Sample records for microscopy single-particle analysis

  1. High-resolution Single Particle Analysis from Electron Cryo-microscopy Images Using SPHIRE

    PubMed Central

    Moriya, Toshio; Saur, Michael; Stabrin, Markus; Merino, Felipe; Voicu, Horatiu; Huang, Zhong; Penczek, Pawel A.; Raunser, Stefan; Gatsogiannis, Christos

    2017-01-01

    SPHIRE (SPARX for High-Resolution Electron Microscopy) is a novel open-source, user-friendly software suite for the semi-automated processing of single particle electron cryo-microscopy (cryo-EM) data. The protocol presented here describes in detail how to obtain a near-atomic resolution structure starting from cryo-EM micrograph movies by guiding users through all steps of the single particle structure determination pipeline. These steps are controlled from the new SPHIRE graphical user interface and require minimum user intervention. Using this protocol, a 3.5 Å structure of TcdA1, a Tc toxin complex from Photorhabdus luminescens, was derived from only 9500 single particles. This streamlined approach will help novice users without extensive processing experience and a priori structural information, to obtain noise-free and unbiased atomic models of their purified macromolecular complexes in their native state. PMID:28570515

  2. Single Particulate SEM-EDX Analysis of Iron-Containing Coarse Particulate Matter in an Urban Environment: Sources and Distribution of Iron within Cleveland, Ohio

    EPA Science Inventory

    The physicochemical properties of coarse-mode, iron-containing particles, and their temporal and spatial distributions are poorly understood. Single particle analysis combining x-ray elemental mapping and computer-controlled scanning electron microscopy (CCSEM-EDX) of passively ...

  3. Single particle analysis based on Zernike phase contrast transmission electron microscopy.

    PubMed

    Danev, Radostin; Nagayama, Kuniaki

    2008-02-01

    We present the first application of Zernike phase-contrast transmission electron microscopy to single-particle 3D reconstruction of a protein, using GroEL chaperonin as the test specimen. We evaluated the performance of the technique by comparing 3D models derived from Zernike phase contrast imaging, with models from conventional underfocus phase contrast imaging. The same resolution, about 12A, was achieved by both imaging methods. The reconstruction based on Zernike phase contrast data required about 30% fewer particles. The advantages and prospects of each technique are discussed.

  4. Localization and force analysis at the single virus particle level using atomic force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chih-Hao; Horng, Jim-Tong; Chang, Jeng-Shian

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Localization of single virus particle. Black-Right-Pointing-Pointer Force measurements. Black-Right-Pointing-Pointer Force mapping. -- Abstract: Atomic force microscopy (AFM) is a vital instrument in nanobiotechnology. In this study, we developed a method that enables AFM to simultaneously measure specific unbinding force and map the viral glycoprotein at the single virus particle level. The average diameter of virus particles from AFM images and the specificity between the viral surface antigen and antibody probe were integrated to design a three-stage method that sets the measuring area to a single virus particle before obtaining the force measurements, where the influenza virus was usedmore » as the object of measurements. Based on the purposed method and performed analysis, several findings can be derived from the results. The mean unbinding force of a single virus particle can be quantified, and no significant difference exists in this value among virus particles. Furthermore, the repeatability of the proposed method is demonstrated. The force mapping images reveal that the distributions of surface viral antigens recognized by antibody probe were dispersed on the whole surface of individual virus particles under the proposed method and experimental criteria; meanwhile, the binding probabilities are similar among particles. This approach can be easily applied to most AFM systems without specific components or configurations. These results help understand the force-based analysis at the single virus particle level, and therefore, can reinforce the capability of AFM to investigate a specific type of viral surface protein and its distributions.« less

  5. Tracking molecular dynamics without tracking: image correlation of photo-activation microscopy

    NASA Astrophysics Data System (ADS)

    Pandžić, Elvis; Rossy, Jérémie; Gaus, Katharina

    2015-03-01

    Measuring protein dynamics in the plasma membrane can provide insights into the mechanisms of receptor signaling and other cellular functions. To quantify protein dynamics on the single molecule level over the entire cell surface, sophisticated approaches such as single particle tracking (SPT), photo-activation localization microscopy (PALM) and fluctuation-based analysis have been developed. However, analyzing molecular dynamics of fluorescent particles with intermittent excitation and low signal-to-noise ratio present at high densities has remained a challenge. We overcame this problem by applying spatio-temporal image correlation spectroscopy (STICS) analysis to photo-activated (PA) microscopy time series. In order to determine under which imaging conditions this approach is valid, we simulated PA images of diffusing particles in a homogeneous environment and varied photo-activation, reversible blinking and irreversible photo-bleaching rates. Further, we simulated data with high particle densities that populated mobile objects (such as adhesions and vesicles) that often interfere with STICS and fluctuation-based analysis. We demonstrated in experimental measurements that the diffusion coefficient of the epidermal growth factor receptor (EGFR) fused to PAGFP in live COS-7 cells can be determined in the plasma membrane and revealed differences in the time-dependent diffusion maps between wild-type and mutant Lck in activated T cells. In summary, we have developed a new analysis approach for live cell photo-activation microscopy data based on image correlation spectroscopy to quantify the spatio-temporal dynamics of single proteins.

  6. Tracking molecular dynamics without tracking: image correlation of photo-activation microscopy.

    PubMed

    Pandžić, Elvis; Rossy, Jérémie; Gaus, Katharina

    2015-03-09

    Measuring protein dynamics in the plasma membrane can provide insights into the mechanisms of receptor signaling and other cellular functions. To quantify protein dynamics on the single molecule level over the entire cell surface, sophisticated approaches such as single particle tracking (SPT), photo-activation localization microscopy (PALM) and fluctuation-based analysis have been developed. However, analyzing molecular dynamics of fluorescent particles with intermittent excitation and low signal-to-noise ratio present at high densities has remained a challenge. We overcame this problem by applying spatio-temporal image correlation spectroscopy (STICS) analysis to photo-activated (PA) microscopy time series. In order to determine under which imaging conditions this approach is valid, we simulated PA images of diffusing particles in a homogeneous environment and varied photo-activation, reversible blinking and irreversible photo-bleaching rates. Further, we simulated data with high particle densities that populated mobile objects (such as adhesions and vesicles) that often interfere with STICS and fluctuation-based analysis. We demonstrated in experimental measurements that the diffusion coefficient of the epidermal growth factor receptor (EGFR) fused to PAGFP in live COS-7 cells can be determined in the plasma membrane and revealed differences in the time-dependent diffusion maps between wild-type and mutant Lck in activated T cells. In summary, we have developed a new analysis approach for live cell photo-activation microscopy data based on image correlation spectroscopy to quantify the spatio-temporal dynamics of single proteins.

  7. Effect of relative humidity on soot - secondary organic aerosol mixing: A case study from the Soot Aerosol Aging Study (PNNL-SAAS)

    NASA Astrophysics Data System (ADS)

    Sharma, N.; China, S.; Zaveri, R. A.; Shilling, J. E.; Pekour, M. S.; Liu, S.; Aiken, A. C.; Dubey, M. K.; Wilson, J. M.; Zelenyuk, A.; OBrien, R. E.; Moffet, R.; Gilles, M. K.; Gourihar, K.; Chand, D.; Sedlacek, A. J., III; Subramanian, R.; Onasch, T. B.; Laskin, A.; Mazzoleni, C.

    2014-12-01

    Atmospheric processing of fresh soot particles emitted by anthropogenic as well as natural sources alters their physical and chemical properties. For example, fresh and aged soot particles interact differently with incident solar radiation, resulting in different overall radiation budgets. Varying atmospheric chemical and meteorological conditions can result in complex soot mixing states. The Soot Aerosol Aging Study (SAAS) was conducted at the Pacific Northwest National Laboratory in November 2013 and January 2014 as a step towards understanding the evolution of mixing state of soot and its impact on climate-relevant properties. Aging experiments on diesel soot were carried out in a controlled laboratory chamber, and the effects of condensation and coagulation processes were systematically explored in separate sets of experiments. In addition to online measurement of aerosol properties, aerosol samples were collected for offline single particle analysis to investigate the evolution of the morphology, elemental composition and fine structure of sample particles from different experiments. Condensation experiments focused on the formation of α-pinene secondary organic aerosol on diesel soot aerosol seeds. Experiments were conducted to study the aging of soot under dry (RH < 2%) and humid conditions (RH ~ 80%). We present an analysis of the morphology of soot, its evolution, and its correlation with optical properties, as the condensation of α-pinene SOA is carried out for the two different RH conditions. The analysis was performed by using scanning electron microscopy, transmission electron microscopy, scanning transmission x-ray microscopy and atomic force microscopy for single particle characterization. In addition, particle size, mass, composition, shape, and density were characterized in-situ, as a function of organics condensed on soot seeds, using single particle mass spectrometer.

  8. The Use of Contact Mode Atomic Force Microscopy in Aqueous Medium for Structural Analysis of Spinach Photosynthetic Complexes

    DOE PAGES

    Phuthong, Witchukorn; Huang, Zubin; Wittkopp, Tyler M.; ...

    2015-07-28

    To investigate the dynamics of photosynthetic pigment-protein complexes in vascular plants at high resolution in an aqueous environment, membrane-protruding oxygen-evolving complexes (OECs) associated with photosystem II (PSII) on spinach ( Spinacia oleracea) grana membranes were examined using contact mode atomic force microscopy. This study represents, to our knowledge, the first use of atomic force microscopy to distinguish the putative large extrinsic loop of Photosystem II CP47 reaction center protein (CP47) from the putative oxygen-evolving enhancer proteins 1, 2, and 3 (PsbO, PsbP, and PsbQ) and large extrinsic loop of Photosystem II CP43 reaction center protein (CP43) in the PSII-OEC extrinsicmore » domains of grana membranes under conditions resulting in the disordered arrangement of PSII-OEC particles. Moreover, we observed uncharacterized membrane particles that, based on their physical characteristics and electrophoretic analysis of the polypeptides associated with the grana samples, are hypothesized to be a domain of photosystem I that protrudes from the stromal face of single thylakoid bilayers. Furthermore, our results are interpreted in the context of the results of others that were obtained using cryo-electron microscopy (and single particle analysis), negative staining and freeze-fracture electron microscopy, as well as previous atomic force microscopy studies.« less

  9. Single particle maximum likelihood reconstruction from superresolution microscopy images

    PubMed Central

    Verdier, Timothée; Gunzenhauser, Julia; Manley, Suliana; Castelnovo, Martin

    2017-01-01

    Point localization superresolution microscopy enables fluorescently tagged molecules to be imaged beyond the optical diffraction limit, reaching single molecule localization precisions down to a few nanometers. For small objects whose sizes are few times this precision, localization uncertainty prevents the straightforward extraction of a structural model from the reconstructed images. We demonstrate in the present work that this limitation can be overcome at the single particle level, requiring no particle averaging, by using a maximum likelihood reconstruction (MLR) method perfectly suited to the stochastic nature of such superresolution imaging. We validate this method by extracting structural information from both simulated and experimental PALM data of immature virus-like particles of the Human Immunodeficiency Virus (HIV-1). MLR allows us to measure the radii of individual viruses with precision of a few nanometers and confirms the incomplete closure of the viral protein lattice. The quantitative results of our analysis are consistent with previous cryoelectron microscopy characterizations. Our study establishes the framework for a method that can be broadly applied to PALM data to determine the structural parameters for an existing structural model, and is particularly well suited to heterogeneous features due to its single particle implementation. PMID:28253349

  10. Scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDX) and aerosol time-of-flight mass spectrometry (ATOFMS) single particle analysis of metallurgy plant emissions.

    PubMed

    Arndt, J; Deboudt, K; Anderson, A; Blondel, A; Eliet, S; Flament, P; Fourmentin, M; Healy, R M; Savary, V; Setyan, A; Wenger, J C

    2016-03-01

    The chemical composition of single particles deposited on industrial filters located in three different chimneys of an iron-manganese (Fe-Mn) alloy manufacturing plant have been compared using aerosol time-of-flight mass spectrometry (ATOFMS) and scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDX). Very similar types of particles were observed using both analytical techniques. Calcium-containing particles dominated in the firing area of the sintering unit, Mn and/or Al-bearing particles were observed at the cooling area of the sintering unit, while Mn-containing particles were dominant at the smelting unit. SEM-EDX analysis of particles collected downstream of the industrial filters showed that the composition of the particles emitted from the chimneys is very similar to those collected on the filters. ATOFMS analysis of ore samples was also performed to identify particulate emissions that could be generated by wind erosion and manual activities. Specific particle types have been identified for each emission source (chimneys and ore piles) and can be used as tracers for source apportionment of ambient PM measured in the vicinity of the industrial site. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phuthong, Witchukorn; Huang, Zubin; Wittkopp, Tyler M.

    To investigate the dynamics of photosynthetic pigment-protein complexes in vascular plants at high resolution in an aqueous environment, membrane-protruding oxygen-evolving complexes (OECs) associated with photosystem II (PSII) on spinach ( Spinacia oleracea) grana membranes were examined using contact mode atomic force microscopy. This study represents, to our knowledge, the first use of atomic force microscopy to distinguish the putative large extrinsic loop of Photosystem II CP47 reaction center protein (CP47) from the putative oxygen-evolving enhancer proteins 1, 2, and 3 (PsbO, PsbP, and PsbQ) and large extrinsic loop of Photosystem II CP43 reaction center protein (CP43) in the PSII-OEC extrinsicmore » domains of grana membranes under conditions resulting in the disordered arrangement of PSII-OEC particles. Moreover, we observed uncharacterized membrane particles that, based on their physical characteristics and electrophoretic analysis of the polypeptides associated with the grana samples, are hypothesized to be a domain of photosystem I that protrudes from the stromal face of single thylakoid bilayers. Furthermore, our results are interpreted in the context of the results of others that were obtained using cryo-electron microscopy (and single particle analysis), negative staining and freeze-fracture electron microscopy, as well as previous atomic force microscopy studies.« less

  12. Opto-electrochemical In Situ Monitoring of the Cathodic Formation of Single Cobalt Nanoparticles.

    PubMed

    Brasiliense, Vitor; Clausmeyer, Jan; Dauphin, Alice L; Noël, Jean-Marc; Berto, Pascal; Tessier, Gilles; Schuhmann, Wolfgang; Kanoufi, Fréderic

    2017-08-21

    Single-particle electrochemistry at a nanoelectrode is explored by dark-field optical microscopy. The analysis of the scattered light allows in situ dynamic monitoring of the electrodeposition of single cobalt nanoparticles down to a radius of 65 nm. Larger sub-micrometer particles are directly sized optically by super-localization of the edges and the scattered light contains complementary information concerning the particle redox chemistry. This opto-electrochemical approach is used to derive mechanistic insights about electrocatalysis that are not accessible from single-particle electrochemistry. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Fast time-resolved aerosol collector: proof of concept

    NASA Astrophysics Data System (ADS)

    Yu, X.-Y.; Cowin, J. P.; Iedema, M. J.; Ali, H.

    2010-10-01

    Atmospheric particles can be collected in the field on substrates for subsequent laboratory analysis via chemically sensitive single particle methods such as scanning electron microscopy with energy dispersive x-ray analysis. With moving substrates time resolution of seconds to minutes can be achieved. In this paper, we demonstrate how to increase the time resolution when collecting particles on a substrate to a few milliseconds to provide real-time information. Our fast time-resolved aerosol collector ("Fast-TRAC") microscopically observes the particle collection on a substrate and records an on-line video. Particle arrivals are resolved to within a single frame (4-17 ms in this setup), and the spatial locations are matched to the subsequent single particle analysis. This approach also provides in-situ information on particle size and number concentration. Applications are expected in airborne studies of cloud microstructure, pollution plumes, and surface long-term monitoring.

  14. Fast time-resolved aerosol collector: proof of concept

    NASA Astrophysics Data System (ADS)

    Yu, X.-Y.; Cowin, J. P.; Iedema, M. J.; Ali, H.

    2010-06-01

    Atmospheric particles can be collected in the field on substrates for subsequent laboratory analysis via chemically sensitive single particle methods such as scanning electron microscopy with energy dispersive x-ray analysis. With moving substrates time resolution of seconds to minutes can be achieved. In this paper, we demonstrate how to increase the time resolution when collecting particles on a substrate to a few milliseconds to provide real-time information. Our fast time-resolved aerosol collector ("Fast-TRAC") microscopically observes the particle collection on a substrate and records an on-line video. Particle arrivals are resolved to within a single frame (4-17 ms in this setup), and the spatial locations are matched to the subsequent single particle analysis. This approach also provides in-situ information on particle size and number concentration. Applications are expected in airborne studies of cloud microstructure, pollution plumes, and surface long-term monitoring.

  15. Particle image diffusometry: Resolving diffusion coefficient field from microscopy movie data without particle tracking

    NASA Astrophysics Data System (ADS)

    Hanasaki, Itsuo; Ooi, Yuto

    2018-06-01

    We propose a technique to evaluate the field of diffusion coefficient for particle dispersion where the Brownian motion is heterogeneous in space and single particle tracking (SPT) analysis is hindered by high concentration of the particles and/or their small size. We realize this "particle image diffusometry" by the principle of the differential dynamic microscopy (DDM). We extend the DDM by introducing the automated objective decision of the scaling regime itself. Label-free evaluation of spatially non-uniform diffusion coefficients without SPT is useful in the diverse applications including crystal nucleation and glass transition where non-invasive observation is desired.

  16. Visualizing single molecules interacting with nuclear pore complexes by narrow-field epifluorescence microscopy

    PubMed Central

    Yang, Weidong; Musser, Siegfried M.

    2008-01-01

    The utility of single molecule fluorescence (SMF) for understanding biological reactions has been amply demonstrated by a diverse series of studies over the last decade. In large part, the molecules of interest have been limited to those within a small focal volume or near a surface to achieve the high sensitivity required for detecting the inherently weak signals arising from individual molecules. Consequently, the investigation of molecular behavior with high time and spatial resolution deep within cells using SMF has remained challenging. Recently, we demonstrated that narrow-field epifluorescence microscopy allows visualization of nucleocytoplasmic transport at the single cargo level. We describe here the methodological approach that yields 2 ms and ∼15 nm resolution for a stationary particle. The spatial resolution for a mobile particle is inherently worse, and depends on how fast the particle is moving. The signal-to-noise ratio is sufficiently high to directly measure the time a single cargo molecule spends interacting with the nuclear pore complex. Particle tracking analysis revealed that cargo molecules randomly diffuse within the nuclear pore complex, exiting as a result of a single rate-limiting step. We expect that narrow-field epifluorescence microscopy will be useful for elucidating other binding and trafficking events within cells. PMID:16879979

  17. Ice cloud formation potential by free tropospheric particles from long-range transport over the Northern Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    China, Swarup; Alpert, Peter A.; Zhang, Bo; Schum, Simeon; Dzepina, Katja; Wright, Kendra; Owen, R. Chris; Fialho, Paulo; Mazzoleni, Lynn R.; Mazzoleni, Claudio; Knopf, Daniel A.

    2017-03-01

    Long-range transported free tropospheric particles can play a significant role on heterogeneous ice nucleation. Using optical and electron microscopy we examine the physicochemical characteristics of ice nucleating particles (INPs). Particles were collected on substrates from the free troposphere at the remote Pico Mountain Observatory in the Azores Islands, after long-range transport and aging over the Atlantic Ocean. We investigate four specific events to study the ice formation potential by the collected particles with different ages and transport patterns. We use single-particle analysis, as well as bulk analysis to characterize particle populations. Both analyses show substantial differences in particle composition between samples from the four events; in addition, single-particle microscopy analysis indicates that most particles are coated by organic material. The identified INPs contained mixtures of dust, aged sea salt and soot, and organic material acquired either at the source or during transport. The temperature and relative humidity (RH) at which ice formed, varied only by 5% between samples, despite differences in particle composition, sources, and transport patterns. We hypothesize that this small variation in the onset RH may be due to the coating material on the particles. This study underscores and motivates the need to further investigate how long-range transported and atmospherically aged free tropospheric particles impact ice cloud formation.

  18. Ice cloud formation potential by free tropospheric particles from long-range transport over the Northern Atlantic Ocean

    DOE PAGES

    China, Swarup; Alpert, Peter A.; Zhang, Bo; ...

    2017-02-27

    Long-range transported free tropospheric particles can play a significant role on heterogeneous ice nucleation. Using optical and electron microscopy we examine the physicochemical characteristics of ice nucleating particles (INPs). Particles were collected on substrates from the free troposphere at the remote Pico Mountain Observatory in the Azores Islands, after long-range transport and aging over the Atlantic Ocean. We investigate four specific events to study the ice formation potential by the collected particles with different ages and transport patterns. We use single-particle analysis, as well as bulk analysis to characterize particle populations. Both analyses show substantial differences in particle composition betweenmore » samples from the four events; in addition, single-particle microscopy analysis indicates that most particles are coated by organic material. The identified INPs contained mixtures of dust, aged sea salt and soot, and organic material acquired either at the source or during transport. The temperature and relative humidity ( RH) at which ice formed, varied only by 5% between samples, despite differences in particle composition, sources, and transport patterns. We hypothesize that this small variation in the onset RH may be due to the coating material on the particles. Finally, this study underscores and motivates the need to further investigate how long-range transported and atmospherically aged free tropospheric particles impact ice cloud formation.« less

  19. Ice cloud formation potential by free tropospheric particles from long-range transport over the Northern Atlantic Ocean

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    China, Swarup; Alpert, Peter A.; Zhang, Bo

    Long-range transported free tropospheric particles can play a significant role on heterogeneous ice nucleation. Using optical and electron microscopy we examine the physicochemical characteristics of ice nucleating particles (INPs). Particles were collected on substrates from the free troposphere at the remote Pico Mountain Observatory in the Azores Islands, after long-range transport and aging over the Atlantic Ocean. We investigate four specific events to study the ice formation potential by the collected particles with different ages and transport patterns. We use single-particle analysis, as well as bulk analysis to characterize particle populations. Both analyses show substantial differences in particle composition betweenmore » samples from the four events; in addition, single-particle microscopy analysis indicates that most particles are coated by organic material. The identified INPs contained mixtures of dust, aged sea salt and soot, and organic material acquired either at the source or during transport. The temperature and relative humidity ( RH) at which ice formed, varied only by 5% between samples, despite differences in particle composition, sources, and transport patterns. We hypothesize that this small variation in the onset RH may be due to the coating material on the particles. Finally, this study underscores and motivates the need to further investigate how long-range transported and atmospherically aged free tropospheric particles impact ice cloud formation.« less

  20. Diffraction data of core-shell nanoparticles from an X-ray free electron laser

    DOE PAGES

    Li, Xuanxuan; Chiu, Chun -Ya; Wang, Hsiang -Ju; ...

    2017-04-11

    X-ray free-electron lasers provide novel opportunities to conduct single particle analysis on nanoscale particles. Coherent diffractive imaging experiments were performed at the Linac Coherent Light Source (LCLS), SLAC National Laboratory, exposing single inorganic core-shell nanoparticles to femtosecond hard-X-ray pulses. Each facetted nanoparticle consisted of a crystalline gold core and a differently shaped palladium shell. Scattered intensities were observed up to about 7 nm resolution. Analysis of the scattering patterns revealed the size distribution of the samples, which is consistent with that obtained from direct real-space imaging by electron microscopy. Furthermore, scattering patterns resulting from single particles were selected and compiledmore » into a dataset which can be valuable for algorithm developments in single particle scattering research.« less

  1. Automated data collection in single particle electron microscopy

    PubMed Central

    Tan, Yong Zi; Cheng, Anchi; Potter, Clinton S.; Carragher, Bridget

    2016-01-01

    Automated data collection is an integral part of modern workflows in single particle electron microscopy (EM) research. This review surveys the software packages available for automated single particle EM data collection. The degree of automation at each stage of data collection is evaluated, and the capabilities of the software packages are described. Finally, future trends in automation are discussed. PMID:26671944

  2. Biological applications of phase-contrast electron microscopy.

    PubMed

    Nagayama, Kuniaki

    2014-01-01

    Here, I review the principles and applications of phase-contrast electron microscopy using phase plates. First, I develop the principle of phase contrast based on a minimal model of microscopy, introducing a double Fourier-transform process to mathematically formulate the image formation. Next, I explain four phase-contrast (PC) schemes, defocus PC, Zernike PC, Hilbert differential contrast, and schlieren optics, as image-filtering processes in the context of the minimal model, with particular emphases on the Zernike PC and corresponding Zernike phase plates. Finally, I review applications of Zernike PC cryo-electron microscopy to biological systems such as protein molecules, virus particles, and cells, including single-particle analysis to delineate three-dimensional (3D) structures of protein and virus particles and cryo-electron tomography to reconstruct 3D images of complex protein systems and cells.

  3. A Dose-Rate Effect in Single-Particle Electron Microscopy

    PubMed Central

    Chen, James Z.; Sachse, Carsten; Xu, Chen; Mielke, Thorsten; Spahn, Christian M. T.; Grigorieff, Nikolaus

    2008-01-01

    A low beam-intensity, low electron-dose imaging method has been developed for single-particle electron cryo-microscopy (cryo-EM). Experiments indicate that the new technique can reduce beam-induced specimen movement and secondary radiolytic effects, such as “bubbling”. The improvement in image quality, especially for multiple-exposure data collection, will help single-particle cryo-EM to reach higher resolution. PMID:17977018

  4. Classification of Magnetic Nanoparticle Systems—Synthesis, Standardization and Analysis Methods in the NanoMag Project

    PubMed Central

    Bogren, Sara; Fornara, Andrea; Ludwig, Frank; del Puerto Morales, Maria; Steinhoff, Uwe; Fougt Hansen, Mikkel; Kazakova, Olga; Johansson, Christer

    2015-01-01

    This study presents classification of different magnetic single- and multi-core particle systems using their measured dynamic magnetic properties together with their nanocrystal and particle sizes. The dynamic magnetic properties are measured with AC (dynamical) susceptometry and magnetorelaxometry and the size parameters are determined from electron microscopy and dynamic light scattering. Using these methods, we also show that the nanocrystal size and particle morphology determines the dynamic magnetic properties for both single- and multi-core particles. The presented results are obtained from the four year EU NMP FP7 project, NanoMag, which is focused on standardization of analysis methods for magnetic nanoparticles. PMID:26343639

  5. Raman mapping of mannitol/lysozyme particles produced via spray drying and single droplet drying.

    PubMed

    Pajander, Jari Pekka; Matero, Sanni; Sloth, Jakob; Wan, Feng; Rantanen, Jukka; Yang, Mingshi

    2015-06-01

    This study aimed to investigate the effect of a model protein on the solid state of a commonly used bulk agent in spray-dried formulations. A series of lysozyme/mannitol formulations were spray-dried using a lab-scale spray dryer. Further, the surface temperature of drying droplet/particles was monitored using the DRYING KINETICS ANALYZER™ (DKA) with controllable drying conditions mimicking the spray-drying process to estimate the drying kinetics of the lysozyme/mannitol formulations. The mannitol polymorphism and the spatial distribution of lysozyme in the particles were examined using X-ray powder diffractometry (XRPD) and Raman microscopy. Partial Least Squares Discriminant Analysis was used for analyzing the Raman microscopy data. XRPD results indicated that a mixture of β-mannitol and α-mannitol was produced in the spray-drying process which was supported by the Raman analysis, whereas Raman analysis indicated that a mixture of α-mannitol and δ-mannitol was detected in the single particles from DKA. In addition Raman mapping indicated that the presence of lysozyme seemed to favor the appearance of α-mannitol in the particles from DKA evidenced by close proximity of lysozyme and mannitol in the particles. It suggested that the presence of lysozyme tend to induce metastable solid state forms upon the drying process.

  6. Quantitative real-time single particle analysis of virions.

    PubMed

    Heider, Susanne; Metzner, Christoph

    2014-08-01

    Providing information about single virus particles has for a long time been mainly the domain of electron microscopy. More recently, technologies have been developed-or adapted from other fields, such as nanotechnology-to allow for the real-time quantification of physical virion particles, while supplying additional information such as particle diameter concomitantly. These technologies have progressed to the stage of commercialization increasing the speed of viral titer measurements from hours to minutes, thus providing a significant advantage for many aspects of virology research and biotechnology applications. Additional advantages lie in the broad spectrum of virus species that may be measured and the possibility to determine the ratio of infectious to total particles. A series of disadvantages remain associated with these technologies, such as a low specificity for viral particles. In this review we will discuss these technologies by comparing four systems for real-time single virus particle analysis and quantification. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  7. MICRO/NANO-STRUCTURAL EXAMINATION AND FISSION PRODUCT IDENTIFICATION IN NEUTRON IRRADIATED AGR-1 TRISO FUEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Rooyen, I. J.; Lillo, T. M.; Wen, H. M.

    Advanced microscopic and microanalysis techniques were developed and applied to study irradiation effects and fission product behavior in selected low-enriched uranium oxide/uranium carbide TRISO-coated particles from fuel compacts in six capsules irradiated to burnups of 11.2 to 19.6% FIMA. Although no TRISO coating failures were detected during the irradiation, the fraction of Ag-110m retained in individual particles often varied considerably within a single compact and at the capsule level. At the capsule level Ag-110m release fractions ranged from 1.2 to 38% and within a single compact, silver release from individual particles often spanned a range that extended from 100% retentionmore » to nearly 100% release. In this paper, selected irradiated particles from Baseline, Variant 1 and Variant 3 type fueled TRISO coated particles were examined using Scanning Electron Microscopy, Atom Probe Tomography; Electron Energy Loss Spectroscopy; Precession Electron Diffraction, Transmission Electron Microscopy, Scanning Transmission Electron Microscopy (STEM), High Resolution Electron Microscopy (HRTEM) examinations and Electron Probe Micro-Analyzer. Particle selection in this study allowed for comparison of the fission product distribution with Ag retention, fuel type and irradiation level. Nano sized Ag-containing features were predominantly identified in SiC grain boundaries and/or triple points in contrast with only two sitings of Ag inside a SiC grain in two different compacts (Baseline and Variant 3 fueled compacts). STEM and HRTEM analysis showed evidence of Ag and Pd co-existence in some cases and it was found that fission product precipitates can consist of multiple or single phases. STEM analysis also showed differences in precipitate compositions between Baseline and Variant 3 fuels. A higher density of fission product precipitate clusters were identified in the SiC layer in particles from the Variant 3 compact compared with the Variant 1 compact. Trend analysis shows precipitates were randomly distributed along the perimeter of the IPyC-SiC interlayer but only weakly associated with kernel protrusion and buffer fractures. There has been no evidence that the general release of silver is related to cracks or significant degradation of the microstructure. The results presented in this paper provide new insights to Ag transport mechanism(s) in intact SiC layer of TRISO coated particles.« less

  8. Structural characterization and gas reactions of small metal particles by high resolution in-situ TEM (Transmission Electron Microscopy) and TED (Transmission Electron Diffraction)

    NASA Technical Reports Server (NTRS)

    Heinemann, K.

    1987-01-01

    The detection and size analysis of small metal particles supported on amorphous substrates becomes increasingly difficult when the particle size approaches that of the phase contrast background structures of the support. An approach of digital image analysis, involving Fourier transformation of the original image, filtering, and image reconstruction was studied with respect to the likelihood of unambiguously detecting particles of less than 1 nm diameter on amorphous substrates from a single electron micrograph.

  9. Three-dimensional reconstruction for coherent diffraction patterns obtained by XFEL.

    PubMed

    Nakano, Miki; Miyashita, Osamu; Jonic, Slavica; Song, Changyong; Nam, Daewoong; Joti, Yasumasa; Tama, Florence

    2017-07-01

    The three-dimensional (3D) structural analysis of single particles using an X-ray free-electron laser (XFEL) is a new structural biology technique that enables observations of molecules that are difficult to crystallize, such as flexible biomolecular complexes and living tissue in the state close to physiological conditions. In order to restore the 3D structure from the diffraction patterns obtained by the XFEL, computational algorithms are necessary as the orientation of the incident beam with respect to the sample needs to be estimated. A program package for XFEL single-particle analysis based on the Xmipp software package, that is commonly used for image processing in 3D cryo-electron microscopy, has been developed. The reconstruction program has been tested using diffraction patterns of an aerosol nanoparticle obtained by tomographic coherent X-ray diffraction microscopy.

  10. STED microscopy visualizes energy deposition of single ions in a solid-state detector beyond diffraction limit

    NASA Astrophysics Data System (ADS)

    Niklas, M.; Henrich, M.; Jäkel, O.; Engelhardt, J.; Abdollahi, A.; Greilich, S.

    2017-05-01

    Fluorescent nuclear track detectors (FNTDs) allow for visualization of single-particle traversal in clinical ion beams. The point spread function of the confocal readout has so far hindered a more detailed characterization of the track spots—the ion’s characteristic signature left in the FNTD. Here we report on the readout of the FNTD by optical nanoscopy, namely stimulated emission depletion microscopy. It was firstly possible to visualize the track spots of carbon ions and protons beyond the diffraction limit of conventional light microscopy with a resolving power of approximately 80 nm (confocal: 320 nm). A clear discrimination of the spatial width, defined by the full width half maximum of track spots from particles (proton and carbon ions), with a linear energy transfer (LET) ranging from approximately 2-1016 keV µm-1 was possible. Results suggest that the width depends on LET but not on particle charge within the uncertainties. A discrimination of particle type by width thus does not seem possible (as well as with confocal microscopy). The increased resolution, however, could allow for refined determination of the cross-sectional area facing substantial energy deposition. This work could pave the way towards development of optical nanoscopy-based analysis of radiation-induced cellular response using cell-fluorescent ion track hybrid detectors.

  11. Single cell elemental analysis using nuclear microscopy

    NASA Astrophysics Data System (ADS)

    Ren, M. Q.; Thong, P. S. P.; Kara, U.; Watt, F.

    1999-04-01

    The use of Particle Induced X-ray Emission (PIXE), Rutherford Backscattering Spectrometry (RBS) and Scanning Transmission Ion Microscopy (STIM) to provide quantitative elemental analysis of single cells is an area which has high potential, particularly when the trace elements such as Ca, Fe, Zn and Cu can be monitored. We describe the methodology of sample preparation for two cell types, the procedures of cell imaging using STIM, and the quantitative elemental analysis of single cells using RBS and PIXE. Recent work on single cells at the Nuclear Microscopy Research Centre,National University of Singapore has centred around two research areas: (a) Apoptosis (programmed cell death), which has been recently implicated in a wide range of pathological conditions such as cancer, Parkinson's disease etc, and (b) Malaria (infection of red blood cells by the malaria parasite). Firstly we present results on the elemental analysis of human Chang liver cells (ATTCC CCL 13) where vanadium ions were used to trigger apoptosis, and demonstrate that nuclear microscopy has the capability of monitoring vanadium loading within individual cells. Secondly we present the results of elemental changes taking place in individual mouse red blood cells which have been infected with the malaria parasite and treated with the anti-malaria drug Qinghaosu (QHS).

  12. Low cost, high performance processing of single particle cryo-electron microscopy data in the cloud.

    PubMed

    Cianfrocco, Michael A; Leschziner, Andres E

    2015-05-08

    The advent of a new generation of electron microscopes and direct electron detectors has realized the potential of single particle cryo-electron microscopy (cryo-EM) as a technique to generate high-resolution structures. Calculating these structures requires high performance computing clusters, a resource that may be limiting to many likely cryo-EM users. To address this limitation and facilitate the spread of cryo-EM, we developed a publicly available 'off-the-shelf' computing environment on Amazon's elastic cloud computing infrastructure. This environment provides users with single particle cryo-EM software packages and the ability to create computing clusters with 16-480+ CPUs. We tested our computing environment using a publicly available 80S yeast ribosome dataset and estimate that laboratories could determine high-resolution cryo-EM structures for $50 to $1500 per structure within a timeframe comparable to local clusters. Our analysis shows that Amazon's cloud computing environment may offer a viable computing environment for cryo-EM.

  13. Nano-scale measurement of biomolecules by optical microscopy and semiconductor nanoparticles

    PubMed Central

    Ichimura, Taro; Jin, Takashi; Fujita, Hideaki; Higuchi, Hideo; Watanabe, Tomonobu M.

    2014-01-01

    Over the past decade, great developments in optical microscopy have made this technology increasingly compatible with biological studies. Fluorescence microscopy has especially contributed to investigating the dynamic behaviors of live specimens and can now resolve objects with nanometer precision and resolution due to super-resolution imaging. Additionally, single particle tracking provides information on the dynamics of individual proteins at the nanometer scale both in vitro and in cells. Complementing advances in microscopy technologies has been the development of fluorescent probes. The quantum dot, a semi-conductor fluorescent nanoparticle, is particularly suitable for single particle tracking and super-resolution imaging. This article overviews the principles of single particle tracking and super resolution along with describing their application to the nanometer measurement/observation of biological systems when combined with quantum dot technologies. PMID:25120488

  14. Accurate modelling of single-particle cryo-EM images quantifies the benefits expected from using Zernike phase contrast

    PubMed Central

    Hall, R. J.; Nogales, E.; Glaeser, R. M.

    2011-01-01

    The use of a Zernike-type phase plate in biological cryo-electron microscopy allows the imaging, without using defocus, of what are predominantly phase objects. It is thought that such phase-plate implementations might result in higher quality images, free from the problems of CTF correction that occur when images must be recorded at extremely high values of defocus. In single-particle cryo-electron microscopy it is hoped that these improvements in image quality will facilitate work on structures that have proved difficult to study, either because of their relatively small size or because the structures are not completely homogeneous. There is still a need, however, to quantify how much improvement can be gained by using a phase plate for single-particle cryo-electron microscopy. We present a method for quantitatively modelling the images recorded with 200 keV electrons, for single particles embedded in vitreous ice. We then investigate what difference the use of a phase-plate device could have on the processing of single-particle data. We confirm that using a phase plate results in single-particle datasets in which smaller molecules can be detected, particles can be more accurately aligned and problems of heterogeneity can be more easily addressed. PMID:21463690

  15. Hybrid Electron Microscopy Normal Mode Analysis graphical interface and protocol.

    PubMed

    Sorzano, Carlos Oscar S; de la Rosa-Trevín, José Miguel; Tama, Florence; Jonić, Slavica

    2014-11-01

    This article presents an integral graphical interface to the Hybrid Electron Microscopy Normal Mode Analysis (HEMNMA) approach that was developed for capturing continuous motions of large macromolecular complexes from single-particle EM images. HEMNMA was shown to be a good approach to analyze multiple conformations of a macromolecular complex but it could not be widely used in the EM field due to a lack of an integral interface. In particular, its use required switching among different software sources as well as selecting modes for image analysis was difficult without the graphical interface. The graphical interface was thus developed to simplify the practical use of HEMNMA. It is implemented in the open-source software package Xmipp 3.1 (http://xmipp.cnb.csic.es) and only a small part of it relies on MATLAB that is accessible through the main interface. Such integration provides the user with an easy way to perform the analysis of macromolecular dynamics and forms a direct connection to the single-particle reconstruction process. A step-by-step HEMNMA protocol with the graphical interface is given in full details in Supplementary material. The graphical interface will be useful to experimentalists who are interested in studies of continuous conformational changes of macromolecular complexes beyond the modeling of continuous heterogeneity in single particle reconstruction. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Low cost, high performance processing of single particle cryo-electron microscopy data in the cloud

    PubMed Central

    Cianfrocco, Michael A; Leschziner, Andres E

    2015-01-01

    The advent of a new generation of electron microscopes and direct electron detectors has realized the potential of single particle cryo-electron microscopy (cryo-EM) as a technique to generate high-resolution structures. Calculating these structures requires high performance computing clusters, a resource that may be limiting to many likely cryo-EM users. To address this limitation and facilitate the spread of cryo-EM, we developed a publicly available ‘off-the-shelf’ computing environment on Amazon's elastic cloud computing infrastructure. This environment provides users with single particle cryo-EM software packages and the ability to create computing clusters with 16–480+ CPUs. We tested our computing environment using a publicly available 80S yeast ribosome dataset and estimate that laboratories could determine high-resolution cryo-EM structures for $50 to $1500 per structure within a timeframe comparable to local clusters. Our analysis shows that Amazon's cloud computing environment may offer a viable computing environment for cryo-EM. DOI: http://dx.doi.org/10.7554/eLife.06664.001 PMID:25955969

  17. Confocal Raman microscopy for monitoring chemical reactions on single optically trapped, solid-phase support particles.

    PubMed

    Houlne, Michael P; Sjostrom, Christopher M; Uibel, Rory H; Kleimeyer, James A; Harris, Joel M

    2002-09-01

    Optical trapping of small structures is a powerful tool for the manipulation and investigation of colloidal and particulate materials. The tight focus excitation requirements of optical trapping are well suited to confocal Raman microscopy. In this work, an inverted confocal Raman microscope is developed for studies of chemical reactions on single, optically trapped particles and applied to reactions used in solid-phase peptide synthesis. Optical trapping and levitation allow a particle to be moved away from the coverslip and into solution, avoiding fluorescence interference from the coverslip. More importantly, diffusion of reagents into the particle is not inhibited by a surface, so that reaction conditions mimic those of particles dispersed in solution. Optical trapping and levitation also maintain optical alignment, since the particle is centered laterally along the optical axis and within the focal plane of the objective, where both optical forces and light collection are maximized. Hour-long observations of chemical reactions on individual, trapped silica particles are reported. Using two-dimensional least-squares analysis methods, the Raman spectra collected during the course of a reaction can be resolved into component contributions. The resolved spectra of the time-varying species can be observed, as they bind to or cleave from the particle surface.

  18. Super-resolution and super-localization microscopy: A novel tool for imaging chemical and biological processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Bin

    2015-01-01

    Optical microscopy imaging of single molecules and single particles is an essential method for studying fundamental biological and chemical processes at the molecular and nanometer scale. The best spatial resolution (~ λ/2) achievable in traditional optical microscopy is governed by the diffraction of light. However, single molecule-based super-localization and super-resolution microscopy imaging techniques have emerged in the past decade. Individual molecules can be localized with nanometer scale accuracy and precision for studying of biological and chemical processes.This work uncovered the heterogeneous properties of the pore structures. In this dissertation, the coupling of molecular transport and catalytic reaction at the singlemore » molecule and single particle level in multilayer mesoporous nanocatalysts was elucidated. Most previous studies dealt with these two important phenomena separately. A fluorogenic oxidation reaction of non-fluorescent amplex red to highly fluorescent resorufin was tested. The diffusion behavior of single resorufin molecules in aligned nanopores was studied using total internal reflection fluorescence microscopy (TIRFM).« less

  19. Re-electrospraying splash-landed proteins and nanoparticles.

    PubMed

    Benner, W Henry; Lewis, Gregory S; Hering, Susanne V; Selgelke, Brent; Corzett, Michelle; Evans, James E; Lightstone, Felice C

    2012-03-06

    FITC-albumin, Lsr-F, or fluorescent polystyrene latex particles were electrosprayed from aqueous buffer and subjected to dispersion by differential electrical mobility at atmospheric pressure. A resulting narrow size cut of singly charged molecular ions or particles was passed through a condensation growth tube collector to create a flow stream of small water droplets, each carrying a single ion or particle. The droplets were splash landed (impacted) onto a solid or liquid temperature controlled surface. Small pools of droplets containing size-selected particles, FITC-albumin, or Lsr-F were recovered, re-electrosprayed, and, when analyzed a second time by differential electrical mobility, showed increased homogeneity. Transmission electron microscopy (TEM) analysis of the size-selected Lsr-F sample corroborated the mobility observation.

  20. Microspectroscopic Analysis of Anthropogenic- and Biogenic-Influenced Aerosol Particles during the SOAS Field Campaign

    NASA Astrophysics Data System (ADS)

    Ault, A. P.; Bondy, A. L.; Nhliziyo, M. V.; Bertman, S. B.; Pratt, K.; Shepson, P. B.

    2013-12-01

    During the summer, the southeastern United States experiences a cooling haze due to the interaction of anthropogenic and biogenic aerosol sources. An objective of the summer 2013 Southern Oxidant and Aerosol Study (SOAS) was to improve our understanding of how trace gases and aerosols are contributing to this relative cooling through light scattering and absorption. To improve understanding of biogenic-anthropogenic interactions through secondary organic aerosol (SOA) formation on primary aerosol cores requires detailed physicochemical characterization of the particles after uptake and processing. Our measurements focus on single particle analysis of aerosols in the accumulation mode (300-1000 nm) collected using a multi orifice uniform deposition impactor (MOUDI) at the Centreville, Alabama SEARCH site. Particles were characterized using an array of microscopic and spectroscopic techniques, including: scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX), and Raman microspectroscopy. These analyses provide detailed information on particle size, morphology, elemental composition, and functional groups. This information is combined with mapping capabilities to explore individual particle spatial patterns and how that impacts structural characteristics. The improved understanding will be used to explore how sources and processing (such as SOA coating of soot) change particle structure (i.e. core shell) and how the altered optical properties impact air quality/climate effects on a regional scale.

  1. Micro-Spectroscopic Chemical Imaging of Individual Identified Marine Biogenic and Ambient Organic Ice Nuclei (Invited)

    NASA Astrophysics Data System (ADS)

    Knopf, D. A.; Alpert, P. A.; Wang, B.; OBrien, R. E.; Moffet, R. C.; Aller, J. Y.; Laskin, A.; Gilles, M.

    2013-12-01

    Atmospheric ice formation represents one of the least understood atmospheric processes with important implications for the hydrological cycle and climate. Current freezing descriptions assume that ice active sites on the particle surface initiate ice nucleation, however, the nature of these sites remains elusive. Here, we present a new experimental method that allows us to relate physical and chemical properties of individual particles with observed water uptake and ice nucleation ability using a combination of micro-spectroscopic and optical single particle analytical techniques. We apply this method to field-collected particles and particles generated via bursting of bubbles produced by glass frit aeration and plunging water impingement jets in a mesocosm containing artificial sea water and bacteria and/or phytoplankton. The most efficient ice nuclei (IN) within a particle population are identified and characterized. Single particle characterization is achieved by computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX) and scanning transmission X-ray microscopy with near edge X-ray absorption fine structure spectroscopy. A vapor controlled cooling-stage coupled to an optical microscope is used to determine the onsets of water uptake, immersion freezing, and deposition ice nucleation of the individual particles as a function of temperature (T) as low as 200 K and relative humidity (RH) up to water saturation. In addition, we perform CCSEM/EDX to obtain on a single particle level the elemental composition of the entire particle population. Thus, we can determine if the IN are exceptional in nature or belong to a major particle type class with respect to composition and size. We find that ambient and sea spray particles are coated by organic material and can induce ice formation under tropospheric relevant conditions. Micro-spectroscopic single particle analysis of the investigated particle samples invokes a potential paradigm shift: Individual ice nucleating particle composition indicates that IN are similar to the majority of particles in the population and not exceptional. This suggests that composition alone may not be a determinant for IN identification. Furthermore, the results suggest that particle abundance may be a crucial parameter for IN efficiency when predicting cloud glaciation processes. These findings would have important consequences for cloud modeling, laboratory ice nucleation experiments, and field measurements.

  2. Contributions of Organic Sources to Atmospheric Aerosol Particle Concentrations and Growth

    NASA Astrophysics Data System (ADS)

    Russell, L. M.

    2017-12-01

    Organic molecules are important contributors to aerosol particle mass and number concentrations through primary emissions as well as secondary growth in the atmosphere. New techniques for measuring organic aerosol components in atmospheric particles have improved measurements of this contribution in the last 20 years, including Scanning Transmission X-ray Microscopy Near Edge X-ray Absorption Fine Structure (STXM-NEXAFS), Fourier Transform Infrared spectroscopy (FTIR), and High-Resolution Aerosol Mass Spectrometry (AMS). STXM-NEXAFS individual aerosol particle composition illustrated the variety of morphology of organic components in marine aerosols, the inherent relationships between organic composition and shape, and the links between atmospheric aerosol composition and particles produced in smog chambers. This type of single particle microscopy has also added to size distribution measurements by providing evidence of how surface-controlled and bulk-controlled processes contribute to the growth of particles in the atmosphere. FTIR analysis of organic functional groups are sufficient to distinguish combustion, marine, and terrestrial organic particle sources and to show that each of those types of sources has a surprisingly similar organic functional group composition over four different oceans and four different continents. Augmenting the limited sampling of these off-line techniques with side-by-side inter-comparisons to online AMS provides complementary composition information and consistent quantitative attribution to sources (despite some clear method differences). Single-particle AMS techniques using light scattering and event trigger modes have now also characterized the types of particles found in urban, marine, and ship emission aerosols. Most recently, by combining with off-line techniques, single particle composition measurements have separated and quantified the contributions of organic, sulfate and salt components from ocean biogenic and sea spray emissions to particles, addressing the persistent question of the sources of cloud condensation nuclei in clean marine conditions.

  3. Quantitative determination of low-Z elements in single atmospheric particles on boron substrates by automated scanning electron microscopy-energy-dispersive X-ray spectrometry.

    PubMed

    Choël, Marie; Deboudt, Karine; Osán, János; Flament, Pascal; Van Grieken, René

    2005-09-01

    Atmospheric aerosols consist of a complex heterogeneous mixture of particles. Single-particle analysis techniques are known to provide unique information on the size-resolved chemical composition of aerosols. A scanning electron microscope (SEM) combined with a thin-window energy-dispersive X-ray (EDX) detector enables the morphological and elemental analysis of single particles down to 0.1 microm with a detection limit of 1-10 wt %, low-Z elements included. To obtain data statistically representative of the air masses sampled, a computer-controlled procedure can be implemented in order to run hundreds of single-particle analyses (typically 1000-2000) automatically in a relatively short period of time (generally 4-8 h, depending on the setup and on the particle loading). However, automated particle analysis by SEM-EDX raises two practical challenges: the accuracy of the particle recognition and the reliability of the quantitative analysis, especially for micrometer-sized particles with low atomic number contents. Since low-Z analysis is hampered by the use of traditional polycarbonate membranes, an alternate choice of substrate is a prerequisite. In this work, boron is being studied as a promising material for particle microanalysis. As EDX is generally said to probe a volume of approximately 1 microm3, geometry effects arise from the finite size of microparticles. These particle geometry effects must be corrected by means of a robust concentration calculation procedure. Conventional quantitative methods developed for bulk samples generate elemental concentrations considerably in error when applied to microparticles. A new methodology for particle microanalysis, combining the use of boron as the substrate material and a reverse Monte Carlo quantitative program, was tested on standard particles ranging from 0.25 to 10 microm. We demonstrate that the quantitative determination of low-Z elements in microparticles is achievable and that highly accurate results can be obtained using the automatic data processing described here compared to conventional methods.

  4. Classification and Segmentation of Nanoparticle Diffusion Trajectories in Cellular Micro Environments

    PubMed Central

    Kroll, Alexandra; Haramagatti, Chandrashekara R.; Lipinski, Hans-Gerd; Wiemann, Martin

    2017-01-01

    Darkfield and confocal laser scanning microscopy both allow for a simultaneous observation of live cells and single nanoparticles. Accordingly, a characterization of nanoparticle uptake and intracellular mobility appears possible within living cells. Single particle tracking allows to measure the size of a diffusing particle close to a cell. However, within the more complex system of a cell’s cytoplasm normal, confined or anomalous diffusion together with directed motion may occur. In this work we present a method to automatically classify and segment single trajectories into their respective motion types. Single trajectories were found to contain more than one motion type. We have trained a random forest with 9 different features. The average error over all motion types for synthetic trajectories was 7.2%. The software was successfully applied to trajectories of positive controls for normal- and constrained diffusion. Trajectories captured by nanoparticle tracking analysis served as positive control for normal diffusion. Nanoparticles inserted into a diblock copolymer membrane was used to generate constrained diffusion. Finally we segmented trajectories of diffusing (nano-)particles in V79 cells captured with both darkfield- and confocal laser scanning microscopy. The software called “TraJClassifier” is freely available as ImageJ/Fiji plugin via https://git.io/v6uz2. PMID:28107406

  5. Single-particle cryo-EM-Improved ab initio 3D reconstruction with SIMPLE/PRIME.

    PubMed

    Reboul, Cyril F; Eager, Michael; Elmlund, Dominika; Elmlund, Hans

    2018-01-01

    Cryogenic electron microscopy (cryo-EM) and single-particle analysis now enables the determination of high-resolution structures of macromolecular assemblies that have resisted X-ray crystallography and other approaches. We developed the SIMPLE open-source image-processing suite for analysing cryo-EM images of single-particles. A core component of SIMPLE is the probabilistic PRIME algorithm for identifying clusters of images in 2D and determine relative orientations of single-particle projections in 3D. Here, we extend our previous work on PRIME and introduce new stochastic optimization algorithms that improve the robustness of the approach. Our refined method for identification of homogeneous subsets of images in accurate register substantially improves the resolution of the cluster centers and of the ab initio 3D reconstructions derived from them. We now obtain maps with a resolution better than 10 Å by exclusively processing cluster centers. Excellent parallel code performance on over-the-counter laptops and CPU workstations is demonstrated. © 2017 The Protein Society.

  6. Single-particle coherent diffractive imaging with a soft x-ray free electron laser: towards soot aerosol morphology

    NASA Astrophysics Data System (ADS)

    Bogan, Michael J.; Starodub, Dmitri; Hampton, Christina Y.; Sierra, Raymond G.

    2010-10-01

    The first of its kind, the Free electron LASer facility in Hamburg, FLASH, produces soft x-ray pulses with unprecedented properties (10 fs, 6.8-47 nm, 1012 photons per pulse, 20 µm diameter). One of the seminal FLASH experiments is single-pulse coherent x-ray diffractive imaging (CXDI). CXDI utilizes the ultrafast and ultrabright pulses to overcome resolution limitations in x-ray microscopy imposed by x-ray-induced damage to the sample by 'diffracting before destroying' the sample on sub-picosecond timescales. For many lensless imaging algorithms used for CXDI it is convenient when the data satisfy an oversampling constraint that requires the sample to be an isolated object, i.e. an individual 'free-standing' portion of disordered matter delivered to the centre of the x-ray focus. By definition, this type of matter is an aerosol. This paper will describe the role of aerosol science methodologies used for the validation of the 'diffract before destroy' hypothesis and the execution of the first single-particle CXDI experiments being developed for biological imaging. FLASH CXDI now enables the highest resolution imaging of single micron-sized or smaller airborne particulate matter to date while preserving the native substrate-free state of the aerosol. Electron microscopy offers higher resolution for single-particle analysis but the aerosol must be captured on a substrate, potentially modifying the particle morphology. Thus, FLASH is poised to contribute significant advancements in our knowledge of aerosol morphology and dynamics. As an example, we simulate CXDI of combustion particle (soot) morphology and introduce the concept of extracting radius of gyration of fractal aggregates from single-pulse x-ray diffraction data. Future upgrades to FLASH will enable higher spatially and temporally resolved single-particle aerosol dynamics studies, filling a critical technological need in aerosol science and nanotechnology. Many of the methodologies described for FLASH will directly translate to use at hard x-ray free electron lasers.

  7. Measurement of Anisotropic Particle Interactions with Nonuniform ac Electric Fields.

    PubMed

    Rupp, Bradley; Torres-Díaz, Isaac; Hua, Xiaoqing; Bevan, Michael A

    2018-02-20

    Optical microscopy measurements are reported for single anisotropic polymer particles interacting with nonuniform ac electric fields. The present study is limited to conditions where gravity confines particles with their long axis parallel to the substrate such that particles can be treated using quasi-2D analysis. Field parameters are investigated that result in particles residing at either electric field maxima or minima and with long axes oriented either parallel or perpendicular to the electric field direction. By nonintrusively observing thermally sampled positions and orientations at different field frequencies and amplitudes, a Boltzmann inversion of the time-averaged probability of states yields kT-scale energy landscapes (including dipole-field, particle-substrate, and gravitational potentials). The measured energy landscapes show agreement with theoretical potentials using particle conductivity as the sole adjustable material property. Understanding anisotropic particle-field energy landscapes vs field parameters enables quantitative control of local forces and torques on single anisotropic particles to manipulate their position and orientation within nonuniform fields.

  8. Multiple Method Analysis of TiO2 Nanoparticle Uptake in Rice (Oryza sativa L.) Plants.

    PubMed

    Deng, Yingqing; Petersen, Elijah J; Challis, Katie E; Rabb, Savelas A; Holbrook, R David; Ranville, James F; Nelson, Bryant C; Xing, Baoshan

    2017-09-19

    Understanding the translocation of nanoparticles (NPs) into plants is challenging because qualitative and quantitative methods are still being developed and the comparability of results among different methods is unclear. In this study, uptake of titanium dioxide NPs and larger bulk particles (BPs) in rice plant (Oryza sativa L.) tissues was evaluated using three orthogonal techniques: electron microscopy, single-particle inductively coupled plasma mass spectroscopy (spICP-MS) with two different plant digestion approaches, and total elemental analysis using ICP optical emission spectroscopy. In agreement with electron microscopy results, total elemental analysis of plants exposed to TiO 2 NPs and BPs at 5 and 50 mg/L concentrations revealed that TiO 2 NPs penetrated into the plant root and resulted in Ti accumulation in above ground tissues at a higher level compared to BPs. spICP-MS analyses revealed that the size distributions of internalized particles differed between the NPs and BPs with the NPs showing a distribution with smaller particles. Acid digestion resulted in higher particle numbers and the detection of a broader range of particle sizes than the enzymatic digestion approach, highlighting the need for development of robust plant digestion procedures for NP analysis. Overall, there was agreement among the three techniques regarding NP and BP penetration into rice plant roots and spICP-MS showed its unique contribution to provide size distribution information.

  9. Single-File Escape of Colloidal Particles from Microfluidic Channels

    NASA Astrophysics Data System (ADS)

    Locatelli, Emanuele; Pierno, Matteo; Baldovin, Fulvio; Orlandini, Enzo; Tan, Yizhou; Pagliara, Stefano

    2016-07-01

    Single-file diffusion is a ubiquitous physical process exploited by living and synthetic systems to exchange molecules with their environment. It is paramount to quantify the escape time needed for single files of particles to exit from constraining synthetic channels and biological pores. This quantity depends on complex cooperative effects, whose predominance can only be established through a strict comparison between theory and experiments. By using colloidal particles, optical manipulation, microfluidics, digital microscopy, and theoretical analysis we uncover the self-similar character of the escape process and provide closed-formula evaluations of the escape time. We find that the escape time scales inversely with the diffusion coefficient of the last particle to leave the channel. Importantly, we find that at the investigated microscale, bias forces as tiny as 10-15 N determine the magnitude of the escape time by drastically reducing interparticle collisions. Our findings provide crucial guidelines to optimize the design of micro- and nanodevices for a variety of applications including drug delivery, particle filtering, and transport in geometrical constrictions.

  10. Interferometric Scattering Microscopy for the Study of Molecular Motors

    PubMed Central

    Andrecka, J.; Takagi, Y.; Mickolajczyk, K.J.; Lippert, L.G.; Sellers, J.R.; Hancock, W.O.; Goldman, Y.E.; Kukura, P.

    2016-01-01

    Our understanding of molecular motor function has been greatly improved by the development of imaging modalities, which enable real-time observation of their motion at the single-molecule level. Here, we describe the use of a new method, interferometric scattering microscopy, for the investigation of motor protein dynamics by attaching and tracking the motion of metallic nanoparticle labels as small as 20 nm diameter. Using myosin-5, kinesin-1, and dynein as examples, we describe the basic assays, labeling strategies, and principles of data analysis. Our approach is relevant not only for motor protein dynamics but also provides a general tool for single-particle tracking with high spatiotemporal precision, which overcomes the limitations of single-molecule fluorescence methods. PMID:27793291

  11. Unsupervised Cryo-EM Data Clustering through Adaptively Constrained K-Means Algorithm

    PubMed Central

    Xu, Yaofang; Wu, Jiayi; Yin, Chang-Cheng; Mao, Youdong

    2016-01-01

    In single-particle cryo-electron microscopy (cryo-EM), K-means clustering algorithm is widely used in unsupervised 2D classification of projection images of biological macromolecules. 3D ab initio reconstruction requires accurate unsupervised classification in order to separate molecular projections of distinct orientations. Due to background noise in single-particle images and uncertainty of molecular orientations, traditional K-means clustering algorithm may classify images into wrong classes and produce classes with a large variation in membership. Overcoming these limitations requires further development on clustering algorithms for cryo-EM data analysis. We propose a novel unsupervised data clustering method building upon the traditional K-means algorithm. By introducing an adaptive constraint term in the objective function, our algorithm not only avoids a large variation in class sizes but also produces more accurate data clustering. Applications of this approach to both simulated and experimental cryo-EM data demonstrate that our algorithm is a significantly improved alterative to the traditional K-means algorithm in single-particle cryo-EM analysis. PMID:27959895

  12. Unsupervised Cryo-EM Data Clustering through Adaptively Constrained K-Means Algorithm.

    PubMed

    Xu, Yaofang; Wu, Jiayi; Yin, Chang-Cheng; Mao, Youdong

    2016-01-01

    In single-particle cryo-electron microscopy (cryo-EM), K-means clustering algorithm is widely used in unsupervised 2D classification of projection images of biological macromolecules. 3D ab initio reconstruction requires accurate unsupervised classification in order to separate molecular projections of distinct orientations. Due to background noise in single-particle images and uncertainty of molecular orientations, traditional K-means clustering algorithm may classify images into wrong classes and produce classes with a large variation in membership. Overcoming these limitations requires further development on clustering algorithms for cryo-EM data analysis. We propose a novel unsupervised data clustering method building upon the traditional K-means algorithm. By introducing an adaptive constraint term in the objective function, our algorithm not only avoids a large variation in class sizes but also produces more accurate data clustering. Applications of this approach to both simulated and experimental cryo-EM data demonstrate that our algorithm is a significantly improved alterative to the traditional K-means algorithm in single-particle cryo-EM analysis.

  13. Tracking Image Correlation: Combining Single-Particle Tracking and Image Correlation

    PubMed Central

    Dupont, A.; Stirnnagel, K.; Lindemann, D.; Lamb, D.C.

    2013-01-01

    The interactions and coordination of biomolecules are crucial for most cellular functions. The observation of protein interactions in live cells may provide a better understanding of the underlying mechanisms. After fluorescent labeling of the interacting partners and live-cell microscopy, the colocalization is generally analyzed by quantitative global methods. Recent studies have addressed questions regarding the individual colocalization of moving biomolecules, usually by using single-particle tracking (SPT) and comparing the fluorescent intensities in both color channels. Here, we introduce a new method that combines SPT and correlation methods to obtain a dynamical 3D colocalization analysis along single trajectories of dual-colored particles. After 3D tracking, the colocalization is computed at each particle’s position via the local 3D image cross correlation of the two detection channels. For every particle analyzed, the output consists of the 3D trajectory, the time-resolved 3D colocalization information, and the fluorescence intensity in both channels. In addition, the cross-correlation analysis shows the 3D relative movement of the two fluorescent labels with an accuracy of 30 nm. We apply this method to the tracking of viral fusion events in live cells and demonstrate its capacity to obtain the time-resolved colocalization status of single particles in dense and noisy environments. PMID:23746509

  14. Chemical release from single-PMMA microparticles monitored by CARS microscopy

    NASA Astrophysics Data System (ADS)

    Enejder, Annika; Svedberg, Fredrik; Nordstierna, Lars; Nydén, Magnus

    2011-03-01

    Microparticles loaded with antigens, proteins, DNA, fungicides, and other functional agents emerge as ideal vehicles for vaccine, drug delivery, genetic therapy, surface- and crop protection. The microscopic size of the particles and their collective large specific surface area enables highly active and localized release of the functional substance. In order to develop designs with release profiles optimized for the specific application, it is desirable to map the distribution of the active substance within the particle and how parameters such as size, material and morphology affect release rates at single particle level. Current imaging techniques are limited in resolution, sensitivity, image acquisition time, or sample treatment, excluding dynamic studies of active agents in microparticles. Here, we demonstrate that the combination of CARS and THG microscopy can successfully be used, by mapping the spatial distribution and release rates of the fungicide and food preservative IPBC from different designs of PMMA microparticles at single-particle level. By fitting a radial diffusion model to the experimental data, single particle diffusion coefficients can be determined. We show that release rates are highly dependent on the size and morphology of the particles. Hence, CARS and THG microscopy provides adequate sensitivity and spatial resolution for quantitative studies on how singleparticle properties affect the diffusion of active agents at microscopic level. This will aid the design of innovative microencapsulating systems for controlled release.

  15. DeepPicker: A deep learning approach for fully automated particle picking in cryo-EM.

    PubMed

    Wang, Feng; Gong, Huichao; Liu, Gaochao; Li, Meijing; Yan, Chuangye; Xia, Tian; Li, Xueming; Zeng, Jianyang

    2016-09-01

    Particle picking is a time-consuming step in single-particle analysis and often requires significant interventions from users, which has become a bottleneck for future automated electron cryo-microscopy (cryo-EM). Here we report a deep learning framework, called DeepPicker, to address this problem and fill the current gaps toward a fully automated cryo-EM pipeline. DeepPicker employs a novel cross-molecule training strategy to capture common features of particles from previously-analyzed micrographs, and thus does not require any human intervention during particle picking. Tests on the recently-published cryo-EM data of three complexes have demonstrated that our deep learning based scheme can successfully accomplish the human-level particle picking process and identify a sufficient number of particles that are comparable to those picked manually by human experts. These results indicate that DeepPicker can provide a practically useful tool to significantly reduce the time and manual effort spent in single-particle analysis and thus greatly facilitate high-resolution cryo-EM structure determination. DeepPicker is released as an open-source program, which can be downloaded from https://github.com/nejyeah/DeepPicker-python. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Morphology of single inhalable particle inside public transit biodiesel fueled bus.

    PubMed

    Shandilya, Kaushik K; Kumar, Ashok

    2010-01-01

    In an urban-transit bus, fueled by biodiesel in Toledo, Ohio, single inhalable particle samples in October 2008 were collected and detected by scanning electron microscopy and energy dispersive X-ray spectrometry (SEM/EDS). Particle size analysis found bimodal distribution at 0.2 and 0.5 microm. The particle morphology was characterized by 14 different shape clusters: square, pentagon, hexagon, heptagon, octagon, nonagon, decagon, agglomerate, sphere, triangle, oblong, strip, line or stick, and unknown, by quantitative order. The square particles were common in the samples. Round and triangle particles are more, and pentagon, hexagon, heptagon, octagon, nonagon, decagon, strip, line or sticks are less. Agglomerate particles were found in abundance. The surface of most particles was coarse with a fractal edge that can provide a suitable chemical reaction bed in the polluted atmospheric environment. The three sorts of surface patterns of squares were smooth, semi-smooth, and coarse. The three sorts of square surface patterns represented the morphological characteristics of single inhalable particles in the air inside the bus in Toledo. The size and shape distribution results were compared to those obtained for a bus using ultra low sulfur diesel.

  17. Wavefront correction using machine learning methods for single molecule localization microscopy

    NASA Astrophysics Data System (ADS)

    Tehrani, Kayvan F.; Xu, Jianquan; Kner, Peter

    2015-03-01

    Optical Aberrations are a major challenge in imaging biological samples. In particular, in single molecule localization (SML) microscopy techniques (STORM, PALM, etc.) a high Strehl ratio point spread function (PSF) is necessary to achieve sub-diffraction resolution. Distortions in the PSF shape directly reduce the resolution of SML microscopy. The system aberrations caused by the imperfections in the optics and instruments can be compensated using Adaptive Optics (AO) techniques prior to imaging. However, aberrations caused by the biological sample, both static and dynamic, have to be dealt with in real time. A challenge for wavefront correction in SML microscopy is a robust optimization approach in the presence of noise because of the naturally high fluctuations in photon emission from single molecules. Here we demonstrate particle swarm optimization for real time correction of the wavefront using an intensity independent metric. We show that the particle swarm algorithm converges faster than the genetic algorithm for bright fluorophores.

  18. Understanding nanocellulose chirality and structure–properties relationship at the single fibril level

    PubMed Central

    Usov, Ivan; Nyström, Gustav; Adamcik, Jozef; Handschin, Stephan; Schütz, Christina; Fall, Andreas; Bergström, Lennart; Mezzenga, Raffaele

    2015-01-01

    Nanocellulose fibrils are ubiquitous in nature and nanotechnologies but their mesoscopic structural assembly is not yet fully understood. Here we study the structural features of rod-like cellulose nanoparticles on a single particle level, by applying statistical polymer physics concepts on electron and atomic force microscopy images, and we assess their physical properties via quantitative nanomechanical mapping. We show evidence of right-handed chirality, observed on both bundles and on single fibrils. Statistical analysis of contours from microscopy images shows a non-Gaussian kink angle distribution. This is inconsistent with a structure consisting of alternating amorphous and crystalline domains along the contour and supports process-induced kink formation. The intrinsic mechanical properties of nanocellulose are extracted from nanoindentation and persistence length method for transversal and longitudinal directions, respectively. The structural analysis is pushed to the level of single cellulose polymer chains, and their smallest associated unit with a proposed 2 × 2 chain-packing arrangement. PMID:26108282

  19. Wavelet-based tracking of bacteria in unreconstructed off-axis holograms.

    PubMed

    Marin, Zach; Wallace, J Kent; Nadeau, Jay; Khalil, Andre

    2018-03-01

    We propose an automated wavelet-based method of tracking particles in unreconstructed off-axis holograms to provide rough estimates of the presence of motion and particle trajectories in digital holographic microscopy (DHM) time series. The wavelet transform modulus maxima segmentation method is adapted and tailored to extract Airy-like diffraction disks, which represent bacteria, from DHM time series. In this exploratory analysis, the method shows potential for estimating bacterial tracks in low-particle-density time series, based on a preliminary analysis of both living and dead Serratia marcescens, and for rapidly providing a single-bit answer to whether a sample chamber contains living or dead microbes or is empty. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. In Situ Visualization of the Growth and Fluctuations of Nanoparticle Superlattice in Liquids

    NASA Astrophysics Data System (ADS)

    Ou, Zihao; Shen, Bonan; Chen, Qian

    We use liquid phase transmission electron microscopy to image and understand the crystal growth front and interfacial fluctuation of a nanoparticle superlattice. With single particle resolution and hundreds of nanoscale building blocks in view, we are able to identify the interface between ordered lattice and disordered structure and visualize the kinetics of single building block attachment at the lattice growth front. The spatial interfacial fluctuation profiles support the capillary wave theory, from which we derive a surface stiffness value consistent with scaling analysis. Our experiments demonstrate the potential of extending model study on collective systems to nanoscale with single particle resolution and testing fundamental theories of condensed matter at a length scale linking atoms and micron-sized colloids.

  1. A Detailed Analysis of Aerosols Containing Zn, Pb, and Cl from an Industrial Region of Mexico City

    NASA Astrophysics Data System (ADS)

    Moffet, R. C.; Desyaterik, Y.; Hopkins, R. J.; Tivanski, A. V.; Gilles, M. K.; Shutthanandan, V.; Molina, L. T.; Gonzalez-Abraham, R.; Johnson, K. S.; Mugica, V.; Molina, M. J.; Laskin, A.; Prather, K. A.

    2008-12-01

    Measurements in the Northern Mexico City Metropolitan Area during the March, 2006 MILAGRO campaign revealed the frequent appearance of particles with a characteristically high content of internally mixed Zn, Pb, Cl, and P. A detailed analysis of the chemical and physical properties of these particles was performed using a complementary combination of aerosol measurement techniques. Single particles were analyzed using Aerosol Time-of-Flight Mass Spectrometry (ATOFMS) and Computer Controlled Scanning Electron Microscopy/Energy Dispersive X-Ray spectroscopy (CCSEM/EDX). Proton Induced X-Ray Emission (PIXE) analysis of bulk aerosol samples provided time-resolved mass concentrations of individual elements. The PIXE measurements indicated that Zn is more strongly correlated with Cl than with any other element and that Zn concentrations are higher than other non-ferrous transition metals. The Zn- and Pb - containing particles have both spherical and non-spherical morphologies. Many metal rich particles had needle-like structures and were found to be composed of ZnO and/or Zn(NO3)2-6H2O as indicated by scanning transmission x-ray microscopy/near edge X-ray absorption spectroscopy (STXM/NEXAFS). The Zn and Pb rich particles were primarily in the submicron size range and internally mixed with elemental carbon. The unique chemical associations most closely match signatures acquired for garbage incineration.

  2. Structural and magnetic studies of nanocrystalline Y{sub 2}Ir{sub 2}O{sub 7}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dwivedi, Vinod Kumar, E-mail: vinodd@iitk.ac.in; Mukhopadhyay, Soumik

    2015-06-24

    In this paper, we discuss synthesis of Y{sub 2}Ir{sub 2}O{sub 7} nanoparticles via chemical solution process. Structural analysis shows single cubic phase with Fd-3m space group symmetry. The particle size and distribution were studied by Transmission Electron Microscopy experiments. The average particle size turns out to be 50nm, which is in good agreement with the XRD results. Magnetic characterization shows no evidence of long range ordering even in presence of strong correlations.

  3. Identification and chemical characterization of particulate matter from wave soldering processes at a printed circuit board manufacturing company.

    PubMed

    Szoboszlai, Z; Kertész, Zs; Szikszai, Z; Angyal, A; Furu, E; Török, Zs; Daróczi, L; Kiss, A Z

    2012-02-15

    In this case study, the elemental composition and mass size distribution of indoor aerosol particles were determined in a working environment where soldering of printed circuit boards (PCB) took place. Single particle analysis using ion and electron microscopy was carried out to obtain more detailed and reliable data about the origin of these particles. As a result, outdoor and indoor aerosol sources such as wave soldering, fluxing processes, workers' activity, mineral dust, biomass burning, fertilizing and other anthropogenic sources could be separated. With the help of scanning electron microscopy, characteristic particle types were identified. On the basis of the mass size distribution data, a stochastic lung deposition model was used to calculate the total and regional deposition efficiencies of the different types of particles within the human respiratory system. The information presented in this study aims to give insights into the detailed characteristics and the health impact of aerosol particles in a working environment where different kinds of soldering activity take place. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Visualizing Ebolavirus Particles Using Single-Particle Interferometric Reflectance Imaging Sensor (SP-IRIS).

    PubMed

    Carter, Erik P; Seymour, Elif Ç; Scherr, Steven M; Daaboul, George G; Freedman, David S; Selim Ünlü, M; Connor, John H

    2017-01-01

    This chapter describes an approach for the label-free imaging and quantification of intact Ebola virus (EBOV) and EBOV viruslike particles (VLPs) using a light microscopy technique. In this technique, individual virus particles are captured onto a silicon chip that has been printed with spots of virus-specific capture antibodies. These captured virions are then detected using an optical approach called interference reflectance imaging. This approach allows for the detection of each virus particle that is captured on an antibody spot and can resolve the filamentous structure of EBOV VLPs without the need for electron microscopy. Capture of VLPs and virions can be done from a variety of sample types ranging from tissue culture medium to blood. The technique also allows automated quantitative analysis of the number of virions captured. This can be used to identify the virus concentration in an unknown sample. In addition, this technique offers the opportunity to easily image virions captured from native solutions without the need for additional labeling approaches while offering a means of assessing the range of particle sizes and morphologies in a quantitative manner.

  5. Molecular architecture of botulinum neurotoxin E revealed by single particle electron microscopy.

    PubMed

    Fischer, Audrey; Garcia-Rodriguez, Consuelo; Geren, Isin; Lou, Jianlong; Marks, James D; Nakagawa, Terunaga; Montal, Mauricio

    2008-02-15

    Clostridial botulinum neurotoxin (BoNT) causes a neuroparalytic condition recognized as botulism by arresting synaptic vesicle exocytosis. Although the crystal structures of full-length BoNT/A and BoNT/B holotoxins are known, the molecular architecture of the five other serotypes remains elusive. Here, we present the structures of BoNT/A and BoNT/E using single particle electron microscopy. Labeling of the particles with three different monoclonal antibodies raised against BoNT/E revealed the positions of their epitopes in the electron microscopy structure, thereby identifying the three hallmark domains of BoNT (protease, translocation, and receptor binding). Correspondingly, these antibodies selectively inhibit BoNT translocation activity as detected using a single molecule assay. The global structure of BoNT/E is strikingly different from that of BoNT/A despite strong sequence similarity. We postulate that the unique architecture of functionally conserved modules underlies the distinguishing attributes of BoNT/E and contributes to differences with BoNT/A.

  6. Alignment error envelopes for single particle analysis.

    PubMed

    Jensen, G J

    2001-01-01

    To determine the structure of a biological particle to high resolution by electron microscopy, image averaging is required to combine information from different views and to increase the signal-to-noise ratio. Starting from the number of noiseless views necessary to resolve features of a given size, four general factors are considered that increase the number of images actually needed: (1) the physics of electron scattering introduces shot noise, (2) thermal motion and particle inhomogeneity cause the scattered electrons to describe a mixture of structures, (3) the microscope system fails to usefully record all the information carried by the scattered electrons, and (4) image misalignment leads to information loss through incoherent averaging. The compound effect of factors 2-4 is approximated by the product of envelope functions. The problem of incoherent image averaging is developed in detail through derivation of five envelope functions that account for small errors in 11 "alignment" parameters describing particle location, orientation, defocus, magnification, and beam tilt. The analysis provides target error tolerances for single particle analysis to near-atomic (3.5 A) resolution, and this prospect is shown to depend critically on image quality, defocus determination, and microscope alignment. Copyright 2001 Academic Press.

  7. Gold nano particle decorated graphene core first generation PAMAM dendrimer for label free electrochemical DNA hybridization sensing.

    PubMed

    Jayakumar, K; Rajesh, R; Dharuman, V; Venkatasan, R; Hahn, J H; Pandian, S Karutha

    2012-01-15

    A novel first generation (G1) poly(amidoamine) dendrimer (PAMAM) with graphene core (GG1PAMAM) was synthesized for the first time. Single layer of GG1PAMAM was immobilized covalently on mercaptopropionic acid (MPA) monolayer on Au transducer. This allows cost effective and easy deposition of single layer graphene on the Au transducer surface than the advanced vacuum techniques used in the literature. Au nano particles (17.5 nm) then decorated the GG1PAMAM and used for electrochemical DNA hybridization sensing. The sensor discriminates selectively and sensitively the complementary double stranded DNA (dsDNA, hybridized), non-complementary DNA (ssDNA, un-hybridized) and single nucleotide polymorphism (SNP) surfaces. Interactions of the MPA, GG1PAMAM and the Au nano particles were characterized by Ultra Violet (UV), Fourier Transform Infrared (FTIR), Raman spectroscopy (RS), Thermo gravimetric analysis (TGA), Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Cyclic Voltmetric (CV), Impedance spectroscopy (IS) and Differntial Pulse Voltammetry (DPV) techniques. The sensor showed linear range 1×10(-6) to 1×10(-12) M with lowest detection limit 1 pM which is 1000 times lower than G1PAMAM without graphene core. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. A deep convolutional neural network approach to single-particle recognition in cryo-electron microscopy.

    PubMed

    Zhu, Yanan; Ouyang, Qi; Mao, Youdong

    2017-07-21

    Single-particle cryo-electron microscopy (cryo-EM) has become a mainstream tool for the structural determination of biological macromolecular complexes. However, high-resolution cryo-EM reconstruction often requires hundreds of thousands of single-particle images. Particle extraction from experimental micrographs thus can be laborious and presents a major practical bottleneck in cryo-EM structural determination. Existing computational methods for particle picking often use low-resolution templates for particle matching, making them susceptible to reference-dependent bias. It is critical to develop a highly efficient template-free method for the automatic recognition of particle images from cryo-EM micrographs. We developed a deep learning-based algorithmic framework, DeepEM, for single-particle recognition from noisy cryo-EM micrographs, enabling automated particle picking, selection and verification in an integrated fashion. The kernel of DeepEM is built upon a convolutional neural network (CNN) composed of eight layers, which can be recursively trained to be highly "knowledgeable". Our approach exhibits an improved performance and accuracy when tested on the standard KLH dataset. Application of DeepEM to several challenging experimental cryo-EM datasets demonstrated its ability to avoid the selection of un-wanted particles and non-particles even when true particles contain fewer features. The DeepEM methodology, derived from a deep CNN, allows automated particle extraction from raw cryo-EM micrographs in the absence of a template. It demonstrates an improved performance, objectivity and accuracy. Application of this novel method is expected to free the labor involved in single-particle verification, significantly improving the efficiency of cryo-EM data processing.

  9. On the formation of nanocrystalline active zinc oxide from zinc hydroxide carbonate

    NASA Astrophysics Data System (ADS)

    Moezzi, Amir; Cortie, Michael; Dowd, Annette; McDonagh, Andrew

    2014-04-01

    The decomposition of zinc hydroxide carbonate, Zn5(CO3)2(OH)6 (ZHC), into the high surface area form of ZnO known as "active zinc oxide" is examined. In particular, the nucleation and evolution of the ZnO nanocrystals is of interest as the size of these particles controls the activity of the product. The decomposition process was studied using X-ray diffraction, thermogravimetric analysis, scanning electron microscopy, transmission electron microscopy and BET surface area measurements. At about 240 °C ZHC decomposes to porous ZnO in a single step. The product material has a specific surface area in the range of 47-65 m2 g-1 and initially has a crystallite size that is of the order of 10 nm. A further increase in temperature, however, causes the particles to coarsen to over 25 nm in diameter. In principle, the coarsening phenomenon may be interrupted to control the particle size.

  10. Revealing region-specific biofilm viscoelastic properties by means of a micro-rheological approach.

    PubMed

    Cao, Huayu; Habimana, Olivier; Safari, Ashkan; Heffernan, Rory; Dai, Yihong; Casey, Eoin

    2016-01-01

    Particle-tracking microrheology is an in situ technique that allows quantification of biofilm material properties. It overcomes the limitations of alternative techniques such as bulk rheology or force spectroscopy by providing data on region specific material properties at any required biofilm location and can be combined with confocal microscopy and associated structural analysis. This article describes single particle tracking microrheology combined with confocal laser scanning microscopy to resolve the biofilm structure in 3 dimensions and calculate the creep compliances locally. Samples were analysed from Pseudomonas fluorescens biofilms that were cultivated over two timescales (24 h and 48 h) and alternate ionic conditions (with and without calcium chloride supplementation). The region-based creep compliance analysis showed that the creep compliance of biofilm void zones is the primary contributor to biofilm mechanical properties, contributing to the overall viscoelastic character.

