface of the painting.

  15. Direct Metal Deposition of Functional Graded Structures in Ti- Al System

    NASA Astrophysics Data System (ADS)

    Shishkovsky, I.; Missemer, F.; Smurov, I.

    A direct laser metal deposition (DLMD) technology with co-axial powder injection is used to fabricate a complex functional graded structure (FGS) fabrication. The aim of the study is to demonstrate the possibility to produce intermetallic phases in the Ti-Al powder systems in the course of a single-step DMD process. Besides, relationships between the main laser cladding parameters and the intermetallic phase structures of the built-up objects have been studied. In our research we applied the optical microscopy, X-ray analysis, microhardness measurement and SEM with EDX analysis of the laser-fabricated intermetallics. The discussion of the mechanisms of Ti x Al y (x,y = 1.3) intermetallic transformations in exothermal reactions is also offered in the report.

  16. Semiconductor laser irradiation improves root canal sealing during routine root canal therapy

    PubMed Central

    Hu, Xingxue; Wang, Dashan; Cui, Ting; Yao, Ruyong

    2017-01-01

    Objective To evaluate the effect of semiconductor laser irradiation on root canal sealing after routine root canal therapy (RCT). Methods Sixty freshly extracted single-rooted human teeth were randomly divided into six groups (n = 10). The anatomic crowns were sectioned at the cementoenamel junction and the remaining roots were prepared endodontically with conventional RCT methods. Groups A and B were irradiated with semiconductor laser at 1W for 20 seconds; Groups C and D were ultrasonically rinsed for 60 seconds as positive control groups; Groups E and F without treatment of root canal prior to RCT as negative control groups. Root canal sealing of Groups A, C and E were evaluated by measurements of apical microleakage. The teeth from Groups B, D and F were sectioned, and the micro-structures were examined with scanning electron microscopy (SEM). One way ANOVA and LSD-t test were used for statistical analysis (α = .05). Results The apical sealing of both the laser irradiated group and the ultrasonic irrigated group were significantly different from the control group (p<0.5). There was no significant difference between the laser irradiated group and the ultrasonic irrigated group (p>0.5). SEM observation showed that most of the dentinal tubules in the laser irradiation group melted, narrowed or closed, while most of the dentinal tubules in the ultrasonic irrigation group were filled with tooth paste. Conclusion The application of semiconductor laser prior to root canal obturation increases the apical sealing of the roots treated. PMID:28957407

  17. Use of the erbium, chromium:yttrium-scandium-gallium-garnet laser on human enamel tissues. Influence of the air-water spray on the laser-tissue interaction: scanning electron microscope evaluations.

    PubMed

    Olivi, Giovanni; Angiero, Francesca; Benedicenti, Stefano; Iaria, Giuseppe; Signore, Antonio; Kaitsas, Vassilios

    2010-11-01

    The study investigated the influence of varying amounts of air/water spray and the energy used by an erbium, chromium:yttrium-scandium-gallium-garnet (Er,Cr:YSGG) 2,780 nm laser when treating dental tissues. The morphological effects produced by the laser interaction on healthy human enamel were evaluated by scanning electron microscopy (SEM). The vestibular and lingual surfaces of ten molars were treated with laser at different power settings; each surface was subdivided into cervical, median, and occlusal parts and treated with different proportions of water spray; the series contained 60 tooth portions. Treatment differed in terms of power setting and air/water percentage. All specimens were then subjected to dehydration and metallisation. At SEM evaluation, the classic aspect of laser-treated enamel was visible: grooves, flakes, shelves and sharp edges, indicative of micro-explosion rather than melting. Vaporisation of the tissue created a clear delimitation from surrounding healthy tissue, with partial respect to the prismatic structure of the treated enamel. The aspect of the enamel was rarely type 1 Silverstone but more frequently type 2 or 3, with prismatic structure not respected and/or completely disordered. These morphological differences appeared to be correlated with the inclination of the laser beam aimed at the enamel prisms and with the percentage of air/water used. The laser system analysed showed itself to be effective at removing human dental enamel. The results appeared to be closely correlated with the variation of the percentage of the laser's water-air spray.

  18. Characteristics of Ni-Cr-Fe laser clad layers on EA4T steel

    NASA Astrophysics Data System (ADS)

    Chen, Wenjing; Chen, Hui; Wang, Yongjing; Li, Congchen; Wang, Xiaoli

    2017-07-01

    The Ni-Cr-Fe metal powder was deposited on EA4T steel by laser cladding technology. The microstructure and chemical composition of the cladding layer were analyzed by optical microscopy (OM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The bonding ability between the cladding layer and the matrix was measured. The results showed that the bonding between the cladding layer and the EA4T steel was metallurgical bonding. The microstructure of cladding layer was composed of planar crystals, columnar crystals and dendrite, which consisted of Cr2Ni3, γ phase, M23C6 and Ni3B phases. When the powder feeding speed reached 4 g/min, the upper bainite occurred in the heat affected zone (HAZ). Moreover, the tensile strength of the joint increased, while the yield strength and the ductility decreased.

  19. Nanosecond laser-induced ablation and laser-induced shockwave structuring of polymer foils down to sub-μm patterns

    NASA Astrophysics Data System (ADS)

    Lorenz, P.; Bayer, L.; Ehrhardt, M.; Zimmer, K.; Engisch, L.

    2015-03-01

    Micro- and nanostructures exhibit a growing commercial interest where a fast, cost-effective, and large-area production is attainable. Laser methods have a great potential for the easy fabrication of surface structures into flexible polymer foils like polyimide (PI). In this study two different concepts for the structuring of polymer foils using a KrF excimer laser were tested and compared: the laser-induced ablation and the laser-induced shock wave structuring. The direct front side laser irradiation of these polymers allows the fabrication of different surface structures. For example: The low laser fluence treatment of PI results in nano-sized cone structures where the cone density can be controlled by the laser parameters. This allows inter alia the laser fabrication of microscopic QR code and high-resolution grey-tone images. Furthermore, the laser treatment of the front side of the polymer foil allows the rear side structuring due to a laserinduced shock wave. The resultant surface structures were analysed by optical and scanning electron microscopy (SEM) as well as white light interferometry (WLI).

  20. Spectroscopic study of Pbs nano-structured layer prepared by Pld utilized as a Hall-effect magnetic sensor

    NASA Astrophysics Data System (ADS)

    Atwa, D. M.; Aboulfotoh, N.; El-magd, A. Abo; Badr, Y.

    2013-10-01

    Lead sulfide (PbS) nano-structured films have been grown on quartz substrates using PLD technique. The deposited films were characterized by several structural techniques, including scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Selected-area electron diffraction patterns (SAED). The results prove the formation of cubic phase of PbS nanocrystals. Elemental analysis of the deposited films compared to the bulk target was obtained via laser induced fluorescence of the produced plasma particles and the energy dispersive X-ray "EDX" technique. The Hall coefficient measurements indicate an efficient performance of the deposited films as a magnetic sensor.

  1. Investigation of Selective Laser Melting Surface Alloyed Aluminium Metal Matrix Dispersive Reinforced Layers

    NASA Astrophysics Data System (ADS)

    Kamburov, V. V.; Dimitrova, R. B.; Kandeva, M. K.; Sofronov, Y. P.

    2018-01-01

    The aim of the paper is to investigate the improvement of mechanical properties and in particular wear resistance of laser surface alloyed dispersive reinforced thin layers produced by selective laser melting (SLM) technology. The wear resistance investigation of aluminium matrix composite layers in the conditions of dry friction surface with abrasive particles and nanoindentation tests were carried out. The process parameters (as scan speed) and their impact on the wear resistant layers have been evaluated. The alloyed layers containing metalized SiC particles were studied by Optical and Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray microanalysis (EDX). The obtained experimental results of the laser alloyed thin layers show significant development of their wear resistance and nanohardness due to the incorporated reinforced phase of electroless nickel coated SiC particles.

  2. Laser assisted soldering: microdroplet accumulation with a microjet device.

    PubMed

    Chan, E K; Lu, Q; Bell, B; Motamedi, M; Frederickson, C; Brown, D T; Kovach, I S; Welch, A J

    1998-01-01

    We investigated the feasibility of a microjet to dispense protein solder for laser assisted soldering. Successive micro solder droplets were deposited on rat dermis and bovine intima specimens. Fixed laser exposure was synchronized with the jetting of each droplet. After photocoagulation, each specimen was cut into two halves at the center of solder coagulum. One half was fixed immediately, while the other half was soaked in phosphate-buffered saline for a designated hydration period before fixation (1 hour, 1, 2, and 7 days). After each hydration period, all tissue specimens were prepared for scanning electron microscopy (SEM). Stable solder coagulum was created by successive photocoagulation of microdroplets even after the soldered tissue exposed to 1 week of hydration. This preliminary study suggested that tissue soldering with successive microdroplets is feasible even with fixed laser parameters without active feedback control.

  3. The Er3+-Yb3+ codoped La2O3 phosphor in finger print detection and optical heating.

    PubMed

    Dey, Riya; Pandey, Anurag; Rai, Vineet Kumar

    2014-07-15

    The presence of impurities and morphological information about the Er(3+)-Yb(3+) codoped La2O3 phosphors prepared by two different synthesis techniques have been obtained with the help of Fourier transform infrared (FTIR) spectroscopy and Scanning electron microscopy (SEM) respectively. The effect of synthesis process on the frequency upconversion (UC) emission with an excitation at 980 nm from laser diode radiation has been performed. The use of codoped phosphor in latent finger print detection and laser induced heat generation has also been explored. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Antimicrobial Activity Evaluation on Silver Doped Hydroxyapatite/Polydimethylsiloxane Composite Layer.

    PubMed

    Ciobanu, C S; Groza, A; Iconaru, S L; Popa, C L; Chapon, P; Chifiriuc, M C; Hristu, R; Stanciu, G A; Negrila, C C; Ghita, R V; Ganciu, M; Predoi, D

    2015-01-01

    The goal of this study was the preparation, physicochemical characterization, and microbiological evaluation of novel hydroxyapatite doped with silver/polydimethylsiloxane (Ag:HAp-PDMS) composite layers. In the first stage, the deposition of polydimethylsiloxane (PDMS) polymer layer on commercially pure Si disks has been produced in atmospheric pressure corona discharges. Finally, the new silver doped hydroxyapatite/polydimethylsiloxane composite layer has been obtained by the thermal evaporation technique. The Ag:HAp-PDMS composite layers were characterized by various techniques, such as Scanning Electron Microscopy (SEM), Glow Discharge Optical Emission Spectroscopy (GDOES), and X-ray photoelectron spectroscopy (XPS). The antimicrobial activity of the Ag:HAp-PDMS composite layer was assessed against Candida albicans ATCC 10231 (ATCC-American Type Culture Collection) by culture based and confirmed by SEM and Confocal Laser Scanning Microscopy (CLSM) methods. This is the first study reporting the antimicrobial effect of the Ag:HAp-PDMS composite layer, which proved to be active against Candida albicans biofilm embedded cells.

  5. Antimicrobial Activity Evaluation on Silver Doped Hydroxyapatite/Polydimethylsiloxane Composite Layer

    PubMed Central

    Ciobanu, C. S.; Groza, A.; Iconaru, S. L.; Popa, C. L.; Chapon, P.; Chifiriuc, M. C.; Hristu, R.; Stanciu, G. A.; Negrila, C. C.; Ghita, R. V.; Ganciu, M.; Predoi, D.

    2015-01-01

    The goal of this study was the preparation, physicochemical characterization, and microbiological evaluation of novel hydroxyapatite doped with silver/polydimethylsiloxane (Ag:HAp-PDMS) composite layers. In the first stage, the deposition of polydimethylsiloxane (PDMS) polymer layer on commercially pure Si disks has been produced in atmospheric pressure corona discharges. Finally, the new silver doped hydroxyapatite/polydimethylsiloxane composite layer has been obtained by the thermal evaporation technique. The Ag:HAp-PDMS composite layers were characterized by various techniques, such as Scanning Electron Microscopy (SEM), Glow Discharge Optical Emission Spectroscopy (GDOES), and X-ray photoelectron spectroscopy (XPS). The antimicrobial activity of the Ag:HAp-PDMS composite layer was assessed against Candida albicans ATCC 10231 (ATCC—American Type Culture Collection) by culture based and confirmed by SEM and Confocal Laser Scanning Microscopy (CLSM) methods. This is the first study reporting the antimicrobial effect of the Ag:HAp-PDMS composite layer, which proved to be active against Candida albicans biofilm embedded cells. PMID:26504849

  6. Characteristics of hierarchical micro/nano surface structure formation generated by picosecond laser processing in water and air

    NASA Astrophysics Data System (ADS)

    Rajab, Fatema H.; Whitehead, David; Liu, Zhu; Li, Lin

    2017-12-01

    Laser surface texturing or micro/nano surface structuring in the air has been extensively studied. However, until now, there are very few studies on the characteristics of laser-textured surfaces in water, and there was no reported work on picosecond laser surface micro/nano-structuring in water. In this work, the surface properties of picosecond laser surface texturing in water and air were analysed and compared. 316L stainless steel substrates were textured using a picosecond laser. The surface morphology and the chemical composition were characterised using Philips XL30 FEG-SEM, EDX and confocal laser microscopy. The wettability of the textured surfaces was determined using a contact angle analyser FTA 188. Results showed that a variety of hierarchical micro/nano surface patterns could be controlled by a suitable adjustment of laser parameters. Not only surface morphology but also remarkable differences in wettability, optical reflectivity and surface oxygen content were observed for different types of surface textures produced by laser surface texture in water and air. The possible mechanisms of the changes in the behaviour of laser-textured surfaces are discussed.

  7. Laser marking as environment technology

    NASA Astrophysics Data System (ADS)

    Sobotova, Lydia; Badida, Miroslav

    2017-11-01

    The contribution deals with the laser marking as one of the progressive and environment friendly technologies with utilisation in many branches of industry. Engraving and other types of laser marking of different types of materials are very actual technologies these days. Laser marking decreases the waste creation in comparison with the other classical marking technologies, which use paintings or created chips. In this experimental investigation the laser marking surface texturing of material AL99,7 according to STN 42 4003:1993-08 (STN EN 573) has been conducted. The laser marking machine TruMark 6020 and software TruTops Mark were used. Laser surface texturing after laser marking has been realised under different combinations of process parameters: pulse frequency, pulse energy and laser beam scanning speed. The morphological characterization of engraving or annealing surfaces has been performed using scanning electron microscopy (SEM) technique. The evaluation of roughness of engraved surfaces has been realized according to STN EN ISO 4287 by using Surftest SJ 301. The aim of the contribution was to show how different laser parameters affect the surface texture and colour change of metallic materials while creating minimal waste.

  8. Patterned self-assembled monolayers of alkanethiols on copper nanomembranes by submerged laser ablation

    NASA Astrophysics Data System (ADS)

    Rhinow, Daniel; Hampp, Norbert A.

    2012-06-01

    Self-assembled monolayers (SAMs) of alkanethiols are major building blocks for nanotechnology. SAMs provide a functional interface between electrodes and biomolecules, which makes them attractive for biochip fabrication. Although gold has emerged as a standard, copper has several advantages, such as compatibility with semiconductors. However, as copper is easily oxidized in air, patterning SAMs on copper is a challenging task. In this work we demonstrate that submerged laser ablation (SLAB) is well-suited for this purpose, as thiols are exchanged in-situ, avoiding air exposition. Using different types of ω-substituted alkanethiols we show that alkanethiol SAMs on copper surfaces can be patterned using SLAB. The resulting patterns were analyzed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). Both methods indicate that the intense laser beam promotes the exchange of thiols at the copper surface. Furthermore, we present a procedure for the production of free-standing copper nanomembranes, oxidation-protected by alkanethiol SAMs. Incubation of copper-coated mica in alkanethiol solutions leads to SAM formation on both surfaces of the copper film due to intercalation of the organic molecules. Corrosion-protected copper nanomembranes were floated onto water, transferred to electron microscopy grids, and subsequently analyzed by electron energy loss spectroscopy (EELS).

  9. Graphene quantum dot synthesis using nanosecond laser pulses and its comparison to Methylene Blue

    NASA Astrophysics Data System (ADS)

    Kholikov, Khomidkhodza; Thomas, Zachary; Seyitliyev, Dovletgeldi; Smith, Skylar

    A biocompatible photodynamic therapy agent that generates a high amount of singlet oxygen with high water dispersibility and excellent photostability is desirable. In this work, a graphene based biomaterial which is a promising alternative to a standard photosensitizers was produced. Methylene blue was used as a reference photosensitizer. Bacteria deactivation by methylene blue was shown to be inhibited inside human blood due to protein binding. Graphene quantum dots (GQD) were synthesized by irradiating benzene and nickel oxide mixture using nanosecond laser pulses. High resolution transmission electron microscopy (HR-TEM), scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier transform infrared (FTIR) spectroscopy, and nuclear magnetic resonance (NMR) were used for characterization of GQDs. Initial results show graphene quantum dots whose size less than 5 nm were successfully obtained. UV-VIS spectra shows absorption peak around 310 nm. The results of these studies can potentially be used to develop therapies for the eradication of pathogens in open wounds, burns, or skin cancers. New therapies for these conditions are particularly needed when antibiotic-resistant infections are present. NIH KBRIN.

  10. High-resolution imaging by scanning electron microscopy of semithin sections in correlation with light microscopy.

    PubMed

    Koga, Daisuke; Kusumi, Satoshi; Shodo, Ryusuke; Dan, Yukari; Ushiki, Tatsuo

    2015-12-01

    In this study, we introduce scanning electron microscopy (SEM) of semithin resin sections. In this technique, semithin sections were adhered on glass slides, stained with both uranyl acetate and lead citrate, and observed with a backscattered electron detector at a low accelerating voltage. As the specimens are stained in the same manner as conventional transmission electron microscopy (TEM), the contrast of SEM images of semithin sections was similar to TEM images of ultrathin sections. Using this technique, wide areas of semithin sections were also observed by SEM, without the obstruction of grids, which was inevitable for traditional TEM. This study also applied semithin section SEM to correlative light and electron microscopy. Correlative immunofluorescence microscopy and immune-SEM were performed in semithin sections of LR white resin-embedded specimens using a FluoroNanogold-labeled secondary antibody. Because LR white resin is hydrophilic and electron stable, this resin is suitable for immunostaining and SEM observation. Using correlative microscopy, the precise localization of the primary antibody was demonstrated by fluorescence microscopy and SEM. This method has great potential for studies examining the precise localization of molecules, including Golgi- and ER-associated proteins, in correlation with LM and SEM. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Engineering plasmonic nanostructured surfaces by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Ghidelli, Matteo; Mascaretti, Luca; Bricchi, Beatrice Roberta; Zapelli, Andrea; Russo, Valeria; Casari, Carlo Spartaco; Li Bassi, Andrea

    2018-03-01

    The synthesis and the optical response of gold nanoparticles (NPs) and thin nanostructured films grown by pulsed laser deposition (PLD) are here studied. Different PLD process parameters - including background gas pressure and the number of laser shots as well as post-deposition annealing treatments - have been varied to control the growth of Au NPs and films, thus tuning the surface plasmon characteristics. The mechanisms of NPs and film growth have been explored performing a morphological characterization by Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM), and the correlation with the optical behavior is investigated. We show that the size distribution and the morphology of the as deposited Au NPs depend on growth mechanisms which are controlled by tuning the deposition process, while the optical behavior is strongly affected by the average size and surface density of NPs or by the length of percolated Au domains. Furthermore, nucleation in gas phase has been reported at high (1000 Pa Ar) background pressures, enabling independent control of NP size and coverage, contrary to surface driven NP growth by diffusion and aggregation on substrate.

  12. Parameters optimization for synthesis of Al-doped ZnO nanoparticles by laser ablation in water

    NASA Astrophysics Data System (ADS)

    Krstulović, Nikša; Salamon, Krešimir; Budimlija, Ognjen; Kovač, Janez; Dasović, Jasna; Umek, Polona; Capan, Ivana

    2018-05-01

    Al-doped ZnO crystalline colloidal nanoparticles were synthesized by a laser ablation of ZnO:Al2O3 in MilliQ water. Experiments were performed systematically by changing the number of applied laser pulses and laser output energy with the aim to affect the nanoparticle size, composition (Al/Zn ratio) and characteristics (band-gap, crystallinity). Distinctly, set of nanoparticle syntheses was performed in deionized water for comparison. SEM investigation of colloidal nanoparticles revealed that the formed nanoparticles are 30 nm thick discs with average diameters ranging from 450 to 510 nm. It was found that craters in the target formed during the laser ablation influence the size of synthesized colloidal nanoparticles. This is explained by efficient nanoparticle growth through diffusion process which take place in spatially restricted volume of the target crater. When laser ablation takes place in deionized water the synthesized nanoparticles have a mesh-like structure with sparse concentration of disc-like nanoparticles. Al/Zn ratio and band-gap energy of nanoparticles are highly influenced by the number and output energy of applied laser pulses. In addition, the procedure how to calculate the concentration of colloidal nanoparticles synthesized by laser ablation in liquids is proposed. The Al-doped ZnO colloidal nanoparticles properties were obtained using different techniques like scanning electron microscopy, optical microscopy, energy-dispersive X-ray spectroscopy, grazing-incidence X-ray diffraction, photoabsorption, photoluminescence and X-ray photoelectron spectroscopy.

  13. Efficacy of Sodium Hypochlorite Activated With Laser in Intracanal Smear Layer Removal: An SEM Study

    PubMed Central

    Shahriari, Shahriar; Kasraei, Shahin; Roshanaei, Ghodratollah; Karkeabadi, Hamed; Davanloo, Hossein

    2017-01-01

    Introduction: The purpose of the present study was to evaluate the different concentrations of sodium hypochlorite activated with laser in removing of the smear layer in the apical, middle, and coronal segments of root canal walls by scanning electron microscopy analysis. Methods: Sixty single-rooted human mandibular teeth were decoronated to a standardized length. The samples were prepared by using Race rotary system to size 40, 0.04 taper and divided into 4 equal groups (n = 15). Group 1, irrigated with EDTA 17% and 5.25% NaOCl, groups 2, 3 and 4, 1%, 2.5%, and 5% NaOCl activated with Nd:YAG laser, respectively. Teeth were split longitudinally and subjected to scanning electron microscope (SEM). Data were analyzed by Kruskal-Wallis, Mann-Whitney tests. P value of <0.05 was considered statistically significant. Results: Five percent NaOCl LAI (laser-activated irrigation) showed best smear layer removal in test groups and the difference was statistically significant (P < 0.001). Control group (EDTA 17% and 5.25% NaOCl irrigation) showed significantly better outcomes in comparative with test groups (P < 0.001). In the apical third, compared to coronal and middle third, the canal walls were often contaminated by inorganic debris and smear layer. Conclusion: All different concentrations of sodium hypochlorite activated with laser have a positive effect on removing of smear layer. Sodium hypochlorite activated with laser removed smear layer more effectively at the coronal and middle third compared to the apical third. PMID:28912942

  14. Influence of Er,Cr:YSGG laser treatment on the microtensile bond strength of adhesives to dentin.

    PubMed

    Cardoso, Marcio Vivan; Coutinho, Edurado; Ermis, R Banu; Poitevin, André; Van Landuyt, Kirsten; De Munck, Jan; Carvalho, Rubens C R; Lambrechts, Paul; Van Meerbeek, Bart

    2008-02-01

    In light of the concept of minimally invasive dentistry, erbium lasers have been considered as an alternative technique to the use of diamond burs for cavity preparation. The purpose of this study was to assess the bonding effectiveness of adhesives to Er,Cr:YSGG laser-irradiated dentin using irradiation settings specific for cavity preparation. Fifty-four midcoronal dentin surfaces, obtained from sound human molars, were irradiated with an Er,Cr:YSGG laser or prepared with a diamond bur using a high-speed turbine. One etch-and-rinse (Optibond FL/Kerr) and three self-etching adhesives (Adper Prompt L-Pop/3M ESPE, Clearfil SE Bond/Kuraray, and Clearfil S3 Bond/Kuraray) were used to bond the composite to dentin. The microtensile bond strength (microTBS) was determined after 24 h of storage in water at 37 degrees C. The Kruskal-Wallis test was used to determine pairwise statistical differences (p < 0.05). Prepared dentin surfaces, adhesive interfaces, and failure patterns were analyzed using a stereomicroscope and Field-emission gun Scanning Electron Microscopy (Feg-SEM). Significantly lower microTBS was observed to laser-irradiated than to bur-cut dentin (p < 0.05), irrespective of the adhesive employed. Feg-SEM photomicrographs of lased dentin revealed an imbricate patterned substrate and the presence of microcracks at the dentin surface. Morphological alterations produced by Er,Cr:YSGG laser-irradiation adversely influence the bonding effectiveness of adhesives to dentin.

  15. Microprocessing of ITO and a-Si thin films using ns laser sources

    NASA Astrophysics Data System (ADS)

    Molpeceres, C.; Lauzurica, S.; Ocaña, J. L.; Gandía, J. J.; Urbina, L.; Cárabe, J.

    2005-06-01

    Selective ablation of thin films for the development of new photovoltaic panels and sensoring devices based on amorphous silicon (a-Si) is an emerging field, in which laser micromachining systems appear as appropriate tools for process development and device fabrication. In particular, a promising application is the development of purely photovoltaic position sensors. Standard p-i-n or Schottky configurations using transparent conductive oxides (TCO), a-Si and metals are especially well suited for these applications, appearing selective laser ablation as an ideal process for controlled material patterning and isolation. In this work a detailed study of laser ablation of a widely used TCO, indium-tin-oxide (ITO), and a-Si thin films of different thicknesses is presented, with special emphasis on the morphological analysis of the generated grooves. Excimer (KrF, λ = 248 nm) and DPSS lasers (λ = 355 and λ = 1064 nm) with nanosecond pulse duration have been used for material patterning. Confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM) techniques have been applied for the characterization of the ablated grooves. Additionally, process parametric windows have been determined in order to assess this technology as potentially competitive to standard photolithographic processes. The encouraging results obtained, with well-defined ablation grooves having thicknesses in the order of 10 µm both in ITO and in a-Si, open up the possibility of developing a high-performance double Schottky photovoltaic matrix position sensor.

  16. Cell Uptake and Validation of Novel PECs for Biomedical Applications.

    PubMed

    Palamà, Ilaria E; Musarò, Mariarosaria; Coluccia, Addolorata M L; D'Amone, Stefania; Gigli, Giuseppe

    2011-01-01

    This pilot study provides the proof of principle for biomedical application of novel polyelectrolyte complexes (PECs) obtained via electrostatic interactions between dextran sulphate (DXS) and poly(allylamine hydrochloride) (PAH). Scanning electron microscopy (SEM) and atomic force microscopy (AFM) showed that DXS/PAH polyelectrolyte complexes were Monodispersed with regular rounded-shape features and average diameters of 250 nm at 2 : 1 weight ratios of DXS/PAH. Fluorescently labelled DXS and fluorescein-isothiocyanate- (FITC-)conjugate DXS were used to follow cell uptake efficiency of PECs and biodegradability of their enzymatically degradable DXS-layers by using confocal laser scanning microscopy (CLSM). Moreover, quantitative MTT and Trypan Blue assays were employed to validate PECs as feasible and safe nanoscaled carriers at single-cell level without adverse effects on metabolism and viability.

  17. Cell Uptake and Validation of Novel PECs for Biomedical Applications

    PubMed Central

    Palamà, Ilaria E.; Musarò, Mariarosaria; Coluccia, Addolorata M. L.; D'Amone, Stefania; Gigli, Giuseppe

    2011-01-01

    This pilot study provides the proof of principle for biomedical application of novel polyelectrolyte complexes (PECs) obtained via electrostatic interactions between dextran sulphate (DXS) and poly(allylamine hydrochloride) (PAH). Scanning electron microscopy (SEM) and atomic force microscopy (AFM) showed that DXS/PAH polyelectrolyte complexes were Monodispersed with regular rounded-shape features and average diameters of 250 nm at 2 : 1 weight ratios of DXS/PAH. Fluorescently labelled DXS and fluorescein-isothiocyanate- (FITC-)conjugate DXS were used to follow cell uptake efficiency of PECs and biodegradability of their enzymatically degradable DXS-layers by using confocal laser scanning microscopy (CLSM). Moreover, quantitative MTT and Trypan Blue assays were employed to validate PECs as feasible and safe nanoscaled carriers at single-cell level without adverse effects on metabolism and viability. PMID:21876815

  18. Correlative two-photon and serial block face scanning electron microscopy in neuronal tissue using 3D near-infrared branding maps.

    PubMed

    Lees, Robert M; Peddie, Christopher J; Collinson, Lucy M; Ashby, Michael C; Verkade, Paul

    2017-01-01

    Linking cellular structure and function has always been a key goal of microscopy, but obtaining high resolution spatial and temporal information from the same specimen is a fundamental challenge. Two-photon (2P) microscopy allows imaging deep inside intact tissue, bringing great insight into the structural and functional dynamics of cells in their physiological environment. At the nanoscale, the complex ultrastructure of a cell's environment in tissue can be reconstructed in three dimensions (3D) using serial block face scanning electron microscopy (SBF-SEM). This provides a snapshot of high resolution structural information pertaining to the shape, organization, and localization of multiple subcellular structures at the same time. The pairing of these two imaging modalities in the same specimen provides key information to relate cellular dynamics to the ultrastructural environment. Until recently, approaches to relocate a region of interest (ROI) in tissue from 2P microscopy for SBF-SEM have been inefficient or unreliable. However, near-infrared branding (NIRB) overcomes this by using the laser from a multiphoton microscope to create fiducial markers for accurate correlation of 2P and electron microscopy (EM) imaging volumes. The process is quick and can be user defined for each sample. Here, to increase the efficiency of ROI relocation, multiple NIRB marks are used in 3D to target ultramicrotomy. A workflow is described and discussed to obtain a data set for 3D correlated light and electron microscopy, using three different preparations of brain tissue as examples. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Scanning electron microscope and dye penetration test: comparison of root canal preparation with 15 F CO2 laser microprobe versus conventional method--in vivo study

    NASA Astrophysics Data System (ADS)

    Kesler, Gavriel; Koren, Rumelia; Kesler, Anat; Hay, Nissim; Gal, Rivka

    1999-05-01

    The study was conducted on 30 vital maxillary or mandibulary teeth destined for extraction due to periodontal problems. 21 were experimentally treated with pulsed CO2 laser delivered by a newly developed fiber and 9 teeth represented the control group. The micro probe is a flexible, hollow, metal fiber, 300 μm in diameter and 20 mm in length, coupled onto a handpiece, with the following radiation parameters: wavelength-10.6μm pulse duration-50m.sec; energy per pulses 0.25 joule; energy density-360 J/cm2 per pulse; power on tissue-5W. The laser group was divided into three, receiving 20, 40 or 60 pulses, respectively. On light microscopy: in all the control group cases, large amount of residual pulp tissue was seen, it was diminished in some of the low energy group and was totally eradicated in the high energy group. This was confirmed by the scanning electron microscope (SEM) examination. The dentin tubuli were partly occluded with the low energy levels and completely with the high levels, as shown by the high-speed centrifuge dye penetration test and by the SEM tests.

  20. Surface characterization of stainless HP-40 steel using laser induced μ-breakdown spectroscopy (μ -LIBS)

    NASA Astrophysics Data System (ADS)

    Pinto, M.; Calderón, X.; Mejía Ospino, E.; Cabanzo, R.; Poveda, Juan C.

    2016-02-01

    In the present study, optical microscopy in stereoscopic mode coupled to laser- induced p-breakdown spectroscopy (μ-LIBS) was applied for analysing HP-40 steel samples. microLIBS (μ-LIBS) is a new growing area that employs low energy laser pulses for the generation of plasma emission, which allow the realization of localized microanalysis [1]. This new LIBS instrument was used for the surface characterization of the steel samples in the spectral range from 356 to 401nm. Elements such as Cr, Ni, Fe, Nb, Pb, Mo, C, Mn and Si in the steel samples were investigated. The results allowed the construction of elemental distribution profiles of the samples. Complementary the HP-40 steel samples were superficially characterized by Scanning Electron Microscope (SEM).

  1. Whole mount nuclear fluorescent imaging: convenient documentation of embryo morphology

    PubMed Central

    Sandell, Lisa L.; Kurosaka, Hiroshi; Trainor, Paul A.

    2012-01-01

    Here we describe a relatively inexpensive and easy method to produce high quality images that reveal fine topological details of vertebrate embryonic structures. The method relies on nuclear staining of whole mount embryos in combination with confocal microscopy or conventional widefield fluorescent microscopy. In cases where confocal microscopy is used in combination with whole mount nuclear staining, the resulting embryo images can rival the clarity and resolution of images of similar specimens produced by Scanning Electron Microscopy (SEM). The fluorescent nuclear staining may be performed with a variety of cell permeable nuclear dyes, enabling the technique to be performed with multiple standard microscope/illumination or confocal/laser systems. The method may be used to document morphology of embryos of a variety of organisms, as well as individual organs and tissues. Nuclear stain imaging imposes minimal impact on embryonic specimens, enabling imaged specimens to be utilized for additional assays. PMID:22930523

  2. Whole mount nuclear fluorescent imaging: convenient documentation of embryo morphology.

    PubMed

    Sandell, Lisa L; Kurosaka, Hiroshi; Trainor, Paul A

    2012-11-01

    Here, we describe a relatively inexpensive and easy method to produce high quality images that reveal fine topological details of vertebrate embryonic structures. The method relies on nuclear staining of whole mount embryos in combination with confocal microscopy or conventional wide field fluorescent microscopy. In cases where confocal microscopy is used in combination with whole mount nuclear staining, the resulting embryo images can rival the clarity and resolution of images produced by scanning electron microscopy (SEM). The fluorescent nuclear staining may be performed with a variety of cell permeable nuclear dyes, enabling the technique to be performed with multiple standard microscope/illumination or confocal/laser systems. The method may be used to document morphology of embryos of a variety of organisms, as well as individual organs and tissues. Nuclear stain imaging imposes minimal impact on embryonic specimens, enabling imaged specimens to be utilized for additional assays. Copyright © 2012 Wiley Periodicals, Inc.

  3. Cytocompatibility and uptake of halloysite clay nanotubes.

    PubMed

    Vergaro, Viviana; Abdullayev, Elshad; Lvov, Yuri M; Zeitoun, Andre; Cingolani, Roberto; Rinaldi, Ross; Leporatti, Stefano

    2010-03-08

    Halloysite is aluminosilicate clay with hollow tubular structure of 50 nm external diameter and 15 nm diameter lumen. Halloysite biocompatibility study is important for its potential applications in polymer composites, bone implants, controlled drug delivery, and for protective coating (e.g., anticorrosion or antimolding). Halloysite nanotubes were added to different cell cultures for toxicity tests. Its fluorescence functionalization by aminopropyltriethosilane (APTES) and with fluorescently labeled polyelectrolyte layers allowed following halloysite uptake by the cells with confocal laser scanning microscopy (CLSM). Quantitative Trypan blue and MTT measurements performed with two neoplastic cell lines model systems as a function of the nanotubes concentration and incubation time indicate that halloysite exhibits a high level of biocompatibility and very low cytotoxicity, rendering it a good candidate for household materials and medicine. A combination of transmission electron microscopy (TEM), scanning electron microscopy (SEM), and scanning force microscopy (SFM) imaging techniques have been employed to elucidate the structure of halloysite nanotubes.

  4. Effective removal of calcified deposits on microstructured titanium fixture surfaces of dental implants with erbium lasers.

    PubMed

    Takagi, Toru; Aoki, Akira; Ichinose, Shizuko; Taniguchi, Yoichi; Tachikawa, Noriko; Shinoki, Takeshi; Meinzer, Walter; Sculean, Anton; Izumi, Yuichi

    2018-03-13

    Recently, the occurrence of peri-implantitis has been increasing. However, a suitable method to debride the contaminated surface of titanium implants has not been established. The aim of this study was to investigate the morphological changes of the microstructured fixture surface after erbium laser irradiation, and to clarify the effects of the erbium lasers when used to remove calcified deposits from implant fixture surfaces. In experiment 1, sandblasted, large grit, acid etched surface implants were treated with Er:YAG laser or Er,Cr:YSGG laser at 30-60 mJ/pulse and 20 Hz with water spray. In experiments 2 and 3, the effects of erbium lasers used to remove calcified deposits (artificially prepared deposits on virgin implants and natural calculus on failed implants) were investigated and compared with mechanical debridement using either a titanium curette or cotton pellets. After the various debridement methods, all specimens were analyzed by stereomicroscopy (SM), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Stereomicroscopy and SEM showed that erbium lasers with optimal irradiation parameters did not have an effect on titanium microstructures. Compared to mechanical debridement, erbium lasers were more capable of removing calcified deposits on the microstructured surface without surface alteration using a non-contact sweeping irradiation at 40 mJ/pulse (ED 14.2 J/cm 2 /pulse) and 20 Hz with water spray. These results indicate that Er:YAG and Er,Cr:YSGG lasers are more advantageous in removing calcified deposits on the microstructured surface of titanium implants without inducing damage, compared to mechanical therapy by cotton pellet or titanium curette. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. Parametric Study of Carbon Nanotube Production by Laser Ablation Process

    NASA Technical Reports Server (NTRS)

    Arepalli, Sivaram; Nikolaev, Pavel; Holmes, William; Hadjiev, Victor; Scott, Carl

    2002-01-01

    Carbon nanotubes form a new class of nanomaterials that are presumed to have extraordinary mechanical, electrical and thermal properties. The single wall nanotubes (SWNTs) are estimated to be 100 times stronger than steel with 1/6th the weight; electrical carrying capacity better than copper and thermal conductivity better than diamond. Applications of these SWNTs include possible weight reduction of aerospace structures, multifunctional materials, nanosensors and nanoelectronics. Double pulsed laser vaporization process produces SWNTs with the highest percentage of nanotubes in the output material. The normal operating conditions include a green laser pulse closely followed by an infrared laser pulse. Lasers ab late a metal-containing graphite target located in a flow tube maintained in an oven at 1473K with argon flow of 100 sccm at a 500 Torr pressure. In the present work a number of production runs were carried out, changing one operating condition at a time. We have studied the effects of nine parameters, including the sequencing of the laser pulses, pulse separation times, laser energy densities, the type of buffer gas used, oven temperature, operating pressure, flow rate and inner flow tube diameters. All runs were done using the same graphite target. The collected nanotube material was characterized by a variety of analytical techniques including scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman and thermo gravimetric analysis (TGA). Results indicate trends that could be used to optimize the process and increase the efficiency of the production process.

  6. Structural and optical properties of colloidal InZnO NPs prepared by laser ablation in liquid

    NASA Astrophysics Data System (ADS)

    khlewee, Maryam M.; Khashan, Khawla S.

    2018-05-01

    In the current work, colloidal of InZnO NPs were produced by pulsed laser ablation in liquid (PLAL) method. The effect of indium content on the structural, morphological and optical of the InZnO NPs was confirmed by Fourier transform infrared spectroscopy, Scanning electron microscopy, and UV-visible spectroscopy. The FTIR spectra showed the presence of the metal-oxide bond. The SEM exhibit different morphological aspects according to the (In/Zn) ratio. The optical transmittance of InZnO NPs has high value around 70 % in the visible region and the band gap value was varied between 3.29 to 3.25 eV.

  7. Study of two different thin film coating methods in transmission laser micro-joining of thin Ti-film coated glass and polyimide for biomedical applications.

    PubMed

    Sultana, T; Georgiev, G L; Baird, R J; Auner, G W; Newaz, G; Patwa, R; Herfurth, H J

    2009-07-01

    Biomedical devices and implants require precision joining for hermetic sealing which can be achieved with low power lasers. The effect of two different thin metal film coating methods was studied in transmission laser micro-joints of titanium-coated glass and polyimide. The coating methods were cathodic arc physical vapor deposition (CA-PVD) and electron beam evaporation (EB-PVD). Titanium-coated glass joined to polyimide film can have neural electrode application. The improvement of the joint quality will be essential for robust performance of the device. Low power fiber laser (wave length = 1100 nm) was used for transmission laser micro-joining of thin titanium (Ti) film (approximately 200 nm) coated Pyrex borosilicate 7740 glass wafer (0.5 mm thick) and polyimide (Imidex) film (0.2 mm thick). Ti film acts as the coupling agent in the joining process. The Ti film deposition rate in the CA-PVD was 5-10 A/s and in the EB-PVD 1.5 A/s. The laser joint strength was measured by a lap shear test, the Ti film surfaces were analyzed by atomic force microscopy (AFM) and the lap shear tested joints were analyzed by optical microscopy and scanning electron microscopy (SEM). The film properties and the failure modes of the joints were correlated to joint strength. The CA-PVD produced around 4 times stronger laser joints than EB-PVD. The adhesion of the Ti film on glass by CA-PVD is better than that of the EB-PVD method. This is likely to be due to a higher film deposition rate and consequently higher adhesion or sticking coefficient for the CA-PVD particles arriving on the substrate compared to that of the EB-PVD film. EB-PVD shows poor laser bonding properties due to the development of thermal hotspots which occurs from film decohesion.

  8. CO2 and Nd:YAP laser interaction with lithium disilicate and Zirconia dental ceramics: A preliminary study

    NASA Astrophysics Data System (ADS)

    Rocca, Jean-Paul; Fornaini, Carlo; Brulat-Bouchard, Nathalie; Bassel Seif, Samy; Darque-Ceretti, Evelyne

    2014-04-01

    Lithium disilicate and Zirconia ceramics offer a high level of accuracy when used in prosthetic dentistry. Their bonding using different resins is highly dependent on micro-mechanical interlocking and adhesive chemical bonding. Investigation of the performances of high strength ceramics when their surface is modified for chemical and mechanical bonding is then required. The aim of this study is to investigate the possibility of using laser for surface treatment of different high strength CAD/CAM ceramics and thus to improve their mechanical and chemical properties. Thirty two CAD/CAM ceramic discs were divided into two different groups: lithium disilicate ceramics (IPS e.max CAD®, Ivoclar, Vivadent, Italy) and Zirconia ceramics (IPS e.max ZirCAD®, Ivoclar, Vivadent, Italy). The Laser surface treatment was performed by Carbon Dioxide laser (Dream Pulse Laser®, Daeshin Enterprise Corp., Korea) at 20 W, 25 W and 30 W CW and by Neodymium Yttrium Aluminum Perovskite laser (Nd:YAP Lokki®, Lobel Medical, France) at 10 W and 30 Hz. Physical modifications of the irradiated ceramic discs were observed by scanning electron microscopy (SEM) and chemically analyzed by Energy-Dispersive Spectroscopy (EDS). Surface wettability was tested using the water drop test and the crystalline structure was investigated using X-ray diffraction (XRD). The macroscopic observation showed a shinier structure in all the groups, while at the SEM observation only CO2 25 W and 30 W treated groups showed cracks and fissures. In the conditions of this study, CO2 laser and Nd:YAP laser with the parameters used create chemical and physical surface modifications of the ceramics, indicating the possibility of an improvement in adhesion of the tested ceramics.

  9. In vitro evaluation of enamel demineralization after several overlapping CO2 laser applications.

    PubMed

    Vieira, K A; Steiner-Oliveira, C; Soares, L E S; Rodrigues, L K A; Nobre-dos-Santos, M

    2015-02-01

    This study aimed to evaluate the effects of repeated CO2 laser applications on the inhibition of enamel demineralization. Sixty-five human dental enamel slabs were randomly assigned to the following groups (n = 13): control (C), one application of the CO2 laser (L1), two applications of the CO2 laser (L2), three applications of the CO2 laser (L3), and four applications of the CO2 laser (L4). Enamel slabs were irradiated by a 10.6-μm CO2 laser operating at 5 J/cm(2). The slabs were subjected to a pH-cycling regimen and then analyzed by FT-Raman spectroscopy, energy-dispersive X-ray fluorescence spectrometry (EDXRF), cross-sectional micro-hardness, and scanning electron microscopy (SEM). Statistical analysis was performed using ANOVA and Tukey tests (p < 0.05). FT-Raman spectroscopy showed a reduced carbonate content for L1, L3, and L4 groups when compared to C (p < 0.05). The EDXRF data showed no statistical differences between the control and irradiated groups for calcium and phosphorus components (p > 0.05). Cross-sectional micro-hardness data showed a statistically significant difference between the control and all irradiated groups (p < 0.05), but no difference was found among the irradiated groups (p > 0.05) up to 30-μm depth. A tendency of lower demineralization occurred in deeper depths for L3 and L4 groups. The SEM results showed that with repeated applications of the CO2 laser, a progressive melting and recrystallization of the enamel surface occurred. Repeated irradiations of dental enamel may enhance the inhibition of enamel demineralization.

  10. A New Method for Qualitative Multi-scale Analysis of Bacterial Biofilms on Filamentous Fungal Colonies Using Confocal and Electron Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miquel Guennoc, Cora; Rose, Christophe; Guinnet, Frédéric

    Bacterial biofilms frequently form on fungal surfaces and can be involved in numerous bacterial-fungal interaction processes, such as metabolic cooperation, competition, or predation. The study of biofilms is important in many biological fields, including environmental science, food production, and medicine. However, few studies have focused on such bacterial biofilms, partially due to the difficulty of investigating them. Most of the methods for qualitative and quantitative biofilm analyses described in the literature are only suitable for biofilms forming on abiotic surfaces or on homogeneous and thin biotic surfaces, such as a monolayer of epithelial cells. While laser scanning confocal microscopy (LSCM)more » is often used to analyze in situ and in vivo biofilms, this technology becomes very challenging when applied to bacterial biofilms on fungal hyphae, due to the thickness and the three dimensions of the hyphal networks. To overcome this shortcoming, we developed a protocol combining microscopy with a method to limit the accumulation of hyphal layers in fungal colonies. Using this method, we were able to investigate the development of bacterial biofilms on fungal hyphae at multiple scales using both LSCM and scanning electron microscopy (SEM). Furthermore, this report describes the protocol, including microorganism cultures, bacterial biofilm formation conditions, biofilm staining, and LSCM and SEM visualizations.« less

  11. A New Method for Qualitative Multi-scale Analysis of Bacterial Biofilms on Filamentous Fungal Colonies Using Confocal and Electron Microscopy

    DOE PAGES

    Miquel Guennoc, Cora; Rose, Christophe; Guinnet, Frédéric; ...

    2017-01-01

    Bacterial biofilms frequently form on fungal surfaces and can be involved in numerous bacterial-fungal interaction processes, such as metabolic cooperation, competition, or predation. The study of biofilms is important in many biological fields, including environmental science, food production, and medicine. However, few studies have focused on such bacterial biofilms, partially due to the difficulty of investigating them. Most of the methods for qualitative and quantitative biofilm analyses described in the literature are only suitable for biofilms forming on abiotic surfaces or on homogeneous and thin biotic surfaces, such as a monolayer of epithelial cells. While laser scanning confocal microscopy (LSCM)more » is often used to analyze in situ and in vivo biofilms, this technology becomes very challenging when applied to bacterial biofilms on fungal hyphae, due to the thickness and the three dimensions of the hyphal networks. To overcome this shortcoming, we developed a protocol combining microscopy with a method to limit the accumulation of hyphal layers in fungal colonies. Using this method, we were able to investigate the development of bacterial biofilms on fungal hyphae at multiple scales using both LSCM and scanning electron microscopy (SEM). Furthermore, this report describes the protocol, including microorganism cultures, bacterial biofilm formation conditions, biofilm staining, and LSCM and SEM visualizations.« less

  12. Confocal laser scanning microscopy coupled to a spectrofluorometric detector as a rapid tool for determining the in vivo effect of metals on phototrophic bacteria.

    PubMed

    Burnat, Mireia; Diestra, Elia; Esteve, Isabel; Solé, Antonio

    2010-01-01

    In this paper, we determine for the first time the in vivo effect of heavy metals in a phototrophic bacterium. We used Confocal Laser Scanning Microscopy coupled to a spectrofluorometric detector as a rapid technique to measure pigment response to heavy-metal exposure. To this end, we selected lead and copper (toxic and essential metals) and Microcoleus sp. as the phototrophic bacterium because it would be feasible to see this cyanobacterium as a good biomarker, since it covers large extensions of coastal sediments. The results obtained demonstrate that, while cells are still viable, pigment peak decreases whereas metal concentration increases (from 0.1 to 1 mM Pb). Pigments are totally degraded when cultures were polluted with lead and copper at the maximum doses used (25 mM Pb(NO(3))(2) and 10 mM CuSO(4)). The aim of this study was also to identify the place of metal accumulation in Microcoleus cells. Element analysis of this cyanobacterium in the above mentioned conditions determined by Energy Dispersive X-ray microanalysis (EDX) coupled to Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM), shows that Pb (but not Cu) accumulates externally and internally in cells.

  13. Selective generation of laser-induced periodic surface structures on Al2O3-ZrO2-Nb composites

    NASA Astrophysics Data System (ADS)

    Kunz, Clemens; Bartolomé, José F.; Gnecco, Enrico; Müller, Frank A.; Gräf, Stephan

    2018-03-01

    Laser-induced periodic surface structures (LIPSS) were selectively fabricated on the metal phase of Al2O3-nZrO2-Nb (78.3-1.7-20 vol.%) ceramic matrix composites. For this purpose, sample surfaces were irradiated with fs-laser pulses (τ = 300 fs, λ = 1025 nm) of different laser peak fluences ranging from 0.23 to 0.40 J/cm2. The structured surfaces were characterised by scanning electron microscopy (SEM), atomic force microscopy (AFM), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), and by measuring the water contact angle. Well-pronounced LIPSS with a period of Λ ≈ 750 nm and a height of h ≈ 263 nm were found solely on the metal phase of the composite when applying the highest fluence whereas no structural and chemical modifications were found on the surface of the ceramic matrix. This can be explained by the different light absorption behaviour of both phases, which results in different ablation thresholds. The water contact angle of composite surfaces was successfully reduced from 68.4° for untreated samples to 40.9° for structured samples. Selectively structured composites with adjustable wettability are of particular interest for biomedical and tribological applications.

  14. Metal ion release from silver soldering and laser welding caused by different types of mouthwash.

    PubMed

    Erdogan, Ayse Tuygun; Nalbantgil, Didem; Ulkur, Feyza; Sahin, Fikrettin

    2015-07-01

    To compare metal ion release from samples welded with silver soldering and laser welding when immersed into mouthwashes with different ingredients. A total of 72 samples were prepared: 36 laser welded and 36 silver soldered. Four samples were chosen from each subgroup to study the morphologic changes on their surfaces via scanning electron microscopy (SEM). Each group was further divided into four groups where the samples were submerged into mouthwash containing sodium fluoride (NaF), mouthwash containing sodium fluoride + alcohol (NaF + alcohol), mouthwash containing chlorhexidine (CHX), or artificial saliva (AS) for 24 hours and removed thereafter. Subsequently, the metal ion release from the samples was measured with inductively coupled plasma mass spectrometry (ICP-MS). The metal ion release among the solutions and the welding methods were compared. The Kruskal-Wallis and analysis of variance (ANOVA) tests were used for the group comparisons, and post hoc Dunn multiple comparison test was utilized for the two group comparisons. The level of metal ion release from samples of silver soldering was higher than from samples of laser welding. Furthermore, greater amounts of nickel, chrome, and iron were released from silver soldering. With regard to the mouthwash solutions, the lowest amounts of metal ions were released in CHX, and the highest amounts of metal ions were released in NaF + alcohol. SEM images were in accord with these findings. The laser welding should be preferred over silver soldering. CHX can be recommended for patients who have welded appliances for orthodontic reasons.

  15. Supersonic laser spray of aluminium alloy on a ceramic substrate

    NASA Astrophysics Data System (ADS)

    Riveiro, A.; Lusquiños, F.; Comesaña, R.; Quintero, F.; Pou, J.

    2007-12-01

    Applying a ceramic coating onto a metallic substrate to improve its wear resistance or corrosion resistance has attracted the interest of many researchers during decades. However, only few works explore the possibility to apply a metallic layer onto a ceramic material. This work presents a novel technique to coat ceramic materials with metals: the supersonic laser spraying. In this technique a laser beam is focused on the surface of the precursor metal in such a way that the metal is transformed to the liquid state in the beam-metal interaction zone. A supersonic jet expels the molten material and propels it to the surface of the ceramic substrate. In this study, we present the preliminary results obtained using the supersonic laser spray to coat a commercial cordierite ceramic plate with an Al-Cu alloy using a 3.5 kW CO 2 laser and a supersonic jet of Argon. Coatings were characterized by scanning electron microscopy (SEM) and interferometric profilometry.

  16. Laser surface treatment of polyamide and NiTi alloy and the effects on mesenchymal stem cell response

    NASA Astrophysics Data System (ADS)

    Waugh, D. G.; Lawrence, J.; Shukla, P.; Chan, C.; Hussain, I.; Man, H. C.; Smith, G. C.

    2015-07-01

    Mesenchymal stem cells (MSCs) are known to play important roles in development, post-natal growth, repair, and regeneration of mesenchymal tissues. What is more, surface treatments are widely reported to affect the biomimetic nature of materials. This paper will detail, discuss and compare laser surface treatment of polyamide (Polyamide 6,6), using a 60 W CO2 laser, and NiTi alloy, using a 100 W fiber laser, and the effects of these treatments on mesenchymal stem cell response. The surface morphology and composition of the polyamide and NiTi alloy were studied by scanning electron microscopy (SEM) and X-ray photoemission spectroscopy (XPS), respectively. MSC cell morphology cell counting and viability measurements were done by employing a haemocytometer and MTT colorimetric assay. The success of enhanced adhesion and spreading of the MSCs on each of the laser surface treated samples, when compared to as-received samples, is evidenced in this work.

  17. Evolution of Inclusions During the 1473 K (1200 °C) Heating Process of EH36 Shipbuilding Steel

    NASA Astrophysics Data System (ADS)

    Wang, Qiyu; Zou, Xiaodong; Matsuura, Hiroyuki; Wang, Cong

    2018-02-01

    Evolution behaviors of inclusions of EH36 shipbuilding steel during 1473 K (1200 °C) heating have been studied in conjunction with ex situ scanning electron microscope (SEM) examination and in situ confocal scanning laser microscopy (CSLM) observations. It has been found that Al-Ca-O-S complex inclusions dominate the particles in the cast billet. However, TiN inclusions are profusely populated after heating. Moreover, possible strategies governing austenite growth are offered here.

  18. The effect of piezoelectric ultrasonic instrumentation on titanium discs: a microscopy and trace elemental analysis in vitro study.

    PubMed

    Tawse-Smith, A; Atieh, M A; Tompkins, G; Duncan, W J; Reid, M R; Stirling, C H

    2016-08-01

    To evaluate in vitro topographical and composition changes by piezoelectric ultrasonic instrumentation with metallic and plastic tips on machined and moderately roughened titanium surfaces. Twenty machined and moderately roughened laser-marked titanium discs were ultrasonically instrumented with metallic and plastic tips. Surface instrumentation was carried out with controlled pressure for 20 and 30 seconds at two power settings. For each time and power setting, instrumentation was repeated four times with one instrumentation per disc quadrant. Surface topography analysis was performed using scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). Surface roughness measurements were compared between instrumented and non-instrumented surfaces. Surface element composition and rinsing solutions were evaluated using energy-dispersive spectroscopy (EDS) and trace elemental analysis using inductively coupled plasma mass spectrometry (ICPMS), respectively. SEM photomicrographs and CLSM 3D surface plot images of instrumented machined and moderately roughened surfaces demonstrated severe surface topographical alterations with metallic tips and mild to moderate changes for plastic tip instrumented sites. ICPMS analysis of the rinsing solutions identified titanium and other metal traces with the use of metallic tips, and mainly titanium and carbon when plastic tips were used. Surface EDS analysis showed elemental traces of the ultrasonic tips. Ultrasonic instrumentation with metallic or plastic tips created surface topographical and compositional changes. Different changes in surface topography were noted between the surfaces, as the roughness of the machined surfaces increased while the extent of roughness of the moderately roughened surfaces decreased. The clinical relevance of these changes is yet to be determined. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Histologic and SEM evaluation of caries removal and restoration in enamel and dentin using a pulsed fiber optic delivered Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    White, Joel M.; Goodis, Harold E.; Kudler, Joel J.; Eakle, W. S.; Neev, Joseph

    1994-09-01

    The pulsed Nd:YAG laser has been proposed as an alternative to the dental handpiece for caries removal in enamel and dentin. The purpose of this study was to systematically evaluate, in vitro, the process of caries removal and restoration in enamel and dentin. The effectiveness of this device was investigated utilizing scanning electron microscopy to determine the behavior of dentin after laser treatment of artificially created carious lesions in dentin. Histologic sections of extracted teeth after laser treatment and restoration demonstrated successful caries removal and restoration using the pulsed fiber optic delivered Nd:YAG laser as compared to both high and low speed rotary instrumentation. The adjacent enamel and dentin were unaffected by the laser irradiation although slight carbonization was seen on the dentin surface. Thermocouples placed in the pulp chamber during caries removal confirmed previous studies that showed laser parameters up to 1 W and 10 Hz being the same as conventional caries removal in the amount of heat generated which reaches the pulp. The addition of air/water coolant decreased pulpal temperature.

  20. Laser Cutting of Multilayered Kevlar Plates

    NASA Astrophysics Data System (ADS)

    Yilbas, B. S.; Al-Sulaiman, F.; Karakas, C.; Ahsan, M.

    2007-12-01

    Laser cutting of Kevlar plates, consisting of multilayered laminates, with different thicknesses are carried out. A mathematical model is developed to predict the kerf width, thermal efficiency, and specific energy requirements during cutting. Optical microscopy and Scanning Electron Microscopy (SEM) are employed to obtain the micrographs of the cutting sections. The kerf width size is measured and compared with the predictions. A factorial analysis is carried out to assess the affecting parameters on the mean kerf width and dimensionless damage sizes. It is found that the kerf width and damage sizes changes sharply when increasing cutting speed from 0.03 to 0.08 m/s. Thermal efficiency of the cutting process increases with increasing thickness and cutting speed while specific energy reduces with increasing thickness. The main effects of cutting parameters are found to be significant on the mean kerf width and dimensionless damage sizes, which is more pronounced for the workpiece bottom surface, where locally distributed char formation and sideways burning are observed.

  1. Purification Procedures for Single-Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Gorelik, Olga P.; Nikolaev, Pavel; Arepalli, Sivaram

    2001-01-01

    This report summarizes the comparison of a variety of procedures used to purify carbon nanotubes. Carbon nanotube material is produced by the arc process and laser oven process. Most of the procedures are tested using laser-grown, single-wall nanotube (SWNT) material. The material is characterized at each step of the purification procedures by using different techniques including scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), Raman, X-ray diffractometry (XRD), thermogravimetric analysis (TGA), nuclear magnetic resonance (NMR), and high-performance liquid chromatography (HPLC). The identified impurities are amorphous and graphitic carbon, catalyst particle aggregates, fullerenes, and hydrocarbons. Solvent extraction and low-temperature annealing are used to reduce the amount of volatile hydrocarbons and dissolve fullerenes. Metal catalysts and amorphous as well as graphitic carbon are oxidized by reflux in acids including HCl, HNO3 and HF and other oxidizers such as H2O2. High-temperature annealing in vacuum and in inert atmosphere helps to improve the quality of SWNTs by increasing crystallinity and reducing intercalation.

  2. Dynamic melting of metals in the diamond cell: Clues for melt viscosity?

    NASA Astrophysics Data System (ADS)

    Boehler, R.; Karandikar, A.; Yang, L.

    2011-12-01

    From the observed decreasing mobility of liquid iron at high pressure in the laser-heated diamond cell and the gradual decrease in the shear modulus in shock experiments, one may derive high viscosity in the liquid outer core of the Earth. A possible explanation could be the presence of local structures in the liquid as has been observed for several transition metals. In order to bridge the large gap in the timescales between static and dynamic melting experiments, we have developed new experimental techniques to solve the large discrepancies in the melting curves of transition metals (Fe, W, Ta, Mo) measured statically in the laser-heated diamond cell and in shock experiments. The new methods employ "single-shot" laser heating in order to reduce problems associated with mechanical instabilities and chemical reactions of the samples subjected to several thousand degrees at megabar pressures. For melt detection, both synchrotron X-ray diffraction and Scanning Electron Microscopy (SEM) on recovered samples are used. A third approach is the measurement of latent heat effects associated with melting or freezing. This method employs simultaneous CW and pulse laser heating and monitoring the temperature-time history with fast photomultipliers. Using the SEM recovery method, we measured first melting temperatures of rhenium, which at high pressure may be one of the most refractory materials. From the melt textures of Re, we did not observe a significant pressure dependence of viscosity.

  3. Surface microstructure and chemistry of polyimide by single pulse ablation of picosecond laser

    NASA Astrophysics Data System (ADS)

    Du, Qifeng; Chen, Ting; Liu, Jianguo; Zeng, Xiaoyan

    2018-03-01

    Polyimide (PI) surface was ablated by the single pulse of picosecond laser, and the effects of laser wavelength (λ= 355 nm and 1064 nm) and fluence on surface microstructure and chemistry were explored. Scanning electron microscopy (SEM) analysis found that different surface microstructures, i.e., the concave of concentric ring and the convex of porous circular disk, were generated by 355 nm and 1064 nm picosecond laser ablation, respectively. X-ray photoelectron spectroscopy (XPS) characterization indicated that due to the high peak energy density of picosecond laser, oxygen and nitrogen from the ambient were incorporated into the PI surface mainly in the form of Cdbnd O and Csbnd Nsbnd C groups. Thus, both of the O/C and N/C atomic content ratios increased, but the increase caused by 1064 nm wavelength laser was larger. It inferred that the differences of PI surface microstructures and chemistry resulted from different laser parameters were related to different laser-matter interaction effects. For 355 nm picosecond laser, no obvious thermal features were observed and the probable ablation process of PI was mainly governed by photochemical effect; while for 1064 nm picosecond laser, obvious thermal feature appeared and photothermal effect was thought to be dominant.

  4. [Progress in the application of laser ablation ICP-MS to surface microanalysis in material science].

    PubMed

    Zhang, Yong; Jia, Yun-hai; Chen, Ji-wen; Shen, Xue-jing; Liu, Ying; Zhao, Leiz; Li, Dong-ling; Hang, Peng-cheng; Zhao, Zhen; Fan, Wan-lun; Wang, Hai-zhou

    2014-08-01

    In the present paper, apparatus and theory of surface analysis is introduced, and the progress in the application of laser ablation ICP-MS to microanalysis in ferrous, nonferrous and semiconductor field is reviewed in detail. Compared with traditional surface analytical tools, such as SEM/EDS (scanning electron microscopy/energy dispersive spectrum), EPMA (electron probe microanalysis analysis), AES (auger energy spectrum), etc. the advantage is little or no sample preparation, adjustable spatial resolution according to analytical demand, multi-element analysis and high sensitivity. It is now a powerful complementary method to traditional surface analytical tool. With the development of LA-ICP-MS technology maturing, more and more analytical workers will use this powerful tool in the future, and LA-ICP-MS will be a super star in elemental analysis field just like LIBS (Laser-induced breakdown spectroscopy).

  5. Application of SEM and EDX in studying biomineralization in plant tissues.

    PubMed

    He, Honghua; Kirilak, Yaowanuj

    2014-01-01

    This chapter describes protocols using formalin-acetic acid-alcohol (FAA) to fix plant tissues for studying biomineralization by means of scanning electron microscopy (SEM) and qualitative energy-dispersive X-ray microanalysis (EDX). Specimen preparation protocols for SEM and EDX mainly include fixation, dehydration, critical point drying (CPD), mounting, and coating. Gold-coated specimens are used for SEM imaging, while gold- and carbon-coated specimens are prepared for qualitative X-ray microanalyses separately to obtain complementary information on the elemental compositions of biominerals. During the specimen preparation procedure for SEM, some biominerals may be dislodged or scattered, making it difficult to determine their accurate locations, and light microscopy is used to complement SEM studies. Specimen preparation protocols for light microscopy generally include fixation, dehydration, infiltration and embedding with resin, microtome sectioning, and staining. In addition, microwave processing methods are adopted here to speed up the specimen preparation process for both SEM and light microscopy.

  6. Formation of silicon carbide by laser ablation in graphene oxide-N-methyl-2-pyrrolidone suspension on silicon surface

    NASA Astrophysics Data System (ADS)

    Jaleh, Babak; Ghasemi, Samaneh; Torkamany, Mohammad Javad; Salehzadeh, Sadegh; Maleki, Farahnaz

    2018-01-01

    Laser ablation of a silicon wafer in graphene oxide-N-methyl-2-pyrrolidone (GO-NMP) suspension was carried out with a pulsed Nd:YAG laser (pulse duration = 250 ns, wavelength = 1064 nm). The surface of silicon wafer before and after laser ablation was studied using optical microscopy, scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). The results showed that the ablation of silicon surface in liquid by pulsed laser was done by the process of melt expulsion under the influence of the confined plasma-induced pressure or shock wave trapped between the silicon wafer and the liquid. The X-ray diffraction‌ (XRD) pattern of Si wafer after laser ablation showed that 4H-SiC layer is formed on its surface. The formation of the above layer was also confirmed by Raman spectroscopy, and X-ray photoelectron spectroscopy‌ (XPS), as well as EDX was utilized. The reflectance of samples decreased with increasing pulse energy. Therefore, the morphological alteration and the formation of SiC layer at high energy increase absorption intensity in the UV‌-vis regions. Theoretical calculations confirm that the formation of silicon carbide from graphene oxide and silicon wafer is considerably endothermic. Development of new methods for increasing the reflectance without causing harmful effects is still an important issue for crystalline Si solar cells. By using the method described in this paper, the optical properties of solar cells can be improved.

  7. Functional Micrococcus lysodeikticus layers deposited by laser technique for the optical sensing of lysozyme.

    PubMed

    Dinca, Valentina; Zaharie-Butucel, Diana; Stanica, Luciana; Brajnicov, Simona; Marascu, Valentina; Bonciu, Anca; Cristocea, Andra; Gaman, Laura; Gheorghiu, Mihaela; Astilean, Simion; Vasilescu, Alina

    2018-02-01

    Whole cell optical biosensors, made by immobilizing whole algal, bacterial or mammalian cells on various supports have found applications in several fields, from ecology and ecotoxicity testing to biopharmaceutical production or medical diagnostics. We hereby report the deposition of functional bacterial layers of Micrococcus lysodeikticus (ML) via Matrix-Assisted Pulsed Laser Evaporation (MAPLE) on poly(diallyldimethylamonium) (PDDA)-coated-glass slides and their application as an optical biosensor for the detection of lysozyme in serum. Lysozyme is an enzyme upregulated in inflammatory diseases and ML is an enzymatic substrate for this enzyme. The MAPLE-deposited bacterial interfaces were characterised by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Fourier-Transformed Infrared Spectroscopy (FTIR), Raman and optical microscopy and were compared with control interfaces deposited via layer-by-layer on the same substrate. After MAPLE deposition and coating with graphene oxide (GO), ML-modified interfaces retained their functionality and sensitivity to lysozyme's lytic action. The optical biosensor detected lysozyme in undiluted serum in the clinically relevant range up to 10μgmL -1 , in a fast and simple manner. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Nickel titanium alloy: Cytotoxicity evaluation on microorganism culture

    NASA Astrophysics Data System (ADS)

    Dinca, V. C.; Soare, S.; Barbalat, A.; Dinu, C. Z.; Moldovan, A.; Stoica, I.; Vassu, T.; Purice, A.; Scarisoareanu, N.; Birjega, R.; Craciun, V.; DeStefano, V. Ferrari; Dinescu, M.

    2006-04-01

    High purity nickel (Ni) and titanium (Ti) targets have been used to form well-defined thin films of nitinol on Ti substrate by pulsed laser deposition (PLD) technique. Their chemical composition, crystalline structure and surface properties have been investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). We have shown that by varying the deposition parameters such as laser fluence and number of laser pulses, we are able to control the film thickness as well as film's uniformity and roughness. Cytocompatibility tests have been performed through in vitro assays using microorganisms culture cells such as yeasts ( Saccharomyces cerevisiae) and bacteria ( Escherichia coli), in order to determine the thin film's toxic potential at the in vitro cellular level. Microorganism's adhesion on the nitinol surface was observed and the biofilm formation has been analyzed and quantified. Our results have shown no reactivity detected in cell culture exposed to NiTi films in comparison with the negative controls and a low adherence of the microorganisms on the nitinol surface that is an important factor for biofilm prevention. We can, therefore, conclude that NiTi is a good candidate material to be used for implants and medical devices.

