Sample records for microscopy surface area

  1. Atomic force microscopy analysis of different surface treatments of Ti dental implant surfaces

    NASA Astrophysics Data System (ADS)

    Bathomarco, Ti R. V.; Solorzano, G.; Elias, C. N.; Prioli, R.

    2004-06-01

    The surface of commercial unalloyed titanium, used in dental implants, was analyzed by atomic force microscopy. The morphology, roughness, and surface area of the samples, submitted to mechanically-induced erosion, chemical etching and a combination of both, were compared. The results show that surface treatments strongly influence the dental implant physical and chemical properties. An analysis of the length dependence of the implant surface roughness shows that, for scan sizes larger than 50 μm, the average surface roughness is independent of the scanning length and that the surface treatments lead to average surface roughness in the range of 0.37 up to 0.48 μm. It is shown that the implant surface energy is sensitive to the titanium surface area. As the area increases there is a decrease in the surface contact angle.

  2. Comparison of four methods of surface roughness assessment of corneal stromal bed after lamellar cutting

    PubMed Central

    Jumelle, Clotilde; Hamri, Alina; Egaud, Gregory; Mauclair, Cyril; Reynaud, Stephanie; Dumas, Virginie; Pereira, Sandrine; Garcin, Thibaud; Gain, Philippe; Thuret, Gilles

    2017-01-01

    Corneal lamellar cutting with a blade or femtosecond laser (FSL) is commonly used during refractive surgery and corneal grafts. Surface roughness of the cutting plane influences postoperative visual acuity but is difficult to assess reliably. For the first time, we compared chromatic confocal microscopy (CCM) with scanning electron microscopy, atomic force microscopy (AFM) and focus-variation microscopy (FVM) to characterize surfaces of variable roughness after FSL cutting. The small area allowed by AFM hinders conclusive roughness analysis, especially with irregular cuts. FVM does not always differentiate between smooth and rough surfaces. Finally, CCM allows analysis of large surfaces and differentiates between surface states. PMID:29188095

  3. Mass transfer in fuel cells. [electron microscopy of components, thermal decomposition of Teflon, water transport, and surface tension of KOH solutions

    NASA Technical Reports Server (NTRS)

    Walker, R. D., Jr.

    1973-01-01

    Results of experiments on electron microscopy of fuel cell components, thermal decomposition of Teflon by thermogravimetry, surface area and pore size distribution measurements, water transport in fuel cells, and surface tension of KOH solutions are described.

  4. Nanosilver particle formation on a high surface area titanate.

    PubMed

    Shi, Meng; Lin, Christopher C H; Wu, Lan; Holt, Christopher M B; Mitlin, David; Kuznicki, Steven M

    2010-12-01

    Titanium based molecular sieves, such as ETS-10, have the ability to exchange silver ions and subsequently support self assembly of stable silver nanoparticles when heated. We report that a high surface area sodium titanate (resembling ETS-2) displays a similar ability to self template silver nanoparticles on its surface. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) show high concentrations of silver nanoparticles on the surface of this sodium titanate, formed by thermal reduction of exchanged silver cations. The nanoparticles range in size from 4 to 12 nm, centered at around 6 nm. In addition to SEM and TEM, XRD and surface area analysis were used to characterize the material. The results indicate that this sodium titanate has a high surface area (>263 m2/g), and high ion exchange capacity for silver (30+ wt%) making it an excellent substrate for the exchange and generation of uniform, high-density silver nanoparticles.

  5. Surface modifications with Lissajous trajectories using atomic force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Wei; Yao, Nan, E-mail: nyao@princeton.edu

    2015-09-14

    In this paper, we report a method for atomic force microscopy surface modifications with single-tone and multiple-resolution Lissajous trajectories. The tip mechanical scratching experiments with two series of Lissajous trajectories were carried out on monolayer films. The scratching processes with two scan methods have been illustrated. As an application, the tip-based triboelectrification phenomenon on the silicon dioxide surface with Lissajous trajectories was investigated. The triboelectric charges generated within the tip rubbed area on the surface were characterized in-situ by scanning Kelvin force microscopy. This method would provide a promising and cost-effective approach for surface modifications and nanofabrication.

  6. Roughness-Induced Magnetic Domain in Fe Thin Films on Land-and-Groove Structures Studied by Spin-Polarized Secondary Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Ueda, Shigenori; Iwasaki, Yoh; Ushioda, Sukekatsu

    2003-10-01

    The magnetic domain structures of Fe thin films on two-dimensionally arranged land-and-groove structures have been studied by spin-polarized secondary electron microscopy (SP-SEM) under an applied dc field. The coercive force on the land area was found to be higher than that on the groove area under magnetization reversal. The surface roughness measured by atomic force microscopy (AFM) was greater on the land area than on the groove area. The roughness-induced high-coercivity on the land prevented the reversed magnetic domain on the groove from spreading over the land in the initial magnetization reversal. This result indicates that surface roughness is an important factor in domain size control of thin magnetic films.

  7. Surface potential measurement of n-type organic semiconductor thin films by mist deposition via Kelvin probe microscopy

    NASA Astrophysics Data System (ADS)

    Odaka, Akihiro; Satoh, Nobuo; Katori, Shigetaka

    2017-08-01

    We partially deposited fullerene (C60) and phenyl-C61-butyric acid methyl ester thin films that are typical n-type semiconductor materials on indium-tin oxide by mist deposition at various substrate temperatures. The topographic and surface potential images were observed via dynamic force microscopy/Kelvin probe force microscopy with the frequency modulation detection method. We proved that the area where a thin film is deposited depends on the substrate temperature during deposition from the topographic images. It was also found that the surface potential depends on the substrate temperature from the surface potential images.

  8. Spatially resolved quantitative mapping of thermomechanical properties and phase transition temperatures using scanning probe microscopy

    DOEpatents

    Jesse, Stephen; Kalinin, Sergei V; Nikiforov, Maxim P

    2013-07-09

    An approach for the thermomechanical characterization of phase transitions in polymeric materials (polyethyleneterephthalate) by band excitation acoustic force microscopy is developed. This methodology allows the independent measurement of resonance frequency, Q factor, and oscillation amplitude of a tip-surface contact area as a function of tip temperature, from which the thermal evolution of tip-surface spring constant and mechanical dissipation can be extracted. A heating protocol maintained a constant tip-surface contact area and constant contact force, thereby allowing for reproducible measurements and quantitative extraction of material properties including temperature dependence of indentation-based elastic and loss moduli.

  9. Synthesis of rose-like boron nitride particles with a high specific surface area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Hongming; Huang, Xiaoxiao; Wen, Guangwu, E-mail: wgw@hitwh.edu.cn

    2010-08-15

    Novel rose-like BN nanostructures were synthesized on a large scale via a two-step procedure. The products were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectrometer and nitrogen porosimetry. The results show that the obtained rose-like nanostructures are composed of a large amount of h-BN crystalline flakes and have a surface area of 90.31 m{sup 2}/g. A mechanism was proposed to explain the formation process of the rose-like BN nanostructures.

  10. Quantitative Detection of Prostatic-Specific Antigens by Using Scanning Electron Microscopy for the Analysis of Protein Chips.

    PubMed

    Lee, Jisu; Jung, Moon Youn; Park, Hyung Ju

    2017-04-01

    We reported that quantitative detection of prostatic-specific antigen (PSA), which is the biomarker of prostate cancer, could be carried out by calculating the number density and the area ratio of gold nanoparticle probes on the surface of silicon oxide chips. When chips selectively activated with PSA were immersed in the gold nanoparticles conjugated with prostatic specific antigens-poly clonal antibodies (PSA-pAb), it was possible to observe changes in the number density and the area ratio of gold nanoparticles on the surface of the chips according to the concentration of PSA with scanning electron microscopy (SEM) images. As PSA concentration increased, the number density and the area ratio of gold nanoparticle probes on the surfaces of the chips increased accordingly. Conversely, with lower concentration, the number density and the area ratio of gold nanoparticle probes on the surfaces decreased at a certain ratio. We observed the correlations between PSA concentration and number density, area ratio of gold nanoparticle probes through the analysis of SEM images. In addition, it was confirmed that the sizes of the gold nanoparticles affected the detection limit of the number density and the area ratio of gold nanoparticle probes on the surface.

  11. Evaluations of carbon nanotube field emitters for electron microscopy

    NASA Astrophysics Data System (ADS)

    Nakahara, Hitoshi; Kusano, Yoshikazu; Kono, Takumi; Saito, Yahachi

    2009-11-01

    Brightness of carbon nanotube (CNT) emitters was already reported elsewhere. However, brightness of electron emitter is affected by a virtual source size of the emitter, which strongly depends on electron optical configuration around the emitter. In this work, I- V characteristics and brightness of a CNT emitter are measured under a practical field emission electron gun (e-gun) configuration to investigate availability of CNT for electron microscopy. As a result, it is obtained that an emission area of MWNT is smaller than its tip surface area, and the emission area corresponds to a five-membered-ring with 2nd nearest six-membered-rings on the MWNT cap surface. Reduced brightness of MWNT is measured as at least 2.6×109 A/m 2 sr V. It is concluded that even a thick MWNT has enough brightness under a practical e-gun electrode configuration and suitable for electron microscopy.

  12. Edge profiles and limiter tests in Extrap T2

    NASA Astrophysics Data System (ADS)

    Bergsåker, H.; Hedin, G.; Ilyinsky, L.; Larsson, D.; Möller, A.

    New edge profile measurements, including calorimetric measurements of the parallel heat flux, were made in Extrap T2. Test limiters of pure molybdenum and the TZM molybdenum alloy have been exposed in the edge plasma. The surface damage was studied, mainly by microscopy. Tungsten coated graphite probes were also exposed, and the surfaces were studied by microscopy, ion beam analysis and XPS. In this case cracking and mixing of carbon and tungsten at the interface was observed in the most heated areas, whereas carbide formation at the surface was seen in less heated areas. In these tests pure Mo generally fared better than TZM, and thin and cleaner coatings fared better than thicker and less clean.

  13. Tribological performance of femtosecond laser-induced periodic surface structures on titanium and a high toughness bearing steel

    NASA Astrophysics Data System (ADS)

    Bonse, J.; Koter, R.; Hartelt, M.; Spaltmann, D.; Pentzien, S.; Höhm, S.; Rosenfeld, A.; Krüger, J.

    2015-05-01

    Laser-induced periodic surface structures (LIPSS, ripples) were processed on steel (X30CrMoN15-1) and titanium (Ti) surfaces by irradiation in air with linear polarized femtosecond laser pulses with a pulse duration of 30 fs at 790 nm wavelength. For the processing of large LIPSS covered surface areas (5 mm × 5 mm), the laser fluence and the spatial spot overlap were optimized in a sample-scanning geometry. The laser-processed surfaces were characterized by optical microscopy (OM), white light interference microscopy (WLIM) and scanning electron microscopy (SEM). Spatial LIPSS periods between 450 and 600 nm were determined. The nanostructured surface regions were tribologically tested under reciprocal sliding conditions against a 10-mm diameter ball of hardened 100Cr6 steel. Paraffin oil and engine oil were used as lubricants for 1000 sliding cycles at 1 Hz with a normal load of 1.0 N. The corresponding wear tracks were analyzed by OM and SEM. In particular cases, the laser-generated nanostructures endured the tribological treatment. Simultaneously, a significant reduction of the friction coefficient and the wear was observed in the laser-irradiated (LIPSS-covered) areas when compared to the non-irradiated surface. The experiments reveal the potential benefit of laser surface structuring for tribological applications.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCormac, Kathleen; Byrd, Ian; Brannen, Rodney

    We prepared highly porous Si/TiO 2 composite nanofibres using a unique sulphur-templating method combined with electrospinning. The structure, morphology, surface area, phase and composition of these nanofibres were characterized using Raman spectroscopy, scanning electron microscopy, powder X-ray diffraction, surface area analyser and thermogravimetric analyser. The specific surface area of Si/TiO 2 porous NFs is as large as 387m 2g -1, whose silicon capacity can be maintained above 1580mAhg -1 in 180 cycles.

  15. Discrimination of surface wear on obsidian tools using LSCM and RelA: pilot study results (area-scale analysis of obsidian tool surfaces).

    PubMed

    Stemp, W James; Chung, Steven

    2011-01-01

    This pilot study tests the reliability of laser scanning confocal microscopy (LSCM) to quantitatively measure wear on experimental obsidian tools. To our knowledge, this is the first use of confocal microscopy to study wear on stone flakes made from an amorphous silicate like obsidian. Three-dimensional surface roughness or texture area scans on three obsidian flakes used on different contact materials (hide, shell, wood) were documented using the LSCM to determine whether the worn surfaces could be discriminated using area-scale analysis, specifically relative area (RelA). When coupled with the F-test, this scale-sensitive fractal analysis could not only discriminate the used from unused surfaces on individual tools, but was also capable of discriminating the wear histories of tools used on different contact materials. Results indicate that such discriminations occur at different scales. Confidence levels for the discriminations at different scales were established using the F-test (mean square ratios or MSRs). In instances where discrimination of surface roughness or texture was not possible above the established confidence level based on MSRs, photomicrographs and RelA assisted in hypothesizing why this was so. Copyright © 2011 Wiley Periodicals, Inc.

  16. Study of Osteoclast Adhesion to Cortical Bone Surfaces: A Correlative Microscopy Approach for Concomitant Imaging of Cellular Dynamics and Surface Modifications

    PubMed Central

    2015-01-01

    Bone remodeling relies on the coordinated functioning of osteoblasts, bone-forming cells, and osteoclasts, bone-resorbing cells. The effects of specific chemical and physical bone features on the osteoclast adhesive apparatus, the sealing zone ring, and their relation to resorption functionality are still not well-understood. We designed and implemented a correlative imaging method that enables monitoring of the same area of bone surface by time-lapse light microscopy, electron microscopy, and atomic force microscopy before, during, and after exposure to osteoclasts. We show that sealing zone rings preferentially develop around surface protrusions, with lateral dimensions of several micrometers, and ∼1 μm height. Direct overlay of sealing zone rings onto resorption pits on the bone surface shows that the rings adapt to pit morphology. The correlative procedure presented here is noninvasive and performed under ambient conditions, without the need for sample labeling. It can potentially be applied to study various aspects of cell-matrix interactions. PMID:26682493

  17. Large area scanning probe microscope in ultra-high vacuum demonstrated for electrostatic force measurements on high-voltage devices.

    PubMed

    Gysin, Urs; Glatzel, Thilo; Schmölzer, Thomas; Schöner, Adolf; Reshanov, Sergey; Bartolf, Holger; Meyer, Ernst

    2015-01-01

    The resolution in electrostatic force microscopy (EFM), a descendant of atomic force microscopy (AFM), has reached nanometre dimensions, necessary to investigate integrated circuits in modern electronic devices. However, the characterization of conducting or semiconducting power devices with EFM methods requires an accurate and reliable technique from the nanometre up to the micrometre scale. For high force sensitivity it is indispensable to operate the microscope under high to ultra-high vacuum (UHV) conditions to suppress viscous damping of the sensor. Furthermore, UHV environment allows for the analysis of clean surfaces under controlled environmental conditions. Because of these requirements we built a large area scanning probe microscope operating under UHV conditions at room temperature allowing to perform various electrical measurements, such as Kelvin probe force microscopy, scanning capacitance force microscopy, scanning spreading resistance microscopy, and also electrostatic force microscopy at higher harmonics. The instrument incorporates beside a standard beam deflection detection system a closed loop scanner with a scan range of 100 μm in lateral and 25 μm in vertical direction as well as an additional fibre optics. This enables the illumination of the tip-sample interface for optically excited measurements such as local surface photo voltage detection. We present Kelvin probe force microscopy (KPFM) measurements before and after sputtering of a copper alloy with chromium grains used as electrical contact surface in ultra-high power switches. In addition, we discuss KPFM measurements on cross sections of cleaved silicon carbide structures: a calibration layer sample and a power rectifier. To demonstrate the benefit of surface photo voltage measurements, we analysed the contact potential difference of a silicon carbide p/n-junction under illumination.

  18. Synthesis and characterization of high-surface-area millimeter-sized silica beads with hierarchical multi-modal pore structure by the addition of agar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Yosep; Choi, Junhyun; Tong, Meiping, E-mail: tongmeiping@iee.pku.edu.cn

    2014-04-01

    Millimeter-sized spherical silica foams (SSFs) with hierarchical multi-modal pore structure featuring high specific surface area and ordered mesoporous frameworks were successfully prepared using aqueous agar addition, foaming and drop-in-oil processes. The pore-related properties of the prepared spherical silica (SSs) and SSFs were systematically characterized by field emission-scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), small-angle X-ray diffraction (SAXRD), Hg intrusion porosimetry, and N{sub 2} adsorption–desorption isotherm measurements. Improvements in the BET surface area and total pore volume were observed at 504 m{sup 2} g{sup −1} and 5.45 cm{sup 3} g{sup −1}, respectively, after an agar addition and foaming process. Despitemore » the increase in the BET surface area, the mesopore wall thickness and the pore size of the mesopores generated from the block copolymer with agar addition were unchanged based on the SAXRD, TEM, and BJH methods. The SSFs prepared in the present study were confirmed to have improved BET surface area and micropore volume through the agar loading, and to exhibit interconnected 3-dimensional network macropore structure leading to the enhancement of total porosity and BET surface area via the foaming process. - Highlights: • Millimeter-sized spherical silica foams (SSFs) are successfully prepared. • SSFs exhibit high BET surface area and ordered hierarchical pore structure. • Agar addition improves BET surface area and micropore volume of SSFs. • Foaming process generates interconnected 3-D network macropore structure of SSFs.« less

  19. Micro patterned surfaces: an effective tool for long term digital holographic microscopy cell imaging

    NASA Astrophysics Data System (ADS)

    Mues, Sarah; Lilge, Inga; Schönherr, Holger; Kemper, Björn; Schnekenburger, Jürgen

    2017-02-01

    The major problem of Digital Holographic Microscopy (DHM) long term live cell imaging is that over time most of the tracked cells move out of the image area and other ones move in. Therefore, most of the cells are lost for the evaluation of individual cellular processes. Here, we present an effective solution for this crucial problem of long-term microscopic live cell analysis. We have generated functionalized slides containing areas of 250 μm per 200 μm. These micropatterned biointerfaces consist of passivating polyaclrylamide brushes (PAAm). Inner areas are backfilled with octadecanthiol (ODT), which allows cell attachment. The fouling properties of these surfaces are highly controllable and therefore the defined areas designed for the size our microscopic image areas were effective in keeping all cells inside the rectangles over the selected imaging period.

  20. Cellulose Surface Degradation by a Lytic Polysaccharide Monooxygenase and Its Effect on Cellulase Hydrolytic Efficiency*

    PubMed Central

    Eibinger, Manuel; Ganner, Thomas; Bubner, Patricia; Rošker, Stephanie; Kracher, Daniel; Haltrich, Dietmar; Ludwig, Roland; Plank, Harald; Nidetzky, Bernd

    2014-01-01

    Lytic polysaccharide monooxygenase (LPMO) represents a unique principle of oxidative degradation of recalcitrant insoluble polysaccharides. Used in combination with hydrolytic enzymes, LPMO appears to constitute a significant factor of the efficiency of enzymatic biomass depolymerization. LPMO activity on different cellulose substrates has been shown from the slow release of oxidized oligosaccharides into solution, but an immediate and direct demonstration of the enzyme action on the cellulose surface is lacking. Specificity of LPMO for degrading ordered crystalline and unordered amorphous cellulose material of the substrate surface is also unknown. We show by fluorescence dye adsorption analyzed with confocal laser scanning microscopy that a LPMO (from Neurospora crassa) introduces carboxyl groups primarily in surface-exposed crystalline areas of the cellulosic substrate. Using time-resolved in situ atomic force microscopy we further demonstrate that cellulose nano-fibrils exposed on the surface are degraded into shorter and thinner insoluble fragments. Also using atomic force microscopy, we show that prior action of LPMO enables cellulases to attack otherwise highly resistant crystalline substrate areas and that it promotes an overall faster and more complete surface degradation. Overall, this study reveals key characteristics of LPMO action on the cellulose surface and suggests the effects of substrate morphology on the synergy between LPMO and hydrolytic enzymes in cellulose depolymerization. PMID:25361767

  1. Capability of insulator study by photoemission electron microscopy at SPring-8.

    PubMed

    Ohkochi, Takuo; Kotsugi, Masato; Yamada, Keisuke; Kawano, Kenji; Horiba, Koji; Kitajima, Fumio; Oura, Masaki; Shiraki, Susumu; Hitosugi, Taro; Oshima, Masaharu; Ono, Teruo; Kinoshita, Toyohiko; Muro, Takayuki; Watanabe, Yoshio

    2013-07-01

    The observation method of photoemission electron microscopy (PEEM) on insulating samples has been established in an extremely simple way. Surface conductivity is induced locally on an insulating surface by continuous radiation of soft X-rays, and Au films close to the area of interest allow the accumulated charges on the insulated area to be released to ground level. Magnetic domain observations of a NiZn ferrite, local X-ray absorption spectroscopy of sapphire, high-resolution imaging of a poorly conducting Li0.9CoO2 film surface, and Au pattern evaporation on a fine rock particle are demonstrated. Using this technique, all users' experiments on poorly conducting samples have been performed successfully at the PEEM experimental station of SPring-8.

  2. Solvothermal synthesis of hierarchical TiO2 nanostructures with tunable morphology and enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Fan, Zhenghua; Meng, Fanming; Zhang, Miao; Wu, Zhenyu; Sun, Zhaoqi; Li, Aixia

    2016-01-01

    This paper presents controllable growth and photocatalytic activity of TiO2 hierarchical nanostructures by solvothermal method at different temperatures. It is revealed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) that the morphology of TiO2 can be effectively controlled as rose-like, chrysanthemum-like and sea-urchin-like only changing solvothermal temperature. BET surface area analysis confirms the presence of a mesoporous network in all the nanostructures, and shows high surface area at relatively high temperature. The photocatalytic activities of the photocatalysts are evaluated by the photodegradation of RhB under UV light irradiation. The TiO2 samples exhibit high activity on the photodegradation of RhB, which is higher than that of the commercial P25. The enhancement in photocatalytic performance can be attributed to the synergetic effect of the surface area, crystallinity, band gap and crystalline size.

  3. On the formation of nanocrystalline active zinc oxide from zinc hydroxide carbonate

    NASA Astrophysics Data System (ADS)

    Moezzi, Amir; Cortie, Michael; Dowd, Annette; McDonagh, Andrew

    2014-04-01

    The decomposition of zinc hydroxide carbonate, Zn5(CO3)2(OH)6 (ZHC), into the high surface area form of ZnO known as "active zinc oxide" is examined. In particular, the nucleation and evolution of the ZnO nanocrystals is of interest as the size of these particles controls the activity of the product. The decomposition process was studied using X-ray diffraction, thermogravimetric analysis, scanning electron microscopy, transmission electron microscopy and BET surface area measurements. At about 240 °C ZHC decomposes to porous ZnO in a single step. The product material has a specific surface area in the range of 47-65 m2 g-1 and initially has a crystallite size that is of the order of 10 nm. A further increase in temperature, however, causes the particles to coarsen to over 25 nm in diameter. In principle, the coarsening phenomenon may be interrupted to control the particle size.

  4. Fabrication of hollow boron-doped diamond nanostructure via electrochemical corrosion of a tungsten oxide template.

    PubMed

    Lim, Young-Kyun; Lee, Eung-Seok; Lee, Choong-Hyun; Lim, Dae-Soon

    2018-08-10

    In the study, a hollow boron-doped diamond (BDD) nanostructure electrode is fabricated to increase the reactive surface area for electrochemical applications. Tungsten oxide nanorods are deposited on the silicon substrate as a template by the hot filament chemical vapor deposition (HFCVD) method. The template is coated with a 100 nm BDD layer deposited by HFCVD to form a core-shell nanostructure. The WO x core is finally electrochemically dissolved to form hollow BDD nanostructure. The fabricated hollow BDD nanostructure electrode is investigated via scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. The specific surface areas of the electrodes were analyzed and compared by using Brunauer-Emmett-Teller method. Furthermore, cyclic voltammetry and chronocoulometry are used to investigate the electrochemical characteristics and the reactive surface area of the as-prepared hollow BDD nanostructure electrode. A hollow BDD nanostructure electrode exhibits a reactive area that is 15 times that of a planar BDD thin electrode.

  5. Properties that influence the specific surface areas of carbon nanotubes and nanofibers.

    PubMed

    Birch, M Eileen; Ruda-Eberenz, Toni A; Chai, Ming; Andrews, Ronnee; Hatfield, Randal L

    2013-11-01

    Commercially available carbon nanotubes and nanofibers were analyzed to examine possible relationships between their Brunauer-Emmett-Teller specific surface areas (SSAs) and their physical and chemical properties. Properties found to influence surface area were number of walls/diameter, impurities, and surface functionalization with hydroxyl and carboxyl groups. Characterization by electron microscopy, energy-dispersive X-ray spectrometry, thermogravimetric analysis, and elemental analysis indicates that SSA can provide insight on carbon nanomaterials properties, which can differ vastly depending on synthesis parameters and post-production treatments. In this study, how different properties may influence surface area is discussed. The materials examined have a wide range of surface areas. The measured surface areas differed from product specifications, to varying degrees, and between similar products. Findings emphasize the multiple factors that influence surface area and mark its utility in carbon nanomaterial characterization, a prerequisite to understanding their potential applications and toxicities. Implications for occupational monitoring are discussed.

  6. Combining total internal reflection sum frequency spectroscopy spectral imaging and confocal fluorescence microscopy.

    PubMed

    Allgeyer, Edward S; Sterling, Sarah M; Gunewardene, Mudalige S; Hess, Samuel T; Neivandt, David J; Mason, Michael D

    2015-01-27

    Understanding surface and interfacial lateral organization in material and biological systems is critical in nearly every field of science. The continued development of tools and techniques viable for elucidation of interfacial and surface information is therefore necessary to address new questions and further current investigations. Sum frequency spectroscopy (SFS) is a label-free, nonlinear optical technique with inherent surface specificity that can yield critical organizational information on interfacial species. Unfortunately, SFS provides no spatial information on a surface; small scale heterogeneities that may exist are averaged over the large areas typically probed. Over the past decade, this has begun to be addressed with the advent of SFS microscopy. Here we detail the construction and function of a total internal reflection (TIR) SFS spectral and confocal fluorescence imaging microscope directly amenable to surface investigations. This instrument combines, for the first time, sample scanning TIR-SFS imaging with confocal fluorescence microscopy.

  7. Ultrasound-assisted facile synthesis of a new tantalum(V) metal-organic framework nanostructure: Design, characterization, systematic study, and CO2 adsorption performance

    NASA Astrophysics Data System (ADS)

    Sargazi, Ghasem; Afzali, Daryoush; Mostafavi, Ali; Ebrahimipour, S. Yousef

    2017-06-01

    This work presents a fast route for the preparation of a new Ta(V) metal-organic framework nanostructure with high surface area, significant porosity, and small size distribution. X-ray diffraction (XRD), scanning electron microscopy (SEM), Transition electron microscopy (TEM), energy dispersive spectrometer (EDS), thermo-gravimetric analysis (TGA), differential scanning calorimetry (DSC), fourier transform infrared spectroscopy (FTIR), CHNS/O elemental analyser, and Brunauer-Emmett-Teller (BET) surface area analysis were applied to characterize the synthesized product. Moreover, the influences of ultrasonic irradiation including temperature, time, and power on different features of the final products were systematically studied using 2k-1 factorial design experiments, and the response surface optimization was used for determining the best welding parameter combination. The results obtained from analyses of variances showed that ultrasonic parameters affected the size distribution, thermal behaviour, and surface area of Ta-MOF samples. Based on response surface methodology, Ta-MOF could be obtained with mean diameter of 55 nm, thermal stability of 228 °C, and high surface area of 2100 m2/g. The results revealed that the synthesized products could be utilized in various applications such as a novel candidate for CO2 adsorption.

  8. Contrast in the Photoelectric Effect of Organic and Biochemical Surfaces

    PubMed Central

    Birrell, G. B.; Burke, C.; Dehlinger, P.; Griffith, O. H.

    1973-01-01

    The photoelectric effect can provide the physical basis for a new method of mapping organic and biological surfaces. The technique, photoelectron microscopy, is similar to fluorescence microscopy using incident ultraviolet light except that photoejected electrons form the image of the specimen surface. In this work the minimum wavelengths of incident light required to produce an image were determined for the molecules 3,6-bis(dimethylamino)acridine (acridine orange) (I), benzo[a]pyrene (II), N,N,N′,N′-tetraphenylbenzidine (III), and copper phthalocyanine (IV). The photoelectron image thresholds for these compounds are 220 (I), 215 (II), 220 (III), and 240 nm (IV), all ±5 nm. Contrast of I-IV with respect to typical protein, lipid, nucleic acid, and polysaccharide surfaces was examined over the wavelength range 240-180 nm. The low magnification micrographs exhibited bright areas corresponding to I-IV but dark regions for the biochemical surfaces. The high contrast suggests the feasibility of performing extrinsic photoelectron microscopy experiments through selective labeling of sites on biological surfaces. ImagesFIGURE 3 PMID:4704486

  9. Effect of organic fuels on surface area and photocatalytic activity of scheelite CaWO4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Manjunath, Kusuma; Gujjarahalli Thimmanna, Chandrappa

    2018-03-01

    Discrete nanoscale calcium tungstate (CaWO4) nanoparticles with exquisite photocatalytic activities were synthesized through ultra-rapid solution combustion route. Here, we aim to study the effect of different fuels on the synthesis of CaWO4 nanoparticles which lead to improve the characteristic properties and morphological evolution of the powders. From BET surface area measurement, it is observed that CaWO4 nanoparticles synthesized by using citric acid as fuel exhibits relatively large surface area (31.78 m2 g‑1) as compared to other fuels. The powder x-ray diffraction (PXRD) studies reveal that CaWO4 nanoparticles belong to scheelite type tetragonal system. The morphology of CaWO4 nanoparticles investigated using scanning electron microscopy (SEM) reveals that the powders are highly porous and agglomerated. Transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) images of the CaWO4 nanoparticles show that a well-dispersed nearly oval-shaped nanoparticles with variable dimensions and lattice spacing that depends on the type of fuels used in the synthesis. The selected area electron diffraction (SAED) patterns of CaWO4 nanoparticles exhibit several concentric rings with bright spots indicating the polycrystalline nature of the powders. Investigation on photocatalytic activity of CaWO4 nanoparticles synthesized using citric acid shows highest (∼93%) degradation of methylene blue (MB).

  10. Sodium accumulation at potential-induced degradation shunted areas in polycrystalline silicon modules

    DOE PAGES

    Harvey, Steven P.; Aguiar, Jeffery A.; Hacke, Peter; ...

    2016-09-19

    Here, we investigated potential-induced degradation (PID) in silicon mini-modules that were subjected to accelerated stressing to induce PID conditions. Shunted areas on the cells were identified with photoluminescence and dark lock-in thermography (DLIT) imaging. The identical shunted areas were then analyzed via time-of-flight secondary-ion mass spectrometry (TOFSIMS) imaging, 3-D tomography, and high-resolution transmission electron microscopy. The TOF-SIMS imaging indicates a high concentration of sodium in the shunted areas, and 3-D tomography reveals that the sodium extends more than 2 um from the surface below shunted regions. Transmission electron microscopy investigation reveals that a stacking fault is present at an areamore » identified as shunted by DLIT imaging. After the removal of surface sodium, tomography reveals persistent sodium present around the junction depth of 300 nm and a drastic difference in sodium content at the junction when comparing shunted and nonshunted regions.« less

  11. Light-sheet microscopy for slide-free non-destructive pathology of large clinical specimens

    PubMed Central

    Glaser, Adam K.; Reder, Nicholas P.; Chen, Ye; McCarty, Erin F.; Yin, Chengbo; Wei, Linpeng; Wang, Yu; True, Lawrence D.; Liu, Jonathan T.C.

    2017-01-01

    For the 1.7 million patients per year in the U.S. who receive a new cancer diagnosis, treatment decisions are largely made after a histopathology exam. Unfortunately, the gold standard of slide-based microscopic pathology suffers from high inter-observer variability and limited prognostic value due to sampling limitations and the inability to visualize tissue structures and molecular targets in their native 3D context. Here, we show that an open-top light-sheet microscope optimized for non-destructive slide-free pathology of clinical specimens enables the rapid imaging of intact tissues at high resolution over large 2D and 3D fields of view, with the same level of detail as traditional pathology. We demonstrate the utility of this technology for various applications: wide-area surface microscopy to triage surgical specimens (with ~200 μm surface irregularities), rapid intraoperative assessment of tumour-margin surfaces (12.5 sec/cm2), and volumetric assessment of optically cleared core–needle biopsies (1 mm in diameter, 2 cm in length). Light-sheet microscopy can be a versatile tool for both rapid surface microscopy and deep volumetric microscopy of human specimens. PMID:29750130

  12. Catalyst free growth of CNTs by CVD on nanoscale rough surfaces of silicon substrates

    NASA Astrophysics Data System (ADS)

    Damodar, D.; Sahoo, R. K.; Jacob, C.