  11. Size-dependent redox behavior of iron observed by in-situ single nanoparticle spectro-microscopy on well-defined model systems

    NASA Astrophysics Data System (ADS)

    Karim, Waiz; Kleibert, Armin; Hartfelder, Urs; Balan, Ana; Gobrecht, Jens; van Bokhoven, Jeroen A.; Ekinci, Yasin

    2016-01-01

    Understanding the chemistry of nanoparticles is crucial in many applications. Their synthesis in a controlled manner and their characterization at the single particle level is essential to gain deeper insight into chemical mechanisms. In this work, single nanoparticle spectro-microscopy with top-down nanofabrication is demonstrated to study individual iron nanoparticles of nine different lateral dimensions from 80 nm down to 6 nm. The particles are probed simultaneously, under same conditions, during in-situ redox reaction using X-ray photoemission electron microscopy elucidating the size effect during the early stage of oxidation, yielding time-dependent evolution of iron oxides and the mechanism for the inter-conversion of oxides in nanoparticles. Fabrication of well-defined system followed by visualization and investigation of singled-out particles eliminates the ambiguities emerging from dispersed nanoparticles and reveals a significant increase in the initial rate of oxidation with decreasing size, but the reactivity per active site basis and the intrinsic chemical properties in the particles remain the same in the scale of interest. This advance of nanopatterning together with spatially-resolved single nanoparticle X-ray absorption spectroscopy will guide future discourse in understanding the impact of confinement of metal nanoparticles and pave way to solve fundamental questions in material science, chemical physics, magnetism, nanomedicine and nanocatalysis.

  12. Size-dependent redox behavior of iron observed by in-situ single nanoparticle spectro-microscopy on well-defined model systems.

    PubMed

    Karim, Waiz; Kleibert, Armin; Hartfelder, Urs; Balan, Ana; Gobrecht, Jens; van Bokhoven, Jeroen A; Ekinci, Yasin

    2016-01-06

    Understanding the chemistry of nanoparticles is crucial in many applications. Their synthesis in a controlled manner and their characterization at the single particle level is essential to gain deeper insight into chemical mechanisms. In this work, single nanoparticle spectro-microscopy with top-down nanofabrication is demonstrated to study individual iron nanoparticles of nine different lateral dimensions from 80 nm down to 6 nm. The particles are probed simultaneously, under same conditions, during in-situ redox reaction using X-ray photoemission electron microscopy elucidating the size effect during the early stage of oxidation, yielding time-dependent evolution of iron oxides and the mechanism for the inter-conversion of oxides in nanoparticles. Fabrication of well-defined system followed by visualization and investigation of singled-out particles eliminates the ambiguities emerging from dispersed nanoparticles and reveals a significant increase in the initial rate of oxidation with decreasing size, but the reactivity per active site basis and the intrinsic chemical properties in the particles remain the same in the scale of interest. This advance of nanopatterning together with spatially-resolved single nanoparticle X-ray absorption spectroscopy will guide future discourse in understanding the impact of confinement of metal nanoparticles and pave way to solve fundamental questions in material science, chemical physics, magnetism, nanomedicine and nanocatalysis.

  13. Interactive, computer-assisted tracking of speckle trajectories in fluorescence microscopy: application to actin polymerization and membrane fusion.

    PubMed

    Smith, Matthew B; Karatekin, Erdem; Gohlke, Andrea; Mizuno, Hiroaki; Watanabe, Naoki; Vavylonis, Dimitrios

    2011-10-05

    Analysis of particle trajectories in images obtained by fluorescence microscopy reveals biophysical properties such as diffusion coefficient or rates of association and dissociation. Particle tracking and lifetime measurement is often limited by noise, large mobilities, image inhomogeneities, and path crossings. We present Speckle TrackerJ, a tool that addresses some of these challenges using computer-assisted techniques for finding positions and tracking particles in different situations. A dynamic user interface assists in the creation, editing, and refining of particle tracks. The following are results from application of this program: 1), Tracking single molecule diffusion in simulated images. The shape of the diffusing marker on the image changes from speckle to cloud, depending on the relationship of the diffusion coefficient to the camera exposure time. We use these images to illustrate the range of diffusion coefficients that can be measured. 2), We used the program to measure the diffusion coefficient of capping proteins in the lamellipodium. We found values ∼0.5 μm(2)/s, suggesting capping protein association with protein complexes or the membrane. 3), We demonstrate efficient measuring of appearance and disappearance of EGFP-actin speckles within the lamellipodium of motile cells that indicate actin monomer incorporation into the actin filament network. 4), We marked appearance and disappearance events of fluorescently labeled vesicles to supported lipid bilayers and tracked single lipids from the fused vesicle on the bilayer. This is the first time, to our knowledge, that vesicle fusion has been detected with single molecule sensitivity and the program allowed us to perform a quantitative analysis. 5), By discriminating between undocking and fusion events, dwell times for vesicle fusion after vesicle docking to membranes can be measured. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  14. Preliminary Understanding of Surface Plasmon-Enhanced Circular Dichroism Spectroscopy by Single Particle Imaging

    NASA Astrophysics Data System (ADS)

    Zhan, Kangshu

    Monitoring chiral optical signals of biomolecules as their conformation changes is an important means to study their structures, properties, and functions. Most measurements, however, are ensemble measurements because chiral optical signals from a single biomolecule is often too weak to be detected. In this dissertation, I present my early attempts to study conformational changes of adsorbed proteins by taking advantage of the enhanced electromagnetic (EM) field around a well-designed plasmonic nanofeature. In particular, I discuss the detection of protein adsorption and denaturation on metallic nanoparticles using single particle scattering and CD spectroscopic imaging. Particles of two distinctively different sizes were compared and two different sample protein molecules were studied. A combination of experimental and computational tools was used to simulate and interpret the collected scattering and CD results. The first chapter provides a brief overview of the state-of-art research in CD spectroscopic studies at the single particle level. Three different means to make particles capable of chiral detection are discussed. Various applications beyond single particle imaging are presented to showcase the potential of the described research project, beyond our immediate goals. The second chapter describes my initial characterization of large, metallic, anisotropic nanorods and the establishment of experimental procedures used later for spectrum reconstruction, data visualization and analysis. The physical shape and structure of the particles were imaged by scanning electron microscopy (SEM), the chemical composition by energy dispersive X-ray Spectroscopy (EDS), and the optical properties by darkfield microscopy. An experimental protocol was developed to connect information collected from separate techniques for the same particle, with the aims of discovering any possible structural-property correlation. The reproducibility of the single particle imaging method was evaluated. Full spectrum reconstruction using a set of selected optical filters was carried out and data visualization using a Matlab based 3D mapping method was demonstrated. The third chapter describes the introduction of biomolecules in chiral particle studies. By measuring the circular dichroism spectrum and image of nanorods during lysozyme adsorption and denaturation, I was able to monitor the conformation change of proteins on large gapped nanorods. Experiment results suggested that the conformational change of absorbed protein could lead to the change of chiral signal of nanoparticles, suggesting the potentials of detecting biomolecular structural changes at the single nanoparticle level, though much uncertainty still present. The inherent high background of large, gapped nanoparticles when they interact with biomolecules led to the research described in the 4th chapter where I studied small palladium-silver coreshell nanoparticle properties and its interaction with proteins. SEM was used to characterize particles structures; UV-Vis and darkfield microscopy was used to capture particles' optical responses; and the finite-difference time-domain (FDTD) method was used to simulate resulting spectra and to compare with experimental outcomes. Lysozyme and bovine serum albumin (BSA) were used as the model molecules to study their conformational changes after being adsorbed onto particles. Last but the least, the 5th chapter is dedicated to FDTD simulation of a pair of perfectly shaped triangle nanoprisms to illustrate possible CD responses to be expected from extreme particles with sharp corners and much concentrated local EM field. Different coupling modes of triangle nanoprism were analyzed. It is found that many factors, such as particle orientation, spacing, and their relative position, could lead to significantly different coupling efficient, for both homodimers and heterodimers. The modeling data suggested interesting potentials of nanoparticles of extreme geometric features for high sensitivity surface plasmon-enhanced CD imaging at the signal particle level.

  15. HDL particles incorporate into lipid bilayers - a combined AFM and single molecule fluorescence microscopy study.

    PubMed

    Plochberger, Birgit; Röhrl, Clemens; Preiner, Johannes; Rankl, Christian; Brameshuber, Mario; Madl, Josef; Bittman, Robert; Ros, Robert; Sezgin, Erdinc; Eggeling, Christian; Hinterdorfer, Peter; Stangl, Herbert; Schütz, Gerhard J

    2017-11-21

    The process, how lipids are removed from the circulation and transferred from high density lipoprotein (HDL) - a main carrier of cholesterol in the blood stream - to cells, is highly complex. HDL particles are captured from the blood stream by the scavenger receptor, class B, type I (SR-BI), the so-called HDL receptor. The details in subsequent lipid-transfer process, however, have not yet been completely understood. The transfer has been proposed to occur directly at the cell surface across an unstirred water layer, via a hydrophobic channel in the receptor, or after HDL endocytosis. The role of the target lipid membrane for the transfer process, however, has largely been overlooked. Here, we studied at the single molecule level how HDL particles interact with synthetic lipid membranes. Using (high-speed) atomic force microscopy and fluorescence correlation spectroscopy (FCS) we found out that, upon contact with the membrane, HDL becomes integrated into the lipid bilayer. Combined force and single molecule fluorescence microscopy allowed us to directly monitor the transfer process of fluorescently labelled amphiphilic lipid probe from HDL particles to the lipid bilayer upon contact.

  16. Routine single particle CryoEM sample and grid characterization by tomography

    PubMed Central

    Noble, Alex J; Brasch, Julia; Chase, Jillian; Acharya, Priyamvada; Tan, Yong Zi; Zhang, Zhening; Kim, Laura Y; Scapin, Giovanna; Rapp, Micah; Eng, Edward T; Rice, William J; Cheng, Anchi; Negro, Carl J; Shapiro, Lawrence; Kwong, Peter D; Jeruzalmi, David; des Georges, Amedee; Potter, Clinton S

    2018-01-01

    Single particle cryo-electron microscopy (cryoEM) is often performed under the assumption that particles are not adsorbed to the air-water interfaces and in thin, vitreous ice. In this study, we performed fiducial-less tomography on over 50 different cryoEM grid/sample preparations to determine the particle distribution within the ice and the overall geometry of the ice in grid holes. Surprisingly, by studying particles in holes in 3D from over 1000 tomograms, we have determined that the vast majority of particles (approximately 90%) are adsorbed to an air-water interface. The implications of this observation are wide-ranging, with potential ramifications regarding protein denaturation, conformational change, and preferred orientation. We also show that fiducial-less cryo-electron tomography on single particle grids may be used to determine ice thickness, optimal single particle collection areas and strategies, particle heterogeneity, and de novo models for template picking and single particle alignment. PMID:29809143

  17. SAXS analysis of single- and multi-core iron oxide magnetic nanoparticles

    PubMed Central

    Szczerba, Wojciech; Costo, Rocio; Morales, Maria del Puerto; Thünemann, Andreas F.

    2017-01-01

    This article reports on the characterization of four superparamagnetic iron oxide nanoparticles stabilized with dimercaptosuccinic acid, which are suitable candidates for reference materials for magnetic properties. Particles p1 and p2 are single-core particles, while p3 and p4 are multi-core particles. Small-angle X-ray scattering analysis reveals a lognormal type of size distribution for the iron oxide cores of the particles. Their mean radii are 6.9 nm (p1), 10.6 nm (p2), 5.5 nm (p3) and 4.1 nm (p4), with narrow relative distribution widths of 0.08, 0.13, 0.08 and 0.12. The cores are arranged as a clustered network in the form of dense mass fractals with a fractal dimension of 2.9 in the multi-core particles p3 and p4, but the cores are well separated from each other by a protecting organic shell. The radii of gyration of the mass fractals are 48 and 44 nm, and each network contains 117 and 186 primary particles, respectively. The radius distributions of the primary particle were confirmed with transmission electron microscopy. All particles contain purely maghemite, as shown by X-ray absorption fine structure spectroscopy. PMID:28381973

  18. Post-fabrication voltage controlled resonance tuning of nanoscale plasmonic antennas.

    PubMed

    Lumdee, Chatdanai; Toroghi, Seyfollah; Kik, Pieter G

    2012-07-24

    Voltage controlled wavelength tuning of the localized surface plasmon resonance of gold nanoparticles on an aluminum film is demonstrated in single particle microscopy and spectroscopy measurements. Anodization of the Al film after nanoparticle deposition forms an aluminum oxide spacer layer between the gold particles and the Al film, modifying the particle-substrate interaction. Darkfield microscopy reveals ring-shaped scattering images from individual Au nanoparticles, indicative of plasmon resonances with a dipole moment normal to the substrate. Single particle scattering spectra show narrow plasmon resonances that can be tuned from ~580 to ~550 nm as the anodization voltage increases to 12 V. All observed experimental trends could be reproduced in numerical simulations. The presented approach could be used as a general postfabrication resonance optimization step of plasmonic nanoantennas and devices.

  19. Objective comparison of particle tracking methods.

    PubMed

    Chenouard, Nicolas; Smal, Ihor; de Chaumont, Fabrice; Maška, Martin; Sbalzarini, Ivo F; Gong, Yuanhao; Cardinale, Janick; Carthel, Craig; Coraluppi, Stefano; Winter, Mark; Cohen, Andrew R; Godinez, William J; Rohr, Karl; Kalaidzidis, Yannis; Liang, Liang; Duncan, James; Shen, Hongying; Xu, Yingke; Magnusson, Klas E G; Jaldén, Joakim; Blau, Helen M; Paul-Gilloteaux, Perrine; Roudot, Philippe; Kervrann, Charles; Waharte, François; Tinevez, Jean-Yves; Shorte, Spencer L; Willemse, Joost; Celler, Katherine; van Wezel, Gilles P; Dan, Han-Wei; Tsai, Yuh-Show; Ortiz de Solórzano, Carlos; Olivo-Marin, Jean-Christophe; Meijering, Erik

    2014-03-01

    Particle tracking is of key importance for quantitative analysis of intracellular dynamic processes from time-lapse microscopy image data. Because manually detecting and following large numbers of individual particles is not feasible, automated computational methods have been developed for these tasks by many groups. Aiming to perform an objective comparison of methods, we gathered the community and organized an open competition in which participating teams applied their own methods independently to a commonly defined data set including diverse scenarios. Performance was assessed using commonly defined measures. Although no single method performed best across all scenarios, the results revealed clear differences between the various approaches, leading to notable practical conclusions for users and developers.

  20. Detection of isolated protein-bound metal ions by single-particle cryo-STEM.

    PubMed

    Elad, Nadav; Bellapadrona, Giuliano; Houben, Lothar; Sagi, Irit; Elbaum, Michael

    2017-10-17

    Metal ions play essential roles in many aspects of biological chemistry. Detecting their presence and location in proteins and cells is important for understanding biological function. Conventional structural methods such as X-ray crystallography and cryo-transmission electron microscopy can identify metal atoms on protein only if the protein structure is solved to atomic resolution. We demonstrate here the detection of isolated atoms of Zn and Fe on ferritin, using cryogenic annular dark-field scanning transmission electron microscopy (cryo-STEM) coupled with single-particle 3D reconstructions. Zn atoms are found in a pattern that matches precisely their location at the ferroxidase sites determined earlier by X-ray crystallography. By contrast, the Fe distribution is smeared along an arc corresponding to the proposed path from the ferroxidase sites to the mineral nucleation sites along the twofold axes. In this case the single-particle reconstruction is interpreted as a probability distribution function based on the average of individual locations. These results establish conditions for detection of isolated metal atoms in the broader context of electron cryo-microscopy and tomography.

  1. Detection of isolated protein-bound metal ions by single-particle cryo-STEM

    PubMed Central

    Elad, Nadav; Bellapadrona, Giuliano; Houben, Lothar; Sagi, Irit; Elbaum, Michael

    2017-01-01

    Metal ions play essential roles in many aspects of biological chemistry. Detecting their presence and location in proteins and cells is important for understanding biological function. Conventional structural methods such as X-ray crystallography and cryo-transmission electron microscopy can identify metal atoms on protein only if the protein structure is solved to atomic resolution. We demonstrate here the detection of isolated atoms of Zn and Fe on ferritin, using cryogenic annular dark-field scanning transmission electron microscopy (cryo-STEM) coupled with single-particle 3D reconstructions. Zn atoms are found in a pattern that matches precisely their location at the ferroxidase sites determined earlier by X-ray crystallography. By contrast, the Fe distribution is smeared along an arc corresponding to the proposed path from the ferroxidase sites to the mineral nucleation sites along the twofold axes. In this case the single-particle reconstruction is interpreted as a probability distribution function based on the average of individual locations. These results establish conditions for detection of isolated metal atoms in the broader context of electron cryo-microscopy and tomography. PMID:28973937

  2. Bright monomeric photoactivatable red fluorescent protein for two-color super-resolution sptPALM of live cells.

    PubMed

    Subach, Fedor V; Patterson, George H; Renz, Malte; Lippincott-Schwartz, Jennifer; Verkhusha, Vladislav V

    2010-05-12

    Rapidly emerging techniques of super-resolution single-molecule microscopy of living cells rely on the continued development of genetically encoded photoactivatable fluorescent proteins. On the basis of monomeric TagRFP, we have developed a photoactivatable TagRFP protein that is initially dark but becomes red fluorescent after violet light irradiation. Compared to other monomeric dark-to-red photoactivatable proteins including PAmCherry, PATagRFP has substantially higher molecular brightness, better pH stability, substantially less sensitivity to blue light, and better photostability in both ensemble and single-molecule modes. Spectroscopic analysis suggests that PATagRFP photoactivation is a two-step photochemical process involving sequential one-photon absorbance by two distinct chromophore forms. True monomeric behavior, absence of green fluorescence, and single-molecule performance in live cells make PATagRFP an excellent protein tag for two-color imaging techniques, including conventional diffraction-limited photoactivation microscopy, super-resolution photoactivated localization microscopy (PALM), and single particle tracking PALM (sptPALM) of living cells. Two-color sptPALM imaging was demonstrated using several PATagRFP tagged transmembrane proteins together with PAGFP-tagged clathrin light chain. Analysis of the resulting sptPALM images revealed that single-molecule transmembrane proteins, which are internalized into a cell via endocytosis, colocalize in space and time with plasma membrane domains enriched in clathrin light-chain molecules.

  3. Size-segregated compositional analysis of aerosol particles collected in the European Arctic during the ACCACIA campaign

    NASA Astrophysics Data System (ADS)

    Young, G.; Jones, H. M.; Darbyshire, E.; Baustian, K. J.; McQuaid, J. B.; Bower, K. N.; Connolly, P. J.; Gallagher, M. W.; Choularton, T. W.

    2016-03-01

    Single-particle compositional analysis of filter samples collected on board the Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 aircraft is presented for six flights during the springtime Aerosol-Cloud Coupling and Climate Interactions in the Arctic (ACCACIA) campaign (March-April 2013). Scanning electron microscopy was utilised to derive size-segregated particle compositions and size distributions, and these were compared to corresponding data from wing-mounted optical particle counters. Reasonable agreement between the calculated number size distributions was found. Significant variability in composition was observed, with differing external and internal mixing identified, between air mass trajectory cases based on HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) analyses. Dominant particle classes were silicate-based dusts and sea salts, with particles notably rich in K and Ca detected in one case. Source regions varied from the Arctic Ocean and Greenland through to northern Russia and the European continent. Good agreement between the back trajectories was mirrored by comparable compositional trends between samples. Silicate dusts were identified in all cases, and the elemental composition of the dust was consistent for all samples except one. It is hypothesised that long-range, high-altitude transport was primarily responsible for this dust, with likely sources including the Asian arid regions.

  4. Spatially Resolved Sensitivity of Single-Particle Plasmon Sensors

    PubMed Central

    2018-01-01

    The high sensitivity of localized surface plasmon resonance sensors to the local refractive index allows for the detection of single-molecule binding events. Though binding events of single objects can be detected by their induced plasmon shift, the broad distribution of observed shifts remains poorly understood. Here, we perform a single-particle study wherein single nanospheres bind to a gold nanorod, and relate the observed plasmon shift to the binding location using correlative microscopy. To achieve this we combine atomic force microscopy to determine the binding location, and single-particle spectroscopy to determine the corresponding plasmon shift. As expected, we find a larger plasmon shift for nanospheres binding at the tip of a rod compared to its sides, in good agreement with numerical calculations. However, we also find a broad distribution of shifts even for spheres that were bound at a similar location to the nanorod. Our correlative approach allows us to disentangle effects of nanoparticle dimensions and binding location, and by comparison to numerical calculations we find that the biggest contributor to this observed spread is the dispersion in nanosphere diameter. These experiments provide insight into the spatial sensitivity and signal-heterogeneity of single-particle plasmon sensors and provides a framework for signal interpretation in sensing applications. PMID:29520315

  5. The development of optical microscopy techniques for the advancement of single-particle studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchuk, Kyle

    2013-05-15

    Single particle orientation and rotational tracking (SPORT) has recently become a powerful optical microscopy tool that can expose many molecular motions. Unfortunately, there is not yet a single microscopy technique that can decipher all particle motions in all environmental conditions, thus there are limitations to current technologies. Within, the two powerful microscopy tools of total internal reflection and interferometry are advanced to determine the position, orientation, and optical properties of metallic nanoparticles in a variety of environments. Total internal reflection is an optical phenomenon that has been applied to microscopy to produce either fluorescent or scattered light. The non-invasive far-fieldmore » imaging technique is coupled with a near-field illumination scheme that allows for better axial resolution than confocal microscopy and epi-fluorescence microscopy. By controlling the incident illumination angle using total internal reflection fluorescence (TIRF) microscopy, a new type of imaging probe called “non-blinking” quantum dots (NBQDs) were super-localized in the axial direction to sub-10-nm precision. These particles were also used to study the rotational motion of microtubules being propelled by the motor protein kinesin across the substrate surface. The same instrument was modified to function under total internal reflection scattering (TIRS) microscopy to study metallic anisotropic nanoparticles and their dynamic interactions with synthetic lipid bilayers. Utilizing two illumination lasers with opposite polarization directions at wavelengths corresponding to the short and long axis surface plasmon resonance (SPR) of the nanoparticles, both the in-plane and out-of-plane movements of many particles could be tracked simultaneously. When combined with Gaussian point spread function (PSF) fitting for particle super-localization, the binding status and rotational movement could be resolved without degeneracy. TIRS microscopy was also used to find the 3D orientation of stationary metallic anisotropic nanoparticles utilizing only long-axis SPR enhancement. The polarization direction of the illuminating light was rotated causing the relative intensity of p-polarized and s-polarized light within the evanescent field to change. The interaction of the evanescent field with the particles is dependent on the orientation of the particle producing an intensity curve. This curve and the in-plane angle can be compared with simulations to accurately determine the 3D orientation. Differential interference contrast (DIC) microscopy is another non-invasive far-field technique based upon interferometry that does not rely on staining or other contrast enhancing techniques. In addition, high numerical aperture condensers and objectives can be used to give a very narrow depth of field allowing for the optical tomography of samples, which makes it an ideal candidate to study biological systems. DIC microscopy has also proven itself in determining the orientation of gold nanorods in both engineered environments and within cells. Many types of nanoparticles and nanostructures have been synthesized using lithographic techniques on silicon wafer substrates. Traditionally, reflective mode DIC microscopes have been developed and applied to the topographical study of reflective substrates and the imaging of chips on silicon wafers. Herein, a laser-illuminated reflected-mode DIC was developed for studying nanoparticles on reflective surfaces.« less

  6. The development of optical microscopy techniques for the advancement of single-particle studies

    NASA Astrophysics Data System (ADS)

    Marchuk, Kyle

    Single particle orientation and rotational tracking (SPORT) has recently become a powerful optical microscopy tool that can expose many molecular motions. Unfortunately, there is not yet a single microscopy technique that can decipher all particle motions in all environmental conditions, thus there are limitations to current technologies. Within, the two powerful microscopy tools of total internal reflection and interferometry are advanced to determine the position, orientation, and optical properties of metallic nanoparticles in a variety of environments. Total internal reflection is an optical phenomenon that has been applied to microscopy to produce either fluorescent or scattered light. The non-invasive far-field imaging technique is coupled with a near-field illumination scheme that allows for better axial resolution than confocal microscopy and epi-fluorescence microscopy. By controlling the incident illumination angle using total internal reflection fluorescence (TIRF) microscopy, a new type of imaging probe called "non-blinking" quantum dots (NBQDs) were super-localized in the axial direction to sub-10-nm precision. These particles were also used to study the rotational motion of microtubules being propelled by the motor protein kinesin across the substrate surface. The same instrument was modified to function under total internal reflection scattering (TIRS) microscopy to study metallic anisotropic nanoparticles and their dynamic interactions with synthetic lipid bilayers. Utilizing two illumination lasers with opposite polarization directions at wavelengths corresponding to the short and long axis surface plasmon resonance (SPR) of the nanoparticles, both the in-plane and out-of-plane movements of many particles could be tracked simultaneously. When combined with Gaussian point spread function (PSF) fitting for particle super-localization, the binding status and rotational movement could be resolved without degeneracy. TIRS microscopy was also used to find the 3D orientation of stationary metallic anisotropic nanoparticles utilizing only long-axis SPR enhancement. The polarization direction of the illuminating light was rotated causing the relative intensity of p-polarized and s-polarized light within the evanescent field to change. The interaction of the evanescent field with the particles is dependent on the orientation of the particle producing an intensity curve. This curve and the in-plane angle can be compared with simulations to accurately determine the 3D orientation. Differential interference contrast (DIC) microscopy is another non-invasive far-field technique based upon interferometry that does not rely on staining or other contrast enhancing techniques. In addition, high numerical aperture condensers and objectives can be used to give a very narrow depth of field allowing for the optical tomography of samples, which makes it an ideal candidate to study biological systems. DIC microscopy has also proven itself in determining the orientation of gold nanorods in both engineered environments and within cells. Many types of nanoparticles and nanostructures have been synthesized using lithographic techniques on silicon wafer substrates. Traditionally, reflective mode DIC microscopes have been developed and applied to the topographical study of reflective substrates and the imaging of chips on silicon wafers. Herein, a laser-illuminated reflected-mode DIC was developed for studying nanoparticles on reflective surfaces.

  7. Optimal noise reduction in 3D reconstructions of single particles using a volume-normalized filter

    PubMed Central

    Sindelar, Charles V.; Grigorieff, Nikolaus

    2012-01-01

    The high noise level found in single-particle electron cryo-microscopy (cryo-EM) image data presents a special challenge for three-dimensional (3D) reconstruction of the imaged molecules. The spectral signal-to-noise ratio (SSNR) and related Fourier shell correlation (FSC) functions are commonly used to assess and mitigate the noise-generated error in the reconstruction. Calculation of the SSNR and FSC usually includes the noise in the solvent region surrounding the particle and therefore does not accurately reflect the signal in the particle density itself. Here we show that the SSNR in a reconstructed 3D particle map is linearly proportional to the fractional volume occupied by the particle. Using this relationship, we devise a novel filter (the “single-particle Wiener filter”) to minimize the error in a reconstructed particle map, if the particle volume is known. Moreover, we show how to approximate this filter even when the volume of the particle is not known, by optimizing the signal within a representative interior region of the particle. We show that the new filter improves on previously proposed error-reduction schemes, including the conventional Wiener filter as well as figure-of-merit weighting, and quantify the relationship between all of these methods by theoretical analysis as well as numeric evaluation of both simulated and experimentally collected data. The single-particle Wiener filter is applicable across a broad range of existing 3D reconstruction techniques, but is particularly well suited to the Fourier inversion method, leading to an efficient and accurate implementation. PMID:22613568

  8. Live Imaging of Cellular Internalization of Single Colloidal Particle by Combined Label-Free and Fluorescence Total Internal Reflection Microscopy.

    PubMed

    Byrne, Gerard D; Vllasaliu, Driton; Falcone, Franco H; Somekh, Michael G; Stolnik, Snjezana

    2015-11-02

    In this work we utilize the combination of label-free total internal reflection microscopy and total internal reflectance fluorescence (TIRM/TIRF) microscopy to achieve a simultaneous, live imaging of single, label-free colloidal particle endocytosis by individual cells. The TIRM arm of the microscope enables label free imaging of the colloid and cell membrane features, while the TIRF arm images the dynamics of fluorescent-labeled clathrin (protein involved in endocytosis via clathrin pathway), expressed in transfected 3T3 fibroblasts cells. Using a model polymeric colloid and cells with a fluorescently tagged clathrin endocytosis pathway, we demonstrate that wide field TIRM/TIRF coimaging enables live visualization of the process of colloidal particle interaction with the labeled cell structure, which is valuable for discerning the membrane events and route of colloid internalization by the cell. We further show that 500 nm in diameter model polystyrene colloid associates with clathrin, prior to and during its cellular internalization. This association is not apparent with larger, 1 μm in diameter colloids, indicating an upper particle size limit for clathrin-mediated endocytosis.

  9. Configuration of twins in glass-embedded silver nanoparticles of various origin

    NASA Astrophysics Data System (ADS)

    Hofmeister, H.; Dubiel, M.; Tan, G. L.; Schicke, K.-D.

    2005-09-01

    Structural characterization using high resolution electron microscopy and diffractogram analysis of silver nanoparticles embedded in glass by various routes of fabrication was aimed at revealing the characteristic features of twin faults occuring in such particles. Nearly spherical silver nanoparticles well below 10 nm size embedded in commercial soda-lime silicate float glass have been fabricated either by silver/sodium ion exchange or by Ag+ ion implantation. Twinned nanoparticles, besides single crystalline species, have frequently been observed for both fabrication routes, mainly at sizes above 5 nm, but also at smaller sizes, even around 1 nm. The variety of particle forms comprises single crystalline particles of nearly cuboctahedron shape, particles containing single twin faults, and multiply twinned particles containing parallel twin lamellae, or cyclic twinned segments arranged around axes of fivefold symmetry. Parallel twinning is distinctly favoured by ion implantation whereas cyclic twinning preferably occurs upon ion exchange processing. Regardless of single or repeated twinning, parallel or cyclic twin arrangement, one may classify simple twin faults of regular atomic configuration and compound twin faults whose irregular configuration consists of additional planar defects like associated stacking faults or secondary twin faults. Besides, a particular superstructure composed of parallel twin lamellae of only three atomic layers thickness is observed.

  10. Localization-based super-resolution imaging meets high-content screening.

    PubMed

    Beghin, Anne; Kechkar, Adel; Butler, Corey; Levet, Florian; Cabillic, Marine; Rossier, Olivier; Giannone, Gregory; Galland, Rémi; Choquet, Daniel; Sibarita, Jean-Baptiste

    2017-12-01

    Single-molecule localization microscopy techniques have proven to be essential tools for quantitatively monitoring biological processes at unprecedented spatial resolution. However, these techniques are very low throughput and are not yet compatible with fully automated, multiparametric cellular assays. This shortcoming is primarily due to the huge amount of data generated during imaging and the lack of software for automation and dedicated data mining. We describe an automated quantitative single-molecule-based super-resolution methodology that operates in standard multiwell plates and uses analysis based on high-content screening and data-mining software. The workflow is compatible with fixed- and live-cell imaging and allows extraction of quantitative data like fluorophore photophysics, protein clustering or dynamic behavior of biomolecules. We demonstrate that the method is compatible with high-content screening using 3D dSTORM and DNA-PAINT based super-resolution microscopy as well as single-particle tracking.

  11. Single step synthesis of nanostructured boron nitride for boron neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Singh, Bikramjeet; Singh, Paviter; Kumar, Manjeet; Thakur, Anup; Kumar, Akshay

    2015-05-01

    Nanostructured Boron Nitride (BN) has been successfully synthesized by carbo-thermic reduction of Boric Acid (H3BO3). This method is a relatively low temperature synthesis route and it can be used for large scale production of nanostructured BN. The synthesized nanoparticles have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and differential thermal analyzer (DTA). XRD analysis confirmed the formation of single phase nanostructured Boron Nitride. SEM analysis showed that the particles are spherical in shape. DTA analysis showed that the phase is stable upto 900 °C and the material can be used for high temperature applications as well boron neutron capture therapy (BNCT).

  12. Synthesis and characterization of nanostructured titanium carbide for fuel cell applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Paviter; Singh, Harwinder; Singh, Bikramjeet

    2016-04-13

    Titanium carbide (TiC) nanoparticles have been successfully synthesized by carbo-thermic reaction of titanium and acetone at 800 °C. This method is relatively low temperature synthesis route. It can be used for large scale production of TiC. The synthesized nanoparticles have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and differential thermal analyzer (DTA) techniques. XRD analysis confirmed the formation of single phase TiC. XRD analysis confirmed that the particles are spherical in shape with an average particle size of 13 nm. DTA analysis shows that the phase is stable upto 900 °C and the material can be used formore » high temperature applications.« less

  13. Angular reconstitution-based 3D reconstructions of nanomolecular structures from superresolution light-microscopy images

    PubMed Central

    Salas, Desirée; Le Gall, Antoine; Fiche, Jean-Bernard; Valeri, Alessandro; Ke, Yonggang; Bron, Patrick; Bellot, Gaetan

    2017-01-01

    Superresolution light microscopy allows the imaging of labeled supramolecular assemblies at a resolution surpassing the classical diffraction limit. A serious limitation of the superresolution approach is sample heterogeneity and the stochastic character of the labeling procedure. To increase the reproducibility and the resolution of the superresolution results, we apply multivariate statistical analysis methods and 3D reconstruction approaches originally developed for cryogenic electron microscopy of single particles. These methods allow for the reference-free 3D reconstruction of nanomolecular structures from two-dimensional superresolution projection images. Since these 2D projection images all show the structure in high-resolution directions of the optical microscope, the resulting 3D reconstructions have the best possible isotropic resolution in all directions. PMID:28811371

  14. A Survey of the Use of Iterative Reconstruction Algorithms in Electron Microscopy

    PubMed Central

    Otón, J.; Vilas, J. L.; Kazemi, M.; Melero, R.; del Caño, L.; Cuenca, J.; Conesa, P.; Gómez-Blanco, J.; Marabini, R.; Carazo, J. M.

    2017-01-01

    One of the key steps in Electron Microscopy is the tomographic reconstruction of a three-dimensional (3D) map of the specimen being studied from a set of two-dimensional (2D) projections acquired at the microscope. This tomographic reconstruction may be performed with different reconstruction algorithms that can be grouped into several large families: direct Fourier inversion methods, back-projection methods, Radon methods, or iterative algorithms. In this review, we focus on the latter family of algorithms, explaining the mathematical rationale behind the different algorithms in this family as they have been introduced in the field of Electron Microscopy. We cover their use in Single Particle Analysis (SPA) as well as in Electron Tomography (ET). PMID:29312997

  15. Objective comparison of particle tracking methods

    PubMed Central

    Chenouard, Nicolas; Smal, Ihor; de Chaumont, Fabrice; Maška, Martin; Sbalzarini, Ivo F.; Gong, Yuanhao; Cardinale, Janick; Carthel, Craig; Coraluppi, Stefano; Winter, Mark; Cohen, Andrew R.; Godinez, William J.; Rohr, Karl; Kalaidzidis, Yannis; Liang, Liang; Duncan, James; Shen, Hongying; Xu, Yingke; Magnusson, Klas E. G.; Jaldén, Joakim; Blau, Helen M.; Paul-Gilloteaux, Perrine; Roudot, Philippe; Kervrann, Charles; Waharte, François; Tinevez, Jean-Yves; Shorte, Spencer L.; Willemse, Joost; Celler, Katherine; van Wezel, Gilles P.; Dan, Han-Wei; Tsai, Yuh-Show; de Solórzano, Carlos Ortiz; Olivo-Marin, Jean-Christophe; Meijering, Erik

    2014-01-01

    Particle tracking is of key importance for quantitative analysis of intracellular dynamic processes from time-lapse microscopy image data. Since manually detecting and following large numbers of individual particles is not feasible, automated computational methods have been developed for these tasks by many groups. Aiming to perform an objective comparison of methods, we gathered the community and organized, for the first time, an open competition, in which participating teams applied their own methods independently to a commonly defined data set including diverse scenarios. Performance was assessed using commonly defined measures. Although no single method performed best across all scenarios, the results revealed clear differences between the various approaches, leading to important practical conclusions for users and developers. PMID:24441936

  16. Morphological classification of bioaerosols from composting using scanning electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamer Vestlund, A.; FIRA International Ltd., Maxwell Road, Stevenage, Herts SG1 2EW; Al-Ashaab, R.

    2014-07-15

    Highlights: • Bioaerosols were captured using the filter method. • Bioaerosols were analysed using scanning electron microscope. • Bioaerosols were classified on the basis of morphology. • Single small cells were found more frequently than aggregates and larger cells. • Smaller cells may disperse further than heavier aggregate structures. - Abstract: This research classifies the physical morphology (form and structure) of bioaerosols emitted from open windrow composting. Aggregation state, shape and size of the particles captured are reported alongside the implications for bioaerosol dispersal after release. Bioaerosol sampling took place at a composting facility using personal air filter samplers. Samplesmore » were analysed using scanning electron microscopy. Particles were released mainly as small (<1 μm) single, spherical cells, followed by larger (>1 μm) single cells, with aggregates occurring in smaller proportions. Most aggregates consisted of clusters of 2–3 particles as opposed to chains, and were <10 μm in size. No cells were attached to soil debris or wood particles. These small single cells or small aggregates are more likely to disperse further downwind from source, and cell viability may be reduced due to increased exposure to environmental factors.« less

  17. Single-virus tracking approach to reveal the interaction of Dengue virus with autophagy during the early stage of infection

    NASA Astrophysics Data System (ADS)

    Chu, Li-Wei; Huang, Yi-Lung; Lee, Jin-Hui; Huang, Long-Ying; Chen, Wei-Jun; Lin, Ya-Hsuan; Chen, Jyun-Yu; Xiang, Rui; Lee, Chau-Hwang; Ping, Yueh-Hsin

    2014-01-01

    Dengue virus (DENV) is one of the major infectious pathogens worldwide. DENV infection is a highly dynamic process. Currently, no antiviral drug is available for treating DENV-induced diseases since little is known regarding how the virus interacts with host cells during infection. Advanced molecular imaging technologies are powerful tools to understand the dynamics of intracellular interactions and molecular trafficking. This study exploited a single-virus particle tracking technology to address whether DENV interacts with autophagy machinery during the early stage of infection. Using confocal microscopy and three-dimensional image analysis, we showed that DENV triggered the formation of green fluorescence protein-fused microtubule-associated protein 1A/1B-light chain 3 (GFP-LC3) puncta, and DENV-induced autophagosomes engulfed DENV particles within 15-min postinfection. Moreover, single-virus particle tracking revealed that both DENV particles and autophagosomes traveled together during the viral infection. Finally, in the presence of autophagy suppressor 3-methyladenine, the replication of DENV was inhibited and the location of DENV particles spread in cytoplasma. In contrast, the numbers of newly synthesized DENV were elevated and the co-localization of DENV particles and autophagosomes was detected while the cells were treated with autophagy inducer rapamycin. Taken together, we propose that DENV particles interact with autophagosomes at the early stage of viral infection, which promotes the replication of DENV.

  18. Gold Nanoparticle Quantitation by Whole Cell Tomography.

    PubMed

    Sanders, Aric W; Jeerage, Kavita M; Schwartz, Cindi L; Curtin, Alexandra E; Chiaramonti, Ann N

    2015-12-22

    Many proposed biomedical applications for engineered gold nanoparticles require their incorporation by mammalian cells in specific numbers and locations. Here, the number of gold nanoparticles inside of individual mammalian stem cells was characterized using fast focused ion beam-scanning electron microscopy based tomography. Enhanced optical microscopy was used to provide a multiscale map of the in vitro sample, which allows cells of interest to be identified within their local environment. Cells were then serially sectioned using a gallium ion beam and imaged using a scanning electron beam. To confirm the accuracy of single cross sections, nanoparticles in similar cross sections were imaged using transmission electron microscopy and scanning helium ion microscopy. Complete tomographic series were then used to count the nanoparticles inside of each cell and measure their spatial distribution. We investigated the influence of slice thickness on counting single particles and clusters as well as nanoparticle packing within clusters. For 60 nm citrate stabilized particles, the nanoparticle cluster packing volume is 2.15 ± 0.20 times the volume of the bare gold nanoparticles.

  19. Bio-metals imaging and speciation in cells using proton and synchrotron radiation X-ray microspectroscopy

    PubMed Central

    Ortega, Richard; Devès, Guillaume; Carmona, Asunción

    2009-01-01

    The direct detection of biologically relevant metals in single cells and of their speciation is a challenging task that requires sophisticated analytical developments. The aim of this article is to present the recent achievements in the field of cellular chemical element imaging, and direct speciation analysis, using proton and synchrotron radiation X-ray micro- and nano-analysis. The recent improvements in focusing optics for MeV-accelerated particles and keV X-rays allow application to chemical element analysis in subcellular compartments. The imaging and quantification of trace elements in single cells can be obtained using particle-induced X-ray emission (PIXE). The combination of PIXE with backscattering spectrometry and scanning transmission ion microscopy provides a high accuracy in elemental quantification of cellular organelles. On the other hand, synchrotron radiation X-ray fluorescence provides chemical element imaging with less than 100 nm spatial resolution. Moreover, synchrotron radiation offers the unique capability of spatially resolved chemical speciation using micro-X-ray absorption spectroscopy. The potential of these methods in biomedical investigations will be illustrated with examples of application in the fields of cellular toxicology, and pharmacology, bio-metals and metal-based nano-particles. PMID:19605403

  20. Single step synthesis of nanostructured boron nitride for boron neutron capture therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Bikramjeet; Singh, Paviter; Kumar, Akshay, E-mail: akshaykumar.tiet@gmail.com

    2015-05-15

    Nanostructured Boron Nitride (BN) has been successfully synthesized by carbo-thermic reduction of Boric Acid (H{sub 3}BO{sub 3}). This method is a relatively low temperature synthesis route and it can be used for large scale production of nanostructured BN. The synthesized nanoparticles have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and differential thermal analyzer (DTA). XRD analysis confirmed the formation of single phase nanostructured Boron Nitride. SEM analysis showed that the particles are spherical in shape. DTA analysis showed that the phase is stable upto 900 °C and the material can be used for high temperature applications asmore » well boron neutron capture therapy (BNCT)« less

  1. Dynamical measurements of motion behavior of free fluorescent sphere using the wide field temporal focusing microscopy with astigmatism method (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lien, Chi-Hsiang; Lin, Chun-Yu; Chen, Shean-Jen; Chien, Fan-Ching

    2017-02-01

    A three-dimensional (3D) single fluorescent particle tracking strategy based on temporal focusing multiphoton excitation microscopy (TFMPEM) combined with astigmatism imaging is proposed for delivering nanoscale-level axial information that reveals 3D trajectories of single fluorospheres in the axially-resolved multiphoton excitation volume without z-axis scanning. It provides the dynamical ability by measuring the diffusion coefficient of fluorospheres in glycerol solutions with a position standard deviation of 14 nm and 21 nm in the lateral and axial direction and a frame rate of 100 Hz. Moreover, the optical trapping force based on the TFMPEM is minimized to avoid the interference in the tracing measurements compared to that in the spatial focusing MPE approaches. Therefore, we presented a three dimensional single particle tracking strategy to overcome the limitation of the time resolution of the multiphoton imaging using fast frame rate of TFMPEM, and provide three dimensional locations of multiple particles using an astigmatism method.

  2. Practical utilization of spICP-MS to study sucrose density gradient centrifugation for the separation of nanoparticles.

    PubMed

    Johnson, Monique E; Montoro Bustos, Antonio R; Winchester, Michael R

    2016-11-01

    Single particle inductively coupled plasma mass spectrometry (spICP-MS) is shown to be a practical technique to study the efficacy of rate-zonal sucrose density gradient centrifugation (SDGC) separations of mixtures of gold nanoparticles (AuNPs) in liquid suspension. spICP-MS enabled measurements of AuNP size distributions and particle number concentrations along the gradient, allowing unambiguous evaluations of the effectiveness of the separation. Importantly, these studies were conducted using AuNP concentrations that are directly relevant to environmental studies (sub ng mL -1 ). At such low concentrations, other techniques [e.g., dynamic light scattering (DLS), transmission and scanning electron microscopies (TEM and SEM), UV-vis spectroscopy, atomic force microscopy (AFM)] do not have adequate sensitivity, highlighting the inherent value of spICP-MS for this and similar applications. In terms of the SDGC separations, a mixture containing three populations of AuNPs, having mean diameters of 30, 80, and 150 nm, was fully separated, while separations of two other mixtures (30, 60, 100 nm; and 20, 50, 100 nm) were less successful. Finally, it is shown that the separation capacity of SDGC can be overwhelmed when particle number concentrations are excessive, an especially relevant finding in view of common methodologies taken in nanotechnology research. Graphical Abstract Characterization of the separation of a gold nanoparticle mixture by sucrose density gradient centrifugation by conventional and single particle ICP-MS analysis.

  3. Real-time Molecular Study of Bystander Effects of Low dose Low LET radiation Using Living Cell Imaging and Nanoparticale Optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Natarajan, Mohan; Xu, Nancy R; Mohan, Sumathy

    2013-06-03

    In this study two novel approaches are proposed to investigate precisely the low dose low LET radiation damage and its effect on bystander cells in real time. First, a flow shear model system, which would provide us a near in vivo situation where endothelial cells in the presence of extra cellular matrix experiencing continuous flow shear stress, will be used. Endothelial cells on matri-gel (simulated extra cellular matrix) will be subjected to physiological flow shear (that occurs in normal blood vessels). Second, a unique tool (Single nano particle/single live cell/single molecule microscopy and spectroscopy; Figure A) will be used tomore » track the molecular trafficking by single live cell imaging. Single molecule chemical microscopy allows one to single out and study rare events that otherwise might be lost in assembled average measurement, and monitor many target single molecules simultaneously in real-time. Multi color single novel metal nanoparticle probes allow one to prepare multicolor probes (Figure B) to monitor many single components (events) simultaneously and perform multi-complex analysis in real-time. These nano-particles resist to photo bleaching and hence serve as probes for unlimited timeframe of analysis. Single live cell microscopy allows one to image many single cells simultaneously in real-time. With the combination of these unique tools, we will be able to study under near-physiological conditions the cellular and sub-cellular responses (even subtle changes at one molecule level) to low and very low doses of low LET radiation in real time (milli-second or nano-second) at sub-10 nanometer spatial resolution. This would allow us to precisely identify, at least in part, the molecular mediators that are responsible of radiation damage in the irradiated cells and the mediators that are responsible for initiating the signaling in the neighboring cells. Endothelial cells subjected to flow shear (2 dynes/cm2 or 16 dynes/cm2) and exposed to 0.1, 1 and 10 cGy on coverslips will be examined for (a) low LET radiation-induced alterations of cellular function and its physiological relevance in real time; and (b) radiation damage triggered bystander effect on the neighboring unirradiated cells. First, to determine the low LET radiation induced alteration of cellular function we will examine: (i) the real time transformation of single membrane transporters in single living cells; (ii) the pump efficiency of membrane efflux pump of live cells in real time at the molecular level; (iii) the kinetics of single-ligand receptor interaction on single live cell surface (Figure C); and (iv) alteration in chromosome replication in living cell. Second, to study the radiation triggered bystander responses, we will examine one of the key signaling pathway i.e. TNF- alpha/NF-kappa B mediated signaling. TNF-alpha specific nano particle sensors (green) will be developed to detect the releasing dynamics, transport mechanisms and ligand-receptor binding on live cell surface in real time. A second sensor (blue) will be developed to simultaneously monitor the track of NF-kB inside the cell. The proposed nano-particle optics approach would complement our DOE funded study on biochemical mechanisms of TNF-alpha- NF-kappa B-mediated bystander effect.« less

  4. Quantitatively probing propensity for structural transitions in engineered virus nanoparticles by single-molecule mechanical analysis

    NASA Astrophysics Data System (ADS)

    Castellanos, Milagros; Carrillo, Pablo J. P.; Mateu, Mauricio G.

    2015-03-01

    Viruses are increasingly being studied from the perspective of fundamental physics at the nanoscale as biologically evolved nanodevices with many technological applications. In viral particles of the minute virus of mice (MVM), folded segments of the single-stranded DNA genome are bound to the capsid inner wall and act as molecular buttresses that increase locally the mechanical stiffness of the particle. We have explored whether a quantitative linkage exists in MVM particles between their DNA-mediated stiffening and impairment of a heat-induced, virus-inactivating structural change. A series of structurally modified virus particles with disrupted capsid-DNA interactions and/or distorted capsid cavities close to the DNA-binding sites were engineered and characterized, both in classic kinetics assays and by single-molecule mechanical analysis using atomic force microscopy. The rate constant of the virus inactivation reaction was found to decrease exponentially with the increase in elastic constant (stiffness) of the regions closer to DNA-binding sites. The application of transition state theory suggests that the height of the free energy barrier of the virus-inactivating structural transition increases linearly with local mechanical stiffness. From a virological perspective, the results indicate that infectious MVM particles may have acquired the biological advantage of increased survival under thermal stress by evolving architectural elements that rigidify the particle and impair non-productive structural changes. From a nanotechnological perspective, this study provides proof of principle that determination of mechanical stiffness and its manipulation by protein engineering may be applied for quantitatively probing and tuning the conformational dynamics of virus-based and other protein-based nanoassemblies.Viruses are increasingly being studied from the perspective of fundamental physics at the nanoscale as biologically evolved nanodevices with many technological applications. In viral particles of the minute virus of mice (MVM), folded segments of the single-stranded DNA genome are bound to the capsid inner wall and act as molecular buttresses that increase locally the mechanical stiffness of the particle. We have explored whether a quantitative linkage exists in MVM particles between their DNA-mediated stiffening and impairment of a heat-induced, virus-inactivating structural change. A series of structurally modified virus particles with disrupted capsid-DNA interactions and/or distorted capsid cavities close to the DNA-binding sites were engineered and characterized, both in classic kinetics assays and by single-molecule mechanical analysis using atomic force microscopy. The rate constant of the virus inactivation reaction was found to decrease exponentially with the increase in elastic constant (stiffness) of the regions closer to DNA-binding sites. The application of transition state theory suggests that the height of the free energy barrier of the virus-inactivating structural transition increases linearly with local mechanical stiffness. From a virological perspective, the results indicate that infectious MVM particles may have acquired the biological advantage of increased survival under thermal stress by evolving architectural elements that rigidify the particle and impair non-productive structural changes. From a nanotechnological perspective, this study provides proof of principle that determination of mechanical stiffness and its manipulation by protein engineering may be applied for quantitatively probing and tuning the conformational dynamics of virus-based and other protein-based nanoassemblies. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07046a

  5. Crosslinked polymer nanoparticles containing single conjugated polymer chains

    NASA Astrophysics Data System (ADS)

    Ponzio, Rodrigo A.; Marcato, Yésica L.; Gómez, María L.; Waiman, Carolina V.; Chesta, Carlos A.; Palacios, Rodrigo E.

    2017-06-01

    Conjugated polymer nanoparticles are widely used in fluorescent labeling and sensing, as they have mean radii between 5 and 100 nm, narrow size dispersion, high brightness, and are photochemically stable, allowing single particle detection with high spatial and temporal resolution. Highly crosslinked polymers formed by linking individual chains through covalent bonds yield high-strength rigid materials capable of withstanding dissolution by organic solvents. Hence, the combination of crosslinked polymers and conjugated polymers in a nanoparticulated material presents the possibility of interesting applications that require the combined properties of constituent polymers and nanosized dimension. In the present work, F8BT@pEGDMA nanoparticles composed of poly(ethylene glycol dimethacrylate) (pEGDMA; a crosslinked polymer) and containing the commercial conjugated polymer poly(9,9-dioctylfluorene-alt-benzothiadiazole) (F8BT) were synthesized and characterized. Microemulsion polymerization was applied to produce F8BT@pEDGMA particles with nanosized dimensions in a ∼25% yield. Photophysical and size distribution properties of F8BT@pEDGMA nanoparticles were evaluated by various methods, in particular single particle fluorescence microscopy techniques. The results demonstrate that the crosslinking/polymerization process imparts structural rigidity to the F8BT@pEDGMA particles by providing resistance against dissolution/disintegration in organic solvents. The synthesized fluorescent crosslinked nanoparticles contain (for the most part) single F8BT chains and can be detected at the single particle level, using fluorescence microscopy, which bodes well for their potential application as molecularly imprinted polymer fluorescent nanosensors with high spatial and temporal resolution.

  6. 3D structure of individual nanocrystals in solution by electron microscopy

    NASA Astrophysics Data System (ADS)

    Park, Jungwon; Elmlund, Hans; Ercius, Peter; Yuk, Jong Min; Limmer, David T.; Chen, Qian; Kim, Kwanpyo; Han, Sang Hoon; Weitz, David A.; Zettl, A.; Alivisatos, A. Paul

    2015-07-01

    Knowledge about the synthesis, growth mechanisms, and physical properties of colloidal nanoparticles has been limited by technical impediments. We introduce a method for determining three-dimensional (3D) structures of individual nanoparticles in solution. We combine a graphene liquid cell, high-resolution transmission electron microscopy, a direct electron detector, and an algorithm for single-particle 3D reconstruction originally developed for analysis of biological molecules. This method yielded two 3D structures of individual platinum nanocrystals at near-atomic resolution. Because our method derives the 3D structure from images of individual nanoparticles rotating freely in solution, it enables the analysis of heterogeneous populations of potentially unordered nanoparticles that are synthesized in solution, thereby providing a means to understand the structure and stability of defects at the nanoscale.

  7. A story told by a single nanoparticle in the body fluid: demonstration of dissolution-reprecipitation of nanocrystals in a biological system.

    PubMed

    Wu, Cheng-Yeu; Young, David; Martel, Jan; Young, John D

    2015-01-01

    Analysis of the chemical composition of mineral particles found in the body is critical to understand the formation and effects of these entities in vivo. Yet, the possibility that biological fluids may modulate particle composition over time has not been examined. Materials & methods: Mineralo-organic nanoparticles similar to the ones that spontaneously form in human tissues were analyzed using electron microscopy, spectroscopy and proteomic analyses.   We show that the mineralo-organic nanoparticles assimilate various ions and minerals during incubation in ionic solutions simulating body fluids. The particles undergo dissolution-reprecipitation reactions that affect the final protein composition of the particles. The reactions occurring at the mineral-water interface therefore modulate the ionic and organic composition of mineral nanoparticles formed in biological fluids, producing changes that may alter the effects of mineral particles and stones in vivo.

  8. Three-dimensional characterization of tethered microspheres by total internal reflection fluorescence microscopy

    NASA Technical Reports Server (NTRS)

    Blumberg, Seth; Gajraj, Arivalagan; Pennington, Matthew W.; Meiners, Jens-Christian

    2005-01-01

    Tethered particle microscopy is a powerful tool to study the dynamics of DNA molecules and DNA-protein complexes in single-molecule experiments. We demonstrate that stroboscopic total internal reflection microscopy can be used to characterize the three-dimensional spatiotemporal motion of DNA-tethered particles. By calculating characteristic measures such as symmetry and time constants of the motion, well-formed tethers can be distinguished from defective ones for which the motion is dominated by aberrant surface effects. This improves the reliability of measurements on tether dynamics. For instance, in observations of protein-mediated DNA looping, loop formation is distinguished from adsorption and other nonspecific events.

  9. Hollow Cone Electron Imaging for Single Particle 3D Reconstruction of Proteins

    PubMed Central

    Tsai, Chun-Ying; Chang, Yuan-Chih; Lobato, Ivan; Van Dyck, Dirk; Chen, Fu-Rong

    2016-01-01

    The main bottlenecks for high-resolution biological imaging in electron microscopy are radiation sensitivity and low contrast. The phase contrast at low spatial frequencies can be enhanced by using a large defocus but this strongly reduces the resolution. Recently, phase plates have been developed to enhance the contrast at small defocus but electrical charging remains a problem. Single particle cryo-electron microscopy is mostly used to minimize the radiation damage and to enhance the resolution of the 3D reconstructions but it requires averaging images of a massive number of individual particles. Here we present a new route to achieve the same goals by hollow cone dark field imaging using thermal diffuse scattered electrons giving about a 4 times contrast increase as compared to bright field imaging. We demonstrate the 3D reconstruction of a stained GroEL particle can yield about 13.5 Å resolution but using a strongly reduced number of images. PMID:27292544

  10. cisTEM, user-friendly software for single-particle image processing.

    PubMed

    Grant, Timothy; Rohou, Alexis; Grigorieff, Nikolaus

    2018-03-07

    We have developed new open-source software called cis TEM (computational imaging system for transmission electron microscopy) for the processing of data for high-resolution electron cryo-microscopy and single-particle averaging. cis TEM features a graphical user interface that is used to submit jobs, monitor their progress, and display results. It implements a full processing pipeline including movie processing, image defocus determination, automatic particle picking, 2D classification, ab-initio 3D map generation from random parameters, 3D classification, and high-resolution refinement and reconstruction. Some of these steps implement newly-developed algorithms; others were adapted from previously published algorithms. The software is optimized to enable processing of typical datasets (2000 micrographs, 200 k - 300 k particles) on a high-end, CPU-based workstation in half a day or less, comparable to GPU-accelerated processing. Jobs can also be scheduled on large computer clusters using flexible run profiles that can be adapted for most computing environments. cis TEM is available for download from cistem.org. © 2018, Grant et al.

  11. cisTEM, user-friendly software for single-particle image processing

    PubMed Central

    2018-01-01

    We have developed new open-source software called cisTEM (computational imaging system for transmission electron microscopy) for the processing of data for high-resolution electron cryo-microscopy and single-particle averaging. cisTEM features a graphical user interface that is used to submit jobs, monitor their progress, and display results. It implements a full processing pipeline including movie processing, image defocus determination, automatic particle picking, 2D classification, ab-initio 3D map generation from random parameters, 3D classification, and high-resolution refinement and reconstruction. Some of these steps implement newly-developed algorithms; others were adapted from previously published algorithms. The software is optimized to enable processing of typical datasets (2000 micrographs, 200 k – 300 k particles) on a high-end, CPU-based workstation in half a day or less, comparable to GPU-accelerated processing. Jobs can also be scheduled on large computer clusters using flexible run profiles that can be adapted for most computing environments. cisTEM is available for download from cistem.org. PMID:29513216

  12. Multifrequency scanning probe microscopy study of nanodiamond agglomerates

    NASA Astrophysics Data System (ADS)

    Aravind, Vasudeva; Lippold, Stephen; Li, Qian; Strelcov, Evgheny; Okatan, Baris; Legum, Benjamin; Kalinin, Sergei; Clarion University Team; Oak Ridge National Laboratory Team

    Due to their rich surface chemistry and excellent mechanical properties and non-toxic nature, nanodiamond particles have found applications such as biomedicine, tribology and lubrication, targeted drug delivery systems, tissue scaffolds and surgical implants. Although single nanodiamond particles have diameters about 4-5nm, they tend to form agglomerates. While these agglomerates can be useful for some purposes, many applications of nanodiamonds require single particle, disaggregated nanodiamonds. This work is oriented towards studying forces and interactions that contribute to agglomeration in nanodiamonds. In this work, using multifrequency scanning probe microscopy techniques, we show that agglomerate sizes can vary between 50-100nm in raw nanodiamonds. Extremeties of particles and Interfaces between agglomerates show dissipative forces with scanning probe microscope tip, indicating agglomerates could act as points of increased adhesion, thus reducing lubricating efficiency when nanodiamonds are used as lubricant additives. This research was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility.

  13. Determination of magnetic domain state of carbon coated iron nanoparticles via 57Fe zero-external-field NMR

    NASA Astrophysics Data System (ADS)

    Manjunatha, M.; Kumar, Rajeev; Sahoo, Balaram; Damle, Ramakrishna; Ramesh, K. P.

    2018-05-01

    The magnetic domain state of carbon coated iron nanopowder (Fe@C) was studied by the internal field nuclear magnetic resonance (IFNMR) at 77 K using the spin echo technique. The structure and magnetic properties of the sample were further characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Mössbauer spectroscopy, vibrating sample magnetometry (VSM), thermogravimetric analysis (TGA) and Raman Spectroscopy. The obtained IFNMR results of Fe@C powder were compared with that of micron sized carbonyl iron (CI) and electrolytic iron (EI) powders. The calculated critical size of the single domain iron particles in Fe@C is ∼ 16 nm. A higher enhancement in echo amplitude was observed due to better response of the domain walls of multidomain particles in comparison to the single domain particles. The echo signal of CI and EI particles exhibit a single narrow intense peak corresponding to the domain walls, whereas Fe@C exhibits two low amplitude peaks at two different frequencies: a low frequency (46.6 MHz) peak corresponds to the response of the domain walls of the multidomain particles and the other high frequency (47.2 MHz) signal (a shoulder) corresponding to the response of the magnetic nuclei inside the domain. Our results help in determining the domain state of iron-based magnetic particles using 57Fe-IFNMR.

  14. Classification of nanoparticle diffusion processes in vital cells by a multifeature random forests approach: application to simulated data, darkfield, and confocal laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Wagner, Thorsten; Kroll, Alexandra; Wiemann, Martin; Lipinski, Hans-Gerd

    2016-04-01

    Darkfield and confocal laser scanning microscopy both allow for a simultaneous observation of live cells and single nanoparticles. Accordingly, a characterization of nanoparticle uptake and intracellular mobility appears possible within living cells. Single particle tracking makes it possible to characterize the particle and the surrounding cell. In case of free diffusion, the mean squared displacement for each trajectory of a nanoparticle can be measured which allows computing the corresponding diffusion coefficient and, if desired, converting it into the hydrodynamic diameter using the Stokes-Einstein equation and the viscosity of the fluid. However, within the more complex system of a cell's cytoplasm unrestrained diffusion is scarce and several other types of movements may occur. Thus, confined or anomalous diffusion (e.g. diffusion in porous media), active transport, and combinations thereof were described by several authors. To distinguish between these types of particle movement we developed an appropriate classification method, and simulated three types of particle motion in a 2D plane using a Monte Carlo approach: (1) normal diffusion, using random direction and step-length, (2) subdiffusion, using confinements like a reflective boundary with defined radius or reflective objects in the closer vicinity, and (3) superdiffusion, using a directed flow added to the normal diffusion. To simulate subdiffusion we devised a new method based on tracks of different length combined with equally probable obstacle interaction. Next we estimated the fractal dimension, elongation and the ratio of long-time / short-time diffusion coefficients. These features were used to train a random forests classification algorithm. The accuracy for simulated trajectories with 180 steps was 97% (95%-CI: 0.9481-0.9884). The balanced accuracy was 94%, 99% and 98% for normal-, sub- and superdiffusion, respectively. Nanoparticle tracking analysis was used with 100 nm polystyrene particles to get trajectories for normal diffusion. As a next step we identified diffusion types of nanoparticles in vital cells and incubated V79 fibroblasts with 50 nm gold nanoparticles, which appeared as intensely bright objects due to their surface plasmon resonance. The movement of particles in both the extracellular and intracellular space was observed by dark field and confocal laser scanning microscopy. After reducing background noise from the video it became possible to identify individual particle spots by a maximum detection algorithm and trace them using the robust single-particle tracking algorithm proposed by Jaqaman, which is able to handle motion heterogeneity and particle disappearance. The particle trajectories inside cells indicated active transport (superdiffusion) as well as subdiffusion. Eventually, the random forest classification algorithm, after being trained by the above simulations, successfully classified the trajectories observed in live cells.

  15. Experiments in electron microscopy: from metals to nerves

    NASA Astrophysics Data System (ADS)

    Unwin, Nigel

    2015-04-01

    Electron microscopy has advanced remarkably as a tool for biological structure research since the development of methods to examine radiation-sensitive unstained specimens and the introduction of cryo-techniques. Structures of biological molecules at near-atomic resolution can now be obtained from images of single particles as well as crystalline arrays. It has also become possible to analyze structures of molecules in their functional context, i.e. in their natural membrane or cellular setting, and in an ionic environment like that in living tissue. Electron microscopy is thus opening ways to answer definitively questions about physiological mechanisms. Here I recall a number of experiments contributing to, and benefiting from the technical advances that have taken place. I begin—in the spirit of this crystallography series—with some biographical background, and then sketch the path to an analysis by time-resolved microscopy of the opening mechanism of an ion channel (nicotinic acetylcholine receptor). This analysis illustrates how electron imaging can be combined with freeze-trapping to illuminate a transient biological event: in our case, chemical-to-electrical transduction at the nerve-muscle synapse.

  16. Fractal morphology, imaging and mass spectrometry of single aerosol particles in flight.

    PubMed

    Loh, N D; Hampton, C Y; Martin, A V; Starodub, D; Sierra, R G; Barty, A; Aquila, A; Schulz, J; Lomb, L; Steinbrener, J; Shoeman, R L; Kassemeyer, S; Bostedt, C; Bozek, J; Epp, S W; Erk, B; Hartmann, R; Rolles, D; Rudenko, A; Rudek, B; Foucar, L; Kimmel, N; Weidenspointner, G; Hauser, G; Holl, P; Pedersoli, E; Liang, M; Hunter, M S; Hunter, M M; Gumprecht, L; Coppola, N; Wunderer, C; Graafsma, H; Maia, F R N C; Ekeberg, T; Hantke, M; Fleckenstein, H; Hirsemann, H; Nass, K; White, T A; Tobias, H J; Farquar, G R; Benner, W H; Hau-Riege, S P; Reich, C; Hartmann, A; Soltau, H; Marchesini, S; Bajt, S; Barthelmess, M; Bucksbaum, P; Hodgson, K O; Strüder, L; Ullrich, J; Frank, M; Schlichting, I; Chapman, H N; Bogan, M J

    2012-06-27

    The morphology of micrometre-size particulate matter is of critical importance in fields ranging from toxicology to climate science, yet these properties are surprisingly difficult to measure in the particles' native environment. Electron microscopy requires collection of particles on a substrate; visible light scattering provides insufficient resolution; and X-ray synchrotron studies have been limited to ensembles of particles. Here we demonstrate an in situ method for imaging individual sub-micrometre particles to nanometre resolution in their native environment, using intense, coherent X-ray pulses from the Linac Coherent Light Source free-electron laser. We introduced individual aerosol particles into the pulsed X-ray beam, which is sufficiently intense that diffraction from individual particles can be measured for morphological analysis. At the same time, ion fragments ejected from the beam were analysed using mass spectrometry, to determine the composition of single aerosol particles. Our results show the extent of internal dilation symmetry of individual soot particles subject to non-equilibrium aggregation, and the surprisingly large variability in their fractal dimensions. More broadly, our methods can be extended to resolve both static and dynamic morphology of general ensembles of disordered particles. Such general morphology has implications in topics such as solvent accessibilities in proteins, vibrational energy transfer by the hydrodynamic interaction of amino acids, and large-scale production of nanoscale structures by flame synthesis.

  17. Evidence for a remodelling of DNA-PK upon autophosphorylation from electron microscopy studies

    PubMed Central

    Morris, Edward P.; Rivera-Calzada, Angel; da Fonseca, Paula C. A.; Llorca, Oscar; Pearl, Laurence H.; Spagnolo, Laura

    2011-01-01

    The multi-subunit DNA-dependent protein kinase (DNA-PK), a crucial player in DNA repair by non-homologous end-joining in higher eukaryotes, consists of a catalytic subunit (DNA-PKcs) and the Ku heterodimer. Ku recruits DNA-PKcs to double-strand breaks, where DNA-PK assembles prior to DNA repair. The interaction of DNA-PK with DNA is regulated via autophosphorylation. Recent SAXS data addressed the conformational changes occurring in the purified catalytic subunit upon autophosphorylation. Here, we present the first structural analysis of the effects of autophosphorylation on the trimeric DNA-PK enzyme, performed by electron microscopy and single particle analysis. We observe a considerable degree of heterogeneity in the autophosphorylated material, which we resolved into subpopulations of intact complex, and separate DNA-PKcs and Ku, by using multivariate statistical analysis and multi-reference alignment on a partitioned particle image data set. The proportion of dimeric oligomers was reduced compared to non-phosphorylated complex, and those dimers remaining showed a substantial variation in mutual monomer orientation. Together, our data indicate a substantial remodelling of DNA-PK holo-enzyme upon autophosphorylation, which is crucial to the release of protein factors from a repaired DNA double-strand break. PMID:21450809

  18. Correlative scanning-transmission electron microscopy reveals that a chimeric flavivirus is released as individual particles in secretory vesicles.

    PubMed

    Burlaud-Gaillard, Julien; Sellin, Caroline; Georgeault, Sonia; Uzbekov, Rustem; Lebos, Claude; Guillaume, Jean-Marc; Roingeard, Philippe

    2014-01-01

    The intracellular morphogenesis of flaviviruses has been well described, but flavivirus release from the host cell remains poorly documented. We took advantage of the optimized production of an attenuated chimeric yellow fever/dengue virus for vaccine purposes to study this phenomenon by microscopic approaches. Scanning electron microscopy (SEM) showed the release of numerous viral particles at the cell surface through a short-lived process. For transmission electron microscopy (TEM) studies of the intracellular ultrastructure of the small number of cells releasing viral particles at a given time, we developed a new correlative microscopy method: CSEMTEM (for correlative scanning electron microscopy - transmission electron microscopy). CSEMTEM analysis suggested that chimeric flavivirus particles were released as individual particles, in small exocytosis vesicles, via a regulated secretory pathway. Our morphological findings provide new insight into interactions between flaviviruses and cells and demonstrate that CSEMTEM is a useful new method, complementary to SEM observations of biological events by intracellular TEM investigations.

  19. Correlative Scanning-Transmission Electron Microscopy Reveals that a Chimeric Flavivirus Is Released as Individual Particles in Secretory Vesicles

    PubMed Central

    Burlaud-Gaillard, Julien; Sellin, Caroline; Georgeault, Sonia; Uzbekov, Rustem; Lebos, Claude; Guillaume, Jean-Marc; Roingeard, Philippe

    2014-01-01

    The intracellular morphogenesis of flaviviruses has been well described, but flavivirus release from the host cell remains poorly documented. We took advantage of the optimized production of an attenuated chimeric yellow fever/dengue virus for vaccine purposes to study this phenomenon by microscopic approaches. Scanning electron microscopy (SEM) showed the release of numerous viral particles at the cell surface through a short-lived process. For transmission electron microscopy (TEM) studies of the intracellular ultrastructure of the small number of cells releasing viral particles at a given time, we developed a new correlative microscopy method: CSEMTEM (for correlative scanning electron microscopy - transmission electron microscopy). CSEMTEM analysis suggested that chimeric flavivirus particles were released as individual particles, in small exocytosis vesicles, via a regulated secretory pathway. Our morphological findings provide new insight into interactions between flaviviruses and cells and demonstrate that CSEMTEM is a useful new method, complementary to SEM observations of biological events by intracellular TEM investigations. PMID:24681578

  20. Factor VIII organisation on nanodiscs with different lipid composition.

    PubMed

    Grushin, Kirill; Miller, Jaimy; Dalm, Daniela; Stoilova-McPhie, Svetla

    2015-04-01

    Nanodiscs (ND) are lipid bilayer membrane patches held by amphiphilic scaffolding proteins (MSP) of ~10 nm in diameter. Nanodiscs have been developed as lipid nanoplatforms for structural and functional studies of membrane and membrane associated proteins. Their size and monodispersity have rendered them unique for electron microscopy (EM) and single particle analysis studies of proteins and complexes either spanning or associated to the ND membrane. Binding of blood coagulation factors and complexes, such as the Factor VIII (FVIII) and the Factor VIIIa - Factor IXa (intrinsic tenase) complex to the negatively charged activated platelet membrane is required for normal haemostasis. In this study we present our work on optimising ND, specifically designed to bind FVIII at close to physiological conditions. The binding of FVIII to the negatively charged ND rich in phosphatidylserine (PS) was followed by electron microscopy at three different PS compositions and two different membrane scaffolding protein (MSP1D1) to lipid ratios. Our results show that the ND with highest PS content (80 %) and lowest MSP1D1 to lipid ratio (1:47) are the most suitable for structure determination of the membrane-bound FVIII by single particle EM. Our preliminary FVIII 3D reconstruction as bound to PS containing ND demonstrates the suitability of the optimised ND for structural studies by EM. Further assembly of the activated FVIII form (FVIIIa) and the whole FVIIIa-FIXa complex on ND, followed by EM and single particle reconstruction will help to identify the protein-protein and protein-membrane interfaces critical for the intrinsic tenase complex assembly and function.

  1. Attachment of micro- and nano-particles on tipless cantilevers for colloidal probe microscopy.

    PubMed

    D'Sa, Dexter J; Chan, Hak-Kim; Chrzanowski, Wojciech

    2014-07-15

    Current colloidal probe preparation techniques face several challenges in the production of functional probes using particles ⩽5 μm. Challenges include: glue encapsulated particles, glue altered particle properties, improper particle or agglomerate attachment, and lengthy procedures. We present a method to rapidly and reproducibly produce functional micro and nano-colloidal probes. Using a six-step procedure, cantilevers mounted on a custom designed 45° holder were used to approach and obtain a minimal amount of epoxy resin (viscosity of ∼14,000 cP) followed by a single micron/nano particle on the apex of a tipless cantilever. The epoxy and particles were prepared on individual glass slides and subsequently affixed to a 10× or 40× optical microscope lens using another custom designed holder. Scanning electron microscopy and comparative glue-colloidal probe measurements were used to confirm colloidal probe functionality. The method presented allowed rapid and reproducible production of functional colloidal probes (80% success). Single nano-particles were prominently affixed to the apex of the cantilever, unaffected by the epoxy. Nano-colloidal probes were used to conduct topographical, instantaneous force, and adhesive force mapping measurements in dry and liquid media conveying their versatility and functionality in studying nano-colloidal systems. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Observations and Modeling of the Green Ocean Amazon 2014/15: Transmission Electron Microscopy Analysis of Aerosol Particles Field Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buseck, Peter

    2016-03-01

    During two Intensive Operational Periods (IOP), we collected samples at 3-hour intervals for transmission electron microscopy analysis. The resulting transmission electron microscopy images and compositions were analyzed for the samples of interest. Further analysis will be done especially for the plume of interest. We found solid spherical organic particles from rebounded samples collected with Professor Scot Martin’s group (Harvard University). Approximately 30% of the rebounded particles at 95% relative humidity were spherical organic particles. Their sources and formation process are not known, but such spherical particles could be solid and will have heterogeneous chemical reactions. We observed many organic particlesmore » that are internally mixed with inorganic elements such as potassium and nitrogen. They are either homogeneously mixed or have inorganic cores with organic aerosol coatings. Samples collected from the Manaus, Brazil, pollution plume included many nano-size soot particles mixed with organic material and sulfate. Aerosol particles from clean periods included organic aerosol particles, sulfate, sea salt, dust, and primary biogenic aerosol particles. There was more dust, primary biogenic aerosol, and tar balls in samples taken during IOP1 than those taken during IOP2. Many dust particles were found between March 2 and 3.« less

  3. Structural analysis of herpes simplex virus by optical super-resolution imaging

    NASA Astrophysics Data System (ADS)

    Laine, Romain F.; Albecka, Anna; van de Linde, Sebastian; Rees, Eric J.; Crump, Colin M.; Kaminski, Clemens F.

    2015-01-01

    Herpes simplex virus type-1 (HSV-1) is one of the most widespread pathogens among humans. Although the structure of HSV-1 has been extensively investigated, the precise organization of tegument and envelope proteins remains elusive. Here we use super-resolution imaging by direct stochastic optical reconstruction microscopy (dSTORM) in combination with a model-based analysis of single-molecule localization data, to determine the position of protein layers within virus particles. We resolve different protein layers within individual HSV-1 particles using multi-colour dSTORM imaging and discriminate envelope-anchored glycoproteins from tegument proteins, both in purified virions and in virions present in infected cells. Precise characterization of HSV-1 structure was achieved by particle averaging of purified viruses and model-based analysis of the radial distribution of the tegument proteins VP16, VP1/2 and pUL37, and envelope protein gD. From this data, we propose a model of the protein organization inside the tegument.

  4. EMHP: an accurate automated hole masking algorithm for single-particle cryo-EM image processing.

    PubMed

    Berndsen, Zachary; Bowman, Charles; Jang, Haerin; Ward, Andrew B

    2017-12-01

    The Electron Microscopy Hole Punch (EMHP) is a streamlined suite of tools for quick assessment, sorting and hole masking of electron micrographs. With recent advances in single-particle electron cryo-microscopy (cryo-EM) data processing allowing for the rapid determination of protein structures using a smaller computational footprint, we saw the need for a fast and simple tool for data pre-processing that could run independent of existing high-performance computing (HPC) infrastructures. EMHP provides a data preprocessing platform in a small package that requires minimal python dependencies to function. https://www.bitbucket.org/chazbot/emhp Apache 2.0 License. bowman@scripps.edu. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  5. Silicon nitride grids are compatible with correlative negative staining electron microscopy and tip-enhanced Raman spectroscopy for use in the detection of micro-organisms.

    PubMed

    Lausch, V; Hermann, P; Laue, M; Bannert, N

    2014-06-01

    Successive application of negative staining transmission electron microscopy (TEM) and tip-enhanced Raman spectroscopy (TERS) is a new correlative approach that could be used to rapidly and specifically detect and identify single pathogens including bioterrorism-relevant viruses in complex samples. Our objective is to evaluate the TERS-compatibility of commonly used electron microscopy (EM) grids (sample supports), chemicals and negative staining techniques and, if required, to devise appropriate alternatives. While phosphortungstic acid (PTA) is suitable as a heavy metal stain, uranyl acetate, paraformaldehyde in HEPES buffer and alcian blue are unsuitable due to their relatively high Raman scattering. Moreover, the low thermal stability of the carbon-coated pioloform film on copper grids (pioloform grids) negates their utilization. The silicon in the cantilever of the silver-coated atomic force microscope tip used to record TERS spectra suggested that Si-based grids might be employed as alternatives. From all evaluated Si-based TEM grids, the silicon nitride (SiN) grid was found to be best suited, with almost no background Raman signals in the relevant spectral range, a low surface roughness and good particle adhesion properties that could be further improved by glow discharge. Charged SiN grids have excellent particle adhesion properties. The use of these grids in combination with PTA for contrast in the TEM is suitable for subsequent analysis by TERS. The study reports fundamental modifications and optimizations of the negative staining EM method that allows a combination with near-field Raman spectroscopy to acquire a spectroscopic signature from nanoscale biological structures. This should facilitate a more precise diagnosis of single viral particles and other micro-organisms previously localized and visualized in the TEM. © 2014 The Society for Applied Microbiology.

  6. Determination of precursor sites for pitting corrosion of polycrystalline titanium by using different techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garfias-Mesias, L.F.; Alodan, M.; James, P.I.

    1998-06-01

    Scanning electrochemical microscopy (SECM) in ferrocyanide and bromide solutions was used to locate active sites (pitting precursors) on polycrystalline Ti where oxidation of Br{sup {minus}} and Fe(CN){sub 6}{sup 4{minus}} was possible. Analysis of the electrochemically active sites was done by using electron microscopy (SEM), energy dispersive X-ray analysis (EDX), atomic force microscopy (AFM), and in situ confocal laser scanning microscopy (CLSM). In most cases, the active sites were found to be associated with particles (inclusions) which contained mainly Al and Si; however, some other areas not associated with particles were also found to be active. Although the size of themore » inclusions was normally smaller than 20 {micro}m, as revealed by SEM and AFM imaging, in some cases larger particles were also found. Pitting corrosion tests in bromide solution at potentials above 1.5 V{sub SCE} followed by EDX analysis inside the pits and in situ CLSM observation, confirmed that most of the localized attack started in the areas where particles had been located.« less

  7. Impact of agglomeration state of nano- and submicron sized gold particles on pulmonary inflammation

    PubMed Central

    2010-01-01

    Background Nanoparticle (NP) toxicity testing comes with many challenges. Characterization of the test substance is of crucial importance and in the case of NPs, agglomeration/aggregation state in physiological media needs to be considered. In this study, we have addressed the effect of agglomerated versus single particle suspensions of nano- and submicron sized gold on the inflammatory response in the lung. Rats were exposed to a single dose of 1.6 mg/kg body weight (bw) of spherical gold particles with geometric diameters of 50 nm or 250 nm diluted either by ultrapure water or by adding phosphate buffered saline (PBS). A single dose of 1.6 mg/kg bw DQ12 quartz was used as a positive control for pulmonary inflammation. Extensive characterization of the particle suspensions has been performed by determining the zetapotential, pH, gold concentration and particle size distribution. Primary particle size and particle purity has been verified using transmission electron microscopy (TEM) techniques. Pulmonary inflammation (total cell number, differential cell count and pro-inflammatory cytokines), cell damage (total protein and albumin) and cytotoxicity (alkaline phosphatase and lactate dehydrogenase) were determined in bronchoalveolar lavage fluid (BALF) and acute systemic effects in blood (total cell number, differential cell counts, fibrinogen and C-reactive protein) 3 and 24 hours post exposure. Uptake of gold particles in alveolar macrophages has been determined by TEM. Results Particles diluted in ultrapure water are well dispersed, while agglomerates are formed when diluting in PBS. The particle size of the 50 nm particles was confirmed, while the 250 nm particles appear to be 200 nm using tracking analysis and 210 nm using TEM. No major differences in pulmonary and systemic toxicity markers were observed after instillation of agglomerated versus single gold particles of different sizes. Both agglomerated as well as single nanoparticles were taken up by macrophages. Conclusion Primary particle size, gold concentration and particle purity are important features to check, since these characteristics may deviate from the manufacturer's description. Suspensions of well dispersed 50 nm and 250 nm particles as well as their agglomerates produced very mild pulmonary inflammation at the same mass based dose. We conclude that single 50 nm gold particles do not pose a greater acute hazard than their agglomerates or slightly larger gold particles when using pulmonary inflammation as a marker for toxicity. PMID:21126342

  8. Gold-FISH: A correlative approach to microscopic imaging of single microbial cells in environmental samples

    NASA Astrophysics Data System (ADS)

    Schmidt, Hannes; Seki, David; Woebken, Dagmar; Eickhorst, Thilo

    2017-04-01

    Fluorescence in situ hybridization (FISH) is routinely used for the phylogenetic identification, detection, and quantification of single microbial cells environmental microbiology. Oligonucleotide probes that match the 16S rRNA sequence of target organisms are generally applied and the resulting signals are visualized via fluorescence microscopy. Consequently, the detection of the microbial cells of interest is limited by the resolution and the sensitivity of light microscopy where objects smaller than 0.2 µm can hardly be represented. Visualizing microbial cells at magnifications beyond light microscopy, however, can provide information on the composition and potential complexity of microbial habitats - the actual sites of nutrient cycling in soil and sediments. We present a recently developed technique that combines (1) the phylogenetic identification and detection of individual microorganisms by epifluorescence microscopy, with (2) the in situ localization of gold-labelled target cells on an ultrastructural level by SEM. Based on 16S rRNA targeted in situ hybridization combined with catalyzed reporter deposition, a streptavidin conjugate labeled with a fluorescent dye and nanogold particles is introduced into whole microbial cells. A two-step visualization process including an autometallographic enhancement of nanogold particles then allows for either fluorescence or electron microscopy, or a correlative application thereof. We will present applications of the Gold-FISH protocol to samples of marine sediments, agricultural soils, and plant roots. The detection and enumeration of bacterial cells in soil and sediment samples was comparable to CARD-FISH applications via fluorescence microscopy. Examples of microbe-surface interaction analysis will be presented on the basis of bacteria colonizing the rhizoplane of rice roots. In principle, Gold-FISH can be performed on any material to give a snapshot of microbe-surface interactions and provides a promising tool for the acquisition of correlative information on microorganisms within their respective habitats.