  9. Facile Synthesis and Characterization of ZrO₂ Nanoparticles via Modified Co-Precipitation Method.

    PubMed

    Ramachandran, M; Subadevi, R; Liu, Wei-Ren; Sivakumar, M

    2018-01-01

    The crystalline Zirconium oxide (ZrO2) nano particles were synthesized using optimized content of Zirconium nitrate (Zr(NO3)2·3H2O) with varying KOH concentration (0.5, 1 and 1.5 M) by co-precipitation method. The thermal history of the precursor was carefully analyzed through Thermogravimetric (TG/DTA) measurement. The as prepared samples were characterized to ensure structural, functional, morphological, compositional, chemical composition and band gap by X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FTIR), Laser Raman, scanning electron microscopy (SEM), High resolution Transverse Electron Microscopy (HR-TEM), X-ray photo electron spectroscopy (XPS), EDX, Photo luminescence spectroscopy (PL). The monoclinic structure with space group P21/c has been confirmed from XRD (JCPDS 89-9066). The Zr-O stretching vibration and Zr-O2-Zr bending vibrations were confirmed through FTIR analysis. The well dispersed particles with spherical morphology were confirmed through SEM and TEM analysis. The oxidation states of Zr, O and C were confirmed through XPS analysis. The oxygen vacancies and band gap of the particles were investigated through PL analysis.

  10. Far-field optical imaging with subdiffraction resolution enabled by nonlinear saturation absorption

    NASA Astrophysics Data System (ADS)

    Ding, Chenliang; Wei, Jingsong

    2016-01-01

    The resolution of far-field optical imaging is required to improve beyond the Abbe limit to the subdiffraction or even the nanoscale. In this work, inspired by scanning electronic microscopy (SEM) imaging, in which carbon (or Au) thin films are usually required to be coated on the sample surface before imaging to remove the charging effect while imaging by electrons. We propose a saturation-absorption-induced far-field super-resolution optical imaging method (SAI-SRIM). In the SAI-SRIM, the carbon (or Au) layers in SEM imaging are replaced by nonlinear-saturation-absorption (NSA) thin films, which are directly coated onto the sample surfaces using advanced thin film deposition techniques. The surface fluctuant morphologies are replicated to the NSA thin films, accordingly. The coated sample surfaces are then imaged using conventional laser scanning microscopy. Consequently, the imaging resolution is greatly improved, and subdiffraction-resolved optical images are obtained theoretically and experimentally. The SAI-SRIM provides an effective and easy way to achieve far-field super-resolution optical imaging for sample surfaces with geometric fluctuant morphology characteristics.

  11. CdTe-TiO2 nanocomposite: an impeder of bacterial growth and biofilm

    NASA Astrophysics Data System (ADS)

    Gholap, Haribhau; Patil, Rajendra; Yadav, Prasad; Banpurkar, Arun; Ogale, Satishchandra; Gade, Wasudeo

    2013-05-01

    The resurgence of infectious diseases and associated issues related to antibiotic resistance has raised enormous challenges which may possibly be confronted primarily by nanotechnology routes. One key need of critical significance in this context is the development of an agent capable of inhibiting quorum sensing mediated biofilm formation in pathogenic organisms. In this work we examine the possible use of a nanocomposite, CdTe-TiO2, as an impeder of growth and biofilm. In the presence of CdTe-TiO2, scanning electron microscopy (SEM) analysis shows exposed cells without the surrounding matrix. Confocal laser scanning microscopy shows spatially distributed fluorescence, a typical indication of an impeded biofilm, as opposed to the control which shows matrix-covered cells and continuous fluorescence, typical of biofilm formation. Quantitatively, the inhibition of biofilm was ˜57%. CdTe-TiO2 also exhibits good antibacterial properties against Gram positive and Gram negative organisms by virtue of the generation of reactive oxygen species inside the cells, reflected by a ruptured appearance in the SEM analysis.

  12. Effect of Atmospheric Plasma Treatment to Titanium Surface on Initial Osteoblast-Like Cell Spreading. .

    PubMed

    Kim, In-Hye; Son, Jun-Sik; Kwon, Tae-Yub; Kim, Kyo-Han

    2015-01-01

    Plasma treatments are becoming a popular method for modifying the characteristics of a range of substrate surfaces. Atmospheric pressure plasma is cost-efficient, safe and simple compared to high-pressure plasma. This study examined the effects of atmospheric pressure plasma to a titanium (Ti) surface on osteoblast-like cell (osteoblast) spreading and cellular networks. The characteristics of the Ti surface before and after the atmospheric plasma treatment were analyzed by X-ray photoemission spectroscopy (XPS), scanning electron microscopy (SEM), contact angle measurements, and an optical 3D profiling system. The morphology of osteoblasts attached to the Ti surfaces was observed by SEM and confocal laser scanning microscopy. The atmospheric pressure plasma made the Ti surfaces more hydrophilic. The osteoblasts that adhered to the untreated surface were round and spherical, whereas the cells covered a larger surface area on the plasma-treated surface. The plasma-treated Ti surface showed enhanced cell spreading and migration with more developed cellular networks. In conclusion, an atmospheric plasma treatment is a potential surface modifying method that can enhance the initial the cell affinity at the early stages in vitro.

  13. Examining the ground layer of St. Anthony from Padua 19th century oil painting by Raman spectroscopy, scanning electron microscopy and X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Vančo, Ľubomír; Kadlečíková, Magdaléna; Breza, Juraj; Čaplovič, Ľubomír; Gregor, Miloš

    2013-01-01

    In this paper we studied the material composition of the ground layer of a neoclassical painting. We used Raman spectroscopy (RS) as a prime method. Thereafter scanning electron microscopy combined with energy dispersive spectroscopy (SEM-EDS) and X-ray powder diffraction (XRD) were employed as complementary techniques. The painting inspected was of the side altar in King St. Stephen's Church in Galanta (Slovakia), signed and dated by Jos. Chr. Mayer 1870. Analysis was carried out on both covered and uncovered ground layers. Four principal compounds (barite, lead white, calcite, dolomite) and two minor compounds (sphalerite, quartz) were identified. This ground composition is consistent with the 19th century painting technique used in Central Europe consisting of white pigments and white fillers. Transformation of lead white occurred under laser irradiation. Subdominant Raman peaks of the components were measured. The observed results elucidate useful partnership of RS and SEM-EDS measurements supported by X-ray powder diffraction as well as possibilities and limitations of non-destructive analysis of covered lower layers by RS.

  14. [Effects of Nd: YAG laser irradiation on the root surfaces and adhesion of Streptococcus mutans].

    PubMed

    Yuanhong, Li; Zhongcheng, Li; Mengqi, Luo; Daonan, Shen; Shu, Zhang; Shu, Meng

    2016-12-01

    This study aimed to evaluate the effects of treatment with different powers of Nd: YAG laser irradiation on root surfaces and Streptococcus mutans (S. mutans) adhesion. Extracted teeth because of severe periodontal disease were divided into the following four groups: control group, laser group 1, laser group 2, and laser group 3. After scaling and root planning, laser group 1, laser group 2, and laser group 3 were separately treated with Nd: YAG laser irradiation (4/6/8 W, 60 s); however, the control group did not receive the treatment. Scanning electron microscopy (SEM) was used to determine the morphology. S. mutans were cultured with root slices from each group. Colony forming unit per mL (CFU·mL⁻¹) was used to count and compare the amounts of bacteria adhesion among groups. SEM was used to observe the difference of bacteria adhesion to root surfaces between control group (scaling) and laser group 2 (6 W, 60 s), thereby indicating the different bacteria adhesions because of different treatments. Morphology alterations indicated that root surfaces in control group contain obvious smear layer, debris, and biofilm; whereas the root surfaces in laser group contain more cracks with less smear layer and debris. The bacteria counting indicated that S. mutans adhesion to laser group was weaker than that of control group (P<0.05). No statistical significance among the laser groups (P>0.05) was observed. Morphology alterations also verified that S. mutans adhesion to laser group 2 (6 W, 60 s) was weaker than that of control group (scaling). This study demonstrated that Nd: YAG laser irradiation treatment after scaling can reduce smear layer, debris, and biofilm on the root surfaces as compared with conventional scaling. The laser treatment reduces the adhesion of S. mutans as well. However, Nd: YAG laser irradiation can cause cracks on the root surfaces. In this experiment, the optimum laser power of 6 W can thoroughly remove the smear layer and debris, as well as relatively improve the control of thermal damagee.

  15. Assessment of engineered surfaces roughness by high-resolution 3D SEM photogrammetry.

    PubMed

    Gontard, L C; López-Castro, J D; González-Rovira, L; Vázquez-Martínez, J M; Varela-Feria, F M; Marcos, M; Calvino, J J

    2017-06-01

    We describe a methodology to obtain three-dimensional models of engineered surfaces using scanning electron microscopy and multi-view photogrammetry (3DSEM). For the reconstruction of the 3D models of the surfaces we used freeware available in the cloud. The method was applied to study the surface roughness of metallic samples patterned with parallel grooves by means of laser. The results are compared with measurements obtained using stylus profilometry (PR) and SEM stereo-photogrammetry (SP). The application of 3DSEM is more time demanding than PR or SP, but it provides a more accurate representation of the surfaces. The results obtained with the three techniques are compared by investigating the influence of sampling step on roughness parameters. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Detection of endolithic spatial distribution in marble stone.

    PubMed

    Casanova Municchia, A; Percario, Z; Caneva, G

    2014-10-01

    The penetration of endolithic microorganisms, which develop to depths of several millimetres or even centimetres into the stone, and the diffusion of their extracellular substances speeds up the stone deterioration process. The aim of this study was to investigate, using a confocal laser scanning microscopy with a double-staining, a marble rock sample by observing the endolithic spatial distribution and quantifying the volume they occupied within the stone, in order to understand the real impact of these microorganisms on the conservation of stone monuments. Often the only factors taken into account by biodeterioration studies regarding endolithic microorganisms, are spread and depth of penetration. Despite the knowledge of three-dimensional spatial distribution and quantification of volume, it is indispensable to understand the real damage caused by endolithic microorganisms to stone monuments. In this work, we analyze a marble rock sample using a confocal laser scanning microscopy stained with propidium iodide and Concavalin-A conjugate with the fluorophore Alexa Fluor 488, comparing these results with other techniques (SEM microscope, microphotographs of polished cross-sections and thin-section, PAS staining methods), An image analysis approach has also been applied. The use of confocal laser scanning microscopy with double staining shows clear evidence of the presence of endolithic microorganisms (cyanobacteria and fungi) as well as the extracellular polymeric substance matrix in a three-dimensional architecture as part of the rock sample, this technique, therefore, seems very useful when applied to restoration interventions on stone monuments when endolithic growth is suspected. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  17. Laser welding of NiTi shape memory alloy: Comparison of the similar and dissimilar joints to AISI 304 stainless steel

    NASA Astrophysics Data System (ADS)

    Mirshekari, G. R.; Saatchi, A.; Kermanpur, A.; Sadrnezhaad, S. K.

    2013-12-01

    The unique properties of NiTi alloy, such as its shape memory effect, super-elasticity and biocompatibility, make it ideal material for various applications such as aerospace, micro-electronics and medical device. In order to meet the requirement of increasing applications, great attention has been given to joining of this material to itself and to other materials during past few years. Laser welding has been known as a suitable joining technique for NiTi shape memory alloy. Hence, in this work, a comparative study on laser welding of NiTi wire to itself and to AISI 304 austenitic stainless steel wire has been made. Microstructures, mechanical properties and fracture morphologies of the laser joints were investigated using optical microscopy, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction analysis (XRD), Vickers microhardness (HV0.2) and tensile testing techniques. The results showed that the NiTi-NiTi laser joint reached about 63% of the ultimate tensile strength of the as-received NiTi wire (i.e. 835 MPa) with rupture strain of about 16%. This joint also enabled the possibility to benefit from the pseudo-elastic properties of the NiTi component. However, tensile strength and ductility decreased significantly after dissimilar laser welding of NiTi to stainless steel due to the formation of brittle intermetallic compounds in the weld zone during laser welding. Therefore, a suitable modification process is required for improvement of the joint properties of the dissimilar welded wires.

  18. Scanning electron microscopy of real and artificial kidney stones before and after Thulium fiber laser ablation in air and water

    NASA Astrophysics Data System (ADS)

    Hardy, Luke A.; Irby, Pierce B.; Fried, Nathaniel M.

    2018-02-01

    We investigated proposed mechanisms of laser lithotripsy, specifically for the novel, experimental Thulium fiber laser (TFL). Previous lithotripsy studies with the conventional Holmium:YAG laser noted a primary photothermal mechanism (vaporization). Our hypothesis is that an additional mechanical effect (fragmentation) occurs due to vaporization of water in stone material from high absorption of energy, called micro-explosions. The TFL irradiated calcium oxalate monohydrate (COM) and uric acid (UA) stones, as well as artificial stones (Ultracal30 and BegoStone), in air and water environments. TFL energy was varied to determine the relative effect on the ablation mechanism. Scanning electron microscopy (SEM) was used to study qualitative and characteristic changes in surface topography with correlation to presumed ablation mechanisms. Laser irradiation of stones in air produced charring and melting of the stone surface consistent with a photothermal effect and minimal fragmentation, suggesting no mechanical effect from micro-explosions. For COM stones ablated in water, there was prominent fragmentation in addition to recognized photothermal effects, supporting dual mechanisms during TFL lithotripsy. For UA stones, there were minimal photothermal effects, and dominant effects were mechanical. By increasing TFL pulse energy, a greater mechanical effect was demonstrated for both stone types. For artificial stones, there was no significant evidence of mechanical effects. TFL laser lithotripsy relies on two prominent mechanisms for stone ablation, photothermal and mechanical. Water is necessary for the mechanical effect which can be augmented by increasing pulse energy. Artificial stones may not provide a predictive model for mechanical effects during laser lithotripsy.

  19. Laser beam welding of Waspaloy: Characterization and corrosion behavior evaluation

    NASA Astrophysics Data System (ADS)

    Shoja Razavi, Reza

    2016-08-01

    In this work, a study on Nd:YAG laser welding of Waspaloy sheets has been made. Microstructures, phase changes and hardness of the laser joint were investigated using optical microscopy, scanning electron microscopy (SEM), field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS), X-ray diffraction analysis (XRD) and vickers microhardness (HV0.3). Corrosion behavior of the weldment at low temperature in 3.5%wt NaCl solution at room temperature was also investigated using open circuit potential and cyclic potentiodynamic polarization tests. Hot corrosion studies were conducted on samples in the molten salt environment (Na2SO4-60%V2O5) at 900 °C for 50 h. Results indicated that the microstructure of weld zone was mainly dendritic grown epitaxially in the direction perpendicular to the weld boundary and heat transfer. Moreover, the Ti-Mo carbide particles were observed in the structure of the weld zone and base metal. The average size of carbides formed in the base metal (2.97±0.5 μm) was larger than that of the weld zone (0.95±0.2 μm). XRD patterns of the weld zone and base metal showed that the laser welding did not alter the phase structure of the weld zone, being in γ-Ni(Cr) single phase. Microhardness profile showed that the hardness values of the weld zone (210-261 HV) were lower than that of the base metal (323-330 HV). Electrochemical and hot corrosion tests indicated that the corrosion resistance of the weld metal was greater than the base metal in both room and high temperatures.

  20. Synthesis efficiency of heavy carbon clusters from ETFE ablated by different numbers of laser pulse in vacuum

    NASA Astrophysics Data System (ADS)

    Shibagaki, K.; Takada, N.; Sasaki, K.; Kadota, K.

    2002-09-01

    We have carried out mass spectral analysis of positive ions produced by laser ablation of a copolymer of ethylene and tetrafluoroethylene (ETFE: [CH 2CH 2CF 2CF 2] n) in vacuum using time-of-flight mass spectrometry (TOF-MS). The surfaces of the ETFE targets irradiated by different numbers of laser pulse were analyzed by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Heavy carbon cluster ions C n+ with n≥30 were observed in the mass spectra. The fractional abundance of heavy clusters in the mass spectrum decreased with the number of laser pulse. On the other hand, carbon became rich in the atomic composition of the laser-irradiated surface, and the eroded area on the surface increased with the number of laser pulse. From these results, it is suggested that the carbon-rich material surface results in the less efficient production of heavy carbon clusters. In addition, it is also suggested that clustering reactions in eroded craters do not contribute to the synthesis of heavy clusters.

  1. Experimental investigation on the spiral trepanning of K24 superalloy with femtosecond laser

    NASA Astrophysics Data System (ADS)

    Wang, Maolu; Yang, Lijun; Zhang, Shuai; Wang, Yang

    2018-05-01

    Film cooling holes are crucial for improving the performance of the aviation engine. In the paper, the processing of the film cooling holes on K24 superalloy by femtosecond laser is investigated. By comparing the three different drilling methods, the spiral trepanning method is chosen, and all the drilling experiments are carried out in this way. The experimental results show that the drilling of femtosecond laser pulses has distinct merits against that of the traditional long pulse laser, which can realize the "cold" processing with less recasting layer and less crack. The influence of each process parameter on roundness and taper, which are the important parameters to measure the quality of holes, is analyzed in detail, and the method to decrease it is proposed. To further reduce the recasting layer, the processing quality of the inner wall of the micro hole is investigated by scanning electron microscopy (SEM) equipped with energy disperse spectroscopy (EDS), the mechanism of the femtosecond laser interaction with K24 superalloy is further revealed. The investigation to the film hole machining by femtosecond laser has important practical significance.

  2. Microstructure and wear resistance of laser cladded composite coatings prepared from pre-alloyed WC-NiCrMo powder with different laser spots

    NASA Astrophysics Data System (ADS)

    Yao, Jianhua; Zhang, Jie; Wu, Guolong; Wang, Liang; Zhang, Qunli; Liu, Rong

    2018-05-01

    The distribution of WC particles in laser cladded composite coatings can significantly affect the wear resistance of the coatings under aggressive environments. In this study, pre-alloyed WC-NiCrMo powder is deposited on SS316L via laser cladding with circular spot and wide-band spot, respectively. The microstructure and WC distribution of the coatings are investigated with optical microscope (OM), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), and X-ray diffraction (XRD). The wear behavior of the coatings is investigated under dry sliding-wear test. The experimental results show that the partially dissolved WC particles are uniformly distributed in both coatings produced with circular spot and wide-band spot, respectively, and the microstructures consist of WC and M23C6 carbides and γ-(Ni, Fe) solid solution matrix. However, due to Fe dilution, the two coatings have different microstructural characteristics, resulting in different hardness and wear resistance. The wide-band spot laser prepared coating shows better performance than the circular spot laser prepared coating.

  3. Microstructures and Properties of Laser Cladding Al-TiC-CeO2 Composite Coatings

    PubMed Central

    Kong, Dejun; Song, Renguo

    2018-01-01

    Al-TiC-CeO2 composite coatings have been prepared by using a laser cladding technique, and the microstructure and properties of the resulting composite coatings have been investigated using scanning electron microscopy (SEM), a 3D microscope system, X-ray diffraction (XRD), micro-hardness testing, X-ray stress measurements, friction and wear testing, and an electrochemical workstation. The results showed that an Al-Fe phase appears in the coatings under different applied laser powers and shows good metallurgical bonding with the matrix. The dilution rate of the coating first decreases and then increases with increasing laser power. The coating was transformed from massive and short rod-like structures into a fine granular structure, and the effect of fine grain strengthening is significant. The microhardness of the coatings first decreases and then increases with increasing laser power, and the maximum microhardness can reach 964.3 HV0.2. In addition, the residual stress of the coating surface was tensile stress, and crack size increases with increasing stress. When the laser power was 1.6 kW, the coating showed high corrosion resistance. PMID:29373555

  4. Microstructures and Properties of Laser Cladding Al-TiC-CeO₂ Composite Coatings.

    PubMed

    He, Xing; Kong, Dejun; Song, Renguo

    2018-01-26

    Al-TiC-CeO₂ composite coatings have been prepared by using a laser cladding technique, and the microstructure and properties of the resulting composite coatings have been investigated using scanning electron microscopy (SEM), a 3D microscope system, X-ray diffraction (XRD), micro-hardness testing, X-ray stress measurements, friction and wear testing, and an electrochemical workstation. The results showed that an Al-Fe phase appears in the coatings under different applied laser powers and shows good metallurgical bonding with the matrix. The dilution rate of the coating first decreases and then increases with increasing laser power. The coating was transformed from massive and short rod-like structures into a fine granular structure, and the effect of fine grain strengthening is significant. The microhardness of the coatings first decreases and then increases with increasing laser power, and the maximum microhardness can reach 964.3 HV 0.2 . In addition, the residual stress of the coating surface was tensile stress, and crack size increases with increasing stress. When the laser power was 1.6 kW, the coating showed high corrosion resistance.

  5. Optimization of hybrid laser arc welding of 42CrMo steel to suppress pore formation

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Chen, Genyu; Mao, Shuai; Zhou, Cong; Chen, Fei

    2017-06-01

    The hybrid laser arc welding (HLAW) of 42CrMo quenched and tempered steel was conducted. The effect of the processing parameters, such as the relative positions of the laser and the arc, the shielding gas flow rate, the defocusing distance, the laser power, the wire feed rate and the welding speed, on the pore formation was analyzed, the morphological characteristics of the pores were analyzed using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The results showed that the majority of the pores were invasive. The pores formed at the leading a laser (LA) welding process were fewer than those at the leading a arc (AL) welding process. Increasing the shielding gas flow rate could also facilitate the reduction of pores. The laser power and the welding speed were two key process parameters to reduce the pores. The flow of the molten pool, the weld cooling rate and the pore escaping rate as a result of different parameters could all affect pore formation. An ideal pore-free weld was obtained for the optimal welding process parameters.

  6. Influence of Temperature on Corrosion Behavior of 2A02 Al Alloy in Marine Atmospheric Environments

    PubMed Central

    Cao, Min; Liu, Li; Fan, Lei; Yu, Zhongfen; Li, Ying; Oguzie, Emeka E.; Wang, Fuhui

    2018-01-01

    The corrosion behavior of 2A02 Al alloy under 4 mg/cm2 NaCl deposition at different temperatures (from 30 to 80 °C) has been studied. This corrosion behavior was researched using mass-gain, scanning electron microscopy-SEM, laser scanning confocal microscopy-LSCM, X-ray photoelectron spectroscopy-XPS and other techniques. The results showed and revealed that the corrosion was maximal at 60 °C after 200 h of exposure. The increase of temperature not only affected the solubility of oxygen gas in the thin film, but also promoted the transport of ions (such as Cl−), and the formation of protective AlO(OH), which further affects the corrosion speed. PMID:29401690

  7. Selective laser sintering of single-phase powder Cr-V tool steel

    NASA Astrophysics Data System (ADS)

    Kovalev, A. I.; Mishina, V. P.; Wainstein, D. L.; Titov, V. I.; Moiseev, V. F.; Tolochko, N. K.

    2002-10-01

    Presented is positive experience from selective laser sintering (SLS) of cylindrical steel specimens (3.0% C, 3.0% Cr, 1.0% Si, 12.0% V, Fe balance) 30 mm long and 5 mm in diameter by rapid prototyping. It was demonstrated that monolithic steel material could be successfully fabricated by this technology. Differential thermal analysis (DTA), scanning electron microscopy (SEM), and x-ray diffractometry (XRD) were used to study the microstructure, phase, and chemical composition of the source material and obtained specimens. Low-melting cementite-based eutectic was found to provide the liquid phase sintering of powder tool steel. The porosity of the green sintered specimens did not exceed 5%. The mean hardness value of sintered specimens was 825 HV.

  8. Shear Bond Strength of Composite and Ceromer Superstructures to Direct Laser Sintered and Ni-Cr-Based Infrastructures Treated with KTP, Nd:YAG, and Er:YAG Lasers: An Experimental Study.

    PubMed

    Gorler, Oguzhan; Hubbezoglu, Ihsan; Ulgey, Melih; Zan, Recai; Guner, Kubra

    2018-04-01

    The aim of this study was to examine the shear bond strength (SBS) of ceromer and nanohybrid composite to direct laser sintered (DLS) Cr-Co and Ni-Cr-based metal infrastructures treated with erbium-doped yttrium aluminum garnet (Er:YAG), neodymium-doped yttrium aluminum garnet (Nd:YAG), and potassium titanyl phosphate (KTP) laser modalities in in vitro settings. Experimental specimens had four sets (n = 32) including two DLS infrastructures with ceromer and nanohybrid composite superstructures and two Ni-Cr-based infrastructures with ceromer and nanohybrid composite superstructures. Of each infrastructure set, the specimens randomized into four treatment modalities (n = 8): no treatment (controls) and Er:YAG, Nd:YAG, and KTP lasers. The infrastructures were prepared in the final dimensions of 7 × 3 mm. Ceromer and nanohybrid composite was applied to the infrastructures after their surface treatments according to randomization. The SBS of specimens was measured to test the efficacy of surface treatments. Representative scanning electron microscopy (SEM) images after laser treatments were obtained. Overall, in current experimental settings, Nd:YAG, KTP, and Er:YAG lasers, in order of efficacy, are effective to improve the bonding of ceromer and nanohybrid composite to the DLS and Ni-Cr-based infrastructures (p < 0.05). Nd:YAG laser is more effective in the DLS/ceromer infrastructures (p < 0.05). KTP laser, as second more effective preparation, is more effective in the DLS/ceromer infrastructures (p < 0.05). SEM findings presented moderate accordance with these findings. The results of this study supported the bonding of ceromer and nanohybrid composite superstructures to the DLS and Ni-Cr-based infrastructures suggesting that laser modalities, in order of success, Nd:YAG, KTP, and Er:YAG, are effective to increase bonding of these structures.

  9. Evaluation of the surface roughness of zirconia ceramics after different surface treatments.

    PubMed

    Kirmali, Omer; Akin, Hakan; Kapdan, Alper

    2014-08-01

    This study aimed to investigate the effects of different mechanical surface treatments of pre-sintered zirconium oxide (ZrO2) in an attempt to improve its bonding potential. One hundred and twenty IPS e-max ZirCAD (Ivoclar Vivadent) pre-sintered zirconia blocks (7 mm diameter, 3 mm height) received six different surface treatments (n = 20): Group C was untreated (control); Group E was Er:YAG laser irradiated; Group N was Nd:YAG laser irradiated; Group SB was sandblasted, Group SN was sandblasted and Nd:YAG laser irradiated; and Group SE was sandblasted and Er:YAG laser irradiated. After the surface treatments, the average surface roughness (Ra, µm) of each specimen was determined with a profilometer, then all the specimens were sintered. The surface roughness values were analysed through one-way ANOVA and Tukey's test. Changes in the morphological characteristics of ZrO2 were examined through scanning electron microscopy (SEM). Sintered sandblasted, Er:YAG laser treatment, sandblasted + Er:YAG laser and sandblasted + Nd:YAG laser irradiation resulted in a rougher surface than the other treatments. Nd:YAG laser irradiation alone was not effective in altering the zirconia surface morphology.

  10. The influence of the Q-switched and free-running Er:YAG laser beam characteristics on the ablation of root canal dentine

    NASA Astrophysics Data System (ADS)

    Papagiakoumou, Eirini; Papadopoulos, Dimitrios N.; Khabbaz, Marouan G.; Makropoulou, Mersini I.; Serafetinides, Alexander A.

    2004-06-01

    Laser based dental treatment is attractive to many researchers. Lasers in the 3 μm region, as the Er:YAG, are suitable especially for endodontic applications. In this study a pulsed free-running and Q-switched laser was used for the ablation experiments of root canal dentine. The laser beam was either directly focused on the dental tissue or delivered to it through an infrared fiber. For different spatial beam distributions, energies, number of pulses and both laser operations the quality characteristics (crater's shape formation, ablation efficiency and surface characteristics modification) were evaluated using scanning electron microscopy (SEM). The craters produced, generally, reflect the relevant beam profile. Inhomogeneous spatial beam profiles and short pulse duration result in cracks formation and lower tissue removal efficiency, while longer pulse durations cause hard dentine fusion. Any beam profile modification, due to laser characteristics variations and the specific delivering system properties, is directly reflected in the ablation crater shape and the tissue removal efficiency. Therefore, the laser parameters, as fluence, pulse repetition rate and number of pulses, have to be carefully adjusted in relation to the desirable result.

  11. Dental hard tissue ablation using mid-infrared tunable nanosecond pulsed Cr:CdSe laser.

    PubMed

    Lin, Taichen; Aoki, Akira; Saito, Norihito; Yumoto, Masaki; Nakajima, Sadahiro; Nagasaka, Keigo; Ichinose, Shizuko; Mizutani, Koji; Wada, Satoshi; Izumi, Yuichi

    2016-12-01

    Mid-infrared erbium: yttrium-aluminum-garnet (Er:YAG) and erbium, chromium: yttrium-scandium-gallium-garnet (Er,Cr:YSGG) lasers (2.94- and 2.78-μm, respectively) are utilized for effective dental hard tissue treatment because of their high absorption in water, hydroxide ion, or both. Recently, a mid-infrared tunable, nanosecond pulsed, all-solid-state chromium-doped: cadmium-selenide (Cr:CdSe) laser system was developed, which enables laser oscillation in the broad spectral range around 2.9 μm. The purpose of this study was to evaluate the ablation of dental hard tissue by the nanosecond pulsed Cr:CdSe laser at a wavelength range of 2.76-3.00 μm. Enamel, dentin, and cementum tissue were irradiated at a spot or line at a fluence of 0-11.20 J/cm 2 /pulse (energy output: 0-2.00 mJ/pulse) with a repetition rate of 10 Hz and beam diameter of ∼150 μm on the target (pulse width ∼250 ns). After irradiation, morphological changes, ablation threshold, depth, and efficiency, and thickness of the structurally and thermally affected layer of irradiated surfaces were analyzed using stereomicroscopy, scanning electron microscopy (SEM), and light microscopy of non-decalcified histological sections. The nanosecond pulsed irradiation without water spray effectively ablated dental hard tissue with no visible thermal damage such as carbonization. The SEM analysis revealed characteristic micro-irregularities without major melting and cracks in the lased tissue. The ablation threshold of dentin was the lowest at 2.76 μm and the highest at 3.00 μm. The histological analysis revealed minimal thermal and structural changes ∼20 μm wide on the irradiated dentin surfaces with no significant differences between wavelengths. The efficiency of dentin ablation gradually increased from 3.00 to 2.76 μm, at which point the highest ablation efficiency was observed. The nanosecond pulsed Cr:CdSe laser demonstrated an effective ablation ability of hard dental tissues, which was remarkably wavelength-dependent on dentin at the spectral range of 2.76-3.00 μm. These results demonstrate the potential feasibility of the use of pulsed Cr:CdSe laser as a novel laser system for dental treatment. Lasers Surg. Med. 48:965-977, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Multiple microscopic approaches demonstrate linkage between chromoplast architecture and carotenoid composition in diverse Capsicum annuum fruit.

    PubMed

    Kilcrease, James; Collins, Aaron M; Richins, Richard D; Timlin, Jerilyn A; O'Connell, Mary A

    2013-12-01

    Increased accumulation of specific carotenoids in plastids through plant breeding or genetic engineering requires an understanding of the limitations that storage sites for these compounds may impose on that accumulation. Here, using Capsicum annuum L. fruit, we demonstrate directly the unique sub-organellar accumulation sites of specific carotenoids using live cell hyperspectral confocal Raman microscopy. Further, we show that chromoplasts from specific cultivars vary in shape and size, and these structural variations are associated with carotenoid compositional differences. Live-cell imaging utilizing laser scanning confocal (LSCM) and confocal Raman microscopy, as well as fixed tissue imaging by scanning and transmission electron microscopy (SEM and TEM), all demonstrated morphological differences with high concordance for the measurements across the multiple imaging modalities. These results reveal additional opportunities for genetic controls on fruit color and carotenoid-based phenotypes. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  13. High-temperature frictional wear behavior of MCrAlY-based coatings deposited by atmosphere plasma spraying

    NASA Astrophysics Data System (ADS)

    Tao, Chong; Wang, Lei; Song, Xiu

    2017-02-01

    Al2O3-Cr2O3/NiCoCrAlYTa coatings were prepared via atmosphere plasma spraying (APS). The microstructure and phase composition of the coatings were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), laser confocal scanning microscopy (LSCM), and transmission electron microscopy (TEM). The dry frictional wear behavior of the coatings at 500°C in static air was investigated and compared with that of 0Cr25Ni20 steel. The results show that the coatings comprise the slatted layers of oxide phases, unmelted particles, and pores. The hot abrasive resistance of the coatings is enhanced compared to that of 0Cr25Ni20, and their mass loss is approximately one-fifteenth that of 0Cr25Ni20 steel. The main wear failure mechanisms of the coatings are abrasive wear, fatigue wear, and adhesive wear.

  14. Laser Cladding of Ultra-Thin Nickel-Based Superalloy Sheets.

    PubMed

    Gabriel, Tobias; Rommel, Daniel; Scherm, Florian; Gorywoda, Marek; Glatzel, Uwe

    2017-03-10

    Laser cladding is a well-established process to apply coatings on metals. However, on substrates considerably thinner than 1 mm it is only rarely described in the literature. In this work 200 µm thin sheets of nickel-based superalloy 718 are coated with a powder of a cobalt-based alloy, Co-28Cr-9W-1.5Si, by laser cladding. The process window is very narrow, therefore, a precisely controlled Yb fiber laser was used. To minimize the input of energy into the substrate, lines were deposited by setting single overlapping points. In a design of experiments (DoE) study, the process parameters of laser power, laser spot area, step size, exposure time, and solidification time were varied and optimized by examining the clad width, weld penetration, and alloying depth. The microstructure of the samples was investigated by optical microscope (OM) and scanning electron microscopy (SEM), combined with electron backscatter diffraction (EBSD) and energy dispersive X-ray spectroscopy (EDX). Similarly to laser cladding of thicker substrates, the laser power shows the highest influence on the resulting clad. With a higher laser power, the clad width and alloying depth increase, and with a larger laser spot area the weld penetration decreases. If the process parameters are controlled precisely, laser cladding of such thin sheets is manageable.

  15. Laser Cladding of Ultra-Thin Nickel-Based Superalloy Sheets

    PubMed Central

    Gabriel, Tobias; Rommel, Daniel; Scherm, Florian; Gorywoda, Marek; Glatzel, Uwe

    2017-01-01

    Laser cladding is a well-established process to apply coatings on metals. However, on substrates considerably thinner than 1 mm it is only rarely described in the literature. In this work 200 µm thin sheets of nickel-based superalloy 718 are coated with a powder of a cobalt-based alloy, Co–28Cr–9W–1.5Si, by laser cladding. The process window is very narrow, therefore, a precisely controlled Yb fiber laser was used. To minimize the input of energy into the substrate, lines were deposited by setting single overlapping points. In a design of experiments (DoE) study, the process parameters of laser power, laser spot area, step size, exposure time, and solidification time were varied and optimized by examining the clad width, weld penetration, and alloying depth. The microstructure of the samples was investigated by optical microscope (OM) and scanning electron microscopy (SEM), combined with electron backscatter diffraction (EBSD) and energy dispersive X-ray spectroscopy (EDX). Similarly to laser cladding of thicker substrates, the laser power shows the highest influence on the resulting clad. With a higher laser power, the clad width and alloying depth increase, and with a larger laser spot area the weld penetration decreases. If the process parameters are controlled precisely, laser cladding of such thin sheets is manageable. PMID:28772639

  16. One - step nanosecond laser microstructuring, sulfur hyperdoping, and annealing of silicon surfaces in liquid carbondisulfide

    NASA Astrophysics Data System (ADS)

    Van Luong, Nguyen; Danilov, P. A.; Ionin, A. A.; Khmel'nitskii, P. A.; Kudryashov, S. I.; Mel'nik, N. N.; Saraeva, I. N.; Смirnov, H. A.; Rudenko, A. A.; Zayarny, D. A.

    2017-09-01

    We perform a single-shot IR nanosecond laser processing of commercial silicon wafers in ambient air and under a 2 mm thick carbon disulfide liquid layer. We characterize the surface spots modified in the liquid ambient and the spots ablated under the same conditions in air in terms of its surface topography, chemical composition, band-structure modification, and crystalline structure by means of SEM and EDX microscopy, as well as of FT-IR and Raman spectroscopy. These studies indicate that single-step microstructuring and deep (up to 2-3% on the surface) hyperdoping of the crystalline silicon in its submicron surface layer, preserving via pulsed laser annealing its crystallinity and providing high (103 - 104 cm-1) spectrally at near- and mid-IR absorption coefficients, can be obtained in this novel approach, which is very promising for thin - film silicon photovoltaic devices

  17. FABRICATION OF IN SITUFe-Ti-B COMPOSITE COATING BY LASER CLADDING

    NASA Astrophysics Data System (ADS)

    Du, Baoshuai

    2013-06-01

    Laser cladding was applied to deposit in situFe-Ti-B composite coatings on mild carbon steel with precursor of ferrotitanium, ferroboron and pure Fe alloy powders. The composite coatings were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and electron probe microanalysis (EPMA). Wear resistance of the laser-cladded Fe-Ti-B coatings was evaluated under dry sliding condition at room temperature using block-on-ring wear tester. Results indicate that in situ reinforcements of TiB2 and Fe2B can be synthesized in the Fe-Ti-B coatings. The amount of TiB2 increases with the increase of content of ferrotitanium and ferroboron in the precursor. Reinforcements are formed through the liquid-precipitation route following the solidification path of the Fe-Ti-B system. Hardness and wear properties of the coatings improved significantly in comparison to the as-received substrate due to the presence of hard reinforcements.

  18. Characteristics of colloidal aluminum nanoparticles prepared by nanosecond pulsed laser ablation in deionized water in presence of parallel external electric field

    NASA Astrophysics Data System (ADS)

    Mahdieh, Mohammad Hossein; Mozaffari, Hossein

    2017-10-01

    In this paper, we investigate experimentally the effect of electric field on the size, optical properties and crystal structure of colloidal nanoparticles (NPs) of aluminum prepared by nanosecond Pulsed Laser Ablation (PLA) in deionized water. The experiments were conducted for two different conditions, with and without the electric field parallel to the laser beam path and the results were compared. To study the influence of electric field, two polished parallel aluminum metals plates perpendicular to laser beam path were used as the electrodes. The NPs were synthesized for target in negative, positive and neutral polarities. The colloidal nanoparticles were characterized using the scanning electron microscopy (SEM), UV-vis absorption spectroscopy and X-ray Diffraction (XRD). The results indicate that initial charge on the target has strong effect on the size properties and concentration of the synthesized nanoparticles. The XRD patterns show that the structure of produced NPs with and without presence of electric field is Boehmite (AlOOH).

  19. Experimental Study of Direct Laser Deposition of Ti-6Al-4V and Inconel 718 by Using Pulsed Parameters

    PubMed Central

    Shah, Kamran; Haq, Izhar Ul; Shah, Shaukat Ali; Khan, Farid Ullah; Khan, Sikander

    2014-01-01

    Laser direct metal deposition (LDMD) has developed from a prototyping to a single metal manufacturing tool. Its potential for creating multimaterial and functionally graded structures is now beginning to be explored. This work is a first part of a study in which a single layer of Inconel 718 is deposited on Ti-6Al-4V substrate. Single layer tracks were built at a range of powder mass flow rates using a coaxial nozzle and 1.5 kW diode laser operating in both continuous and pulsed beam modes. This part of the study focused on the experimental findings during the deposition of Inconel 718 powder on Ti-6Al-4V substrate. Scanning electron microscopy (SEM) and X-ray diffraction analysis were performed for characterization and phase identification. Residual stress measurement had been carried out to ascertain the effects of laser pulse parameters on the crack development during the deposition process. PMID:24592190

  20. Selective laser processing of ink-jet printed nano-scaled tin-clad copper particles

    NASA Astrophysics Data System (ADS)

    Yung, K. C.; Plura, T. S.

    2010-11-01

    The deposition of tin-clad nano-size copper particles was carried out by means of ink-jet printing. Curing the particles on Polyimide (PI) turned them into soldered structures using an Nd-YAG laser. Area coverage of 55% was achieved for a single-layer print. Subsequent laser sintering increased this value to 95%. A Butanol-based copper ink and an aqueous tin (Sn)-clad Copper (Cu) ink were produced and were ink-jetted in this work. These nano-metallic inks showed excellent suspension stability with particle weight concentrations as high as 5%. The ink components were examined by measuring the particle size distribution in a dispersed condition, and the melting temperature. A piezo ink-jet print head was used to deposit the inks onto a moveable substrate. The thermal effect of the laser irradiation allowed approaching and connecting adjacent particles by melting the particle’s tin coating. The results were examined with regard to structure and soldering properties using EDX, SEM and optical microscopy.

  1. Simulation of bone resorption-repair coupling in vitro.

    PubMed

    Jones, S J; Gray, C; Boyde, A

    1994-10-01

    In the normal adult human skeleton, new bone formation by osteoblasts restores the contours of bone surfaces following osteoclastic bone resorption, but the evidence for resorption-repair coupling remains circumstantial. To investigate whether sites of prior resorption, more than the surrounding unresorbed surface, attract osteoblasts or stimulate them to proliferate or make new matrix, we developed a simple in vitro system in which resorption-repair coupling occurs. Resorption pits were produced in mammalian dentine or bone slabs by culturing chick bone-derived cells on them for 2-3 days. The chick cells were swept off and the substrata reseeded with rat calvarial osteoblastic cells, which make bone nodules in vitro, for periods of up to 8 weeks. Cell positions and new bone formation were investigated by ordinary light microscopy, fluorescence and reflection confocal laser microscopy, and SEM, in stained and unstained samples. There was no evidence that the osteoblasts were especially attracted to, or influenced by, the sites of resorption in dentine or bone before cell confluence was reached. Bone formation was identified by light microscopy by the accumulation of matrix, staining with alizarin and calcein and by von Kossa's method, and confirmed by scanning electron microscopy (SEM) by using backscattered electron (BSE) and transmitted electron imaging of unembedded samples and BSE imaging of micro-milled embedded material. These new bone patches were located initially in the resorption pits. The model in vitro system may throw new light on the factors that control resorption-repair coupling in the mineralised tissues in vivo.

  2. In vitro study of root fracture treated by CO2 laser and DP-bioactive glass paste.

    PubMed

    Wang, Yin-Lin; Lee, Bor-Shiunn; Tseng, Ching-Li; Lin, Feng-Huei; Lin, Chun-Pin

    2008-01-01

    An ideal material has yet to be discovered that can successfully treat vertical root fracture. Therefore, the purpose of this study was to use a continuous-wave CO2 laser of medium-energy density to fuse DP-bioactive glass paste (DPGP) to vertical root fracture. The DP-bioglass powder was based on a Na2O-CaO-SiO2-P2O5 system and it was mixed with phosphoric acid (65% concentration) with a powder/liquid ratio of 2 g/4 mL to form DPGP. The interaction of DPGP and dentin was analyzed by means of X-ray diffractometer (XRD) and differential thermal analysis/thermogravimetric analysis (DTA/TGA). Root fracture line was filled with DPGP followed by CO2 laser irradiation and the result was examined by scanning electron microscopy (SEM). The main crystal phase of DPGP was monocalcium phosphate monohydrate (Ca(H2PO4)2.H2O) and the phase transformed to dicalcium phosphate dihydrate (CaHPO4.2H2O) after mixing DPGP with dentin powder (DPG-D). Additionally, gamma-Ca2P2O7 and beta-Ca2P2O7 were identified when DPG-D was lased by CO2 laser. The reaction temperature was between 500 degrees C and 1100 degrees C. SEM results demonstrated that the fracture line was effectively sealed by DPGP. The chemical reaction of DPGP and dentin indicated that DPGP combined with CO2 laser is a potential regimen for the treatment of vertical root fracture.

  3. Development of Thin Films as Potential Structural Cathodes to Enable Multifunctional Energy-Storage Structural Composite Batteries for the U.S. Army’s Future Force

    DTIC Science & Technology

    2011-09-01

    glancing angle X - ray diffraction (GAXRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), and electrochemical...Emission SEM FWHM full width at half maximum GAXRD glancing angle X - ray diffraction H3COCH2CH2OH 2-methoxyethanol LiMn2O4 lithium manganese oxide...were characterized by scanning electron microscopy (SEM), X - ray diffraction (XRD), and atomic force microscopy (AFM). In addition,

  4. Elastomeric photo-actuators and their investigation by confocal laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Czaniková, Klaudia; Ilčíková, Markéta; Krupa, Igor; Mičušík, Matej; Kasák, Peter; Pavlova, Ewa; Mosnáček, Jaroslav; Chorvát, Dušan, Jr.; Omastová, Mária

    2013-10-01

    The photo-actuation behavior of nanocomposites based on ethylene-vinylacetate copolymer (EVA) and styrene-isoprene-styrene (SIS) block copolymer filled with well-dispersed and modified multiwalled carbon nanotubes (MWCNTs) is discussed in this paper. The nanocomposites were prepared by casting from solution. To improve the dispersion of the MWCNTs in EVA, the MWCNT surface was modified with a non-covalent surfactant, cholesteryl 1-pyrenecarboxylate (PyChol). To prepare SIS nanocomposites, the MWCNT surface was covalently modified with polystyrene chains. The good dispersion of the filler was confirmed by transmission electron microscopy (TEM). Special, custom-made punch/die molds were used to create a Braille element (BE)-like shape, which under shear forces induces a uniaxial orientation of the MWCNTs within the matrix. The uniaxial orientation of MWCNTs is an essential precondition to ensure the photo-actuating behavior of MWCNTs in polymeric matrices. The orientation of the MWCNTs within the matrices was examined by scanning electron microscopy (SEM). Nanocomposite BEs were illuminated from the bottom by a red light-emitting diode (LED), and the photo-actuation was investigated by confocal laser scanning microscopy (CLSM). When the BEs were exposed to light, a temporary increase in the height of the element was detected. This process was observed to be reversible: after switching off the light, the BEs returned to their original shape and height.

  5. Influence of Er:YAG and Ti:sapphire laser irradiation on the microtensile bond strength of several adhesives to dentin.

    PubMed

    Portillo, M; Lorenzo, M C; Moreno, P; García, A; Montero, J; Ceballos, L; Fuentes, M V; Albaladejo, A

    2015-02-01

    The aim of the present study was to evaluate the influence of erbium:yttrium-aluminum-garnet (Er:YAG) and Ti:sapphire laser irradiation on the microtensile bond strength (MTBS) of three different adhesive systems to dentin. Flat dentin surfaces from 27 molars were divided into three groups according to laser irradiation: control, Er:YAG (2,940 nm, 100 μs, 2.7 W, 9 Hz) and Ti:sapphire laser (795 nm, 120 fs, 1 W, 1 kHz). Each group was divided into three subgroups according to the adhesive system used: two-step total-etching adhesive (Adper Scotchbond 1 XT, from now on XT), two-step self-etching adhesive (Clearfil SE Bond, from now on CSE), and all-in-one self-etching adhesive (Optibond All-in-One, from now on OAO). After 24 h of water storage, beams of section at 1 mm(2) were longitudinally cut from the samples. Each beam underwent traction test in an Instron machine. Fifteen polished dentin specimens were used for the surface morphology analysis by scanning electron microscopy (SEM). Failure modes of representative debonded microbars were SEM-assessed. Data were analyzed by ANOVA, chi-square test, and multiple linear regression (p < 0.05). In the control group, XT obtained higher MTBS than that of laser groups that performed equally. CSE showed higher MTBS without laser than that with laser groups, where Er:YAG attained higher MTBS than ultrashort laser. When OAO was used, MTBS values were equal in the three treatments. CSE obtained the highest MTBS regardless of the surface treatment applied. The Er:YAG and ultrashort laser irradiation reduce the bonding effectiveness when a two-step total-etching adhesive or a two-step self-etching adhesive are used and do not affect their effectiveness when an all-in-one self-etching adhesive is applied.

  6. Morphological alterations of periodontal pocket epithelium following Nd:YAG laser irradiation.

    PubMed

    Ting, Chun-Chan; Fukuda, Mitsuo; Watanabe, Tomohisa; Sanaoka, Atsushi; Mitani, Akio; Noguchi, Toshihide

    2014-12-01

    The purpose of this in vivo study was to examine morphologic alterations in the periodontal pocket epithelium with presence or absence of clinical inflammation following the use of the Neodymium: Yttrium-Aluminum-Garnet (Nd:YAG) laser irradiation. Subgingival Nd:YAG laser irradiation has been proposed as an alternative technique for treatment of chronic periodontitis. Several published studies have reported the clinical outcomes of such treatment. Twenty patients, diagnosed with moderate chronic periodontitis, were selected for the study. A total of 32 sites was identified and divided into a control (n=18) and laser-treated test groups (n=14). Probing depth (PD) and bleeding on probing (BOP) were recorded for all sites. Test sites were irradiated with an Nd:YAG laser using parameters of 2 W, 200 mJ pulse energy, and 10 pps delivered through a 320 μm diameter tip. Total laser treatment time ranged from 1 to 2 min. Following treatment, all specimens were harvested via biopsy and processed for scanning electron microscopy (SEM) and histologic examination. Control group specimens, depending upon initial PD, exhibited either a relatively smooth and intact epithelium with little desquamation (PD≤3 mm), or increasing degrees of epithelial desquamation and leukocytic infiltration at a PD of ≥4 mm. In the laser-treated test group, the specimens with PD≤3 mm that were BOP negative (-) exhibited a thin layer of epithelium that was disrupted. In the specimens with initial PD of ≥4 mm, complete removal of the epithelium whose extent and degree were increasing, was observed in the inflamed portion, while epithelium remained in the uninflamed portion. The SEM and histologic findings demonstrated the feasibility of ablating pocket epithelium with an Nd:YAG laser irradiation using parameters of 2 W of power (200 mJ, 10 pps). Furthermore, the presence or absence of clinical inflammation appeared to have an impact on the degree of laser-mediated epithelial ablation.

  7. Processing of pure Ti by rapid prototyping based on laser cladding

    NASA Astrophysics Data System (ADS)

    Arias-González, F.; del Val, J.; Comesaña, R.; Lusquiños, F.; Quintero, F.; Riveiro, A.; Boutinguiza, M.; Pou, J.

    2013-11-01

    Rapid prototyping based on laser cladding is an additive manufacturing (AM) process based on the overlapping of cladding tracks to produce functional components. Powder or wire are fed into a melting pool created using laser radiation as a heat source and the relative movement between the beam and the work piece makes possible to generate pieces layer-by-layer. This technique can be applied for any material which can be melted and the components can be manufactured directly according to a computer aided design (CAD) model. Additive manufacturing is particularly interesting to produce titanium components because, in this case, the loss of material produced by subtractive manufacturing methods is highly costly. Moreover, titanium and its alloys are widely used in biomedical, aircraft, chemical and marine industries due to their biocompatibility, excellent corrosion resistance and superior strength-to-weight ratio. In this research work, a near-infrared laser delivering a maximum power of 500W is used to produce pure titanium thin parts. Dimensions and surface morphology are characterized using Optical Microscopy (OM) and Scanning Electron Microscopy (SEM), the hardness by nanoindentation and the composition by X-Ray Diffraction (XRD) and Energy Dispersive X-Ray Spectroscopy (EDS). The aim of this work is to establish the conditions under which satisfactory properties are obtained and to understand the relationship between microstructure/properties and deposition parameters.

  8. Femtosecond pulsed laser deposition of amorphous, ultrahard boride thin films

    NASA Astrophysics Data System (ADS)

    Stock, Michael; Molian, Pal

    2004-05-01

    Amorphous thin films (300-500 nm) of ultrahard AlMgB10 with oxygen and carbon impurities were grown on Si (100) substrates at 300 K using a solid target of AlMgB14 containing a spinel phase (MgAl2O4) and using a 120 fs pulsed, 800 nm wavelength Ti:sapphire laser. The films were subsequently annealed in argon gas up to 1373 K for 2 h. Scanning electron microscopy (SEM) was used to examine the particulate formation, atomic force microscopy was employed to characterize the film surface topography, x-ray diffraction and transmission electron microscopy were used to determine the microstructure, x-ray photoelectron spectroscopy was performed to examine the film composition, and nanoindentation was employed to study the hardness of thin films. The as-deposited and postannealed films (up to 1273 K) had a stochiometry of AlMgB10 with a significant amount of oxygen and carbon impurities and exhibited amorphous structures for a maximum hardness of 40+/-3 GPa. However, postannealing at higher temperatures led to crystallization and transformation of the film to SiB6 with a substantial loss in hardness. Results are also compared with our previous study on 23 ns, 248 nm wavelength (KrF excimer) pulsed laser deposition of AlMgB14 reported in this journal [Y. Tian, A. Constant, C. C. H. Lo, J. W. Anderegg, A. M. Russell, J. E. Snyder, and P. A. Molian, J. Vac. Sci. Technol. A 21, 1055 (2003)]. .

  9. Effective of diode laser on teeth enamel in the teeth whitening treatment

    NASA Astrophysics Data System (ADS)

    Klunboot, U.; Arayathanitkul, K.; Chitaree, R.; Emarat, N.

    2011-12-01

    This research purpose is to investigate the changing of teeth color and to study the surface of teeth after treatment by laser diode at different power densities for tooth whitening treatment. In the experiment, human-extracted teeth samples were divided into 7 groups of 6 teeth each. After that laser diode was irradiated to teeth, which were coated by 38% concentration of hydrogen peroxide, during for 20, 30 and 60 seconds at power densities of 10.9 and 52.1 W/cm2. The results of teeth color change were described by the CIEL*a*b* systems and the damage of teeth surface were investigated by scanning electron microscopy (SEM). The results showed that the power density of the laser diode could affect the whiteness of teeth. The high power density caused more luminous teeth than the low power density did, but on the other hand the high power density also caused damage to the teeth surface. Therefore, the laser diode at the low power densities has high efficiency for tooth whitening treatment and it has a potential for other clinical applications.

  10. Surface treatment of alumina-based ceramics using combined laser sources

    NASA Astrophysics Data System (ADS)

    Triantafyllidis, D.; Li, L.; Stott, F. H.

    2002-01-01

    Alumina-based refractory materials are extensively used as linings in incinerators and furnaces. These materials are subject to molten salt corrosion and chemical degradation because of the existence of porosity and material inhomogeneity. Efforts to improve the performance of these materials have so far concentrated mainly on the optimisation of the manufacturing processes (e.g. producing denser refractory bricks) and in-service monitoring. Laser surface treatment has also been used to improve performance. The main problem identified with laser surface treatment is solidification cracking due to the generation of very large temperature gradients. The aim of this paper is to investigate the surface modification of alumina-based ceramics by using two combined laser sources in order to control the thermal gradients and cooling rates during processing so that crack formation can be eliminated. The material under investigation is 85% alumina refractory ceramic, used as lining material in incineration plants. The surface morphology and cross-section of the treated samples are analysed using optical and scanning electron microscopy (SEM) and compared with single laser beam treated samples.

  11. Picosecond Pulsed Laser Ablation for the Surface Preparation of Epoxy Composites

    NASA Technical Reports Server (NTRS)

    Palmieri, Frank; Ledesma, Rodolfo; Fulton, Tayler; Arthur, Alexandria; Eldridge, Keishara; Thibeault, Sheila; Lin, Yi; Wohl, Chris; Connell, John

    2017-01-01

    As part of a technical challenge under the Advanced Composites Program, methods for improving pre-bond process control for aerospace composite surface treatments and inspections, in conjunction with Federal Aviation Administration guidelines, are under investigation. The overall goal is to demonstrate high fidelity, rapid and reproducible surface treatment and surface characterization methods to reduce uncertainty associated with the bonding process. The desired outcomes are reliable bonded airframe structure, and reduced timeline to certification. In this work, laser ablation was conducted using a q-switched Nd:YVO4 laser capable of nominal pulse durations of 8 picoseconds (ps). Aerospace structural carbon fiber reinforced composites with an epoxy resin matrix were laser treated, characterized, processed into bonded assemblies and mechanically tested. The characterization of ablated surfaces were conducted using scanning electron microscopy (SEM), water contact angle (WCA) goniometry, micro laser induced breakdown spectroscopy (uLIBS), and electron spin resonance (ESR). The bond performance was assessed using a double cantilever beam (DCB) test with an epoxy adhesive. The surface characteristics and bond performance obtained from picosecond ablated carbon fiber reinforced plastics (CFRPs) are presented herein.

  12. Visible light-harvesting of TiO2 nanotubes array by pulsed laser deposited CdS

    NASA Astrophysics Data System (ADS)

    Bjelajac, Andjelika; Djokic, Veljko; Petrovic, Rada; Socol, Gabiel; Mihailescu, Ion N.; Florea, Ileana; Ersen, Ovidiu; Janackovic, Djordje

    2014-08-01

    Titanium dioxide (TiO2) nanotubes arrays, obtained by anodization technique and annealing, were decorated with CdS using pulsed laser deposition method. Their structural, morphological and chemical characterization was carried out by electron microscopy in scanning (SEM) and transmission (TEM) modes, combined with energy dispersive spectroscopy (EDS) and electron energy loss spectroscopy (EELS). It was demonstrated that the quantity of deposited CdS can be controlled by varying the number of laser pulses. The chemical mapping of the elements of interest was performed using the energy filtered mode of the electron microscope. The results showed that pulse laser deposition is an adequate technique for deposition of CdS inside and between 100 nm wide TiO2 nanotubes. The diffuse reflectance spectroscopy investigation of selected samples proved that the absorption edge of the prepared CdS/TiO2 nanocomposites is significantly extended to the visible range. The corresponding band gaps were determinated from the Tauc plot of transformed Kubelka-Munk function. The band gap reduction of TiO2 nanotubes by pulsed laser deposition of CdS was put in evidence.

  13. Crystallization of 21.25Gd 2O 3-63.75MoO 3-15B 2O 3 glass induced by femtosecond laser at the repetition rate of 250 kHz

    NASA Astrophysics Data System (ADS)

    Zhong, M. J.; Han, Y. M.; Liu, L. P.; Zhou, P.; Du, Y. Y.; Guo, Q. T.; Ma, H. L.; Dai, Y.

    2010-12-01

    We report the formation of β'-Gd 2(MoO 4) 3 (GMO) crystal on the surface of the 21.25Gd 2O 3-63.75MoO 3-15B 2O 3 glass, induced by 250 kHz, 800 nm femtosecond laser irradiation. The morphology of the modified region in the glass was clearly examined by scanning electron microscopy (SEM). By micro-Raman spectra, the laser-induced crystals were confirmed to be GMO phases and it is found that these crystals have a strong dependence on the number and power of the femtosecond laser pulses. When the irradiation laser power was 900 mW, not only the Raman peaks of GMO crystals but also some new peaks at 214 cm -1, 240 cm -1, 466 cm -1, 664 cm -1 and 994 cm -1which belong to the MoO 3 crystals were observed. The possible mechanisms are proposed to explain these phenomena.

  14. Comparative study viruses with computer-aided phase microscope AIRYSCAN

    NASA Astrophysics Data System (ADS)

    Tychinsky, Vladimir P.; Koufal, Georgy E.; Perevedentseva, Elena V.; Vyshenskaia, Tatiana V.

    1996-12-01

    Traditionally viruses are studied with scanning electron microscopy (SEM) after complicated procedure of sample preparation without the possibility to study it under natural conditions. We obtained images of viruses (Vaccinia virus, Rotavirus) and rickettsias (Rickettsia provazekii, Coxiella burnetti) in native state with computer-aided phase microscope airyscan -- the interference microscope of Linnik layout with phase modulation of the reference wave with dissector image tube as coordinate-sensitive photodetector and computer processing of phase image. A light source was the He-Ne laser. The main result is coincidence of dimensions and shape of phase images with available information concerning their morphology obtained with SEM and other methods. The fine structure of surface and nuclei is observed. This method may be applied for virus recognition and express identification, investigation of virus structure and the analysis of cell-virus interaction.

  15. Mechanical and tribological property of single layer graphene oxide reinforced titanium matrix composite coating

    NASA Astrophysics Data System (ADS)

    Hu, Zengrong; Li, Yue; Fan, Xueliang; Chen, Feng; Xu, Jiale

    2018-04-01

    Single layer grapheme oxide Nano sheets and Nano titanium powder were dispersed in deionized water by ultrasonic dispersion. Then the mixed solution was pre-coating on AISI4140 substrate. Using laser sintering process to fabricated grapheme oxide and Ti composite coating. Microstructures and composition of the composite coating was studied by Scanning Electron Microscopy (SEM), x-ray diffract meter (XRD) and Raman spectroscopy. Raman spectrum, XRD pattern and SEM results proved that grapheme oxide sheets were dispersed in the composite coating. The composite coating had much higher average Vickers hardness values than that of pure Ti coating. The tribological performance of the composite coatings became better while the suitable GO content was selected. For the 2.5wt. % GO content coating, the friction coefficient was reduced to near 0.1.

  16. The effects of diode laser on Staphylococcus aureus biofilm and Escherichia coli lipopolysaccharide adherent to titanium oxide surface of dental implants. An in vitro study.

    PubMed

    Giannelli, Marco; Landini, Giulia; Materassi, Fabrizio; Chellini, Flaminia; Antonelli, Alberto; Tani, Alessia; Zecchi-Orlandini, Sandra; Rossolini, Gian Maria; Bani, Daniele

    2016-11-01

    Effective decontamination of biofilm and bacterial toxins from the surface of dental implants is a yet unresolved issue. This in vitro study aims at providing the experimental basis for possible use of diode laser (λ 808 nm) in the treatment of peri-implantitis. Staphylococcus aureus biofilm was grown for 48 h on titanium discs with porous surface corresponding to the bone-implant interface and then irradiated with a diode laser (λ 808 nm) in noncontact mode with airflow cooling for 1 min using a Ø 600-μm fiber. Setting parameters were 2 W (400 J/cm 2 ) for continuous wave mode; 22 μJ, 20 kHz, 7 μs (88 J/cm 2 ) for pulsed wave mode. Bactericidal effect was evaluated using fluorescence microscopy and counting the residual colony-forming units. Biofilm and titanium surface morphology were analyzed by scanning electron microscopy (SEM). In parallel experiments, the titanium discs were coated with Escherichia coli lipopolysaccharide (LPS), laser-irradiated and seeded with RAW 264.7 macrophages to quantify LPS-driven inflammatory cell activation by measuring the enhanced generation of nitric oxide (NO). Diode laser irradiation in both continuous and pulsed modes induced a statistically significant reduction of viable bacteria and nitrite levels. These results indicate that in addition to its bactericidal effect laser irradiation can also inhibit LPS-induced macrophage activation and thus blunt the inflammatory response. The λ 808-nm diode laser emerges as a valuable tool for decontamination/detoxification of the titanium implant surface and may be used in the treatment of peri-implantitis.

  17. CO2 laser irradiation enhances CaF2 formation and inhibits lesion progression on demineralized dental enamel-in vitro study.

    PubMed

    Zancopé, Bruna R; Rodrigues, Lívia P; Parisotto, Thais M; Steiner-Oliveira, Carolina; Rodrigues, Lidiany K A; Nobre-dos-Santos, Marinês

    2016-04-01

    This study evaluated if Carbon dioxide (CO2) (λ 10.6 μm) laser irradiation combined with acidulated phosphate fluoride gel application (APF gel) enhances "CaF2" uptake by demineralized enamel specimens (DES) and inhibits enamel lesion progression. Thus, two studies were conducted and DES were subjected to APF gel combined or not with CO2 laser irradiation (11.3 or 20.0 J/cm(2), 0.4 or 0.7 W) performed before, during, or after APF gel application. In study 1, 165 DES were allocated to 11 groups. Fluoride as "CaF2 like material" formed on enamel was determined in 100 DES (n = 10/group), and the surface morphologies of 50 specimens were evaluated by scanning electron microscopy (SEM) before and after "CaF2" extraction. In study 2, 165 DES (11 groups, n = 15), subjected to the same treatments as in study 1, were further subjected to a pH-cycling model to simulate a high cariogenic challenge. The progression of demineralization in DES was evaluated by cross-sectional microhardness and polarized light microscopy analyses. Laser at 11.3 J/cm(2) applied during APF gel application increased "CaF2" uptake on enamel surface. Laser irradiation and APF gel alone arrested the lesion progression compared with the control (p < 0.05). Areas of melting, fusion, and cracks were observed. CO2 laser irradiation, combined with a single APF application enhanced "CaF2" uptake on enamel surface and a synergistic effect was found. However, regarding the inhibition of caries lesion progression, no synergistic effect could be demonstrated. In conclusion, the results have shown that irradiation with specific laser parameters significantly enhanced CaF2 uptake by demineralized enamel and inhibited lesion progression.

  18. Bacteria interface pickering emulsions stabilized by self-assembled bacteria-chitosan network.

    PubMed

    Wongkongkatep, Pravit; Manopwisedjaroen, Khajohnpong; Tiposoth, Perapon; Archakunakorn, Somwit; Pongtharangkul, Thunyarat; Suphantharika, Manop; Honda, Kohsuke; Hamachi, Itaru; Wongkongkatep, Jirarut

    2012-04-03

    An oil-in-water Pickering emulsion stabilized by biobased material based on a bacteria-chitosan network (BCN) was developed for the first time in this study. The formation of self-assembled BCN was possible due to the electrostatic interaction between negatively charged bacterial cells and polycationic chitosan. The BCN was proven to stabilize the tetradecane/water interface, promoting formation of highly stable oil-in-water emulsion (o/w emulsion). We characterized and visualized the BCN stabilized o/w emulsions by scanning electron microscopy (SEM) and laser scanning confocal microscopy (LSCM). Due to the sustainability and low environmental impact of chitosan, the BCN-based emulsions open up opportunities for the development of an environmental friendly new interface material as well as the novel type of microreactor utilizing bacterial cells network.

  19. Microstructure and properties of Fe-based composite coating by laser cladding Fe-Ti-V-Cr-C-CeO2 powder

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Zou, Yong; Zou, Zengda; Wu, Dongting

    2015-01-01

    In situ TiC-VC reinforced Fe-based cladding layer was obtained on low carbon steel surface by laser cladding with Fe-Ti-V-Cr-C-CeO2 alloy powder. The microstructure, phases and properties of the cladding layer were investigated by X-ray diffractometry (XRD), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), transmission electron microscopy (TEM), potentio-dynamic polarization and electro-chemical impedance spectroscopy (EIS). Results showed Fe-Ti-V-Cr-C-CeO2 alloy powder formed a good cladding layer without defects such as cracks and pores. The phases of the cladding layer were α-Fe, γ-Fe, TiC, VC and TiVC2. The microstructures of the cladding layer matrix were lath martensite and retained austenite. The carbides were polygonal blocks with a size of 0.5-2 μm and distributed uniformly in the cladding layer. High resolution transmission electron microscopy showed the carbide was a complex matter composed of nano TiC, VC and TiVC2. The cladding layer with a hardness of 1030 HV0.2 possessed good wear and corrosion resistance, which was about 16.85 and 9.06 times than that of the substrate respectively.