    2013-06-01

    Catalyst free growth of carbon nanotubes (CNT) has been achieved using atmospheric pressure chemical vapor deposition (APCVD) on surface modified Si(111) substrates. The effect of the substrate surface has been observed by partially etching with KOH (potassium hydroxide) solution which is an anisotropic etchant. Scanning electron microscopy (SEM) confirmed the formation of CNTs over most of the area of the substrate where substrates were anisotropically etched. Transmission electron microscopy (TEM) was used to observe the internal structure of the CNTs. Raman spectroscopy further confirmed the formation of the carbon nanostructures and also their graphitic crystallinity.

  13. Preparation and characterization of ultraflat Pt facets by atom-height-resolved differential optical microscopy

    NASA Astrophysics Data System (ADS)

    Azhagurajan, M.; Wen, R.; Kim, Y. G.; Itoh, T.; Sashikata, K.; Itaya, K.

    2015-01-01

    We recently demonstrated that improvements to our technique, laser confocal microscopy with differential interference microscopy (LCM-DIM), has rendered it fully capable of resolving monatomic steps with heights of ca. 0.25 nm on Au(111) and Pd(111) surfaces, even as low as 0.14 nm on Si(100), in aqueous solution. In this paper, we describe in detail a method to prepare and characterize, via atomic-layer-resolved LCM-DIM, ultraflat Pt(111) and Pt(100) facets over a wide surface area. The preparation of ultraflat surfaces is important in the characterization at the atomic scale of electrochemical processes under reaction conditions. To showcase the elegance of LCM-DIM, the anodic dissolution of Pt in aqueous HCl is briefly recounted.

  14. Influence of Substrate Bonding and Surface Morphology on Dynamic Organic Layer Growth: Perylenetetracarboxylic Dianhydride on Au(111).

    PubMed

    Schmidt, Thomas; Marchetto, Helder; Groh, Ullrich; Fink, Rainer H; Freund, Hans-Joachim; Umbach, Eberhard

    2018-05-15

    We investigated the dynamics of the initial growth of the first epitaxial layers of perylenetetracarboxylic dianhydride (PTCDA) on the Au(111) surface with high lateral resolution using the aberration-corrected spectro-microscope SMART. With this instrument, we could simultaneously study the different adsorption behaviors and layer growth on various surface areas consisting of either a distribution of flat (111) terraces, separated by single atomic steps ("ideal surface"), or on areas with a high density of step bunches and defects ("realistic surface"). The combined use of photoemission electron microscopy, low-energy electron microscopy, and μ-spot X-ray absorption provided a wealth of new information, showing that the growth of the archetype molecule PTCDA not only has similarities but also has significant differences when comparing Au(111) and Ag(111) substrate surfaces. For instance, under otherwise identical preparation conditions, we observed different growth mechanisms on different surface regions, depending on the density of step bunches. In addition, we studied the spatially resolved desorption behavior which also depends on the substrate morphology.

  15. Preparation of porous Si and TiO 2 nanofibres using a sulphur-templating method for lithium storage

    DOE PAGES

    McCormac, Kathleen; Byrd, Ian; Brannen, Rodney; ...

    2015-02-03

    We prepared highly porous Si/TiO 2 composite nanofibres using a unique sulphur-templating method combined with electrospinning. The structure, morphology, surface area, phase and composition of these nanofibres were characterized using Raman spectroscopy, scanning electron microscopy, powder X-ray diffraction, surface area analyser and thermogravimetric analyser. The specific surface area of Si/TiO 2 porous NFs is as large as 387m 2g -1, whose silicon capacity can be maintained above 1580mAhg -1 in 180 cycles.

  16. Monitoring Demineralization and Subsequent Remineralization of Human Teeth at the Dentin-Enamel Junction with Atomic Force Microscopy.

    PubMed

    Lechner, Bob-Dan; Röper, Stephanie; Messerschmidt, Jens; Blume, Alfred; Magerle, Robert

    2015-09-02

    Using atomic force microscopy, we monitored the nanoscale surface morphology of human teeth at the dentin-enamel junction after performing successive demineralization steps with an acidic soft drink. Subsequently, we studied the remineralization process with a paste containing calcium and phosphate ions. Repeated atomic force microscopy imaging of the same sample areas on the sample allowed us to draw detailed conclusions regarding the specific mechanism of the demineralization process and the subsequent remineralization process. The about 1-μm-deep grooves that are caused by the demineralization process were preferentially filled with deposited nanoparticles, leading to smoother enamel and dentine surfaces after 90 min exposure to the remineralizing agent. The deposited material is found to homogeneously cover the enamel and dentine surfaces in the same manner. The temporal evolution of the surface roughness indicates that the remineralization caused by the repair paste proceeds in two distinct successive phases.

  17. Surface area and pore size characteristics of nanoporous gold subjected to thermal, mechanical, or surface modification studied using gas adsorption isotherms, cyclic voltammetry, thermogravimetric analysis, and scanning electron microscopy

    PubMed Central

    Tan, Yih Horng; Davis, Jason A.; Fujikawa, Kohki; Ganesh, N. Vijaya; Demchenko, Alexei V.

    2012-01-01

    Nitrogen adsorption/desorption isotherms are used to investigate the Brunauer, Emmett, and Teller (BET) surface area and Barrett-Joyner-Halenda (BJH) pore size distribution of physically modified, thermally annealed, and octadecanethiol functionalized np-Au monoliths. We present the full adsorption-desorption isotherms for N2 gas on np-Au, and observe type IV isotherms and type H1 hysteresis loops. The evolution of the np-Au under various thermal annealing treatments was examined using scanning electron microscopy (SEM). The images of both the exterior and interior of the thermally annealed np-Au show that the porosity of all free standing np-Au structures decreases as the heat treatment temperature increases. The modification of the np-Au surface with a self-assembled monolayer (SAM) of C18-SH (coverage of 2.94 × 1014 molecules cm−2 based from the decomposition of the C18-SH using thermogravimetric analysis (TGA)), was found to reduce the strength of the interaction of nitrogen gas with the np-Au surface, as reflected by a decrease in the ‘C’ parameter of the BET equation. From cyclic voltammetry studies, we found that the surface area of the np-Au monoliths annealed at elevated temperatures followed the same trend with annealing temperature as found in the BET surface area study and SEM morphology characterization. The study highlights the ability to control free-standing nanoporous gold monoliths with high surface area, and well-defined, tunable pore morphology. PMID:22822294

  18. Raman Spectroscopy.

    ERIC Educational Resources Information Center

    Gerrard, Donald L.

    1984-01-01

    Reviews literature on Raman spectroscopy from late 1981 to late 1983. Topic areas include: instrumentation and sampling; liquids and solutions; gases and matrix isolation; biological molecules; polymers; high-temperature and high-pressure studies; Raman microscopy; thin films and surfaces; resonance-enhanced and surface-enhanced spectroscopy; and…

  19. Modified microwave method for the synthesis of visible light-responsive TiO2/MWCNTs nanocatalysts

    PubMed Central

    2013-01-01

    Recently, TiO2/multi-walled carbon nanotube (MWCNT) hybrid nanocatalysts have been a subject of high interest due to their excellent structures, large surface areas and peculiar optical properties, which enhance their photocatalytic performance. In this work, a modified microwave technique was used to rapidly synthesise a TiO2/MWCNT nanocatalyst with a large surface area. X-ray powder diffraction, field-emission scanning electron microscopy, transmission electron microscopy and Brunauer-Emmett-Teller measurements were used to characterise the structure, morphology and the surface area of the sample. The photocatalytic activity of the hybrid nanocatalysts was evaluated through a comparison of the degradation of methylene blue dye under irradiation with ultraviolet and visible light. The results showed that the TiO2/MWCNT hybrid nanocatalysts degraded 34.9% of the methylene blue (MB) under irradiation with ultraviolet light, whereas 96.3% of the MB was degraded under irradiation with visible light. PMID:23919496

  20. Ultrasound-assisted facile synthesis of a new tantalum(V) metal-organic framework nanostructure: Design, characterization, systematic study, and CO{sub 2} adsorption performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sargazi, Ghasem, E-mail: g.sargazi@gmail.com; Young Researchers Society, Shahid Bahonar University of Kerman, Kerman, Iran; Afzali, Daryoush, E-mail: daryoush_afzali@yahoo.com

    2017-06-15

    This work presents a fast route for the preparation of a new Ta(V) metal-organic framework nanostructure with high surface area, significant porosity, and small size distribution. X-ray diffraction (XRD), scanning electron microscopy (SEM), Transition electron microscopy (TEM), energy dispersive spectrometer (EDS), thermo-gravimetric analysis (TGA), differential scanning calorimetry (DSC), fourier transform infrared spectroscopy (FTIR), CHNS/O elemental analyser, and Brunauer-Emmett-Teller (BET) surface area analysis were applied to characterize the synthesized product. Moreover, the influences of ultrasonic irradiation including temperature, time, and power on different features of the final products were systematically studied using 2{sup k-1} factorial design experiments, and the response surfacemore » optimization was used for determining the best welding parameter combination. The results obtained from analyses of variances showed that ultrasonic parameters affected the size distribution, thermal behaviour, and surface area of Ta-MOF samples. Based on response surface methodology, Ta-MOF could be obtained with mean diameter of 55 nm, thermal stability of 228 °C, and high surface area of 2100 m{sup 2}/g. The results revealed that the synthesized products could be utilized in various applications such as a novel candidate for CO{sub 2} adsorption. - Graphical abstract: A facile route was used for fabrication of a new metal -organic framework based on tantalum nanostructures that have high surface area, considerable porosity, homogenous morphology, and small size distribution.« less

  1. Simple technique for high-throughput marking of distinguishable micro-areas for microscopy.

    PubMed

    Henrichs, Leonard F; Chen, L I; Bell, Andrew J

    2016-04-01

    Today's (nano)-functional materials, usually exhibiting complex physical properties require local investigation with different microscopy techniques covering different physical aspects such as dipolar and magnetic structure. However, often these must be employed on the very same sample position to be able to truly correlate those different information and corresponding properties. This can be very challenging if not impossible especially when samples lack prominent features for orientation. Here, we present a simple but effective method to mark hundreds of approximately 15×15 μm sample areas at one time by using a commercial transmission electron microscopy grid as shadow mask in combination with thin-film deposition. Areas can be easily distinguished when using a reference or finder grid structure as shadow mask. We show that the method is suitable to combine many techniques such as light microscopy, scanning probe microscopy and scanning electron microscopy. Furthermore, we find that best results are achieved when depositing aluminium on a flat sample surface using electron-beam evaporation which ensures good line-of-sight deposition. This inexpensive high-throughput method has several advantageous over other marking techniques such as focused ion-beam processing especially when batch processing or marking of many areas is required. Nevertheless, the technique could be particularly valuable, when used in junction with, for example focused ion-beam sectioning to obtain a thin lamellar of a particular pre-selected area. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  2. Oriented microtexturing on the surface of high-speed steel cutting tool

    NASA Astrophysics Data System (ADS)

    Filippov, A. V.; Tarasov, S. Yu.; Podgornyh, O. A.; Shamarin, N. N.; Filippova, E. O.

    2016-11-01

    Microtexturing the metal cutting tool surfaces is a novel technique intended for enhancing the workability of these tools. The microtexturing is used in machining the titanium alloys for air-space applications for reducing the adhesion wear of metal cutting blades. This paper is focused on forming the microtextured dotted, banded and overlapped areas on the surfaces of high-speed steel samples. The treated areas have been examined using laser scanning microscopy for the microtexture pattern and roughness. It has been shown that the microtextured surfaces obtained on the high-speed steel samples were free of cracks. Surface pattern and roughness of all three microtextured areas have been examined and analyzed.

  3. Electrochemical characterization of organosilane-functionalized nanostructured ITO surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pruna, R., E-mail: rpruna@el.ub.edu; Palacio, F.; López, M.

    2016-08-08

    The electroactivity of nanostructured indium tin oxide (ITO) has been investigated for its further use in applications such as sensing biological compounds by the analysis of redox active molecules. ITO films were fabricated by using electron beam evaporation at different substrate temperatures and subsequently annealed for promoting their crystallization. The morphology of the deposited material was monitored by scanning electron microscopy, confirming the deposition of either thin films or nanowires, depending on the substrate temperature. Electrochemical surface characterization revealed a 45 % increase in the electroactive surface area of nanostructured ITO with respect to thin films, one third lower than themore » geometrical surface area variation determined by atomic force microscopy. ITO surfaces were functionalized with a model organic molecule known as 6-(ferrocenyl)hexanethiol. The chemical attachment was done by means of a glycidoxy compound containing a reactive epoxy group, the so-called 3-glycidoxypropyltrimethoxy-silane. ITO functionalization was useful for determining the benefits of nanostructuration on the surface coverage of active molecules. Compared to ITO thin films, an increase in the total peak height of 140 % was observed for as-deposited nanostructured electrodes, whereas the same measurement for annealed electrodes resulted in an increase of more than 400 %. These preliminary results demonstrate the ability of nanostructured ITO to increase the surface-to-volume ratio, conductivity and surface area functionalization, features that highly benefit the performance of biosensors.« less

  4. Correlative fractography: combining scanning electron microscopy and light microscopes for qualitative and quantitative analysis of fracture surfaces.

    PubMed

    Hein, Luis Rogerio de Oliveira; de Oliveira, José Alberto; de Campos, Kamila Amato

    2013-04-01

    Correlative fractography is a new expression proposed here to describe a new method for the association between scanning electron microscopy (SEM) and light microscopy (LM) for the qualitative and quantitative analysis of fracture surfaces. This article presents a new method involving the fusion of one elevation map obtained by extended depth from focus reconstruction from LM with exactly the same area by SEM and associated techniques, as X-ray mapping. The true topographic information is perfectly associated to local fracture mechanisms with this new technique, presented here as an alternative to stereo-pair reconstruction for the investigation of fractured components. The great advantage of this technique resides in the possibility of combining any imaging methods associated with LM and SEM for the same observed field from fracture surface.

  5. Microscale surface modifications for heat transfer enhancement.

    PubMed

    Bostanci, Huseyin; Singh, Virendra; Kizito, John P; Rini, Daniel P; Seal, Sudipta; Chow, Louis C

    2013-10-09

    In this experimental study, two surface modification techniques were investigated for their effect on heat transfer enhancement. One of the methods employed the particle (grit) blasting to create microscale indentations, while the other used plasma spray coating to create microscale protrusions on Al 6061 (aluminum alloy 6061) samples. The test surfaces were characterized using scanning electron microscopy (SEM) and confocal scanning laser microscopy. Because of the surface modifications, the actual surface area was increased up to 2.8× compared to the projected base area, and the arithmetic mean roughness value (Ra) was determined to vary from 0.3 μm for the reference smooth surface to 19.5 μm for the modified surfaces. Selected samples with modified surfaces along with the reference smooth surface were then evaluated for their heat transfer performance in spray cooling tests. The cooling system had vapor-atomizing nozzles and used anhydrous ammonia as the coolant in order to achieve heat fluxes up to 500 W/cm(2) representing a thermal management setting for high power systems. Experimental results showed that the microscale surface modifications enhanced heat transfer coefficients up to 76% at 500 W/cm(2) compared to the smooth surface and demonstrated the benefits of these practical surface modification techniques to enhance two-phase heat transfer process.

  6. Electro and Magneto-Electropolished Surface Micro-Patterning on Binary and Ternary Nitinol

    PubMed Central

    Munroe, Norman; McGoron, Anthony

    2012-01-01

    In this study, an Atomic Force Microscopy (AFM) roughness analysis was performed on non-commercial Nitinol alloys with Electropolished (EP) and Magneto-Electropolished (MEP) surface treatments and commercially available stents by measuring Root-Mean-Square (RMS), Average Roughness (Ra), and Surface Area (SA) values at various dimensional areas on the alloy surfaces, ranging from (800 × 800 nm) to (115 × 115μm), and (800 × 800 nm) to (40 × 40 μm) on the commercial stents. Results showed that NiTi-Ta 10 wt% with an EP surface treatment yielded the highest overall roughness, while the NiTi-Cu 10 wt% alloy had the lowest roughness when analyzed over (115 × 115 μm). Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) analysis revealed unique surface morphologies for surface treated alloys, as well as an aggregation of ternary elements Cr and Cu at grain boundaries in MEP and EP surface treated alloys, and non-surface treated alloys. Such surface micro-patterning on ternary Nitinol alloys could increase cellular adhesion and accelerate surface endothelialization of endovascular stents, thus reducing the likelihood of in-stent restenosis and provide insight into hemodynamic flow regimes and the corrosion behavior of an implantable device influenced from such surface micro-patterns. PMID:22754200

  7. Fluid surface compensation in digital holographic microscopy for topography measurement

    NASA Astrophysics Data System (ADS)

    Lin, Li-Chien; Tu, Han-Yen; Lai, Xin-Ji; Wang, Sheng-Shiun; Cheng, Chau-Jern

    2012-06-01

    A novel technique is presented for surface compensation and topography measurement of a specimen in fluid medium by digital holographic microscopy (DHM). In the measurement, the specimen is preserved in a culture dish full of liquid culture medium and an environmental vibration induces a series of ripples to create a non-uniform background on the reconstructed phase image. A background surface compensation algorithm is proposed to account for this problem. First, we distinguish the cell image from the non-uniform background and a morphological image operation is used to reduce the noise effect on the background surface areas. Then, an adaptive sampling from the background surface is employed, taking dense samples from the high-variation area while leaving the smooth region mostly untouched. A surface fitting algorithm based on the optimal bi-cubic functional approximation is used to establish a whole background surface for the phase image. Once the background surface is found, the background compensated phase can be obtained by subtracting the estimated background from the original phase image. From the experimental results, the proposed algorithm performs effectively in removing the non-uniform background of the phase image and has the ability to obtain the specimen topography inside fluid medium under environmental vibrations.

  8. PALS and SPM/EFM investigation of charged nanoporous electret films

    NASA Astrophysics Data System (ADS)

    Chiang, Dar-Ming; Liu, Wen-Liang; Chen, Jen-Luan; Susuki, Ryoichi

    2005-08-01

    The electret properties of nanoporous Teflon-FEP films, fabricated by the super-critical fluids method and charged by the corona method at room temperature, are investigated. PALS and SAXS are applied first to examine the charge characteristics of a free volume of electret materials. The topography and surface charges of electret materials are determined by scanning probe microscopy and electric field microscopy, respectively. The experimental results reveal that the interior surface areas of the pores of the electret materials influence the retention and stability of charge. Initial and aged surface charge was increased by factors of two and ten, with and without nanoporous Teflon-FEP films, respectively.

  9. Dispersion of Co/CNTs via strong electrostatic adsorption method: Thermal treatment effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akbarzadeh, Omid, E-mail: omid.akbarzadeh63@gmail.com; Abdullah, Bawadi, E-mail: bawadi-abdullah@petronas.com.my; Subbarao, Duvvuri, E-mail: duvvuri-subbarao@petronas.com.my

    The effect of different thermal treatment temperature on the structure of multi-walled carbon nanotubes (MWCNTs) and Co particle dispersion on CNTs support is studied using Strong electrostatic adsorption (SEA) method. The samples tested by N{sub 2}-adsorption, field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). N{sub 2}-adsorption results showed BET surface area increased using thermal treatment and TEM images showed that increasing the thermal treatment temperature lead to flaky CNTs and defects introduced on the outer surface and Co particle dispersion increased.

  10. Nanospheres Encapsulating Anti-Leishmanial Drugs for Their Specific Macrophage Targeting, Reduced Toxicity, and Deliberate Intracellular Release

    PubMed Central

    Shukla, Anil Kumar; Patra, Sanjukta

    2012-01-01

    Abstract The current work focuses on the study of polymeric, biodegradable nanoparticles (NPs) for the encapsulation of doxorubicin and mitomycin C (anti-leishmanial drugs), and their efficient delivery to macrophages, the parasite's home. The biodegradable polymer methoxypoly-(ethylene glycol)-b-poly (lactic acid) (MPEG-PLA) was used to prepare polymeric NPs encapsulating doxorubicin and mitomycin C. The morphology, mean diameter, and surface area of spherical NPs were determined by transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), and BET surface area analysis. X-ray diffraction was performed to validate drug encapsulation. An in vitro release profile of the drugs suggested a fairly slow release. These polymeric NPs were efficiently capable of releasing drug inside macrophages at a slower pace than the free drug, which was monitored by epi-fluorescence microscopy. Encapsulation of doxorubicin and mitomycin C into NPs also decreases cellular toxicity in mouse macrophages (J774.1A). PMID:22925019

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey, Steven P.; Aguiar, Jeffery A.; Hacke, Peter

    Here, we investigated potential-induced degradation (PID) in silicon mini-modules that were subjected to accelerated stressing to induce PID conditions. Shunted areas on the cells were identified with photoluminescence and dark lock-in thermography (DLIT) imaging. The identical shunted areas were then analyzed via time-of-flight secondary-ion mass spectrometry (TOFSIMS) imaging, 3-D tomography, and high-resolution transmission electron microscopy. The TOF-SIMS imaging indicates a high concentration of sodium in the shunted areas, and 3-D tomography reveals that the sodium extends more than 2 um from the surface below shunted regions. Transmission electron microscopy investigation reveals that a stacking fault is present at an areamore » identified as shunted by DLIT imaging. After the removal of surface sodium, tomography reveals persistent sodium present around the junction depth of 300 nm and a drastic difference in sodium content at the junction when comparing shunted and nonshunted regions.« less

  12. Room Temperature Gas Sensing Properties of Sn-Substituted Nickel Ferrite (NiFe2O4) Thin Film Sensors Prepared by Chemical Co-Precipitation Method

    NASA Astrophysics Data System (ADS)

    Manikandan, V.; Li, Xiaogan; Mane, R. S.; Chandrasekaran, J.

    2018-04-01

    Tin (Sn) substituted nickel ferrite (NiFe2O4) thin film sensors were prepared by a simple chemical co-precipitation method, which initially characterized their structure and surface morphology with the help of x-ray diffraction and scanning electron microscopy. Surface morphology of the sensing films reveals particles stick together with nearer particles and this formation leads to a large specific area as a large specific area is very useful for easy adsorption of gas molecules. Transmission electron microscopy and selected area electron diffraction pattern images confirm particle size and nanocrystallnity as due to formation of circular rings. Fourier transform infrared analysis has supported the presence of functional groups. The 3.69 eV optical band gap of the film was found which enabled better gas sensing. Gas sensors demonstrate better response and recovery characteristics, and the maximum response was 68.43%.

  13. Morphological changes in diseased cementum layers: a scanning electron microscopy study.

    PubMed

    Bilgin, E; Gürgan, C A; Arpak, M Nejat; Bostanci, H S; Güven, K

    2004-05-01

    The aim of this study was to compare the morphological changes that occurred in root cementum layers due to periodontal disease by using scanning electron microscopy (SEM). Ninety-two periodontally hopeless teeth extracted from 29 patients were studied. Measurements of probing depth (PD) and clinical attachment loss (CAL) were taken prior to extractions. After the longitudinal fracturing process of root specimens, healthy and diseased cementum layers of roots were evaluated by SEM for the thickness of the cementum and the morphological changes in collagen fibers. The result of SEM evaluation revealed a significant ( P < 0.001) decrease in the thickness of cementum layer on the diseased root surfaces compared to the healthy surfaces. There were denser and conspicuous collagen fibers with their interfibrillar matrix in cementum layers on the healthy root surfaces compared to the diseased surfaces. Within the limits of this study, the thickness of cementum layers in diseased areas was found to be significantly less than that in the healthy areas of root surfaces. However, there exist variations in the density and visibility of cemental fibers between individuals and within the individual.

  14. Novel mesoporous FeAl bimetal oxides for As(III) removal: Performance and mechanism.

    PubMed

    Ding, Zecong; Fu, Fenglian; Cheng, Zihang; Lu, Jianwei; Tang, Bing

    2017-02-01

    In this study, novel mesoporous FeAl bimetal oxides were successfully synthesized, characterized, and employed for As(III) removal. Batch experiments were conducted to investigate the effects of Fe/Al molar ratio, dosage, and initial solution pH values on As(III) removal. The results showed that the FeAl bimetal oxide with Fe/Al molar ratio 4:1 (shorten as FeAl-4) can quickly remove As(III) from aqueous solution in a wide pH range. The FeAl-4 before and after reaction with As(III) was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HR-TEM) and selected area electron diffraction (SAED), Brunauer-Emmett-Teller (BET) surface area measurement, and X-ray photoelectron spectroscopy (XPS). The BET results showed that the original FeAl-4 with a high surface area of 223.9 m 2 /g was a mesoporous material. XPS analysis indicated that the surface of FeAl-4 possessed a high concentration of M-OH (where M represents Fe and Al), which was beneficial to the immobility of As(III). The excellent performance of FeAl-4 makes it a potentially attractive material for As(III) removal from aqueous solution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Impact of Plasma Surface Treatment on Bamboo Charcoal/silver Nanocomposite

    NASA Astrophysics Data System (ADS)

    Vignesh, K.; Vijayalakshmi, K. A.; Karthikeyan, N.

    2016-10-01

    Bamboo charcoal (BC) accompanied silver (Ag) nanocomposite is synthesized through sol-gel method. The produced BC/Ag nanocomposite was surface modified by air and oxygen plasma treatments. Silver ions (Ag+) will serve to improve the antibacterial activity as well as the surface area of BC. Plasma treatment has improved the surface functional groups, crystalline intensity and antibacterial activity of the prepared nanocomposite. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) studies show that Ag nanoparticles have good agreement with BC and the particle size has a mean diameter of 20-40nm. We observe the carboxyl functional groups in Fourier transform infrared spectroscopy (FTIR) after the oxygen plasma treatment. Moreover surface area and adsorption were analyzed by using the Brunauer, Emmett and Teller (BET) surface area (SBET) and UV-Vis spectroscopy.

  16. Morphometric analysis of erythrocytes from patients with thalassemia using tomographic diffractive microscopy

    NASA Astrophysics Data System (ADS)

    Lin, Yang-Hsien; Huang, Shin-Shyang; Wu, Shang-Ju; Sung, Kung-Bin

    2017-11-01

    Complete blood count is the most common test to detect anemia, but it is unable to obtain the abnormal shape of erythrocytes, which highly correlates with the hematologic function. Tomographic diffractive microscopy (TDM) is an emerging technique capable of quantifying three-dimensional (3-D) refractive index (RI) distributions of erythrocytes without labeling. TDM was used to characterize optical and morphological properties of 172 erythrocytes from healthy volunteers and 419 erythrocytes from thalassemic patients. To efficiently extract and analyze the properties of erythrocytes, we developed an adaptive region-growing method for automatically delineating erythrocytes from 3-D RI maps. The thalassemic erythrocytes not only contained lower hemoglobin content but also showed doughnut shape and significantly lower volume, surface area, effective radius, and average thickness. A multi-indices prediction model achieved perfect accuracy of diagnosing thalassemia using four features, including the optical volume, surface-area-to-volume ratio, sphericity index, and surface area. The results demonstrate the ability of TDM to provide quantitative, hematologic measurements and to assess morphological features of erythrocytes to distinguish healthy and thalassemic erythrocytes.

  17. Analyses of surface coloration on TiO 2 film irradiated with excimer laser

    NASA Astrophysics Data System (ADS)

    Zheng, H. Y.; Qian, H. X.; Zhou, W.

    2008-01-01

    TiO 2 film of around 850 nm in thickness was deposited on a soda-lime glass by PVD sputtering and irradiated using one pulse of krypton-fluorine (KrF) excimer laser (wavelength of 248 nm and pulse duration of 25 ns) with varying fluence. The color of the irradiated area became darker with increasing laser fluence. Irradiated surfaces were characterized using optical microscopy, scanning electron microscopy, Raman spectroscopy and atomic force microscopy. Surface undergoes thermal annealing at low laser fluence of 400 and 590 mJ/cm 2. Microcracks at medium laser fluence of 1000 mJ/cm 2 are attributed to surface melting and solidification. Hydrodynamic ablation is proposed to explain the formation of micropores and networks at higher laser fluence of 1100 and 1200 mJ/cm 2. The darkening effect is explained in terms of trapping of light in the surface defects formed rather than anatase to rutile phase transformation as reported by others. Controlled darkening of TiO 2 film might be used for adjustable filters.

  18. Synergic Effect between Adsorption and Photocatalysis of Metal-Free g-C3N4 Derived from Different Precursors

    PubMed Central

    Xu, Huan-Yan; Wu, Li-Cheng; Zhao, Hang; Jin, Li-Guo; Qi, Shu-Yan

    2015-01-01

    Graphitic carbon nitride (g-C3N4) used in this work was obtained by heating dicyandiamide and melamine, respectively, at different temperatures. The differences of g-C3N4 derived from different precursors in phase composition, functional group, surface morphology, microstructure, surface property, band gap and specific surface area were investigated by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, UV-visible diffuse reflection spectroscopy and BET surface area analyzer, respectively. The photocatalytic discoloration of an active cationic dye, Methylene Blue (MB) under visible-light irradiation indicated that g-C3N4 derived from melamine at 500°C (CN-M500) had higher adsorption capacity and better photocatalytic activity than that from dicyandiamide at 500°C (CN-D500), which was attributed to the larger surface area of CN-M500. MB discoloration ratio over CN-M500 was affected by initial MB concentration and photocatalyst dosage. After 120 min reaction time, the blue color of MB solution disappeared completely. Subsequently, based on the measurement of the surface Zeta potentials of CN-M500 at different pHs, an active anionic dye, Methyl Orange (MO) was selected as the contrastive target pollutant with MB to reveal the synergic effect between adsorption and photocatalysis. Finally, the photocatalytic mechanism was discussed. PMID:26565712

  19. Interrelationships between cellulase activity and cellulose particle morphology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olsen, Johan P.; Donohoe, Bryon S.; Borch, Kim

    It is well documented that the enzymatic hydrolysis of cellulose follows a reaction pattern where an initial phase of relatively high activity is followed by a gradual slow-down over the entire course of the reaction. This phenomenon is not readily explained by conventional factors like substrate depletion, product inhibition or enzyme instability. It has been suggested that the underlying reason for the loss of enzyme activity is connected to the heterogeneous structure of cellulose, but so far attempts to establish quantitative measures of such a correlation remain speculative. Here, we have carried out an extensive microscopy study of Avicel particlesmore » during extended hydrolysis with Hypocrea jecorina cellobiohydrolase 1 (CBH1) and endoglucanase 1 and 3 (EG1 and EG3) alone and in mixtures. We have used differential interference contrast microscopy and transmission electron microscopy to observe and quantify structural features at um and nm resolution, respectively. We implemented a semi-automatic image analysis protocol, which allowed us to analyze almost 3000 individual micrographs comprising a total of more than 300,000 particles. From this analysis we estimated the temporal development of the accessible surface area throughout the reaction. We found that the number of particles and their size as well as the surface roughness contributed to surface area, and that within the investigated degree of conversion (<30 %) this measure correlated linearly with the rate of reaction. Lastly, based on this observation we argue that cellulose structure, specifically surface area and roughness, plays a major role in the ubiquitous rate loss observed for cellulases.« less

  20. Interrelationships between cellulase activity and cellulose particle morphology

    DOE PAGES

    Olsen, Johan P.; Donohoe, Bryon S.; Borch, Kim; ...

    2016-06-11

    It is well documented that the enzymatic hydrolysis of cellulose follows a reaction pattern where an initial phase of relatively high activity is followed by a gradual slow-down over the entire course of the reaction. This phenomenon is not readily explained by conventional factors like substrate depletion, product inhibition or enzyme instability. It has been suggested that the underlying reason for the loss of enzyme activity is connected to the heterogeneous structure of cellulose, but so far attempts to establish quantitative measures of such a correlation remain speculative. Here, we have carried out an extensive microscopy study of Avicel particlesmore » during extended hydrolysis with Hypocrea jecorina cellobiohydrolase 1 (CBH1) and endoglucanase 1 and 3 (EG1 and EG3) alone and in mixtures. We have used differential interference contrast microscopy and transmission electron microscopy to observe and quantify structural features at um and nm resolution, respectively. We implemented a semi-automatic image analysis protocol, which allowed us to analyze almost 3000 individual micrographs comprising a total of more than 300,000 particles. From this analysis we estimated the temporal development of the accessible surface area throughout the reaction. We found that the number of particles and their size as well as the surface roughness contributed to surface area, and that within the investigated degree of conversion (<30 %) this measure correlated linearly with the rate of reaction. Lastly, based on this observation we argue that cellulose structure, specifically surface area and roughness, plays a major role in the ubiquitous rate loss observed for cellulases.« less

  1. High-fidelity large area nano-patterning of silicon with femtosecond light sheet

    NASA Astrophysics Data System (ADS)

    Sidhu, Mehra S.; Munjal, Pooja; Singh, Kamal P.