  9. Exploring dynamics in living cells by tracking single particles.

    PubMed

    Levi, Valeria; Gratton, Enrico

    2007-01-01

    In the last years, significant advances in microscopy techniques and the introduction of a novel technology to label living cells with genetically encoded fluorescent proteins revolutionized the field of Cell Biology. Our understanding on cell dynamics built from snapshots on fixed specimens has evolved thanks to our actual capability to monitor in real time the evolution of processes in living cells. Among these new tools, single particle tracking techniques were developed to observe and follow individual particles. Hence, we are starting to unravel the mechanisms driving the motion of a wide variety of cellular components ranging from organelles to protein molecules by following their way through the cell. In this review, we introduce the single particle tracking technology to new users. We briefly describe the instrumentation and explain some of the algorithms commonly used to locate and track particles. Also, we present some common tools used to analyze trajectories and illustrate with some examples the applications of single particle tracking to study dynamics in living cells.

  10. 3D structure of individual nanocrystals in solution by electron microscopy

    DOE PAGES

    Park, Jungwok; Elmlund, Hans; Ercius, Peter; ...

    2015-07-17

    Here, knowledge about the synthesis, growth mechanisms, and physical properties of colloidal nanoparticles has been limited by technical impediments. We introduce a method for determining three-dimensional (3D) structures of individual nanoparticles in solution. We combine a graphene liquid cell, high-resolution transmission electron microscopy, a direct electron detector, and an algorithm for single-particle 3D reconstruction originally developed for analysis of biological molecules. This method yielded two 3D structures of individual platinum nanocrystals at near-atomic resolution. Because our method derives the 3D structure from images of individual nanoparticles rotating freely in solution, it enables the analysis of heterogeneous populations of potentially unorderedmore » nanoparticles that are synthesized in solution, thereby providing a means to understand the structure and stability of defects at the nanoscale.« less

  11. Nanoparticle imaging. 3D structure of individual nanocrystals in solution by electron microscopy.

    PubMed

    Park, Jungwon; Elmlund, Hans; Ercius, Peter; Yuk, Jong Min; Limmer, David T; Chen, Qian; Kim, Kwanpyo; Han, Sang Hoon; Weitz, David A; Zettl, A; Alivisatos, A Paul

    2015-07-17

    Knowledge about the synthesis, growth mechanisms, and physical properties of colloidal nanoparticles has been limited by technical impediments. We introduce a method for determining three-dimensional (3D) structures of individual nanoparticles in solution. We combine a graphene liquid cell, high-resolution transmission electron microscopy, a direct electron detector, and an algorithm for single-particle 3D reconstruction originally developed for analysis of biological molecules. This method yielded two 3D structures of individual platinum nanocrystals at near-atomic resolution. Because our method derives the 3D structure from images of individual nanoparticles rotating freely in solution, it enables the analysis of heterogeneous populations of potentially unordered nanoparticles that are synthesized in solution, thereby providing a means to understand the structure and stability of defects at the nanoscale. Copyright © 2015, American Association for the Advancement of Science.

  12. Magneto-structural studies of sol-gel synthesized nanocrystalline manganese substituted nickel ferrites

    NASA Astrophysics Data System (ADS)

    Pandav, R. S.; Patil, R. P.; Chavan, S. S.; Mulla, I. S.; Hankare, P. P.

    2016-11-01

    Nanocrystalline NiFe2-xMnxO4 (2≥x≥0) ferrites were prepared by sol-gel method. X-ray diffraction patterns reveal that synthesized compounds are in single phase cubic spinel lattice for all the composition. The surface morphology of all the samples were studied by scanning electron microscopy. The particle size measured from transmission electron microscopy and X-ray diffraction patterns confirms the nanosized dimension of the as-prepared powder. The elemental analysis was carried out by energy dispersive X-ray analysis technique. Magnetic properties such as saturation magnetization, coercivity and remanence are studied as a function of increasing Mn concentration at room temperature. The saturation magnetization shows a decreasing trend with increase in Mn content. The substitution of manganese in the nickel ferrite affects the structural and magnetic properties of cubic spinels.

  13. 3D structure of individual nanocrystals in solution by electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jungwok; Elmlund, Hans; Ercius, Peter

    Here, knowledge about the synthesis, growth mechanisms, and physical properties of colloidal nanoparticles has been limited by technical impediments. We introduce a method for determining three-dimensional (3D) structures of individual nanoparticles in solution. We combine a graphene liquid cell, high-resolution transmission electron microscopy, a direct electron detector, and an algorithm for single-particle 3D reconstruction originally developed for analysis of biological molecules. This method yielded two 3D structures of individual platinum nanocrystals at near-atomic resolution. Because our method derives the 3D structure from images of individual nanoparticles rotating freely in solution, it enables the analysis of heterogeneous populations of potentially unorderedmore » nanoparticles that are synthesized in solution, thereby providing a means to understand the structure and stability of defects at the nanoscale.« less

  14. Pore structure of raw and purified HiPco single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Cinke, Martin; Li, Jing; Chen, Bin; Cassell, Alan; Delzeit, Lance; Han, Jie; Meyyappan, M.

    2002-10-01

    Very high purity single-walled carbon nanotubes (SWNTs) were obtained from HiPco SWNT samples containing Fe particles by a two-step purification process. The raw and purified samples were characterized using high resolution transmission electron microscopy (HRTEM), Raman spectroscopy and thermogravimetric analysis (TGA). The purified sample consists of ˜0.4% Fe and the process does not seem to introduce any additional defects. The N 2 adsorption isotherm studies at 77 K reveal that the total surface area of the purified sample increases to 1587 m 2/g from 567 m 2/g for the raw material, which is the highest value reported for SWNTs.

  15. Three-dimensional structural dynamics of DNA origami Bennett linkages using individual-particle electron tomography

    DOE PAGES

    Lei, Dongsheng; Marras, Alexander E.; Liu, Jianfang; ...

    2018-02-09

    Scaffolded DNA origami has proven to be a powerful and efficient technique to fabricate functional nanomachines by programming the folding of a single-stranded DNA template strand into three-dimensional (3D) nanostructures, designed to be precisely motion-controlled. Although two-dimensional (2D) imaging of DNA nanomachines using transmission electron microscopy and atomic force microscopy suggested these nanomachines are dynamic in 3D, geometric analysis based on 2D imaging was insufficient to uncover the exact motion in 3D. In this paper, we use the individual-particle electron tomography method and reconstruct 129 density maps from 129 individual DNA origami Bennett linkage mechanisms at ~6-14 nm resolution. The statisticalmore » analyses of these conformations lead to understanding the 3D structural dynamics of Bennett linkage mechanisms. Moreover, our effort provides experimental verification of a theoretical kinematics model of DNA origami, which can be used as feedback to improve the design and control of motion via optimized DNA sequences and routing.« less

  16. Three-dimensional structural dynamics of DNA origami Bennett linkages using individual-particle electron tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lei, Dongsheng; Marras, Alexander E.; Liu, Jianfang

    Scaffolded DNA origami has proven to be a powerful and efficient technique to fabricate functional nanomachines by programming the folding of a single-stranded DNA template strand into three-dimensional (3D) nanostructures, designed to be precisely motion-controlled. Although two-dimensional (2D) imaging of DNA nanomachines using transmission electron microscopy and atomic force microscopy suggested these nanomachines are dynamic in 3D, geometric analysis based on 2D imaging was insufficient to uncover the exact motion in 3D. In this paper, we use the individual-particle electron tomography method and reconstruct 129 density maps from 129 individual DNA origami Bennett linkage mechanisms at ~6-14 nm resolution. The statisticalmore » analyses of these conformations lead to understanding the 3D structural dynamics of Bennett linkage mechanisms. Moreover, our effort provides experimental verification of a theoretical kinematics model of DNA origami, which can be used as feedback to improve the design and control of motion via optimized DNA sequences and routing.« less

  17. Self-assembled monolayers improve protein distribution on holey carbon cryo-EM supports

    PubMed Central

    Meyerson, Joel R.; Rao, Prashant; Kumar, Janesh; Chittori, Sagar; Banerjee, Soojay; Pierson, Jason; Mayer, Mark L.; Subramaniam, Sriram

    2014-01-01

    Poor partitioning of macromolecules into the holes of holey carbon support grids frequently limits structural determination by single particle cryo-electron microscopy (cryo-EM). Here, we present a method to deposit, on gold-coated carbon grids, a self-assembled monolayer whose surface properties can be controlled by chemical modification. We demonstrate the utility of this approach to drive partitioning of ionotropic glutamate receptors into the holes, thereby enabling 3D structural analysis using cryo-EM methods. PMID:25403871

  18. Wide-field surface plasmon microscopy of nano- and microparticles: features, benchmarking, limitations, and bioanalytical applications

    NASA Astrophysics Data System (ADS)

    Nizamov, Shavkat; Scherbahn, Vitali; Mirsky, Vladimir M.

    2017-05-01

    Detection of nano- and micro-particles is an important task for chemical analytics, food industry, biotechnology, environmental monitoring and many other fields of science and industry. For this purpose, a method based on the detection and analysis of minute signals in surface plasmon resonance images due to adsorption of single nanopartciles was developed. This new technology allows one a real-time detection of interaction of single nano- and micro-particles with sensor surface. Adsorption of each nanoparticle leads to characteristic diffraction image whose intensity depends on the size and chemical composition of the particle. The adsorption rate characterizes volume concentration of nano- and micro-particles. Large monitored surface area of sensor enables a high dynamic range of counting and to a correspondingly high dynamic range in concentration scale. Depending on the type of particles and experimental conditions, the detection limit for aqueous samples can be below 1000 particles per microliter. For application of method in complex media, nanoparticle images are discriminated from image perturbations due to matrix components. First, the characteristic SPRM images of nanoparticles (templates) are collected in aqueous suspensions or spiked real samples. Then, the detection of nanoparticles in complex media using template matching is performed. The detection of various NPs in consumer products like cosmetics, mineral water, juices, and wines was shown at sub-ppb level. The method can be applied for ultrasensitive detection and analysis of nano- and micro-particles of biological (bacteria, viruses, endosomes), biotechnological (liposomes, protein nanoparticles for drug delivery) or technical origin.

  19. Automatic three-dimensional tracking of particles with high-numerical-aperture digital lensless holographic microscopy.

    PubMed

    Restrepo, John F; Garcia-Sucerquia, Jorge

    2012-02-15

    We present an automatic procedure for 3D tracking of micrometer-sized particles with high-NA digital lensless holographic microscopy. The method uses a two-feature approach to search for the best focal planes and to distinguish particles from artifacts or other elements on the reconstructed stream of the holograms. A set of reconstructed images is axially projected onto a single image. From the projected image, the centers of mass of all the reconstructed elements are identified. Starting from the centers of mass, the morphology of the profile of the maximum intensity along the reconstruction direction allows for the distinguishing of particles from others elements. The method is tested with modeled holograms and applied to automatically track micrometer-sized bubbles in a sample of 4 mm3 of soda.

  20. Imaging and Quantitation of a Succession of Transient Intermediates Reveal the Reversible Self-Assembly Pathway of a Simple Icosahedral Virus Capsid.

    PubMed

    Medrano, María; Fuertes, Miguel Ángel; Valbuena, Alejandro; Carrillo, Pablo J P; Rodríguez-Huete, Alicia; Mateu, Mauricio G

    2016-11-30

    Understanding the fundamental principles underlying supramolecular self-assembly may facilitate many developments, from novel antivirals to self-organized nanodevices. Icosahedral virus particles constitute paradigms to study self-assembly using a combination of theory and experiment. Unfortunately, assembly pathways of the structurally simplest virus capsids, those more accessible to detailed theoretical studies, have been difficult to study experimentally. We have enabled the in vitro self-assembly under close to physiological conditions of one of the simplest virus particles known, the minute virus of mice (MVM) capsid, and experimentally analyzed its pathways of assembly and disassembly. A combination of electron microscopy and high-resolution atomic force microscopy was used to structurally characterize and quantify a succession of transient assembly and disassembly intermediates. The results provided an experiment-based model for the reversible self-assembly pathway of a most simple (T = 1) icosahedral protein shell. During assembly, trimeric capsid building blocks are sequentially added to the growing capsid, with pentamers of building blocks and incomplete capsids missing one building block as conspicuous intermediates. This study provided experimental verification of many features of self-assembly of a simple T = 1 capsid predicted by molecular dynamics simulations. It also demonstrated atomic force microscopy imaging and automated analysis, in combination with electron microscopy, as a powerful single-particle approach to characterize at high resolution and quantify transient intermediates during supramolecular self-assembly/disassembly reactions. Finally, the efficient in vitro self-assembly achieved for the oncotropic, cell nucleus-targeted MVM capsid may facilitate its development as a drug-encapsidating nanoparticle for anticancer targeted drug delivery.

  1. Improved localization accuracy in stochastic super-resolution fluorescence microscopy by K-factor image deshadowing

    PubMed Central

    Ilovitsh, Tali; Meiri, Amihai; Ebeling, Carl G.; Menon, Rajesh; Gerton, Jordan M.; Jorgensen, Erik M.; Zalevsky, Zeev

    2013-01-01

    Localization of a single fluorescent particle with sub-diffraction-limit accuracy is a key merit in localization microscopy. Existing methods such as photoactivated localization microscopy (PALM) and stochastic optical reconstruction microscopy (STORM) achieve localization accuracies of single emitters that can reach an order of magnitude lower than the conventional resolving capabilities of optical microscopy. However, these techniques require a sparse distribution of simultaneously activated fluorophores in the field of view, resulting in larger time needed for the construction of the full image. In this paper we present the use of a nonlinear image decomposition algorithm termed K-factor, which reduces an image into a nonlinear set of contrast-ordered decompositions whose joint product reassembles the original image. The K-factor technique, when implemented on raw data prior to localization, can improve the localization accuracy of standard existing methods, and also enable the localization of overlapping particles, allowing the use of increased fluorophore activation density, and thereby increased data collection speed. Numerical simulations of fluorescence data with random probe positions, and especially at high densities of activated fluorophores, demonstrate an improvement of up to 85% in the localization precision compared to single fitting techniques. Implementing the proposed concept on experimental data of cellular structures yielded a 37% improvement in resolution for the same super-resolution image acquisition time, and a decrease of 42% in the collection time of super-resolution data with the same resolution. PMID:24466491

  2. Micrometer-scale particle sizing by laser diffraction: critical impact of the imaginary component of refractive index.

    PubMed

    Beekman, Alice; Shan, Daxian; Ali, Alana; Dai, Weiguo; Ward-Smith, Stephen; Goldenberg, Merrill

    2005-04-01

    This study evaluated the effect of the imaginary component of the refractive index on laser diffraction particle size data for pharmaceutical samples. Excipient particles 1-5 microm in diameter (irregular morphology) were measured by laser diffraction. Optical parameters were obtained and verified based on comparison of calculated vs. actual particle volume fraction. Inappropriate imaginary components of the refractive index can lead to inaccurate results, including false peaks in the size distribution. For laser diffraction measurements, obtaining appropriate or "effective" imaginary components of the refractive index was not always straightforward. When the recommended criteria such as the concentration match and the fit of the scattering data gave similar results for very different calculated size distributions, a supplemental technique, microscopy with image analysis, was used to decide between the alternatives. Use of effective optical parameters produced a good match between laser diffraction data and microscopy/image analysis data. The imaginary component of the refractive index can have a major impact on particle size results calculated from laser diffraction data. When performed properly, laser diffraction and microscopy with image analysis can yield comparable results.

  3. Optimal estimates of the diffusion coefficient of a single Brownian trajectory.

    PubMed

    Boyer, Denis; Dean, David S; Mejía-Monasterio, Carlos; Oshanin, Gleb

    2012-03-01

    Modern developments in microscopy and image processing are revolutionizing areas of physics, chemistry, and biology as nanoscale objects can be tracked with unprecedented accuracy. The goal of single-particle tracking is to determine the interaction between the particle and its environment. The price paid for having a direct visualization of a single particle is a consequent lack of statistics. Here we address the optimal way to extract diffusion constants from single trajectories for pure Brownian motion. It is shown that the maximum likelihood estimator is much more efficient than the commonly used least-squares estimate. Furthermore, we investigate the effect of disorder on the distribution of estimated diffusion constants and show that it increases the probability of observing estimates much smaller than the true (average) value.

  4. Cryo-Electron Microscopy of Viruses Infecting Bacterium

    NASA Astrophysics Data System (ADS)

    Chiu, Wah

    2010-03-01

    Single particle cryo-EM can yield structures of infectious bacterial viruses with and without imposed icosahedral symmetry at subnanometer resolution. Reconstructions of infectious and empty phage particles show substantial differences in the portal vertex protein complex at one of the 12 pentameric vertices in the icosahedral virus particle through which the viral genomes are packaged or released. In addition, electron cryo-tomography of viruses during infecting its bacterial host cell displayed multiple conformations of the tail fiber of the virus. Our structural observations by single particle and tomographic reconstructions suggest a mechanism whereby the viral tail fibers, upon binding to the host cell, induce a cascade of structural alterations of the portal vertex protein complex that triggers DNA release.

  5. A Parallel Distributed-Memory Particle Method Enables Acquisition-Rate Segmentation of Large Fluorescence Microscopy Images

    PubMed Central

    Afshar, Yaser; Sbalzarini, Ivo F.

    2016-01-01

    Modern fluorescence microscopy modalities, such as light-sheet microscopy, are capable of acquiring large three-dimensional images at high data rate. This creates a bottleneck in computational processing and analysis of the acquired images, as the rate of acquisition outpaces the speed of processing. Moreover, images can be so large that they do not fit the main memory of a single computer. We address both issues by developing a distributed parallel algorithm for segmentation of large fluorescence microscopy images. The method is based on the versatile Discrete Region Competition algorithm, which has previously proven useful in microscopy image segmentation. The present distributed implementation decomposes the input image into smaller sub-images that are distributed across multiple computers. Using network communication, the computers orchestrate the collectively solving of the global segmentation problem. This not only enables segmentation of large images (we test images of up to 1010 pixels), but also accelerates segmentation to match the time scale of image acquisition. Such acquisition-rate image segmentation is a prerequisite for the smart microscopes of the future and enables online data compression and interactive experiments. PMID:27046144

  6. A Parallel Distributed-Memory Particle Method Enables Acquisition-Rate Segmentation of Large Fluorescence Microscopy Images.

    PubMed

    Afshar, Yaser; Sbalzarini, Ivo F

    2016-01-01

    Modern fluorescence microscopy modalities, such as light-sheet microscopy, are capable of acquiring large three-dimensional images at high data rate. This creates a bottleneck in computational processing and analysis of the acquired images, as the rate of acquisition outpaces the speed of processing. Moreover, images can be so large that they do not fit the main memory of a single computer. We address both issues by developing a distributed parallel algorithm for segmentation of large fluorescence microscopy images. The method is based on the versatile Discrete Region Competition algorithm, which has previously proven useful in microscopy image segmentation. The present distributed implementation decomposes the input image into smaller sub-images that are distributed across multiple computers. Using network communication, the computers orchestrate the collectively solving of the global segmentation problem. This not only enables segmentation of large images (we test images of up to 10(10) pixels), but also accelerates segmentation to match the time scale of image acquisition. Such acquisition-rate image segmentation is a prerequisite for the smart microscopes of the future and enables online data compression and interactive experiments.

  7. Beam-induced motion correction for sub-megadalton cryo-EM particles.

    PubMed

    Scheres, Sjors Hw

    2014-08-13

    In electron cryo-microscopy (cryo-EM), the electron beam that is used for imaging also causes the sample to move. This motion blurs the images and limits the resolution attainable by single-particle analysis. In a previous Research article (Bai et al., 2013) we showed that correcting for this motion by processing movies from fast direct-electron detectors allowed structure determination to near-atomic resolution from 35,000 ribosome particles. In this Research advance article, we show that an improved movie processing algorithm is applicable to a much wider range of specimens. The new algorithm estimates straight movement tracks by considering multiple particles that are close to each other in the field of view, and models the fall-off of high-resolution information content by radiation damage in a dose-dependent manner. Application of the new algorithm to four data sets illustrates its potential for significantly improving cryo-EM structures, even for particles that are smaller than 200 kDa. Copyright © 2014, Scheres.

  8. Assessment of metal pollution sources by SEM/EDS analysis of solid particles in snow: a case study of Žerjav, Slovenia.

    PubMed

    Miler, Miloš; Gosar, Mateja

    2013-12-01

    Solid particles in snow deposits, sampled in mining and Pb-processing area of Žerjav, Slovenia, have been investigated using scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDS). Identified particles were classified as geogenic-anthropogenic, anthropogenic, and secondary weathering products. Geogenic-anthropogenic particles were represented by scarce Zn- and Pb-bearing ore minerals, originating from mine waste deposit. The most important anthropogenic metal-bearing particles in snow were Pb-, Sb- and Sn-bearing oxides and sulphides. The morphology of these particles showed that they formed at temperatures above their melting points. They were most abundant in snow sampled closest to the Pb-processing plant and least abundant in snow taken farthest from the plant, thus indicating that Pb processing was their predominant source between the last snowfall and the time of sampling. SEM/EDS analysis showed that Sb and Sn contents in these anthropogenic phases were higher and more variable than in natural Pb-bearing ore minerals. The most important secondary weathering products were Pb- and Zn-containing Fe-oxy-hydroxides whose elemental composition and morphology indicated that they mostly resulted from oxidation of metal-bearing sulphides emitted from the Pb-processing plant. This study demonstrated the importance of single particle analysis using SEM/EDS for differentiation between various sources of metals in the environment.

  9. Not all that glitters is gold-Electron microscopy study on uptake of gold nanoparticles in Daphnia magna and related artifacts.

    PubMed

    Jensen, Louise Helene Søgaard; Skjolding, Lars Michael; Thit, Amalie; Sørensen, Sara Nørgaard; Købler, Carsten; Mølhave, Kristian; Baun, Anders

    2017-06-01

    Increasing use of engineered nanoparticles has led to extensive research into their potential hazards to the environment and human health. Cellular uptake from the gut is sparsely investigated, and microscopy techniques applied for uptake studies can result in misinterpretations. Various microscopy techniques were used to investigate internalization of 10-nm gold nanoparticles in Daphnia magna gut lumen and gut epithelial cells following 24-h exposure and outline potential artifacts (i.e., high-contrast precipitates from sample preparation related to these techniques). Light sheet microscopy confirmed accumulation of gold nanoparticles in the gut lumen. Scanning transmission electron microscopy and elemental analysis revealed gold nanoparticles attached to the microvilli of gut cells. Interestingly, the peritrophic membrane appeared to act as a semipermeable barrier between the lumen and the gut epithelium, permitting only single particles through. Structures resembling nanoparticles were also observed inside gut cells. Elemental analysis could not verify these to be gold, and they were likely artifacts from the preparation, such as osmium and iron. Importantly, gold nanoparticles were found inside holocrine cells with disrupted membranes. Thus, false-positive observations of nanoparticle internalization may result from either preparation artifacts or mistaking disrupted cells for intact cells. These findings emphasize the importance of cell integrity and combining elemental analysis with the localization of internalized nanoparticles using transmission electron microscopy. Environ Toxicol Chem 2017;36:1503-1509. © 2016 SETAC. © 2016 SETAC.

  10. Crystal Structure and Proteomics Analysis of Empty Virus-like Particles of Cowpea Mosaic Virus

    PubMed Central

    Huynh, Nhung T.; Hesketh, Emma L.; Saxena, Pooja; Meshcheriakova, Yulia; Ku, You-Chan; Hoang, Linh T.; Johnson, John E.; Ranson, Neil A.; Lomonossoff, George P.; Reddy, Vijay S.

    2016-01-01

    SUMMARY Empty virus-like particles (eVLPs) of Cowpea mosaic virus (CPMV) are currently being utilized as reagents in various biomedical and nanotechnology applications. Here, we report the crystal structure of CPMV eVLPs determined using X-ray crystallography at 2.3 Å resolution and compare it with previously reported cryo-electron microscopy (cryo-EM) of eVLPs and virion crystal structures. Although the X-ray and cryo-EM structures of eVLPs are mostly similar, there exist significant differences at the C terminus of the small (S) subunit. The intact C terminus of the S subunit plays a critical role in enabling the efficient assembly of CPMV virions and eVLPs, but undergoes proteolysis after particle formation. In addition, we report the results of mass spectrometry-based proteomics analysis of coat protein subunits from CPMV eVLPs and virions that identify the C termini of S subunits undergo proteolytic cleavages at multiple sites instead of a single cleavage site as previously observed. PMID:27021160

  11. Optimal Background Estimators in Single-Molecule FRET Microscopy.

    PubMed

    Preus, Søren; Hildebrandt, Lasse L; Birkedal, Victoria

    2016-09-20

    Single-molecule total internal reflection fluorescence (TIRF) microscopy constitutes an umbrella of powerful tools that facilitate direct observation of the biophysical properties, population heterogeneities, and interactions of single biomolecules without the need for ensemble synchronization. Due to the low signal/noise ratio in single-molecule TIRF microscopy experiments, it is important to determine the local background intensity, especially when the fluorescence intensity of the molecule is used quantitatively. Here we compare and evaluate the performance of different aperture-based background estimators used particularly in single-molecule Förster resonance energy transfer. We introduce the general concept of multiaperture signatures and use this technique to demonstrate how the choice of background can affect the measured fluorescence signal considerably. A new, to our knowledge, and simple background estimator is proposed, called the local statistical percentile (LSP). We show that the LSP background estimator performs as well as current background estimators at low molecular densities and significantly better in regions of high molecular densities. The LSP background estimator is thus suited for single-particle TIRF microscopy of dense biological samples in which the intensity itself is an observable of the technique. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  12. Development of a Bioaerosol single particle detector (BIO IN) for the Fast Ice Nucleus CHamber FINCH

    NASA Astrophysics Data System (ADS)

    Bundke, U.; Reimann, B.; Nillius, B.; Jaenicke, R.; Bingemer, H.

    2010-02-01

    In this work we present the setup and first tests of our new BIO IN detector. This detector was constructed to classify atmospheric ice nuclei (IN) for their biological content. It is designed to be coupled to the Fast Ice Nucleus CHamber FINCH. If one particle acts as an ice nucleus, it will be at least partly covered with ice at the end of the development section of the FINCH chamber. The device combines an auto-fluorescence detector and a circular depolarization detector for simultaneous detection of biological material and discrimination between water droplets, ice crystals and non activated large aerosol particles. The excitation of biological material with UV light and analysis of auto-fluorescence is a common principle used for flow cytometry, fluorescence microscopy, spectroscopy and imaging. The detection of auto-fluorescence of airborne single particles demands some more experimental effort. However, expensive commercial sensors are available for special purposes, e.g. size distribution measurements. But these sensors will not fit the specifications needed for the FINCH IN counter (e.g. high sample flow of up 10 LPM). The newly developed -low cost- BIO IN sensor uses a single high-power UV LED for the electronic excitation instead of much more expensive UV lasers. Other key advantages of the new sensor are the low weight, compact size, and the little effect on the aerosol sample, which allows it to be coupled with other instruments for further analysis. The instrument will be flown on one of the first missions of the new German research aircraft "HALO" (High Altitude and LOng range).

  13. Cryo-EM in drug discovery: achievements, limitations and prospects.

    PubMed

    Renaud, Jean-Paul; Chari, Ashwin; Ciferri, Claudio; Liu, Wen-Ti; Rémigy, Hervé-William; Stark, Holger; Wiesmann, Christian

    2018-06-08

    Cryo-electron microscopy (cryo-EM) of non-crystalline single particles is a biophysical technique that can be used to determine the structure of biological macromolecules and assemblies. Historically, its potential for application in drug discovery has been heavily limited by two issues: the minimum size of the structures it can be used to study and the resolution of the images. However, recent technological advances - including the development of direct electron detectors and more effective computational image analysis techniques - are revolutionizing the utility of cryo-EM, leading to a burst of high-resolution structures of large macromolecular assemblies. These advances have raised hopes that single-particle cryo-EM might soon become an important tool for drug discovery, particularly if they could enable structural determination for 'intractable' targets that are still not accessible to X-ray crystallographic analysis. This article describes the recent advances in the field and critically assesses their relevance for drug discovery as well as discussing at what stages of the drug discovery pipeline cryo-EM can be useful today and what to expect in the near future.

  14. Binding affinity and adhesion force of organophosphate hydrolase enzyme with soil particles related to the isoelectric point of the enzyme.

    PubMed

    Islam, Shah Md Asraful; Yeasmin, Shabina; Islam, Md Saiful; Islam, Md Shariful

    2017-07-01

    The binding affinity of organophosphate hydrolase enzyme (OphB) with soil particles in relation to the isoelectric point (pI) was studied. Immobilization of OphB with soil particles was observed by confocal microscopy, Fourier transform infrared spectroscopy (FT-IR), and Atomic force microscopy (AFM). The calculated pI of OphB enzyme was increased from 8.69 to 8.89, 9.04 and 9.16 by the single, double and triple mutant of OphB enzyme, respectively through the replacement of negatively charged aspartate with positively charged histidine. Practically, the binding affinity was increased to 5.30%, 11.50%, and 16.80% for single, double and triple mutants, respectively. In contrast, enzyme activity of OphB did not change by the mutation of the enzyme. On the other hand, adhesion forces were gradually increased for wild type OphB enzyme (90 pN) to 96, 100 and 104 pN for single, double and triple mutants of OphB enzyme, respectively. There was an increasing trend of binding affinity and adhesion force by the increase of isoelectric point (pI) of OphB enzyme. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Experimental Studies of the Brownian Diffusion of Boomerang Colloidal Particle in a Confined Geometry

    NASA Astrophysics Data System (ADS)

    Chakrabarty, Ayan; Wang, Feng; Joshi, Bhuwan; Wei, Qi-Huo

    2011-03-01

    Recent studies shows that the boomerang shaped molecules can form various kinds of liquid crystalline phases. One debated topic related to boomerang molecules is the existence of biaxial nematic liquid crystalline phase. Developing and optical microscopic studies of colloidal systems of boomerang particles would allow us to gain better understanding of orientation ordering and dynamics at ``single molecule'' level. Here we report the fabrication and experimental studies of the Brownian motion of individual boomerang colloidal particles confined between two glass plates. We used dark-field optical microscopy to directly visualize the Brownian motion of the single colloidal particles in a quasi two dimensional geometry. An EMCCD was used to capture the motion in real time. An indigenously developed imaging processing algorithm based on MatLab program was used to precisely track the position and orientation of the particles with sub-pixel accuracy. The experimental finding of the Brownian diffusion of a single boomerang colloidal particle will be discussed.

  16. Dose limited reliability of quantitative annular dark field scanning transmission electron microscopy for nano-particle atom-counting.

    PubMed

    De Backer, A; Martinez, G T; MacArthur, K E; Jones, L; Béché, A; Nellist, P D; Van Aert, S

    2015-04-01

    Quantitative annular dark field scanning transmission electron microscopy (ADF STEM) has become a powerful technique to characterise nano-particles on an atomic scale. Because of their limited size and beam sensitivity, the atomic structure of such particles may become extremely challenging to determine. Therefore keeping the incoming electron dose to a minimum is important. However, this may reduce the reliability of quantitative ADF STEM which will here be demonstrated for nano-particle atom-counting. Based on experimental ADF STEM images of a real industrial catalyst, we discuss the limits for counting the number of atoms in a projected atomic column with single atom sensitivity. We diagnose these limits by combining a thorough statistical method and detailed image simulations. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Characterization of individual ice residual particles by the single droplet freezing method: a case study in the Asian dust outflow region

    NASA Astrophysics Data System (ADS)

    Iwata, Ayumi; Matsuki, Atsushi

    2018-02-01

    In order to better characterize ice nucleating (IN) aerosol particles in the atmosphere, we investigated the chemical composition, mixing state, and morphology of atmospheric aerosols that nucleate ice under conditions relevant for mixed-phase clouds. Five standard mineral dust samples (quartz, K-feldspar, Na-feldspar, Arizona test dust, and Asian dust source particles) were compared with actual aerosol particles collected from the west coast of Japan (the city of Kanazawa) during Asian dust events in February and April 2016. Following droplet activation by particles deposited on a hydrophobic Si (silicon) wafer substrate under supersaturated air, individual IN particles were located using an optical microscope by gradually cooling the temperature to -30 °C. For the aerosol samples, both the IN active particles and non-active particles were analyzed individually by atomic force microscopy (AFM), micro-Raman spectroscopy, and scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDX). Heterogeneous ice nucleation in all standard mineral dust samples tested in this study was observed at consistently higher temperatures (e.g., -22.2 to -24.2 °C with K-feldspar) than the homogeneous freezing temperature (-36.5 °C). Meanwhile, most of the IN active atmospheric particles formed ice below -28 °C, i.e., at lower temperatures than the standard mineral dust samples of pure components. The most abundant IN active particles above -30 °C were predominantly irregular solid particles that showed clay mineral characteristics (or mixtures of several mineral components). Other than clay, Ca-rich particles internally mixed with other components, such as sulfate, were also regarded as IN active particle types. Moreover, sea salt particles were predominantly found in the non-active fraction, and internal mixing with sea salt clearly acted as a significant inhibiting agent for the ice nucleation activity of mineral dust particles. Also, relatively pure or fresh calcite, Ca(NO3)2, and (NH4)2SO4 particles were more often found in the non-active fraction. In this study, we demonstrated the capability of the combined single droplet freezing method and thorough individual particle analysis to characterize the ice nucleation activity of atmospheric aerosols. We also found that dramatic changes in the particle mixing states during long-range transport had a complex effect on the ice nucleation activity of the host aerosol particles. A case study in the Asian dust outflow region highlighted the need to consider particle mixing states, which can dramatically influence ice nucleation activity.

  18. Purification Procedures for Single-Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Gorelik, Olga P.; Nikolaev, Pavel; Arepalli, Sivaram

    2001-01-01

    This report summarizes the comparison of a variety of procedures used to purify carbon nanotubes. Carbon nanotube material is produced by the arc process and laser oven process. Most of the procedures are tested using laser-grown, single-wall nanotube (SWNT) material. The material is characterized at each step of the purification procedures by using different techniques including scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), Raman, X-ray diffractometry (XRD), thermogravimetric analysis (TGA), nuclear magnetic resonance (NMR), and high-performance liquid chromatography (HPLC). The identified impurities are amorphous and graphitic carbon, catalyst particle aggregates, fullerenes, and hydrocarbons. Solvent extraction and low-temperature annealing are used to reduce the amount of volatile hydrocarbons and dissolve fullerenes. Metal catalysts and amorphous as well as graphitic carbon are oxidized by reflux in acids including HCl, HNO3 and HF and other oxidizers such as H2O2. High-temperature annealing in vacuum and in inert atmosphere helps to improve the quality of SWNTs by increasing crystallinity and reducing intercalation.

  19. Dry-growth of silver single-crystal nanowires from porous Ag structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Chuantong, E-mail: chenchuantong@sanken.osaka-u.ac.jp; Nagao, Shijo; Jiu, Jinting

    A fabrication method of single crystal Ag nanowires in large scale is introduced without any chemical synthesis in wet processes, which usually generates fivefold twinned nanowires of fcc metals. Dense single-crystal nanowires grow on a mechanically polished surface of micro-porous Ag structure, which is created from Ag micro-particles. The diameter and the length of the nanowires can be controlled simply by changing the temperature and the time of the heating during the nanowire growth in air. Unique growth mechanism is described in detail, based on stress-induced migration accelerated by the micro-porous structure where the origin of Ag nanowires growth ismore » incubated. Transmission electron microscopy analysis on the single crystal nanowires is also presented. This simple method offered an alternative preparation for metallic nanowires, especially with the single crystal structure in numerous applications.« less

  20. Imaging whole Escherichia coli bacteria by using single-particle x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Miao, Jianwei; Hodgson, Keith O.; Ishikawa, Tetsuya; Larabell, Carolyn A.; Legros, Mark A.; Nishino, Yoshinori

    2003-01-01

    We report the first experimental recording, to our knowledge, of the diffraction pattern from intact Escherichia coli bacteria using coherent x-rays with a wavelength of 2 Å. By using the oversampling phasing method, a real space image at a resolution of 30 nm was directly reconstructed from the diffraction pattern. An R factor used for characterizing the quality of the reconstruction was in the range of 5%, which demonstrated the reliability of the reconstruction process. The distribution of proteins inside the bacteria labeled with manganese oxide has been identified and this distribution confirmed by fluorescence microscopy images. Compared with lens-based microscopy, this diffraction-based imaging approach can examine thicker samples, such as whole cultured cells, in three dimensions with resolution limited only by radiation damage. Looking forward, the successful recording and reconstruction of diffraction patterns from biological samples reported here represent an important step toward the potential of imaging single biomolecules at near-atomic resolution by combining single-particle diffraction with x-ray free electron lasers.

  1. A simple method for detection of gunshot residue particles from hands, hair, face, and clothing using scanning electron microscopy/wavelength dispersive X-ray (SEM/WDX).

    PubMed

    Kage, S; Kudo, K; Kaizoji, A; Ryumoto, J; Ikeda, H; Ikeda, N

    2001-07-01

    We devised a simple and rapid method for detection of gunshot residue (GSR) particles, using scanning electron microscopy/wavelength dispersive X-ray (SEM/WDX) analysis. Experiments were done on samples containing GSR particles obtained from hands, hair, face, and clothing, using double-sided adhesive coated aluminum stubs (tape-lift method). SEM/WDX analyses for GSR were carried out in three steps: the first step was map analysis for barium (Ba) to search for GSR particles from lead styphnate primed ammunition, or tin (Sn) to search for GSR particles from mercury fulminate primed ammunition. The second step was determination of the location of GSR particles by X-ray imaging of Ba or Sn at a magnification of x 1000-2000 in the SEM, using data of map analysis, and the third step was identification of GSR particles, using WDX spectrometers. Analysis of samples from each primer of a stub took about 3 h. Practical applications were shown for utility of this method.

  2. Effect of traffic and driving characteristics on morphology of atmospheric soot particles at freeway on-ramps.

    PubMed

    China, Swarup; Salvadori, Neila; Mazzoleni, Claudio

    2014-03-18

    Vehicles represent a major source of soot in urban environments. Knowledge of the morphology and mixing of soot particles is fundamental to understand their potential health and climatic impacts. We investigate 5738 single particles collected at six different cloverleaf freeway on-ramps in Southern Michigan, using 2D images from scanning electron microscopy. Of those, 3364 particles are soot. We present an analysis of the morphological and mixing properties of those soot particles. The relative abundance of soot particles shows a positive association with traffic density (number of vehicles per minute). A classification of the mixing state of freshly emitted soot particles shows that most of them are bare (or thinly coated) (72%) and some are partly coated (22%). We find that the fractal dimension of soot particles (one of the most relevant morphological descriptors) varies from site to site, and increases with increasing vehicle specific power that represents the driving/engine load conditions, and with increasing percentage of vehicles older than 15 years. Our results suggest that driving conditions, and vehicle age and type have significant influence on the morphology of soot particles.

  3. Characterizing individual particles on tree leaves using computer automated scanning electron microscopy

    Treesearch

    D. L. Johnson; D. J. Nowak; V. A. Jouraeva

    1999-01-01

    Leaves from twenty-three deciduous tree species and five conifer species were collected within a limited geographic range (1 km radius) and evaluated for possible application of scanning electron microscopy and X-ray microanalysis techniques of individual particle analysis (IPA). The goal was to identify tree species with leaves suitable for the automated...

  4. Aging fingerprints in combustion particles

    NASA Astrophysics Data System (ADS)

    Zelenay, V.; Mooser, R.; Tritscher, T.; Křepelová, A.; Heringa, M. F.; Chirico, R.; Prévôt, A. S. H.; Weingartner, E.; Baltensperger, U.; Dommen, J.; Watts, B.; Raabe, J.; Huthwelker, T.; Ammann, M.

    2011-05-01

    Soot particles can significantly influence the Earth's climate by absorbing and scattering solar radiation as well as by acting as cloud condensation nuclei. However, despite their environmental (as well as economic and political) importance, the way these properties are affected by atmospheric processing is still a subject of discussion. In this work, soot particles emitted from two different cars, a EURO 2 transporter, a EURO 3 passenger vehicle, and a wood stove were investigated on a single-particle basis. The emitted exhaust, including the particulate and the gas phase, was processed in a smog chamber with artificial solar radiation. Single particle specimens of both unprocessed and aged soot were characterized using x-ray absorption spectroscopy and scanning electron microscopy. Comparison of the spectra from the unprocessed and aged soot particles revealed changes in the carbon functional group content, such as that of carboxylic carbon, which can be ascribed to both the condensation of secondary organic compounds on the soot particles and oxidation of primary soot particles upon photochemical aging. Changes in the morphology and size of the single soot particles were also observed upon aging. Furthermore, we show that the soot particles take up water in humid environments and that their water uptake capacity increases with photochemical aging.

  5. Nanoscale morphological and chemical changes of high voltage lithium-manganese rich NMC composite cathodes with cycling.

    PubMed

    Yang, Feifei; Liu, Yijin; Martha, Surendra K; Wu, Ziyu; Andrews, Joy C; Ice, Gene E; Pianetta, Piero; Nanda, Jagjit

    2014-08-13

    Understanding the evolution of chemical composition and morphology of battery materials during electrochemical cycling is fundamental to extending battery cycle life and ensuring safety. This is particularly true for the much debated high energy density (high voltage) lithium-manganese rich cathode material of composition Li(1 + x)M(1 - x)O2 (M = Mn, Co, Ni). In this study we combine full-field transmission X-ray microscopy (TXM) with X-ray absorption near edge structure (XANES) to spatially resolve changes in chemical phase, oxidation state, and morphology within a high voltage cathode having nominal composition Li1.2Mn0.525Ni0.175Co0.1O2. Nanoscale microscopy with chemical/elemental sensitivity provides direct quantitative visualization of the cathode, and insights into failure. Single-pixel (∼ 30 nm) TXM XANES revealed changes in Mn chemistry with cycling, possibly to a spinel conformation and likely including some Mn(II), starting at the particle surface and proceeding inward. Morphological analysis of the particles revealed, with high resolution and statistical sampling, that the majority of particles adopted nonspherical shapes after 200 cycles. Multiple-energy tomography showed a more homogeneous association of transition metals in the pristine particle, which segregate significantly with cycling. Depletion of transition metals at the cathode surface occurs after just one cycle, likely driven by electrochemical reactions at the surface.

  6. Nanoscale Morphological and Chemical Changes of High Voltage Lithium–Manganese Rich NMC Composite Cathodes with Cycling

    PubMed Central

    2015-01-01

    Understanding the evolution of chemical composition and morphology of battery materials during electrochemical cycling is fundamental to extending battery cycle life and ensuring safety. This is particularly true for the much debated high energy density (high voltage) lithium–manganese rich cathode material of composition Li1 + xM1 – xO2 (M = Mn, Co, Ni). In this study we combine full-field transmission X-ray microscopy (TXM) with X-ray absorption near edge structure (XANES) to spatially resolve changes in chemical phase, oxidation state, and morphology within a high voltage cathode having nominal composition Li1.2Mn0.525Ni0.175Co0.1O2. Nanoscale microscopy with chemical/elemental sensitivity provides direct quantitative visualization of the cathode, and insights into failure. Single-pixel (∼30 nm) TXM XANES revealed changes in Mn chemistry with cycling, possibly to a spinel conformation and likely including some Mn(II), starting at the particle surface and proceeding inward. Morphological analysis of the particles revealed, with high resolution and statistical sampling, that the majority of particles adopted nonspherical shapes after 200 cycles. Multiple-energy tomography showed a more homogeneous association of transition metals in the pristine particle, which segregate significantly with cycling. Depletion of transition metals at the cathode surface occurs after just one cycle, likely driven by electrochemical reactions at the surface. PMID:25054780

  7. 3D-structured illumination microscopy reveals clustered DNA double-strand break formation in widespread γH2AX foci after high LET heavy-ion particle radiation.

    PubMed

    Hagiwara, Yoshihiko; Niimi, Atsuko; Isono, Mayu; Yamauchi, Motohiro; Yasuhara, Takaaki; Limsirichaikul, Siripan; Oike, Takahiro; Sato, Hiro; Held, Kathryn D; Nakano, Takashi; Shibata, Atsushi

    2017-12-12

    DNA double-strand breaks (DSBs) induced by ionising radiation are considered the major cause of genotoxic mutations and cell death. While DSBs are dispersed throughout chromatin after X-rays or γ-irradiation, multiple types of DNA damage including DSBs, single-strand breaks and base damage can be generated within 1-2 helical DNA turns, defined as a complex DNA lesion, after high Linear Energy Transfer (LET) particle irradiation. In addition to the formation of complex DNA lesions, recent evidence suggests that multiple DSBs can be closely generated along the tracks of high LET particle irradiation. Herein, by using three dimensional (3D)-structured illumination microscopy, we identified the formation of 3D widespread γH2AX foci after high LET carbon-ion irradiation. The large γH2AX foci in G 2 -phase cells encompassed multiple foci of replication protein A (RPA), a marker of DSBs undergoing resection during homologous recombination. Furthermore, we demonstrated by 3D analysis that the distance between two individual RPA foci within γH2AX foci was approximately 700 nm. Together, our findings suggest that high LET heavy-ion particles induce clustered DSB formation on a scale of approximately 1 μm 3 . These closely localised DSBs are considered to be a risk for the formation of chromosomal rearrangement after heavy-ion irradiation.

  8. SEM/EDS and optical microscopy analyses of microplastics in ocean trawl and fish guts.

    PubMed

    Wang, Zhong-Min; Wagner, Jeff; Ghosal, Sutapa; Bedi, Gagandeep; Wall, Stephen

    2017-12-15

    Microplastic particles from Atlantic and Pacific Ocean trawls, lab-fed fish guts and ocean fish guts have been characterized using optical microscopy and SEM/EDS in terms of size, morphology, and chemistry. We assessed whether these measurements could serve as a rapid screening process for subsequent identification of the likely microplastic candidates by micro-spectroscopy. Optical microscopy enabled morphological classification of the types of particles or fibers present in the sample, as well as the quantification of particle size ranges and fiber lengths. SEM/EDS analysis was used to rule out non-plastic particles and screen the prepared samples for potential microplastic, based on their element signatures and surface characteristics. Chlorinated plastics such as polyvinyl chloride (PVC) could be easily identified with SEM/EDS due to their unique elemental signatures including chlorine, as could mineral species that are falsely identified as plastics by optical microscopy. Particle morphology determined by optical microscopy and SEM suggests the fish ingested particles contained both degradation fragments from larger plastic pieces and also manufactured microplastics. SEM images of microplastic particle surfaces revealed characteristic cracks consistent with environmental exposure, as well as pigment particles consistent with manufactured materials. Most of the microplastic surfaces in the fish guts and ocean trawls were covered with biofilms, radiolarians, and crustaceans. Many of the fish stomachs contained micro-shell pieces which visually resembled microplastics. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Tannic acid assisted synthesis of flake-like hydroxyapatite nanostructures at room temperature

    NASA Astrophysics Data System (ADS)

    Vázquez, Maricela Santana; Estevez, O.; Ascencio-Aguirre, F.; Mendoza-Cruz, R.; Bazán-Díaz, L.; Zorrila, C.; Herrera-Becerra, R.

    2016-09-01

    A simple and non-expensive procedure was performed to synthesize hydroxyapatite (HAp) flake-like nanostructures, by using a co-precipitation method with tannic acid as stabilizing agent at room temperature and freeze drying. Samples were synthesized with two different salts, Ca(NO3)2 and CaCl2. X-ray diffraction analysis, Raman spectroscopy, scanning and transmission electron microscopy characterizations reveal Ca10(PO4)6(OH)2 HAp particles with hexagonal structure and P63/m space group in both cases. In addition, the particle size was smaller than 20 nm. The advantage of this method over the works reported to date lies in the ease for obtaining HAp particles with a single morphology (flakes), in high yield. This opens the possibility of expanding the view to the designing of new composite materials based on the HAp synthesized at room temperature.

  10. Identification of Foreign Particles in Human Tissues using Raman Microscopy.

    PubMed

    Campion, Alan; Smith, Kenneth J; Fedulov, Alexey V; Gregory, David; Fan, Yuwei; Godleski, John J

    2018-06-12

    The precise identification of foreign particles in tissue for patient care and research has been studied using polarized light microscopy, electron microscopy with X-ray analysis, and electron diffraction. The goal of this study was to unambiguously identify particles in tissues using a combina-tion of polarized light microscopy and Raman microscopy, which provides chemical composition and microstructural characterization of complex materials with submicron spatial resolution. We designed a model system of stained and unstained cells that contained birefringent talc particles, and systematically investigated the influence of slide and coverslip materials, laser wavelengths, and mounting media on the Raman spectra ob-tained. Hematoxylin and eosin stained slides did not produce useful results because of fluorescence interference from the stains. Unstained cell samples prepared with standard slides and coverslips produce high quality Raman spectra when excited at 532 nm; the spectra are uniquely as-signed to talc. We also obtain high quality Raman spectra specific for talc in unstained tissue samples (pleural tissue following talc pleurodesis and ovarian tissue following long-term perineal talc exposure). Raman microscopy is sufficiently sensitive and compositionally selective to identify particles as small as one micron in diameter. Among commonly used coverslip mounting media, Cytoseal 60 is recommended; Permount was unacceptable due to intense background interference. Raman spectra have been catalogued for thousands of substances, which suggests that this approach is likely to be successful in identifying other particles of interest in tissues, potentially making Raman microscopy a powerful new tool in pathology.

  11. Zn nanoparticle formation in FIB irradiated single crystal ZnO

    NASA Astrophysics Data System (ADS)

    Pea, M.; Barucca, G.; Notargiacomo, A.; Di Gaspare, L.; Mussi, V.

    2018-03-01

    We report on the formation of Zn nanoparticles induced by Ga+ focused ion beam on single crystal ZnO. The irradiated materials have been studied as a function of the ion dose by means of atomic force microscopy, scanning electron microscopy, Raman spectroscopy and transmission electron microscopy, evidencing the presence of Zn nanoparticles with size of the order of 5-30 nm. The nanoparticles are found to be embedded in a shallow amorphous ZnO matrix few tens of nanometers thick. Results reveal that ion beam induced Zn clustering occurs producing crystalline particles with the same hexagonal lattice and orientation of the substrate, and could explain the alteration of optical and electrical properties found for FIB fabricated and processed ZnO based devices.

  12. X-ray microscopy of live biological micro-organisms

    NASA Astrophysics Data System (ADS)

    Raja Al-Ani, Ma'an Nassar

    Real-time, compact x-ray microscopy has the potential to benefit many scientific fields, including microbiology, pharmacology, organic chemistry, and physics. Single frame x-ray micro-radiography, produced by a compact, solid-state laser plasma source, allows scientists to use x-ray emission for elemental analysis, and to observe biological specimens in their natural state. In this study, x-ray images of mouse kidney tissue, live bacteria, Pseudomonas aeruginosa and Burkholderia cepacia, and the bacteria's interaction with the antibiotic gentamicin, are examined using x-ray microscopy. For the purposes of comparing between confocal microscopy and x-ray microscopy, we introduced to our work the technique of gold labeling. Indirect immunofluorescence staining and immuno-gold labeling were applied on human lymphocytes and human tumor cells. Differential interference contrast microscopy (DIC) showed the lymphocyte body and nucleus, as did x-ray microscopy. However, the high resolution of x-ray microscopy allows us to differentiate between the gold particles bound to the antibodies and the free gold. A compact, tabletop Nd: glass laser is used in this study to produce x-rays from an Yttrium target. An atomic force microscope is used to scan the x-ray images from the developed photo-resist. The use of compact, tabletop laser plasma sources, in conjunction with x-ray microscopy, is a new technique that has great potential as a flexible, user-friendly scientific research tool.

  13. Fabrication of a single sub-micron pore spanning a single crystal (100) diamond membrane and impact on particle translocation [Particle translocation through a single crystal diamond pore fabricated by electron beam induced chemical etching

    DOE PAGES

    Webb, Jennifer R.; Martin, Aiden A.; Johnson, Robert P.; ...

    2017-06-21

    The fabrication of sub-micron pores in single crystal diamond membranes, which span the entirety of the membrane, is described for the first time, and the translocation properties of polymeric particles through the pore investigated. The pores are produced using a combination of laser micromachining to form the membrane and electron beam induced etching to form the pore. Single crystal diamond as the membrane material, has the advantages of chemical stability and durability, does not hydrate and swell, has outstanding electrical properties that facilitate fast, low noise current-time measurements and is optically transparent for combined optical-conductance sensing. The resulting pores aremore » characterized individually using both conductance measurements, employing a microcapillary electrochemical setup, and electron microscopy. Proof-of-concept experiments to sense charged polystyrene particles as they are electrophoretically driven through a single diamond pore are performed, and the impact of this new pore material on particle translocation is explored. As a result, these findings reveal the potential of diamond as a platform for pore-based sensing technologies and pave the way for the fabrication of single nanopores which span the entirety of a diamond membrane.« less

  14. Fabrication of a single sub-micron pore spanning a single crystal (100) diamond membrane and impact on particle translocation [Particle translocation through a single crystal diamond pore fabricated by electron beam induced chemical etching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webb, Jennifer R.; Martin, Aiden A.; Johnson, Robert P.

    The fabrication of sub-micron pores in single crystal diamond membranes, which span the entirety of the membrane, is described for the first time, and the translocation properties of polymeric particles through the pore investigated. The pores are produced using a combination of laser micromachining to form the membrane and electron beam induced etching to form the pore. Single crystal diamond as the membrane material, has the advantages of chemical stability and durability, does not hydrate and swell, has outstanding electrical properties that facilitate fast, low noise current-time measurements and is optically transparent for combined optical-conductance sensing. The resulting pores aremore » characterized individually using both conductance measurements, employing a microcapillary electrochemical setup, and electron microscopy. Proof-of-concept experiments to sense charged polystyrene particles as they are electrophoretically driven through a single diamond pore are performed, and the impact of this new pore material on particle translocation is explored. As a result, these findings reveal the potential of diamond as a platform for pore-based sensing technologies and pave the way for the fabrication of single nanopores which span the entirety of a diamond membrane.« less

  15. Coherent properties of a tunable low-energy electron-matter-wave source

    NASA Astrophysics Data System (ADS)

    Pooch, A.; Seidling, M.; Kerker, N.; Röpke, R.; Rembold, A.; Chang, W. T.; Hwang, I. S.; Stibor, A.

    2018-01-01

    A general challenge in various quantum experiments and applications is to develop suitable sources for coherent particles. In particular, recent progress in microscopy, interferometry, metrology, decoherence measurements, and chip-based applications rely on intensive, tunable, coherent sources for free low-energy electron-matter waves. In most cases, the electrons get field emitted from a metal nanotip, where its radius and geometry toward a counter electrode determines the field distribution and the emission voltage. A higher emission is often connected to faster electrons with smaller de Broglie wavelengths, requiring larger pattern magnification after matter-wave diffraction or interferometry. This can be prevented with a well-known setup consisting of two counter electrodes that allow independent setting of the beam intensity and velocity. However, it needs to be tested if the coherent properties of such a source are preserved after the acceleration and deceleration of the electrons. Here, we study the coherence of the beam in a biprism interferometer with a single atom tip electron field emitter if the particle velocity and wavelength varies after emission. With a Wien filter measurement and a contrast correlation analysis we demonstrate that the intensity of the source at a certain particle wavelength can be enhanced up to a factor of 6.4 without changing the transverse and longitudinal coherence of the electron beam. In addition, the energy width of the single atom tip emitter was measured to be 377 meV, corresponding to a longitudinal coherence length of 82 nm. The design has potential applications in interferometry, microscopy, and sensor technology.

  16. Morphology and mixing state of aged soot particles at a remote marine free troposphere site: Implications for optical properties

    DOE PAGES

    China, Swarup; Scarnato, Barbara; Owen, Robert C.; ...

    2015-01-14

    The radiative properties of soot particles depend on their morphology and mixing state, but their evolution during transport is still elusive. In this paper, we report observations from an electron microscopy analysis of individual particles transported in the free troposphere over long distances to the remote Pico Mountain Observatory in the Azores in the North Atlantic. Approximately 70% of the soot particles were highly compact and of those 26% were thinly coated. Discrete dipole approximation simulations indicate that this compaction results in an increase in soot single scattering albedo by a factor of ≤2.17. The top of the atmosphere directmore » radiative forcing is typically smaller for highly compact than mass-equivalent lacy soot. Lastly, the forcing estimated using Mie theory is within 12% of the forcing estimated using the discrete dipole approximation for a high surface albedo, implying that Mie calculations may provide a reasonable approximation for compact soot above remote marine clouds.« less

  17. A Method for the Alignment of Heterogeneous Macromolecules from Electron Microscopy

    PubMed Central

    Shatsky, Maxim; Hall, Richard J.; Brenner, Steven E.; Glaeser, Robert M.

    2009-01-01

    We propose a feature-based image alignment method for single-particle electron microscopy that is able to accommodate various similarity scoring functions while efficiently sampling the two-dimensional transformational space. We use this image alignment method to evaluate the performance of a scoring function that is based on the Mutual Information (MI) of two images rather than one that is based on the cross-correlation function. We show that alignment using MI for the scoring function has far less model-dependent bias than is found with cross-correlation based alignment. We also demonstrate that MI improves the alignment of some types of heterogeneous data, provided that the signal to noise ratio is relatively high. These results indicate, therefore, that use of MI as the scoring function is well suited for the alignment of class-averages computed from single particle images. Our method is tested on data from three model structures and one real dataset. PMID:19166941

  18. Full-Counting Many-Particle Dynamics: Nonlocal and Chiral Propagation of Correlations

    NASA Astrophysics Data System (ADS)

    Ashida, Yuto; Ueda, Masahito

    2018-05-01

    The ability to measure single quanta allows the complete characterization of small quantum systems known as full-counting statistics. Quantum gas microscopy enables one to observe many-body systems at the single-atom precision. We extend the idea of full-counting statistics to nonequilibrium open many-particle dynamics and apply it to discuss the quench dynamics. By way of illustration, we consider an exactly solvable model to demonstrate the emergence of unique phenomena such as nonlocal and chiral propagation of correlations, leading to a concomitant oscillatory entanglement growth. We find that correlations can propagate beyond the conventional maximal speed, known as the Lieb-Robinson bound, at the cost of probabilistic nature of quantum measurement. These features become most prominent at the real-to-complex spectrum transition point of an underlying parity-time-symmetric effective non-Hermitian Hamiltonian. A possible experimental situation with quantum gas microscopy is discussed.

  19. Ultrafine-grained mineralogy and matrix chemistry of olivine-rich chondritic interplanetary dust particles

    NASA Technical Reports Server (NTRS)

    Rietmeijer, F. J. M.

    1989-01-01

    Olivine-rich chondritic interplanetary dust particles (IDPs) are an important subset of fluffy chondritic IDPs collected in the earth's stratosphere. Particles in this subset are characterized by a matrix of nonporous, ultrafine-grained granular units. Euhedral single crystals, crystals fragments, and platey single crystals occur dispersed in the matrix. Analytical electron microscopy of granular units reveals predominant magnesium-rich olivines and FeNi-sulfides embedded in amorphous carbonaceous matrix material. The variable ratio of ultrafine-grained minerals vs. carbonaceous matrix material in granular units support variable C/Si ratios, and some fraction of sulfur is associated with carbonaceous matrix material. The high Mg/(Mg+Fe) ratios in granular units is similar to this distribution in P/Comet Halley dust. The chondritic composition of fine-grained, polycrystalline IDPs gradually breaks down into nonchondritic, and ultimately, single mineral compositions as a function of decreased particle mass. The relationship between particle mass and composition in the matrix of olivine-rich chondritic IDPs is comparable with the relationship inferred for P/Comet Halley dust.

  20. Optical Detection and Sizing of Single Nano-Particles Using Continuous Wetting Films

    PubMed Central

    Hennequin, Yves; McLeod, Euan; Mudanyali, Onur; Migliozzi, Daniel; Ozcan, Aydogan; Dinten, Jean-Marc

    2013-01-01

    The physical interaction between nano-scale objects and liquid interfaces can create unique optical properties, enhancing the signatures of the objects with sub-wavelength features. Here we show that the evaporation on a wetting substrate of a polymer solution containing sub-micrometer or nano-scale particles creates liquid micro-lenses that arise from the local deformations of the continuous wetting film. These micro-lenses have properties similar to axicon lenses that are known to create beams with a long depth of focus. This enhanced depth of focus allows detection of single nanoparticles using a low magnification microscope objective lens, achieving a relatively wide field-of-view, while also lifting the constraints on precise focusing onto the object plane. Hence, by creating these liquid axicon lenses through spatial deformations of a continuous thin wetting film, we transfer the challenge of imaging individual nano-particles to detecting the light focused by these lenses. As a proof of concept, we demonstrate the detection and sizing of single nano-particles (100 and 200 nm), CpGV granuloviruses as well as Staphylococcus epidermidis bacteria over a wide field of view of e.g., 5.10×3.75 mm2 using a ×5 objective lens with a numerical aperture of 0.15. In addition to conventional lens-based microscopy, this continuous wetting film based approach is also applicable to lensfree computational on-chip imaging, which can be used to detect single nano-particles over a large field-of-view of e.g., >20-30 mm2. These results could be especially useful for high-throughput field-analysis of nano-scale objects using compact and cost-effective microscope designs. PMID:23889001

  1. Observing polymersome dynamics in controlled microscale flows

    NASA Astrophysics Data System (ADS)

    Kumar, Subhalakshmi; Shenoy, Anish; Schroeder, Charles

    2015-03-01

    Achieving an understanding of single particle rheology for large yet deformable particles with controlled membrane viscoelasticity is major challenge in soft materials. In this work, we directly visualize the dynamics of single polymersomes (~ 10 μm in size) in an extensional flow using optical microscopy. We generate polymer vesicular structures composed of polybutadiene-block-polyethylene oxide (PB-b-PEO) copolymers. Single polymersomes are confined near the stagnation point of a planar extensional flow using an automated microfluidic trap, thereby enabling the direct observation of polymersome dynamics under fluid flows with controlled strains and strain rates. In a series of experiments, we investigate the effect of varying elasticity in vesicular membranes on polymersome deformation, along with the impact of decreasing membrane fluidity upon increasing diblock copolymer molecular weight. Overall, we believe that this approach will enable precise characterization of the role of membrane properties on single particle rheology for deformable polymersomes.

  2. A national facility for biological cryo-electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saibil, Helen R., E-mail: h.saibil@mail.cryst.bbk.ac.uk; Grünewald, Kay; Stuart, David I.

    2015-01-01

    This review provides a brief update on the use of cryo-electron microscopy for integrated structural biology, along with an overview of the plans for the UK national facility for electron microscopy being built at the Diamond synchrotron. Three-dimensional electron microscopy is an enormously powerful tool for structural biologists. It is now able to provide an understanding of the molecular machinery of cells, disease processes and the actions of pathogenic organisms from atomic detail through to the cellular context. However, cutting-edge research in this field requires very substantial resources for equipment, infrastructure and expertise. Here, a brief overview is provided ofmore » the plans for a UK national three-dimensional electron-microscopy facility for integrated structural biology to enable internationally leading research on the machinery of life. State-of-the-art equipment operated with expert support will be provided, optimized for both atomic-level single-particle analysis of purified macromolecules and complexes and for tomography of cell sections. The access to and organization of the facility will be modelled on the highly successful macromolecular crystallography (MX) synchrotron beamlines, and will be embedded at the Diamond Light Source, facilitating the development of user-friendly workflows providing near-real-time experimental feedback.« less

  3. Atomic Resolution Structure of the Oncolytic Parvovirus LuIII by Electron Microscopy and 3D Image Reconstruction.

    PubMed

    Pittman, Nikéa; Misseldine, Adam; Geilen, Lorena; Halder, Sujata; Smith, J Kennon; Kurian, Justin; Chipman, Paul; Janssen, Mandy; Mckenna, Robert; Baker, Timothy S; D'Abramo, Anthony; Cotmore, Susan; Tattersall, Peter; Agbandje-McKenna, Mavis

    2017-10-30

    LuIII, a protoparvovirus pathogenic to rodents, replicates in human mitotic cells, making it applicable for use to kill cancer cells. This virus group includes H-1 parvovirus (H-1PV) and minute virus of mice (MVM). However, LuIII displays enhanced oncolysis compared to H-1PV and MVM, a phenotype mapped to the major capsid viral protein 2 (VP2). This suggests that within LuIII VP2 are determinants for improved tumor lysis. To investigate this, the structure of the LuIII virus-like-particle was determined using single particle cryo-electron microscopy and image reconstruction to 3.17 Å resolution, and compared to the H-1PV and MVM structures. The LuIII VP2 structure, ordered from residue 37 to 587 (C-terminal), had the conserved VP topology and capsid morphology previously reported for other protoparvoviruses. This includes a core β-barrel and α-helix A, a depression at the icosahedral 2-fold and surrounding the 5-fold axes, and a single protrusion at the 3-fold axes. Comparative analysis identified surface loop differences among LuIII, H-1PV, and MVM at or close to the capsid 2- and 5-fold symmetry axes, and the shoulder of the 3-fold protrusions. The 2-fold differences cluster near the previously identified MVM sialic acid receptor binding pocket, and revealed potential determinants of protoparvovirus tumor tropism.

  4. Linking hygroscopicity and the surface microstructure of model inorganic salts, simple and complex carbohydrates, and authentic sea spray aerosol particles.

    PubMed

    Estillore, Armando D; Morris, Holly S; Or, Victor W; Lee, Hansol D; Alves, Michael R; Marciano, Meagan A; Laskina, Olga; Qin, Zhen; Tivanski, Alexei V; Grassian, Vicki H

    2017-08-09

    Individual airborne sea spray aerosol (SSA) particles show diversity in their morphologies and water uptake properties that are highly dependent on the biological, chemical, and physical processes within the sea subsurface and the sea surface microlayer. In this study, hygroscopicity data for model systems of organic compounds of marine origin mixed with NaCl are compared to data for authentic SSA samples collected in an ocean-atmosphere facility providing insights into the SSA particle growth, phase transitions and interactions with water vapor in the atmosphere. In particular, we combine single particle morphology analyses using atomic force microscopy (AFM) with hygroscopic growth measurements in order to provide important insights into particle hygroscopicity and the surface microstructure. For model systems, a range of simple and complex carbohydrates were studied including glucose, maltose, sucrose, laminarin, sodium alginate, and lipopolysaccharides. The measured hygroscopic growth was compared with predictions from the Extended-Aerosol Inorganics Model (E-AIM). It is shown here that the E-AIM model describes well the deliquescence transition and hygroscopic growth at low mass ratios but not as well for high ratios, most likely due to a high organic volume fraction. AFM imaging reveals that the equilibrium morphology of these single-component organic particles is amorphous. When NaCl is mixed with the organics, the particles adopt a core-shell morphology with a cubic NaCl core and the organics forming a shell similar to what is observed for the authentic SSA samples. The observation of such core-shell morphologies is found to be highly dependent on the salt to organic ratio and varies depending on the nature and solubility of the organic component. Additionally, single particle organic volume fraction AFM analysis of NaCl : glucose and NaCl : laminarin mixtures shows that the ratio of salt to organics in solution does not correspond exactly for individual particles - showing diversity within the ensemble of particles produced even for a simple two component system.

  5. StructMap: Elastic Distance Analysis of Electron Microscopy Maps for Studying Conformational Changes.

    PubMed

    Sanchez Sorzano, Carlos Oscar; Alvarez-Cabrera, Ana Lucia; Kazemi, Mohsen; Carazo, Jose María; Jonić, Slavica

    2016-04-26

    Single-particle electron microscopy (EM) has been shown to be very powerful for studying structures and associated conformational changes of macromolecular complexes. In the context of analyzing conformational changes of complexes, distinct EM density maps obtained by image analysis and three-dimensional (3D) reconstruction are usually analyzed in 3D for interpretation of structural differences. However, graphic visualization of these differences based on a quantitative analysis of elastic transformations (deformations) among density maps has not been done yet due to a lack of appropriate methods. Here, we present an approach that allows such visualization. This approach is based on statistical analysis of distances among elastically aligned pairs of EM maps (one map is deformed to fit the other map), and results in visualizing EM maps as points in a lower-dimensional distance space. The distances among points in the new space can be analyzed in terms of clusters or trajectories of points related to potential conformational changes. The results of the method are shown with synthetic and experimental EM maps at different resolutions. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  6. Visualizing interactions between Sindbis virus and cells by single particle tracking

    NASA Astrophysics Data System (ADS)

    Williard, Mary

    2005-03-01

    Sindbis virus infects both mammalian and insect cells. Though not pathogenic in humans, Sindbis is a model for many mosquito- borne viruses that cause human disease, such as West Nile virus. We have used real-time single particle fluorescence microscopy to observe individual Sindbis virus particles as they infect living cells. Fluorescent labels were incorporated into both the viral coat proteins and the lipid envelope of the virus. Kinetics characteristic of free diffusion in solution, slower diffusion inside cells, attachment to spots on the cell surface, and motor protein transport inside cells have been observed. Dequenching of the membrane label is used to report membrane fusion events during the infection process. Tracking individual viral particles allows multiple pathways to be determined without the requirement of synchronicity.

  7. A national facility for biological cryo-electron microscopy

    PubMed Central

    Saibil, Helen R.; Grünewald, Kay; Stuart, David I.

    2015-01-01

    Three-dimensional electron microscopy is an enormously powerful tool for structural biologists. It is now able to provide an understanding of the molecular machinery of cells, disease processes and the actions of pathogenic organisms from atomic detail through to the cellular context. However, cutting-edge research in this field requires very substantial resources for equipment, infrastructure and expertise. Here, a brief overview is provided of the plans for a UK national three-dimensional electron-microscopy facility for integrated structural biology to enable internationally leading research on the machinery of life. State-of-the-art equipment operated with expert support will be provided, optimized for both atomic-level single-particle analysis of purified macromolecules and complexes and for tomography of cell sections. The access to and organization of the facility will be modelled on the highly successful macromolecular crystallography (MX) synchrotron beamlines, and will be embedded at the Diamond Light Source, facilitating the development of user-friendly workflows providing near-real-time experimental feedback. PMID:25615867

  8. PhotoGate microscopy: tracking single molecules in a cytoplasm (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yildiz, Ahmet

    2016-02-01

    Tracking single molecules inside cells reveals the dynamics of biological processes, including receptor trafficking, signaling and cargo transport. However, individual molecules often cannot be resolved inside cells due to their high density in the cellular environment. We developed a photobleaching gate assay, which controls the number of fluorescent particles in a region of interest by repeatedly photobleaching its boundary. Using this method, we tracked single particles at surface densities two orders of magnitude higher than the single-molecule detection limit. We observed ligand-induced dimerization of epidermal growth factor receptors (EGFR) on a live cell membrane. In addition, we tracked individual intraflagellar transport (IFT) trains along the length of a cilium and observed their remodeling at the ciliary tip.

  9. DNA adsorption characteristics of hollow spherule allophane nano-particles.

    PubMed

    Matsuura, Yoko; Iyoda, Fumitoshi; Arakawa, Shuichi; John, Baiju; Okamoto, Masami; Hayashi, Hidetomo

    2013-12-01

    To understand the propensity of natural allophane to adsorb the DNA molecules, the adsorption characteristics were assessed against natural allophane (AK70), using single-stranded DNA (ss-DNA) and adenosine 5'-monophosphate (5'-AMP) as a reference molecule. The adsorption capacity of ss-DNA on AK70 exhibited one order of magnitude lower value as compared with that of 5'-AMP. The adsorption capacity of ss-DNA decreased with increasing pH due to the interaction generated between phosphate groups of ss-DNA and functional Al-OH groups on the wall perforations through deprotonating, associated with higher energy barrier for the adsorption of ss-DNA. The adsorption morphologies consisting of the individual ss-DNA with mono-layer coverage of the clustered allophane particle were observed successfully through transmission electron microscopy analysis. © 2013.

  10. Multielement mapping of alpha-SiC by scanning Auger microscopy

    NASA Technical Reports Server (NTRS)

    Browning, Ray; Smialek, James L.; Jacobson, Nathan S.

    1987-01-01

    Fine second-phase particles, numerous in sintered alpha-SiC, were analyzed by scanning Auger microscopy and conventional techniques. The Auger analysis utilized computer-controlled data acquisition, multielement correlation diagrams, and a high spatial resolution of 100 nm. This procedure enabled construction of false color maps and the detection of fine compositional details within these particles. Carbon, silicon oxide, and boron-rich particles (qualitatively as BN or B4C) predominated. The BN particles, sometimes having a carbon core, are believed to result from reaction between B4C additives and nitrogen sintering atmospheres.

  11. Water interaction with hydrophobic and hydrophilic soot particles.

    PubMed

    Popovicheva, Olga; Persiantseva, Natalia M; Shonija, Natalia K; DeMott, Paul; Koehler, Kirsten; Petters, Markus; Kreidenweis, Sonia; Tishkova, Victoria; Demirdjian, Benjamin; Suzanne, Jean

    2008-05-07

    The interaction of water with laboratory soots possessing a range of properties relevant for atmospheric studies is examined by two complementary methods: gravimetrical measurement of water uptake coupled with chemical composition and porosity analysis and HTDMA (humidified tandem differential mobility analyzer) inference of water uptake accompanied by separate TEM (transmission electron microscopy) analysis of single particles. The first method clarifies the mechanism of water uptake for bulk soot and allows the classification of soot with respect to its hygroscopicity. The second method highlights the dependence of the soot aerosol growth factor on relative humidity (RH) for quasi-monodisperse particles. Hydrophobic and hydrophilic soot are qualitatively defined by their water uptake and surface polarity: laboratory soot particles are thus classified from very hydrophobic to very hydrophilic. Thermal soot particles produced from natural gas combustion are classified as hydrophobic with a surface of low polarity since water is found to cover only half of the surface. Graphitized thermal soot particles are proposed for comparison as extremely hydrophobic and of very low surface polarity. Soot particles produced from laboratory flame of TC1 aviation kerosene are less hydrophobic, with their entire surface being available for statistical monolayer water coverage at RH approximately 10%. Porosity measurements suggest that, initially, much of this surface water resides within micropores. Consequently, the growth factor increase of these particles to 1.07 at RH > 80% is attributed to irreversible swelling that accompanies water uptake. Hysteresis of adsorption/desorption cycles strongly supports this conclusion. In contrast, aircraft engine soot, produced from burning TC1 kerosene in a gas turbine engine combustor, has an extremely hydrophilic surface of high polarity. Due to the presence of water soluble organic and inorganic material it can be covered by many water layers even below water saturation conditions. This soot demonstrates a gradual diameter growth factor (D(wet)/D(dry)) increase up to 1.22 at 93% relative humidity, most likely due to the presence of single particles with water soluble material heterogeneously distributed over their surface.

  12. Development of magnetic luminescent core/shell nanocomplex particles with fluorescence using Rhodamine 6G

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hee Uk; Song, Yoon Seok; Park, Chulhwan

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ► A simple method was developed to synthesize Co-B/SiO{sub 2}/dye/SiO{sub 2} composite particles. ► The magnetic particle shows that highly luminescent and core/shell particles are formed. ► Such core/shell particles can be easily suspended in water. ► The magnetic particles could detect fluorescence for the application of biosensor. -- Abstract: A simple and reproducible method was developed to synthesize a novel class of Co-B/SiO{sub 2}/dye/SiO{sub 2} composite core/shell particles. Using a single cobalt core, Rhodamine 6G of organic dye molecules was entrapped in a silica shell, resulting in core/shell particles of ∼200 nm diameter. Analysesmore » using a variety of techniques such as transmission electron microscopy, X-ray photoelectron spectroscopy, vibration sample magnetometry, confocal laser scanning microscopy, and fluorescence intensity demonstrated that dye molecules were trapped inside the core/shell particles. A photoluminescence investigation showed that highly luminescent and photostable core/shell particles were formed. Such core/shell particles can be easily suspended in water. The synthesized magnetic particles could be used to detect fluorescence on glass substrate arrays for bioassay and biosensor applications.« less

  13. In vivo laser confocal microscopy after non-Descemet's stripping automated endothelial keratoplasty.

    PubMed

    Kobayashi, Akira; Yokogawa, Hideaki; Sugiyama, Kazuhisa

    2009-07-01

    To investigate in vivo corneal changes in patients with bullous keratopathy who underwent non-Descemet's stripping automated endothelial keratoplasty (nDSAEK) with the use of laser confocal microscopy. Single-center, prospective clinical study. Ten eyes (10 patients; 3 men and 7 women; mean age, 73.5+/-6.6 years [mean+/-standard deviation]) with bullous keratopathy were evaluated in this study. In vivo laser confocal microscopy was performed before and 1, 3, and 6 months after nDSAEK. Selected confocal images of corneal layers were evaluated qualitatively and quantitatively for degree of haze and density of deposits. Before surgery, the following were observed in all patients: corneal epithelial edema, subepithelial haze, keratocytes in a honeycomb pattern, and tiny needle-shaped materials in the stroma. After nDSAEK, subepithelial haze, donor-recipient interface haze, and interface particles were observed in all measurable cases; postoperative haze, interface particles, and needle-shaped materials decreased statistically significantly (P<0.05) over the course of follow-up. In addition, hyperreflective giant interface particles were observed after nDSAEK in all patients. In vivo laser confocal microscopy can identify subclinical corneal abnormalities after nDSAEK such as subepithelial haze, host-recipient interface haze, host stromal needle-shaped materials, and host-recipient interface particles with characteristic giant particles. Further studies with this technology in a large number of patients and long-term follow-up are needed to understand fully the long-term corneal stromal changes after nDSAEK.

  14. EVALUATION OF COMPUTER-CONTROLLED SCANNING ELECTRON MICROSCOPY APPLIED TO AN AMBIENT URBAN AEROSOL SAMPLE

    EPA Science Inventory


    Recent interest in monitoring and speciation of particulate matter has led to increased application of scanning electron microscopy (SEM) coupled with energy-dispersive x-ray analysis (EDX) to individual particle analysis. SEM/EDX provides information on the size, shape, co...

  15. Continuous Changes in Structure Mapped by Manifold Embedding of Single-Particle Data in Cryo-EM

    PubMed Central

    Fran, Joachim; Ourmazd, Abbas

    2016-01-01

    Cryo-electron microscopy, when combined with single-particle reconstruction, is a powerful method for studying macromolecular structure. Recent developments in detector technology have pushed the resolution into a range comparable to that of X-ray crystallography. However, cryo-EM is able to separate and thus recover the structure of each of several discrete structures present in the sample. For the more general case involving continuous structural changes, a novel technique employing manifold embedding has been recently demonstrated. Potentially, the entire work-cycle of a molecular machine may be observed as it passes through a continuum of states, and its free-energy landscape may be mapped out. This technique will be outlined and discussed in the context of its application to a large single-particle dataset of yeast ribosomes. PMID:26884261

  16. Accumulative Difference Image Protocol for Particle Tracking in Fluorescence Microscopy Tested in Mouse Lymphonodes

    PubMed Central

    Villa, Carlo E.; Caccia, Michele; Sironi, Laura; D'Alfonso, Laura; Collini, Maddalena; Rivolta, Ilaria; Miserocchi, Giuseppe; Gorletta, Tatiana; Zanoni, Ivan; Granucci, Francesca; Chirico, Giuseppe

    2010-01-01

    The basic research in cell biology and in medical sciences makes large use of imaging tools mainly based on confocal fluorescence and, more recently, on non-linear excitation microscopy. Substantially the aim is the recognition of selected targets in the image and their tracking in time. We have developed a particle tracking algorithm optimized for low signal/noise images with a minimum set of requirements on the target size and with no a priori knowledge of the type of motion. The image segmentation, based on a combination of size sensitive filters, does not rely on edge detection and is tailored for targets acquired at low resolution as in most of the in-vivo studies. The particle tracking is performed by building, from a stack of Accumulative Difference Images, a single 2D image in which the motion of the whole set of the particles is coded in time by a color level. This algorithm, tested here on solid-lipid nanoparticles diffusing within cells and on lymphocytes diffusing in lymphonodes, appears to be particularly useful for the cellular and the in-vivo microscopy image processing in which few a priori assumption on the type, the extent and the variability of particle motions, can be done. PMID:20808918

  17. Accumulative difference image protocol for particle tracking in fluorescence microscopy tested in mouse lymphonodes.

    PubMed

    Villa, Carlo E; Caccia, Michele; Sironi, Laura; D'Alfonso, Laura; Collini, Maddalena; Rivolta, Ilaria; Miserocchi, Giuseppe; Gorletta, Tatiana; Zanoni, Ivan; Granucci, Francesca; Chirico, Giuseppe

    2010-08-17

    The basic research in cell biology and in medical sciences makes large use of imaging tools mainly based on confocal fluorescence and, more recently, on non-linear excitation microscopy. Substantially the aim is the recognition of selected targets in the image and their tracking in time. We have developed a particle tracking algorithm optimized for low signal/noise images with a minimum set of requirements on the target size and with no a priori knowledge of the type of motion. The image segmentation, based on a combination of size sensitive filters, does not rely on edge detection and is tailored for targets acquired at low resolution as in most of the in-vivo studies. The particle tracking is performed by building, from a stack of Accumulative Difference Images, a single 2D image in which the motion of the whole set of the particles is coded in time by a color level. This algorithm, tested here on solid-lipid nanoparticles diffusing within cells and on lymphocytes diffusing in lymphonodes, appears to be particularly useful for the cellular and the in-vivo microscopy image processing in which few a priori assumption on the type, the extent and the variability of particle motions, can be done.