  20. Evaluation of the effect of a CO2 laser and fluoride on the reduction of carious lesions progression in primary teeth: an in vitro study

    NASA Astrophysics Data System (ADS)

    Zancopé, Bruna R.; Cesar, Marina M. C.; Rodrigues, Lidiany K. A.; Nobre-dos-Santos, Marinês

    2014-02-01

    This study aimed at investigating if CO2 laser irradiation (λ =10.6μm - 11.3 J/cm2) combined with fluoridated products, enhances the CaF2 formation on enamel surface and inhibits lesion progression of demineralized primary enamel. Thus, 135 demineralized primary enamel specimens (DES) were allocated to 9 groups (n=15) as follows: 1- DES only, 2- DES + pH cycling (control), 3- 1.23% acidulated phosphate fluoride gel (APF), 4- 1.23% fluoride foam (FF), 5- 5% fluoride varnish (FV), 6- CO2 Laser (L), 7 - Laser during APF application, 8-Laser during FF application and 9-Laser during FV application. Except for the demineralized enamel group, all specimens were submitted to a 7 day pH cycling regime. The knoop hardness number (KHN) was determined by cross-sectional microhardness analysis. After treatments application, three specimens of each group had their surface examined for CaF2 formation by scanning electron microscopy (SEM). The data was analyzed by ANOVA and Student's t-test (α= 0.05). Enamel mineral loss (ΔS) for groups 1 to 9 were respectively,(8,676.28+/-1,077.46b),(12,419.54+/-1,050.21a),(8,156.80+/-1,279.90b),(8,081.32+/-1,019.69b),(8,820.86+/-1,805. 99b),(8,723.45+/-1,167.14b),(9,003.17+/-796.90b),(8.229,03+/-961.25b),(9,023.32+/-1,1069b). The results showed statistically significant difference between control and all treatments groups (p<0.05). However there was no difference among them (p>0.05). SEM observations showed evidences of melting, fusion and calcium fluoride formation on enamel surface. In conclusion, laser irradiation alone or combined with fluoridated products inhibited lesion progression of demineralized primary enamel surface. However, no synergistic effect was observed when CO2 laser irradiation and fluoridated products application were combined.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ouyang, J.H.; Li, X.; Lei, T.C.

    The microstructure of a laser-clad TiC-Ni particle-reinforced coating on 1045 steel was studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and ion microprobe mass spectroscopy (IMMS). The microstructural constituents of the clad layers (CLs) were analyzed to be TiC particles, {gamma}-Ni primary dendrites, and interdendritic eutectics of {gamma}{sub E}-Ni plus M{sub 23}(CB){sub 6} and M{sub 6}(CB) carboborides. Three growth mechanisms of the original TiC particles were found: (1) stepped lateral growth at the edges, (2) radiated and cylindrically coupled growth at the edges, and (3) bridging growth of the clustered particles. Ordered and modulated structures were found inmore » the original TiC particles. In addition to the original TiC particles, fine TiC particles precipitated from the liquid phase and {gamma}-Ni solid solution during laser cladding. The microstructures of the bonding zones (BZs) were intimately associated with laser processing parameters. The BZs of the clad coatings can be categorized into three types according to the combination of the CL with heat-affected zone (HAZ): (1) straight interface combination, (2) zigzag connection, and (3) combination by partial melting of prior austenitic grain boundaries of the substrate. The microstructural evolution of the CLs was discussed. The formation and phase transformation models of the BZs were proposed.« less

  2. On the Progress of Scanning Transmission Electron Microscopy (STEM) Imaging in a Scanning Electron Microscope.

    PubMed

    Sun, Cheng; Müller, Erich; Meffert, Matthias; Gerthsen, Dagmar

    2018-04-01

    Transmission electron microscopy (TEM) with low-energy electrons has been recognized as an important addition to the family of electron microscopies as it may avoid knock-on damage and increase the contrast of weakly scattering objects. Scanning electron microscopes (SEMs) are well suited for low-energy electron microscopy with maximum electron energies of 30 keV, but they are mainly used for topography imaging of bulk samples. Implementation of a scanning transmission electron microscopy (STEM) detector and a charge-coupled-device camera for the acquisition of on-axis transmission electron diffraction (TED) patterns, in combination with recent resolution improvements, make SEMs highly interesting for structure analysis of some electron-transparent specimens which are traditionally investigated by TEM. A new aspect is correlative SEM, STEM, and TED imaging from the same specimen region in a SEM which leads to a wealth of information. Simultaneous image acquisition gives information on surface topography, inner structure including crystal defects and qualitative material contrast. Lattice-fringe resolution is obtained in bright-field STEM imaging. The benefits of correlative SEM/STEM/TED imaging in a SEM are exemplified by structure analyses from representative sample classes such as nanoparticulates and bulk materials.

  3. Time-resolved cathodoluminescence microscopy with sub-nanosecond beam blanking for direct evaluation of the local density of states.

    PubMed

    Moerland, Robert J; Weppelman, I Gerward C; Garming, Mathijs W H; Kruit, Pieter; Hoogenboom, Jacob P

    2016-10-17

    We show cathodoluminescence-based time-resolved electron beam spectroscopy in order to directly probe the spontaneous emission decay rate that is modified by the local density of states in a nanoscale environment. In contrast to dedicated laser-triggered electron-microscopy setups, we use commercial hardware in a standard SEM, which allows us to easily switch from pulsed to continuous operation of the SEM. Electron pulses of 80-90 ps duration are generated by conjugate blanking of a high-brightness electron beam, which allows probing emitters within a large range of decay rates. Moreover, we simultaneously attain a resolution better than λ/10, which ensures details at deep-subwavelength scales can be retrieved. As a proof-of-principle, we employ the pulsed electron beam to spatially measure excited-state lifetime modifications in a phosphor material across the edge of an aluminum half-plane, coated on top of the phosphor. The measured emission dynamics can be directly related to the structure of the sample by recording photon arrival histograms together with the secondary-electron signal. Our results show that time-resolved electron cathodoluminescence spectroscopy is a powerful tool of choice for nanophotonics, within reach of a large audience.

  4. Antibiofilm effect of Nocardiopsis sp. GRG 1 (KT235640) compound against biofilm forming Gram negative bacteria on UTIs.

    PubMed

    Rajivgandhi, Govindan; Vijayan, Ramachandran; Maruthupandy, Muthuchamy; Vaseeharan, Baskaralingam; Manoharan, Natesan

    2018-05-01

    Urinary tract infections (UTIs) are diverse public health complication and caused by range of pathogens, however mostly Gram negative bacteria cause significant life threatening risks to different populations. The prevalence rate and antimicrobial resistance among the Gram negative uropathogens alarmed significantly heighten the economic burden of these infections. In this study, we investigated the antibiofilm efficiency of Pyrrolo [1,2-a] pyrazine-1,4-dione,hexahydro-3-(2-methylpropyl) extracted from endophytic actinomycetes Nocardiopsis sp. GRG 1 (KT235640) against P. mirabilis and E. coli. The extracted compound was characterized through TLC, HPLC, GC-MS, LC-MS and confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM). The compound, Pyrrolo [1,2-a] pyrazine-1, 4-dione, hexahydro-3-(2-methylpropyl) inhibits both bacterial biofilm formation as well as reduces the viability of preformed biofilms. Furthermore, CLSM image shows cell shrinkage, disorganized cell membrane and loss of viability. The SEM result also confirms the cell wall degradation in treated cells of the bacteria. Hence, the Pyrrolo [1,2-a]pyrazine-1,4-dione, hexahydro-3-(2-methylpropyl) is active against P. mirabilis and E. coli. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Exploiting Process-Related Advantages of Selective Laser Melting for the Production of High-Manganese Steel.

    PubMed

    Haase, Christian; Bültmann, Jan; Hof, Jan; Ziegler, Stephan; Bremen, Sebastian; Hinke, Christian; Schwedt, Alexander; Prahl, Ulrich; Bleck, Wolfgang

    2017-01-11

    Metal additive manufacturing has strongly gained scientific and industrial importance during the last decades due to the geometrical flexibility and increased reliability of parts, as well as reduced equipment costs. Within the field of metal additive manufacturing methods, selective laser melting (SLM) is an eligible technique for the production of fully dense bulk material with complex geometry. In the current study, we addressed the application of SLM for processing a high-manganese TRansformation-/TWinning-Induced Plasticity (TRIP/TWIP) steel. The solidification behavior was analyzed by careful characterization of the as-built microstructure and element distribution using optical and scanning electron microscopy (SEM). In addition, the deformation behavior was studied using uniaxial tensile testing and SEM. Comparison with conventionally produced TRIP/TWIP steel revealed that elemental segregation, which is normally very pronounced in high-manganese steels and requires energy-intensive post processing, is reduced due to the high cooling rates during SLM. Also, the very fast cooling promoted ε- and α'-martensite formation prior to deformation. The superior strength and pronounced anisotropy of the SLM-produced material was correlated with the microstructure based on the process-specific characteristics.

  6. Exploiting Process-Related Advantages of Selective Laser Melting for the Production of High-Manganese Steel

    PubMed Central

    Haase, Christian; Bültmann, Jan; Hof, Jan; Ziegler, Stephan; Bremen, Sebastian; Hinke, Christian; Schwedt, Alexander; Prahl, Ulrich; Bleck, Wolfgang

    2017-01-01

    Metal additive manufacturing has strongly gained scientific and industrial importance during the last decades due to the geometrical flexibility and increased reliability of parts, as well as reduced equipment costs. Within the field of metal additive manufacturing methods, selective laser melting (SLM) is an eligible technique for the production of fully dense bulk material with complex geometry. In the current study, we addressed the application of SLM for processing a high-manganese TRansformation-/TWinning-Induced Plasticity (TRIP/TWIP) steel. The solidification behavior was analyzed by careful characterization of the as-built microstructure and element distribution using optical and scanning electron microscopy (SEM). In addition, the deformation behavior was studied using uniaxial tensile testing and SEM. Comparison with conventionally produced TRIP/TWIP steel revealed that elemental segregation, which is normally very pronounced in high-manganese steels and requires energy-intensive post processing, is reduced due to the high cooling rates during SLM. Also, the very fast cooling promoted ε- and α’-martensite formation prior to deformation. The superior strength and pronounced anisotropy of the SLM-produced material was correlated with the microstructure based on the process-specific characteristics. PMID:28772416

  7. Cryo-Scanning Electron Microscopy (SEM) and Scanning Transmission Electron Microscopy (STEM)-in-SEM for Bio- and Organo-Mineral Interface Characterization in the Environment.

    PubMed

    Wille, Guillaume; Hellal, Jennifer; Ollivier, Patrick; Richard, Annie; Burel, Agnes; Jolly, Louis; Crampon, Marc; Michel, Caroline

    2017-12-01

    Understanding biofilm interactions with surrounding substratum and pollutants/particles can benefit from the application of existing microscopy tools. Using the example of biofilm interactions with zero-valent iron nanoparticles (nZVI), this study aims to apply various approaches in biofilm preparation and labeling for fluorescent or electron microscopy and energy dispersive X-ray spectrometry (EDS) microanalysis for accurate observations. According to the targeted microscopy method, biofilms were sampled as flocs or attached biofilm, submitted to labeling using 4',6-diamidino-2-phenylindol, lectins PNA and ConA coupled to fluorescent dye or gold nanoparticles, and prepared for observation (fixation, cross-section, freezing, ultramicrotomy). Fluorescent microscopy revealed that nZVI were embedded in the biofilm structure as aggregates but the resolution was insufficient to observe individual nZVI. Cryo-scanning electron microscopy (SEM) observations showed nZVI aggregates close to bacteria, but it was not possible to confirm direct interactions between nZVI and cell membranes. Scanning transmission electron microscopy in the SEM (STEM-in-SEM) showed that nZVI aggregates could enter the biofilm to a depth of 7-11 µm. Bacteria were surrounded by a ring of extracellular polymeric substances (EPS) preventing direct nZVI/membrane interactions. STEM/EDS mapping revealed a co-localization of nZVI aggregates with lectins suggesting a potential role of EPS in nZVI embedding. Thus, the combination of divergent microscopy approaches is a good approach to better understand and characterize biofilm/metal interactions.

  8. Synthesis and characterization of bulk metallic glasses prepared by laser direct deposition

    NASA Astrophysics Data System (ADS)

    Ye, Xiaoyang

    Fe-based and Zr-based metallic glasses have attracted extensive interest for structural applications due to their excellent glass forming ability, superior mechanical properties, unique thermal and corrosion properties. In this study, the feasibility of synthesizing metallic glasses with good ductility by laser direct deposition is explored. Both in-situ synthesis with elemental powder mixture and ex-situ synthesis with prealloyed powder are discussed. Microstructure and properties of laser direct deposited metallic glass composites are analyzed. Synthesis of Fe-Cr-Mo-W-Mn-C-Si-B metallic glass composite with a large fraction of amorphous phase was accomplished using laser direct deposition. X-ray diffraction (XRD) and transmission electron microscopy investigations revealed the existence of amorphous structure. Microstructure analyses by optical microscopy and scanning electron microscopy (SEM) indicated the periodically repeated microstructures of amorphous and crystalline phases. Partially crystallized structure brought by laser reheating and remelting during subsequent laser scans aggregated in the overlapping area between each scan. XRD analysis showed that the crystalline particle embedded in the amorphous matrix was Cr 1.07Fe18.93 phase. No significant microstructural differences were found from the first to the last layer. Microhardness of the amorphous phase (HV0.2 1591) showed a much higher value than that of the crystalline phase (HV0.2 947). Macrohardness of the top layer had a value close to the microhardness of the amorphous region. Wear resistance property of deposited layers showed a significant improvement with the increased fraction of amorphous phase. Zr65Al10Ni10Cu15 amorphous composites with a large fraction of amorphous phase were in-situ synthesized by laser direct deposition. X-ray diffraction confirmed the existence of both amorphous and crystalline phases. Laser parameters were optimized in order to increase the fraction of amorphous phase. The microstructure analysis by scanning electron microscopy revealed the deposited structure was composed of periodically repeated amorphous and crystalline phases. Overlapping regions with nanoparticles aggregated were crystallized by laser reheating and remelting processes during subsequent laser scans. Vickers microhardness of the amorphous region showed around 35% higher than that of crystalline region. Average hardness obtained by a Rockwell macrohardness tester was very close to the microhardness of the amorphous region. The compression test showed that the fracture strain of Zr65Al10Ni10Cu15 amorphous composites was enhanced from less than 2% to as high as 5.7%, compared with fully amorphous metallic glass. Differential scanning calorimetry test results further revealed the amorphous structure and glass transition temperature Tg was observed to be around 655K. In 3 mol/L NaCl solution, laser direct deposited amorphous composites exhibited distinctly improved corrosion resistance, compared with fully-crystallized samples.

  9. Quantitative analysis of nano-pore geomaterials and representative sampling for digital rock physics

    NASA Astrophysics Data System (ADS)

    Yoon, H.; Dewers, T. A.

    2014-12-01

    Geomaterials containing nano-pores (e.g., shales and carbonate rocks) have become increasingly important for emerging problems such as unconventional gas and oil resources, enhanced oil recovery, and geologic storage of CO2. Accurate prediction of coupled geophysical and chemical processes at the pore scale requires realistic representation of pore structure and topology. This is especially true for chalk materials, where pore networks are small and complex, and require characterization at sub-micron scale. In this work, we apply laser scanning confocal microscopy to characterize pore structures and microlithofacies at micron- and greater scales and dual focused ion beam-scanning electron microscopy (FIB-SEM) for 3D imaging of nanometer-to-micron scale microcracks and pore distributions. With imaging techniques advanced for nano-pore characterization, a problem of scale with FIB-SEM images is how to take nanometer scale information and apply it to the thin-section or larger scale. In this work, several texture characterization techniques including graph-based spectral segmentation, support vector machine, and principal component analysis are applied for segmentation clusters represented by 1-2 FIB-SEM samples per each cluster. Geometric and topological properties are analyzed and lattice-Boltzmann method (LBM) is used to obtain permeability at several different scales. Upscaling of permeability to the Darcy scale (e.g., the thin-section scale) with image dataset will be discussed with emphasis on understanding microfracture-matrix interaction, representative volume for FIB-SEM sampling, and multiphase flow and reactive transport. Funding from the DOE Basic Energy Sciences Geosciences Program is gratefully acknowledged. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  10. Ultrastructural properties of laser-irradiated and heat-treated dentin.

    PubMed

    Rohanizadeh, R; LeGeros, R Z; Fan, D; Jean, A; Daculsi, G

    1999-12-01

    Previous studies using scanning electron microscopy and infrared absorption spectroscopy reported that laser irradiation causes compositional changes in enamel. The purpose of this study was to evaluate the ultrastructural and compositional changes in dentin caused by irradiation with a short-pulse laser (Q-switched Nd:YAG). The irradiated and non-irradiated areas of the lased dentin samples were investigated by scanning (SEM) and transmission electron microscopy (TEM), micro-micro electron diffraction, and electron microprobe analysis of dispersive energy (EDX). Heat-treated dentin was similarly investigated. This study demonstrated that laser irradiation resulted in the recrystallization of dentin apatite and in the formation of additional calcium phosphate phases consisting of magnesium-substituted beta-tricalcium phosphate, beta-TCMP, beta-(Ca,Mg)3(PO4)2, and tetracalcium phosphate, TetCP, Ca4(PO4)O. TEM analyses of the modified and unmodified zones of the irradiated areas showed two types of crystal populations: much larger crystals from the modified zone and crystals with size and morphology similar to those of dentin apatite in the unmodified zone. The morphology of crystals in the modified zones in the irradiated dentin resembled those of dentin sintered at 800 or 950 degrees C. In the irradiated areas (modified and unmodified zones), the Ca/P ratio was lower compared with that in the non-irradiated dentin. The Mg/Ca ratio in the modified zones was higher than that in the unmodified zones and in the non-irradiated dentin. In sintered dentin, the Mg/Ca ratio increased as a function of sintering temperature. The ultrastructural and compositional changes observed in laser-irradiated dentin may be attributed to high temperature and high pressure induced by microplasma during laser irradiation. These changes may alter the solubility of the irradiated dentin, making it less susceptible to acid dissolution or to the caries process.

  11. Improving osteoblasts cells proliferation via femtosecond laser surface modification of 3D-printed poly-ɛ-caprolactone scaffolds for bone tissue engineering applications

    NASA Astrophysics Data System (ADS)

    Daskalova, A.; Ostrowska, B.; Zhelyazkova, A.; Święszkowski, W.; Trifonov, A.; Declercq, H.; Nathala, C.; Szlazak, K.; Lojkowski, M.; Husinsky, W.; Buchvarov, I.

    2018-06-01

    Synthetic polymer biomaterials incorporating cells are a promising technique for treatment of orthopedic injuries. To enhance the integration of biomaterials into the human body, additional functionalization of the scaffold surface should be carried out that would assist one in mimicking the natural cellular environment. In this study, we examined poly-ɛ-caprolactone (PCL) fiber matrices in view of optimizing the porous properties of the constructs. Altering the porosity of a PCL scaffold is expected to improve the material's biocompatibility, thus influencing its osteoconductivity and osteointegration. We produced 3D poly-ɛ-caprolactone (PCL) matrices by a fused deposition modeling method for bone and cartilage tissue engineering and performed femtosecond (fs) laser modification experiments to improve the surface properties of the PCL construct. Femtosecond laser processing is one of the useful tools for creating a vast diversity of surface patterns with reproducibility and precision. The processed surface of the PCL matrix was examined to follow the effect of the laser parameters, namely the laser pulse energy and repetition rate and the number ( N) of applied pulses. The modified zones were characterized by scanning electron microscopy (SEM), confocal microscopy, X-ray computed tomography and contact angle measurements. The results obtained demonstrated changes in the morphology of the processed surface. A decrease in the water contact angle was also seen after fs laser processing of fiber meshes. Our work demonstrated that a precise control of material surface properties could be achieved by applying a different number of laser pulses at various laser fluence values. We concluded that the structural features of the matrix remain unaffected and can be successfully modified through laser postmodification. The cells tests indicated that the micro-modifications created induced MG63 and MC3T3 osteoblast cellular orientation. The analysis of the MG63 and MC3T3 osteoblast attachment suggested regulation of cells volume migration.

  12. Ultra-low density metallic foams synthesized by contact glow discharge electrolysis (CGDE) for laser experiments

    NASA Astrophysics Data System (ADS)

    Rocher, Sandrine; Botrel, Ronan; Durut, Frédéric; Chicanne, Cédric; Theobald, Marc; Vignal, Vincent

    2018-02-01

    The goal of this work is to realize metallic foams synthesized by contact glow discharge electrolysis with specific characteristics. In this paper, we show the results of our studies, consisting in investigating parameters that influence the foams characteristics. Thus, the morphology of metallic foams is examined through scanning electron microscopy (SEM) observations with the acid nature. Moreover, the evolution of the mass and the volume of metallic foams with two experimental parameters (overvoltage and gold concentration) is also investigated. The acid nature affects the foams microscopic structure highlighted by the SEM observations, but for now no valid explanation to this behaviour was found. We prove that the mass deposited on the electrode is dependent on the ionic salt concentration, whereas the overvoltage only affects the foam overall density. Contribution to the topical issue "Plasma Sources and Plasma Processes (PSPP)", edited by Luis Lemos Alves, Thierry Belmonte and Tiberiu Minea.

  13. Imaging and Laser Spectroscopy Investigation of Insect Wings

    NASA Astrophysics Data System (ADS)

    Shiver, Tegan; Lawhead, Carlos; Anderson, Josiah; Cooper, Nathan; Ujj, Laszlo; Pall Life Sciences Collaboration

    2014-03-01

    Measuring the surface morphology and chemical composition of insect wings is important to understand the extreme mechanical properties and the biophysical functionalities of the wings. We have measured the image of the membrane of the cicada (genus Tibicen) wing with the help of Scanning Electron Microscopy (SEM). The results confirm the existing periodic structure of the wing measured previously. The SEM imaging can be used to measure the surface morphology of any insect species wings. The physical surface structure of the cicada wing is an example of a new class of biomaterials that can kill bacteria on contact. In order to identify the chemical composition of the wing, we have measured the vibrational spectra of the wing's membrane (Raman and CARS). The measured spectra are consistent with the original assumption that the wing membrane is composed of protein, wax, and chitin. The results of these studies can be used to make artificial materials in the future.

  14. Third order nonlinear optical properties of Mn doped CeO2 nanostructures

    NASA Astrophysics Data System (ADS)

    Mani Rahulan, K.; Angeline Little Flower, N.; Annie Sujatha, R.; Mohana Priya, P.; Gopalakrishnan, C.

    2018-05-01

    Mn doped CeO2 nanoparticles with different ratios of Mn were synthesized by hydrothermal method and their structural properties were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Scanning electron microscopy (SEM). XRD patterns revealed that the peaks are highly crystalline structure with no segregation of Mn. The surface morphology from SEM reveals that particle size decreases with increase in Mn concentration. Nonlinear optical studies of the samples were measured by single-beam open aperture Z-scan technique using 5 ns laser pulses at 532 nm. The measured optical nonlinearity of all the samples exhibit typical third order nonlinear optical behavior including two-photon absorption (2 PA) and reverse saturable absorption (RSA). The experimental results show that the presence of RSA in these nanoparticles makes them a promising material for the fabrication of optical limiting devices. .

  15. Analysis of Indium Tin Oxide Film Using Argon Fluroide (ArF) Laser-Excited Atomic Fluorescence of Ablated Plumes.

    PubMed

    Ho, Sut Kam; Garcia, Dario Machado

    2017-04-01

    A two-pulse laser-excited atomic fluorescence (LEAF) technique at 193 nm wavelength was applied to the analysis of indium tin oxide (ITO) layer on polyethylene terephthalate (PET) film. Fluorescence emissions from analytes were induced from plumes generated by first laser pulse. Using this approach, non-selective LEAF can be accomplished for simultaneous multi-element analysis and it overcomes the handicap of strict requirement for laser excitation wavelength. In this study, experimental conditions including laser fluences, times for gating and time delay between pulses were optimized to reveal high sensitivity with minimal sample destruction and penetration. With weak laser fluences of 100 and 125 mJ/cm 2 for 355 and 193 nm pulses, detection limits were estimated to be 0.10% and 0.43% for Sn and In, respectively. In addition, the relation between fluorescence emissions and number of laser shots was investigated; reproducible results were obtained for Sn and In. It shows the feasibility of depth profiling by this technique. Morphologies of samples were characterized at various laser fluences and number of shots to examine the accurate penetration. Images of craters were also investigated using scanning electron microscopy (SEM). The results demonstrate the imperceptible destructiveness of film after laser shot. With such weak laser fluences and minimal destructiveness, this LEAF technique is suitable for thin-film analysis.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lan, Xiaodong; Wu, Hong, E-mail: wuhong927@126.com

    Metallic glass composite coatings Ti{sub 45}Cu{sub 41}Ni{sub 9}Zr{sub 5} and Ti{sub 45}Cu{sub 41}Ni{sub 6}Zr{sub 5}Sn{sub 3} (at.%) on a Ti-30Nb-5Ta-7Zr (wt.%) (TNTZ) alloy were prepared by laser cladding. The microstructures of the coatings were characterized by means of X-ray diffractometry (XRD), scanning electron microscopy (SEM) equipped with energy dispersive X-ray analyzer (EDXA), and transmission electron microscopy (TEM). Results indicated that the coatings have an amorphous structure embedded with a few nanocrystalline phases and dendrites. A partial substitution of Ni by Sn can improve the glass forming ability of Ti-base metallic glass system, and induce the formation of nano-sized Ni{sub 2}SnTimore » phase during the cyclic laser heating. The tribological behavior of both the substrate and the coatings was investigated in detail. A significant improvement in both the hardness and the wear resistance of the coatings was achieved with the addition of Sn. The relationship between the wear resistance and the microstructures of the coatings was discussed. - Highlights: •Ti-based metallic glass composite coatings were prepared by laser cladding. •The wear resistance is greatly improved by laser cladding of composite coatings. •Substitution of Ni by Sn increases GFA and wear resistance of the coatings. •A good balance of crystalline/amorphous phases improves the wear resistance. •Adhesive wear serves as the dominant wear mechanism of the composite coatings.« less

  17. Laser bioengineering of glass-titanium implants surface

    NASA Astrophysics Data System (ADS)

    Lusquiños, F.; Arias-González, F.; Penide, J.; del Val, J.; Comesaña, R.; Quintero, F.; Riveiro, A.; Boutinguiza, M.; Pascual, M. J.; Durán, A.; Pou, J.

    2013-11-01

    Osseointegration is the mean challenge when surgical treatments fight against load-bearing bone diseases. Absolute bone replacement by a synthetic implant has to be completed not only from the mechanics point of view, but also from a biological approach. Suitable strength, resilience and stress distribution of titanium alloy implants are spoiled by the lack of optimal biological characteristics. The inert quality of extra low interstitial titanium alloy, which make it the most attractive metallic alloy for biomedical applications, oppose to an ideal surface with bone cell affinity, and capable to stimulate bone attachment bone growth. Diverse laser treatments have been proven as effective tools to modify surface properties, such as wettability in contact to physiological fluids, or osteoblast guided and slightly enhanced attachment. The laser surface cladding can go beyond by providing titanium alloy surfaces with osteoconduction and osteoinduction properties. In this research work, the laser radiation is used to produce bioactive glass coatings on Ti6Al4V alloy substrates. Specific silicate bioactive glass compositions has been investigated to achieve suitable surface tension and viscosity temperature behavior during processing, and to provide with the required release of bone growth gene up regulation agents in the course of resorption mediated by physiological fluids. The produced coatings and interfaces, the surface osteoconduction properties, and the chemical species release in simulated physiological fluid were characterized by scanning electron microscopy (SEM), hot stage microscopy (HSM), X-ray diffraction (XRD), X ray fluorescence (XRF), and Fourier transform infrared spectroscopy (FTIR).

  18. Surface polishing of niobium for superconducting radio frequency (SRF) cavity applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Liang

    2014-08-01

    Niobium cavities are important components in modern particle accelerators based on superconducting radio frequency (SRF) technology. The interior of SRF cavities are cleaned and polished in order to produce high accelerating field and low power dissipation on the cavity wall. Current polishing methods, buffered chemical polishing (BCP) and electro-polishing (EP), have their advantages and limitations. We seek to improve current methods and explore laser polishing (LP) as a greener alternative of chemical methods. The topography and removal rate of BCP at different conditions (duration, temperature, sample orientation, flow rate) was studied with optical microscopy, scanning electron microscopy (SEM), and electronmore » backscatter diffraction (EBSD). Differential etching on different crystal orientations is the main contributor to fine grain niobium BCP topography, with gas evolution playing a secondary role. The surface of single crystal and bi-crystal niobium is smooth even after heavy BCP. The topography of fine grain niobium depends on total removal. The removal rate increases with temperature and surface acid flow rate within the rage of 0~20 °C, with chemical reaction being the possible dominate rate control mechanism. Surface flow helps to regulate temperature and avoid gas accumulation on the surface. The effect of surface flow rate on niobium EP was studied with optical microscopy, atomic force microscopy (AFM), and power spectral density (PSD) analysis. Within the range of 0~3.7 cm/s, no significant difference was found on the removal rate and the macro roughness. Possible improvement on the micro roughness with increased surface flow rate was observed. The effect of fluence and pulse accumulation on niobium topography during LP was studied with optical microscopy, SEM, AFM, and PSD analysis. Polishing on micro scale was achieved within fluence range of 0.57~0.90 J/cm2, with pulse accumulation adjusted accordingly. Larger area treatment was proved possible by overlapping laser tracks at proper ratio. Comparison of topography and PSD indicates that LP smooths the surface in a way similar to EP. The optimized LP parameters were applied to different types of niobium surfaces representing different stages in cavity fabrication. LP reduces the sharpness on rough surfaces effectively, while doing no harm to smooth surfaces. Secondary ion mass spectrometer (SIMS) analysis showed that LP reduces the oxide layer slightly and no contamination occurred from LP. EBSD showed no significant change on crystal structure after LP.« less

  19. Effect of Ti:sapphire laser on shear bond strength of orthodontic brackets to ceramic surfaces.

    PubMed

    Erdur, Emire Aybuke; Basciftci, Faruk Ayhan

    2015-08-01

    With increasing demand for orthodontic treatments in adults, orthodontists continue to debate the optimal way to prepare ceramic surfaces for bonding. This study evaluated the effects of a Ti:sapphire laser on the shear bond strength (SBS) of orthodontic brackets bonded to two ceramic surfaces (feldspathic and IPS Empress e-Max) and the results were compared with those using two other lasers (Er:YAG and Nd:YAG) and 'conventional' techniques, i.e., sandblasting (50 µm) and hydrofluoric (HF) acid. In total, 150 ceramic discs were prepared and divided into two groups. In each group, the following five subgroups were prepared: Ti:sapphire laser, Nd:YAG laser, Er:YAG laser, sandblasting, and HF acid. Mandibular incisor brackets were bonded using a light-cured adhesive. The samples were stored in distilled water for 24 hours at 37°C and then thermocycled. Extra samples were prepared and examined using scanning electron microscopy (SEM). SBS testing was performed and failure modes were classified. ANOVA and Tukey's HSD tests were used to compare SBS among the five subgroups (P < 0.05). Feldspathic and IPS Empress e-Max ceramics had similar SBS values. The Ti:sapphire femtosecond laser (16.76 ± 1.37 MPa) produced the highest mean bond strength, followed by sandblasting (12.79 ± 1.42 MPa) and HF acid (11.28 ± 1.26 MPa). The Er:YAG (5.43 ± 1.21 MPa) and Nd:YAG laser (5.36 ± 1.04 MPa) groups were similar and had the lowest SBS values. More homogeneous and regular surfaces were observed in the ablation pattern with the Ti:sapphire laser than with the other treatments by SEM analysis. Within the limitations of this in vitro study, Ti:sapphire laser- treated surfaces had the highest SBS values. Therefore, this technique may be useful for the pretreatment of ceramic surfaces as an alternative to 'conventional' techniques. © 2015 Wiley Periodicals, Inc.

  20. Observation of Dust Stream Formation Produced by Low Current, High Voltage Cathode Spots

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2004-01-01

    Macro-particle acceleration driven by low current, high voltage cathode spots has been investigated. The phenomenon was observed to occur when nanometer and micrometer-sized particles in the presence of a discharge plasma were exposed to a high voltage pulse. The negative voltage pulse initiates the formation of multiple, high voltage, low current cathode spots which provides the mechanism of actual acceleration of the charged dust particles. Dust streams generated by this process were detected using laser scattering techniques. The particle impact craters observed at the surface of downstream witness badges were documented using SEM and light microscopy.

  1. New possibilities to analyse non-standard explosives and post blast residues in forensic practice

    NASA Astrophysics Data System (ADS)

    Kotrlý, Marek; Turková, Ivana

    2005-05-01

    Nonstandard and home-made explosives always pose a considerable threat for security forces in terms of their practically unlimited variability, both in composition and in construction of explosive devises. Electron microscopy - SEM with EDS/WDS is one of the key techniques for an analysis of non-standard explosives and post-blast residues. If the amount of materials allows it, a number of other analytical techniques are utilized, such as XRD that is capable of a direct phase identification of a crystalline substance, namely in mixtures. TLC has constantly proved itself useful for laboratory screening. Furthermore, combinations of FTIR, Raman spectrometry, LC MS, GC MS, XRF, micro XRF and other ones are applied. In the case of identification of post-blast residues, where an investigation is often conducted at the level of separate microscopic particles, the role of SEM is unsubstitutable, whereas the analysis of the organic phase from these often sporadic microparticles has been infeasible until recently. One of the very interesting options appears to be Raman spectrometry technique, which is nowadays obtainable as a supplement to SEM EDX. Newly available is the device that is fully confocal, SEM keeps full functionality and scan range, very high resolution (for green laser resolution 360nm FWHM; 430nm Rayleigh), it is fitted with high quality objective lens, enhances mapping through Raman spectrometry in a volume 250μm x 250μm x 250μm by piezo driven scanner (capacitive feedback linearized) and obtaining a high quality white light image (250μm x 250μm) immediately in the SEM chamber. This technique is currently undergoing intensive testing and it seems that the method could significantly help to address issues with the analysis of organic phases in electron microscopy not only in the case of post-blast residues and explosives.

  2. Nanostructuring of sapphire using time-modulated nanosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Lorenz, P.; Zagoranskiy, I.; Ehrhardt, M.; Bayer, L.; Zimmer, K.

    2017-02-01

    The nanostructuring of dielectric surfaces using laser radiation is still a challenge. The IPSM-LIFE (laser-induced front side etching using in-situ pre-structured metal layer) method allows the easy, large area and fast laser nanostructuring of dielectrics. At IPSM-LIFE a metal covered dielectric is irradiated where the structuring is assisted by a self-organized molten metal layer deformation process. The IPSM-LIFE can be divided into two steps: STEP 1: The irradiation of thin metal layers on dielectric surfaces results in a melting and nanostructuring process of the metal layer and partially of the dielectric surface. STEP 2: A subsequent high laser fluence treatment of the metal nanostructures result in a structuring of the dielectric surface. At this study a sapphire substrate Al2O3(1-102) was covered with a 10 nm thin molybdenum layer and irradiated by an infrared laser with an adjustable time-dependent pulse form with a time resolution of 1 ns (wavelength λ = 1064 nm, pulse duration Δtp = 1 - 600 ns, Gaussian beam profile). The laser treatment allows the fabrication of different surface structures into the sapphire surface due to a pattern transfer process. The resultant structures were investigated by scanning electron microscopy (SEM). The process was simulated and the simulation results were compared with experimental results.

  3. Calcium phosphate coatings obtained by Nd:YAG laser cladding: physicochemical and biologic properties.

    PubMed

    Lusquiños, F; De Carlos, A; Pou, J; Arias, J L; Boutinguiza, M; León, B; Pérez-Amor, M; Driessens, F C M; Hing, K; Gibson, I; Best, S; Bonfield, W

    2003-03-15

    The plasma spray (PS) technique is the most popular method commercially in use to produce calcium phosphate (CaP) coatings to promote fixation and osteointegration of the cementless prosthesis. Nevertheless, PS has some disadvantages, such as the poor coating-to-substrate adhesion, low mechanical strength, and brittleness of the coating. In order to overcome the drawbacks of plasma spraying, we introduce in this work a new method to apply a CaP coating on a Ti alloy using a well-known technique in the metallurgical field: laser surface cladding. The physicochemical characterization of the coatings has been carried out by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray analysis (EDX). The biologic properties of the coatings have been assessed in vitro with human osteoblast-like MG-63 cells. The overall results of this study affirm that the Nd:YAG laser cladding technique is a promising method in the biomedical field. Copyright 2003 Wiley Periodicals, Inc.

  4. High Surface Area of Porous Silicon Drives Desorption of Intact Molecules

    PubMed Central

    Northen, Trent R.; Woo, Hin-Koon; Northen, Michael T.; Nordström, Anders; Uritboonthail, Winnie; Turner, Kimberly L.; Siuzdak, Gary

    2007-01-01

    The surface structure of porous silicon used in desorption/ionization on porous silicon (DIOS) mass analysis is known to play a primary role in the desorption/ionization (D/I) process. In this study, mass spectrometry and scanning electron microscopy (SEM) are used to examine the correlation between intact ion generation with surface ablation, and surface morphology. The DIOS process is found to be highly laser energy dependent and correlates directly with the appearance of surface ions (Sin+ and OSiH+). A threshold laser energy for DIOS is observed (10 mJ/cm2), which supports that DIOS is driven by surface restructuring and is not a strictly thermal process. In addition, three DIOS regimes are observed which correspond to surface restructuring and melting. These results suggest that higher surface area silicon substrates may enhance DIOS performance. A recent example which fits into this mechanism is silicon nanowires surface which have a high surface energy and concomitantly requires lower laser energy for analyte desorpton. PMID:17881245

  5. Tensile Fracture Behavior and Failure Mechanism of Additively-Manufactured AISI 4140 Low Alloy Steel by Laser Engineered Net Shaping

    PubMed Central

    Kim, Hoyeol; Liu, Zhichao; Cong, Weilong; Zhang, Hong-Chao

    2017-01-01

    AISI 4140 powder was directly deposited on AISI 4140 wrought substrate using laser engineered net shaping (LENS) to investigate the compatibility of a LENS-deposited part with the substrate. Tensile testing at room temperature was performed to evaluate the interface bond performance and fracture behavior of the test specimens. All the samples failed within the as-deposited zone, indicating that the interfacial bond is stronger than the interlayer bond inside the deposit. The fracture surfaces were analyzed using scanning electron microscopy (SEM) and energy disperse X-ray spectrometry (EDS). Results show that the tensile fracture failure of the as-deposited part is primarily affected by lack-of-fusion defects, carbide precipitation, and oxide particles inclusions, which causes premature failure of the deposit by deteriorating the mechanical properties and structural integrity. PMID:29120374

  6. Tensile Fracture Behavior and Failure Mechanism of Additively-Manufactured AISI 4140 Low Alloy Steel by Laser Engineered Net Shaping.

    PubMed

    Kim, Hoyeol; Liu, Zhichao; Cong, Weilong; Zhang, Hong-Chao

    2017-11-09

    AISI 4140 powder was directly deposited on AISI 4140 wrought substrate using laser engineered net shaping (LENS) to investigate the compatibility of a LENS-deposited part with the substrate. Tensile testing at room temperature was performed to evaluate the interface bond performance and fracture behavior of the test specimens. All the samples failed within the as-deposited zone, indicating that the interfacial bond is stronger than the interlayer bond inside the deposit. The fracture surfaces were analyzed using scanning electron microscopy (SEM) and energy disperse X-ray spectrometry (EDS). Results show that the tensile fracture failure of the as-deposited part is primarily affected by lack-of-fusion defects, carbide precipitation, and oxide particles inclusions, which causes premature failure of the deposit by deteriorating the mechanical properties and structural integrity.

  7. Study on fibre laser machining quality of plain woven CFRP laminates

    NASA Astrophysics Data System (ADS)

    Li, Maojun; Li, Shuo; Yang, Xujing; Zhang, Yi; Liang, Zhichao

    2018-03-01

    Laser cutting is suitable for large-scale and high-efficiency production with relatively high cutting speed, while machining of CFRP composite using lasers is challenging with severe thermal damage due to different material properties and sensitivity to heat. In this paper, surface morphology of cutting plain woven carbon fibre-reinforced plastics (CFRP) by fibre laser and the influence of cutting parameters on machined quality were investigated. A full factorial experimental design was employed involving three variable factors, which included laser pulse frequency at three levels together with laser power and cutting speed at two levels. Heat-affected zone (HAZ), kerf depth and kerf angle were quantified to understand the interactions with cutting parameters. Observations of machined surface were analysed relating to various damages using optical microscope and scanning electron microscopy (SEM), which included HAZ, matrix recession, fibre protruding, striations, fibre-end swelling, collapses, cavities and delamination. Based on ANOVA analysis, it was found that both cutting speed and laser power were significant factors for HAZ and kerf depth, while laser power was the only significant factor for kerf angle. Besides, HAZ and the kerf depth showed similar sensitivity to the pulse energy and energy per unit length, which was opposite for kerf angle. This paper presented the feasibility and experimental results of cutting CFRP laminates using fibre laser, which is possibly the efficient and high-quality process to promote the development of CFRPs.

  8. Integration of a high-NA light microscope in a scanning electron microscope.

    PubMed

    Zonnevylle, A C; Van Tol, R F C; Liv, N; Narvaez, A C; Effting, A P J; Kruit, P; Hoogenboom, J P

    2013-10-01

    We present an integrated light-electron microscope in which an inverted high-NA objective lens is positioned inside a scanning electron microscope (SEM). The SEM objective lens and the light objective lens have a common axis and focal plane, allowing high-resolution optical microscopy and scanning electron microscopy on the same area of a sample simultaneously. Components for light illumination and detection can be mounted outside the vacuum, enabling flexibility in the construction of the light microscope. The light objective lens can be positioned underneath the SEM objective lens during operation for sub-10 μm alignment of the fields of view of the light and electron microscopes. We demonstrate in situ epifluorescence microscopy in the SEM with a numerical aperture of 1.4 using vacuum-compatible immersion oil. For a 40-nm-diameter fluorescent polymer nanoparticle, an intensity profile with a FWHM of 380 nm is measured whereas the SEM performance is uncompromised. The integrated instrument may offer new possibilities for correlative light and electron microscopy in the life sciences as well as in physics and chemistry. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  9. Scanning electron microscopy investigation of PMMA removal by laser irradiation (Er:YAG) in comparison with an ultrasonic system and curettage in hip joint revision arthroplasty.

    PubMed

    Birnbaum, Klaus; Gutknecht, Norbert

    2010-07-01

    The cement often left in the femur socket during hip joint revision arthroplasty is usually removed by curettage. Another method for removing the cement is to use an ultrasonic system, and yet another alternative may be to use a laser system. The aim of these investigations was to determine the pulse rate and pulse energy of the Er:YAG laser for sufficient cement ablation. We also compared the results obtained using the laser with those obtained using an ultrasonic device or curettage by histological and scanning electron microscopy (SEM) investigation of the border zone between the polymethyl methacrylate (PMMA) and unfixed specimens of femoral bone. Therefore we prepared 30 unfixed human femur stems after hip joint replacement and prepared ten sagittal sections from each femur stem (in total 300 sections). Of these 300 specimens, 180 were treated with the Er:YAG laser, 60 with the ultrasonic system and 60 by curettage. The high pulse energy of 500 mJ and a pulse rate of 4 Hz provided the highest PMMA ablation rate, although the boundary surface between PMMA and femoral bone was not as fine-grained as found in samples treated at 15 Hz and 250 mJ. However, the treatment time for the same cement ablation rate with the latter settings was twice that at 4 Hz and 500 mJ. Compared to the boundary surfaces treated with the ultrasonic device or curettage, the laser-treated samples had a more distinct undifferentiated boundary surface between PMMA and femoral bone. After development of the Er:YAG-laser to provide higher pulse energies, it may in the future be an additional efficient method for the removal of PMMA in revision arthroplasty. The Er:YAG laser should be combined with an endoscopic and a rinsing suction system so that PMMA can be removed from the femoral shaft under direct vision.

  10. Comparison of SEM and VPSEM imaging techniques with respect to Streptococcus mutans biofilm topography.

    PubMed

    Weber, Kathryn; Delben, Juliana; Bromage, Timothy G; Duarte, Simone

    2014-01-01

    The study compared images of mature Streptococcus mutans biofilms captured at increasing magnification to determine which microscopy method is most acceptable for imaging the biofilm topography and the extracellular polymeric substance (EPS). In vitro S. mutans biofilms were imaged using (1) scanning electron microscopy (SEM), which requires a dehydration process; (2) SEM and ruthenium red (SEM-RR), which has been shown to support the EPS of biofilms during the SEM dehydration; and (3) variable pressure scanning electron microscopy (VPSEM), which does not require the intensive dehydration process of SEM. The dehydration process and high chamber vacuum of both SEM techniques devastated the biofilm EPS, removed supporting structures, and caused cracking on the biofilm surface. The VPSEM offered the most comprehensive representation of the S. mutans biofilm morphology. VPSEM provides similar contrast and focus as the SEM, but the procedure is far less time-consuming, and the use of hazardous chemicals associated with SEM dehydration protocol is avoided with the VPSEM. The inaccurate representations of the biofilm EPS in SEM experimentation is a possible source of inaccurate data and impediments in the study of S. mutans biofilms. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  11. SEM/EDS and optical microscopy analyses of microplastics in ocean trawl and fish guts.

    PubMed

    Wang, Zhong-Min; Wagner, Jeff; Ghosal, Sutapa; Bedi, Gagandeep; Wall, Stephen

    2017-12-15

    Microplastic particles from Atlantic and Pacific Ocean trawls, lab-fed fish guts and ocean fish guts have been characterized using optical microscopy and SEM/EDS in terms of size, morphology, and chemistry. We assessed whether these measurements could serve as a rapid screening process for subsequent identification of the likely microplastic candidates by micro-spectroscopy. Optical microscopy enabled morphological classification of the types of particles or fibers present in the sample, as well as the quantification of particle size ranges and fiber lengths. SEM/EDS analysis was used to rule out non-plastic particles and screen the prepared samples for potential microplastic, based on their element signatures and surface characteristics. Chlorinated plastics such as polyvinyl chloride (PVC) could be easily identified with SEM/EDS due to their unique elemental signatures including chlorine, as could mineral species that are falsely identified as plastics by optical microscopy. Particle morphology determined by optical microscopy and SEM suggests the fish ingested particles contained both degradation fragments from larger plastic pieces and also manufactured microplastics. SEM images of microplastic particle surfaces revealed characteristic cracks consistent with environmental exposure, as well as pigment particles consistent with manufactured materials. Most of the microplastic surfaces in the fish guts and ocean trawls were covered with biofilms, radiolarians, and crustaceans. Many of the fish stomachs contained micro-shell pieces which visually resembled microplastics. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Phase structures and morphologies of tempered CA6NM stainless steel welded by hybrid laser-arc process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirakhorli, F., E-mail: Fatemeh.mirakhorli.1@ens.e

    The post-weld tempered microstructure of hybrid laser-arc welded CA6NM, a cast low carbon martensitic stainless steel, was investigated. The microstructural evolutions from the fusion zone to the base metal were characterized in detail using optical microscopy, scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), X-ray diffraction (XRD) and microhardness techniques. The fusion zone, in its post-weld tempered condition, consisted of tempered lath martensite, residual delta-ferrite with various morphologies, reversed austenite and chromium carbides. The reversed austenite, which can be detected through both EBSD and XRD techniques, was found to be finely dispersed along the martensite lath boundaries, particularly at triplemore » junctions. Based on the EBSD analysis, the orientation relationship between the reversed austenite and the adjacent martensite laths seemed to follow the Kurdjumov-Sachs (K-S) model. The results also revealed the presence of the reversed austenite in the different regions of the heat affected zone after post-weld tempering. The microindentation hardness distribution was measured, and correlated to the evolution of the corresponding microstructure across the welds. - Highlights: •The EBSD analysis was performed on hybrid laser-arc welded CA6NM. •The FZ consisted of tempered lath martensite, reversed austenite, carbides and δ ferrite after tempering. •The reversed γ was formed along the α′ lath boundaries, particularly at triple junctions.« less

  13. Corrosive sliding wear behavior of laser clad Mo 2Ni 3Si/NiSi intermetallic coating

    NASA Astrophysics Data System (ADS)

    Lu, X. D.; Wang, H. M.

    2005-05-01

    Many ternary metal silicides such as W 2Ni 3Si, Ti 2Ni 3Si and Mo 2Ni 3Si with the topologically closed-packed (TCP) hP12 MgZn 2 type Laves phase crystal structure are expected to have outstanding wear and corrosion resistance due to their inherent high hardness and sluggish temperature dependence and strong atomic bonds. In this paper, Mo 2Ni 3Si/NiSi intermetallic coating was fabricated on substrate of an austenitic stainless steel AISI321 by laser cladding using Ni-Mo-Si elemental alloy powders. Microstructure of the coating was characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive X-ray analysis (EDS). Wear resistance of the coating is evaluated under corrosive sliding wear test condition. Influence of corrosion solutions on the wear resistance of the coating was studied and the wear mechanism was discussed based on observations of worn surface morphology. Results showed that the laser clad Mo 2Ni 3Si/NiSi composite coating have a fine microstructure of Mo 2Ni 3Si primary dendrites and the interdendritic Mo 2Ni 3Si/NiSi eutectics. The coating has excellent corrosive wear resistance compared with austenitic stainless steel AISI321 under acid, alkaline and saline corrosive environments.

  14. Synthesis of SiC nanoparticles by SHG 532 nm Nd:YAG laser ablation of silicon in ethanol

    NASA Astrophysics Data System (ADS)

    Khashan, Khawla S.; Ismail, Raid A.; Mahdi, Rana O.

    2018-06-01

    In this work, colloidal spherical nanoparticles NPs of silicon carbide SiC have been synthesized using second harmonic generation 532 nm Nd:YAG laser ablation of silicon target dipped in ethanol solution at various laser fluences (1.5-5) J/cm2. X-Ray diffraction XRD, scanning electron microscopy SEM, transmission electron microscope TEM, Fourier transformed infrared spectroscopy FT-IR, Raman spectroscopy, photoluminescence PL spectroscopy, and UV-Vis absorption were employed to examine the structural, chemical and optical properties of SiC NPs. XRD results showed that all synthesised SiC nanoparticles are crystalline in nature and have hexagonal structure with preferred orientation along (103) plane. Raman investigation showed three characteristic peaks 764,786 and 954 cm-1, which are indexing to transverse optic TO phonon mode and longitudinal optic LO phonon mode of 4H-SiC structure. The optical absorption data showed that the values of optical energy gap of SiC nanoparticles prepared at 1.5 J/cm2 was 3.6 eV and was 3.85 eV for SiC synthesised at 5 J/cm2. SEM investigations confirmed that the nanoparticles synthesised at 5 J/cm2 are agglomerated to form larger particles. TEM measurements showed that SiC particles prepared at 1.5 J/cm2 have spherical shape with average size of 25 nm, while the particles prepared at 5 J/cm2 have an average size of 55 nm.

  15. Generation of diluted magnetic semiconductor nanostructures by pulsed laser ablation in liquid

    NASA Astrophysics Data System (ADS)

    Savchuk, Ol. A.; Savchuk, A. I.; Stolyarchuk, I. D.; Tkachuk, P. M.; Garasym, V. I.

    2015-11-01

    Results of study of two members of diluted magnetic semiconductor (DMS) family, namely Cd1-xMnxTe and Zn1-xMnxO, which are in form of micro- and nanoparticles generated by pulsed laser ablation in liquid medium (PLAL), have been presented. The structural analysis using X-ray diffraction (XRD) of nanocrystals indicated that Mn has entered the AIIBVI lattice without changing the crystal structure and systematically substituted the A2+ ions in the lattice. Atomic force microscopy (AFM) gives information about surface morphology of the formed nanostructures. The scanning electron microscopy (SEM) clearly illustrates flower-like particles of Zn1-xMnxO, which consist of nanosheets and nanoleaves with average thickness about (5-8) nm. Obviously, these nanoobjects are responsible for the observed blue shift of the absorption edge in DMS nanostructures. In magneto-optical Faraday rotation spectra of both Cd1-xMnxTe and Zn1-xMnxO nanostructures there were exhibited peculiarities associated with s,p-d spin exchange interactions and confinement effect. It was observed almost linear dependence of the Faraday rotation as function of magnetic field strength for nanoparticles in contrast to the dependence with saturation in bulk case.

  16. Morphological alterations of radicular dentine pretreated with different irrigating solutions and irradiated with 980-nm diode laser.

    PubMed

    Alfredo, Edson; Souza-Gabriel, Aline E; Silva, Silvio Rocha C; Sousa-Neto, Manoel D; Brugnera-Junior, Aldo; Silva-Sousa, Yara T C

    2009-01-01

    The topographical features of intraradicular dentine pretreated with sodium hypochlorite (NaOCl) or ethylenediamine tetraacetic acid (EDTA) followed by diode laser irradiation have not yet been determined. To evaluate the alterations of dentine irradiated with 980-nm diode laser at different parameters after the surface treatment with NaOCl and EDTA. Roots of 60 canines were biomechanically prepared and irrigated with NaOCl or EDTA. Groups were divided according to the laser parameters: 1.5 W/CW; 1.5 W/100 Hz; 3.0 W/CW; 3.0 W/100 Hz and no irradiation (control). The roots were splited longitudinally and analyzed by scanning electron microscopy (SEM) in a quali-quatitative way. The scores were submitted to two-way Kruskal-Wallis and Dunn's tests. The statistical analysis demonstrated that the specimens treated only with NaOCl or EDTA (control groups) were statistically different (P < 0.05) from the laser-irradiated specimens, regardless of the parameter setting. The specimens treated with NaOCl showed a laser-modified surface with smear layer, fissures, and no visible tubules. Those treated with EDTA and irradiated by laser presented absence of smear layer, tubules partially exposed and melting areas. The tested parameters of 980-nm diode laser promoted similar alterations on dentine morphology, dependent to the type of surface pretreatment. Copyright 2008 Wiley-Liss, Inc.

  17. Microstructure and Corrosion Behavior of Laser Synthesized Cobalt Based Powder on Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Adesina, O. S.; Popoola, A. P. I.; Pityana, S. L.; Oloruntoba, D. T.

    2018-05-01

    The corrosion behavior of titanium alloys when used for various dynamic offshore components has been a major concern of titanium drilling risers in deepwater energy extraction. A way of achieving specified requirement is the development of coatings suitable to protect the base material against corrosion. In this work, laser cladding technique which is known as a leading edge due to its distinctive properties and outcomes was used in synthesizing Co-based powder on titanium alloy. The processing parameters used were laser power of 900W; scan speed of 0.6 to 1.2 m/min; powderfeedrate1.0g/min;beamspotsize3mm;gasflowrate1.2L/min.The effects of cobalt addition and laser parameters on corrosion behavior of laser clad Ti6AL4V coating in 0.5M sulfuric medium were investigated using linear potentiodynamic polarization. The changes in microstructure and corrosion behavior were analyzed using scanning electron microscopy (SEM) while the X –ray diffraction (XRD) indicates the intermetallics in the coatings. Results showed that the coatings displayed good metallurgical bonding with dendritic formations between the coatings and the substrate. The anodic current density increased with lower scan speed. However, the corrosion current densities of laser-clad samples were lower than Ti6Al4V alloy.

  18. Inhibition of early biofilm formation by glass-ionomer incorporated with chlorhexidine in vivo: a pilot study.

    PubMed

    Du, X; Huang, X; Huang, C; Frencken, J E; Yang, T

    2012-03-01

    This pilot study investigated the antibiofilm effects of glass-ionomer cements (GICs) and resin-modified glass-ionomer cements (RMGICs) incorporated with chlorhexidine (CHX) in vivo. Experimental GICs and RMGICs containing 2% CHX were obtained by mixing CHX with the powder of GICs (CHXGIC) and RMGICs (CHXRMGIC). Four groups of specimens were prepared in a standardized size. After polishing and sterilization, they were bonded to the buccal surface of the molars in the first and second quadrant of volunteers and left untouched for 4 hours and 24 hours, respectively. The bacterial vitality of plaque was then analysed by confocal laser scanning microscopy (CLSM). The bacterial morphology and biofilm accumulation were determined by scanning electron microscopy (SEM). The pH value of biofilm was assessed by Plaque Indicator Kits. CLSM analysis revealed that bacterial vitality of the biofilm on CHXGIC and CHXRMGIC was significantly lower than that on GIC and RMGIC. SEM analysis indicated that the morphology of bacteria on CHXGIC and CHXRMGIC was irregular. The pH value of biofilm on the experimental materials presented no statistically significant difference. Twenty-four hour bacterial vitality on GICs and RMGICs with CHX are lower in micro-organisms than on conventional GICs and RMGICs. © 2012 Australian Dental Association.

  19. Effect of Guar Gum with Sorbitol Coating on the Properties and Oil Absorption of French Fries.

    PubMed

    Jia, Bo; Fan, Daming; Li, Jinwei; Duan, Zhenhua; Fan, Liuping

    2017-12-13

    This paper investigated the effects of guar gum with sorbitol coating on the oil absorption of French fries by combined dye oil methods, confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). The results showed that pretreatment of blanching with calcium ions and coating with guar gum and sorbitol could significantly reduce the structural oil (STO) and penetrated surface oil (PSO) of French fries and have no negative effects on its texture and also effectively control the final moisture content ( p < 0.05). Compared with control or samples coated with guar gum (blanching with or without calcium ions), the total oil (TO) of French fries with guar gum and sorbitol reduced by 50.8%, 33.1% and 30.6%, respectively. CLSM photographs confirmed that STO significantly reduced after coating with guar gum and sorbitol, followed by PSO. In the process of frying, the coatings of guar gum or guar gum with sorbitol could effectively prevent oil from infiltrating the potato tissue, which can be seen in the SEM photographs. The barrier properties of French fries were enhanced by coating guar gum, and sorbitol was added to avoid pores and cracks. Blanching with calcium ion can significantly reduce the final moisture content of coating French fries.

  20. Effect of Guar Gum with Sorbitol Coating on the Properties and Oil Absorption of French Fries

    PubMed Central

    Jia, Bo; Fan, Daming; Li, Jinwei; Duan, Zhenhua; Fan, Liuping

    2017-01-01

    This paper investigated the effects of guar gum with sorbitol coating on the oil absorption of French fries by combined dye oil methods, confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). The results showed that pretreatment of blanching with calcium ions and coating with guar gum and sorbitol could significantly reduce the structural oil (STO) and penetrated surface oil (PSO) of French fries and have no negative effects on its texture and also effectively control the final moisture content (p < 0.05). Compared with control or samples coated with guar gum (blanching with or without calcium ions), the total oil (TO) of French fries with guar gum and sorbitol reduced by 50.8%, 33.1% and 30.6%, respectively. CLSM photographs confirmed that STO significantly reduced after coating with guar gum and sorbitol, followed by PSO. In the process of frying, the coatings of guar gum or guar gum with sorbitol could effectively prevent oil from infiltrating the potato tissue, which can be seen in the SEM photographs. The barrier properties of French fries were enhanced by coating guar gum, and sorbitol was added to avoid pores and cracks. Blanching with calcium ion can significantly reduce the final moisture content of coating French fries. PMID:29236044

  1. Porous Silicon Covered with Silver Nanoparticles as Surface-Enhanced Raman Scattering (SERS) Substrate for Ultra-Low Concentration Detection.

    PubMed

    Kosović, Marin; Balarin, Maja; Ivanda, Mile; Đerek, Vedran; Marciuš, Marijan; Ristić, Mira; Gamulin, Ozren

    2015-12-01

    Microporous and macro-mesoporous silicon templates for surface-enhanced Raman scattering (SERS) substrates were produced by anodization of low doped p-type silicon wafers. By immersion plating in AgNO3, the templates were covered with silver metallic film consisting of different silver nanostructures. Scanning electron microscopy (SEM) micrographs of these SERS substrates showed diverse morphology with significant difference in an average size and size distribution of silver nanoparticles. Ultraviolet-visible-near-infrared (UV-Vis-NIR) reflection spectroscopy showed plasmonic absorption at 398 and 469 nm, which is in accordance with the SEM findings. The activity of the SERS substrates was tested using rhodamine 6G (R6G) dye molecules and 514.5 nm laser excitation. Contrary to the microporous silicon template, the SERS substrate prepared from macro-mesoporous silicon template showed significantly broader size distribution of irregular silver nanoparticles as well as localized surface plasmon resonance closer to excitation laser wavelength. Such silver morphology has high SERS sensitivity that enables ultralow concentration detection of R6G dye molecules up to 10(-15) M. To our knowledge, this is the lowest concentration detected of R6G dye molecules on porous silicon-based SERS substrates, which might even indicate possible single molecule detection.

  2. Microstructure and high-temperature oxidation resistance of TiN/Ti3Al intermetallic matrix composite coatings on Ti6Al4V alloy surface by laser cladding

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaowei; Liu, Hongxi; Wang, Chuanqi; Zeng, Weihua; Jiang, Yehua

    2010-11-01

    A high-temperature oxidation resistant TiN embedded in Ti3Al intermetallic matrix composite coating was fabricated on titanium alloy Ti6Al4V surface by 6kW transverse-flow CO2 laser apparatus. The composition, morphology and microstructure of the laser clad TiN/Ti3Al intermetallic matrix composite coating were characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). In order to evaluate the high-temperature oxidation resistance of the composite coatings and the titanium alloy substrate, isothermal oxidation test was performed in a conventional high-temperature resistance furnace at 600°C and 800°C respectively. The result shows that the laser clad intermetallic composite coating has a rapidly solidified fine microstructure consisting of TiN primary phase (granular-like, flake-like, and dendrites), and uniformly distributed in the Ti3Al matrix. It indicates that a physical and chemical reaction between the Ti powder and AlN powder occurred completely under the laser irradiation. In addition, the microhardness of the TiN/Ti3Al intermetallic matrix composite coating is 844HV0.2, 3.4 times higher than that of the titanium alloy substrate. The high-temperature oxidation resistance test reveals that TiN/Ti3Al intermetallic matrix composite coating results in the better modification of high-temperature oxidation behavior than the titanium substrate. The excellent high-temperature oxidation resistance of the laser cladding layer is attributed to the formation of the reinforced phase TiN and Al2O3, TiO2 hybrid oxide. Therefore, the laser cladding TiN/Ti3Al intermetallic matrix composite coating is anticipated to be a promising oxidation resistance surface modification technique for Ti6Al4V alloy.

  3. Fabrication and characterization of functionalized surfaces with 3-amino propyltrimethoxysilane films for anti-infective therapy applications

    NASA Astrophysics Data System (ADS)

    Grumezescu, Valentina; Andronescu, Ecaterina; Holban, Alina Maria; Socol, Gabriel; Grumezescu, Alexandru Mihai; Ficai, Anton; Lazar, Veronica; Chifiriuc, Mariana Carmen; Trusca, Roxana; Iordache, Florin

    2015-05-01

    The purpose of this study was the fabrication of functionalized anti-adherent surfaces based on the polyvinyl chloride (PVC) coated with 3-amino propyltrimethoxysilane (APTMS) by matrix assisted pulsed laser evaporation (MAPLE) in order to improve the resistance of PVC based prosthetic devices to microbial colonization. Infrared microscopy (IRM) investigations of APTMS thin films proved the compositional homogeneity of the prepared thin film. Scanning electron microscopy (SEM) micrographs revealed a granular morphology with microspheres harboring a diameter between 15 and 60 nm. The microbiological assays proved that MAPLE deposited APTMS films inhibited the adherence capacity and biofilm development of Pseudomonas aeruginosa and Staphylococcus aureus strains. Furthermore, this material proved to be highly biocompatible, allowing the normal growth and development of human endothelial cells. These traits highlight the fact that the fabricated APTMS thin films may be efficiently used for improving different surfaces of medical use, including prostheses and implantable devices.

  4. In vivo reactive neural plasticity investigation by means of correlative two photon: electron microscopy

    NASA Astrophysics Data System (ADS)

    Allegra Mascaro, A. L.; Cesare, P.; Sacconi, L.; Grasselli, G.; Mandolesi, G.; Maco, B.; Knott, G.; Huang, L.; De Paola, V.; Strata, P.; Pavone, F. S.

    2013-02-01

    In the adult nervous system, different populations of neurons correspond to different regenerative behavior. Although previous works showed that olivocerebellar fibers are capable of axonal regeneration in a suitable environment as a response to injury1, we have hitherto no details about the real dynamics of fiber regeneration. We set up a model of singularly axotomized climbing fibers (CF) to investigate their reparative properties in the adult central nervous system (CNS) in vivo. Time lapse two-photon imaging has been combined to laser nanosurgery2, 3 to define a temporal pattern of the degenerative event and to follow the structural rearrangement after injury. To characterize the damage and to elucidate the possible formation of new synaptic contacts on the sprouted branches of the lesioned CF, we combined two-photon in vivo imaging with block face scanning electron microscopy (FIB-SEM). Here we describe the approach followed to characterize the reactive plasticity after injury.

  5. Evaluation and comparison of the marginal adaptation of two different substructure materials.

    PubMed

    Karaman, Tahir; Ulku, Sabiha Zelal; Zengingul, Ali Ihsan; Guven, Sedat; Eratilla, Veysel; Sumer, Ebru

    2015-06-01

    In this study, we aimed to evaluate the amount of marginal gap with two different substructure materials using identical margin preparations. Twenty stainless steel models with a chamfer were prepared with a CNC device. Marginal gap measurements of the galvano copings on these stainless steel models and Co-Cr copings obtained by a laser-sintering method were made with a stereomicroscope device before and after the cementation process and surface properties were evaluated by scanning electron microscopy (SEM). A dependent t-test was used to compare the mean of the two groups for normally distributed data, and two-way variance analysis was used for more than two data sets. Pearson's correlation analysis was also performed to assess relationships between variables. According to the results obtained, the marginal gap in the galvano copings before cementation was measured as, on average, 24.47 ± 5.82 µm before and 35.11 ± 6.52 µm after cementation; in the laser-sintered Co-Cr structure, it was, on average, 60.45 ± 8.87 µm before and 69.33 ± 9.03 µm after cementation. A highly significant difference (P<.001) was found in marginal gap measurements of galvano copings and a significant difference (P<.05) was found in marginal gap measurements of the laser-sintered Co-Cr copings. According to the SEM examination, surface properties of laser sintered Co-Cr copings showed rougher structure than galvano copings. The galvano copings showed a very smooth surface. Marginal gaps values of both groups before and after cementation were within the clinically acceptable level. The smallest marginal gaps occurred with the use of galvano copings.

  6. Evaluation and comparison of the marginal adaptation of two different substructure materials

    PubMed Central

    Karaman, Tahir; Ulku, Sabiha Zelal; Zengingul, Ali Ihsan; Eratilla, Veysel; Sumer, Ebru

    2015-01-01

    PURPOSE In this study, we aimed to evaluate the amount of marginal gap with two different substructure materials using identical margin preparations. MATERIALS AND METHODS Twenty stainless steel models with a chamfer were prepared with a CNC device. Marginal gap measurements of the galvano copings on these stainless steel models and Co-Cr copings obtained by a laser-sintering method were made with a stereomicroscope device before and after the cementation process and surface properties were evaluated by scanning electron microscopy (SEM). A dependent t-test was used to compare the mean of the two groups for normally distributed data, and two-way variance analysis was used for more than two data sets. Pearson's correlation analysis was also performed to assess relationships between variables. RESULTS According to the results obtained, the marginal gap in the galvano copings before cementation was measured as, on average, 24.47 ± 5.82 µm before and 35.11 ± 6.52 µm after cementation; in the laser-sintered Co-Cr structure, it was, on average, 60.45 ± 8.87 µm before and 69.33 ± 9.03 µm after cementation. A highly significant difference (P<.001) was found in marginal gap measurements of galvano copings and a significant difference (P<.05) was found in marginal gap measurements of the laser-sintered Co-Cr copings. According to the SEM examination, surface properties of laser sintered Co-Cr copings showed rougher structure than galvano copings. The galvano copings showed a very smooth surface. CONCLUSION Marginal gaps values of both groups before and after cementation were within the clinically acceptable level. The smallest marginal gaps occurred with the use of galvano copings. PMID:26140178

  7. Serial block face scanning electron microscopy--the future of cell ultrastructure imaging.

    PubMed

    Hughes, Louise; Hawes, Chris; Monteith, Sandy; Vaughan, Sue

    2014-03-01

    One of the major drawbacks in transmission electron microscopy has been the production of three-dimensional views of cells and tissues. Currently, there is no one suitable 3D microscopy technique that answers all questions and serial block face scanning electron microscopy (SEM) fills the gap between 3D imaging using high-end fluorescence microscopy and the high resolution offered by electron tomography. In this review, we discuss the potential of the serial block face SEM technique for studying the three-dimensional organisation of animal, plant and microbial cells.