    2018-01-01

    We employ a femtosecond light sheet generated by a cylindrical lens to rapidly produce high-fidelity nano-structures over large area on silicon surface. The Fourier analysis of electron microscopy images of the laser-induced surface structures reveals sharp peaks indicating good homogeneity. We observed an emergence of second-order spatial periodicity on increasing the scan speed. Our reliable approach may rapidly nano-pattern curved solid surfaces and tiny objects for diverse potential applications in optical devices, structural coloring, plasmonic substrates and in high-harmonic generation.

  2. Measurements of surface layer of the articular cartilage using microscopic techniques

    NASA Astrophysics Data System (ADS)

    Ryniewicz, A. M.; Ryniewicz, A.; Ryniewicz, W.; Gaska, A.

    2010-07-01

    The articular cartilage is the structure that directly cooperates tribologically in biobearing. It belongs to the connective tissues and in the joints it assumes two basic forms: hyaline cartilage that builds joint surfaces and fibrocartilage which may create joint surfaces. From this fibrocartilage are built semilunar cartilage and joint disc are built as well. The research of articular cartilage have been done in macro, micro and nano scale. In all these measurement areas characteristic features occur which can identify biobearing tribology. The aim of the research was the identification of surface layer of articular cartilage by means of scanning electron microscopy (SEM) and atom force microscopy (AFM) and the analysis of topography of these layers. The material used in the research of surface layer was the animal articular cartilage: hyaline cartilage and fibrocartilage.

  3. Controlled mechnical modification of manganite surface with nanoscale resolution

    DOE PAGES

    Kelly, Simon J.; Kim, Yunseok; Eliseev, Eugene; ...

    2014-11-07

    We investigated the surfaces of magnetoresistive manganites, La1-xCaxMnO3 and La2-2xSr1+2xMn2O7, using a combination of ultrahigh vacuum conductive, electrostatic and magnetic force microscopy methods. Scanning as-grown film with a metal tip, even with zero applied bias, was found to modify the surface electronic properties such that in subsequent scans, the conductivity is reduced below the noise level of conductive probe microscopy. Scanned areas also reveal a reduced contact potential difference relative to the pristine surface by ~0.3 eV. We propose that contact-pressure of the tip modifies the electrochemical potential of oxygen vacancies via the Vegard effect, causing vacancy motion and concomitantmore » changes of the electronic properties.« less

  4. Photoelectron spectroscopic and microspectroscopic probes of ferroelectrics

    NASA Astrophysics Data System (ADS)

    Tǎnase, Liviu C.; Abramiuc, Laura E.; Teodorescu, Cristian M.

    2017-12-01

    This contribution is a review of recent aspects connected with photoelectron spectroscopy of free ferroelectric surfaces, metals interfaced with these surfaces, graphene-like layers together with some exemplifications concerning molecular adsorption, dissociations and desorptions occurring from ferroelectrics. Standard photoelectron spectroscopy is used nowadays in correlation with other characterization techniques, such as piezoresponse force microscopy, high resolution transmission electron spectroscopy, and ferroelectric hysteresis cycles. In this work we will concentrate mainly on photoelectron spectroscopy and spectro-microscopy characterization of ferroelectric thin films, starting from atomically clean ferroelectric surfaces of lead zirco-titanate, then going towards heterostructures using this material in combination with graphene-like carbon layers or with metals. Concepts involving charge accumulation and depolarization near surface will be revisited by taking into account the newest findings in this area.

  5. Low-temperature scanning tunneling microscopy of ring-like surface electronic structures around Co islands on InAs(110) surfaces.

    PubMed

    Muzychenko, D A; Schouteden, K; Savinov, S V; Maslova, N S; Panov, V I; Van Haesendonck, C

    2009-08-01

    We report on the experimental observation by scanning tunneling microscopy at low temperature of ring-like features that appear around Co metal islands deposited on a clean (110) oriented surface of cleaved p-type InAs crystals. These features are visible in spectroscopic images within a certain range of negative tunneling bias voltages due to the presence of a negative differential conductance in the current-voltage dependence. A theoretical model is introduced, which takes into account non-equilibrium effects in the small tunneling junction area. In the framework of this model the appearance of the ring-like features is explained in terms of interference effects between electrons tunneling directly and indirectly (via a Co island) between the tip and the InAs surface.

  6. Noninvasive assessment of articular cartilage surface damage using reflected polarized light microscopy

    NASA Astrophysics Data System (ADS)

    Huynh, Ruby N.; Nehmetallah, George; Raub, Christopher B.

    2017-06-01

    Articular surface damage occurs to cartilage during normal aging, osteoarthritis, and in trauma. A noninvasive assessment of cartilage microstructural alterations is useful for studies involving cartilage explants. This study evaluates polarized reflectance microscopy as a tool to assess surface damage to cartilage explants caused by mechanical scraping and enzymatic degradation. Adult bovine articular cartilage explants were scraped, incubated in collagenase, or underwent scrape and collagenase treatments. In an additional experiment, cartilage explants were subject to scrapes at graduated levels of severity. Polarized reflectance parameters were compared with India ink surface staining, features of histological sections, changes in explant wet weight and thickness, and chondrocyte viability. The polarized reflectance signal was sensitive to surface scrape damage and revealed individual scrape features consistent with India ink marks. Following surface treatments, the reflectance contrast parameter was elevated and correlated with image area fraction of India ink. After extensive scraping, polarized reflectance contrast and chondrocyte viability were lower than that from untreated explants. As part of this work, a mathematical model was developed and confirmed the trend in the reflectance signal due to changes in surface scattering and subsurface birefringence. These results demonstrate the effectiveness of polarized reflectance microscopy to sensitively assess surface microstructural alterations in articular cartilage explants.

  7. Synthesis of ternary oxide for efficient photo catalytic conversion of CO2

    NASA Astrophysics Data System (ADS)

    Wan, Lijuan

    2018-01-01

    Zn2GeO4 Nan rods were prepared by solution phase route. The morphology and structure of the as-prepared products were characterized by scanning electron microscopy (SEM) and Bruner-Emmett-Teller (BET) surface area measurements. The results revealed that Zn2GeO4 Nan rods with higher surface area have higher photo catalytic activity in photo reduction of CO2 than Zn2GeO4 prepared through solid-state reaction.

  8. Biosynthesis of amorphous mesoporous aluminophosphates using yeast cells as templates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sifontes, Ángela B., E-mail: asifonte@ivic.gob.ve; González, Gema; Tovar, Leidy M.

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ► Amorphous aluminophosphates can take place using yeast as template. ► A mesoporous material was obtained. ► The specific surface area after calcinations ranged between 176 and 214 m{sup 2} g{sup −1}. -- Abstract: In this study aluminophosphates have been synthesized from aluminum isopropoxide and phosphoric acid solutions using yeast cells as template. The physicochemical characterization was carried out by thermogravimetric analysis; X-ray diffraction; Fourier transform infrared; N{sub 2} adsorption–desorption isotherms; scanning electron microscopy; transmission electron microscopy and potentiometric titration with N-butylamine for determination of: thermal stability; crystalline structure; textural properties; morphology and surface acidity,more » respectively. The calcined powders consisted of an intimate mixture of amorphous and crystallized AlPO particles with sizes between 23 and 30 nm. The average pore size observed is 13–16 nm and the specific surface area after calcinations (at 650 °C) ranged between 176 and 214 m{sup 2} g{sup −1}.« less

  9. High surface area neodymium phosphate nano particles by modified aqueous sol-gel method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sankar, Sasidharan; Warrier, Krishna Gopakumar, E-mail: wwarrierkgk@yahoo.co.in; Komban, Rajesh

    2011-12-15

    Graphical abstract: Synthesis of nano rod shaped neodymium phosphate particles with specific surface area as high as 107 m{sup 2} g{sup -1} and particles could be compacted and sintered at as low as 1300 Degree-Sign C to a density of 98.5% (theoretical) with an average grain size of {approx}1 {mu}m. Highlights: Black-Right-Pointing-Pointer Nano size neodymium phosphate is synthesized and characterized using a novel modified aqueous sol gel process. Black-Right-Pointing-Pointer Specific surface area above 100 m{sup 2} g{sup -1} achieved without the addition of any complexing agents. Black-Right-Pointing-Pointer High sintered density reported than the density obtained for powder synthesized through conventionalmore » solid state reaction. Black-Right-Pointing-Pointer The particles are nano sized and have rod shape morphology and are retained at higher temperatures. Black-Right-Pointing-Pointer An average grain size of {approx}1 {mu}m obtained for sintered NdPO{sub 4} after thermal etching at 1400 Degree-Sign C. -- Abstract: Synthesis of nano rod shaped neodymium phosphate (NdPO{sub 4}) particles with specific surface area as high as 107 m{sup 2}g{sup -1} and an average length of 50 nm with aspect ratio 5 was achieved using modified sol gel method. Crystallite size calculated from the X-ray diffraction data by applying Scherer equation was 5 nm for the precursor gel after calcination at 400 Degree-Sign C. NdPO{sub 4} was first precipitated from neodymium nitrate solution using phosphoric acid followed by peptization using dilute nitric acid and further gelation in ammonia atmosphere. The calcined gel powders were further characterized by surface area (Brunauer-Emmet-Teller nitrogen adsorption analysis), Transmission electron microscopy, scanning electron microscopy, UV-vis and FT-IR analysis. Transmission electron microscopy confirms the formation of rod like morphology from the sol, gel and the calcined particles in nano size range. These particles could be compacted and sintered at as low as 1300 Degree-Sign C to a density of 98.5% (theoretical) with an average grain size of {approx}1 {mu}m.« less

  10. Enhancement of surface area and wettability properties of boron doped diamond by femtosecond laser-induced periodic surface structuring

    DOE PAGES

    Granados, Eduardo; Calderon, Miguel Martinez; Krzywinski, Jacek; ...

    2017-08-28

    We demonstrate the formation of laser-induced periodic surface structures (LIPSS) in boron-doped diamond (BDD) by irradiation with femtosecond near-IR laser pulses. The results show that the obtained LIPSS are perpendicular to the laser polarization, and the ripple periodicity is on the order of half of the irradiation wavelength. The surface structures and their electrochemical properties were characterized using Raman micro-spectroscopy, in combination with scanning electron and atomic force microscopies. The textured BDD surface showed a dense and large surface area with no change in its structural characteristics. The effective surface area of the textured BDD electrode was approximately 50% largermore » than that of a planar substrate, while wetting tests showed that the irradiated area becomes highly hydrophilic. Lastly, our results indicate that LIPSS texturing of BDD is a straightforward and simple technique for enhancing the surface area and wettability properties of the BDD electrodes, which could enable higher current efficiency and lower energy consumption in the electrochemical oxidation of toxic organics.« less

  11. Enhancement of surface area and wettability properties of boron doped diamond by femtosecond laser-induced periodic surface structuring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granados, Eduardo; Calderon, Miguel Martinez; Krzywinski, Jacek

    We demonstrate the formation of laser-induced periodic surface structures (LIPSS) in boron-doped diamond (BDD) by irradiation with femtosecond near-IR laser pulses. The results show that the obtained LIPSS are perpendicular to the laser polarization, and the ripple periodicity is on the order of half of the irradiation wavelength. The surface structures and their electrochemical properties were characterized using Raman micro-spectroscopy, in combination with scanning electron and atomic force microscopies. The textured BDD surface showed a dense and large surface area with no change in its structural characteristics. The effective surface area of the textured BDD electrode was approximately 50% largermore » than that of a planar substrate, while wetting tests showed that the irradiated area becomes highly hydrophilic. Lastly, our results indicate that LIPSS texturing of BDD is a straightforward and simple technique for enhancing the surface area and wettability properties of the BDD electrodes, which could enable higher current efficiency and lower energy consumption in the electrochemical oxidation of toxic organics.« less

  12. Development of large-surface Nafion-metal composite actuator and its electrochemical characterization

    NASA Astrophysics Data System (ADS)

    Noh, Taegeun; Tak, Yong Suk; Nam, Jaedo; Jeon, Jaewook; Kim, Hunmo; Choi, Hyoukryeol; Bae, Sang Sik

    2001-07-01

    Behaviors of nafion-based actuators are significantly affected by interfacial area between electrode and polymer electrolyte. Replication method was utilized to manufacture a large surface-area composite actuator. Etched aluminum foil was used as a template for replication using liquid nafion solution. Measurement of double layer charging and scanning electron microscopy indicated that interfacial area was greatly increased by replication method. Higher surface area induced a better bending performance of ionic polymer metal composite (IPMC). In parallel, the effect of cations on IPMC was interpreted with constant current experiment, linear sweep voltammetry and electrochemical impedance spectroscopy. For univalent cations, ion size is the most influencing parameter on ionic mobility inside membrane. However, ion-ion interaction affects an ionic mobility for divalent cations.

  13. Synthesis of porous nanocrystalline NiO with hexagonal sheet-like morphology by homogeneous precipitation method

    NASA Astrophysics Data System (ADS)

    Sharma, Ravi Kant; Ghose, Ranjana

    2015-04-01

    Porous nanocrystalline NiO has been synthesized by a simple homogeneous precipitation method in short time at low calcination temperature without using any surfactant, chelating or gelating agents. The porous nanocrystalline NiO with a hexagonal sheet-like morphology were obtained by calcination of Ni(OH)2 nanoflakes at 500 °C. The calcination temperature strongly influences the morphology, crystallite size, specific surface area, pore volume and optical band gap of the samples. The samples were characterized using powder X-ray diffraction, thermal gravimetric analysis, FT-IR spectroscopy, UV-Visible diffuse reflectance spectroscopy, surface area measurements, field emission scanning electron microscopy coupled with energy dispersive X-ray analysis and transmission electron microscopy. The chemical activity of the samples was tested by catalytic reduction of 4-nitrophenol with NaBH4.

  14. Surface roughness analysis of fiber post conditioning processes.

    PubMed

    Mazzitelli, C; Ferrari, M; Toledano, M; Osorio, E; Monticelli, F; Osorio, R

    2008-02-01

    The chemo-mechanical surface treatment of fiber posts increases their bonding properties. The combined use of atomic force and confocal microscopy allows for the assessment and quantification of the changes on surface roughness that justify this behavior. Quartz fiber posts were conditioned with different chemicals, as well as by sandblasting, and by an industrial silicate/silane coating. We analyzed post surfaces by atomic force microscopy, recording average roughness (R(a)) measurements of fibers and resin matrix. A confocal image profiler allowed for the quantitative assessment of the average superficial roughness (R(a)). Hydrofluoric acid, potassium permanganate, sodium ethoxide, and sandblasting increased post surface roughness. Modifications of the epoxy resin matrix occurred after the surface pre-treatments. Hydrofluoric acid affected the superficial texture of quartz fibers. Surface-conditioning procedures that selectively react with the epoxy-resin matrix of the fiber post enhance roughness and improve the surface area available for adhesion by creating micro-retentive spaces without affecting the post's inner structure.

  15. Characterization and extraction of the synaptic apposition surface for synaptic geometry analysis

    PubMed Central

    Morales, Juan; Rodríguez, Angel; Rodríguez, José-Rodrigo; DeFelipe, Javier; Merchán-Pérez, Angel

    2013-01-01

    Geometrical features of chemical synapses are relevant to their function. Two critical components of the synaptic junction are the active zone (AZ) and the postsynaptic density (PSD), as they are related to the probability of synaptic release and the number of postsynaptic receptors, respectively. Morphological studies of these structures are greatly facilitated by the use of recent electron microscopy techniques, such as combined focused ion beam milling and scanning electron microscopy (FIB/SEM), and software tools that permit reconstruction of large numbers of synapses in three dimensions. Since the AZ and the PSD are in close apposition and have a similar surface area, they can be represented by a single surface—the synaptic apposition surface (SAS). We have developed an efficient computational technique to automatically extract this surface from synaptic junctions that have previously been three-dimensionally reconstructed from actual tissue samples imaged by automated FIB/SEM. Given its relationship with the release probability and the number of postsynaptic receptors, the surface area of the SAS is a functionally relevant measure of the size of a synapse that can complement other geometrical features like the volume of the reconstructed synaptic junction, the equivalent ellipsoid size and the Feret's diameter. PMID:23847474

  16. One Step Assembly of Thin Films of Carbon Nanotubes on Screen Printed Interface for Electrochemical Aptasensing of Breast Cancer Biomarker.

    PubMed

    Nawaz, Muhammad Azhar Hayat; Rauf, Sajid; Catanante, Gaelle; Nawaz, Mian Hasnain; Nunes, Gilvanda; Marty, Jean Louis; Hayat, Akhtar

    2016-10-06

    Thin films of organic moiety functionalized carbon nanotubes (CNTs) from a very well-dispersed aqueous solution were designed on a screen printed transducer surface through a single step directed assembly methodology. Very high density of CNTs was obtained on the screen printed electrode surface, with the formation of a thin and uniform layer on transducer substrate. Functionalized CNTs were characterized by X-ray diffraction spectroscopy (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and Brunauer-Emmett- Teller (BET) surface area analyzer methodologies, while CNT coated screen printed transducer platform was analyzed by scanning electron microscopy (SEM), atomic force microscopy (AFM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The proposed methodology makes use of a minimum amount of CNTs and toxic solvents, and is successfully demonstrated to form thin films over macroscopic areas of screen printed carbon transducer surface. The CNT coated screen printed transducer surface was integrated in the fabrication of electrochemical aptasensors for breast cancer biomarker analysis. This CNT coated platform can be applied to immobilize enzymes, antibodies and DNA in the construction of biosensor for a broad spectrum of applications.

  17. One Step Assembly of Thin Films of Carbon Nanotubes on Screen Printed Interface for Electrochemical Aptasensing of Breast Cancer Biomarker

    PubMed Central

    Nawaz, Muhammad Azhar Hayat; Rauf, Sajid; Catanante, Gaelle; Nawaz, Mian Hasnain; Nunes, Gilvanda; Louis Marty, Jean; Hayat, Akhtar

    2016-01-01

    Thin films of organic moiety functionalized carbon nanotubes (CNTs) from a very well-dispersed aqueous solution were designed on a screen printed transducer surface through a single step directed assembly methodology. Very high density of CNTs was obtained on the screen printed electrode surface, with the formation of a thin and uniform layer on transducer substrate. Functionalized CNTs were characterized by X-ray diffraction spectroscopy (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and Brunauer–Emmett–Teller (BET) surface area analyzer methodologies, while CNT coated screen printed transducer platform was analyzed by scanning electron microscopy (SEM), atomic force microscopy (AFM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The proposed methodology makes use of a minimum amount of CNTs and toxic solvents, and is successfully demonstrated to form thin films over macroscopic areas of screen printed carbon transducer surface. The CNT coated screen printed transducer surface was integrated in the fabrication of electrochemical aptasensors for breast cancer biomarker analysis. This CNT coated platform can be applied to immobilize enzymes, antibodies and DNA in the construction of biosensor for a broad spectrum of applications. PMID:27782067

  18. In situ atomic force microscopy analysis of morphology and particle size changes in lithium iron phosphate cathode during discharge.

    PubMed

    Demirocak, Dervis Emre; Bhushan, Bharat

    2014-06-01

    Li-ion batteries offer great promise for future plug-in hybrid electric vehicles (PHEVs) and pure electric vehicles (EVs). One of the challenges is to improve the cycle life of Li-ion batteries which requires detailed understanding of the aging phenomenon. In situ techniques are especially valuable to understand aging since it allows monitoring the physical and chemical changes in real time. In this study, in situ atomic force microscopy (AFM) is utilized to study the changes in morphology and particle size of LiFePO4 cathode during discharge. The guidelines for in situ AFM cell design for accurate and reliable measurements based on different designs are presented. The effect of working electrode to counter electrode surface area ratio on cycling data of an in situ cell is also discussed. Analysis of the surface area change in LiFePO4 particles when the cell was cycled between 100% and 70% state of charge is presented. Among four particles analyzed, surface area increase of particles during Li intercalation of LiFePO4 spanned from 1.8% to 14.3% indicating the inhomogeneous nature of the cathode surface. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. A controlled release of ibuprofen by systematically tailoring the morphology of mesoporous silica materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qu Fengyu; Chemistry and Pharmaceutical College, Jiamusi University, Jiamusi 154007; Zhu Guangshan

    2006-07-15

    A series of mesoporous silica materials with similar pore sizes, different morphologies and variable pore geometries were prepared systematically. In order to control drug release, ibuprofen was employed as a model drug and the influence of morphology and pore geometry of mesoporous silica on drug release profiles was extensively studied. The mesoporous silica and drug-loaded samples were characterized by X-ray diffraction, Fourier transform IR spectroscopy, N{sub 2} adsorption and desorption, scanning electron microscopy, and transmission electron microscopy. It was found that the drug-loading amount was directly correlated to the Brunauer-Emmett-Teller surface area, pore geometry, and pore volume; while the drugmore » release profiles could be controlled by tailoring the morphologies of mesoporous silica carriers. - Graphical abstract: The release of ibuprofen is controlled by tailoring the morphologies of mesoporous silica. The mesoporous silica and drug-loaded samples are characterized by powder X-ray diffraction, Fourier transform IR spectroscopy, N{sub 2} adsorption and desorption, scanning electron microscopy, and transmission electron microscopy. The drug-loading amount is directly correlated to the Brunauer-Emmett-Teller surface area, pore geometry, and pore volume; while the drug release profiles can be controlled by tailoring the morphologies of mesoporous silica carriers.« less

  20. Characterization of hematite nanoparticles synthesized via two different pathways

    NASA Astrophysics Data System (ADS)

    Das, Soumya; Hendry, M. Jim

    2014-08-01

    Hematite is one of the most common and thermodynamically stable iron oxides found in both natural and anthropogenic systems. Owing to its ubiquity, stability, moderate specific surface area, and ability to sequester metals and metalloids from aquatic systems, it has been the subject of a large number of adsorption studies published during the past few decades. Although preparation techniques are known to affect the surface morphology of hematite nanoparticles, the effects of aging under environmentally relevant conditions have yet to be tested with respect to surface morphology, surface area, and adsorptive capacity. We prepared hematite via two different pathways and aged it under highly alkaline conditions encountered in many mill tailings settings. Crystal habits and morphologies of the hematite nanoparticles were analyzed via scanning electron microscopy and transmission electron microscopy. X-ray diffraction, Raman spectroscopy, and Brunauer-Emmett-Teller surface area analyses were also conducted on the hematite nanoparticles before and after aging. The hematite synthesized via an Fe(III) salt solution (average particle size 37 nm) was morphologically and structurally different from the hematite synthesized via ferrihydrite aging (average particle size 144 nm). Overall, our data demonstrate that the crystallinity of hematite produced via ferrihydrite transformation is susceptible to morphological alterations/modifications. In contrast, the hematite formed via hydrolysis of an Fe(III) salt solution remains very stable in terms of structure, size, and morphology even under extreme experimental conditions.

  1. Investigation of the electrochemically active surface area and lithium diffusion in graphite anodes by a novel OsO4 staining method

    NASA Astrophysics Data System (ADS)

    Pfaffmann, Lukas; Birkenmaier, Claudia; Müller, Marcus; Bauer, Werner; Mitsch, Tim; Feinauer, Julian; Krämer, Yvonne; Scheiba, Frieder; Hintennach, Andreas; Schleid, Thomas; Schmidt, Volker; Ehrenberg, Helmut

    2016-03-01

    Negative electrodes of lithium-ion batteries generally consist of graphite-based active materials. In order to realize batteries with a high current density and therefore accelerated charging processes, the intercalation of lithium and the diffusion processes of these carbonaceous materials must be understood. In this paper, we visualized the electrochemical active surface area for three different anode materials using a novel OsO4 staining method in combination with scanning electron microscopy techniques. The diffusion behavior of these three anode materials is investigated by potentiostatic intermittent titration technique measurements. From those we determine the diffusion coefficient with and without consideration of the electrochemical active surface area.

  2. Micro patterned surfaces allow long-term digital holographic microscopy live cell imaging

    NASA Astrophysics Data System (ADS)

    Mues, Sarah; Lilge, Inga; Schönherr, Holger; Kemper, Björn; Schnekenburger, Jürgen

    2017-07-01

    During long-term imaging, cells move out of the field of view. We have generated functionalized substrates containing rectangular areas, which were capable in keeping cells over the whole observation period.

  3. Scanning electron microscopy as an analytical tool for the study of calcified intrauterine contraceptive devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, S.R.; Wilkinson, E.J.

    Within the endometrial cavity intrauterine contraceptive devices (IUDs) become encrusted with cellular, acellular, and fibrillar substances. Scanning electron microscopy was used to study the crust. Cellular material consisted mainly of blood cells and various types of bacteria. The fibrillar material appeared to be fibrin which was omnipresent in the crust and formed a thin layer immediately over the IUD surface. X-ray microanalysis of the acellular component of the crust revealed the presence of calcium. No other major peaks were identified. Near the IUD surface characteristic calcium phosphate crystals were present. Their microanalysis showed peaks for calcium and phosphorus. X-ray diffractionmore » of the crust however, showed it to contain only calcite. It is through the use of scanning electron microscopy that calcium phosphate has been detected in the IUD crust and a fibrillar layer has been visualized on the IUD surface. This study further demonstrates the effectiveness of SEM analytical techniques in the area of biomedical research.« less

  4. A novel route for synthesis of nanocrystalline hydroxyapatite from eggshell waste.

    PubMed

    Siva Rama Krishna, D; Siddharthan, A; Seshadri, S K; Sampath Kumar, T S

    2007-09-01

    The eggshell waste has been value engineered to a nanocrystalline hydroxyapatite (HA) by microwave processing. To highlight the advantages of eggshell as calcium precursor in the synthesis of HA (OHA), synthetic calcium hydroxide was also used to form HA (SHA) following similar procedure and were compared with a commercially available pure HA (CHA). All the HAs were characterized by X-ray powder diffraction (XRD) method, Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and specific surface area measurements. Nanocrystalline nature of OHA is revealed through characteristic broad peaks in XRD patterns, platelets of length 33-50 nm and width 8-14 nm in TEM micrograph and size calculations from specific surface area measurements. FT-IR spectra showed characteristic bands of HA and additionally peaks of carbonate ions. The cell parameter calculations suggest the formation of carbonated HA of B-type. The OHA exhibits superior sinterability in terms of hardness and density than both SHA and CHA may be due to larger surface area of its spherulite structure. The in vitro dissolution study shows longer stability in phosphate buffer and cell culture test using osteoblast cells establishes biocompatibility of OHA.

  5. Resolution and contrast in Kelvin probe force microscopy

    NASA Astrophysics Data System (ADS)

    Jacobs, H. O.; Leuchtmann, P.; Homan, O. J.; Stemmer, A.

    1998-08-01

    The combination of atomic force microscopy and Kelvin probe technology is a powerful tool to obtain high-resolution maps of the surface potential distribution on conducting and nonconducting samples. However, resolution and contrast transfer of this method have not been fully understood, so far. To obtain a better quantitative understanding, we introduce a model which correlates the measured potential with the actual surface potential distribution, and we compare numerical simulations of the three-dimensional tip-specimen model with experimental data from test structures. The observed potential is a locally weighted average over all potentials present on the sample surface. The model allows us to calculate these weighting factors and, furthermore, leads to the conclusion that good resolution in potential maps is obtained by long and slender but slightly blunt tips on cantilevers of minimal width and surface area.

  6. Tribological performance of sub-100-nm femtosecond laser-induced periodic surface structures on titanium

    NASA Astrophysics Data System (ADS)

    Bonse, J.; Höhm, S.; Koter, R.; Hartelt, M.; Spaltmann, D.; Pentzien, S.; Rosenfeld, A.; Krüger, J.

    2016-06-01

    Sub-100-nm laser-induced periodic surface structures (LIPSS) were processed on bulk titanium (Ti) surfaces by femtosecond laser pulse irradiation in air (30 fs pulse duration, 790 nm wavelength). The laser peak fluence, the spatial spot overlap, and the number of overscans were optimized in a sample-scanning geometry in order to obtain large surface areas (5 mm × 5 mm) covered homogeneously by the LIPSS. The laser-processed regions were characterized by optical microscopy (OM), white light interference microscopy (WLIM) and scanning electron microscopy (SEM). The friction coefficient of the nanostructured surfaces was tested during 1000 cycles under reciprocal sliding conditions (1 Hz, 1.0 N normal load) against a 10-mm diameter ball of hardened 100Cr6 steel, both in paraffin oil and in engine oil used as lubricants. Subsequently, the corresponding wear tracks were qualified by OM, SEM, and energy dispersive X-ray analyses (EDX). The results of the tribological tests are discussed and compared to that obtained for near wavelength-sized fs-LIPSS, processed under somewhat different irradiation conditions. Some constraints for a beneficial effect of LIPSS on the tribological performance are provided.

  7. Effect of Atmospheric Plasma Treatment to Titanium Surface on Initial Osteoblast-Like Cell Spreading. .

    PubMed

    Kim, In-Hye; Son, Jun-Sik; Kwon, Tae-Yub; Kim, Kyo-Han

    2015-01-01

    Plasma treatments are becoming a popular method for modifying the characteristics of a range of substrate surfaces. Atmospheric pressure plasma is cost-efficient, safe and simple compared to high-pressure plasma. This study examined the effects of atmospheric pressure plasma to a titanium (Ti) surface on osteoblast-like cell (osteoblast) spreading and cellular networks. The characteristics of the Ti surface before and after the atmospheric plasma treatment were analyzed by X-ray photoemission spectroscopy (XPS), scanning electron microscopy (SEM), contact angle measurements, and an optical 3D profiling system. The morphology of osteoblasts attached to the Ti surfaces was observed by SEM and confocal laser scanning microscopy. The atmospheric pressure plasma made the Ti surfaces more hydrophilic. The osteoblasts that adhered to the untreated surface were round and spherical, whereas the cells covered a larger surface area on the plasma-treated surface. The plasma-treated Ti surface showed enhanced cell spreading and migration with more developed cellular networks. In conclusion, an atmospheric plasma treatment is a potential surface modifying method that can enhance the initial the cell affinity at the early stages in vitro.

  8. Laser-Based Surface Modification of Microstructure for Carbon Fiber-Reinforced Plastics

    NASA Astrophysics Data System (ADS)

    Yang, Wenfeng; Sun, Ting; Cao, Yu; Li, Shaolong; Liu, Chang; Tang, Qingru

    2018-05-01

    Bonding repair is a powerful feature of carbon fiber-reinforced plastics (CFRP). Based on the theory of interface bonding, the interface adhesion strength and reliability of the CFRP structure will be directly affected by the microscopic features of the CFRP surface, including the microstructure, physical, and chemical characteristics. In this paper, laser-based surface modification was compared to Peel-ply, grinding, and polishing to comparatively evaluate the surface microstructure of CFRP. The surface microstructure, morphology, fiber damage, height and space parameters were investigated by scanning electron microscopy (SEM) and laser confocal microscopy (LCM). Relative to the conventional grinding process, laser modification of the CFRP surface can result in more uniform resin removal and better processing control and repeatability. This decreases the adverse impact of surface fiber fractures and secondary damage. The surface properties were significantly optimized, which has been reflected such things as the obvious improvement of surface roughness, microstructure uniformity, and actual area. The improved surface microstructure based on laser modification is more conducive to interface bonding of CFRP structure repair. This can enhance the interfacial adhesion strength and reliability of repair.

  9. Two-probe STM experiments at the atomic level.

    PubMed

    Kolmer, Marek; Olszowski, Piotr; Zuzak, Rafal; Godlewski, Szymon; Joachim, Christian; Szymonski, Marek

    2017-11-08

    Direct characterization of planar atomic or molecular scale devices and circuits on a supporting surface by multi-probe measurements requires unprecedented stability of single atom contacts and manipulation of scanning probes over large, nanometer scale area with atomic precision. In this work, we describe the full methodology behind atomically defined two-probe scanning tunneling microscopy (STM) experiments performed on a model system: dangling bond dimer wire supported on a hydrogenated germanium (0 0 1) surface. We show that 70 nm long atomic wire can be simultaneously approached by two independent STM scanners with exact probe to probe distance reaching down to 30 nm. This allows direct wire characterization by two-probe I-V characteristics at distances below 50 nm. Our technical results presented in this work open a new area for multi-probe research, which can be now performed with precision so far accessible only by single-probe scanning probe microscopy (SPM) experiments.

  10. Lateral overgrowth of diamond film on stripes patterned Ir/HPHT-diamond substrate

    NASA Astrophysics Data System (ADS)

    Wang, Yan-Feng; Chang, Xiaohui; Liu, Zhangcheng; Liu, Zongchen; Fu, Jiao; Zhao, Dan; Shao, Guoqing; Wang, Juan; Zhang, Shaopeng; Liang, Yan; Zhu, Tianfei; Wang, Wei; Wang, Hong-Xing

    2018-05-01

    Epitaxial lateral overgrowth (ELO) of diamond films on patterned Ir/(0 0 1)HPHT-diamond substrates have been carried out by microwave plasma CVD system. Ir/(0 0 1)HPHT-diamond substrates are fabricated by photolithographic and magnetron sputtering technique. The morphology of the as grown ELO diamond film is characterized by optical microscopy and scanning electronic microscopy. The quality and stress of the ELO diamond film are investigated by surface etching pit density and micro-Raman spectroscopy. Two ultraviolet photodetectors are fabricated on ELO diamond area and non-ELO diamond area prepared on same substrate, and that one on ELO diamond area indicates better photoelectric properties. All results indicate quality of ELO diamond film is improved.