  18. Crystal Structure and Proteomics Analysis of Empty Virus-like Particles of Cowpea Mosaic Virus.

    PubMed

    Huynh, Nhung T; Hesketh, Emma L; Saxena, Pooja; Meshcheriakova, Yulia; Ku, You-Chan; Hoang, Linh T; Johnson, John E; Ranson, Neil A; Lomonossoff, George P; Reddy, Vijay S

    2016-04-05

    Empty virus-like particles (eVLPs) of Cowpea mosaic virus (CPMV) are currently being utilized as reagents in various biomedical and nanotechnology applications. Here, we report the crystal structure of CPMV eVLPs determined using X-ray crystallography at 2.3 Å resolution and compare it with previously reported cryo-electron microscopy (cryo-EM) of eVLPs and virion crystal structures. Although the X-ray and cryo-EM structures of eVLPs are mostly similar, there exist significant differences at the C terminus of the small (S) subunit. The intact C terminus of the S subunit plays a critical role in enabling the efficient assembly of CPMV virions and eVLPs, but undergoes proteolysis after particle formation. In addition, we report the results of mass spectrometry-based proteomics analysis of coat protein subunits from CPMV eVLPs and virions that identify the C termini of S subunits undergo proteolytic cleavages at multiple sites instead of a single cleavage site as previously observed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Dynamics of different-sized solid-state nanocrystals as tracers for a drug-delivery system in the interstitium of a human tumor xenograft

    PubMed Central

    Kawai, Masaaki; Higuchi, Hideo; Takeda, Motohiro; Kobayashi, Yoshio; Ohuchi, Noriaki

    2009-01-01

    Introduction Recent anticancer drugs have been made larger to pass selectively through tumor vessels and stay in the interstitium. Understanding drug movement in association with its size at the single-molecule level and estimating the time needed to reach the targeted organ is indispensable for optimizing drug delivery because single cell-targeted therapy is the ongoing paradigm. This report describes the tracking of single solid nanoparticles in tumor xenografts and the estimation of arrival time. Methods Different-sized nanoparticles measuring 20, 40, and 100 nm were injected into the tail vein of the female Balb/c nu/nu mice bearing human breast cancer on their backs. The movements of the nanoparticles were visualized through the dorsal skin-fold chamber with the high-speed confocal microscopy that we manufactured. Results An analysis of the particle trajectories revealed diffusion to be inversely related to the particle size and position in the tumor, whereas the velocity of the directed movement was related to the position. The difference in the velocity was the greatest for 40-nm particles in the perivascular to the intercellular region: difference = 5.8 nm/s. The arrival time of individual nanoparticles at tumor cells was simulated. The estimated times for the 20-, 40-, and 100-nm particles to reach the tumor cells were 158.0, 218.5, and 389.4 minutes, respectively, after extravasation. Conclusions This result suggests that the particle size can be individually designed for each goal. These data and methods are also important for understanding drug pharmacokinetics. Although this method may be subject to interference by surface molecules attached on the particles, it has the potential to elucidate the pharmacokinetics involved in constructing novel drug-delivery systems involving cell-targeted therapy. PMID:19575785

  20. Single-crystalline FeCo nanoparticle-filled carbon nanotubes: synthesis, structural characterization and magnetic properties.

    PubMed

    Ghunaim, Rasha; Scholz, Maik; Damm, Christine; Rellinghaus, Bernd; Klingeler, Rüdiger; Büchner, Bernd; Mertig, Michael; Hampel, Silke

    2018-01-01

    In the present work, we demonstrate different synthesis procedures for filling carbon nanotubes (CNTs) with equimolar binary nanoparticles of the type Fe-Co. The CNTs act as templates for the encapsulation of magnetic nanoparticles and provide a protective shield against oxidation as well as prevent nanoparticle agglomeration. By variation of the reaction parameters, we were able to tailor the sample purity, degree of filling, the composition and size of the filling particles, and therefore, the magnetic properties. The samples were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), superconducting quantum interference device (SQUID) and thermogravimetric analysis (TGA). The Fe-Co-filled CNTs show significant enhancement in the coercive field as compared to the corresponding bulk material, which make them excellent candidates for several applications such as magnetic storage devices.

  1. Single-particle Analyses of Compositions, Morphology, and Viscosity of Aerosol Particles Collected During GoAmazon2014

    NASA Astrophysics Data System (ADS)

    Adachi, K.; Gong, Z.; Bateman, A. P.; Martin, S. T.; Cirino, G. G.; Artaxo, P.; Sedlacek, A. J., III; Buseck, P. R.

    2014-12-01

    Single-particle analysis using transmission electron microscopy (TEM) shows composition and morphology of individual aerosol particles collected during the GoAmazon2014 campaign. These TEM results indicate aerosol types and mixing states, both of which are important for evaluating particle optical properties and cloud condensation nuclei activity. The samples were collected at the T3 site, which is located in the Amazon forest with influences from the urban pollution plume from Manaus. Samples were also collected from the T0 site, which is in the middle of the jungle with minimal to no influences of anthropogenic sources. The aerosol particles mainly originated from 1) anthropogenic pollution (e.g., nanosphere soot, sulfate), 2) biogenic emissions (e.g., primary biogenic particles, organic aerosols), and 3) long-range transport (e.g., sea salts). We found that the biogenic organic aerosol particles contain homogeneously distributed potassium. Particle viscosity is important for evaluating gas-particle interactions and atmospheric chemistry for the particles. Viscosity can be estimated from the rebounding behavior at controlled relative humidities, i.e., highly viscous particles display less rebound on a plate than low-viscosity particles. We collected 1) aerosol particles from a plate (non-rebounded), 2) those that had rebounded from the plate and were then captured onto an adjacent sampling plate, and 3) particles from ambient air using a separate impactor sampler. Preliminary results show that more than 90% of non-rebounded particles consisted of nanosphere soot with or without coatings. The coatings mostly consisted of organic matter. Although rebounded particles also contain nanosphere soot (number fraction 64-69%), they were mostly internally mixed with sulfate, organic matter, or their mixtures. TEM tilted images suggested that the rebounded particles were less deformed on the substrate, whereas the non-rebounded particles were more deformed, which could reflect differences in their viscosity.

  2. Fabrication of single phase p-CuInSe2 nanowire arrays by electrodeposited into anodic alumina templates

    NASA Astrophysics Data System (ADS)

    Cheng, Yu-Song; Lang, Hao-Jan; Houng, Mau-Phon

    2015-10-01

    Single-phase CuInSe2 nanowire (NW) arrays were prepared at various pH values in a heated electrolyte by using pulse electrodeposition techniques and an anodized aluminum oxide template. X-ray diffraction showed that the CuInSe2 NW nucleation mechanism received H+ constraints when the NWs were deposited at pH 1.7 with a (112) orientation and annealed at 550 °C. The CuInSe2 NW band gap was determined to be approximately 1 eV through optical measurements. Transmission electron microscopy showed that at the pH value of 1.7, small particles of the single-phase CuInSe2 NWs aligned along the crystallographic direction are nucleated to form large particles. Scanning electron microscopy revealed that the NW diameter and the length were 80 nm and 2.3 μm, respectively. From Mott-Schottky and Ohmic contact plots, the CuInSe2 NWs were found to be p-type semiconductors, and their work function was estimated to be approximately 4.69 eV.

  3. Analysis of Individual Carbonaceous Particles Emitted from the Las Conchas Wildfire, Los Alamos, NM, in June-July 2011

    NASA Astrophysics Data System (ADS)

    Mazzoleni, C.; China, S.; Gorkowski, K.; Flowers, B. A.; Aiken, A. C.; Dubey, M. K.

    2012-12-01

    Carbonaceous aerosol emitted from biomass burning contributes significantly to atmospheric aerosol loadings regionally and globally. The net direct radiative forcing of biomass burning aerosol can be positive and/or negative and this depends on its composition, morphology and mixing state. Biomass burning aerosols can also change the cloud properties as they can act as cloud condensation nuclei. In this study we investigated biomass burning particles emitted from the Las Conchas wildfire in northern New Mexico that started on June 26, 2011 and burned an area of 245 square miles. Aerosol samples were collected on nucleopore filters at the Los Alamos National Laboratory during the third week of the wildfire event. Individual particles (~4000) were investigated using field-emission scanning electron microscopy and energy dispersive X-ray spectroscopy (EDS) to distinguish different carbonaceous particles and their shape, size, elemental composition and mixing state. A thermo-denuder was used to remove compounds that are volatile at temperatures up to 200 C, leaving behind the black carbon and any compounds that did not volatize completely. Smoke particles consisted of a) tar balls, which are amorphous spherical carbonaceous organic aerosols; b) organic particles with inorganic inclusions, c) soot particles and (d) soot with various inclusions. Two distinct kinds of tar balls, "electronically" dark and bright, were found using the field-emission scanning electron microscopy and were characterized for ambient and denuded conditions to understand coating effects and aging. It was found that dark tar balls are generally larger in size than the bright ones. Additionally, the difference between the size of ambient-bright and the size of denuded-bright tar balls was larger than the difference between the size of ambient-dark and the size of denuded-dark tar balls. EDS analysis showed that 70% of the dark tar balls had higher (~60%) relative oxygen content than in the bright tar balls. We conclude that there are two distinct kinds of biomass burning tar balls and that dark tar balls are less volatile than bright tar balls. The morphology of soot particles was also investigated by evaluating their fractal dimension for both ambient (coated with organic and inorganic material) and denuded samples at two different times of the day. The fractal dimension for ambient soot was found to be higher than for denuded soot due to the coating on the ambient soot particles. Finally, the monomer diameter decreased by up to 25% after denuding the particles. This study provides insights on the link between electron microscopy images of single particles and the mixing state, morphology, and evolution of different biomass burning aerosol at the beginning of their lifecycle.

  4. Towards reconstitution of membrane fusion mediated by SNAREs and other synaptic proteins

    PubMed Central

    Brunger, Axel T.; Cipriano, Daniel J.; Diao, Jiajie

    2015-01-01

    Abstract Proteoliposomes have been widely used for in vitro studies of membrane fusion mediated by synaptic proteins. Initially, such studies were made with large unsynchronized ensembles of vesicles. Such ensemble assays limited the insights into the SNARE-mediated fusion mechanism that could be obtained from them. Single particle microscopy experiments can alleviate many of these limitations but they pose significant technical challenges. Here we summarize various approaches that have enabled studies of fusion mediated by SNAREs and other synaptic proteins at a single-particle level. Currently available methods are described and their advantages and limitations are discussed. PMID:25788028

  5. Tissue distribution and excretion kinetics of orally administered silica nanoparticles in rats

    PubMed Central

    Lee, Jeong-A; Kim, Mi-Kyung; Paek, Hee-Jeong; Kim, Yu-Ri; Kim, Meyoung-Kon; Lee, Jong-Kwon; Jeong, Jayoung; Choi, Soo-Jin

    2014-01-01

    Purpose The effects of particle size on the tissue distribution and excretion kinetics of silica nanoparticles and their biological fates were investigated following a single oral administration to male and female rats. Methods Silica nanoparticles of two different sizes (20 nm and 100 nm) were orally administered to male and female rats, respectively. Tissue distribution kinetics, excretion profiles, and fates in tissues were analyzed using elemental analysis and transmission electron microscopy. Results The differently sized silica nanoparticles mainly distributed to kidneys and liver for 3 days post-administration and, to some extent, to lungs and spleen for 2 days post-administration, regardless of particle size or sex. Transmission electron microscopy and energy dispersive spectroscopy studies in tissues demonstrated almost intact particles in liver, but partially decomposed particles with an irregular morphology were found in kidneys, especially in rats that had been administered 20 nm nanoparticles. Size-dependent excretion kinetics were apparent and the smaller 20 nm particles were found to be more rapidly eliminated than the larger 100 nm particles. Elimination profiles showed 7%–8% of silica nanoparticles were excreted via urine, but most nanoparticles were excreted via feces, regardless of particle size or sex. Conclusion The kidneys, liver, lungs, and spleen were found to be the target organs of orally-administered silica nanoparticles in rats, and this organ distribution was not affected by particle size or animal sex. In vivo, silica nanoparticles were found to retain their particulate form, although more decomposition was observed in kidneys, especially for 20 nm particles. Urinary and fecal excretion pathways were determined to play roles in the elimination of silica nanoparticles, but 20 nm particles were secreted more rapidly, presumably because they are more easily decomposed. These findings will be of interest to those seeking to predict potential toxicological effects of silica nanoparticles on target organs. PMID:25565843

  6. Microfluidic system for high throughput characterisation of echogenic particles.

    PubMed

    Rademeyer, Paul; Carugo, Dario; Lee, Jeong Yu; Stride, Eleanor

    2015-01-21

    Echogenic particles, such as microbubbles and volatile liquid micro/nano droplets, have shown considerable potential in a variety of clinical diagnostic and therapeutic applications. The accurate prediction of their response to ultrasound excitation is however extremely challenging, and this has hindered the optimisation of techniques such as quantitative ultrasound imaging and targeted drug delivery. Existing characterisation techniques, such as ultra-high speed microscopy provide important insights, but suffer from a number of limitations; most significantly difficulty in obtaining large data sets suitable for statistical analysis and the need to physically constrain the particles, thereby altering their dynamics. Here a microfluidic system is presented that overcomes these challenges to enable the measurement of single echogenic particle response to ultrasound excitation. A co-axial flow focusing device is used to direct a continuous stream of unconstrained particles through the combined focal region of an ultrasound transducer and a laser. Both the optical and acoustic scatter from individual particles are then simultaneously recorded. Calibration of the device and example results for different types of echogenic particle are presented, demonstrating a high throughput of up to 20 particles per second and the ability to resolve changes in particle radius down to 0.1 μm with an uncertainty of less than 3%.

  7. Design and synthesis of magnetic nanoparticles with gold shells for single particle optical tracking

    NASA Astrophysics Data System (ADS)

    Lim, Jitkang

    The design, synthesis, and characterization of iron oxide core, gold shell nanoparticles are studied in this thesis. Firstly, nanoparticles with 18 +/- 1.7 nm diameter iron oxide cores with ˜5 nm thick gold shells were synthesized via a new seed-mediated electroless deposition method. The nanoparticles were superparamagnetic at room temperature and could be reversibly collected by a permanent magnet. These nanoparticles displayed a sharp localized surface plasmon resonance peak at 605 nm, as predicted by scattering theory, and their large scattering cross-section allowed them to be individually resolved in darkfield optical microscopy while undergoing Brownian motion in aqueous suspension. Later, commercially available 38 +/- 3.8 nm diameter spherical iron oxide nanoparticles (from Ocean Nanotech, Inc) were employed to make core-shell particles. These particles were decorated with cationic poly(diallyldimethylammonium chloride) (PDDA) which further promotes the attachment of small gold clusters. After gold seeding, the average hydrodynamic diameter of the core-shell particles is 172 +/- 65.9 nm. The magnetophoretic motion of these particles was guided by a piece of magnetized mu-metal. Individual particle trajectories were observed by darkfield optical microscopy. The typical magnetophoretic velocity achieved was within the range of 1--10 mum/sec. Random walk analysis performed on these particles while undergoing Brownian motion confirmed that individual particles were indeed being imaged. The particle size variation within the observed sample obtained through random walk analysis was within the size distribution obtained by dynamic light scattering. When the current to the solenoid used to magnetize the mu-metal was turned off, all the collected core-shell particles were readily redispersed by diffusion back into the surrounding environment. A Peclet number analysis was performed to probe the convective motion of nanospheres and nanorods under the influence of magnetophoresis and diffusion. Under most circumstances, magnetophoretic behavior dominates diffusion for nanorods, as the magnetic field lines tend to align the magnetic moment along the rod axis. The synthesis and dispersion of fluorophore-tagged nanorods are described. Fluorescence microscopy was employed to image the nanorod motion in a magnetic field gradient. The preliminary experimental data are consistent with the Peclet number analysis. Lastly, the colloidal stability of iron oxide core, gold shell nanoparticles in high ionic strength media was investigated. Such particles are sufficiently charged to be stable against flocculation without modification in low ionic strength media, but they require surface modification to be stably dispersed in elevated ionic strength media that are appropriate for biotechnological applications. Dynamic light scattering and ultraviolet-visible spectrophotometry were used to monitor the colloidal stability of core-shell particles in pH 7.4, 150 mM ionic strength phosphate buffered saline (PBS). While uncoated particles flocculated immediately upon being introduced into PBS, core-shell particles with adsorbed layers of bovine serum albumin or the amphiphilic triblock copolymers Pluronic F127 and Pluronic F68 resist flocculation after more than five days in PBS. Adsorbed dextran allowed flocculation that was limited to the formation of small clusters, while poly(ethylene glycol) homopolymers ranging in molecular weight from 6,000 to 100,000 were ineffective steric stabilizers. The effectiveness of adsorbed Pluronic copolymers as steric stabilizers was interpreted in terms of the measured adsorbed layer thickness and extended DLVO theory predictions of the interparticle interactions.

  8. Characterization of wood dust from furniture by scanning electron microscopy and energy-dispersive x-ray analysis.

    PubMed

    Gómez Yepes, Milena Elizabeth; Cremades, Lázaro V

    2011-01-01

    Study characterized and analyzed form factor, elementary composition and particle size of wood dust, in order to understand its harmful health effects on carpenters in Quindío (Colombia). Once particle characteristics (size distributions, aerodynamic equivalent diameter (D(α)), elemental composition and shape factors) were analyzed, particles were then characterized via scanning electron microscopy (SEM) in conjunction with energy dispersive X-ray analysis (EDXRA). SEM analysis of particulate matter showed: 1) cone-shaped particle ranged from 2.09 to 48.79 µm D(α); 2) rectangular prism-shaped particle from 2.47 to 72.9 µm D(α); 3) cylindrically-shaped particle from 2.5 to 48.79 µm D(α); and 4) spherically-shaped particle from 2.61 to 51.93 µm D(α). EDXRA reveals presence of chemical elements from paints and varnishes such as Ca, K, Na and Cr. SEM/EDXRA contributes in a significant manner to the morphological characterization of wood dust. It is obvious that the type of particles sampled is a complex function of shapes and sizes of particles. Thus, it is important to investigate the influence of particles characteristics, morphology, shapes and D(α) that may affect the health of carpenters in Quindío.

  9. Three-Dimensional Localization of Single Molecules for Super-Resolution Imaging and Single-Particle Tracking

    PubMed Central

    von Diezmann, Alex; Shechtman, Yoav; Moerner, W. E.

    2017-01-01

    Single-molecule super-resolution fluorescence microscopy and single-particle tracking are two imaging modalities that illuminate the properties of cells and materials on spatial scales down to tens of nanometers, or with dynamical information about nanoscale particle motion in the millisecond range, respectively. These methods generally use wide-field microscopes and two-dimensional camera detectors to localize molecules to much higher precision than the diffraction limit. Given the limited total photons available from each single-molecule label, both modalities require careful mathematical analysis and image processing. Much more information can be obtained about the system under study by extending to three-dimensional (3D) single-molecule localization: without this capability, visualization of structures or motions extending in the axial direction can easily be missed or confused, compromising scientific understanding. A variety of methods for obtaining both 3D super-resolution images and 3D tracking information have been devised, each with their own strengths and weaknesses. These include imaging of multiple focal planes, point-spread-function engineering, and interferometric detection. These methods may be compared based on their ability to provide accurate and precise position information of single-molecule emitters with limited photons. To successfully apply and further develop these methods, it is essential to consider many practical concerns, including the effects of optical aberrations, field-dependence in the imaging system, fluorophore labeling density, and registration between different color channels. Selected examples of 3D super-resolution imaging and tracking are described for illustration from a variety of biological contexts and with a variety of methods, demonstrating the power of 3D localization for understanding complex systems. PMID:28151646

  10. Synthesis, Optical and Structural Properties of Copper Sulfide Nanocrystals from Single Molecule Precursors

    PubMed Central

    Ajibade, Peter A.; Botha, Nandipha L.

    2017-01-01

    We report the synthesis and structural studies of copper sulfide nanocrystals from copper (II) dithiocarbamate single molecule precursors. The precursors were thermolysed in hexadecylamine (HDA) to prepare HDA-capped CuS nanocrystals. The optical properties of the nanocrystals studied using UV–visible and photoluminescence spectroscopy showed absorption band edges at 287 nm that are blue shifted, and the photoluminescence spectra show emission curves that are red-shifted with respect to the absorption band edges. These shifts are as a result of the small crystallite sizes of the nanoparticles leading to quantum size effects. The structural studies were carried out using powder X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and atomic force microscopy. The XRD patterns indicates that the CuS nanocrystals are in hexagonal covellite crystalline phases with estimated particles sizes of 17.3–18.6 nm. The TEM images showed particles with almost spherical or rod shapes, with average crystallite sizes of 3–9.8 nm. SEM images showed morphology with ball-like microspheres on the surfaces, and EDS spectra confirmed the presence of CuS nanoparticles. PMID:28336865

  11. Effect of reinforcing particle type on morphology and age-hardening behavior of Al–4.5 wt.% Cu based nanocomposites synthesized through mechanical milling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mostaed, A., E-mail: alimostaed@yahoo.com; Saghafian, H.; Mostaed, E.

    2013-02-15

    The effects of reinforcing particle type (SiC and TiC) on morphology and precipitation hardening behavior of Al–4.5%Cu based nanocomposites synthesized via mechanical milling were investigated in the current work. In order to study the microstructure and morphology of mechanically milled powder, X-ray diffraction technique, scanning electron microscopy and high resolution transmission electron microscopy were utilized. Results revealed that at the early stages of mechanical milling, when reinforcing particles are polycrystal, the alloying process is enhanced more in the case of using the TiC particles as reinforcement. But, at the final stages of mechanical milling, when reinforcing particles are single crystal,more » the alloying process is enhanced more in the case of using the SiC ones. Transmission electron microscopy results demonstrated that Al–4.5 wt.%Cu based nanocomposite powders were synthesized and confirmed that the mutual diffusion of aluminum and copper occurs through the interfacial plane of (200). The hardness results showed that not only does introducing 4 vol.% of reinforcing particles (SiC or TiC) considerably decrease the porosity of the bulk composite samples, but also it approximately doubles the hardness of Al–4.5 wt.%Cu alloy (53.4 HB). Finally, apart from TEM and scanning electron microscopy observation which are localized, a decline in hardness in the TiC and SiC contained samples, respectively, after 1.5 and 2 h aging time at 473 K proves the fact that the size of SiC particles is smaller than the size of the TiC ones. - Highlights: ► HRTEM results show mutual diffusion of Al and Cu occurs through the (200) planes. ► TiC particles enhance alloying process more than the SiC ones at the early stages of MM. ► SiC particles enhance alloying process more than the TiC ones at the final stages of MM.« less

  12. 3D-structured illumination microscopy reveals clustered DNA double-strand break formation in widespread γH2AX foci after high LET heavy-ion particle radiation

    PubMed Central

    Hagiwara, Yoshihiko; Niimi, Atsuko; Isono, Mayu; Yamauchi, Motohiro; Yasuhara, Takaaki; Limsirichaikul, Siripan; Oike, Takahiro; Sato, Hiro; Held, Kathryn D.; Nakano, Takashi; Shibata, Atsushi

    2017-01-01

    DNA double-strand breaks (DSBs) induced by ionising radiation are considered the major cause of genotoxic mutations and cell death. While DSBs are dispersed throughout chromatin after X-rays or γ-irradiation, multiple types of DNA damage including DSBs, single-strand breaks and base damage can be generated within 1–2 helical DNA turns, defined as a complex DNA lesion, after high Linear Energy Transfer (LET) particle irradiation. In addition to the formation of complex DNA lesions, recent evidence suggests that multiple DSBs can be closely generated along the tracks of high LET particle irradiation. Herein, by using three dimensional (3D)-structured illumination microscopy, we identified the formation of 3D widespread γH2AX foci after high LET carbon-ion irradiation. The large γH2AX foci in G2-phase cells encompassed multiple foci of replication protein A (RPA), a marker of DSBs undergoing resection during homologous recombination. Furthermore, we demonstrated by 3D analysis that the distance between two individual RPA foci within γH2AX foci was approximately 700 nm. Together, our findings suggest that high LET heavy-ion particles induce clustered DSB formation on a scale of approximately 1 μm3. These closely localised DSBs are considered to be a risk for the formation of chromosomal rearrangement after heavy-ion irradiation. PMID:29312614

  13. Microfluidic CODES: a scalable multiplexed electronic sensor for orthogonal detection of particles in microfluidic channels.

    PubMed

    Liu, Ruxiu; Wang, Ningquan; Kamili, Farhan; Sarioglu, A Fatih

    2016-04-21

    Numerous biophysical and biochemical assays rely on spatial manipulation of particles/cells as they are processed on lab-on-a-chip devices. Analysis of spatially distributed particles on these devices typically requires microscopy negating the cost and size advantages of microfluidic assays. In this paper, we introduce a scalable electronic sensor technology, called microfluidic CODES, that utilizes resistive pulse sensing to orthogonally detect particles in multiple microfluidic channels from a single electrical output. Combining the techniques from telecommunications and microfluidics, we route three coplanar electrodes on a glass substrate to create multiple Coulter counters producing distinct orthogonal digital codes when they detect particles. We specifically design a digital code set using the mathematical principles of Code Division Multiple Access (CDMA) telecommunication networks and can decode signals from different microfluidic channels with >90% accuracy through computation even if these signals overlap. As a proof of principle, we use this technology to detect human ovarian cancer cells in four different microfluidic channels fabricated using soft lithography. Microfluidic CODES offers a simple, all-electronic interface that is well suited to create integrated, low-cost lab-on-a-chip devices for cell- or particle-based assays in resource-limited settings.

  14. Exploring the variability of aerosol particle composition in the Arctic: a study from the springtime ACCACIA campaign

    NASA Astrophysics Data System (ADS)

    Young, G.; Jones, H. M.; Darbyshire, E.; Baustian, K. J.; McQuaid, J. B.; Bower, K. N.; Connolly, P. J.; Gallagher, M. W.; Choularton, T. W.

    2015-10-01

    Single-particle compositional analysis of filter samples collected on-board the FAAM BAe-146 aircraft is presented for six flights during the springtime Aerosol-Cloud Coupling and Climate Interactions in the Arctic (ACCACIA) campaign (March-April 2013). Scanning electron microscopy was utilised to derive size distributions and size-segregated particle compositions. These data were compared to corresponding data from wing-mounted optical particle counters and reasonable agreement between the calculated number size distributions was found. Significant variability in composition was observed, with differing external and internal mixing identified, between air mass trajectory cases based on HYSPLIT analyses. Dominant particle classes were silicate-based dusts and sea salts, with particles notably rich in K and Ca detected in one case. Source regions varied from the Arctic Ocean and Greenland through to northern Russia and the European continent. Good agreement between the back trajectories was mirrored by comparable compositional trends between samples. Silicate dusts were identified in all cases, and the elemental composition of the dust was consistent for all samples except one. It is hypothesised that long-range, high-altitude transport was primarily responsible for this dust, with likely sources including the Asian arid regions.

  15. Multifunctional two-photon active silica-coated Au@MnO Janus particles for selective dual functionalization and imaging.

    PubMed

    Schick, Isabel; Lorenz, Steffen; Gehrig, Dominik; Schilmann, Anna-Maria; Bauer, Heiko; Panthöfer, Martin; Fischer, Karl; Strand, Dennis; Laquai, Frédéric; Tremel, Wolfgang

    2014-02-12

    Monodisperse multifunctional and nontoxic Au@MnO Janus particles with different sizes and morphologies were prepared by a seed-mediated nucleation and growth technique with precise control over domain sizes, surface functionalization, and dye labeling. The metal oxide domain could be coated selectively with a thin silica layer, leaving the metal domain untouched. In particular, size and morphology of the individual (metal and metal oxide) domains could be controlled by adjustment of the synthetic parameters. The SiO2 coating of the oxide domain allows biomolecule conjugation (e.g., antibodies, proteins) in a single step for converting the photoluminescent and superparamagnetic Janus nanoparticles into multifunctional efficient vehicles for theranostics. The Au@MnO@SiO2 Janus particles were characterized using high-resolution transmission electron microscopy (HR-)TEM, powder X-ray diffraction (PXRD), optical (UV-vis) spectroscopy, confocal laser fluorescence scanning microscopy (CLSM), and dynamic light scattering (DLS). The functionalized nanoparticles were stable in buffer solution or serum, showing no indication of aggregation. Biocompatibility and potential biomedical applications of the Au@MnO@SiO2 Janus particles were assayed by a cell viability analysis by coincubating the Au@MnO@SiO2 Janus particles with Caki 1 and HeLa cells. Time-resolved fluorescence spectroscopy in combination with CLSM revealed the silica-coated Au@MnO@SiO2 Janus particles to be highly two-photon active; no indication for an electronic interaction between the dye molecules incorporated in the silica shell surrounding the MnO domains and the attached Au domains was found; fluorescence quenching was observed when dye molecules were bound directly to the Au domains.

  16. Single-molecule fluorescence microscopy review: shedding new light on old problems

    PubMed Central

    Shashkova, Sviatlana

    2017-01-01

    Fluorescence microscopy is an invaluable tool in the biosciences, a genuine workhorse technique offering exceptional contrast in conjunction with high specificity of labelling with relatively minimal perturbation to biological samples compared with many competing biophysical techniques. Improvements in detector and dye technologies coupled to advances in image analysis methods have fuelled recent development towards single-molecule fluorescence microscopy, which can utilize light microscopy tools to enable the faithful detection and analysis of single fluorescent molecules used as reporter tags in biological samples. For example, the discovery of GFP, initiating the so-called ‘green revolution’, has pushed experimental tools in the biosciences to a completely new level of functional imaging of living samples, culminating in single fluorescent protein molecule detection. Today, fluorescence microscopy is an indispensable tool in single-molecule investigations, providing a high signal-to-noise ratio for visualization while still retaining the key features in the physiological context of native biological systems. In this review, we discuss some of the recent discoveries in the life sciences which have been enabled using single-molecule fluorescence microscopy, paying particular attention to the so-called ‘super-resolution’ fluorescence microscopy techniques in live cells, which are at the cutting-edge of these methods. In particular, how these tools can reveal new insights into long-standing puzzles in biology: old problems, which have been impossible to tackle using other more traditional tools until the emergence of new single-molecule fluorescence microscopy techniques. PMID:28694303

  17. Measuring Mass-Based Hygroscopicity of Atmospheric Particles through in situ Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piens, Dominique` Y.; Kelly, Stephen T.; Harder, Tristan

    Quantifying how atmospheric particles interact with water vapor is critical for understanding the effects of aerosols on climate. We present a novel method to measure the mass-based hygroscopicity of particles while characterizing their elemental and carbon functional group compositions. Since mass-based hygroscopicity is insensitive to particle geometry, it is advantageous for probing the hygroscopic behavior of atmospheric particles, which can have irregular morphologies. Combining scanning electron microscopy with energy dispersive X-ray analysis (SEM/EDX), scanning transmission X-ray microscopy (STXM) analysis, and in situ STXM humidification experiments, this method was validated using laboratory-generated, atmospherically relevant particles. Then, the hygroscopicity and elemental compositionmore » of 15 complex atmospheric particles were analyzed by leveraging quantification of C, N, and O from STXM, and complementary elemental quantification from SEM/EDX. We found three types of hygroscopic responses, and correlated high hygroscopicity with Na and Cl content. The mixing state determined for 158 particles broadly agreed with those of the humidified particles, indicating the potential to infer the atmospheric hygroscopic behavior from a selected subset of particles. These methods offer unique quantitative capabilities to characterize and correlate the hygroscopicity and chemistry of individual submicron atmospheric particles.« less

  18. Adaptive optics stochastic optical reconstruction microscopy (AO-STORM) by particle swarm optimization

    PubMed Central

    Tehrani, Kayvan F.; Zhang, Yiwen; Shen, Ping; Kner, Peter

    2017-01-01

    Stochastic optical reconstruction microscopy (STORM) can achieve resolutions of better than 20nm imaging single fluorescently labeled cells. However, when optical aberrations induced by larger biological samples degrade the point spread function (PSF), the localization accuracy and number of localizations are both reduced, destroying the resolution of STORM. Adaptive optics (AO) can be used to correct the wavefront, restoring the high resolution of STORM. A challenge for AO-STORM microscopy is the development of robust optimization algorithms which can efficiently correct the wavefront from stochastic raw STORM images. Here we present the implementation of a particle swarm optimization (PSO) approach with a Fourier metric for real-time correction of wavefront aberrations during STORM acquisition. We apply our approach to imaging boutons 100 μm deep inside the central nervous system (CNS) of Drosophila melanogaster larvae achieving a resolution of 146 nm. PMID:29188105

  19. Adaptive optics stochastic optical reconstruction microscopy (AO-STORM) by particle swarm optimization.

    PubMed

    Tehrani, Kayvan F; Zhang, Yiwen; Shen, Ping; Kner, Peter

    2017-11-01

    Stochastic optical reconstruction microscopy (STORM) can achieve resolutions of better than 20nm imaging single fluorescently labeled cells. However, when optical aberrations induced by larger biological samples degrade the point spread function (PSF), the localization accuracy and number of localizations are both reduced, destroying the resolution of STORM. Adaptive optics (AO) can be used to correct the wavefront, restoring the high resolution of STORM. A challenge for AO-STORM microscopy is the development of robust optimization algorithms which can efficiently correct the wavefront from stochastic raw STORM images. Here we present the implementation of a particle swarm optimization (PSO) approach with a Fourier metric for real-time correction of wavefront aberrations during STORM acquisition. We apply our approach to imaging boutons 100 μm deep inside the central nervous system (CNS) of Drosophila melanogaster larvae achieving a resolution of 146 nm.

  20. Cytoskeleton-dependent transport of cytoplasmic particles in previtellogenic to mid-vitellogenic ovarian follicles of Drosophila: time-lapse analysis using video-enhanced contrast microscopy.

    PubMed

    Bohrmann, J; Biber, K

    1994-04-01

    In Drosophila oogenesis, several morphogenetic determinants and other developmental factors synthesized in the nurse cells have been shown to accumulate in the oocyte during pre- to mid-vitellogenic stages. However, the mechanisms of the involved intercellular transport processes that seem to be rather selective have not been revealed so far. We have investigated in vitro, by means of video-enhanced contrast time-lapse microscopy, the transport of cytoplasmic particles from the nurse cells through ring canals into the oocyte during oogenesis stages 6-10A. At stage 7, we first observed single particles moving into the previtellogenic oocyte. The particle transfer was strictly unidirectional and seemed to be selective, since only some individual particles moved whereas other particles lying in the vicinity of the ring canals were not transported. The observed transport processes were inhibitable with 2,4-dinitrophenol, cytochalasin B or N-ethylmaleimide, but not with microtubule inhibitors. At the beginning of vitellogenesis (stage 8), the selective translocation of particles through the ring canals became faster (up to 130 nm/second) and more frequent (about 1 particle/minute), whereas during mid-vitellogenesis (stages 9-10A) the velocity and the frequency of particle transport decreased again. Following their more or less rectilinear passage through the ring canals, the particles joined a circular stream of cytoplasmic particles in the oocyte. This ooplasmic particle streaming started at stage 6/7 with velocities of about 80 nm/second and some reversals of direction at the beginning. The particle stream in the oocyte was sensitive to colchicine and vinblastine, but not to cytochalasin B, and we presume that it reflects the rearrangement of ooplasmic microtubules described recently by other authors. We propose that during stages 7-10A, a selective transport of particles into the oocyte occurs through the ring canal along a polarized scaffold of cytoskeletal elements in which microfilaments are involved. This transport might be driven by a myosin-like motor molecule. Either attached to, or organized into, such larger particles or organelles, specific mRNAs and proteins might become selectively transported into the oocyte.

  1. Lifting degeneracy in holographic characterization of colloidal particles using multi-color imaging.

    PubMed

    Ruffner, David B; Cheong, Fook Chiong; Blusewicz, Jaroslaw M; Philips, Laura A

    2018-05-14

    Micrometer sized particles can be accurately characterized using holographic video microscopy and Lorenz-Mie fitting. In this work, we explore some of the limitations in holographic microscopy and introduce methods for increasing the accuracy of this technique with the use of multiple wavelengths of laser illumination. Large high index particle holograms have near degenerate solutions that can confuse standard fitting algorithms. Using a model based on diffraction from a phase disk, we explain the source of these degeneracies. We introduce multiple color holography as an effective approach to distinguish between degenerate solutions and provide improved accuracy for the holographic analysis of sub-visible colloidal particles.

  2. Synthesis of Cu/SiO2 Core-Shell Particles Using Hyperbranched Polyester as Template and Dispersant

    NASA Astrophysics Data System (ADS)

    Han, Wensong

    2017-07-01

    Third-generation hyperbranched polyester (HBPE3) was synthesized by stepwise polymerization with N, N-diethylol-3-amine methylpropionate as AB2 monomer and pentaerythritol as core molecule. Then, Cu particles were prepared by reduction of copper nitrate with ascorbic acid in aqueous solution using HBPE3 as template. Finally, Cu/SiO2 particles were prepared by coating silica on the surface of Cu particles. The structure and morphology of the samples were characterized by Fourier-transform infrared (FT-IR) spectrometry, x-ray diffraction (XRD) analysis, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The results confirmed the formation of the silica coating on the surface of Cu and that the Cu/SiO2 particles had spherical shape with particle size in the range of 0.8 μm to 2 μm. Compared with pure Cu, the synthesized Cu/SiO2 core-shell particles exhibited better oxidation resistance at high temperature. Moreover, the oxidation resistance of the Cu/SiO2 particles increased significantly with increasing tetraethyl orthosilicate (TEOS) concentration.

  3. Colloidal Particles at Fluid Interfaces and the Interface of Colloidal Fluids

    NASA Astrophysics Data System (ADS)

    McGorty, Ryan

    Holographic microscopy is a unifying theme in the different projects discussed in this thesis. The technique allows one to observe microscopic objects, like colloids and droplets, in a three-dimensional (3D) volume. Unlike scanning 3D optical techniques, holography captures a sample's 3D information in a single image: the hologram. Therefore, one can capture 3D information at video frame rates. The price for such speed is paid in computation time. The 3D information must be extracted from the image by methods such as reconstruction or fitting the hologram to scattering calculations. Using holography, we observe a single colloidal particle approach, penetrate and then slowly equilibrate at an oil--water interface. Because the particle moves along the optical axis (z-axis) and perpendicular to the interface holography is used to determine its position. We are able to locate the particle's z-position to within a few nanometers with a time resolution below a millisecond. We find that the capillary force pulling the particle into the interface is not balanced by a hydrodynamic force. Rather, a larger-than-viscous dissipation associated with the three-phase contact-line slipping over the particle's surface results in equilibration on time scales orders of magnitude longer than the minute time scales over which our setup allows us to examine. A separate project discussed here also examines colloidal particles and fluid-fluid interfaces. But the fluids involved are composed of colloids. With a colloid and polymer water-based mixture we study the phase separation of the colloid-rich (or liquid) and colloid-poor (or gas) region. In comparison to the oil--water interface in the previously mentioned project, the interface between the colloidal liquid and gas phases has a surface tension nearly six orders of magnitude smaller. So interfacial fluctuations are observable under microscopy. We also use holographic microscopy to study this system but not to track particles with great time and spatial resolution. Rather, holography allows us to observe nucleation of the liquid phase occurring throughout our sample volume.

  4. A High Resolution Look at Black Sand Particles from Sand Dunes of Saudi Arabia Using Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Hussain, M. M.; Aburizaiza, O. S.; Siddique, A.; Hershey, D. L.; Guerrieri, D. A.; Qurashi, J.; Abbass, M.; Blake, D. R.; Khwaja, H. A.

    2013-12-01

    Particulate air pollution is a problem of health concern. The microscopic make-up of different varieties of sand particles found and collected at a sand dune site in Badr, Saudi Arabia has been determined. Primary emphasis is given to the use of multiple high resolution electron microscopy (viz., Scanning Electron Microscopy with Energy Dispersive X-ray spectrometry (SEM/EDS) and Laser Scanning Microscopy (LSM)) to study the morphologies, emission source types, size, and elemental composition of the particles, and to evaluate the presence of ';coatings or contaminants' adsorbed or carried on by the black sand particles. White sand contains natural coarse particles associated with wind-blown releases from crustal surfaces, weathering of an igneous/metamorphic rock source, and volcanic activities. Silicates (alumino-silicates) and quartz (clear, milky, rose) dominate white sand and rest appears to contain calcite, olivine, feldspar, and magnetite. Black sand particles exhibit very different morphologies and microstructures (surface roughness) compared with white sand and volcanic ash. Morphological analyses have shown that the black sand contain ultrafine particles. Black sand is strongly magnetic, which indicates the mineral magnetite (strongly magnetic) or elemental iron. Iron, C, O, Ti, Si, V, and S particles dominate the black sand. Natural and anthropogenic sources have been implicated for the observed particles. Analysis revealed that the surface of white sand particles is mainly covered with the fine particles. It is known that emissions from combustion contain carbon soot and other contaminants that are easily absorbed by soil particles during a long-range transport.

  5. Merging single-shot XFEL diffraction data from inorganic nanoparticles: a new approach to size and orientation determination

    DOE PAGES

    Li, Xuanxuan; Spence, John C. H.; Hogue, Brenda G.; ...

    2017-09-22

    X-ray free-electron lasers (XFELs) provide new opportunities for structure determination of biomolecules, viruses and nanomaterials. With unprecedented peak brilliance and ultra-short pulse duration, XFELs can tolerate higher X-ray doses by exploiting the femtosecond-scale exposure time, and can thus go beyond the resolution limits achieved with conventional X-ray diffraction imaging techniques. Using XFELs, it is possible to collect scattering information from single particles at high resolution, however particle heterogeneity and unknown orientations complicate data merging in three-dimensional space. Using the Linac Coherent Light Source (LCLS), synthetic inorganic nanocrystals with a core–shell architecture were used as a model system for proof-of-principle coherentmore » diffractive single-particle imaging experiments. To deal with the heterogeneity of the core–shell particles, new computational methods have been developed to extract the particle size and orientation from the scattering data to assist data merging. The size distribution agrees with that obtained by electron microscopy and the merged data support a model with a core–shell architecture.« less

  6. Merging single-shot XFEL diffraction data from inorganic nanoparticles: a new approach to size and orientation determination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xuanxuan; Spence, John C. H.; Hogue, Brenda G.

    X-ray free-electron lasers (XFELs) provide new opportunities for structure determination of biomolecules, viruses and nanomaterials. With unprecedented peak brilliance and ultra-short pulse duration, XFELs can tolerate higher X-ray doses by exploiting the femtosecond-scale exposure time, and can thus go beyond the resolution limits achieved with conventional X-ray diffraction imaging techniques. Using XFELs, it is possible to collect scattering information from single particles at high resolution, however particle heterogeneity and unknown orientations complicate data merging in three-dimensional space. Using the Linac Coherent Light Source (LCLS), synthetic inorganic nanocrystals with a core–shell architecture were used as a model system for proof-of-principle coherentmore » diffractive single-particle imaging experiments. To deal with the heterogeneity of the core–shell particles, new computational methods have been developed to extract the particle size and orientation from the scattering data to assist data merging. The size distribution agrees with that obtained by electron microscopy and the merged data support a model with a core–shell architecture.« less

  7. Discrete structure of an RNA folding intermediate revealed by cryo-electron microscopy.

    PubMed

    Baird, Nathan J; Ludtke, Steven J; Khant, Htet; Chiu, Wah; Pan, Tao; Sosnick, Tobin R

    2010-11-24

    RNA folding occurs via a series of transitions between metastable intermediate states. It is unknown whether folding intermediates are discrete structures folding along defined pathways or heterogeneous ensembles folding along broad landscapes. We use cryo-electron microscopy and single-particle image reconstruction to determine the structure of the major folding intermediate of the specificity domain of a ribonuclease P ribozyme. Our results support the existence of a discrete conformation for this folding intermediate.

  8. Physicochemical characterisation of combustion particles from vehicle exhaust and residential wood smoke

    PubMed Central

    Kocbach, Anette; Li, Yanjun; Yttri, Karl E; Cassee, Flemming R; Schwarze, Per E; Namork, Ellen

    2006-01-01

    Background Exposure to ambient particulate matter has been associated with a number of adverse health effects. Particle characteristics such as size, surface area and chemistry seem to influence the negative effects of particles. In this study, combustion particles from vehicle exhaust and wood smoke, currently used in biological experiments, were analysed with respect to microstructure and chemistry. Methods Vehicle exhaust particles were collected in a road tunnel during two seasons, with and without use of studded tires, whereas wood smoke was collected from a stove with single-stage combustion. Additionally, a reference diesel sample (SRM 2975) was analysed. The samples were characterised using transmission electron microscopy techniques (TEM/HRTEM, EELS and SAED). Furthermore, the elemental and organic carbon fractions were quantified using thermal optical transmission analysis and the content of selected PAHs was determined by gas chromatography-mass spectrometry. Results Carbon aggregates, consisting of tens to thousands of spherical primary particles, were the only combustion particles identified in all samples using TEM. The tunnel samples also contained mineral particles originating from road abrasion. The geometric diameters of primary carbon particles from vehicle exhaust were found to be significantly smaller (24 ± 6 nm) than for wood smoke (31 ± 7 nm). Furthermore, HRTEM showed that primary particles from both sources exhibited a turbostratic microstructure, consisting of concentric carbon layers surrounding several nuclei in vehicle exhaust or a single nucleus in wood smoke. However, no differences were detected in the graphitic character of primary particles from the two sources using SAED and EELS. The total PAH content was higher for combustion particles from wood smoke as compared to vehicle exhaust, whereas no source difference was found for the ratio of organic to total carbon. Conclusion Combustion particles from vehicle exhaust and residential wood smoke differ in primary particle diameter, microstructure, and PAH content. Furthermore, the analysed samples seem suitable for assessing the influence of physicochemical characteristics of particles on biological responses. PMID:16390554

  9. Identification and quantitive analysis of calcium phosphate microparticles in intestinal tissue by nuclear microscopy

    NASA Astrophysics Data System (ADS)

    Gomez-Morilla, Inmaculada; Thoree, Vinay; Powell, Jonathan J.; Kirkby, Karen J.; Grime, Geoffrey W.

    2006-08-01

    Microscopic particles (0.5-2 μm diameter), rich in calcium and phosphorus, are found in the lumen of the mid-distal gut of all mammals investigated, including humans, and these may play a role in immuno-surveillance and immune regulation of antigens from food and symbiotic bacteria that are contained in the gut. Whether these particles can cross in to tissue of the intestinal mucosa is unclear. If so, characterising their morphology and chemical composition is an important task in elucidating their function. The analysis of calcium phosphate in biological tissues has been approached in several ways including optical microscopy, scanning electron microscopy and, most recently in this work, with nuclear microscopy. In this paper, we describe the use of microPIXE and microRBS to locate these particles and to determine, accurately, the ratio of phosphorus to calcium using the information on sample thickness obtained from RBS to allow the PIXE ratios to be corrected. A commercial sample of hydroxy apatite was used to demonstrate accuracy and precision of the technique. Then, in a pilot study on intestinal tissue of mice, we demonstrated the presence of calcium phosphate microparticles, consistent with confocal microscopy observations, and we identified the average molar P:Ca molar ratio as 1.0. Further work will confirm the exact chemical speciation of these particles and will examine the influence of differing calcium containing diets on the formation of these microparticles.

  10. Cryo-Scanning Electron Microscopy of Captured Cirrus Ice Particles

    NASA Astrophysics Data System (ADS)

    Magee, N. B.; Boaggio, K.; Bandamede, M.; Bancroft, L.; Hurler, K.

    2016-12-01

    We present the latest collection of high-resolution cryo-scanning electron microscopy images and microanalysis of cirrus ice particles captured by high-altitude balloon (ICE-Ball, see abstracts by K. Boaggio and M. Bandamede). Ice particle images and sublimation-residues are derived from particles captured during approximately 15 balloon flights conducted in Pennsylvania and New Jersey over the past 12 months. Measurements include 3D digital elevation model reconstructions of ice particles, and associated statistical analyses of entire particles and particle sub-facets and surfaces. This 3D analysis reveals that morphologies of most ice particles captured deviate significantly from ideal habits, and display geometric complexity and surface roughness at multiple measureable scales, ranging from 100's nanometers to 100's of microns. The presentation suggests potential a path forward for representing scattering from a realistically complex array of ice particle shapes and surfaces.

  11. Long spin lifetime and large barrier polarisation in single electron transport through a CoFe nanoparticle

    PubMed Central

    Temple, R. C.; McLaren, M.; Brydson, R. M. D.; Hickey, B. J.; Marrows, C. H.

    2016-01-01

    We have investigated single electron spin transport in individual single crystal bcc Co30Fe70 nanoparticles using scanning tunnelling microscopy with a standard tungsten tip. Particles were deposited using a gas-aggregation nanoparticle source and individually addressed as asymmetric double tunnel junctions with both a vacuum and a MgO tunnel barrier. Spectroscopy measurements on the particles show a Coulomb staircase that is correlated with the measured particle size. Field emission tunnelling effects are incorporated into standard single electron theory to model the data. This formalism allows spin-dependent parameters to be determined even though the tip is not spin-polarised. The barrier spin polarisation is very high, in excess of 84%. By variation of the resistance, several orders of magnitude of the system timescale are probed, enabling us to determine the spin relaxation time on the island. It is found to be close to 10 μs, a value much longer than previously reported. PMID:27329575

  12. Polarized Light Microscopy

    NASA Technical Reports Server (NTRS)

    Frandsen, Athela F.

    2016-01-01

    Polarized light microscopy (PLM) is a technique which employs the use of polarizing filters to obtain substantial optical property information about the material which is being observed. This information can be combined with other microscopy techniques to confirm or elucidate the identity of an unknown material, determine whether a particular contaminant is present (as with asbestos analysis), or to provide important information that can be used to refine a manufacturing or chemical process. PLM was the major microscopy technique in use for identification of materials for nearly a century since its introduction in 1834 by William Fox Talbot, as other techniques such as SEM (Scanning Electron Microscopy), FTIR (Fourier Transform Infrared spectroscopy), XPD (X-ray Powder Diffraction), and TEM (Transmission Electron Microscopy) had not yet been developed. Today, it is still the only technique approved by the Environmental Protection Agency (EPA) for asbestos analysis, and is often the technique first applied for identification of unknown materials. PLM uses different configurations in order to determine different material properties. With each configuration additional clues can be gathered, leading to a conclusion of material identity. With no polarizing filter, the microscope can be used just as a stereo optical microscope, and view qualities such as morphology, size, and number of phases. With a single polarizing filter (single polars), additional properties can be established, such as pleochroism, individual refractive indices, and dispersion staining. With two polarizing filters (crossed polars), even more can be deduced: isotropy vs. anisotropy, extinction angle, birefringence/degree of birefringence, sign of elongation, and anomalous polarization colors, among others. With the use of PLM many of these properties can be determined in a matter of seconds, even for those who are not highly trained. McCrone, a leader in the field of polarized light microscopy, often advised, If you cant determine a specific optical property of a particle after two minutes, move onto another configuration. Since optical properties can be seen so very quickly and easily under polarized light, it is only necessary to spend a maximum of two minutes on a technique to determine a particular property, though often only a few seconds are required.

  13. Characterization of typical metal particles during haze episodes in Shanghai, China.

    PubMed

    Li, Rui; Yang, Xin; Fu, Hongbo; Hu, Qingqing; Zhang, Liwu; Chen, Jianmin

    2017-08-01

    Aerosol particles were collected during three heavy haze episodes at Shanghai in the winter of 2013. Transmission electron microscopy (TEM) coupled with energy dispersive X-ray spectroscopy was used to study the morphology and speciation of typical metal particles at a single-particle level. In addition, time-of-flight aerosol mass spectrometry (ATOFMS) was applied to identify the speciation of the Fe-containing particles. TEM analysis indicated that various metal-containing particles were hosted by sulfates, nitrates, and oxides. Fe-bearing particles mainly originated from vehicle emissions and/or steel production. Pb-, Zn-, and Sb-bearing particles were mainly contributed by anthropogenic sources. Fe-bearing particles were clustered into six groups by ATOFMS: Fe-Carbon, Fe-Inorganic, Fe-Trace metal, Fe-CN, Fe-PO 3, and Fe-NO 3 . ATOFMS data suggested that Fe-containing particles corresponded to different origins, including industrial activities, resuspension of dusts, and vehicle emissions. Fe-Carbon and Fe-CN particles displayed significant diurnal variation, and high levels were observed during the morning rush hours. Fe-Inorganic and Fe-Trace metal particle levels peaked at night. Furthermore, Fe-Carbon and Fe-PO 3 were mainly concentrated in the fine particles. Fe-CN, Fe-Inorganic, and Fe-Trace metal exhibited bimodal distribution. The mixing state of the particles revealed that all Fe-bearing particles tended to be mixed with sulfate and nitrate. The data presented herein is essential for elucidating the origin, evolution processes, and health effects of metal-bearing particles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Effect of cobalt doping on crystallinity, stability, magnetic and optical properties of magnetic iron oxide nano-particles

    NASA Astrophysics Data System (ADS)

    Anjum, Safia; Tufail, Rabia; Rashid, Khalid; Zia, Rehana; Riaz, S.

    2017-06-01

    This paper is dedicated to investigate the effect of Co2+ ions in magnetite Fe3O4 nano-particles with stoichiometric formula CoxFe3-xO4 where (x = 0, 0.05, 0.1 and 0.15) prepared by co-precipitation method. The structural, thermal, morphological, magnetic and optical properties of magnetite and Co2+ doped magnetite nanoparticles have been carried out using X-ray Diffractometer, Fourier Transform Infrared Spectroscopy, Themogravimetric Analysis, Scanning Electron Microscopy, Vibrating Sample Magnetometer (VSM) and UV-Vis Spectrometer (UV-Vis) respectively. Structural analysis verified the formation of single phase inverse spinel cubic structure with decrease in lattice parameters due to increase in cobalt content. FTIR analysis confirms the single phase of CoxFe3-xO4 nanoparticles with the major band at 887 cm-1, which might be due to the stretching vibrations of metal-oxide bond. The DSC results corroborate the finding of an increase in the maghemite to hematite phase transition temperature with increase in Co2+ content. The decrease in enthalpy with increase in Co2+ concentration attributed to the fact that the degree of conversion from maghemite to hematite decrease which shows that the stability increases with increasing Co2+ content in B-site of Fe3O4 structure. SEM analysis demonstrated the formation of spherical shaped nanoparticles with least agglomeration. The magnetic measurements enlighten that the coercivity and anisotropy of CoxFe3-xO4 nanoparticles are significantly increased. From UV-Vis analysis it is revealed that band gap energy increases with decreasing particle size. This result has a great interest for magnetic fluid hyperthermia application (MPH).

  15. Structure of the Full-length VEGFR-1 Extracellular Domain in Complex with VEGF-A.

    PubMed

    Markovic-Mueller, Sandra; Stuttfeld, Edward; Asthana, Mayanka; Weinert, Tobias; Bliven, Spencer; Goldie, Kenneth N; Kisko, Kaisa; Capitani, Guido; Ballmer-Hofer, Kurt

    2017-02-07

    Vascular endothelial growth factors (VEGFs) regulate blood and lymph vessel development upon activation of three receptor tyrosine kinases: VEGFR-1, -2, and -3. Partial structures of VEGFR/VEGF complexes based on single-particle electron microscopy, small-angle X-ray scattering, and X-ray crystallography revealed the location of VEGF binding and domain arrangement of individual receptor subdomains. Here, we describe the structure of the full-length VEGFR-1 extracellular domain in complex with VEGF-A at 4 Å resolution. We combined X-ray crystallography, single-particle electron microscopy, and molecular modeling for structure determination and validation. The structure reveals the molecular details of ligand-induced receptor dimerization, in particular of homotypic receptor interactions in immunoglobulin homology domains 4, 5, and 7. Functional analyses of ligand binding and receptor activation confirm the relevance of these homotypic contacts and identify them as potential therapeutic sites to allosterically inhibit VEGFR-1 activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Preparation, characterization and nonlinear absorption studies of cuprous oxide nanoclusters, micro-cubes and micro-particles

    NASA Astrophysics Data System (ADS)

    Sekhar, H.; Narayana Rao, D.

    2012-07-01

    Cuprous oxide nanoclusters, micro-cubes and micro-particles were successfully synthesized by reducing copper(II) salt with ascorbic acid in the presence of sodium hydroxide via a co-precipitation method. The X-ray diffraction and FTIR studies revealed that the formation of pure single-phase cubic. Raman and EPR spectral studies show the presence of CuO in as-synthesized powders of Cu2O. Transmission electron microscopy and field emission scanning electron microscopy data revealed that the morphology evolves from nanoclusters to micro-cubes and micro-particles by increasing the concentration of NaOH. Linear optical measurements show absorption peak maximum shifts towards red with changing morphology from nanoclusters to micro-cubes and micro-particles. The nonlinear optical properties were studied using open aperture Z-scan technique with 532 nm 6 ns laser pulses. Samples-exhibited both saturable as well as reverse saturable absorption. Due to confinement effects (enhanced band gap), we observed enhanced nonlinear absorption coefficient (β) in the case of nanoclusters compared to their micro-cubes and micro-particles.

  17. Alignment of SWNTs by protein-ligand interaction of functionalized magnetic particles under low magnetic fields.

    PubMed

    Park, Tae Jung; Park, Jong Pil; Lee, Seok Jae; Jung, Dae-Hwan; Ko, Young Koan; Jung, Hee-Tae; Lee, Sang Yup

    2011-05-01

    Carbon nanotubes (CNTs) have attracted considerable attention for applications using their superior mechanical, thermal and electrical properties. A simple method to controllably align single-walled CNTs (SWNTs) by using magnetic particles embedded with superparamagnetic iron oxide as an accelerator under the magnetic field was developed. The functionalization of SWNTs using biotin, interacted with streptavidin-coupled magnetic particles (micro-to-nano in diameter), and layer-by-layer assembly were performed for the alignment of a particular direction onto the clean silicon and the gold substrate at very low magnetic forces (0.02-0.89 T) at room temperature. The successful alignment of the SWNTs with multi-layer film was observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). By changing the orientation and location of the substrates, crossed-networks of SWNTs-magnetic particle complex could easily be fabricated. We suggest that this approach, which consists of a combination of biological interaction among streptavidin-biotin and magnetite particles, should be useful for lateral orientation of individual SWNTs with controllable direction.

  18. The structure of Escherichia coli signal recognition particle revealed by scanning transmission electron microscopy.

    PubMed

    Mainprize, Iain L; Beniac, Daniel R; Falkovskaia, Elena; Cleverley, Robert M; Gierasch, Lila M; Ottensmeyer, F Peter; Andrews, David W

    2006-12-01

    Structural studies on various domains of the ribonucleoprotein signal recognition particle (SRP) have not converged on a single complete structure of bacterial SRP consistent with the biochemistry of the particle. We obtained a three-dimensional structure for Escherichia coli SRP by cryoscanning transmission electron microscopy and mapped the internal RNA by electron spectroscopic imaging. Crystallographic data were fit into the SRP reconstruction, and although the resulting model differed from previous models, they could be rationalized by movement through an interdomain linker of Ffh, the protein component of SRP. Fluorescence resonance energy transfer experiments determined interdomain distances that were consistent with our model of SRP. Docking our model onto the bacterial ribosome suggests a mechanism for signal recognition involving interdomain movement of Ffh into and out of the nascent chain exit site and suggests how SRP could interact and/or compete with the ribosome-bound chaperone, trigger factor, for a nascent chain during translation.

  19. Multi-Algorithm Particle Simulations with Spatiocyte.

    PubMed

    Arjunan, Satya N V; Takahashi, Koichi

    2017-01-01

    As quantitative biologists get more measurements of spatially regulated systems such as cell division and polarization, simulation of reaction and diffusion of proteins using the data is becoming increasingly relevant to uncover the mechanisms underlying the systems. Spatiocyte is a lattice-based stochastic particle simulator for biochemical reaction and diffusion processes. Simulations can be performed at single molecule and compartment spatial scales simultaneously. Molecules can diffuse and react in 1D (filament), 2D (membrane), and 3D (cytosol) compartments. The implications of crowded regions in the cell can be investigated because each diffusing molecule has spatial dimensions. Spatiocyte adopts multi-algorithm and multi-timescale frameworks to simulate models that simultaneously employ deterministic, stochastic, and particle reaction-diffusion algorithms. Comparison of light microscopy images to simulation snapshots is supported by Spatiocyte microscopy visualization and molecule tagging features. Spatiocyte is open-source software and is freely available at http://spatiocyte.org .

  20. Effect of supercritical fluid density on nanoencapsulated drug particle size using the supercritical antisolvent method.

    PubMed

    Kalani, Mahshid; Yunus, Robiah

    2012-01-01

    The reported work demonstrates and discusses the effect of supercritical fluid density (pressure and temperature of supercritical fluid carbon dioxide) on particle size and distribution using the supercritical antisolvent (SAS) method in the purpose of drug encapsulation. In this study, paracetamol was encapsulated inside L-polylactic acid, a semicrystalline polymer, with different process parameters, including pressure and temperature, using the SAS process. The morphology and particle size of the prepared nanoparticles were determined by scanning electron microscopy and transmission electron microscopy. The results revealed that increasing temperature enhanced mean particle size due to the plasticizing effect. Furthermore, increasing pressure enhanced molecular interaction and solubility; thus, particle size was reduced. Transmission electron microscopy images defined the internal structure of nanoparticles. Thermal characteristics of nanoparticles were also investigated via differential scanning calorimetry. Furthermore, X-ray diffraction pattern revealed the changes in crystallinity structure during the SAS process. In vitro drug release analysis determined the sustained release of paracetamol in over 4 weeks.

  1. Effect of supercritical fluid density on nanoencapsulated drug particle size using the supercritical antisolvent method

    PubMed Central

    Kalani, Mahshid; Yunus, Robiah

    2012-01-01

    The reported work demonstrates and discusses the effect of supercritical fluid density (pressure and temperature of supercritical fluid carbon dioxide) on particle size and distribution using the supercritical antisolvent (SAS) method in the purpose of drug encapsulation. In this study, paracetamol was encapsulated inside L-polylactic acid, a semicrystalline polymer, with different process parameters, including pressure and temperature, using the SAS process. The morphology and particle size of the prepared nanoparticles were determined by scanning electron microscopy and transmission electron microscopy. The results revealed that increasing temperature enhanced mean particle size due to the plasticizing effect. Furthermore, increasing pressure enhanced molecular interaction and solubility; thus, particle size was reduced. Transmission electron microscopy images defined the internal structure of nanoparticles. Thermal characteristics of nanoparticles were also investigated via differential scanning calorimetry. Furthermore, X-ray diffraction pattern revealed the changes in crystallinity structure during the SAS process. In vitro drug release analysis determined the sustained release of paracetamol in over 4 weeks. PMID:22619552

  2. Single particle tracking of internalized metallic nanoparticles reveals heterogeneous directed motion after clathrin dependent endocytosis in mouse chromaffin cells

    NASA Astrophysics Data System (ADS)

    Gabriel, Manuela; Moya-Díaz, José; Gallo, Luciana I.; Marengo, Fernando D.; Estrada, Laura C.

    2018-01-01

    Most accepted single particle tracking methods are able to obtain high-resolution trajectories for relatively short periods of time. In this work we apply a straightforward combination of single-particle tracking microscopy and metallic nanoparticles internalization on mouse chromaffin cells to unveil the intracellular trafficking mechanism of metallic-nanoparticle-loaded vesicles (MNP-V) complexes after clathrin dependent endocytosis. We found that directed transport is the major route of MNP-Vs intracellular trafficking after stimulation (92.6% of the trajectories measured). We then studied the MNP-V speed at each point along the trajectory, and found that the application of a second depolarization stimulus during the tracking provokes an increase in the percentage of low-speed trajectory points in parallel with a decrease in the number of high-speed trajectory points. This result suggests that stimulation may facilitate the compartmentalization of internalized MNPs in a more restricted location such as was already demonstrated in neuronal and neuroendocrine cells (Bronfman et al 2003 J. Neurosci. 23 3209-20). Although further experiments will be required to address the mechanisms underlying this transport dynamics, our studies provide quantitative evidence of the heterogeneous behavior of vesicles mobility after endocytosis in chromaffin cells highlighting the potential of MNPs as alternative labels in optical microscopy to provide new insights into the vesicles dynamics in a wide variety of cellular environments.

  3. Single Cell Fluorescence Imaging Using Metal Plasmon-Coupled Probe

    PubMed Central

    Zhang, Jian; Fu, Yi; Lakowicz, Joseph R.

    2009-01-01

    This work constitutes the first fluorescent imaging of cells using metal plasmon-coupled probes (PCPs) at single cell resolution. N-(2-Mercapto-propionyl)glycine-coated silver nanoparticles were synthesized by reduction of silver nitrate using sodium borohyride and then succinimidylated via ligand exchange. Alexa Fluor 647-labeled concanavalin A (con A) was chemically bound to the silver particles to make the fluorescent metal plasmon-coupled probes. The fluorescence images were collected using a scanning confocal microscopy. The fluorescence intensity was observed to enhance 7-fold when binding the labeled con A on a single silver particle. PCPs were conjugated on HEK 293 A cells. Imaging results demonstrate that cells labeled by PCPs were 20-fold brighter than those by free labeled con A. PMID:17375898

  4. Quantitative assessment of intermolecular interactions by atomic force microscopy imaging using copper oxide tips

    NASA Astrophysics Data System (ADS)

    Mönig, Harry; Amirjalayer, Saeed; Timmer, Alexander; Hu, Zhixin; Liu, Lacheng; Díaz Arado, Oscar; Cnudde, Marvin; Strassert, Cristian Alejandro; Ji, Wei; Rohlfing, Michael; Fuchs, Harald

    2018-05-01

    Atomic force microscopy is an impressive tool with which to directly resolve the bonding structure of organic compounds1-5. The methodology usually involves chemical passivation of the probe-tip termination by attaching single molecules or atoms such as CO or Xe (refs 1,6-9). However, these probe particles are only weakly connected to the metallic apex, which results in considerable dynamic deflection. This probe particle deflection leads to pronounced image distortions, systematic overestimation of bond lengths, and in some cases even spurious bond-like contrast features, thus inhibiting reliable data interpretation8-12. Recently, an alternative approach to tip passivation has been used in which slightly indenting a tip into oxidized copper substrates and subsequent contrast analysis allows for the verification of an oxygen-terminated Cu tip13-15. Here we show that, due to the covalently bound configuration of the terminal oxygen atom, this copper oxide tip (CuOx tip) has a high structural stability, allowing not only a quantitative determination of individual bond lengths and access to bond order effects, but also reliable intermolecular bond characterization. In particular, by removing the previous limitations of flexible probe particles, we are able to provide conclusive experimental evidence for an unusual intermolecular N-Au-N three-centre bond. Furthermore, we demonstrate that CuOx tips allow the characterization of the strength and configuration of individual hydrogen bonds within a molecular assembly.

  5. Microstructure and thermal conductivity of surfactant-free NiO nanostructures

    NASA Astrophysics Data System (ADS)

    Sahoo, Pranati; Misra, Dinesh K.; Salvador, Jim; Makongo, Julien P. A.; Chaubey, Girija S.; Takas, Nathan J.; Wiley, John B.; Poudeu, Pierre F. P.

    2012-06-01

    High purity, nanometer sized surfactant-free nickel oxide (NiO) particles were produced in gram scale using a solution combustion method and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), gas pycnometry and gas adsorption analysis (BET). The average particle size of the as-synthesized NiO increases significantly with the preheating temperature of the furnace, while the specific surface area decreases. A BET specific surface area of ∼100 m2/g was obtained for NiO nanoparticles with size as small as 3 nm synthesized at 300 °C. The thermal conductivity (κ) of pressed pellets of the synthesized NiO nanoparticles obtained using spark plasma sintering (SPS) and uniaxial hot pressing is drastically decreased (∼60%) compared to that of NiO single crystal. This strong reduction in κ with particle size suggests the suitability of the synthesized surfactant-free NiO nanoparticles for use as nanoinclusions when designing high performance materials for waste heat recovery.

  6. Atomic Resolution Structure of the Oncolytic Parvovirus LuIII by Electron Microscopy and 3D Image Reconstruction

    PubMed Central

    Misseldine, Adam; Geilen, Lorena; Halder, Sujata; Smith, J. Kennon; Kurian, Justin; Chipman, Paul; Janssen, Mandy; Mckenna, Robert; Baker, Timothy S.; D’Abramo, Anthony; Cotmore, Susan; Tattersall, Peter; Agbandje-McKenna, Mavis

    2017-01-01

    LuIII, a protoparvovirus pathogenic to rodents, replicates in human mitotic cells, making it applicable for use to kill cancer cells. This virus group includes H-1 parvovirus (H-1PV) and minute virus of mice (MVM). However, LuIII displays enhanced oncolysis compared to H-1PV and MVM, a phenotype mapped to the major capsid viral protein 2 (VP2). This suggests that within LuIII VP2 are determinants for improved tumor lysis. To investigate this, the structure of the LuIII virus-like-particle was determined using single particle cryo-electron microscopy and image reconstruction to 3.17 Å resolution, and compared to the H-1PV and MVM structures. The LuIII VP2 structure, ordered from residue 37 to 587 (C-terminal), had the conserved VP topology and capsid morphology previously reported for other protoparvoviruses. This includes a core β-barrel and α-helix A, a depression at the icosahedral 2-fold and surrounding the 5-fold axes, and a single protrusion at the 3-fold axes. Comparative analysis identified surface loop differences among LuIII, H-1PV, and MVM at or close to the capsid 2- and 5-fold symmetry axes, and the shoulder of the 3-fold protrusions. The 2-fold differences cluster near the previously identified MVM sialic acid receptor binding pocket, and revealed potential determinants of protoparvovirus tumor tropism. PMID:29084163

  7. Digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Barkley, Solomon; Dimiduk, Thomas; Manoharan, Vinothan

    Digital holographic microscopy is a 3D optical imaging technique with high temporal ( ms) and spatial ( 10 nm) precision. However, its adoption as a characterization technique has been limited due to the inherent difficulty of recovering 3D data from the holograms. Successful analysis has traditionally required substantial knowledge about the sample being imaged (for example, the approximate positions of particles in the field of view), as well as expertise in scattering theory. To overcome the obstacles to widespread adoption of holographic microscopy, we developed HoloPy - an open source python package for analysis of holograms and scattering data. HoloPy uses Bayesian statistical methods to determine the geometry and properties of discrete scatterers from raw holograms. We demonstrate the use of HoloPy to measure the dynamics of colloidal particles at interfaces, to ascertain the structures of self-assembled colloidal particles, and to track freely swimming bacteria. The HoloPy codebase is thoroughly tested and well-documented to facilitate use by the broader experimental community. This research is supported by NSF Grant DMR-1306410 and NSERC.

  8. Investigation of mircroorganisms colonising activated zeolites during anaerobic biogas production from grass silage.

    PubMed

    Weiss, S; Zankel, A; Lebuhn, M; Petrak, S; Somitsch, W; Guebitz, G M

    2011-03-01

    The colonisation of activated zeolites (i.e. clinoptilolites) as carriers for microorganisms involved in the biogas process was investigated. Zeolite particle sizes of 1.0-2.5mm were introduced to anaerobic laboratory batch-cultures and to continuously operated bioreactors during biogas production from grass silage. Incubation over 5-84 days led to the colonisation of zeolite surfaces in small batch-cultures (500 ml) and even in larger scaled and flow-through disturbed bioreactors (28 l). Morphological insights were obtained by using scanning electron microscopy (SEM). Single strand conformation polymorphism (SSCP) analysis based on amplification of bacterial and archaeal 16S rRNA fragments demonstrated structurally distinct populations preferring zeolite as operational environment. via sequence analysis conspicuous bands from SSCP patterns were identified. Populations immobilised on zeolite (e.g. Ruminofilibacter xylanolyticum) showed pronounced hydrolytic enzyme activity (xylanase) shortly after re-incubation in sterilised sludge on model substrate. In addition, the presence of methanogenic archaea on zeolite particles was demonstrated. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Ambient measurements of biological aerosol particles near Killarney, Ireland: a comparison between real-time fluorescence and microscopy techniques

    NASA Astrophysics Data System (ADS)

    Healy, D. A.; Huffman, J. A.; O'Connor, D. J.; Pöhlker, C.; Pöschl, U.; Sodeau, J. R.

    2014-08-01

    Primary biological aerosol particles (PBAPs) can contribute significantly to the coarse particle burden in many environments. PBAPs can thus influence climate and precipitation systems as cloud nuclei and can spread disease to humans, animals, and plants. Measurement data and techniques for PBAPs in natural environments at high time- and size resolution are, however, sparse, and so large uncertainties remain in the role that biological particles play in the Earth system. In this study two commercial real-time fluorescence particle sensors and a Sporewatch single-stage particle impactor were operated continuously from 2 August to 2 September 2010 at a rural sampling location in Killarney National Park in southwestern Ireland. A cascade impactor was operated periodically to collect size-resolved particles during exemplary periods. Here we report the first ambient comparison of a waveband integrated bioaerosol sensor (WIBS-4) with a ultraviolet aerodynamic particle sizer (UV-APS) and also compare these real-time fluorescence techniques with results of fluorescence and optical microscopy of impacted samples. Both real-time instruments showed qualitatively similar behavior, with increased fluorescent bioparticle concentrations at night, when relative humidity was highest and temperature was lowest. The fluorescent particle number from the FL3 channel of the WIBS-4 and from the UV-APS were strongly correlated and dominated by a 3 μm mode in the particle size distribution. The WIBS FL2 channel exhibited particle modes at approx. 1 and 3 μm, and each was correlated with the concentration of fungal spores commonly observed in air samples collected at the site (ascospores, basidiospores, Ganoderma spp.). The WIBS FL1 channel exhibited variable multimodal distributions turning into a broad featureless single mode after averaging, and exhibited poor correlation with fungal spore concentrations, which may be due to the detection of bacterial and non-biological fluorescent particles. Cladosporium spp., which are among the most abundant fungal spores in many terrestrial environments, were not correlated with any of the real-time fluorescence channels, suggesting that the real-time fluorescence instruments are relatively insensitive to PBAP classes with dark, highly absorptive cell walls. Fluorescence microscopy images of cascade impactor plates showed large numbers of coarse-mode particles consistent with the morphology and weak fluorescence expected of sea salt. Some of these particles were attached to biological cells, suggesting that a marine source influenced the PBAPs observed at the site and that the ocean may be an important contributor to PBAP loadings in coastal environments.

  10. Ambient measurements of biological aerosol particles near Killarney, Ireland: a comparison between real-time fluorescence and microscopy techniques

    NASA Astrophysics Data System (ADS)

    Healy, D. A.; Huffman, J. A.; O'Connor, D. J.; Pöhlker, C.; Pöschl, U.; Sodeau, J. R.

    2014-02-01

    Primary biological aerosol particles (PBAP) can contribute significantly to the coarse particle burden in many environments, may thus influence climate and precipitation systems as cloud nuclei, and can spread disease to humans, animals, and plants. Measurements of PBAP in natural environments taken at high time- and size- resolution are, however, sparse and so large uncertainties remain in the role that biological particles play in the Earth system. In this study two commercial real-time fluorescence particle sensors and a Sporewatch single-stage particle impactor were operated continuously from 2 August to 2 September 2010 at a rural sampling location in Killarney National Park in south western Ireland. A cascade impactor was operated periodically to collect size-resolved particles during exemplary periods. Here we report the first ambient comparison of the waveband integrated bioaerosol sensor (WIBS-4) with the ultraviolet aerodynamic particle sizer (UV-APS) and also compare these real-time fluorescence techniques with results of fluorescence and optical microscopy of impacted samples. Both real-time instruments showed qualitatively similar behaviour, with increased fluorescent bioparticle concentrations at night when relative humidity was highest and temperature was lowest. The fluorescent particle number from the FL3 channel of the WIBS-4 and from the UV-APS were strongly correlated and dominated by a 3 μm mode in the particle size distribution. The WIBS FL2 channel exhibited particle modes at approx. 1 and 3 μm, and each were correlated with the concentration of fungal spores commonly observed in air samples collected at the site (ascospores, basidiospores, Ganoderma spp.). The WIBS FL1 channel exhibited variable multi-modal distributions turning into a broad featureless single mode after averaging and exhibited poor correlation with fungal spore concentrations, which may be due to the detection of bacterial and non-biological fluorescent particles. Cladosporium spp., which are among the most abundant fungal spores in many terrestrial environments, were not correlated with any of the real-time fluorescence channels, suggesting that the real-time fluorescence instruments are insensitive to PBAP classes with dark, highly absorptive cell walls. Fluorescence microscopy images of cascade impactor plates showed large numbers of coarse mode particles consistent with the morphology and weak fluorescence expected of sea salt. Some of these particles were attached to biological cells, suggesting that a marine source influenced the PBAP observed at the site and that the ocean may be an important contributor to PBAP loadings in coastal environments.

  11. Controlled Synthesis and Fluorescence Tracking of Highly Uniform Poly(N-isopropylacrylamide) Microgels.

    PubMed

    Virtanen, Otto L J; Purohit, Ashvini; Brugnoni, Monia; Wöll, Dominik; Richtering, Walter

    2016-09-08

    Stimuli-sensitive poly(N-isopropylacrylamide) (PNIPAM) microgels have various prospective practical applications and uses in fundamental research. In this work, we use single particle tracking of fluorescently labeled PNIPAM microgels as a showcase for tuning microgel size by a rapid non-stirred precipitation polymerization procedure. This approach is well suited for prototyping new reaction compositions and conditions or for applications that do not require large amounts of product. Microgel synthesis, particle size and structure determination by dynamic and static light scattering are detailed in the protocol. It is shown that the addition of functional comonomers can have a large influence on the particle nucleation and structure. Single particle tracking by wide-field fluorescence microscopy allows for an investigation of the diffusion of labeled tracer microgels in a concentrated matrix of non-labeled microgels, a system not easily investigated by other methods such as dynamic light scattering.

  12. Scanning-electron-microscope study of normal-impingement erosion of ductile metals

    NASA Technical Reports Server (NTRS)

    Brainard, W. A.; Salik, J.

    1980-01-01

    Scanning electron microscopy was used to characterize the erosion of annealed copper and aluminum surfaces produced by both single- and multiple-particle impacts. Macroscopic 3.2 mm diameter steel balls and microscopic, brittle erodant particles were projected by a gas gun system so as to impact at normal incidence at speeds up to 140 m/sec. During the impacts by the brittle erodant particles, at lower speeds the erosion behavior was similar to that observed for the larger steel balls. At higher velocities, particle fragmentation and the subsequent cutting by the radial wash of debris created a marked change in the erosion mechanism.

  13. Procedures for analysis of debris relative to Space Shuttle systems

    NASA Technical Reports Server (NTRS)

    Kim, Hae Soo; Cummings, Virginia J.

    1993-01-01

    Debris samples collected from various Space Shuttle systems have been submitted to the Microchemical Analysis Branch. This investigation was initiated to develop optimal techniques for the analysis of debris. Optical microscopy provides information about the morphology and size of crystallites, particle sizes, amorphous phases, glass phases, and poorly crystallized materials. Scanning electron microscopy with energy dispersive spectrometry is utilized for information on surface morphology and qualitative elemental content of debris. Analytical electron microscopy with wavelength dispersive spectrometry provides information on the quantitative elemental content of debris.

  14. Fabrication of single phase p-CuInSe{sub 2} nanowire arrays by electrodeposited into anodic alumina templates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Yu-Song; Lang, Hao-Jan; Houng, Mau-Phon, E-mail: mphoung@eembox.ncku.edu.tw

    2015-10-19

    Single-phase CuInSe{sub 2} nanowire (NW) arrays were prepared at various pH values in a heated electrolyte by using pulse electrodeposition techniques and an anodized aluminum oxide template. X-ray diffraction showed that the CuInSe{sub 2} NW nucleation mechanism received H{sup +} constraints when the NWs were deposited at pH 1.7 with a (112) orientation and annealed at 550 °C. The CuInSe{sub 2} NW band gap was determined to be approximately 1 eV through optical measurements. Transmission electron microscopy showed that at the pH value of 1.7, small particles of the single-phase CuInSe{sub 2} NWs aligned along the crystallographic direction are nucleated to formmore » large particles. Scanning electron microscopy revealed that the NW diameter and the length were 80 nm and 2.3 μm, respectively. From Mott–Schottky and Ohmic contact plots, the CuInSe{sub 2} NWs were found to be p-type semiconductors, and their work function was estimated to be approximately 4.69 eV.« less

  15. Measuring mass-based hygroscopicity of atmospheric particles through in situ imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piens, Dominique S.; Kelly, Stephen T.; Harder, Tristan H.

    Quantifying how atmospheric particles interact with water vapor is critical for understanding the effects of aerosols on climate. We present a novel method to measure the mass-based hygroscopicity of particles while characterizing their elemental and carbon functional group compositions. Since mass-based hygroscopicity is insensitive to particle geometry, it is advantageous for probing the hygroscopic behavior of atmospheric particles, which can have irregular morphologies. Combining scanning electron microscopy with energy dispersive X-ray analysis (SEM/EDX), scanning transmission X-ray microscopy (STXM) analysis, and in situ STXM humidification experiments, this method was validated using laboratory-generated, atmospherically relevant particles. Then, the hygroscopicity and elemental compositionmore » of 15 complex atmospheric particles were analyzed by leveraging quantification of C, N, and O from STXM, and complementary elemental quantification from SEM/EDX. We found three types of hygroscopic responses, and correlated high hygroscopicity with Na and Cl content. The mixing state of 158 other particles from the sample broadly agreed with those of the humidified particles, indicating the potential to infer atmospheric hygroscopic behavior from a selected subset of particles. As a result, these methods offer unique quantitative capabilities to characterize and correlate the hygroscopicity and chemistry of individual submicrometer atmospheric particles.« less

  16. Measuring mass-based hygroscopicity of atmospheric particles through in situ imaging

    DOE PAGES

    Piens, Dominique S.; Kelly, Stephen T.; Harder, Tristan H.; ...