  8. In vitro behavior of human mesenchymal stem cells on poly(N-isopropylacrylamide) based biointerfaces obtained by matrix assisted pulsed laser evaporation

    NASA Astrophysics Data System (ADS)

    Icriverzi, Madalina; Rusen, Laurentiu; Sima, Livia Elena; Moldovan, Antoniu; Brajnicov, Simona; Bonciu, Anca; Mihailescu, Natalia; Dinescu, Maria; Cimpean, Anisoara; Roseanu, Anca; Dinca, Valentina

    2018-05-01

    The use of smart coatings with tunable characteristics in bioengineering fields is directly correlated with the surface chemical and topographical properties, the method of preparation, and also with the type of cells implied for the specific application. In this work, a versatile surface modification technique based on the use of lasers (Matrix-Assisted Pulsed Laser Evaporation (MAPLE)) was used to yield poly(N-isopropylacrylamide) (pNIPAM) and its derivatives (amine, azide and amide terminated pNIPAM) functional and termoresponsive thin films. Surface properties of pNIPAM and its derivative films such as morphology, roughness and hydrophobic/hydrophilic character, as well as the thermoresponsive capacity were investigated by atomic force microscopy and contact angle measurements. The chemical characteristics of the pNIPAM based thin films were analysed by Fourier Transform Infrared Spectroscopy (FTIR). The chemical functionality was kept for all the samples obtained by MAPLE and the thermoresponse was demonstrated by the change in the contact angle and thickness values when the temperature was shifted from 37 °C to 24 °C for all the materials tested, with a smaller change for maleimide terminated pNIPAM. Biological assays performed in vitro (fluorescence microscopy and Scanning Electron Microscopy (SEM)) confirmed the conditioning of the early mesenchymal stem cell (MSC) growth by specific chemistry of the coatings. The cell imaging analysis revealed no cytotoxic effect of pNIPAM surfaces irrespective of type of functionalization. An increased proliferation rate of the cells grown on pNIPAM-azide surfaces and a lower cell density on pNIPAM-maleimide surfaces compared to the pNIPAM surfaces was observed, which can direct their use to potential surfaces in regenerative medicine approaches.

  9. Production of hybrid macro/micro/nano surface structures on Ti6Al4V surfaces by picosecond laser surface texturing and their antifouling characteristics.

    PubMed

    Rajab, Fatema H; Liauw, Christopher M; Benson, Paul S; Li, Lin; Whitehead, Kathryn A

    2017-12-01

    The development of surfaces which reduce biofouling has attracted much interest in practical applications. Three picosecond laser generated surface topographies (Ti1, Ti2, Ti3) on titanium were produced, treated with fluoroalkylsilane (FAS), then characterised using Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX), Raman Spectroscopy, Fourier Transform Infra-Red (FTIR) spectroscopy, contact angle measurements and white light interference microscopy. The surfaces had a range of different macro/micro/nano topographies. Ti2 had a unique, surface topography with large blunt conical peaks and was predominantly a rutile surface with closely packed, self-assembled FAS; this was the most hydrophobic sample (water contact angle 160°; ΔG iwi was -135.29mJm -2 ). Bacterial attachment, adhesion and retention to the surfaces demonstrated that all the laser generated surfaces retained less bacteria than the control surface. This also occurred following the adhesion and retention assays when the bacteria were either not rinsed from the surfaces or were retained in static conditions for one hour. This work demonstrated that picosecond laser generated surfaces may be used to produce antiadhesive surfaces that significantly reduced surface fouling. It was determined that a tri-modally dimensioned surface roughness, with a blunt conical macro-topography, combined with a close-packed fluoroalkyl monolayer was required for an optimised superhydrophobic surface. These surfaces were effective even following surface immersion and static conditions for one hour, and thus may have applications in a number of food or medical industries. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. MAPLE fabrication of thin films based on kanamycin functionalized magnetite nanoparticles with anti-pathogenic properties

    NASA Astrophysics Data System (ADS)

    Grumezescu, Valentina; Andronescu, Ecaterina; Holban, Alina Maria; Mogoantă, Laurenţiu; Mogoşanu, George Dan; Grumezescu, Alexandru Mihai; Stănculescu, Anca; Socol, Gabriel; Iordache, Florin; Maniu, Horia; Chifiriuc, Mariana Carmen

    2015-05-01

    In this study we aimed to evaluate the biocompatibility and antimicrobial activity of kanamycin functionalized 5 nm-magnetite (Fe3O4@KAN) nanoparticles thin films deposited by Matrix Assisted Pulsed Laser Evaporation (MAPLE) technique. A laser deposition regime was established in order to stoichiometrically transfer Fe3O4@KAN thin films on silicone and glass substrates. Morphological and physico-chemical properties of powders and coatings were characterized by XRD, TEM, SEM, AFM and IR microscopy (IRM). Our nanostructured thin films have proved efficiency in the prevention of microbial adhesion and mature biofilms development as a result of antibiotic release in its active form. Furthermore, kanamycin functionalized nanostructures exhibit a good biocompatibility, both in vivo and in vitro, demonstrating their potential for implants application. This is the first study reporting the assessment of the in vivo biocompatibility of a magnetite-antimicrobial thin films produced by MAPLE technique.

  11. The saturable absorption and reverse saturable absorption properties of Cu doped zinc oxide thin films

    NASA Astrophysics Data System (ADS)

    Yao, Cheng-Bao; Wen, Xin; Li, Qiang-Hua; Yan, Xiao-Yan; Li, Jin; Zhang, Ke-Xin; Sun, Wen-Jun; Bai, Li-Na; Yang, Shou-Bin

    2017-03-01

    We present the structure and nonlinear absorption (NLA) properties of Cu-doped ZnO (CZO) films prepared by magnetron sputtering. The films were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The results show that the CZO films can maintain a wurtzite structure. Furthermore, the open-aperture (OA) Z-scan measurements of the film were carried out by nanosecond laser pulse. A transition from saturable absorption (SA) to reverse saturable absorption (RSA) was observed as the excitation intensity increasing. With good excellent nonlinear optical coefficient, the samples were expected to be the potential applications in optical devices.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Congfei; Liang, Xiaojuan, E-mail: lxj6126@126

    The titanate, is a material of interest for various energy applications, including photovoltaics, catalysts, and high-rate energy storage devices. Herein, its related materials, CuO/CaTi{sub 4}O{sub 9} [CCTO] thin films, were successfully fabricated on SrTiO{sub 3} (100) substrates by RF magnetron sputtering assisted with subsequent oxygen annealing. This obtained CCTO thin films were then systemically studied by X-ray powder diffraction (XRD), atomic force microscopy (AFM), scan electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and high-resolution transmission electron microscopy (HRTEM). It was found that CuO and CaTi{sub 4}O{sub 9} (001) particles were closely accumulated together on the surface of the substrate inmore » the annealing process after comparing with that of the as-prepared thin film, which was verified by SEM and AFM results. Furthermore, we investigated the third-order nonlinear optical (NLO) properties of the as-prepared and annealed CCTO thin film by means of the Z-scan technique using 650 nm femtosecond laser pulse. Post-deposition oxygen annealing was found to modify the morphological characteristics of the films, resulting in enhancing their NLO properties. The observation of NLO performance of annealed CCTO thin film indicates that RF magnetron sputtering is a feasible method for the fabrication of optical thin films, which can be expanded to fabricate other NLO materials from the corresponding dispersions. Naturally, we concluded that the CCTO thin film occupy a better NLO property, and thus enlarge its application in nonlinear optics. - Highlights: • The CCTO thin film was prepared using the RF magnetron sputtering and oxygen annealing. • The film was prepared on the SrTiO{sub 3}(100) substrates with a Ca{sub 2}CuO{sub 3} target. • The oxygen annealing was found can effectively enhance the film quality and NLO property. • The film was characterized using XPS, SEM, AFM, TEM, XRD and Z-scan techniques.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buck, E.C.; Dietz, N.L.; Bates, J.K.

    Uranium contaminated soils from the Fernald Operation Site, Ohio, have been examined by a combination of optical microscopy, scanning electron microscopy with backscattered electron detection (SEM/BSE), and analytical electron microscopy (AEM). A method is described for preparing of transmission electron microscopy (TEM) thin sections by ultramicrotomy. By using these thin sections, SEM and TEM images can be compared directly. Uranium was found in iron oxides, silicates (soddyite), phosphates (autunites), and fluorite. Little uranium was associated with clays. The distribution of uranium phases was found to be inhomogeneous at the microscopic level.

  14. Folate-grafted boron nitride nanotubes: possible exploitation in cancer therapy.

    PubMed

    Ferreira, Tiago H; Marino, Attilio; Rocca, Antonella; Liakos, Ioannis; Nitti, Simone; Athanassiou, Athanassia; Mattoli, Virgilio; Mazzolai, Barbara; de Sousa, Edesia M B; Ciofani, Gianni

    2015-03-15

    Boron nitride nanotubes (BNNTs) have generated considerable interest among the scientific community because of their unique physical and chemical properties. They present good chemical inertness, high thermal stability, and optimal resistance to oxidation, that make them ideal candidates for biomedical applications, in particular as nanovectors for drug, gene and protein delivery into the cells. In this study, BNNTs were prepared through a synthesis based on a chemical vapor deposition (CVD) method, and thereafter chemically functionalized with folic acid. The obtained nanostructures have been characterized by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The characterization showed efficiently functionalized BNNTs of length of about 1 μm. Furthermore, confocal laser microscopy demonstrated that our nanotubes can be fluorescently-traced under appropriate excitation. Thanks to this property, it has been possible to investigate their internalization by HeLa cells through confocal microscopy, demonstrating that the BNNT up-take clearly increases after the functionalization with folate, a result confirmed by inductively coupled plasma (ICP) assessment of boron content inside the treated cell cultures. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Laser-deposited thin films of biocompatible ceramic

    NASA Astrophysics Data System (ADS)

    Jelinek, Miroslav; Olsan, V.; Jastrabik, Lubomir; Dostalova, Tatjana; Himmlova, Lucia; Kadlec, Jaromir; Pospichal, M.; Simeckova, M.; Fotakis, Costas

    1995-03-01

    Thin films of biocompatible materials such as hydroxylapatite (HA) - Ca10 (PO4)6(OH)2 were deposited by laser ablation technique. The films of HA were created on Ti substrates by KrF laser. The layers were deposited in vacuum, in pure H2O vapors (pressure 2 X 10-3 mbar - 2 X 10-1 mbar), and in Ar/H2O vapor mixture. Influence of laser energy density ET (3 Jcm-2, 13 Jcm-2) and substrate temperature Tg (500 degree(s)C - 760 degree(s)C) on the film parameters was studied. Two different technological processes were used for HA target preparation. Films and targets were characterized by Rutherford backscattering analysis (RBS), particle induced x-ray emission (PIXE), x-ray diffraction (XRD), scanning electron microscopy (SEM) and by Knoop microhardness and scratch test. The best crystalline HA films were reached in the mixture of Ar/H2O. Higher Tg had to be used for such deposition. Higher Tg was also preferable from the point of film microhardness. Adhesion of films to the substrates in the range of tens of Newtons was measured. The preliminary results of in vitro experiments of films biotolerance and resorbability are also presented.

  16. Microstructure characteristics of vacuum glazing brazing joints using laser sealing technique

    NASA Astrophysics Data System (ADS)

    Liu, Sixing; Yang, Zheng; Zhang, Jianfeng; Zhang, Shanwen; Miao, Hong; Zhang, Yanjun; Zhang, Qi

    2018-05-01

    Two pieces of plate glass were brazed into a composite of glazing with a vacuum chamber using PbO-TiO2-SiO2-RxOy powder filler alloys to develop a new type of vacuum glazing. The brazing process was carried out by laser technology. The interface characteristics of laser brazed joints formed between plate glass and solder were investigated using optical microscope, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) techniques. The results show that the inter-diffusion of Pb/Ti/Si/O elements from the sealing solder toward the glass and O/Al/Si elements from the glass toward the solder, resulting in a reaction layer in the brazed joints. The microstructure phases of PbTiO3, AlSiO, SiO2 and PbO in the glass/solder interface were confirmed by XRD analysis. The joining of the sealing solder to the glass was realized by the reaction products like fibrous structures on interface, where the wetting layer can help improve the bonding performance and strength between the sealing solder and the plate glass during the laser brazing process.

  17. Erasure and formation of femtosecond laser-induced nanostructures

    NASA Astrophysics Data System (ADS)

    Zimmermann, F.; Plech, A.; Richter, Sören; Tünnermann, A.; Nolte, S.

    2015-03-01

    The local inscription of strong birefringence by ultrashort laser pulses facilitates the fabrication of manifold photonic devices, such as data storage devices. One intriguing feature of these nanograting-based data units is to delete and rewrite new nanograting voxels by changing the laser polarization orientation during inscription. However, up to now no comprehensive picture of this complex physical process exists. Thus we performed optical retardance measurements as well as microscopic analyses, such as small-angle X-ray scattering (SAXS) and scanning electron microscopy (SEM) to address this issue. Our results reveal that only few laser pulses already lead to an erasure of nanometric pores which is mapped by the total (X-ray) scattering volume as well as by the strong reduction of the initial form birefringence. Simultaneously, new nanostructures form which arrange in individual grating planes with ongoing irradiation. However, since the rewrite process is no ideal mechanism some of the old sheets remain, which perturb the quality of the new nanograting. When rewriting multiple times the glass becomes even more porous due to repetitive annealing and quenching. This promotes the formation of new inhomogeneities and in turn leads to an increase in optical retardance.

  18. A Mobile Nanoscience and Electron Microscopy Outreach Program

    NASA Astrophysics Data System (ADS)

    Coffey, Tonya; Kelley, Kyle

    2013-03-01

    We have established a mobile nanoscience laboratory outreach program in Western NC that puts scanning electron microscopy (SEM) directly in the hands of K-12 students and the general public. There has been a recent push to develop new active learning materials to educate students at all levels about nanoscience and nanotechnology. Previous projects, such as Bugscope, nanoManipulator, or SPM Live! allowed remote access to advanced microscopies. However, placing SEM directly in schools has not often been possible because the cost and steep learning curve of these technologies were prohibitive, making this project quite novel. We have developed new learning modules for a microscopy outreach experience with a tabletop SEM (Hitachi TM3000). We present here an overview of our outreach and results of the assessment of our program to date.

  19. The use of gamma irradiation in preparation of polybutadiene rubber nanopowder; Its effect on particle size, morphology and crosslink structure of the powder

    NASA Astrophysics Data System (ADS)

    Rezaei Abadchi, Majid; Jalali-Arani, Azam

    2014-02-01

    The aim of this work was the preparation and characterization of polybutadiene rubber (BR) powder by irradiating of rubber lattices using 60Co radiation and spray-drying of them at the appropriate condition. The influences of absorbed dose on the volume swelling ratio, molecular weight between crosslinks, gel fraction, and glass transition temperature of obtained powder were studied. Morphology, size and size distribution of rubber particles were examined by using scanning electron microscopy (SEM) and laser particle size analyzer (LPSA) technique, respectively. Results obtained by LPSA revealed that radiation has no effect on particle size of rubber latex but after drying, adherence properties of rubber particle causes increase in particle size of rubber powder, as shown in SEM photograph. Fourier transform infrared spectroscopy of rubber powders confirmed that with increasing the irradiation dose, characteristic peak corresponds to the >Cdbnd C< double bands decreased. Also Charlesby-Pinner equation was used to evaluate radiation yield.

  20. Formulation and Characterization of a Plasma Sterilized, Pharmaceutical Grade Chitosan Powder

    PubMed Central

    Crofton, Andrew R; Hudson, Samuel M; Howard, Kristy; Pender, Tyler; Abdelgawad, Abdelrahman; Wolski, Daniel; Kirsch, Wolff M

    2016-01-01

    Chitosan has great potential as a pharmaceutical excipient. In this study, chitosan flake was micronized using cryo-ball and cryo-jet milling and subsequently sterilized with nitrogen plasma. Micronized chitosan was characterized by laser diffraction, scanning electron microscopy (SEM), conductometric titration, viscometry, loss on drying, FTIR, and limulus amebocyte lysate (LAL) assays. Cryo-jet milling produced mean particle size of 16.05 μm, 44% smaller than cryo-ball milling. Cryomilled chitosan demonstrated increased hygroscopicity, but reduced molecular weight and degree of deacetylation (DD). SEM imaging showed highly irregular shapes. FTIR showed changes consistent with reduced DD and an unexplained shift at 1100 cm−1. Plasma treated chitosan was sterile with <2.5 EU/g after low-pressure plasma and <1.3 EU/g after atmospheric pressure plasma treatment. Plasma treatment decreased the reduced viscosity of chitosan flake and powder, with a greater effect on powder. In conclusion, pharmaceutical grade, sterile chitosan powder was produced with cryo-jet milling and plasma sterilization. PMID:27112892

  1. Influence of Yttrium Ion-Implantation on the Growth Kinetics and Micro-Structure of NiO Oxide Film

    NASA Astrophysics Data System (ADS)

    Jin, Huiming; Adriana, Felix; Majorri, Aroyave

    2008-02-01

    Isothermal and cyclic oxidation behaviours of pure and yttrium-implanted nickel were studied at 1000°C in air. Scanning electronic microscopy (SEM) and transmission electronic microscopy (TEM) were used to examine the micro-morphology and structure of oxide scales formed on the nickel substrate. It was found that Y-implantation significantly improved the anti-oxidation ability of nickel in both isothermal and cyclic oxidizing experiments. Laser Raman microscopy was also used to study the stress status of oxide scales formed on nickel with and without yttrium. The main reason for the improvement in anti-oxidation of nickel was that Y-implantation greatly reduced the growing speed and grain size of NiO. This fine-grained NiO oxide film might have better high temperature plasticity and could relieve parts of compressive stress by means of creeping, and maintained a ridge character and a relatively low internal stress level. Hence yttrium ion-implantation remarkably enhanced the adhesion of protective NiO oxide scale formed on the nickel substrate.

  2. EVALUATION OF COMPUTER-CONTROLLED SCANNING ELECTRON MICROSCOPY APPLIED TO AN AMBIENT URBAN AEROSOL SAMPLE

    EPA Science Inventory


    Recent interest in monitoring and speciation of particulate matter has led to increased application of scanning electron microscopy (SEM) coupled with energy-dispersive x-ray analysis (EDX) to individual particle analysis. SEM/EDX provides information on the size, shape, co...

  3. Influence of laser structuring of PEEK, PEEK-GF30 and PEEK-CF30 surfaces on the shear bond strength to a resin cement.

    PubMed

    Henriques, Bruno; Fabris, Douglas; Mesquita-Guimarães, Joana; Sousa, Anne C; Hammes, Nathalia; Souza, Júlio C M; Silva, Filipe S; Fredel, Márcio C

    2018-08-01

    The aim of this study was to evaluate the influence of a surface conditioning technique using laser ablation and acid etching on PEEK substrate on its bonding strength to a resin cement. Cylindrical specimens of unfilled PEEK, 30% glass fiber reinforced PEEK and 30% carbon fiber reinforced PEEK were separated in four groups according to the following surface treatments: acid etching with H 2 SO 4 , laser ablation with 200 µm holes spaced 400 µm apart (D2E4), laser ablation with 200 µm holes spaced 600 µm apart (D2E6), and laser ablation (D2E4) followed by acid etching. A dual-curing resin cement (Allcem CORE) was then applied to the PEEK surface. Specimens were aged in distilled water at 37 °C for 24 h. Shear bond strength tests were performed to the fracture of the samples. Two-way ANOVA statistical analysis was performed with a significance level of 0.05. Scanning electron microscopy analysis was performed to analyse the conditioned and fracture surfaces. SEM images of the test interfaces showed that the resin cement could not flow in the holes designed by the laser ablation on the PEEK surface. The shear bond strength of PEEK to resin cement was not improved by the surface modification of the PEEK. Also, there was a statistically significant decrease in shear bond strength for unfilled PEEK specimens. On carbon or glass reinforced PEEK, the change was not significant. SEM images of the fracture surfaces revealed that the failure mode was mainly adhesive. Although laser ablation promoted the PEEK surface modification by the formation of retentive holes, the test resin cement could not thoroughly flow on the rough modified surfaces to establish an effective mechanical interlocking. That negatively affected the shear bonding strength of PEEK to the resin cement. Further studies should be carried out to increase the bonding between PEEK and resin cements. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Gaussian broad-beam excimer laser: clinical and experimental results.

    PubMed

    Schraepen, P; Eskina, E; Gobin, L; Trau, R; Timmermans, J; Tassignon, M J

    2005-01-01

    To evaluate the mid-term (1-3 years) results of the Gaussian broad-beam excimer laser Delivery System (DS) after single treatment for the correction of myopia. To study the corneal surface with scanning electron microscopy (SEM) after excimer laser ablation using a flying spot delivery system (Bausch & Lomb) and a Gaussian Delivery System (GDS) (InPro). The 1035 consecutive eyes studied were split in four groups with respect to the treated myopia, expressed in spherical equivalent: low myopia up to -3.00 D (183 eyes), moderate myopia from -3.25 D to -6.00 D (540 eyes), high myopia from -6.25 D to -10.00 D (210 eyes) and very high myopia from -10.25 D to -20.00 D (102 eyes). Four post-mortem eyes of two donors were treated using the flying spot DS on one eye and the GDS on the other eye. We achieved postoperative spheriqual equivalent within +/- 1 D of emmetropia in respectively 99.1%, 98.9%, 83% and 21% of the eyes of group 1, 2, 3 and 4. UCVA was 10/10 or better in respectively 65%, 51% and 19% of group 1, 2 and 3. UCVA was 5/10 or better in respectively 86% and 75% of group 3 and 4. The defocus equivalent refraction was 1.0 or less in respectively 98%, 93%, 62%, and 7% of the four groups. On SEM, the corneal surface presented a smooth and polished profile for the GDS. The Gaussian Delivery System gives comparable results to the flying spot laser system for surface laser ablation in myopic eyes up to -10 D. Advantages of this system are: smooth ablation surface, short treatment time, low haze rate, high reliability and easy maintenance of the device due to the optical DS. It is an interesting alternative for the more complex mechanical DS.

  5. Signal-to-noise ratio estimation on SEM images using cubic spline interpolation with Savitzky-Golay smoothing.

    PubMed

    Sim, K S; Kiani, M A; Nia, M E; Tso, C P

    2014-01-01

    A new technique based on cubic spline interpolation with Savitzky-Golay noise reduction filtering is designed to estimate signal-to-noise ratio of scanning electron microscopy (SEM) images. This approach is found to present better result when compared with two existing techniques: nearest neighbourhood and first-order interpolation. When applied to evaluate the quality of SEM images, noise can be eliminated efficiently with optimal choice of scan rate from real-time SEM images, without generating corruption or increasing scanning time. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  6. Two novel approaches to study arthropod anatomy by using dualbeam FIB/SEM.

    PubMed

    Di Giulio, Andrea; Muzzi, Maurizio

    2018-03-01

    Transmission Electron Microscopy (TEM) has always been the conventional method to study arthropod ultrastructure, while the use of Scanning Electron Microscopy (SEM) was mainly devoted to the examination of the external cuticular structures by secondary electrons. The new generation field emission SEMs are capable to generate images at sub-cellular level, comparable to TEM images employing backscattered electrons. The potential of this kind of acquisition becomes very powerful in the dual beam FIB/SEM where the SEM column is combined with a Focused Ion Beam (FIB) column. FIB uses ions as a nano-scalpel to slice samples fixed and embedded in resin, replacing traditional ultramicrotomy. We here present two novel methods, which optimize the use of FIB/SEM for studying arthropod anatomy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Correlation of two-photon in vivo imaging and FIB/SEM microscopy

    PubMed Central

    Blazquez-Llorca, L; Hummel, E; Zimmerman, H; Zou, C; Burgold, S; Rietdorf, J; Herms, J

    2015-01-01

    Advances in the understanding of brain functions are closely linked to the technical developments in microscopy. In this study, we describe a correlative microscopy technique that offers a possibility of combining two-photon in vivo imaging with focus ion beam/scanning electron microscope (FIB/SEM) techniques. Long-term two-photon in vivo imaging allows the visualization of functional interactions within the brain of a living organism over the time, and therefore, is emerging as a new tool for studying the dynamics of neurodegenerative diseases, such as Alzheimer’s disease. However, light microscopy has important limitations in revealing alterations occurring at the synaptic level and when this is required, electron microscopy is mandatory. FIB/SEM microscopy is a novel tool for three-dimensional high-resolution reconstructions, since it acquires automated serial images at ultrastructural level. Using FIB/SEM imaging, we observed, at 10 nm isotropic resolution, the same dendrites that were imaged in vivo over 9 days. Thus, we analyzed their ultrastructure and monitored the dynamics of the neuropil around them. We found that stable spines (present during the 9 days of imaging) formed typical asymmetric contacts with axons, whereas transient spines (present only during one day of imaging) did not form a synaptic contact. Our data suggest that the morphological classification that was assigned to a dendritic spine according to the in vivo images did not fit with its ultrastructural morphology. The correlative technique described herein is likely to open opportunities for unravelling the earlier unrecognized complexity of the nervous system. Lay Description Neuroscience and the understanding of brain functions are closely linked to the technical advances in microscopy. In this study we performed a correlative microscopy technique that offers the possibility to combine 2 photon in vivo imaging and FIB/SEM microscopy. Long term 2 photon in vivo imaging allows the visualization of functional interactions within the brain of a living organism over the time, and therefore, is emerging as a new tool to study the dynamics of neurodegenerative diseases, such as Alzheimer’s disease. However, light microscopy has important limitations in revealing synapses that are the connections between neurons, and for this purpose, the electron microscopy is necessary. FIB/SEM microscopy is a novel tool for three-dimensional (3D) high resolution reconstructions since it acquires automated serial images at ultrastructural level. This correlative technique will open up new horizons and opportunities for unravelling the complexity of the nervous system. PMID:25786682

  8. Unambiguous characterization of gunshot residue particles using scanning laser ablation and inductively coupled plasma-mass spectrometry.

    PubMed

    Abrego, Zuriñe; Ugarte, Ana; Unceta, Nora; Fernández-Isla, Alberto; Goicolea, M Aranzazu; Barrio, Ramón J

    2012-03-06

    A new method based on scanning laser ablation and inductively coupled plasma-mass spectrometry (LA-ICPMS) for the detection and identification of gunshot residue (GSR) particles from firearms discharges has been developed. Tape lifts were used to collect inorganic residues from skin surfaces. The laser ablation pattern and ICPMS conditions were optimized for the detection of metals present in GSR, such as (121)Sb, (137)Ba, and (208)Pb. Other isotopes ((27)Al, (29)Si, (31)P, (33)S, (35)Cl, (39)K, (44)Ca, (57)Fe, (60)Ni, (63)Cu, (66)Zn, and (118)Sn) were monitored during the ICPMS analyses to obtain additional information to possibly classify the GSR particles as either characteristic of GSR or consistent with GSR. In experiments with real samples, different firearms, calibers, and ammunitions were used. The performed method evaluation confirms that the developed methodology can be used as an alternative to the standard scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) technique, with the significant advantage of drastically reducing the analysis time to less than 66 min.

  9. Soft x ray optics by pulsed laser deposition

    NASA Technical Reports Server (NTRS)

    Fernandez, Felix E.

    1994-01-01

    A series of molybdenum thin film depositions by PLD (Pulsed Laser Deposition) have been carried out, seeking appropriate conditions for multilayer fabrication. Green (532 nm) and UV (355 nm) light pulses, in a wide range of fluences, were used. Relatively large fluences (in comparison with Si) are required to cause evaporation of molybdenum. The optical penetration depths and reflectivities for Mo at these two wavelengths are comparable, which means that results should be, and do appear to be similar for equal fluences. For all fluences above threshold used, a large number of incandescent particles is ejected by the target (either a standard Mo sputtering target or a Mo sheet were tried), together with the plasma plume. Most of these particles are clearly seen to bounce off the substrate. The films were observed with light microscopy using Nomarski and darkfield techniques. There is no evidence of large debris. Smooth films plus micron-sized droplets are usually seen. The concentration of these droplets embedded in the film appears not to vary strongly with the laser fluence employed. Additional characterization with SEM and XRD is under way.

  10. Analysis of the silicone polymer surface aging profile with laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Xilin; Hong, Xiao; Wang, Han; Chen, Can; Zhao, Chenlong; Jia, Zhidong; Wang, Liming; Zou, Lin

    2017-10-01

    Silicone rubber composite materials have been widely used in high voltage transmission lines for anti-pollution flashover. The aging surface of silicone rubber materials decreases service properties, causing loss of the anti-pollution ability. In this paper, as an analysis method requiring no sample preparation that is able to be conducted on site and suitable for nearly all types of materials, laser-induced breakdown spectroscopy (LIBS) was used for the analysis of newly prepared and aging (out of service) silicone rubber composites. With scanning electron microscopy (SEM) and hydrophobicity test, LIBS was proven to be nearly non-destructive for silicone rubber. Under the same LIBS testing parameters, a linear relationship was observed between ablation depth and laser pulses number. With the emission spectra, all types of elements and their distribution in samples along the depth direction from the surface to the inner part were acquired and verified with EDS results. This research showed that LIBS was suitable to detect the aging layer depth and element distribution of the silicone rubber surface.

  11. Effect of Heat Input and Post-Weld Heat Treatment on the Mechanical and Metallurgical Characteristics of Laser-Welded Maraging Steel Joints

    NASA Astrophysics Data System (ADS)

    Karthikeyan, R.; Saravanan, M.; Singaravel, B.; Sathiya, P.

    This paper investigates the impact of heat input and post-weld aging behavior at different temperatures on the laser paper welded maraging steel grade 250. Three different levels of heat inputs were chosen and CO2 laser welding was performed. Aging was done at six different temperatures: 360∘C, 400∘C, 440∘C, 480∘C, 520∘C and 560∘C. The macrostructure and microstructure of the fusion zone were obtained using optical microscope. The microhardness test was performed on the weld zone. Tensile tests and impact tests were carried out for the weld samples and different age-treated weld samples. Fracture surfaces were investigated by scanning electron microscopy (SEM). Microhardness values of the fusion zone increased with increasing aging temperature, while the base metal microhardness value decreased. Tensile properties increased with aging temperature up to 480∘C and reduced for 520∘C and 560∘C. This was mainly due to the formation of reverted austenite beyond 500∘C. XRD analysis confirmed the formation of reverted austenite.

  12. Microstructure and wear resistance of Al2O3-M7C3/Fe composite coatings produced by laser controlled reactive synthesis

    NASA Astrophysics Data System (ADS)

    Tan, Hui; Luo, Zhen; Li, Yang; Yan, Fuyu; Duan, Rui

    2015-05-01

    Based on the principle of thermite reaction of Al and Fe2O3 powders, the Al2O3 ceramic reinforced Fe-based composite coatings were fabricated on a steel substrate by laser controlled reactive synthesis and cladding. The effects of different additions of thermite reactants on the phase transition, microstructure evolution, microhardness and wear resistance of the composite coatings were investigated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Vickers microhardness and block-on-ring wear test, respectively. The results show that Al2O3 ceramic and M7C3 carbide are in situ synthesized via the laser controlled reactive synthesis. The Al2O3 ceramic and M7C3 carbides prefer to distribute along the γ-Fe phase boundary continuously, which separates the γ-Fe matrix and is beneficial to the grain refinement. With the increase of thermite reactants, the amount of Al2O3 ceramic and M7C3 carbide in the composite coatings increases gradually. Moreover the cladding layer changes from dendritic structure to columnar structure and martensite structure in the heat affected zone becomes coarse. The increased thermite reactants improve the microhardness and wear resistance of the in situ composite coatings obviously and enhance the hardness of the heat affected zone, which should be ascribed to the grain refinement, ceramic and carbide precipitation and solid solution strengthening.

  13. [The effects of different welding wires on the mechanical properties of laser welding joints].

    PubMed

    Huang, Qing-feng; Zhang, Jian-zhong; Jiang, Wei-dong; Li, Quan; Yu, Jin-xing

    2006-08-01

    To evaluate the mechanical properties and microstructure of laser-welded joints with different welding wires for clinical use of welding wire. The standard tensile test and three-point bending test rods were made from Co-Cr and Ni-Cr alloy, and were laser-welded with different welding wire (commercially welding wire and casting wire). Then the tensile rods were tested for the ultimate tensile strength (UTS), and the bending rods for the ultimate bending strength (UBS). The results was analyzed by one-way ANOVA. The tensile fracture surface were examined by scanning electron microscopy (SEM). Metallurgical analysis were also performed on polished longitudinal sectioned samples. For Co-Cr alloy, the UTS of casting wire group and commercially welding wire group was respectively (606.40+/-82.53)MPa and (693.61+/-47.68)MPa; the UBS was respectively (997.95+/-88.89)MPa and (1160.76+/-91.59)MPa. ANOVA showed a significant difference of UTS and UBS between the two groups at the 0.05 level (P<0.05). For Ni-Cr alloy, the UTS of casting wire group and commercially welding wire group was respectively (558.14+/-46.75)MPa and (582.32+/-35.43)MPa; the UBS was respectively (1084.75+/-46.02)MPa and (1078.29+/-36.25)MPa. There was no significant difference between the two groups (P>0.05). SEM and metallurgical examination showed the welded zone exhibiting more cracks in the casting wire group than in the commercially welding wire group. It would be advisable to work with commercially welding wire for the joints that need better strength.

  14. Effect of plastic-covered ultrasonic scalers on titanium implant surfaces.

    PubMed

    Mann, M; Parmar, D; Walmsley, A D; Lea, S C

    2012-01-01

    Maintaining oral health around titanium implants is essential. The formation of a biofilm on the titanium surface will influence the continuing success of the implant. These concerns have led to modified ultrasonic scaler instruments that look to reduce implant damage while maximising the cleaning effect. This study aimed to assess the effect of instrumentation, with traditional and modified ultrasonic scalers, on titanium implant surfaces and to correlate this with the oscillations of the instruments. Two ultrasonic insert designs (metallic TFI-10 and a plastic-tipped implant insert) were selected. Each scaler probe was scanned using a scanning laser vibrometer, under loaded and unloaded conditions, to determine their oscillation characteristics. Loads were applied against a titanium implant (100g and 200 g) for 10 s. The resulting implant surfaces were then scanned using laser profilometry and scanning electron microscopy (SEM). Insert probes oscillated with an elliptical motion with the maximum amplitude at the probe tip. Laser profilometry detected defects in the titanium surface only for the metallic scaler insert. Defect widths at 200 g high power were significantly larger than all other load/power conditions (P<0.02). Using SEM, it was observed that modifications to the implant surface had occurred following instrumentation with the plastic-tipped insert. Debris was also visible around the defects. Metal scalers produce defects in titanium implant surfaces and load and power are important factors in the damage caused. Plastic-coated scaler probes cause minimal damage to implant surfaces and have a polishing action but can leave plastic deposits behind on the implant surface. © 2011 John Wiley & Sons A/S.

  15. Minimal resin embedding of multicellular specimens for targeted FIB-SEM imaging.

    PubMed

    Schieber, Nicole L; Machado, Pedro; Markert, Sebastian M; Stigloher, Christian; Schwab, Yannick; Steyer, Anna M

    2017-01-01

    Correlative light and electron microscopy (CLEM) is a powerful tool to perform ultrastructural analysis of targeted tissues or cells. The large field of view of the light microscope (LM) enables quick and efficient surveys of the whole specimen. It is also compatible with live imaging, giving access to functional assays. CLEM protocols take advantage of the features to efficiently retrace the position of targeted sites when switching from one modality to the other. They more often rely on anatomical cues that are visible both by light and electron microscopy. We present here a simple workflow where multicellular specimens are embedded in minimal amounts of resin, exposing their surface topology that can be imaged by scanning electron microscopy (SEM). LM and SEM both benefit from a large field of view that can cover whole model organisms. As a result, targeting specific anatomic locations by focused ion beam-SEM (FIB-SEM) tomography becomes straightforward. We illustrate this application on three different model organisms, used in our laboratory: the zebrafish embryo Danio rerio, the marine worm Platynereis dumerilii, and the dauer larva of the nematode Caenorhabditis elegans. Here we focus on the experimental steps to reduce the amount of resin covering the samples and to image the specimens inside an FIB-SEM. We expect this approach to have widespread applications for volume electron microscopy on multiple model organisms. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Development of an in-situ multi-component reinforced Al-based metal matrix composite by direct metal laser sintering technique — Optimization of process parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Subrata Kumar, E-mail: subratagh82@gmail.com; Bandyopadhyay, Kaushik; Saha, Partha

    2014-07-01

    In the present investigation, an in-situ multi-component reinforced aluminum based metal matrix composite was fabricated by the combination of self-propagating high-temperature synthesis and direct metal laser sintering process. The different mixtures of Al, TiO{sub 2} and B{sub 4}C powders were used to initiate and maintain the self-propagating high-temperature synthesis by laser during the sintering process. It was found from the X-ray diffraction analysis and scanning electron microscopy that the reinforcements like Al{sub 2}O{sub 3}, TiC, and TiB{sub 2} were formed in the composite. The scanning electron microscopy revealed the distribution of the reinforcement phases in the composite and phase identities.more » The variable parameters such as powder layer thickness, laser power, scanning speed, hatching distance and composition of the powder mixture were optimized for higher density, lower porosity and higher microhardness using Taguchi method. Experimental investigation shows that the density of the specimen mainly depends upon the hatching distance, composition and layer thickness. On the other hand, hatching distance, layer thickness and laser power are the significant parameters which influence the porosity. The composition, laser power and layer thickness are the key influencing parameters for microhardness. - Highlights: • The reinforcements such as Al{sub 2}O{sub 3}, TiC, and TiB{sub 2} were produced in Al-MMC through SHS. • The density is mainly influenced by the material composition and hatching distance. • Hatching distance is the major influencing parameter on porosity. • The material composition is the significant parameter to enhance the microhardness. • The SEM micrographs reveal the distribution of TiC, TiB{sub 2} and Al{sub 2}O{sub 3} in the composite.« less

  17. A practical femtosecond laser procedure for DLEK endothelial transplantation: cadaver eye histology and topography.

    PubMed

    Terry, Mark A; Ousley, Paula J; Will, Brian

    2005-05-01

    The manual dissection technique for deep lamellar endothelial keratoplasty (DLEK) surgery is technically difficult and may not be smooth enough for consistently optimal postoperative vision. We evaluated the feasibility and efficacy of using a femtosecond laser to perform the dissections in the DLEK procedure. The Intralase femtosecond laser (with standard LASIK surgery spot settings) was used to create a 9.4-mm wide, 400-microm deep lamellar pocket dissection and a 5.0-mm wide side cut near-exit incision in 10 "recipient" whole cadaver eyes and in 10 "donor" cadaver corneal-scleral caps mounted onto an artificial anterior chamber. Recipient and donor disks were resected with special scissors, and the donor tissue was transplanted using the small incision (5.0-mm) DLEK technique. Topography of the recipient eyes was measured pre- and postlaser dissection, and the recipient and donor tissues were sent for scanning electron microscopy (SEM) analysis of the smoothness of the dissections. Successful lamellar dissections were obtained in all tissues. The mean recipient topographic corneal curvature postoperatively was 43.3 +/- 1.7 diopters, which was not a significant change from the preoperative curvature of 44.0 +/- 0.8 diopters (P = 0.430). The mean recipient topographic astigmatism postoperatively was 1.7 +/- 0.8 diopters, which was not a significant change from the preoperative recipient astigmatism of 1.6 +/- 0.7 diopters (P = 0.426). Comparison of the histology of the laser-formed stromal dissections by scanning electron microscopy, however, did not appear significantly better than histology after manual DLEK dissections in either the recipient or the donor tissues. A femtosecond laser can create the lamellar dissections for the DLEK procedure, making this procedure easier and faster. As in the manual technique, corneal topography is unchanged by this surgery. More work will need to be done, however, to optimize the laser settings to provide even smoother interface surfaces.

  18. Functionalised polyurethane for efficient laser micromachining

    NASA Astrophysics Data System (ADS)

    Brodie, G. W. J.; Kang, H.; MacMillan, F. J.; Jin, J.; Simpson, M. C.

    2017-02-01

    Pulsed laser ablation is a valuable tool that offers a much cleaner and more flexible etching process than conventional lithographic techniques. Although much research has been undertaken on commercially available polymers, many challenges still remain, including contamination by debris on the surface, a rough etched appearance and high ablation thresholds. Functionalizing polymers with a photosensitive group is a novel way and effective way to improve the efficiency of laser micromachining. In this study, several polyurethane films grafted with different concentrations of the chromophore anthracene have been synthesized which are specifically designed for 248 nm KrF excimer laser ablation. A series of lines etched with a changing number of pulses and fluences by the nanosecond laser were applied to each polyurethane film. The resultant ablation behaviours were studied through optical interference tomography and Scanning Electron Microscopy. The anthracene grafted polyurethanes showed a vast improvement in both edge quality and the presence of debris compared with the unmodified polyurethane. Under the same laser fluence and number of pulses the spots etched in the anthracene contained polyurethane show sharp depth profiles and smooth surfaces, whereas the spots etched in polyurethane without anthracene group grafted present rough cavities with debris according to the SEM images. The addition of a small amount of anthracene (1.47%) shows a reduction in ablation threshold from unmodified polyurethane showing that the desired effect can be achieved with very little modification to the polymer.

  19. Au-C allotrope nano-composite films at extreme conditions generated by intense ultra-short laser

    NASA Astrophysics Data System (ADS)

    Khan, Saif A.; Saravanan, K.; Tayyab, M.; Bagchi, S.; Avasthi, D. K.

    2016-07-01

    Structural evolution of gold-carbon allotrope nano-composite films under relativistically intense, ultra-short laser pulse irradiation is studied in this work. Au-C nano-composite films, having 4 and 10 at.% of Au, were deposited by co-sputtering technique on silicon substrates. Au-C60 NC films with 2.5 at.% Au were deposited on 12 μm thick Al foil using co-evaporation technique. These samples were radiated with single pulse from 45 fs, 10 TW Ti:Sapphire Laser at RRCAT at an intensity of 3 × 1018 W cm-2. The morphological and compositional changes were investigated using scanning electron microscopy (SEM) and Rutherford back-scattering spectrometry (RBS) techniques. Laser pulse created three morphologically distinct zones around the point of impact on samples with silicon substrates. The gold content in 600 μm circular region around a point of impact is found to reduce by a factor of five. Annular rings of ∼70 nm in diameter were observed in case of Au-C NC film after irradiation. Laser pulse created a hole of about 400 μm in the sample with Al foil as substrate and wavy structures of 6 μm wavelength are found to be created around this hole. The study shows radial variation in nano-structure formation with varying local intensity of laser pulse.

  20. Photochemical and photocatalytic evaluation of 1D titanate/TiO2 based nanomaterials

    NASA Astrophysics Data System (ADS)

    Conceição, D. S.; Ferreira, D. P.; Graça, C. A. L.; Júlio, M. F.; Ilharco, L. M.; Velosa, A. C.; Santos, P. F.; Vieira Ferreira, L. F.

    2017-01-01

    One-dimensional (1D) titanate based nanomaterials were synthesized following an alkaline hydrothermal approach of commercial TiO2 nanopowder. The morphological features of all materials were monitored by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM), and also Brunauer-Emmett-Teller (BET) technique. In addition the photochemical behaviour of these nanostructured materials were evaluated with the use of laser induced luminescence (LIL), ground-state diffuse reflectance (GSDR), and laser-flash photolysis in diffuse reflectance mode (DRLFP). The mixed titanate/TiO2 nanowires presented the least intense fluorescence spectra, suggesting the presence of surficial defects that can extend the lifetime of the excited charge carriers. A fluorescent 'rhodamine-like' dye was adsorbed onto different materials and examined via photoexcitation in the visible range to study the self-photosensitization mechanism. The presence of the radical cation of the dye and the degradation kinetics, when compared with a neutral substrate-cellulose, provided significant evidences regarding the photoactivity of the different materials. Regarding all the materials under study, the nanowires exhibited a strong photocatalytic efficiency, for the adsorbed fluorescent probe. The photocatalytic mechanism was also considered by studying the photodegradation capability of the titanate based materials in the presence of an herbicide, Amicarbazone, after ultraviolet (UVA) photoexcitation.

  1. Human Milk Oligosaccharides Exhibit Antimicrobial and Antibiofilm Properties against Group B Streptococcus.

    PubMed

    Ackerman, Dorothy L; Doster, Ryan S; Weitkamp, Jörn-Hendrik; Aronoff, David M; Gaddy, Jennifer A; Townsend, Steven D

    2017-08-11

    Streptococcus agalactiae (Group B Streptococcus, GBS) is a Gram-positive bacterial pathogen that causes invasive infections in both children and adults. During pregnancy, GBS is a significant cause of infection of the fetal membranes (chorioamnionitis), which can lead to intra-amniotic infection, preterm birth, stillbirth, and neonatal sepsis. Recently, breastfeeding has been thought to represent a potential mode of GBS transmission from mother to newborn, which might increase the risk for late-onset sepsis. Little is known, however, about the molecular components of breast milk that may support or prevent GBS colonization. In this study, we examine how human milk oligosaccharides (HMOs) affect the pathogenesis of GBS. HMOs from discrete donor samples were isolated and profiled by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS). Growth and biofilm assays show that HMOs from mothers of specific milk groups can modulate the growth and biofilm formation of GBS. High-resolution field-emission gun scanning electron microscopy (SEM) and confocal laser scanning microscopy confirmed the quantitative biofilm assays and demonstrated cell arrangement perturbations in bacterial cultures treated with specific oligosaccharides. These findings demonstrate that HMOs affect the growth and cell biology of GBS. Finally, this study provides the first example of HMOs functioning as antibiofilm agents against GBS.

  2. Exploring the interior of cuticles and compressions of fossil plants by FIB-SEM milling and image microscopy.

    PubMed

    Sender, L M; Escapa, I; Benedetti, A; Cúneo, R; Diez, J B

    2018-01-01

    We present the first study of cuticles and compressions of fossil leaves by Focused Ion Beam Scanning Electron Microscopy (FIB-SEM). Cavities preserved inside fossil leaf compressions corresponding to substomatal chambers have been observed for the first time and several new features were identified in the cross-section cuts. These results open a new way in the investigation of the three-dimensional structures of both micro- and nanostructural features of fossil plants. Moreover, the application of the FIB-SEM technique to both fossils and extant plant remains represent a new source of taxonomical, palaeoenvironmental and palaeoclimatic information. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  3. Exploring multi potential uses of marine bacteria; an integrated approach for PHB production, PAHs and polyethylene biodegradation.

    PubMed

    Mohanrasu, K; Premnath, N; Siva Prakash, G; Sudhakar, Muniyasamy; Boobalan, T; Arun, A

    2018-05-19

    There are copious of bacteria exist in marine environment and it is very important to screen the potential microbes that has the ability to produce biopolymer polyhydroxybutyrate (PHB) as well as polycyclic aromatic hydrocarbons (PAHs) degradation and conventional plastic high density polyethylene (HDPE) biodegradation. Numerous studies have been investigated individually on either one of characteristic feature like PHB production, PAHs and high density polyethylene (HDPE) degradation, but not all together. Hence, in this study, we tried to screen potential marine microbes that have the ability to perform all three features. We have isolated 203 phenotyphicaly different colonies from 19 different sites (marine soil sediments, marine water and oil spilled marine water) which cover the north east to down south seashore regions of Tamilnadu, India. Of the 203 microbial isolates, the best PHB producing (Micrococcus luteus), PAHs degradation (Klebsiella pneumonia) and HDPE degradation (Brevibacillus borstelensis) microorganisms were identified through 16S rRNA sequencing. Analytical studies confirmed PHB production by fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance ( 1 H & 13 C NMR); PAHs degradation by high performance liquid chromatography (HPLC), confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM); HDPE degradation by CLSM, FT-IR and SEM which cover the spectroscopy studies on biological systems. Copyright © 2018. Published by Elsevier B.V.

  4. Lock-in thermography, penetrant inspection, and scanning electron microscopy for quantitative evaluation of open micro-cracks at the tooth-restoration interface

    NASA Astrophysics Data System (ADS)

    Streza, M.; Hodisan, I.; Prejmerean, C.; Boue, C.; Tessier, Gilles

    2015-03-01

    The evaluation of a dental restoration in a non-invasive way is of paramount importance in clinical practice. The aim of this study was to assess the minimum detectable open crack at the cavity-restorative material interface by the lock-in thermography technique, at laser intensities which are safe for living teeth. For the analysis of the interface, 18 box-type class V standardized cavities were prepared on the facial and oral surfaces of each tooth, with coronal margins in enamel and apical margins in dentine. The preparations were restored with the Giomer Beautifil (Shofu) in combination with three different adhesive systems. Three specimens were randomly selected from each experimental group and each slice has been analysed by visible, infrared (IR), and scanning electron microscopy (SEM). Lock-in thermography showed the most promising results in detecting both marginal and internal defects. The proposed procedure leads to a diagnosis of micro-leakages having openings of 1 µm, which is close to the diffraction limit of the IR camera. Clinical use of a thermographic camera in assessing the marginal integrity of a restoration becomes possible. The method overcomes some drawbacks of standard SEM or dye penetration testing. The results support the use of an IR camera in dentistry, for the diagnosis of micro-gaps at bio-interfaces.

  5. Development of core-shell coaxially electrospun composite PCL/chitosan scaffolds.

    PubMed

    Surucu, Seda; Turkoglu Sasmazel, Hilal

    2016-11-01

    This study was related to combining of synthetic Poly (ε-caprolactone) (PCL) and natural chitosan polymers to develop three dimensional (3D) PCL/chitosan core-shell scaffolds for tissue engineering applications. The scaffolds were fabricated with coaxial electrospinning technique and the characterizations of the samples were done by thickness and contact angle (CA) measurements, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-Ray Photoelectron Spectroscopy (XPS) analyses, mechanical and PBS absorption and shrinkage tests. The average inter-fiber diameter values were calculated for PCL (0.717±0.001μm), chitosan (0.660±0.007μm) and PCL/chitosan core-shell scaffolds (0.412±0.003μm), also the average inter-fiber pore size values exhibited decreases of 66.91% and 61.90% for the PCL and chitosan scaffolds respectively, compared to PCL/chitosan core-shell ones. XPS analysis of the PCL/chitosan core-shell structures exhibited the characteristic peaks of PCL and chitosan polymers. The cell culture studies (MTT assay, Confocal Laser Scanning Microscope (CLSM) and SEM analyses) carried out with L929 ATCC CCL-1 mouse fibroblast cell line proved that the biocompatibility performance of the scaffolds. The obtained results showed that the created micro/nano fibrous structure of the PCL/chitosan core-shell scaffolds in this study increased the cell viability and proliferation on/within scaffolds. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Growth and characterization of PbSe and Pb{sub 1{minus}x}Sn{sub x}Se layers on Si (100)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sachar, H.K.; Chao, I.; Fang, X.M.

    1998-12-31

    Crack-free layers of PbSe were grown on Si (100) by a combination of liquid phase epitaxy (LPE) and molecular beam epitaxy (MBE) techniques. The PbSe layer was grown by LPE on Si(100) using a MBE-grown PbSe/BaF{sub 2}/CaF{sub 2} buffer layer structure. Pb{sub 1{minus}x}Sn{sub x}Se layers with tin contents in the liquid growth solution equal to 3%, 5%, 6%, 7%, and 10%, respectively, were also grown by LPE on Si(100) substrates using similar buffer layer structures. The LPE-grown PbSe and Pb{sub 1{minus}x}Sn{sub x}Se layers were characterized by optical Nomarski microscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electronmore » microscopy (SEM). Optical Nomarski characterization of the layers revealed their excellent surface morphologies and good growth solution wipe-offs. FTIR transmission experiments showed that the absorption edge of the Pb{sub 1{minus}x}Sn{sub x}Se layers shifted to lower energies with increasing tin contents. The PbSe epilayers were also lifted-off from the Si substrate by dissolving the MBE-grown BaF{sub 2} buffer layer. SEM micrographs of the cleaved edges revealed that the lifted-off layers formed structures suitable for laser fabrication.« less

  7. Correlative 3D imaging of Whole Mammalian Cells with Light and Electron Microscopy

    PubMed Central

    Murphy, Gavin E.; Narayan, Kedar; Lowekamp, Bradley C.; Hartnell, Lisa M.; Heymann, Jurgen A. W.; Fu, Jing; Subramaniam, Sriram

    2011-01-01

    We report methodological advances that extend the current capabilities of ion-abrasion scanning electron microscopy (IA–SEM), also known as focused ion beam scanning electron microscopy, a newly emerging technology for high resolution imaging of large biological specimens in 3D. We establish protocols that enable the routine generation of 3D image stacks of entire plastic-embedded mammalian cells by IA-SEM at resolutions of ~10 to 20 nm at high contrast and with minimal artifacts from the focused ion beam. We build on these advances by describing a detailed approach for carrying out correlative live confocal microscopy and IA–SEM on the same cells. Finally, we demonstrate that by combining correlative imaging with newly developed tools for automated image processing, small 100 nm-sized entities such as HIV-1 or gold beads can be localized in SEM image stacks of whole mammalian cells. We anticipate that these methods will add to the arsenal of tools available for investigating mechanisms underlying host-pathogen interactions, and more generally, the 3D subcellular architecture of mammalian cells and tissues. PMID:21907806

  8. Mineral content analysis of root canal dentin using laser-induced breakdown spectroscopy

    PubMed Central

    2018-01-01

    Objectives This study aimed to introduce the use of laser-induced breakdown spectroscopy (LIBS) for evaluation of the mineral content of root canal dentin, and to assess whether a correlation exists between LIBS and scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS) methods by comparing the effects of irrigation solutions on the mineral content change of root canal dentin. Materials and Methods Forty teeth with a single root canal were decoronated and longitudinally sectioned to expose the canals. The root halves were divided into 4 groups (n = 10) according to the solution applied: group NaOCl, 5.25% sodium hypochlorite (NaOCl) for 1 hour; group EDTA, 17% ethylenediaminetetraacetic acid (EDTA) for 2 minutes; group NaOCl+EDTA, 5.25% NaOCl for 1 hour and 17% EDTA for 2 minutes; a control group. Each root half belonging to the same root was evaluated for mineral content with either LIBS or SEM/EDS methods. The data were analyzed statistically. Results In groups NaOCl and NaOCl+EDTA, the calcium (Ca)/phosphorus (P) ratio decreased while the sodium (Na) level increased compared with the other groups (p < 0.05). The magnesium (Mg) level changes were not significant among the groups. A significant positive correlation was found between the results of LIBS and SEM/EDS analyses (r = 0.84, p < 0.001). Conclusions Treatment with NaOCl for 1 hour altered the mineral content of dentin, while EDTA application for 2 minutes had no effect on the elemental composition. The LIBS method proved to be reliable while providing data for the elemental composition of root canal dentin. PMID:29487841

  9. Analysis of rare earth elements in coal fly ash using laser ablation inductively coupled plasma mass spectrometry and scanning electron microscopy

    NASA Astrophysics Data System (ADS)

    Thompson, Robert L.; Bank, Tracy; Montross, Scott; Roth, Elliot; Howard, Bret; Verba, Circe; Granite, Evan

    2018-05-01

    Reference standard NIST SRM 1633b and FA 345, a fly ash sample from an eastern U.S. coal power plant, were analyzed to determine and quantify the mineralogical association of rare earth elements (REE). These analyses were completed using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and a scanning electron microscope, equipped with an energy-dispersive X-ray spectrometer (SEM-EDS). Internal standardization was avoided by quantifying elemental concentrations by normalizing to 100% oxides. Mineral grains containing elevated REE concentrations were found in diverse chemical environments, but were most commonly found in regions where Al and Si were predominant. Dividing the spot analyses into time segments yielded plots that showed the REE content changing over time as individual mineral grains were being ablated. SEM-EDS images of FA 345 confirmed the trends that were found in the LA-ICP-MS results. Small grains of apatite, monazite, or zircon were frequently observed as free mineral grains or embedded in amorphous aluminosilicate glass and were not associated with ferrous particles. This finding is consistent with previous reports that magnetic enrichment may be an effective way of concentrating non-magnetic REE phases. Furthermore, aggressive mechanical and chemical-based separation schemes will be required to separate and recover REE from aluminosilicate glass.

  10. Structural, morphological and optical properties of LiCo0.5Ni0.45Ag0.05O2 thin films

    NASA Astrophysics Data System (ADS)

    Haider, Adawiya J.; AL-Rsool, Rusul Abed; AL-Tabbakh, Ahmed A.; Al-Gebori, Abdul Nasser M.; Mohamed, Aliaa

    2018-05-01

    Pulsed Laser Deposition (PLD) method has been successfully used for the synthesized of nano-crystalline cathode m aterial LiCo0.5Ni0.45Ag0.05O2 (LCNAO) thin film. LCNAO Ferromagnetic using pulsed Nd-YAG laser with wavelength (λ = 532 nm) and duration (10 ns) and energy fluence (1.4 J/cm2) with different substrate temperature (100, 200, 300) ˚C and O2 pressure at 10 mbar. The structural, morphological and optical properties of the films were determined by X-ray Diffraction (XRD), Scan Electron Microscopy (SEM), Atomic Force microscope (AFM) and UV-VIS spectroscopy respectively. It is observed that partial layer to spinel transformation takes place during post annealing and the average particle size of the LiCo0.5Ni0.45Ag0.05O2 is found to be (1-12) nm from SEM measurement. Finally the optical properties of the thin films have been studied at different Substrate temperature. It found the energy gap decreases from 4.2 to 3.8 eV when the substrate's temperature increasing from 100° C into 300 °C of the LCNAO films. These mean that the optical quality of LCNAO films is improved due to the increase in crystalline size and reduction of defect sites.

  11. Effect of laser power on the microstructure and mechanical properties of TiN/Ti3Al composite coatings on Ti6Al4V

    NASA Astrophysics Data System (ADS)

    Liu, Zhengdao; Zhang, Xiancheng; Xuan, Fuzhen; Wang, Zhengdong; Tu, Shandong

    2013-07-01

    Laser nitriding is one of the effective techniques to improve the surface properties of titanium alloys and has potential application in the life extension of last-stage steam turbine blades. However, cracking of surface coating is a common problem due to heat concentration in laser nitriding process. Conventionally, the cracks can be avoided through heat treatment, which may have an important influence on the mechanical properties of coating. Crack-free TiN/Ti3Al IMC coatings on Ti6Al4V are prepared by plasma spraying and laser nitriding. The microstructures, phase constitutes and compositions of the coating are observed and analyzed with scanning electron microscopy(SEM), X-ray diffraction(XRD) and X-ray energy-dispersive spectroscopy(EDS). Microhardness, elastic modulus, fracture toughness of the coating are measured. The results show that the crack- and pore-free IMC coatings can be made through the proposed method; with increasing laser power, the amount and density of TiN phase in the coating first increased and then decreased, leading to the similar trend of microhardness and elastic modulus and the reverse trend of fracture toughness of the coating. Both the average microhardness and elastic modulus of the coating increase three times higher than those of the substrate. The volume fraction of the TiN reinforced phase in composite can be controlled by varying the laser power and the cracking problem in laser nitriding process is successfully solved.

  12. Electron microscopy localization and characterization of functionalized composite organic-inorganic SERS nanoparticles on leukemia cells.

    PubMed

    Koh, Ai Leen; Shachaf, Catherine M; Elchuri, Sailaja; Nolan, Garry P; Sinclair, Robert

    2008-12-01

    We demonstrate the use of electron microscopy as a powerful characterization tool to identify and locate antibody-conjugated composite organic-inorganic nanoparticle (COINs) surface enhanced Raman scattering (SERS) nanoparticles on cells. U937 leukemia cells labeled with antibody CD54-conjugated COINs were characterized in their native, hydrated state using wet scanning electron microscopy (SEM) and in their dehydrated state using high-resolution SEM. In both cases, the backscattered electron (BSE) detector was used to detect and identify the silver constituents in COINs due to its high sensitivity to atomic number variations within a specimen. The imaging and analytical capabilities in the SEM were further complemented by higher resolution transmission electron microscopy (TEM) images and scanning Auger electron spectroscopy (AES) data to give reliable and high-resolution information about nanoparticles and their binding to cell surface antigens.

  13. The influence of dentin demineralization on morphological features of cavities using Er:YAG laser.

    PubMed

    Melo, Mary A S; Lima, Juliana P M; Passos, Vanara F; Rodrigues, Lidiany K A

    2015-01-01

    The purpose of this study was to evaluate the influence of erbium-doped: yttrium-aluminum-garnet (Er:YAG) laser parameters and different degrees of demineralization on morphological features, diameter, and depth of prepared cavities. Minimally invasive dentin caries removal has been recommended. Ablation of deep caries lesions using Er:YAG laser should preserve remaining demineralized dentin; however, the influence of the degree of mineralization of this substrate had not been entirely described. A randomized, factorial design was used to study the effects of two factors. Laser parameter was tested at two levels (250 mJ/4 Hz vs. 200 mJ/2 Hz) and degree of demineralization was tested at four levels (control, two-four-eight cycles). Twelve slabs of human dentin were divided into four groups according to the number of cycles induced by pH-cycling: G1, zero cycles; G2, two cycles, G3, four cycles, and G4, eight cycles. An Er:YAG laser was used at an output energy of 250 mJ/4 Hz and 200 mJ/2 Hz for all groups, for 10 sec at 12 mm distance focus/object. Circumference and depth of the cavities were measured on scanning electron microscopy (SEM) images using image analysis software. The mean values were subjected to two way analysis of variance (ANOVA) and Tukey tests. When using 250 mJ/4 Hz, the mean values of circumferential area increased significantly in relation to control (503.54 μm(2)) with increasing demineralization level (eight cycles) (555.45 μm(2)). Regardless of the demineralization level, there was also significant statistical difference in the studied measurements of the cavities when 250 mJ/4 Hz and 200 mJ/2 Hz were used. SEM also showed that laser cavity preparations left no smear layer, and the dentinal tubules were clear. The circumferential area and depth measurements were affected by laser parameter and demineralization level (eight cycles). Energy level output represents a relevant factor for increased circumferential area and depth measurements. High demineralized artificially caries-affected dentin may also imply higher ablation. Appropriated parameter of laser pulse frequency/power density for demineralized dentin should be used for effective less-invasive caries treatment.

  14. Electron Microscopy of Living Cells During in Situ Fluorescence Microscopy

    PubMed Central

    Liv, Nalan; van Oosten Slingeland, Daan S. B.; Baudoin, Jean-Pierre; Kruit, Pieter; Piston, David W.; Hoogenboom, Jacob P.

    2016-01-01

    We present an approach toward dynamic nanoimaging: live fluorescence of cells encapsulated in a bionanoreactor is complemented with in situ scanning electron microscopy (SEM) on an integrated microscope. This allows us to take SEM snapshots on-demand, that is, at a specific location in time, at a desired region of interest, guided by the dynamic fluorescence imaging. We show that this approach enables direct visualization, with EM resolution, of the distribution of bioconjugated quantum dots on cellular extensions during uptake and internalization. PMID:26580231

  15. Microstructure and mechanical properties of arabinoxylan and (1,3;1,4)-β-glucan gels produced by cryo-gelation.

    PubMed

    Lopez-Sanchez, Patricia; Wang, Dongjie; Zhang, Zhiyan; Flanagan, Bernadine; Gidley, Michael J

    2016-10-20

    The interactions between heteroxylans and mixed linkage glucans determine the architecture and mechanical properties of cereal endosperm cell walls. In this work hydrogels made of cross-linked arabinoxylan with addition of β-glucan were synthesised by cryogelation as a biomimetic tool to investigate endosperm walls. Molecular and microstructural properties were characterised by nuclear magnetic resonance ((13)C NMR), scanning electron microscopy (SEM) and immunolabelling/confocal laser scanning microscopy (CLSM). The response to mechanical stress was studied by compression-relaxation experiments. The hydrogels consisted of a scaffold characterised by dense walls interconnected by macropores with both hemicelluloses co-localised and homogeneously distributed. The gels showed a high degree of elasticity reflected in their ability to resist compression without developing cracks and recover 60-80% of their original height. Our results highlight the compatibility of these hemicelluloses to coexist in confined environments such as cell walls and their potential role in determining mechanical properties in the absence of cellulose. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Dentin-cement Interfacial Interaction

    PubMed Central

    Atmeh, A.R.; Chong, E.Z.; Richard, G.; Festy, F.; Watson, T.F.

    2012-01-01

    The interfacial properties of a new calcium-silicate-based coronal restorative material (Biodentine™) and a glass-ionomer cement (GIC) with dentin have been studied by confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM), micro-Raman spectroscopy, and two-photon auto-fluorescence and second-harmonic-generation (SHG) imaging. Results indicate the formation of tag-like structures alongside an interfacial layer called the “mineral infiltration zone”, where the alkaline caustic effect of the calcium silicate cement’s hydration products degrades the collagenous component of the interfacial dentin. This degradation leads to the formation of a porous structure which facilitates the permeation of high concentrations of Ca2+, OH-, and CO32- ions, leading to increased mineralization in this region. Comparison of the dentin-restorative interfaces shows that there is a dentin-mineral infiltration with the Biodentine, whereas polyacrylic and tartaric acids and their salts characterize the penetration of the GIC. A new type of interfacial interaction, “the mineral infiltration zone”, is suggested for these calcium-silicate-based cements. PMID:22436906

  17. Antibacterial Effects of a Cell-Penetrating Peptide Isolated from Kefir.

    PubMed

    Miao, Jianyin; Guo, Haoxian; Chen, Feilong; Zhao, Lichao; He, Liping; Ou, Yangwen; Huang, Manman; Zhang, Yi; Guo, Baoyan; Cao, Yong; Huang, Qingrong

    2016-04-27

    Kefir is a traditional fermented milk beverage used throughout the world for centuries. A cell-penetrating peptide, F3, was isolated from kefir by Sephadex G-50 gel filtration, DEAE-52 ion exchange, and reverse-phase high-performance liquid chromatography. F3 was determined to be a low molecular weight peptide containing one leucine and one tyrosine with two phosphate radicals. This peptide displayed antimicrobial activity across a broad spectrum of organisms including several Gram-positive and Gram-negative bacteria as well as fungi, with minimal inhibitory concentration (MIC) values ranging from 125 to 500 μg/mL. Cellular penetration and accumulation of F3 were determined by confocal laser scanning microscopy. The peptide was able to penetrate the cellular membrane of Escherichia coli and Staphylococcus aureus. Changes in cell morphology were observed by scanning electron microscopy (SEM). The results indicate that peptide F3 may be a good candidate for use as an effective biological preservative in agriculture and the food industry.

  18. Gum arabic capped-silver nanoparticles inhibit biofilm formation by multi-drug resistant strains of Pseudomonas aeruginosa.