  11. Surface plasmon microscopy with low-cost metallic nanostructures for biosensing I

    NASA Astrophysics Data System (ADS)

    Lindquist, Nathan; Oh, Sang-Hyun; Otto, Lauren

    2012-02-01

    The field of plasmonics aims to manipulate light over dimensions smaller than the optical wavelength by exploiting surface plasmon resonances in metallic films. Typically, surface plasmons are excited by illuminating metallic nanostructures. For meaningful research in this exciting area, the fabrication of high-quality nanostructures is critical, and in an undergraduate setting, low-cost methods are desirable. Careful optical characterization of the metallic nanostructures is also required. Here, we present the use of novel, inexpensive nanofabrication techniques and the development of a customized surface plasmon microscopy setup for interdisciplinary undergraduate experiments in biosensing, surface-enhanced Raman spectroscopy, and surface plasmon imaging. A Bethel undergraduate student performs the nanofabrication in collaboration with the University of Minnesota. The rewards of mentoring undergraduate students in cooperation with a large research university are numerous, exposing them to a wide variety of opportunities. This research also interacts with upper-level, open-ended laboratory projects, summer research, a semester-long senior research experience, and will enable a large range of experiments into the future.

  12. Confocal laser scanning microscopy and area-scale analysis used to quantify enamel surface textural changes from citric acid demineralization and salivary remineralization in vitro.

    PubMed

    Austin, R S; Giusca, C L; Macaulay, G; Moazzez, R; Bartlett, D W

    2016-02-01

    This paper investigates the application of confocal laser scanning microscopy to determine the effect of acid-mediated erosive enamel wear on the micro-texture of polished human enamel in vitro. Twenty polished enamel samples were prepared and subjected to a citric acid erosion and pooled human saliva remineralization model. Enamel surface microhardness was measured using a Knoop hardness tester, which confirmed that an early enamel erosion lesion was formed which was then subsequently completely remineralized. A confocal laser scanning microscope was used to capture high-resolution images of the enamel surfaces undergoing demineralization and remineralization. Area-scale analysis was used to identify the optimal feature size following which the surface texture was determined using the 3D (areal) texture parameter Sa. The Sa successfully characterized the enamel erosion and remineralization for the polished enamel samples (P<0.001). Areal surface texture characterization of the surface events occurring during enamel demineralization and remineralization requires optical imaging instrumentation with lateral resolution <2.5 μm, applied in combination with appropriate filtering in order to remove unwanted waviness and roughness. These techniques will facilitate the development of novel methods for measuring early enamel erosion lesions in natural enamel surfaces in vivo. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  13. Structured light optical microscopy for three-dimensional reconstruction of technical surfaces

    NASA Astrophysics Data System (ADS)

    Kettel, Johannes; Reinecke, Holger; Müller, Claas

    2016-04-01

    In microsystems technology quality control of micro structured surfaces with different surface properties is playing an ever more important role. The process of quality control incorporates three-dimensional (3D) reconstruction of specularand diffusive reflecting technical surfaces. Due to the demand on high measurement accuracy and data acquisition rates, structured light optical microscopy has become a valuable solution to solve this problem providing high vertical and lateral resolution. However, 3D reconstruction of specular reflecting technical surfaces still remains a challenge to optical measurement principles. In this paper we present a measurement principle based on structured light optical microscopy which enables 3D reconstruction of specular- and diffusive reflecting technical surfaces. It is realized using two light paths of a stereo microscope equipped with different magnification levels. The right optical path of the stereo microscope is used to project structured light onto the object surface. The left optical path is used to capture the structured illuminated object surface with a camera. Structured light patterns are generated by a Digital Light Processing (DLP) device in combination with a high power Light Emitting Diode (LED). Structured light patterns are realized as a matrix of discrete light spots to illuminate defined areas on the object surface. The introduced measurement principle is based on multiple and parallel processed point measurements. Analysis of the measured Point Spread Function (PSF) by pattern recognition and model fitting algorithms enables the precise calculation of 3D coordinates. Using exemplary technical surfaces we demonstrate the successful application of our measurement principle.

  14. New Generation Materials and Structures for Nanophotonics and Nanoelectronics

    DTIC Science & Technology

    2006-04-30

    been investigated using thermogravimetric analysis and FTIR spectroscopy. The nanoparticles appear to have excess surfactants on their surface, but...processes. We continued analysis of the vibrational modes of the InP/II- VI core-shell nanoparticles determined by IR and Raman studies, and initiated...photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), BET surface area analysis , transmission electron microscopy (TEM), and SQUID magnetometry. In

  15. Correlating Humidity-Dependent Ionically Conductive Surface Area with Transport Phenomena in Proton-Exchange Membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Qinggang; Kusoglu, Ahmet; Lucas, Ivan T.

    2011-08-01

    The objective of this effort was to correlate the local surface ionic conductance of a Nafion? 212 proton-exchange membrane with its bulk and interfacial transport properties as a function of water content. Both macroscopic and microscopic proton conductivities were investigated at different relative humidity levels, using electrochemical impedance spectroscopy and current-sensing atomic force microscopy (CSAFM). We were able to identify small ion-conducting domains that grew with humidity at the surface of the membrane. Numerical analysis of the surface ionic conductance images recorded at various relative humidity levels helped determine the fractional area of ion-conducting active sites. A simple square-root relationshipmore » between the fractional conducting area and observed interfacial mass-transport resistance was established. Furthermore, the relationship between the bulk ionic conductivity and surface ionic conductance pattern of the Nafion? membrane was examined.« less

  16. PSD microscopy: a new technique for adaptive local scanning of microscale objects.

    PubMed

    Rahimi, Mehdi; Shen, Yantao

    2017-01-01

    A position-sensitive detector/device (PSD) is a sensor that is capable of tracking the location of a laser beam on its surface. PSDs are used in many scientific instruments and technical applications including but not limited to atomic force microscopy, human eye movement monitoring, mirrors or machine tool alignment, vibration analysis, beam position control and so on. This work intends to propose a new application using the PSD. That is a new microscopy system called scanning PSD microscopy. The working mechanism is about putting an object on the surface of the PSD and fast scanning its area with a laser beam. To achieve a high degree of accuracy and precision, a reliable framework was designed using the PSD. In this work, we first tried to improve the PSD reading and its measurement performance. This was done by minimizing the effects of noise, distortion and other disturbing parameters. After achieving a high degree of confidence, the microscopy system can be implemented based on the improved PSD measurement performance. Later to improve the scanning efficiency, we developed an adaptive local scanning system to scan the whole area of the PSD in a short matter of time. It was validated that our comprehensive and adaptive local scanning method can shorten the scanning time in order of hundreds of times in comparison with the traditional raster scanning without losing any important information about the scanned 2D objects. Methods are also introduced to scan very complicated objects with bifurcations and crossings. By incorporating all these methods, the new microscopy system is capable of scanning very complicated objects in the matter of a few seconds with a resolution that is in order of a few micrometers.

  17. Synthesis and electrochemical properties of polyaniline nanofibers by interfacial polymerization.

    PubMed

    Manuel, James; Ahn, Jou-Hyeon; Kim, Dul-Sun; Ahn, Hyo-Jun; Kim, Ki-Won; Kim, Jae-Kwang; Jacobsson, Per

    2012-04-01

    Polyaniline nanofibers were prepared by interfacial polymerization with different organic solvents such as chloroform and carbon tetrachloride. Field emission scanning electron microscopy and transmission electron microscopy were used to study the morphological properties of polyaniline nanofibers. Chemical characterization was carried out using Fourier transform infrared spectroscopy, UV-Vis spectroscopy, and X-ray diffraction spectroscopy and surface area was measured using BET isotherm. Polyaniline nanofibers doped with lithium hexafluorophosphate were prepared and their electrochemical properties were evaluated.

  18. Surface characterization of InP trenches embedded in oxide using scanning probe microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mannarino, Manuel, E-mail: manuel.mannarino@imec.be, E-mail: manuelmannarino@gmail.com; Chintala, Ravi; Vandervorst, Wilfried

    2015-12-14

    Metrology for structural and electrical analyses at device level has been identified as one of the major challenges to be resolved for the sub-14 nm technology nodes. In these advanced nodes, new high mobility semiconductors, such as III–V compounds, are grown in narrow trenches on a Si substrate. Probing the nature of the defects, the defect density, and the role of processing steps on the surface of such structures are prime metrology requirements. In order to enable defect analysis on a (III–V) surface, a proper sample preparation for oxide removal is of primary importance. In this work, the effectiveness of differentmore » chemical cleanings and thermal annealing procedures is investigated on both blanket InP and oxide embedded InP trenches by means of scanning probe microscopy techniques. It is found that the most effective approach is a combination of an HCl-based chemical cleaning combined with a low-temperature thermal annealing leading to an oxide free surface with atomically flat areas. Scanning tunneling microscopy (STM) has been the preferred method for such investigations on blanket films due to its intrinsic sub-nm spatial resolution. However, its application on oxide embedded structures is non-trivial. To perform STM on the trenches of interest (generally <20 nm wide), we propose a combination of non-contact atomic force microscopy and STM using the same conductive atomic force microscopy tip Our results prove that with these procedures, it is possible to perform STM in narrow InP trenches showing stacking faults and surface reconstruction. Significant differences in terms of roughness and terrace formation are also observed between the blanket and the oxide embedded InP.« less

  19. Qualitative and quantitative interpretation of SEM image using digital image processing.

    PubMed

    Saladra, Dawid; Kopernik, Magdalena

    2016-10-01

    The aim of the this study is improvement of qualitative and quantitative analysis of scanning electron microscope micrographs by development of computer program, which enables automatic crack analysis of scanning electron microscopy (SEM) micrographs. Micromechanical tests of pneumatic ventricular assist devices result in a large number of micrographs. Therefore, the analysis must be automatic. Tests for athrombogenic titanium nitride/gold coatings deposited on polymeric substrates (Bionate II) are performed. These tests include microshear, microtension and fatigue analysis. Anisotropic surface defects observed in the SEM micrographs require support for qualitative and quantitative interpretation. Improvement of qualitative analysis of scanning electron microscope images was achieved by a set of computational tools that includes binarization, simplified expanding, expanding, simple image statistic thresholding, the filters Laplacian 1, and Laplacian 2, Otsu and reverse binarization. Several modifications of the known image processing techniques and combinations of the selected image processing techniques were applied. The introduced quantitative analysis of digital scanning electron microscope images enables computation of stereological parameters such as area, crack angle, crack length, and total crack length per unit area. This study also compares the functionality of the developed computer program of digital image processing with existing applications. The described pre- and postprocessing may be helpful in scanning electron microscopy and transmission electron microscopy surface investigations. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  20. A study of thermal properties of sodium titanate nanotubes synthesized by microwave-assisted hydrothermal method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preda, Silviu, E-mail: predas01@yahoo.co.uk; Rutar, Melita; Jožef Stefan International Postgraduate School, Jamova cesta 39, SI-1000 Ljubljana

    2015-11-15

    Highlights: • The microwave-assisted hydrothermal route was used for titanate nanotubes synthesis. • Conversion to single-phase nanotube morphology completes after 8 h reaction time. • The nanotube morphology is stable up to 600 °C, as determined by in-situ XRD and SEM. • Sodium ions migrate to the surface due to thermal motion and structure condensation. - Abstract: Sodium titanate nanotubes (NaTiNTs) were synthesized by microwave-assisted hydrothermal treatment of commercial TiO{sub 2}, at constant temperature (135 °C) and different irradiation times (15 min, 1, 4, 8 and 16 h). The products were characterized by X-ray diffraction, scanning electron microscopy, transmission electronmore » microscopy, differential scanning calorimetry and specific surface area measurements. The irradiation time turned out to be the key parameter for morphological control of the material. Nanotubes were observed already after 15 min of microwave irradiation. The analyses of the products irradiated for 8 and 16 h confirm the complete transformation of the starting TiO{sub 2} powder to NaTiNTs. The nanotubes are open ended with multi-wall structures, with the average outer diameter of 8 nm and specific surface area up to 210 m{sup 2}/g. The morphology, surface area and crystal structure of the sodium titanate nanotubes synthesized by microwave-assisted hydrothermal method were similar to those obtained by conventional hydrothermal method.« less

  1. Influence of a pulsed CO2 laser operating at 9.4 μm on the surface morphology, reflectivity, and acid resistance of dental enamel below the threshold for melting

    NASA Astrophysics Data System (ADS)

    Kim, Jin Wan; Lee, Raymond; Chan, Kenneth H.; Jew, Jamison M.; Fried, Daniel

    2017-02-01

    Below the threshold for laser ablation, the mineral phase of enamel is converted into a purer phase hydroxyapatite with increased acid resistance. Studies suggest the possibility of achieving the conversion without visible surface alteration. In this study, changes in the surface morphology, reflectivity, and acid resistance were monitored with varying irradiation intensity. Bovine enamel specimens were irradiated using a CO2 laser operating at 9.4 μm with a Gaussian spatial beam profile-1.6 to 3.1 mm in diameter. After laser treatment, samples were subjected to demineralization to simulate the acidic intraoral conditions of dental decay. The resulting demineralization and erosion were assessed using polarization-sensitive optical coherence tomography, three-dimensional digital microscopy, and polarized light microscopy. Distinct changes in the surface morphology and the degree of inhibition were found within the laser-treated area in accordance with the laser intensity profile. Subtle visual changes were noted below the melting point for enamel that appear to correspond to thresholds for denaturation of the organic phase and thermal decomposition of the mineral phase. There was significant protection from laser irradiation in areas in which the reflectivity was not increased significantly, suggesting that aesthetically sensitive areas of the tooth can be treated for caries prevention.

  2. Femtosecond laser-induced periodic surface structures on titanium nitride coatings for tribological applications

    NASA Astrophysics Data System (ADS)

    Bonse, J.; Kirner, S. V.; Koter, R.; Pentzien, S.; Spaltmann, D.; Krüger, J.

    2017-10-01

    Titanium nitride (TiN) was coated on different substrate materials, namely pure titanium (Ti), titanium alloy (Ti6Al4V) and steel (100Cr6), generating 2.5 μm thick TiN layers. Using femtosecond laser pulses (30 fs, 790 nm, 1 kHz pulse repetition rate), large surface areas (5 mm × 5 mm) of laser-induced periodic surface structures (LIPSS) with sub-wavelength periods ranging between 470 nm and 600 nm were generated and characterized by optical microscopy (OM), white light interference microscopy (WLIM) and scanning electron microscopy (SEM). In tribological tests, coefficients of friction (COF) of the nanostructured surfaces were determined under reciprocating sliding conditions (1 Hz, 1.0 N normal load) against a 10-mm diameter ball of hardened 100Cr6 steel during 1000 cycles using two different lubricants, namely paraffin oil and engine oil. It turned out that the substrate material, the laser fluence and the lubricant are crucial for the tribological performance. However, friction and wear could not be significantly reduced by LIPSS on TiN layers in comparison to unstructured TiN surfaces. Finally, the resulting wear tracks on the nanostructured surfaces were investigated with respect to their morphology (OM, SEM), depth (WLIM) and chemical composition by energy dispersive X-ray spectroscopy (EDX) and, on one hand, compared with each other, on the other hand, with non-structured TiN surfaces.

  3. Effects of gamma radiation on hard dental tissues of albino rats: investigation by light microscopy.

    PubMed

    El-Faramawy, Nabil; Ameen, Reham; El-Haddad, Khaled; El-Zainy, Medhat

    2013-08-01

    The present work aims at studying the effect of gamma radiation on the hard dental tissues. Eighty adult male albino rats with weights of about 250 g were used. The rats were irradiated at 0.2, 0.5, 1.0, 2.0, 4.0 and 6.0 Gy whole-body gamma doses. The effects on hard dental tissue samples were investigated after 48 h in histological and ground sections using light microscopy. Areas of acid phosphatase activity were detected using tartrate-resistant acid phosphatase (TRAP) stains. Observation of histological sections revealed disturbance in predentin thickness and odontoblastic layer as the irradiation dose increased. In cementum, widened cementocytes lacunae were occasionally detected even with low irradiated doses. On the other hand, relatively homogenous enamel was detected with darkened areas in enamel surface at doses over than 0.5 Gy. TRAP-positive cells were detected on the surface of the dentin of irradiated groups as well as cementum surface. Minimal detectable changes were observed in ground sections.

  4. Femtosecond laser-induced periodic surface structures on steel and titanium alloy for tribological applications

    NASA Astrophysics Data System (ADS)

    Bonse, J.; Koter, R.; Hartelt, M.; Spaltmann, D.; Pentzien, S.; Höhm, S.; Rosenfeld, A.; Krüger, J.

    2014-10-01

    Laser-induced periodic surface structures (LIPSS, ripples) were generated on stainless steel (100Cr6) and titanium alloy (Ti6Al4V) surfaces upon irradiation with multiple femtosecond laser pulses (pulse duration 30 fs, central wavelength 790 nm). The experimental conditions (laser fluence, spatial spot overlap) were optimized in a sample-scanning geometry for the processing of large surface areas (5 × 5 mm2) covered homogeneously by the nanostructures. The irradiated surface regions were subjected to white light interference microscopy and scanning electron microscopy revealing spatial periods around 600 nm. The tribological performance of the nanostructured surface was characterized by reciprocal sliding against a ball of hardened steel in paraffin oil and in commercial engine oil as lubricants, followed by subsequent inspection of the wear tracks. For specific conditions, on the titanium alloy a significant reduction of the friction coefficient by a factor of more than two was observed on the laser-irradiated (LIPSS-covered) surface when compared to the non-irradiated one, indicating the potential benefit of laser surface structuring for tribological applications.

  5. Facile preparation of dendritic Ag-Pd bimetallic nanostructures on the surface of Cu foil for application as a SERS-substrate

    NASA Astrophysics Data System (ADS)

    Yi, Zao; Tan, Xiulan; Niu, Gao; Xu, Xibin; Li, Xibo; Ye, Xin; Luo, Jiangshan; Luo, Binchi; Wu, Weidong; Tang, Yongjian; Yi, Yougen

    2012-05-01

    Dendritic Ag-Pd bimetallic nanostructures have been synthesized on the surface of Cu foil via a multi-stage galvanic replacement reaction (MGRR) of Ag dendrites in a Na2PdCl4 solution. After five stages of replacement reaction, one obtained structures with protruding Ag-Pd flakes; these will mature into many porous structures with a few Ag atoms that are left over dendrites. The dendritic Ag-Pd bimetallic nanostructures were characterized by transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray (EDX), selected area electron diffraction (SAED) and X-ray photoelectron spectroscopy (XPS). The morphology of the products strongly depended on the stage of galvanic replacement reaction and reaction temperature. The morphology and composition-dependent surface-enhanced Raman scattering (SERS) of the as-synthesized Ag-Pd bimetallic nanostructures were investigated. The effectiveness of these dendritic Ag-Pd bimetallic nanostructures on the surface of Cu foil as substrates toward SERS detection was evaluated by using rhodamine 6G (R6G) as a probe molecule. The results indicate that as-synthesized dendritic Ag-Pd bimetallic nanostructures are good candidates for SERS spectroscopy.

  6. Investigation of laser-fired point contacts on KOH structured laser-crystallized silicon by conductive atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Gref, Orman; Weizman, Moshe; Rhein, Holger; Gabriel, Onno; Gernert, Ulrich; Schlatmann, Rutger; Boit, Christian; Friedrich, Felice

    2016-06-01

    A conductive atomic force microscope is used to study the local topography and conductivity of laser-fired aluminum contacts on KOH-structured multicrystalline silicon surfaces. A significant increase in conductivity is observed in the laser-affected area. The area size and spatial uniformity of this enhanced conductivity depends on the laser energy fluence. The laser-affected area shows three ring-shaped regimes of different conductance depending on the local aluminum and oxygen concentration. Finally, it was found that the topographic surface structure determined by the silicon grain orientation does not significantly affect the laser-firing process.

  7. Correlation between resistance-change effect in transition-metal oxides and secondary-electron contrast of scanning electron microscope images

    NASA Astrophysics Data System (ADS)

    Kinoshita, K.; Yoda, T.; Kishida, S.

    2011-09-01

    Conductive atomic-force microscopy (C-AFM) writing is attracting attention as a technique for clarifying the switching mechanism of resistive random-access memory by providing a wide area filled with filaments, which can be regarded as one filament with large radius. The writing area on a nickel-oxide (NiO) film formed by conductive atomic-force microscopy was observed by scanning electron microscope, and a correlation between the contrast in a secondary-electron image (SEI) and the resistance written by C-AFM was revealed. In addition, the dependence of the SEI contrast on the beam accelerating voltage (Vaccel) suggests that the resistance-change effect occurs near the surface of the NiO film. As for the effects of electron irradiation and vacuum annealing on the C-AFM writing area, it was shown that the resistance-change effect is caused by exchange of oxygen with the atmosphere at the surface of the NiO film. This result suggests that the low-resistance and high-resistance areas are, respectively, p-type Ni1+δO (δ < 0) and insulating (stoichiometric) or n-type Ni1+δO (δ ≥ 0).

  8. Fracture resistance of dental nickel-titanium rotary instruments with novel surface treatment: Thin film metallic glass coating.

    PubMed

    Chi, Chih-Wen; Deng, Yu-Lun; Lee, Jyh-Wei; Lin, Chun-Pin

    2017-05-01

    Dental nickel-titanium (NiTi) rotary instruments are widely used in endodontic therapy because they are efficient with a higher success rate. However, an unpredictable fracture of instruments may happen due to the surface characteristics of imperfection (or irregularity). This study assessed whether a novel surface treatment could increase fatigue fracture resistance of dental NiTi rotary instruments. A 200- or 500-nm thick Ti-zirconium-boron (Ti-Zr-B) thin film metallic glass was deposited on ProTaper Universal F2 files using a physical vapor deposition process. The characteristics of coating were analyzed by scanning electron microscopy, transmission electron microscopy, and X-ray diffractometry. In cyclic fatigue tests, the files were performed in a simulated root canal (radius=5 mm, angulation=60°) under a rotating speed of 300rpm. The fatigue fractured cross sections of the files were analyzed with their fractographic performances through scanning electron microscopy images. The amorphous structure of the Ti-Zr-B coating was confirmed by transmission electron microscopy and X-ray diffractometry. The surface of treated files presented smooth morphologies without grinding irregularity. For the 200- and 500-nm surface treatment groups, the coated files exhibited higher resistance of cyclic fatigue than untreated files. In fractographic analysis, treated files showed significantly larger crack-initiation zone; however, no significant differences in the areas of fatigue propagation and catastrophic fracture were found compared to untreated files. The novel surface treatment of Ti-Zr-B thin film metallic glass on dental NiTi rotary files can effectively improve the fatigue fracture resistance by offering a smooth coated surface with amorphous microstructure. Copyright © 2016. Published by Elsevier B.V.

  9. Effects of Fat Polymorphic Transformation and Nonfat Particle Size Distribution on the Surface Changes of Untempered Model Chocolate, Based on Solid Cocoa Mass.

    PubMed

    Zhao, Huanhuan; Young, Ashley K; James, Bryony J

    2018-04-01

    This study aims to understand the bloom process in untempered chocolate by investigating the polymorphic transformation of cocoa butter and changes in chocolate surface. Cocoa mass with varying particle size distributions (PSD) were used to produce untempered model chocolate. Optical microscopy showed that during 25 d of storage, the chocolate surface gradually became honeycombed in appearance with dark spots surrounded by white sandy bloom areas. In conjunction with X-ray diffraction this indicates that the polymorphic transformation of form IV cocoa butter to more stable form V crystals caused the observed surface changes with the most significant changes occurring within 6 d. As bloom developed the surface whiteness increased, but the PSD of nonfat particles showed limited impact on the changes in whiteness. Moreover, scanning electron microscopy showed separated fat crystals on fat-rich dark spots and empty spaces between particles in bloom areas suggesting redistribution of fat in the chocolate matrix. The results reported in this work can facilitate the understanding of fat bloom formation in untempered chocolate with respect to the changes in microstructure and surface appearances. It also contributes to show the details of IV-to-V polymorphic transformation in the fat phase as time went by. © 2018 Institute of Food Technologists®.

  10. Surface microstructure of dental implants before and after insertion: an in vitro study by means of scanning probe microscopy.

    PubMed

    Salerno, Marco; Itri, Angelo; Frezzato, Marco; Rebaudi, Alberto

    2015-06-01

    The surface microstructure of dental implants affects osseointegration, which makes their accurate topographic characterization important. We defined a procedure for evaluation of implant topography before (pre-) and after (post-) in vitro implantation test in bovine bone. The apical morphology of ten implants was analyzed in pre- and post-conditions using atomic force microscopy or 3D profilometry. We extracted four topographical parameters (two amplitude, 1 spatial, and 1 hybrid) and assessed the differences by analysis of variance. The implant with coating (Spline Twist MP-1 HA) was damaged. The two implants with highest pre-amplitude parameters (Pitt Easy VTPS, TLR3815) maintained their character on testing. Pitt Easy PURETEX and OT-F1 were the only nondamaged implants whose amplitude parameters increased. The surface area underwent minor changes even when the texture changed (Tri-Vent, Pitt Easy PURETEX, Exp #1). The implants that ranked the lowest in all parameters before implantation were DT4013TI, Tri-Vent, OT-F1, and Exp #2. On testing, DT4013TI showed the highest decrease in values, whereas Tri-Vent showed the highest increase in surface area. All the experimental implants showed similar topographic properties both pre- and post-test. For most implants, no major changes occurred in surface topography on implantation. The procedure applied seems promising to evaluate the degradation of implant surface on insertion.

  11. Reconstructing skeletal fiber arrangement and growth mode in the coral Porites lutea (Cnidaria, Scleractinia): a confocal Raman microscopy study

    NASA Astrophysics Data System (ADS)

    Wall, M.; Nehrke, G.

    2012-11-01

    Confocal Raman microscopy (CRM) mapping was used to investigate the microstructural arrangement and organic matrix distribution within the skeleton of the coral Porites lutea. Relative changes in the crystallographic orientation of crystals within the fibrous fan-system could be mapped, without the need to prepare thin sections, as required if this information is obtained by polarized light microscopy. Simultaneously, incremental growth lines can be visualized without the necessity of etching and hence alteration of sample surface. Using these methods two types of growth lines could be identified: one corresponds to the well-known incremental growth layers, whereas the second type of growth lines resemble denticle finger-like structures (most likely traces of former spines or skeletal surfaces). We hypothesize that these lines represent the outer skeletal surface before another growth cycle of elongation, infilling and thickening of skeletal areas continues. We show that CRM mapping with high spatial resolution can significantly improve our understanding of the micro-structural arrangement and growth patterns in coral skeletons.

  12. Polarized iridescence of the multilayered elytra of the Japanese jewel beetle, Chrysochroa fulgidissima

    PubMed Central

    Stavenga, Doekele G.; Wilts, Bodo D.; Leertouwer, Hein L.; Hariyama, Takahiko

    2011-01-01

    The elytra of the Japanese jewel beetle Chrysochroa fulgidissima are metallic green with purple stripes. Scanning electron microscopy and atomic force microscopy demonstrated that the elytral surface is approximately flat. The accordingly specular green and purple areas have, with normal illumination, 100–150 nm broad reflectance bands, peaking at about 530 and 700 nm. The bands shift progressively towards shorter wavelengths with increasing oblique illumination, and the reflection then becomes highly polarized. Transmission electron microscopy revealed that the epicuticle of the green and purple areas consists of stacks of 16 and 12 layers, respectively. Assuming gradient refractive index values of the layers between 1.6 and 1.7 and applying the classical multilayer theory allowed modelling of the measured polarization- and angle-dependent reflectance spectra. The extreme polarized iridescence exhibited by the elytra of the jewel beetle may have a function in intraspecific recognition. PMID:21282175

  13. Titania-polymeric powder coatings with nano-topography support enhanced human mesenchymal cell responses.

    PubMed

    Mozumder, Mohammad Sayem; Zhu, Jesse; Perinpanayagam, Hiran

    2012-10-01

    Titanium implant osseointegration is dependent on the cellular response to surface modifications and coatings. Titania-enriched nanocomposite polymeric resin coatings were prepared through the application of advanced ultrafine powder coating technology. Their surfaces were readily modified to create nano-rough (<100 nm) surface nano-topographies that supported human embryonic palatal mesenchymal cell responses. Energy dispersive x-ray spectroscopy confirmed continuous and homogenous coatings with a similar composition and even distribution of titanium. Scanning electron microscopy (SEM) showed complex micro-topographies, and atomic force microscopy revealed intricate nanofeatures and surface roughness. Cell counts, mitochondrial enzyme activity reduction of yellow 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) to dark purple, SEM, and inverted fluorescence microscopy showed a marked increase in cell attachment, spreading, proliferation, and metabolic activity on the nanostructured surfaces. Reverse Transcription- Polymerase Chain Reaction (RT-PCR) analysis showed that type I collagen and Runx2 expression were induced, and Alizarin red staining showed that mineral deposits were abundant in the cell cultures grown on nanosurfaces. This enhancement in human mesenchymal cell attachment, growth, and osteogenesis were attributed to the nanosized surface topographies, roughness, and moderate wetting characteristics of the coatings. Their dimensional similarity to naturally occurring matrix proteins and crystals, coupled with their increased surface area for protein adsorption, may have facilitated the response. Therefore, this application of ultrafine powder coating technology affords highly biocompatible surfaces that can be readily modified to accentuate the cellular response. Copyright © 2012 Wiley Periodicals, Inc.

  14. Human mesenchymal stem cell behavior on femtosecond laser-textured Ti-6Al-4V surfaces.

    PubMed

    Cunha, Alexandre; Zouani, Omar Farouk; Plawinski, Laurent; Botelho do Rego, Ana Maria; Almeida, Amélia; Vilar, Rui; Durrieu, Marie-Christine

    2015-01-01

    The aim of the present work was to investigate ultrafast laser surface texturing as a surface treatment of Ti-6Al-4V alloy dental and orthopedic implants to improve osteoblastic commitment of human mesenchymal stem cells (hMSCs). Surface texturing was carried out by direct writing with an Yb:KYW chirped-pulse regenerative amplification laser system with a central wavelength of 1030 nm and a pulse duration of 500 fs. The surface topography and chemical composition were investigated by scanning electron microscopy and x-ray photoelectron spectroscopy, respectively. Three types of surface textures with potential interest to improve implant osseointegration can be produced by this method: laser-induced periodic surface structures (LIPSSs); nanopillars (NPs); and microcolumns covered with LIPSSs, forming a bimodal roughness distribution. The potential of the laser treatment in improving hMSC differentiation was assessed by in vitro study of hMSCs spreading, adhesion, elongation and differentiation using epifluorescence microscopy at different times after cell seeding, after specific stainings and immunostainings. Cell area and focal adhesion area were lower on the laser-textured surfaces than on a polished reference surface. Obviously, the laser-textured surfaces have an impact on cell shape. Osteoblastic commitment was observed independently of the surface topography after 2 weeks of cell seeding. When the cells were cultured (after 4 weeks of seeding) in osteogenic medium, LIPSS- and NP- textured surfaces enhanced matrix mineralization and bone-like nodule formation as compared with polished and microcolumn-textured surfaces. The present work shows that surface nanotextures consisting of LIPSSs and NPs can, potentially, improve hMSC differentiation into an osteoblastic lineage.

  15. Measuring the specific surface area of natural and manmade glasses: effects of formation process, morphology, and particle size

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papelis, Charalambos; Um, Wooyong; Russel, Charles E.

    2003-03-28

    The specific surface area of natural and manmade solid materials is a key parameter controlling important interfacial processes in natural environments and engineered systems, including dissolution reactions and sorption processes at solid-fluid interfaces. To improve our ability to quantify the release of trace elements trapped in natural glasses, the release of hazardous compounds trapped in manmade glasses, or the release of radionuclides from nuclear melt glass, we measured the specific surface area of natural and manmade glasses as a function of particle size, morphology, and composition. Volcanic ash, volcanic tuff, tektites, obsidian glass, and in situ vitrified rock were analyzed.more » Specific surface area estimates were obtained using krypton as gas adsorbent and the BET model. The range of surface areas measured exceeded three orders of magnitude. A tektite sample had the highest surface area (1.65 m2/g), while one of the samples of in situ vitrified rock had the lowest surf ace area (0.0016 m2/g). The specific surface area of the samples was a function of particle size, decreasing with increasing particle size. Different types of materials, however, showed variable dependence on particle size, and could be assigned to one of three distinct groups: (1) samples with low surface area dependence on particle size and surface areas approximately two orders of magnitude higher than the surface area of smooth spheres of equivalent size. The specific surface area of these materials was attributed mostly to internal porosity and surface roughness. (2) samples that showed a trend of decreasing surface area dependence on particle size as the particle size increased. The minimum specific surface area of these materials was between 0.1 and 0.01 m2/g and was also attributed to internal porosity and surface roughness. (3) samples whose surface area showed a monotonic decrease with increasing particle size, never reaching an ultimate surface area limit within the particle size range examined. The surface area results were consistent with particle morphology, examined by scanning electron microscopy, and have significant implications for the release of radionuclides and toxic metals in the environment.« less

  16. Applications of surface analytical techniques in Earth Sciences

    NASA Astrophysics Data System (ADS)

    Qian, Gujie; Li, Yubiao; Gerson, Andrea R.