    2016-04-18

    Quantifying how atmospheric particles interact with water vapor is critical for understanding the effects of aerosols on climate. We present a novel method to measure the mass-based hygroscopicity of particles while characterizing their elemental and carbon functional group compositions. Since mass-based hygroscopicity is insensitive to particle geometry, it is advantageous for probing the hygroscopic behavior of atmospheric particles, which can have irregular morphologies. Combining scanning electron microscopy with energy dispersive X-ray analysis (SEM/EDX), scanning transmission X-ray microscopy (STXM) analysis, and in situ STXM humidification experiments, this method was validated using laboratory-generated, atmospherically relevant particles. Then, the hygroscopicity and elemental compositionmore » of 15 complex atmospheric particles were analyzed by leveraging quantification of C, N, and O from STXM, and complementary elemental quantification from SEM/EDX. We found three types of hygroscopic responses, and correlated high hygroscopicity with Na and Cl content. The mixing state of 158 other particles from the sample broadly agreed with those of the humidified particles, indicating the potential to infer atmospheric hygroscopic behavior from a selected subset of particles. As a result, these methods offer unique quantitative capabilities to characterize and correlate the hygroscopicity and chemistry of individual submicrometer atmospheric particles.« less

  17. Particle shape effect on erosion of optical glass substrates due to microparticles

    NASA Astrophysics Data System (ADS)

    Waxman, Rachel; Gray, Perry; Guven, Ibrahim

    2018-03-01

    Impact experiments using sand particles and soda lime glass spheres were performed on four distinct glass substrates. Sand particles were characterized using optical and scanning electron microscopy. High-speed video footage from impact tests was used to calculate incoming and rebound velocities of the individual impact events, as well as the particle volume and two-dimensional sphericity. Furthermore, video analysis was used in conjunction with optical and scanning electron microscopy to relate the incoming velocity and particle shape to subsequent fractures, including both radial and lateral cracks. Indentation theory [Marshall et al., J. Am. Ceram. Soc. 65, 561-566 (1982)] was applied and correlated with lateral crack lengths. Multi-variable power law regression was performed, incorporating the particle shape into the model and was shown to have better fit to damage data than the previous indentation model.

  18. Small Particle Impact Damage on Different Glass Substrates

    NASA Technical Reports Server (NTRS)

    Waxman, R.; Guven, I.; Gray, P.

    2017-01-01

    Impact experiments using sand particles were performed on four distinct glass substrates. The sand particles were characterized using the X-Ray micro-CT technique; 3-D reconstruction of the particles was followed by further size and shape analyses. High-speed video footage from impact tests was used to calculate the incoming and rebound velocities of the individual sand impact events, as well as particle volume. Further, video analysis was used in conjunction with optical and scanning electron microscopy to relate the incoming velocity and shape of the particles to subsequent fractures, including both radial and lateral cracks. Analysis was performed using peridynamic simulations.

  19. NASA Astrophysics Data System (ADS)

    Wang, Mao-Hua; Zhang, Bo; Zhou, Fu

    2014-07-01

    Silica was homogeneously coated on the surface of CaCu3Ti4O12 (CCTO) particles via the sol-gel method. The obtained powders were characterized by x-ray diffraction analysis, Fourier-transform infrared spectroscopy, transmission electron microscopy (TEM), energy-dispersive spectroscopy, scanning electron microscopy, and zeta potential analysis. The results demonstrate that there were silica layers on the surface of the CCTO particles. Physical and dielectric properties of silica-coated CCTO were also studied. TEM imaging showed that the thickness of the silica layer on the CCTO particles was about 20 nm to 35 nm. The specimen coated with 1.0 wt.% silica showed the maximum relative density of 96.7% with high dielectric constant (12.78 × 104) and low dielectric loss (0.005) at 20°C after sintering at 1000°C for 6 h.

  20. Enrichment of Mineral Dust Storm Particles with Sea Salt Elements - Using bulk and Single Particle Analyses

    NASA Astrophysics Data System (ADS)

    Mamane, Y.; Perrino, C.; Yossef, O.

    2009-12-01

    Mineral aerosol emitted from African and Asian deserts plays an important role in the atmosphere. During their long-range transport, the physical and chemical properties of mineral dust particles change due to heterogeneous reactions with trace gases, coagulation with other particles, and in-cloud processing. These processes affect the optical and hygroscopic properties of dust particles, and in general influencing the physics and chemistry of the atmosphere. Four African and Arabian dust storm episodes affecting the East Mediterranean Coast in the spring of 2006 have been characterized, to determine if atmospheric natural dust particles are enriched with sea salt and anthropogenic pollution. Particle samplers included PM10 and manual dichotomous sampler that collected fine and coarse particles. Three sets of filters were used: Teflon filters for gravimetric, elemental and ionic analyses; Pre-fired Quartz-fiber filters for elemental and organic carbon; and Nuclepore filters for scanning electron microscopy analysis. Computer-controlled scanning electron microscopy (Philips XL 30 ESEM) was used to analyze single particle, for morphology, size and chemistry of selected filter samples. A detailed chemical and microscopical characterization has been performed for the particles collected during dust event days and during clear days. The Saharan and Arabian air masses increased significantly the daily mass concentrations of the coarse and the fine particle fractions. Carbonates, mostly as soil calcites mixed with dolomites, and silicates are the major components of the coarse fraction, followed by sea salt particles. In addition, the levels of anthropogenic heavy metals and sea salt elements registered during the dust episode were considerably higher than levels recorded during clear days. Sea salt elements contain Na and Cl, and smaller amounts of Mg, K, S and Br. Cl ranges from 300 to 5500 ng/m3 and Na from 100 to almost 2400 ng/m3. The Cl to Na ratio on dusty days in the coarse fraction is 2.94 versus 1.88 on clear days, quite different from the value of 1.8 found in sea water. It is rather clear that dust events are enriched with Cl. Those findings are to be investigated. The computer controlled SEM-EDX observations of the coarse fraction of PM10 confirmed the results obtained by XRF. The majority of the African dust particles are made up of mixed minerals, mostly carbonates and alumino - silicates. The EDX analysis coupled to CCSEM showed that minerals are mixed often with sea salt particles. Although some of it may be artifact (a sea salt particle is pile up on a mineral particle), it is believed that the results present reality: sea salt particles were often found on the surfaces of the aggregate minerals. Pollen and spores of diameters were not identified. Those results may have implication on the atmospheric chemistry. High concentrations of sulfates were also observed in the coarse fraction of dust episodes, and were not correlated with sea salt particles. They could be part of the soil matrix and may also form by the reaction of sulfur oxides with the natural aerosols. These reactions may be affected by the high concentration of coarse mineral particles during the Saharan and Arabian episodes.

  1. Imaging samples in silica aerogel using an experimental point spread function.

    PubMed

    White, Amanda J; Ebel, Denton S

    2015-02-01

    Light microscopy is a powerful tool that allows for many types of samples to be examined in a rapid, easy, and nondestructive manner. Subsequent image analysis, however, is compromised by distortion of signal by instrument optics. Deconvolution of images prior to analysis allows for the recovery of lost information by procedures that utilize either a theoretically or experimentally calculated point spread function (PSF). Using a laser scanning confocal microscope (LSCM), we have imaged whole impact tracks of comet particles captured in silica aerogel, a low density, porous SiO2 solid, by the NASA Stardust mission. In order to understand the dynamical interactions between the particles and the aerogel, precise grain location and track volume measurement are required. We report a method for measuring an experimental PSF suitable for three-dimensional deconvolution of imaged particles in aerogel. Using fluorescent beads manufactured into Stardust flight-grade aerogel, we have applied a deconvolution technique standard in the biological sciences to confocal images of whole Stardust tracks. The incorporation of an experimentally measured PSF allows for better quantitative measurements of the size and location of single grains in aerogel and more accurate measurements of track morphology.

  2. Growth of copper-zinc and copper-magnesium particles by gas-evaporation technique

    NASA Astrophysics Data System (ADS)

    Ohno, T.

    1984-12-01

    Fine particles of Cu-Zn and Cu-Mg systems of diameter less than 500 nm were prepared by evaporating the constituent metals simultaneously from two evaporation sources in an atmosphere of argon of 10 to 30 Torr. The composition, crystal structure and habit of the alloy particles were investigated by electron microscopy. The composition of the alloy particles varied depending on the growth zone of metal smoke and almost all phases known in Cu-Zn or Cu-Mg system were found at the same time. The particles with single phase showed generally well-defined crystal habits characteristic of their crystal structures. For the particles with two phases, a fixed lattice relation between the two phases was generally recognized. The formation process of the alloy particles is discussed through these observations.

  3. Time-course, negative-stain electron microscopy-based analysis for investigating protein-protein interactions at the single-molecule level.

    PubMed

    Nogal, Bartek; Bowman, Charles A; Ward, Andrew B

    2017-11-24

    Several biophysical approaches are available to study protein-protein interactions. Most approaches are conducted in bulk solution, and are therefore limited to an average measurement of the ensemble of molecular interactions. Here, we show how single-particle EM can enrich our understanding of protein-protein interactions at the single-molecule level and potentially capture states that are unobservable with ensemble methods because they are below the limit of detection or not conducted on an appropriate time scale. Using the HIV-1 envelope glycoprotein (Env) and its interaction with receptor CD4-binding site neutralizing antibodies as a model system, we both corroborate ensemble kinetics-derived parameters and demonstrate how time-course EM can further dissect stoichiometric states of complexes that are not readily observable with other methods. Visualization of the kinetics and stoichiometry of Env-antibody complexes demonstrated the applicability of our approach to qualitatively and semi-quantitatively differentiate two highly similar neutralizing antibodies. Furthermore, implementation of machine-learning techniques for sorting class averages of these complexes into discrete subclasses of particles helped reduce human bias. Our data provide proof of concept that single-particle EM can be used to generate a "visual" kinetic profile that should be amenable to studying many other protein-protein interactions, is relatively simple and complementary to well-established biophysical approaches. Moreover, our method provides critical insights into broadly neutralizing antibody recognition of Env, which may inform vaccine immunogen design and immunotherapeutic development. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Electromagnetic and Microwave-Absorbing Properties of Plate-Like Nd-Ce-Fe Powder

    NASA Astrophysics Data System (ADS)

    Qiao, Ziqiang; Pan, Shunkang; Xiong, Jilei; Cheng, Lichun; Lin, Peihao; Luo, Jialiang

    2017-01-01

    Plate-like Ce x Nd2- x Fe17 ( x = 0.0, 0.1, 0.2, 0.3, 0.4) powders have been synthesized by an arc melting and high-energy ball milling method. The structure of the Nd-Ce-Fe powders was investigated by x-ray diffraction analysis. Their morphology and particle size distribution were evaluated by scanning electron microscopy and laser particle analysis. The saturation magnetization and electromagnetic parameters of the powders were characterized using vibrating-sample magnetometry and vector network analysis, respectively. The results reveal that the Ce x Nd2- x Fe17 ( x = 0.0, 0.1, 0.2, 0.3, 0.4) powders consisted of Nd2Fe17 single phase with different Ce contents. The particle size and saturation magnetization decreased with increasing Ce content. The resonant frequencies of ɛ″ and μ″ moved towards lower frequency with increasing Ce concentration. The minimum reflection loss value decreased as the Ce content was increased. The minimum reflection loss and absorption peak frequency of Ce0.2Nd1.8Fe17 with coating thickness of 1.8 mm were -22.5 dB and 7 GHz, respectively. Increasing the values of the complex permittivity and permeability could result in materials with good microwave absorption properties.

  5. Quantitative characterization of TiO2 nanoparticle release from textiles by conventional and single particle ICP-MS

    NASA Astrophysics Data System (ADS)

    Mackevica, Aiga; Olsson, Mikael Emil; Hansen, Steffen Foss

    2018-01-01

    TiO2 is ubiquitously present in a wide range of everyday items, both as an intentionally incorporated additive and naturally occurring constituent. It can be found in a wide range of consumer products, including personal care products, food contact materials, and textiles. Normal use of these products may lead to consumer and/or environmental exposure to TiO2, possibly in form of nanoparticles. The aim of this study is to perform a leaching test and apply state-of-the-art methods to investigate nano-TiO2 and total Ti release from five types of commercially available conventional textiles: table placemats, wet wipes, microfiber cloths, and two types of baby bodysuits, with Ti contents ranging from 2.63 to 1448 μg/g. Released particle analysis was performed using conventional and single particle inductively coupled plasma mass spectrometry (ICP-MS and spICP-MS), in conjunction with transmission electron microscopy (TEM), to measure total and particulate TiO2 release by mass and particle number, as well as size distribution. Less than 1% of the initial Ti content was released over 24 h of leaching, with the highest releases reaching 3.13 μg/g. The fraction of nano-TiO2 released varied among fabric types and represented 0-80% of total TiO2 release. Particle mode sizes were 50-75 nm, and TEM imaging revealed particles in sizes of 80-200 nm. This study highlights the importance of using a multi-method approach to obtain quantitative release data that is able to provide an indication regarding particle number, size distribution, and mass concentration, all of which can help in understanding the fate and exposure of nanoparticles.

  6. Evaluation of particles released from single-wall carbon nanotube/polymer composites with or without thermal aging by an accelerated abrasion test.

    PubMed

    Jiang, Lin; Kondo, Akira; Shigeta, Masahiro; Endoh, Shigehisa; Uejima, Mitsugu; Ogura, Isamu; Naito, Makio

    2014-01-01

    To provide data required for assessing the environmental health and safety risks of nanocomposites, abrasion-induced particle release from single-wall carbon nanotube (SWCNT)/polymer composites with or without thermal aging were evaluated by a shot blast system. First, overall composite weight loss (i.e., overall particle release) as a result of shot blasting was measured. Incorporating 5 wt% SWCNTs in polystyrene (PS) matrix was observed to reduce overall particle release by approximately 30% compared with pure PS. Heat treatment of the 5 wt% SWCNT/PS composites at 100°C for 10 days induced very slight change in overall particle release due to shot blasting. However, heat treatment at 350°C for 1 hr greatly deteriorated the abrasion resistance of the composites, enhancing overall particle release. Second, to verify the existence and form of SWCNTs released from the composites, released particles were observed by electron microscopy. Micron-sized particles with protruding SWCNTs and submicron-sized SWCNT clusters were observed in the particles released from the composites. Heat treatment of the composites at 350°C for 1 hr enhanced SWCNT release, which mainly formed clusters or rope-like bundles.

  7. Chemical Imaging of Ambient Aerosol Particles: Observational Constraints on Mixing State Parameterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Brien, Rachel; Wang, Bingbing; Laskin, Alexander

    2015-09-28

    A new parameterization for quantifying the mixing state of aerosol populations has been applied for the first time to samples of ambient particles analyzed using spectro-microscopy techniques. Scanning transmission x-ray microscopy/near edge x-ray absorption fine structure (STXM/NEXAFS) and computer controlled scanning electron microscopy/energy dispersive x-ray spectroscopy (CCSEM/EDX) were used to probe the composition of the organic and inorganic fraction of individual particles collected on June 27th and 28th during the 2010 Carbonaceous Aerosols and Radiative Effects (CARES) study in the Central Valley, California. The first field site, T0, was located in downtown Sacramento, while T1 was located near the Sierramore » Nevada Mountains. Mass estimates of the aerosol particle components were used to calculate mixing state metrics, such as the particle-specific diversity, bulk population diversity, and mixing state index, for each sample. Both microscopy imaging techniques showed more changes over these two days in the mixing state at the T0 site than at the T1 site. The STXM data showed evidence of changes in the mixing state associated with a build-up of organic matter confirmed by collocated measurements and the largest impact on the mixing state was due to an increase in soot dominant particles during this build-up. The CCSEM/EDX analysis showed the presence of two types of particle populations; the first was dominated by aged sea salt particles and had a higher mixing state index (indicating a more homogeneous population), the second was dominated by carbonaceous particles and had a lower mixing state index.« less

  8. Physico-chemical characterization of engineered metal oxide nanoparticles: the critical role of microscopy

    NASA Astrophysics Data System (ADS)

    La Fontaine, A.; Coleman, V. A.; Jämting, A. K.; Lawn, M.; Herrmann, J.; Miles, J. R.

    2010-06-01

    Three different methods for extracting zinc oxide (ZnO) and titanium dioxide (TiO2) nanoparticles from commercially available sunscreen were investigated to determine the most appropriate route for producing a sample suitable for measuring the primary particle size. Direct dilution of the formulation, centrifugal methods and chemical washing were trialed in combination with ultrasonic processing and surfactant addition to generate samples that are suitable for particle size analysis. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) were used to monitor the extraction and re-dispersion process. Washing with hexane, methanol and water to remove the formulation, in combination with pulsed high-powered ultrasonication and the addition of a charge-stabilizing surfactant was found to be the most efficient way of producing de-agglomerated samples. DLS measurements gave average hydrodynamic particle diameters of 87 nm for ZnO and 76 nm for TiO2, compared to equivalent spherical particle diameters of 21 +/- 12 nm for ZnO (81 particles) and 19 +/- 14 nm for TiO2 (81 particles) obtained from TEM analysis.

  9. Clustering and cellular distribution characteristics of virus particles of Tomato spotted wilt virus and Tomato zonate spot virus in different plant hosts.

    PubMed

    Zhang, Zhongkai; Zheng, Kuanyu; Dong, Jiahong; Fang, Qi; Hong, Jian; Wang, Xifeng

    2016-01-19

    Tomato spotted wilt virus (TSWV) and Tomato zonate spot virus (TZSV) are the two dominant species of thrip-transmitted tospoviruses, cause significant losses in crop yield in Yunnan and its neighboring provinces in China. TSWV and TZSV belong to different serogroup of tospoviruses but induce similar symptoms in the same host plant species, which makes diagnostic difficult. We used different electron microscopy preparing methods to investigate clustering and cellular distribution of TSWV and TZSV in the host plant species. Negative staining of samples infected with TSWV and TZSV revealed that particles usually clustered in the vesicles, including single particle (SP), double particles clustering (DPC), triple particles clustering (TPC). In the immunogold labeling negative staining against proteins of TZSV, the antibodies against Gn protein were stained more strongly than the N protein. Ultrathin section and high pressure freeze (HPF)-electron microscopy preparations revealed that TSWV particles were distributed in the cisternae of endoplasmic reticulum (ER), filamentous inclusions (FI) and Golgi bodies in the mesophyll cells. The TSWV particles clustered as multiple particles clustering (MPC) and distributed in globular viroplasm or cisternae of ER in the top leaf cell. TZSV particles were distributed more abundantly in the swollen membrane of ER in the mesophyll cell than those in the phloem parenchyma cells and were not observed in the top leaf cell. However, TZSV virions were mainly present as single particle in the cytoplasm, with few clustering as MPC. In this study, we identified TSWV and TZSV particles had the distinct cellular distribution patterns in the cytoplasm from different tissues and host plants. This is the first report of specific clustering characteristics of tospoviruses particles as well as the cellular distribution of TSWV particles in the FI and globular viroplasm where as TZSV particles inside the membrane of ER. These results indicated that tospoviruses particles possessed specific and similar clustering in the saps of diseased plants. Furthermore, the results of this study will also provide a basis for further study on the tospoviruses assembling, maturation and movement.

  10. The structure of human tripeptidyl peptidase II as determined by a hybrid approach.

    PubMed

    Schönegge, Anne-Marie; Villa, Elizabeth; Förster, Friedrich; Hegerl, Reiner; Peters, Jürgen; Baumeister, Wolfgang; Rockel, Beate

    2012-04-04

    Tripeptidyl-peptidase II (TPPII) is a high molecular mass (∼5 MDa) serine protease, which is thought to act downstream of the 26S proteasome, cleaving peptides released by the latter. Here, the structure of human TPPII (HsTPPII) has been determined to subnanometer resolution by cryoelectron microscopy and single-particle analysis. The complex is built from two strands forming a quasihelical structure harboring a complex system of inner cavities. HsTPPII particles exhibit some polymorphism resulting in complexes consisting of nine or of eight dimers per strand. To obtain deeper insights into the architecture and function of HsTPPII, we have created a pseudoatomic structure of the HsTPPII spindle using a comparative model of HsTPPII dimers and molecular dynamics flexible fitting. Analyses of the resulting hybrid structure of the HsTPPII holocomplex provide new insights into the mechanism of maturation and activation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Development and biological applications of optical tweezers and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Xie, Chang'an

    Optical tweezers is a three-dimensional manipulation tool that employs a gradient force that originates from the single highly focused laser beam. Raman spectroscopy is a molecular analytical tool that can give a highly unique "fingerprint" for each substance by measuring the unique vibrations of its molecules. The combination of these two optical techniques offers a new tool for the manipulation and identification of single biological cells and microscopic particles. In this thesis, we designed and implemented a Laser-Tweezers-Raman-Spectroscopy (LTRS) system, also called the Raman-tweezers, for the simultaneous capture and analysis of both biological particles and non-biological particles. We show that microparticles can be conveniently captured at the focus of a laser beam and the Raman spectra of trapped particles can be acquired with high quality. The LTRS system overcomes the intrinsic Brownian motion and cell motility of microparticles in solution and provides a promising tool for in situ identifying suspicious agents. In order to increase the signal to noise ratio, several schemes were employed in LTRS system to reduce the blank noise and the fluorescence signal coming from analytes and the surrounding background. These techniques include near-infrared excitation, optical levitation, confocal microscopy, and frequency-shifted Raman difference. The LTRS system has been applied for the study in cell biology at the single cell level. With the built Raman-tweezers system, we studied the dynamic physiological processes of single living cells, including cell cycle, the transcription and translation of recombinant protein in transgenic yeast cells and the T cell activation. We also studied cell damage and associated biochemical processes in optical traps, UV radiations, and evaluated heating by near-infrared Raman spectroscopy. These studies show that the Raman-tweezers system is feasible to provide rapid and reliable diagnosis of cellular disorders and can be used as a valuable tool to study cellular processes within single living cells or intracellular organelles and may aid research in molecular and cellular biology.

  12. Fungus-mediated biological synthesis of gold nanoparticles: potential in detection of liver cancer

    PubMed Central

    Chauhan, Arun; Zubair, Swaleha; Tufail, Saba; Sherwani, Asif; Sajid, Mohammad; Raman, Suri C; Azam, Amir; Owais, Mohammad

    2011-01-01

    Background Nanomaterials are considered to be the pre-eminent component of the rapidly advancing field of nanotechnology. However, developments in the biologically inspired synthesis of nanoparticles are still in their infancy and consequently attracting the attention of material scientists throughout the world. Keeping in mind the fact that microorganism-assisted synthesis of nanoparticles is a safe and economically viable prospect, in the current study we report Candida albicans-mediated biological synthesis of gold nanoparticles. Methods and results Transmission electron microscopy, atomic force microscopy, and various spectrophotometric analyses were performed to characterize the gold nanoparticles. The morphology of the synthesized gold particles depended on the abundance of C. albicans cytosolic extract. Transmission electron microscopy, nanophox particle analysis, and atomic force microscopy revealed the size of spherical gold nanoparticles to be in the range of 20–40 nm and nonspherical gold particles were found to be 60–80 nm. We also evaluated the potential of biogenic gold nanoparticles to probe liver cancer cells by conjugating them with liver cancer cell surface-specific antibodies. The antibody-conjugated gold particles were found to bind specifically to the surface antigens of the cancer cells. Conclusion The antibody-conjugated gold particles synthesized in this study could successfully differentiate normal cell populations from cancerous cells. PMID:22072868

  13. Analysis of particles produced during airbag deployment by scanning electron microscopy with energy dispersive x-ray spectroscopy and their deposition on surrounding surfaces: a mid-research summary

    NASA Astrophysics Data System (ADS)

    Wyatt, J. Matney

    2011-06-01

    Airbags can be encountered in forensic work when investigating a car crash and are typically constructed with primerlike material to begin the deployment apparatus. The mechanisms of airbag deployment can produce particles ideal for scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDS) analysis. A recent study published by Berk studied airbags with vents and showed that it is possible for particles generated from the deployment of these airbags to deposit on surfaces in the vehicle as the airbags deflate.1 Another paper published by Berk reported particles similar in morphology and composition to primer gunshot residue (GSR) are produced by side impact airbags.2 This paper's aim will be to show mid-point results of a study still in progress in which non-vented airbags were analyzed to determine if they exhibited the same particle depositing features as their vented airbag counterparts. Further investigation in this study is being performed to find more airbags which produce primer gunshot residue-like particles containing lead, barium, and antimony from airbag deployment. To date, the study has resulted in (1) non-vented airbags exhibiting deposition of particles suitable for SEM/EDS analysis and (2) no gunshot residue-like particles being detected from the airbag residues studied thus far.

  14. One Step Synthesis of NiO Nanoparticles via Solid-State Thermal Decomposition at Low-Temperature of Novel Aqua(2,9-dimethyl-1,10-phenanthroline)NiCl2 Complex

    PubMed Central

    Barakat, Assem; Al-Noaimi, Mousa; Suleiman, Mohammed; Aldwayyan, Abdullah S.; Hammouti, Belkheir; Ben Hadda, Taibi; Haddad, Salim F.; Boshaala, Ahmed; Warad, Ismail

    2013-01-01

    [NiCl2(C14H12N2)(H2O)] complex has been synthesized from nickel chloride hexahydrate (NiCl2·6H2O) and 2,9-dimethyl-1,10-phenanthroline (dmphen) as N,N-bidentate ligand. The synthesized complex was characterized by elemental analysis, infrared (IR) spectroscopy, ultraviolet-visible (UV-vis) spectroscopy and differential thermal/thermogravimetric analysis (TG/DTA). The complex was further confirmed by single crystal X-ray diffraction (XRD) as triclinic with space group P-1. The desired complex, subjected to thermal decomposition at low temperature of 400 ºC in an open atmosphere, revealed a novel and facile synthesis of pure NiO nanoparticles with uniform spherical particle; the structure of the NiO nanoparticles product was elucidated on the basis of Fourier transform infrared (FT-IR), UV-vis spectroscopy, TG/DTA, XRD, scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDXS) and transmission electron microscopy (TEM). PMID:24351867

  15. Morphology of single inhalable particle in the air polluted city of Shijiazhuang, China.

    PubMed

    Wang, Zanhong; Zhang, Lingzhi; Zhang, Yuliang; Zhao, Zhou; Zhang, Sumin

    2008-01-01

    In the typical air polluted city of Shijiazhuang, single inhalable particle samples in non-heating period, heating period, dust storm days, and snowy days were collected and detected by SEM/EDS (scanning electron microscopy and energy dispersive X-ray spectrometry). The particle morphology was characterized by the 6 shape clusters, which are: irregular square, agglomerate, sphere, floccule, column or stick, and unknown, by quantitative order. The irregular square particles are common in all kinds of samples; sphere particles are more, and column or stick are less in winter samples; in the wet deposit samples, agglomerate and floccule particles are not found. The surface of most particles is coarse with fractal edge, which can provide suitable chemical reaction bed in the polluted atmospheric environment. New formed calcium crystal is found to demonstrate the existence of neutralized reaction, explaining the reason for the high SO2 emission and low acid rain frequency in Shijiazhuang. The three sorts of surface patterns of spheres are smooth, semi-smooth, and coarse, corresponding to the element of Si-dominant, Si-Al-dominant, and Fe-dominant. The soot particle is present as floccule with average size around 10 microm, considerably larger than the former reported results, but wrapped or captured with other fine particles to make its appearance unique and enhance its toxicity potentially. The new formed calcium crystal, the 3 sorts of sphere surface patterns, and the unique soot appearance represent the single inhalable particle's morphology characteristics in Shijiazhuang City.

  16. Quantitative super-resolution single molecule microscopy dataset of YFP-tagged growth factor receptors.

    PubMed

    Lukeš, Tomáš; Pospíšil, Jakub; Fliegel, Karel; Lasser, Theo; Hagen, Guy M

    2018-03-01

    Super-resolution single molecule localization microscopy (SMLM) is a method for achieving resolution beyond the classical limit in optical microscopes (approx. 200 nm laterally). Yellow fluorescent protein (YFP) has been used for super-resolution single molecule localization microscopy, but less frequently than other fluorescent probes. Working with YFP in SMLM is a challenge because a lower number of photons are emitted per molecule compared with organic dyes, which are more commonly used. Publically available experimental data can facilitate development of new data analysis algorithms. Four complete, freely available single molecule super-resolution microscopy datasets on YFP-tagged growth factor receptors expressed in a human cell line are presented, including both raw and analyzed data. We report methods for sample preparation, for data acquisition, and for data analysis, as well as examples of the acquired images. We also analyzed the SMLM datasets using a different method: super-resolution optical fluctuation imaging (SOFI). The 2 modes of analysis offer complementary information about the sample. A fifth single molecule super-resolution microscopy dataset acquired with the dye Alexa 532 is included for comparison purposes. This dataset has potential for extensive reuse. Complete raw data from SMLM experiments have typically not been published. The YFP data exhibit low signal-to-noise ratios, making data analysis a challenge. These datasets will be useful to investigators developing their own algorithms for SMLM, SOFI, and related methods. The data will also be useful for researchers investigating growth factor receptors such as ErbB3.

  17. Imaging and quantification of trans-membrane protein diffusion in living bacteria.

    PubMed

    Oswald, Felix; L M Bank, Ernst; Bollen, Yves J M; Peterman, Erwin J G

    2014-07-07

    The cytoplasmic membrane forms the barrier between any cell's interior and the outside world. It contains many proteins that enable essential processes such as the transmission of signals, the uptake of nutrients, and cell division. In the case of prokaryotes, which do not contain intracellular membranes, the cytoplasmic membrane also contains proteins for respiration and protein folding. Mutual interactions and specific localization of these proteins depend on two-dimensional diffusion driven by thermal fluctuations. The experimental investigation of membrane-protein diffusion in bacteria is challenging due to their small size, only a few times larger than the resolution of an optical microscope. Here, we review fluorescence microscopy-based methods to study diffusion of membrane proteins in living bacteria. The main focus is on data-analysis tools to extract diffusion coefficients from single-particle tracking data obtained by single-molecule fluorescence microscopy. We introduce a novel approach, IPODD (inverse projection of displacement distributions), to obtain diffusion coefficients from the usually obtained 2-D projected diffusion trajectories of the highly 3-D curved bacterial membrane. This method provides, in contrast to traditional mean-squared-displacement methods, correct diffusion coefficients and allows unravelling of heterogeneously diffusing populations.

  18. The Interior Analysis and 3-D Reconstruction of Internally-Mixed Light-Absorbing Atmospheric Particles

    NASA Astrophysics Data System (ADS)

    Conny, J. M.; Collins, S. M.; Anderson, I.; Herzing, A.

    2010-12-01

    Carbon-containing atmospheric particles may either absorb solar or outgoing long-wave radiation or scatter solar radiation, and thus, affect Earth’s radiative balance in multiple ways. Light-absorbing carbon that is common in urban air particles such as industrial coke dust, road dust, and diesel soot, often exists in the same particle with other phases that contain, for example, aluminum, calcium, iron, and sulfur. While the optical properties of atmospheric particles in general depend on overall particle size and shape, the inhomogeneity of chemical phases within internally-mixed particles may also greatly affect particle optical properties. In this study, a series of microscopic approaches were used to identify individual light-absorbing coarse-mode particles and to assess their interior structure and composition. Particle samples were collected in 2004 from one of the U.S. EPA’s Los Angeles Particulate Matter Supersites, and were likely affected substantially by road dust and construction dust. First, bright-field and dark-field light microscopy and computer-controlled scanning electron microscopy (SEM) with energy-dispersive x-ray spectroscopy (EDX) were used to distinguish predominantly light-absorbing carbonaceous particles from other particle types such as mineral dust, sea salt, and brake wear. Second, high-resolution SEM-EDX elemental mapping of individual carbonaceous particles was used to select particles with additional elemental phases that exhibited spatial inhomogeneity. Third, focused ion-beam SEM (FIB-SEM) with EDX was used to slice through selected particles to expose interior surfaces and to determine the spatial distribution of element phases throughout the particles. Fourth, study of the interior phases of a particle was augmented by the transmission electron microscopy (TEM) of a thin section of the particle prepared by FIB-SEM. Here, electron energy loss spectroscopy with TEM was used to study chemical bonding in the carbonaceous phase. Finally, automated serial slicing and imaging in the FIB-SEM generated a stack of secondary electron images of the particles’ interior surfaces that allowed for the 3-D reconstruction of the particles, a process known as FIB tomography. Interior surface of light-absorbing carbonaceous particle from FIB-SEM analysis.

  19. Robust estimation for class averaging in cryo-EM Single Particle Reconstruction.

    PubMed

    Huang, Chenxi; Tagare, Hemant D

    2014-01-01

    Single Particle Reconstruction (SPR) for Cryogenic Electron Microscopy (cryo-EM) aligns and averages the images extracted from micrographs to improve the Signal-to-Noise ratio (SNR). Outliers compromise the fidelity of the averaging. We propose a robust cross-correlation-like w-estimator for combating the effect of outliers on the average images in cryo-EM. The estimator accounts for the natural variation of signal contrast among the images and eliminates the need for a threshold for outlier rejection. We show that the influence function of our estimator is asymptotically bounded. Evaluations of the estimator on simulated and real cryo-EM images show good performance in the presence of outliers.

  20. Application of different analytical methods for the characterization of non-spherical micro- and nanoparticles.

    PubMed

    Mathaes, Roman; Winter, Gerhard; Engert, Julia; Besheer, Ahmed

    2013-09-10

    Non-spherical micro- and nanoparticles have recently gained considerable attention due to their surprisingly different interaction with biological systems compared to their spherical counterparts, opening new opportunities for drug delivery and vaccination. Up till now, electron microscopy is the only method to quantitatively identify the critical quality attributes (CQAs) of non-spherical particles produced by film-stretching; namely size, morphology and the quality of non-spherical particles (degree of contamination with spherical ones). However, electron microscopy requires expensive instrumentation, demanding sample preparation and non-trivial image analysis. To circumvent these drawbacks, the ability of different particle analysis methods to quantitatively identify the CQA of spherical and non-spherical poly(1-phenylethene-1,2-diyl (polystyrene) particles over a wide size range (40 nm, 2 μm and 10 μm) was investigated. To this end, light obscuration, image-based analysis methods (Microflow imaging, MFI, and Vi-Cell XR Coulter Counter) and flow cytometry were used to study particles in the micron range, while asymmetric flow field fractionation (AF4) coupled to multi-angle laser scattering (MALS) and quasi elastic light scattering (QELS) was used for particles in the nanometer range, and all measurements were benchmarked against electron microscopy. Results show that MFI can reliably identify particle size and aspect ratios of the 10 μm particles, but not the 2 μm ones. Meanwhile, flow cytometry was able to differentiate between spherical and non-spherical 10 or 2 μm particles, and determine the amount of impurities in the sample. As for the nanoparticles, AF4 coupled to MALS and QELS allowed the measurement of the geometric (rg) and hydrodynamic (rh) radii of the particles, as well as their shape factors (rg/rh), confirming their morphology. While this study shows the utility of MFI, flow cytometry and AF4 for quantitative evaluation of the CQA of non-spherical particles over a wide size range, the limitations of the methods are discussed. The use of orthogonal characterization methods can provide a complete picture about the CQA of non-spherical particles over a wide size range. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Phenotype classification of single cells using SRS microscopy, RNA sequencing, and microfluidics (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Streets, Aaron M.; Cao, Chen; Zhang, Xiannian; Huang, Yanyi

    2016-03-01

    Phenotype classification of single cells reveals biological variation that is masked in ensemble measurement. This heterogeneity is found in gene and protein expression as well as in cell morphology. Many techniques are available to probe phenotypic heterogeneity at the single cell level, for example quantitative imaging and single-cell RNA sequencing, but it is difficult to perform multiple assays on the same single cell. In order to directly track correlation between morphology and gene expression at the single cell level, we developed a microfluidic platform for quantitative coherent Raman imaging and immediate RNA sequencing (RNA-Seq) of single cells. With this device we actively sort and trap cells for analysis with stimulated Raman scattering microscopy (SRS). The cells are then processed in parallel pipelines for lysis, and preparation of cDNA for high-throughput transcriptome sequencing. SRS microscopy offers three-dimensional imaging with chemical specificity for quantitative analysis of protein and lipid distribution in single cells. Meanwhile, the microfluidic platform facilitates single-cell manipulation, minimizes contamination, and furthermore, provides improved RNA-Seq detection sensitivity and measurement precision, which is necessary for differentiating biological variability from technical noise. By combining coherent Raman microscopy with RNA sequencing, we can better understand the relationship between cellular morphology and gene expression at the single-cell level.

  2. Brownian Motion of Asymmetric Boomerang Colloidal Particles

    NASA Astrophysics Data System (ADS)

    Chakrabarty, Ayan; Konya, Andrew; Wang, Feng; Selinger, Jonathan; Sun, Kai; Wei, Qi-Huo

    2014-03-01

    We used video microscopy and single particle tracking to study the diffusion and local behaviors of asymmetric boomerang particles in a quasi-two dimensional geometry. The motion is biased towards the center of hydrodynamic stress (CoH) and the mean square displacements of the particles are linear at short and long times with different diffusion coefficients and in the crossover regime it is sub-diffusive. Our model based on Langevin theory shows that these behaviors arise from the non-coincidence of the CoH with the center of the body. Since asymmetric boomerangs represent a class of rigid bodies of more generals shape, therefore our findings are generic and true for any non-skewed particle in two dimensions. Both experimental and theoretical results will be discussed.

  3. Dielectrophoretic immobilisation of nanoparticles as isolated singles in regular arrays

    NASA Astrophysics Data System (ADS)

    Knigge, Xenia; Wenger, Christian; Bier, Frank F.; Hölzel, Ralph

    2018-02-01

    We demonstrate the immobilisation of polystyrene nanoparticles on vertical nano-electrodes by means of dielectrophoresis. The electrodes have diameters of 500 nm or 50 nm, respectively, and are arranged in arrays of several thousand electrodes, allowing many thousands of experiments in parallel. At a frequency of 15 kHz, which is found favourable for polystyrene, several occupation patterns are observed, and both temporary and permanent immobilisation is achieved. In addition, a histogram method is applied, which allows to determine the number of particles occupying the electrodes. These results are validated with scanning electron microscopy images. Immobilising exactly one particle at each electrode tip is achieved for electrode tip diameters with half the particle size. Extension of this system down to the level of single molecules is envisaged, which will avoid ensemble averaging at still statistically large sample sizes.

  4. Cultivation of Chlorella on brewery wastewater and nano-particle biosynthesis by its biomass.

    PubMed

    Subramaniyam, Vidhyasri; Subashchandrabose, Suresh Ramraj; Ganeshkumar, Vimalkumar; Thavamani, Palanisami; Chen, Zuliang; Naidu, Ravi; Megharaj, Mallavarapu

    2016-07-01

    This study investigated an integrated and sustainable approach for iron nanoparticles synthesis using Chlorella sp. MM3 biomass produced from the remediation of brewery wastewater. The algal growth characteristics, biomass production, nutrient removal, and nanoparticle synthesis including its characterisation were studied to prove the above approach. The growth curve of Chlorella depicted lag and exponential phase characteristics during the first 4days in a brewery wastewater collected from a single batch of brewing process (single water sample) indicating the growth of algae in brewery wastewater. The pollutants such as total nitrogen, total phosphorus and total organic carbon in single water sample were completely utilised by Chlorella for its growth. The X-ray photoelectron spectroscopy spectra showed peaks at 706.56eV, 727.02eV, 289.84eV and 535.73eV which corresponded to the zero-valent iron, iron oxides, carbon and oxygen respectively, confirming the formation of iron nanoparticle capped with algal biomolecules. Scanning electron microscopy and particle size analysis confirmed the presence of spherical shaped iron nanoparticles of size ranging from 5 to 50nm. To our knowledge, this is the first report on nanoparticle synthesis using the biomass generated from phycoremediation of brewery wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Determination of element composition and extraterrestrial material occurrence in moss and lichen samples from King George Island (Antarctica) using reactor neutron activation analysis and SEM microscopy.

    PubMed

    Mróz, Tomasz; Szufa, Katarzyna; Frontasyeva, Marina V; Tselmovich, Vladimir; Ostrovnaya, Tatiana; Kornaś, Andrzej; Olech, Maria A; Mietelski, Jerzy W; Brudecki, Kamil

    2018-01-01

    Seven lichens (Usnea antarctica and U. aurantiacoatra) and nine moss samples (Sanionia uncinata) collected in King George Island were analyzed using instrumental neutron activation analysis, and concentration of major and trace elements was calculated. For some elements, the concentrations observed in moss samples were higher than corresponding values reported from other sites in the Antarctica, but in the lichens, these were in the same range of concentrations. Scanning electron microscopy (SEM) and statistical analysis showed large influence of volcanic-origin particles. Also, the interplanetary cosmic particles (ICP) were observed in investigated samples, as mosses and lichens are good collectors of ICP and micrometeorites.

  6. Direct observation and analysis of york-shell materials using low-voltage high-resolution scanning electron microscopy: Nanometal-particles encapsulated in metal-oxide, carbon, and polymer

    NASA Astrophysics Data System (ADS)

    Asahina, Shunsuke; Suga, Mitsuo; Takahashi, Hideyuki; Young Jeong, Hu; Galeano, Carolina; Schüth, Ferdi; Terasaki, Osamu

    2014-11-01

    Nanometal particles show characteristic features in chemical and physical properties depending on their sizes and shapes. For keeping and further enhancing their features, the particles should be protected from coalescence or degradation. One approach is to encapsulate the nanometal particles inside pores with chemically inert or functional materials, such as carbon, polymer, and metal oxides, which contain mesopores to allow permeation of only chemicals not the nanometal particles. Recently developed low-voltage high-resolution scanning electron microscopy was applied to the study of structural, chemical, and electron state of both nanometal particles and encapsulating materials in yolk-shell materials of Au@C, Ru/Pt@C, Au@TiO2, and Pt@Polymer. Progresses in the following categories were shown for the yolk-shell materials: (i) resolution of topographic image contrast by secondary electrons, of atomic-number contrast by back-scattered electrons, and of elemental mapping by X-ray energy dispersive spectroscopy; (ii) sample preparation for observing internal structures; and (iii) X-ray spectroscopy such as soft X-ray emission spectroscopy. Transmission electron microscopy was also used for characterization of Au@C.

  7. Protein secondary structure determination by constrained single-particle cryo-electron tomography.

    PubMed

    Bartesaghi, Alberto; Lecumberry, Federico; Sapiro, Guillermo; Subramaniam, Sriram

    2012-12-05

    Cryo-electron microscopy (cryo-EM) is a powerful technique for 3D structure determination of protein complexes by averaging information from individual molecular images. The resolutions that can be achieved with single-particle cryo-EM are frequently limited by inaccuracies in assigning molecular orientations based solely on 2D projection images. Tomographic data collection schemes, however, provide powerful constraints that can be used to more accurately determine molecular orientations necessary for 3D reconstruction. Here, we propose "constrained single-particle tomography" as a general strategy for 3D structure determination in cryo-EM. A key component of our approach is the effective use of images recorded in tilt series to extract high-resolution information and correct for the contrast transfer function. By incorporating geometric constraints into the refinement to improve orientational accuracy of images, we reduce model bias and overrefinement artifacts and demonstrate that protein structures can be determined at resolutions of ∼8 Å starting from low-dose tomographic tilt series. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Imaging of cellular spread on a three-dimensional scaffold by means of a novel cell-labeling technique for high-resolution computed tomography.

    PubMed

    Thimm, Benjamin W; Hofmann, Sandra; Schneider, Philipp; Carretta, Roberto; Müller, Ralph

    2012-03-01

    Computed tomography (CT) represents a truly three-dimensional (3D) imaging technique that can provide high-resolution images on the cellular level. Thus, one approach to detect single cells is X-ray absorption-based CT, where cells are labeled with a dense, opaque material providing the required contrast for CT imaging. Within the present work, a novel cell-labeling method has been developed showing the feasibility of labeling fixed cells with iron oxide (FeO) particles for subsequent CT imaging and quantitative morphometry. A biotin-streptavidin detection system was exploited to bind FeO particles to its target endothelial cells. The binding of the particles was predominantly close to the cell centers on 2D surfaces as shown by light microscopy, scanning electron microscopy, and CT. When cells were cultured on porous, 3D polyurethane surfaces, significantly more FeO particles were detected compared with surfaces without cells and FeO particle labeling using CT. Here, we report on the implementation and evaluation of a novel cell detection method based on high-resolution CT. This system has potential in cell tracking for 3D in vitro imaging in the future.

  9. Effect of surface roughness on substrate-tuned gold nanoparticle gap plasmon resonances.

    PubMed

    Lumdee, Chatdanai; Yun, Binfeng; Kik, Pieter G

    2015-03-07

    The effect of nanoscale surface roughness on the gap plasmon resonance of gold nanoparticles on thermally evaporated gold films is investigated experimentally and numerically. Single-particle scattering spectra obtained from 80 nm diameter gold particles on a gold film show significant particle-to-particle variation of the peak scattering wavelength of ±28 nm. The experimental results are compared with numerical simulations of gold nanoparticles positioned on representative rough gold surfaces, modeled based on atomic force microscopy measurements. The predicted spectral variation and average resonance wavelength show good agreement with the measured data. The study shows that nanometer scale surface roughness can significantly affect the performance of gap plasmon-based devices.

  10. Biological effects of galactic radiation HZE particles in experiments on the orbital station Salyut 7

    NASA Astrophysics Data System (ADS)

    Miller, A. T.; Nevzgodina, L. V.

    Lettuce (Lactuca sativa) seeds were flown on-board the orbital station Salyut 7 for 66-457 days. It was found that a single heavy charged particle (HZE) hitting a seed only slightly affects the subsequent plant growth. However, morphological anomalies of varying type in primordial leaves and roots were observed that show good correlation with the location of the particle track. The most severe damage detected by light and an electron microscopy were ``channels'' in dry and soaked seeds. The appearance of ``channels'' seems to be related to the LET of the incident particle. This finding is of considerable importance for assessment of space flight radiation hazard.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Bingbing; Knopf, Daniel A.; China, Swarup

    Heterogeneous ice nucleation is a physical chemistry process of critical relevance to a range of topics in the fundamental and the applied sciences and technologies. Heterogeneous ice nucleation remains insufficiently understood. This is in part due to the lack of experimental methods capable of in situ visualization of ice formation over nucleating substrates with microscopically characterized morphology and composition. We present development, validation and first applications of a novel electron microscopy platform allowing observation of individual ice nucleation events at temperature and relative humidity (RH) relevant for ice formation in a broad range of environmental and applied technology processes. Themore » approach utilizes a custom-built ice nucleation cell, interfaced with an Environmental Scanning Electron Microscope (IN-ESEM system). The IN-ESEM system allows dynamic observations of individual ice formation events over particles of atmospheric relevance and determination of the ice nucleation mechanisms. Additional IN-ESEM experiments allow examination of the location of ice formation on the surface of individual particles and micro-spectroscopy analysis of the ice nucleating particles (INPs). This includes elemental composition detected by the energy dispersed analysis of X-rays (EDX), speciation of the organic content in particles using scanning transmission X-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS), and Helium ion microscopy (HeIM). The capabilities of the IN-ESEM experimental platform are demonstrated first on laboratory standards and then by chemical imaging of INPs using a complex sample of ambient particles.« less

  12. High-throughput nanoparticle sizing using lensfree holographic microscopy and liquid nanolenses (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    McLeod, Euan

    2016-03-01

    The sizing of individual nanoparticles and the recovery of the distributions of sizes from populations of nanoparticles provide valuable information in virology, exosome analysis, air and water quality monitoring, and nanomaterials synthesis. Conventional approaches for nanoparticle sizing include those based on costly or low-throughput laboratory-scale equipment such as transmission electron microscopy or nanoparticle tracking analysis, as well as those approaches that only provide population-averaged quantities, such as dynamic light scattering. Some of these limitations can be overcome using a new family of alternative approaches based on quantitative phase imaging that combines lensfree holographic on-chip microscopy with self-assembled liquid nanolenses. In these approaches, the particles of interest are deposited onto a glass coverslip and the sample is coated with either pure liquid polyethylene glycol (PEG) or aqueous solutions of PEG. Due to surface tension, the PEG self-assembles into nano-scale lenses around the particles of interest. These nanolenses enhance the scattering signatures of the embedded particles such that individual nanoparticles as small as 40 nm are clearly visible in phase images reconstructed from captured holograms. The magnitude of the phase quantitatively corresponds to particle size with an accuracy of +/-11 nm. This family of approaches can individually size more than 10^5 particles in parallel, can handle a large dynamic range of particle sizes (40 nm - 100s of microns), and can accurately size multi-modal distributions of particles. Furthermore, the entire approach has been implemented in a compact and cost-effective device suitable for use in the field or in low-resource settings.

  13. A Toolbox for Ab Initio 3-D Reconstructions in Single-particle Electron Microscopy

    PubMed Central

    Voss, Neil R; Lyumkis, Dmitry; Cheng, Anchi; Lau, Pick-Wei; Mulder, Anke; Lander, Gabriel C; Brignole, Edward J; Fellmann, Denis; Irving, Christopher; Jacovetty, Erica L; Leung, Albert; Pulokas, James; Quispe, Joel D; Winkler, Hanspeter; Yoshioka, Craig; Carragher, Bridget; Potter, Clinton S

    2010-01-01

    Structure determination of a novel macromolecular complex via single-particle electron microscopy depends upon overcoming the challenge of establishing a reliable 3-D reconstruction using only 2-D images. There are a variety of strategies that deal with this issue, but not all of them are readily accessible and straightforward to use. We have developed a “toolbox” of ab initio reconstruction techniques that provide several options for calculating 3-D volumes in an easily managed and tightly controlled work-flow that adheres to standard conventions and formats. This toolbox is designed to streamline the reconstruction process by removing the necessity for bookkeeping, while facilitating transparent data transfer between different software packages. It currently includes procedures for calculating ab initio reconstructions via random or orthogonal tilt geometry, tomograms, and common lines, all of which have been tested using the 50S ribosomal subunit. Our goal is that the accessibility of multiple independent reconstruction algorithms via this toolbox will improve the ease with which models can be generated, and provide a means of evaluating the confidence and reliability of the final reconstructed map. PMID:20018246

  14. Three-dimensional nanoscale imaging by plasmonic Brownian microscopy

    NASA Astrophysics Data System (ADS)

    Labno, Anna; Gladden, Christopher; Kim, Jeongmin; Lu, Dylan; Yin, Xiaobo; Wang, Yuan; Liu, Zhaowei; Zhang, Xiang

    2017-12-01

    Three-dimensional (3D) imaging at the nanoscale is a key to understanding of nanomaterials and complex systems. While scanning probe microscopy (SPM) has been the workhorse of nanoscale metrology, its slow scanning speed by a single probe tip can limit the application of SPM to wide-field imaging of 3D complex nanostructures. Both electron microscopy and optical tomography allow 3D imaging, but are limited to the use in vacuum environment due to electron scattering and to optical resolution in micron scales, respectively. Here we demonstrate plasmonic Brownian microscopy (PBM) as a way to improve the imaging speed of SPM. Unlike photonic force microscopy where a single trapped particle is used for a serial scanning, PBM utilizes a massive number of plasmonic nanoparticles (NPs) under Brownian diffusion in solution to scan in parallel around the unlabeled sample object. The motion of NPs under an evanescent field is three-dimensionally localized to reconstruct the super-resolution topology of 3D dielectric objects. Our method allows high throughput imaging of complex 3D structures over a large field of view, even with internal structures such as cavities that cannot be accessed by conventional mechanical tips in SPM.

  15. Super-Resolution Microscopy Unveils Dynamic Heterogeneities in Nanoparticle Protein Corona.

    PubMed

    Feiner-Gracia, Natalia; Beck, Michaela; Pujals, Sílvia; Tosi, Sébastien; Mandal, Tamoghna; Buske, Christian; Linden, Mika; Albertazzi, Lorenzo

    2017-11-01

    The adsorption of serum proteins, leading to the formation of a biomolecular corona, is a key determinant of the biological identity of nanoparticles in vivo. Therefore, gaining knowledge on the formation, composition, and temporal evolution of the corona is of utmost importance for the development of nanoparticle-based therapies. Here, it is shown that the use of super-resolution optical microscopy enables the imaging of the protein corona on mesoporous silica nanoparticles with single protein sensitivity. Particle-by-particle quantification reveals a significant heterogeneity in protein absorption under native conditions. Moreover, the diversity of the corona evolves over time depending on the surface chemistry and degradability of the particles. This paper investigates the consequences of protein adsorption for specific cell targeting by antibody-functionalized nanoparticles providing a detailed understanding of corona-activity relations. The methodology is widely applicable to a variety of nanostructures and complements the existing ensemble approaches for protein corona study. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Development of a real-time PCR protocol for the species origin confirmation of isolated animal particles detected by NIRM.

    PubMed

    Fumière, O; Marien, A; Fernández Pierna, J A; Baeten, V; Berben, G

    2010-08-01

    At present, European legislation prohibits totally the use of processed animal proteins in feed for all farmed animals (Commission Regulation (EC) No. 1234/2003-extended feed ban). A softening of the feed ban for non-ruminants would nevertheless be considered if alternative methods could be used to gain more information concerning the species origin of processed animal proteins than that which can be provided by classical optical microscopy. This would allow control provisions such as the ban of feeding animals with proteins from the same species or intra-species recycling (Regulation (EC) No. 1774/2002). Two promising alternative methods, near-infrared microscopy (NIRM) and real-time polymerase chain reaction (PCR), were combined to authenticate, at the species level, the presence of animal particles. The paper describes the improvements of the real-time PCR method made to the DNA extraction protocol, allowing five PCR analyses to be performed with the DNA extracted from a single particle.

  17. Single particle aerosol mass spectrometry of coal combustion particles associated with high lung cancer rates in Xuanwei and Fuyuan, China.

    PubMed

    Lu, Senlin; Tan, Zhengying; Liu, Pinwei; Zhao, Hui; Liu, Dingyu; Yu, Shang; Cheng, Ping; Win, Myat Sandar; Hu, Jiwen; Tian, Linwei; Wu, Minghong; Yonemochi, Shinich; Wang, Qingyue

    2017-11-01

    Coal combustion particles (CCPs) are linked to the high incidence of lung cancer in Xuanwei and in Fuyuan, China, but studies on the chemical composition of the CCPs are still limited. Single particle aerosol mass spectrometry (SPAMS) was recently developed to measure the chemical composition and size of single particles in real-time. In this study, SPAMS was used to measure individual combustion particles emitted from Xuanwei and Fuyuan coal samples and the results were compared with those by ICP-MS and transmission electron microscopy (TEM). The total of 38,372 particles mass-analyzed by SPAMS can be divided into 9 groups based on their chemical composition and their number percentages: carbonaceous, Na-rich, K-rich, Al-rich, Fe-rich, Si-rich, Ca-rich, heavy metal-bearing, and PAH-bearing particles. The carbonaceous and PAH-bearing particles are enriched in the size range below 0.56 μm, Fe-bearing particles range from 0.56 to 1.0 μm in size, and heavy metals such as Ti, V, Cr, Cu, Zn, and Pb have diameters below 1 μm. The TEM results show that the particles from Xuanwei and Fuyuan coal combustion can be classified into soot aggregates, Fe-rich particles, heavy metal containing particles, and mineral particles. Non-volatile particles detected by SPAMS could also be observed with TEM. The number percentages by SPAMS also correlate with the mass concentrations measured by ICP-MS. Our results could provide valuable insight for understanding high lung cancer incidence in the area. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Inferring diffusion in single live cells at the single-molecule level

    PubMed Central

    Robson, Alex; Burrage, Kevin; Leake, Mark C.

    2013-01-01

    The movement of molecules inside living cells is a fundamental feature of biological processes. The ability to both observe and analyse the details of molecular diffusion in vivo at the single-molecule and single-cell level can add significant insight into understanding molecular architectures of diffusing molecules and the nanoscale environment in which the molecules diffuse. The tool of choice for monitoring dynamic molecular localization in live cells is fluorescence microscopy, especially so combining total internal reflection fluorescence with the use of fluorescent protein (FP) reporters in offering exceptional imaging contrast for dynamic processes in the cell membrane under relatively physiological conditions compared with competing single-molecule techniques. There exist several different complex modes of diffusion, and discriminating these from each other is challenging at the molecular level owing to underlying stochastic behaviour. Analysis is traditionally performed using mean square displacements of tracked particles; however, this generally requires more data points than is typical for single FP tracks owing to photophysical instability. Presented here is a novel approach allowing robust Bayesian ranking of diffusion processes to discriminate multiple complex modes probabilistically. It is a computational approach that biologists can use to understand single-molecule features in live cells. PMID:23267182

  19. The Use of Ultrashort Picosecond Laser Pulses to Generate Quantum Optical Properties of Single Molecules in Biophysics

    NASA Astrophysics Data System (ADS)

    Ly, Sonny

    Generation of quantum optical states from ultrashort laser-molecule interactions have led to fascinating discoveries in physics and chemistry. In recent years, these interactions have been extended to probe phenomena in single molecule biophysics. Photons emitted from a single fluorescent molecule contains important properties about how the molecule behave and function in that particular environment. Analysis of the second order coherence function through fluorescence correlation spectroscopy plays a pivotal role in quantum optics. At very short nanosecond timescales, the coherence function predicts photon antibunching, a purely quantum optical phenomena which states that a single molecule can only emit one photon at a time. Photon antibunching is the only direct proof of single molecule emission. From the nanosecond to microsecond timescale, the coherence function gives information about rotational diffusion coefficients, and at longer millisecond timescales, gives information regarding the translational diffusion coefficients. In addition, energy transfer between molecules from dipole-dipole interaction results in FRET, a highly sensitive method to probe conformational dynamics at nanometer distances. Here I apply the quantum optical techniques of photon antibunching, fluorescence correlation spectroscopy and FRET to probe how lipid nanodiscs form and function at the single molecule level. Lipid nanodiscs are particles that contain two apolipoprotein (apo) A-I circumventing a lipid bilayer in a belt conformation. From a technological point of view, nanodiscs mimics a patch of cell membrane that have recently been used to reconstitute a variety of membrane proteins including cytochrome P450 and bacteriorhodopsin. They are also potential drug transport vehicles due to its small and stable 10nm diameter size. Biologically, nanodiscs resemble to high degree, high density lipoproteins (HDL) in our body and provides a model platform to study lipid-protein interactions and their dynamic formation to lipoprotein particles without having to extract from human blood plasma. Although HDL has been studied extensively within the last thirty years, many questions still remain regarding the structure of apoA-I, the protein associated exclusively with it. Despite our ability to detect and image these nanodiscs by blotting, atomic force microscopy (AFM), or electron microscopy (EM), many basic properties such as their specific hydrated shape in solution, or the precise conformation of the apolipoproteins surrounding the particles are still unknown. The dynamic interactions of apoA-I with lipids are also rather poorly understood on a fundamental level, and are only characterized in bulk (biochemical blotting) or stationary methods (AFM, EM), making it impossible to study individual steps with high spatial or temporal resolution.

  20. Automated Diatom Analysis Applied to Traditional Light Microscopy: A Proof-of-Concept Study

    NASA Astrophysics Data System (ADS)

    Little, Z. H. L.; Bishop, I.; Spaulding, S. A.; Nelson, H.; Mahoney, C.

    2017-12-01

    Diatom identification and enumeration by high resolution light microscopy is required for many areas of research and water quality assessment. Such analyses, however, are both expertise and labor-intensive. These challenges motivate the need for an automated process to efficiently and accurately identify and enumerate diatoms. Improvements in particle analysis software have increased the likelihood that diatom enumeration can be automated. VisualSpreadsheet software provides a possible solution for automated particle analysis of high-resolution light microscope diatom images. We applied the software, independent of its complementary FlowCam hardware, to automated analysis of light microscope images containing diatoms. Through numerous trials, we arrived at threshold settings to correctly segment 67% of the total possible diatom valves and fragments from broad fields of view. (183 light microscope images were examined containing 255 diatom particles. Of the 255 diatom particles present, 216 diatoms valves and fragments of valves were processed, with 170 properly analyzed and focused upon by the software). Manual analysis of the images yielded 255 particles in 400 seconds, whereas the software yielded a total of 216 particles in 68 seconds, thus highlighting that the software has an approximate five-fold efficiency advantage in particle analysis time. As in past efforts, incomplete or incorrect recognition was found for images with multiple valves in contact or valves with little contrast. The software has potential to be an effective tool in assisting taxonomists with diatom enumeration by completing a large portion of analyses. Benefits and limitations of the approach are presented to allow for development of future work in image analysis and automated enumeration of traditional light microscope images containing diatoms.

  1. SNSMIL, a real-time single molecule identification and localization algorithm for super-resolution fluorescence microscopy

    PubMed Central

    Tang, Yunqing; Dai, Luru; Zhang, Xiaoming; Li, Junbai; Hendriks, Johnny; Fan, Xiaoming; Gruteser, Nadine; Meisenberg, Annika; Baumann, Arnd; Katranidis, Alexandros; Gensch, Thomas

    2015-01-01

    Single molecule localization based super-resolution fluorescence microscopy offers significantly higher spatial resolution than predicted by Abbe’s resolution limit for far field optical microscopy. Such super-resolution images are reconstructed from wide-field or total internal reflection single molecule fluorescence recordings. Discrimination between emission of single fluorescent molecules and background noise fluctuations remains a great challenge in current data analysis. Here we present a real-time, and robust single molecule identification and localization algorithm, SNSMIL (Shot Noise based Single Molecule Identification and Localization). This algorithm is based on the intrinsic nature of noise, i.e., its Poisson or shot noise characteristics and a new identification criterion, QSNSMIL, is defined. SNSMIL improves the identification accuracy of single fluorescent molecules in experimental or simulated datasets with high and inhomogeneous background. The implementation of SNSMIL relies on a graphics processing unit (GPU), making real-time analysis feasible as shown for real experimental and simulated datasets. PMID:26098742

  2. A rapid-screening approach to detect and quantify microplastics based on fluorescent tagging with Nile Red

    NASA Astrophysics Data System (ADS)

    Maes, Thomas; Jessop, Rebecca; Wellner, Nikolaus; Haupt, Karsten; Mayes, Andrew G.

    2017-03-01

    A new approach is presented for analysis of microplastics in environmental samples, based on selective fluorescent staining using Nile Red (NR), followed by density-based extraction and filtration. The dye adsorbs onto plastic surfaces and renders them fluorescent when irradiated with blue light. Fluorescence emission is detected using simple photography through an orange filter. Image-analysis allows fluorescent particles to be identified and counted. Magnified images can be recorded and tiled to cover the whole filter area, allowing particles down to a few micrometres to be detected. The solvatochromic nature of Nile Red also offers the possibility of plastic categorisation based on surface polarity characteristics of identified particles. This article details the development of this staining method and its initial cross-validation by comparison with infrared (IR) microscopy. Microplastics of different sizes could be detected and counted in marine sediment samples. The fluorescence staining identified the same particles as those found by scanning a filter area with IR-microscopy.

  3. Growth of diamond by RF plasma-assisted chemical vapor deposition

    NASA Technical Reports Server (NTRS)

    Meyer, Duane E.; Ianno, Natale J.; Woollam, John A.; Swartzlander, A. B.; Nelson, A. J.

    1988-01-01

    A system has been designed and constructed to produce diamond particles by inductively coupled radio-frequency, plasma-assisted chemical vapor deposition. This is a low-pressure, low-temperature process used in an attempt to deposit diamond on substrates of glass, quartz, silicon, nickel, and boron nitride. Several deposition parameters have been varied including substrate temperature, gas concentration, gas pressure, total gas flow rate, RF input power, and deposition time. Analytical methods employed to determine composition and structure of the deposits include scanning electron microscopy, absorption spectroscopy, scanning Auger microprobe spectroscopy, and Raman spectroscopy. Analysis indicates that particles having a thin graphite surface, as well as diamond particles with no surface coatings, have been deposited. Deposits on quartz have exhibited optical bandgaps as high as 4.5 eV. Scanning electron microscopy analysis shows that particles are deposited on a pedestal which Auger spectroscopy indicates to be graphite. This is a phenomenon that has not been previously reported in the literature.

  4. A rapid-screening approach to detect and quantify microplastics based on fluorescent tagging with Nile Red

    PubMed Central

    Maes, Thomas; Jessop, Rebecca; Wellner, Nikolaus; Haupt, Karsten; Mayes, Andrew G.

    2017-01-01

    A new approach is presented for analysis of microplastics in environmental samples, based on selective fluorescent staining using Nile Red (NR), followed by density-based extraction and filtration. The dye adsorbs onto plastic surfaces and renders them fluorescent when irradiated with blue light. Fluorescence emission is detected using simple photography through an orange filter. Image-analysis allows fluorescent particles to be identified and counted. Magnified images can be recorded and tiled to cover the whole filter area, allowing particles down to a few micrometres to be detected. The solvatochromic nature of Nile Red also offers the possibility of plastic categorisation based on surface polarity characteristics of identified particles. This article details the development of this staining method and its initial cross-validation by comparison with infrared (IR) microscopy. Microplastics of different sizes could be detected and counted in marine sediment samples. The fluorescence staining identified the same particles as those found by scanning a filter area with IR-microscopy. PMID:28300146

  5. Development of a Video-Microscopic Tool To Evaluate the Precipitation Kinetics of Poorly Water Soluble Drugs: A Case Study with Tadalafil and HPMC.

    PubMed

    Christfort, Juliane Fjelrad; Plum, Jakob; Madsen, Cecilie Maria; Nielsen, Line Hagner; Sandau, Martin; Andersen, Klaus; Müllertz, Anette; Rades, Thomas

    2017-12-04

    Many drug candidates today have a low aqueous solubility and, hence, may show a low oral bioavailability, presenting a major formulation and drug delivery challenge. One way to increase the bioavailability of these drugs is to use a supersaturating drug delivery strategy. The aim of this study was to develop a video-microscopic method, to evaluate the effect of a precipitation inhibitor on supersaturated solutions of the poorly soluble drug tadalafil, using a novel video-microscopic small scale setup. Based on preliminary studies, a degree of supersaturation of 29 was chosen for the supersaturation studies with tadalafil in FaSSIF. Different amounts of hydroxypropyl methyl cellulose (HPMC) were predissolved in FaSSIF to give four different concentrations, and the supersaturated system was then created using a solvent shift method. Precipitation of tadalafil from the supersaturated solutions was monitored by video-microscopy as a function of time. Single-particle analysis was possible using commercially available software; however, to investigate the entire population of precipitating particles (i.e., their number and area covered in the field of view), an image analysis algorithm was developed (multiparticle analysis). The induction time for precipitation of tadalafil in FaSSIF was significantly prolonged by adding 0.01% (w/v) HPMC to FaSSIF, and the maximum inhibition was reached at 0.1% (w/v) HPMC, after which additional HPMC did not further increase the induction time. The single-particle and multiparticle analyses yielded the same ranking of the HPMC concentrations, regarding the inhibitory effect on precipitation. The developed small scale method to assess the effect of precipitation inhibitors can speed up the process of choosing the right precipitation inhibitor and the concentration to be used.

  6. Optical properties of silicon nanocrystals synthesized in supercritical fluids

    NASA Astrophysics Data System (ADS)

    Pell, Lindsay; Korgel, Brian A.

    2002-11-01

    We developed a supercritical solution phase synthesis of silicon nanocrystals. High temperature and pressure (500°C, >140 bar) conditions allow a wet chemical approach to this challenging synthesis. Diphenylsilane was used as a silicon precursor and long chain thiols and alcohols were used to sterically stabilize the luminescent nanocrystals. Moderate size separation was achieved via size exclusion chromatography using crosslinked styrene divinylbenzene beads. Size separated fractions of silicon nanocrystals exhibit quantum efficiencies of 12% while polydisperse samples have quantum efficiencies of 5%. Nanocrystal size distributions have been determined with transmission electron microscopy and further characterized with atomic force microscopy (AFM). These silicon nanocrystals have size tunable photoluminescence as indicated by their ensemble spectroscopy and further verified through AFM and single nanocrystal photoluminescence spectroscopy. Fluorescence intermittency (characteristic of single CdSe nanocrystals) is present in our isolated silicon nanocrystals and is one of the criteria used to distinguish single crystals from clusters of particles.

  7. Polarization Properties of Semiconductor Nanorod Heterostructures: From Single Particles to the Ensemble.

    PubMed

    Hadar, Ido; Hitin, Gal B; Sitt, Amit; Faust, Adam; Banin, Uri

    2013-02-07

    Semiconductor heterostructured seeded nanorods exhibit intense polarized emission, and the degree of polarization is determined by their morphology and dimensions. Combined optical and atomic force microscopy were utilized to directly correlate the emission polarization and the orientation of single seeded nanorods. For both the CdSe/CdS sphere-in-rod (S@R) and rod-in-rod (R@R), the emission was found to be polarized along the nanorod's main axis. Statistical analysis for hundreds of single nanorods shows higher degree of polarization, p, for R@R (p = 0.83), in comparison to S@R (p = 0.75). These results are in good agreement with the values inferred by ensemble photoselection anisotropy measurements in solution, establishing its validity for nanorod samples. On this basis, photoselection photoluminescence excitation anisotropy measurements were carried out providing unique information concerning the symmetry of higher excitonic transitions and allowing for a better distinction between the dielectric and the quantum-mechanical contributions to polarization in nanorods.

  8. Non-rigid multi-frame registration of cell nuclei in live cell fluorescence microscopy image data.

    PubMed

    Tektonidis, Marco; Kim, Il-Han; Chen, Yi-Chun M; Eils, Roland; Spector, David L; Rohr, Karl

    2015-01-01

    The analysis of the motion of subcellular particles in live cell microscopy images is essential for understanding biological processes within cells. For accurate quantification of the particle motion, compensation of the motion and deformation of the cell nucleus is required. We introduce a non-rigid multi-frame registration approach for live cell fluorescence microscopy image data. Compared to existing approaches using pairwise registration, our approach exploits information from multiple consecutive images simultaneously to improve the registration accuracy. We present three intensity-based variants of the multi-frame registration approach and we investigate two different temporal weighting schemes. The approach has been successfully applied to synthetic and live cell microscopy image sequences, and an experimental comparison with non-rigid pairwise registration has been carried out. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Engineering and characterization of mesoporous silica-coated magnetic particles for mercury removal from industrial effluents

    NASA Astrophysics Data System (ADS)

    Dong, Jie; Xu, Zhenghe; Wang, Feng

    2008-03-01

    Mesoporous silica coatings were synthesized on dense liquid silica-coated magnetite particles using cetyl-trimethyl-ammonium chloride (CTAC) as molecular templates, followed by sol-gel process. A specific surface area of the synthesized particles as high as 150 m 2/g was obtained. After functionalization with mercapto-propyl-trimethoxy-silane (MPTS) through silanation reaction, the particles exhibited high affinity of mercury in aqueous solutions. Atomic force microscopy (AFM), zeta potential measurement, thermal gravimetric analysis (TGA), analytical transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and atomic absorption spectroscopy (AAS) were used to characterize the synthesis processes, surface functionalization, and mercury adsorption on the synthesized magnetite particles. The loading capacity of the particles for mercury was determined to be as high as 14 mg/g at pH 2. A unique feature of strong magnetism of the synthesized nanocomposite particles makes the subsequent separation of the magnetic sorbents from complex multiphase suspensions convenient and effective.

  10. Fluorescent single-digit detonation nanodiamond for biomedical applications

    NASA Astrophysics Data System (ADS)

    Nunn, Nicholas; d’Amora, Marta; Prabhakar, Neeraj; Panich, Alexander M.; Froumin, Natalya; Torelli, Marco D.; Vlasov, Igor; Reineck, Philipp; Gibson, Brant; Rosenholm, Jessica M.; Giordani, Silvia; Shenderova, Olga

    2018-07-01

    Detonation nanodiamonds (DNDs) have emerged as promising candidates for a variety of biomedical applications, thanks to different physicochemical and biological properties, such as small size and reactive surfaces. In this study, we propose carbon dot decorated single digit (4–5 nm diameter) primary particles of detonation nanodiamond as promising fluorescent probes. Due to their intrinsic fluorescence originating from tiny (1–2 atomic layer thickness) carbonaceous structures on their surfaces, they exhibit brightness suitable for in vitro imaging. Moreover, this material offers a unique, cost effective alternative to sub-10 nm nanodiamonds containing fluorescent nitrogen-vacancy color centers, which have not yet been produced at large scale. In this paper, carbon dot decorated nanodiamonds are characterized by several analytical techniques. In addition, the efficient cellular uptake and fluorescence of these particles are observed in vitro on MDA-MD-231 breast cancer cells by means of confocal imaging. Finally, the in vivo biocompatibility of carbon dot decorated nanodiamonds is demonstrated in zebrafish during the development. Our results indicate the potential of single-digit detonation nanodiamonds as biocompatible fluorescent probes. This unique material will find application in correlative light and electron microscopy, where small sized NDs can be attached to antibodies to act as a suitable dual marker for intracellular correlative microscopy of biomolecules.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Shih-Ching; Lo, Shih-Yen; Graduate Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan

    Research highlights: {yields} Lipid rafts are known to play an important role in virus entry and virus assembly of many viruses. {yields} However, HCV is the first example of the association of lipid raft with viral RNA replication. {yields} Our results in this manuscript demonstrate that purified HCV RCs with associated lipid raft membrane appeared as distinct particles of around 0.7 um under EM and AFM. {yields} Knockdown of proteins associated with lipid raft suppressed the HCV replication and reduced the number of these particles. {yields} To our knowledge, structures of HCV RCs were demonstrated at its first time inmore » this manuscript. -- Abstract: Hepatitis C viral RNA synthesis has been demonstrated to occur on a lipid raft membrane structure. Lipid raft membrane fraction purified by membrane flotation analysis was observed using transmission electron microscopy and atomic force microscopy. Particles around 0.7 um in size were found in lipid raft membrane fraction purified from hepatitis C virus (HCV) replicon but not their parental HuH7 cells. HCV NS5A protein was associated with these specialized particles. After several cycles of freezing-thawing, these particles would fuse into larger sizes up to 10 um. Knockdown of seven proteins associated with lipid raft (VAPA, COPG, RAB18, COMT, CDC42, DPP4, and KDELR2) of HCV replicon cells reduced the observed number of these particles and suppressed the HCV replication. Results in this study indicated that HCV replication complexes with associated lipid raft membrane form distinct particle structures of around 0.7 um as observed from transmission electron microscopy and atomic force microscopy.« less

  12. Characterizing string-of-pearls colloidal silica by multidetector hydrodynamic chromatography and comparison to multidetector size-exclusion chromatography, off-line multiangle static light scattering, and transmission electron microscopy.

    PubMed

    Brewer, Amandaa K; Striegel, André M

    2011-04-15

    The string-of-pearls-type morphology is ubiquitous, manifesting itself variously in proteins, vesicles, bacteria, synthetic polymers, and biopolymers. Characterizing the size and shape of analytes with such morphology, however, presents a challenge, due chiefly to the ease with which the "strings" can be broken during chromatographic analysis or to the paucity of information obtained from the benchmark microscopy and off-line light scattering methods. Here, we address this challenge with multidetector hydrodynamic chromatography (HDC), which has the ability to determine, simultaneously, the size, shape, and compactness and their distributions of string-of-pearls samples. We present the quadruple-detector HDC analysis of colloidal string-of-pearls silica, employing static multiangle and quasielastic light scattering, differential viscometry, and differential refractometry as detection methods. The multidetector approach shows a sample that is broadly polydisperse in both molar mass and size, with strings ranging from two to five particles, but which also contains a high concentration of single, unattached "pearls". Synergistic combination of the various size parameters obtained from the multiplicity of detectors employed shows that the strings with higher degrees of polymerization have a shape similar to the theory-predicted shape of a Gaussian random coil chain of nonoverlapping beads, while the strings with lower degrees of polymerization have a prolate ellipsoidal shape. The HDC technique is contrasted experimentally with multidetector size-exclusion chromatography, where, even under extremely gentle conditions, the strings still degraded during analysis. Such degradation is shown to be absent in HDC, as evidenced by the fact that the molar mass and radius of gyration obtained by HDC with multiangle static light scattering detection (HDC/MALS) compare quite favorably to those determined by off-line MALS analysis under otherwise identical conditions. The multidetector HDC results were also comparable to those obtained by transmission electron microscopy (TEM). Unlike off-line MALS or TEM, however, multidetector HDC is able to provide complete particle analysis based on the molar mass, size, shape, and compactness and their distributions for the entire sample population in less than 20 min. © 2011 American Chemical Society

  13. Soil Analysis Micro-Mission Concepts Derived from the MSP 2001 Mars Environmental Compatibility Assessment (MECA)

    NASA Technical Reports Server (NTRS)

    Hecht, M. H.; Meloy, T. P.; Anderson, M. S.; Buehler, M. G.; Frant, M. A.; Grannan, S. M.; Fuerstenau, S. D.; Keller, H. U.; Markiewicz, W. J.; Marshall, J.

    1999-01-01

    The Mars Environmental Compatibility Assessment (MECA) will evaluate the Martian environment for soil and dust-related hazards to human exploration as part of the Mars Surveyor Program 2001 Lander. The integrated MECA payload contains a wet-chemistry laboratory, a microscopy station, an electrometer to characterize the electrostatic environment, and arrays of material patches to study abrasion and adhesion. Heritage will be all-important for low cost micro-missions, and adaptations of instruments developed for the Pathfinder, '98 and '01 Landers should be strong contenders for '03 flights. This talk has three objectives: (1) Familiarize the audience with MECA instrument capabilities; (2) present concepts for stand-alone and/or mobile versions of MECA instruments; and (3) broaden the context of the MECA instruments from human exploration to a comprehensive scientific survey of Mars. Due to time limitations, emphasis will be on the chemistry and microscopy experiments. Ion-selective electrodes and related sensors in MECA's wet-chemistry laboratory will evaluate total dissolved solids, redox potential, pH, and the concentration of many soluble ions and gases in wet Martian soil. These electrodes can detect potentially dangerous heavy-metal ions, emitted pathogenic gases, and the soil's corrosive potential, and experiments will include cyclic voltammetry and anodic stripping. For experiments beyond 2001, enhancements could allow multiple use of the cells (for mobile experiments) and reagent addition (for quantitative mineralogical and exobiological analysis). MECA's microscopy station combines optical and atomic-force microscopy (AFM) in an actively focused, controlled illumination environment to image particles from millimeters to nanometers in size. Careful selection of substrates allows controlled experiments in adhesion, abrasion, hardness, aggregation, magnetic and other properties. Special tools allow primitive manipulation (brushing and scraping) of samples. Soil particle properties including size, shape, color, hardness, adhesive potential (electrostatic and magnetic), will be determined using an array of sample receptacles and collection substrates. The simple, rugged atomic-force microscope will image in the submicron size range and has the capability of performing a particle-by-particle analysis of the dust and soil. Future implementations might enhance the optical microscopy with spectroscopy, or incorporate advanced AFM techniques for thermogravimetric and chemical analysis.

  14. Advances in the microrheology of complex fluids

    NASA Astrophysics Data System (ADS)

    Waigh, Thomas Andrew

    2016-07-01

    New developments in the microrheology of complex fluids are considered. Firstly the requirements for a simple modern particle tracking microrheology experiment are introduced, the error analysis methods associated with it and the mathematical techniques required to calculate the linear viscoelasticity. Progress in microrheology instrumentation is then described with respect to detectors, light sources, colloidal probes, magnetic tweezers, optical tweezers, diffusing wave spectroscopy, optical coherence tomography, fluorescence correlation spectroscopy, elastic- and quasi-elastic scattering techniques, 3D tracking, single molecule methods, modern microscopy methods and microfluidics. New theoretical techniques are also reviewed such as Bayesian analysis, oversampling, inversion techniques, alternative statistical tools for tracks (angular correlations, first passage probabilities, the kurtosis, motor protein step segmentation etc), issues in micro/macro rheological agreement and two particle methodologies. Applications where microrheology has begun to make some impact are also considered including semi-flexible polymers, gels, microorganism biofilms, intracellular methods, high frequency viscoelasticity, comb polymers, active motile fluids, blood clots, colloids, granular materials, polymers, liquid crystals and foods. Two large emergent areas of microrheology, non-linear microrheology and surface microrheology are also discussed.

  15. In-line three-dimensional holography of nanocrystalline objects at atomic resolution

    PubMed Central

    Chen, F.-R.; Van Dyck, D.; Kisielowski, C.

    2016-01-01

    Resolution and sensitivity of the latest generation aberration-corrected transmission electron microscopes allow the vast majority of single atoms to be imaged with sub-Ångstrom resolution and their locations determined in an image plane with a precision that exceeds the 1.9-pm wavelength of 300 kV electrons. Such unprecedented performance allows expansion of electron microscopic investigations with atomic resolution into the third dimension. Here we report a general tomographic method to recover the three-dimensional shape of a crystalline particle from high-resolution images of a single projection without the need for sample rotation. The method is compatible with low dose rate electron microscopy, which improves on signal quality, while minimizing electron beam-induced structure modifications even for small particles or surfaces. We apply it to germanium, gold and magnesium oxide particles, and achieve a depth resolution of 1–2 Å, which is smaller than inter-atomic distances. PMID:26887849

  16. Tomato Spotted Wilt Virus Particle Morphogenesis in Plant Cells

    PubMed Central

    Kikkert, Marjolein; Van Lent, Jan; Storms, Marc; Bodegom, Pentcho; Kormelink, Richard; Goldbach, Rob

    1999-01-01

    A model for the maturation of tomato spotted wilt virus (TSWV) particles is proposed, mainly based on results with a protoplast infection system, in which the chronology of different maturation events could be determined. By using specific monoclonal and polyclonal antisera in immunofluorescence and electron microscopy, the site of TSWV particle morphogenesis was determined to be the Golgi system. The viral glycoproteins G1 and G2 accumulate in the Golgi prior to a process of wrapping, by which the viral nucleocapsids obtain a double membrane. In a later stage of the maturation, these doubly enveloped particles fuse to each other and to the endoplasmic reticulum to form singly enveloped particles clustered in membranes. Similarities and differences between the maturation of animal-infecting (bunya)viruses and plant-infecting tospoviruses are discussed. PMID:9971812

  17. Selective Capture of Histidine-tagged Proteins from Cell Lysates Using TEM grids Modified with NTA-Graphene Oxide

    NASA Astrophysics Data System (ADS)

    Benjamin, Christopher J.; Wright, Kyle J.; Bolton, Scott C.; Hyun, Seok-Hee; Krynski, Kyle; Grover, Mahima; Yu, Guimei; Guo, Fei; Kinzer-Ursem, Tamara L.; Jiang, Wen; Thompson, David H.

    2016-10-01

    We report the fabrication of transmission electron microscopy (TEM) grids bearing graphene oxide (GO) sheets that have been modified with Nα, Nα-dicarboxymethyllysine (NTA) and deactivating agents to block non-selective binding between GO-NTA sheets and non-target proteins. The resulting GO-NTA-coated grids with these improved antifouling properties were then used to isolate His6-T7 bacteriophage and His6-GroEL directly from cell lysates. To demonstrate the utility and simplified workflow enabled by these grids, we performed cryo-electron microscopy (cryo-EM) of His6-GroEL obtained from clarified E. coli lysates. Single particle analysis produced a 3D map with a gold standard resolution of 8.1 Å. We infer from these findings that TEM grids modified with GO-NTA are a useful tool that reduces background and improves both the speed and simplicity of biological sample preparation for high-resolution structure elucidation by cryo-EM.