    PubMed

    Ansari, Mohammad Azam; Khan, Haris Manzoor; Khan, Aijaz Ahmed; Cameotra, Swaranjit Singh; Saquib, Quaiser; Musarrat, Javed

    2014-07-01

    Clinical isolates (n = 55) of Pseudomonas aeruginosa were screened for the extended spectrum β-lactamases and metallo-β-lactamases activities and biofilm forming capability. The aim of the study was to demonstrate the antibiofilm efficacy of gum arabic capped-silver nanoparticles (GA-AgNPs) against the multi-drug resistant (MDR) biofilm forming P. aeruginosa. The GA-AgNPs were characterized by UV-spectroscopy, X-ray diffraction, and high resolution-transmission electron microscopy analysis. The isolates were screened for their biofilm forming ability, using the Congo red agar, tube method and tissue culture plate assays. The biofilm forming ability was further validated and its inhibition by GA-AgNPs was demonstrated by performing the scanning electron microscopy (SEM) and confocal laser scanning microscopy. SEM analysis of GA-AgNPs treated bacteria revealed severely deformed and damaged cells. Double fluorescent staining with propidium iodide and concanavalin A-fluorescein isothiocyanate concurrently detected the bacterial cells and exopolysaccharides (EPS) matrix. The CLSM results exhibited the GA-AgNPs concentration dependent inhibition of bacterial growth and EPS matrix of the biofilm colonizers on the surface of plastic catheters. Treatment of catheters with GA-AgNPs at 50 µg ml(-1) has resulted in 95% inhibition of bacterial colonization. This study elucidated the significance of GA-AgNPs, as the next generation antimicrobials, in protection against the biofilm mediated infections caused by MDR P. aeruginosa. It is suggested that application of GA-AgNPs, as a surface coating material for dispensing antibacterial attributes to surgical implants and implements, could be a viable approach for controlling MDR pathogens after adequate validations in clinical settings. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Study on the Ingredient Proportions and After-Treatment of Laser Sintering Walnut Shell Composites

    PubMed Central

    Guo, Yanling; Jiang, Ting; Li, Jian; Jiang, Kaiyi; Zhang, Hui

    2017-01-01

    To alleviate resource shortage, reduce the cost of materials consumption and the pollution of agricultural and forestry waste, walnut shell composites (WSPC) consisting of walnut shell as additive and copolyester hot melt adhesive (Co-PES) as binder was developed as the feedstock of selective laser sintering (SLS). WSPC parts with different ingredient proportions were fabricated by SLS and processed through after-treatment technology. The density, mechanical properties and surface quality of WSPC parts before and after post processing were analyzed via formula method, mechanical test and scanning electron microscopy (SEM), respectively. Results show that, when the volume fraction of the walnut shell powder in the WSPC reaches the maximum (40%), sintered WSPC parts have the smallest warping deformation and the highest dimension precision, although the surface quality, density, and mechanical properties are low. However, performing permeating resin as the after-treatment technology could considerably increase the tensile, bending and impact strength by 496%, 464%, and 516%, respectively. PMID:29207485

  20. Characterization of uranium tetrafluoride (UF 4) with Raman spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villa-Aleman, Eliel; Wellons, Matthew S.

    The Raman spectrum of uranium tetrafluoride (UF 4) is unambiguously characterized with multiple Raman excitation laser sources for the first time. Across different laser excitation wavelengths, UF 4 demonstrates 16 distinct Raman bands within the 50-400 cm -1 region. The observed Raman bands are representative of various F-F vibrational modes. UF 4 also shows intense fluorescent bands in the 325 – 750 nm spectral region. Comparison of the UF 4 spectrum with the ZrF 4 spectrum, its crystalline analog, demonstrates a similar Raman band structure consistent with group theory predictions for expected Raman bands. Additionally, a demonstration of combined scanningmore » electron microscopy (SEM) and in situ Raman spectroscopy microanalytical measurements of UF 4 particulates shows that despite the inherent weak intensity of Raman bands, identification and characterization are possible for micron-sized particulates with modern instrumentation. The published well characterized UF 4 spectrum is extremely relevant to nuclear materials and nuclear safeguard applications.« less

  1. Characterization of uranium tetrafluoride (UF 4) with Raman spectroscopy

    DOE PAGES

    Villa-Aleman, Eliel; Wellons, Matthew S.

    2016-03-22

    The Raman spectrum of uranium tetrafluoride (UF 4) is unambiguously characterized with multiple Raman excitation laser sources for the first time. Across different laser excitation wavelengths, UF 4 demonstrates 16 distinct Raman bands within the 50-400 cm -1 region. The observed Raman bands are representative of various F-F vibrational modes. UF 4 also shows intense fluorescent bands in the 325 – 750 nm spectral region. Comparison of the UF 4 spectrum with the ZrF 4 spectrum, its crystalline analog, demonstrates a similar Raman band structure consistent with group theory predictions for expected Raman bands. Additionally, a demonstration of combined scanningmore » electron microscopy (SEM) and in situ Raman spectroscopy microanalytical measurements of UF 4 particulates shows that despite the inherent weak intensity of Raman bands, identification and characterization are possible for micron-sized particulates with modern instrumentation. The published well characterized UF 4 spectrum is extremely relevant to nuclear materials and nuclear safeguard applications.« less

  2. [Preparation of panax notoginseng saponins-tanshinone H(A) composite method for pulmonary delivery with spray-drying method and its characterization].

    PubMed

    Wang, Hua-Mei; Fu, Ting-Ming; Guo, Li-Wei

    2013-02-01

    To prepare panax notoginseng saponins-tanshinone II(A) composite particles for pulmonary delivery, in order to explore a dry powder particle preparation method ensuring synchronized arrival of multiple components of traditional Chinese medicine compounds at absorption sites. Panax notoginseng saponins-tanshinone II(A) composite particles were prepared with spray-drying method, and characterized by scanning electron microscopy (SEM), confocal laser scanning microscope (CLSM), X-ray diffraction (XRD), infrared analysis (IR), dry laser particle size analysis, high performance liquid chromatography (HPLC) and the aerodynamic behavior was evaluated by a Next Generation Impactor (NGI). The dry powder particles produced had narrow particle size distribution range and good aerodynamic behavior, and could realize synchronized administration of multiple components. The spray-drying method is used to combine traditional Chinese medicine components with different physical and chemical properties in the same particle, and product into traditional Chinese medicine compound particles in line with the requirements for pulmonary delivery.

  3. Morphology and structure of TixOy nanoparticles generated by femtosecond laser ablation in water

    NASA Astrophysics Data System (ADS)

    Donėlienė, Jolanta; Rudzikas, Matas; Rades, Steffi; Dörfel, Ilona; Peplinski, Burkhard; Sahre, Mario; Pellegrino, Francesco; Maurino, Valter; Ulbikas, Juras; Galdikas, Algirdas; Hodoroaba, Vasile-Dan

    2018-04-01

    In this work femto-second pulsed laser ablation in liquid (PLAL) procedure for the generation of titanium oxide nanoparticles (NP) is reported with the purpose of understanding morphology and structure of the newly generated NPs. Ablation duration was varied for optimization of NP generation processes between 10 and 90 min. Surface morphology of NPs as well as their size and shape (distribution) were analysed by various complementary electron microscopy techniques, i.e. SEM, TSEM and TEM. The crystalline structure of titanium oxide particles was investigated by XRD (two instruments operated in different geometries) and HR-TEM. Concentration of generated titanium oxide NPs in liquid was analysed by ICP-MS. A mix of crystalline (mainly anatase), partly crystalline and amorphous spherical titanium oxide NPs can be reported having a mean size between 10 and 20 nm, which is rather independent of the laser ablation (LA) duration. A second component consisting of irregularly shaped, but crystalline titanium oxide nanostructures is co-generated in the LA water, with more pronounced occurrence at longer LA times. The provenance of this component is assigned to those spherical particles generated in suspension and passing through the converging laser beam, being hence subject to secondary irradiation effects, e. g. fragmentation.

  4. Hot-pressed production and laser properties of ZnSe:Fe2+

    NASA Astrophysics Data System (ADS)

    Avetisov, R. I.; Balabanov, S. S.; Firsov, K. N.; Gavrishchuk, E. M.; Gladilin, A. A.; Ikonnikov, V. B.; Kalinushkin, V. P.; Kazantsev, S. Yu.; Kononov, I. G.; Zykova, M. P.; Mozhevitina, E. N.; Khomyakov, A. V.; Savin, D. V.; Timofeeva, N. A.; Uvarov, O. V.; Avetissov, I. Ch.

    2018-06-01

    A new approach for fabrication of laser elements in form of plates based on ZnSe:Fe2+ with undoped faces, combining the advantages of hot pressing and diffusion techniques has been proposed. CVD-ZnSe was used as a host material. 1 μm Fe film was deposited by electron-beam technique on one side of the polished CVD-ZnSe plate (20 mm in diameter and 2 mm in thickness). The elements were stacked in contact by iron surfaces, placed in a hot press-mold die, heated under vacuum to 1000 °C, exposed during 60 min with the application of 25 MPa uniaxial pressure. The iron film was dissolved in ZnSe matrix and elements welded together. The samples were subjected to hot isostatic pressing (HIP) during 29 h at 100 MPa argon pressure and 1300 °C. The influence of sintering and HIP processing conditions on local morphology and properties of the interface of welded elements was studied by SEM, TEM and optical microscopy. For all composite elements the lasing was obtained at a pumping by HF-laser at RT with high efficiency around 40%. The proposed technique removes restrictions on the size of laser elements and appears to be very promising for the management of the distribution profile of the doping component.

  5. A comparative investigation of bone surface after cutting with mechanical tools and Er:YAG laser.

    PubMed

    Baek, Kyung-Won; Deibel, Waldemar; Marinov, Dilyan; Griessen, Mathias; Dard, Michel; Bruno, Alfredo; Zeilhofer, Hans-Florian; Cattin, Philippe; Juergens, Philipp

    2015-07-01

    Despite of the long history of medical application, laser ablation of bone tissue became successful only recently. Laser bone cutting is proven to have higher accuracy and to increase bone healing compared to conventional mechanical bone cutting. But the reason of subsequent better healing is not biologically explained yet. In this study we present our experience with an integrated miniaturized laser system mounted on a surgical lightweight robotic arm. An Erbium-doped Yttrium Aluminium Garnet (Er:YAG) laser and a piezoelectric (PZE) osteotome were used for comparison. In six grown up female Göttingen minipigs, comparative surgical interventions were done on the edentulous mandibular ridge. Our laser system was used to create different shapes of bone defects on the left side of the mandible. On the contralateral side, similar bone defects were created by PZE osteotome. Small bone samples were harvested to compare the immediate post-operative cut surface. The analysis of the cut surface of the laser osteotomy and conventional mechanical osteotomy revealed an essential difference. The scanning electron microscopy (SEM) analysis showed biologically open cut surfaces from the laser osteotomy. The samples from PZE osteotomy showed a flattened tissue structure over the cut surface, resembling the "smear layer" from tooth preparation. We concluded that our new finding with the mechanical osteotomy suggests a biological explanation to the expected difference in subsequent bone healing. Our hypothesis is that the difference of surface characteristic yields to different bleeding pattern and subsequently results in different bone healing. The analyses of bone healing will support our hypothesis. © 2015 Wiley Periodicals, Inc.

  6. Lasers for nonlinear microscopy.

    PubMed

    Wise, Frank

    2013-03-01

    Various versions of nonlinear microscopy are revolutionizing the life sciences, almost all of which are made possible because of the development of ultrafast lasers. In this article, the main properties and technical features of short-pulse lasers used in nonlinear microscopy are summarized. Recent research results on fiber lasers that will impact future instruments are also discussed.

  7. Influence of stress corrosion on the mechanical properties of laser-welded titanium.

    PubMed

    de Assis Ferreira, Nancy; Senna, Plinio Mendes; do Lago, Dalva Cristina Baptista; de Senna, Lilian Ferreira; Sampaio-Filho, Helio Rodrigues

    2016-03-01

    Whether laser-welded (LW) titanium can resist the stress corrosion produced by the combination of fluoride ions and stress in the oral environment is unknown. The purpose of this in vitro study was to investigate the influence of stress corrosion on the mechanical properties of LW titanium. Twenty-seven titanium bars (25×2 mm) with a circular cross-section were cut in half and laser-welded, while another 27 nonwelded (NW) bars were used as the control. Thirty bars were submitted to a flexural load of 480 N at 1 Hz and immersed in artificial saliva at pH 6 (S1) or in 1000 ppm fluoride-containing saliva at pH 6.0 (S2) or 2.0 (S3) at room temperature for up to 4000 cycles. After the stress corrosion simulation, the tensile strength and Vickers microhardness were determined (n=5). Twelve LW and NW bars were submitted to the corrosion immersion test media for 51 days (n=2) to determine polarization curves (n=2) in an artificial saliva media. The corroded surface was examined with scanning electron microscopy (SEM). The combination of fluoride and low pH significantly decreased the tensile strength of LW (P<.05). Stress corrosion did not affect the hardness of LW or NW (P>.05). NW bars immersed in S3 exhibited progressive surface dissolution, while LW bars spontaneously fractured at the welded area after 25 days of immersion in the same medium. SEM images demonstrated pitting corrosion without the presence of cracks in both groups immersed in S3. Stress corrosion caused by acidic fluoride-containing saliva and flexural load cycling decreased the tensile strength and hardness of LW titanium bars. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  8. The biological response to laser-aided direct metal-coated Titanium alloy (Ti6Al4V)

    PubMed Central

    Shin, T.; Lim, D.; Kim, Y. S.; Kim, S. C.; Jo, W. L.

    2018-01-01

    Objectives Laser-engineered net shaping (LENS) of coated surfaces can overcome the limitations of conventional coating technologies. We compared the in vitro biological response with a titanium plasma spray (TPS)-coated titanium alloy (Ti6Al4V) surface with that of a Ti6Al4V surface coated with titanium using direct metal fabrication (DMF) with 3D printing technologies. Methods The in vitro ability of human osteoblasts to adhere to TPS-coated Ti6Al4V was compared with DMF-coating. Scanning electron microscopy (SEM) was used to assess the structure and morphology of the surfaces. Biological and morphological responses to human osteoblast cell lines were then examined by measuring cell proliferation, alkaline phosphatase activity, actin filaments, and RUNX2 gene expression. Results Morphological assessment of the cells after six hours of incubation using SEM showed that the TPS- and DMF-coated surfaces were largely covered with lamellipodia from the osteoblasts. Cell adhesion appeared similar in both groups. The differences in the rates of cell proliferation and alkaline phosphatase activities were not statistically significant. Conclusions The DMF coating applied using metal 3D printing is similar to the TPS coating, which is the most common coating process used for bone ingrowth. The DMF method provided an acceptable surface structure and a viable biological surface. Moreover, this method is automatable and less complex than plasma spraying. Cite this article: T. Shin, D. Lim, Y. S. Kim, S. C. Kim, W. L. Jo, Y. W. Lim. The biological response to laser-aided direct metal-coated Titanium alloy (Ti6Al4V). Bone Joint Res 2018;7:357–361. DOI: 10.1302/2046-3758.75.BJR-2017-0222.R1. PMID:29922456

  9. Study of SEM preparation artefacts with correlative microscopy: Cell shrinkage of adherent cells by HMDS-drying.

    PubMed

    Katsen-Globa, Alisa; Puetz, Norbert; Gepp, Michael M; Neubauer, Julia C; Zimmermann, Heiko

    2016-11-01

    One of the often reported artefacts during cell preparation to scanning electron microscopy (SEM) is the shrinkage of cellular objects, that mostly occurs at a certain time-dependent stage of cell drying. Various methods of drying for SEM, such as critical point drying, freeze-drying, as well as hexamethyldisilazane (HMDS)-drying, were usually used. The latter becomes popular since it is a low cost and fast method. However, the correlation of drying duration and real shrinkage of objects was not investigated yet. In this paper, cell shrinkage at each stage of preparation for SEM was studied. We introduce a shrinkage coefficient using correlative light microscopy (LM) and SEM of the same human mesenchymal stem cells (hMSCs). The influence of HMDS-drying duration on the cell shrinkage is shown: the longer drying duration, the more shrinkage is observed. Furthermore, it was demonstrated that cell shrinkage is inversely proportional to cultivation time: the longer cultivation time, the more cell spreading area and the less cell shrinkage. Our results can be applicable for an exact SEM quantification of cell size and determination of cell spreading area in engineering of artificial cellular environments using biomaterials. SCANNING 38:625-633, 2016. © 2016 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.

  10. Reconstructing the colour palette of the Konstantinos Parthenis' burnt paintings.

    PubMed

    Antonopoulou-Athera, N; Chatzitheodoridis, E; Terlixi, A; Doulgerides, M; Serafetinides, A A

    2018-05-09

    This case study focuses on the reconstruction of the colour palette and the possibility of laser cleaning of burnt paintings. The paintings ORPHEUS IN THE UNDERWORLD and CONCORDIA, composed by the Greek artist Konstantinos Parthenis (1878-1967), have been severely damaged by fire. The colour palette of Parthenis is thoroughly investigated for the first time, and to perform this, a multi-analytical spectroscopic approach was employed. Non-destructive in situ analysis was performed on multiple areas of the paintings by portable XRF. SEM-EDS and Raman, supported by reflected visible light optical microscopy, and ultraviolet light microscopy, as well as structural XRD and molecular FTIR were performed for identifying the pigments, the binder and the substrate of the paintings. This work also unveiled new aspects of the painting technique used by the artist, such as the uncommon use of multiple pigments of red hue in the upper paint layers, comparatively with the rest of Parthenis' paintings. Molecular spectroscopic techniques (i.e., Raman and FTIR) were effective in identifying pigments like chrome yellow (crocoite mineral), chrome orange (phoenicochroite mineral) and viridian green (hydrated chromium oxide). The spectroscopic analyses were also essential in the laser cleaning restoration because of the detection of pigments (i.e., lead white, vermilion etc.) prone to phase transformations due to photothermal and/or photochemical effects. Our investigation establishes the basis on the application of non-conventional cleaning methods on damaged paintings, such as laser irradiation, in order to remove the damaged layer and/or the superficial accretions, while preserving the hues of the original painting. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Symposium N: Materials and Devices for Thermal-to-Electric Energy Conversion

    DTIC Science & Technology

    2010-08-24

    X - ray diffraction, transmission electron microscopy, scanning electron microscopy, and dynamic light scattering. Thermal conductivity measurements...SEM), X - ray diffraction (XRD) measurements as well as Raman spectroscopy. The results from these techniques indicate a clear modification...was examined by using scanning electron microscope (SEM; HITACHI S-4500 model) attached with an energy dispersive x - ray spectroscopy. The electrical

  12. Heterochrony in mandible development of larval shrimp (Decapoda: Caridea)--a comparative morphological SEM study of two carideans.

    PubMed

    Batel, Annika; Melzer, Roland R; Anger, Klaus; Geiselbrecht, Hannes

    2014-11-01

    Mandible development in the larval stages I-V of two palaemonid shrimp species, Palaemon elegans and Macrobrachium amazonicum, was analyzed using scanning electron microscopy, light microscopy, and confocal laser scanning microscopy. In contrast to the zoea I of P. elegans, first-stage larvae of M. amazonicum are nonfeeding. At hatching, the morphology of the mandibles is fully expressed in P. elegans, while it appears underdeveloped in M. amazonicum, presenting only small precursors of typical caridean features. In successive zoeal stages, both species show similar developmental changes, but the mandibular characters of the larvae in M. amazonicum were delayed compared to the equivalent stages in P. elegans, especially in the development of submarginal setae and mandible size. In conclusion, our results indicate heterochrony (postdisplacement) of mandible development in M. amazonicum compared to that in P. elegans, which is related to initial lack of mandible functionality or planktivorous feeding at hatching, respectively. This conclusion is supported by comparison with other palaemonid zoeae exhibiting different feeding modes. Our data suggest that an evolutionary ground pattern of mandible morphology is present even in species with nonfeeding first-stage larvae. © 2014 Wiley Periodicals, Inc.

  13. Evaluation of self-assembled HCPT-loaded PEG-b-PLA nanoparticles by comparing with HCPT-loaded PLA nanoparticles.

    PubMed

    Yang, Xiangrui; Wu, Shichao; Wang, Yange; Li, Yang; Chang, Di; Luo, Yin; Ye, Shefang; Hou, Zhenqing

    2014-12-01

    We present a dialysis technique to prepare the 10-hydroxycamptothecin (HCPT)-loaded nanoparticles (NPs) using methoxypolyethylene glycol-poly(D,L-lactide) (PEG-b-PLA) and PLA, respectively. Both HCPT-loaded PEG-b-PLA NPs and HCPT-loaded PLA NPs were characterized by differential scanning calorimetry (DSC), dynamic light scattering (DLS), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). The results showed that the HCPT-loaded PEG-b-PLA NPs and HCPT-loaded PLA NPs presented a hydrodynamic particle size of 120.1 and 226.8 nm, with a polydispersity index of 0.057 and 0.207, a zeta potential of -31.2 and -45.7 mV, drug encapsulation efficiency of 44.52% and 44.94%, and drug-loaded content of 7.42% and 7.49%, respectively. The HCPT-loaded PEG-b-PLA NPs presented faster drug release rate compared to the HCPT-loaded PLA NPs. The HCPT-loaded PEG-b-PLA NPs presented higher cytotoxicity than the HCPT-loaded PLA NPs. These results suggested that the HCPT-loaded PEG-b-PLA NPs presented better characteristics for drug delivery compared to HCPT-loaded PLA NPs.

  14. Changes in biooxidation mechanism and transient biofilm characteristics by As(V) during arsenopyrite colonization with Acidithiobacillus thiooxidans.

    PubMed

    Ramírez-Aldaba, Hugo; Vázquez-Arenas, Jorge; Sosa-Rodríguez, Fabiola S; Valdez-Pérez, Donato; Ruiz-Baca, Estela; Trejo-Córdoba, Gabriel; Escobedo-Bretado, Miguel A; Lartundo-Rojas, Luis; Ponce-Peña, Patricia; Lara, René H

    2018-06-01

    Chemical and surface analyses are carried out using Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM-EDS), atomic force microscopy (AFM), confocal laser scanning microscopy (CLSM), glow discharge spectroscopy (GDS) and extracellular surface protein quantification to thoroughly investigate the effect of supplementary As(V) during biooxidation of arsenopyrite by Acidithiobacillus thiooxidans. It is revealed that arsenic can enhance bacterial reactions during bioleaching, which can strongly influence its mobility. Biofilms occur as compact-flattened microcolonies, being progressively covered by a significant amount of secondary compounds (S n 2- , S 0 , pyrite-like). Biooxidation mechanism is modified in the presence of supplementary As(V), as indicated by spectroscopic and microscopic studies. GDS confirms significant variations between abiotic control and biooxidized arsenopyrite in terms of surface reactivity and amount of secondary compounds with and without As(V) (i.e. 6 μm depth). CLSM and protein analyses indicate a rapid modification in biofilm from hydrophilic to hydrophobic character (i.e. 1-12 h), in spite of the decrease in extracellular surface proteins in the presence of supplementary As(V) (i.e. stressed biofilms).

  15. Critical dimension control using ultrashort laser for improving wafer critical dimension uniformity

    NASA Astrophysics Data System (ADS)

    Avizemer, Dan; Sharoni, Ofir; Oshemkov, Sergey; Cohen, Avi; Dayan, Asaf; Khurana, Ranjan; Kewley, Dave

    2015-07-01

    Requirements for control of critical dimension (CD) become more demanding as the integrated circuit (IC) feature size specifications become tighter and tighter. Critical dimension control, also known as CDC, is a well-known laser-based process in the IC industry that has proven to be robust, repeatable, and efficient in adjusting wafer CD uniformity (CDU) [Proc. SPIE 6152, 615225 (2006)]. The process involves locally and selectively attenuating the deep ultraviolet light which goes through the photomask to the wafer. The input data for the CDC process in the wafer fab is typically taken from wafer CDU data, which is measured by metrology tools such as wafer-critical dimension-scanning electron microscopy (CD-SEM), wafer optical scatterometry, or wafer level CD (WLCD). The CD correction process uses the CDU data in order to create an attenuation correction contour, which is later applied by the in-situ ultrashort laser system of the CDC to locally change the transmission of the photomask. The ultrashort pulsed laser system creates small, partially scattered, Shade-In-Elements (also known as pixels) by focusing the laser beam inside the quartz bulk of the photomask. This results in the formation of a localized, intravolume, quartz modified area, which has a different refractive index than the quartz bulk itself. The CDC process flow for improving wafer CDU in a wafer fab with detailed explanations of the shading elements formation inside the quartz by the ultrashort pulsed laser is reviewed.

  16. Modification of tribology and high-temperature behavior of Ti 48Al 2Cr 2Nb intermetallic alloy by laser cladding

    NASA Astrophysics Data System (ADS)

    Liu, Xiu-Bo; Wang, Hua-Ming

    2006-06-01

    In order to improve the tribology and high-temperature oxidation properties of the Ti-48Al-2Cr-2Nb intermetallic alloy simultaneously, mixed NiCr-Cr 3C 2 precursor powders had been investigated for laser cladding treatment to modify wear and high-temperature oxidation resistance of the material. The alloy samples were pre-placed with NiCr-80, 50 and 20%Cr 3C 2 (wt.%), respectively, and laser treated at the same parameters, i.e., laser output power 2.8 kW, beam scanning speed 2.0 mm/s, beam dimension 1 mm × 18 mm. The treated samples underwent tests of microhardness, wear and high-temperature oxidation. The results showed that laser cladding with different constitution of mixed precursor NiCr-Cr 3C 2 powders improved surface hardness in all cases. Laser cladding with NiCr-50%Cr 3C 2 resulted in the best modification of tribology and high-temperature oxidation behavior. X-ray diffraction (XRD), optical microscope (OM), scanning electron microscopy (SEM) and energy-dispersive spectrometer (EDS) analyses indicated that the formation of reinforced Cr 7C 3, TiC and both continuous and dense Al 2O 3, Cr 2O 3 oxide scales were supposed to be responsible for the modification of the relevant properties. As a result, the present work had laid beneficial surface engineering foundation for TiAl alloy applied as future light weight and high-temperature structural candidate materials.

  17. Laser-induced breakdown spectroscopy (LIBS) combined with hyperspectral imaging for the evaluation of printed circuit board composition.

    PubMed

    Carvalho, Rodrigo R V; Coelho, Jomarc A O; Santos, Jozemir M; Aquino, Francisco W B; Carneiro, Renato L; Pereira-Filho, Edenir R

    2015-03-01

    In this study, laser-induced breakdown spectroscopy (LIBS) was combined with chemometric strategies (PCA, Principal Component Analysis) and scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS) to investigate the metal composition of a printed circuit board (PCB) sample from a mobile phone. Scanning electron microscopy-EDS was used for two main reasons: it was possible at the same time to visualize the sample surface, craters (made by the laser pulses) and also the chemical composition of the samples. A 30 mm×40 mm area of the mobile phone PCB sample, which was manufactured in 2011, was investigated. In this case, a matrix with 30 rows and 40 columns (1200 points) was analyzed, and 10 pulses were performed at each point. A total of 12,000 emission spectra were recorded in the wavelength range from 186 to 1040 nm. After an initial exploratory investigation using PCA, 18 emission lines were selected (representing the elements Al, Au, Ba, Ca, Co, Cu, Fe, K, Li, Mg, Mn, Na, Ni, Sb, Si, Sn, Ti and Zn) and then normalized by the relative intensities, and a new PCA was calculated with the autoscaled data. For example, Au and Si were mainly observed in the superficial electrical contacts and in the bulk of the PCB, respectively. A second sample (a mouse PCB) was also analyzed and Pb (emission lines 357.273, 363.956, 368.346, 373.994 and 405.780 nm) was identified in the solders. In addition, this element was determined using FAAS (flame atomic absorption spectrometry) and the Pb concentration was around 25% (w/w). This study opens the possibility for improved recycling processes and the chemical investigation of solid samples measuring a few millimeters in dimension without sample preparation. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Fabrication and structural properties of AlN submicron periodic lateral polar structures and waveguides for UV-C applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alden, D.; Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin; Guo, W.

    Periodically poled AlN thin films with submicron domain widths were fabricated for nonlinear applications in the UV-VIS region. A procedure utilizing metalorganic chemical vapor deposition growth of AlN in combination with laser interference lithography was developed for making a nanoscale lateral polarity structure (LPS) with domain size down to 600 nm. The Al-polar and N-polar domains were identified by wet etching the periodic LPS in a potassium hydroxide solution and subsequent scanning electron microscopy (SEM) characterization. Fully coalesced and well-defined vertical interfaces between the adjacent domains were established by cross-sectional SEM. AlN LPSs were mechanically polished and surface roughness with amore » root mean square value of ∼10 nm over a 90 μm × 90 μm area was achieved. 3.8 μm wide and 650 nm thick AlN LPS waveguides were fabricated. The achieved domain sizes, surface roughness, and waveguides are suitable for second harmonic generation in the UVC spectrum.« less

  19. Fatigue Behavior of Porous Ti-6Al-4V Made by Laser-Engineered Net Shaping.

    PubMed

    Razavi, Seyed Mohammad Javad; Bordonaro, Giancarlo G; Ferro, Paolo; Torgersen, Jan; Berto, Filippo

    2018-02-12

    The fatigue behavior and fracture mechanisms of additively manufactured Ti-6Al-4V specimens are investigated in this study. Three sets of testing samples were fabricated for the assessment of fatigue life. The first batch of samples was built by using Laser-Engineered Net Shaping (LENS) technology, a Direct Energy Deposition (DED) method. Internal voids and defects were induced in a second batch of samples by changing LENS machine processing parameters. Fatigue performance of these samples is compared to the wrought Ti-6Al-4V samples. The effects of machine-induced porosity are assessed on mechanical properties and results are presented in the form of SN curves for the three sets of samples. Fracture mechanisms are examined by using Scanning Electron Microscopy (SEM) to characterize the morphological characteristics of the failure surface. Different fracture surface morphologies are observed for porous and non-porous specimens due to the combination of head write speed and laser power. Formation of defects such as pores, unmelted regions, and gas entrapments affect the failure mechanisms in porous specimens. Non-porous specimens exhibit fatigue properties comparable with that of the wrought specimens, but porous specimens are found to show a tremendous reduced fatigue strength.

  20. SrMoO4:Er3+-Yb3+ upconverting phosphor for photonic and forensic applications

    NASA Astrophysics Data System (ADS)

    Soni, Abhishek Kumar; Rai, Vineet Kumar

    2016-08-01

    The Er3+-Yb3+ codoped strontium molybdate (SrMoO4) phosphors have been synthesized via chemical co-precipitation method by adding ammonium hydroxide as a base reagent. The phase, crystal structure and formation of spindle-like particles present in the prepared phosphors have been recognized by using the X-ray powder diffraction (XRPD) and Field emission scanning electron microscopy (FE-SEM) techniques. The Fourier transform infrared (FTIR) spectroscopy of the developed phosphors has been analyzed to mark the different functional groups present in synthesized phosphors. The multicolour upconversion emissions observed upon excitation with 980 nm and 808 nm laser diode have been explained on the basis of dopants ions concentration, pump power dependence, energy level structure and decay curve analysis. The colour co-ordinate study confirmed that the codoped phosphor emits non-tunable green colour when excited with the 980 nm laser diode, whereas it shows the colour tunability from yellow to green region upon excitation with the 808 nm laser diode. The applicability of non-tunable green colour emission has been demonstrated in the security ink and latent finger print detection. This shows the utility of the developed phosphors in the photonic and forensic applications.

  1. In situ elaboration of a binary Ti-26Nb alloy by selective laser melting of elemental titanium and niobium mixed powders.

    PubMed

    Fischer, M; Joguet, D; Robin, G; Peltier, L; Laheurte, P

    2016-05-01

    Ti-Nb alloys are excellent candidates for biomedical applications such as implantology and joint replacement because of their very low elastic modulus, their excellent biocompatibility and their high strength. A low elastic modulus, close to that of the cortical bone minimizes the stress shielding effect that appears subsequent to the insertion of an implant. The objective of this study is to investigate the microstructural and mechanical properties of a Ti-Nb alloy elaborated by selective laser melting on powder bed of a mixture of Ti and Nb elemental powders (26 at.%). The influence of operating parameters on porosity of manufactured samples and on efficacy of dissolving Nb particles in Ti was studied. The results obtained by optical microscopy, SEM analysis and X-ray microtomography show that the laser energy has a significant effect on the compactness and homogeneity of the manufactured parts. Homogeneous and compact samples were obtained for high energy levels. Microstructure of these samples has been further characterized. Their mechanical properties were assessed by ultrasonic measures and the Young's modulus found is close to that of classically elaborated Ti-26 Nbingot. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Thin-film preparation by back-surface irradiation pulsed laser deposition using metal powder targets

    NASA Astrophysics Data System (ADS)

    Kawasaki, Hiroharu; Ohshima, Tamiko; Yagyu, Yoshihito; Ihara, Takeshi; Yamauchi, Makiko; Suda, Yoshiaki

    2017-01-01

    Several kinds of functional thin films were deposited using a new thin-film preparation method named the back-surface irradiation pulsed laser deposition (BIPLD) method. In this BIPLD method, powder targets were used as the film source placed on a transparent target holder, and then a visible-wavelength pulsed laser was irradiated from the holder side to the substrate. Using this new method, titanium oxide and boron nitride thin films were deposited on the silicon substrate. Surface scanning electron microscopy (SEM) images suggest that all of the thin films were deposited on the substrate with some large droplets irrespective of the kind of target used. The deposition rate of the films prepared by using this method was calculated from film thickness and deposition time to be much lower than that of the films prepared by conventional PLD. X-ray diffraction (XRD) measurement results suggest that rutile and anatase TiO2 crystal peaks were formed for the films prepared using the TiO2 rutile powder target. Crystal peaks of hexagonal boron nitride were observed for the films prepared using the boron nitride powder target. The crystallinity of the prepared films was changed by annealing after deposition.

  3. Nanoparticle Thin Films for Gas Sensors Prepared by Matrix Assisted Pulsed Laser Evaporation

    PubMed Central

    Caricato, Anna Paola; Luches, Armando; Rella, Roberto

    2009-01-01

    The matrix assisted pulsed laser evaporation (MAPLE) technique has been used for the deposition of metal dioxide (TiO2, SnO2) nanoparticle thin films for gas sensor applications. For this purpose, colloidal metal dioxide nanoparticles were diluted in volatile solvents, the solution was frozen at the liquid nitrogen temperature and irradiated with a pulsed excimer laser. The dioxide nanoparticles were deposited on Si and Al2O3 substrates. A rather uniform distribution of TiO2 nanoparticles with an average size of about 10 nm and of SnO2 nanoparticles with an average size of about 3 nm was obtained, as demonstrated by high resolution scanning electron microscopy (SEM-FEG) inspections. Gas-sensing devices based on the resistive transduction mechanism were fabricated by depositing the nanoparticle thin films onto suitable rough alumina substrates equipped with interdigitated electrical contacts and heating elements. Electrical characterization measurements were carried out in controlled environment. The results of the gas-sensing tests towards low concentrations of ethanol and acetone vapors are reported. Typical gas sensor parameters (gas responses, response/recovery time, sensitivity, and low detection limit) towards ethanol and acetone are presented. PMID:22574039

  4. Nanoparticle thin films for gas sensors prepared by matrix assisted pulsed laser evaporation.

    PubMed

    Caricato, Anna Paola; Luches, Armando; Rella, Roberto

    2009-01-01

    The matrix assisted pulsed laser evaporation (MAPLE) technique has been used for the deposition of metal dioxide (TiO(2), SnO(2)) nanoparticle thin films for gas sensor applications. For this purpose, colloidal metal dioxide nanoparticles were diluted in volatile solvents, the solution was frozen at the liquid nitrogen temperature and irradiated with a pulsed excimer laser. The dioxide nanoparticles were deposited on Si and Al(2)O(3) substrates. A rather uniform distribution of TiO(2) nanoparticles with an average size of about 10 nm and of SnO(2) nanoparticles with an average size of about 3 nm was obtained, as demonstrated by high resolution scanning electron microscopy (SEM-FEG) inspections. Gas-sensing devices based on the resistive transduction mechanism were fabricated by depositing the nanoparticle thin films onto suitable rough alumina substrates equipped with interdigitated electrical contacts and heating elements. Electrical characterization measurements were carried out in controlled environment. The results of the gas-sensing tests towards low concentrations of ethanol and acetone vapors are reported. Typical gas sensor parameters (gas responses, response/recovery time, sensitivity, and low detection limit) towards ethanol and acetone are presented.

  5. Development and characterization of laser surface cladding (Ti,W)C reinforced Ni-30Cu alloy composite coating on copper

    NASA Astrophysics Data System (ADS)

    Yan, Hua; Zhang, Peilei; Yu, Zhishui; Li, Chonggui; Li, Ruidi

    2012-07-01

    To improve the wear resistance of copper components, laser surface cladding (LSC) was applied to deposit (Ti,W)C reinforced Ni-30Cu alloy composite coating on copper using a cladding interlayer of Ni-30Cu alloy by Nd:YAG laser. The microstructure and phases of the composite coating were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray energy dispersive microanalysis (EDX). Microhardness tester and pin-on-disc wear tester were employed to evaluate the hardness and dry-sliding wear resistance. The results show that crack-free composite coating with metallurgical bonding to the copper substrate is obtained. Phases identified in the (Ti,W)C-reinforced Ni-30Cu alloy composite layer are composed of TiWC2 reinforcements and (Ni,Cu) solid solution. TiWC2 reinforcements are distributed uniformly in the (Ni,Cu) solid solution matrix with dendritic morphology in the upper region and with particles in the mid-lower region. The microhardness and wear properties of the composite coating are improved significantly in comparison to the as-received copper substrate due to the addition of 50 wt% (Ti,W)C multicarbides.

  6. Effect of joint design and welding type on the flexural strength and weld penetration of Ti-6Al-4V alloy bars.

    PubMed

    Simamoto Júnior, Paulo Cézar; Resende Novais, Veridiana; Rodrigues Machado, Asbel; Soares, Carlos José; Araújo Raposo, Luís Henrique

    2015-05-01

    Framework longevity is a key factor for the success of complete-arch prostheses and commonly depends on the welding methods. However, no consensus has been reached on the joint design and welding type for improving framework resistance. The purpose of this study was to assess the effect of different joint designs and welding methods with tungsten inert gas (TIG) or laser to join titanium alloy bars (Ti-6Al-4V). Seventy titanium alloy bar specimens were prepared (3.18 mm in diameter × 40.0 mm in length) and divided into 7 groups (n=10): the C-control group consisting of intact specimens without joints and the remaining 6 groups consisting of specimens sectioned perpendicular to the long-axis and rejoined using an I-, X30-, or X45-shaped joint design with TIG welding (TI, TX30, and TX45) or laser welding (LI, LX30, and LX45). The specimens were tested with 3-point bending. The fracture surfaces were first evaluated with stereomicroscopy to measure the weld penetration area and then analyzed with scanning electron microscopy (SEM). The data were statistically analyzed with 2-way ANOVA and the Tukey post hoc test, 1-way ANOVA and the Dunnett test, and the Pearson correlation test (α=.05). Specimens from the X30 and X45 groups showed higher flexural strength (P<.05) and welded area (P<.05) than specimens from the I groups, regardless of the welding type. TIG welded groups showed significantly higher flexural strength than the laser groups (P<.05), regardless of the joint design. TIG welding also resulted in higher welded areas than laser welding for the I-shaped specimens. No significant differences were found for the weld penetration area in the X45 group, either for laser or TIG welding. SEM analysis showed more pores at the fracture surfaces of the laser specimens. Fracture surfaces indicative of regions of increased ductility were detected for the TIG specimens. TIG welding resulted in higher flexural strength for the joined titanium specimens than laser welding. For both welding methods, X30- and X45-shaped joint designs resulted in higher flexural strength and welding penetration than the I-shaped joint design. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  7. Precise and economic FIB/SEM for CLEM: with 2 nm voxels through mitosis.

    PubMed

    Luckner, Manja; Wanner, Gerhard

    2018-05-23

    A portfolio is presented documenting economic, high-resolution correlative focused ion beam scanning electron microscopy (FIB/SEM) in routine, comprising: (i) the use of custom-labeled slides and coverslips, (ii) embedding of cells in thin, or ultra-thin resin layers for correlative light and electron microscopy (CLEM) and (iii) the claim to reach the highest resolution possible with FIB/SEM in xyz. Regions of interest (ROIs) defined in light microscope (LM), can be relocated quickly and precisely in SEM. As proof of principle, HeLa cells were investigated in 3D context at all stages of the cell cycle, documenting ultrastructural changes during mitosis: nuclear envelope breakdown and reassembly, Golgi degradation and reconstitution and the formation of the midzone and midbody.

  8. Recent Advances in Fiber Lasers for Nonlinear Microscopy

    PubMed Central

    Xu, C.; Wise, F. W.

    2013-01-01

    Nonlinear microscopy techniques developed over the past two decades have provided dramatic new capabilities for biological imaging. The initial demonstrations of nonlinear microscopies coincided with the development of solid-state femtosecond lasers, which continue to dominate applications of nonlinear microscopy. Fiber lasers offer attractive features for biological and biomedical imaging, and recent advances are leading to high-performance sources with the potential for robust, inexpensive, integrated instruments. This article discusses recent advances, and identifies challenges and opportunities for fiber lasers in nonlinear bioimaging. PMID:24416074

  9. Annual Research Report 1 October 1978-30 September 1979.

    DTIC Science & Technology

    1979-01-01

    Roeder, R. G. and Rutter, W. J. Multiple acid polymerases in ribonucleic acid synthesis during sea urchin development. Biochemistry 9: 2543-2554...with ultrastructural transmission electron microscopy (TEM) studies and scanning electron microscopy ( SEM ) stud- ies of lateral ventricular lining and...1I alterations in animals about 100 days after Silastic implantation. SEM studies show flattening and stretching of ependymal cells in the dorsomedial

  10. In Vitro Study of Dentin Hypersensitivity Treated by 980-nm Diode Laser.

    PubMed

    Liu, Ying; Gao, Jie; Gao, Yan; Xu, Shuaimei; Zhan, Xueling; Wu, Buling

    2013-01-01

    To investigate the ultrastructural changes of dentin irradiated with 980-nm diode laser under different parameters and to observe the morphological alterations of odontoblasts and pulp tissue to determine the safety parameters of 980-nm diode laser in the treatment of dentin hypersensitivity (DH). Twenty extracted human third molars were selected to prepare dentin discs. Each dentin disc was divided into four areas and was irradiated by 980-nm diode laser under different parameters: Group A: control group, 0 J/cm(2); Group B: 2 W/CW (continuous mode), 166 J/cm(2); Group C: 3W/CW, 250 J/cm(2); and Group D: 4W/CW, 333 J/cm(2). Ten additional extracted human third molars were selected to prepare dentin discs. Each dentin disc was divided into two areas and was irradiated by 980-nm diode laser: Group E: control group, 0 J/cm(2); and Group F: 2.0 W/CW, 166 J/cm(2). The morphological alterations of the dentin surfaces and odontoblasts were examined with scanning electron microscopy (SEM), and the morphological alterations of the dental pulp tissue irradiated by laser were observed with an upright microscope. The study demonstrated that dentinal tubules can be entirely blocked after irradiation by 980-nm diode laser, regardless of the parameter setting. Diode laser with settings of 2.0 W and 980-nm sealed exposed dentin tubules effectively, and no significant morphological alterations of the pulp and odontoblasts were observed after irradiation. Irradiation with 980-nm diode laser could be effective for routine clinical treatment of DH, and 2.0W/CW (166 J/cm(2)) was a suitable energy parameter due to its rapid sealing of the exposed dentin tubules and its safety to the odontoblasts and pulp tissue.

  11. Performance of Er:YAG laser ablation of hard bone under different irrigation water cooling conditions

    NASA Astrophysics Data System (ADS)

    Beltrán Bernal, Lina M.; Shayeganrad, Gholamreza; Kosa, Gabor; Zelechowski, Marek; Rauter, Georg; Friederich, Niklaus; Cattin, Philippe C.; Zam, Azhar

    2018-02-01

    The biological applicability of the Erbium-doped Yttrium Aluminum Garnet (Er:YAG) laser in surgical processes is so far limited to hard dental tissues. Using the Er:YAG laser for bone ablation is being studied since it has shown good performance for ablating dental hard tissues at the wavelength 2.94 μm, which coincides with the absorption peak of water, one of the main components of hard tissue, like teeth and bone. To obtain a decent performance of the laser in the cutting process, we aim at examining the influence of sequenced water jet irrigation on both, the ablation rate and the prevention of carbonization while performing laser ablation of bone with fixed laser parameters. An Er:YAG laser at 2.94 μm wavelength, 940 mJ energy per pulse, 400 μs pulse width, and 10 Hz repetition rate is used for the ablation of a porcine femur bone under different pulsed water jet irrigation conditions. We used micro-computed tomography (micro-CT) scans to determine the geometry of the ablated areas. In addition, scanning electron microscopy (SEM) is used for qualitative observations for the presence of carbonization and micro-fractures on the ablated surfaces. We evaluate the performance of the laser ablation process for the different water jet conditions in terms of the ablation rate, quantified by the ablated volume per second and the ablation efficiency, calculated as the ablated volume per pulse energy. We provide an optimized system for laser ablation which delivers the appropriate amount of water to the bone and consequently, the bone is ablated in the most efficient way possible without carbonization.

  12. In Vitro Study of Dentin Hypersensitivity Treated by 980-nm Diode Laser

    PubMed Central

    Liu, Ying; Gao, Jie; Gao, Yan; XU, Shuaimei; Zhan, Xueling; Wu, Buling

    2013-01-01

    Introduction: To investigate the ultrastructural changes of dentin irradiated with 980-nm diode laser under different parameters and to observe the morphological alterations of odontoblasts and pulp tissue to determine the safety parameters of 980-nm diode laser in the treatment of dentin hypersensitivity (DH). Methods: Twenty extracted human third molars were selected to prepare dentin discs. Each dentin disc was divided into four areas and was irradiated by 980-nm diode laser under different parameters: Group A: control group, 0 J/cm2; Group B: 2 W/CW (continuous mode), 166 J/cm2; Group C: 3W/CW, 250 J/cm2; and Group D: 4W/CW, 333 J/cm2. Ten additional extracted human third molars were selected to prepare dentin discs. Each dentin disc was divided into two areas and was irradiated by 980-nm diode laser: Group E: control group, 0 J/cm2; and Group F: 2.0 W/CW, 166 J/cm2. The morphological alterations of the dentin surfaces and odontoblasts were examined with scanning electron microscopy (SEM), and the morphological alterations of the dental pulp tissue irradiated by laser were observed with an upright microscope. Results: The study demonstrated that dentinal tubules can be entirely blocked after irradiation by 980-nm diode laser, regardless of the parameter setting. Diode laser with settings of 2.0 W and 980-nm sealed exposed dentin tubules effectively, and no significant morphological alterations of the pulp and odontoblasts were observed after irradiation. Conclusions: Irradiation with 980-nm diode laser could be effective for routine clinical treatment of DH, and 2.0W/CW (166 J/cm2) was a suitable energy parameter due to its rapid sealing of the exposed dentin tubules and its safety to the odontoblasts and pulp tissue. PMID:25606318

  13. Numerical simulation of dendrite growth in nickel-based superalloy and validated by in-situ observation using high temperature confocal laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Yan, Xuewei; Xu, Qingyan; Liu, Baicheng

    2017-12-01

    Dendritic structures are the predominant microstructural constituents of nickel-based superalloys, an understanding of the dendrite growth is required in order to obtain the desirable microstructure and improve the performance of castings. For this reason, numerical simulation method and an in-situ observation technology by employing high temperature confocal laser scanning microscopy (HT-CLSM) were used to investigate dendrite growth during solidification process. A combined cellular automaton-finite difference (CA-FD) model allowing for the prediction of dendrite growth of binary alloys was developed. The algorithm of cells capture was modified, and a deterministic cellular automaton (DCA) model was proposed to describe neighborhood tracking. The dendrite and detail morphology, especially hundreds of dendrites distribution at a large scale and three-dimensional (3-D) polycrystalline growth, were successfully simulated based on this model. The dendritic morphologies of samples before and after HT-CLSM were both observed by optical microscope (OM) and scanning electron microscope (SEM). The experimental observations presented a reasonable agreement with the simulation results. It was also found that primary or secondary dendrite arm spacing, and segregation pattern were significantly influenced by dendrite growth. Furthermore, the directional solidification (DS) dendritic evolution behavior and detail morphology were also simulated based on the proposed model, and the simulation results also agree well with experimental results.

  14. Additive Manufacturing of Single-Crystal Superalloy CMSX-4 Through Scanning Laser Epitaxy: Computational Modeling, Experimental Process Development, and Process Parameter Optimization

    NASA Astrophysics Data System (ADS)

    Basak, Amrita; Acharya, Ranadip; Das, Suman

    2016-08-01

    This paper focuses on additive manufacturing (AM) of single-crystal (SX) nickel-based superalloy CMSX-4 through scanning laser epitaxy (SLE). SLE, a powder bed fusion-based AM process was explored for the purpose of producing crack-free, dense deposits of CMSX-4 on top of similar chemistry investment-cast substrates. Optical microscopy and scanning electron microscopy (SEM) investigations revealed the presence of dendritic microstructures that consisted of fine γ' precipitates within the γ matrix in the deposit region. Computational fluid dynamics (CFD)-based process modeling, statistical design of experiments (DoE), and microstructural characterization techniques were combined to produce metallurgically bonded single-crystal deposits of more than 500 μm height in a single pass along the entire length of the substrate. A customized quantitative metallography based image analysis technique was employed for automatic extraction of various deposit quality metrics from the digital cross-sectional micrographs. The processing parameters were varied, and optimal processing windows were identified to obtain good quality deposits. The results reported here represent one of the few successes obtained in producing single-crystal epitaxial deposits through a powder bed fusion-based metal AM process and thus demonstrate the potential of SLE to repair and manufacture single-crystal hot section components of gas turbine systems from nickel-based superalloy powders.

  15. Microstructures Evolution and Micromechanics Features of Ni-Cr-Si Coatings Deposited on Copper by Laser Cladding.

    PubMed

    Zhang, Peilei; Li, Mingchuan; Yu, Zhishui

    2018-05-23

    Three Ni-Cr-Si coatings were synthesized on the surface of copper by laser cladding. The microstructures of the coatings were characterized by optical microscopy (OM), X-ray diffraction (XRD), and scanning electron microscopy (SEM) with an energy dispersive spectrometer (EDS). According to the analysis results of phase compositions, Gibbs free energy change and microstructures, the phases of three coatings appeared were Cr₃Si+γ-Ni+Cu ss (Coating 1, Ni-26Cr-29Si), Cr₆Ni 16 Si₇+Ni₂Si+Cu ss (Coating 2, Ni-10Cr-30Si) and Cr₃Ni₅Si₂+Cr₂Ni₃+Cu ss (Coating 3, Ni-29Cr-16Si). The crystal growth in the solidification process was analyzed with a modified model, which is a combination of Kurz-Giovanola-Trivedi (KGT) and Lipton-Kurz-Trivedi (LKT) models. The dendrite tip undercooling in Coating 2 was higher than those of Coating 1 and Coating 3. Well-developed dendrites were found in Coating 2. A modification of Hunt’s model was adopted to describe the morphological differences in the three coatings. The results show that Coating 1 was in the equiaxed dendrite region, while Coatings 2 and 3 were in the columnar dendrite region. The average friction coefficients of the three coatings were 0.45, 0.5 and 0.4, respectively. Obvious plastic deformation could be found in the subsurface zone of Coatings 2 and 3.

  16. Assessment of biofilm changes and concentration-depth profiles during arsenopyrite oxidation by Acidithiobacillus thiooxidans.

    PubMed

    Ramírez-Aldaba, Hugo; Vazquez-Arenas, Jorge; Sosa-Rodríguez, Fabiola S; Valdez-Pérez, Donato; Ruiz-Baca, Estela; García-Meza, Jessica Viridiana; Trejo-Córdova, Gabriel; Lara, René H

    2017-08-01

    Biofilm formation and evolution are key factors to consider to better understand the kinetics of arsenopyrite biooxidation. Chemical and surface analyses were carried out using Raman spectroscopy, scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM), glow discharge spectroscopy (GDS), and protein analysis (i.e., quantification) in order to evaluate the formation of intermediate secondary compounds and any significant changes arising in the biofilm structure of Acidithiobacillus thiooxidans during a 120-h period of biooxidation. Results show that the biofilm first evolves from a low cell density structure (1 to 12 h) into a formation of microcolonies (24 to 120 h) and then finally becomes enclosed by a secondary compound matrix that includes pyrite (FeS 2 )-like, S n 2- /S 0 , and As 2 S 3 compounds, as shown by Raman and SEM-EDS. GDS analyses (concentration-depth profiles, i.e., 12 h) indicate significant differences for depth speciation between abiotic control and biooxidized surfaces, thus providing a quantitative assessment of surface-bulk changes across samples (i.e. reactivity and /or structure-activity relationship). Respectively, quantitative protein analyses and CLSM analyses suggest variations in the type of extracellular protein expressed and changes in the biofilm structure from hydrophilic (i.e., exopolysaccharides) to hydrophobic (i.e., lipids) due to arsenopyrite and cell interactions during the 120-h period of biooxidation. We suggest feasible environmental and industrial implications for arsenopyrite biooxidation based on the findings of this study.

  17. The relationship between biofilm formations and capsule in Haemophilus influenzae.

    PubMed

    Qin, Liang; Kida, Yutaka; Ishiwada, Naruhiko; Ohkusu, Kiyofumi; Kaji, Chiharu; Sakai, Yoshiro; Watanabe, Kiwao; Furumoto, Akitsugu; Ichinose, Akitoyo; Watanabe, Hiroshi

    2014-03-01

    To evaluate the biofilm formation of non-typeable Haemophilus influenzae (NTHi) and H. influenzae type b (Hib) clinical isolates, we conducted the following study. Serotyping and polymerase chain reaction were performed to identify β-lactamase-negative ampicillin (ABPC)-susceptible (BLNAS), β-lactamase-negative ABPC-resistant (BLNAR), TEM-1 type β-lactamase-producing ABPC-resistant (BLPAR)-NTHi, and Hib. Biofilm formation was investigated by microtiter biofilm assay, as well as visually observation with a scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) in a continuous-flow chamber. As a result, totally 99 strains were investigated, and were classified into 4 groups which were 26 gBLNAS, 22 gBLNAR, 28 gBLPAR-NTHi and 23 Hib strains. The mean OD600 in the microtiter biofilm assay of gBLNAS, gBLNAR, gBLPAR-NTHi, and Hib strains were 0.57, 0.50, 0.34, and 0.08, respectively. NTHi strains were similar in terms of biofilm formations, which were observed by SEM and CLSM. Five Hib strains with the alternated type b cap loci showed significantly increased biofilm production than the other Hib strains. In conclusion, gBLNAS, gBLNAR, and gBLPAR-NTHi strains were more capable to produce biofilms compared to Hib strains. Our data suggested that resistant status may not be a key factor but capsule seemed to play an important role in H. influenzae biofilm formation. Copyright © 2013 Japanese Society of Chemotherapy and the Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  18. Dynamics of mono- and dual-species biofilm formation and interactions between Staphylococcus aureus and Gram-negative bacteria.

    PubMed

    Makovcova, Jitka; Babak, Vladimir; Kulich, Pavel; Masek, Josef; Slany, Michal; Cincarova, Lenka

    2017-07-01

    Microorganisms are not commonly found in the planktonic state but predominantly form dual- and multispecies biofilms in almost all natural environments. Bacteria in multispecies biofilms cooperate, compete or have neutral interactions according to the involved species. Here, the development of mono- and dual-species biofilms formed by Staphylococcus aureus and other foodborne pathogens such as Salmonella enterica subsp. enterica serovar Enteritidis, potentially pathogenic Raoultella planticola and non-pathogenic Escherichia coli over the course of 24, 48 and 72 h was studied. Biofilm formation was evaluated by the crystal violet assay (CV), enumeration of colony-forming units (CFU cm -2 ) and visualization using confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). In general, Gram-negative bacterial species and S. aureus interacted in a competitive manner. The tested Gram-negative bacteria grew better in mixed dual-species biofilms than in their mono-species biofilms as determined using the CV assay, CFU ml -2 enumeration, and CLSM and SEM visualization. In contrast, the growth of S. aureus biofilms was reduced when cultured in dual-species biofilms. CLSM images revealed grape-like clusters of S. aureus and monolayers of Gram-negative bacteria in both mono- and dual-species biofilms. S. aureus clusters in dual-species biofilms were significantly smaller than clusters in S. aureus mono-species biofilms. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  19. Insulated InP (100) semiconductor by nano nucleus generation in pure water

    NASA Astrophysics Data System (ADS)

    Ghorab, Farzaneh; Es'haghi, Zarrin

    2018-01-01

    Preparation of specified designs on optoelectronic devices such as Light-Emitting Diodes (LEDs) and Laser Diodes (LDs) by using insulated thin films is very important. InP as one of those semiconductors which is used as optoelectronic devices, have two different kinds of charge carriers as n-InP and p-InP in the microelectronic industry. The surface preparation of this kind of semiconductor can be accomplished with individually chemical, mechanical, chemo - mechanical and electrochemical methods. But electrochemical method can be suitably replaced instead of the other methods, like CMP (Chemical Mechanical Polishing), because of the simplicity. In this way, electrochemically formation of insulated thin films by nano nucleus generation on semiconductor (using constant current density of 0.07 mA /cm2) studied in this research. Insulated nano nucleus generation and their growth up to thin film formation on semiconductor single crystal (100), n-InP, inpure water (0.08 µs/cm,25°c) characterized by Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), Four-point probe and Styloprofilometer techniques. The SEM images show active and passive regions on the n-InP surface and not uniform area on p-InP surface by passing through the passive condition. So the passive regions were nonuniform, and only the active regions were uniform and clean. The various semiconducting behavior in electrochemical condition, studied and compared with structural specification of InP type group (III-V).

  20. Efficacy of calcium oxide and calcium hydroxide nanoparticles on the elimination of Enterococcus faecalis in human root dentin.

    PubMed

    Louwakul, Phumisak; Saelo, Attapon; Khemaleelakul, Saengusa

    2017-04-01

    The objective of this study was to compare the antibacterial effect of calcium oxide nanoparticles (CONPs) and calcium hydroxide nanoparticles (CHNPs) against Enterococcus faecalis in a dentinal block model. E. faecalis strain JCM 7783 was introduced into dentinal tubules of semicylindrical dentin specimens by centrifugation and incubated for 1 week. Fifty microliters of CONPs or CHNPs was placed on the root canal side of the infected dentin specimens. The specimens were then incubated in aerobic condition at 37 °C and 100 % relative humidity for 1 week. The treated dentin specimens were subjected to fluorescent staining and confocal laser scanning microscopy (CLSM) to analyze the proportions of non-vital and vital bacterial cells inside the dentinal tubules. Scanning electron microscopy (SEM) was used to confirm the effect of the medicaments on the bacteria in the dentinal tubules. Calcium oxide (CO) and calcium hydroxide (CH) were used as controls. Based on the CLSM and SEM analyses, CHNPs were more efficient than CONPs in the elimination of the bacteria in the dentinal tubules. CONPs significantly killed more E. faecalis than CO and CH (P < .05). Neither CO nor CH was able to kill the bacteria. CHNPs were more effective than CONPs in the elimination of E. faecalis in dentinal tubules. CHNPs are effective nanoparticles in killing endodontic bacteria present in dentinal tubules. They have potential as an intracanal medicament, which may be beneficial in root canal therapy.

  1. Characterisation of the Poly-(Vinylpyrrolidone)-Poly-(Vinylacetate-Co-Crotonic Acid) (PVP:PVAc-CA) Interpolymer Complex Matrix Microparticles Encapsulating a Bifidobacterium lactis Bb12 Probiotic Strain.

    PubMed

    Mamvura, C I; Moolman, F S; Kalombo, L; Hall, A N; Thantsha, M S

    2011-06-01

    The method of producing poly-(vinylpyrrolidone)-poly-(vinylacetate-co-crotonic acid) (PVP:PVAc-CA) interpolymer complex matrix microparticles in supercritical carbon dioxide (scCO2), encapsulating bacteria, has recently been developed. This study was aimed at probing the external and internal structure of these microparticles, which can be used in food. The encapsulation efficiency and distribution of encapsulated Bifidobacterium lactis Bb12 within these microparticles were also investigated. Scanning electron microscopy (SEM) revealed irregular, mostly small, smooth microparticles with no visible bacterial cells on the surface. However, some of the microparticles appeared to have porous surfaces. The results of a Microtrac S3500 particle size analyzer showed that the PVP:PVAc-CA interpolymer complex matrix microparticles encapsulating B. lactis Bb12 had an average particle size of 166.1 μm (<350 μm designated standard size for microparticles). The D 10, D 50 and D 90 values for these microparticles were 48.16, 166.06 and 382.55 μm, respectively. Both SEM and confocal laser scanning microscopy showed a high density of bacterial cells within the microparticles. An average encapsulation efficiency of 96% was achieved. Consequently, the microparticles have the potential to be evenly distributed in foods, deliver adequate amounts of probiotics and produce minimal adverse effects on the texture and mouth feel of the foods into which they are incorporated.

  2. Feature evaluation of complex hysteresis smoothing and its practical applications to noisy SEM images.

    PubMed

    Suzuki, Kazuhiko; Oho, Eisaku

    2013-01-01

    Quality of a scanning electron microscopy (SEM) image is strongly influenced by noise. This is a fundamental drawback of the SEM instrument. Complex hysteresis smoothing (CHS) has been previously developed for noise removal of SEM images. This noise removal is performed by monitoring and processing properly the amplitude of the SEM signal. As it stands now, CHS may not be so utilized, though it has several advantages for SEM. For example, the resolution of image processed by CHS is basically equal to that of the original image. In order to find wide application of the CHS method in microscopy, the feature of CHS, which has not been so clarified until now is evaluated correctly. As the application of the result obtained by the feature evaluation, cursor width (CW), which is the sole processing parameter of CHS, is determined more properly using standard deviation of noise Nσ. In addition, disadvantage that CHS cannot remove the noise with excessively large amplitude is improved by a certain postprocessing. CHS is successfully applicable to SEM images with various noise amplitudes. © Wiley Periodicals, Inc.

  3. Sintering mechanism of the CaF2 on hydroxyapatite by a 10.6-l microm CO2 laser.

    PubMed

    Wu, Cheng-Chei; Roan, Rong-Tai; Chen, Jeng-Huey

    2002-01-01

    Laser has been reported as a heat source for melting and re-crystallization. Occurring at about 1100 degrees C, the melting of surface dental enamel along with re-crystallization might have an assistant role in the therapy of hypersensitive tooth, apical sealing of endodontic surgery in dentistry, preventive dentistry for pit and fissure sealing, and fluoridation. For laser to be accepted in clinical applications, it is desired that, studies must show the incorporation of CaF(2) into hydroxyapatite could reduce the sintering temperature for the sake of safety. In this study, the Sharplan 20XJ CO(2) laser with 10.6- microm wavelength was set under the following parameters: power, 5 W; repetitive mode, 0.1 second; beam, focused. Fluorite was added to hydroxyapatite as a synthetic compound to lower the sintering temperature. Human dental enamel without caries was used for in vitro sintering test. Scanning electron microscopy (SEM), X-ray diffractometer (XRD), Fourier transforming infrared spectroscopy (FTIR), and differential thermal analysis/thermogravimetric analysis (DAT/TGA) were used for the investigation of sintering mechanism of CaF(2). Fusion between hexagonal shape crystals and cubic shape crystals (CaF(2)) were observed under SEM study. Hexagonal shape crystals indicated the formation of fluorapatite under XRD analysis. Under FTIR study, we examined reductions of water (3445 cm(-1)) and hydroxyl bands (3567 and 627 cm(-1)) in irradiated compounds. From the DTA pattern of synthetic compound, it showed the endothermic reaction reaching its peak point around 1180 +/- 20 degrees C. It was attributed to the phase transformation and/or initial melting. In this study, we proposed the interrelationship of the eutectics between initiator (CaF(2)) and the reaction product (calcium hydroxide) that reduced the sintering temperature. It appeared that the co-eutectics interacted to reduce the sintering temperature of hydroxyapatite below 800 degrees C and that the key eutectic was calcium hydroxide. The clinical feasibility of the melting and re-crystallization of hydroxyapatite under 10.6-microm CO(2) laser would be therefore enhanced. Copyright 2002 Wiley-Liss, Inc.

  4. Correlative fractography: combining scanning electron microscopy and light microscopes for qualitative and quantitative analysis of fracture surfaces.

    PubMed

    Hein, Luis Rogerio de Oliveira; de Oliveira, José Alberto; de Campos, Kamila Amato

    2013-04-01

    Correlative fractography is a new expression proposed here to describe a new method for the association between scanning electron microscopy (SEM) and light microscopy (LM) for the qualitative and quantitative analysis of fracture surfaces. This article presents a new method involving the fusion of one elevation map obtained by extended depth from focus reconstruction from LM with exactly the same area by SEM and associated techniques, as X-ray mapping. The true topographic information is perfectly associated to local fracture mechanisms with this new technique, presented here as an alternative to stereo-pair reconstruction for the investigation of fractured components. The great advantage of this technique resides in the possibility of combining any imaging methods associated with LM and SEM for the same observed field from fracture surface.

  5. Scanning EM of non-heavy metal stained biosamples: Large-field of view, high contrast and highly efficient immunolabeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuipers, Jeroen; Boer, Pascal de; Giepmans, Ben N.G., E-mail: b.n.g.giepmans@umcg.nl

    Scanning electron microscopy (SEM) is increasing its application in life sciences for electron density measurements of ultrathin sections. These are traditionally analyzed with transmission electron microscopy (TEM); by most labs, SEM analysis still is associated with surface imaging only. Here we report several advantages of SEM for thin sections over TEM, both for structural inspection, as well as analyzing immuno-targeted labels such as quantum dots (QDs) and gold, where we find that QD-labeling is ten times more efficient than gold-labeling. Furthermore, we find that omitting post-staining with uranyl and lead leads to QDs readily detectable over the ultrastructure, but undermore » these conditions ultrastructural contrast was even almost invisible in TEM examination. Importantly, imaging in SEM with STEM detection leads to both outstanding QDs and ultrastructural contrast. STEM imaging is superior over back-scattered electron imaging of these non-contrasted samples, whereas secondary electron detection cannot be used at all. We conclude that examination of ultrathin sections by SEM, which may be immunolabeled with QDs, will allow rapid and straightforward analysis of large fields with more efficient labeling than can be achieved with immunogold. The large fields of view routinely achieved with SEM, but not with TEM, allows straightforward raw data sharing using virtual microscopy, also known as nanotomy when this concerns EM data in the life sciences. - Highlights: • High resolution and large fields of view via nanotomy or virtual microscopy. • Highly relevant for EM‐datasets where information density is high. • Sample preparation with low contrast good for STEM, not TEM. • Quantum dots now stand out in STEM‐based detection. • 10 Times more efficient labeling with quantum dots compared to gold.« less

  6. 3D imaging of cells and tissues by focused ion beam/scanning electron microscopy (FIB/SEM).

    PubMed

    Drobne, Damjana

    2013-01-01

    Integration of a scanning electron microscope (SEM) and focused ion beam (FIB) technology into a single FIB/SEM system permits use of the FIB as a nano-scalpel to reveal site-specific subsurface microstructures which can be examined in great detail by SEM. The FIB/SEM technology is widely used in the semiconductor industry and material sciences, and recently its use in the life sciences has been initiated. Samples for FIB/SEM investigation can be either embedded in a plastic matrix, the traditional means of preparation of transmission electron microscopy (TEM) specimens, or simply dried as in samples prepared for SEM imaging. Currently, FIB/SEM is used in the life sciences for (a) preparation by the lift-out technique of lamella for TEM analysis, (b) tomography of samples embedded in a matrix, and (c) in situ site-specific FIB milling and SEM imaging using a wide range of magnifications. Site-specific milling and imaging has attracted wide interest as a technique in structural research of single eukaryotic and prokaryotic cells, small animals, and different animal tissue, but it still remains to be explored more thoroughly. In the past, preparation of samples for site-specific milling and imaging by FIB/SEM has typically adopted the embedding techniques used for TEM samples, and which have been very well described in the literature. Sample preparation protocols for the use of dried samples in FIB/SEM have been less well investigated. The aim of this chapter is to encourage application of FIB/SEM on dried biological samples. A detailed description of conventional dried sample preparation and FIB/SEM investigation of dried biological samples is presented. The important steps are described and illustrated, and direct comparison between embedded and dried samples of same tissues is provided. The ability to discover links between gross morphology of the tissue or organ, surface characteristics of any selected region, and intracellular structural details on the nanometer scale is an appealing application of electron microscopy in the life sciences and merits further exploration.

  7. In situ microscopic analysis of asbestos and synthetic vitreous fibers retained in hamster lungs following inhalation.