    2015-03-01

    This review covers a wide range of surface analytical techniques: X-ray photoelectron spectroscopy (XPS), scanning photoelectron microscopy (SPEM), photoemission electron microscopy (PEEM), dynamic and static secondary ion mass spectroscopy (SIMS), electron backscatter diffraction (EBSD), atomic force microscopy (AFM). Others that are relatively less widely used but are also important to the Earth Sciences are also included: Auger electron spectroscopy (AES), low energy electron diffraction (LEED) and scanning tunnelling microscopy (STM). All these techniques probe only the very top sample surface layers (sub-nm to several tens of nm). In addition, we also present several other techniques i.e. Raman microspectroscopy, reflection infrared (IR) microspectroscopy and quantitative evaluation of minerals by scanning electron microscopy (QEMSCAN) that penetrate deeper into the sample, up to several μm, as all of them are fundamental analytical tools for the Earth Sciences. Grazing incidence synchrotron techniques, sensitive to surface measurements, are also briefly introduced at the end of this review. (Scanning) transmission electron microscopy (TEM/STEM) is a special case that can be applied to characterisation of mineralogical and geological sample surfaces. Since TEM/STEM is such an important technique for Earth Scientists, we have also included it to draw attention to the capability of TEM/STEM applied as a surface-equivalent tool. While this review presents most of the important techniques for the Earth Sciences, it is not an all-inclusive bibliography of those analytical techniques. Instead, for each technique that is discussed, we first give a very brief introduction about its principle and background, followed by a short section on approaches to sample preparation that are important for researchers to appreciate prior to the actual sample analysis. We then use examples from publications (and also some of our known unpublished results) within the Earth Sciences to show how each technique is applied and used to obtain specific information and to resolve real problems, which forms the central theme of this review. Although this review focuses on applications of these techniques to study mineralogical and geological samples, we also anticipate that researchers from other research areas such as Material and Environmental Sciences may benefit from this review.

  17. Reciprocal-space and real-space neutron investigation of nanostructured Mo 2C and WC

    NASA Astrophysics Data System (ADS)

    Page, Katharine; Li, Jun; Savinelli, Robert; Szumila, Holly N.; Zhang, Jinping; Stalick, Judith K.; Proffen, Thomas; Scott, Susannah L.; Seshadri, Ram

    2008-11-01

    As possible substitute materials for platinum group metal heterogeneous catalysts, high surface area carbides of the early transition metals Mo and W are of great interest. Here we report nanostructured, high surface area Mo 2C and WC prepared by decomposing and carburizing ammonium paramolybdate [(NH 4) 6Mo 7O 24·4H 2O] and ammonium paratungstate [(NH 4) 10W 12O 41·5H 2O] in flowing 50%CH 4/50%H 2. Surface areas as high as 52 m 2/g for Mo 2C and 24 m 2/g for WC were obtained, with both structures crystallizing in structures appropriate for catalytic activity. We have studied these materials using a combination of neutron diffraction Rietveld refinement, X-ray photoelectron spectroscopy, surface area measurements, and scanning transmission electron microscopy. In addition, we have used pair-distribution function (PDF) analysis of the neutron total scattering data as a means of establishing the presence of graphitic carbon in the as-prepared materials.

  18. A rapid-screening approach to detect and quantify microplastics based on fluorescent tagging with Nile Red

    NASA Astrophysics Data System (ADS)

    Maes, Thomas; Jessop, Rebecca; Wellner, Nikolaus; Haupt, Karsten; Mayes, Andrew G.

    2017-03-01

    A new approach is presented for analysis of microplastics in environmental samples, based on selective fluorescent staining using Nile Red (NR), followed by density-based extraction and filtration. The dye adsorbs onto plastic surfaces and renders them fluorescent when irradiated with blue light. Fluorescence emission is detected using simple photography through an orange filter. Image-analysis allows fluorescent particles to be identified and counted. Magnified images can be recorded and tiled to cover the whole filter area, allowing particles down to a few micrometres to be detected. The solvatochromic nature of Nile Red also offers the possibility of plastic categorisation based on surface polarity characteristics of identified particles. This article details the development of this staining method and its initial cross-validation by comparison with infrared (IR) microscopy. Microplastics of different sizes could be detected and counted in marine sediment samples. The fluorescence staining identified the same particles as those found by scanning a filter area with IR-microscopy.

  19. A versatile chemical conversion synthesis of Cu2S nanotubes and the photovoltaic activities for dye-sensitized solar cell

    PubMed Central

    2014-01-01

    A versatile, low-temperature, and low-cost chemical conversion synthesis has been developed to prepare copper sulfide (Cu2S) nanotubes. The successful chemical conversion from ZnS nanotubes to Cu2S ones profits by the large difference in solubility between ZnS and Cu2S. The morphology, structure, and composition of the yielded products have been examined by field-emission scanning electron microscopy, transmission electron microscopy, and X-ray diffraction measurements. We have further successfully employed the obtained Cu2S nanotubes as counter electrodes in dye-sensitized solar cells. The light-to-electricity conversion results show that the Cu2S nanostructures exhibit high photovoltaic conversion efficiency due to the increased surface area and the good electrocatalytical activity of Cu2S. The present chemical route provides a simple way to synthesize Cu2S nanotubes with a high surface area for nanodevice applications. PMID:25246878

  20. Synthesis of MoS2/rGO nanosheets hybrid materials for enhanced visible light assisted photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Pal, Shreyasi; Dutta, Shibsankar; De, Sukanta

    2018-04-01

    A facile hydrothermal method has been adopted to synthesize pure MoS2 nanosheets and MoS2/rGO nanosheets hybrid. The samples were characterized using field emission scanning electron microscopy (FESEM), transmission electron microscopy (HRTEM), X-ray diffraction spectroscopy (XRD), Brunauer-Emmett-Teller (BET). The photocatalytic performance and reusability of MoS2 nanosheets and MoS2/rGO hybrids was evaluated by discoloring of RhB under visible light irradiation. Results indicated that MoS2/rGO photocatalysts with large surface area of 69.5 m2 g-1 could completely degrade 50 mL of 8 mg L-1 RhB aqueous solution in 90 min with excellent recycling and structural stability as compared with pure MoS2 nanosheets (53%). Such enhanced performance could be explained due to the high surface area, enhanced light absorption and the increased dye adsorptivity and reduced electron-hole pair recombination with the presence of rGO.

  1. Facile hydrothermal synthesis of mesoporous In2O3 nanoparticles with superior formaldehyde-sensing properties

    NASA Astrophysics Data System (ADS)

    Zhang, Su; Song, Peng; Yang, Zhongxi; Wang, Qi

    2018-03-01

    Mesoporous In2O3 nanoparticles were successfully synthesized via a facile, template free, and low-cost hydrothermal method. Their morphology and structure were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), differential thermal and thermogravimetry analysis (DSC-TG), and N2 adsorption-desorption analyses. The results reveal that mesoporous In2O3 nanoparticles with a size range of 40-60 nm, possess plenty of pores, and average pore size is about 5 nm. Importantly, the mesoporous structure, large specific surface area, and small size endow the mesoporous In2O3 nanoparticles with highly sensing performance for formaldehyde detection. The response value to 10 ppm HCHO is 20 at an operating temperature of 280 °C, and the response and recovery time are 4 and 8 s, respectively. It is expected that the mesoporous In2O3 nanoparticles with large specific surface area and excellent sensing properties will become a promising functional material in monitoring and detecting formaldehyde.

  2. A rapid-screening approach to detect and quantify microplastics based on fluorescent tagging with Nile Red

    PubMed Central

    Maes, Thomas; Jessop, Rebecca; Wellner, Nikolaus; Haupt, Karsten; Mayes, Andrew G.

    2017-01-01

    A new approach is presented for analysis of microplastics in environmental samples, based on selective fluorescent staining using Nile Red (NR), followed by density-based extraction and filtration. The dye adsorbs onto plastic surfaces and renders them fluorescent when irradiated with blue light. Fluorescence emission is detected using simple photography through an orange filter. Image-analysis allows fluorescent particles to be identified and counted. Magnified images can be recorded and tiled to cover the whole filter area, allowing particles down to a few micrometres to be detected. The solvatochromic nature of Nile Red also offers the possibility of plastic categorisation based on surface polarity characteristics of identified particles. This article details the development of this staining method and its initial cross-validation by comparison with infrared (IR) microscopy. Microplastics of different sizes could be detected and counted in marine sediment samples. The fluorescence staining identified the same particles as those found by scanning a filter area with IR-microscopy. PMID:28300146

  3. Studies on the sensing behaviour of nanocrystalline CuGa(2)O(4) towards hydrogen, liquefied petroleum gas and ammonia.

    PubMed

    Biswas, Soumya Kanti; Sarkar, Arpita; Pathak, Amita; Pramanik, Panchanan

    2010-06-15

    In the present article, the gas sensing behaviour of nanocrystalline CuGa(2)O(4) towards H(2), liquefied petroleum gas (LPG) and NH(3) has been reported for the first time. Nanocrystalline powders of CuGa(2)O(4) having average particle sizes in the range of 30-60nm have been prepared through thermal decomposition of an aqueous precursor solution comprising copper nitrate, gallium nitrate and triethanol amine (TEA), followed by calcination at 750 degrees C for 2h. The synthesized nanocrystalline CuGa(2)O(4) powders have been characterised through X-ray diffraction (XRD), transmission electron microscopy (TEM), field-emission scanning electron microscopy (FESEM) study, energy dispersive X-ray (EDX) analysis and BET (Brunauer-Emmett-Teller) surface area measurement. The synthesized CuGa(2)O(4) having spinel structure with specific surface area of 40m(2)/g exhibits maximum sensitivity towards H(2), LPG, and NH(3) at 350 degrees C.

  4. Modification of W surfaces by exposure to hollow cathode plasmas

    NASA Astrophysics Data System (ADS)

    Stancu, C.; Stokker-Cheregi, F.; Moldovan, A.; Dinescu, M.; Grisolia, C.; Dinescu, G.

    2017-10-01

    In this work, we assess the surface modifications induced on W samples following exposure to He and He/H2 radiofrequency plasmas in hollow cathode discharge configuration. Our study addresses issues that relate to the use of W in next-generation fusion reactors and, therefore, the investigation of W surface degradation following exposure and heating by plasmas to temperatures above 1000 °C is of practical importance. For these experiments, we used commercially available tungsten samples having areas of 30 × 15 mm and 0.1 mm thickness. The hollow cathode plasma was produced using a radiofrequency (RF) generator (13.56 MHz) between parallel plate electrodes. The W samples were mounted as one of the electrodes. The He and He/H2 plasma discharges had a combined effect of heating and bombardment of the W surfaces. The surface modifications were studied for discharge powers between 200 and 300 W, which resulted in the heating of the samples to temperatures between 950 and 1230 °C, respectively. The samples were weighed prior and after plasma exposure, and loss of mass was measured following plasma exposure times up to 90 min. The analysis of changes in surface morphology was carried out by optical microscopy, scanning electron microscopy and atomic force microscopy. Additionally, optical emission spectra of the respective plasmas were recorded from the region localized inside the hollow cathode gap. We discuss the influence of experimental parameters on the changes in surface morphology.

  5. Tailored Rh surface facilitates, enhancement of Raman scattering in trimetallic AuPt core/Rh shell composites: Experimental and theoretical evidences

    NASA Astrophysics Data System (ADS)

    Loganathan, B.; Chandraboss, V. L.; Senthilvelan, S.; Karthikeyan, B.

    2016-01-01

    We present a detailed analysis of surface-enhanced Raman scattering of 7-azaindole and L-cysteine adsorbed on a tailored Rh surface by using experimental and density functional theoretical (DFT) calculations. DFT with the B3LYP/Lanl2DZ basis set was used for the optimization of the ground state geometries and simulation of the surface-enhanced Raman spectrum of probe molecules adsorbed on Rh6 cluster. 7-azaindole and L-cysteine adsorption at the shell interface was ascertained from first-principles. In addition, characterization of synthesized trimetallic AuPt core/Rh shell colloidal nanocomposites has been analyzed by UV-visible spectroscopy, high-resolution transmission and scanning electron microscopy, selected area electron diffraction pattern analysis, energy-dispersive X-ray spectroscopy, atomic force, confocal Raman microscopy, FT-Raman and surface-enhanced Raman spectroscopic analysis. This analysis serves as the first step in gaining an accurate understanding of specific interactions at the interface of organic and biomolecules and to gain knowledge on the surface composition of trimetallic Au/Pt/Rh colloidal nanocomposites.

  6. Fabrication of multi-scale periodic surface structures on Ti-6Al-4V by direct laser writing and direct laser interference patterning for modified wettability applications

    NASA Astrophysics Data System (ADS)

    Huerta-Murillo, D.; Aguilar-Morales, A. I.; Alamri, S.; Cardoso, J. T.; Jagdheesh, R.; Lasagni, A. F.; Ocaña, J. L.

    2017-11-01

    In this work, hierarchical surface patterns fabricated on Ti-6Al-4V alloy combining two laser micro-machining techniques are presented. The used technologies are based on nanosecond Direct Laser Writing and picosecond Direct Laser Interference Patterning. Squared shape micro-cells with different hatch distances were produced by Direct Laser Writing with depths values in the micro-scale, forming a well-defined closed packet. Subsequently, cross-like periodic patterns were fabricated by means of Direct Laser Interference Patterning using a two-beam configuration, generating a dual-scale periodic surface structure in both micro- and nano-scale due to the formation of Laser-Induced Periodic Surface Structure after the picosecond process. As a result a triple hierarchical periodic surface structure was generated. The surface morphology of the irradiated area was characterized with scanning electron microscopy and confocal microscopy. Additionally, static contact angle measurements were made to analyze the wettability behavior of the structures, showing a hydrophobic behavior for the hierarchical structures.

  7. Three-dimensional hydration layer mapping on the (10.4) surface of calcite using amplitude modulation atomic force microscopy.

    PubMed

    Marutschke, Christoph; Walters, Deron; Walters, Deron; Hermes, Ilka; Bechstein, Ralf; Kühnle, Angelika

    2014-08-22

    Calcite, the most stable modification of calcium carbonate, is a major mineral in nature. It is, therefore, highly relevant in a broad range of fields such as biomineralization, sea water desalination and oil production. Knowledge of the surface structure and reactivity of the most stable cleavage plane, calcite (10.4), is pivotal for understanding the role of calcite in these diverse areas. Given the fact that most biological processes and technical applications take place in an aqueous environment, perhaps the most basic - yet decisive - question addresses the interaction of water molecules with the calcite (10.4) surface. In this work, amplitude modulation atomic force microscopy is used for three-dimensional (3D) mapping of the surface structure and the hydration layers above the surface. An easy-to-use scanning protocol is implemented for collecting reliable 3D data. We carefully discuss a comprehensible criterion for identifying the solid-liquid interface within our data. In our data three hydration layers form a characteristic pattern that is commensurate with the underlying calcite surface.

  8. Surface polishing of niobium for superconducting radio frequency (SRF) cavity applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Liang

    2014-08-01

    Niobium cavities are important components in modern particle accelerators based on superconducting radio frequency (SRF) technology. The interior of SRF cavities are cleaned and polished in order to produce high accelerating field and low power dissipation on the cavity wall. Current polishing methods, buffered chemical polishing (BCP) and electro-polishing (EP), have their advantages and limitations. We seek to improve current methods and explore laser polishing (LP) as a greener alternative of chemical methods. The topography and removal rate of BCP at different conditions (duration, temperature, sample orientation, flow rate) was studied with optical microscopy, scanning electron microscopy (SEM), and electronmore » backscatter diffraction (EBSD). Differential etching on different crystal orientations is the main contributor to fine grain niobium BCP topography, with gas evolution playing a secondary role. The surface of single crystal and bi-crystal niobium is smooth even after heavy BCP. The topography of fine grain niobium depends on total removal. The removal rate increases with temperature and surface acid flow rate within the rage of 0~20 °C, with chemical reaction being the possible dominate rate control mechanism. Surface flow helps to regulate temperature and avoid gas accumulation on the surface. The effect of surface flow rate on niobium EP was studied with optical microscopy, atomic force microscopy (AFM), and power spectral density (PSD) analysis. Within the range of 0~3.7 cm/s, no significant difference was found on the removal rate and the macro roughness. Possible improvement on the micro roughness with increased surface flow rate was observed. The effect of fluence and pulse accumulation on niobium topography during LP was studied with optical microscopy, SEM, AFM, and PSD analysis. Polishing on micro scale was achieved within fluence range of 0.57~0.90 J/cm2, with pulse accumulation adjusted accordingly. Larger area treatment was proved possible by overlapping laser tracks at proper ratio. Comparison of topography and PSD indicates that LP smooths the surface in a way similar to EP. The optimized LP parameters were applied to different types of niobium surfaces representing different stages in cavity fabrication. LP reduces the sharpness on rough surfaces effectively, while doing no harm to smooth surfaces. Secondary ion mass spectrometer (SIMS) analysis showed that LP reduces the oxide layer slightly and no contamination occurred from LP. EBSD showed no significant change on crystal structure after LP.« less

  9. Influence of laser surface treated on the characterization and corrosion behavior of Al-Fe aerospace alloys

    NASA Astrophysics Data System (ADS)

    Pariona, Moisés Meza; Teleginski, Viviane; dos Santos, Kelly; de Lima, Angela A. O. C.; Zara, Alfredo J.; Micene, Katieli Tives; Riva, Rudimar

    2013-07-01

    In this research laser surface remelting without protective coating with a 2 kW Yb-fiber laser (IPG YLR-2000S) was applied in the Al-1.5 wt.%Fe alloy in order to investigate the layer treated with different techniques of superficial characterization, thereby, the technique of optical microscopy, atomic force microscopy and low-angle X-ray diffraction were used. The present work mainly focuses on the corrosion study by diverse techniques in aggressive environment of the laser-treated area and the substrate material was carried out, thereby, at open circuit potential testing, the results have shown a displacement to more anodic values in the corrosion potential for the laser-treated specimen when compared to the untreated specimen; in potentiodynamic polarization tests have shown that as a result of the laser treatment, the corrosion current can be reduced by as much as ten times, and a passive region was obtained, which served as an effective barrier for reducing anodic dissolution and finally, the result in cyclic polarization curves of the untreated sample there was a greater area of the hysteresis loop, implying that it is more susceptible to corrosion. This study was complemented by other techniques mentioned above in order to elucidate this study. Laser surface remelting process has definitely modified the surface film, which results in higher corrosion resistance, a large range of passivation and a lower area of the hysteresis loop.

  10. Surface Chemistry Interactions of Cationorm with Films by Human Meibum and Tear Film Compounds

    PubMed Central

    Georgiev, Georgi As.; Yokoi, Norihiko; Nencheva, Yana; Peev, Nikola; Daull, Philippe

    2017-01-01

    Cationorm® (CN) cationic nanoemulsion was demonstrated to enhance tear film (TF) stability in vivo possibly via effects on tear film lipid layer (TFLL). Therefore the interactions of CN with human meibum (MGS) and TFLL in vitro and in vivo deserve special study. MGS and CN were spread at the air/water interface of a Langmuir surface balance to ensure a range of MGS/CN oil phase ratios: 20/1, 10/1, 5/1, 3/1, 2/1 and 1/1. The films capability to reorganize during dynamic area changes was evaluated via the surface pressure-area compression isotherms and step/relaxation dilatational rheology studies. Films structure was monitored with Brewster angle microscopy. CN/TFLL interactions at the ocular surface were monitored with non-contact specular microscopy. The in vitro studies of MGS/CN layers showed that (i) CN inclusion (at fixed MGS content) increased film elasticity and thickness and that (ii) CN can compensate for moderate meibum deficiency in MGS/CN films. In vivo CN mixed with TFLL in a manner similar to CN/MGS interactions in vitro, and resulted in enhanced thickness of TFLL. In vitro and in vivo data complement each other and facilitated the study of the composition-structure-function relationship that determines the impact of cationic nanoemulsions on TF. PMID:28718823

  11. Development of bacterial biofilms in dairy processing lines.

    PubMed

    Austin, J W; Bergeron, G

    1995-08-01

    Adherence of bacteria to various milk contact sites was examined by scanning electron microscopy and transmission electron microscopy. New gaskets, endcaps, vacuum breaker plugs and pipeline inserts were installed in different areas in lines carrying either raw or pasteurized milk, and a routine schedule of cleaning-in-place and sanitizing was followed. Removed cleaned and sanitized gaskets were processed for scanning or transmission electron microscopy. Adherent bacteria were observed on the sides of gaskets removed from both pasteurized and raw milk lines. Some areas of Buna-n gaskets were colonized with a confluent layer of bacterial cells surrounded by an extensive amorphous matrix, while other areas of Buna-n gaskets showed a diffuse adherence over large areas of the surface. Most of the bacteria attached to polytetrafluoroethylene (PTFE or Teflon) gaskets were found in crevices created by insertion of the gasket into the pipeline. Examination of stainless steel endcaps, pipeline inserts, and PTFE vacuum breaker plugs did not reveal the presence of adherent bacteria. The results of this study indicate that biofilms developed on the sides of gaskets in spite of cleaning-in-place procedures. These biofilms may be a source of post-pasteurization contamination.

  12. A Chemical Approach to Understanding Oxide Surface Structure and Reactivity

    NASA Astrophysics Data System (ADS)

    Enterkin, James Andrew

    Transmission electron microscopy and diffraction are powerful tools for solving complex structural problems. They complement other analytical techniques, such as x-ray diffraction, elucidating problems which cannot be solved by other techniques. One area where they are of particularly great value is in the determination of surface structures. The research presented herein uses electron microscopy and diffraction as the primary experimental techniques in the development of a chemistry of surface structures. High-resolution electron microscopy revealed that the La4Cu 3MoO12 structure has turbostratic disorder and a lower symmetry space group (Pm) than was previously found. The refinement of the x-ray data was significantly improved by using a disordered model and the Pm space group. A bond valence analysis confirmed that the disordered structure is the superior model. Strontium titanate, SrTiO3, single crystal surfaces were examined principally via transmission electron diffraction. A homologous series with intergrowths was discovered on the (110) surface of strontium titanate, marking the first time that these important concepts of solid state chemistry have been found at the surface. Atmospheric adsorbates, such as H2O and CO2, were found to help to stabilize undercoordinated surface structures on the (100) surface. It was shown that chemical bonding, bond valence, atomic coordination, and stoichiometry greatly influence the development of surface structures. Additionally, such chemistry based analysis was demonstrated to be able to predict surface structure stability and reactivity. Application of a modified Wulff construction to the observed shape of strontium titanate nanocuboids revealed that the surface structure and particle stoichiometry are interlinked, with control over one allowing equally precise control over the other. Platinum nanoparticles on the strontium titanate nanocuboids were shown via high resolution electron microscopy to have cube-on-cube epitaxy, with the shape of the platinum nanoparticles governed by the Winterbottom construction. Precise modification of the support surface will therefore allow engineering of supported metal particles with precise control over which facets are exposed. These results suggest that control over the support surface chemistry can be used to engineer thermodynamically stable, face selective catalysts.

  13. High Surface Area of Porous Silicon Drives Desorption of Intact Molecules

    PubMed Central

    Northen, Trent R.; Woo, Hin-Koon; Northen, Michael T.; Nordström, Anders; Uritboonthail, Winnie; Turner, Kimberly L.; Siuzdak, Gary

    2007-01-01

    The surface structure of porous silicon used in desorption/ionization on porous silicon (DIOS) mass analysis is known to play a primary role in the desorption/ionization (D/I) process. In this study, mass spectrometry and scanning electron microscopy (SEM) are used to examine the correlation between intact ion generation with surface ablation, and surface morphology. The DIOS process is found to be highly laser energy dependent and correlates directly with the appearance of surface ions (Sin+ and OSiH+). A threshold laser energy for DIOS is observed (10 mJ/cm2), which supports that DIOS is driven by surface restructuring and is not a strictly thermal process. In addition, three DIOS regimes are observed which correspond to surface restructuring and melting. These results suggest that higher surface area silicon substrates may enhance DIOS performance. A recent example which fits into this mechanism is silicon nanowires surface which have a high surface energy and concomitantly requires lower laser energy for analyte desorpton. PMID:17881245

  14. Probing Subdiffraction Limit Separations with Plasmon Coupling Microscopy: Concepts and Applications

    PubMed Central

    Wu, Linxi

    2014-01-01

    Due to their advantageous materials properties, noble metal nanoparticles are versatile tools in biosensing and imaging. A characteristic feature of gold and silver nanoparticles is their ability to sustain localized surface plasmons that provide both large optical cross-sections and extraordinary photophysical stability. Plasmon Coupling Microscopy takes advantage of the beneficial optical properties and utilizes electromagnetic near-field coupling between individual noble metal nanoparticle labels to resolve subdiffraction limit separations in an all-optical fashion. This Tutorial provides an introduction into the physical concepts underlying distance dependent plasmon coupling, discusses potential experimental implementations of Plasmon Coupling Microscopy, and reviews applications in the area of biosensing and imaging. PMID:24390574

  15. Roughness of biopores and cracks in Bt-horizons by confocal laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Leue, Martin; Gerke, Horst H.

    2016-04-01

    During preferential flow events in structured soils, the movement of water and reactive solutes is mostly restricted to larger inter-aggregate pores, cracks, and biopores. The micro-topography of such macropores in terms of pore shapes, geometry, and roughness is crucial for describing the exchange of water and solutes between macropores and the soil matrix. The objective of this study was to determine the surface roughness of intact structural surfaces from the Bt-horizon of Luvisols by confocal laser scanning microscopy. For this purpose, samples with the structural surface types including cracks with and without clay-organic coatings from Bt-horizons developed on loess and glacial till were compared. The surface roughness of these structures was calculated in terms of three parameters from selected surface regions of 0.36 mm² determined with a confocal laser scanning microscope of the type Keyence VK-X100K. These data were evaluated in terms of the root-mean-squared roughness, Rq, the curvature, Rku, and the ratio between surface area and base area, RA. Values of Rq and RA were smaller for coated as compared to uncoated cracks and earthworm burrows of the Bt-horizons from both parent materials. The results indicated that the illuviation of clayey material led to a "smoothing" of the crack surfaces, which was similar for the coarser textured till-Bt and the finer-textured loess-Bt surfaces. The roughness indicated by Rq and RA values was only slightly smaller and that indicated by Rku slightly higher for the structural surfaces from the loess as compared to those from the glacial till. These results suggest a minor importance of the parent material on the roughness of structural surfaces in the Bt-horizon. The similarity of Rq, RA, and Rku values between surfaces of earthworm burrows and uncoated cracks did not confirm an expected smoothing effect of the burrow walls by the earthworm. In contrast to burrow walls, root channels from the loess-Bt were smoother than the surfaces of the other structure types, suggesting that the two types of biopores have to be distinguished when describing preferential flow and macropore-matrix exchange. Nevertheless, the confocal laser microscopy technique proved useful for characterizing the roughness of intact structural surfaces.

  16. Study of surface topography, roughness, and microleakage after dental preparation with different instrumentation.

    PubMed

    Solá-Ruiz, Ma Fernanda; Faus-Matoses, Ignacio; Del Rio Highsmith, Jamie; Fons-Font, Antonio

    2014-01-01

    The purpose of this study was to compare the differences in surface characteristics and roughness of teeth finished for porcelain veneer laminates using different instrumentation and to assess their influence on microleakage. Fifty-six extracted human maxillary central incisors were divided randomly into two groups: Group HsR teeth were finished with a high-speed handpiece with diamond burs; group SO teeth were finished with a sonic oscillating diamond instrument. Porcelain veneers were bonded to 24 teeth in each group. Microleakage was measured in the cervical area. Four remaining teeth in each group were examined using confocal laser-scanning microscopy and scanning electron microscopy. Oscillating instruments produced a rougher dentinal surface (Ra values; P = .029) than those finished with high-speed rotary technology. There is less microleakage when bonded restoration edges are situated over dentin that has been finished with sonic oscillating instrumentation (P = .006).

  17. Study of archaeological underwater finds: deterioration and conservation

    NASA Astrophysics Data System (ADS)

    Crisci, G. M.; La Russa, M. F.; Macchione, M.; Malagodi, M.; Palermo, A. M.; Ruffolo, S. A.

    2010-09-01

    This study is aimed at an assessment of the methodologies, instruments and new applications for underwater archaeology. Research focused on study of the various kinds of degradation affecting underwater finds and stone materials aged in underwater environment, efficiency evaluation of various surface cleaning methods and study and mixing of protective products with consolidating resins and antimicrobial biocides to be applied to restored underwater finds. Transmitted light optical microscopy and scanning electron microscopy (SEM) were used to study surface biofilms and the interactions with samples of different stone materials such as brick, marble and granite immersed in the submarine archaeological area of Crotone (South of Italy). Surface cleaning tests were performed with application of ion exchange resins, EDTA, hydrogen peroxide and ultrasound techniques. Capillary water absorption, simulated solar ageing and colourimetric measurements were carried out to evaluate hydrophobic and consolidant properties; to assess biocidal efficacy, heterotrophic micro-organisms ( Aspergillus niger) were inoculated on agar plates and growth inhibition was measured.

  18. The Use of Atomic Force Microscopy for 3D Analysis of Nucleic Acid Hybridization on Microarrays.

    PubMed

    Dubrovin, E V; Presnova, G V; Rubtsova, M Yu; Egorov, A M; Grigorenko, V G; Yaminsky, I V

    2015-01-01

    Oligonucleotide microarrays are considered today to be one of the most efficient methods of gene diagnostics. The capability of atomic force microscopy (AFM) to characterize the three-dimensional morphology of single molecules on a surface allows one to use it as an effective tool for the 3D analysis of a microarray for the detection of nucleic acids. The high resolution of AFM offers ways to decrease the detection threshold of target DNA and increase the signal-to-noise ratio. In this work, we suggest an approach to the evaluation of the results of hybridization of gold nanoparticle-labeled nucleic acids on silicon microarrays based on an AFM analysis of the surface both in air and in liquid which takes into account of their three-dimensional structure. We suggest a quantitative measure of the hybridization results which is based on the fraction of the surface area occupied by the nanoparticles.

  19. Nanoscale imaging of photocurrent enhancement by resonator array photovoltaic coatings.

    PubMed

    Ha, Dongheon; Yoon, Yohan; Zhitenev, Nikolai B

    2018-04-06

    Nanoscale surface patterning commonly used to increase absorption of solar cells can adversely impact the open-circuit voltage due to increased surface area and recombination. Here, we demonstrate absorptivity and photocurrent enhancement using silicon dioxide (SiO 2 ) nanosphere arrays on a gallium arsenide (GaAs) solar cell that do not require direct surface patterning. Due to the combined effects of thin-film interference and whispering gallery-like resonances within nanosphere arrays, there is more than 20% enhancement in both absorptivity and photocurrent. To determine the effect of the resonance coupling between nanospheres, we perform a scanning photocurrent microscopy based on a near-field scanning optical microscopy measurement and find a substantial local photocurrent enhancement. The nanosphere-based antireflection coating (ARC), made by the Meyer rod rolling technique, is a scalable and a room-temperature process; and, can replace the conventional thin-film-based ARCs requiring expensive high-temperature vacuum deposition.

  20. Nanoscale imaging of photocurrent enhancement by resonator array photovoltaic coatings

    NASA Astrophysics Data System (ADS)

    Ha, Dongheon; Yoon, Yohan; Zhitenev, Nikolai B.

    2018-04-01

    Nanoscale surface patterning commonly used to increase absorption of solar cells can adversely impact the open-circuit voltage due to increased surface area and recombination. Here, we demonstrate absorptivity and photocurrent enhancement using silicon dioxide (SiO2) nanosphere arrays on a gallium arsenide (GaAs) solar cell that do not require direct surface patterning. Due to the combined effects of thin-film interference and whispering gallery-like resonances within nanosphere arrays, there is more than 20% enhancement in both absorptivity and photocurrent. To determine the effect of the resonance coupling between nanospheres, we perform a scanning photocurrent microscopy based on a near-field scanning optical microscopy measurement and find a substantial local photocurrent enhancement. The nanosphere-based antireflection coating (ARC), made by the Meyer rod rolling technique, is a scalable and a room-temperature process; and, can replace the conventional thin-film-based ARCs requiring expensive high-temperature vacuum deposition.