  18. Efficient estimation of three-dimensional covariance and its application in the analysis of heterogeneous samples in cryo-electron microscopy

    PubMed Central

    Liao, Hstau Y.; Hashem, Yaser; Frank, Joachim

    2015-01-01

    Summary Single-particle cryogenic electron microscopy (cryo-EM) is a powerful tool for the study of macromolecular structures at high resolution. Classification allows multiple structural states to be extracted and reconstructed from the same sample. One classification approach is via the covariance matrix, which captures the correlation between every pair of voxels. Earlier approaches employ computing-intensive resampling and estimate only the eigenvectors of the matrix, which are then used in a separate fast classification step. We propose an iterative scheme to explicitly estimate the covariance matrix in its entirety. In our approach, the flexibility in choosing the solution domain allows us to examine a part of the molecule in greater detail. 3D covariance maps obtained in this way from experimental data (cryo-EM images of the eukaryotic pre-initiation complex) prove to be in excellent agreement with conclusions derived by using traditional approaches, revealing in addition the interdependencies of ligand bindings and structural changes. PMID:25982529

  19. Efficient estimation of three-dimensional covariance and its application in the analysis of heterogeneous samples in cryo-electron microscopy.

    PubMed

    Liao, Hstau Y; Hashem, Yaser; Frank, Joachim

    2015-06-02

    Single-particle cryogenic electron microscopy (cryo-EM) is a powerful tool for the study of macromolecular structures at high resolution. Classification allows multiple structural states to be extracted and reconstructed from the same sample. One classification approach is via the covariance matrix, which captures the correlation between every pair of voxels. Earlier approaches employ computing-intensive resampling and estimate only the eigenvectors of the matrix, which are then used in a separate fast classification step. We propose an iterative scheme to explicitly estimate the covariance matrix in its entirety. In our approach, the flexibility in choosing the solution domain allows us to examine a part of the molecule in greater detail. Three-dimensional covariance maps obtained in this way from experimental data (cryo-EM images of the eukaryotic pre-initiation complex) prove to be in excellent agreement with conclusions derived by using traditional approaches, revealing in addition the interdependencies of ligand bindings and structural changes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Selective Capture of Histidine-tagged Proteins from Cell Lysates Using TEM grids Modified with NTA-Graphene Oxide.

    PubMed

    Benjamin, Christopher J; Wright, Kyle J; Bolton, Scott C; Hyun, Seok-Hee; Krynski, Kyle; Grover, Mahima; Yu, Guimei; Guo, Fei; Kinzer-Ursem, Tamara L; Jiang, Wen; Thompson, David H

    2016-10-17

    We report the fabrication of transmission electron microscopy (TEM) grids bearing graphene oxide (GO) sheets that have been modified with N α , N α -dicarboxymethyllysine (NTA) and deactivating agents to block non-selective binding between GO-NTA sheets and non-target proteins. The resulting GO-NTA-coated grids with these improved antifouling properties were then used to isolate His 6 -T7 bacteriophage and His 6 -GroEL directly from cell lysates. To demonstrate the utility and simplified workflow enabled by these grids, we performed cryo-electron microscopy (cryo-EM) of His 6 -GroEL obtained from clarified E. coli lysates. Single particle analysis produced a 3D map with a gold standard resolution of 8.1 Å. We infer from these findings that TEM grids modified with GO-NTA are a useful tool that reduces background and improves both the speed and simplicity of biological sample preparation for high-resolution structure elucidation by cryo-EM.

  1. EMEN2: An Object Oriented Database and Electronic Lab Notebook

    PubMed Central

    Rees, Ian; Langley, Ed; Chiu, Wah; Ludtke, Steven J.

    2013-01-01

    Transmission electron microscopy and associated methods such as single particle analysis, 2-D crystallography, helical reconstruction and tomography, are highly data-intensive experimental sciences, which also have substantial variability in experimental technique. Object-oriented databases present an attractive alternative to traditional relational databases for situations where the experiments themselves are continually evolving. We present EMEN2, an easy to use object-oriented database with a highly flexible infrastructure originally targeted for transmission electron microscopy and tomography, which has been extended to be adaptable for use in virtually any experimental science. It is a pure object-oriented database designed for easy adoption in diverse laboratory environments, and does not require professional database administration. It includes a full featured, dynamic web interface in addition to APIs for programmatic access. EMEN2 installations currently support roughly 800 scientists worldwide with over 1/2 million experimental records and over 20 TB of experimental data. The software is freely available with complete source. PMID:23360752

  2. Glasslike Membrane Protein Diffusion in a Crowded Membrane.

    PubMed

    Munguira, Ignacio; Casuso, Ignacio; Takahashi, Hirohide; Rico, Felix; Miyagi, Atsushi; Chami, Mohamed; Scheuring, Simon

    2016-02-23

    Many functions of the plasma membrane depend critically on its structure and dynamics. Observation of anomalous diffusion in vivo and in vitro using fluorescence microscopy and single particle tracking has advanced our concept of the membrane from a homogeneous fluid bilayer with freely diffusing proteins to a highly organized crowded and clustered mosaic of lipids and proteins. Unfortunately, anomalous diffusion could not be related to local molecular details given the lack of direct and unlabeled molecular observation capabilities. Here, we use high-speed atomic force microscopy and a novel analysis methodology to analyze the pore forming protein lysenin in a highly crowded environment and document coexistence of several diffusion regimes within one membrane. We show the formation of local glassy phases, where proteins are trapped in neighbor-formed cages for time scales up to 10 s, which had not been previously experimentally reported for biological membranes. Furthermore, around solid-like patches and immobile molecules a slower glass phase is detected leading to protein trapping and creating a perimeter of decreased membrane diffusion.

  3. Simple glucose reduction route for one-step synthesis of copper nanofluids

    NASA Astrophysics Data System (ADS)

    Shenoy, U. Sandhya; Shetty, A. Nityananda

    2014-01-01

    One-step method has been employed in the synthesis of copper nanofluids. Copper nitrate is reduced by glucose in the presence of sodium lauryl sulfate. The synthesized particles are characterized by X-ray diffraction technique for the phase structure; electron diffraction X-ray analysis for chemical composition; transmission electron microscopy and field emission scanning electron microscopy for the morphology; Fourier-transform infrared spectroscopy and ultraviolet-visible spectroscopy for the analysis of ingredients of the solution. Thermal conductivity, sedimentation and rheological measurements have also been carried out. It is found that the reaction parameters have considerable effect on the size of the particle formed and rate of the reaction. The techniques confirm that the synthesized particles are copper. The reported method showed promising increase in the thermal conductivity of the base fluid and is found to be reliable, simple and cost-effective method for preparing heat transfer fluids with higher stability.

  4. Vacuum brazing of high volume fraction SiC particles reinforced aluminum matrix composites

    NASA Astrophysics Data System (ADS)

    Cheng, Dongfeng; Niu, Jitai; Gao, Zeng; Wang, Peng

    2015-03-01

    This experiment chooses A356 aluminum matrix composites containing 55% SiC particle reinforcing phase as the parent metal and Al-Si-Cu-Zn-Ni alloy metal as the filler metal. The brazing process is carried out in vacuum brazing furnace at the temperature of 550°C and 560°C for 3 min, respectively. The interfacial microstructures and fracture surfaces are investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy spectrum analysis (EDS). The result shows that adequacy of element diffusion are superior when brazing at 560°C, because of higher activity and liquidity. Dislocations and twins are observed at the interface between filler and composite due to the different expansion coefficient of the aluminum alloy matrix and SiC particles. The fracture analysis shows that the brittle fracture mainly located at interface of filler and composites.

  5. Background-Free 3D Nanometric Localization and Sub-nm Asymmetry Detection of Single Plasmonic Nanoparticles by Four-Wave Mixing Interferometry with Optical Vortices

    NASA Astrophysics Data System (ADS)

    Zoriniants, George; Masia, Francesco; Giannakopoulou, Naya; Langbein, Wolfgang; Borri, Paola

    2017-10-01

    Single nanoparticle tracking using optical microscopy is a powerful technique with many applications in biology, chemistry, and material sciences. Despite significant advances, localizing objects with nanometric position precision in a scattering environment remains challenging. Applied methods to achieve contrast are dominantly fluorescence based, with fundamental limits in the emitted photon fluxes arising from the excited-state lifetime as well as photobleaching. Here, we show a new four-wave-mixing interferometry technique, whereby the position of a single nonfluorescing gold nanoparticle of 25-nm radius is determined with 16 nm precision in plane and 3 nm axially from rapid single-point measurements at 1-ms acquisition time by exploiting optical vortices. The precision in plane is consistent with the photon shot-noise, while axially it is limited by the nano-positioning sample stage, with an estimated photon shot-noise limit of 0.5 nm. The detection is background-free even inside biological cells. The technique is also uniquely sensitive to particle asymmetries of only 0.5% ellipticity, corresponding to a single atomic layer of gold, as well as particle orientation. This method opens new ways of unraveling single-particle trafficking within complex 3D architectures.

  6. Synthesis of hollow ZnO microspheres by an integrated autoclave and pyrolysis process.

    PubMed

    Duan, Jinxia; Huang, Xintang; Wang, Enke; Ai, Hanhua

    2006-03-28

    Hollow zinc oxide microspheres have been synthesized from a micro ZnBr2·2H2O precursor obtained by an autoclave process in bromoform steam at 220 °C /2.5 MPa. Field-emission scanning electron microscropy (FE-SEM) and transmission electron microscopy (TEM) show that the products are about 1.0 µm single crystal spherical particles with hollow interiors, partly open surfaces and walls self-assembled by ZnO nanoparticles. X-ray diffraction (XRD) analysis shows that the as-prepared ZnO hollow spheres are of a hexagonal phase structure. A possible formation mechanism is suggested on the basis of the shape evolution of ZnO nanostructures observed by SEM and TEM. The room-temperature photoluminescence (PL) spectrum shows UV emission around 386 nm and weak green emission peaks indicating that there are few defects in the single crystal grains of the ZnO microspheres.

  7. Shape Effects in Nanoparticle-Based Imaging Agents

    NASA Astrophysics Data System (ADS)

    Culver, Kayla Shani Brook

    At the nanoscale, material properties become highly size and shape dependent. These properties can be manipulated and exploited for a variety of biomedical applications, including sensing, drug delivery, diagnostics, and imaging. In particular, nanoparticles of different materials, sizes and shapes have been developed as high-performance contrast agents for optical, electron, and medical imaging. In this thesis, I focus on gold nanoparticles because they are widely used as contrast agents in multiple types of imaging modalities. Additionally, the surface of gold can be readily functionalized with ligands and the structure of the particles can be manipulated to modulate their performance as imaging agents. The properties of nanoparticles can generate contrast directly. For example, the light scattering properties of gold particles can be visualized in optical microscopy, the high electron density of gold produces contrast in electron microscopy, and the x-ray absorption properties of gold can be detected in medical x-ray and computed tomography imaging. Alternatively, the properties of the nanomaterial can be exploited to modulate the signal produced by other molecules that are bound to the particle surface. The light emission of molecular fluorophores can be quenched or dramatically increased by coupling to the optical field enhancements of gold nanoparticles, and the performance of gadolinium (Gd(III))-based magnetic resonance imaging (MRI) contrast agents can be increased by coupling to the rotational motion of nanoparticles. In this dissertation, I focus specifically on how the structure of star-shaped gold particles (nanostars) can be exploited as single-particle optical probes and to dramatically enhance the relaxivity of Gd(III) bound to the surface. Differential interference contrast (DIC) is a type of wide-field diffraction-limited optical microscopy that is commonly used by biologists to image cells without labels. Here, I demonstrate the DIC can be used to characterize complex nanoscale structural features and spectral properties of gold nanostars. Specifically, by evaluating the DIC contrast and image patterns of single nanostars, I distinguished between flat and 3D geometries, identified nanostars with 4-fold symmetry, and determined nanostar orientation. Additionally, in multi-wavelength DIC imaging, an inversion in the contrast could be used to indicate the localized surface plasmon resonance of nanostars with 1 and 2 branches. Next, I used DIC to track the rotational and translational dynamics of functionalized nanostars interacting with live cell membranes. The DNA aptamer ligand on the nanostars specifically targets the transmembrane receptor HER2. I tracked single nanoconstructs over long time scales (˜ 20 minutes per particle, > 80 minutes total) with high temporal resolution (4 fps) and found that analysis of the DIC contrast fluctuations could be used to identify multiple modes of rotational behavior on the cell membrane. I developed MATLAB programs to track the moving nanoconstructs in a dynamic background environment and set up a customized live-cell perfusion chamber that is compatible with the bulky high numerical aperture optics. The combination of the environmental control in the chamber and the low light levels required to visualize single nanostars make this technique optimal for long-term tracking of single nanoconstructs in viable cells. Although nanoparticle size is well-known to influence the relaxivity of Gd(III)-based MRI contrast agents that are attached to the surface, the role of nanoparticle shape was previously unknown. Recently, we discovered that the relaxivity of Gd(III)-conjugated DNA bound to nanostars was three-fold higher than that of analogous spherical nanoconstructs. The relaxivities reached enhancements that were beyond limits that could be explained theoretically by size effects alone. We found that the extremely large enhancements could be explained by elongated water residence times in the second coordination sphere. Here, we investigated in detail how the complex structure of the nanostars mediates these effects. By sorting the nanostars by shape, we found that relaxivity increases with increasing branch number. Thus, we hypothesize that the confinement of the Gd(III)-DNA in the regions of negative surface curvature between branches creates a dense hydrophilic environment that promotes relaxation of second-sphere water molecules. These results demonstrate that shape is a new parameter that can be tuned in the optimization of nanoparticle-based T1 MRI contrast agents. It is important to characterize the potential toxicity of nanomaterials that are intended for use in biomedical applications. Thus, I evaluated the in vivo biodistribution and acute toxicity in rats of gold nanostars functionalized with DNA. As expected for nanoparticles of this size (˜50 nm) and surface charge (negative), the primary clearance mechanism was through the liver and spleen. Importantly, even at the highest dose, no signs of acute toxicity were observed based on hematology, clinical chemistry, and histology, indicating that DNA-coated gold nanostars are highly biocompatible. Additionally, I exploited the high contrast of gold in electron microscopy to track the fate of the nanoconstructs within organs ex vivo. In the liver, the nanoconstructs were sequestered in lysosomes of Kupffer cells. The electron microscopy analysis also indicated that the branched structure of the nanostars was intact even after 2 weeks in the liver, which is important for shape-dependent applications.

  8. Image correlation microscopy for uniform illumination.

    PubMed

    Gaborski, T R; Sealander, M N; Ehrenberg, M; Waugh, R E; McGrath, J L

    2010-01-01

    Image cross-correlation microscopy is a technique that quantifies the motion of fluorescent features in an image by measuring the temporal autocorrelation function decay in a time-lapse image sequence. Image cross-correlation microscopy has traditionally employed laser-scanning microscopes because the technique emerged as an extension of laser-based fluorescence correlation spectroscopy. In this work, we show that image correlation can also be used to measure fluorescence dynamics in uniform illumination or wide-field imaging systems and we call our new approach uniform illumination image correlation microscopy. Wide-field microscopy is not only a simpler, less expensive imaging modality, but it offers the capability of greater temporal resolution over laser-scanning systems. In traditional laser-scanning image cross-correlation microscopy, lateral mobility is calculated from the temporal de-correlation of an image, where the characteristic length is the illuminating laser beam width. In wide-field microscopy, the diffusion length is defined by the feature size using the spatial autocorrelation function. Correlation function decay in time occurs as an object diffuses from its original position. We show that theoretical and simulated comparisons between Gaussian and uniform features indicate the temporal autocorrelation function depends strongly on particle size and not particle shape. In this report, we establish the relationships between the spatial autocorrelation function feature size, temporal autocorrelation function characteristic time and the diffusion coefficient for uniform illumination image correlation microscopy using analytical, Monte Carlo and experimental validation with particle tracking algorithms. Additionally, we demonstrate uniform illumination image correlation microscopy analysis of adhesion molecule domain aggregation and diffusion on the surface of human neutrophils.

  9. Extracting microtubule networks from superresolution single-molecule localization microscopy data

    PubMed Central

    Zhang, Zhen; Nishimura, Yukako; Kanchanawong, Pakorn

    2017-01-01

    Microtubule filaments form ubiquitous networks that specify spatial organization in cells. However, quantitative analysis of microtubule networks is hampered by their complex architecture, limiting insights into the interplay between their organization and cellular functions. Although superresolution microscopy has greatly facilitated high-resolution imaging of microtubule filaments, extraction of complete filament networks from such data sets is challenging. Here we describe a computational tool for automated retrieval of microtubule filaments from single-molecule-localization–based superresolution microscopy images. We present a user-friendly, graphically interfaced implementation and a quantitative analysis of microtubule network architecture phenotypes in fibroblasts. PMID:27852898

  10. Detection of Helenium virus S and two distinct isolates of Butterbur mosaic virus in a single plant of Veronica

    USDA-ARS?s Scientific Manuscript database

    A Veronica plant showing mosaic symptoms was examined by electron microscopy, which revealed particles typical of carlaviruses. RNA extracted from virions partially purified by high speed centrifugation through a 30% sucrose cushion was used as template for random PCR to produce a viral cDNA librar...

  11. Dislocation mediated alignment during metal nanoparticle coalescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lange, A. P.; Samanta, A.; Majidi, H.

    2016-09-13

    Dislocation mediated alignment processes during gold nanoparticle coalescence were studied at low and high temperatures using molecular dynamics simulations and transmission electron microscopy. Particles underwent rigid body rotations immediately following attachment in both low temperature (500 K) simulated coalescence events and low temperature (~315 K) transmission electron microscopy beam heating experiments. In many low temperature simulations, some degree of misorientation between particles remained after rigid body rotations, which was accommodated by grain boundary dislocation nodes. These dislocations were either sessile and remained at the interface for the duration of the simulation or dissociated and cross-slipped through the adjacent particles, leadingmore » to improved co-alignment. Minimal rigid body rotations were observed during or immediately following attachment in high temperature (1100 K) simulations, which is attributed to enhanced diffusion at the particles' interface. However, rotation was eventually induced by {111} slip on planes parallel to the neck groove. These deformation modes led to the formation of single and multi-fold twins whose structures depended on the initial orientation of the particles. The driving force for {111} slip is attributed to high surface stresses near the intersection of low energy {111} facets in the neck region. The details of this twinning process were examined in detail using simulated trajectories, and the results reveal possible mechanisms for the nucleation and propagation of Shockley partials on consecutive planes. Deformation twinning was also observed in-situ using transmission electron microscopy, which resulted in the co-alignment of a set of the particles' {111} planes across their grain boundary and an increase in their dihedral angle. As a result, this constitutes the first detailed experimental observation of deformation twinning during nanoparticle coalescence, validating simulation results presented here and elsewhere.« less

  12. One-step analysis of DNA/chitosan complexes by field-flow fractionation reveals particle size and free chitosan content.

    PubMed

    Ma, Pei Lian; Buschmann, Michael D; Winnik, Françoise M

    2010-03-08

    The composition of samples obtained upon complexation of DNA with chitosan was analyzed by asymmetrical flow field flow fractionation (AF4) with online UV-visible, multiangle light scattering (MALS), and dynamic light scattering (DLS) detectors. A chitosan labeled with rhodamine B to facilitate UV-vis detection of the polycation was complexed with DNA under conditions commonly used for transfection (chitosan glucosamine to DNA phosphate molar ratio of 5). AF4 analysis revealed that 73% of the chitosan-rhodamine remained free in the dispersion and that the DNA/chitosan complexes had a broad size distribution ranging from 20 to 160 nm in hydrodynamic radius. The accuracy of the data was assessed by comparison with data from batch-mode DLS and scanning electron microscopy. The AF4 combined with DLS allowed the characterization of small particles that were not detected by conventional batch-mode DLS. The AF4 analysis will prove to be an important tool in the field of gene therapy because it readily provides, in a single measurement, three important physicochemical parameters of the complexes: the amount of unbound polycation, the hydrodynamic size of the complexes, and their size distribution.

  13. High resolution 3D confocal microscope imaging of volcanic ash particles.

    PubMed

    Wertheim, David; Gillmore, Gavin; Gill, Ian; Petford, Nick

    2017-07-15

    We present initial results from a novel high resolution confocal microscopy study of the 3D surface structure of volcanic ash particles from two recent explosive basaltic eruptions, Eyjafjallajökull (2010) and Grimsvötn (2011), in Iceland. The majority of particles imaged are less than 100μm in size and include PM 10 s, known to be harmful to humans if inhaled. Previous studies have mainly used 2D microscopy to examine volcanic particles. The aim of this study was to test the potential of 3D laser scanning confocal microscopy as a reliable analysis tool for these materials and if so to what degree high resolution surface and volume data could be obtained that would further aid in their classification. First results obtained using an Olympus LEXT scanning confocal microscope with a ×50 and ×100 objective lens are highly encouraging. They reveal a range of discrete particle types characterised by sharp or concave edges consistent with explosive formation and sudden rupture of magma. Initial surface area/volume ratios are given that may prove useful in subsequent modelling of damage to aircraft engines and human tissue where inhalation has occurred. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Desorption to Delamination: Dynamics of Detachment in a Colloidal Thin Film

    NASA Astrophysics Data System (ADS)

    Varshney, Atul; Sharma, P.; Sane, A.; Ghosh, S.; Bhattacharya, S.

    2010-10-01

    Colloidal thin films of varying rigidity detaching from a substrate under an electric field induced stress are studied by video microscopy. For soft films, the process of detachment shows single-particle dynamics, analogous to desorption. For rigid films, a collective delamination spanning hundreds of particles occurs. A competition among the rigidity of the film, the interaction with the substrate, and the external stress leads to a correlation length over which the film delaminates at a critical stress. The phenomenon is described as a dynamical transition in a disordered elastic medium.

  15. Application of atomic force microscopy to the study of natural and model soil particles.

    PubMed

    Cheng, S; Bryant, R; Doerr, S H; Rhodri Williams, P; Wright, C J

    2008-09-01

    The structure and surface chemistry of soil particles has extensive impact on many bulk scale properties and processes of soil systems and consequently the environments that they support. There are a number of physiochemical mechanisms that operate at the nanoscale which affect the soil's capability to maintain native vegetation and crops; this includes soil hydrophobicity and the soil's capacity to hold water and nutrients. The present study used atomic force microscopy in a novel approach to provide unique insight into the nanoscale properties of natural soil particles that control the physiochemical interaction of material within the soil column. There have been few atomic force microscopy studies of soil, perhaps a reflection of the heterogeneous nature of the system. The present study adopted an imaging and force measurement research strategy that accounted for the heterogeneity and used model systems to aid interpretation. The surface roughness of natural soil particles increased with depth in the soil column a consequence of the attachment of organic material within the crevices of the soil particles. The roughness root mean square calculated from ten 25 microm(2) images for five different soil particles from a Netherlands soil was 53.0 nm, 68.0 nm, 92.2 nm and 106.4 nm for the respective soil depths of 0-10 cm, 10-20 cm, 20-30 cm and 30-40 cm. A novel analysis method of atomic force microscopy phase images based on phase angle distribution across a surface was used to interpret the nanoscale distribution of organic material attached to natural and model soil particles. Phase angle distributions obtained from phase images of model surfaces were found to be bimodal, indicating multiple layers of material, which changed with the concentration of adsorbed humic acid. Phase angle distributions obtained from phase images of natural soil particles indicated a trend of decreasing surface coverage with increasing depth in the soil column. This was consistent with previous macroscopic determination of the proportions of organic material chemically extracted from bulk samples of the soils from which specimen particles were drawn. Interaction forces were measured between atomic force microscopy cantilever tips (Si(3)N(4)) and natural soil and model surfaces. Adhesion forces at humic acid free specimen surfaces (Av. 20.0 nN), which are primarily hydrophilic and whose interactions are subject to a significant contribution from the capillary forces, were found to be larger than those of specimen surfaces with adsorbed humic acid (Av. 6.5 nN). This suggests that adsorbed humic acid increased surface hydrophobicity. The magnitude and distribution of adhesion forces between atomic force microscopy tips and the natural particle surfaces was affected by both local surface roughness and the presence of adsorbed organic material. The present study has correlated nanoscale measurements with established macroscale methods of soil study. Thus, the research demonstrates that atomic force microscopy is an important addition to soil science that permits a multiscale analysis of the multifactorial phenomena of soil hydrophobicity and wetting.

  16. Comparative study on the mechanical and microstructural characterisation of AA 7075 nano and hybrid nanocomposites produced by stir and squeeze casting.

    PubMed

    Kannan, C; Ramanujam, R

    2017-07-01

    In this research work, a comparative evaluation on the mechanical and microstructural characteristics of aluminium based single and hybrid reinforced nanocomposites was carried out. The manufacture of a single reinforced nanocomposite was conducted with the distribution of 2 wt.% nano alumina particles (avg. particle size 30-50 nm) in the molten aluminium alloy of grade AA 7075; while the hybrid reinforced nanocomposites were produced with of 4 wt.% silicon carbide (avg. particle size 5-10 µm) and 2 wt.%, 4 wt.% nano alumina particles. Three numbers of single reinforced nanocomposites were manufactured through stir casting with reinforcements preheated to different temperatures viz. 400 °C, 500 °C, and 600 °C. The stir cast procedure was extended to fabricate two hybrid reinforced nanocomposites with reinforcements preheated to 500 °C prior to their inclusion. A single reinforced nanocomposite was also developed by squeeze casting with a pressure of 101 MPa. Mechanical and physical properties such as density, hardness, ultimate tensile strength, and impact strength were evaluated on all the developed composites. The microstructural observation was carried out using optical and scanning electron microscopy. On comparison with base alloy, an improvement of 63.7% and 81.1% in brinell hardness was observed for single and hybrid reinforced nanocomposites respectively. About 16% higher ultimate tensile strength was noticed with the squeeze cast single reinforced nanocomposite over the stir cast.

  17. Facile Synthesis and Characterization of ZrO₂ Nanoparticles via Modified Co-Precipitation Method.

    PubMed

    Ramachandran, M; Subadevi, R; Liu, Wei-Ren; Sivakumar, M

    2018-01-01

    The crystalline Zirconium oxide (ZrO2) nano particles were synthesized using optimized content of Zirconium nitrate (Zr(NO3)2·3H2O) with varying KOH concentration (0.5, 1 and 1.5 M) by co-precipitation method. The thermal history of the precursor was carefully analyzed through Thermogravimetric (TG/DTA) measurement. The as prepared samples were characterized to ensure structural, functional, morphological, compositional, chemical composition and band gap by X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FTIR), Laser Raman, scanning electron microscopy (SEM), High resolution Transverse Electron Microscopy (HR-TEM), X-ray photo electron spectroscopy (XPS), EDX, Photo luminescence spectroscopy (PL). The monoclinic structure with space group P21/c has been confirmed from XRD (JCPDS 89-9066). The Zr-O stretching vibration and Zr-O2-Zr bending vibrations were confirmed through FTIR analysis. The well dispersed particles with spherical morphology were confirmed through SEM and TEM analysis. The oxidation states of Zr, O and C were confirmed through XPS analysis. The oxygen vacancies and band gap of the particles were investigated through PL analysis.

  18. Challenges in the size analysis of a silica nanoparticle mixture as candidate certified reference material

    NASA Astrophysics Data System (ADS)

    Kestens, Vikram; Roebben, Gert; Herrmann, Jan; Jämting, Åsa; Coleman, Victoria; Minelli, Caterina; Clifford, Charles; De Temmerman, Pieter-Jan; Mast, Jan; Junjie, Liu; Babick, Frank; Cölfen, Helmut; Emons, Hendrik

    2016-06-01

    A new certified reference material for quality control of nanoparticle size analysis methods has been developed and produced by the Institute for Reference Materials and Measurements of the European Commission's Joint Research Centre. The material, ERM-FD102, consists of an aqueous suspension of a mixture of silica nanoparticle populations of distinct particle size and origin. The characterisation relied on an interlaboratory comparison study in which 30 laboratories of demonstrated competence participated with a variety of techniques for particle size analysis. After scrutinising the received datasets, certified and indicative values for different method-defined equivalent diameters that are specific for dynamic light scattering (DLS), centrifugal liquid sedimentation (CLS), scanning and transmission electron microscopy (SEM and TEM), atomic force microscopy (AFM), particle tracking analysis (PTA) and asymmetrical-flow field-flow fractionation (AF4) were assigned. The value assignment was a particular challenge because metrological concepts were not always interpreted uniformly across all participating laboratories. This paper presents the main elements and results of the ERM-FD102 characterisation study and discusses in particular the key issues of measurand definition and the estimation of measurement uncertainty.

  19. Investigating Antibacterial Effects of Garlic (Allium sativum) Concentrate and Garlic-Derived Organosulfur Compounds on Campylobacter jejuni by Using Fourier Transform Infrared Spectroscopy, Raman Spectroscopy, and Electron Microscopy ▿ †

    PubMed Central

    Lu, Xiaonan; Rasco, Barbara A.; Jabal, Jamie M. F.; Aston, D. Eric; Lin, Mengshi; Konkel, Michael E.

    2011-01-01

    Fourier transform infrared (FT-IR) spectroscopy and Raman spectroscopy were used to study the cell injury and inactivation of Campylobacter jejuni from exposure to antioxidants from garlic. C. jejuni was treated with various concentrations of garlic concentrate and garlic-derived organosulfur compounds in growth media and saline at 4, 22, and 35°C. The antimicrobial activities of the diallyl sulfides increased with the number of sulfur atoms (diallyl sulfide < diallyl disulfide < diallyl trisulfide). FT-IR spectroscopy confirmed that organosulfur compounds are responsible for the substantial antimicrobial activity of garlic, much greater than those of garlic phenolic compounds, as indicated by changes in the spectral features of proteins, lipids, and polysaccharides in the bacterial cell membranes. Confocal Raman microscopy (532-nm-gold-particle substrate) and Raman mapping of a single bacterium confirmed the intracellular uptake of sulfur and phenolic components. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to verify cell damage. Principal-component analysis (PCA), discriminant function analysis (DFA), and soft independent modeling of class analogs (SIMCA) were performed, and results were cross validated to differentiate bacteria based upon the degree of cell injury. Partial least-squares regression (PLSR) was employed to quantify and predict actual numbers of healthy and injured bacterial cells remaining following treatment. PLSR-based loading plots were investigated to further verify the changes in the cell membrane of C. jejuni treated with organosulfur compounds. We demonstrated that bacterial injury and inactivation could be accurately investigated by complementary infrared and Raman spectroscopies using a chemical-based, “whole-organism fingerprint” with the aid of chemometrics and electron microscopy. PMID:21642409

  20. Optoelectronic tweezers integrated with lensfree holographic microscopy for wide-field interactive cell and particle manipulation on a chip.

    PubMed

    Huang, Kuo-Wei; Su, Ting-Wei; Ozcan, Aydogan; Chiou, Pei-Yu

    2013-06-21

    We demonstrate an optoelectronic tweezer (OET) coupled to a lensfree holographic microscope for real-time interactive manipulation of cells and micro-particles over a large field-of-view (FOV). This integrated platform can record the holographic images of cells and particles over the entire active area of a CCD sensor array, perform digital image reconstruction to identify target cells, dynamically track the positions of cells and particles, and project light beams to trigger light-induced dielectrophoretic forces to pattern and sort cells on a chip. OET technology has been previously shown to be capable of performing parallel single cell manipulation over a large area. However, its throughput has been bottlenecked by the number of cells that can be imaged within the limited FOV of a conventional microscope objective lens. Integrating lensfree holographic imaging with OET solves this fundamental FOV barrier, while also creating a compact on-chip cell/particle manipulation platform. Using this unique platform, we have successfully demonstrated real-time interactive manipulation of thousands of single cells and micro-particles over an ultra-large area of e.g., 240 mm(2) (i.e. 17.96 mm × 13.52 mm).

  1. Acetate- and thiol-capped monodisperse ruthenium nanoparticles: XPS, XAS, and HRTEM studies.

    PubMed

    Chakroune, Nassira; Viau, Guillaume; Ammar, Souad; Poul, Laurence; Veautier, Delphine; Chehimi, Mohamed M; Mangeney, Claire; Villain, Françoise; Fiévet, Fernand

    2005-07-19

    Monodisperse ruthenium nanoparticles were prepared by reduction of RuCl3 in 1,2-propanediol. The mean particle size was controlled by appropriate choice of the reduction temperature and the acetate ion concentration. Colloidal solutions in toluene were obtained by coating the metal particles with dodecanethiol. High-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and X-ray absorption spectroscopy (XANES and EXAFS for the Ru K-absorption edge) were performed on particles of two different diameters, 2 and 4 nm, and in different environments, polyol/acetate or thiol. For particles stored in polyol/acetate XPS studies revealed superficial oxidation limited to one monolayer and a surface coating containing mostly acetate ions. Analysis of the EXAFS spectra showed both oxygen and ruthenium atoms around the ruthenium atoms with a Ru-Ru coordination number N smaller than the bulk value, as expected for fine particles. In the case of 2 nm acetate-capped particles N is consistent with particles made up of a metallic core and an oxidized monolayer. For 2 nm thiol-coated particles, a Ru-S bond was evidenced by XPS and XAS. For the 4 nm particles XANES and XPS studies showed that most of the ruthenium atoms are in the zerovalent state. Nevertheless, in both cases, when capped with thiol, the Ru-Ru coordination number inferred from EXAFS is much smaller than for particles of the same size stored in polyol. This is attributed to a structural disorganization of the particles by thiol chemisorption. HRTEM studies confirm the marked dependence of the structural properties of the ruthenium particles on their chemical environment; they show the acetate-coated particles to be single crystals, whereas the thiol-coated particles appear to be polycrystalline.

  2. Quantitative Description of Crystal Nucleation and Growth from in Situ Liquid Scanning Transmission Electron Microscopy.

    PubMed

    Ievlev, Anton V; Jesse, Stephen; Cochell, Thomas J; Unocic, Raymond R; Protopopescu, Vladimir A; Kalinin, Sergei V

    2015-12-22

    Recent advances in liquid cell (scanning) transmission electron microscopy (S)TEM has enabled in situ nanoscale investigations of controlled nanocrystal growth mechanisms. Here, we experimentally and quantitatively investigated the nucleation and growth mechanisms of Pt nanostructures from an aqueous solution of K2PtCl6. Averaged statistical, network, and local approaches have been used for the data analysis and the description of both collective particles dynamics and local growth features. In particular, interaction between neighboring particles has been revealed and attributed to reduction of the platinum concentration in the vicinity of the particle boundary. The local approach for solving the inverse problem showed that particles dynamics can be simulated by a stationary diffusional model. The obtained results are important for understanding nanocrystal formation and growth processes and for optimization of synthesis conditions.

  3. Aerosol Emissions from Great Lakes Harmful Algal Blooms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    May, Nathaniel W.; Olson, Nicole E.; Panas, Mark

    In freshwater lakes, harmful algal blooms (HABs) of Cyanobacteria (blue-green algae) produce toxins that impact human health. However, little is known about the chemical species present in lake spray aerosol (LSA) produced from wave-breaking in freshwater HABs. In this study, a laboratory LSA generator produced aerosols from freshwater samples collected from Lake Michigan and Lake Erie during HAB and non-bloom conditions. Particles were analyzed for size and chemical composition by single particle mass spectrometry, electron microscopy, and fluorescence microscopy, with three distinct types of LSA identified with varying levels of organic carbon and biological material associated with calcium salts. LSAmore » autofluorescence increases with blue-green algae concentration, showing that organic molecules of biological origin are incorporated in LSA from HABs. The number fraction of LSA with biological mass spectral markers also increases with particle diameter (greater than 0.5 μm), showing that HABs have size-dependent impacts on aerosol composition. The highest number fraction of LSA enriched in organic carbon were observed in particles less than 0.5 μm in diameter. Understanding the transfer of organic and biogenic material from freshwater to the atmosphere via LSA particles is crucial for determining health and climate effects due to HABs.« less

  4. Development of Magnetic Nanomaterials and Devices for Biological Applications

    DTIC Science & Technology

    2007-10-30

    analysis. Suitable crystals for the X-ray diffraction analysis were grown as dark red plates from a saturated hexane solution of [ Co3 (CO)9CCH3] at 4 ºC...Commercially available magnetic nanoparticles are suitable for cell separation where a large number of particles are used to separate a single cell...from a sample. The magnetic moment of these particles is not high enough to enable the separation of single antigen molecules using a single particle

  5. Optics clustered to output unique solutions: A multi-laser facility for combined single molecule and ensemble microscopy

    NASA Astrophysics Data System (ADS)

    Clarke, David T.; Botchway, Stanley W.; Coles, Benjamin C.; Needham, Sarah R.; Roberts, Selene K.; Rolfe, Daniel J.; Tynan, Christopher J.; Ward, Andrew D.; Webb, Stephen E. D.; Yadav, Rahul; Zanetti-Domingues, Laura; Martin-Fernandez, Marisa L.

    2011-09-01

    Optics clustered to output unique solutions (OCTOPUS) is a microscopy platform that combines single molecule and ensemble imaging methodologies. A novel aspect of OCTOPUS is its laser excitation system, which consists of a central core of interlocked continuous wave and pulsed laser sources, launched into optical fibres and linked via laser combiners. Fibres are plugged into wall-mounted patch panels that reach microscopy end-stations in adjacent rooms. This allows multiple tailor-made combinations of laser colours and time characteristics to be shared by different end-stations minimising the need for laser duplications. This setup brings significant benefits in terms of cost effectiveness, ease of operation, and user safety. The modular nature of OCTOPUS also facilitates the addition of new techniques as required, allowing the use of existing lasers in new microscopes while retaining the ability to run the established parts of the facility. To date, techniques interlinked are multi-photon/multicolour confocal fluorescence lifetime imaging for several modalities of fluorescence resonance energy transfer (FRET) and time-resolved anisotropy, total internal reflection fluorescence, single molecule imaging of single pair FRET, single molecule fluorescence polarisation, particle tracking, and optical tweezers. Here, we use a well-studied system, the epidermal growth factor receptor network, to illustrate how OCTOPUS can aid in the investigation of complex biological phenomena.

  6. Deep-sea spherules from Pacific clay - Mass distribution and influx rate. [extraterrestrial origins from optical and electron microscopy

    NASA Technical Reports Server (NTRS)

    Murrell, M. T.; Davis, P. A., Jr.; Nishiizumi, K.; Millard, H. T., Jr.

    1980-01-01

    From 411 kg of Pacific clay, 22 mg of stony spherules and 50 mg of iron spherules larger than 150 microns were concentrated. The extraterrestrial origin of these particles was evaluated with the aid of optical and electron microscopy and atomic absorption elemental analysis. An expression for the integral number of stony particles from this sediment in the mass range 20-300 micrograms was derived. The world-wide influx rate of stony particles in the mass range which survive atmospheric heating and ocean sediment storage is calculated to be 90 tons/yr. The relative contributions of ablation debris vs fused interplanetary dust to the influx of stony spherules is discussed, but no conclusions could be made.

  7. Laboratory-generated mixtures of mineral dust particles with biological substances: characterization of the particle mixing state and immersion freezing behavior

    NASA Astrophysics Data System (ADS)

    Augustin-Bauditz, Stefanie; Wex, Heike; Denjean, Cyrielle; Hartmann, Susan; Schneider, Johannes; Schmidt, Susann; Ebert, Martin; Stratmann, Frank

    2016-05-01

    Biological particles such as bacteria, fungal spores or pollen are known to be efficient ice nucleating particles. Their ability to nucleate ice is due to ice nucleation active macromolecules (INMs). It has been suggested that these INMs maintain their nucleating ability even when they are separated from their original carriers. This opens the possibility of an accumulation of such INMs in soils, resulting in an internal mixture of mineral dust and INMs. If particles from such soils which contain biological INMs are then dispersed into the atmosphere due to wind erosion or agricultural processes, they could induce ice nucleation at temperatures typical for biological substances, i.e., above -20 up to almost 0 °C, while they might be characterized as mineral dust particles due to a possibly low content of biological material. We conducted a study within the research unit INUIT (Ice Nucleation research UnIT), where we investigated the ice nucleation behavior of mineral dust particles internally mixed with INM. Specifically, we mixed a pure mineral dust sample (illite-NX) with ice active biological material (birch pollen washing water) and quantified the immersion freezing behavior of the resulting particles utilizing the Leipzig Aerosol Cloud Interaction Simulator (LACIS). A very important topic concerning the investigations presented here as well as for atmospheric application is the characterization of the mixing state of aerosol particles. In the present study we used different methods like single-particle aerosol mass spectrometry, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray analysis (EDX), and a Volatility-Hygroscopicity Tandem Differential Mobility Analyser (VH-TDMA) to investigate the mixing state of our generated aerosol. Not all applied methods performed similarly well in detecting small amounts of biological material on the mineral dust particles. Measuring the hygroscopicity/volatility of the mixed particles with the VH-TDMA was the most sensitive method. We found that internally mixed particles, containing ice active biological material, follow the ice nucleation behavior observed for the pure biological particles. We verified this by modeling the freezing behavior of the mixed particles with the Soccerball model (SBM). It can be concluded that a single INM located on a mineral dust particle determines the freezing behavior of that particle with the result that freezing occurs at temperatures at which pure mineral dust particles are not yet ice active.

  8. Visualization of HIV T Cell Virological Synapses and Virus-Containing Compartments by Three-Dimensional Correlative Light and Electron Microscopy

    PubMed Central

    Wang, Lili; Eng, Edward T.; Law, Kenneth; Gordon, Ronald E.; Rice, William J.

    2016-01-01

    ABSTRACT Virological synapses (VS) are adhesive structures that form between infected and uninfected cells to enhance the spread of HIV-1. During T cell VS formation, viral proteins are actively recruited to the site of cell-cell contact where the viral material is efficiently translocated to target cells into heterogeneous, protease-resistant, antibody-inaccessible compartments. Using correlative light and electron microscopy (CLEM), we define the membrane topography of the virus-containing compartments (VCC) where HIV is found following VS-mediated transfer. Focused ion beam scanning electron microscopy (FIB-SEM) and serial sectioning transmission electron microscopy (SS-TEM) were used to better resolve the fluorescent Gag-containing structures within the VCC. We found that small punctate fluorescent signals correlated with single viral particles in enclosed vesicular compartments or surface-localized virus particles and that large fluorescent signals correlated with membranous Gag-containing structures with unknown pathological function. CLEM imaging revealed distinct pools of newly deposited viral proteins within endocytic and nonendocytic compartments in VS target T cells. IMPORTANCE This study directly correlates individual virus-associated objects observed in light microscopy with ultrastructural features seen by electron microscopy in the HIV-1 virological synapse. This approach elucidates which infection-associated ultrastructural features represent bona fide HIV protein complexes. We define the morphology of some HIV cell-to-cell transfer intermediates as true endocytic compartments and resolve unique synapse-associated viral structures created by transfer across virological synapses. PMID:27847357

  9. Influence of severe plastic deformation on intermetallic particles in Mg-12 wt.%Zn alloy investigated using transmission electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Němec, M., E-mail: nemecm@fzu.cz

    The in-depth microstructural characterization of intermetallic particles in an Mg-12 wt.%Zn binary alloy subjected to a severe plastic deformation is presented. The alloy was processed by four passes via equal channel angular pressing with an applied back pressure at a gradually decreasing temperature and analyzed using transmission electron microscopy techniques to observe the influence of processing on intermetallic particles. The results are compared with the initial state of the material prior to severe plastic deformation. The microstructural evolution of the α-Mg matrix and the Mg{sub 21}Zn{sub 25}, Mg{sub 51}Zn{sub 20} and MgZn{sub 2} was analyzed using bright field imaging, selectedmore » area electron diffraction, high-resolution transmission electron microscopy and high-angle annular dark field imaging in scanning mode. The plastic deformation process influenced the α-Mg matrix and each type of intermetallic particle. The α-Mg matrix consisted of two types of areas. The first type of area had a highly deformed structure, and the second type of area had a partially recrystallized structure with an average grain size of approximately 250 nm. The Mg{sub 21}Zn{sub 25} microparticles exhibited distinct forms in the α-Mg matrix that were characterized as a single-crystalline form, a nano-crystalline form and a broken up form. No evidence of Mg{sub 51}Zn{sub 20} nanoparticles within the α-Mg matrix was found in the microstructure, which indicates their dissolution or phase transformation during the deformation process. MgZn{sub 2} nanoparticles exhibited different behavior in both types of α-Mg matrix. Two orientation relationships toward the highly deformed α-Mg matrix were observed; however, there was no relationship toward the partially recrystallized α-Mg matrix. Additionally, the growth of the MgZn{sub 2} nanoparticles was different in the two types of α-Mg matrix. The Mg{sub 51}Zn{sub 20} nanoparticles inside Mg{sub 21}Zn{sub 25} microparticles exhibited a distinct behavior within the single-crystalline or nano-crystalline form of the parent Mg{sub 21}Zn{sub 25} microparticles. The Mg{sub 21}Zn{sub 25} + Mg{sub 51}Zn{sub 20} eutectic compound was confirmed for both forms of the parent Mg{sub 21}Zn{sub 25} microparticles, and the growth of Mg{sub 51}Zn{sub 20} nanoparticles is discussed. - Highlights: •Comprehensive microstructure characterization of Mg-12 wt.%Zn alloy after ECAP-BP •TEM analysis of changes of intermetallic phases caused by SPD •Mg{sub 21}Zn{sub 25} particles exhibit nano-crystalline regions with grain size below 100 nm. •MgZn{sub 2} preserved its orientation relationship toward highly deformed α-Mg after SPD. •Existence of Mg{sub 21}Zn{sub 25} + Mg{sub 51}Zn{sub 20} eutectic remained for each Mg{sub 21}Zn{sub 25} particle form.« less

  10. Preparation and Characterization of Pyrotechnics Binder-Coated Nano-Aluminum Composite Particles

    NASA Astrophysics Data System (ADS)

    Ye, Mingquan; Zhang, Shuting; Liu, Songsong; Han, Aijun; Chen, Xin

    2017-07-01

    The aim of this article is to protect the activity of nano-aluminum (Al) particles in solid rocket propellants and pyrotechnics. The morphology, structure, active aluminum content, and thermal and catalytic properties of the coated samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetry-differential scanning calorimetry (TG-DSC), and oxidation-reduction titration methods. The results indicated that nano-Al particles could be effectively coated with phenolic resin (PF), fluororubber (Viton B), and shellac through a solvent/nonsolvent method. The energetic composite particles have core-shell structures and the thickness of the coating film is about 5-15 nm. Analysis of the active Al content revealed that Viton B coating had a much better protective effect. The TG-DSC results showed that the energy amount and energy release rate of PF-, Viton B-, and shellac-coated Al particles were larger than those of the raw nano-Al particles. The catalytic effects of coated Al particles on the thermal decomposition of ammonium perchlorate (AP) were better than those of raw nano-Al particles, and the effect of shellac-coated Al particles was significantly better than that of Viton B-coated Al particles.

  11. Single particle tracking reveals spatial and dynamic organization of the Escherichia coli biofilm matrix

    NASA Astrophysics Data System (ADS)

    Birjiniuk, Alona; Billings, Nicole; Nance, Elizabeth; Hanes, Justin; Ribbeck, Katharina; Doyle, Patrick S.

    2014-08-01

    Biofilms are communities of surface-adherent bacteria surrounded by secreted polymers known as the extracellular polymeric substance. Biofilms are harmful in many industries, and thus it is of great interest to understand their mechanical properties and structure to determine ways to destabilize them. By performing single particle tracking with beads of varying surface functionalization it was found that charge interactions play a key role in mediating mobility within biofilms. With a combination of single particle tracking and microrheological concepts, it was found that Escherichia coli biofilms display height dependent charge density that evolves over time. Statistical analyses of bead trajectories and confocal microscopy showed inter-connecting micron scale channels that penetrate throughout the biofilm, which may be important for nutrient transfer through the system. This methodology provides significant insight into a particular biofilm system and can be applied to many others to provide comparisons of biofilm structure. The elucidation of structure provides evidence for the permeability of biofilms to microscale objects, and the ability of a biofilm to mature and change properties over time.

  12. Membrane Fluidity Sensing on the Single Virus Particle Level with Plasmonic Nanoparticle Transducers.

    PubMed

    Feizpour, Amin; Stelter, David; Wong, Crystal; Akiyama, Hisashi; Gummuluru, Suryaram; Keyes, Tom; Reinhard, Björn M

    2017-10-27

    Viral membranes are nanomaterials whose fluidity depends on their composition, in particular, the cholesterol (chol) content. As differences in the membrane composition of individual virus particles can lead to different intracellular fates, biophysical tools capable of sensing the membrane fluidity on the single-virus level are required. In this manuscript, we demonstrate that fluctuations in the polarization of light scattered off gold or silver nanoparticle (NP)-labeled virus-like-particles (VLPs) encode information about the membrane fluidity of individual VLPs. We developed plasmonic polarization fluctuation tracking microscopy (PFTM) which facilitated the investigation of the effect of chol content on the membrane fluidity and its dependence on temperature, for the first time on the single-VLP level. Chol extraction studies with different methyl-β-cyclodextrin (MβCD) concentrations yielded a gradual decrease in polarization fluctuations as a function of time. The rate of chol extraction for individual VLPs showed a broad spread, presumably due to differences in the membrane composition for the individual VLPs, and this heterogeneity increased with decreasing MβCD concentration.

  13. Modes of Diffusion of Cholera Toxin Bound to GM1 on Live Cell Membrane by Image Mean Square Displacement Analysis

    PubMed Central

    Moens, Pierre D.J.; Digman, Michelle A.; Gratton, Enrico

    2015-01-01

    The image-mean square displacement technique applies the calculation of the mean square displacement commonly used in single-molecule tracking to images without resolving single particles. The image-mean square displacement plot obtained is similar to the mean square displacement plot obtained using the single-particle tracking technique. This plot is then used to reconstruct the protein diffusion law and to identify whether the labeled molecules are undergoing pure isotropic, restricted, corralled, transiently confined, or directed diffusion. In our study total internal reflection fluorescence microscopy images were taken of Cholera toxin subunit B (CtxB) membrane-labeled NIH 3T3 mouse fibroblasts and MDA 231 MB cells. We found a population of CTxB undergoing purely isotropic diffusion and one displaying restricted diffusion with corral sizes ranging from 150 to ∼1800 nm. We show that the diffusion rate of CTxB bound to GM1 is independent of the size of the confinement, suggesting that the mechanism of confinement is different from the mechanism controlling the diffusion rate of CtxB. We highlight the potential effect of continuous illumination on the diffusion mode of CTxB. We also show that aggregation of CTxB/GM1 in large complexes occurs and that these aggregates tend to have slower diffusion rates. PMID:25809257

  14. Modes of diffusion of cholera toxin bound to GM1 on live cell membrane by image mean square displacement analysis.

    PubMed

    Moens, Pierre D J; Digman, Michelle A; Gratton, Enrico

    2015-03-24

    The image-mean square displacement technique applies the calculation of the mean square displacement commonly used in single-molecule tracking to images without resolving single particles. The image-mean square displacement plot obtained is similar to the mean square displacement plot obtained using the single-particle tracking technique. This plot is then used to reconstruct the protein diffusion law and to identify whether the labeled molecules are undergoing pure isotropic, restricted, corralled, transiently confined, or directed diffusion. In our study total internal reflection fluorescence microscopy images were taken of Cholera toxin subunit B (CtxB) membrane-labeled NIH 3T3 mouse fibroblasts and MDA 231 MB cells. We found a population of CTxB undergoing purely isotropic diffusion and one displaying restricted diffusion with corral sizes ranging from 150 to ∼1800 nm. We show that the diffusion rate of CTxB bound to GM1 is independent of the size of the confinement, suggesting that the mechanism of confinement is different from the mechanism controlling the diffusion rate of CtxB. We highlight the potential effect of continuous illumination on the diffusion mode of CTxB. We also show that aggregation of CTxB/GM1 in large complexes occurs and that these aggregates tend to have slower diffusion rates. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  15. Confocal Imaging of Confined Quiescent and Flowing Colloid-polymer Mixtures

    PubMed Central

    Conrad, Jacinta C.

    2014-01-01

    The behavior of confined colloidal suspensions with attractive interparticle interactions is critical to the rational design of materials for directed assembly1-3, drug delivery4, improved hydrocarbon recovery5-7, and flowable electrodes for energy storage8. Suspensions containing fluorescent colloids and non-adsorbing polymers are appealing model systems, as the ratio of the polymer radius of gyration to the particle radius and concentration of polymer control the range and strength of the interparticle attraction, respectively. By tuning the polymer properties and the volume fraction of the colloids, colloid fluids, fluids of clusters, gels, crystals, and glasses can be obtained9. Confocal microscopy, a variant of fluorescence microscopy, allows an optically transparent and fluorescent sample to be imaged with high spatial and temporal resolution in three dimensions. In this technique, a small pinhole or slit blocks the emitted fluorescent light from regions of the sample that are outside the focal volume of the microscope optical system. As a result, only a thin section of the sample in the focal plane is imaged. This technique is particularly well suited to probe the structure and dynamics in dense colloidal suspensions at the single-particle scale: the particles are large enough to be resolved using visible light and diffuse slowly enough to be captured at typical scan speeds of commercial confocal systems10. Improvements in scan speeds and analysis algorithms have also enabled quantitative confocal imaging of flowing suspensions11-16,37. In this paper, we demonstrate confocal microscopy experiments to probe the confined phase behavior and flow properties of colloid-polymer mixtures. We first prepare colloid-polymer mixtures that are density- and refractive-index matched. Next, we report a standard protocol for imaging quiescent dense colloid-polymer mixtures under varying confinement in thin wedge-shaped cells. Finally, we demonstrate a protocol for imaging colloid-polymer mixtures during microchannel flow. PMID:24894062

  16. Mapping Metals Incorporation of a Whole Single Catalyst Particle Using Element Specific X-ray Nanotomography

    DOE PAGES

    Meirer, Florian; Morris, Darius T.; Kalirai, Sam; ...

    2015-01-02

    Full-field transmission X-ray microscopy has been used to determine the 3D structure of a whole individual fluid catalytic cracking (FCC) particle at high spatial resolution and in a fast, noninvasive manner, maintaining the full integrity of the particle. Using X-ray absorption mosaic imaging to combine multiple fields of view, computed tomography was performed to visualize the macropore structure of the catalyst and its availability for mass transport. We mapped the relative spatial distributions of Ni and Fe using multiple-energy tomography at the respective X-ray absorption K-edges and correlated these distributions with porosity and permeability of an equilibrated catalyst (E-cat) particle.more » Both metals were found to accumulate in outer layers of the particle, effectively decreasing porosity by clogging of pores and eventually restricting access into the FCC particle.« less

  17. Evaluation of FUS-2000 urine analyzer: analytical properties and particle recognition.

    PubMed

    Beňovská, Miroslava; Wiewiorka, Ondřej; Pinkavová, Jana

    This study evaluates the performance of microscopic part of a hybrid analyzer FUS-2000 (Dirui Industrial Co., Changchun, China), its analytical properties and particle recognition. The evaluation of trueness, repeatability, detection limit, carry-over, linearity range and analytical stability was performed according to Dirui protocol guidelines designed by Dirui Company to guarantee the quality of the instrument. Trueness for low, medium and high-value concentrations was calculated with bias of 15.5, 4.7 and -6.6%, respectively. Detection limit of 5 Ery/μl was confirmed. Coefficient of variation of 11.0, 5.2 and 3.8% was measured for within-run repeatability of low, medium and high concentration. Between-run repeatability for daily quality control had coefficient of variation of 3.0%. Carry-over did not exceed 0.05%. Linearity was confirmed for range of 0-16,000 particles/μl (R 2  = 0.9997). The analytical stability had coefficient of variation of 4.3%. Out of 1258 analyzed urine samples, 362 positive were subjected to light microscopy urine sediment analysis and compared to the analyzer results. Cohen's kappa coefficients were calculated to express the concordance. Squared kappa coefficient was 0.927 (red blood cells), 0.888 (white blood cells), 0.908 (squamous epithelia), 0.634 (transitional epithelia), 0.628 (hyaline casts), 0.843 (granular casts) and 0.623 (bacteria). Single kappa coefficients were 0.885 (yeasts) and 0.756 (crystals), respectively. Aforementioned results show good analytical performance of the analyzer and tight agreement with light microscopy of urine sediment.

  18. In situ observation of the formation of hollow zinc oxide shells

    DOE PAGES

    Tringe, J. W.; Levie, H. W.; El-Dasher, B. S.; ...

    2011-06-14

    Single crystal zinc particles, 1–2 μm1–2 μm in diameter, were observed in situ with transmission electron microscopy during sublimation. The rate of sublimation is strongly dependent on the presence of a surface oxide layer. Near 375°, minimally oxidized Zn surfaces sublime in tens of seconds, consistent with a model in which the particle behaves similarly to an isolated microscale effusion cell. By contrast, zinc particles fully enclosed by oxide sublime less than one-tenth as quickly. Here these results provide new insight into the synthesis mechanisms of hollow ZnO microspheres and related structures formed from metallic zinc at elevated temperatures.

  19. Particle morphology dependent superhydrophobicity in treated diatomaceous earth/polystyrene coatings

    NASA Astrophysics Data System (ADS)

    Sedai, Bhishma R.; Alavi, S. Habib; Harimkar, Sandip P.; McCollum, Mark; Donoghue, Joseph F.; Blum, Frank D.

    2017-09-01

    Superhydrophobic surfaces have been prepared from three different types of diatomaceous earth (DE) particles treated with 3-(heptafluoroisopropoxy)propyltrimethoxysilane (HFIP-TMS) and low molecular mass polystyrene. The untreated particles, consisting of CelTix DE (disk shape), DiaFil DE (rod shape) and EcoFlat DE (irregular), were studied using particle size analysis, bulk density, pore volume and surface area analysis (via Brunauer-Emmett-Teller, BET, methods). The treated particles were characterized with thermogravimetric analysis (TGA), contact angles, scanning electron microscopy, profilometry, and FTIR spectroscopy. The minimum amount of silane coupling agent on the DE surfaces required to obtain superhydrophobicity of the particles was determined and found to be dependent on the particle morphology. In the coatings made from different particles with 2.4 wt% HFIP-TMS, the minimum amounts of treated particles (loadings) for superhydrophobicity was determined with the less dense CelTix DE requiring about 30 wt%, DiaFil DE requiring about 40 wt%, and EcoFlat DE each requiring about 60 wt% loading of treated particles.

  20. Simultaneous micronization and purification of bioactive fraction by supercritical antisolvent technology

    PubMed Central

    Hiendrawan, Stevanus; Veriansyah, Bambang; Widjojokusumo, Edward; Tjandrawinata, Raymond R.

    2017-01-01

    Simultaneous micronization and purification of DLBS3233 bioactive fraction, a combination of two Indonesian herbals Lagerstroemia speciosa and Cinnamomum burmannii has been successfully performed via supercritical anti-solvent (SAS) technology. The objective of the present study was to investigate the effectiveness of SAS technology to micronize and reduce coumarin content of DLBS3233. The effects of four SAS process parameters, i.e. pressure, temperature, concentration and solution flow rate on particle formation were investigated. In SAS process, DLBS3233 was dissolved in dimethylformamide (DMF) as the liquid solvent. The solution was then pumped through a nozzle into a chamber simultaneously with supercritical carbon dioxide (SC-CO2) which acts as the anti-solvent, resulting in DLBS3233 precipitation. Physicochemical properties of unprocessed DLBS3233 and SAS-processed DLBS3233 particles were analyzed using scanning electron microscopy (SEM) and high pressure liquid chromatography (HPLC). Total polyphenol content (TPC) was also analyzed. Particles with mean particle size ranging from 0.107±0.028 μm to 0.298±0.138 μm were obtained by varying the process parameters. SAS-processed DLBS3233 particles showed no coumarin content in all experiments studied in this work. Results of TPC analysis revealed no significant change in SAS-processed DLBS3233 particles compared to unprocessed DLBS3233. Nano-sized DLBS3233 particles with no coumarin content have been successfully produced using SAS process. This study demonstrates the ability of SAS for processing herbal medicine in single step process. PMID:28516056

  1. Simultaneous micronization and purification of bioactive fraction by supercritical antisolvent technology.

    PubMed

    Hiendrawan, Stevanus; Veriansyah, Bambang; Widjojokusumo, Edward; Tjandrawinata, Raymond R

    2017-01-01

    Simultaneous micronization and purification of DLBS3233 bioactive fraction, a combination of two Indonesian herbals Lagerstroemia speciosa and Cinnamomum burmannii has been successfully performed via supercritical anti-solvent (SAS) technology. The objective of the present study was to investigate the effectiveness of SAS technology to micronize and reduce coumarin content of DLBS3233. The effects of four SAS process parameters, i.e. pressure, temperature, concentration and solution flow rate on particle formation were investigated. In SAS process, DLBS3233 was dissolved in dimethylformamide (DMF) as the liquid solvent. The solution was then pumped through a nozzle into a chamber simultaneously with supercritical carbon dioxide (SC-CO2) which acts as the anti-solvent, resulting in DLBS3233 precipitation. Physicochemical properties of unprocessed DLBS3233 and SAS-processed DLBS3233 particles were analyzed using scanning electron microscopy (SEM) and high pressure liquid chromatography (HPLC). Total polyphenol content (TPC) was also analyzed. Particles with mean particle size ranging from 0.107±0.028 μ m to 0.298±0.138 μ m were obtained by varying the process parameters. SAS-processed DLBS3233 particles showed no coumarin content in all experiments studied in this work. Results of TPC analysis revealed no significant change in SAS-processed DLBS3233 particles compared to unprocessed DLBS3233. Nano-sized DLBS3233 particles with no coumarin content have been successfully produced using SAS process. This study demonstrates the ability of SAS for processing herbal medicine in single step process.

  2. Examination of a high resolution laser optical plankton counter and FlowCAM for measuring plankton concentration and size

    NASA Astrophysics Data System (ADS)

    Kydd, Jocelyn; Rajakaruna, Harshana; Briski, Elizabeta; Bailey, Sarah

    2018-03-01

    Many commercial ships will soon begin to use treatment systems to manage their ballast water and reduce the global transfer of harmful aquatic organisms and pathogens in accordance with upcoming International Maritime Organization regulations. As a result, rapid and accurate automated methods will be needed to monitoring compliance of ships' ballast water. We examined two automated particle counters for monitoring organisms ≥ 50 μm in minimum dimension: a High Resolution Laser Optical Plankton Counter (HR-LOPC), and a Flow Cytometer with digital imaging Microscope (FlowCAM), in comparison to traditional (manual) microscopy considering plankton concentration, size frequency distributions and particle size measurements. The automated tools tended to underestimate particle concentration compared to standard microscopy, but gave similar results in terms of relative abundance of individual taxa. For most taxa, particle size measurements generated by FlowCAM ABD (Area Based Diameter) were more similar to microscope measurements than were those by FlowCAM ESD (Equivalent Spherical Diameter), though there was a mismatch in size estimates for some organisms between the FlowCAM ABD and microscope due to orientation and complex morphology. When a single problematic taxon is very abundant, the resulting size frequency distribution curves can become skewed, as was observed with Asterionella in this study. In particular, special consideration is needed when utilizing automated tools to analyse samples containing colonial species. Re-analysis of the size frequency distributions with the removal of Asterionella from FlowCAM and microscope data resulted in more similar curves across methods with FlowCAM ABD having the best fit compared to the microscope, although microscope concentration estimates were still significantly higher than estimates from the other methods. The results of our study indicate that both automated tools can generate frequency distributions of particles that might be particularly useful if correction factors can be developed for known differences in well-studied aquatic ecosystems.

  3. Developing a denoising filter for electron microscopy and tomography data in the cloud.

    PubMed

    Starosolski, Zbigniew; Szczepanski, Marek; Wahle, Manuel; Rusu, Mirabela; Wriggers, Willy

    2012-09-01

    The low radiation conditions and the predominantly phase-object image formation of cryo-electron microscopy (cryo-EM) result in extremely high noise levels and low contrast in the recorded micrographs. The process of single particle or tomographic 3D reconstruction does not completely eliminate this noise and is even capable of introducing new sources of noise during alignment or when correcting for instrument parameters. The recently developed Digital Paths Supervised Variance (DPSV) denoising filter uses local variance information to control regional noise in a robust and adaptive manner. The performance of the DPSV filter was evaluated in this review qualitatively and quantitatively using simulated and experimental data from cryo-EM and tomography in two and three dimensions. We also assessed the benefit of filtering experimental reconstructions for visualization purposes and for enhancing the accuracy of feature detection. The DPSV filter eliminates high-frequency noise artifacts (density gaps), which would normally preclude the accurate segmentation of tomography reconstructions or the detection of alpha-helices in single-particle reconstructions. This collaborative software development project was carried out entirely by virtual interactions among the authors using publicly available development and file sharing tools.

  4. Mesoscale phase distribution in single particles of LiFePO4 following lithium deintercalation

    PubMed Central

    Boesenberg, Ulrike; Meirer, Florian; Liu, Yijin; Shukla, Alpesh K.; Dell’Anna, Rossana; Tyliszczak, Tolek; Chen, Guoying; Andrews, Joy C.; Richardson, Thomas J.; Kostecki, Robert; Cabana, Jordi

    2013-01-01

    The chemical phase distribution in hydrothermally grown micrometric single crystals LiFePO4 following partial chemical delithiation was investigated. Full field and scanning X-ray microscopy were combined with X-ray absorption spectroscopy at the Fe K- and O K-edges, respectively, to produce maps with high chemical and spatial resolution. The resulting information was compared to morphological insight into the mechanics of the transformation by scanning transmission electron microscopy. This study revealed the interplay at the mesocale between microstructure and phase distribution during the redox process, as morphological defects were found to kinetically determine the progress of the reaction. Lithium deintercalation was also found to induce severe mechanical damage in the crystals, presumably due to the lattice mismatch between LiFePO4 and FePO4. Our results lead to the conclusion that rational design of intercalation-based electrode materials, such as LiFePO4, with optimized utilization and life requires the tailoring of particles that minimize kinetic barriers and mechanical strain. Coupling TXM-XANES with TEM can provide unique insight into the behavior of electrode materials during operation, at scales spanning from nanoparticles to ensembles and complex architectures. PMID:23745016

  5. Robust w-Estimators for Cryo-EM Class Means

    PubMed Central

    Huang, Chenxi; Tagare, Hemant D.

    2016-01-01

    A critical step in cryogenic electron microscopy (cryo-EM) image analysis is to calculate the average of all images aligned to a projection direction. This average, called the “class mean”, improves the signal-to-noise ratio in single particle reconstruction (SPR). The averaging step is often compromised because of outlier images of ice, contaminants, and particle fragments. Outlier detection and rejection in the majority of current cryo-EM methods is done using cross-correlation with a manually determined threshold. Empirical assessment shows that the performance of these methods is very sensitive to the threshold. This paper proposes an alternative: a “w-estimator” of the average image, which is robust to outliers and which does not use a threshold. Various properties of the estimator, such as consistency and influence function are investigated. An extension of the estimator to images with different contrast transfer functions (CTFs) is also provided. Experiments with simulated and real cryo-EM images show that the proposed estimator performs quite well in the presence of outliers. PMID:26841397

  6. Robust w-Estimators for Cryo-EM Class Means.

    PubMed

    Huang, Chenxi; Tagare, Hemant D

    2016-02-01

    A critical step in cryogenic electron microscopy (cryo-EM) image analysis is to calculate the average of all images aligned to a projection direction. This average, called the class mean, improves the signal-to-noise ratio in single-particle reconstruction. The averaging step is often compromised because of the outlier images of ice, contaminants, and particle fragments. Outlier detection and rejection in the majority of current cryo-EM methods are done using cross-correlation with a manually determined threshold. Empirical assessment shows that the performance of these methods is very sensitive to the threshold. This paper proposes an alternative: a w-estimator of the average image, which is robust to outliers and which does not use a threshold. Various properties of the estimator, such as consistency and influence function are investigated. An extension of the estimator to images with different contrast transfer functions is also provided. Experiments with simulated and real cryo-EM images show that the proposed estimator performs quite well in the presence of outliers.

  7. Connecting the Particles in the Box - Controlled Fusion of Hexamer Nanocrystal Clusters within an AB6 Binary Nanocrystal Superlattice

    PubMed Central

    Treml, Benjamin E.; Lukose, Binit; Clancy, Paulette; Smilgies, Detlef-M; Hanrath, Tobias

    2014-01-01

    Binary nanocrystal superlattices present unique opportunities to create novel interconnected nanostructures by partial fusion of specific components of the superlattice. Here, we demonstrate the binary AB6 superlattice of PbSe and Fe2O3 nanocrystals as a model system to transform the central hexamer of PbSe nanocrystals into a single fused particle. We present detailed structural analysis of the superlattices by combining high-resolution X-ray scattering and electron microscopy. Molecular dynamics simulations show optimum separation of nanocrystals in agreement with the experiment and provide insights into the molecular configuration of surface ligands. We describe the concept of nanocrystal superlattices as a versatile ‘nanoreactor' to create and study novel materials based on precisely defined size, composition and structure of nanocrystals into a mesostructured cluster. We demonstrate ‘controlled fusion' of nanocrystals in the clusters in reactions initiated by thermal treatment and pulsed laser annealing. PMID:25339169

  8. Development of Iron Doped Silicon Nanoparticles as Bimodal Imaging Agents

    PubMed Central

    Singh, Mani P.; Atkins, Tonya M.; Muthuswamy, Elayaraja; Kamali, Saeed; Tu, Chuqiao; Louie, Angelique Y.; Kauzlarich, Susan M.

    2012-01-01

    We demonstrate the synthesis of water-soluble allylamine terminated Fe doped Si (SixFe) nanoparticles as bimodal agents for optical and magnetic imaging. The preparation involves the synthesis of a single source iron containing precursor, Na4Si4 with x% Fe (x = 1, 5, 10), and its subsequent reaction with NH4Br to produce hydrogen terminated SixFe nanoparticles. The hydrogen-capped nanoparticles are further terminated with allylamine via thermal hydrosilylation. Transmission electron microscopy (TEM) indicates that the average particle diameter is ~3.0±1.0 nm. The Si5Fe nanoparticles show strong photoluminescence quantum yield in water (~ 10 %) with significant T2 contrast (r2/r1value of 4.31). Electron paramagnetic resonance (EPR) and Mössbauer spectroscopies indicate that iron in the nanoparticles is in the +3 oxidation state. Analysis of cytotoxicity using the resazurin assay on HepG2 liver cells indicates that the particles have minimal toxicity. PMID:22616623

  9. Development of iron-doped silicon nanoparticles as bimodal imaging agents.

    PubMed

    Singh, Mani P; Atkins, Tonya M; Muthuswamy, Elayaraja; Kamali, Saeed; Tu, Chuqiao; Louie, Angelique Y; Kauzlarich, Susan M

    2012-06-26

    We demonstrate the synthesis of water-soluble allylamine-terminated Fe-doped Si (Si(xFe)) nanoparticles as bimodal agents for optical and magnetic imaging. The preparation involves the synthesis of a single-source iron-containing precursor, Na(4)Si(4) with x% Fe (x = 1, 5, 10), and its subsequent reaction with NH(4)Br to produce hydrogen-terminated Si(xFe) nanoparticles. The hydrogen-capped nanoparticles are further terminated with allylamine via thermal hydrosilylation. Transmission electron microscopy indicates that the average particle diameter is ∼3.0 ± 1.0 nm. The Si(5Fe) nanoparticles show strong photoluminescence quantum yield in water (∼10%) with significant T(2) contrast (r(2)/r(1) value of 4.31). Electron paramagnetic resonance and Mössbauer spectroscopies indicate that iron in the nanoparticles is in the +3 oxidation state. Analysis of cytotoxicity using the resazurin assay on HepG2 liver cells indicates that the particles have minimal toxicity.

  10. Effects of space environment on structural materials

    NASA Technical Reports Server (NTRS)

    Miglionico, C.; Stein, C.; Roybal, R.; Robertson, R.; Murr, L. E.; Quinones, S.; Rivas, J.; Marquez, B.; Advani, A. H.; Fisher, W. W.

    1992-01-01

    A preliminary study of materials exposed in space in a low Earth orbit for nearly six years has revealed a wide range of micrometeorite or microparticle impact craters ranging in size from 1 to 1000 micron in diameter, debris particles from adjacent and distant materials systems, reaction products, and other growth features on the specimen surfaces, and related phenomena. The exposed surface features included fine grained and nearly amorphous materials as well as a large array of single crystal particles. A replication type, lift off technique was developed to remove reaction products and debris from the specimen surfaces in order to isolate them from the background substrate without creating microchemical or microstructural artifacts or alterations. This resulted in surface features resting on a carbon support film which was virtually invisible to observation by electron microscopy and nondispersive x ray analysis. Some evidence for blisters on leading edge aluminum alloy surfaces and a high surface region concentration of oxygen determined by Auger electron spectrometry suggests oxygen effects where fluences exceed 10(exp 21) atoms/sq cm.

  11. Flow Microscopy Imaging Is Sensitive to Characteristics of Subvisible Particles in Peginesatide Formulations Associated With Severe Adverse Reactions.

    PubMed

    Daniels, Austin L; Randolph, Theodore W

    2018-05-01

    The presence of subvisible particles in formulations of therapeutic proteins is a risk factor for adverse immune responses. Although the immunogenic potential of particulate contaminants likely depends on particle structural characteristics (e.g., composition, size, and shape), exact structure-immunogenicity relationships are unknown. Images recorded by flow imaging microscopy reflect information about particle morphology, but flow microscopy is typically used to determine only particle size distributions, neglecting information on particle morphological features that may be immunologically relevant. We recently developed computational techniques that utilize the Kullback-Leibler divergence and multidimensional scaling to compare the morphological properties of particles in sets of flow microscopy images. In the current work, we combined these techniques with expectation maximization cluster analyses and used them to compare flow imaging microscopy data sets that had been collected by the U.S. Food and Drug Administration after severe adverse drug reactions (including 7 fatalities) were observed in patients who had been administered some lots of peginesatide formulations. Flow microscopy images of particle populations found in the peginesatide lots associated with severe adverse reactions in patients were readily distinguishable from images of particles in lots where severe adverse reactions did not occur. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  12. A Chemical Approach to Understanding Oxide Surface Structure and Reactivity

    NASA Astrophysics Data System (ADS)

    Enterkin, James Andrew

    Transmission electron microscopy and diffraction are powerful tools for solving complex structural problems. They complement other analytical techniques, such as x-ray diffraction, elucidating problems which cannot be solved by other techniques. One area where they are of particularly great value is in the determination of surface structures. The research presented herein uses electron microscopy and diffraction as the primary experimental techniques in the development of a chemistry of surface structures. High-resolution electron microscopy revealed that the La4Cu 3MoO12 structure has turbostratic disorder and a lower symmetry space group (Pm) than was previously found. The refinement of the x-ray data was significantly improved by using a disordered model and the Pm space group. A bond valence analysis confirmed that the disordered structure is the superior model. Strontium titanate, SrTiO3, single crystal surfaces were examined principally via transmission electron diffraction. A homologous series with intergrowths was discovered on the (110) surface of strontium titanate, marking the first time that these important concepts of solid state chemistry have been found at the surface. Atmospheric adsorbates, such as H2O and CO2, were found to help to stabilize undercoordinated surface structures on the (100) surface. It was shown that chemical bonding, bond valence, atomic coordination, and stoichiometry greatly influence the development of surface structures. Additionally, such chemistry based analysis was demonstrated to be able to predict surface structure stability and reactivity. Application of a modified Wulff construction to the observed shape of strontium titanate nanocuboids revealed that the surface structure and particle stoichiometry are interlinked, with control over one allowing equally precise control over the other. Platinum nanoparticles on the strontium titanate nanocuboids were shown via high resolution electron microscopy to have cube-on-cube epitaxy, with the shape of the platinum nanoparticles governed by the Winterbottom construction. Precise modification of the support surface will therefore allow engineering of supported metal particles with precise control over which facets are exposed. These results suggest that control over the support surface chemistry can be used to engineer thermodynamically stable, face selective catalysts.

  13. Correlation of Optical Properties with Atmospheric Solid Organic Particles (ASOPs) in the Southern Great Plains

    NASA Astrophysics Data System (ADS)

    Bonanno, D.; Fraund, M. W.; Pham, D.; China, S.; Wang, B.; Laskin, A.; Gilles, M. K.; Moffet, R.

    2017-12-01

    The Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems (HI-SCALE) Campaign was carried out to gain a better understanding of the lifecycle of shallow clouds. The HISCALE experiment was designed to contrast two seasons, wet and dry, and determine their effect on atmospheric cloud and aerosol processes. The spring component to HISCALE was selected to characterize mixing state for particles collected onto substrates. Sampling was performed to obtain airborne soil organic particles (ASOP), which are believed to be ejected following rain events. The unique composition of the ASOP have been shown to affect optical properties. The collection of particles took place at the Atmospheric Radiation Measurement Southern Great Plains (ARM SGP) field site. The Scanning Transmission X-Ray Microscope (STXM) was used to image the samples collected during the first HI-SCALE Campaign to determine the carbonaceous mixing state. Scanning Electron Microscopy Energy-dispersive X-ray (SEM/EDX) analysis is more sensitive to the inorganic makeup of particles, while STXM renders a more comprehensive analysis of the organics. Measurements such as nephelometry, Particle Soot Absorption Photometry (PSAP) from the ARM archive are correlated with microscopy measurements. The primary focus is the relation between composition and morphology of ASOP with optical properties.

  14. Morphological and chemical analysis of bone substitutes by scanning electron microscopy and microanalysis by spectroscopy of dispersion energy.

    PubMed

    da Cruz, Gabriela Alessandra; de Toledo, Sérgio; Sallum, Enilson Antonio; de Lima, Antonio Fernando Martorelli

    2007-01-01

    This study evaluated the morphological and chemical composition of the following bone substitutes: cancellous and cortical organic bovine bone with macro and microparticle size ranging from 1.0 to 2.0 mm and 0.25 to 1.0 mm, respectively; inorganic bovine bone with particle size ranging from 0.25 to 1.0 mm; hydroxyapatite with particle size ranging from 0.75 to 1.0 mm; and demineralized freeze-dried bone allograft with particle size ranging from 0.25 to 0.5 mm. The samples were sputter-coated with gold in an ion coater, the morphology was observed and particle size was measured under vacuum by scanning electron microscopy (SEM). The chemical composition was evaluated by spectroscopy of dispersion energy (EDS) microanalysis using samples without coating. SEM analysis provided visual evidence that all examined materials have irregular shape and particle sizes larger than those informed by the manufacturer. EDS microanalysis detected the presence of sodium, calcium and phosphorus that are usual elements of the bone tissue. However, mineral elements were detected in all analyzed particles of organic bovine bone except for macro cancellous organic bovine bone. These results suggest that the examined organic bovine bone cannot be considered as a pure organic material.

  15. Volume changes upon heating of aerosol particles from biomass burning using transmission electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adachi, Kouji; Sedlacek, Arthur J.; Kleinman, Lawrence

    The responses of aerosol particles to heating are important for measurements of their chemical, physical, and optical properties, classification, and determination of origin. However, the thermal behavior of organic aerosol particles is largely unknown. We provide a method to analyze such thermal behavior through heating from room temperature to >600°C by using a heating holder within a transmission electron microscope (TEM). Here we describe in-situ shape and size changes and variations in the compositions of individual particles before and after heating. We use ambient samples from wildland and agricultural biomass fires in North America collected during the 2013 Biomass Burnmore » Observation Project (BBOP). The results indicate that individual tar balls (TB; spherical organic material) from biomass burning retained, on average, up to 30% of their volume when heated to 600°C. Chemical analysis reveals that K and Na remain in the residues, whereas S and O were lost. In contrast to bulk sample measurements of carbonaceous particles using thermal/optical carbon analyzers, our single-particle results imply that many individual organic particles consist of multiple types of organic matter having different thermal stabilities. Beyond TBs, our results suggest that because of their thermal stability some organic particles may not be detectable by using aerosol mass spectrometry or thermal/optical carbon analyzers. This result can lead to an underestimate of the abundance of TBs and other organic particles, and therefore biomass burning may have more influence than currently recognized in regional and global climate models.« less

  16. Volume changes upon heating of aerosol particles from biomass burning using transmission electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adachi, Kouji; Sedlacek, Arthur J.; Kleinman, Lawrence

    Here, the responses of aerosol particles to heating are important for measurements of their chemical, physical, and optical properties, classification, and determination of origin. However, the thermal behavior of organic aerosol particles is largely unknown. We provide a method to analyze such thermal behavior through heating from room temperature to >600°C by using a heating holder within a transmission electron microscope (TEM). Here we describe in-situ shape and size changes and variations in the compositions of individual particles before and after heating. We use ambient samples from wildland and agricultural biomass fires in North America collected during the 2013 Biomassmore » Burn Observation Project (BBOP). The results indicate that individual tar balls (TB; spherical organic material) from biomass burning retained, on average, up to 30% of their volume when heated to 600°C. Chemical analysis reveals that K and Na remain in the residues, whereas S and O were lost. In contrast to bulk sample measurements of carbonaceous particles using thermal/optical carbon analyzers, our single-particle results imply that many individual organic particles consist of multiple types of organic matter having different thermal stabilities. Beyond TBs, our results suggest that because of their thermal stability some organic particles may not be detectable by using aerosol mass spectrometry or thermal/optical carbon analyzers. This result can lead to an underestimate of the abundance of TBs and other organic particles, and therefore biomass burning may have more influence than currently recognized in regional and global climate models.« less

  17. Thermal behavior of aerosol particles from biomass burning during the BBOP campaign using transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Adachi, K.; Ishimoto, H.; Sedlacek, A. J., III; Kleinman, L. I.; Chand, D.; Hubbe, J. M.; Buseck, P. R.

    2017-12-01

    Aerosol samples were collected from wildland and agricultural biomass fires in North America during the 2013 Biomass Burning Observation Project (BBOP). We show in-situ shape and size changes and variations in the compositions of individual particles before and after heating using a transmission electron microscope (TEM). The responses of aerosol particles to heating are important for measurements of their chemical, physical, and optical properties, classification, and determination of origin. However, the thermal behavior of organic aerosol particles is largely unknown. We provide a method to analyze such thermal behavior through heating from room temperature to >600°C by using a heating holder within TEM. The results indicate that individual tar balls (TB; spherical organic material) from biomass burning retained, on average, up to 30% of their volume when heated to 600°C. Chemical analysis reveals that K and Na remained in the residues, whereas S and O were lost. In contrast to bulk sample measurements of carbonaceous particles using thermal/optical carbon analyzers, our single-particle results imply that many individual organic particles consist of multiple types of organic matter having different thermal stabilities. Our results also suggest that because of their thermal stability, some organic particles may not be detectable by using aerosol mass spectrometry or thermal/optical carbon analyzers. This result can lead to an underestimate of the abundance of TBs and other organic particles, and therefore biomass burning may have a greater influence than is currently recognized in regional and global climate models.