    PubMed

    Rogers, R A; Antonini, J M; Brismar, H; Lai, J; Hesterberg, T W; Oldmixon, E H; Thevenaz, P; Brain, J D

    1999-05-01

    Hamsters breathed, nose-only, for 13 weeks, 5 days/week, 6 hr/day, either man-made vitreous fiber (MMVF)10a, MMVF33, or long amosite asbestos at approximately 300 World Health Organization (WHO) fibers/cc or long amosite at 25 WHO fibers/cc. [World Health Organization fibers are longer than 5 microm and thicker than 3 microm, with aspect ratio >3.] After sacrifice, fiber burden was estimated (left lungs) by ashing and scanning electron microscopy (ashing/SEM) or (right middle lobes) by confocal laser scanning microscopy (CLSM) in situ. In situ CLSM also provided three-dimensional views of fibers retained, undisturbed, in lung tissue. Fibers of each type were lodged in alveoli and small airways, especially at airway bifurcations, and were seen fully or partly engulfed by alveolar macrophages. Amosite fibers penetrated into and through alveolar septa. Length densities of fibers in parenchyma (total length of fiber per unit volume of lung) were estimated stereologically from fiber transsections counted on two-dimensional optical sections and were 30.5, 25.3, 20.0, and 81.6 mm/mm3 for MMVF10a, MMVF33, and low- and high-dose amosite, respectively. Lengths of individual fibers were measured in three dimensions by tracking individual fibers through series of optical sections. Length distributions of amosite fibers aerosolized, but before inhalation versus after retention in the lung were similar, whether determined by ashing/SEM or in situ CLSM. In contrast, the fraction of short MMVF10a and MMVF33 fibers increased and the geometric mean fiber lengths of both MMVFs decreased by approximately 60% during retention. Most likely due to fiber deposition pattern and differences in sampling, fiber burdens [MMVF10a, MMVF33, and amosite (high dose; 269 WHO fibers/cc)] determined by ashing/SEM were 1.4, 1. 5, and 3.5 times greater, respectively, than those calculated from in situ CLSM data. In situ CLSM is able to provide detailed information about the anatomic sites of fiber retention and also fiber lengths and burdens in good agreement with ashing/SEM results.

  8. Intravital multiphoton fluorescence imaging and optical manipulation of spinal cord in mice, using a compact fiber laser system.

    PubMed

    Oshima, Yusuke; Horiuch, Hideki; Honkura, Naoki; Hikita, Atsuhiko; Ogata, Tadanori; Miura, Hiromasa; Imamura, Takeshi

    2014-09-01

    Near-infrared ultrafast lasers are widely used for multiphoton excited fluorescence microscopy in living animals. Ti:Sapphire lasers are typically used for multiphoton excitation, but their emission wavelength is restricted below 1,000 nm. The aim of this study is to evaluate the performance of a compact Ytterbium-(Yb-) fiber laser at 1,045 nm for multiphoton excited fluorescence microscopy in spinal cord injury. In this study, we employed a custom-designed microscopy system with a compact Yb-fiber laser and evaluated the performance of this system in in vivo imaging of brain cortex and spinal cord in YFP-H transgenic mice. For in vivo imaging of brain cortex, sharp images of basal dendrites, and pyramidal cells expressing EYFP were successfully captured using the Yb-fiber laser in our microscopy system. We also performed in vivo imaging of axon fibers of spinal cord in the transgenic mice. The obtained images were almost as sharp as those obtained using a conventional ultrafast laser system. In addition, laser ablation and multi-color imaging could be performed simultaneously using the Yb-fiber laser. The high-peak pulse Yb-fiber laser is potentially useful for multimodal bioimaging methods based on a multiphoton excited fluorescence microscopy system that incorporates laser ablation techniques. Our results suggest that microscopy systems of this type could be utilized in studies of neuroscience and clinical use in diagnostics and therapeutic tool for spinal cord injury in the future. © 2014 Wiley Periodicals, Inc.

  9. Effect of CO2 Laser and Fluoride Varnish Application on Microhardness of Enamel Surface Around Orthodontic Brackets

    PubMed Central

    Mahmoudzadeh, Majid; Rezaei-Soufi, Loghman; Farhadian, Nasrin; Jamalian, Seyed Farzad; Akbarzadeh, Mahdi; Momeni, Mohammadali; Basamtabar, Masome

    2018-01-01

    Introduction: Orthodontic treatment has many advantages such as esthetic improvement and self-esteem enhancement; yet it has some disadvantages such as increasing the risk of formation of white spot lesions, because it makes oral hygiene more difficult. It is rational to implement procedures to prevent these lesions. The present study was aimed to assess the effect of CO2 laser and fluoride varnish on the surface of the enamel surface microhardness around the orthodontic braces. Methods: Eighty extracted premolar teeth were selected, scaled, polished with nonfluoridated pumic and metal brackets were bonded to them. Then, they were randomly allocated to 5 groups: control (neither fluoride nor laser is used on enamel surfaces), fluoride (4 minutes fluoride varnish treatment of the enamel surfaces), CO2 laser (10.6 µm CO2 laser irradiation of the teeth), laserfluoride (fluoride application after laser irradiation) and fluoride-laser (fluoride was applied and then teeth were irradiated with laser). After surface treatment around brackets on enamel, the samples were stored in 0.1% thymol for less than 5 days and then they were exposed to a 10-day microbiological caries model. Microhardness values of enamel were evaluated with Vickers test. One sample of each group (5 teeth from 80 samples) was prepared for SEM (scanning electron microscopy) and the data from 75 remaining teeth were analyzed with analysis of variance (ANOVA) and chi-square tests (α =0.05). Results: Microhardness mean values from high to low were as follow: fluoride-laser, laser-fluoride, laser, fluoride and control. Microhardness in fluoride-laser group was significantly higher compared with that of the control group. Distribution adhesive remnant index (ARI) scores were significantly different between groups and most of bond failures occurred at the enamel-adhesive interface in groups 2 to 5 and at the adhesive-bracket interface in the control group. Conclusion: Combination of fluoride varnish and CO2 laser irradiation can reduce enamel demineralization around orthodontic brackets. PMID:29399311

  10. Effect of CO2 Laser and Fluoride Varnish Application on Microhardness of Enamel Surface Around Orthodontic Brackets.

    PubMed

    Mahmoudzadeh, Majid; Rezaei-Soufi, Loghman; Farhadian, Nasrin; Jamalian, Seyed Farzad; Akbarzadeh, Mahdi; Momeni, Mohammadali; Basamtabar, Masome

    2018-01-01

    Introduction: Orthodontic treatment has many advantages such as esthetic improvement and self-esteem enhancement; yet it has some disadvantages such as increasing the risk of formation of white spot lesions, because it makes oral hygiene more difficult. It is rational to implement procedures to prevent these lesions. The present study was aimed to assess the effect of CO 2 laser and fluoride varnish on the surface of the enamel surface microhardness around the orthodontic braces. Methods: Eighty extracted premolar teeth were selected, scaled, polished with nonfluoridated pumic and metal brackets were bonded to them. Then, they were randomly allocated to 5 groups: control (neither fluoride nor laser is used on enamel surfaces), fluoride (4 minutes fluoride varnish treatment of the enamel surfaces), CO 2 laser (10.6 µm CO 2 laser irradiation of the teeth), laserfluoride (fluoride application after laser irradiation) and fluoride-laser (fluoride was applied and then teeth were irradiated with laser). After surface treatment around brackets on enamel, the samples were stored in 0.1% thymol for less than 5 days and then they were exposed to a 10-day microbiological caries model. Microhardness values of enamel were evaluated with Vickers test. One sample of each group (5 teeth from 80 samples) was prepared for SEM (scanning electron microscopy) and the data from 75 remaining teeth were analyzed with analysis of variance (ANOVA) and chi-square tests (α =0.05). Results: Microhardness mean values from high to low were as follow: fluoride-laser, laser-fluoride, laser, fluoride and control. Microhardness in fluoride-laser group was significantly higher compared with that of the control group. Distribution adhesive remnant index (ARI) scores were significantly different between groups and most of bond failures occurred at the enamel-adhesive interface in groups 2 to 5 and at the adhesive-bracket interface in the control group. Conclusion: Combination of fluoride varnish and CO2 laser irradiation can reduce enamel demineralization around orthodontic brackets.

  11. Intraoral Laser Welding (ILW): ultrastructural and mechanical analysis

    NASA Astrophysics Data System (ADS)

    Fornaini, Carlo; Passaretti, Francesca; Villa, Elena; Nammour, Samir

    2010-05-01

    Nd:YAG, currently used since 1970 in dental laboratories to weld metals on dental prostheses has some limits such great dimensions, high costs and fixed delivery system. Recently it was proposed the possibility to use the Nd:YAG laser device commonly utilised in dental office, to repair broken fixed, removable and orthodontic prostheses and to weld metals directly into the mouth. The aim of this work is to value, through SEM (Scanning Electron Microscope), EDS (Energy Dispersive X-Ray Spectroscopy) and DMA (Dynamic Mechanical Analysis), quality and mechanical strength of the welding process comparing a device normally used in dental lab and a device normally used in dental office for oral surgery. Sixteen CoCrMo metal plates and twenty steel orthodontic wires were divided in four groups: one was welded without metal apposition by laboratory laser, one was welded with metal apposition by laboratory laser, one was welded without metal apposition by office laser and one was welded with metal apposition by office laser. The welding process was analysed by SEM, EDS and DMA to compare the differences between the different samples. By SEM analysis it was seen that the plates welded by office laser without apposition metal showed a greater number of fissurations compared with the other samples. By EDS analysis it was seen a homogeneous composition of the metals in all the samples. The mechanical tests showed a similar elastic behaviour of the samples, with minimal differences between the two devices. No wire broke even under the maximum strength by the Analyser. This study seems to demonstrate that the welding process by office Nd:YAG laser device and the welding process by laboratory Nd:YAG laser device, analysed by SEM, EDS and DMA, showed minimal and not significant differences even if these data will be confirmed by a greater number of samples.

  12. The effect of different cleaning methods on the surface and temperature of failed titanium implants: an in vitro study.

    PubMed

    Hakki, Sema S; Tatar, Gulsah; Dundar, Niyazi; Demiralp, Burak

    2017-04-01

    The aims of this in vitro study are to compare the efficacy of different cleaning methods in removing debris of failed implants and to detect thermal changes of the implants treated by various scaling instruments. Twenty-seven failed implants and two unused implants as control were included to this study-group 1: plastic curette (P), group 2: titanium curette (T), group 3: carbon curette (C), group 4: titanium brush (TB), group 5: Er:YAG laser (laser 1 (L1) 100 mJ/pulse at 10 Hz), group 6: Er:YAG laser (laser 2 (L2) 150 mJ/pulse at 10 Hz), group 7: Er:YAG laser (laser 3 (L3) 200 mJ/pulse at 10 Hz), group 8: ultrasonic scaler appropriate for titanium (US), group 9: air abrasive method (AA) + citric acid, and group 10: implantoplasty (I). The changes on the treated/untreated titanium surfaces and remnant debris were observed by scanning electron microscopy (SEM). Temperature of the implants before and after treatment was detected using a thermocouple. The use of air abrasive and citric acid combination and Er:YAG laser groups was found as the best methods for the decontamination of titanium surfaces of failed implant. When the hand instruments were compared, titanium curette was found better than both the plastic and the carbon curettes which leave plastics and carbon remnants on the titanium surface. The temperature was higher after hand instrumentation when compared to other experimental groups (p < 0.05). Within the limitations of the present in vitro model, it can be concluded that the best method for decontamination of the implant surface is the use of air abrasives and Er:YAG laser.

  13. Dual Laser-Assisted Lamellar Anterior Keratoplasty with Tophat Graft: A Laboratory Study

    PubMed Central

    Cleary, Catherine; Song, Jonathan C.; Tang, Maolong; Li, Yan; Liu, Ying; Yiu, Samuel; Huang, David

    2011-01-01

    Objectives To develop a dual laser-assisted lamellar anterior keratoplasty (LALAK) technique, using excimer and femtosecond lasers to perform surgery on eye-bank eyes. Methods First we compared corneal stromal surfaces produced by (1) deep excimer ablation, (2) femtosecond lamellar cuts, and (3) manual dissection, and evaluated the effect of excimer laser smoothing with fluid masking on each surface. Masked observers graded scanning electron microscopy (SEM) images on a 5-point roughness scale. Then we performed a 6-mm diameter excimer laser phototherapeutic keratectomy (PTK) ablation to a residual bed thickness of 200μm, followed by laser smoothing. We used the femtosecond laser to cut donors in a modified top-hat design with a thin tapered brim, which fitted into a manually dissected circumferential pocket at the base of the recipient bed. Fourier-domain optical coherence tomography (OCT) was used to measure corneal pachymetry and evaluate graft fit. Results Deep excimer ablation with smoothing (n=4) produced a significantly (p<0.05) smoother surface (grade=3.5) than deep excimer alone (n=4, grade=3.8) or manual dissection with (n=1, grade=3.8) and without smoothing (n=1, grade=4.8). Deep femtosecond cuts (n=2) produced macroscopic concentric ridges on the stromal surface. Experimental LALAK was performed on 4 recipients prepared by deep excimer ablation and 4 donors cut with the femtosecond laser. After suturing good peripheral graft-host match was observed on FD-OCT imaging. Conclusion These preliminary studies show that the LALAK technique permits improved interface smoothness and graft edge matching. Clinical trials are needed to determine whether these improvements can translate to better vision. PMID:22378114

  14. Composition of the excimer laser-induced plume produced during LASIK refractive surgery

    NASA Astrophysics Data System (ADS)

    Glickman, Randolph D.; Liu, Yun; Mayo, George L.; Baribeau, Alan D.; Starck, Tomy; Bankhead, Tom

    2003-07-01

    Because of concerns about potential hazards to surgical personnel of the plume associated with laser refractive surgery, this study was performed to characterize the composition of such plumes. Filter elements were removed from the smoke evacuator of a VISX S3 excimer laser (filter pore size ~0.3 microns) and from a Mastel Clean Room ( filter pore size ~0.2 microns) used with a LADARVISION excimer laser. The filters from both laser systems captured the laser-induced plumes from multiple, routine, LASIK patient procedures. Some filters were processed for scanning electron microscopy, while others were extracted with methanol and chloroform for biochemical analysis. Both the VISX "Final Air" filter and the Mastel "Clean Room" filter captured material that was not observed in filters that had clean operating room air only passed through them. In the VISX system, air flows through the filter unit parallel to the filter matrix. SEM analysis showed these filters captured discrete particles of 0.3 to 3.0 microns in size. In the Mastel Clean Room unit, air flows orthogonally through the filter, and the filter matrix was heavily layered with captured debris so that individual particles were not readily distinguished. Amino acid analysis and gel electrophoresis of extracted material revealed proteinaceous molecules as large as 5000 molecular weight. Such large molecules in the laser plume are not predicted by the existing theory of photochemical ablation. The presence of relatively large biomolecules may constitute a risk of allergenic reactions in personnel exposed to the plume, and also calls into question the precise mechanism of excimer laser photochemical ablation. Supported by the RMG Research Endowment, and Research to Prevent Blindness

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buck, E.C.; Cunnane, J.C.; Brown, N.R.

    A combination of optical microscopy, scanning electron microscopy with backscattered electron detection (SEM/BSE), and analytical electron microscopy (AEM) is being used to determine the nature of uranium in soils from the Fernald Environmental Management Project. The information gained from these studies is being used to develop and test remediation technologies. Investigations using SEM have shown that uranium is contained within particles that are typically 1 to 100 {mu}m in diameter. Further analysis with AEM has shown that these uranium-rich regions are made up of discrete uranium-bearing phases. The distribution of these uranium phases was found to be inhomogeneous at themore » microscopic level.« less

  16. Helium ion microscopy and energy selective scanning electron microscopy - two advanced microscopy techniques with complementary applications

    NASA Astrophysics Data System (ADS)

    Rodenburg, C.; Jepson, M. A. E.; Boden, Stuart A.; Bagnall, Darren M.

    2014-06-01

    Both scanning electron microscopes (SEM) and helium ion microscopes (HeIM) are based on the same principle of a charged particle beam scanning across the surface and generating secondary electrons (SEs) to form images. However, there is a pronounced difference in the energy spectra of the emitted secondary electrons emitted as result of electron or helium ion impact. We have previously presented evidence that this also translates to differences in the information depth through the analysis of dopant contrast in doped silicon structures in both SEM and HeIM. Here, it is now shown how secondary electron emission spectra (SES) and their relation to depth of origin of SE can be experimentally exploited through the use of energy filtering (EF) in low voltage SEM (LV-SEM) to access bulk information from surfaces covered by damage or contamination layers. From the current understanding of the SES in HeIM it is not expected that EF will be as effective in HeIM but an alternative that can be used for some materials to access bulk information is presented.

  17. Comparison of selective staining of fungi in paraffin sections by light microscopy, SEM and BEI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berman, E.L.; Laudate, A.; Carter, H.W.

    Paraffin-embedded sections from human tissues with fungi or organisms classified with fungi were studied by light microscopy (LM), scanning electron microscopy (SEM), and the backscatter electron imaging (BEI) mode of the SEM. The fungal organisms selected for study were those familiar to the pathologist on the basis of their appearance in paraffin-embedded material stained with the Gomori-Grocott Chromic Acid Methenamine Silver Stain (GMS). The organisms were Actinomyces, Rhizopus, Cryptococcus, Histoplasma capsulatum, and Coccidia imitis. Sections were stained with the GMS Stain and/or the Becker modification of the GMS Stain (BGMS) and examined in the secondary electron imaging mode (SEI) andmore » BEI mode with an annular backscatter electron detector. This silver staining technique accentuated the wall of fungal organisms, in the backscatter mode. Depending on the fungal organism and type of silver stain employed, the GMS seemed the preferable stain. The advantages of SEM over LM were greater depth of focus and potential range of magnifications. BEI may also be used in conjunction with LM stain for microorganisms to establish their presence.« less

  18. Method for observation of deembedded sections of fish gonad by scanning electron microscopy

    NASA Astrophysics Data System (ADS)

    Mao, Lian-Ju

    2000-09-01

    This article reports a method for examining the intracellular structure of fish gonads using a scanning electron microscope(SEM). The specimen preparation procedure is similar to that for transmission electron microscopy wherein samples cut into semi-thin sections are fixed and embedded in plastic. The embedment matrix was removed by solvents. Risen-free specimens could be observed by SEM. The morphology of matured sperms in the gonad was very clear, and the oocyte internal structures appeared in three-dimensional images. Spheroidal nucleoli and yolk vesicles and several bundles of filaments adhered on the nucleoli could be viewed by SEM for the first time.

  19. Loss of structural water and carbonate of Nd:YAG laser-irradiated human enamel.

    PubMed

    Corrêa-Afonso, Alessandra Marques; Bachmann, Luciano; de Almeida, Cíntia Guimarães; Dibb, Regina Guenka Palma; Borsatto, Maria Cristina

    2015-05-01

    The objective of this study was to use Fourier Transform Infrared (FTIR) spectroscopy and Scanning Electron Microscopy (SEM) to assess whether Nd:YAG laser irradiation associated with a dye or not alters the chemical constitution of the enamel. Fourteen enamel sections were randomly divided into two groups: (1) Nd:YAG and (2) dye + Nd:YAG. First, the untreated enamel surfaces were analyzed by FTIR to acquire the control absorption spectrum. Next, Group 2 received a layer of inactivated coal diluted in deionized water before laser treatment. Enamel samples belonging to groups 1 and 2 were then irradiated with a 1,064-nm Nd:YAG laser (80 mJ, 10 Hz) in the contact mode; the carbonate absorption band and the water absorption band were measured in each sample after irradiation. The water band was measured again 24 h, 48 h, and 7 days after irradiation. Group 1 had statistically similar water and carbonate contents before and after irradiation. Group 2 displayed significantly lower (p < 0.05) water content after irradiation, which remained constant along time at 24 and 48 h. After 7 days, the water content increased slightly, being statistically higher than in the other experimental periods, except for the control. The carbonate/phosphate ratio was measured only at the beginning, and after irradiation, it decreased only in Group 2 indicating carbonate loss (p < 0.05). Irradiation with 1,064-nm Nd:YAG laser associated with a dye reduces the carbonate and structural water content in the enamel.

  20. [Evaluation of three methods for forensic diatom test].

    PubMed

    Wang, Yuzhong; Zhao, Jian; Li, Peng; Hu, Sunlin; Wang, Huipin; Wang, Huijun; Liu, Chao

    2015-03-01

    To compare the efficacy of three methods for forensic diatom test, namely strong acid digestion-centrifuge enrichment-light microscopy (SD-CE-LM), microwave digestion-membrane filtration-automated scanning electron microscopy (MD-ME-SEM), and microwave digestion-membrane filtration-light microscopy (MD-MF-LM). Sixty samples were randomly divided into 3 groups for diatom test using three methods, and the sample preparation time, degree of digestion and recovery rate of diatoms were compared. The sample preparation time was the shortest with MD-MF-LM and the longest with SD-CE-LM (P<0.05). MD-ME-SEM and MD-MF-LM allowed more thorough tissue digestion than SD-CE-LM. MD-ME-SEM resulted in the highest total recovery rate of diatom, followed by MD-MF-LM and then by SD-CE-LM (P<0.05); the recover rate of different diatom species was the highest with MD-ME-SEM, followed by MD-MF-LM and SD-CE-LM (P<0.05). SD-CE-LM has a low recovery rate of diatoms especially for those with lengths shorter than 40 µm or densities less than 1/5. With a high recovery rate and accuracy in diatom test, MD-ME-SEM is suitable for diagnosis of suspected drowning cases. MD-MF-LM is highly efficient, sensitive and convenient for forensic diatom test.

  1. Sub-50 nm metrology on extreme ultra violet chemically amplified resist—A systematic assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maas, D. J., E-mail: diederik.maas@tno.nl; Herfst, R.; Veldhoven, E. van

    2015-10-15

    With lithographic patterning dimensions decreasing well below 50 nm, it is of high importance to understand metrology at such small scales. This paper presents results obtained from dense arrays of contact holes (CHs) with various Critical Dimension (CD) between 15 and 50 nm, as patterned in a chemically amplified resist using an ASML EUV scanner and measured at ASML and TNO. To determine the differences between various (local) CD metrology techniques, we conducted an experiment using optical scatterometry, CD-Scanning Electron Microscopy (CD-SEM), Helium ion Microscopy (HIM), and Atomic Force Microscopy (AFM). CD-SEM requires advanced beam scan strategies to mitigate samplemore » charging; the other tools did not need that. We discuss the observed main similarities and differences between the various techniques. To this end, we assessed the spatial frequency content in the raw images for SEM, HIM, and AFM. HIM and AFM resolve the highest spatial frequencies, which are attributed to the more localized probe-sample interaction for these techniques. Furthermore, the SEM, HIM, and AFM waveforms are analyzed in detail. All techniques show good mutual correlation, albeit the reported CD values systematically differ significantly. HIM systematically reports a 25% higher CD uniformity number than CD-SEM for the same arrays of CHs, probably because HIM has a higher resolution than the CD-SEM used in this assessment. A significant speed boost for HIM and AFM is required before these techniques are to serve the demanding industrial metrology applications like optical critical dimension and CD-SEM do nowadays.« less

  2. Sub-50 nm metrology on extreme ultra violet chemically amplified resist—A systematic assessment

    NASA Astrophysics Data System (ADS)

    Maas, D. J.; Fliervoet, T.; Herfst, R.; van Veldhoven, E.; Meessen, J.; Vaenkatesan, V.; Sadeghian, H.

    2015-10-01

    With lithographic patterning dimensions decreasing well below 50 nm, it is of high importance to understand metrology at such small scales. This paper presents results obtained from dense arrays of contact holes (CHs) with various Critical Dimension (CD) between 15 and 50 nm, as patterned in a chemically amplified resist using an ASML EUV scanner and measured at ASML and TNO. To determine the differences between various (local) CD metrology techniques, we conducted an experiment using optical scatterometry, CD-Scanning Electron Microscopy (CD-SEM), Helium ion Microscopy (HIM), and Atomic Force Microscopy (AFM). CD-SEM requires advanced beam scan strategies to mitigate sample charging; the other tools did not need that. We discuss the observed main similarities and differences between the various techniques. To this end, we assessed the spatial frequency content in the raw images for SEM, HIM, and AFM. HIM and AFM resolve the highest spatial frequencies, which are attributed to the more localized probe-sample interaction for these techniques. Furthermore, the SEM, HIM, and AFM waveforms are analyzed in detail. All techniques show good mutual correlation, albeit the reported CD values systematically differ significantly. HIM systematically reports a 25% higher CD uniformity number than CD-SEM for the same arrays of CHs, probably because HIM has a higher resolution than the CD-SEM used in this assessment. A significant speed boost for HIM and AFM is required before these techniques are to serve the demanding industrial metrology applications like optical critical dimension and CD-SEM do nowadays.

  3. Electron Microscopy Localization and Characterization of Functionalized Composite Organic-Inorganic SERS Nanoparticles on Leukemia Cells

    PubMed Central

    Koh, Ai Leen; Shachaf, Catherine M.; Elchuri, Sailaja; Nolan, Garry P.; Sinclair, Robert

    2008-01-01

    We demonstrate the use of electron microscopy as a powerful characterization tool to identify and locate antibody-conjugated composite organic-inorganic (COINs) surface enhanced Raman scattering (SERS) nanoparticles on cells. U937 leukemia cells labeled with antibody CD54-conjugated COINs were characterized in their native, hydrated state using wet Scanning Electron Microscopy (SEM) and in their dehydrated state using high-resolution SEM. In both cases, the backscattered electron detector (BSE) was used to detect and identify the silver constituents in COINs due to its high sensitivity to atomic number variations within a specimen. The imaging and analytical capabilities in the SEM were further complemented by higher resolution Transmission Electron Microscope (TEM) images and Scanning Auger Electron Spectroscopy (AES) data to give reliable and high-resolution information about nanoparticles and their binding to cell surface antigens. PMID:18995965

  4. Mechanical characterization of TiO{sub 2} nanofibers produced by different electrospinning techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vahtrus, Mikk; Šutka, Andris; Institute of Silicate Materials, Riga Technical University, P. Valdena 3/7, Riga LV-1048

    2015-02-15

    In this work TiO{sub 2} nanofibers produced by needle and needleless electrospinning processes from the same precursor were characterized and compared using Raman spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and in situ SEM nanomechanical testing. Phase composition, morphology, Young's modulus and bending strength values were found. Weibull statistics was used to evaluate and compare uniformity of mechanical properties of nanofibers produced by two different methods. It is shown that both methods yield nanofibers with very similar properties. - Graphical abstract: Display Omitted - Highlights: • TiO{sub 2} nanofibers were produced by needle and needleless electrospinning processes. •more » Structure was studied by Raman spectroscopy and electron microscopy methods. • Mechanical properties were measured using advanced in situ SEM cantilevered beam bending technique. • Both methods yield nanofibers with very similar properties.« less

  5. Microstructure-Sensitive Investigation of Fracture Using Acoustic Emission Coupled With Electron Microscopy

    NASA Technical Reports Server (NTRS)

    Wisner, Brian; Cabal, Mike; Vanniamparambiland, Prashanth A.; Leser, William; Hochhalter, Jacob; Kontsos, Antonios

    2015-01-01

    A novel technique using Scanning Electron Microscopy (SEM) in conjunction with Acoustic Emission (AE) monitoring is proposed to investigate microstructure-sensitive fatigue and fracture of metals. The coupling between quasi in situ microscopy with actual in situ nondestructive evaluation falls into the ICME framework and the idea of quantitative data-driven characterization of material behavior. To validate the use of AE monitoring inside the SEM chamber, Aluminum 2024-B sharp notch specimen were tested both inside and outside the microscope using a small scale mechanical testing device. Subsequently, the same type of specimen was tested inside the SEM chamber. Load data were correlated with both AE information and observations of microcracks around grain boundaries as well as secondary cracks, voids, and slip bands. The preliminary results are in excellent agreement with similar findings at the mesoscale. Extensions of the application of this novel technique are discussed.

  6. Thin film contamination effects on laser-induced damage of fused silica surfaces at 355 nm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burnham, A. K.; Cordillot, C.; Fornier, A.

    1998-07-28

    Fused silica windows were artificially contaminated to estimate the resistance of target chamber debris shields against laser damage during NIF operation. Uniform contamination thin films (1 to 5 nm thick) were prepared by sputtering various materials (Au, Al, Cu, and B 4C). The loss of transmission of the samples was first measured. They were then tested at 355 nm in air with an 8-ns Nd:YAG laser. The damage morphologies were characterized by Nomarski optical microscopy and SEM. Both theory and experiments showed that metal contamination for films as thin as 1 nm leads to a substantial loss of transmission. Themore » laser damage resistance dropped very uniformly across the entire surface (e.g. 6 J/cm 2 for 5 nm of Cu). The damage morphology characterization showed that contrary to clean silica, metal coated samples did not produce pits on the surface. B 4C coated silica, on the other hand, led to a higher density of such damage pits. A model for light absorption in the thin film was coupled with a simple heat deposition and diffusion model to perform preliminary theoretical estimates of damage thresholds. The estimates of the loss due to light absorption and reflection pointed out significant .differences between metals (e.g. Al and Au). The damage threshold predictions were in qualitative agreement with experimental measurements.« less

  7. Comparison of Microstructure and Mechanical Properties of Scalmalloy® Produced by Selective Laser Melting and Laser Metal Deposition.

    PubMed

    Awd, Mustafa; Tenkamp, Jochen; Hirtler, Markus; Siddique, Shafaqat; Bambach, Markus; Walther, Frank

    2017-12-23

    The second-generation aluminum-magnesium-scandium (Al-Mg-Sc) alloy, which is often referred to as Scalmalloy ® , has been developed as a high-strength aluminum alloy for selective laser melting (SLM). The high-cooling rates of melt pools during SLM establishes the thermodynamic conditions for a fine-grained crack-free aluminum structure saturated with fine precipitates of the ceramic phase Al₃-Sc. The precipitation allows tensile and fatigue strength of Scalmalloy ® to exceed those of AlSi10Mg by ~70%. Knowledge about properties of other additive manufacturing processes with slower cooling rates is currently not available. In this study, two batches of Scalmalloy ® processed by SLM and laser metal deposition (LMD) are compared regarding microstructure-induced properties. Microstructural strengthening mechanisms behind enhanced strength and ductility are investigated by scanning electron microscopy (SEM). Fatigue damage mechanisms in low-cycle (LCF) to high-cycle fatigue (HCF) are a subject of study in a combined strategy of experimental and statistical modeling for calculation of Woehler curves in the respective regimes. Modeling efforts are supported by non-destructive defect characterization in an X-ray computed tomography (µ-CT) platform. The investigations show that Scalmalloy ® specimens produced by LMD are prone to extensive porosity, contrary to SLM specimens, which is translated to ~30% lower fatigue strength.

  8. Comparison of Microstructure and Mechanical Properties of Scalmalloy® Produced by Selective Laser Melting and Laser Metal Deposition

    PubMed Central

    Awd, Mustafa; Tenkamp, Jochen; Hirtler, Markus; Siddique, Shafaqat; Bambach, Markus; Walther, Frank

    2017-01-01

    The second-generation aluminum-magnesium-scandium (Al-Mg-Sc) alloy, which is often referred to as Scalmalloy®, has been developed as a high-strength aluminum alloy for selective laser melting (SLM). The high-cooling rates of melt pools during SLM establishes the thermodynamic conditions for a fine-grained crack-free aluminum structure saturated with fine precipitates of the ceramic phase Al3-Sc. The precipitation allows tensile and fatigue strength of Scalmalloy® to exceed those of AlSi10Mg by ~70%. Knowledge about properties of other additive manufacturing processes with slower cooling rates is currently not available. In this study, two batches of Scalmalloy® processed by SLM and laser metal deposition (LMD) are compared regarding microstructure-induced properties. Microstructural strengthening mechanisms behind enhanced strength and ductility are investigated by scanning electron microscopy (SEM). Fatigue damage mechanisms in low-cycle (LCF) to high-cycle fatigue (HCF) are a subject of study in a combined strategy of experimental and statistical modeling for calculation of Woehler curves in the respective regimes. Modeling efforts are supported by non-destructive defect characterization in an X-ray computed tomography (µ-CT) platform. The investigations show that Scalmalloy® specimens produced by LMD are prone to extensive porosity, contrary to SLM specimens, which is translated to ~30% lower fatigue strength. PMID:29295528

  9. Utility of fluorescence microscopy in embryonic/fetal topographical analysis.

    PubMed

    Zucker, R M; Elstein, K H; Shuey, D L; Ebron-McCoy, M; Rogers, J M

    1995-06-01

    For topographical analysis of developing embryos, investigators typically rely on scanning electron microscopy (SEM) to provide the surface detail not attainable with light microscopy. SEM is an expensive and time-consuming technique, however, and the preparation procedure may alter morphology and leave the specimen friable. We report that by using a high-resolution compound epifluorescence microscope with inexpensive low-power objectives and the fluorochrome acridine orange, we were able to obtain surface images of fixed or fresh whole rat embryos and fetal palates of considerably greater topographical detail than those obtained using routine light microscopy. Indeed the resulting high-resolution images afford not only superior qualitative documentation of morphological observations, but the capability for detailed morphometry via digitization and computer-assisted image analysis.

  10. The variation in surface morphology and hardness of human deciduous teeth samples after laser irradiation

    NASA Astrophysics Data System (ADS)

    Khalid, Arooj; Bashir, Shazia; Akram, Mahreen; Salman Ahmed, Qazi

    2017-11-01

    The variation in surface morphology and hardness of human deciduous teeth samples has been investigated after laser irradiation at different wavelengths and energies. Nd:YAG was employed as a source of irradiation for IR (1064 nm) and visible (532 nm) radiation, whereas an excimer laser was used as the source of UV (248 nm) radiation. Scanning electron microscope (SEM) analysis was carried out to reveal the surface morphological evolution of teeth samples. Vickers microhardness tester was employed to investigate the modifications in the hardness of the laser-treated samples. It is observed from SEM analysis that IR wavelength is responsible for ablation of collagen matrix and intertubular dentine. For visible radiation, the ablation of collagen along with hydroxypatite is observed. With UV radiation, the ablation of peritubular dentine is dominant and is responsible for the sealing of tubules. The decrease in hardness at lower energy for both wavelengths is due to the evaporation of carbon content. With increasing energy, evaporation of water along with carbon content, and resolidification and re-organization of inorganic content causes the increase in hardness of the treated dentine. SEM as well as microhardness analyses reveal that laser wavelengths and energy of laser radiation significantly influence the surface morphology and hardness of samples.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaka, Fowzia

    This method describes the characterization of HE powders by Scanning Electron Microscopy (SEM). HE particles are dispersed onto an aluminum standard SEM specimen mount. Electron micrographs are collected at various magnifications (150 to 10,000 X) depending on HE particle size.

  12. A history of scanning electron microscopy developments: towards "wet-STEM" imaging.

    PubMed

    Bogner, A; Jouneau, P-H; Thollet, G; Basset, D; Gauthier, C

    2007-01-01

    A recently developed imaging mode called "wet-STEM" and new developments in environmental scanning electron microscopy (ESEM) allows the observation of nano-objects suspended in a liquid phase, with a few manometers resolution and a good signal to noise ratio. The idea behind this technique is simply to perform STEM-in-SEM, that is SEM in transmission mode, in an environmental SEM. The purpose of the present contribution is to highlight the main advances that contributed to development of the wet-STEM technique. Although simple in principle, the wet-STEM imaging mode would have been limited before high brightness electron sources became available, and needed some progresses and improvements in ESEM. This new technique extends the scope of SEM as a high-resolution microscope, relatively cheap and widely available imaging tool, for a wider variety of samples.

  13. Nail Damage (Severe Onychodystrophy) Induced by Acrylate Glue: Scanning Electron Microscopy and Energy Dispersive X-Ray Investigations

    PubMed Central

    Pinteala, Tudor; Chiriac, Anca Eduard; Rosca, Irina; Larese Filon, Francesca; Pinteala, Mariana; Chiriac, Anca; Podoleanu, Cristian; Stolnicu, Simona; Coros, Marius Florin; Coroaba, Adina

    2017-01-01

    Background Scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) techniques have been used in various fields of medical research, including different pathologies of the nails; however, no studies have focused on obtaining high-resolution microscopic images and elemental analysis of disorders caused by synthetic nails and acrylic adhesives. Methods Damaged/injured fingernails caused by the use of acrylate glue and synthetic nails were investigated using SEM and EDX methods. Results SEM and EDX proved that synthetic nails, acrylic glue, and nails damaged by contact with acrylate glue have a different morphology and different composition compared to healthy human nails. Conclusions SEM and EDX analysis can give useful information about the aspects of topography (surface sample), morphology (shape and size), hardness or reflectivity, and the elemental composition of nails. PMID:28232921

  14. Characterization of 17-4PH stainless steel powders produced by supersonic gas atomization

    NASA Astrophysics Data System (ADS)

    Zhao, Xin-Ming; Xu, Jun; Zhu, Xue-Xin; Zhang, Shao-Ming; Zhao, Wen-Dong; Yuan, Guo-Liang

    2012-01-01

    17-4PH stainless steel powders were prepared using a supersonic nozzle in a close-coupled gas atomization system. The characteristics of powder particles were carried out by means of a laser particle size analyzer, scanning electron microscopy (SEM), and the X-ray diffraction (XRD) technique. The results show that the mass median particle diameter is about 19.15 μm. Three main types of surface microstructures are observed in the powders: well-developed dendrite, cellular, and cellular dendrite structure. The XRD measurements show that, as the particle size decreases, the amount of fcc phase gradually decreases and that of bcc phase increases. The cooling rate is inversely related to the particle size, i.e., it decreases with an increase in particle size.

  15. Characterization of Plasma Synthesized Vertical Carbon Nanofibers for Nanoelectronics Applications

    NASA Technical Reports Server (NTRS)

    Lee, Jaesung; Feng, Philip X.-L.; Kaul, Anupama B.

    2013-01-01

    We report on the material characterization of carbon nanofibers (CNFs) which are assembled into a three-dimensional (3D) configuration for making new nanoelectromechanical systems (NEMS). High-resolution scanning electron microscopy (SEM) and x-ray electron dispersive spectroscopy (XEDS) are employed to decipher the morphology and chemical compositions of the CNFs at various locations along individual CNFs grown on silicon (Si) and refractory nitride (NbTiN) substrates, respectively. The measured characteristics suggest interesting properties of the CNF bodies and their capping catalyst nanoparticles, and growth mechanisms on the two substrates. Laser irradiation on the CNFs seems to cause thermal oxidation and melting of catalyst nanoparticles. The structural morphology and chemical compositions of the CNFs revealed in this study should aid in the applications of the CNFs to nanoelectronics and NEMS.

  16. Inhibitory Effect of Sophorolipid on Candida albicans Biofilm Formation and Hyphal Growth

    PubMed Central

    Haque, Farazul; Alfatah, Md.; Ganesan, K.; Bhattacharyya, Mani Shankar

    2016-01-01

    Candida albicans causes superficial and life-threatening systemic infections. These are difficult to treat often due to drug resistance, particularly because C. albicans biofilms are inherently resistant to most antifungals. Sophorolipid (SL), a glycolipid biosurfactant, has been shown to have antimicrobial and anticancer properties. In this study, we investigated the effect of SL on C. albicans biofilm formation and preformed biofilms. SL was found to inhibit C. albicans biofilm formation as well as reduce the viability of preformed biofilms. Moreover, SL, when used along with amphotericin B (AmB) or fluconazole (FLZ), was found to act synergistically against biofilm formation and preformed biofilms. Effect of SL on C. albicans biofilm formation was further visualized by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM), which revealed absence of hyphae, typical biofilm architecture and alteration in the morphology of biofilm cells. We also found that SL downregulates the expression of hypha specific genes HWP1, ALS1, ALS3, ECE1 and SAP4, which possibly explains the inhibitory effect of SL on hyphae and biofilm formation. PMID:27030404

  17. Dissolution of Calcite in the Twilight Zone: Bacterial Control of Dissolution of Sinking Planktonic Carbonates Is Unlikely

    PubMed Central

    Bissett, Andrew; Neu, Thomas R.; de Beer, Dirk

    2011-01-01

    We investigated the ability of bacterial communities to colonize and dissolve two biogenic carbonates (Foraminifera and oyster shells). Bacterial carbonate dissolution in the upper water column is postulated to be driven by metabolic activity of bacteria directly colonising carbonate surfaces and the subsequent development of acidic microenvironments. We employed a combination of microsensor measurements, scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM) and image analysis and molecular documentation of colonising bacteria to monitor microbial processes and document changes in shell surface topography. Bacterial communities rapidly colonised shell surfaces, forming dense biofilms with extracellular polymeric substance (EPS) deposits. Despite this, we found no evidence of bacterially mediated carbonate dissolution. Dissolution was not indicated by Ca2+ microprofiles, nor was changes in shell surface structure related to the presence of colonizing bacteria. Given the short time (days) settling carbonate material is actually in the twilight zone (500–1000 m), it is highly unlikely that microbial metabolic activity on directly colonised shells plays a significant role in dissolving settling carbonates in the shallow ocean. PMID:22102861

  18. Dissolution of calcite in the twilight zone: bacterial control of dissolution of sinking planktonic carbonates is unlikely.

    PubMed

    Bissett, Andrew; Neu, Thomas R; Beer, Dirk de

    2011-01-01

    We investigated the ability of bacterial communities to colonize and dissolve two biogenic carbonates (Foraminifera and oyster shells). Bacterial carbonate dissolution in the upper water column is postulated to be driven by metabolic activity of bacteria directly colonising carbonate surfaces and the subsequent development of acidic microenvironments. We employed a combination of microsensor measurements, scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM) and image analysis and molecular documentation of colonising bacteria to monitor microbial processes and document changes in shell surface topography. Bacterial communities rapidly colonised shell surfaces, forming dense biofilms with extracellular polymeric substance (EPS) deposits. Despite this, we found no evidence of bacterially mediated carbonate dissolution. Dissolution was not indicated by Ca²⁺ microprofiles, nor was changes in shell surface structure related to the presence of colonizing bacteria. Given the short time (days) settling carbonate material is actually in the twilight zone (500-1000 m), it is highly unlikely that microbial metabolic activity on directly colonised shells plays a significant role in dissolving settling carbonates in the shallow ocean.

  19. Cross-linked gelatin/nanoparticles composite coating on micro-arc oxidation film for corrosion and drug release

    NASA Astrophysics Data System (ADS)

    Xu, Xinhua; Lu, Ping; Guo, Meiqing; Fang, Mingzhong

    2010-02-01

    A composite coating which could control drug release and biocorrosion of magnesium alloy stent materials WE42 was prepared. This composite coating was fabricated on the surface of the micro-arc oxidation (MAO) film of the magnesium alloy, WE42, by mixing different degrees of cross-linked gelatin with well-dispersed poly( DL-lactide-co-glycolide) (PLGA) nanoparticles. The PLGA nanoparticles were prepared by emulsion solvent evaporation/extraction technique. Nano ZS laser diffraction particle size analyzer detected that the size of the nanoparticles to be 150-300 nm. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) was used to analyze the morphology of the nanoparticles and the composite coating. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) were used to evaluate the corrosion behavior of the composite coating. Drug release was determined by ultraviolet-visible (UV-vis) spectrophotometer. The corrosion resistance of the composite coating was improved by preventing the corrosive ions from diffusing to the MAO films. The drug release rate of paclitaxel (PTX) exhibited a nearly linear sustained-release profile with no significant burst releases.

  20. Biocompatible cephalosporin-hydroxyapatite-poly(lactic-co-glycolic acid)-coatings fabricated by MAPLE technique for the prevention of bone implant associated infections

    NASA Astrophysics Data System (ADS)

    Rădulescu, Dragoş; Grumezescu, Valentina; Andronescu, Ecaterina; Holban, Alina Maria; Grumezescu, Alexandru Mihai; Socol, Gabriel; Oprea, Alexandra Elena; Rădulescu, Marius; Surdu, Adrian; Trusca, Roxana; Rădulescu, Radu; Chifiriuc, Mariana Carmen; Stan, Miruna S.; Constanda, Sabrina; Dinischiotu, Anca

    2016-06-01

    In this study we aimed to obtain functionalized thin films based on hydroxyapatite/poly(lactic-co-glycolic acid) (HAp/PLGA) containing ceftriaxone/cefuroxime antibiotics (ATBs) deposited by Matrix Assisted Pulsed Laser Evaporation (MAPLE) technique. The prepared thin films were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-Ray diffraction (XRD), selected area electron diffraction (SAED), and infra red (IR) analysis. HAp/PLGA/ATBs thin films sustained the growth of human osteoblasts, proving their good biocompatibility. The microscopic evaluation and the culture-based quantitative assay of the E. coli biofilm development showed that the thin films inhibited the initial step of microbial attachment as well as the subsequent colonization and biofilm development on the respective surfaces. This study demonstrates that MAPLE technique could represent an appealing technique for the fabrication of antibiotics-containing polymeric implant coatings. The bioevaluation results recommend this type of surfaces for the prevention of bone implant microbial contamination and for the enhanced stimulation of the implant osseointegration process.

  1. Removal of Zn(II) from electroplating effluent using yeast biofilm formed on gravels: batch and column studies

    PubMed Central

    2014-01-01

    Background Present study deals with the removal of Zn(II) ions from effluent using yeast biofilm formed on gravels. Methods The biofilm forming ability of Candida rugosa and Cryptococcus laurentii was evaluated using XTT (2,3-bis[2-methoxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide) reduction assay and monitored by scanning electron microscopy (SEM), and Confocal laser scanning microscopy (CLSM). Copious amount of extracellular polymeric substances (EPS) produced by yeast species was quantified and characterized by Fourier transform infrared spectroscopy (FT-IR). Results Yeast biofilm formed on gravels by C. rugosa and C. laurentii showed 88% and 74.2% removal of Zn(II) ions respectively in batch mode. In column mode, removal of Zn(II) ions from real effluent was found to be 95.29% by C. rugosa biofilm formed on gravels. Conclusion The results of the present study showed that there is a scope to develop a cost effective method for the efficient removal of Zn(II) from effluent using gravels coated with yeast biofilm. PMID:24397917

  2. Femtosecond laser subsurface scleral treatment in cadaver human sclera and evaluation using two-photon and confocal microscopy

    NASA Astrophysics Data System (ADS)

    Sun, Hui; Fan, Zhongwei; Yan, Ying; Lian, Fuqiang; Kurtz, Ron; Juhasz, Tibor

    2016-03-01

    Glaucoma is the second-leading cause of blindness worldwide and is often associated with elevated intraocular pressure (IOP). Partial-thickness drainage channels can be created with femtosecond laser in the translucent sclera for the potential treatment of glaucoma. We demonstrate the creation of partial-thickness subsurface drainage channels with the femtosecond laser in the cadaver human eyeballs and describe the application of two-photon microscopy and confocal microscopy for noninvasive imaging of the femtosecond laser created partial-thickness scleral channels in cadaver human eyes. A femtosecond laser operating at a wavelength of 1700 nm was scanned along a rectangular raster pattern to create the partial thickness subsurface drainage channels in the sclera of cadaver human eyes. Analysis of the dimensions and location of these channels is important in understanding their effects. We describe the application of two-photon microscopy and confocal microscopy for noninvasive imaging of the femtosecond laser created partial-thickness scleral channels in cadaver human eyes. High-resolution images, hundreds of microns deep in the sclera, were obtained to allow determination of the shape and dimension of such partial thickness subsurface scleral channels. Our studies suggest that the confocal and two-photon microscopy can be used to investigate femtosecond-laser created partial-thickness drainage channels in the sclera of cadaver human eyes.

  3. Human cardiac telocytes: 3D imaging by FIB-SEM tomography

    PubMed Central

    Cretoiu, D; Hummel, E; Zimmermann, H; Gherghiceanu, M; Popescu, L M

    2014-01-01

    Telocyte (TC) is a newly identified type of cell in the cardiac interstitium (www.telocytes.com). TCs are described by classical transmission electron microscopy as cells with very thin and long telopodes (Tps; cellular prolongations) having podoms (dilations) and podomers (very thin segments). TCs’ three-dimensional (3D) morphology is still unknown. Cardiac TCs seem to be particularly involved in long and short distance intercellular signalling and, therefore, their 3D architecture is important for understanding their spatial connections. Using focused ion beam scanning electron microscopy (FIB-SEM) we show, for the first time, the whole ultrastructural anatomy of cardiac TCs. 3D reconstruction of cardiac TCs by FIB-SEM tomography confirms that they have long, narrow but flattened (ribbon-like) telopodes, with humps generated by the podoms. FIB-SEM tomography also confirms the network made by TCs in the cardiac interstitium through adherens junctions. This study provides the first FIB-SEM tomography of a human cell type. PMID:25327290

  4. Evaluation of bone repair after application of a norbixin membrane scaffold with and without laser photobiomodulation (λ 780 nm).

    PubMed

    Alves, Adrielle Martins Monteiro; de Miranda Fortaleza, Lílian Melo; Filho, Antonio Luiz Martins Maia; Ferreira, Danniel Cabral Leão; da Costa, Charllyton Luis Sena; Viana, Vicente Galber Freitas; Santos, José Zilton Lima Verde; de Oliveira, Rauirys Alencar; de Meira Gusmão, Gustavo Oliveira; Soares, Luís Eduardo Silva

    2018-05-04

    Biocompatible membranes are widely used in medicine to stimulate bone repair. Several studies have demonstrated that laser photobiomodulation (PBM) also stimulates osteoblast proliferation and osteogenesis at the fracture site, leading to a greater deposition of bone mass and accelerating the process of bone consolidation. This work assessed the therapeutic effect of 780-nm laser PBM and a polystyrene membrane coated with norbixin and collagen (PSNC) on bone healing in rats with calvarial bone defect. Histological staining, Raman spectroscopy, and scanning electron microscopy (SEM) were used to evaluate the bone repair process. Four experimental treatment groups were compared: C, control; M, membrane only; L, laser PBM only; and ML, membrane + laser PBM. A bone defect was created in the calvaria of each animal, with each group subdivided into two subgroups that underwent euthanasia after 15 and 30 days treatment. The L and ML groups were irradiated (λ = 780 nm, ED = 6 J/cm 2 , P = 60 mW, t = 4 s) postoperatively on alternate days until they were euthanized. The bone concentration of hydroxyapatite (CHA) showed a clear gradation with increasing phosphate area in the order B (normal cortical bone) > L > M > ML > C for both periods. The PSNC membrane was effective in reducing the inflammatory process and served as a scaffold for bone repair. The laser PBM also showed positive effects on the bone repair process with increased deposition and organization of the newly formed bone. However, laser PBM failed to improve the bioactive properties of the membrane scaffold.

  5. Scanning Tunneling Microscopy, Atomic Force Microscopy, and Related Techniques.

    DTIC Science & Technology

    1992-06-15

    images of the heaoal ekdprotein monolayer pressed powder samples of pismO claim and sea urchin shells found ~ ~ sx inteotrcelwl fDincoccu radioduran...can be in- Semiconductor Substrates. The atomic structure of sem - vastigated using AFM but has not been as extensively re- iconductor-detal interfaces...from SEM mage (D99). Komaica and p-type Si(00) and p-n junctions formed by implantation of ANALYTICAL CHEMISTRY. VOL 84, NO. 12. JILNE 18. 1992 121R

  6. Monolithic Solid Based on Single-Walled Carbon Nanohorns: Preparation, Characterization, and Practical Evaluation as a Sorbent.

    PubMed

    Fresco-Cala, Beatriz; López-Lorente, Ángela I; Cárdenas, Soledad

    2018-05-25

    A monolithic solid based solely on single walled carbon nanohorns (SWNHs) was prepared without the need of radical initiators or gelators. The procedure involves the preparation of a wet jelly-like system of pristine SWNHs followed by slow drying (48 h) at 25 °C. As a result, a robust and stable porous network was formed due to the interaction between SWNHs not only via π-π and van der Waals interactions, but also via the formation of carbon bonds similar to those observed within dahlia aggregates. Pristine SWNHs and the SWNH monolith were characterized by several techniques, including scanning electron microscopy (SEM), transmission electron microscopy (TEM), confocal laser scanning microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and nitrogen intrusion porosimetry. Taking into account the efficiency of carbon nanoparticles in sorption processes, the potential applicability of the SWNH-monolith in this research field was explored using toluene; m-, p-, and o-xylene; ethylbenzene; and styrene, as target analytes. Detection limits were 0.01 µg·L -1 in all cases and the inter-day precision was in the interval 7.4⁻15.7%. The sorbent performance of the nanostructured monolithic solid was evaluated by extracting the selected compounds from different water samples with recovery values between 81.5% and 116.4%.

  7. Three-dimensional imaging of adherent cells using FIB/SEM and STEM.

    PubMed

    Villinger, Clarissa; Schauflinger, Martin; Gregorius, Heiko; Kranz, Christine; Höhn, Katharina; Nafeey, Soufi; Walther, Paul

    2014-01-01

    In this chapter we describe three different approaches for three-dimensional imaging of electron microscopic samples: serial sectioning transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM) tomography, and focused ion beam/scanning electron microscopy (FIB/SEM) tomography. With these methods, relatively large volumes of resin-embedded biological structures can be analyzed at resolutions of a few nm within a reasonable expenditure of time. The traditional method is serial sectioning and imaging the same area in all sections. Another method is TEM tomography that involves tilting a section in the electron beam and then reconstruction of the volume by back projection of the images. When the scanning transmission (STEM) mode is used, thicker sections (up to 1 μm) can be analyzed. The third approach presented here is focused ion beam/scanning electron microscopy (FIB/SEM) tomography, in which a sample is repeatedly milled with a focused ion beam (FIB) and each newly produced block face is imaged with the scanning electron microscope (SEM). This process can be repeated ad libitum in arbitrary small increments allowing 3D analysis of relatively large volumes such as eukaryotic cells. We show that resolution of this approach is considerably improved when the secondary electron signal is used. However, the most important prerequisite for three-dimensional imaging is good specimen preparation. For all three imaging methods, cryo-fixed (high-pressure frozen) and freeze-substituted samples have been used.

  8. TiC Reinforcement Composite Coating Produced Using Graphite of the Cast Iron by Laser Cladding

    PubMed Central

    Liu, Yanhui; Qu, Weicheng; Su, Yu

    2016-01-01

    In this study, a TiC-reinforced composite coating was produced to improve the wear resistance of a pearlite matrix grey iron using a pre-placed Ti powder by laser cladding. Results of scanning electron microscopy (SEM), X-ray diffractometer (XRD), and energy dispersive X-ray spectroscopy (EDS) confirmed that the coating was composed of TiC particles and two kinds of α-Fe phase. The fine TiC particles were only a few microns in size and uniformly distributed on the matrix phase in the composite coating. The microstructure characteristic of the composite coating resulted in the microhardness rising to about 1000 HV0.3 (China GB/T 4342-1991) and the wear resistance significantly increased relative to the substrate. In addition, the fine and homogeneous solidification microstructure without graphite phase in the transition zone led to a good metallurgical bonding and transition between the coating and the substrate. It was of great significance for the cast iron to modify the surface and repair surface defects or surface damage. PMID:28773934

  9. Imaging of Norway spruce early somatic embryos with the ESEM, Cryo-SEM and laser scanning microscope.

    PubMed

    Neděla, Vilém; Hřib, Jiří; Havel, Ladislav; Hudec, Jiří; Runštuk, Jiří

    2016-05-01

    This article describes the surface structure of Norway spruce early somatic embryos (ESEs) as a typical culture with asynchronous development. The microstructure of extracellular matrix covering ESEs were observed using the environmental scanning electron microscope as a primary tool and using the scanning electron microscope with cryo attachment and laser electron microscope as a complementary tool allowing our results to be proven independently. The fresh samples were observed in conditions of the air environment of the environmental scanning electron microscope (ESEM) with the pressure from 550Pa to 690Pa and the low temperature of the sample from -18°C to -22°C. The samples were studied using two different types of detector to allow studying either the thin surface structure or material composition. The scanning electron microscope with cryo attachment was used for imaging frozen extracellular matrix microstructure with higher resolution. The combination of both electron microscopy methods was suitable for observation of "native" plant samples, allowing correct evaluation of our results, free of error and artifacts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. TiC Reinforcement Composite Coating Produced Using Graphite of the Cast Iron by Laser Cladding.

    PubMed

    Liu, Yanhui; Qu, Weicheng; Su, Yu

    2016-09-30

    In this study, a TiC-reinforced composite coating was produced to improve the wear resistance of a pearlite matrix grey iron using a pre-placed Ti powder by laser cladding. Results of scanning electron microscopy (SEM), X-ray diffractometer (XRD), and energy dispersive X-ray spectroscopy (EDS) confirmed that the coating was composed of TiC particles and two kinds of α -Fe phase. The fine TiC particles were only a few microns in size and uniformly distributed on the matrix phase in the composite coating. The microstructure characteristic of the composite coating resulted in the microhardness rising to about 1000 HV0.3 (China GB/T 4342-1991) and the wear resistance significantly increased relative to the substrate. In addition, the fine and homogeneous solidification microstructure without graphite phase in the transition zone led to a good metallurgical bonding and transition between the coating and the substrate. It was of great significance for the cast iron to modify the surface and repair surface defects or surface damage.

  11. Removal Enhancement of Basic Blue 41 BY RGO-TiO2 Nanocomposite Synthesized Using Pulsed Laser

    NASA Astrophysics Data System (ADS)

    Ghasemi, Fatemeh; Kimiagar, Salimeh; Shahbazi, Mozhgan; Vojoudi, Hossein

    Graphene oxide (GO) and GO-TiO2 nanocomposite was produced then reduced under pulse laser irradiation (RGO-TiO2). Basic blue 41 (bb41) dye was removed from aqueous solutions by using RGO-TiO2 nanocomposites. The UV-Vis absorption and FTIR analysis were utilized to confirm the reduction of GO-TiO2 to RGO-TiO2. The results showed complete reduction of GO. X-ray diffraction (XRD), Raman spectra and scanning electron microscopy (SEM) analysis were applied to approve the RGO-TiO2 nanocomposite structure. The effect of pH on the bb41 removal by RGO-TiO2 was studied varying the pH from 1 to 11. The optimum pH and adsorbent dosage were found to be 9 and 0.2g/L with 98% efficiency, respectively. The calculated coefficients demonstrated that the Langmuir model was fixed to the experimental data. The results indicated that RGO-TiO2 could be engaged as an exceptional sorbent to remove bb41 dye which is in aqueous solution.

  12. Scanning electron microscopy fractography analysis of fractured hollow implants.

    PubMed

    Sbordone, Ludovico; Traini, Tonino; Caputi, Sergio; Scarano, Antonio; Bortolaia, Claudia; Piattelli, Adriano

    2010-01-01

    Fracture of the implant is one of the possible complications affecting dental implants; it is a rare event but of great clinical relevance. The aim of the present study was to perform a scanning electron microscopy (SEM) fractography evaluation of 7 International Team for oral Implantology (ITI) hollow implants removed because of fracture. The most common clinical risk factors, such as malocclusion, bruxism, and cantilevers on the prosthesis, were absent. Seven fractured ITI hollow implants were retrieved from 5 patients and were analyzed with the use of SEM. SEM analysis showed typical signs of a cleavage-type fracture. Fractures could be due to an association of multiple factors such as fatigue, inner defects, material electrochemical problems, and tensocorrosion.

  13. New advances in scanning microscopy and its application to study parasitic protozoa.

    PubMed

    de Souza, Wanderley; Attias, Marcia

    2018-07-01

    Scanning electron microscopy has been used to observe and study parasitic protozoa for at least 40 years. However, field emission electron sources, as well as improvements in lenses and detectors, brought the resolution power of scanning electron microscopes (SEM) to a new level. Parallel to the refinement of instruments, protocols for preservation of the ultrastructure, immunolabeling, exposure of cytoskeleton and inner structures of parasites and host cells were developed. This review is focused on protozoan parasites of medical and veterinary relevance, e.g., Toxoplasma gondii, Tritrichomonas foetus, Giardia intestinalis, and Trypanosoma cruzi, compilating the main achievements in describing the fine ultrastructure of their surface, cytoskeleton and interaction with host cells. Two new resources, namely, Helium Ion Microscopy (HIM) and Slice and View, using either Focused Ion Beam (FIB) abrasion or Microtome Serial Sectioning (MSS) within the microscope chamber, combined to backscattered electron imaging of fixed (chemically or by quick freezing followed by freeze substitution and resin embedded samples is bringing an exponential amount of valuable information. In HIM there is no need of conductive coating and the depth of field is much higher than in any field emission SEM. As for FIB- and MSS-SEM, high resolution 3-D models of areas and volumes larger than any other technique allows can be obtained. The main results achieved with all these technological tools and some protocols for sample preparation are included in this review. In addition, we included some results obtained with environmental/low vacuum scanning microscopy and cryo-scanning electron microscopy, both promising, but not yet largely employed SEM modalities. Copyright © 2018. Published by Elsevier Inc.

  14. Fatigue Behavior of Porous Ti-6Al-4V Made by Laser-Engineered Net Shaping

    PubMed Central

    Bordonaro, Giancarlo G.; Berto, Filippo

    2018-01-01

    The fatigue behavior and fracture mechanisms of additively manufactured Ti-6Al-4V specimens are investigated in this study. Three sets of testing samples were fabricated for the assessment of fatigue life. The first batch of samples was built by using Laser-Engineered Net Shaping (LENS) technology, a Direct Energy Deposition (DED) method. Internal voids and defects were induced in a second batch of samples by changing LENS machine processing parameters. Fatigue performance of these samples is compared to the wrought Ti-6Al-4V samples. The effects of machine-induced porosity are assessed on mechanical properties and results are presented in the form of SN curves for the three sets of samples. Fracture mechanisms are examined by using Scanning Electron Microscopy (SEM) to characterize the morphological characteristics of the failure surface. Different fracture surface morphologies are observed for porous and non-porous specimens due to the combination of head write speed and laser power. Formation of defects such as pores, unmelted regions, and gas entrapments affect the failure mechanisms in porous specimens. Non-porous specimens exhibit fatigue properties comparable with that of the wrought specimens, but porous specimens are found to show a tremendous reduced fatigue strength. PMID:29439510

  15. Sensitive, selective, disposable electrochemical dopamine sensor based on PEDOT-modified laser scribed graphene.

    PubMed

    Xu, Guangyuan; Jarjes, Zahraa A; Desprez, Valentin; Kilmartin, Paul A; Travas-Sejdic, Jadranka

    2018-06-01

    The fabrication of a novel, and highly selective electrochemical sensor based on a poly(3,4-ethylenedioxythiophene) (PEDOT) modified laser scribed graphene (LSG), and detection of dopamine (DA) in the presence of ascorbic acid (AA) and uric acid (UA) is described. LSG electrodes were produced with a 3-dimensional macro-porous network and large electrochemically-active surface area via direct laser writing on polyimide sheets. PEDOT was electrodeposited on the LSG electrode, and the physical properties of the obtained films were characterized by scanning electron microscopy (SEM) and energy dispersive X-ray diffraction microanalysis (EDAX). The modified electrodes were applied for the determination of DA in the presence of AA and UA using cyclic voltammetry (CV), and differential pulse voltammetry (DPV) techniques. The linear range for dopamine detection was found to be 1-150 µM with a sensitivity of 0.220 ± 0.011 µA μM -1 and a detection limit of 0.33 µM; superior values to those obtained without PEDOT. For the first time, PEDOT-modified LSG have been fabricated and assessed for high-performance dopamine sensing using cost-effective, disposable electrodes, with potential for development in further sensing applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Nd: YAG laser irradiation effects on structural and magnetic properties of Ni1+xZrxFe2-2xO4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Saraf, Tukaram S.; Kounsalye, Jitendra S.; Birajdar, Shankar D.; Shamkuwar, N. R.

    2018-05-01

    The effect of 112 mJ Nd: YAG laser irradiation on structural, morphological, infrared and magnetic properties of Ni1+xZrxFe2-2xO4 spinel ferrite nanoparticles has been systematically investigated in the present work. The sol-gel auto combustion synthesis method was successfully executed for the synthesis of the present system. All the samples were characterized by X-ray diffraction technique (XRD), scanning electron microscopy (SEM) and infrared spectroscopy (IR) technique. The magnetic properties of the present samples were measured by pulse field hysteresis loop technique. All the properties were measured for laser irradiated samples as well, to understand the effect of irradiation on the properties. The single-phase cubic spinel structure was confirmed by X-ray diffraction patterns of all samples and the disordered structure was observed for irradiated samples. The two principle absorption bands in IR spectra also confirm the formation of the spinel structure. Spherical and agglomerated morphology was observed for Zr4+ substituted nickel ferrite, whereas scratched morphology was observed for the irradiated samples. The grain size confirms the nanocrystalline nature, the crystallite size also evident the same. The magnetic parameters decreased after Zr4+ ion doping and strongly influenced by the irradiation.

  17. A smart membrane based on an antigen-responsive hydrogel.

    PubMed

    Zhang, Rongsheng; Bowyer, Adrian; Eisenthal, Robert; Hubble, John

    2007-07-01

    Hydrogel membranes have been fabricated that incorporate antibody/antigen moieties. The permeability of large solutes through these membranes is dependent on the presence of soluble antigen that can compete with the internal interactions between antibody and antigen leading to an increase in gel mesh size. Specifically, the membrane's structure is based on a dextran backbone grafted with a fluorescein isothiocyanate (FITC) antigen and a sheep anti-FITC IgG antibody. The backbone is covalently cross-linked by conjugated divinyl sulfone (DVS) groups. The gel structure is additionally stabilized by affinity crosslinks formed by biospecific interactions between the bound IgG and FITC. FTIR spectra of the gel are consistent with formation of covalent bonds between cysteine groups in the IgG and DVS groups in the dextran. Results obtained using isothermal titration calorimetry (ITC) confirmed the competitive interaction binding between IgG-FITC-dextran and free sodium fluorescein at pH 5.0. Scanning electron microscopy (SEM) of samples prepared using cryofixation and cryofracturing techniques showed that observed changes in permeability correlate with free fluorescein-dependent structural changes in the gel. Three-dimensional images obtained from confocal laser scanning microscopy show that these changes occur throughout the gel and indicate that SEM results are not artifacts of sample preparation. The permeability of these gels, as shown by blue-dextran (12 kDa) diffusion, increases in response to the presence of free fluorescein of the external medium, which causes competitive displacement of the affinity cross-links. Sequential addition and removal of sodium fluorescein showed that these permeability changes are reversible. (c) 2006 Wiley Periodicals, Inc.

  18. Forsythiaside inhibits bacterial adhesion on titanium alloy and attenuates Ti-induced activation of nuclear factor-κB signaling-mediated macrophage inflammation.

    PubMed

    Li, Haifeng; Tang, Dongmei; Qi, Chao; Zhao, Xia; Wang, Guangchao; Zhang, Yi; Yu, Tengbo

    2018-06-05

    Inflammation and biofilm formation by Staphylococcus aureus (S. aureus) are common causes of periprosthetic infection and loosening. Recently, we identified that forsythiaside is bacteriostatic for S. aureus and methicillin-resistant S. aureus (MRSA). The purpose of the present study was to examine the effect of forsythiaside on S. aureus and MRSA adhesion and biofilm formation on the surface of titanium alloy, which is a popular material for orthopedic joint prostheses. Two strains of S. aureus and MRSA were used for in vitro experiments. The spread plate method, confocal laser scanning microscopy (CLSM), and scanning electron microscopy (SEM) were used to characterize antimicrobial activity of forsythiaside. Real-time polymerase chain reaction (RT-PCR) and western blotting were used to investigate the inhibitory level of forsythiaside required for titanium-associated inflammation. Direct colony counting showed that 16 μg/mL forsythiaside significantly inhibited S. aureus and MRSA adhesion on titanium alloy discs in 2 h. CLSM and SEM showed that higher concentrations (> 30 mg/mL) of forsythiaside effectively inhibited the adhesion of S. aureus and MRSA on the surface of the titanium disc in 24 h. Forsythiaside was capable of attenuating Ti-induced activation of nuclear factor-κB signaling, targeting IκB kinase-α (IKKα) kinases of macrophages, and influencing the expression of NF-κB downstream cytokines. These observations suggest that forsythiaside is a potential agent for the treatment of Ti implant-associated infection and inflammation.