  1. Atomic force microscopy and Langmuir–Blodgett monolayer technique to assess contact lens deposits and human meibum extracts☆

    PubMed Central

    Hagedorn, Sarah; Drolle, Elizabeth; Lorentz, Holly; Srinivasan, Sruthi; Leonenko, Zoya; Jones, Lyndon

    2015-01-01

    Purpose The purpose of this exploratory study was to investigate the differences in meibomian gland secretions, contact lens (CL) lipid extracts, and CL surface topography between participants with and without meibomian gland dysfunction (MGD). Methods Meibum study: Meibum was collected from all participants and studied via Langmuir–Blodgett (LB) deposition with subsequent Atomic Force Microscopy (AFM) visualization and surface roughness analysis. CL Study: Participants with and without MGD wore both etafilcon A and balafilcon A CLs in two different phases. CL lipid deposits were extracted and analyzed using pressure-area isotherms with the LB trough and CL surface topographies and roughness values were visualized using AFM. Results Meibum study: Non-MGD participant meibum samples showed larger, circular aggregates with lower surface roughness, whereas meibum samples from participants with MGD showed more lipid aggregates, greater size variability and higher surface roughness. CL Study: Worn CLs from participants with MGD had a few large tear film deposits with lower surface roughness, whereas non-MGD participant-worn lenses had many small lens deposits with higher surface roughness. Balafilcon A pore depths were shallower in MGD participant worn lenses when compared to non-MGD participant lenses. Isotherms of CL lipid extracts from MGD and non-MGD participants showed a seamless rise in surface pressure as area decreased; however, extracts from the two different lens materials produced different isotherms. Conclusions MGD and non-MGD participant-worn CL deposition were found to differ in type, amount, and pattern of lens deposits. Lipids from MGD participants deposited irregularly whereas lipids from non-MGD participants showed more uniformity. PMID:25620317

  2. Nanoparticle Treated Stainless Steel Filters for Metal Vapor Sequestration

    NASA Astrophysics Data System (ADS)

    Murph, Simona E. Hunyadi; Larsen, George K.; Korinko, Paul; Coopersmith, Kaitlin J.; Summer, Ansley J.; Lewis, Rebecca

    2017-02-01

    The ability to sequester vapor phase radioactive compounds during industrial processes reduces the exposure of workers and the environment to dangerous radioactive materials. Nanomaterials have a lot of potential in this area because they typically demonstrate size- and shape-dependent properties with higher reactivity than bulk. This is due to the increased surface area-to-volume ratio and quantum size effects. In this report, we developed a gold nanomaterial-treated stainless steel filter, namely wools and coupons, that can be efficiently used for zinc vapor sequestration. Without nanoparticle modification, stainless steel coupons do not react or alloy with Zn. Gold nanomaterials were grown onto various stainless steel filters using solution chemistry that is amenable to scaling up. Materials were characterized by electron microscopy, inductively coupled plasma mass spectroscopy and dynamic light scattering before and after exposure to zinc vapors. X-ray diffraction, high-resolution transmission electron microscopy, energy dispersive x-ray spectroscopy mapping and ultraviolet-visible spectroscopy confirm the formation of gold-zinc alloys after Zn vapor exposure. The effect of surface topography on nanoparticle morphology, size and loading density were also investigated, and stainless steel surface defects were found to have an impact on the Au NP growth and subsequently Zn sequestration.

  3. Evaluation of enamel surface modification using PS-OCT after laser treatment to increase resistance to demineralization

    NASA Astrophysics Data System (ADS)

    Kim, Jin Wan; Chan, Kenneth H.; Fried, Daniel

    2016-02-01

    At laser intensities below ablation, carbonated hydroxyapatite in enamel is converted into a purer phase hydroxyapatite with increased acid resistance. Previous studies suggested the possibility of achieving the conversion without surface modification. This study attempts to evaluate the thresholds for the modification without additional changes in physical and optical properties of the enamel. Bovine specimens were irradiated using an RF-excited CO2 laser operating at 9.4-μm with a pulse duration of 26- μs, pulse repetition rates of 100-1000 Hz, with a Gaussian spatial beam profile - 1.4 mm in diameter. After laser treatment, the samples were subjected to acid demineralization for 48 hours to simulate acidic intraoral conditions of a caries attack. The resulting demineralization and erosion were assessed using polarization sensitive OCT (PS-OCT) and 3D digital microscopy. The images from digital microscopy demonstrated a clear delineation between laser protected zones without visual changes and zones with higher levels of demineralization and erosion. Distinct changes in the surface morphology were found within the laser treated area in accordance with the Gaussian spatial beam profile. There was significant protection from the laser in areas that were not visually altered.

  4. Characterization of particle deformation during compression measured by confocal laser scanning microscopy.

    PubMed

    Guo, H X; Heinämäki, J; Yliruusi, J

    1999-09-20

    Direct compression of riboflavin sodium phosphate tablets was studied by confocal laser scanning microscopy (CLSM). The technique is non-invasive and generates three-dimensional (3D) images. Tablets of 1% riboflavin sodium phosphate with two grades of microcrystalline cellulose (MCC) were individually compressed at compression forces of 1.0 and 26.8 kN. The behaviour and deformation of drug particles on the upper and lower surfaces of the tablets were studied under compression forces. Even at the lower compression force, distinct recrystallized areas in the riboflavin sodium phosphate particles were observed in both Avicel PH-101 and Avicel PH-102 tablets. At the higher compression force, the recrystallization of riboflavin sodium phosphate was more extensive on the upper surface of the Avicel PH-102 tablet than the Avicel PH-101 tablet. The plastic deformation properties of both MCC grades reduced the fragmentation of riboflavin sodium phosphate particles. When compressed with MCC, riboflavin sodium phosphate behaved as a plastic material. The riboflavin sodium phosphate particles were more tightly bound on the upper surface of the tablet than on the lower surface, and this could also be clearly distinguished by CLSM. Drug deformation could not be visualized by other techniques. Confocal laser scanning microscopy provides valuable information on the internal mechanisms of direct compression of tablets.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reitan, J.B.; Feren, K.

    The luminal surface of mouse bladder urothelium was studied by scanning microscopy 1 year after irradiation with 0, 10 and 20 Gy respectively. The controls that were anaesthetized only displayed surface characteristics indistinguishable from normal urothelium. Irradiation with 10 Gy did not result in marked overall changes in the scanning electron microscopic features of the luminal aspect, but in some areas alterations comparable to the alterations after 20 Gy were observed. After irradiation with 20 Gy focal hyperplastic areas, superficial early ulceration and dedifferentiation of cover cells were seen. The dedifferentiation to featureless cells is probably not associated with increasedmore » proliferation, which in focally hyperplastic areas gives rise to a cobblestone or fuzzy appearance with small superficial cells and with many different surface features. The featureless cells may represent degenerative or agonal changes only, but a preneoplastic nature cannot be ruled out.« less

  6. Influence of surface potential on the adhesive force of radioactive gold surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kweon, Hyojin; Yiacoumi, Sotira; Lee, Ida

    2013-08-23

    Radioactive particles may acquire surface potential through self-charging, and thus can behave differently from natural aerosols in atmospheric systems with respect to aggregation, deposition, resuspension, and transport to areas surrounding a radioactive source. Here, this work focuses on the adhesive force between radioactive particles and metallic surfaces, which relates to the deposition and resuspension of particles on surrounding surfaces. Scanning surface potential microscopy was employed to measure the surface potential of radioactive gold foil. Atomic force microscopy was used to investigate the adhesive force for gold that acquired surface charge either by irradiation or by application of an equivalent electricalmore » bias. Overall, the adhesive force increases with increasing surface potential or relative humidity. However, a behavior that does not follow the general trend was observed for the irradiated gold at a high decay rate. A comparison between experimental measurements and calculated values revealed that the surface potential promotes adhesion. The contribution of the electrostatic force at high levels of relative humidity was lower than the one found using theoretical calculations due to the effects caused by enhanced adsorption rate of water molecules under a high surface charge density. Lastly, the results of this study can be used to provide a better understanding of the behavior of radioactive particles in atmospheric systems.« less

  7. Onset of molar incisor hypomineralization (MIH).

    PubMed

    Fagrell, Tobias G; Salmon, Phil; Melin, Lisa; Norén, Jörgen G

    2013-01-01

    The etiological factors and timing of the onset of molar incisor hypomineralization (MIH) are still not clear. The aim of this study was to examine ground radial and sagittal sections from teeth diagnosed with MIH using light microscopy, polarized light microscopy and X-ray micro-computed tomography (XMCT) and to estimate the onset and timing of the MIH and to relate the hypomineralized enamel to the incremental lines. Thirteen extracted permanent first molars diagnosed MIH, were analyzed with light microscopy and XMCT. The hypomineralized areas were mainly located in the mesio-buccal cusps, starting at the enamel-dentin-junction and continuing towards the enamel surface. In a relative gray scale analysis the values decreased from the EDJ towards the enamel surface. The findings indicate that the ameloblasts in the hypomineralized enamel are capable of forming an enamel of normal thickness, but with a substantial reduction of their capacity for maturation of enamel. Chronologically, it is estimated that the timing of the disturbance is at a period during the first 6-7 months of age.

  8. Multi-applicative tetragonal TiO2/SnO2 nanocomposites for photocatalysis and gas sensing

    NASA Astrophysics Data System (ADS)

    Patil, S. M.; Dhodamani, A. G.; Vanalakar, S. A.; Deshmukh, S. P.; Delekar, S. D.

    2018-04-01

    TiO2-based mixed metal oxide heteronanostructures have multiple applications in photocatalysis and gas sensing because of their charge transport properties. In this study, we prepared tetragonal TiO2/SnO2 nanocomposites (NCs) with different weight percentages using a simple wet impregnation method. The physicochemical properties of the NCs were investigated using X-ray diffraction, Fourier transform-infrared spectroscopy, ultraviolet-visible spectroscopy, field-emission scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy, and Brunauer-Emmett-Teller surface area analysis. The results showed that the surface area of the NCs increased significantly and the anatase TiO2 was sensitized after the addition of a small amount of cassiterite SnO2 NPs. We systematically studied the as-prepared NCs during the photocatalytic degradation of Congo Red dye under visible light irradiation (λ > 420 nm) and NH3 gas sensing, which demonstrated the efficient photocatalytic performance and the superior sensing response of the catalyst with a weight composition of 25% SnO2 in TiO2 (4:1) compared with the other NCs or the bare individual nanoparticles. The improved photocatalytic and gas sensing performance of the TiO2/SnO2 (4:1) NCs may be attributed to the increased active surface area, the increased adsorption of the dye and target gas molecules, as well as efficient electron-hole charge separation and transfer.

  9. Pyrolytic synthesis and characterization of N-doped carbon nanoflakes for electrochemical applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savilov, S.V., E-mail: savilov@chem.msu.ru; N.S. Kurnakov Institute of General and Inorganic Chemistry Of Russian Academy of Sciences, Leninsky avenue, 31, Moscow 119991; Arkhipova, E.A.

    2015-09-15

    Highlights: • Carbon nanoflakes doped with nitrogen were produced by a pyrolytic technique. • Quarternary, pyrrolic and pyridinic types of nitrogen are confirmed by XPS. • Nitrogen content depends on precursor used and temperature processed. • Specific surface area values decrease with increasing of synthesis duration. • N-doped carbon nanoflakes may be suitable for electrochemical applications. - Abstract: Nitrogen doped carbon nanoflakes, which are very important for many electrochemical applications, were synthesized by pyrolysis of nitrogen containing organic compounds over metal oxide template. Acetonitrile, pyridine and butylamine, which are of different volatility were tested as N-containing precursors. Morphology, structure andmore » chemical composition of the as-synthesized materials were investigated by scanning electron microscopy (SEM), high resolution transmission electron microscopy (TEM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). It was found that materials are highly defective and consist of a few malformed graphene layers. X-ray photoelectron spectra reflect the dominant graphitic and pyridinic N-bonding configuration. It was also noted that specific surface area depends on the duration and temperature of the reaction. Increase in duration and temperature led to decrease of the specific surface area from 1000 to 160 m{sup 2}/g, 1170 to 210 m{sup 2}/g and 1180 to 480 m{sup 2}/g for acetonitrile, butylamine and pyridine precursors, respectively.« less

  10. One-pot nucleation, growth, morphogenesis, and passivation of 1.4 nm Au nanoparticles on self-assembled rosette nanotubes.

    PubMed

    Chhabra, Rahul; Moralez, Jesus G; Raez, Jose; Yamazaki, Takeshi; Cho, Jae-Young; Myles, Andrew J; Kovalenko, Andriy; Fenniri, Hicham

    2010-01-13

    A one-pot strategy for the nucleation, growth, morphogenesis, and passivation of 1.4 nm Au nanoparticles (NPs) on self-assembled rosette nanotubes (RNTs) is described. Tapping-mode atomic force microscopy, transmission electron microscopy, energy-dispersive X-ray analysis, and selected-area electron diffraction were used to establish the structure and organization of this hybrid material. Notably, we found that the Au NPs formed were nearly monodisperse clusters of Au(55) (1.4-1.5 nm) nestled in pockets on the RNT surface.

  11. Structural and electrochemical properties of nanostructured nickel silicides by reduction and silicification of high-surface-area nickel oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xiao; Zhang, Bingsen; Li, Chuang

    Graphical abstract: Nanostructured nickel silicides have been synthesized by reduction and silification of high-surface-area nickel oxide, and exhibited remarkably like-noble metal property, lower electric resistivity, and ferromagnetism at room temperature. Highlights: Black-Right-Pointing-Pointer NiSi{sub x} have been prepared by reduction and silification of high-surface-area NiO. Black-Right-Pointing-Pointer The structure of nickel silicides changed with increasing reaction temperature. Black-Right-Pointing-Pointer Si doping into nickel changed the magnetic properties of metallic nickel. Black-Right-Pointing-Pointer NiSi{sub x} have remarkably lower electric resistivity and like-noble metal property. -- Abstract: Nanostructured nickel silicides have been prepared by reduction and silicification of high-surface-area nickel oxide (145 m{sup 2} g{sup -1})more » produced via precipitation. The prepared materials were characterized by nitrogen adsorption, X-ray diffraction, thermal analysis, FT-IR spectroscopy, scanning electron microscopy, transmission electron microscopy, magnetic and electrochemical measurements. The nickel silicide formation involves the following sequence: NiO (cubic) {yields} Ni (cubic) {yields} Ni{sub 2}Si (orthorhombic) {yields} NiSi (orthorhombic) {yields} NiSi{sub 2} (cubic), with particles growing from 13.7 to 21.3 nm. The nickel silicides are ferromagnetic at room temperature, and their saturation magnetization values change drastically with the increase of Si content. Nickel silicides have remarkably low electrical resistivity and noble metal-like properties because of a constriction of the Ni d band and an increase of the electronic density of states. The results suggest that such silicides are promising candidates as inexpensive yet functional materials for applications in electrochemistry as well as catalysis.« less

  12. The simple preparation of birnessite-type manganese oxide with flower-like microsphere morphology and its remarkable capacity retention

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Gang; Deng, Lingjuan; Wang, Jianfang

    Graphical abstract: Flower-like birnessite-type manganese oxide microspheres with large specific surface area and excellent electrochemical properties have been prepared by a facile hydrothermal method. Highlights: ► Birnessite-type manganese oxide with flower-like microsphere morphology and large specific surface area. ► A facile low-temperature hydrothermal method. ► Novel flower-like microsphere consists of the thin nano-platelets. ► Birnessite-type manganese oxide exhibits an ideal capacitive behavior and excellent cycling stability. -- Abstract: Birnessite-type manganese oxide with flower-like microsphere morphology and large specific surface area has been prepared by hydrothermal treating a mixture solution of KMnO{sub 4} and (NH{sub 4}){sub 2}SO{sub 4} at 90 °Cmore » for 24 h. The obtained material is characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and N{sub 2} adsorption–desorption. Results indicate that the birnessite-type manganese oxide shows novel flower-like microsphere morphology and a specific surface area of 280 m{sup 2} g{sup −1}, and the flower-like microsphere consists of the thin nano-platelets. Electrochemical characterization indicates that the prepared material exhibits an ideal capacitive behavior with a capacitance value of 278 F g{sup −1} in 1 mol L{sup −1} Na{sub 2}SO{sub 4} aqueous solution at a scan rate of 5 mV s{sup −1}. Moreover, the prepared manganese oxide electrode shows excellent cycle stability, and the specific capacitance can maintain 98.6% of the initial one after 5000 cycles.« less

  13. Residual contamination and corrosion on electrochemically marked uranium

    NASA Astrophysics Data System (ADS)

    Seals, R. D.; Bullock, J. S.; Cristy, S. S.; Bennett, R. K.

    Residual contamination and potential corrosion problems on uranium parts electrochemically marked with PHB-1 and PHB-1E electroetchants have been investigated using ion microprobe mass analysis (IMMA), scanning electron microscopy (SEM), and light microscopy (LM). The effectiveness of various solvent-cleaning sequences and the influence of the use of an abrasive cleaner were evaluated. The corrosion depths and chlorine distributions resulting from the electroetching process were determined. To meet the objective, the surfaces of uranium coupons, which had been processed according to production procedures for parts, i.e., machining, cleaning, marking, inspecting and coating with Shell Vitrea-29® oil, were studied. The greater surface wetting capability of the PHB-1E electroetchant solution relative to PHB-1 resulted in less localized corrosion at the point of attack which provided a more legible mark. Components of the electroetchants (aluminum, potassium and chromium) were found in the marked areas of both types of electroetched samples. Chromium, resulting from the corrosion inhibitor in the electroetchants, was found in the etched areas as well as on the coupon away from the electroetched areas. Depth profile data indicated that the major etching action (marking thickness) of the electroetchants penetrated to a depth of approximately 200 nm. Trace amounts of chlorine were present primarily within the first 65 nm of the marked surface. Comparison of the solvent rinsing sequences revealed that the most effective cleaning process included a degreaser, such as perchloroethylene, followed by a polar solvent, such as alcohol. Evaluation of the use of an abrasive cleaner on the electroetched areas indicates that this process removed residual contaminants, increased mark legibility and did not introduce significant residuals from the abrading material or cause significant surface damage.

  14. Atomic force microscopy imaging of fragments from the Martian meteorite ALH84001

    NASA Technical Reports Server (NTRS)

    Steele, A.; Goddard, D.; Beech, I. B.; Tapper, R. C.; Stapleton, D.; Smith, J. R.

    1998-01-01

    A combination of scanning electron microscopy (SEM) and environmental scanning electron microscopy (ESEM) techniques, as well as atomic force microscopy (AFM) methods has been used to study fragments of the Martian meteorite ALH84001. Images of the same areas on the meteorite were obtained prior to and following gold/palladium coating by mapping the surface of the fragment using ESEM coupled with energy-dispersive X-ray analysis. Viewing of the fragments demonstrated the presence of structures, previously described as nanofossils by McKay et al. (Search for past life on Mars--possible relic biogenic activity in martian meteorite ALH84001. Science, 1996, pp. 924-930) of NASA who used SEM imaging of gold-coated meteorite samples. Careful imaging of the fragments revealed that the observed structures were not an artefact introduced by the coating procedure.

  15. Surface atomic structure characterization of SnSe and black phosphorus using selected area uLEED-IV via LEEM

    NASA Astrophysics Data System (ADS)

    Dai, Zhongwei; Grady, Maxwell; Yu, Jiexiang; Zang, Jiadong; Pohl, Karsten; Jin, Wencan; Kim, Young Duck; Hone, James; Dadap, Jerry; Osgood, Richard; Sadowski, Jerzy; Vishwanath, Suresh; Xing, Huili

    Selected area diffraction intensity-voltage (μLEED-IV) analysis via low energy electron microscopy (LEEM) has the combined functionality of atomic surface structure determination and μm area selectivity, making it ideal for structural investigations of 2-D materials. SnSe thin films have been predicted and observed to be topological crystalline insulators. Previous studies suggested that SnSe has a preferred Se-terminated surface configuration. Using μLEED-IV, we determined that SnSe has, on the contrary, a stable Sn termination. This surface is stabilized through an oscillatory interlayer relaxation, which agrees with previous DFT predictions. Black phosphorus (BP) has an intrinsic layer-dependent bandgap ranging from 0.3 eV to 2 eV. Previous STM and DFT studies suggested BP surfaces have a buckling of 0.02 Å to 0.06 Å. We experimentally determined that the surface buckling of BP to be near 0.2 Å. We further propose, using DFT calculations, that this large surface buckling is induced by the presence of surface defects. The influence of this surface buckling on the electronic structures of BP is under investigation.

  16. Rapid in situ generation of two patterned chemoselective surface chemistries from a single hydroxy-terminated surface using controlled microfluidic oxidation.

    PubMed

    Pulsipher, Abigail; Westcott, Nathan P; Luo, Wei; Yousaf, Muhammad N

    2009-06-10

    In this work, we develop a new, rapid and inexpensive method to generate spatially controlled aldehyde and carboxylic acid surface groups by microfluidic oxidation of 11-hydroxyundecylphosphonic acid self-assembled monolayers (SAMs) on indium tin oxide (ITO) surfaces. SAMs are activated and patterned using a reversibly sealable, elastomeric polydimethylsiloxane cassette, fabricated with preformed micropatterns by soft lithography. By flowing the mild oxidant pyridinium chlorochromate through the microchannels, only selected areas of the SAM are chemically altered. This microfluidic oxidation strategy allows for ligand immobilization by two chemistries originating from a single SAM composition. ITO is robust, conductive, and transparent, making it an ideal platform for studying interfacial interactions. We display spatial control over the immobilization of a variety of ligands on ITO and characterize the resulting oxime and amide linkages by electrochemistry, X-ray photoelectron spectroscopy, contact angle, fluorescence microscopy, and atomic force microscopy. This general method may be used with many other materials to rapidly generate patterned and tailored surfaces for studies ranging from molecular electronics to biospecific cell-based assays and biomolecular microarrays.

  17. Membrane dynamics of dividing cells imaged by lattice light-sheet microscopy

    PubMed Central

    Aguet, François; Upadhyayula, Srigokul; Gaudin, Raphaël; Chou, Yi-ying; Cocucci, Emanuele; He, Kangmin; Chen, Bi-Chang; Mosaliganti, Kishore; Pasham, Mithun; Skillern, Wesley; Legant, Wesley R.; Liu, Tsung-Li; Findlay, Greg; Marino, Eric; Danuser, Gaudenz; Megason, Sean; Betzig, Eric; Kirchhausen, Tom

    2016-01-01

    Membrane remodeling is an essential part of transferring components to and from the cell surface and membrane-bound organelles and for changes in cell shape, which are particularly critical during cell division. Earlier analyses, based on classical optical live-cell imaging and mostly restricted by technical necessity to the attached bottom surface, showed persistent formation of endocytic clathrin pits and vesicles during mitosis. Taking advantage of the resolution, speed, and noninvasive illumination of the newly developed lattice light-sheet fluorescence microscope, we reexamined their assembly dynamics over the entire cell surface and found that clathrin pits form at a lower rate during late mitosis. Full-cell imaging measurements of cell surface area and volume throughout the cell cycle of single cells in culture and in zebrafish embryos showed that the total surface increased rapidly during the transition from telophase to cytokinesis, whereas cell volume increased slightly in metaphase and was relatively constant during cytokinesis. These applications demonstrate the advantage of lattice light-sheet microscopy and enable a new standard for imaging membrane dynamics in single cells and multicellular assemblies. PMID:27535432

  18. Some surface characteristics and gas interactions of Apollo 14 fines and rock fragments.

    NASA Technical Reports Server (NTRS)

    Cadenhead, D. A.; Wagner, N. J.; Jones, B. R.; Stetter, J. R.

    1972-01-01

    Comprehensive survey of the physical surface characteristics of Apollo 14 fines, two fragments of a breccia (14321), and a crystalline rock (14310). The survey was carried out with optical and both scanning and transmission electron microscopy and by studying the adsorption of a variety of gases including nitrogen, hydrogen, and water vapor. Our objective in the optical microscope study was to relate the visible geological and petrological features to the surface properties. Electron microscopy particularly helped relate surface roughness and particle fusion to gas adsorption and pore structure. The fine sample (14163,111) had a surface area of 0.210 sq m/g and a helium density of 2.9 g/cc. Similar values have been observed with breccia fragments. Other observations include physical adsorption of molecular hydrogen at low temperatures and of water vapor at ambient temperatures. It is concluded that these particular lunar materials, while capable of adsorbing water vapor, do not retain it for any significant time at low pressures, nor, under lunar conditions, is there any indication of absorption or penetration.

  19. Formation of silver nanoparticle at phospholipid template using Langmuir-Blodgett technique and its Surface-enhanced Raman Spectroscopy application

    NASA Astrophysics Data System (ADS)

    Mahato, M.; Sarkar, R.; Pal, P.; Talapatra, G. B.

    2015-10-01

    The biosynthesis of metal nanoparticle and their suitable assembly has recently gained tremendous interest for its application in biomedical arena such as substrates for surface-enhanced Raman scattering and others. In this article, an easy, low-cost, fast, bio-friendly and toxic-reducing agent free protocol has been described for the preparation of silver nanoparticle film using biocompatible 1,2-dipalmitoyl-sn-glycero-3-phosphocholine phospholipid Langmuir monolayer template. Interactions, docking and attachment of silver ions to the above-mentioned phospholipid monolayer have been studied by surface pressure-area isotherm and compressibility analysis at the air-water interface. We have deposited the Langmuir-Blodgett monolayer/multilayer containing silver nanoparticle onto glass/SiO2/quartz substrates. The formation of phospholipid-silver nanoparticle complex in Langmuir-Blodgett film has been characterized by field emission-scanning electron microscopy and high-resolution tunneling electron microscopy images. We have applied this deposited film as a substrate for surface-enhanced Raman scattering application using rhodamine 123 to understand the existence of the surface plasmon activity of silver nanoparticle.

  20. High resolution 3D confocal microscope imaging of volcanic ash particles.

    PubMed

    Wertheim, David; Gillmore, Gavin; Gill, Ian; Petford, Nick

    2017-07-15

    We present initial results from a novel high resolution confocal microscopy study of the 3D surface structure of volcanic ash particles from two recent explosive basaltic eruptions, Eyjafjallajökull (2010) and Grimsvötn (2011), in Iceland. The majority of particles imaged are less than 100μm in size and include PM 10 s, known to be harmful to humans if inhaled. Previous studies have mainly used 2D microscopy to examine volcanic particles. The aim of this study was to test the potential of 3D laser scanning confocal microscopy as a reliable analysis tool for these materials and if so to what degree high resolution surface and volume data could be obtained that would further aid in their classification. First results obtained using an Olympus LEXT scanning confocal microscope with a ×50 and ×100 objective lens are highly encouraging. They reveal a range of discrete particle types characterised by sharp or concave edges consistent with explosive formation and sudden rupture of magma. Initial surface area/volume ratios are given that may prove useful in subsequent modelling of damage to aircraft engines and human tissue where inhalation has occurred. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Fabrication of single/multi-walled hybrid buckypaper composites and their enhancement of electromagnetic interference shielding performance

    NASA Astrophysics Data System (ADS)

    Lu, Shaowei; Shao, Junyan; Ma, Keming; Wang, Xiaoqiang; Zhang, Lu; Meng, Qingshi

    2016-11-01

    Multi-walled carbon nanotubes and single-walled carbon nanotubes show great potential for the application as an electromagnetic interference shielding material. In this paper, the electromagnetic interference shielding the effectiveness of a composite surface coated single/multi-walled carbon nanotube hybrid buckypaper was measured, which showed an average shielding effectiveness of ~55 dB with a buckypaper thickness of 50 µm, and bukypaper density of 0.76 g cm-3, it is much higher than other carbon nanotube/resin materials when sample thickness is on the similar order. The structural, specific surface area and conductivity of the buckypapers were examined by field-emission scanning electron microscopy, specific surface area analyzer and four probes resistance tester, respectively.

  2. Scalp imaging techniques

    NASA Astrophysics Data System (ADS)

    Otberg, Nina; Shapiro, Jerry; Lui, Harvey; Wu, Wen-Yu; Alzolibani, Abdullateef; Kang, Hoon; Richter, Heike; Lademann, Jürgen

    2017-05-01

    Scalp imaging techniques are necessary tools for the trichological practice and for visualization of permeation, penetration and absorption processes into and through the scalp and for the research on drug delivery and toxicology. The present letter reviews different scalp imaging techniques and discusses their utility. Moreover, two different studies on scalp imaging techniques are presented in this letter: (1) scalp imaging with phototrichograms in combination with laser scanning microscopy, and (2) follicular measurements with cyanoacrylate surface replicas and light microscopy in combination with laser scanning microscopy. The experiments compare different methods for the determination of hair density on the scalp and different follicular measures. An average terminal hair density of 132 hairs cm-2 was found in 6 Caucasian volunteers and 135 hairs cm-2 in 6 Asian volunteers. The area of the follicular orifices accounts to 16.3% of the skin surface on average measured with laser scanning microscopy images. The potential volume of the follicular infundibulum was calculated based on the laser scanning measurements and is found to be 4.63 mm3 per cm2 skin on average. The experiments show that hair follicles are quantitatively relevant pathways and potential reservoirs for topically applied drugs and cosmetics.

  3. Morphological alterations of T24 cells on flat and nanotubular TiO2 surfaces.

    PubMed

    Imani, Roghayeh; Kabaso, Doron; Erdani Kreft, Mateja; Gongadze, Ekaterina; Penic, Samo; Elersic, Kristina; Kos, Andrej; Veranic, Peter; Zorec, Robert; Iglic, Ales

    2012-12-01

    To investigate morphological alterations of malignant cancer cells (T24) of urothelial origin seeded on flat titanium (Ti) and nanotubular TiO(2) (titanium dioxide) nanostructures. Using anodization method, TiO(2) surfaces composed of vertically aligned nanotubes of 50-100 nm diameters were produced. The flat Ti surface was used as a reference. The alteration in the morphology of cancer cells was evaluated using scanning electron microscopy (SEM). A computational model, based on the theory of membrane elasticity, was constructed to shed light on the biophysical mechanisms responsible for the observed changes in the contact area of adhesion. Large diameter TiO(2) nanotubes exhibited a significantly smaller contact area of adhesion (P<0.0001) and had more membrane protrusions (eg, microvilli and intercellular membrane nanotubes) than on flat Ti surface. Numerical membrane dynamics simulations revealed that the low adhesion energy per unit area would hinder the cell spreading on the large diameter TiO(2) nanotubular surface, thus explaining the small contact area. The reduction in the cell contact area in the case of large diameter TiO(2) nanotube surface, which does not enable formation of the large enough number of the focal adhesion points, prevents spreading of urothelial cells.

  4. Initial stem cell adhesion on porous silicon surface: molecular architecture of actin cytoskeleton and filopodial growth

    PubMed Central

    2014-01-01

    The way cells explore their surrounding extracellular matrix (ECM) during development and migration is mediated by lamellipodia at their leading edge, acting as an actual motor pulling the cell forward. Lamellipodia are the primary area within the cell of actin microfilaments (filopodia) formation. In this work, we report on the use of porous silicon (pSi) scaffolds to mimic the ECM of mesenchymal stem cells from the dental pulp (DPSC) and breast cancer (MCF-7) cells. Our atomic force microscopy (AFM), fluorescence microscopy, and scanning electron microscopy (SEM) results show that pSi promoted the appearance of lateral filopodia protruding from the DPSC cell body and not only in the lamellipodia area. The formation of elongated lateral actin filaments suggests that pores provided the necessary anchorage points for protrusion growth. Although MCF-7 cells displayed a lower presence of organized actin network on both pSi and nonporous silicon, pSi stimulated the formation of extended cell protrusions. PMID:25386101

  5. Real-time observation of slipping and rolling events in DLC wear nanoparticles.

    PubMed

    Sato, Takaaki; Nabeya, Shinsuke; Menon, Vivek; Ishida, Tadashi; Kometani, Reo; Fujita, Hiroyuki

    2018-08-10

    Real-time observation of the actual contact area between surface interfaces at the nanoscale enables more precise examination of what happens during friction. We have combined micro electro mechanical system actuators and transmission electron microscopy (TEM) observation, to both apply and measure forces across nanoscale junctions and contacts. This custom-designed experimental system can measure the true surface area of a contact site from a lateral viewpoint, while simultaneously measuring the friction force. We scratched surfaces coated with diamond like carbon, a classical solid lubricant, and observed the formation of wear particles that slipped and rolled between the interface. TEM images showed that the shape of the surface at the nanoscale underwent permanent deformation when acted upon with forces as low as several tens of nano newtons. The results demonstrated the limitations of friction analyses relying on friction force measurements without real-time surface profiling.

  6. Hierarchical micro-nano structured Ti6Al4V surface topography via two-step etching process for enhanced hydrophilicity and osteoblastic responses.