  18. Volume changes upon heating of aerosol particles from biomass burning using transmission electron microscopy

    DOE PAGES

    Adachi, Kouji; Sedlacek, Arthur J.; Kleinman, Lawrence; ...

    2017-09-26

    Here, the responses of aerosol particles to heating are important for measurements of their chemical, physical, and optical properties, classification, and determination of origin. However, the thermal behavior of organic aerosol particles is largely unknown. We provide a method to analyze such thermal behavior through heating from room temperature to >600°C by using a heating holder within a transmission electron microscope (TEM). Here we describe in-situ shape and size changes and variations in the compositions of individual particles before and after heating. We use ambient samples from wildland and agricultural biomass fires in North America collected during the 2013 Biomassmore » Burn Observation Project (BBOP). The results indicate that individual tar balls (TB; spherical organic material) from biomass burning retained, on average, up to 30% of their volume when heated to 600°C. Chemical analysis reveals that K and Na remain in the residues, whereas S and O were lost. In contrast to bulk sample measurements of carbonaceous particles using thermal/optical carbon analyzers, our single-particle results imply that many individual organic particles consist of multiple types of organic matter having different thermal stabilities. Beyond TBs, our results suggest that because of their thermal stability some organic particles may not be detectable by using aerosol mass spectrometry or thermal/optical carbon analyzers. This result can lead to an underestimate of the abundance of TBs and other organic particles, and therefore biomass burning may have more influence than currently recognized in regional and global climate models.« less

  19. Sub-diffraction-limit localization imaging of a plasmonic nanoparticle pair with wavelength-resolved dark-field microscopy.

    PubMed

    Wei, Lin; Ma, Yanhong; Zhu, Xupeng; Xu, Jianghong; Wang, Yaxin; Duan, Huigao; Xiao, Lehui

    2017-06-29

    In this work, with wavelength-resolved dark-field microscopy, the center-of-mass localization information from nanoparticle pairs (i.e., spherical (45 nm in diameter) and rod (45 × 70 nm) shaped gold nanoparticle pairs with different gap distances and orientations) was explored and compared with the results determined by scanning electron microscopy (SEM) measurements. When the gap distance was less than 20 nm, the scattering spectrum of the nanoparticle pair was seriously modulated by the plasmonic coupling effect. The measured coordinate information determined by the optical method (Gaussian fitting) was not consistent with the true results determined by SEM measurement. A good correlation between the optical and SEM measurements was achieved when the gap distance was further increased (e.g., 20, 40 and 60 nm). Under these conditions, well-defined scattering peaks assigned to the corresponding individual nanoparticles could be distinguished from the obtained scattering spectrum. These results would afford valuable information for the studies on single plasmonic nanoparticle imaging applications with the optical microscopy method such as super-localization imaging, high precision single particle tracking in a crowding environment and so on.

  20. Material properties of viral nanocages explored by atomic force microscopy.

    PubMed

    van Rosmalen, Mariska G M; Roos, Wouter H; Wuite, Gijs J L

    2015-01-01

    Single-particle nanoindentation by atomic force microscopy (AFM) is an emergent technique to characterize the material properties of nano-sized proteinaceous systems. AFM uses a very small tip attached to a cantilever to scan the surface of the substrate. As a result of the sensitive feedback loop of AFM, the force applied by the tip on the substrate during scanning can be controlled and monitored. By accurately controlling this scanning force, topographical maps of fragile substrates can be acquired to study the morphology of the substrate. In addition, mechanical properties of the substrate like stiffness and breaking point can be determined by using the force spectroscopy capability of AFM. Here we discuss basics of AFM operation and how this technique is used to determine the structure and mechanical properties of protein nanocages, in particular viral particles. Knowledge of morphology as well as mechanical properties is essential for understanding viral life cycles, including genome packaging, capsid maturation, and uncoating, but also contributes to the development of diagnostics, vaccines, imaging modalities, and targeted therapeutic devices based on viruslike particles.

  1. Synthesis of mesoporous zeolite single crystals with cheap porogens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao Haixiang; Li Changlin; Ren Jiawen

    2011-07-15

    Mesoporous zeolite (silicalite-1, ZSM-5, TS-1) single crystals have been successfully synthesized by adding soluble starch or sodium carboxymethyl cellulose (CMC) to a conventional zeolite synthesis system. The obtained samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen sorption analysis, {sup 27}Al magic angle spinning nuclear magnetic resonance ({sup 27}Al MAS NMR), temperature-programmed desorption of ammonia (NH{sub 3}-TPD) and ultraviolet-visible spectroscopy (UV-vis). The SEM images clearly show that all zeolite crystals possess the similar morphology with particle size of about 300 nm, the TEM images reveal that irregular intracrystalmore » pores are randomly distributed in the whole crystal. {sup 27}Al MAS NMR spectra indicate that nearly all of the Al atoms are in tetrahedral co-ordination in ZSM-5, UV-vis spectra confirm that nearly all of titanium atoms are incorporated into the framework of TS-1. The catalytic activity of meso-ZSM-5 in acetalization of cyclohexanone and meso-TS-1 in hydroxylation of phenol was also studied. The synthesis method reported in this paper is cost-effective and environmental friendly, can be easily expended to prepare other hierarchical structured zeolites. - Graphical abstract: Mesoporous zeolite single crystals were synthesized by using cheap porogens as template. Highlights: > Mesoporous zeolite (silicalite-1, ZSM-5, TS-1) single crystals were synthesized. > Soluble starch or sodium carboxymethyl cellulose (CMC) was used as porogens. > The mesoporous zeolites had connected mesopores although closed pores existed. > Higher catalytic activities were obtained.« less

  2. Revealing Compartmentalized Diffusion in Living Cells with Interferometric Scattering Microscopy.

    PubMed

    de Wit, Gabrielle; Albrecht, David; Ewers, Helge; Kukura, Philipp

    2018-06-19

    The spatiotemporal organization and dynamics of the plasma membrane and its constituents are central to cellular function. Fluorescence-based single-particle tracking has emerged as a powerful approach for studying the single molecule behavior of plasma-membrane-associated events because of its excellent background suppression, at the expense of imaging speed and observation time. Here, we show that interferometric scattering microscopy combined with 40 nm gold nanoparticle labeling can be used to follow the motion of membrane proteins in the plasma membrane of live cultured mammalian cell lines and hippocampal neurons with up to 3 nm precision and 25 μs temporal resolution. The achievable spatiotemporal precision enabled us to reveal signatures of compartmentalization in neurons likely caused by the actin cytoskeleton. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. Exploiting evanescent-wave amplification for subwavelength low-contrast particle detection

    NASA Astrophysics Data System (ADS)

    Roy, S.; Pereira, S. F.; Urbach, H. P.; Wei, Xukang; El Gawhary, O.

    2017-07-01

    The classical problem of subwavelength particle detection on a flat surface is especially challenging when the refractive index of the particle is close to that of the substrate. We demonstrate a method to improve the detection ability several times for such a situation, by enhancing the "forbidden" evanescent waves in the substrate using the principle of super-resolution with evanescent waves amplification. The working mechanism of the system and experimental validation from a design with a thin single dielectric layer is presented. The resulting system is a simple but complete example of evanescent-wave generation, amplification, and the consequent modulation of the far field. This principle can have far reaching impact in the field of particle detection in several applications ranging from contamination control to interferometric scattering microscopy for biological samples.

  4. Imaging the microscopic structure of shear thinning and thickening colloidal suspensions.

    PubMed

    Cheng, Xiang; McCoy, Jonathan H; Israelachvili, Jacob N; Cohen, Itai

    2011-09-02

    The viscosity of colloidal suspensions varies with shear rate, an important effect encountered in many natural and industrial processes. Although this non-Newtonian behavior is believed to arise from the arrangement of suspended particles and their mutual interactions, microscopic particle dynamics are difficult to measure. By combining fast confocal microscopy with simultaneous force measurements, we systematically investigate a suspension's structure as it transitions through regimes of different flow signatures. Our measurements of the microscopic single-particle dynamics show that shear thinning results from the decreased relative contribution of entropic forces and that shear thickening arises from particle clustering induced by hydrodynamic lubrication forces. This combination of techniques illustrates an approach that complements current methods for determining the microscopic origins of non-Newtonian flow behavior in complex fluids.

  5. Magnetic properties and microstructure of gas atomized MRE2(Fe, Co)14B powder with ZrC addition (MRE=Nd + Y + Dy)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, W.; Wu, Y. Q.; Dennis, K.

    2009-05-12

    Gas atomization powder with Zr substitutions for the MRE and ZrC additions were systematically studied. The results show that the partial substitutions of Zr and the ZrC additions effectively improved glass formability in the alloys. Scanning electron microscopy (SEM) revealed that the as-atomized powder with a particle size of less than 32 {micro}m is predominately uniform equiaxed grains with an average grain size of 1.5 {micro}m. X-ray diffraction and differential thermal analysis measurements detected very tiny amounts of amorphous phase. After annealing at 700 C for 15 min, the SEM grain microstructure exhibits a minor change, but magnetic properties aremore » substantially improved. M versus T measurements reveal that the phase composition evolved from 2:14:1 plus a small amount of 2:17 phases to a single 2:14:1 phase during the annealing process. The sieve analysis of the powders showed a particle size distribution with 90 wt % of the powder less than 45 {micro}m. The magnetic properties of the annealed powder varied with particle size. (BH){sub max} first increases with increasing particle size from 5 {micro}m, reaches the peak value in the size range of 20-25 {micro}m, and then decreases with increasing particle size. For the 20-25 {micro}m powder sample annealed at 700 C for 15 min, the (BH){sub max} of 9.6 MG Oe at room temperature and 5.6 MG Oe at 200 C were obtained, respectively.« less

  6. Structural analysis of respiratory syncytial virus reveals the position of M2-1 between the matrix protein and the ribonucleoprotein complex.

    PubMed

    Kiss, Gabriella; Holl, Jens M; Williams, Grant M; Alonas, Eric; Vanover, Daryll; Lifland, Aaron W; Gudheti, Manasa; Guerrero-Ferreira, Ricardo C; Nair, Vinod; Yi, Hong; Graham, Barney S; Santangelo, Philip J; Wright, Elizabeth R

    2014-07-01

    Respiratory syncytial virus (RSV), a member of the Paramyxoviridae family of nonsegmented, negative-sense, single-stranded RNA genome viruses, is a leading cause of lower respiratory tract infections in infants, young children, and the elderly or immunocompromised. There are many open questions regarding the processes that regulate human RSV (hRSV) assembly and budding. Here, using cryo-electron tomography, we identified virus particles that were spherical, filamentous, and asymmetric in structure, all within the same virus preparation. The three particle morphologies maintained a similar organization of the surface glycoproteins, matrix protein (M), M2-1, and the ribonucleoprotein (RNP). RNP filaments were traced in three dimensions (3D), and their total length was calculated. The measurements revealed the inclusion of multiple full-length genome copies per particle. RNP was associated with the membrane whenever the M layer was present. The amount of M coverage ranged from 24% to 86% in the different morphologies. Using fluorescence light microscopy (fLM), direct stochastic optical reconstruction microscopy (dSTORM), and a proximity ligation assay (PLA), we provide evidence illustrating that M2-1 is located between RNP and M in isolated viral particles. In addition, regular spacing of the M2-1 densities was resolved when hRSV viruses were imaged using Zernike phase contrast (ZPC) cryo-electron tomography. Our studies provide a more complete characterization of the hRSV virion structure and substantiation that M and M2-1 regulate virus organization. hRSV is a leading cause of lower respiratory tract infections in infants and young children as well as elderly or immunocompromised individuals. We used cryo-electron tomography and Zernike phase contrast cryo-electron tomography to visualize populations of purified hRSV in 3D. We observed the three distinct morphologies, spherical, filamentous, and asymmetric, which maintained comparable organizational profiles. Depending on the virus morphology examined, the amount of M ranged from 24% to 86%. We complemented the cryo-imaging studies with fluorescence microscopy, dSTORM, and a proximity ligation assay to provide additional evidence that M2-1 is incorporated into viral particles and is positioned between M and RNP. The results highlight the impact of M and M2-1 on the regulation of hRSV organization. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  7. UmUTracker: A versatile MATLAB program for automated particle tracking of 2D light microscopy or 3D digital holography data

    NASA Astrophysics Data System (ADS)

    Zhang, Hanqing; Stangner, Tim; Wiklund, Krister; Rodriguez, Alvaro; Andersson, Magnus

    2017-10-01

    We present a versatile and fast MATLAB program (UmUTracker) that automatically detects and tracks particles by analyzing video sequences acquired by either light microscopy or digital in-line holographic microscopy. Our program detects the 2D lateral positions of particles with an algorithm based on the isosceles triangle transform, and reconstructs their 3D axial positions by a fast implementation of the Rayleigh-Sommerfeld model using a radial intensity profile. To validate the accuracy and performance of our program, we first track the 2D position of polystyrene particles using bright field and digital holographic microscopy. Second, we determine the 3D particle position by analyzing synthetic and experimentally acquired holograms. Finally, to highlight the full program features, we profile the microfluidic flow in a 100 μm high flow chamber. This result agrees with computational fluid dynamic simulations. On a regular desktop computer UmUTracker can detect, analyze, and track multiple particles at 5 frames per second for a template size of 201 ×201 in a 1024 × 1024 image. To enhance usability and to make it easy to implement new functions we used object-oriented programming. UmUTracker is suitable for studies related to: particle dynamics, cell localization, colloids and microfluidic flow measurement. Program Files doi : http://dx.doi.org/10.17632/fkprs4s6xp.1 Licensing provisions : Creative Commons by 4.0 (CC by 4.0) Programming language : MATLAB Nature of problem: 3D multi-particle tracking is a common technique in physics, chemistry and biology. However, in terms of accuracy, reliable particle tracking is a challenging task since results depend on sample illumination, particle overlap, motion blur and noise from recording sensors. Additionally, the computational performance is also an issue if, for example, a computationally expensive process is executed, such as axial particle position reconstruction from digital holographic microscopy data. Versatile robust tracking programs handling these concerns and providing a powerful post-processing option are significantly limited. Solution method: UmUTracker is a multi-functional tool to extract particle positions from long video sequences acquired with either light microscopy or digital holographic microscopy. The program provides an easy-to-use graphical user interface (GUI) for both tracking and post-processing that does not require any programming skills to analyze data from particle tracking experiments. UmUTracker first conduct automatic 2D particle detection even under noisy conditions using a novel circle detector based on the isosceles triangle sampling technique with a multi-scale strategy. To reduce the computational load for 3D tracking, it uses an efficient implementation of the Rayleigh-Sommerfeld light propagation model. To analyze and visualize the data, an efficient data analysis step, which can for example show 4D flow visualization using 3D trajectories, is included. Additionally, UmUTracker is easy to modify with user-customized modules due to the object-oriented programming style Additional comments: Program obtainable from https://sourceforge.net/projects/umutracker/

  8. Toroidal Optical Microresonators as Single-Particle Absorption Spectrometers

    NASA Astrophysics Data System (ADS)

    Heylman, Kevin D.

    Single-particle and single-molecule measurements are invaluable tools for characterizing structural and energetic properties of molecules and nanomaterials. Photothermal microscopy in particular is an ultrasensitive technique capable of single-molecule resolution. In this thesis I introduce a new form of photothermal spectroscopy involving toroidal optical microresonators as detectors and a pair of non-interacting lasers as pump and probe for performing single-target absorption spectroscopy. The first three chapters will discuss the motivation, design principles, underlying theory, and fabrication process for the microresonator absorption spectrometer. With an early version of the spectrometer, I demonstrate photothermal mapping and all-optical tuning with toroids of different geometries in Chapter 4. In Chapter 5, I discuss photothermal mapping and measurement of the absolute absorption cross-sections of individual carbon nanotubes. For the next generation of measurements I incorporate all of the advances described in Chapter 2, including a double-modulation technique to improve detection limits and a tunable pump laser for spectral measurements on single gold nanoparticles. In Chapter 6 I observe sharp Fano resonances in the spectra of gold nanoparticles and describe them with a theoretical model. I continued to study this photonic-plasmonic hybrid system in Chapter 7 and explore the thermal tuning of the Fano resonance phase while quantifying the Fisher information. The new method of photothermal single-particle absorption spectroscopy that I will discuss in this thesis has reached record detection limits for microresonator sensing and is within striking distance of becoming the first single-molecule room-temperature absorption spectrometer.

  9. Multimodal correlative investigation of the interplaying micro-architecture, chemical composition and mechanical properties of human cortical bone tissue reveals predominant role of fibrillar organization in determining microelastic tissue properties.

    PubMed

    Schrof, Susanne; Varga, Peter; Hesse, Bernhard; Schöne, Martin; Schütz, Roman; Masic, Admir; Raum, Kay

    2016-10-15

    The mechanical competence of bone is crucially determined by its material composition and structural design. To investigate the interaction of the complex hierarchical architecture, the chemical composition and the resulting elastic properties of healthy femoral bone at the level of single bone lamellae and entire structural units, we combined polarized Raman spectroscopy (PRS), scanning acoustic microscopy (SAM) and synchrotron X-ray phase contrast nano tomography (SR-nanoCT). In line with earlier studies, mutual correlation analysis strongly suggested that the characteristic elastic modulations of bone lamellae within single units are the result of the twisting fibrillar orientation, rather than compositional variations, modulations of the mineral particle maturity, or mass density deviations. Furthermore, we show that predominant fibril orientations in entire tissue units can be rapidly assessed from Raman parameter maps. Coexisting twisted and oscillating fibril patterns were observed in all investigated tissue domains. Ultimately, our findings demonstrate in particular the potential of combined PRS and SAM measurements in providing multi-scalar analysis of correlated fundamental tissue properties. In future studies, the presented approach can be applied for non-destructive investigation of small pathologic samples from bone biopsies and a broad range of biological materials and tissues. Bone is a complex structured composite material consisting of collagen fibrils and mineral particles. Various studies have shown that not only composition, maturation, and packing of its components, but also their structural arrangement determine the mechanical performance of the tissue. However, prominent methodologies are usually not able to concurrently describe these factors on the micron scale and complementary tissue characterization remains challenging. In this study we combine X-ray nanoCT, polarized Raman imaging and scanning acoustic microscopy and propose a protocol for fast and easy assessment of predominant fibril orientations in bone. Based on our site-matched analysis of cortical bone, we conclude that the elastic modulations of bone lamellae are mainly determined by the fibril arrangement. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Quantifying the assembly of multicomponent molecular machines by single-molecule total internal reflection fluorescence microscopy

    PubMed Central

    Boehm, Elizabeth M.; Subramanyam, Shyamal; Ghoneim, Mohamed; Washington, M. Todd; Spies, Maria

    2016-01-01

    Large, dynamic macromolecular complexes play essential roles in many cellular processes. Knowing how the components of these complexes associate with one another and undergo structural rearrangements is critical to understanding how they function. Single-molecule total internal reflection fluorescence (TIRF) microscopy is a powerful approach for addressing these fundamental issues. In this article, we first discuss single-molecule TIRF microscopes and strategies to immobilize and fluorescently label macromolecules. We then review the use of single-molecule TIRF microscopy to study the formation of binary macromolecular complexes using one-color imaging and inhibitors. We conclude with a discussion of the use of TIRF microscopy to examine the formation of higher-order (i.e., ternary, quaternary, etc.) complexes using multi-color setups. The focus throughout this article is on experimental design, controls, data acquisition, and data analysis. We hope that single-molecule TIRF microscopy, which has largely been the province of specialists, will soon become as common in the tool box of biophysicists and biochemists as structural approaches has become today. PMID:27793278

  11. Cryo-electron microscopy and single molecule fluorescent microscopy detect CD4 receptor induced HIV size expansion prior to cell entry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pham, Son; CSIRO Australian Animal Health Laboratory, Victoria 3220; Tabarin, Thibault

    Viruses are often thought to have static structure, and they only remodel after the viruses have entered target cells. Here, we detected a size expansion of virus particles prior to viral entry using cryo-electron microscopy (cryo-EM) and single molecule fluorescence imaging. HIV expanded both under cell-free conditions with soluble receptor CD4 (sCD4) targeting the CD4 binding site on the HIV-1 envelope protein (Env) and when HIV binds to receptor on cellular membrane. We have shown that the HIV Env is needed to facilitate receptor induced virus size expansions, showing that the ‘lynchpin’ for size expansion is highly specific. We demonstratemore » that the size expansion required maturation of HIV and an internal capsid core with wild type stability, suggesting that different HIV compartments are linked and are involved in remodelling. Our work reveals a previously unknown event in HIV entry, and we propose that this pre-entry priming process enables HIV particles to facilitate the subsequent steps in infection. - Highlights: • Cell free viruses are able to receive external trigger that leads to apparent size expansion. • Virus envelope and CD4 receptor engagement is the lynchpin of virus size expansion. • Internal capsid organisation can influence receptor mediated virus size expansion. • Pre-existing virus-associated lipid membrane in cell free virus can accommodate the receptor mediated virus size expansion.« less

  12. Elemental analysis of sunflower cataract in Wilson's disease: a study using scanning transmission electron microscopy and energy dispersive spectroscopy.

    PubMed

    Jang, Hyo Ju; Kim, Joon Mo; Choi, Chul Young

    2014-04-01

    Signature ophthalmic characteristics of Wilson's disease (WD) are regarded as diagnostically important manifestations of the disease. Previous studies have proved the common occurrence of copper accumulation in the liver of patients with WD. However, in the case of sunflower cataracts, one of the rare diagnostic signs of WD, no study has demonstrated copper accumulation in the lens capsules of sunflower cataracts in WD patients. To investigate the nanostructure and elemental composition of sunflower cataracts in WD, transmission electron microscopy (TEM) was done on the capsulorhexised anterior lens capsule of sunflower cataracts in WD in order to evaluate anatomical variation and elemental changes. We utilized energy dispersive X-ray spectroscopy (EDS) to investigate the elemental composition of the lens capsule using both point and mapping spectroscopy. Quantitative analysis was performed for relative comparison of the elements. TEM showed the presence of granular deposits of varying size (20-350 nm), appearing mainly in the posterior one third of the anterior capsule. The deposits appeared in linear patterns with scattered dots. There were no electron-dense particles in the epithelial cell layer of the lens. Copper and sulfur peaks were consistently revealed in electron-dense granular deposits. In contrast, copper and sulfur peaks were absent in other tissues, including granule-free lens capsules and epithelial tissue. Most copper was exclusively located in clusters of electron-dense particles, and the copper distribution overlapped with sulfur on mapping spectroscopy. Quantitative analysis presented inconsistent ratios of copper to sulfur in each electron-dense granule. The mean ratio of copper to sulfur was about 3.25 (with a range of 2.39-3.78). This is the first elemental analysis of single electron particles in sunflower cataracts using EDS in the ophthalmic area. Sunflower cataracts with WD are assumed to be the result of accumulation of heterogeneous compounds composed of several materials, including copper, sulfur, and/or copper-binding proteins. Linear patterns of copper and sulfur deposition were detected in various sizes and composition ratios with these elements in cases of WD. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Effect of adsorbate electrophilicity and spiky uneven surfaces on single gold nanourchin-based localized surface plasmon resonance sensors

    NASA Astrophysics Data System (ADS)

    Kim, Geun Wan; Ha, Ji Won

    2018-04-01

    We present single particle studies on gold nanourchins (AuNUs) for their use as localized surface plasmon resonance (LSPR) biosensors under dark-field (DF) microscopy. First, the LSPR wavelength of single AuNUs was red-shifted as thiol molecules were attached onto the surface. AuNUs with sharp tips showed higher sensitivity for detecting thiol molecules than gold nanospheres (AuNSs) of similar size. Second, the degree of red shift was affected by the electrophilicity of adsorbate molecules on the nanoparticle surface. Last, real-time monitoring of molecular binding events on single AuNUs was achieved with introducing 1 μM of 4-aminothiophenol.

  14. Oil refinery dusts: morphological and size analysis by TEM.

    PubMed

    Sielicki, Przemysław; Janik, Helena; Guzman, Agnieszka; Broniszewski, Mieczysław; Namieśnik, Jacek

    2011-03-01

    The objectives of this work were to develop a means of sampling atmospheric dusts on the premises of an oil refinery for electron microscopic study to carry out preliminary morphological analyses and to compare these dusts with those collected at sites beyond the refinery limits. Carbon and collodion membranes were used as a support for collection of dust particles straight on transmission electron microscopy (TEM) grids. Micrographs of the dust particles were taken at magnifications from ×4,000 to ×80,000 with a Tesla BS500 transmission electron microscope. Four parameters were defined on the basis of the micrographs: surface area, Feret diameter, circumference, and shape coefficient. The micrographs and literature data were used to classify the atmospheric dusts into six groups: particles with an irregular shape and rounded edges; particles with an irregular shape and sharp edges; soot and its aggregates; spherical particles; singly occurring, ultrafine dust particles; and particles not allocated to any of the previous five groups. The types of dusts found in all the samples were similar, although differences did exist between the various morphological parameters. Dust particles with the largest Feret diameter were present in sample 3 (mean, 0.739 μm)-these were collected near the refinery's effluent treatment plant. The particles with the smallest diameter were found in the sample that had been intended to be a reference sample for the remaining results (mean, 0.326 μm). The dust particles collected in the refinery had larger mean Feret diameters, even 100% larger, than those collected beyond it. Particles with diameters from 0.1 to 0.2 μm made up the most numerous group in all the samples collected in the refinery.

  15. Exciton dynamics of C60-based single-photon emitters explored by Hanbury Brown-Twiss scanning tunnelling microscopy.

    PubMed

    Merino, P; Große, C; Rosławska, A; Kuhnke, K; Kern, K

    2015-09-29

    Exciton creation and annihilation by charges are crucial processes for technologies relying on charge-exciton-photon conversion. Improvement of organic light sources or dye-sensitized solar cells requires methods to address exciton dynamics at the molecular scale. Near-field techniques have been instrumental for this purpose; however, characterizing exciton recombination with molecular resolution remained a challenge. Here, we study exciton dynamics by using scanning tunnelling microscopy to inject current with sub-molecular precision and Hanbury Brown-Twiss interferometry to measure photon correlations in the far-field electroluminescence. Controlled injection allows us to generate excitons in solid C60 and let them interact with charges during their lifetime. We demonstrate electrically driven single-photon emission from localized structural defects and determine exciton lifetimes in the picosecond range. Monitoring lifetime shortening and luminescence saturation for increasing carrier injection rates provides access to charge-exciton annihilation dynamics. Our approach introduces a unique way to study single quasi-particle dynamics on the ultimate molecular scale.

  16. Charged residues in the H-NS linker drive DNA binding and gene silencing in single cells.

    PubMed

    Gao, Yunfeng; Foo, Yong Hwee; Winardhi, Ricksen S; Tang, Qingnan; Yan, Jie; Kenney, Linda J

    2017-11-21

    Nucleoid-associated proteins (NAPs) facilitate chromosome organization in bacteria, but the precise mechanism remains elusive. H-NS is a NAP that also plays a major role in silencing pathogen genes. We used genetics, single-particle tracking in live cells, superresolution microscopy, atomic force microscopy, and molecular dynamics simulations to examine H-NS/DNA interactions in single cells. We discovered a role for the unstructured linker region connecting the N-terminal oligomerization and C-terminal DNA binding domains. In the present work we demonstrate that linker amino acids promote engagement with DNA. In the absence of linker contacts, H-NS binding is significantly reduced, although no change in chromosome compaction is observed. H-NS is not localized to two distinct foci; rather, it is scattered all around the nucleoid. The linker makes DNA contacts that are required for gene silencing, while chromosome compaction does not appear to be an important H-NS function.

  17. Single cell versus large population analysis: cell variability in elemental intracellular concentration and distribution.

    PubMed

    Malucelli, Emil; Procopio, Alessandra; Fratini, Michela; Gianoncelli, Alessandra; Notargiacomo, Andrea; Merolle, Lucia; Sargenti, Azzurra; Castiglioni, Sara; Cappadone, Concettina; Farruggia, Giovanna; Lombardo, Marco; Lagomarsino, Stefano; Maier, Jeanette A; Iotti, Stefano

    2018-01-01

    The quantification of elemental concentration in cells is usually performed by analytical assays on large populations missing peculiar but important rare cells. The present article aims at comparing the elemental quantification in single cells and cell population in three different cell types using a new approach for single cells elemental analysis performed at sub-micrometer scale combining X-ray fluorescence microscopy and atomic force microscopy. The attention is focused on the light element Mg, exploiting the opportunity to compare the single cell quantification to the cell population analysis carried out by a highly Mg-selective fluorescent chemosensor. The results show that the single cell analysis reveals the same Mg differences found in large population of the different cell strains studied. However, in one of the cell strains, single cell analysis reveals two cells with an exceptionally high intracellular Mg content compared with the other cells of the same strain. The single cell analysis allows mapping Mg and other light elements in whole cells at sub-micrometer scale. A detailed intensity correlation analysis on the two cells with the highest Mg content reveals that Mg subcellular localization correlates with oxygen in a different fashion with respect the other sister cells of the same strain. Graphical abstract Single cells or large population analysis this is the question!

  18. Preparation of biocompatible magnetite-carboxymethyl cellulose nanocomposite: characterization of nanocomposite by FTIR, XRD, FESEM and TEM.

    PubMed

    Habibi, Neda

    2014-10-15

    The preparation and characterization of magnetite-carboxymethyl cellulose nano-composite (M-CMC) material is described. Magnetite nano-particles were synthesized by a modified co-precipitation method using ferrous chloride tetrahydrate and ferric chloride hexahydrate in ammonium hydroxide solution. The M-CMC nano-composite particles were synthesized by embedding the magnetite nanoparticles inside carboxymethyl cellulose (CMC) using a freshly prepared mixture of Fe3O4 with CMC precursor. Morphology, particle size, and structural properties of magnetite-carboxymethyl cellulose nano-composite was accomplished using X-ray powder diffraction (XRD), transmission electron microscopy (TEM), Fourier transformed infrared (FTIR) and field emission scanning electron microscopy (FESEM) analysis. As a result, magnetite nano-particles with an average size of 35nm were obtained. The biocompatible Fe3O4-carboxymethyl cellulose nano-composite particles obtained from the natural CMC polymers have a potential range of application in biomedical field. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Fast Characterization of Magnetic Impurities in Single-Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Chen, Feng; Xue, Y. Y.; Hadijiev, Viktor G.; Chu, C. W.; Nikolaev, Pasha; Arepalli, Sivaram

    2003-01-01

    We have demonstrated that the magnetic susceptibility measurement is a non-destructive, fast and accurate method to determine the residual metal catalysts in a few microgram single-wall carbon nanotube (SWCNT) sample. We have studied magnetic impurities in raw and purified SWCNT by magnetic susceptibility measurements, transmission electron microscopy, and thermogravimetry. The data suggest that the saturation magnetic moment and the effective field, which is caused by the interparticle interactions, decreases and increases respectively with the decrease of the particle size. Methods are suggested to overcome the uncertainty associated.

  20. Characterization of inertial confinement fusion (ICF) targets using PIXE, RBS, and STIM analysis.

    PubMed

    Li, Yongqiang; Liu, Xue; Li, Xinyi; Liu, Yiyang; Zheng, Yi; Wang, Min; Shen, Hao

    2013-08-01

    Quality control of the inertial confinement fusion (ICF) target in the laser fusion program is vital to ensure that energy deposition from the lasers results in uniform compression and minimization of Rayleigh-Taylor instabilities. The technique of nuclear microscopy with ion beam analysis is a powerful method to provide characterization of ICF targets. Distribution of elements, depth profile, and density image of ICF targets can be identified by particle-induced X-ray emission, Rutherford backscattering spectrometry, and scanning transmission ion microscopy. We present examples of ICF target characterization by nuclear microscopy at Fudan University in order to demonstrate their potential impact in assessing target fabrication processes.

  1. Using the Image Analysis Method for Describing Soil Detachment by a Single Water Drop Impact

    PubMed Central

    Ryżak, Magdalena; Bieganowski, Andrzej

    2012-01-01

    The aim of the present work was to develop a method based on image analysis for describing soil detachment caused by the impact of a single water drop. The method consisted of recording tracks made by splashed particles on blotting paper under an optical microscope. The analysis facilitated division of the recorded particle tracks on the paper into drops, “comets” and single particles. Additionally, the following relationships were determined: (i) the distances of splash; (ii) the surface areas of splash tracks into relation to distance; (iii) the surface areas of the solid phase transported over a given distance; and (iv) the ratio of the solid phase to the splash track area in relation to distance. Furthermore, the proposed method allowed estimation of the weight of soil transported by a single water drop splash in relation to the distance of the water drop impact. It was concluded that the method of image analysis of splashed particles facilitated analysing the results at very low water drop energy and generated by single water drops.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, K.; Yang, H; Johnson, P

    Recent angle-resolved photoemission (Yang H.-B. et al., Nature, 456 (2008) 77) and scanning tunneling microscopy (Kohsaka Y. et al., Nature, 454 (2008) 1072) measurements on underdoped cuprates have yielded new spectroscopic information on quasiparticles in the pseudogap phase. New features of the normal state such as particle-hole asymmetry, maxima in the energy dispersion, and accompanying drops in the spectral weight of quasiparticles agree with the ansatz of Yang et al. for the single-particle propagator in the pseudogap phase. The coherent quasiparticle dispersion and reduced asymmetry in the tunneling density of states in the superconducting state can also be described bymore » this propagator.« less

  3. SEM Imaging and Chemical Analysis of Aerosol Particles from Surface and Hi-altitudes in New Jersey.

    NASA Astrophysics Data System (ADS)

    Bandamede, M.; Boaggio, K.; Bancroft, L.; Hurler, K.; Magee, N. B.

    2016-12-01

    We report on Scanning Electron Microscopy analysis of aerosol particle morphology and chemistry. The work includes the first comparative SEM analysis of aerosol particles captured by balloon at high altitude. The particles were acquired in an urban/suburban environment in central New-Jersey. Particles were sampled from near the surface using ambient air filtration and at high-altitudes using a novel balloon-borne instrument (ICE-Ball, see abstract by K. Boaggio). Particle images and 3D geometry are acquired by a Hitachi SU-5000 SEM, with resolution to approximately 3 nm. Elemental analysis on particles is provided by Energy Dispersive X-Ray Spectroscopy (EDS, EDAX, Inc.). Uncoated imaging is conducted in low vacuum within the variable-pressure SEM, which provides improved detection and analysis of light-element compositions including Carbon. Preliminary results suggest that some similar particle types and chemical species are sampled at both surface and high-altitude. However, as expected, particle morphologies, concentrations, chemistry, and apparent origin vary significantly at different altitudes and under different atmospheric flow regimes. Improved characterization of high-altitude aerosol particles, and differences from surface particulate composition, may advance inputs for atmospheric cloud and radiation models.

  4. Method to characterize inorganic particulates in lung tissue biopsies using field emission scanning electron microscopy

    USGS Publications Warehouse

    Lowers, Heather; Breit, George N.; Strand, Matthew; Pillers, Renee M.; Meeker, Gregory P.; Todorov, Todor I.; Plumlee, Geoffrey S.; Wolf, Ruth E.; Robinson, Maura; Parr, Jane; Miller, Robert J.; Groshong, Steve; Green, Francis; Rose, Cecile

    2018-01-01

    Humans accumulate large numbers of inorganic particles in their lungs over a lifetime. Whether this causes or contributes to debilitating disease over a normal lifespan depends on the type and concentration of the particles. We developed and tested a protocol for in situ characterization of the types and distribution of inorganic particles in biopsied lung tissue from three human groups using field emission scanning electron microscopy (FE-SEM) combined with energy dispersive spectroscopy (EDS). Many distinct particle types were recognized among the 13 000 particles analyzed. Silica, feldspars, clays, titanium dioxides, iron oxides and phosphates were the most common constituents in all samples. Particles were classified into three general groups: endogenous, which form naturally in the body; exogenic particles, natural earth materials; and anthropogenic particles, attributed to industrial sources. These in situ results were compared with those using conventional sodium hypochlorite tissue digestion and particle filtration. With the exception of clays and phosphates, the relative abundances of most common particle types were similar in both approaches. Nonetheless, the digestion/filtration method was determined to alter the texture and relative abundances of some particle types. SEM/EDS analysis of digestion filters could be automated in contrast to the more time intensive in situ analyses.

  5. Composition analysis of a polymer electrolyte membrane fuel cell microporous layer using scanning transmission X-ray microscopy and near edge X-ray absorption fine structure analysis

    NASA Astrophysics Data System (ADS)

    George, Michael G.; Wang, Jian; Banerjee, Rupak; Bazylak, Aimy

    2016-03-01

    The novel application of scanning transmission X-ray microscopy (STXM) to the microporous layer (MPL) of a polymer electrolyte membrane fuel cell is investigated. A spatially resolved chemical component distribution map is obtained for the MPL of a commercially available SGL 25 BC sample. This is achieved with near edge X-ray absorption fine structure spectroscopic analysis. Prior to analysis the sample is embedded in non-reactive epoxy and ultra-microtomed to a thickness of 100 nm. Polytetrafluoroethylene (PTFE), carbon particle agglomerates, and supporting epoxy resin distributions are identified and reconstructed for a scanning area of 6 μm × 6 μm. It is observed that the spatial distribution of PTFE is strongly correlated to the carbon particle agglomerations. Additionally, agglomerate structures of PTFE are identified, possibly indicating the presence of a unique mesostructure in the MPL. STXM analysis is presented as a useful technique for the investigation of chemical species distributions in the MPL.

  6. Probing Individual Ice Nucleation Events with Environmental Scanning Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Wang, Bingbing; China, Swarup; Knopf, Daniel; Gilles, Mary; Laskin, Alexander

    2016-04-01

    Heterogeneous ice nucleation is one of the processes of critical relevance to a range of topics in the fundamental and the applied science and technologies. Heterogeneous ice nucleation initiated by particles proceeds where microscopic properties of particle surfaces essentially control nucleation mechanisms. Ice nucleation in the atmosphere on particles governs the formation of ice and mixed phase clouds, which in turn influence the Earth's radiative budget and climate. Heterogeneous ice nucleation is still insufficiently understood and poses significant challenges in predictive understanding of climate change. We present a novel microscopy platform allowing observation of individual ice nucleation events at temperature range of 193-273 K and relative humidity relevant for ice formation in the atmospheric clouds. The approach utilizes a home built novel ice nucleation cell interfaced with Environmental Scanning Electron Microscope (IN-ESEM system). The IN-ESEM system is applied for direct observation of individual ice formation events, determining ice nucleation mechanisms, freezing temperatures, and relative humidity onsets. Reported microanalysis of the ice nucleating particles (INP) include elemental composition detected by the energy dispersed analysis of X-rays (EDX), and advanced speciation of the organic content in particles using scanning transmission x-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). The performance of the IN-ESEM system is validated through a set of experiments with kaolinite particles with known ice nucleation propensity. We demonstrate an application of the IN-ESEM system to identify and characterize individual INP within a complex mixture of ambient particles.

  7. Sea Spray Aerosol Structure and Composition Using Cryogenic Transmission Electron Microscopy

    PubMed Central

    2016-01-01

    The composition and surface properties of atmospheric aerosol particles largely control their impact on climate by affecting their ability to uptake water, react heterogeneously, and nucleate ice in clouds. However, in the vacuum of a conventional electron microscope, the native surface and internal structure often undergo physicochemical rearrangement resulting in surfaces that are quite different from their atmospheric configurations. Herein, we report the development of cryogenic transmission electron microscopy where laboratory generated sea spray aerosol particles are flash frozen in their native state with iterative and controlled thermal and/or pressure exposures and then probed by electron microscopy. This unique approach allows for the detection of not only mixed salts, but also soft materials including whole hydrated bacteria, diatoms, virus particles, marine vesicles, as well as gel networks within hydrated salt droplets—all of which will have distinct biological, chemical, and physical processes. We anticipate this method will open up a new avenue of analysis for aerosol particles, not only for ocean-derived aerosols, but for those produced from other sources where there is interest in the transfer of organic or biological species from the biosphere to the atmosphere. PMID:26878061

  8. Asbestos in play sand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langer, A.M.; Nolan, R.P.

    1987-04-02

    A letter in the New England Journal of Medicine (Oct. 2 issue) stated that a carbonate sand marketed in New Jersey was contaminated with 2 to 4 percent tremolite asbestos. The authors were called on by one of the federal agencies to repeat the analysis of this sand, specifically for its asbestos content. The sand was pulverized and immersed in oils with known refractive indexes, and the predominant amphibole was characterized by polarized light microscopy. The optical characteristics were noted, and the indexes of refraction were measured and found to be consistent with tremolite. On the basis of optical characterization,more » the authors concluded that all the tremolite visualized with light microscopy consisted of large, single cleavage fragments and was not asbestiform. They used the technique of x-ray diffraction, as did the author of the original report, which showed the presence of an amphibole mineral (probably tremolite) in the carbonate sand. The technique was not used, and cannot be used, to distinguish between the tremolite habits (asbestiform or nonasbestiform). An acid-insoluble residue, recovered from the carbonate sand, was examined by analytic electron microscopy. The tremolite grains were observed to consist of single untwinned, crystalline fragments. Few defects were noted. Selected area electron diffraction nets were indicative of fragments lying near or at the common amphibole cleavage plane. These characteristics are consistent with cleavage fragments and not asbestos. Aspect ratios reflected short particles (less than 5.1). On the basis of their examination of the carbonate play sand, they conclude that it did not contain tremolite asbestos.« less

  9. In-line three-dimensional holography of nanocrystalline objects at atomic resolution

    DOE PAGES

    Chen, F. -R.; Van Dyck, D.; Kisielowski, C.

    2016-02-18

    We report that resolution and sensitivity of the latest generation aberration-corrected transmission electron microscopes allow the vast majority of single atoms to be imaged with sub-Ångstrom resolution and their locations determined in an image plane with a precision that exceeds the 1.9-pm wavelength of 300 kV electrons. Such unprecedented performance allows expansion of electron microscopic investigations with atomic resolution into the third dimension. Here we show a general tomographic method to recover the three-dimensional shape of a crystalline particle from high-resolution images of a single projection without the need for sample rotation. The method is compatible with low dose ratemore » electron microscopy, which improves on signal quality, while minimizing electron beam-induced structure modifications even for small particles or surfaces. Lastly, we apply it to germanium, gold and magnesium oxide particles, and achieve a depth resolution of 1–2 Å, which is smaller than inter-atomic distances.« less

  10. Interferometric scattering (iSCAT) microscopy: studies of biological membrane dynamics

    NASA Astrophysics Data System (ADS)

    Reina, Francesco; Galiani, Silvia; Shrestha, Dilip; Sezgin, Erdinc; Lagerholm, B. Christoffer; Cole, Daniel; Kukura, Philipp; Eggeling, Christian

    2018-02-01

    The study of the organization and dynamics of molecules in model and cellular membranes is an important topic in contemporary biophysics. Imaging and single particle tracking in this particular field, however, proves particularly demanding, as it requires simultaneously high spatio-temporal resolution and high signal-to-noise ratios. A remedy to this challenge might be Interferometric Scattering (iSCAT) microscopy, due to its fast sampling rates, label-free imaging capabilities and, most importantly, tuneable signal level output. Here we report our recent advances in the imaging and molecular tracking on phase-separated model membrane systems and live-cell membranes using this technique.

  11. Some Characteristics of Free Cell Population in the Airways of Rats after Intratracheal Instillation of Copper-Containing Nano-Scale Particles

    PubMed Central

    Privalova, Larisa I.; Katsnelson, Boris A.; Loginova, Nadezhda V.; Gurvich, Vladimir B.; Shur, Vladimir Y.; Beikin, Yakov B.; Sutunkova, Marina P.; Minigalieva, Ilzira A.; Shishkina, Ekaterina V.; Pichugova, Svetlana V.; Tulakina, Ludmila G.; Beljayeva, Svetlana V.

    2014-01-01

    We used stable water suspensions of copper oxide particles with mean diameter 20 nm and of particles containing copper oxide and element copper with mean diameter 340 nm to assess the pulmonary phagocytosis response of rats to a single intratracheal instillation of these suspensions using optical, transmission electron, and semi-contact atomic force microscopy and biochemical indices measured in the bronchoalveolar lavage fluid. Although both nano and submicron ultrafine particles were adversely bioactive, the former were found to be more toxic for lungs as compared with the latter while evoking more pronounced defense recruitment of alveolar macrophages and especially of neutrophil leukocytes and more active phagocytosis. Based on our results and literature data, we consider both copper solubilization and direct contact with cellular organelles (mainly, mitochondria) of persistent particles internalized by phagocytes as probable mechanisms of their cytotoxicity. PMID:25421246

  12. Morphology and mixing state of individual freshly emitted wildfire carbonaceous particles.

    PubMed

    China, Swarup; Mazzoleni, Claudio; Gorkowski, Kyle; Aiken, Allison C; Dubey, Manvendra K

    2013-01-01

    Biomass burning is one of the largest sources of carbonaceous aerosols in the atmosphere, significantly affecting earth's radiation budget and climate. Tar balls, abundant in biomass burning smoke, absorb sunlight and have highly variable optical properties, typically not accounted for in climate models. Here we analyse single biomass burning particles from the Las Conchas fire (New Mexico, 2011) using electron microscopy. We show that the relative abundance of tar balls (80%) is 10 times greater than soot particles (8%). We also report two distinct types of tar balls; one less oxidized than the other. Furthermore, the mixing of soot particles with other material affects their optical, chemical and physical properties. We quantify the morphology of soot particles and classify them into four categories: ~50% are embedded (heavily coated), ~34% are partly coated, ~12% have inclusions and~4% are bare. Inclusion of these observations should improve climate model performances.

  13. Strontium eluting graphene hybrid nanoparticles augment osteogenesis in a 3D tissue scaffold

    NASA Astrophysics Data System (ADS)

    Kumar, Sachin; Chatterjee, Kaushik

    2015-01-01

    The objective of this work was to prepare hybrid nanoparticles of graphene sheets decorated with strontium metallic nanoparticles and demonstrate their advantages in bone tissue engineering. Strontium-decorated reduced graphene oxide (RGO_Sr) hybrid nanoparticles were synthesized by the facile reduction of graphene oxide and strontium nitrate. X-ray diffraction, transmission electron microscopy, and atomic force microscopy revealed that the hybrid particles were composed of RGO sheets decorated with 200-300 nm metallic strontium particles. Thermal gravimetric analysis further confirmed the composition of the hybrid particles as 22 wt% of strontium. Macroporous tissue scaffolds were prepared by incorporating RGO_Sr particles in poly(ε-caprolactone) (PCL). The PCL/RGO_Sr scaffolds were found to elute strontium ions in aqueous medium. Osteoblast proliferation and differentiation was significantly higher in the PCL scaffolds containing the RGO_Sr particles in contrast to neat PCL and PCL/RGO scaffolds. The increased biological activity can be attributed to the release of strontium ions from the hybrid nanoparticles. This study demonstrates that composites prepared using hybrid nanoparticles that elute strontium ions can be used to prepare multifunctional scaffolds with good mechanical and osteoinductive properties. These findings have important implications for designing the next generation of biomaterials for use in tissue regeneration.The objective of this work was to prepare hybrid nanoparticles of graphene sheets decorated with strontium metallic nanoparticles and demonstrate their advantages in bone tissue engineering. Strontium-decorated reduced graphene oxide (RGO_Sr) hybrid nanoparticles were synthesized by the facile reduction of graphene oxide and strontium nitrate. X-ray diffraction, transmission electron microscopy, and atomic force microscopy revealed that the hybrid particles were composed of RGO sheets decorated with 200-300 nm metallic strontium particles. Thermal gravimetric analysis further confirmed the composition of the hybrid particles as 22 wt% of strontium. Macroporous tissue scaffolds were prepared by incorporating RGO_Sr particles in poly(ε-caprolactone) (PCL). The PCL/RGO_Sr scaffolds were found to elute strontium ions in aqueous medium. Osteoblast proliferation and differentiation was significantly higher in the PCL scaffolds containing the RGO_Sr particles in contrast to neat PCL and PCL/RGO scaffolds. The increased biological activity can be attributed to the release of strontium ions from the hybrid nanoparticles. This study demonstrates that composites prepared using hybrid nanoparticles that elute strontium ions can be used to prepare multifunctional scaffolds with good mechanical and osteoinductive properties. These findings have important implications for designing the next generation of biomaterials for use in tissue regeneration. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr05060f

  14. Correlated Optical Spectroscopy and Transmission Electron Microscopy of Individual Hollow Nanoparticles and their Dimers

    PubMed Central

    Yang, Linglu; Yan, Bo; Reinhard, Björn M.

    2009-01-01

    The optical spectra of individual Ag-Au alloy hollow particles were correlated with the particles’ structures obtained by transmission electron microscopy (TEM). The TEM provided direct experimental access to the dimension of the cavity, thickness of the metal shell, and the interparticle distance of hollow particle dimers with high spatial resolution. The analysis of correlated spectral and structural information enabled the quantification of the influence of the core-shell structure on the resonance energy, plasmon lifetime, and plasmon coupling efficiency. Electron beam exposure during TEM inspection was observed to affect plasmon wavelength and lifetime, making optical inspection prior to structural characterization mandatory. PMID:19768108

  15. Registration procedure for spatial correlation of physical energy deposition of particle irradiation and cellular response utilizing cell-fluorescent ion track hybrid detectors

    NASA Astrophysics Data System (ADS)

    Niklas, M.; Zimmermann, F.; Schlegel, J.; Schwager, C.; Debus, J.; Jäkel, O.; Abdollahi, A.; Greilich, S.

    2016-09-01

    The hybrid technology cell-fluorescent ion track hybrid detector (Cell-Fit-HD) enables the investigation of radiation-related cellular events along single ion tracks on the subcellular scale in clinical ion beams. The Cell-Fit-HD comprises a fluorescent nuclear track detector (FNTD, the physical compartment), a device for individual particle detection and a substrate for viable cell-coating, i.e. the biological compartment. To date both compartments have been imaged sequentially in situ by confocal laser scanning microscopy (CLSM). This is yet in conflict with a functional read-out of the Cell-Fit-HD utilizing a fast live-cell imaging of the biological compartment with low phototoxicity on greater time scales. The read-out of the biological from the physical compartment was uncoupled. A read-out procedure was developed to image the cell layer by conventional widefield microscopy whereas the FNTD was imaged by CLSM. Point mapping registration of the confocal and widefield imaging data was performed. Non-fluorescent crystal defects (spinels) visible in both read-outs were used as control point pairs. The accuracy achieved was on the sub-µm scale. The read-out procedure by widefield microscopy does not impair the unique ability of spatial correlation by the Cell-Fit-HD. The uncoupling will enlarge the application potential of the hybrid technology significantly. The registration allows for an ultimate correlation of microscopic physical beam parameters and cell kinetics on greater time scales. The method reported herein will be instrumental for the introduction of a novel generation of compact detectors facilitating biodosimetric research towards high-throughput analysis.

  16. A novel sheet-like virus particle array is a hallmark of Zika virus infection.

    PubMed

    Liu, Jun; Kline, Brandon A; Kenny, Tara A; Smith, Darci R; Soloveva, Veronica; Beitzel, Brett; Pang, Song; Lockett, Stephen; Hess, Harald F; Palacios, Gustavo; Kuhn, Jens H; Sun, Mei G; Zeng, Xiankun

    2018-04-25

    Zika virus (ZIKV) is an emerging flavivirus that caused thousands of human infections in recent years. Compared to other human flaviviruses, ZIKV replication is not well understood. Using fluorescent, transmission electron, and focused ion beam-scanning electron microscopy, we examined ZIKV replication dynamics in Vero 76 cells and in the brains of infected laboratory mice. We observed the progressive development of a perinuclear flaviviral replication factory both in vitro and in vivo. In vitro, we illustrated the ZIKV lifecycle from particle cell entry to egress. ZIKV particles assembled and aggregated in an induced convoluted membrane structure and ZIKV strain-specific membranous vesicles. While most mature virus particles egressed via membrane budding, some particles also likely trafficked through late endosomes and egressed through membrane abscission. Interestingly, we consistently observed a novel sheet-like virus particle array consisting of a single layer of ZIKV particles. Our study further defines ZIKV replication and identifies a novel hallmark of ZIKV infection.

  17. Formation and Structure of Calcium Carbonate Thin Films and Nanofibers Precipitated in the Presence of Poly(Allylamine Hydrochloride) and Magnesium Ions

    PubMed Central

    2013-01-01

    That the cationic polyelectrolyte poly(allylamine hydrochloride) (PAH) exerts a significant influence on CaCO3 precipitation challenges the idea that only anionic additives have this effect. Here, we show that in common with anionic polyelectrolytes such as poly(aspartic acid), PAH supports the growth of calcite thin films and abundant nanofibers. While investigating the formation of these structures, we also perform the first detailed structural analysis of the nanofibers by transmission electron microscopy (TEM) and selected area electron diffraction. The nanofibers are shown to be principally single crystal, with isolated domains of polycrystallinity, and the single crystal structure is even preserved in regions where the nanofibers dramatically change direction. The formation mechanism of the fibers, which are often hundreds of micrometers long, has been the subject of intense speculation. Our results suggest that they form by aggregation of amorphous particles, which are incorporated into the fibers uniquely at their tips, before crystallizing. Extrusion of polymer during crystallization may inhibit particle addition at the fiber walls and result in local variations in the fiber nanostructure. Finally, we investigate the influence of Mg2+ on CaCO3 precipitation in the presence of PAH, which gives thinner and smoother films, together with fibers with more polycrystalline, granular structures. PMID:24489438

  18. Formation and Structure of Calcium Carbonate Thin Films and Nanofibers Precipitated in the Presence of Poly(Allylamine Hydrochloride) and Magnesium Ions.

    PubMed

    Cantaert, Bram; Verch, Andreas; Kim, Yi-Yeoun; Ludwig, Henning; Paunov, Vesselin N; Kröger, Roland; Meldrum, Fiona C

    2013-12-23

    That the cationic polyelectrolyte poly(allylamine hydrochloride) (PAH) exerts a significant influence on CaCO 3 precipitation challenges the idea that only anionic additives have this effect. Here, we show that in common with anionic polyelectrolytes such as poly(aspartic acid), PAH supports the growth of calcite thin films and abundant nanofibers. While investigating the formation of these structures, we also perform the first detailed structural analysis of the nanofibers by transmission electron microscopy (TEM) and selected area electron diffraction. The nanofibers are shown to be principally single crystal, with isolated domains of polycrystallinity, and the single crystal structure is even preserved in regions where the nanofibers dramatically change direction. The formation mechanism of the fibers, which are often hundreds of micrometers long, has been the subject of intense speculation. Our results suggest that they form by aggregation of amorphous particles, which are incorporated into the fibers uniquely at their tips, before crystallizing. Extrusion of polymer during crystallization may inhibit particle addition at the fiber walls and result in local variations in the fiber nanostructure. Finally, we investigate the influence of Mg 2+ on CaCO 3 precipitation in the presence of PAH, which gives thinner and smoother films, together with fibers with more polycrystalline, granular structures.

  19. The influence of different processing stages on particle size, microstructure, and appearance of dark chocolate.

    PubMed

    Glicerina, Virginia; Balestra, Federica; Dalla Rosa, Marco; Bergenhstål, Bjorn; Tornberg, Eva; Romani, Santina

    2014-07-01

    The effect of different process stages on microstructural and visual properties of dark chocolate was studied. Samples were obtained at each phase of the manufacture process: mixing, prerefining, refining, conching, and tempering. A laser light diffraction technique and environmental scanning electron microscopy (ESEM) were used to study the particle size distribution (PSD) and to analyze modifications in the network structure. Moreover, colorimetric analyses (L*, h°, and C*) were performed on all samples. Each stage influenced in stronger way the microstructural characteristic of products and above all the PSD. Sauter diameter (D [3.2]) decreased from 5.44 μm of mixed chocolate sample to 3.83 μm, of the refined one. ESEM analysis also revealed wide variations in the network structure of samples during the process, with an increase of the aggregation and contact point between particles from mixing to refining stage. Samples obtained from the conching and tempering were characterized by small PS, and a less dense aggregate structure. From color results, samples with the finest particles, having larger specific surface area and the smallest diameter, appeared lighter and more saturated than those with coarse particles. Final quality of food dispersions is affected by network and particles characteristics. The deep knowledge of the influence of single processing stage on chocolate microstructural properties is useful in order to improve or modify final product characteristics. ESEM and laser diffraction are suitable techniques to study changes in chocolate microstructure. © 2014 Institute of Food Technologists®

  20. Effect of heterogeneity and shape on optical properties of urban dust based on three-dimensional modeling of individual particles

    NASA Astrophysics Data System (ADS)

    Conny, Joseph M.; Ortiz-Montalvo, Diana L.

    2017-09-01

    We show the effect of composition heterogeneity and shape on the optical properties of urban dust particles based on the three-dimensional spatial and optical modeling of individual particles. Using scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDX) and focused ion beam (FIB) tomography, spatial models of particles collected in Los Angeles and Seattle accounted for surface features, inclusions, and voids, as well as overall composition and shape. Using voxel data from the spatial models and the discrete dipole approximation method, we report extinction efficiency, asymmetry parameter, and single-scattering albedo (SSA). Test models of the particles involved (1) the particle's actual morphology as a single homogeneous phase and (2) simple geometric shapes (spheres, cubes, and tetrahedra) depicting composition homogeneity or heterogeneity (with multiple spheres). Test models were compared with a reference model, which included the particle's actual morphology and heterogeneity based on SEM/EDX and FIB tomography. Results show particle shape to be a more important factor for determining extinction efficiency than accounting for individual phases in a particle, regardless of whether absorption or scattering dominated. In addition to homogeneous models with the particles' actual morphology, tetrahedral geometric models provided better extinction accuracy than spherical or cubic models. For iron-containing heterogeneous particles, the asymmetry parameter and SSA varied with the composition of the iron-containing phase, even if the phase was <10% of the particle volume. For particles containing loosely held phases with widely varying refractive indexes (i.e., exhibiting "severe" heterogeneity), only models that account for heterogeneity may sufficiently determine SSA.

  1. Live-cell imaging by confocal Raman and fluorescence microscopy recognizes the crystal structure of calcium carbonate particles in HeLa cells.

    PubMed

    Abalymov, Аnatoly A; Verhovskiy, Roman A; Novoselova, Marina V; Parakhonskiy, Bogdan V; Gorin, Dmitry A; Yashchenok, Alexey M; Sukhorukov, Gleb B

    2018-06-19

    Porous calcium carbonate (CaCO 3 ) vaterite particles are very attractive templates for the encapsulation of pharmaceuticals and for the construction of hollow polyelectrolyte capsules, sensors, and enzyme-catalyzed reactors. Although CaCO 3 is biocompatible and biodegradable, little is known about the intercellular behavior and properties of vaterite particles in the cytoplasm of cells. In this work, we combined confocal Raman and fluorescent microscopy for the imaging of porous CaCO 3 vaterite particles in HeLa cells to study the uptake and status of the particles inside the cells in real time. Analysis of the fluorescence images showed that the particles penetrated the plasma membrane 3 h after being added to the cell culture and that the internalization of the particles continued up to 48 h. The crystal structure of individual vaterite particles in the cytoplasm of HeLa cells did not obviously change for 144 h. For clusters of particles, however, we identified Raman spectroscopic signatures of the stable calcite phase after 72 h of incubation, confirming an ion-exchange mechanism of vaterite transformation to calcite. The results indicate that our imaging approach to examining inorganic particles in living cells may have theranostic applications. This article is protected by copyright. All rights reserved.

  2. Dynamic consolidation of cubic boron nitride and its admixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, H.; Ahrens, T.J.

    1988-09-01

    Cubic boron nitride (C-BN) powders admixed with graphite-structured boron nitride powder (g-BN), silicon carbide whisker (SCW), or silicon nitride whisker (SNW) were shock compacted to pressures up to 22 GPa. Unlike previous work with diamond and graphite (D. K. Potter and T. J. Ahrens, J. Appl. Phys. 63, 910 (1987)) it was found that the addition of g-BN inhibited dynamic consolidation. Good consolidation was achieved with a 4--8 ..mu..m particle size C-BN powder admixed with 15 wt.% SNW or 20 wt.% SCW. Whereas a 37--44 ..mu..m particle size C-BN mixture was only poorly consolidated. Scanning electron microscopy (SEM) analysis demonstratemore » that SCW and SNW in the mixtures were highly deformed and indicated melt textures. A skin heating model was used to describe the physics of consolidation. Model calculations are consistent with SEM analysis images that indicate plastic deformation of SCW and SNW. Micro-Vickers hardness values as high as 50 GPa were obtained for consolidated C-BN and SNW mixtures. This compares to 21 GPa for single-crystal Al/sub 2/O/sub 3/ and 120 GPa for diamond.« less

  3. Subway particles are more genotoxic than street particles and induce oxidative stress in cultured human lung cells.

    PubMed

    Karlsson, Hanna L; Nilsson, Lennart; Möller, Lennart

    2005-01-01

    Epidemiological studies have shown an association between airborne particles and a wide range of adverse health effects. The mechanisms behind these effects include oxidative stress and inflammation. Even though traffic gives rise to high levels of particles in the urban air, people are exposed to even higher levels in the subway. However, there is a lack of knowledge regarding how particles from different urban subenvironments differ in toxicity. The main aim of the present study was to compare the ability of particles from a subway station and a nearby very busy urban street, respectively, to damage DNA and to induce oxidative stress. Cultured human lung cells (A549) were exposed to particles, DNA damage was analyzed using single cell gel electrophoresis (the comet assay), and the ability to induce oxidative stress was measured as 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) formation in lung cell DNA. We found that the subway particles were approximately eight times more genotoxic and four times more likely to cause oxidative stress in the lung cells. When the particles, water extracts from the particles, or particles treated with the metal chelator deferoxamine mesylate were incubated with 2'-deoxyguanosine (dG) and 8-oxodG was analyzed, we found that the oxidative capacity of the subway particles was due to redox active solid metals. Furthermore, analysis of the atomic composition showed that the subway particles to a dominating degree (atomic %) consisted of iron, mainly in the form of magnetite (Fe3O4). By using electron microscopy, the interaction between the particles and the lung cells was shown. The in vitro reactivity of the subway particles in combination with the high particle levels in subway systems give cause of concern due to the high number of people that are exposed to subway particles on a daily basis. To what extent the subway particles cause health effects in humans needs to be further evaluated.

  4. Iterative Stable Alignment and Clustering of 2D Transmission Electron Microscope Images

    PubMed Central

    Yang, Zhengfan; Fang, Jia; Chittuluru, Johnathan; Asturias, Francisco J.; Penczek, Pawel A.

    2012-01-01

    SUMMARY Identification of homogeneous subsets of images in a macromolecular electron microscopy (EM) image data set is a critical step in single-particle analysis. The task is handled by iterative algorithms, whose performance is compromised by the compounded limitations of image alignment and K-means clustering. Here we describe an approach, iterative stable alignment and clustering (ISAC) that, relying on a new clustering method and on the concepts of stability and reproducibility, can extract validated, homogeneous subsets of images. ISAC requires only a small number of simple parameters and, with minimal human intervention, can eliminate bias from two-dimensional image clustering and maximize the quality of group averages that can be used for ab initio three-dimensional structural determination and analysis of macromolecular conformational variability. Repeated testing of the stability and reproducibility of a solution within ISAC eliminates heterogeneous or incorrect classes and introduces critical validation to the process of EM image clustering. PMID:22325773

  5. Study of structural, spectroscopic and dielectric properties of multiferroic cadmium doped Samarium manganite synthesized by solid state reaction method

    NASA Astrophysics Data System (ADS)

    Gupta, Vandana; Raina, Bindu; Verma, Seema; Bamzai, K. K.

    2018-05-01

    Samarium manganite doped with cadmium having general formula Sm1-xCdxMnO3 for x = 0.05, 0.15 were synthesized by solid state reaction technique. These compositions were characterized by various techniques like X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and dielectric. XRD analysis confirms the single phase formation with pervoskites structure having orthorhombic phase. Densities were determined and compared with the results obtained by Archimedes principle. The scanning electron micrograph shows that the particle size distribution is almost homogeneous and spherical in shape. FTIR analysis confirms the presence of various atomic bonds within a molecule. A very large value of dielectric constant was observed at low frequencies due to the presence of grains and interfaces. The dielectric constant value decreases with increase in cadmium doping at samarium site.

  6. Structural virology. Near-atomic cryo-EM structure of the helical measles virus nucleocapsid.

    PubMed

    Gutsche, Irina; Desfosses, Ambroise; Effantin, Grégory; Ling, Wai Li; Haupt, Melina; Ruigrok, Rob W H; Sachse, Carsten; Schoehn, Guy

    2015-05-08

    Measles is a highly contagious human disease. We used cryo-electron microscopy and single particle-based helical image analysis to determine the structure of the helical nucleocapsid formed by the folded domain of the measles virus nucleoprotein encapsidating an RNA at a resolution of 4.3 angstroms. The resulting pseudoatomic model of the measles virus nucleocapsid offers important insights into the mechanism of the helical polymerization of nucleocapsids of negative-strand RNA viruses, in particular via the exchange subdomains of the nucleoprotein. The structure reveals the mode of the nucleoprotein-RNA interaction and explains why each nucleoprotein of measles virus binds six nucleotides, whereas the respiratory syncytial virus nucleoprotein binds seven. It provides a rational basis for further analysis of measles virus replication and transcription, and reveals potential targets for drug design. Copyright © 2015, American Association for the Advancement of Science.

  7. Micro-structural analysis of NiFe2O4 nanoparticles synthesized by thermal plasma route and its suitability for BSA adsorption.

    PubMed

    Bhosale, Shivaji V; Kanhe, Nilesh S; Bhoraskar, Sudha V; Bhat, Suresh K; Bulakhe, Ravindra N; Shim, Jae-Jin; Mathe, Vikas L

    2015-08-01

    The paper presents the experimental studies pertaining to the adsorption of bovine serum albumin (BSA) on the nanoparticles of nickel ferrite (NiFe2O4) with a view of correlating the adsorption properties to their microstructure and zeta potentials. Physical properties of two kinds of nickel ferrites, one synthesized by thermal plasma route and the other by chemical co-precipitation method, are compared. Maximum adsorption (231.57 μg/mg) of BSA onto nickel ferrite nanoparticles, at body temperature (37 °C) was observed at pH-value of 5.58 for the thermal plasma synthesized particles showing its higher adsorption capacity than those synthesized by wet chemical means (178.71 μg/mg). Under the same physical conditions the value of zeta potential, obtained for the former, was higher than that of the latter over a wide range of pH values (3.64-9.66). This is attributed to the differences in the specific surface energies of the two kinds of nanoparticles arising from the degree of crystallinity. The paper presents the experimental evidence for the single crystalline nature of the individual nanoparticles, with mean size of 32 nm, for the thermal plasma synthesized particles as evidenced from the high resolution transmission electron microscopy and electron diffraction analysis. The measurements also reveal the poor crystalline morphology in the chemically prepared particles (mean size of 28 nm) although the X-ray diffraction patterns are not much different. The atomic force microscopy images confirm that the surfaces of plasma synthesized nanoparticles possesses higher surface roughness than that of chemically synthesized one. Presence of adsorbed protein was confirmed by vibrational spectroscopy. The Langmuir adsorption model is found to fit into the experimental data better than the Freundlich adsorption model.

  8. Shock-wave processing of C60 in hydrogen

    NASA Astrophysics Data System (ADS)

    Biennier, L.; Jayaram, V.; Suas-David, N.; Georges, R.; Singh, M. Kiran; Arunan, E.; Kassi, S.; Dartois, E.; Reddy, K. P. J.

    2017-03-01

    Context. Interstellar carbonaceous particles and molecules are subject to intense shocks in astrophysical environments. Shocks induce a rapid raise in temperature and density which strongly affects the chemical and physical properties of both the gas and solid phases of the interstellar matter. Aims: The shock-induced thermal processing of C60 particles in hydrogen has been investigated in the laboratory under controlled conditions up to 3900 K with the help of a material shock-tube. Methods: The solid residues generated by the exposure of a C60/H2 mixture to a millisecond shock wave were collected and analyzed using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Raman micro-spectroscopy, and infrared micro-spectroscopy. The gaseous products were analyzed by Gas Chromatography and Cavity Ring Down Spectroscopy. Results: Volatile end-products appear above reflected shock gas temperatures of 2540 K and reveal the substantial presence of small molecules with one or two C atoms. These observations confirm the role played by the C2 radical as a major product of C60 fragmentation and less expectedly highlight the existence of a single C atom loss channel. Molecules with more than two carbon atoms are not observed in the post-shock gas. The analysis of the solid component shows that C60 particles are rapidly converted into amorphous carbon with a number of aliphatic bridges. Conclusions: The absence of aromatic CH stretches on the IR spectra indicates that H atoms do not link directly to aromatic cycles. The fast thermal processing of C60 in H2 over the 800-3400 K temperature range leads to amorphous carbon. The analysis hints at a collapse of the cage with the formation of a few aliphatic connections. A low amount of hydrogen is incorporated into the carbon material. This work extends the range of applications of shock tubes to studies of astrophysical interest.

  9. Study of Chemical Changes in Uranium Oxyfluoride Particles Progress Report March - October 2009

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kips, R; Kristo, M; Hutcheon, I

    2009-11-22

    Nuclear forensics relies on the analysis of certain sample characteristics to determine the origin and history of a nuclear material. In the specific case of uranium enrichment facilities, it is the release of trace amounts of uranium hexafluoride (UF{sub 6}) gas - used for the enrichment of uranium - that leaves a process-characteristic fingerprint. When UF{sub 6} gas interacts with atmospheric moisture, uranium oxyfluoride particles or particle agglomerates are formed with sizes ranging from several microns down to a few tens of nanometers. These particles are routinely collected by safeguards organizations, such as the International Atomic Energy Agency (IAEA), allowingmore » them to verify whether a facility is compliant with its declarations. Spectrometric analysis of uranium particles from UF{sub 6} hydrolysis has revealed the presence of both particles that contain fluorine, and particles that do not. It is therefore assumed that uranium oxyfluoride is unstable, and decomposes to form uranium oxide. Understanding the rate of fluorine loss in uranium oxyfluoride particles, and the parameters that control it, may therefore contribute to placing boundaries on the particle's exposure time in the environment. Expressly for the purpose of this study, we prepared a set of uranium oxyfluoride particles at the Institute for Reference Materials and Measurements (EU-JRC-IRMM) from a static release of UF{sub 6} in a humid atmosphere. The majority of the samples was stored in controlled temperature, humidity and lighting conditions. Single particles were characterized by a suite of micro-analytical techniques, including NanoSIMS, micro-Raman spectrometry (MRS), scanning (SEM) and transmission (TEM) electron microscopy, energy-dispersive X-ray spectrometry (EDX) and focused ion beam (FIB). The small particle size was found to be the main analytical challenge. The relative amount of fluorine, as well as the particle chemical composition and morphology were determined at different stages in the ageing process, and immediately after preparation. This report summarizes our most recent findings for each of the analytical techniques listed above, and provides an outlook on what remains to be resolved. Additional spectroscopic and mass spectrometric measurements were carried out at Pacific Northwest National Laboratory, but are not included in this summary.« less

  10. Interrogating Surface Functional Group Heterogeneity of Activated Thermoplastics Using Super-Resolution Fluorescence Microscopy.

    PubMed

    ONeil, Colleen E; Jackson, Joshua M; Shim, Sang-Hee; Soper, Steven A

    2016-04-05

    We present a novel approach for characterizing surfaces utilizing super-resolution fluorescence microscopy with subdiffraction limit spatial resolution. Thermoplastic surfaces were activated by UV/O3 or O2 plasma treatment under various conditions to generate pendant surface-confined carboxylic acids (-COOH). These surface functional groups were then labeled with a photoswitchable dye and interrogated using single-molecule, localization-based, super-resolution fluorescence microscopy to elucidate the surface heterogeneity of these functional groups across the activated surface. Data indicated nonuniform distributions of these functional groups for both COC and PMMA thermoplastics with the degree of heterogeneity being dose dependent. In addition, COC demonstrated relative higher surface density of functional groups compared to PMMA for both UV/O3 and O2 plasma treatment. The spatial distribution of -COOH groups secured from super-resolution imaging were used to simulate nonuniform patterns of electroosmotic flow in thermoplastic nanochannels. Simulations were compared to single-particle tracking of fluorescent nanoparticles within thermoplastic nanoslits to demonstrate the effects of surface functional group heterogeneity on the electrokinetic transport process.

  11. Selective counting and sizing of single virus particles using fluorescent aptamer-based nanoparticle tracking analysis.

    PubMed

    Szakács, Zoltán; Mészáros, Tamás; de Jonge, Marien I; Gyurcsányi, Róbert E

    2018-05-30

    Detection and counting of single virus particles in liquid samples are largely limited to narrow size distribution of viruses and purified formulations. To address these limitations, here we propose a calibration-free method that enables concurrently the selective recognition, counting and sizing of virus particles as demonstrated through the detection of human respiratory syncytial virus (RSV), an enveloped virus with a broad size distribution, in throat swab samples. RSV viruses were selectively labeled through their attachment glycoproteins (G) with fluorescent aptamers, which further enabled their identification, sizing and counting at the single particle level by fluorescent nanoparticle tracking analysis. The proposed approach seems to be generally applicable to virus detection and quantification. Moreover, it could be successfully applied to detect single RSV particles in swab samples of diagnostic relevance. Since the selective recognition is associated with the sizing of each detected particle, this method enables to discriminate viral elements linked to the virus as well as various virus forms and associations.

  12. Hygroscopic properties of large aerosol particles using the example of aged Saharan mineral dust - a semi-automated electron microscopy approach

    NASA Astrophysics Data System (ADS)

    Hartmann, Markus; Heim, Lars-Oliver; Ebert, Martin; Weinbruch, Stephan; Kandler, Konrad

    2015-04-01

    Hygroscopic properties of large aerosol particles using the example of aged Saharan mineral dust - a semi-automated electron microscopy approach Markus Hartmann(1), Lars-Oliver Heim(2), Martin Ebert(1), Stephan Weinbruch(1), Konrad Kandler(1) The Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE) took place at Barbados from June 10 to July 15 2013. During this period, dust was frequently transported from Africa across the Atlantic Ocean toward the Caribbean. In this study, we investigate the atmospheric aging of the dust aerosol based on its hygroscopicity. Aerosol samples were collected ground-based at Ragged Point (13°9'54.4"N, 59°25'55.7"W) with a single round jet cascade impactor on nickel-substrates. The particles from the stage with a 50% efficiency cutoff size of 1 µm were analyzed with an Environmental Scanning Electron Microscope (ESEM) equipped with an energy-dispersive X-ray detector (EDX) and a cooling stage. In an initial automated run, information on particle size and chemical composition for elements heavier than carbon were gathered. Afterwards, electron microscope images of the same sample areas as before were taken during a stepwise increase of relative humidities (between 50 % and 92%), so that the hygroscopic growth of the droplets could be directly observed. The observed hygroscopic growth can be correlated to the chemical composition of the respective particles. For the automated analysis of several hundred images of droplets an image processing algorithm in Python was developed. The algorithm is based on histogram equalization and watershed segmentation. Since SEM images can only deliver two-dimensional information, but the hygroscopic growth factor usually refers to the volume of a drop, Atomic Force Microscopy (AFM) was used to derive an empirical function for the drop volume depending on the apparent drop diameter in the electron images. Aside from the mineral dust, composed of mostly silicates and Fe-rich particles, sea-salt and soluble sulfate particles were abundant in our samples. Also, mixtures of the former were found. A chlorine-sulfur index (S/(Cl+S), based on atom%) was used to determine different grades of sea-salt aging. Growth factors are in general the highest for sea-salt particles. Within the sea-salt particle type, sea-salt with a Cl-S index between 0.05 and 0.1 has the highest growth factor. Second highest is the sea salt group with almost un-aged sea-salt (Cl-S index < 0.05). Soluble sulfate particles come right after the sea-salt group in terms of the growth factor. Even lower hygroscopic growth show the sea-salt-silicate mixtures and the silicates. Interestingly, the few silicates showing considerable hygroscopic growth (only at high RH) have a slightly higher growth factor than the silicate mixtures with sea-salt. The latter, however, have a lower deliquescence relative humidity, most likely due to the internal mixture with sea-salt.

  13. Dynamics of diamond nanoparticles in solution and cells.

    PubMed

    Neugart, Felix; Zappe, Andrea; Jelezko, Fedor; Tietz, C; Boudou, Jean Paul; Krueger, Anke; Wrachtrup, Jörg

    2007-12-01

    The fluorescence and motional dynamics of single diamond nanocrystals in buffer solution and in living cells is investigated. Stable hydrosols of nanodiamonds in buffer solutions are investigated by fluorescence correlation spectroscopy. Measurement of the effective hydrodynamic radius yields particles of 48 nm diameter, which is in excellent agreement with atomic force microscopy measurements made on the same particles. Fluorescence correlation spectroscopy measurements indicate that nanocrystals easily form aggregates when the buffer pH is changed. This tendency is reduced when the surface of the diamonds is covered with surfactants. Upon incubation, cells spontaneously take up nanocrystals that uniformly distribute in cells. Most of the particles get immobilized within a few minutes. The binding of streptavidin to biotinylated aggregates of 4 nm diameter nanodiamonds is demonstrated.

  14. Determinants of aquaporin-4 assembly in orthogonal arrays revealed by live-cell single-molecule fluorescence imaging

    PubMed Central

    Crane, Jonathan M.; Verkman, Alan S.

    2009-01-01

    Summary We investigated the molecular determinants of aquaporin-4 (AQP4) assembly in orthogonal arrays of particles (OAPs) by visualizing fluorescently labeled AQP4 mutants in cell membranes using quantum-dot single-particle tracking and total internal reflection fluorescence microscopy. The full-length `long' (M1) form of AQP4 diffused freely in membranes and did not form OAPs, whereas the `short' (M23) form of AQP4 formed OAPs and was nearly immobile. Analysis of AQP4 deletion mutants revealed progressive disruption of OAPs by the addition of three to seven residues at the AQP4-M23 N-terminus, with polyalanines as effective as native AQP4 fragments. OAPs disappeared upon downstream deletions of AQP4-M23, which, from analysis of point mutants, involves N-terminus interactions of residues Val24, Ala25 and Phe26. OAP formation was also prevented by introducing proline residues at sites just downstream from the hydrophobic N-terminus of AQP4-M23. AQP1, an AQP4 homolog that does not form OAPs, was induced to form OAPs upon replacement of its N-terminal domain with that of AQP4-M23. Our results indicate that OAP formation by AQP4-M23 is stabilized by hydrophobic intermolecular interactions involving N-terminus residues, and that absence of OAPs in AQP4-M1 results from non-selective blocking of this interaction by seven residues just upstream from Met23. PMID:19240114

  15. Characterization of a novel particle into liquid sampler for analysis of single fluorescent aerosol particles through capillary electrophoresis.

    PubMed

    Tang, Hao; Hiemstra, Scott; Thompson, Jonathan E

    2011-09-19

    An approach to sample and analyze single aerosolized droplets (<10 nL) of solutions containing fluorescein isothiocyanate (FITC) labeled glycine (GLY) and glutamic acid (GLU) is demonstrated. The sampling approach is based on inertial impaction in which the sample particle is accelerated through a nozzle and directly into a small drop of buffered solution (20 mM borate, pH=10) suspended at the end of a coaxial tube of stainless steel and a fused silica capillary. A spherical light scattering cell and laser (λ=532 nm) is used to detect the arrival of particles at the buffered droplet. Upon dissolution and/or mixing, a portion of the sample is injected onto the fused silica capillary for subsequent chemical analysis by capillary electrophoresis (CE) and detection by laser-induced fluorescence (LIF). It was found that the inertial impaction approach sampled particles >1 μm diameter with an efficiency of 80% or greater. At 15 kV applied potential, the FITC conjugates of GLY and GLU could be resolved in less than 120 s allowing qualitative analysis of the contents of single dispersed particles. However, the extent to which the sample is diluted into the buffer droplet varied significantly on a per-particle basis that caused >80% R.S.D. in fluorescence peak heights. This aspect of the method would necessitate the use of internal standards for quantitative analysis of materials present within the particles. It is envisaged that further improvements to the device described may ultimately lead to analysis of the contents of single particles dispersed in earth's atmosphere. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Glucose transporter distribution in the vessels of the central nervous system of the axolotl Ambystoma mexicanum (Urodela: Ambystomatidae).

    PubMed

    Lazzari, Maurizio; Bettini, Simone; Ciani, Franco; Franceschini, Valeria

    2008-10-01

    The GLUT-1 isoform of the glucose transporter is commonly considered a reliable molecular marker of blood-brain barrier endothelia in the neural vasculature organized in a three-dimensional network of single vessels. The central nervous system of the axolotl Ambystoma mexicanum is characterized by a vascular architecture that contains both single and paired vessels. The presence and distribution of the GLUT-1 transporter are studied in this urodele using both immunoperoxidase histochemistry and immunogold technique. Light microscopy reveals immunopositivity in both parenchymal and meningeal vessels. The transverse-sectioned pairs of vessels do not show the same size. Furthermore, in the same pair, the two elements often differ in diameter. The main regions of the central nervous system show a different percentage of the paired structures. Only immunogold cytochemistry reveals different staining intensity in the two adjoined elements of a vascular pair. Colloidal gold particles show an asymmetric distribution in the endothelia of both single and paired vessels. These particles are more numerous on the abluminal surface than on the luminal one. The particle density is calculated in both vascular types. The different values could indicate functional differences between single and paired vessels and between the two adjoined elements of a pair, regarding glucose transport.

  17. A study of the effect of solid particle impact and particle shape on the erosion morphology of ductile metals

    NASA Technical Reports Server (NTRS)

    Rao, P. V.; Young, S. G.; Buckley, D. H.

    1984-01-01

    Impulsive versus steady jet impingement of spherical glass bead particles on metal surfaces was studied using a gas gun facility and a commercial sand blasting apparatus. Crushed glass particles were also used in the sand blasting apparatus as well as glass beads. Comparisons of the different types of erosion patterns were made. Scanning electron microscopy, surface profilometry and energy dispersive X-ray spectroscopy analysis were used to characterize erosion patterns. The nature of the wear can be divided into cutting and deformation, each with its own characteristic features. Surface chemistry analysis indicates the possiblity of complex chemical and/or mechanical interactions between erodants and target materials.