  19. Correlating microscopy techniques and ToF-SIMS analysis of fully grown mammalian oocytes.

    PubMed

    Gulin, Alexander; Nadtochenko, Victor; Astafiev, Artyom; Pogorelova, Valentina; Rtimi, Sami; Pogorelov, Alexander

    2016-06-20

    The 2D-molecular thin film analysis protocol for fully grown mice oocytes is described using an innovative approach. Time-of-flight secondary ion mass spectrometry (ToF-SIMS), scanning electron microscopy (SEM), atomic force microscopy (AFM) and optical microscopy imaging were applied to the same mice oocyte section on the same sample holder. A freeze-dried mice oocyte was infiltrated into embedding media, e.g. Epon, and then was cut with a microtome and 2 μm thick sections were transferred onto an ITO coated conductive glass. Mammalian oocytes can contain "nucleolus-like body" (NLB) units and ToF-SIMS analysis was used to investigate the NLB composition. The ion-spatial distribution in the cell components was identified and compared with the images acquired by SEM, AFM and optical microscopy. This study presents a significant advancement in cell embryology, cell physiology and cancer-cell biochemistry.

  20. Advantages of indium-tin oxide-coated glass slides in correlative scanning electron microscopy applications of uncoated cultured cells.

    PubMed

    Pluk, H; Stokes, D J; Lich, B; Wieringa, B; Fransen, J

    2009-03-01

    A method of direct visualization by correlative scanning electron microscopy (SEM) and fluorescence light microscopy of cell structures of tissue cultured cells grown on conductive glass slides is described. We show that by growing cells on indium-tin oxide (ITO)-coated glass slides, secondary electron (SE) and backscatter electron (BSE) images of uncoated cells can be obtained in high-vacuum SEM without charging artefacts. Interestingly, we observed that BSE imaging is influenced by both accelerating voltage and ITO coating thickness. By combining SE and BSE imaging with fluorescence light microscopy imaging, we were able to reveal detailed features of actin cytoskeletal and mitochondrial structures in mouse embryonic fibroblasts. We propose that the application of ITO glass as a substrate for cell culture can easily be extended and offers new opportunities for correlative light and electron microscopy studies of adherently growing cells.

  1. Effects of laser-aided circumferential supracrestal fiberotomy on root surfaces.

    PubMed

    Lee, Ji-Won; Park, Ki-Ho; Chung, Jong-Hyuk; Kim, Su-Jung

    2011-11-01

    To evaluate and compare the effects of circumferential supracrestal fiberotomy in vivo (using diode, CO(2), and Er∶YAG lasers) on the morphology and chemical composition of the root surface. Forty healthy premolar teeth, intended for extraction for orthodontic reasons, were used in this study. Root surfaces were treated using different laser methods, as follows: (1) control; (2) Er∶YAG laser (2.94 µm, 100 mJ, 10 Hz); (3) diode laser (808 nm, 1.2 W, continuous wave); and (4) CO(2) laser (10.6 µm, 3 W, continuous wave). Subsequently, the teeth were removed and subjected to scanning electron microscopic (SEM) examination and energy dispersive x-ray (EDX) spectrometric analysis. SEM analysis indicated that no thermal changes, including melting or carbonization, were observed following the lasing procedures. EDX analysis showed that the laser procedures resulted in similar mineral contents (weight % of calcium and phosphate) as compared to those in the control group. Based on these findings, we concluded that laser-aided procedures, when used at appropriate laser settings, preserve the original morphology and chemical composition of cementum.

  2. Use of fluorescence and scanning electron microscopy as tools in teaching biology

    NASA Astrophysics Data System (ADS)

    Ghosh, Nabarun; Silva, Jessica; Vazquez, Aracely; Das, A. B.; Smith, Don W.

    2011-06-01

    Recent nationwide surveys reveal significant decline in students' interest in Math and Sciences. The objective of this project was to inspire young minds in using various techniques involved in Sciences including Scanning Electron Microscopy. We used Scanning Electron Microscope in demonstrating various types of Biological samples. An SEM Tabletop model in the past decade has revolutionized the use of Scanning Electron Microscopes. Using SEM Tabletop model TM 1000 we studied biological specimens of fungal spores, pollen grains, diatoms, plant fibers, dust mites, insect parts and leaf surfaces. We also used fluorescence microscopy to view, to record and analyze various specimens with an Olympus BX40 microscope equipped with FITC and TRITC fluorescent filters, a mercury lamp source, DP-70 digital camera with Image Pro 6.0 software. Micrographs were captured using bright field microscopy, the fluoresceinisothiocyanate (FITC) filter, and the tetramethylrhodamine (TRITC) filter settings at 40X. A high pressure mercury lamp or UV source was used to excite the storage molecules or proteins which exhibited autofluorescence. We used fluorescent microscopy to confirm the localization of sugar beet viruses in plant organs by viewing the vascular bundles in the thin sections of the leaves and other tissues. We worked with the REU summer students on sample preparation and observation on various samples utilizing the SEM. Critical Point Drying (CPD) and metal coating with the sputter coater was followed before observing some cultured specimen and the samples that were soft in textures with high water content. SEM Top allowed investigating the detailed morphological features that can be used for classroom teaching. Undergraduate and graduate researchers studied biological samples of Arthropods, pollen grains and teeth collected from four species of snakes using SEM. This project inspired the research students to pursue their career in higher studies in science and 45% of the undergraduates participated in this project entered Graduate school.

  3. Quantitative light and scanning electron microscopy of ferret sperm.

    PubMed

    Van der Horst, G; Curry, P T; Kitchin, R M; Burgess, W; Thorne, E T; Kwiatkowski, D; Parker, M; Atherton, R W

    1991-11-01

    Sperm were obtained via electroejaculation from Domestic ferret, (Mustela putorius furo), Siberian ferret (M. eversmanni), Black-footed ferret (M. nigripes), and a hybrid between Siberian and Domestic, called the Fitch ferret (M. sp.). Comparisons of sperm were made by four different microscopy techniques to determine whether differences exist among species. First, Nomarski differential interference microscopy could be used to distinguish domestic ferret sperm from the others on the basis of the structure of the posterior part of the acrosome. Second, both silver staining, which demonstrates argentophilic protein distribution, and scanning electron microscopy (SEM), revealed differences among the morphology of sperm for each species; variation in the unique appearance of the acrosome in ferret sperm was detected especially well by SEM. To quantify differences in morphology, five sperm head parameters were measured using image analysis; light microscopy produced significantly larger values than did SEM (all parameters and all species but Fitch), and there were significant differences owing to species for all parameters but one. Generally, our data demonstrate the value of complementary techniques to distinguish among sperm of closely related species and more specifically may help establish evolutionary relationships among the ferret species studied. In addition, they provide baseline data important for the captive breeding of the endangered Black-footed ferret.

  4. Probing of Metabolites in Finely Powdered Plant Material by Direct Laser Desorption Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Musharraf, Syed Ghulam; Ali, Arslan; Choudhary, M. Iqbal; Atta-ur-Rahman

    2014-04-01

    Natural products continue to serve as an important source of novel drugs since the beginning of human history. High-throughput techniques, such as MALDI-MS, can be techniques of choice for the rapid screening of natural products in plant materials. We present here a fast and reproducible matrix-free approach for the direct detection of UV active metabolites in plant materials without any prior sample preparation. The plant material is mechanically ground to a fine powder and then sieved through different mesh sizes. The collected plant material is dispersed using 1 μL solvent on a target plate is directly exposed to Nd:YAG 335 nm laser. The strategy was optimized for the analysis of plant metabolites after study of the different factors affecting the reproducibility and effectiveness of the analysis, including particle sizes effects, types of solvents used to disperse the sample, and the part of the plant analyzed. Moreover, several plant species, known for different classes of metabolites, were screened to establish the generality of the approach. The developed approach was validated by the characterization of withaferin A and nicotine in the leaves of Withania somnifera and Nicotiana tabacum, respectively, through comparison of its MS/MS data with the standard compound. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques were used for the tissue imaging purposes. This approach can be used to directly probe small molecules in plant materials as well as in herbal and pharmaceutical formulations for fingerprinting development.

  5. Flame retardancy and thermal behavior of intumescent flame-retardant EVA composites with an efficient triazine-based charring agent

    NASA Astrophysics Data System (ADS)

    Xu, Bo; Ma, Wen; Wu, Xiao; Qian, Lijun; Jiang, Shan

    2018-04-01

    Intumescent flame retardant (IFR) EVA composites were prepared based on a hyperbranched triazine charring-foaming agent (HTCFA) and ammonium polyphosphate (APP). The synergistic effect of HTCFA and APP on the flame retardancy and thermal behavior of the composites were investigated through flammability tests, cone calorimeter measurements, thermogravimetric analysis (TGA) including evolved gas analysis (TG-IR) and residue analysis (Fourier transform infrared (FTIR), laser Raman spectroscopy (LRS), x-ray Photoelectron Spectroscopy (XPS) and scanning electron microscopy (SEM)). The flammability test results showed HTCFA/APP (1/3) system presented the best synergistic effect in flame-retardant EVA composites with the highest LOI value and UL-94 V-0 rating. As for cone calorimeter results, IFR changed the combustion behavior of EVA and resulted in remarkable decrease of flammability and smoke product. TGA results showed the synergistic effect between APP and HTCFA could strengthen the char-forming ability of composites. TG-IR results indicated the melt viscosities and gas release with increasing temperature were well-correlated for EVA/IFR composite. The residue analysis results from SEM, LRS, FT-IR and XPS revealed IFR promoted forming more compact graphitic char layer, connected by rich P–O–C and P–N structures.

  6. Co-milled API-lactose systems for inhalation therapy: impact of magnesium stearate on physico-chemical stability and aerosolization performance.

    PubMed

    Lau, Michael; Young, Paul M; Traini, Daniela

    2017-06-01

    Particle micronization for inhalation can impart surface disorder (amorphism) of crystalline structures. This can lead to stability issues upon storage at elevated humidity from recrystallization of the amorphous state, which can subsequently affect the aerosol performance of the dry powder formulation. The aim of this study was to investigate the impact of an additive, magnesium stearate (MGST), on the stability and aerosol performance of co-milled active pharmaceutical ingredient (API) with lactose. Blends of API-lactose with/without MGST were prepared and co-milled by the jet-mill apparatus. Samples were stored at 50% relative humidity (RH) and 75% RH for 1, 5, and 15 d. Analysis of changes in particle size, agglomerate structure/strength, moisture sorption, and aerosol performance were analyzed by laser diffraction, scanning electron microscopy (SEM), dynamic vapor sorption (DVS), and in-vitro aerodynamic size assessment by impaction. Co-milled formulation with MGST (5% w/w) led to a reduction in agglomerate size and strength after storage at elevated humidity compared with co-milled formulation without MGST, as observed from SEM and laser diffraction. Hysteresis in the sorption/desorption isotherm was observed in the co-milled sample without MGST, which was likely due to the recrystallization of the amorphous regions of micronized lactose. Deterioration in aerosol performance after storage at elevated humidity was greater for the co-milled samples without MGST, compared with co-milled with MGST. MGST has been shown to have a significant impact on co-milled dry powder stability after storage at elevated humidity in terms of physico-chemical properties and aerosol performance.

  7. Imaging of surface spin textures on bulk crystals by scanning electron microscopy

    NASA Astrophysics Data System (ADS)

    Akamine, Hiroshi; Okumura, So; Farjami, Sahar; Murakami, Yasukazu; Nishida, Minoru

    2016-11-01

    Direct observation of magnetic microstructures is vital for advancing spintronics and other technologies. Here we report a method for imaging surface domain structures on bulk samples by scanning electron microscopy (SEM). Complex magnetic domains, referred to as the maze state in CoPt/FePt alloys, were observed at a spatial resolution of less than 100 nm by using an in-lens annular detector. The method allows for imaging almost all the domain walls in the mazy structure, whereas the visualisation of the domain walls with the classical SEM method was limited. Our method provides a simple way to analyse surface domain structures in the bulk state that can be used in combination with SEM functions such as orientation or composition analysis. Thus, the method extends applications of SEM-based magnetic imaging, and is promising for resolving various problems at the forefront of fields including physics, magnetics, materials science, engineering, and chemistry.

  8. Correlative scanning-transmission electron microscopy reveals that a chimeric flavivirus is released as individual particles in secretory vesicles.

    PubMed

    Burlaud-Gaillard, Julien; Sellin, Caroline; Georgeault, Sonia; Uzbekov, Rustem; Lebos, Claude; Guillaume, Jean-Marc; Roingeard, Philippe

    2014-01-01

    The intracellular morphogenesis of flaviviruses has been well described, but flavivirus release from the host cell remains poorly documented. We took advantage of the optimized production of an attenuated chimeric yellow fever/dengue virus for vaccine purposes to study this phenomenon by microscopic approaches. Scanning electron microscopy (SEM) showed the release of numerous viral particles at the cell surface through a short-lived process. For transmission electron microscopy (TEM) studies of the intracellular ultrastructure of the small number of cells releasing viral particles at a given time, we developed a new correlative microscopy method: CSEMTEM (for correlative scanning electron microscopy - transmission electron microscopy). CSEMTEM analysis suggested that chimeric flavivirus particles were released as individual particles, in small exocytosis vesicles, via a regulated secretory pathway. Our morphological findings provide new insight into interactions between flaviviruses and cells and demonstrate that CSEMTEM is a useful new method, complementary to SEM observations of biological events by intracellular TEM investigations.

  9. Correlative Scanning-Transmission Electron Microscopy Reveals that a Chimeric Flavivirus Is Released as Individual Particles in Secretory Vesicles

    PubMed Central

    Burlaud-Gaillard, Julien; Sellin, Caroline; Georgeault, Sonia; Uzbekov, Rustem; Lebos, Claude; Guillaume, Jean-Marc; Roingeard, Philippe

    2014-01-01

    The intracellular morphogenesis of flaviviruses has been well described, but flavivirus release from the host cell remains poorly documented. We took advantage of the optimized production of an attenuated chimeric yellow fever/dengue virus for vaccine purposes to study this phenomenon by microscopic approaches. Scanning electron microscopy (SEM) showed the release of numerous viral particles at the cell surface through a short-lived process. For transmission electron microscopy (TEM) studies of the intracellular ultrastructure of the small number of cells releasing viral particles at a given time, we developed a new correlative microscopy method: CSEMTEM (for correlative scanning electron microscopy - transmission electron microscopy). CSEMTEM analysis suggested that chimeric flavivirus particles were released as individual particles, in small exocytosis vesicles, via a regulated secretory pathway. Our morphological findings provide new insight into interactions between flaviviruses and cells and demonstrate that CSEMTEM is a useful new method, complementary to SEM observations of biological events by intracellular TEM investigations. PMID:24681578

  10. Characterization of konjac glucomannan-ethyl cellulose film formation via microscopy.

    PubMed

    Xiao, Man; Wan, Li; Corke, Harold; Yan, Wenli; Ni, Xuewen; Fang, Yapeng; Jiang, Fatang

    2016-04-01

    Konjac glucomannan-ethyl cellulose (KGM-EC, 7:3, w/w) blended film shows good mechanical and moisture resistance properties. To better understand the basis for the KGM-EC film formation, optical microscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM) were used to observe the formation of the film from emulsion. Optical microscopy images showed that EC oil droplets were homogeneously dispersed in KGM water phase without obviously coalescence throughout the entire drying process. SEM images showed the surface and cross-sectional structures of samples maintained continuous and homogeneous appearance from the emulsion to dried film. AFM images indicated that KGM molecules entangled EC molecules in the emulsion. Interactions between KGM and EC improved the stability of KGM-EC emulsion, and contributed to uniformed structures of film formation. Based on these output information, a schematic model was built to elucidate KGM-EC film-forming process. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Multi-scale cell/surface interaction on modified titanium aluminum vanadium surfaces

    NASA Astrophysics Data System (ADS)

    Chen, Jianbo

    This dissertation presents a series of experimental studies of the effects of multi-scale cell/surface interactions on modified Ti-6Al-4V surfaces. These include laser-grooved surfaces; porous structures and RGD-coated laser-grooved surfaces. A nano-second DPSS UV lasers with a Gaussian pulse energy profile was used to introduce the desired micro-groove geometries onto Ti-6Al-4V surfaces. This was done without inducing micro-cracks or significant changes in surface chemistry within the heat affected zones. The desired 8-12 mum groove depths and widths were achieved by the control of pulse frequency, scan speed, and the lens focal length that controls spot size. The interactions between human osteosarcoma (HOS) cells and laser-grooved Ti-6Al-4V surfaces were investigated after 48 hours of cell culture. The cell behavior, including cell spreading, alignment and adhesion, was elucidated using scanning electronic microscopy (SEM), immuno-fluorescence staining and enzymatic detachment. Contact guidance was shown to increase as grooved spacing decreased. For the range of micro-groove geometries studied, micro-grooves with groove spacings of 20 mum provided the best combination of cell orientation and adhesion. Short-term adhesion experiments (15 mins to 1 day) also revealed that there is a positive correlation between cell orientation and cell adhesion. Contact guidance on the micro-grooved surfaces is shown to be enhanced by nano- and micro-scale asperities that provide sites for the attachment of lamellopodia during cell locomotion and spreading. Contact guidance is also promoted by the geometrical confinement provided by laser grooves. An experimental study of initial cell spreading and ingrowth into Ti-6Al-4V porous structures was also carried out on porous structures with different pore sizes and geometries. A combination of SEM, the tetrazolium salt (MTT) colorimetric assay and enzymatic detachment were used to study cell spreading and adhesion. The extent of cell ingrowth, pore coverage, cell adhesion and proliferation was observed to increase with decreasing pore size. It was found that fiber geometries provided guidance for cell spreading along the fiber directions. However, the larger gaps in fiber geometries made pore bridging difficult. Finally, this dissertation presents an in vivo study of the combined effects of laser microgrooving and RGD-coating on the osseointegration of implanted Ti-6Al-4V pins. Both histological and biomechanical results show that the combination of laser microgrooving and RGD-coating results in improved osseointegration over the control surfaces. All the above findings have important implications for future orthopedic and dental implant design.

  12. Effect of Er,Cr:YSGG Laser at Different Output Powers on the Micromorphology and the Bond Property of Non-Carious Sclerotic Dentin to Resin Composites.

    PubMed

    Sun, Xiang; Ban, Jinghao; Sha, Xinjia; Wang, Weiguo; Jiao, Yang; Wang, Wanshan; Yang, Yanwei; Wei, Jingjing; Shen, Lijuan; Chen, Jihua

    2015-01-01

    The objective of this study was to investigate the influence of Er,Cr:YSGG laser irradiated at different powers on the micromorphology and the bonding property of non-carious sclerotic dentin to resin composites. Two hundred bovine incisors characterized by non-carious sclerotic dentin were selected, and the seventy-two teeth of which for surface morphological analysis were divided into nine groups according to various treatments (A: the control group, B: only treated with the adhesive Adper Easy One, C: diamond bur polishing followed by Adper Easy One, D-I: Er,Cr:YSGG laser irradiating at 1W, 2W, 3W, 4W, 5W, 6W output power, respectively, followed by Adper Easy One). The surface roughness values were measured by the non-contact three-dimensional morphology scanner, then the surface micromorphologies of surfaces in all groups were assessed by scanning electron microscopy (SEM); meanwhile, Image Pro-Plus 6.0 software was used to measure the relative percentage of open tubules on SEM images. The rest, one hundred twenty-eight teeth for bond strength test, were divided into eight groups according to the different treatments (A: only treated with the adhesive Adper Easy One, B: diamond bur polishing followed by the above adhesive, C-H: Er,Cr:YSGG laser irradiating at 1 W, 2 W, 3 W, 4 W, 5 W, 6 W output power, respectively, followed by the above adhesive), and each group was subsequently divided into two subgroups according to whether aging is performed (immediately tested and after thermocycling). Micro-shear bond strength test was used to evaluate the bond strength. The 4W laser group showed the highest roughness value (30.84±1.93μm), which was statistically higher than the control group and the diamond bur groups (p<0.05). The mean percentages ((27.8±1.8)%, (28.0±2.2)%, (30.0±1.9)%) of open tubules area in the 4W, 5W, 6W group were higher than other groups (p<0.05). The 4W laser group showed the highest micro-shear bond strength not only in immediately tested (17.60±2.55 PMa) but after thermocycling (14.35±2.08MPa). The Er,Cr:YSGG laser at 4W power can effectively improve the bonding property between non-carious sclerotic dentin and resin composites by increasing the roughness and mean percentage area of open tubules.

  13. Effect of Er,Cr:YSGG Laser at Different Output Powers on the Micromorphology and the Bond Property of Non-Carious Sclerotic Dentin to Resin Composites

    PubMed Central

    Wang, Weiguo; Jiao, Yang; Wang, Wanshan; Yang, Yanwei; Wei, Jingjing; Shen, Lijuan; Chen, Jihua

    2015-01-01

    Background The objective of this study was to investigate the influence of Er,Cr:YSGG laser irradiated at different powers on the micromorphology and the bonding property of non-carious sclerotic dentin to resin composites. Methods Two hundred bovine incisors characterized by non-carious sclerotic dentin were selected, and the seventy-two teeth of which for surface morphological analysis were divided into nine groups according to various treatments (A: the control group, B: only treated with the adhesive Adper Easy One, C: diamond bur polishing followed by Adper Easy One, D-I: Er,Cr:YSGG laser irradiating at 1W, 2W, 3W, 4W, 5W, 6W output power, respectively, followed by Adper Easy One). The surface roughness values were measured by the non-contact three-dimensional morphology scanner, then the surface micromorphologies of surfaces in all groups were assessed by scanning electron microscopy (SEM); meanwhile, Image Pro-Plus 6.0 software was used to measure the relative percentage of open tubules on SEM images. The rest, one hundred twenty-eight teeth for bond strength test, were divided into eight groups according to the different treatments (A: only treated with the adhesive Adper Easy One, B: diamond bur polishing followed by the above adhesive, C-H: Er,Cr:YSGG laser irradiating at 1 W, 2 W, 3 W, 4 W, 5 W, 6 W output power, respectively, followed by the above adhesive), and each group was subsequently divided into two subgroups according to whether aging is performed (immediately tested and after thermocycling). Micro-shear bond strength test was used to evaluate the bond strength. Results The 4W laser group showed the highest roughness value (30.84±1.93μm), which was statistically higher than the control group and the diamond bur groups (p<0.05). The mean percentages ((27.8±1.8)%, (28.0±2.2)%, (30.0±1.9)%) of open tubules area in the 4W, 5W, 6W group were higher than other groups (p<0.05). The 4W laser group showed the highest micro-shear bond strength not only in immediately tested (17.60±2.55 PMa) but after thermocycling (14.35±2.08MPa). Conclusion The Er,Cr:YSGG laser at 4W power can effectively improve the bonding property between non-carious sclerotic dentin and resin composites by increasing the roughness and mean percentage area of open tubules. PMID:26544034

  14. Novel Electrochemical Process for Treatment of Perchlorate in Waste Water

    DTIC Science & Technology

    2011-03-06

    Prepared in Different Processes: (b) in 0.1 M Pyrrole Solution with 0.1 M NaCl at 0.8 V for 20 min; (c) at 0.5 V for 400 s in 0.1 M ClO4- Solution and...polypyrrole Py pyrrole SEM scanning electron microscopy SON statement of need XPS X-ray photoelectron spectroscopy v Acknowledgments This work is...shows the scanning electron microscopy (SEM) images of carbon fiber paper and a CNT array grown on carbon fiber paper. Pyrrole (Py) deposition

  15. Comparative Morphologic Evaluation and Occluding Effectiveness of Nd: YAG, CO2 and Diode Lasers on Exposed Human Dentinal Tubules: An Invitro SEM Study

    PubMed Central

    Grover, Harpreet Singh; Choudhary, Pankaj

    2016-01-01

    Introduction Dentinal hypersensitivity is one of the most common problem, encountered in dental practice but has least predictable treatment outcome. The advent of lasers in dentistry has provided an additional therapeutic option for treating dentinal hypersensitivity. Although various lasers have been tried over a period of time to treat dentinal hypersensitivity, but still the doubt persist as to which laser leads to maximum dentinal tubular occlusion and is most suitable with minimal hazardous effects. Aim To compare the effects of Nd: YAG, CO2 and 810-nm diode lasers on width of exposed dentinal tubule orifices and to evaluate the morphologic changes on dentinal surface of human tooth after laser irradiation by scanning electron microscope (SEM). Materials and Methods Forty root specimens were obtained from ten freshly extracted human premolars, which were randomly divided into four groups of ten each. Group I: control group treated with only saline, Group II: Nd:YAG laser, Group III: CO2 laser and Group IV: 810-nm diode laser. The specimens were examined using SEM. After calculating mean tubular diameter for each group, the values were compared statistically using parametric one-way ANOVA test and Turkey’s post hoc multiple comparison test. Results All the three lased groups showed a highly statistical significant result with p-value of <0.001 as compared to non-lased group. On intergroup comparison within the lased groups, all the three groups showed statistically significant difference in the reduction of dentinal tubular diameter (p-value < 0.001). Conclusion Nd: YAG laser was found to be most effective, followed by the CO2 laser and 810-nm diode laser was found to be least effective. The morphologic changes like craters, cracks and charring effect of the dentine were seen maximum by the use of CO2 laser. PMID:27630957

  16. Comparative Morphologic Evaluation and Occluding Effectiveness of Nd: YAG, CO2 and Diode Lasers on Exposed Human Dentinal Tubules: An Invitro SEM Study.

    PubMed

    Saluja, Mini; Grover, Harpreet Singh; Choudhary, Pankaj

    2016-07-01

    Dentinal hypersensitivity is one of the most common problem, encountered in dental practice but has least predictable treatment outcome. The advent of lasers in dentistry has provided an additional therapeutic option for treating dentinal hypersensitivity. Although various lasers have been tried over a period of time to treat dentinal hypersensitivity, but still the doubt persist as to which laser leads to maximum dentinal tubular occlusion and is most suitable with minimal hazardous effects. To compare the effects of Nd: YAG, CO2 and 810-nm diode lasers on width of exposed dentinal tubule orifices and to evaluate the morphologic changes on dentinal surface of human tooth after laser irradiation by scanning electron microscope (SEM). Forty root specimens were obtained from ten freshly extracted human premolars, which were randomly divided into four groups of ten each. Group I: control group treated with only saline, Group II: Nd:YAG laser, Group III: CO2 laser and Group IV: 810-nm diode laser. The specimens were examined using SEM. After calculating mean tubular diameter for each group, the values were compared statistically using parametric one-way ANOVA test and Turkey's post hoc multiple comparison test. All the three lased groups showed a highly statistical significant result with p-value of <0.001 as compared to non-lased group. On intergroup comparison within the lased groups, all the three groups showed statistically significant difference in the reduction of dentinal tubular diameter (p-value < 0.001). Nd: YAG laser was found to be most effective, followed by the CO2 laser and 810-nm diode laser was found to be least effective. The morphologic changes like craters, cracks and charring effect of the dentine were seen maximum by the use of CO2 laser.

  17. X-ray microscopy using reflection targets based on SEM with tungsten filament

    NASA Astrophysics Data System (ADS)

    Liu, Junbiao; Ma, Yutian; Zhao, Weixia; Niu, Geng; Chu, Mingzhang; Yin, Bohua; Han, Li; Liu, Baodong

    2016-10-01

    X-ray MicroandNano imaging is developed based on the conventional x-ray tomography, it can not only provide nondestructive testing with higher resolution measurement, but also be used to examine the material or the structure with low atomic number and low density. The source with micro-focal spot size is one of the key components of x-ray MicroandNano imaging. The focused electron beam from SEM bombarding the metal target can generate x-ray with ultra-small size. It is convenient to set up x-ray microscopy based on SEM for laboratory use. This paper describes a new x-ray microscopy using reflection targets based on FEI Quanta600 SEM with tungsten filament. The flat panel detector is placed outside of the vacuum chamber with 300μm thickness Be-window to isolate vacuum from the air. A stage with 3 DOFs is added to adjust the positions of the target, the SEM's sample stage is used to move sample. And the shape of target is designed as cone with 60° half cone angle to get the maximum x-ray dosage. The attenuation coefficient of Bewindow for x-ray is about 25%. Finally, the line pair card is used to evaluate the resolution and the result shows that the resolution of the system can receive less than 750nm, when the acceleration voltage is 30keV, the beam current is 160nA, the SEM working distance is 5mm and the acquisition time of the detector is 60s.

  18. The detection of metallic residues in skin stab wounds by means of SEM-EDS: A pilot study.

    PubMed

    Palazzo, Elisa; Amadasi, Alberto; Boracchi, Michele; Gentile, Guendalina; Maciocco, Francesca; Marchesi, Matteo; Zoja, Riccardo

    2018-05-01

    The morphological analysis of stab wounds may often not be accurate enough to link it with the type of wounding weapon, but a further evaluation may be performed with the search for metallic residues left during the contact between the instrument and the skin. In this study, Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS) was applied to the study of cadaveric stab wounds performed with kitchen knives composed of iron, chromium and nickel, in order to verify the presence of metallic residues on the wound's edge. Two groups of 10 corpses were selected: group A, including victims of stab wounds and a control group B (died of natural causes). Samplings were performed on the lesions and in intact areas of group A, whereas in group B sampling were performed in non-exposed intact skin. Samples were then analysed with optical microscopy and SEM-EDS. In group A, optical microscopic analysis showed the presence of vital haemorrhagic infiltration, while SEM-EDS showed evidence of microscopic metal traces, isolated or clustered, consisting of iron, chromium and nickel. Moreover, in two cases organic residues of calcium and phosphate were detected, as a probable sign of bone lesion. Control samples (group A in intact areas and group B), were negative for the search of exogenous material to optical microscopy and SEM-EDS. The results show the utility and possible application of the SEM-EDS in theidentification of metallic residues from sharp weapons on the skin. Copyright © 2017 The Chartered Society of Forensic Sciences. Published by Elsevier B.V. All rights reserved.

  19. Counting Synapses Using FIB/SEM Microscopy: A True Revolution for Ultrastructural Volume Reconstruction.

    PubMed

    Merchán-Pérez, Angel; Rodriguez, José-Rodrigo; Alonso-Nanclares, Lidia; Schertel, Andreas; Defelipe, Javier

    2009-01-01

    The advent of transmission electron microscopy (TEM) in the 1950s represented a fundamental step in the study of neuronal circuits. The application of this technique soon led to the realization that the number of synapses changes during the course of normal life, as well as under certain pathological or experimental circumstances. Since then, one of the main goals in neurosciences has been to define simple and accurate methods to estimate the magnitude of these changes. Contrary to analysing single sections, TEM reconstructions are extremely time-consuming and difficult. Therefore, most quantitative studies use stereological methods to define the three-dimensional characteristics of synaptic junctions that are studied in two dimensions. Here, to count the exact number of synapses per unit of volume we have applied a new three-dimensional reconstruction method that involves the combination of focused ion beam milling and scanning electron microscopy (FIB/SEM). We show that the images obtained with FIB/SEM are similar to those obtained with TEM, but with the advantage that FIB/SEM permits serial reconstructions of large volumes of tissue to be generated rapidly and automatically. Furthermore, we compared the estimates of the number of synapses obtained with stereological methods with the values obtained by FIB/SEM reconstructions. We concluded that FIB/SEM not only provides the actual number of synapses per volume but it is also much easier and faster to use than other currently available TEM methods. More importantly, it also avoids most of the errors introduced by stereological methods and overcomes the difficulties associated with these techniques.

  20. LASER BIOLOGY: Peculiarities of studying an isolated neuron by the method of laser interference microscopy

    NASA Astrophysics Data System (ADS)

    Yusipovich, Alexander I.; Novikov, Sergey M.; Kazakova, Tatiana A.; Erokhova, Liudmila A.; Brazhe, Nadezda A.; Lazarev, Grigory L.; Maksimov, Georgy V.

    2006-09-01

    Actual aspects of using a new method of laser interference microscopy (LIM) for studying nerve cells are discussed. The peculiarities of the LIM display of neurons are demonstrated by the example of isolated neurons of a pond snail Lymnaea stagnalis. A comparative analysis of the images of the cell and subcellular structures of a neuron obtained by the methods of interference microscopy, optical transmission microscopy, and confocal microscopy is performed. Various aspects of the application of LIM for studying the lateral dimensions and internal structure of the cytoplasm and organelles of a neuron in cytology and cell physiology are discussed.

  1. Computer-aided screening system for cervical precancerous cells based on field emission scanning electron microscopy and energy dispersive x-ray images and spectra

    NASA Astrophysics Data System (ADS)

    Jusman, Yessi; Ng, Siew-Cheok; Hasikin, Khairunnisa; Kurnia, Rahmadi; Osman, Noor Azuan Bin Abu; Teoh, Kean Hooi

    2016-10-01

    The capability of field emission scanning electron microscopy and energy dispersive x-ray spectroscopy (FE-SEM/EDX) to scan material structures at the microlevel and characterize the material with its elemental properties has inspired this research, which has developed an FE-SEM/EDX-based cervical cancer screening system. The developed computer-aided screening system consisted of two parts, which were the automatic features of extraction and classification. For the automatic features extraction algorithm, the image and spectra of cervical cells features extraction algorithm for extracting the discriminant features of FE-SEM/EDX data was introduced. The system automatically extracted two types of features based on FE-SEM/EDX images and FE-SEM/EDX spectra. Textural features were extracted from the FE-SEM/EDX image using a gray level co-occurrence matrix technique, while the FE-SEM/EDX spectra features were calculated based on peak heights and corrected area under the peaks using an algorithm. A discriminant analysis technique was employed to predict the cervical precancerous stage into three classes: normal, low-grade intraepithelial squamous lesion (LSIL), and high-grade intraepithelial squamous lesion (HSIL). The capability of the developed screening system was tested using 700 FE-SEM/EDX spectra (300 normal, 200 LSIL, and 200 HSIL cases). The accuracy, sensitivity, and specificity performances were 98.2%, 99.0%, and 98.0%, respectively.

  2. Focused ion beam (FIB)/scanning electron microscopy (SEM) in tissue structural research.

    PubMed

    Leser, Vladka; Milani, Marziale; Tatti, Francesco; Tkalec, Ziva Pipan; Strus, Jasna; Drobne, Damjana

    2010-10-01

    The focused ion beam (FIB) and scanning electron microscope (SEM) are commonly used in material sciences for imaging and analysis of materials. Over the last decade, the combined FIB/SEM system has proven to be also applicable in the life sciences. We have examined the potential of the focused ion beam/scanning electron microscope system for the investigation of biological tissues of the model organism Porcellio scaber (Crustacea: Isopoda). Tissue from digestive glands was prepared as for conventional SEM or as for transmission electron microscopy (TEM). The samples were transferred into FIB/SEM for FIB milling and an imaging operation. FIB-milled regions were secondary electron imaged, back-scattered electron imaged, or energy dispersive X-ray (EDX) analyzed. Our results demonstrated that FIB/SEM enables simultaneous investigation of sample gross morphology, cell surface characteristics, and subsurface structures. The same FIB-exposed regions were analyzed by EDX to provide basic compositional data. When samples were prepared as for TEM, the information obtained with FIB/SEM is comparable, though at limited magnification, to that obtained from TEM. A combination of imaging, micro-manipulation, and compositional analysis appears of particular interest in the investigation of epithelial tissues, which are subjected to various endogenous and exogenous conditions affecting their structure and function. The FIB/SEM is a promising tool for an overall examination of epithelial tissue under normal, stressed, or pathological conditions.

  3. Confocal microscopy to guide laser ablation of basal cell carinoma: a preliminary feasibility study

    NASA Astrophysics Data System (ADS)

    Larson, Bjorg A.; Sierra, Heidy; Chen, Jason; Rajadhyaksha, Milind

    2013-03-01

    Laser ablation may be a promising method for removal of skin lesions, with the potential for better cosmetic outcomes and reduced scarring and infection. An obstacle to implementing laser ablation is that the treatment leaves no tissue for histopathological analysis. Pre-operative and intra-operative mapping of BCCs using confocal microscopy may guide the ablation of the tumor until all tumor is removed. We demonstrate preliminary feasibility of confocal microscopy to guide laser ablation of BCCs in freshly excised tissue from Mohs surgery. A 2940 nm Er:YAG laser provides efficient ablation of tumor with reduced thermal damage to the surrounding tissue.

  4. Seeing a Mycobacterium-Infected Cell in Nanoscale 3D: Correlative Imaging by Light Microscopy and FIB/SEM Tomography

    PubMed Central

    Beckwith, Marianne Sandvold; Beckwith, Kai Sandvold; Sikorski, Pawel; Skogaker, Nan Tostrup

    2015-01-01

    Mycobacteria pose a threat to the world health today, with pathogenic and opportunistic bacteria causing tuberculosis and non-tuberculous disease in large parts of the population. Much is still unknown about the interplay between bacteria and host during infection and disease, and more research is needed to meet the challenge of drug resistance and inefficient vaccines. This work establishes a reliable and reproducible method for performing correlative imaging of human macrophages infected with mycobacteria at an ultra-high resolution and in 3D. Focused Ion Beam/Scanning Electron Microscopy (FIB/SEM) tomography is applied, together with confocal fluorescence microscopy for localization of appropriately infected cells. The method is based on an Aclar poly(chloro-tri-fluoro)ethylene substrate, micropatterned into an advantageous geometry by a simple thermomoulding process. The platform increases the throughput and quality of FIB/SEM tomography analyses, and was successfully applied to detail the intracellular environment of a whole mycobacterium-infected macrophage in 3D. PMID:26406896

  5. Respiratory assessment of refractory ceramic fibers in a heating technician population.

    PubMed

    Lucas, David; Clamagirand, Vincent; Capellmann, Pascale; Hervé, Agnès; Mauguen, Gilles; Le Mer, Yannik; Jegaden, Dominique

    2018-04-01

    Refractory ceramic fibers (RCF) have been extensively used for insulation in condensing boilers. The aim of this study was to evaluate the respiratory exposure to these fibers among maintenance heating technicians. We first created a working group (Carsat Brittany and Finistère Occupational Health Services) and carried out a sampling strategy. Atmospheric measurements were done during work tasks, and filters were analyzed by phase contrast microscopy (PCM) and scanning electron microscopy (SEM) in French approved laboratories. Four companies were included for a total of 15 days of work. During those 15 workdays, 12 SEM and 21 PCM samples were taken and analyzed. The phase contrast microscopy and SEM average results were 0.04 and 0.004 fibers/cm 3 , respectively. In conclusion, the study confirms heating technician RCF respiratory exposure during maintenance work for both condensation gas boilers and atmospheric boilers. Collective and individual prevention measures should be implemented along with appropriate medical follow-up.

  6. Three-dimensional ultrastructure of osteocytes assessed by focused ion beam-scanning electron microscopy (FIB-SEM).

    PubMed

    Hasegawa, Tomoka; Yamamoto, Tomomaya; Hongo, Hiromi; Qiu, Zixuan; Abe, Miki; Kanesaki, Takuma; Tanaka, Kawori; Endo, Takashi; de Freitas, Paulo Henrique Luiz; Li, Minqi; Amizuka, Norio

    2018-04-01

    The aim of this study is to demonstrate the application of focused ion beam-scanning electron microscopy, FIB-SEM for revealing the three-dimensional features of osteocytic cytoplasmic processes in metaphyseal (immature) and diaphyseal (mature) trabeculae. Tibiae of eight-week-old male mice were fixed with aldehyde solution, and treated with block staining prior to FIB-SEM observation. While two-dimensional backscattered SEM images showed osteocytes' cytoplasmic processes in a fragmented fashion, three-dimensional reconstructions of FIB-SEM images demonstrated that osteocytes in primary metaphyseal trabeculae extended their cytoplasmic processes randomly, thus maintaining contact with neighboring osteocytes and osteoblasts. In contrast, diaphyseal osteocytes extended thin cytoplasmic processes from their cell bodies, which ran perpendicular to the bone surface. In addition, these osteocytes featured thick processes that branched into thinner, transverse cytoplasmic processes; at some point, however, these transverse processes bend at a right angle to run perpendicular to the bone surface. Osteoblasts also possessed thicker cytoplasmic processes that branched off as thinner processes, which then connected with cytoplasmic processes of neighboring osteocytes. Thus, FIB-SEM is a useful technology for visualizing the three-dimensional structures of osteocytes and their cytoplasmic processes.

  7. Effect of air polishing with glycine powder on titanium abutment surfaces.

    PubMed

    Cochis, Andrea; Fini, Milena; Carrassi, Antonio; Migliario, Mario; Visai, Livia; Rimondini, Lia

    2013-08-01

    The aim of the present study was to evaluate morphological changes induced by glycine powder air polishing on titanium surfaces and its effect on bacteria recolonization in comparison with sodium bicarbonate powder. 5 mm wide and 1 mm thick titanium grade II disks were divided into three groups of treatments: (i) no treatment; (ii) air polishing with glycine powder; (iii) air polishing with sodium bicarbonate powder. Specimens were characterized by laser profilometry, scanning electron microscopy (SEM) and then installed onto removable appliances worn for 24 h by healthy volunteers. Surface contamination was evaluated using SEM and counting the number of colony forming units (CFU). SEM observation revealed an increased roughness with the formation of craters on samples treated with sodium bicarbonate powder, while not in glycine ones. Statistical analysis failed to show significant differences of both Ra and Rmax parameters in treated groups. SEM observation of specimens surfaces, after 24 h of permanence in the oral cavity, showed a higher contamination of the disks treated with sodium bicarbonate compared with those not treated (P < 0.05). Conversely, the group treated with glycine showed the lower contamination if compared with bicarbonate-treated group (P < 0.05). Air polishing with glycine powder may be considered as a better method to remove plaque from dental implant because glycine is less aggressive than sodium bicarbonate powder. Moreover, the use of glycine powder seems to have an active role on the inhibition of bacterial recolonization of implants in a short test period (24 h). Further studies are needed to demonstrate the bacteriostatic properties of glycine, envisaged on the basis of reduced contamination of the disks polished with glycine compared with those not treated. © 2012 John Wiley & Sons A/S.

  8. Single organelle dynamics linked to 3D structure by correlative live-cell imaging and 3D electron microscopy.

    PubMed

    Fermie, Job; Liv, Nalan; Ten Brink, Corlinda; van Donselaar, Elly G; Müller, Wally H; Schieber, Nicole L; Schwab, Yannick; Gerritsen, Hans C; Klumperman, Judith

    2018-05-01

    Live-cell correlative light-electron microscopy (live-cell-CLEM) integrates live movies with the corresponding electron microscopy (EM) image, but a major challenge is to relate the dynamic characteristics of single organelles to their 3-dimensional (3D) ultrastructure. Here, we introduce focused ion beam scanning electron microscopy (FIB-SEM) in a modular live-cell-CLEM pipeline for a single organelle CLEM. We transfected cells with lysosomal-associated membrane protein 1-green fluorescent protein (LAMP-1-GFP), analyzed the dynamics of individual GFP-positive spots, and correlated these to their corresponding fine-architecture and immediate cellular environment. By FIB-SEM we quantitatively assessed morphological characteristics, like number of intraluminal vesicles and contact sites with endoplasmic reticulum and mitochondria. Hence, we present a novel way to integrate multiple parameters of subcellular dynamics and architecture onto a single organelle, which is relevant to address biological questions related to membrane trafficking, organelle biogenesis and positioning. Furthermore, by using CLEM to select regions of interest, our method allows for targeted FIB-SEM, which significantly reduces time required for image acquisition and data processing. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Serial block face-scanning electron microscopy: a tool for studying embryonic development at the cell-matrix interface.

    PubMed

    Starborg, Tobias; Kadler, Karl E

    2015-03-01

    Studies of gene regulation, signaling pathways, and stem cell biology are contributing greatly to our understanding of early embryonic vertebrate development. However, much less is known about the events during the latter half of embryonic development, when tissues comprising mostly extracellular matrix (ECM) are formed. The matrix extends far beyond the boundaries of individual cells and is refractory to study by conventional biochemical and molecular techniques; thus major gaps exist in our knowledge of the formation and three-dimensional (3D) organization of the dense tissues that form the bulk of adult vertebrates. Serial block face-scanning electron microscopy (SBF-SEM) has the ability to image volumes of tissue containing numerous cells at a resolution sufficient to study the organization of the ECM. Furthermore, whereas light microscopy was once relatively straightforward and electron microscopy was performed in specialist laboratories, the tables are turned; SBF-SEM is relatively straightforward and is becoming routine in high-end resolution studies of embryonic structures in vivo. In this review, we discuss the emergence of SBF-SEM as a tool for studying embryonic vertebrate development. © 2015 Wiley Periodicals, Inc.

  10. Sub-diffraction-limit localization imaging of a plasmonic nanoparticle pair with wavelength-resolved dark-field microscopy.

    PubMed

    Wei, Lin; Ma, Yanhong; Zhu, Xupeng; Xu, Jianghong; Wang, Yaxin; Duan, Huigao; Xiao, Lehui

    2017-06-29

    In this work, with wavelength-resolved dark-field microscopy, the center-of-mass localization information from nanoparticle pairs (i.e., spherical (45 nm in diameter) and rod (45 × 70 nm) shaped gold nanoparticle pairs with different gap distances and orientations) was explored and compared with the results determined by scanning electron microscopy (SEM) measurements. When the gap distance was less than 20 nm, the scattering spectrum of the nanoparticle pair was seriously modulated by the plasmonic coupling effect. The measured coordinate information determined by the optical method (Gaussian fitting) was not consistent with the true results determined by SEM measurement. A good correlation between the optical and SEM measurements was achieved when the gap distance was further increased (e.g., 20, 40 and 60 nm). Under these conditions, well-defined scattering peaks assigned to the corresponding individual nanoparticles could be distinguished from the obtained scattering spectrum. These results would afford valuable information for the studies on single plasmonic nanoparticle imaging applications with the optical microscopy method such as super-localization imaging, high precision single particle tracking in a crowding environment and so on.

  11. Study of diamond film growth and properties

    NASA Technical Reports Server (NTRS)

    Albin, Sacharial

    1990-01-01

    The objective was to study diamond film growth and its properties in order to enhance the laser damage threshold of substrate materials. Calculations were performed to evaluate laser induced thermal stress parameter, R(sub T) of diamond. It is found that diamond has several orders of magnitude higher in value for R(sub T) compared to other materials. Thus, the laser induced damage threshold (LIDT) of diamond is much higher. Diamond films were grown using a microwave plasma enhanced chemical vapor deposition (MPECVD) system at various conditions of gas composition, pressure, temperature, and substrate materials. A 0.5 percent CH4 in H2 at 20 torr were ideal conditions for growing of high quality diamond films on substrates maintained at 900 C. The diamond films were polycrystalline which were characterized by scanning electron microscopy (SEM) and Raman scattering spectroscopy. The top surface of the growing film is always rough due to the facets of polycrystalline film while the back surface of the film replicates the substrate surface. An analytical model based on two dimensional periodic heat flow was developed to calculate the effective in-plane (face parallel) diffusivity of a two layer system. The effective diffusivity of diamond/silicon samples was measured using a laser pulse technique. The thermal conductivity of the films was measured to be 13.5 W/cm K, which is better than that of a type Ia natural diamond. Laser induced damage experiments were performed on bare Si substrates, diamond film coated Si, and diamond film windows. Significant improvements in the LIDT were obtained for diamond film coated Si compared to the bare Si.

  12. Surface Chemistry, Friction, and Wear Properties of Untreated and Laser-Annealed Surfaces of Pulsed-Laser-Deposited WS(sub 2) Coatings

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Wheeler, Donald R.; Zabinski, Jeffrey S.

    1996-01-01

    An investigation was conducted to examine the surface chemistry, friction, and wear behavior of untreated and annealed tungsten disulfide (WS2) coatings in sliding contact with a 6-mm-diameter 440C stainless-steel ball. The WS2 coatings and annealing were performed using the pulsed-laser-deposition technique. All sliding friction experiments were conducted with a load of 0.98 N (100 g), an average Hertzian contact pressure of 0.44 GPa, and a constant rotating speed of 120 rpm. The sliding velocity ranged from 31 to 107 mm/s because of the range of wear track radii involved in the experiments. The experiment was performed at room temperature in three environments: ultrahigh vacuum (vacuum pressure, 7X(exp -10) Pa), dry nitrogen (relative humidity, less than 1 percent), and humid air (relative humidity, 15 to 40 percent). Analytical techniques, including scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDX), x-ray photo electron spectroscopy (XPS), surface profilometry, and Vickers hardness testing, were used to characterize the tribological surfaces of WS2 coatings. The results of the investigation indicate that the laser annealing decreased the wear of a WS2 coating in an ultrahigh vacuum. The wear rate was reduced by a factor of 30. Thus, the laser annealing increased the wear life and resistance of the WS2 coating. The annealed WS 2 coating had a low coefficient of friction (less than O.1) and a low wear rate ((10(exp -7) mm(exp 3)/N-m)) both of which are favorable in an ultrahigh vacuum.

  13. CONFOCAL LASER SCANNING MICROSCOPY OF RAT FOLLICLE DEVELOPMENT

    EPA Science Inventory

    This study used confocal laser scanning microscopy (CLSM) to study follicular development in millimeter pieces of rat ovary. To use this technology, it is essential to stain the tissue before laser excitation with the confocal microscope. Various fluorescent stains (Yo-Pro, Bo-Pr...

  14. Effect of Er:YAG laser pulse duration on the shear bond strength of bleached dentin

    NASA Astrophysics Data System (ADS)

    Yu, Ping; Yu, Dandan; Zhao, Peng; Xu, Zhou; Gao, Shanshan

    2017-11-01

    The influence of different Er:YAG laser pulse durations on the shear bond strength (SBS) of bleached dentin was investigated in this study. In total, 176 crowns of extracted human premolars were cut horizontally, embedded and ground to expose the sound dentin. Of these, 132 specimens were bleached with 12% hydrogen peroxide (HP) and divided into three groups, irradiated by an Er:YAG laser with different pulse lengths of 50 µs super short pulse (SSP), 100 µs moderate short pulse (MSP) and 300 µs short pulse (SP), respectively. The energy density of the three groups was the same at about 15.73 J cm-2 for each. Then, each group was further divided into two subgroups according to whether it had been etched with 37% phosphoric acid or not. The control group (N  =  22) was bleached and etched with acid while the blank group (N  =  22) was just etched with acid. The surface morphology of the dentin was observed using scanning electron microscopy (SEM). The SBS of the composite resin to the conditioned dentin was tested with a universal testing machine. It was found that the SBS of the dentin significantly decreased after bleaching treatment, while it was possible to restore it using Er:YAG laser irradiation. Lasers with various pulse durations led to different surface morphologies but had no effect on the SBS. The SSP laser was more suitable on account of it resulting in less thermal damage, and additional acid etching was not necessary for the irradiated bleached dentin in the clinic because it could not further improve the SBS value.

  15. Atomic force microscopy imaging of fragments from the Martian meteorite ALH84001

    NASA Technical Reports Server (NTRS)

    Steele, A.; Goddard, D.; Beech, I. B.; Tapper, R. C.; Stapleton, D.; Smith, J. R.

    1998-01-01

    A combination of scanning electron microscopy (SEM) and environmental scanning electron microscopy (ESEM) techniques, as well as atomic force microscopy (AFM) methods has been used to study fragments of the Martian meteorite ALH84001. Images of the same areas on the meteorite were obtained prior to and following gold/palladium coating by mapping the surface of the fragment using ESEM coupled with energy-dispersive X-ray analysis. Viewing of the fragments demonstrated the presence of structures, previously described as nanofossils by McKay et al. (Search for past life on Mars--possible relic biogenic activity in martian meteorite ALH84001. Science, 1996, pp. 924-930) of NASA who used SEM imaging of gold-coated meteorite samples. Careful imaging of the fragments revealed that the observed structures were not an artefact introduced by the coating procedure.

  16. A compilation of cold cases using scanning electron microscopy at the University of Rhode Island

    NASA Astrophysics Data System (ADS)

    Platek, Michael J.; Gregory, Otto J.

    2015-10-01

    Scanning electron microscopy combined with microchemical analysis has evolved into one of the most widely used instruments in forensic science today. In particular, the environmental scanning electron microscope (SEM) in conjunction with energy dispersive spectroscopy (EDS), has created unique opportunities in forensic science in regard to the examination of trace evidence; i.e. the examination of evidence without altering the evidence with conductive coatings, thereby enabling criminalists to solve cases that were previously considered unsolvable. Two cold cases were solved at URI using a JEOL 5900 LV SEM in conjunction with EDS. A cold case murder and a cold missing person case will be presented from the viewpoint of the microscopist and will include sample preparation, as well as image and chemical analysis of the trace evidence using electron microscopy and optical microscopy.

  17. Compact fixed wavelength femtosecond oscillators as an add-on for tunable Ti:sapphire lasers extend the range of applications towards multimodal imaging and optogenetics

    NASA Astrophysics Data System (ADS)

    Hakulinen, T.; Klein, J.

    2016-03-01

    Two-photon (2P) microscopy based on tunable Ti:sapphire lasers has become a widespread tool for 3D imaging with sub-cellular resolution in living tissues. In recent years multi-photon microscopy with simpler fixed-wavelength femtosecond oscillators using Yb-doped tungstenates as gain material has raised increasing interest in life-sciences, because these lasers offer one order of magnitude more average power than Ti:sapphire lasers in the wavelength range around 1040 nm: Two-photon (2P) excitation of mainly red or yellow fluorescent dyes and proteins (e.g. YFP, mFruit series) simultaneously has been proven with a single IR laser wavelength. A new approach is to extend the usability of existing tunable Titanium sapphire lasers by adding a fixed IR wavelength with an Yb femtosecond oscillator. By that means a multitude of applications for multimodal imaging and optogenetics can be supported. Furthermore fs Yb-lasers are available with a repetition rate of typically 10 MHz and an average power of typically 5 W resulting in pulse energy of typically 500 nJ, which is comparably high for fs-oscillators. This makes them an ideal tool for two-photon spinning disk laser scanning microscopy and holographic patterning for simultaneous photoactivation of large cell populations. With this work we demonstrate that economical, small-footprint Yb fixed-wavelength lasers can present an interesting add-on to tunable lasers that are commonly used in multiphoton microscopy. The Yb fs-lasers hereby offer higher power for imaging of red fluorescent dyes and proteins, are ideally enhancing existing Ti:sapphire lasers with more power in the IR, and are supporting pulse energy and power hungry applications such as spinning disk microscopy and holographic patterning.

  18. Atomic force microscopy visualization of injuries in Enterococcus faecalis surface caused by Er,Cr:YSGG and diode lasers

    PubMed Central

    López-Jiménez, Lidia; Viñas, Miguel; Vinuesa, Teresa

    2015-01-01

    Aim: To visualize by Atomic Force Microscopy the alterations induced on Enterococcus. faecalis surface after treatment with 2 types of laser: Erbium chromium:yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser and Diode laser. Material and Methods: Bacterial suspensions from overnight cultures of E. faecalis were irradiated during 30 seconds with the laser-lights at 1 W and 2 W of power, leaving one untreated sample as control. Surface alterations on treated E. faecalis were visualized by Atomic Force Microscopy (AFM) and its surface roughness determined. Results: AFM imaging showed that at high potency of laser both cell morphology and surface roughness resulted altered, and that several cell lysis signs were easily visualized. Surface roughness clearly increase after the treatment with Er,Cr:YSGG at 2W of power, while the other treatments gave similar values of surface roughness. The effect of lasers on bacterial surfaces visualized by AFM revealed drastic alterations. Conclusions: AFM is a good tool to evaluate surface injuries after laser treatment; and could constitute a measure of antimicrobial effect that can complete data obtained by determination of microbial viability. Key words:Atomic force microscopy, Er,Cr:YSGG laser, diode laser, Enterococcus faecalis, surface roughness. PMID:25475770

  19. New Insights on Subsurface Imaging of Carbon Nanotubes in Polymer Composites via Scanning Electron Microscopy

    NASA Technical Reports Server (NTRS)

    Zhao, Minhua; Ming, Bin; Kim, Jae-Woo; Gibbons, Luke J.; Gu, Xiaohong; Nguyen, Tinh; Park, Cheol; Lillehei, Peter T.; Villarrubia, J. S.; Vladar, Andras E.; hide

    2015-01-01

    Despite many studies of subsurface imaging of carbon nanotube (CNT)-polymer composites via scanning electron microscopy (SEM), significant controversy exists concerning the imaging depth and contrast mechanisms. We studied CNT-polyimide composites and, by threedimensional reconstructions of captured stereo-pair images, determined that the maximum SEM imaging depth was typically hundreds of nanometers. The contrast mechanisms were investigated over a broad range of beam accelerating voltages from 0.3 to 30 kV, and ascribed to modulation by embedded CNTs of the effective secondary electron (SE) emission yield at the polymer surface. This modulation of the SE yield is due to non-uniform surface potential distribution resulting from current flows due to leakage and electron beam induced current. The importance of an external electric field on SEM subsurface imaging was also demonstrated. The insights gained from this study can be generally applied to SEM nondestructive subsurface imaging of conducting nanostructures embedded in dielectric matrices such as graphene-polymer composites, silicon-based single electron transistors, high resolution SEM overlay metrology or e-beam lithography, and have significant implications in nanotechnology.

  20. High-Resolution Scanning Electron Microscopy and Immuno-Gold Labeling of the Nuclear Lamina and Nuclear Pore Complex.

    PubMed

    Goldberg, Martin W

    2016-01-01

    Scanning electron microscopy (SEM) is a technique used to image surfaces. Field emission SEMs (feSEMs) can resolve structures that are ~0.5-1.5 nm apart. FeSEM, therefore is a useful technique for imaging molecular structures that exist at surfaces such as membranes. The nuclear envelope consists of four membrane surfaces, all of which may be accessible for imaging. Imaging of the cytoplasmic face of the outer membrane gives information about ribosomes and cytoskeletal attachments, as well as details of the cytoplasmic peripheral components of the nuclear pore complex, and is the most easily accessed surface. The nucleoplasmic face of the inner membrane is easily accessible in some cells, such as amphibian oocytes, giving valuable details about the organization of the nuclear lamina and how it interacts with the nuclear pore complexes. The luminal faces of both membranes are difficult to access, but may be exposed by various fracturing techniques. Protocols are presented here for the preparation, labeling, and feSEM imaging of Xenopus laevis oocyte nuclear envelopes.

  1. Human cardiac telocytes: 3D imaging by FIB-SEM tomography.

    PubMed

    Cretoiu, D; Hummel, E; Zimmermann, H; Gherghiceanu, M; Popescu, L M

    2014-11-01

    Telocyte (TC) is a newly identified type of cell in the cardiac interstitium (www.telocytes.com). TCs are described by classical transmission electron microscopy as cells with very thin and long telopodes (Tps; cellular prolongations) having podoms (dilations) and podomers (very thin segments). TCs' three-dimensional (3D) morphology is still unknown. Cardiac TCs seem to be particularly involved in long and short distance intercellular signalling and, therefore, their 3D architecture is important for understanding their spatial connections. Using focused ion beam scanning electron microscopy (FIB-SEM) we show, for the first time, the whole ultrastructural anatomy of cardiac TCs. 3D reconstruction of cardiac TCs by FIB-SEM tomography confirms that they have long, narrow but flattened (ribbon-like) telopodes, with humps generated by the podoms. FIB-SEM tomography also confirms the network made by TCs in the cardiac interstitium through adherens junctions. This study provides the first FIB-SEM tomography of a human cell type. © 2014 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  2. Performance of nanocomposites for preservation of artistic stones

    NASA Astrophysics Data System (ADS)

    Giancristofaro, Cristina; D'Amato, Rosaria; Caneve, Luisa; Pilloni, Luciano; Rinaldi, Antonio; Persia, Franca

    2014-06-01

    In this work, the effectiveness of nanocomposite surface treatments as protective systems for artistic stones was evaluated. Pyrolitic silica and titania nanoparticles were dispersed in a commercial silicon-based polymer and applied on marble and travertine samples. Artificial aging processes, both in climatic chamber and in solar box, were carried out to simulate real degradation processes in terms of photo-thermal effects and physical-chemical damage. The performances of the nanocomposites used as consolidant were evaluated comparatively by means of diverse diagnostic techniques, namely: scanning electron microscopy (SEM), laser induced fluorescence (LIF), ultrasonic technique, colorimetry, total immersion water absorption and contact angle. The results show that some properties of conservation materials can be improved by the presences of nanoparticles because they induce substantial changes of surface morphology of the coating layer and counter the physical damage observed during artificial weathering.

  3. Synthesis, characterization, biocompatibility of hydroxyapatite-natural polymers nanocomposites for dentistry applications.

    PubMed

    Chung, Jin-Hwan; Kim, Young Kyung; Kim, Kyo-Han; Kwon, Tae-Yub; Vaezmomeni, Seyede Ziba; Samiei, Mohammad; Aghazadeh, Marzyeh; Davaran, Soodabeh; Mahkam, Mehrdad; Asadi, Ghale; Akbarzadeh, Abolfazl

    2016-01-01

    Hydroxyapatite (HA), the main mineral component of bones and teeth, was synthesized by using the reaction between calcium nitrate tetrahydrate Ca(NO3)2∙4H2O and diammonium hydrogen phosphate (NH4)2HPO4 (DAHP) with a chemical precipitation method. The objective of this study is to utilize novel inorganic-organic nanocomposites for biomedical applications. HA is an inorganic component (75% w) and chitosan, alginate and albumin (Egg white) are organic components of nanocomposites (25% w). Nanocomposites were prepared in deionized water solutions, at room temperature, using a mechanical and magnetic stirrer for 48 h. The microstructure and morphology of sintered n-HAP were tested at different preheating temperature and laser sintering speed with scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR).

  4. UV excimer laser and low temperature plasma treatments of polyamide materials

    NASA Astrophysics Data System (ADS)

    Yip, Yiu Wan Joanne

    Polyamides have found widespread application in various industrial sectors, for example, they are used in apparel, home furnishings and similar uses. However, the requirements for high quality performance products are continually increasing and these promote a variety of surface treatments for polymer modification. UV excimer laser and low temperature plasma treatments are ideally suited for polyamide modification because they can change the physical and chemical properties of the material without affecting its bulk features. This project aimed to study the modification of polyamides by UV excimer laser irradiation and low temperature plasma treatment. The morphological changes in the resulting samples were analysed by scanning electron microscopy (SEM) and tapping mode atomic force microscopy (TM-AFM). The chemical modifications were studied by x-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and chemical force microscopy (CFM). Change in degree of crystallinity was examined by differential scanning calorimetry (DSC). After high-fluence laser irradiation, topographical results showed that ripples of micrometer size form on the fibre surface. By contrast, sub-micrometer size structures form on the polyamide surface when the applied laser energy is well below its ablation threshold. After high-fluence laser irradiation, chemical studies showed that the surface oxygen content of polyamide is reduced. A reverse result is obtained with low-fluence treatment. The DSC result showed no significant change in degree of crystallinity in either high-fluence or low-fluence treated samples. The same modifications in polyamide surfaces were studied after low temperature plasma treatment with oxygen, argon or tetrafluoromethane gas. The most significant result was that the surface oxygen content of polyamide increased after oxygen and argon plasma treatments. Both treatments induced many hydroxyl (-OH) and carboxylic acid (-COOH) functional groups, which increased water absorption. However, after tetrafluoromethane plasma treatment it was found that the -CF, -CF2 and -CF3 groups were introduced to the polyamide surface and this enhanced the hydrophobicity of the fabric. Suggested explanations are given of the mechanisms that produce the structure of the polyamide after the processes of laser irradiation (both high- and low-fluence) and plasma treatment. The fundamental approach used in modelling was considered the temperature profile of the material during the treatment. The development of high-fluence induced structures was caused by elevated temperatures in the subsurface volume and preexisting stress caused by fiber extrusion. The structure formation under LF laser irradiation was determined by thermal effect accompanied by the optical phenomenon of interference. Ripple structures formed by plasma were closely related to physical or chemical etching. Possible applications of plasma and laser technologies in the textile and clothing industries are considered. Oxygen plasma seems to be the best candidate to improve the wettability of the fabric, while tetrafluoromethane plasma can be applied to produce a water repellent surface. Surface treatments including CF4 plasma, high-fluence and low-fluence laser treatments produce a deeper color in disperse dyed fabrics using the same amount of dyestuff as chemicals like leveling agents and dyestuff can be reduced during the textile manufacturing process. UV laser and low temperature plasma modification processes are promising techniques for polymer/fabric surface modification and have industrial potential as they are environmentally friendly dry processes which do not involve any solvents.

  5. Peculiarities of studying an isolated neuron by the method of laser interference microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yusipovich, Alexander I; Kazakova, Tatiana A; Erokhova, Liudmila A

    2006-09-30

    Actual aspects of using a new method of laser interference microscopy (LIM) for studying nerve cells are discussed. The peculiarities of the LIM display of neurons are demonstrated by the example of isolated neurons of a pond snail Lymnaea stagnalis. A comparative analysis of the images of the cell and subcellular structures of a neuron obtained by the methods of interference microscopy, optical transmission microscopy, and confocal microscopy is performed. Various aspects of the application of LIM for studying the lateral dimensions and internal structure of the cytoplasm and organelles of a neuron in cytology and cell physiology are discussed.more » (laser biology)« less

  6. In situ microscopic analysis of asbestos and synthetic vitreous fibers retained in hamster lungs following inhalation.

    PubMed Central

    Rogers, R A; Antonini, J M; Brismar, H; Lai, J; Hesterberg, T W; Oldmixon, E H; Thevenaz, P; Brain, J D

    1999-01-01

    Hamsters breathed, nose-only, for 13 weeks, 5 days/week, 6 hr/day, either man-made vitreous fiber (MMVF)10a, MMVF33, or long amosite asbestos at approximately 300 World Health Organization (WHO) fibers/cc or long amosite at 25 WHO fibers/cc. [World Health Organization fibers are longer than 5 microm and thicker than 3 microm, with aspect ratio >3.] After sacrifice, fiber burden was estimated (left lungs) by ashing and scanning electron microscopy (ashing/SEM) or (right middle lobes) by confocal laser scanning microscopy (CLSM) in situ. In situ CLSM also provided three-dimensional views of fibers retained, undisturbed, in lung tissue. Fibers of each type were lodged in alveoli and small airways, especially at airway bifurcations, and were seen fully or partly engulfed by alveolar macrophages. Amosite fibers penetrated into and through alveolar septa. Length densities of fibers in parenchyma (total length of fiber per unit volume of lung) were estimated stereologically from fiber transsections counted on two-dimensional optical sections and were 30.5, 25.3, 20.0, and 81.6 mm/mm3 for MMVF10a, MMVF33, and low- and high-dose amosite, respectively. Lengths of individual fibers were measured in three dimensions by tracking individual fibers through series of optical sections. Length distributions of amosite fibers aerosolized, but before inhalation versus after retention in the lung were similar, whether determined by ashing/SEM or in situ CLSM. In contrast, the fraction of short MMVF10a and MMVF33 fibers increased and the geometric mean fiber lengths of both MMVFs decreased by approximately 60% during retention. Most likely due to fiber deposition pattern and differences in sampling, fiber burdens [MMVF10a, MMVF33, and amosite (high dose; 269 WHO fibers/cc)] determined by ashing/SEM were 1.4, 1. 5, and 3.5 times greater, respectively, than those calculated from in situ CLSM data. In situ CLSM is able to provide detailed information about the anatomic sites of fiber retention and also fiber lengths and burdens in good agreement with ashing/SEM results. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 PMID:10210692

  7. Atomic force microscopy and transmission electron microscopy analyses of low-temperature laser welding of the cornea.

    PubMed

    Matteini, Paolo; Sbrana, Francesca; Tiribilli, Bruno; Pini, Roberto

    2009-07-01

    Low-temperature laser welding of the cornea is a technique used to facilitate the closure of corneal cuts. The procedure consists of staining the wound with a chromophore (indocyanine green), followed by continuous wave irradiation with an 810 nm diode laser operated at low power densities (12-16 W/cm(2)), which induces local heating in the 55-65 degrees C range. In this study, we aimed to investigate the ultrastructural modifications in the extracellular matrix following laser welding of corneal wounds by means of atomic force microscopy and transmission electron microscopy. The results evidenced marked disorganization of the normal fibrillar assembly, although collagen appeared not to be denatured under the operating conditions we employed. The mechanism of low-temperature laser welding may be related to some structural modifications of the nonfibrillar extracellular components of the corneal stroma.