    PubMed

    Moon, Byeong-Seok; Kim, Sungwon; Kim, Hyoun-Ee; Jang, Tae-Sik

    2017-04-01

    Hierarchical micro-nano (HMN) surface structuring of dental implants is a fascinating strategy for achieving fast and mechanically stable fixation due to the synergetic effect of micro- and nano-scale surface roughness with surrounding tissues. However, the introduction of a well-defined nanostructure on a microstructure having complex surface geometry is still challenging. As a means of fabricating HMN surface on Ti6Al4V-ELI, target-ion induced plasma sputtering (TIPS) was used onto a sand-blasted, large-grit and acid-etched substrate. The HMN surface topography was simply controlled by adjusting the tantalum (Ta) target power of the TIPS technique, which is directly related to the Ta ion flux and the surface chemical composition of the substrate. Characterization using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and laser scanning microscopy (LSM) verified that well-defined nano-patterned surface structures with a depth of ~300 to 400nm and a width of ~60 to 70nm were uniformly distributed and followed the complex micron-sized surface geometry. In vitro cellular responses of pre-osteoblast cells (MC3T3-E1) were assessed by attachment and proliferation of cells on flat, nano-roughened, micro-roughened, and an HMN surface structure of Ti6Al4V-ELI. Moreover, an in vivo dog mandible defect model study was used to investigate the biological effect of the HMN surface structure compared with the micro-roughened surface. The results showed that the surface nanostructure significantly increased the cellular activities of flat and micro-roughened Ti, and the bone-to-implant contact area and new bone volume were significantly improved on the HMN surface structured Ti. These results support the idea that an HMN surface structure on Ti6Al4V-ELI alloy has great potential for enhancing the biological performance of dental implants. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Measuring surface-area-to-volume ratios in soft porous materials using laser-polarized xenon interphase exchange nuclear magnetic resonance

    NASA Technical Reports Server (NTRS)

    Butler, J. P.; Mair, R. W.; Hoffmann, D.; Hrovat, M. I.; Rogers, R. A.; Topulos, G. P.; Walsworth, R. L.; Patz, S.

    2002-01-01

    We demonstrate a minimally invasive nuclear magnetic resonance (NMR) technique that enables determination of the surface-area-to-volume ratio (S/V) of soft porous materials from measurements of the diffusive exchange of laser-polarized 129Xe between gas in the pore space and 129Xe dissolved in the solid phase. We apply this NMR technique to porous polymer samples and find approximate agreement with destructive stereological measurements of S/V obtained with optical confocal microscopy. Potential applications of laser-polarized xenon interphase exchange NMR include measurements of in vivo lung function in humans and characterization of gas chromatography columns.

  8. Solvent free tin oxide nanoparticle for gas sensing application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ranjan, Pranay, E-mail: pranjan@iitp.ac.in; Thakur, Ajay D.; Centre for Energy and Environment, Indian Institute of Technology Patna, Patliputra, Patna 800013 India

    2016-05-06

    A new modified technique of synthesizing tin oxide nanoparticles with crystallite size of 2 nm to 6 nm has been developed. Surface area of the nanoparticle has been increased as we approached towards the Debye length. Such a techniques for approaching the Debye length is expected to bring remarkable changes in the properties of resistive based gas sensors. The technique used here is less toxic, economical and has high yield. Phase purity, size, shape and composition has been investigated using x-ray diffraction, micro Raman, scanning electron microscopy and energy dispersive x ray spectroscopy. While surface area has been calculated through Brunaur-Emmett-Teller (BET).

  9. Size-Dependent Specific Surface Area of Nanoporous Film Assembled by Core-Shell Iron Nanoclusters

    DOE PAGES

    Antony, Jiji; Nutting, Joseph; Baer, Donald R.; ...

    2006-01-01

    Nmore » anoporous films of core-shell iron nanoclusters have improved possibilities for remediation, chemical reactivity rate, and environmentally favorable reaction pathways. Conventional methods often have difficulties to yield stable monodispersed core-shell nanoparticles. We produced core-shell nanoclusters by a cluster source that utilizes combination of Fe target sputtering along with gas aggregations in an inert atmosphere at 7 ∘ C . Sizes of core-shell iron-iron oxide nanoclusters are observed with transmission electron microscopy (TEM). The specific surface areas of the porous films obtained from Brunauer-Emmett-Teller (BET) process are size-dependent and compared with the calculated data.« less

  10. Conversion of nuclear waste to molten glass: Formation of porous amorphous alumina in a high-Al melter feed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Kai; Hrma, Pavel; Washton, Nancy

    The transition of Al phases in a simulated high-Al high-level nuclear waste melter feed heated at 5 K min-1 to 700°C was investigated with transmission electron microscopy, 27Al nuclear magnetic resonance spectroscopy, the Brunauer-Emmett-Teller method, and X-ray diffraction. At temperatures between 300 and 500°C, porous amorphous alumina formed from the dehydration of gibbsite, resulting in increased specific surface area of the feed (~8 m2 g-1). The high-surface-area amorphous alumina formed in this manner could potentially stop salt migration in the cold cap during nuclear waste vitrification.

  11. Reflection imaging of China ink-perfused brain vasculature using confocal laser-scanning microscopy after clarification of brain tissue by the Spalteholz method.

    PubMed

    Gutierre, R C; Vannucci Campos, D; Mortara, R A; Coppi, A A; Arida, R M

    2017-04-01

    Confocal laser-scanning microscopy is a useful tool for visualizing neurons and glia in transparent preparations of brain tissue from laboratory animals. Currently, imaging capillaries and venules in transparent brain tissues requires the use of fluorescent proteins. Here, we show that vessels can be imaged by confocal laser-scanning microscopy in transparent cortical, hippocampal and cerebellar preparations after clarification of China ink-injected specimens by the Spalteholz method. This method may be suitable for global, three-dimensional, quantitative analyses of vessels, including stereological estimations of total volume and length and of surface area of vessels, which constitute indirect approaches to investigate angiogenesis. © 2017 Anatomical Society.

  12. Phenyl/Perfluorophenyl Stacking Interactions Enhance Structural Order in Two-Dimensional Covalent Organic Frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Justin C; Braunecker, Wade A; Hurst, Katherine E

    A two-dimensional imine-based covalent organic framework (COF) was designed and synthesized such that phenyl and perfluorophenyl structural units can seamlessly alternate between layers of the framework. X-ray diffraction of the COF powders reveals a striking increase in crystallinity for the COF with self-complementary phenyl/perfluorophenyl interactions (FASt-COF). Whereas measured values of the Brunauer-Emmet-Teller (BET) surface areas for the nonfluorinated Base-COF and the COF employing hydrogen bonding were ~37% and 59%, respectively, of their theoretical Connolly surface areas, the BET value for FASt-COF achieves >90% of its theoretical value (~1700 m2/g). Transmission electron microscopy images also revealed unique micron-sized rodlike features inmore » FASt-COF that were not present in the other materials. The results highlight a promising approach for improving surface areas and long-range order in two-dimensional COFs.« less

  13. Magnetic field controlled graphene oxide-based origami with enhanced surface area and mechanical properties.

    PubMed

    Park, Ok-Kyung; Tiwary, Chandra Sekhar; Yang, Yang; Bhowmick, Sanjit; Vinod, Soumya; Zhang, Qingbo; Colvin, Vicki L; Asif, S A Syed; Vajtai, Robert; Penev, Evgeni S; Yakobson, Boris I; Ajayan, Pulickel M

    2017-06-01

    One can utilize the folding of paper to build fascinating 3D origami architectures with extraordinary mechanical properties and surface area. Inspired by the same, the morphology of 2D graphene can be tuned by addition of magnetite (Fe 3 O 4 ) nanoparticles in the presence of a magnetic field. The innovative 3D architecture with enhanced mechanical properties also shows a high surface area (∼2500 m 2 g -1 ) which is utilized for oil absorption. Detailed microscopy and spectroscopy reveal rolling of graphene oxide (GO) sheets due to the magnetic field driven action of magnetite particles, which is further supported by molecular dynamics (MD) simulations. The macroscopic and local deformation resulting from in situ mechanical loading inside a scanning electron microscope reveals a change in the mechanical response due to a change internal morphology, which is further supported by MD simulation.

  14. Fabricating Ohmic contact on Nb-doped SrTiO{sub 3} surface in nanoscale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yuhang; National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, Chinese Academy of Engineering Physics, Mianyang, Sichuan 621999; Shi, Xiaolan

    2016-05-09

    Fabricating reliable nano-Ohmic contact on wide gap semiconductors is an important yet difficult step in oxide nanoelectronics. We fabricated Ohmic contact on the n-type wide gap oxide Nb-doped SrTiO{sub 3} in nanoscale by mechanically scratching the surface using an atomic force microscopy tip. Although contacted to high work function metal, the scratched area exhibits nearly linear IV behavior with low contact resistance, which maintains for hours in vacuum. In contrast, the unscratched area shows Fowler–Nordheim tunneling dominated Schottky rectifying behavior with high contact resistance. It was found that the Ohmic conductivity in the scratched area was drastically suppressed by oxygenmore » gas indicating the oxygen vacancy origin of the Ohmic behavior. The surface oxygen vacancy induced barrier width reduction was proposed to explain the phenomena. The nanoscale approach is also applicable to macroscopic devices and has potential application in all-oxide devices.« less

  15. Topography measurements of high NA aspherical microlenses by digital holographic microscopy with spherical illumination

    NASA Astrophysics Data System (ADS)

    Józwik, Michal; Mikuła, Marta; Kozacki, Tomasz; Kostencka, Julianna; Gorecki, Christophe

    2017-06-01

    In this contribution, we propose a method of digital holographic microscopy (DHM) that enables measurement of high numerical aperture spherical and aspherical microstructures of both concave and convex shapes. The proposed method utilizes reflection of the spherical illumination beam from the object surface and the interference with a spherical reference beam of the similar curvature. In this case, the NA of DHM is fully utilized for illumination and imaging of the reflected object beam. Thus, the system allows capturing the phase coming from larger areas of the quasi-spherical object and, therefore, offers possibility of high accuracy characterization of its surface even in the areas of high inclination. The proposed measurement procedure allows determining all parameters required for the accurate shape recovery: the location of the object focus point and the positions of the illumination and reference point sources. The utility of the method is demonstrated with characterization of surface of high NA focusing objects. The accuracy is firstly verified by characterization of a known reference sphere with low error of sphericity. Then, the method is applied for shape measurement of spherical and aspheric microlenses. The results provide a full-field reconstruction of high NA topography with resolution in the nanometer range. The surface sphericity is evaluated by the deviation from the best fitted sphere or asphere, and the important parameters of the measured microlens: e.g.: radius of curvature and conic constant.

  16. Reconstruction of Energy Surfaces from Friction Force Microscopy Measurements with the Jarzynski Equality

    NASA Astrophysics Data System (ADS)

    Berkovich, Ronen; Klafter, Joseph; Urbakh, Michael

    Free energy is one of the most fundamental thermodynamic functions, determining relative phase stability and serving as a generating function for other thermodynamic quantities. The calculation of free energies is a challenging enterprise. In equilibrium statistical mechanics, the free energy is related to the canonical partition function. The partition function itself involves integrations over all degrees of freedom in the system and, in most cases, cannot be easily calculated directly. In 1997, Jarzynski proved a remarkable equality that allows computing the equilibrium free-energy difference between two states from the probability distribution of the nonequilibrium work done on the system to switch between the two states. The Jarzynski equality provides a powerful free-energy difference estimator from a set of irreversible experiments. This method is closely related to free-energy perturbation approach, which is also a computational technique for estimating free-energy differences. The ability to map potential profiles and topologies is of major significance to areas as diverse as biological recognition and nanoscale friction. This capability has been demonstrated for frictional studies where a force between the tip of the scanning force microscope and the surface is probed. The surface free-energy corrugation produces a detectable friction forces. Thus, friction force microscopy (FFM) should be able to discriminate between energetically different areas on the probed surface. Here, we apply the Jarzynski equality for the analysis of FFM measurements and thus obtain a variation of the free energy along a surface.

  17. Atomic force microscopy and Langmuir-Blodgett monolayer technique to assess contact lens deposits and human meibum extracts.

    PubMed

    Hagedorn, Sarah; Drolle, Elizabeth; Lorentz, Holly; Srinivasan, Sruthi; Leonenko, Zoya; Jones, Lyndon

    2015-01-01

    The purpose of this exploratory study was to investigate the differences in meibomian gland secretions, contact lens (CL) lipid extracts, and CL surface topography between participants with and without meibomian gland dysfunction (MGD). Meibum study: Meibum was collected from all participants and studied via Langmuir-Blodgett (LB) deposition with subsequent Atomic Force Microscopy (AFM) visualization and surface roughness analysis. CL Study: Participants with and without MGD wore both etafilcon A and balafilcon A CLs in two different phases. CL lipid deposits were extracted and analyzed using pressure-area isotherms with the LB trough and CL surface topographies and roughness values were visualized using AFM. Meibum study: Non-MGD participant meibum samples showed larger, circular aggregates with lower surface roughness, whereas meibum samples from participants with MGD showed more lipid aggregates, greater size variability and higher surface roughness. CL Study: Worn CLs from participants with MGD had a few large tear film deposits with lower surface roughness, whereas non-MGD participant-worn lenses had many small lens deposits with higher surface roughness. Balafilcon A pore depths were shallower in MGD participant worn lenses when compared to non-MGD participant lenses. Isotherms of CL lipid extracts from MGD and non-MGD participants showed a seamless rise in surface pressure as area decreased; however, extracts from the two different lens materials produced different isotherms. MGD and non-MGD participant-worn CL deposition were found to differ in type, amount, and pattern of lens deposits. Lipids from MGD participants deposited irregularly whereas lipids from non-MGD participants showed more uniformity. Copyright © 2014 Spanish General Council of Optometry. Published by Elsevier Espana. All rights reserved.

  18. Electron microscopy observations of radiation damage in irradiated and annealed tungsten

    NASA Astrophysics Data System (ADS)

    Grzonka, J.; Ciupiński, Ł.; Smalc-Koziorowska, J.; Ogorodnikova, O. V.; Mayer, M.; Kurzydłowski, K. J.

    2014-12-01

    In the present work tungsten samples were irradiated with W6+ ions with a kinetic energy of 20 MeV in order to simulate radiation damage by fast neutrons. Two samples with cumulative damage of 2.3 and 6.36 displacements per atom were produced. The scanning transmission electron microscopy investigations were carried out in order to determine structure changes resulting from the irradiation. The evolution of the damage with post implantation annealing in the temperature range 673-1100 K was also assessed. Damage profiles were studied at cross-sections. Scanning transmission electron microscopy studies of the lamellae after annealing revealed aggregation of defects and rearrangement as well as partial healing of dislocations at higher temperatures. The results confirm the higher density of radiation-induced dislocations in the near surface area of the sample (1.8 * 1014 m-2) in comparison with a deeper damage area (1.5 * 1014 m-2). Significant decrease of dislocation density was observed after annealing with a concurrent growth of dislocation loops. Transmission electron microscopy analyses show that the dislocation loops are perfect dislocations with the Burgers vectors of b = ½[ 1 1 1].

  19. Application of Nomarski DIC and cathodoluminescence (CL) microscopy to building materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goetze, J., E-mail: goetze@mineral.tu-freiberg.de

    2009-07-15

    The present study discusses the potential of an integrated application of Nomarski differential interference contrast and cathodoluminescence microscopy for the investigation of building materials such as natural stone, cement, mortar and concrete. Nomarski differential interference contrast microscopy is a modern technique applied in materials sciences to visualize different phases and/or to image the surface relief on the scale of 50 nm. It is based on the principle of beam splitting by a double-crystal prism split, resulting in the superposition of laterally shifted wave fronts. In cathodoluminescence microscopy, the luminescence signal is excited by an electron beam and is generated bymore » different point defects within the material. Therefore, cathodoluminescence is a powerful method to characterize the defect structure of solid materials, to distinguish different phases and to reveal detailed information about their chemical composition. By combining Nomarski differential interference contrast and cathodoluminescence microscopy, textural, crystallographic and chemical information can be obtained from the same sample area in a polished thin section.« less

  20. Variable porosity in siliceous skeletons: Determination and importance

    USGS Publications Warehouse

    Hurd, D.C.; Wenkam, C.; Pankratz, H.S.; Fugate, J.

    1979-01-01

    Gas adsorption data were used to obtain the specific surface area and specific pore volume for a variety of biogenically precipitated silica semples. The results suggest that this material is finely divided and porous. This interp tation was corroborated by the use of transmission electron microscopy at magnifications up to 180,000. Copyright ?? 1979 AAAS.

  1. A simple large-scale synthesis of mesoporous In2O3 for gas sensing applications

    NASA Astrophysics Data System (ADS)

    Zhang, Su; Song, Peng; Yan, Huihui; Yang, Zhongxi; Wang, Qi

    2016-08-01

    In this paper, large-scale mesoporous In2O3 nanostructures were synthesized by a facile Lewis acid catalytic the furfural alcohol resin (FAR) template route for the high-yield. Their morphology and structure were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), differential thermal and thermogravimetry analysis (DSC-TG) and the Brunauer-Emmett-Teller (BET) approach. The as-obtained mesoporous In2O3 nanostructures possess excellent mesoporous and network structure, which increases the contact area with the gases, it is conducive for adsorption-desorption of gas on the surface of In2O3. The In2O3 particles and pores were both about 15 nm and very uniform. In gas-sensing measurements with target gases, the gas sensor based on mesoporous In2O3 nanostructures showed a good response, short response-recovery time, good selectivity and stability to ethanol. These properties are due to the large specific surface area of mesoporous structure. This synthetic method could use as a new design concept for functional mesoporous nanomaterials and for mass production.

  2. Three-dimensional interconnected porous graphitic carbon derived from rice straw for high performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Jin, Hong; Hu, Jingpeng; Wu, Shichao; Wang, Xiaolan; Zhang, Hui; Xu, Hui; Lian, Kun

    2018-04-01

    Three-dimensional interconnected porous graphitic carbon materials are synthesized via a combination of graphitization and activation process with rice straw as the carbon source. The physicochemical properties of the three-dimensional interconnected porous graphitic carbon materials are characterized by Nitrogen adsorption/desorption, Fourier-transform infrared spectroscopy, X-ray diffraction, Raman spectroscopy, Scanning electron microscopy and Transmission electron microscopy. The results demonstrate that the as-prepared carbon is a high surface area carbon material (a specific surface area of 3333 m2 g-1 with abundant mesoporous and microporous structures). And it exhibits superb performance in symmetric double layer capacitors with a high specific capacitance of 400 F g-1 at a current density of 0.1 A g-1, good rate performance with 312 F g-1 under a current density of 5 A g-1 and favorable cycle stability with 6.4% loss after 10000 cycles at a current density of 5 A g-1 in the aqueous electrolyte of 6M KOH. Thus, rice straw is a promising carbon source for fabricating inexpensive, sustainable and high performance supercapacitors' electrode materials.

  3. Facile synthesis high nitrogen-doped porous carbon nanosheet from pomelo peel and as catalyst support for nitrobenzene hydrogenation

    NASA Astrophysics Data System (ADS)

    Zuo, Pingping; Duan, Jiaqi; Fan, Huailin; Qu, Shijie; Shen, Wenzhong

    2018-03-01

    Nitrogen-doping porous carbon-based nanosheets were fabricated from pemole peel and melamine through hydrothermal route and carbonization. The pomelo peel with sponge-like natural structure was employed as carbon source, and melamine was used both as nitrogen precursors and as nanosheet structure directing. The morphology and chemical composition of the obtained porous carbon nanosheet carbon materials were characterized by scanning electron microscopy, thermogravimetric analyzer, Fourier transform infrared spectra, transmission electron microscopy, BET surface area measurement, X-ray photoelectron spectroscopy and X-ray powder diffraction. The result indicated that the nanosheet thickness, nitrogen-doped amount and surface area were determined by the ratio of pomelo peel to melamine and carbonization temperature. The catalytic nitrobenzene hydrogenation was evaluated after Pd was loaded on nitrogen-doping porous carbon-based nanosheet. The results showed Pd@PCN had almost 100% conversion and good cycling performance towards the hydrogenation of nitrobenzene due to the developed pore structure, high nitrogen-doping and well dispersed less Pd particle; it was superior to other nanomaterial supports and demonstrated great potential application.

  4. Influence of hydrothermal synthesis parameters on the properties of hydroxyapatite nanoparticles.

    PubMed

    Kuśnieruk, Sylwia; Wojnarowicz, Jacek; Chodara, Agnieszka; Chudoba, Tadeusz; Gierlotka, Stanislaw; Lojkowski, Witold

    2016-01-01

    Hydroxyapatite (HAp) nanoparticles of tunable diameter were obtained by the precipitation method at room temperature and by microwave hydrothermal synthesis (MHS). The following parameters of the obtained nanostructured HAp were determined: pycnometric density, specific surface area, phase purity, lattice parameters, particle size, particle size distribution, water content, and structure. HAp nanoparticle morphology and structure were determined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). X-ray diffraction measurements confirmed crystalline HAp was synthesized, which was pure in terms of phase. It was shown that by changing the synthesis parameters, the diameter of HAp nanoparticles could be controlled. The average diameter of the HAp nanoparticles was determined by Scherrer's equation via the Nanopowder XRD Processor Demo web application, which interprets the results of specific surface area and TEM measurements using the dark-field technique. The obtained nanoparticles with average particle diameter ranging from 8-39 nm were characterized by having homogeneous morphology with a needle shape and a narrow particle size distribution. Strong similarities were found when comparing the properties of some types of nanostructured hydroxyapatite with natural occurring apatite found in animal bones and teeth.

  5. Limitations of using Raman microscopy for the analysis of high-content-carbon-filled ethylene propylene diene monomer rubber.

    PubMed

    Ghanbari-Siahkali, Afshin; Almdal, Kristoffer; Kingshott, Peter

    2003-12-01

    The effects of laser irradiation on changes to the surface chemistry and structure of a commercially available ethylene propylene diene monomer (EPDM) rubber sample after Raman microscopy analysis was investigated. The Raman measurements were carried out with different levels of laser power on the sample, ranging from 4.55 mW to 0.09 mW. The surface of the EPDM was analyzed before and after laser exposure using X-ray photoelectron spectroscopy (XPS) and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. The techniques have surface probe depths of approximately < or = 10 nm and 1 microm, respectively. Both sets of analysis show that ingredients of the blended EPDM rubber "bloom" to the surface as a result of local heating that takes place due to the absorption of laser by carbon black during the Raman analysis. Scanning electron microscopy (SEM) analysis was also performed on the Raman analyzed areas to visually illustrate the effects created due to laser light exposure (i.e., burning marks). The change in surface chemistry also occurs in regions a few millimeters from the exposed sites, indicating that the effect is quite long range. However, this phenomenon has no major influence, as far as XPS or ATR-FTIR results disclose, on the backbone structure of the rubber sample. The results indicate that precautions should be taken when analyzing complex blended polymer samples using Raman spectroscopy.

  6. Chemical imaging of drug delivery systems with structured surfaces-a combined analytical approach of confocal raman microscopy and optical profilometry.

    PubMed

    Kann, Birthe; Windbergs, Maike

    2013-04-01

    Confocal Raman microscopy is an analytical technique with a steadily increasing impact in the field of pharmaceutics as the instrumental setup allows for nondestructive visualization of component distribution within drug delivery systems. Here, the attention is mainly focused on classic solid carrier systems like tablets, pellets, or extrudates. Due to the opacity of these systems, Raman analysis is restricted either to exterior surfaces or cross sections. As Raman spectra are only recorded from one focal plane at a time, the sample is usually altered to create a smooth and even surface. However, this manipulation can lead to misinterpretation of the analytical results. Here, we present a trendsetting approach to overcome these analytical pitfalls with a combination of confocal Raman microscopy and optical profilometry. By acquiring a topography profile of the sample area of interest prior to Raman spectroscopy, the profile height information allowed to level the focal plane to the sample surface for each spectrum acquisition. We first demonstrated the basic principle of this complementary approach in a case study using a tilted silica wafer. In a second step, we successfully adapted the two techniques to investigate an extrudate and a lyophilisate as two exemplary solid drug carrier systems. Component distribution analysis with the novel analytical approach was neither hampered by the curvature of the cylindrical extrudate nor the highly structured surface of the lyophilisate. Therefore, the combined analytical approach bears a great potential to be implemented in diversified fields of pharmaceutical sciences.

  7. Electrochemical and scanning probe microscopic characterization of spontaneously adsorbed organothiolate monolayers at gold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Sze-Shun Season

    1999-12-10

    This dissertation presented several results which add to the general knowledge base regarding organothiolates monolayer spontaneously adsorbed at gold films. Common to the body of this work is the use of voltammetric reductive resorption and variants of scanning probe microscopy to gain insight into the nature of the monolayer formation process as well as the resulting interface. The most significant result from this work is the success of using friction force microscopy to discriminate the end group orientation of monolayer chemisorbed at smooth gold surfaces with micrometer resolution (Chapter 4). The ability to detect the differences in the orientational dispositionmore » is demonstrated by the use PDMS polymer stamp to microcontact print an adlayer of n-alkanethiolate of length n in a predefine pattern onto a gold surface, followed by the solution deposition of a n-alkanethiol of n ± 1 to fill in the areas on the gold surface intentionally not coated by the stamping process. These two-component monolayers can be discriminated by using friction force microscopy which detects differences in friction contributed by the differences in the orientation of the terminal groups at surfaces. This success has recently led to the detection of the orientation differences at nanometer scale. Although the substrates examined in this work consisted entirely of smooth gold films, the same test can be performed on other smooth substrates and monolayer materials.« less

  8. Visualizing gold nanoparticle uptake in live cells with liquid scanning transmission electron microscopy.

    PubMed

    Peckys, Diana B; de Jonge, Niels

    2011-04-13

    The intracellular uptake of 30 nm diameter gold nanoparticles (Au-NPs) was studied at the nanoscale in pristine eukaryotic cells. Live COS-7 cells were maintained in a microfluidic chamber and imaged using scanning transmission electron microscopy. A quantitative image analysis showed that Au-NPs bound to the membranes of vesicles, possibly lysosomes, and occupied 67% of the available surface area. The vesicles accumulated to form a micrometer-sized cluster after 24 h of incubation. Two clusters were analyzed and found to consist of 117 ± 9 and 164 ± 4 NP-filled vesicles.

  9. Atom chip microscopy: A novel probe for strongly correlated materials

    NASA Astrophysics Data System (ADS)

    Kasch, Brian; Naides, Matthew; Turner, Richard; Ray, Ushnish; Lev, Benjamin

    2010-03-01

    Atom chip technology---substrates supporting micron-sized current-carrying wires that create magnetic microtraps near surfaces for thermal or degenerate gases of neutral atoms---will enable single-shot, large area detection of magnetic flux below the 10-7 flux quantum level. By harnessing the extreme sensitivity of Bose-Einstein condensates (BECs) to external perturbations, cryogenic atom chips could provide a magnetic flux detection capability that surpasses all other techniques by a factor of 10^2--10^3. We describe the merits of atom chip microscopy, our Rb BEC and atom chip apparatus, and prospects for imaging strongly correlated condensed matter materials.

  10. Freeze drying vs microwave drying-methods for synthesis of sinteractive thoria powders

    NASA Astrophysics Data System (ADS)

    Annie, D.; Chandramouli, V.; Anthonysamy, S.; Ghosh, Chanchal; Divakar, R.

    2017-02-01

    Thoria powders were synthesized by oxalate precipitation from an aqueous solution of the nitrate. The filtered precipitates were freeze dried or microwave dried before being calcined at 1073 K. The thoria powders obtained were characterized for crystallite size, specific surface area, bulk density, particle size distribution and residual carbon. Microstructure of the product was studied using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Sinterability of the synthesized powders was studied by measuring the density of the sintered compacts. Powders that can be consolidated and sintered to densities ∼96% theoretical density (TD) at 1773 K were obtained.

  11. Nanoparticle treated stainless steel filters for metal vapor sequestration

    DOE PAGES

    Murph, Simona E. Hunyadi; Larsen, George K.; Korinko, Paul; ...

    2016-12-07

    The ability to sequester vapor phase radioactive compounds during industrial processes reduces the exposure of workers and the environment to dangerous radioactive materials. Nanomaterials have a lot of potential in this area because they typically demonstrate size- and shape-dependent properties with higher reactivity than bulk. This is due to the increased surface area-to-volume ratio and quantum size effects. In this report, we developed a gold nanomaterial-treated stainless steel filter, namely wools and coupons, that can be efficiently used for zinc vapor sequestration. Without nanoparticle modification, stainless steel coupons do not react or alloy with Zn. Gold nanomaterials were grown ontomore » various stainless steel filters using solution chemistry that is amenable to scaling up. Materials were characterized by electron microscopy, inductively coupled plasma mass spectroscopy and dynamic light scattering before and after exposure to zinc vapors. X-ray diffraction, high-resolution transmission electron microscopy, energy dispersive x-ray spectroscopy mapping and ultraviolet-visible spectroscopy confirm the formation of gold-zinc alloys after Zn vapor exposure. Furthermore, the effect of surface topography on nanoparticle morphology, size and loading density were also investigated, and stainless steel surface defects were found to have an impact on the Au NP growth and subsequently Zn sequestration.« less

  12. Nanoparticle treated stainless steel filters for metal vapor sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murph, Simona E. Hunyadi; Larsen, George K.; Korinko, Paul

    The ability to sequester vapor phase radioactive compounds during industrial processes reduces the exposure of workers and the environment to dangerous radioactive materials. Nanomaterials have a lot of potential in this area because they typically demonstrate size- and shape-dependent properties with higher reactivity than bulk. This is due to the increased surface area-to-volume ratio and quantum size effects. In this report, we developed a gold nanomaterial-treated stainless steel filter, namely wools and coupons, that can be efficiently used for zinc vapor sequestration. Without nanoparticle modification, stainless steel coupons do not react or alloy with Zn. Gold nanomaterials were grown ontomore » various stainless steel filters using solution chemistry that is amenable to scaling up. Materials were characterized by electron microscopy, inductively coupled plasma mass spectroscopy and dynamic light scattering before and after exposure to zinc vapors. X-ray diffraction, high-resolution transmission electron microscopy, energy dispersive x-ray spectroscopy mapping and ultraviolet-visible spectroscopy confirm the formation of gold-zinc alloys after Zn vapor exposure. Furthermore, the effect of surface topography on nanoparticle morphology, size and loading density were also investigated, and stainless steel surface defects were found to have an impact on the Au NP growth and subsequently Zn sequestration.« less

  13. Reduction Expansion Synthesis as Strategy to Control Nitrogen Doping Level and Surface Area in Graphene

    PubMed Central

    Canty, Russell; Gonzalez, Edwin; MacDonald, Caleb; Osswald, Sebastian; Zea, Hugo; Luhrs, Claudia C.

    2015-01-01

    Graphene sheets doped with nitrogen were produced by the reduction-expansion (RES) method utilizing graphite oxide (GO) and urea as precursor materials. The simultaneous graphene generation and nitrogen insertion reactions are based on the fact that urea decomposes upon heating to release reducing gases. The volatile byproducts perform two primary functions: (i) promoting the reduction of the GO and (ii) providing the nitrogen to be inserted in situ as the graphene structure is created. Samples with diverse urea/GO mass ratios were treated at 800 °C in inert atmosphere to generate graphene with diverse microstructural characteristics and levels of nitrogen doping. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to study the microstructural features of the products. The effects of doping on the samples structure and surface area were studied by X-ray diffraction (XRD), Raman Spectroscopy, and Brunauer Emmet Teller (BET). The GO and urea decomposition-reduction process as well as nitrogen-doped graphene stability were studied by thermogravimetric analysis (TGA) coupled with mass spectroscopy (MS) analysis of the evolved gases. Results show that the proposed method offers a high level of control over the amount of nitrogen inserted in the graphene and may be used alternatively to control its surface area. To demonstrate the practical relevance of these findings, as-produced samples were used as electrodes in supercapacitor and battery devices and compared with conventional, thermally exfoliated graphene. PMID:28793618

  14. Lithium electrodeposition dynamics in aprotic electrolyte observed in situ via transmission electron microscopy

    DOE PAGES

    Leenheer, Andrew Jay; Jungjohann, Katherine Leigh; Zavadil, Kevin Robert; ...