  18. In situ atomic force microscopy analysis of morphology and particle size changes in lithium iron phosphate cathode during discharge.

    PubMed

    Demirocak, Dervis Emre; Bhushan, Bharat

    2014-06-01

    Li-ion batteries offer great promise for future plug-in hybrid electric vehicles (PHEVs) and pure electric vehicles (EVs). One of the challenges is to improve the cycle life of Li-ion batteries which requires detailed understanding of the aging phenomenon. In situ techniques are especially valuable to understand aging since it allows monitoring the physical and chemical changes in real time. In this study, in situ atomic force microscopy (AFM) is utilized to study the changes in morphology and particle size of LiFePO4 cathode during discharge. The guidelines for in situ AFM cell design for accurate and reliable measurements based on different designs are presented. The effect of working electrode to counter electrode surface area ratio on cycling data of an in situ cell is also discussed. Analysis of the surface area change in LiFePO4 particles when the cell was cycled between 100% and 70% state of charge is presented. Among four particles analyzed, surface area increase of particles during Li intercalation of LiFePO4 spanned from 1.8% to 14.3% indicating the inhomogeneous nature of the cathode surface. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Quantitative Aspects of Single Molecule Microscopy

    PubMed Central

    Ober, Raimund J.; Tahmasbi, Amir; Ram, Sripad; Lin, Zhiping; Ward, E. Sally

    2015-01-01

    Single molecule microscopy is a relatively new optical microscopy technique that allows the detection of individual molecules such as proteins in a cellular context. This technique has generated significant interest among biologists, biophysicists and biochemists, as it holds the promise to provide novel insights into subcellular processes and structures that otherwise cannot be gained through traditional experimental approaches. Single molecule experiments place stringent demands on experimental and algorithmic tools due to the low signal levels and the presence of significant extraneous noise sources. Consequently, this has necessitated the use of advanced statistical signal and image processing techniques for the design and analysis of single molecule experiments. In this tutorial paper, we provide an overview of single molecule microscopy from early works to current applications and challenges. Specific emphasis will be on the quantitative aspects of this imaging modality, in particular single molecule localization and resolvability, which will be discussed from an information theoretic perspective. We review the stochastic framework for image formation, different types of estimation techniques and expressions for the Fisher information matrix. We also discuss several open problems in the field that demand highly non-trivial signal processing algorithms. PMID:26167102

  20. Lunar sample contracts

    NASA Technical Reports Server (NTRS)

    Walker, R. M.

    1974-01-01

    The major scientific accomplishments through 1971 are reported for the particle track studies of lunar samples. Results are discussed of nuclear track measurements by optical and electron microscopy, thermoluminescence, X-ray diffraction, and differential thermal analysis.

  1. Transmission electron microscopy in molecular structural biology: A historical survey.

    PubMed

    Harris, J Robin

    2015-09-01

    In this personal, historic account of macromolecular transmission electron microscopy (TEM), published data from the 1940s through to recent times is surveyed, within the context of the remarkable progress that has been achieved during this time period. The evolution of present day molecular structural biology is described in relation to the associated biological disciplines. The contribution of numerous electron microscope pioneers to the development of the subject is discussed. The principal techniques for TEM specimen preparation, thin sectioning, metal shadowing, negative staining and plunge-freezing (vitrification) of thin aqueous samples are described, with a selection of published images to emphasise the virtues of each method. The development of digital image analysis and 3D reconstruction is described in detail as applied to electron crystallography and reconstructions from helical structures, 2D membrane crystals as well as single particle 3D reconstruction of icosahedral viruses and macromolecules. The on-going development of new software, algorithms and approaches is highlighted before specific examples of the historical progress of the structural biology of proteins and viruses are presented. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Chemical imaging of ambient aerosol particles: Observational constraints on mixing state parameterization

    DOE PAGES

    O'Brien, Rachel E.; Wang, Bingbing; Laskin, Alexander; ...

    2015-08-26

    In this study, a new parameterization for quantifying the mixing state of aerosol populations has been applied for the first time to samples of ambient particles analyzed using spectro-microscopy techniques. Scanning transmission X-ray microscopy/near edge X-ray absorption fine structure (STXM/NEXAFS) and computer-controlled scanning electron microscopy/energy dispersive X-ray spectroscopy (CCSEM/EDX) were used to probe the composition of the organic and inorganic fraction of individual particles collected on 27 and 28 June during the 2010 Carbonaceous Aerosols and Radiative Effects study in the Central Valley, California. The first field site, T0, was located in downtown Sacramento, while T1 was located near themore » Sierra Nevada Mountains. Mass estimates of the aerosol particle components were used to calculate mixing state metrics, such as the particle-specific diversity, bulk population diversity, and mixing state index, for each sample. The STXM data showed evidence of changes in the mixing state associated with a buildup of organic matter confirmed by collocated measurements, and the largest impact on the mixing state was due to an increase in soot dominant particles during this buildup. The mixing state from STXM was similar between T0 and T1, indicating that the increased organic fraction at T1 had a small effect on the mixing state of the population. The CCSEM/EDX analysis showed the presence of two types of particle populations: the first was dominated by aged sea-salt particles and had a higher mixing state index (indicating a more homogeneous population); the second was dominated by carbonaceous particles and had a lower mixing state index.« less

  3. SubspaceEM: A Fast Maximum-a-posteriori Algorithm for Cryo-EM Single Particle Reconstruction

    PubMed Central

    Dvornek, Nicha C.; Sigworth, Fred J.; Tagare, Hemant D.

    2015-01-01

    Single particle reconstruction methods based on the maximum-likelihood principle and the expectation-maximization (E–M) algorithm are popular because of their ability to produce high resolution structures. However, these algorithms are computationally very expensive, requiring a network of computational servers. To overcome this computational bottleneck, we propose a new mathematical framework for accelerating maximum-likelihood reconstructions. The speedup is by orders of magnitude and the proposed algorithm produces similar quality reconstructions compared to the standard maximum-likelihood formulation. Our approach uses subspace approximations of the cryo-electron microscopy (cryo-EM) data and projection images, greatly reducing the number of image transformations and comparisons that are computed. Experiments using simulated and actual cryo-EM data show that speedup in overall execution time compared to traditional maximum-likelihood reconstruction reaches factors of over 300. PMID:25839831

  4. Unfolding of core nucleosomes by PARP-1 revealed by spFRET microscopy

    PubMed Central

    Sultanov, Daniel C.; Gerasimova, Nadezhda S.; Kudryashova, Kseniya S.; Maluchenko, Natalya V.; Kotova, Elena Y.; Langelier, Marie-France; Pascal, John M.; Kirpichnikov, Mikhail P.; Feofanov, Alexey V.; Studitsky, Vasily M.

    2017-01-01

    DNA accessibility to various protein complexes is essential for various processes in the cell and is affected by nucleosome structure and dynamics. Protein factor PARP-1 (poly(ADP-ribose)polymerase 1) increases the accessibility of DNA in chromatin to repair proteins and transcriptional machinery, but the mechanism and extent of this chromatin reorganization are unknown. Here we report on the effects of PARP-1 on single nucleosomes revealed by spFRET (single-particle Förster Resonance Energy Transfer) microscopy. PARP-1 binding to a double-strand break in the vicinity of a nucleosome results in a significant increase of the distance between the adjacent gyres of nucleosomal DNA. This partial uncoiling of the entire nucleosomal DNA occurs without apparent loss of histones and is reversed after poly(ADP)-ribosylation of PARP-1. Thus PARP-1-nucleosome interactions result in reversible, partial uncoiling of the entire nucleosomal DNA. PMID:28804761

  5. High-speed particle tracking in microscopy using SPAD image sensors

    NASA Astrophysics Data System (ADS)

    Gyongy, Istvan; Davies, Amy; Miguelez Crespo, Allende; Green, Andrew; Dutton, Neale A. W.; Duncan, Rory R.; Rickman, Colin; Henderson, Robert K.; Dalgarno, Paul A.

    2018-02-01

    Single photon avalanche diodes (SPADs) are used in a wide range of applications, from fluorescence lifetime imaging microscopy (FLIM) to time-of-flight (ToF) 3D imaging. SPAD arrays are becoming increasingly established, combining the unique properties of SPADs with widefield camera configurations. Traditionally, the photosensitive area (fill factor) of SPAD arrays has been limited by the in-pixel digital electronics. However, recent designs have demonstrated that by replacing the complex digital pixel logic with simple binary pixels and external frame summation, the fill factor can be increased considerably. A significant advantage of such binary SPAD arrays is the high frame rates offered by the sensors (>100kFPS), which opens up new possibilities for capturing ultra-fast temporal dynamics in, for example, life science cellular imaging. In this work we consider the use of novel binary SPAD arrays in high-speed particle tracking in microscopy. We demonstrate the tracking of fluorescent microspheres undergoing Brownian motion, and in intra-cellular vesicle dynamics, at high frame rates. We thereby show how binary SPAD arrays can offer an important advance in live cell imaging in such fields as intercellular communication, cell trafficking and cell signaling.

  6. Characterization of vertical aerosol flows by single particle mass spectrometry for micrometeorological analysis

    NASA Astrophysics Data System (ADS)

    Gelhausen, Elmar; Hinz, Klaus-Peter; Schmidt, Andres; Spengler, Bernhard

    2011-10-01

    A single particle mass spectrometer LAMPAS 2 (Laser Mass Analyzer for Particles in the Airborne State) was combined with an ultrasonic anemometer to provide a measurement system for monitoring environmental substance exchange as caused by emission/deposition of aerosol particles. For this study, 681 mass spectra of detected particles were sorted into groups of similarity by a clustering algorithm leading to five classes of different particle types. Each single mass spectrum was correlated to corresponding anemometer data (vertical wind vector and wind speed) in a time-resolved analysis. Due to sampling constraints time-resolution was limited to 36 s, as a result of transition time distributions through the sampling tube. Vertical particle flow (emission/deposition) was determined for all particles based on these data as acquired during a measuring campaign in Giessen, Germany. For a selected particle class a detailed up- and downwards flow consideration was performed to prove the developed approach. Particle flow of that class was dominated by an emission trend as expected. The presented combination of single-particle mass spectrometry and ultrasonic anemometry provides for the possibility to correlate chemical particle data and wind data in a distinct assignment for the description of turbulent particle behavior near earth surface. Results demonstrate the ability to apply the method to real micrometeorological systems, if sampling issues are properly considered for an intended time resolution.

  7. Single-particle characterization of ice-nucleating particles and ice particle residuals sampled by three different techniques

    NASA Astrophysics Data System (ADS)

    Worringen, A.; Kandler, K.; Benker, N.; Dirsch, T.; Weinbruch, S.; Mertes, S.; Schenk, L.; Kästner, U.; Frank, F.; Nillius, B.; Bundke, U.; Rose, D.; Curtius, J.; Kupiszewski, P.; Weingartner, E.; Schneider, J.; Schmidt, S.; Ebert, M.

    2014-09-01

    In the present work, three different techniques are used to separate ice-nucleating particles (INP) and ice particle residuals (IPR) from non-ice-active particles: the Ice Selective Inlet (ISI) and the Ice Counterflow Virtual Impactor (Ice-CVI), which sample ice particles from mixed phase clouds and allow for the analysis of the residuals, as well as the combination of the Fast Ice Nucleus Chamber (FINCH) and the Ice Nuclei Pumped Virtual Impactor (IN-PCVI), which provides ice-activating conditions to aerosol particles and extracts the activated ones for analysis. The collected particles were analyzed by scanning electron microscopy and energy-dispersive X-ray microanalysis to determine their size, chemical composition and mixing state. Samples were taken during January/February 2013 at the High Alpine Research Station Jungfraujoch. All INP/IPR-separating techniques had considerable abundances (median 20-70%) of contamination artifacts (ISI: Si-O spheres, probably calibration aerosol; Ice-CVI: Al-O particles; FINCH + IN-PCVI: steel particles). Also, potential measurement artifacts (soluble material) occurred (median abundance < 20%). After removal of the contamination particles, silicates and Ca-rich particles, carbonaceous material and metal oxides were the major INP/IPR particle types separated by all three techniques. Minor types include soot and Pb-bearing particles. Sea-salt and sulfates were identified by all three methods as INP/IPR. Lead was identified in less than 10% of the INP/IPR. It was mainly present as an internal mixture with other particle types, but also external lead-rich particles were found. Most samples showed a maximum of the INP/IPR size distribution at 400 nm geometric diameter. In a few cases, a second super-micron maximum was identified. Soot/carbonaceous material and metal oxides were present mainly in the submicron range. ISI and FINCH yielded silicates and Ca-rich particles mainly with diameters above 1 μm, while the Ice-CVI also sampled many submicron particles. Probably owing to the different meteorological conditions, the INP/IPR composition was highly variable on a sample to sample basis. Thus, some part of the discrepancies between the different techniques may result from the (unavoidable) non-parallel sampling. The observed differences of the particles group abundances as well as the mixing state of INP/IPR point to the need of further studies to better understand the influence of the separating techniques on the INP/IPR chemical composition.

  8. Structural characterization of IgG1 mAb aggregates and particles generated under various stress conditions.

    PubMed

    Telikepalli, Srivalli N; Kumru, Ozan S; Kalonia, Cavan; Esfandiary, Reza; Joshi, Sangeeta B; Middaugh, C Russell; Volkin, David B

    2014-03-01

    IgG1 mAb solutions were prepared with and without sodium chloride and subjected to different environmental stresses. Formation of aggregates and particles of varying size was monitored by a combination of size-exclusion chromatography, Nanoparticle Tracking Analysis, Micro-flow Imaging (MFI), turbidity, and visual assessments. Stirring and heating induced the highest concentration of particles. In general, the presence of NaCl enhanced this effect. The morphology of the particles formed from mAb samples exposed to different stresses was analyzed from transmission electron microscopy and MFI images. Shaking samples without NaCl generated the most fibrillar particles, whereas stirring created largely spherical particles. The composition of the particles was evaluated for covalent cross-linking by SDS-PAGE, overall secondary structure by FTIR microscopy, and surface apolarity by extrinsic fluorescence spectroscopy. Freeze-thaw and shaking led to particles containing protein with native-like secondary structure. Heating and stirring produced IgG1-containing aggregates and particles with some non-native disulfide cross-links, varying levels of intermolecular beta sheet content, and increased surface hydrophobicity. These results highlight the importance of evaluating protein particle morphology and composition, in addition to particle number and size distributions, to better understand the effect of solution conditions and environmental stresses on the formation of protein particles in mAb solutions. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  9. Simulated single molecule microscopy with SMeagol.

    PubMed

    Lindén, Martin; Ćurić, Vladimir; Boucharin, Alexis; Fange, David; Elf, Johan

    2016-08-01

    SMeagol is a software tool to simulate highly realistic microscopy data based on spatial systems biology models, in order to facilitate development, validation and optimization of advanced analysis methods for live cell single molecule microscopy data. SMeagol runs on Matlab R2014 and later, and uses compiled binaries in C for reaction-diffusion simulations. Documentation, source code and binaries for Mac OS, Windows and Ubuntu Linux can be downloaded from http://smeagol.sourceforge.net johan.elf@icm.uu.se Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    LAGASSE,ROBERT R.; THOMPSON,KYLE R.

    The goal of this work is to develop techniques for measuring gradients in particle concentration within filled polymers, such as encapsulant. A high concentration of filler particles is added to such materials to tailor physical properties such as thermal expansion coefficient. Sedimentation and flow-induced migration of particles can produce concentration gradients that are most severe near material boundaries. Therefore, techniques for measuring local particle concentration should be accurate near boundaries. Particle gradients in an alumina-filled epoxy resin are measured with a spatial resolution of 0.2 mm using an x-ray beam attenuation technique, but an artifact related to the finite diametermore » of the beam reduces accuracy near the specimen's edge. Local particle concentration near an edge can be measured more reliably using microscopy coupled with image analysis. This is illustrated by measuring concentration profiles of glass particles having 40 {micro}m median diameter using images acquired by a confocal laser fluorescence microscope. The mean of the measured profiles of volume fraction agrees to better than 3% with the expected value, and the shape of the profiles agrees qualitatively with simple theory for sedimentation of monodisperse particles. Extending this microscopy technique to smaller, micron-scale filler particles used in encapsulant for microelectronic devices is illustrated by measuring the local concentration of an epoxy resin containing 0.41 volume fraction of silica.« less

  11. Neuroprotective effect of curcumin-loaded lactoferrin nano particles against rotenone induced neurotoxicity.

    PubMed

    Bollimpelli, V Satish; Kumar, Prashant; Kumari, Sonali; Kondapi, Anand K

    2016-05-01

    Curcumin is known to have neuroprotective role and possess antioxidant, anti-inflammatory activities. Rotenone, a flavonoid induced neurotoxicity in dopaminergic cells is being widely studied in Parkinson's Disease (PD) research. In the present study, curcumin loaded lactoferrin nano particles prepared by sol-oil chemistry were used to protect dopaminergic cell line SK-N-SH against rotenone induced neurotoxicity. These curcumin loaded nano particles were of 43-60 nm diameter size and around 100 nm hydrodynamic size as assessed by transmission electron microscopy, atomic force microscopy and dynamic light scattering analysis respectively. The encapsulation efficiency was 61.3% ± 2.4%. Cellular uptake of curcumin through these nano particles was confirmed by confocal imaging and spectrofluorimetric analysis. The curcumin loaded lactoferrin nanoparticles showed greater intracellular drug uptake, sustained retention and greater neuroprotection than soluble counterpart. Neuroprotective activity was characterized through viability assays and by estimating ROS levels. Furthermore rotenone induced PD like features were characterized by decrease in tyrosine hydroxylase expression and increase in α-synuclein expression. Taken together curcumin loaded lactoferrin nanoparticles could be a promising drug delivery strategy against neurotoxicity in dopaminergic neurons. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Fracture behavior of nano-scale rubber-modified epoxies

    NASA Astrophysics Data System (ADS)

    Bacigalupo, Lauren N.

    The primary focus of the first portion of this study is to compare physical and mechanical properties of a model epoxy that has been toughened with one of three different types of rubber-based modifier: a traditional telechelic oligomer (phase separates into micro-size particles), a core-shell latex particle (preformed nano-scale particles) and a triblock copolymer (self-assembles into nano-scale particles). The effect of modifier content on the physical properties of the matrix was determined using several thermal analysis methods, which provided insight into any inherent alterations of the epoxy matrix. Although the primary objective is to study the role of particle size on the fracture toughness, stiffness and strength were also determined since these properties are often reduced in rubber-toughened epoxies. It was found that since the CSR- and SBM-modified epoxies are composed of less rubber, thermal and mechanical properties of the epoxy were better maintained. In order to better understand the fracture behavior and mechanisms of the three types of rubber particles utilized in this study, extensive microscopy analysis was conducted. Scanning transmission electron microscopy (STEM) was used to quantify the volume fraction of particles, transmission optical microscopy (TOM) was used to determine plastic damage zone size, and scanning electron microscopy (SEM) was used to assess void growth in the plastic zone after fracture. By quantifying these characteristics, it was then possible to model the plastic damage zone size as well as the fracture toughness to elucidate the behavior of the rubber-modified epoxies. It was found that localized shear yielding and matrix void growth are the active toughening mechanisms in all rubber-modified epoxies in this study, however, matrix void growth was more prevalent. The second portion of this study investigated the use of three acrylate-based triblocks and four acrylate-based diblocks to modify a model epoxy system. By varying block lengths and the polarity of the epoxy-miscible blocks, a variety of morphologies were generated (such as spherical micelles, layer particles and worm-like micelles). It was found that in some cases, the epoxy-miscible block did not yield domains substantial enough to facilitate increases in toughness. Overall, the thermal and mechanical properties of the acrylate-based triblock- and diblock-modified epoxies were found to be similar to CTBN-modified epoxy, which was used as a control. However, there were properties that were improved with the acrylate-based diblock-modified epoxies when compared to the acrylate-based triblock modified epoxies. Specifically, the viscosity penalty of the diblock-modified epoxies was shown to be a marked improvement over the triblock-modified epoxies, especially given that the fracture toughness values are similar. This reduction in the viscosity penalty becomes an important criterion when considering processing procedures and applications. Additionally, comparing the morphology of the resulting modified-epoxies utilizing atomic force microscopy (AFM) and scanning electron microscopy (SEM) led to a better understanding of the relationship between the particle morphology obtained and the physical properties of the acrylate-based rubber-modified epoxy systems in this research.

  13. Protein complex purification from Thermoplasma acidophilum using a phage display library.

    PubMed

    Hubert, Agnes; Mitani, Yasuo; Tamura, Tomohiro; Boicu, Marius; Nagy, István

    2014-03-01

    We developed a novel protein complex isolation method using a single-chain variable fragment (scFv) based phage display library in a two-step purification procedure. We adapted the antibody-based phage display technology which has been developed for single target proteins to a protein mixture containing about 300 proteins, mostly subunits of Thermoplasma acidophilum complexes. T. acidophilum protein specific phages were selected and corresponding scFvs were expressed in Escherichia coli. E. coli cell lysate containing the expressed His-tagged scFv specific against one antigen protein and T. acidophilum crude cell lysate containing intact target protein complexes were mixed, incubated and subjected to protein purification using affinity and size exclusion chromatography steps. This method was confirmed to isolate intact particles of thermosome and proteasome suitable for electron microscopy analysis and provides a novel protein complex isolation strategy applicable to organisms where no genetic tools are available. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Dielectric relaxation of NdMnO{sub 3} nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saha, Sujoy, E-mail: sahasujoy3@gmail.com; Chanda, Sadhan; Dutta, Alo

    2013-11-15

    Graphical abstract: (a) TEM image of particle distribution of NMO. (b) HRTEM image of a single NMO particle under 4,000,000× magnification. (c) SAED pattern of a single NMO nanoparticle. - Highlights: • NdMnO{sub 3} nanoparticles are synthesized by sol–gel process. • TEM micrograph shows a granular characteristic with an average particle size of ∼50 nm. • HRTEM is consistent with the spacing between the (2 0 0) planes of the orthorhombic NdMnO{sub 3}. • Band gap is found to be 4.4 eV. • Cole–Cole model has been used to explain the dielectric relaxation in the material. • The activation energymore » of the material is found to be ∼0.43 eV. - Abstract: The neodymium manganate (NdMnO{sub 3}) nanoparticles are synthesized by the sol–gel process. The phase formation and particle size of the sample are determined by X-ray diffraction analysis and transmission electron microscopy. The band gap of the material is obtained by UV–visible absorption spectroscopy using Tauc relation. Dielectric properties of the sample have been investigated in the frequency range from 42 Hz to 1 MHz and in the temperature range from 303 K to 573 K. The dielectric relaxation peaks are observed in the frequency dependent dielectric loss spectra. The Cole–Cole model is used to explain the dielectric relaxation mechanism of the material. The complex impedance plane plot confirms the existence of both the grain and grain-boundary contribution to the relaxation. The temperature dependence of both grain and grain-boundary resistances follow the Arrhenius law with the activation energy of 0.427 and 0.431 eV respectively. The frequency-dependent conductivity spectra follow the power law.« less

  15. Optically detected, single nanoparticle mass spectrometer with pre-filtered electrospray nanoparticle source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howder, Collin R.; Bell, David M.; Anderson, Scott L.

    2014-01-15

    An instrument designed for non-destructive mass analysis of single trapped nanoparticles is described. The heart of the instrument is a 3D quadrupole (Paul) trap constructed to give optical access to the trap center along ten directions, allowing passage of lasers for particle heating and detection, particle injection, collection of scattered or fluorescent photons for particle detection and mass analysis, and collection of particles on TEM grids for analysis, as needed. Nanoparticles are injected using an electrospray ionization (ESI) source, and conditions are described for spraying and trapping polymer particles, bare metal particles, and ligand stabilized particles with masses ranging frommore » 200 kDa to >3 GDa. Conditions appropriate to ESI and injection of different types of particles are described. The instrument is equipped with two ion guides separating the ESI source and nanoparticle trap. The first ion guide is mostly to allow desolvation and differential pumping before the particles enter the trap section of the instrument. The second is a linear quadrupole guide, which can be operated in mass selective or mass band-pass modes to limit transmission to species with mass-to-charge ratios in the range of interest. With a little experience, the design allows injection of single particles into the trap upon demand.« less

  16. Oufti: An integrated software package for high-accuracy, high-throughput quantitative microscopy analysis

    PubMed Central

    Paintdakhi, Ahmad; Parry, Bradley; Campos, Manuel; Irnov, Irnov; Elf, Johan; Surovtsev, Ivan; Jacobs-Wagner, Christine

    2016-01-01

    Summary With the realization that bacteria display phenotypic variability among cells and exhibit complex subcellular organization critical for cellular function and behavior, microscopy has re-emerged as a primary tool in bacterial research during the last decade. However, the bottleneck in today’s single-cell studies is quantitative image analysis of cells and fluorescent signals. Here, we address current limitations through the development of Oufti, a stand-alone, open-source software package for automated measurements of microbial cells and fluorescence signals from microscopy images. Oufti provides computational solutions for tracking touching cells in confluent samples, handles various cell morphologies, offers algorithms for quantitative analysis of both diffraction and non-diffraction-limited fluorescence signals, and is scalable for high-throughput analysis of massive datasets, all with subpixel precision. All functionalities are integrated in a single package. The graphical user interface, which includes interactive modules for segmentation, image analysis, and post-processing analysis, makes the software broadly accessible to users irrespective of their computational skills. PMID:26538279

  17. Molecular counting of membrane receptor subunits with single-molecule localization microscopy

    NASA Astrophysics Data System (ADS)

    Krüger, Carmen; Fricke, Franziska; Karathanasis, Christos; Dietz, Marina S.; Malkusch, Sebastian; Hummer, Gerhard; Heilemann, Mike

    2017-02-01

    We report on quantitative single-molecule localization microscopy, a method that next to super-resolved images of cellular structures provides information on protein copy numbers in protein clusters. This approach is based on the analysis of blinking cycles of single fluorophores, and on a model-free description of the distribution of the number of blinking events. We describe the experimental and analytical procedures, present cellular data of plasma membrane proteins and discuss the applicability of this method.

  18. Evolution of Soot Particle Morphology and Mixing State in the Atmosphere

    NASA Astrophysics Data System (ADS)

    Mazzoleni, C.; China, S.; Sharma, N.; Gorkowski, K.; Dubey, M.; Aiken, A. C.; Zaveri, R. A.; Salvadori, N.; Chakrabarty, R. K.; Moosmuller, H.; Onasch, T. B.; Herndon, S.; Williams, L. R.; Liu, S.; Dzepina, K.; Helmig, D.; Hueber, J.; Fialho, P. J.; Mazzoleni, L. R.; kumar, S.; Dziobak, M.; Wright, K.

    2013-12-01

    Soot particles (aka black carbon) impact the environment and climate by affecting Earth's radiation balance, cloud microphysics, and atmospheric chemistry. The complex morphology and mixing state of soot particles influence their optical properties and therefore their radiative forcing, the particles' transport, lifecycle, and heterogeneous chemistry. How soot morphology and mixing state alter during transport from the source to remote areas is still not well understood. While aging, soot particles can change shape, oxidize and mix, and become coated by organic and inorganic materials. In this study, we investigate the morphological and mixing state evolution of single soot particles in different stages of their 'life' in the atmosphere. This analysis will include an overview of several samples collected in various locations and atmospheric conditions: 1) particles freshly emitted near freeway on-ramps in Southern Michigan (USA); 2) particles emitted in two biomass burning events in New Mexico (USA), one close to the sampling location and another hundreds of miles away; 3) particles in the urban atmosphere of Mexico City and in the uplifted boundary layer captured on the top of the Pico de Tres Padres Mountain (on the north edge of Mexico City); 4) particles collected in the Sacramento urban area and the Sierra Nevada foothills (CA, USA); 5) particles collected in Detling (UK), and mostly transported from London, and 6) long-range transported particles in the free troposphere and collected at the Pico Mountain Observatory, located near the top of the Pico Volcano in the Azores (Portugal). We analyzed a large number of individual particles using electron microscopy and X-ray spectroscopy followed by image analysis. The projected structural properties of soot particles were characterized using size (maximum length, maximum width, and area equivalent diameter) and shape descriptors (e.g., aspect ratio, roundness, and convexity). The particle mass-fractal dimensions were determined using the ensemble method. The mixing state was analyzed by classifying soot particles based on visual inspection of coating and morphology. Soot particles freshly emitted by anthropogenic sources show less coating and more open chain-like structures; on the other hand biomass burning and long-range transported soot particles appear to be mostly coated and exhibit very compacted shapes. However, soot processing in urban atmospheres results in a complex mixture of coated and uncoated particles with a variety of morphologies and mixing states.

  19. Synthesis, structural, dielectric and magnetic properties of polyol assisted copper ferrite nano particles

    NASA Astrophysics Data System (ADS)

    Pavithradevi, S.; Suriyanarayanan, N.; Boobalan, T.

    2017-03-01

    Nanocrystalline copper ferrite CuFe2O4 is synthesized by co-precipitation method in ethylene glycol as chelating agent, using sodium Hydroxide as precipitator at pH 8. The as synthesized CuFe2O4 is annealed at temperatures of 350 °C, 700 °C, and 1050 °C for 2 h respectively. The thermal analysis of the synthesized sample is done by TG technique. It is shown that at 260 °C ethylene glycol has evaporated completely and after 715 °C, spinel ferrite is formed with a cubic structure. The calculated lattice parameters are in agreement with the reported values. FTIR spectra of CuFe2O4 nano particles are as synthesized and annealed at 1050 °C and recorded between 400 cm-1 and 4000 cm-1. It shows that when the temperature increases ethylene glycol gradually evaporates. Finally, nano crystalline single phase spinel ferrite is obtained. X-ray diffraction (XRD) and electron diffraction (EDS) studies show that the sample is indexed as the face centered cubic spinel structure. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) indicated that the particles are flaky and spherical with the crystallite size in the range of 25-34 nm. From the dielectric studies, the dielectric constant decreases as the frequency increases. Low value of dielectric loss at higher frequencies suggests that the material is suitable for high frequency applications. AC conductivity increases with frequency. The magnetic properties of the samples are measured using a vibrating sample magnetometer (VSM) at room temperature, which shows that the sample exhibited a typical super paramagnetic behavior at low temperature. The saturation magnetization, remanant magnetism, and coercivity increases with applied field.

  20. Experimental extractions of particle position from inline holograms using single coefficient of Wigner-Ville analysis

    NASA Astrophysics Data System (ADS)

    Widjaja, Joewono; Dawprateep, Saowaros; Chuamchaitrakool, Porntip

    2017-07-01

    Extractions of particle positions from inline holograms using a single coefficient of Wigner-Ville distribution (WVD) are experimentally verified. WVD analysis of holograms gives local variation of fringe frequency. Regardless of an axial position of particles, one of the WVD coefficients has the unique characteristics of having the lowest amplitude and being located on a line with a slope inversely proportional to the particle position. Experimental results obtained using two image sensors with different resolutions verify the feasibility of the present method.

  1. Dosimetry of heavy ions by use of CCD detectors

    NASA Technical Reports Server (NTRS)

    Schott, J. U.

    1994-01-01

    The design and the atomic composition of Charge Coupled Devices (CCD's) make them unique for investigations of single energetic particle events. As detector system for ionizing particles they detect single particles with local resolution and near real time particle tracking. In combination with its properties as optical sensor, particle transversals of single particles are to be correlated to any objects attached to the light sensitive surface of the sensor by simple imaging of their shadow and subsequent image analysis of both, optical image and particle effects, observed in affected pixels. With biological objects it is possible for the first time to investigate effects of single heavy ions in tissue or extinguished organs of metabolizing (i.e. moving) systems with a local resolution better than 15 microns. Calibration data for particle detection in CCD's are presented for low energetic protons and heavy ions.

  2. Physicochemical characterization and water vapor sorption of organic solution advanced spray-dried inhalable trehalose microparticles and nanoparticles for targeted dry powder pulmonary inhalation delivery.

    PubMed

    Li, Xiaojian; Mansour, Heidi M

    2011-12-01

    Novel advanced spray-dried inhalable trehalose microparticulate/nanoparticulate powders with low water content were successfully produced by organic solution advanced spray drying from dilute solution under various spray-drying conditions. Laser diffraction was used to determine the volumetric particle size and size distribution. Particle morphology and surface morphology was imaged and examined by scanning electron microscopy. Hot-stage microscopy was used to visualize the presence/absence of birefringency before and following particle engineering design pharmaceutical processing, as well as phase transition behavior upon heating. Water content in the solid state was quantified by Karl Fisher (KF) coulometric titration. Solid-state phase transitions and degree of molecular order were examined by differential scanning calorimetry (DSC) and powder X-ray diffraction, respectively. Scanning electron microscopy showed a correlation between particle morphology, surface morphology, and spray drying pump rate. All advanced spray-dried microparticulate/nanoparticulate trehalose powders were in the respirable size range and exhibited a unimodal distribution. All spray-dried powders had very low water content, as quantified by KF. The absence of crystallinity in spray-dried particles was reflected in the powder X-ray diffractograms and confirmed by thermal analysis. DSC thermal analysis indicated that the novel advanced spray-dried inhalable trehalose microparticles and nanoparticles exhibited a clear glass transition (T(g)). This is consistent with the formation of the amorphous glassy state. Spray-dried amorphous glassy trehalose inhalable microparticles and nanoparticles exhibited vapor-induced (lyotropic) phase transitions with varying levels of relative humidity as measured by gravimetric vapor sorption at 25°C and 37°C.

  3. Scanning capacitance microscopy of ErAs nanoparticles embedded in GaAs pn junctions

    NASA Astrophysics Data System (ADS)

    Park, K. W.; Nair, H. P.; Crook, A. M.; Bank, S. R.; Yu, E. T.

    2011-09-01

    Scanning capacitance microscopy is used to characterize the electronic properties of ErAs nanoparticles embedded in GaAs pn junctions grown by molecular beam epitaxy. Voltage-dependent capacitance images reveal localized variations in subsurface electronic structure near buried ErAs nanoparticles at lateral length scales of 20-30 nm. Numerical modeling indicates that these variations arise from inhomogeneities in charge modulation due to Fermi level pinning behavior associated with the embedded ErAs nanoparticles. Statistical analysis of image data yields an average particle radius of 6-8 nm—well below the direct resolution limit in scanning capacitance microscopy but discernible via analysis of patterns in nanoscale capacitance images.

  4. Microscopic composition measurements of organic individual particles collected in the Southern Great Plains

    NASA Astrophysics Data System (ADS)

    Bonanno, D.; China, S.; Fraund, M. W.; Pham, D.; Kulkarni, G.; Laskin, A.; Gilles, M. K.; Moffet, R.

    2016-12-01

    The Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems (HI-SCALE) Campaign was carried out to gain a better understanding of the lifecycle of shallow clouds. The HISCALE experiment was designed to contrast two seasons, wet and dry, and determine their effect on atmospheric cloud and aerosol processes. The spring component to HISCALE was selected to characterize mixing state for particles collected onto substrates. Sampling was performed before and after rain events to obtain airborne soil organic particles (ASOP), which are ejected after rain events. The unique composition of the ASOP may affect optical properties and/or hygroscopic properties. The collection of particles took place at the Atmospheric Radiation Measurement Southern Great Plains (ARM SGP) field site. The Scanning Transmission X-Ray Microscope (STXM) was used to image the samples collected during the first HI-SCALE Campaign to determine the carbonaceous mixing state. Scanning Electron Microscopy Energy-dispersive X-ray (SEM/EDX) analysis is more sensitive to the inorganic makeup of particles, while STXM renders a more comprehensive analysis of the organics. Measurements such as nephelometry, Particle Soot Absorption Photometry (PSAP), and Aerosol Mass Spectrometry (AMS) from the ARM archive will be correlated with microscopy measurements. The primary focus is the relation between composition and morphology of ASOP with hygroscopicity and optical properties. Further investigation of these organic particles will be performed to provide a mixing state parameterization and aid in the advancement of current climate models.

  5. A structural analysis of small vapor-deposited 'multiply twinned' gold particles

    NASA Technical Reports Server (NTRS)

    Yang, C. Y.; Heinemann, K.; Yacaman, M. J.; Poppa, H.

    1979-01-01

    High resolution selected zone dark field, Bragg reflection imaging and weak beam dark field techniques of transmission electron microscopy were used to determine the structure of small gold particles vapor deposited on NaCl substrates. Attention was focused on the analysis of those particles in the 50-150 A range that have pentagonal or hexagonal bright field profiles. These particles have been previously described as multiply twinned crystallites composed of face-centered cubic tetrahedra. The experimental evidence of the present studies can be interpreted on the assumption that the particle structure is a regular icosahedron or decahedron for the hexagonal or the pentagonal particles respectively. The icosahedron is a multiply twinned rhombohedral crystal and the decahedron is a multiply twinned body-centered orthorhombic crystal, each of which constitutes a slight distortion from the face-centered cubic structure.

  6. Investigation of nanoparticulate silicon as printed layers using scanning electron microscopy, transmission electron microscopy, X-ray absorption spectroscopy and X-ray photoelectron spectroscopy

    DOE PAGES

    Unuigbe, David M.; Harting, Margit; Jonah, Emmanuel O.; ...

    2017-08-21

    The presence of native oxide on the surface of silicon nanoparticles is known to inhibit charge transport on the surfaces. Scanning electron microscopy (SEM) studies reveal that the particles in the printed silicon network have a wide range of sizes and shapes. High-resolution transmission electron microscopy reveals that the particle surfaces have mainly the (111)- and (100)-oriented planes which stabilizes against further oxidation of the particles. X-ray absorption spectroscopy (XANES) and X-ray photoelectron spectroscopy (XPS) measurements at the O 1s-edge have been utilized to study the oxidation and local atomic structure of printed layers of silicon nanoparticles which were milledmore » for different times. XANES results reveal the presence of the +4 (SiO 2) oxidation state which tends towards the +2 (SiO) state for higher milling times. Si 2pXPS results indicate that the surfaces of the silicon nanoparticles in the printed layers are only partially oxidized and that all three sub-oxide, +1 (Si 2O), +2 (SiO) and +3 (Si 2O 3), states are present. The analysis of the change in the sub-oxide peaks of the silicon nanoparticles shows the dominance of the +4 state only for lower milling times.« less

  7. Covalent immobilization of molecularly imprinted polymer nanoparticles using an epoxy silane.

    PubMed

    Kamra, Tripta; Chaudhary, Shilpi; Xu, Changgang; Johansson, Niclas; Montelius, Lars; Schnadt, Joachim; Ye, Lei

    2015-05-01

    Molecularly imprinted polymers (MIPs) can be used as antibody mimics to develop robust chemical sensors. One challenging problem in using MIPs for sensor development is the lack of reliable conjugation chemistry that allows MIPs to be fixed on transducer surface. In this work, we study the use of epoxy silane to immobilize MIP nanoparticles on model transducer surfaces without impairing the function of the immobilized nanoparticles. The MIP nanoparticles with a core-shell structure have selective molecular binding sites in the core and multiple amino groups in the shell. The model transducer surface is functionalized with a self-assembled monolayer of epoxy silane, which reacts with the core-shell MIP particles to enable straightforward immobilization. The whole process is characterized by studying the treated surfaces after each preparation step using atomic force microscopy, scanning electron microscopy, fluorescence microscopy, contact angle measurements and X-ray photoelectron spectroscopy. The microscopy results show that the MIP particles are immobilized uniformly on surface. The photoelectron spectroscopy results further confirm the action of each functionalization step. The molecular selectivity of the MIP-functionalized surface is verified by radioligand binding analysis. The particle immobilization approach described here has a general applicability for constructing selective chemical sensors in different formats. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Functional biocompatible magnetite-cellulose nanocomposite fibrous networks: Characterization by fourier transformed infrared spectroscopy, X-ray powder diffraction and field emission scanning electron microscopy analysis.

    PubMed

    Habibi, Neda

    2015-02-05

    The preparation and characterization of functional biocompatible magnetite-cellulose nano-composite fibrous material is described. Magnetite-cellulose nano-composite was prepared by a combination of the solution-based formation of magnetic nano-particles and subsequent coating with amino celluloses. Characterization was accomplished using X-ray powder diffraction (XRD), fourier transformed infrared (FTIR) and field emission scanning electron microscopy (FESEM) analysis. The peaks of Fe3O4 in the XRD pattern of nanocomposite confirm existence of the nanoparticles in the amino cellulose matrix. Magnetite-cellulose particles exhibit an average diameter of roughly 33nm as demonstrated by field emission scanning electron microscopy. Magnetite nanoparticles were irregular spheres dispersed in the cellulose matrix. The vibration corresponding to the NCH3 functional group about 2850cm(-1) is assigned in the FTIR spectra. Functionalized magnetite-cellulose nano-composite polymers have a potential range of application as targeted drug delivery system in biomedical field. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Application of a real-space three-dimensional image reconstruction method in the structural analysis of noncrystalline biological macromolecules enveloped by water in coherent x-ray diffraction microscopy.

    PubMed

    Kodama, Wataru; Nakasako, Masayoshi

    2011-08-01

    Coherent x-ray diffraction microscopy is a novel technique in the structural analyses of particles that are difficult to crystallize, such as the biological particles composing living cells. As water is indispensable for maintaining particles in functional structures, sufficient hydration of targeted particles is required during sample preparation for diffraction microscopy experiments. However, the water enveloping particles also contributes significantly to the diffraction patterns and reduces the electron-density contrast of the sample particles. In this study, we propose a protocol for the structural analyses of particles in water by applying a three-dimensional reconstruction method in real space for the projection images phase-retrieved from diffraction patterns, together with a developed density modification technique. We examined the feasibility of the protocol through three simulations involving a protein molecule in a vacuum, and enveloped in either a droplet or a cube-shaped water. The simulations were carried out for the diffraction patterns in the reciprocal planes normal to the incident x-ray beam. This assumption and the simulation conditions corresponded to experiments using x-ray wavelengths of shorter than 0.03 Å. The analyses demonstrated that our protocol provided an interpretable electron-density map. Based on the results, we discuss the advantages and limitations of the proposed protocol and its practical application for experimental data. In particular, we examined the influence of Poisson noise in diffraction patterns on the reconstructed three-dimensional electron density in the proposed protocol.

  10. How good can cryo-EM become?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glaeser, Robert M.

    The suddenness with which single-particle cryo-electron microscopy (cryo-EM) has emerged as a method for determining high-resolution structures of biological macromolecules invites the questions, how much better can this technology get, and how fast is that likely to happen? While we can rightly celebrate the maturation of cryo-EM as a high-resolution structure-determination tool, I believe there still are many developments to look forward to.

  11. Selective laser processing of ink-jet printed nano-scaled tin-clad copper particles

    NASA Astrophysics Data System (ADS)

    Yung, K. C.; Plura, T. S.

    2010-11-01

    The deposition of tin-clad nano-size copper particles was carried out by means of ink-jet printing. Curing the particles on Polyimide (PI) turned them into soldered structures using an Nd-YAG laser. Area coverage of 55% was achieved for a single-layer print. Subsequent laser sintering increased this value to 95%. A Butanol-based copper ink and an aqueous tin (Sn)-clad Copper (Cu) ink were produced and were ink-jetted in this work. These nano-metallic inks showed excellent suspension stability with particle weight concentrations as high as 5%. The ink components were examined by measuring the particle size distribution in a dispersed condition, and the melting temperature. A piezo ink-jet print head was used to deposit the inks onto a moveable substrate. The thermal effect of the laser irradiation allowed approaching and connecting adjacent particles by melting the particle’s tin coating. The results were examined with regard to structure and soldering properties using EDX, SEM and optical microscopy.

  12. Temperature Response of Rhodamine B-Doped Latex Particles. From Solution to Single Particles.

    PubMed

    Soleilhac, Antonin; Girod, Marion; Dugourd, Philippe; Burdin, Béatrice; Parvole, Julien; Dugas, Pierre-Yves; Bayard, François; Lacôte, Emmanuel; Bourgeat-Lami, Elodie; Antoine, Rodolphe

    2016-04-26

    Nanoparticle-based temperature imaging is an emerging field of advanced applications. Herein, the sensitivity of the fluorescence of rhodamine B-doped latex nanoparticles toward temperature is described. Submicrometer size latex particles were prepared by a surfactant-free emulsion polymerization method that allowed a simple and inexpensive way to incorporate rhodamine B into the nanoparticles. Also, rhodamine B-coated latex nanoparticles dispersed in water were prepared in order to address the effect of the dye location in the nanoparticles on their temperature dependence. A better linearity of the temperature dependence emission of the rhodamine B-embedded latex particles, as compared to that of free rhodamine B dyes or rhodamine B-coated latex particles, is observed. Temperature-dependent fluorescence measurements by fluorescent confocal microscopy on individual rhodamine B-embedded latex particles were found similar to those obtained for fluorescent latex nanoparticles in solution, indicating that these nanoparticles could be good candidates to probe thermal processes as nanothermometers.

  13. Mechanisms for Ductile Rupture - FY16 ESC Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyce, Brad L.; Carroll, Jay D.; Noell, Phillip

    2017-01-01

    Ductile rupture in metals is generally a multi-step process of void nucleation, growth, and coalescence. Particle decohesion and particle fracture are generally invoked as the primary microstructural mechanisms for room-temperature void nucleation. However, because high-purity materials also fail by void nucleation and coalescence, other microstructural features must also act as sites for void nucleation. Early studies of void initiation in high-purity materials, which included post-mortem fracture surface characterization using scanning electron microscopy (SEM) and high-voltage electron microscopy (HVEM) and in-situ HVEM observations of fracture, established the presence of dislocation cell walls as void initiation sites in high-purity materials. Direct experimentalmore » evidence for this contention was obtained during in-situ HVEM tensile tests of Be single crystals. Voids between 0.2 and 1 μm long appeared suddenly along dislocation cell walls during tensile straining. However, subsequent attempts to replicate these results in other materials, particularly α -Fe single crystals, were unsuccessful because of the small size of the dislocation cells, and these remain the only published in-situ HVEM observations of void nucleation at dislocation cell walls in the absence of a growing macrocrack. Despite this challenge, other approaches to studying void nucleation in high-purity metals also indicate that dislocation cell walls are nucleation sites for voids.« less

  14. ATOMIC RESOLUTION CRYO ELECTRON MICROSCOPY OF MACROMOLECULAR COMPLEXES

    PubMed Central

    ZHOU, Z. HONG

    2013-01-01

    Single-particle cryo electron microscopy (cryoEM) is a technique for determining three-dimensional (3D) structures from projection images of molecular complexes preserved in their “native,” noncrystalline state. Recently, atomic or near-atomic resolution structures of several viruses and protein assemblies have been determined by single-particle cryoEM, allowing ab initio atomic model building by following the amino acid side chains or nucleic acid bases identifiable in their cryoEM density maps. In particular, these cryoEM structures have revealed extended arms contributing to molecular interactions that are otherwise not resolved by the conventional structural method of X-ray crystallography at similar resolutions. High-resolution cryoEM requires careful consideration of a number of factors, including proper sample preparation to ensure structural homogeneity, optimal configuration of electron imaging conditions to record high-resolution cryoEM images, accurate determination of image parameters to correct image distortions, efficient refinement and computation to reconstruct a 3D density map, and finally appropriate choice of modeling tools to construct atomic models for functional interpretation. This progress illustrates the power of cryoEM and ushers it into the arsenal of structural biology, alongside conventional techniques of X-ray crystallography and NMR, as a major tool (and sometimes the preferred one) for the studies of molecular interactions in supramolecular assemblies or machines. PMID:21501817

  15. Mass Spectrometry as a Preparative Tool for the Surface Science of Large Molecules

    NASA Astrophysics Data System (ADS)

    Rauschenbach, Stephan; Ternes, Markus; Harnau, Ludger; Kern, Klaus

    2016-06-01

    Measuring and understanding the complexity that arises when nanostructures interact with their environment are one of the major current challenges of nanoscale science and technology. High-resolution microscopy methods such as scanning probe microscopy have the capacity to investigate nanoscale systems with ultimate precision, for which, however, atomic scale precise preparation methods of surface science are a necessity. Preparative mass spectrometry (pMS), defined as the controlled deposition of m/z filtered ion beams, with soft ionization sources links the world of large, biological molecules and surface science, enabling atomic scale chemical control of molecular deposition in ultrahigh vacuum (UHV). Here we explore the application of high-resolution scanning probe microscopy and spectroscopy to the characterization of structure and properties of large molecules. We introduce the fundamental principles of the combined experiments electrospray ion beam deposition and scanning tunneling microscopy. Examples for the deposition and investigation of single particles, for layer and film growth, and for the investigation of electronic properties of individual nonvolatile molecules show that state-of-the-art pMS technology provides a platform analog to thermal evaporation in conventional molecular beam epitaxy. Additionally, it offers additional, unique features due to the use of charged polyatomic particles. This new field is an enormous sandbox for novel molecular materials research and demands the development of advanced molecular ion beam technology.

  16. In Situ Characterization of Boehmite Particles in Water Using Liquid SEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Juan; Arey, Bruce W.; Yang, Li

    In situ imaging and elemental analysis of boehmite (AlOOH) particles in water is realized using the System for Analysis at the Liquid Vacuum Interface (SALVI) and Scanning Electron Microscopy (SEM). This paper describes the method and key steps in integrating the vacuum compatible SAVLI to SEM and obtaining secondary electron (SE) images of particles in liquid in high vacuum. Energy dispersive x-ray spectroscopy (EDX) is used to obtain elemental analysis of particles in liquid. A synthesized AlOOH particle is used as a model in the liquid SEM illustration. Our results demonstrate that particles can be imaged in the SE modemore » with good resolution. The AlOOH EDX spectrum shows significant signal from the Al compared with deionized water and the empty channel control. In situ liquid SEM is a powerful technique to study particles in liquid with many exciting applications. This procedure aims to provide technical details in how to conduct liquid SEM imaging and EDX analysis using SALVI and reduce potential pitfalls using this approach for other researchers.« less

  17. Studies of mobile dust in scrape-off layer plasmas using silica aerogel collectors

    NASA Astrophysics Data System (ADS)

    Bergsåker, H.; Ratynskaia, S.; Litnovsky, A.; Ogata, D.; Sahle, W.

    2011-08-01

    Dust capture with ultralow density silica aerogel collectors is a new method, which allows time resolved in situ capture of dust particles in the scrape-off layers of fusion devices, without substantially damaging the particles. Particle composition and morphology, particle flux densities and particle velocity distributions can be determined through appropriate analysis of the aerogel surfaces after exposure. The method has been applied in comparative studies of intrinsic dust in the TEXTOR tokamak and in the Extrap T2R reversed field pinch. The analysis methods have been mainly optical microscopy and SEM. The method is shown to be applicable in both devices and the results are tentatively compared between the two plasma devices, which are very different in terms of edge plasma conditions, time scale, geometry and wall materials.

  18. Tracking of fluorescence nanoparticles with nanometre resolution in a biological system: assessing local viscosity and microrheology.

    PubMed

    Marki, Alex; Ermilov, Eugeny; Zakrzewicz, Andreas; Koller, Akos; Secomb, Timothy W; Pries, Axel R

    2014-04-01

    The aim of the study was to establish a user-friendly approach for single fluorescence particle 3D localization and tracking with nanometre precision in a standard fluorescence microscope using a point spread function (PSF) approach, and to evaluate validity and precision for different analysis methods and optical conditions with particular application to microcirculatory flow dynamics and cell biology. Images of fluorescent particles were obtained with a standard fluorescence microscope equipped with a piezo positioner for the objective. Whole pattern (WP) comparison with a PSF recorded for the specific set-up and measurement of the outermost ring radius (ORR) were used for analysis. Images of fluorescent particles were recorded over a large range (about 7μm) of vertical positions, with and without distortion by overlapping particles as well as in the presence of cultured endothelial cells. For a vertical range of 6.5μm the standard deviation (SD) from the predicted value, indicating validity, was 9.3/8.7 nm (WP/ORR) in the vertical and 8.2/11.7 nm in the horizontal direction. The precision, determined by repeated measurements, was 5.1/3.8 nm in the vertical and 2.9/3.7 nm in the horizontal direction. WP was more robust with respect to underexposure or overlapping images. On the surface of cultured endothelial cells, a layer with 2.5 times increased viscosity and a thickness of about 0.8μm was detected. With a validity in the range of 10 nm and a precision down to about 3-5 nm obtained by standard fluorescent microscopy, the PSF approach offers a valuable tool for a variety of experimental investigations of particle localizations, including the assessment of endothelial cell microenvironment.

  19. What can we tell from particle morphology in Mesozoic charcoal assemblages?

    NASA Astrophysics Data System (ADS)

    Crawford, Alastair; Belcher, Claire

    2015-04-01

    Sedimentary charcoal particles provide a valuable record of palaeofire activity on both human and geological timescales. Charcoal is both an unambiguous indicator of wildfire, and a means of preservation of plant material in an inert form; thus it records not only the occurrence and extent of wildfire, but also the species affected. While scanning electron microscopy can be usefully employed for precise taxonomic identification of charcoals, the time and cost associated with this limit the extent to which the technique is employed. Morphometric analysis of mesocharcoal particles (c. 125-1000 µm) potentially provides a simple method for obtaining useful information from optical microscopy images. Grass fires have been shown to produce mesocharcoal particles with a higher length-to-width ratio than woodland fuel sources. In Holocene archives, aspect ratio measurements are thus used to infer the broad taxonomic affinity of the burned vegetation. Since Mesozoic charcoals display similarly heterogeneous morphologies, we investigate whether there is a similar potential to infer the broad botanical affinities of Mesozoic charcoal assemblages from simple morphological metrics. We have used image analysis to analyse a range of Jurassic and Cretaceous sedimentary rocks representing different vegetation communities and depositional environments, and also to determine the range of charcoal particle morphologies which can be produced from different modern taxa under laboratory conditions. We find that modern charcoals break down into mesocharcoal particles of very variable aspect ratio, and this appears to be dependent on taxonomic position. Our analysis of fragmented laboratory-produced charcoals indicates that pteridophytes produce much more elongate particles than either conifers or non-grass angiosperms. We suggest that for charcoal assemblages that predate the evolution of grasses, high average aspect ratios may be a useful indicator of the burning of a pteridophyte-dominated flora.

  20. Analytical possibilities of highly focused ion beams in biomedical field

    NASA Astrophysics Data System (ADS)

    Ren, M. Q.; Ji, X.; Vajandar, S. K.; Mi, Z. H.; Hoi, A.; Walczyk, T.; van Kan, J. A.; Bettiol, A. A.; Watt, F.; Osipowicz, T.

    2017-09-01

    At the Centre for Ion Beam Applications (CIBA), a 3.5 MV HVEE Singletron™ accelerator serves to provide MeV ion beams (mostly protons or He+) to six state-of-the-art beam lines, four of which are equipped with Oxford triplet magnetic quadrupole lens systems. This facility is used for a wide range of research projects, many of which are in the field of biomedicine. Here we presented a discussion of currently ongoing biomedical work carried out using two beamlines: The Nuclear Microscopy (NM) beamline is mainly used for trace elemental quantitative mapping using a combination of Particle Induced X-ray Emission (PIXE), to measure the trace elemental concentration of inorganic elements, Rutherford Backscattering Spectrometry (RBS), to characterise the organic matrix, and Scanning Transmission Ion Microscopy (STIM) to provide information on the lateral areal density variations of the specimen. Typically, a 2.1 MeV proton beam, focused to 1-2 μm spot size with a current of 100 pA is used. The high resolution single cell imaging beamline is equipped with direct STIM to image the interior structure of single cells with proton and alpha particles of sub-50 nm beam spot sizes. Simultaneously, forward scattering transmission ion microscopy (FSTIM) is utilized to generate images with improved contrast of nanoparticles with higher atomic numbers, such as gold nanoparticles, and fluorescent nanoparticles can be imaged using Proton Induced Fluorescence (PIF). Lastly, in this facility, RBS has been included as an option if required to determine the depth distribution of nanoparticles in cells, albeit with reduced spatial resolution.

  1. Alpha particle spectroscopy using FNTD and SIM super-resolution microscopy.

    PubMed

    Kouwenberg, J J M; Kremers, G J; Slotman, J A; Wolterbeek, H T; Houtsmuller, A B; Denkova, A G; Bos, A J J

    2018-06-01

    Structured illumination microscopy (SIM) for the imaging of alpha particle tracks in fluorescent nuclear track detectors (FNTD) was evaluated and compared to confocal laser scanning microscopy (CLSM). FNTDs were irradiated with an external alpha source and imaged using both methodologies. SIM imaging resulted in improved resolution, without increase in scan time. Alpha particle energy estimation based on the track length, direction and intensity produced results in good agreement with the expected alpha particle energy distribution. A pronounced difference was seen in the spatial scattering of alpha particles in the detectors, where SIM showed an almost 50% reduction compared to CLSM. The improved resolution of SIM allows for more detailed studies of the tracks induced by ionising particles. The combination of SIM and FNTDs for alpha radiation paves the way for affordable and fast alpha spectroscopy and dosimetry. © 2018 The Authors. Journal of Microscopy published by JohnWiley & Sons Ltd on behalf of Royal Microscopical Society.

  2. Mitochondrial fluctuations as a measure of active biomechanical properties of mammalian cells

    NASA Astrophysics Data System (ADS)

    Xu, Wenlong; Alizadeh, Elaheh; Castle, Jordan; Prasad, Ashok

    A single-cell assay of mechanical properties would give significant insights into cellular processes. Force spectrum microscopy is one such technique, which involves both active and passive particle tracking microrheology on the same cells. Since active microrheology requires expensive instruments, it is of great interest to develop simpler alternatives. Here we study an alternative using endogenous mitochondrial fluctuations, rather than fluorescent beads, in particle tracking microrheology. Mitochondria of the C3H-10T1/2 cell line are labeled and tracked using confocal microscopy, their mean square displacement (MSD) measured, and mechanical parameters calculated. Active fluctuations are distinguished from passive fluctuations by treatment with ATP synthesis inhibitors. We find that the MSD of mitochondria resembles that of particles in viscoelastic media. However, comparisons of MSD between controls and cells disrupted in the actin or microtubule network showed surprisingly small effects, while ATP-depleted cells showed significantly decreased MSD, and characteristics of thermally driven fluctuations. Both active and ATP-depleted parameters showed heterogeneity among cells and between cell lines. This method is potentially very useful due to its simplicity. We gratefully acknowledge support from NSF CAREER Grant PHY-1151454 awarded to Ashok Prasad.

  3. Growth of arrays of oriented epitaxial platinum nanoparticles with controlled size and shape by natural colloidal lithography

    DOE PAGES

    Komanicky, Vladimir; Barbour, Andi; Lackova, Miroslava; ...

    2014-07-05

    Here, we developed a method for production of arrays of platinum nanocrystals of controlled size and shape using templates from ordered silica bead monolayers. Silica beads with nominal sizes of 150 and 450 nm were self-assembl into monolayers over strontium titanate single crystal substrates. The monolayers were used as shadow masks for platinum metal deposition on the substrate using the three-step evaporation technique. Produced arrays of epitaxial platinum islands were transformed into nanocrystals by annealing in a quartz tube in nitrogen flow. The shape of particles is determined by the substrate crystallography, while the size of the particles and theirmore » spacing are controlled by the size of the silica beads in the mono- layer mask. As a proof of concept, arrays of platinum nanocrystals of cubooctahedral shape were prepared on (100) strontium titanate substrates. We also characterized the nanocrystal arrays by atomic force microscopy, scanning electron microscopy, and synchrotron X-ray diffraction techniques.« less

  4. Dynamic and Kinetic Assembly Studies of an Icosahedral Virus Capsid

    NASA Astrophysics Data System (ADS)

    Lee, Kelly

    2011-03-01

    Hepatitis B virus has an icosahedrally symmetrical core particle (capsid), composed of either 90 or 120 copies of a dimeric protein building block. We are using time-resolved, solution small-angle X-ray scattering and single-molecule fluorescence microscopy to probe the core particle assembly reaction at the ensemble and individual assembly levels. Our experiments to date reveal the assembly process to be highly cooperative with minimal population of stable intermediate species. Solution conditions, particularly salt concentration, appears to influence the partitioning of assembly products into the two sizes of shells. Funding from NIH R00-GM080352 and University of Washington.

  5. A Hidden Markov Model for Single Particle Tracks Quantifies Dynamic Interactions between LFA-1 and the Actin Cytoskeleton

    PubMed Central

    Das, Raibatak; Cairo, Christopher W.; Coombs, Daniel

    2009-01-01

    The extraction of hidden information from complex trajectories is a continuing problem in single-particle and single-molecule experiments. Particle trajectories are the result of multiple phenomena, and new methods for revealing changes in molecular processes are needed. We have developed a practical technique that is capable of identifying multiple states of diffusion within experimental trajectories. We model single particle tracks for a membrane-associated protein interacting with a homogeneously distributed binding partner and show that, with certain simplifying assumptions, particle trajectories can be regarded as the outcome of a two-state hidden Markov model. Using simulated trajectories, we demonstrate that this model can be used to identify the key biophysical parameters for such a system, namely the diffusion coefficients of the underlying states, and the rates of transition between them. We use a stochastic optimization scheme to compute maximum likelihood estimates of these parameters. We have applied this analysis to single-particle trajectories of the integrin receptor lymphocyte function-associated antigen-1 (LFA-1) on live T cells. Our analysis reveals that the diffusion of LFA-1 is indeed approximately two-state, and is characterized by large changes in cytoskeletal interactions upon cellular activation. PMID:19893741

  6. Size-segregated urban aerosol characterization by electron microscopy and dynamic light scattering and influence of sample preparation

    NASA Astrophysics Data System (ADS)

    Marvanová, Soňa; Kulich, Pavel; Skoupý, Radim; Hubatka, František; Ciganek, Miroslav; Bendl, Jan; Hovorka, Jan; Machala, Miroslav

    2018-04-01

    Size-segregated particulate matter (PM) is frequently used in chemical and toxicological studies. Nevertheless, toxicological in vitro studies working with the whole particles often lack a proper evaluation of PM real size distribution and characterization of agglomeration under the experimental conditions. In this study, changes in particle size distributions during the PM sample manipulation and also semiquantitative elemental composition of single particles were evaluated. Coarse (1-10 μm), upper accumulation (0.5-1 μm), lower accumulation (0.17-0.5 μm), and ultrafine (<0.17 μm) PM fractions were collected by high volume cascade impactor in Prague city center. Particles were examined using electron microscopy and their elemental composition was determined by energy dispersive X-ray spectroscopy. Larger or smaller particles, not corresponding to the impaction cut points, were found in all fractions, as they occur in agglomerates and are impacted according to their aerodynamic diameter. Elemental composition of particles in size-segregated fractions varied significantly. Ns-soot occurred in all size fractions. Metallic nanospheres were found in accumulation fractions, but not in ultrafine fraction where ns-soot, carbonaceous particles, and inorganic salts were identified. Dynamic light scattering was used to measure particle size distribution in water and in cell culture media. PM suspension of lower accumulation fraction in water agglomerated after freezing/thawing the sample, and the agglomerates were disrupted by subsequent sonication. Ultrafine fraction did not agglomerate after freezing/thawing the sample. Both lower accumulation and ultrafine fractions were stable in cell culture media with fetal bovine serum, while high agglomeration occurred in media without fetal bovine serum as measured during 24 h.

  7. [Atomic force microscopy: a tool to analyze the viral cycle].

    PubMed

    Bernaud, Julien; Castelnovo, Martin; Muriaux, Delphine; Faivre-Moskalenko, Cendrine

    2015-05-01

    Each step of the HIV-1 life cycle frequently involves a change in the morphology and/or mechanical properties of the viral particle or core. The atomic force microscope (AFM) constitutes a powerful tool for characterizing these physical changes at the scale of a single virus. Indeed, AFM enables the visualization of viral capsids in a controlled physiological environment and to probe their mechanical properties by nano-indentation. Finally, AFM force spectroscopy allows to characterize the affinities between viral envelope proteins and cell receptors at the single molecule level. © 2015 médecine/sciences – Inserm.

  8. First-order reversal curves of single domain particles: diluted random assemblages and chains

    NASA Astrophysics Data System (ADS)

    Egli, R.

    2009-04-01

    Exact magnetic models can be used to calculate first-order reversal curves (FORC) of single domain (SD) particle assemblages, as shown by Newell [2005] for the case of isolated Stoner-Wohlfarth particles. After overcoming experimental difficulties, a FORC diagram sharing many similarities to Newell's model has been measured on a lake sediment sample (see A.P. Chen et al., "Quantification of magnetofossils using first-order reversal curves", EGU General Assembly 2009, Abstracts Vol. 11, EGU2009-10719). This sample contains abundant magnetofossils, as shown by coercivity analysis and electron microscopy, therefore suggesting that well dispersed, intact magnetosome chains are the main SD carriers. Subtle differences between the reversible and the irreversible contributions of the measured FORC distribution suggest that magnetosome chains might not be correctly described by the Stoner-Wohlfarth model. To better understand the hysteresis properties of such chains, a simple magnetic model has been implemented, taking dipole-dipole interactions between particles within the same chain into account. The model results depend on the magnetosome elongation, the number of magnetosomes in a chain, and the gap between them. If the chain axis is subparallel to the applied field, the magnetic moment reverses by a pseudo-fanning mode, which is replaced by a pseudo-coherent rotation mode at greater angles. These reversal modes are intrinsically different from coherent rotation assumed Stoner-Wohlfarth model, resulting in FORC diagrams with a smaller reversible component. On the other hand, isolated authigenic SD particles can precipitate in the sediment matrix, as it might occur for pedogenic magnetite. In this case, an assembly of randomly located particles provides a possible model for the resulting FORC diagram. If the concentration of the particles is small, each particle is affected by a random interaction field whose statistical distribution can be calculated from first principles. In this case, the irreversible component of the FORC diagram, which is described by a Dirac delta function in the non-interacting case, converts into a continuous function that directly reflects the distribution of interaction fields. Such models provide a way to identify and characterize authigenic SD particles in sediments, and in some case allow one to isolate their magnetic contribution from that of other magnetic components. Newell, A.J. (2005), A high-precision model of first-order reversal curve (FORC) functions for single-domain ferromagnets with uniaxial anisotropy, Gechem. Geophys. Geosyst., 6, Q05010, doi:10.1029/2004GC00877.

  9. Endosomal Interactions during Root Hair Growth

    PubMed Central

    von Wangenheim, Daniel; Rosero, Amparo; Komis, George; Šamajová, Olga; Ovečka, Miroslav; Voigt, Boris; Šamaj, Jozef

    2016-01-01

    The dynamic localization of endosomal compartments labeled with targeted fluorescent protein tags is routinely followed by time lapse fluorescence microscopy approaches and single particle tracking algorithms. In this way trajectories of individual endosomes can be mapped and linked to physiological processes as cell growth. However, other aspects of dynamic behavior including endosomal interactions are difficult to follow in this manner. Therefore, we characterized the localization and dynamic properties of early and late endosomes throughout the entire course of root hair formation by means of spinning disc time lapse imaging and post-acquisition automated multitracking and quantitative analysis. Our results show differential motile behavior of early and late endosomes and interactions of late endosomes that may be specified to particular root hair domains. Detailed data analysis revealed a particular transient interaction between late endosomes—termed herein as dancing-endosomes—which is not concluding to vesicular fusion. Endosomes preferentially located in the root hair tip interacted as dancing-endosomes and traveled short distances during this interaction. Finally, sizes of early and late endosomes were addressed by means of super-resolution structured illumination microscopy (SIM) to corroborate measurements on the spinning disc. This is a first study providing quantitative microscopic data on dynamic spatio-temporal interactions of endosomes during root hair tip growth. PMID:26858728

  10. Endosomal Interactions during Root Hair Growth.

    PubMed

    von Wangenheim, Daniel; Rosero, Amparo; Komis, George; Šamajová, Olga; Ovečka, Miroslav; Voigt, Boris; Šamaj, Jozef

    2015-01-01

    The dynamic localization of endosomal compartments labeled with targeted fluorescent protein tags is routinely followed by time lapse fluorescence microscopy approaches and single particle tracking algorithms. In this way trajectories of individual endosomes can be mapped and linked to physiological processes as cell growth. However, other aspects of dynamic behavior including endosomal interactions are difficult to follow in this manner. Therefore, we characterized the localization and dynamic properties of early and late endosomes throughout the entire course of root hair formation by means of spinning disc time lapse imaging and post-acquisition automated multitracking and quantitative analysis. Our results show differential motile behavior of early and late endosomes and interactions of late endosomes that may be specified to particular root hair domains. Detailed data analysis revealed a particular transient interaction between late endosomes-termed herein as dancing-endosomes-which is not concluding to vesicular fusion. Endosomes preferentially located in the root hair tip interacted as dancing-endosomes and traveled short distances during this interaction. Finally, sizes of early and late endosomes were addressed by means of super-resolution structured illumination microscopy (SIM) to corroborate measurements on the spinning disc. This is a first study providing quantitative microscopic data on dynamic spatio-temporal interactions of endosomes during root hair tip growth.

  11. Ultrasonic Spray Pyrolysis Deposited Copper Sulphide Thin Films for Solar Cell Applications

    PubMed Central

    Firat, Y. E.; Yildirim, H.; Erturk, K.

    2017-01-01

    Polycrystalline copper sulphide (CuxS) thin films were grown by ultrasonic spray pyrolysis method using aqueous solutions of copper chloride and thiourea without any complexing agent at various substrate temperatures of 240, 280, and 320°C. The films were characterized for their structural, optical, and electrical properties by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive analysis of X-rays (EDAX), atomic force microscopy (AFM), contact angle (CA), optical absorption, and current-voltage (I-V) measurements. The XRD analysis showed that the films had single or mixed phase polycrystalline nature with a hexagonal covellite and cubic digenite structure. The crystalline phase of the films changed depending on the substrate temperature. The optical band gaps (Eg) of thin films were 2.07 eV (CuS), 2.50 eV (Cu1.765S), and 2.28 eV (Cu1.765S–Cu2S). AFM results indicated that the films had spherical nanosized particles well adhered to the substrate. Contact angle measurements showed that the thin films had hydrophobic nature. Hall effect measurements of all the deposited CuxS thin films demonstrated them to be of p-type conductivity, and the current-voltage (I-V) dark curves exhibited linear variation. PMID:29109807

  12. Fluorescence lifetime imaging of optically levitated aerosol: a technique to quantitatively map the viscosity of suspended aerosol particles.

    PubMed

    Fitzgerald, C; Hosny, N A; Tong, H; Seville, P C; Gallimore, P J; Davidson, N M; Athanasiadis, A; Botchway, S W; Ward, A D; Kalberer, M; Kuimova, M K; Pope, F D

    2016-08-21

    We describe a technique to measure the viscosity of stably levitated single micron-sized aerosol particles. Particle levitation allows the aerosol phase to be probed in the absence of potentially artefact-causing surfaces. To achieve this feat, we combined two laser based techniques: optical trapping for aerosol particle levitation, using a counter-propagating laser beam configuration, and fluorescent lifetime imaging microscopy (FLIM) of molecular rotors for the measurement of viscosity within the particle. Unlike other techniques used to measure aerosol particle viscosity, this allows for the non-destructive probing of viscosity of aerosol particles without interference from surfaces. The well-described viscosity of sucrose aerosol, under a range of relative humidity conditions, is used to validate the technique. Furthermore we investigate a pharmaceutically-relevant mixture of sodium chloride and salbutamol sulphate under humidities representative of in vivo drug inhalation. Finally, we provide a methodology for incorporating molecular rotors into already levitated particles, thereby making the FLIM/optical trapping technique applicable to real world aerosol systems, such as atmospheric aerosols and those generated by pharmaceutical inhalers.

  13. Small round structured virus associated with an outbreak of acute gastroenteritis in Chiba, Japan.

    PubMed

    Kasuga, K; Tokieda, M; Ohtawara, M; Utagawa, E; Yamazaki, S

    1990-08-01

    In an outbreak of acute gastroenteritis which originated in a restaurant in Chiba, Japan, in December, 1987, small round structured virus (SRSV) particles were observed by electron microscopy in 14 of 16 stool specimens from patients. The particles were 30 to 35 nm in diameter, possessed amorphous surface structure surrounded by fine projections and had a buoyant density of 1.36 to 1.37 g/ml in cesium chloride. Serological responses to the SRSV were found by immune electron microscopy and Western blot (WB) assay in paired sera of 12 of 19 patients. Furthermore, WB analysis revealed that the antibody against SRSV was cross-reactive to other SRSV, Tokyo 86/510.

  14. Sea spray aerosol structure and composition using cryogenic transmission electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patterson, Joseph P.; Collins, Douglas B.; Michaud, Jennifer M.

    The surface properties of atmospheric aerosol particles largely control their impact on climate by affecting their ability to uptake water, react heterogeneously, and nucleate ice in clouds. However, in the vacuum of a conventional electron microscope, the native surface structure often undergoes chemical rearrangement resulting in surfaces that are quite different from their atmospheric configurations. Herein, we report the development of a cryo-TEM approach where sea spray aerosol particles are flash frozen in their native state and then probed by electron microscopy. This unique approach allows for the detection of not only mixed salts, but also soft materials including wholemore » hydrated bacteria, diatoms, virus particles, marine vesicles, as well as gel networks within hydrated salt droplets. As a result, we anticipate this method will open up a new avenue of analysis for aerosol particles, not only for ocean-derived aerosols, but for those produced from other sources where there is interest in the transfer of organic or biological species from the biosphere to the atmosphere.« less

  15. Sea spray aerosol structure and composition using cryogenic transmission electron microscopy

    DOE PAGES

    Patterson, Joseph P.; Collins, Douglas B.; Michaud, Jennifer M.; ...

    2016-01-15

    The surface properties of atmospheric aerosol particles largely control their impact on climate by affecting their ability to uptake water, react heterogeneously, and nucleate ice in clouds. However, in the vacuum of a conventional electron microscope, the native surface structure often undergoes chemical rearrangement resulting in surfaces that are quite different from their atmospheric configurations. Herein, we report the development of a cryo-TEM approach where sea spray aerosol particles are flash frozen in their native state and then probed by electron microscopy. This unique approach allows for the detection of not only mixed salts, but also soft materials including wholemore » hydrated bacteria, diatoms, virus particles, marine vesicles, as well as gel networks within hydrated salt droplets. As a result, we anticipate this method will open up a new avenue of analysis for aerosol particles, not only for ocean-derived aerosols, but for those produced from other sources where there is interest in the transfer of organic or biological species from the biosphere to the atmosphere.« less

  16. Mineralogical, chemical, and optical interrelationships of mineral dusts from desert source regions

    NASA Astrophysics Data System (ADS)

    Engelbrecht, J. P.; Moosmüller, H.; Pincock, S.; Jayanty, J.; Casuccio, G.

    2013-12-01

    The goal of the project was to provide information on the mineralogical, chemical and physical interrelationships of re-suspended mineral dust samples collected from global dust sources. Surface soil samples were previously collected from more than 64 desert sites, including the southwestern USA (12), Mali (3), Chad (3), Morocco (1), Canary Islands (8), Cape Verde (1), Djibouti (1), Afghanistan (3), Iraq (6), Kuwait (5), Qatar (1), UAE (1), Serbia (3), China (5), Namibia (3), Botswana (4), Australia (3), and Chile (1). The < 38 μm sieved fraction of each sample was re-suspended in an entrainment facility, from which the airborne mineral dust could be sampled and analyzed. Instruments integrated into the entrainment facility included two PM10 and two PM2.5 filter samplers, a beta attenuation gauge for the continuous measurement of PM10 and PM2.5 particulate mass fractions, an aerodynamic particle size (APS) analyzer, and a three wavelength (405, 532, 781nm) photoacoustic instrument with integrating reciprocal nephelometer for monitoring aerosol absorption and scattering coefficients during the re-suspension process. Filter sample media included Teflon membrane and quartz fiber filters for chemical analysis (71 species), and Nuclepore filters for individual particle analysis by Scanning Electron Microscopy (SEM). The < 38 μm sieved fractions were also analyzed by X-ray diffraction for their mineral content while the > 38 μm, < 125 μm fractions were further mineralogically characterized by optical microscopy. We will be presenting results on the optical measurements, showing the relationship between single scattering albedo (SSA) at three different wavelengths, and chemical as well as mineralogical content and interrelationships, of the entrained dust samples. Information from this data base will be available for research in global climate, remote sensing, visibility, and health (medical geology).

  17. Diurnal Evolution of Aerosol Optical Properties and Morphology at Pico Tres Padres: A Phenomenological Analysis

    NASA Astrophysics Data System (ADS)

    Mazzoleni, C.; Chakrabarty, R.; Dubey, M. K.; Moosmuller, H.; Chylek, P.; Onasch, T. B.; Herndon, S.; Zavala, M.; Kolb, C.

    2007-05-01

    Aerosol optical properties affect planetary radiative balance and therefore climate. The optical properties are related to chemical composition, size distribution, and morphology, which also have implications for human health and environmental degradation. During the MILAGRO field campaign, we measured ensemble aerosol absorption and angle-integrated scattering in Mexico City. These measurements were performed using the Los Alamos aerosol photoacoustic instrument with an integrated nephelometer (LAPA) operating at 781 nm. The LAPA was mounted on-board the Aerodyne Inc. mobile laboratory, which hosted a wide variety of gaseous and aerosol instruments. During the campaign, the Aerodyne mobile laboratory was moved to different sites, capturing the influence of spatial and temporal parameters including location, aging, elevation, and sources on ambient air pollution. The LAPA operated almost continuously between the 3rd and the 28th of March 2006. During the same period we collected ambient aerosols on more than 100 Nuclepore filters for scanning electron microscopy (SEM) analysis. Filter samples were collected during specific pollution events and different times of the day. Subsequently, SEM images of selected filters were taken to study particle morphology. The elemental composition of a few individual particles was also qualitatively assessed by energy dispersive X-ray spectroscopy. Between March 7th and 19th the laboratory was sampling air close to the top of the Pico Tres Padres, a ~3000 m high mountain on the north side of the Mexico City. Daily changes of aerosol loading and pollutant concentrations followed the expected diurnal variations of the boundary layer height. Here we report a preliminary analysis of aerosol absorption, scattering, and morphology at Pico Tres Padres for three specific days (9th, 11th and 12th of March 2006). The single scattering albedo (ratio of scattering to total extinction) during these three days showed a characteristic drop in the tens-of-minutes-to-hour time frame immediately following the growth of the boundary layer above the sampling site. Later in the day the single scattering albedo grew steadily to reach a maximum in the late afternoon. The SEM images show a wide variety of aerosol shapes including fractal-like chain aggregates (possibly soot), spherical particles (possibly tar balls), cylinders, and irregular non-fractal shapes. The increased afternoon single scattering albedo in the hottest part of the day qualitatively correlated with a relative increase in spherical particles that typically are not strongly light absorbing relative to fractal-like chain aggregates that are typically strongly light absorbing. These changes in optical properties and/or morphology can be explained by multiple mechanisms such as the collapse of fractal-like chain aggregates due to thermal effects and/or condensation of volatile compounds, coating by organic compounds, and photochemical secondary organic particle formation. Elemental analysis of a few individual particles yielded a relative large carbon abundance combined with smaller fractions of oxygen, silicon, metals, and other elements.

  18. Synthesis of colloidal silver iron oxide nanoparticles--study of their optical and magnetic behavior.

    PubMed

    Kumar, Anil; Singhal, Aditi

    2009-07-22

    Silver iron oxide nanoparticles of fairly small size (average diameter approximately 1 nm) with narrow size distribution have been synthesized by the interaction of colloidal beta- Fe2O3 and silver nanoparticles. The surface morphology and size of these particles have been analyzed by using atomic force microscopy (AFM), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). Their structural analysis has been carried out by employing x-ray diffraction (XRD), selected-area electron diffraction (SAED), optical and infrared (IR) spectroscopic techniques. The ageing of these particles exhibits the formation of self-assembly, possibly involving weak supramolecular interactions between Ag(I)O4 and Fe(III)O4 species. These particles display the onset of absorption in the near-infrared region and have higher absorption coefficient in the visible range compared to that of its precursors. Magnetic measurements reveal an interesting transition in their magnetic behavior from diamagnetic to superparamagnetic. The magnetic moment of these particles attains a limiting value of about 0.19 emu cm(-2), which is more than two times higher than that of colloidal beta- Fe2O3. With enhanced optical and magnetic properties, this system is suggested to have possible applications in optoelectronic and magnetic devices.

  19. Graphene nanosheets preparation using magnetic nanoparticle assisted liquid phase exfoliation of graphite: The coupled effect of ultrasound and wedging nanoparticles.

    PubMed

    Hadi, Alireza; Zahirifar, Jafar; Karimi-Sabet, Javad; Dastbaz, Abolfazl

    2018-06-01

    This study aims to investigate a novel technique to improve the yield of liquid phase exfoliation of graphite to graphene sheets. The method is based on the utilization of magnetic Fe 3 O 4 nanoparticles as "particle wedge" to facilitate delamination of graphitic layers. Strong shear forces resulted from the collision of Fe 3 O 4 particles with graphite particles, and intense ultrasonic waves lead to enhanced exfoliation of graphite. High quality of graphene sheets along with the ease of Fe 3 O 4 particle separation from graphene solution which arises from the magnetic nature of Fe 3 O 4 nanoparticles are the unique features of this approach. Initial graphite flakes and produced graphene sheets were characterized by various methods including field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Raman spectroscopy, atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and Zeta potential analysis. Moreover, the effect of process factors comprising initial graphite concentration, Fe 3 O 4 nanoparticles concentration, sonication time, and sonication power were investigated. Results revealed that graphene preparation yield and the number of layers could be manipulated by the presence of magnetic nanoparticles. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Chemical imaging of molecular changes in a hydrated single cell by dynamic secondary ion mass spectrometry and super-resolution microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hua, Xin; Szymanski, Craig; Wang, Zhaoying

    2016-01-01

    Chemical imaging of single cells is important in capturing biological dynamics. Single cell correlative imaging is realized between structured illumination microscopy (SIM) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) using System for Analysis at the Liquid Vacuum Interface (SALVI), a multimodal microreactor. SIM characterized cells and guided subsequent ToF-SIMS analysis. Dynamic ToF-SIMS provided time- and space-resolved cell molecular mapping. Lipid fragments were identified in the hydrated cell membrane. Principal component analysis was used to elucidate chemical component differences among mouse lung cells that uptake zinc oxide nanoparticles. Our results provided submicron chemical spatial mapping for investigations of cell dynamics atmore » the molecular level.« less

Top