  8. Even illumination in total internal reflection fluorescence microscopy using laser light.

    PubMed

    Fiolka, R; Belyaev, Y; Ewers, H; Stemmer, A

    2008-01-01

    In modern fluorescence microscopy, lasers are a widely used source of light, both for imaging in total internal reflection and epi-illumination modes. In wide-field imaging, scattering of highly coherent laser light due to imperfections in the light path typically leads to nonuniform illumination of the specimen, compromising image analysis. We report the design and construction of an objective-launch total internal reflection fluorescence microscopy system with excellent evenness of specimen illumination achieved by azimuthal rotation of the incoming illuminating laser beam. The system allows quick and precise changes of the incidence angle of the laser beam and thus can also be used in an epifluorescence mode. 2007 Wiley-Liss, Inc

  9. Morphology selection for cupric oxide thin films by electrodeposition.

    PubMed

    Dhanasekaran, V; Mahalingam, T; Chandramohan, R

    2011-10-01

    Polycrystalline cupric oxide thin films were deposited using alkaline solution bath employing cathodic electrodeposition method. The thin films were electrodeposited at various solution pH. The surface morphology and elemental analyzes of the films were studied using scanning electron microscopy (SEM) and energy dispersive X-ray analysis, respectively. SEM studies revealed that the surface morphology could be tailored suitably by adjusting the pH value during deposition. Mesh average on multiple lattice mode atomic force microscopy image was obtained and reported. Copyright © 2011 Wiley-Liss, Inc.

  10. Effect of pulsed Nd:YAG on dentin morphological changes

    NASA Astrophysics Data System (ADS)

    Moriyama, Eduardo H.; Zangaro, Renato A.; Villaverde, Antonio G. J. B.; Watanabe-Sei, Ii; Munin, Egberto; Sasaki, Luis H.; Otsuka, Daniel K.; Lobo, Paulo D. d. C.; Pacheco, Marcos T. T.; Junior, Durval R.

    2002-06-01

    Infrared lasers have been used for several clinical applications in dentistry, including laser ablation, oral surgeries and dentin hypersensitivity treatment. Despite of dentin low absorption coefficient in the near infrared spectrum, Nd:YAG laser radiation ((lambda) = 1064 nm) is able to melt the human dentin surface resulting in dentin tubules closure that can suppress the symptoms of dentin hypersensitivity pathology. Objectives: This study aims to analyze, through SEM technique, the morphological changes in dentin surface after Nd:YAG laser irradiation using different parameters in energy distribution. Materials and Methods: In this study sixteen human dentin samples were submitted to Nd:YAG laser radiation using a total energy of 900mJ distributed in one, two, three or six laser pulses with energy for each pulse of 900, 450, 300 or 150 mJ respectively. All the samples were irradiated with laser pulse width of 90ms, pulse intervals of 300 ms and spot size area of 0,005 cm2. Results: SEM analysis suggests that differences in energy distribution results in morphological differences even though the same energy is used for all the samples.

  11. Surface characteristics of isopod digestive gland epithelium studied by SEM.

    PubMed

    Millaku, Agron; Leser, Vladka; Drobne, Damjana; Godec, Matjaz; Torkar, Matjaz; Jenko, Monika; Milani, Marziale; Tatti, Francesco

    2010-05-01

    The structure of the digestive gland epithelium of a terrestrial isopod Porcellio scaber has been investigated by conventional scanning electron microscopy (SEM), focused ion beam-scanning electron microscopy (FIB/SEM), and light microscopy in order to provide evidence on morphology of the gland epithelial surface in animals from a stock culture. We investigated the shape of cells, extrusion of lipid droplets, shape and distribution of microvilli, and the presence of bacteria on the cell surface. A total of 22 animals were investigated and we found some variability in the appearance of the gland epithelial surface. Seventeen of the animals had dome-shaped digestive gland "normal" epithelial cells, which were densely and homogeneously covered by microvilli and varying proportions of which extruded lipid droplets. On the surface of microvilli we routinely observed sparsely distributed bacteria of different shapes. Five of the 22 animals had "abnormal" epithelial cells with a significantly altered shape. In three of these animals, the cells were much smaller, partly or completely flat or sometimes pyramid-like. A thick layer of bacteria was detected on the microvillous border, and in places, the shape and size of microvilli were altered. In two animals, hypertrophic cells containing large vacuoles were observed indicating a characteristic intracellular infection. The potential of SEM in morphological investigations of epithelial surfaces is discussed.

  12. SEM-EDX analysis of an unknown "known" white powder found in a shipping container from Peru

    NASA Astrophysics Data System (ADS)

    Albright, Douglas C.

    2009-05-01

    In 2008, an unknown white powder was discovered spilled inside of a shipping container of whole kernel corn during an inspection by federal inspectors in the port of Baltimore, Maryland. The container was detained and quarantined while a sample of the powder was collected and sent to a federal laboratory where it was screened using chromatography for the presence of specific poisons and pesticides with negative results. Samples of the corn kernels and the white powder were forwarded to the Food and Drug Administration, Forensic Chemistry Center for further analysis. Stereoscopic Light Microscopy (SLM), Scanning Electron Microscopy/Energy Dispersive X-ray Spectrometry (SEM/EDX), and Polarized Light Microscopy/Infrared Spectroscopy (PLM-IR) were used in the analysis of the kernels and the unknown powder. Based on the unique particle analysis by SLM and SEM as well as the detection of the presence of aluminum and phosphorous by EDX, the unknown was determined to be consistent with reacted aluminum phosphide (AlP). While commonly known in the agricultural industry, aluminum phosphide is relatively unknown in the forensic community. A history of the use and acute toxicity of this compound along with some very unique SEM/EDX analysis characteristics of aluminum phosphide will be discussed.

  13. FIB-SEM tomography of human skin telocytes and their extracellular vesicles

    PubMed Central

    Cretoiu, Dragos; Gherghiceanu, Mihaela; Hummel, Eric; Zimmermann, Hans; Simionescu, Olga; Popescu, Laurentiu M

    2015-01-01

    We have shown in 2012 the existence of telocytes (TCs) in human dermis. TCs were described by transmission electron microscopy (TEM) as interstitial cells located in non-epithelial spaces (stroma) of many organs (see www.telocytes.com). TCs have very long prolongations (tens to hundreds micrometers) named Telopodes (Tps). These Tps have a special conformation with dilated portions named podoms (containing mitochondria, endoplasmic reticulum and caveolae) and very thin segments (below resolving power of light microscopy), called podomers. To show the real 3D architecture of TC network, we used the most advanced available electron microscope technology: focused ion beam scanning electron microscopy (FIB-SEM) tomography. Generally, 3D reconstruction of dermal TCs by FIB-SEM tomography revealed the existence of Tps with various conformations: (i) long, flattened irregular veils (ribbon-like segments) with knobs, corresponding to podoms, and (ii) tubular structures (podomers) with uneven calibre because of irregular dilations (knobs) – the podoms. FIB-SEM tomography also showed numerous extracellular vesicles (diameter 438.6 ± 149.1 nm, n = 30) released by a human dermal TC. Our data might be useful for understanding the role(s) of TCs in intercellular signalling and communication, as well as for comprehension of pathologies like scleroderma, multiple sclerosis, psoriasis, etc. PMID:25823591

  14. Femtosecond Fiber Lasers Based on Dissipative Processes for Nonlinear Microscopy.

    PubMed

    Wise, Frank W

    2012-01-01

    Recent progress in the development of femtosecond-pulse fiber lasers with parameters appropriate for nonlinear microscopy is reviewed. Pulse-shaping in lasers with only normal-dispersion components is briefly described, and the performance of the resulting lasers is summarized. Fiber lasers based on the formation of dissipative solitons now offer performance competitive with that of solid-state lasers, but with the benefits of the fiber medium. Lasers based on self-similar pulse evolution in the gain section of a laser also offer a combination of short pulse duration and high pulse energy that will be attractive for applications in nonlinear bioimaging.

  15. Developing single-laser sources for multimodal coherent anti-Stokes Raman scattering microscopy

    NASA Astrophysics Data System (ADS)

    Pegoraro, Adrian Frank

    Coherent anti-Stokes Raman scattering (CARS) microscopy has developed rapidly and is opening the door to new types of experiments. This work describes the development of new laser sources for CARS microscopy and their use for different applications. It is specifically focused on multimodal nonlinear optical microscopy—the simultaneous combination of different imaging techniques. This allows us to address a diverse range of applications, such as the study of biomaterials, fluid inclusions, atherosclerosis, hepatitis C infection in cells, and ice formation in cells. For these applications new laser sources are developed that allow for practical multimodal imaging. For example, it is shown that using a single Ti:sapphire oscillator with a photonic crystal fiber, it is possible to develop a versatile multimodal imaging system using optimally chirped laser pulses. This system can perform simultaneous two photon excited fluorescence, second harmonic generation, and CARS microscopy. The versatility of the system is further demonstrated by showing that it is possible to probe different Raman modes using CARS microscopy simply by changing a time delay between the excitation beams. Using optimally chirped pulses also enables further simplification of the laser system required by using a single fiber laser combined with nonlinear optical fibers to perform effective multimodal imaging. While these sources are useful for practical multimodal imaging, it is believed that for further improvements in CARS microscopy sensitivity, new excitation schemes are necessary. This has led to the design of a new, high power, extended cavity oscillator that should be capable of implementing new excitation schemes for CARS microscopy as well as other techniques. Our interest in multimodal imaging has led us to other areas of research as well. For example, a fiber-coupling scheme for signal collection in the forward direction is demonstrated that allows for fluorescence lifetime imaging without significant temporal distortion. Also highlighted is an imaging artifact that is unique to CARS microscopy that can alter image interpretation, especially when using multimodal imaging. By combining expertise in nonlinear optics, laser development, fiber optics, and microscopy, we have developed systems and techniques that will be of benefit for multimodal CARS microscopy.

  16. Risk factors for technical failure of endoscopic double self-expandable metallic stent placement by partial stent-in-stent method.

    PubMed

    Kawakubo, Kazumichi; Kawakami, Hiroshi; Toyokawa, Yoshihide; Otani, Koichi; Kuwatani, Masaki; Abe, Yoko; Kawahata, Shuhei; Kubo, Kimitoshi; Kubota, Yoshimasa; Sakamoto, Naoya

    2015-01-01

    Endoscopic double self-expandable metallic stent (SEMS) placement by the partial stent-in-stent (PSIS) method has been reported to be useful for the management of unresectable hilar malignant biliary obstruction. However, it is technically challenging, and the optimal SEMS for the procedure remains unknown. The aim of this study was to identify the risk factors for technical failure of endoscopic double SEMS placement for unresectable malignant hilar biliary obstruction (MHBO). Between December 2009 and May 2013, 50 consecutive patients with MHBO underwent endoscopic double SEMS placement by the PSIS method. We retrospectively evaluated the rate of successful double SEMS placement and identified the risk factors for technical failure. The technical success rate for double SEMS placement was 82.0% (95% confidence interval [CI]: 69.2-90.2). On univariate analysis, the rate of technical failure was high in patients with metastatic disease and unilateral placement. Multivariate analysis revealed that metastatic disease was a significant risk factor for technical failure (odds ratio: 9.63, 95% CI: 1.11-105.5). The subgroup analysis after double guidewire insertion showed that the rate of technical success was higher in the laser-cut type SEMS with a large mesh and thick delivery system than in the braided type SEMS with a small mesh and thick delivery system. Metastatic disease was a significant risk factor for technical failure of double SEMS placement for unresectable MHBO. The laser-cut type SEMS with a large mesh and thin delivery system might be preferable for the PSIS procedure. © 2014 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  17. Photonic crystal fibre enables short-wavelength two-photon laser scanning fluorescence microscopy with fura-2

    NASA Astrophysics Data System (ADS)

    McConnell, Gail; Riis, Erling

    2004-10-01

    We report on a novel and compact reliable laser source capable of short-wavelength two-photon laser scanning fluorescence microscopy based on soliton self-frequency shift effects in photonic crystal fibre. We demonstrate the function of the system by performing two-photon microscopy of smooth muscle cells and cardiac myocytes from the rat pulmonary vein and Chinese hamster ovary cells loaded with the fluorescent calcium indicator fura-2/AM.

  18. Optimization study of direct morphology observation by cold field emission SEM without gold coating.

    PubMed

    He, Dan; Fu, Cheng; Xue, Zhigang

    2018-06-01

    Gold coating is a general operation that is generally applied on non-conductive or low conductive materials, during which the morphology of the materials can be examined by scanning electron microscopy (SEM). However, fatal deficiencies in the materials can result in irreversible distortion and damage. The present study directly characterized different low conductive materials such as hydroxyapatite, modified poly(vinylidene fluoride) (PVDF) fiber, and zinc oxide nanopillar by cold field emission scanning electron microscopy (FE-SEM) without a gold coating. According to the characteristics of the low conductive materials, various test conditions, such as different working signal modes, accelerating voltages, electron beam spots, and working distances, were characterized to determine the best morphological observations of each sample. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Applications of synchrotron x-ray diffraction topography to fractography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bilello, J.C.

    1983-01-01

    Fractographs have been taken using a variety of probes each of which produces different types of information. Methods which have been used to examine fracture surfaces include: (a) optical microscopy, particularly interference contrast methods, (b) scanning electron microscopy (SEM), (c) SEM with electron channelling, (d) SEM with selected-area electron channelling, (e) Berg-Barrett (B-B) topography, and now (f) synchrotron x-radiation fractography (SXRF). This review concentrated on the role that x-ray methods can play in such studies. In particular, the ability to nondestructively assess the subsurface microstructure associated with the fracture to depths of the order of 5 to 10 ..mu..m becomesmore » an important attribute for observations of a large class of semi-brittle metals, semiconductors and ceramics.« less

  20. Direct observation for atomically flat and ordered vertical {111} side-surfaces on three-dimensionally figured Si(110) substrate using scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Yang, Haoyu; Hattori, Azusa N.; Ohata, Akinori; Takemoto, Shohei; Hattori, Ken; Daimon, Hiroshi; Tanaka, Hidekazu

    2017-11-01

    A three-dimensional Si{111} vertical side-surface structure on a Si(110) wafer was fabricated by reactive ion etching (RIE) followed by wet-etching and flash-annealing treatments. The side-surface was studied with scanning tunneling microscopy (STM) in atomic scale for the first time, in addition to atomic force microscopy (AFM), scanning electron microscopy (SEM), and low-energy electron diffraction (LEED). AFM and SEM showed flat and smooth vertical side-surfaces without scallops, and STM proved the realization of an atomically-flat 7 × 7-reconstructed structure, under optimized RIE and wet-etching conditions. STM also showed that a step-bunching occurred on the produced {111} side-surface corresponding to a reversely taped side-surface with a tilt angle of a few degrees, but did not show disordered structures. Characteristic LEED patterns from both side- and top-reconstructed surfaces were also demonstrated.

  1. Gaps analysis for CD metrology beyond the 22nm node

    NASA Astrophysics Data System (ADS)

    Bunday, Benjamin; Germer, Thomas A.; Vartanian, Victor; Cordes, Aaron; Cepler, Aron; Settens, Charles

    2013-04-01

    This paper will examine the future for critical dimension (CD) metrology. First, we will present the extensive list of applications for which CD metrology solutions are needed, showing commonalities and differences among the various applications. We will then report on the expected technical limits of the metrology solutions currently being investigated by SEMATECH and others in the industry to address the metrology challenges of future nodes, including conventional CD scanning electron microscopy (CD-SEM) and optical critical dimension (OCD) metrology and new potential solutions such as He-ion microscopy (HeIM, sometimes elsewhere referred to as HIM), CD atomic force microscopy (CD-AFM), CD small-angle x-ray scattering (CD-SAXS), high-voltage scanning electron microscopy (HV-SEM), and other types. A technical gap analysis matrix will then be demonstrated, showing the current state of understanding of the future of the CD metrology space.

  2. Microscopy based studies on the interaction of bio-based silver nanoparticles with Bombyx mori Nuclear Polyhedrosis virus.

    PubMed

    Tamilselvan, Selvaraj; Ashokkumar, Thirunavukkarasu; Govindaraju, Kasivelu

    2017-04-01

    In the present investigation, silver nanoparticles (AgNPs) interactions with Bombyx mori Nuclear Polyhedrosis virus (BmNPV) were characterized using High-Resolution Scanning Electron Microscopy (HR-SEM), Energy Dispersive X-ray Analysis (EDAX), Transmission Electron Microscopy (TEM), Atomic Force Microcopy (AFM) and Confocal Microscope (CM). HR-SEM study reveals that the biosynthesized AgNPs have interacted with BmNPV and were found on the surface. TEM micrographs of normal and viral polyhedra treated with AgNPs showed that the nanoparticles were accumulated in the membrane and it was noted that some of the AgNPs successfully penetrated the membrane by reaching the capsid of BmNPV. AFM and confocal microscopy studies reveal that the disruption in the shell membrane tends to lose its stability due to exposure of AgNPs to BmNPV. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Three-dimensional textures and defects of soft material layering revealed by thermal sublimation.

    PubMed

    Yoon, Dong Ki; Kim, Yun Ho; Kim, Dae Seok; Oh, Seong Dae; Smalyukh, Ivan I; Clark, Noel A; Jung, Hee-Tae

    2013-11-26

    Layering is found and exploited in a variety of soft material systems, ranging from complex macromolecular self-assemblies to block copolymer and small-molecule liquid crystals. Because the control of layer structure is required for applications and characterization, and because defects reveal key features of the symmetries of layered phases, a variety of techniques have been developed for the study of soft-layer structure and defects, including X-ray diffraction and visualization using optical transmission and fluorescence confocal polarizing microscopy, atomic force microscopy, and SEM and transmission electron microscopy, including freeze-fracture transmission electron microscopy. Here, it is shown that thermal sublimation can be usefully combined with such techniques to enable visualization of the 3D structure of soft materials. Sequential sublimation removes material in a stepwise fashion, leaving a remnant layer structure largely unchanged and viewable using SEM, as demonstrated here using a lamellar smectic liquid crystal.

  4. Study of nanoscale structural biology using advanced particle beam microscopy

    NASA Astrophysics Data System (ADS)

    Boseman, Adam J.

    This work investigates developmental and structural biology at the nanoscale using current advancements in particle beam microscopy. Typically the examination of micro- and nanoscale features is performed using scanning electron microscopy (SEM), but in order to decrease surface charging, and increase resolution, an obscuring conductive layer is applied to the sample surface. As magnification increases, this layer begins to limit the ability to identify nanoscale surface structures. A new technology, Helium Ion Microscopy (HIM), is used to examine uncoated surface structures on the cuticle of wild type and mutant fruit flies. Corneal nanostructures observed with HIM are further investigated by FIB/SEM to provide detailed three dimensional information about internal events occurring during early structural development. These techniques are also used to reconstruct a mosquito germarium in order to characterize unknown events in early oogenesis. Findings from these studies, and many more like them, will soon unravel many of the mysteries surrounding the world of developmental biology.

  5. Chapter 14: Electron Microscopy on Thin Films for Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romero, Manuel; Abou-Ras, Daniel; Nichterwitz, Melanie

    2016-07-22

    This chapter overviews the various techniques applied in scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and highlights their possibilities and also limitations. It gives the various imaging and analysis techniques applied on a scanning electron microscope. The chapter shows that imaging is divided into that making use of secondary electrons (SEs) and of backscattered electrons (BSEs), resulting in different contrasts in the images and thus providing information on compositions, microstructures, and surface potentials. Whenever aiming for imaging and analyses at scales of down to the angstroms range, TEM and its related techniques are appropriate tools. In many cases,more » also SEM techniques provide the access to various material properties of the individual layers, not requiring specimen preparation as time consuming as TEM techniques. Finally, the chapter dedicates to cross-sectional specimen preparation for electron microscopy. The preparation decides indeed on the quality of imaging and analyses.« less

  6. Image correlation microscopy for uniform illumination.

    PubMed

    Gaborski, T R; Sealander, M N; Ehrenberg, M; Waugh, R E; McGrath, J L

    2010-01-01

    Image cross-correlation microscopy is a technique that quantifies the motion of fluorescent features in an image by measuring the temporal autocorrelation function decay in a time-lapse image sequence. Image cross-correlation microscopy has traditionally employed laser-scanning microscopes because the technique emerged as an extension of laser-based fluorescence correlation spectroscopy. In this work, we show that image correlation can also be used to measure fluorescence dynamics in uniform illumination or wide-field imaging systems and we call our new approach uniform illumination image correlation microscopy. Wide-field microscopy is not only a simpler, less expensive imaging modality, but it offers the capability of greater temporal resolution over laser-scanning systems. In traditional laser-scanning image cross-correlation microscopy, lateral mobility is calculated from the temporal de-correlation of an image, where the characteristic length is the illuminating laser beam width. In wide-field microscopy, the diffusion length is defined by the feature size using the spatial autocorrelation function. Correlation function decay in time occurs as an object diffuses from its original position. We show that theoretical and simulated comparisons between Gaussian and uniform features indicate the temporal autocorrelation function depends strongly on particle size and not particle shape. In this report, we establish the relationships between the spatial autocorrelation function feature size, temporal autocorrelation function characteristic time and the diffusion coefficient for uniform illumination image correlation microscopy using analytical, Monte Carlo and experimental validation with particle tracking algorithms. Additionally, we demonstrate uniform illumination image correlation microscopy analysis of adhesion molecule domain aggregation and diffusion on the surface of human neutrophils.

  7. The combination of scanning electron and scanning probe microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sapozhnikov, I. D.; Gorbenko, O. M., E-mail: gorolga64@gmail.com; Felshtyn, M. L.

    2016-06-17

    We suggest the SPM module to combine SEM and SPM methods for studying surfaces. The module is based on the original mechanical moving and scanning system. The examples of studies of the steel surface microstructure in both SEM and SPM modes are presented.

  8. Image contrast enhancement of Ni/YSZ anode during the slice-and-view process in FIB-SEM.

    PubMed

    Liu, Shu-Sheng; Takayama, Akiko; Matsumura, Syo; Koyama, Michihisa

    2016-03-01

    Focused ion beam-scanning electron microscopy (FIB-SEM) is a widely used and easily operational equipment for three-dimensional reconstruction with flexible analysis volume. It has been using successfully and increasingly in the field of solid oxide fuel cell. However, the phase contrast of the SEM images is indistinct in many cases, which will bring difficulties to the image processing. Herein, the phase contrast of a conventional Ni/yttria stabilized zirconia anode is tuned in an FIB-SEM with In-Lens secondary electron (SE) and backscattered electron detectors. Two accessories, tungsten probe and carbon nozzle, are inserted during the observation. The former has no influence on the contrast. When the carbon nozzle is inserted, best and distinct contrast can be obtained by In-Lens SE detector. This method is novel for contrast enhancement. Phase segmentation of the image can be automatically performed. The related mechanism for different images is discussed. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  9. Impact of plasma treatment under atmospheric pressure on surface chemistry and surface morphology of extruded and injection-molded wood-polymer composites (WPC)

    NASA Astrophysics Data System (ADS)

    Hünnekens, Benedikt; Avramidis, Georg; Ohms, Gisela; Krause, Andreas; Viöl, Wolfgang; Militz, Holger

    2018-05-01

    The influence of plasma treatment performed at atmospheric pressure and ambient air as process gas by a dielectric barrier discharge (DBD) on the morphological and chemical surface characteristics of wood-polymer composites (WPC) was investigated by applying several surface-sensitive analytical methods. The surface free energy showed a distinct increase after plasma treatment for all tested materials. The analyzing methods for surface topography-laser scanning microscopy (LSM) and atomic force microscopy (AFM)-revealed a roughening induced by the treatment which is likely due to a degradation of the polymeric surface. This was accompanied by the formation of low-molecular-weight oxidized materials (LMWOMs), appearing as small globular structures. With increasing discharge time, the nodules increase in size and the material degradation proceeds. The surface degradation seems to be more serious for injection-molded samples, whereas the formation of nodules became more apparent and were evenly distributed on extruded surfaces. These phenomena could also be confirmed by scanning electron microscopy (SEM). In addition, differences between extruded and injection-molded surfaces could be observed. Besides the morphological changes, the chemical composition of the substrates' surfaces was affected by the plasma discharge. Infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS) indicated the formation of new oxygen containing polar groups on the modified surfaces.

  10. Growth characteristics of primary M7C3 carbide in hypereutectic Fe-Cr-C alloy.

    PubMed

    Liu, Sha; Zhou, Yefei; Xing, Xiaolei; Wang, Jibo; Ren, Xuejun; Yang, Qingxiang

    2016-09-06

    The microstructure of the hypereutectic Fe-Cr-C alloy is observed by optical microscopy (OM). The initial growth morphology, the crystallographic structure, the semi-molten morphology and the stacking faults of the primary M7C3 carbide are observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The in-suit growth process of the primary M7C3 carbide was observed by confocal laser microscope (CLM). It is found that the primary M7C3 carbide in hypereutectic Fe-Cr-C alloy is irregular polygonal shape with several hollows in the center and gaps on the edge. Some primary M7C3 carbides are formed by layers of shell or/and consist of multiple parts. In the initial growth period, the primary M7C3 carbide forms protrusion parallel to {} crystal planes. The extending and revolving protrusion forms the carbide shell. The electron backscattered diffraction (EBSD) maps show that the primary M7C3 carbide consists of multiple parts. The semi-molten M7C3 carbide contains unmelted shell and several small-scale carbides inside, which further proves that the primary M7C3 carbide is not an overall block. It is believed that the coalescence of the primary M7C3 carbides is ascribed to the growing condition of the protrusion and the gap filling process.

  11. In vitro Paracoccidioides brasiliensis biofilm and gene expression of adhesins and hydrolytic enzymes.

    PubMed

    Sardi, Janaina de Cássia Orlandi; Pitangui, Nayla de Souza; Voltan, Aline Raquel; Braz, Jaqueline Derissi; Machado, Marcelo Pelajo; Fusco Almeida, Ana Marisa; Mendes Giannini, Maria Jose Soares

    2015-01-01

    Paracoccidioides species are dimorphic fungi that initially infect the lungs but can also spread throughout the body. The spreading infection is most likely due to the formation of a biofilm that makes it difficult for the host to eliminate the infection. Biofilm formation is crucial for the development of infections and confines the pathogen to an extracellular matrix. Its presence is associated with antimicrobial resistance and avoidance of host defenses. This current study provides the first description of biofilm formation by Paracoccidioides brasiliensis (Pb18) and an analysis of gene expression, using real-time PCR, associated with 3 adhesins and 2 hydrolytic enzymes that could be associated with the virulence profile. Biofilm formation was analyzed using fluorescence microscopy, scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). Metabolic activity was determined using the XTT reduction assay. P. brasiliensis was able to form mature biofilm in 144 h with a thickness of 100 μm. The presence of a biofilm was found to be associated with an increase in the expression of adhesins and enzymes. GP43, enolase, GAPDH and aspartyl proteinase genes were over-expressed, whereas phospholipase was down-regulated in biofilm. The characterization of biofilm formed by P. brasiliensis may contribute to a better understanding of the pathogenesis of paracoccidioidomycosis as well as the search for new therapeutic alternatives; while improving the effectiveness of treatment.

  12. Growth characteristics of primary M7C3 carbide in hypereutectic Fe-Cr-C alloy

    PubMed Central

    Liu, Sha; Zhou, Yefei; Xing, Xiaolei; Wang, Jibo; Ren, Xuejun; Yang, Qingxiang

    2016-01-01

    The microstructure of the hypereutectic Fe-Cr-C alloy is observed by optical microscopy (OM). The initial growth morphology, the crystallographic structure, the semi-molten morphology and the stacking faults of the primary M7C3 carbide are observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The in-suit growth process of the primary M7C3 carbide was observed by confocal laser microscope (CLM). It is found that the primary M7C3 carbide in hypereutectic Fe-Cr-C alloy is irregular polygonal shape with several hollows in the center and gaps on the edge. Some primary M7C3 carbides are formed by layers of shell or/and consist of multiple parts. In the initial growth period, the primary M7C3 carbide forms protrusion parallel to {} crystal planes. The extending and revolving protrusion forms the carbide shell. The electron backscattered diffraction (EBSD) maps show that the primary M7C3 carbide consists of multiple parts. The semi-molten M7C3 carbide contains unmelted shell and several small-scale carbides inside, which further proves that the primary M7C3 carbide is not an overall block. It is believed that the coalescence of the primary M7C3 carbides is ascribed to the growing condition of the protrusion and the gap filling process. PMID:27596718

  13. Analysis of leaf surfaces using scanning ion conductance microscopy.

    PubMed

    Walker, Shaun C; Allen, Stephanie; Bell, Gordon; Roberts, Clive J

    2015-05-01

    Leaf surfaces are highly complex functional systems with well defined chemistry and structure dictating the barrier and transport properties of the leaf cuticle. It is a significant imaging challenge to analyse the very thin and often complex wax-like leaf cuticle morphology in their natural state. Scanning electron microscopy (SEM) and to a lesser extent Atomic force microscopy are techniques that have been used to study the leaf surface but their remains information that is difficult to obtain via these approaches. SEM is able to produce highly detailed and high-resolution images needed to study leaf structures at the submicron level. It typically operates in a vacuum or low pressure environment and as a consequence is generally unable to deal with the in situ analysis of dynamic surface events at submicron scales. Atomic force microscopy also possess the high-resolution imaging required and can follow dynamic events in ambient and liquid environments, but can over exaggerate small features and cannot image most leaf surfaces due to their inherent roughness at the micron scale. Scanning ion conductance microscopy (SICM), which operates in a liquid environment, provides a potential complementary analytical approach able to address these issues and which is yet to be explored for studying leaf surfaces. Here we illustrate the potential of SICM on various leaf surfaces and compare the data to SEM and atomic force microscopy images on the same samples. In achieving successful imaging we also show that SICM can be used to study the wetting of hydrophobic surfaces in situ. This has potentially wider implications than the study of leaves alone as surface wetting phenomena are important in a range of fundamental and applied studies. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  14. Surface modification of tooth root canal after application of an X-ray opaque waveguide

    NASA Astrophysics Data System (ADS)

    Dostálová, T.; Jelínková, H.; Šulc, J.; Němec, M.; Koranda, P.; Bartoňová, M.; Radina, P.; Miyagi, M.; Shi, Y.-W.; Matsuura, Y.

    The interest in endodontic use of dental laser systems has been increasing. With the development of thin and flexible delivery systems for various wavelengths, laser applications in endodontics may become even more desirable. The aim of this study is to check the X-ray opacity of a hollow waveguide and to observe the results after laser root canal treatment. The root canal systems of 10 molars were treated endodontically by laser. For the laser radiation source, an Er:YAG laser system generating a wavelength of 2940 nm and an Alexandrite laser system generating a wavelength of 375 nm were used. The hollow waveguide used was checked under X-ray . A root canal surface treated by laser radiation was analyzed by a scanning electron microscope (SEM). The special hollow glass waveguide used was visible in the root canal system under X-ray imaging. Surface modification of the root canal after laser treatment was not found. After conventional treatment the root canal was enlarged. The surface was covered with a smear layer. After application of both laser systems, the smear layer was removed. The resulting canal surface was found to be clean and smooth. Under SEM observation open dentinal tubules were visible. No cracks were present, nor were surface modifications observed.

  15. Hydrophilicity of dentin bonding systems influences in vitro Streptococcus mutans biofilm formation

    PubMed Central

    Brambilla, Eugenio; Ionescu, Andrei; Mazzoni, Annalisa; Cadenaro, Milena; Gagliani, Massimo; Ferraroni, Monica; Tay, Franklin; Pashley, David; Breschi, Lorenzo

    2014-01-01

    Objectives To evaluate in vitro Streptococcus mutans (S. mutans) biofilm formation on the surface of five light-curing experimental dental bonding systems (DBS) with increasing hydrophilicity. The null hypothesis tested was that resin chemical composition and hydrophilicity does not affect S. mutans biofilm formation. Methods Five light-curing versions of experimental resin blends with increasing hydrophilicity were investigated (R1, R2, R3, R4 and R5). R1 and R2 contained ethoxylated BisGMA/TEGDMA or BisGMA/TEGDMA, respectively, and were very hydrophobic, were representative of pit-and-fissure bonding agents. R3 was representative of a typical two-step etch- and-rinse adhesive, while R4 and R5 were very hydrophilic resins analogous to self-etching adhesives. Twenty-eight disks were prepared for each resin blend. After a 24 h-incubation at 37 °C, a multilayer monospecific biofilm of S. mutans was obtained on the surface of each disk. The adherent biomass was determined using the MTT assay and evaluated morphologically with confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). Results R2 and R3 surfaces showed the highest biofilm formation while R1 and R4 showed a similar intermediate biofilm formation. R5 was more hydrophilic and acidic and was significantly less colonized than all the other resins. A significant quadratic relationship between biofilm formation and hydrophilicity of the resin blends was found. CLSM and SEM evaluation confirmed MTT assay results. Conclusions The null hypothesis was rejected since S. mutans biofilm formation was influenced by hydrophilicity, surface acidity and chemical composition of the experimental resins. Further studies using a bioreactor are needed to confirm the results and clarify the role of the single factors. PMID:24954666

  16. Influence of the surface speciation on biofilm attachment to chalcopyrite by Acidithiobacillus thiooxidans.

    PubMed

    Lara, René H; García-Meza, J Viridiana; González, Ignacio; Cruz, Roel

    2013-03-01

    Surfaces of massive chalcopyrite (CuFeS2) electrodes were modified by applying variable oxidation potential pulses under growth media in order to induce the formation of different secondary phases (e.g., copper-rich polysulfides, S n(2-); elemental sulfur, S(0); and covellite, CuS). The evolution of reactivity (oxidation capacity) of the resulting chalcopyrite surfaces considers a transition from passive or inactive (containing CuS and S n(2-)) to active (containing increasing amounts of S(0)) phases. Modified surfaces were incubated with cells of sulfur-oxidizing bacteria (Acidithiobacillus thiooxidans) for 24 h in a specific culture medium (pH 2). Abiotic control experiments were also performed to compare chemical and biological oxidation. After incubation, the density of cells attached to chalcopyrite surfaces, the structure of the formed biofilm, and their exopolysaccharides and nucleic acids were analyzed by confocal laser scanning microscopy (CLSM) and scanning electron microscopy coupled to dispersive X-ray analysis (SEM-EDS). Additionally, CuS and S n(2-)/S(0) speciation, as well as secondary phase evolution, was carried out on biooxidized and abiotic chalcopyrite surfaces using Raman spectroscopy and SEM-EDS. Our results indicate that oxidized chalcopyrite surfaces initially containing inactive S n(2-) and S n(2-)/CuS phases were less colonized by A. thiooxidans as compared with surfaces containing active phases (mainly S(0)). Furthermore, it was observed that cells were partially covered by CuS and S(0) phases during biooxidation, especially at highly oxidized chalcopyrite surfaces, suggesting the innocuous effect of CuS phases during A. thiooxidans performance. These results may contribute to understanding the effect of the concomitant formation of refractory secondary phases (as CuS and inactive S n(2-)) during the biooxidation of chalcopyrite by sulfur-oxidizing microorganisms in bioleaching systems.

  17. Biomimetic composite coating on rapid prototyped scaffolds for bone tissue engineering.

    PubMed

    Arafat, M Tarik; Lam, Christopher X F; Ekaputra, Andrew K; Wong, Siew Yee; Li, Xu; Gibson, Ian

    2011-02-01

    The objective of this present study was to improve the functional performance of rapid prototyped scaffolds for bone tissue engineering through biomimetic composite coating. Rapid prototyped poly(ε-caprolactone)/tri-calcium phosphate (PCL/TCP) scaffolds were fabricated using the screw extrusion system (SES). The fabricated PCL/TCP scaffolds were coated with a carbonated hydroxyapatite (CHA)-gelatin composite via biomimetic co-precipitation. The structure of the prepared CHA-gelatin composite coating was studied by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. Compressive mechanical testing revealed that the coating process did not have any detrimental effect on the mechanical properties of the scaffolds. The cell-scaffold interaction was studied by culturing porcine bone marrow stromal cells (BMSCs) on the scaffolds and assessing the proliferation and bone-related gene and protein expression capabilities of the cells. Confocal laser microscopy and SEM images of the cell-scaffold constructs showed a uniformly distributed cell sheet and accumulation of extracellular matrix in the interior of CHA-gelatin composite-coated PCL/TCP scaffolds. The proliferation rate of BMSCs on CHA-gelatin composite-coated PCL/TCP scaffolds was about 2.3 and 1.7 times higher than that on PCL/TCP scaffolds and CHA-coated PCL/TCP scaffolds, respectively, by day 10. Furthermore, reverse transcription polymerase chain reaction and Western blot analysis revealed that CHA-gelatin composite-coated PCL/TCP scaffolds stimulate osteogenic differentiation of BMSCs the most, compared with PCL/TCP scaffolds and CHA-coated PCL/TCP scaffolds. These results demonstrate that CHA-gelatin composite-coated rapid prototyped PCL/TCP scaffolds are promising for bone tissue engineering. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. Blood flow in hemodialysis catheters: a numerical simulation and microscopic analysis of in vivo-formed fibrin.

    PubMed

    Lucas, Thabata Coaglio; Tessarolo, Francesco; Jakitsch, Victor; Caola, Iole; Brunori, Giuliano; Nollo, Giandomenico; Huebner, Rudolf

    2014-07-01

    Although catheters with side holes allow high flow rate during hemodialysis, they also induce flow disturbances and create a critical hemodynamic environment that can favor fibrin deposition and thrombus formation. This study compared the blood flow and analyzed the influence of shear stress and shear rate in fibrin deposition and thrombus formation in nontunneled hemodialysis catheters with unobstructed side holes (unobstructed device) or with some side holes obstructed by blood thrombi (obstructed device). Computational fluid dynamics (CFD) was performed to simulate realistic blood flow under laminar and turbulent conditions. The results from the numerical simulations were compared with the fibrin distribution and thrombus architecture data obtained from scanning electron microscopy (SEM) and two photons laser scanning microscopy (TPLSM) on human thrombus formed in catheters removed from patients. CFD showed that regions of flow eddies and separation were mainly found in the venous holes region. TPLSM characterization of thrombi and fibrin structure in patient samples showed fibrin formations in accordance with simulated flux dynamics. Under laminar flow conditions, the wall shear stress close to border holes increased from 87.3±0.2 Pa in the unobstructed device to 176.2±0.5 Pa in the obstructed one. Under turbulent flow conditions, the shear stress increased by 47% when comparing the obstructed to the unobstructed catheter. The shear rates were generally higher than 5000/s and therefore sufficient to induce fibrin deposition. This findings were supported by SEM data documenting a preferential fibrin arrangement on side hole walls. Copyright © 2013 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  19. Detailed methodology for high resolution scanning electron microscopy (SEM) of murine malaria parasitized-erythrocytes.

    PubMed

    Hayakawa, Eri H; Matsuoka, Hiroyuki

    2016-10-01

    Scanning electron microscopy (SEM) is a powerful tool used to investigate object surfaces and has been widely applied in both material science and biology. With respect to the study of malaria, SEM revealed that erythrocytes infected with Plasmodium falciparum, a human parasite, display 'knob-like' structures on their surface comprising parasitized proteins. However, detailed methodology for SEM studies of malaria parasites is lacking in the literature making such studies challenging. Here, we provide a step-by-step guide to preparing Plasmodium-infected erythrocytes from two mouse strains for SEM analysis with minimal structural deterioration. We tested three species of murine malaria parasites, P. berghei, P. yoelii, and P. chabaudi, as well as non-parasitized human erythrocytes and P. falciparum-infected erythrocytes for comparisons. Our data demonstrated that the surface structures of parasitized erythrocytes between the three species of murine parasites in the two different strains of mice were indistinguishable and no surface alterations were observed in P. falciparum-erythrocytes. Our SEM observations contribute towards an understanding of the molecular mechanisms of parasite maturation in the erythrocyte cytoplasm and, along with future studies using our detailed methodology, may help to gain insight into the clinical phenomena of human malaria. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  20. Field emission scanning electron microscopy (FE-SEM) as an approach for nanoparticle detection inside cells.

    PubMed

    Havrdova, M; Polakova, K; Skopalik, J; Vujtek, M; Mokdad, A; Homolkova, M; Tucek, J; Nebesarova, J; Zboril, R

    2014-12-01

    When developing new nanoparticles for bio-applications, it is important to fully characterize the nanoparticle's behavior in biological systems. The most common techniques employed for mapping nanoparticles inside cells include transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM). These techniques entail passing an electron beam through a thin specimen. STEM or TEM imaging is often used for the detection of nanoparticles inside cellular organelles. However, lengthy sample preparation is required (i.e., fixation, dehydration, drying, resin embedding, and cutting). In the present work, a new matrix (FTO glass) for biological samples was used and characterized by field emission scanning electron microscopy (FE-SEM) to generate images comparable to those obtained by TEM. Using FE-SEM, nanoparticle images were acquired inside endo/lysosomes without disruption of the cellular shape. Furthermore, the initial steps of nanoparticle incorporation into the cells were captured. In addition, the conductive FTO glass endowed the sample with high stability under the required accelerating voltage. Owing to these features of the sample, further analyses could be performed (material contrast and energy-dispersive X-ray spectroscopy (EDS)), which confirmed the presence of nanoparticles inside the cells. The results showed that FE-SEM can enable detailed characterization of nanoparticles in endosomes without the need for contrast staining or metal coating of the sample. Images showing the intracellular distribution of nanoparticles together with cellular morphology can give important information on the biocompatibility and demonstrate the potential of nanoparticle utilization in medicine. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Morphological characteristics and barrier properties of thermoplastic starch/chitosan blown film.

    PubMed

    Dang, Khanh Minh; Yoksan, Rangrong

    2016-10-05

    Fabrication of starch-based edible film using blown film extrusion is challenging and interesting because this process provides continuous operation with shorter production time and lower energy consumption, is less labor intensive, and results in higher productivity than the conventional solution casting technique. Previously, we reported on the preparation and some properties of thermoplastic starch/chitosan (TPS/CTS) blown films; however, their morphological characteristics and barrier properties had not yet been elucidated. The present work thus aims to investigate the effect of chitosan (0.37-1.45%) on morphological characteristics, water vapor and oxygen barrier properties as well as hydrophilicity of the TPS and TPS/CTS films. The relationship between morphological characteristics and properties of the films was also discussed. Scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM) and X-ray photoelectron spectroscopy (XPS) confirmed the distribution and deposition of chitosan on the film surface. The existence of chitosan on the surface imparted the improved water vapor and oxygen barrier properties and the reduced surface hydrophilicity to the film. The results suggest that this biodegradable bio-based TPS/CTS film could potentially be used as an edible film for food and pharmaceutical applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Osteogenic Responses to Zirconia with Hydroxyapatite Coating by Aerosol Deposition

    PubMed Central

    Cho, Y.; Hong, J.; Ryoo, H.; Kim, D.; Park, J.

    2015-01-01

    Previously, we found that osteogenic responses to zirconia co-doped with niobium oxide (Nb2O5) or tantalum oxide (Ta2O5) are comparable with responses to titanium, which is widely used as a dental implant material. The present study aimed to evaluate the in vitro osteogenic potential of hydroxyapatite (HA)-coated zirconia by an aerosol deposition method for improved osseointegration. Surface analysis by scanning electron microscopy and x-ray diffraction proved that a thin as-deposited HA film on zirconia showed a shallow, regular, crater-like surface. Deposition of dense and uniform HA films was measured by SEM, and the contact angle test demonstrated improved wettability of the HA-coated surface. Confocal laser scanning microscopy indicated that MC3T3-E1 pre-osteoblast attachment did not differ notably between the titanium and zirconia surfaces; however, cells on the HA-coated zirconia exhibited a lower proliferation than those on the uncoated zirconia late in the culture. Nevertheless, ALP, alizarin red S staining, and bone marker gene expression analysis indicated good osteogenic responses on HA-coated zirconia. Our results suggest that HA-coating by aerosol deposition improves the quality of surface modification and is favorable to osteogenesis. PMID:25586588

  3. Observation of defect-induced Photoresponse and charge carrier transport in single GeSe2 nanobelt devices

    NASA Astrophysics Data System (ADS)

    Mukherjee, Bablu; Tok, Eng Soon; Haur Sow, Chorng

    2013-03-01

    Single crystal GeSe2 nanobelts were grown using chemical vapor deposition techniques. Morphology of the nanostructures was characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffractometry (XRD) and Raman spectroscopy. Electronic transport properties, impedance spectroscopy, photoconductive characteristics and temperature-dependent electrical resistivity measurements were carried out on individual GeSe2 nanobelt devices. The photosensitivity of single GeSe2 nanobelt (NB) devices was examined with two different excitation wavelengths of laser beams with photon energies above band gap and at sub-band gap of the NB. A maximum photoconductive gain 106 % was achieved at a wavelength of 808 nm. The magnitude of the photocurrent and response time of the individual GeSe2 NB device indicate that the photoresponse could be attributed to the presence of isolated mid band gap defect levels. Temperature dependent photocurrent measurements indicate the rough estimation of the energy levels for the defect states. Localized photostudy shows that the large photoresponse of the device primarily occurs at the metal-NB contact regions. Department of Physics, 2 Science Drive 3, National University of Singapore (NUS), Singapore 117542

  4. From plasmon-induced luminescence enhancement in gold nanorods to plasmon-induced luminescence turn-off: a way to control reshaping.

    PubMed

    Molinaro, Céline; Marguet, Sylvie; Douillard, Ludovic; Charra, Fabrice; Fiorini-Debuisschert, Céline

    2018-05-07

    Two-photon luminescence (TPL) turn-off in small single gold nanorods (GNRs) exposed to increased resonant femtosecond laser excitation (800 nm wavelength, pulse energy density varying from 125 μJ cm -2 to 2.5 mJ cm -2 ) is investigated. The origin is shown to be a photo-induced decrease of the rod aspect ratio. This aspect ratio reduction could reasonably be assigned to gold atom diffusion away from the rod tips, where hot spots are localized. The two-photon luminescence signal can be recovered after a blue-shift of the incident excitation wavelength. No change in the excitation wavelength results in an out of resonance excitation of the rods and thus a reduced absorption, acting as feedback to stabilize the GNR shape and size. A theoretical analysis is presented evidencing limited thermal effects in the femtosecond regime for small nanoparticles, in good agreement with complementary topographic characterizations using scanning electron microscopy (SEM) and atomic force microscopy (AFM). We show finally that TPL reveals itself as a highly sensitive tool to follow tiny changes resulting from the photo-induced reshaping of GNRs.

  5. Eco-friendly streamlined process for sporopollenin exine capsule extraction

    PubMed Central

    Mundargi, Raghavendra C.; Potroz, Michael G.; Park, Jae Hyeon; Seo, Jeongeun; Tan, Ee-Lin; Lee, Jae Ho; Cho, Nam-Joon

    2016-01-01

    Sporopollenin exine capsules (SECs) extracted from Lycopodium clavatum spores are an attractive biomaterial possessing a highly robust structure suitable for microencapsulation strategies. Despite several decades of research into SEC extraction methods, the protocols commonly used for L. clavatum still entail processing with both alkaline and acidolysis steps at temperatures up to 180 °C and lasting up to 7 days. Herein, we demonstrate a significantly streamlined processing regimen, which indicates that much lower temperatures and processing durations can be used without alkaline lysis. By employing CHN elemental analysis, scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM), and dynamic image particle analysis (DIPA), the optimum conditions for L. clavatum SEC processing were determined to include 30 hours acidolysis at 70 °C without alkaline lysis. Extending these findings to proof-of-concept encapsulation studies, we further demonstrate that our SECs are able to achieve a loading of 0.170 ± 0.01 g BSA per 1 g SECs by vacuum-assisted loading. Taken together, our streamlined processing method and corresponding characterization of SECs provides important insights for the development of applications including drug delivery, cosmetics, personal care products, and foods. PMID:26818918

  6. Eco-friendly streamlined process for sporopollenin exine capsule extraction

    NASA Astrophysics Data System (ADS)

    Mundargi, Raghavendra C.; Potroz, Michael G.; Park, Jae Hyeon; Seo, Jeongeun; Tan, Ee-Lin; Lee, Jae Ho; Cho, Nam-Joon

    2016-01-01

    Sporopollenin exine capsules (SECs) extracted from Lycopodium clavatum spores are an attractive biomaterial possessing a highly robust structure suitable for microencapsulation strategies. Despite several decades of research into SEC extraction methods, the protocols commonly used for L. clavatum still entail processing with both alkaline and acidolysis steps at temperatures up to 180 °C and lasting up to 7 days. Herein, we demonstrate a significantly streamlined processing regimen, which indicates that much lower temperatures and processing durations can be used without alkaline lysis. By employing CHN elemental analysis, scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM), and dynamic image particle analysis (DIPA), the optimum conditions for L. clavatum SEC processing were determined to include 30 hours acidolysis at 70 °C without alkaline lysis. Extending these findings to proof-of-concept encapsulation studies, we further demonstrate that our SECs are able to achieve a loading of 0.170 ± 0.01 g BSA per 1 g SECs by vacuum-assisted loading. Taken together, our streamlined processing method and corresponding characterization of SECs provides important insights for the development of applications including drug delivery, cosmetics, personal care products, and foods.

  7. Change in structural morphology on addition of ZnO and its effect on fluorescence of Yb³⁺/Er³⁺ doped Y₂O₃.

    PubMed

    Yadav, R V; Verma, R K; Kaur, G; Rai, S B

    2013-02-15

    Yb(3+)/Er(3+) codoped Y(2)O(3) phosphor and its composite with ZnO have been synthesized by combustion method. Morphology of the materials has been investigated using X-ray diffraction pattern (XRD) and scanning electron microscopy (SEM) techniques. XRD confirms the constituents as Y(2)O(3) and ZnO, with average crystallite size of 112 nm. On addition of ZnO, a small shifting in XRD pattern of Y(2)O(3) is observed. SEM pattern suggests that the average particle size lies in micro-range (0.5 μm). A dumble like structure is observed for hybrid material on annealing at 1473 K. A strong green (525, 546 nm) with weak blue (411 nm) and red (657 nm) emissions through upconversion has been observed from the phosphor on excitation with 976 nm diode laser. The observed emissions involve (2)H(9/2)→(4)I(15/2), (2)H(11/2)→(4)I(15/2), (4)S(3/2)→(4)I(15/2) and (4)F(9/2)→(4)I(15/2) electronic transitions, respectively. The upconversion process has been confirmed by power dependence measurements and its slope value was found to be 1.85, 1.72 for green and red emissions, respectively. On addition of ZnO, the intensity of these emissions is enhanced several times. The reason behind the enhancement is discussed with the help of the emitting level lifetime. An interesting dual mode property (upconversion and downconversion) to the same material has been observed on excitation with 532 nm laser source. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Optimal Er:YAG laser irradiation parameters for debridement of microstructured fixture surfaces of titanium dental implants.

    PubMed

    Taniguchi, Yoichi; Aoki, Akira; Mizutani, Koji; Takeuchi, Yasuo; Ichinose, Shizuko; Takasaki, Aristeo Atsushi; Schwarz, Frank; Izumi, Yuichi

    2013-07-01

    Er:YAG laser (ErL) irradiation has been reported to be effective for treating peri-implant disease. The present study seeks to evaluate morphological and elemental changes induced on microstructured surfaces of dental endosseous implants by high-pulse-repetition-rate ErL irradiation and to determine the optimal irradiation conditions for debriding contaminated microstructured surfaces. In experiment 1, dual acid-etched microstructured implants were irradiated by ErL (pulse energy, 30-50 mJ/pulse; repetition rate, 30 Hz) with and without water spray and for used and unused contact tips. Experiment 2 compared the ErL treatment with conventional mechanical treatments (metal/plastic curettes and ultrasonic scalers). In experiment 3, five commercially available microstructures were irradiated by ErL light (pulse energy, 30-50 mJ/pulse; pulse repetition rate, 30 Hz) while spraying water. In experiment 4, contaminated microstructured surfaces of three failed implants were debrided by ErL irradiation. After the experiments, all treated surfaces were assessed by stereomicroscopy, scanning electron microscopy (SEM), and/or energy-dispersive X-ray spectroscopy (EDS). The stereomicroscopy, SEM, and EDS results demonstrate that, unlike mechanical treatments, ErL irradiation at 30 mJ/pulse and 30 Hz with water spray induced no color or morphological changes to the microstructures except for the anodized implant surface, which was easily damaged. The optimized irradiation parameters effectively removed calcified deposits from contaminated titanium microstructures without causing substantial thermal damage. ErL irradiation at pulse energies below 30 mJ/pulse (10.6 J/cm(2)/pulse) and 30 Hz with water spray in near-contact mode seems to cause no damage and to be effective for debriding microstructured surfaces (except for anodized microstructures).

  9. Hamstring Graft Technique for Stabilization of Canine Cranial Cruciate Ligament Deficient Stifles

    PubMed Central

    LOPEZ, MANDI J.; MARKEL, MARK D.; KALSCHEUR, VICKI; LU, YAN; MANLEY, PAUL A.

    2007-01-01

    Objective To investigate the harvest and application of hamstring grafts for canine cranial cruciate ligament (CrCL) reconstruction. Study Design Experimental study. Animals Four adult female hounds, weighing 26.3 ± 1.6 kg (mean ± SEM). Methods One stifle in each dog was randomly chosen for hamstring graft CrCL reconstruction after native CrCL transection. Arthroscopy was performed to evaluate graft integrity at 12 weeks. Gait analysis and stifle radiographs were performed preoperatively and up to 52 weeks after graft placement. Dogs were killed 12 (n = 2) or 52 weeks (n = 2) after CrCL reconstruction. Tissues were evaluated grossly and with light and confocal laser microscopy. Results Hamstring grafts were intact in all stifles at 12 weeks (n = 4) and 52 weeks (n = 2). Grossly, there was no osteoarthritis in stifles at 12 weeks and only chondrophytes along the trochlear ridges at 52 weeks. Minimal radiographic evidence of osteoarthritis developed in stifles with grafts during the study. Lameness in limbs with grafts resolved by 52 weeks. Graft tissue was highly vascular, ligamentized, and undergoing active remodeling at 12 weeks. Fifty-two weeks after graft placement, intraarticular graft tissue was well vascularized, mature, and encapsulated by synovium, and graft-bone interfaces were characterized by Sharpey’s fiber insertions. There was no evidence of graft necrosis using confocal laser microscopy at either time point. Conclusions The hamstring graft technique may be a viable method of canine CrCL reconstruction. Clinical Relevance Hamstring grafts may be an alternative technique for canine CrCL reconstruction. Further study is needed before clinical application. PMID:12866003

  10. Growth and characterization of GaN thin film on Si substrate by thermionic vacuum arc (TVA)

    NASA Astrophysics Data System (ADS)

    Kundakçı, Mutlu; Mantarcı, Asim; Erdoğan, Erman

    2017-01-01

    Gallium nitride (GaN) is an attractive material with a wide-direct band gap (3.4 eV) and is one of the significant III-nitride materials, with many advantageous device applications such as high electron mobility transistors, lasers, sensors, LEDs, detectors, and solar cells, and has found applications in optoelectronic devices. GaN could also be useful for industrial research in the future. Chemical vapor deposition (CVD), molecular beam epitaxy (MBE), sputter, and pulsed laser deposition (PLD) are some of the methods used to fabricate GaN thin film. In this research, a GaN thin film grown on a silicon substrate using the thermionic vacuum arc (TVA) technique has been extensively studied. Fast deposition, short production time, homogeneity, and uniform nanostructure with low roughness can be seen as some of the merits of this method. The growth of the GaN was conducted at an operating pressure of 1× {{10}-6} \\text{Torr} , a plasma current 0.6 \\text{A} and for a very short period of time of 40 s. For the characterization process, scanning electron microscopy (SEM) was conducted to determine the structure and surface morphology of the material. Energy dispersive x-ray spectroscopy (EDX) was used to comprehend the elemental analysis characterization of the film. X-ray diffraction (XRD) was used to analyze the structure of the film. Raman measurements were taken to investigate the phonon modes of the material. The morphological properties of the material were analyzed in detail by atomic force microscopy (AFM).

  11. Controlling successive ionic layer absorption and reaction cycles to optimize silver nanoparticle-induced localized surface plasmon resonance effects on the paper strip

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Chul; Kim, Wansun; Park, Hun-Kuk; Choi, Samjin

    2017-03-01

    This study investigates why a silver nanoparticle (SNP)-induced surface-enhanced Raman scattering (SERS) paper chip fabricated at low successive ionic layer absorption and reaction (SILAR) cycles leads to a high SERS enhancement factor (7 × 108) with an inferior nanostructure and without generating a hot spot effect. The multi-layered structure of SNPs on cellulose fibers, verified by magnified scanning electron microscopy (SEM) and analyzed by a computational simulation method, was hypothesized as the reason. The pattern of simulated local electric field distribution with respect to the number of SILAR cycles showed good agreement with the experimental Raman intensity, regardless of the wavelength of the excitation laser sources. The simulated enhancement factor at the 785-nm excitation laser source (2.8 × 109) was 2.5 times greater than the experimental enhancement factor (1.1 × 109). A 532-nm excitation laser source exhibited the highest maximum local electric field intensity (1.9 × 1011), particularly at the interparticle gap called a hot spot. The short wavelength led to a strong electric field intensity caused by strong electromagnetic coupling arising from the SNP-induced local surface plasmon resonance (LSPR) effects through high excitation energy. These findings suggest that our paper-based SILAR-fabricated SNP-induced LSPR model is valid for understanding SNP-induced LSPR effects.

  12. Laser paper cleaning: the method of cleaning historical books

    NASA Astrophysics Data System (ADS)

    Zekou, Evangelini; Tsilikas, Ioannis; Chatzitheodoridis, Elias; Serafetinides, Alexander A.

    2016-01-01

    Conservation of cultural heritage treasures is the most important issue for transferring knowledge to the public through the next generation of students, academics, and researchers. Although this century is authenticating e-books and information by means of electronic text, still historical manuscripts as content as well as objects are the main original recourses of keeping a record of this transformation. The current work focuses on cleaning paper samples by the application of pulsed light, which is interventional. Experiments carried out using paper samples that are artificially colonized with Ulocladium chartarum. Paper is treated by Nd:YAG laser light. The available wavelength is 1064 nm, at various fluences, repetition rates and number of pulses. Two types of paper are stained with fungi colonies, which grow on substrates of clean paper, as well as on paper with ink text. The first type of paper is Whatman No.1056, which is closer to pure cellulose. The second type of paper is a page of a cultural heritage book published in 1926. Cleaning is performed using laser irradiation, thus defining the damage threshold of each sample. The treatment on paper Watman showed a yellowing, especially on areas with high concentration of fungi. The second sample was more durable to the exposure, performing the best results at higher fluences. Eventually, the paper samples are characterized, with optical microscopy and SEM/EDX analyses, prior to and after cleaning.

  13. Microstructure, Wear Resistance and Oxidation Behavior of Ni-Ti-Si Coatings Fabricated on Ti6Al4V by Laser Cladding.

    PubMed

    Zhuang, Qiaoqiao; Zhang, Peilei; Li, Mingchuan; Yan, Hua; Yu, Zhishui; Lu, Qinghua

    2017-10-30

    The Ni-Ti-Si composite coatings were successfully fabricated on Ti6Al4V by laser cladding. The microstructure were studied by SEM (scanning electron microscopy) and EDS (energy dispersive spectrometer). It has been found that Ti₂Ni and Ti₅Si₃ phases exist in all coatings, and some samples have TiSi₂ phases. Moreover, due to the existence of these phases, coatings presented relatively higher microhardness than that of the substrate (826 HV (Vickers hardness)) and the microhardness value of coating 3 is about twice larger than that of the substrate. During the dry sliding friction and wear test, due to the distribution of the relatively ductile phase of Ti₂Ni and reinforcement phases of Ti₅Si₃ and TiSi₂, the coatings performed good wear resistance. The oxidation process contains two stages: the rapid oxidation and slow oxidation by high temperature oxidation test at 800 °C for 50 h. Meanwhile, the value of the oxidation weight gain of the substrate is approximately three times larger than that of the coating 4. During the oxidation process, the oxidation film formed on the coating is mainly consisted of TiO₂, Al₂O₃ and SiO₂. Phases Ti₂Ni, Ti₅Si₃, TiSi₂ and TiSi were still found and it could be responsible for the improvement in oxidation resistance of the coatings by laser cladding.

  14. Phase transformation and tribological properties of Ag-MoO3 contained NiCrAlY based composite coatings fabricated by laser cladding

    NASA Astrophysics Data System (ADS)

    Wang, Lingqian; Zhou, Jiansong; Xin, Benbin; Yu, Youjun; Ren, Shufang; Li, Zhen

    2017-08-01

    Ag-MoO3 contained NiCrAlY based composite coating was successfully prepared on GH4169 stainless steel substrate by high energy ball milling and laser cladding. The microstructure and phase transformation were investigated by scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS) and X-ray diffraction spectrum (XRD). The tribological behavior and mechanism from room temperature to 800 °C were investigated. Results showed that MoO3 in the composite powders transformed to Mo2C reinforcement under the high energy density of laser, and a series of opposite transformation occurred during friction process. The coating showed the lowest friction coefficient and low wear rate at 600 °C and 800 °C due to the generation of Ag2MoO4 during tribo-chemical reactions and the formation of lubrication glaze on the worn surface. Ag made effective lubrication when the temperature rose up to 200 °C. The coating displayed a relatively high friction coefficient (about 0.51) at 400 °C, because though MoO3 (oxidation products of Mo2C) and Ag2MoO4 were detected on the worn surface, they could not realize effective lubrication at this temperature. Abrasive wear, adhesive wear and plastic deformation contributed to the increased friction and wear.

  15. How Hedstrom files fail during clinical use? A retrieval study based on SEM, optical microscopy and micro-XCT analysis.

    PubMed

    Zinelis, Spiros; Al Jabbari, Youssef S

    2018-05-01

    This study was conducted to evaluate the failure mechanism of clinically failed Hedstrom (H)-files. Discarded H-files (n=160) from #8 to #40 ISO sizes were collected from different dental clinics. Retrieved files were classified according to their macroscopic appearance and they were investigated under scanning electron microscopy (SEM) and X-ray micro-computed tomography (mXCT). Then the files were embedded in resin along their longitudinal axis and after metallographic grinding and polishing, studied under an incident light microscope. The macroscopic evaluation showed that small ISO sizes (#08-#15) failed by extensive plastic deformation, while larger sizes (≥#20) tended to fracture. Light microscopy and mXCT results coincided showing that unused and plastically deformed files were free of internal defects, while fractured files demonstrate the presence of intense cracking in the flute region. SEM analysis revealed the presence of striations attributed to the fatigue mechanism. Secondary cracks were also identified by optical microscopy and their distribution was correlated to fatigue under bending loading. Experimental results demonstrated that while overloading of cutting instruments is the predominating failure mechanism of small file sizes (#08-#15), fatigue should be considered the fracture mechanism for larger sizes (≥#20).

  16. An inexpensive approach for bright-field and dark-field imaging by scanning transmission electron microscopy in scanning electron microscopy.

    PubMed

    Patel, Binay; Watanabe, Masashi

    2014-02-01

    Scanning transmission electron microscopy in scanning electron microscopy (STEM-in-SEM) is a convenient technique for soft materials characterization. Various specimen-holder geometries and detector arrangements have been used for bright-field (BF) STEM-in-SEM imaging. In this study, to further the characterization potential of STEM-IN-SEM, a new specimen holder has been developed to facilitate direct detection of BF signals and indirect detection of dark-field (DF) signals without the need for substantial instrument modification. DF imaging is conducted with the use of a gold (Au)-coated copper (Cu) plate attached to the specimen holder which directs highly scattered transmitted electrons to an off-axis yttrium-aluminum-garnet (YAG) detector. A hole in the copper plate allows for BF imaging with a transmission electron (TE) detector. The inclusion of an Au-coated Cu plate enhanced DF signal intensity. Experiments validating the acquisition of true DF signals revealed that atomic number (Z) contrast may be achieved for materials with large lattice spacing. However, materials with small lattice spacing still exhibit diffraction contrast effects in this approach. The calculated theoretical fine probe size is 1.8 nm. At 30 kV, in this indirect approach, DF spatial resolution is limited to 3.2 nm as confirmed experimentally.

  17. NicoLase—An open-source diode laser combiner, fiber launch, and sequencing controller for fluorescence microscopy

    PubMed Central

    Walsh, James; Böcking, Till; Gaus, Katharina

    2017-01-01

    Modern fluorescence microscopy requires software-controlled illumination sources with high power across a wide range of wavelengths. Diode lasers meet the power requirements and combining multiple units into a single fiber launch expands their capability across the required spectral range. We present the NicoLase, an open-source diode laser combiner, fiber launch, and software sequence controller for fluorescence microscopy and super-resolution microscopy applications. Two configurations are described, giving four or six output wavelengths and one or two single-mode fiber outputs, with all CAD files, machinist drawings, and controller source code openly available. PMID:28301563

  18. Femtosecond Fiber Lasers Based on Dissipative Processes for Nonlinear Microscopy

    PubMed Central

    Wise, Frank W.

    2012-01-01

    Recent progress in the development of femtosecond-pulse fiber lasers with parameters appropriate for nonlinear microscopy is reviewed. Pulse-shaping in lasers with only normal-dispersion components is briefly described, and the performance of the resulting lasers is summarized. Fiber lasers based on the formation of dissipative solitons now offer performance competitive with that of solid-state lasers, but with the benefits of the fiber medium. Lasers based on self-similar pulse evolution in the gain section of a laser also offer a combination of short pulse duration and high pulse energy that will be attractive for applications in nonlinear bioimaging. PMID:23869163

  19. GUIDELINES FOR THE APPLICATION OF SEM/EDX ANALYTICAL TECHNIQUES FOR FINE AND COARSE PM SAMPLES

    EPA Science Inventory

    Scanning Electron Microscopy (SEM) coupled with Energy-Dispersive X-ray analysis (EDX) is a powerful tool in the characterization and source apportionment of environmental particulate matter (PM), providing size, chemistry, and morphology of particles as small as a few tenths ...

  20. Structural characterization of biomedical Co-Cr-Mo components produced by direct metal laser sintering.

    PubMed

    Barucca, G; Santecchia, E; Majni, G; Girardin, E; Bassoli, E; Denti, L; Gatto, A; Iuliano, L; Moskalewicz, T; Mengucci, P

    2015-03-01

    Direct metal laser sintering (DMLS) is a technique to manufacture complex functional mechanical parts from a computer-aided design (CAD) model. Usually, the mechanical components produced by this procedure show higher residual porosity and poorer mechanical properties than those obtained by conventional manufacturing techniques. In this work, a Co-Cr-Mo alloy produced by DMLS with a composition suitable for biomedical applications was submitted to hardness measurements and structural characterization. The alloy showed a hardness value remarkably higher than those commonly obtained for the same cast or wrought alloys. In order to clarify the origin of this unexpected result, the sample microstructure was investigated by X-ray diffraction (XRD), electron microscopy (SEM and TEM) and energy dispersive microanalysis (EDX). For the first time, a homogeneous microstructure comprised of an intricate network of thin ε (hcp)-lamellae distributed inside a γ (fcc) phase was observed. The ε-lamellae grown on the {111}γ planes limit the dislocation slip inside the γ (fcc) phase, causing the measured hardness increase. The results suggest possible innovative applications of the DMLS technique to the production of mechanical parts in the medical and dental fields. Copyright © 2014 Elsevier B.V. All rights reserved.

Top