    2015-03-18

    Electrodeposited metallic lithium is an ideal negative battery electrode, but nonuniform microstructure evolution during cycling leads to degradation and safety issues. A better understanding of the Li plating and stripping processes is needed to enable practical Li-metal batteries. Here we use a custom microfabricated, sealed liquid cell for in situ scanning transmission electron microscopy (STEM) to image the first few cycles of lithium electrodeposition/dissolution in liquid aprotic electrolyte at submicron resolution. Cycling at current densities from 1 to 25 mA/cm 2 leads to variations in grain structure, with higher current densities giving a more needle-like, higher surface area deposit. Themore » effect of the electron beam was explored, and it was found that, even with minimal beam exposure, beam-induced surface film formation could alter the Li microstructure. The electrochemical dissolution was seen to initiate from isolated points on grains rather than uniformly across the Li surface, due to the stabilizing solid electrolyte interphase surface film. As a result, we discuss the implications for operando STEM liquid-cell imaging and Li-battery applications.« less

  15. The Evolution of Silica Nanoparticle-polyester Coatings on Surfaces Exposed to Sunlight.

    PubMed

    Truong, Vi Khanh; Stefanovic, Miljan; Maclaughlin, Shane; Tobin, Mark; Vongsvivut, Jitraporn; Al Kobaisi, Mohammad; Crawford, Russell J; Ivanova, Elena P

    2016-10-11

    Corrosion of metallic surfaces is prevalent in the environment and is of great concern in many areas, including the military, transport, aviation, building and food industries, amongst others. Polyester and coatings containing both polyester and silica nanoparticles (SiO2NPs) have been widely used to protect steel substrata from corrosion. In this study, we utilized X-ray photoelectron spectroscopy, attenuated total reflection infrared micro-spectroscopy, water contact angle measurements, optical profiling and atomic force microscopy to provide an insight into how exposure to sunlight can cause changes in the micro- and nanoscale integrity of the coatings. No significant change in surface micro-topography was detected using optical profilometry, however, statistically significant nanoscale changes to the surface were detected using atomic force microscopy. Analysis of the X-ray photoelectron spectroscopy and attenuated total reflection infrared micro-spectroscopy data revealed that degradation of the ester groups had occurred through exposure to ultraviolet light to form COO·, -H2C·, -O·, -CO· radicals. During the degradation process, CO and CO2 were also produced.

  16. Quantitative investigation of red blood cell three-dimensional geometric and chemical changes in the storage lesion using digital holographic microscopy.

    PubMed

    Jaferzadeh, Keyvan; Moon, Inkyu

    2015-11-01

    Quantitative phase information obtained by digital holographic microscopy (DHM) can provide new insight into the functions and morphology of single red blood cells (RBCs). Since the functionality of a RBC is related to its three-dimensional (3-D) shape, quantitative 3-D geometric changes induced by storage time can help hematologists realize its optimal functionality period. We quantitatively investigate RBC 3-D geometric changes in the storage lesion using DHM. Our experimental results show that the substantial geometric transformation of the biconcave-shaped RBCs to the spherocyte occurs due to RBC storage lesion. This transformation leads to progressive loss of cell surface area, surface-to-volume ratio, and functionality of RBCs. Furthermore, our quantitative analysis shows that there are significant correlations between chemical and morphological properties of RBCs.

  17. Destructive behavior of iron oxide in projectile impact

    NASA Astrophysics Data System (ADS)

    Shang, Wang; Xiaochen, Wang; Quan, Yang; Zhongde, Shan

    2017-12-01

    The damage strain values of Q235-A surface oxide scale were obtained by scanning electron microscopy (SEM/EDS) and universal tensile testing machine. The finite element simulation was carried out to study the destruction effects of oxidation at different impact rates. The results show that the damage value of the oxide strain is 0.08%. With the increase of the projectile velocity, the damage area of the oxide scale is increased, and the damage area is composed of the direct destruction area and the indirect failure area. The indirect damage area is caused by the stress/strain to the surrounding expansion after the impact of the steel body.

  18. Charge collection kinetics on ferroelectric polymer surface using charge gradient microscopy

    DOE PAGES

    Choi, Yoon-Young; Tong, Sheng; Ducharme, Stephen P.; ...

    2016-05-03

    Here, a charge gradient microscopy (CGM) probe was used to collect surface screening charges on poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] thin films. These charges are naturally formed on unscreened ferroelectric domains in ambient condition. The CGM data were used to map the local electric current originating from the collected surface charges on the poled ferroelectric domains in the P(VDF-TrFE) thin films. Both the direction and amount of the collected current were controlled by changing the polarity and area of the poled domains. The endurance of charge collection by rubbing the CGM tip on the polymer film was limited to 20 scan cycles,more » after which the current reduced to almost zero. This degradation was attributed to the increase of the chemical bonding strength between the external screening charges and the polarization charges. Once this degradation mechanism is mitigated, the CGM technique can be applied to efficient energy harvesting devices using polymer ferroelectrics.« less

  19. Structural and morphological study of Fe-doped Bi-based superconductor

    NASA Astrophysics Data System (ADS)

    Singh, Yadunath; Kumar, Rohitash

    2018-05-01

    In the present work, we report the study of iron-doped Bi-based superconductor sample with stoichiometric composition of Bi2Sr2Can-1(Cu1-x Fex)3O2n+4 where n=3 and x = 0.7. This sample was prepared by grinding the precursor oxides in the Ball mill for 6 hours continuous at the rate of 400 rpm for a proper mixing and to obtain the required grain size. Then the solid-state reaction method was used to prepare the sample. X-ray diffraction (XRD) and scanning electron microscopy (SEM) in combination with energy dispersive X-ray fluorescence analysis (EDX) were performed for determination of the crystal structure, surface morphology and trace the material elements of samples, respectively. The surface microscopy data were collected over a selected area of the surface of the material and a two-dimensional image generated that displays spatial variations in properties including chemical characterization and orientation of materials.

  20. Enhanced reactivity of nanoscale iron particles through a vacuum annealing process

    NASA Astrophysics Data System (ADS)

    Riba, Olga; Barnes, Robert J.; Scott, Thomas B.; Gardner, Murray N.; Jackman, Simon A.; Thompson, Ian P.

    2011-10-01

    A reactivity study was undertaken to compare and assess the rate of dechlorination of chlorinated aliphatic hydrocarbons (CAHs) by annealed and non-annealed nanoscale iron particles. The current study aims to resolve the uncertainties in recently published work studying the effect of the annealing process on the reduction capability of nanoscale Fe particles. Comparison of the normalized rate constants (m2/h/L) obtained for dechlorination reactions of trichloroethene (TCE) and cis-1,2-dichloroethene (cis-1,2-DCE) indicated that annealing nanoscale Fe particles increases their reactivity 30-fold. An electron transfer reaction mechanism for both types of nanoscale particles was found to be responsible for CAH dechlorination, rather than a reduction reaction by activated H2 on the particle surface (i.e., hydrogenation, hydrogenolysis). Surface analysis of the particulate material using X-ray diffraction (XRD) and transmission electron microscopy (TEM) together with surface area measurement by Brunauer, Emmett, Teller (BET) indicate that the vacuum annealing process decreases the surface area and increases crystallinity. BET surface area analysis recorded a decrease in nanoscale Fe particle surface area from 19.0 to 4.8 m2/g and crystallite dimensions inside the particle increased from 8.7 to 18.2 nm as a result of annealing.

  1. Electrodeposition of Highly Porous Pt Nanoparticles Studied by Quantitative 3D Electron Tomography: Influence of Growth Mechanisms and Potential Cycling on the Active Surface Area.

    PubMed

    Ustarroz, Jon; Geboes, Bart; Vanrompay, Hans; Sentosun, Kadir; Bals, Sara; Breugelmans, Tom; Hubin, Annick

    2017-05-17

    Nanoporous Pt nanoparticles (NPs) are promising fuel cell catalysts due to their large surface area and increased electrocatalytic activity toward the oxygen reduction reaction (ORR). Herein, we report on the influence of the growth mechanisms on the surface properties of electrodeposited Pt dendritic NPs with large surface areas. The electrochemically active surface was studied by hydrogen underpotential deposition (H UPD) and compared for the first time to high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) quantitative 3D electron tomography of individual nanoparticles. Large nucleation overpotential leads to a large surface coverage of roughened spheroids, which provide a large roughness factor (R f ) but low mass-specific electrochemically active surface area (EASA). Lowering the nucleation overpotential leads to highly porous Pt NPs with pores stretching to the center of the structure. At the expense of smaller R f , the obtained EASA values of these structures are in the range of those of large surface area supported fuel cell catalysts. The active surface area of the Pt dendritic NPs was measured by electron tomography, and it was found that the potential cycling in the H adsorption/desorption and Pt oxidation/reduction region, which is generally performed to determine the EASA, leads to a significant reduction of that surface area due to a partial collapse of their dendritic and porous morphology. Interestingly, the extrapolation of the microscopic tomography results in macroscopic electrochemical parameters indicates that the surface properties measured by H UPD are comparable to the values measured on individual NPs by electron tomography after the degradation caused by the H UPD measurement. These results highlight that the combination of electrochemical and quantitative 3D surface analysis techniques is essential to provide insights into the surface properties, the electrochemical stability, and, hence, the applicability of these materials. Moreover, it indicates that care must be taken with widely used electrochemical methods of surface area determination, especially in the case of large surface area and possibly unstable nanostructures, since the measured surface can be strongly affected by the measurement itself.

  2. Following the surface response of caffeine cocrystals to controlled humidity storage by atomic force microscopy.

    PubMed

    Cassidy, A M C; Gardner, C E; Jones, W

    2009-09-08

    Active pharmaceutical ingredient (API) stability in solid state tablet formulation is frequently a function of the relative humidity (RH) environment in which the drug is stored. Caffeine is one such problematic API. Previously reported caffeine cocrystals, however, were found to offer increased resistance to caffeine hydrate formation. Here we report on the use of atomic force microscopy (AFM) to image the surface of two caffeine cocrystal systems to look for differences between the surface and bulk response of the cocrystal to storage in controlled humidity environments. Bulk responses have previously been assessed by powder X-ray diffraction. With AFM, pinning sites were identified at step edges on caffeine/oxalic acid, with these sites leading to non-uniform step movement on going from ambient to 0% RH. At RH >75%, areas of fresh crystal growth were seen on the cocrystal surface. In the case of caffeine/malonic acid the cocrystals were observed to absorb water anisotropically after storage at 75% RH for 2 days, affecting the surface topography of the cocrystal. These results show that AFM expands on the data gathered by bulk analytical techniques, such as powder X-ray diffraction, by providing localised surface information. This surface information may be important for better predicting API stability in isolation and at a solid state API-excipient interface.

  3. Adsorption of cadmium by activated carbon cloth: influence of surface oxidation and solution pH.

    PubMed

    Rangel-Mendez, J R; Streat, M

    2002-03-01

    The surface of activated carbon cloth (ACC), based on polyacrylonitrile fibre as a precursor, was oxidised using nitric acid, ozone and electrochemical oxidation to enhance cadmium ion exchange capacity. Modified adsorbents were physically and chemically characterised by pH titration, direct titration, X-ray photoelectron spectroscopy, elemental analysis, surface area and porosimetry, and scanning electron microscopy. BET surface area decreased after oxidation, however, the total ion exchange capacity increased by a factor of approximately 3.5 compared to the commercial as-received ACC. A very significant increase in cadmium uptake, by a factor of 13, was observed for the electrochemically oxidised ACC. Equilibrium sorption isotherms were determined at pH 4, 5 and 6 and these showed that cadmium uptake increased with increasing pH. There was clear evidence of physical damage to ozone-oxidised fibre, however, acid and electrochemically oxidised samples were completely stable.

  4. Key factor affecting the structural and textural properties of ZSM-5/MCM-41 composite

    NASA Astrophysics Data System (ADS)

    Boukoussa, Bouhadjar; Aouad, Nafissa; Hamacha, Rachida; Bengueddach, Abdelkader

    2015-03-01

    ZSM-5/MCM-41 micro/mesoporous composite materials were synthesized by the hydrothermal technique with alkali-treated ZSM-5 zeolite as source of silica and aluminum and characterized by various physico-chemical techniques such as X-ray diffraction (XRD), nitrogen sorption at 77 K, transmission electronic microscopy (TEM), FTIR spectroscopy and NH3 temperature programmed desorption (TPD) techniques. The effect of concentration of CTAB in the synthesis of these solids has been investigated, the mesopore volume, surface area and surface acidity decrease with increasing the concentration of CTAB. Increasing the CTAB concentration causes the recrystallization of zeolite ZSM-5 and it disadvantage the formation of mesoporous materials MCM-41. The catalytic activity of ZSM-5/MCM-41 materials has been evaluated in the Friedel-Crafts acylation of anisole with benzoyl chloride as alkylating agent. The results revealed the reaction to be influenced by surface area, pore volume and surface acidity.

  5. Interaction of thrombocytes with poly(ether imide): The influence of processing.

    PubMed

    Braune, S; Lange, M; Richau, K; Lützow, K; Weigel, T; Jung, F; Lendlein, A

    2010-01-01

    The processing of polymers for blood contacting devices can have a major influence on surface properties. In this study, we fabricated poly(ether imide) (PEI) membranes and films to investigate the effects of the processing on physicochemical surface properties by atomic force microscopy (AFM), scanning electron microscopy, contact angle as well as zeta potential measurements. A static platelet adhesion test was performed to analyze the thrombogenicity of both devices. While contact angle measurements showed similar levels of hydrophobicity and zeta potential values were equivalent, mean surface roughness as well as surface energies in the dispersive part were found to be increased for the PEI membrane. The static platelet adhesion test showed a significantly decreased number of adherent platelets per surface area on the PEI film (178.98 ± 102.70/45000 μm2) compared to the PEI membrane (504 ± 314.27/45000μm2) and, consequently, revealed evidence for higher thrombogenicity of the PEI membrane. This study shows that processing can have a significant effect on platelet adhesion to biomaterials, even though, molar weight was identical. Thrombogenicity of polymer-based cardiovascular devices, therefore, have to be evaluated at the final product level, following the entire processing procedure.

  6. Preparation and recognition of surface molecularly imprinted core-shell microbeads for protein in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Lu, Yan; Yan, Chang-Ling; Gao, Shu-Yan

    2009-04-01

    In this paper, a surface molecular imprinting technique was reported for preparing core-shell microbeads of protein imprinting, and bovine hemoglobin or bovine serum albumin were used as model proteins for studying the imprinted core-shell microbeads. 3-Aminophenylboronic acid (APBA) was polymerized onto the surface of polystyrene microbead in the presence of the protein templates to create protein-imprinted core-shell microbeads. The various samples were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET) methods. The effect of pH on rebinding of the template hemoglobin, the specific binding and selective recognition were studied for the imprinted microbeads. The results show that the bovine hemoglobin-imprinted core-shell microbeads were successfully created. The shell was a sort of imprinted thin films with porous structure and larger surface areas. The imprinted microbeads have good selectivity for templates and high stability. Due to the recognition sites locating at or closing to the surface, these imprinted microbeads have good property of mass-transport. Unfortunately, the imprint technology was not successfully applied to imprinting bovine serum albumin (BSA).

  7. Collagenous microstructure of the glenoid labrum and biceps anchor

    PubMed Central

    Hill, A M; Hoerning, E J; Brook, K; Smith, C D; Moss, J; Ryder, T; Wallace, A L; Bull, A M J

    2008-01-01

    The glenoid labrum is a significant passive stabilizer of the shoulder joint. However, its microstructural form remains largely unappreciated, particularly in the context of its variety of functions. The focus of labral microscopy has often been histology and, as such, there is very little appreciation of collagen composition and arrangement of the labrum, and hence the micromechanics of the structure. On transmission electron microscopy, significant differences in diameter, area and perimeter were noted in the two gross histological groups of collagen fibril visualized; this suggests a heterogeneous collagenous composition with potentially distinct mechanical function. Scanning electron microscopy demonstrated three distinct zones of interest: a superficial mesh, a dense circumferential braided core potentially able to accommodate hoop stresses, and a loosely packed peri-core zone. Confocal microscopy revealed an articular surface fine fibrillar mesh potentially able to reduce surface friction, bundles of circumferential encapsulated fibres in the bulk of the tissue, and bone anchoring fibres at the osseous interface. Varying microstructure throughout the depth of the labrum suggests a role in accommodating different types of loading. An understanding of the labral microstructure can lead to development of hypotheses based upon an appreciation of this component of material property. This may aid an educated approach to surgical timing and repair. PMID:18429974

  8. Structural and Morphological Properties of Carbon Supports: Effect of Catalyst degradation, ECS Transactions 33(1), 425 (2010)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A. Patel; K. Artyushkova; P. Atanassov

    The object of this work was to identify correlations between performance losses of Pt electrocatalysts on carbon support materials and the chemical and morphological parameters that describe them. Accelerated stress testing, with an upper potential of 1.2 V, was used to monitor changes to cathode properties, including kinetic performance and effective platinum surface area losses. The structure and chemical compositions were studied using X-ray Photoelectron Spectroscopy and Scanning Electron Microscopy coupled with Digital Image Processing. As this is an ongoing study, it is difficult to draw firm conclusions, though a trend between support surface area overall performance loss was foundmore » to exist.« less

  9. Structural and Morphological Properties of Carbon Supports: Effect on Catalyst Degradation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, Anant; Artyushkova, Kateryna; Atanassov, Plamen

    2010-07-01

    The object of this work was to identify correlations between performance losses of Pt electrocatalysts on carbon support materials and the chemical and morphological parameters that describe them. Accelerated stress testing, with an upper potential of 1.2 V, was used to monitor changes to cathode properties, including kinetic performance and effective platinum surface area losses. The structure and chemical compositions were studied using X-ray Photoelectron Spectroscopy and Scanning Electron Microscopy coupled with Digital Image Processing. As this is an ongoing study, it is difficult to draw firm conclusions, though a trend between support surface area overall performance loss was foundmore » to exist.« less

  10. Scanning electron microscopy of the vestibular end organs. [morphological indexes of inner ear anatomy and microstructure

    NASA Technical Reports Server (NTRS)

    Lindeman, H. H.; Ades, H. W.; West, R. W.

    1973-01-01

    The vestibular end organs, after chemical fixation, were freeze dried, coated with gold and palladium, and studied in the scanning microscope. Scanning microscopy gives a good three dimensional view of the sensory areas and allows study of both gross anatomy and microstructures. Cross anatomical features of the structure of the ampullae are demonstrated. The form of the statoconia in different species of animals is shown. New aspects of the structure of the sensory hairs are revealed. The hair bundles in the central areas of the cristae and in the striola of the maculae differ structurally from the hair bundles at the periphery of the sensory regions. Furthermore, some hair bundles consisting of very short stereocilia were observed. The relationship between the cupula and the statoconial membrane to the epithelial surface is discussed.

  11. Imaging charge carriers in potential-induced degradation defects of c-Si solar cells by scanning capacitance microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, C. -S.; Xiao, C.; Moutinho, H. R.

    We report on nm-resolution imaging of charge-carrier distribution around local potential-induced degradation (PID) shunting defects using scanning capacitance microscopy. We imaged on cross sections of heavily field-degraded module areas, cored out and selected by mm-scale photoluminescence imaging. We found localized areas with abnormal carrier behavior induced by the PID defects: the apparent n-type carrier extends vertically into the absorber to ~1-2 um from the cell surface, and laterally in similar lengths; in defect-free areas, the n-type carrier extends ~0.5 um, which is consistent with the junction depth. For comparison, we also investigated areas of the same module exhibiting the leastmore » PID stress, and we found no such heavily damaged junction area. Instead, we found slightly abnormal carrier behavior, where the carrier-type inversion in the absorber did not occur, but the p-type carrier concentration changed slightly in a much smaller lateral length of ~300 nm. These nano-electrical findings may indicate a possible mechanism that the existing extended defects, which may not be significantly harmful to cell performance, can be changed by PID to heavily damaged junction areas.« less

  12. Imaging charge carriers in potential-induced degradation defects of c-Si solar cells by scanning capacitance microscopy

    DOE PAGES

    Jiang, C. -S.; Xiao, C.; Moutinho, H. R.; ...

    2018-02-13

    We report on nm-resolution imaging of charge-carrier distribution around local potential-induced degradation (PID) shunting defects using scanning capacitance microscopy. We imaged on cross sections of heavily field-degraded module areas, cored out and selected by mm-scale photoluminescence imaging. We found localized areas with abnormal carrier behavior induced by the PID defects: the apparent n-type carrier extends vertically into the absorber to ~1-2 um from the cell surface, and laterally in similar lengths; in defect-free areas, the n-type carrier extends ~0.5 um, which is consistent with the junction depth. For comparison, we also investigated areas of the same module exhibiting the leastmore » PID stress, and we found no such heavily damaged junction area. Instead, we found slightly abnormal carrier behavior, where the carrier-type inversion in the absorber did not occur, but the p-type carrier concentration changed slightly in a much smaller lateral length of ~300 nm. These nano-electrical findings may indicate a possible mechanism that the existing extended defects, which may not be significantly harmful to cell performance, can be changed by PID to heavily damaged junction areas.« less

  13. Self-organized TiO2 nanotube arrays in the photocatalytic degradation of methylene blue under UV light irradiation

    NASA Astrophysics Data System (ADS)

    Chung, Eun Hyuk; Baek, Seong Rim; Yu, Seong Mi; Kim, Jong Pil; Hong, Tae Eun; Kim, Hyun Gyu; Bae, Jong-Seong; Jeong, Euh Duck; Khan, F. Nawaz; Jung, Ok-sang

    2015-04-01

    Nanostructured titanium dioxide (NTiO2) is known to possess efficient photocatalytic activity and to have diverse applications in many fields due to its chemical stability, high surface area/volume ratio, high transmittance, and high refractive index in the visible and the near-ultraviolet regions. These facts prompted us to develop TiO2 nanotube (TiO2 NT) arrays through electrochemical anodic oxidation involving different electrolytes comprised of phosphoric acid — hydrofluoric acid aqueous systems by varying the voltage and the time. The annealing temperature of the nanotubes, TiO2 NTs, were varied to modify the surface morphology and were characterized by using X-ray diffraction and scanning electron microscopy. Scanning electron microscopy and X-ray diffraction results showed that the samples had uniform morphologies and good crystalline structures of the anatase phase at lower annealing temperatures and of the rutile phase at higher annealing temperatures. A secondary-ion mass-spectrometry analysis was used to investigate the surface atoms and to conduct a depth profile analysis of the TiO2 NTs. The efficiency of the photocatalytic activity of the TiO2 NT arrays in degrading methylene blue (MB) was investigated under UV-Vis light irradiation. The maximum photocatalytic activity was achieved for the samples with lower annealing temperatures due to their being in the anatase phase and having a higher surface area and a smaller crystal size, which play important roles in the degradation of organic pollutants.

  14. Reflectance confocal microscopy vs. standardized skin surface biopsy for measuring the density of Demodex mites.

    PubMed

    Turgut Erdemir, A; Gurel, M S; Koku Aksu, A E; Bilgin Karahalli, F; Incel, P; Kutlu Haytoğlu, N S; Falay, T

    2014-11-01

    Reflectance confocal microscopy (RCM) has been recently shown to be effective for measuring the Demodex mite density. To compare and demonstrate the advantages and disadvantages of standardized skin surface biopsy (SSSB) and RCM for measuring the density of Demodex mites. Forty-eight patients (30 female, 18 male) and 47 healthy controls (30 female, 17 male) were enrolled in the study. The patients diagnoses were pityriasis folliculorum (n = 40), papulopustulary rosecea (n = 7) and erythema-telengiectatic rosacea (n = 1). The area with the most intense erythema on the right cheek was selected for imaging with RCM (VivaScope 3000) and SSSB. Forty-two patients demonstrated high Demodex density [(Dd) > 5 mites/cm(2) ] with SSSB (85.7%). RCM identified demodicosis in 48 patients (100%). The mean Dd measured with RCM (409.8 ± 209.2) was significantly higher than SSSB (15.33 ± 18.1) (P < 0.001). In the patients, RCM demonstrated the mean number of mites 40.90 ± 20.9 and 4.11 ± 6.4 in the controls per 10 mm(2) area. The corresponding mean number of 2.63 ± 0.77 mites was detected in the infested follicles per area of view compared to a mean of 0.77 ± 0.98 mites in the infested follicles in the controls (P < 0.001). Reflectance confocal microscopy is a fast, direct and noninvasive method for Demodex-associated diseases and it is superior to SSSB for Demodex mite detection. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Screening hydroxyapatite for cadmium and lead immobilization in aqueous solution and contaminated soil: The role of surface area.

    PubMed

    Li, Hongying; Guo, Xisheng; Ye, Xinxin

    2017-02-01

    Hydroxyapatite (HAP) has been widely used to immobilize many cationic metals in water and soils. The specific reason why an increase in the surface area of HAP enhances cadmium (Cd) uptake, but has no effect on lead (Pb) uptake, is not clear. The aim of this study was to determine the factors causing the differences in sorption behavior between Cd and Pb by evaluating HAPs with different surface areas. We synthesized HAPs with two different surface areas, which were characterized by X-ray diffraction, N 2 adsorption, and scanning electron microscopy, and then evaluated them as sorbents for Cd and Pb removal by testing in single and binary systems. The sorption capacity of large surface area HAP (1.85mmol/g) for Cd in the single-metal system was higher than that of small surface area HAP (0.64mmol/g), but there were no differences between single- and binary-metal solutions containing Pb. After the Cd experiments, the HAP retained a stable structure and intact morphology, which promotes the accessibility of reactive sites for Cd. However, a newly formed precipitate covered the surface and blocked the channels in the presence of Pb, which reduced the number of potential adsorption sites on HAP for Cd and Pb. Remediation experiments using Cd- and Pb-contaminated soil produced similar results to the solution tests. These results indicate that alterations of the structure and morphology during the reaction is an important factor influencing metal sorption to HAP. Copyright © 2016. Published by Elsevier B.V.

  16. Mechanical response of dental cements as determined by nanoindentation and scanning electron microscopy.

    PubMed

    Saghiri, Mohammad Ali; Nazari, Amir; Garcia-Godoy, Franklin; Asatourian, Armen; Malekzadeh, Mansour; Elyasi, Maryam

    2013-12-01

    This study evaluated the effects of nanoindentation on the surface of white mineral trioxide aggregate (WMTA), Bioaggregate and Nano WMTA cements. Cements were mixed according to the manufacturer directions, condensed inside glass tubes, and randomly divided into three groups (n = 8). Specimens were soaked in synthetic tissue fluid (pH = 7.4) and incubated for 3 days. Cement pellets were subjected to nanoindentation tests and observed by scanning electron microscopy. Then, the images were processed and the number of cracks and total surface area of defects on the surface were calculated and analyzed using ImageJ. Data were submitted to one-way analysis of variance and a post hoc Tukey's test. The lowest number of cracks and total surface of defects were detected in Nano WMTA samples; however, it was not significantly different from WMTA samples (p = 0.588), while the highest values were noticed in Bioaggregate specimens that were significantly different from Nano WMTA and WMTA (p = 0.0001). The surface of WMTA and Nano WMTA showed more resistance after exposure to nano-compressive forces which indicated a better surface tolerance against these forces and crack formation. This suggests these substances are more tolerant cement materials which can predictably withstand loaded situations in a clinical scenario.

  17. Ultrasonically treated multi-walled carbon nanotubes (MWCNTs) as PtRu catalyst supports for methanol electrooxidation

    NASA Astrophysics Data System (ADS)

    Yang, Chunwei; Hu, Xinguo; Wang, Dianlong; Dai, Changsong; Zhang, Liang; Jin, Haibo; Agathopoulos, Simeon

    In the quest of fabricating supported catalysts, experimental results of transmission electron microscopy, Raman and infrared spectroscopy indicate that ultrasonic treatment effectively functionalizes multi-walled carbon nanotubes (MWCNTs), endowing them with groups that can act as nucleation sites which can favor well-dispersed depositions of PtRu clusters on their surface. Ultrasonic treatment seems to be superior than functionalization via regular refluxing. This is confirmed by the determination of the electrochemistry active surface area (ECA) and the CO-tolerance performance of the PtRu catalysts, measured by adsorbed CO-stripping voltammetry in 0.5 M sulfuric acid solution, and the real surface area of the PtRu catalysts, evaluated by Brunauer-Emmett-Teller (BET) measurements. Finally, the effectiveness for methanol oxidation is assessed by cyclic voltammetry (CV) in a sulfuric acid and methanol electrolyte.

  18. Evaluation of Human Corneal Lenticule Quality After SMILE With Different Cap Thicknesses Using Scanning Electron Microscopy.

    PubMed

    Weng, Shengbei; Liu, Manli; Yang, Xiaonan; Liu, Fang; Zhou, Yugui; Lin, Haiqin; Liu, Quan

    2018-01-01

    To evaluate the surface characteristics of lenticules created by small-incision lenticule extraction (SMILE) with different cap thicknesses. This prospective study included 20 consecutive patients who underwent bilateral SMILE. Surface regularity of the extracted corneal lenticule was analyzed using scanning electron microscopy (SEM) combined with 2 methods: qualitative and quantitative regularity. Qualitative regularity of SEM images was graded by masked observers using an established scoring system. Quantitative regularity of SEM images was assessed by counting the total number and areas of tissue bridges using Image-Pro Plus software. Four different cap thickness of 120, 130, 140, and 150 μm were compared. Refractive outcomes of patients were measured at baseline and 1 month after surgery. As 10 specimens were not analyzable, only 30 eyes were included. Postoperatively, all eyes had postoperative uncorrected distance visual acuity of 20/20 or better; 43% had an unchanged corrected distance visual acuity; 43% gained 1 line; 10% lost 1 line. Ultrastructurally, surface irregularity was primarily caused by tissue bridges. The average surface regularity score obtained was 10.87 ± 2.40 for 120 μm, 10.78 ± 2.60 for 130 μm, 8.76 ± 2.16 for 140 μm, and 8.70 ± 2.66 for 150 μm (P < 0.001). The total number and areas of tissue bridges of 120 to 130 μm were significantly less than 140 to 150 μm (P < 0.05). Surface regularity decreased as cap thickness increased (P < 0.05). There is smoother appearance of the lenticular surface as seen through SEM when a thin cap is created compared with a thick cap qualitatively and quantitatively.

  19. Modified Ni-Cu catalysts for ethanol steam reforming

    NASA Astrophysics Data System (ADS)

    Dan, M.; Mihet, M.; Almasan, V.; Borodi, G.; Katona, G.; Muresan, L.; Lazar, M. D.

    2013-11-01

    Three Ni-Cu catalysts, having different Cu content, supported on γ-alumina were synthesized by wet co-impregnation method, characterized and tested in the ethanol steam reforming (ESR) reaction. The catalysts were characterized for determination of: total surface area and porosity (N2 adsorption - desorption using BET and Dollimer Heal methods), Ni surface area (hydrogen chemisorption), crystallinity and Ni crystallites size (X-Ray Diffraction), type of catalytic active centers (Hydrogen Temperature Programmed Reduction). Total surface area and Ni crystallites size are not significantly influenced by the addition of Cu, while Ni surface area is drastically diminished by increasing of Cu concentration. Steam reforming experiments were performed at atmospheric pressure, temperature range 150-350°C, and ethanol - water molar ration of 1 at 30, using Ar as carrier gas. Ethanol conversion and hydrogen production increase by the addition of Cu. At 350°C there is a direct connection between hydrogen production and Cu concentration. Catalysts deactivation in 24h time on stream was studied by Transmission Electron Microscopy (TEM) and temperature-programmed reduction (TPR) on used catalysts. Coke deposition was observed at all studied temperatures; at 150°C amorphous carbon was evidenced, while at 350°C crystalline, filamentous carbon is formed.

  20. Toward surface quantification of liver fibrosis progression

    NASA Astrophysics Data System (ADS)

    He, Yuting; Kang, Chiang Huen; Xu, Shuoyu; Tuo, Xiaoye; Trasti, Scott; Tai, Dean C. S.; Raja, Anju Mythreyi; Peng, Qiwen; So, Peter T. C.; Rajapakse, Jagath C.; Welsch, Roy; Yu, Hanry

    2010-09-01

    Monitoring liver fibrosis progression by liver biopsy is important for certain treatment decisions, but repeated biopsy is invasive. We envision redefinition or elimination of liver biopsy with surface scanning of the liver with minimally invasive optical methods. This would be possible only if the information contained on or near liver surfaces accurately reflects the liver fibrosis progression in the liver interior. In our study, we acquired the second-harmonic generation and two-photon excitation fluorescence microscopy images of liver tissues from bile duct-ligated rat model of liver fibrosis. We extracted morphology-based features, such as total collagen, collagen in bile duct areas, bile duct proliferation, and areas occupied by remnant hepatocytes, and defined the capsule and subcapsular regions on the liver surface based on image analysis of features. We discovered a strong correlation between the liver fibrosis progression on the anterior surface and interior in both liver lobes, where biopsy is typically obtained. The posterior surface exhibits less correlation with the rest of the liver. Therefore, scanning the anterior liver surface would obtain similar information to that obtained from biopsy for monitoring liver fibrosis progression.

  1. Quantification of surface displacements and electromechanical phenomena via dynamic atomic force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balke, Nina; Jesse, Stephen; Yu, Pu

    Detection of dynamic surface displacements associated with local changes in material strain provides access to a number of phenomena and material properties. Contact resonance-enhanced methods of atomic force microscopy (AFM) have been shown capable of detecting ~1–3 pm-level surface displacements, an approach used in techniques such as piezoresponse force microscopy, atomic force acoustic microscopy, and ultrasonic force microscopy. Here, based on an analytical model of AFM cantilever vibrations, we demonstrate a guideline to quantify surface displacements with high accuracy by taking into account the cantilever shape at the first resonant contact mode, depending on the tip–sample contact stiffness. The approachmore » has been experimentally verified and further developed for piezoresponse force microscopy (PFM) using well-defined ferroelectric materials. These results open up a way to accurate and precise measurements of surface displacement as well as piezoelectric constants at the pm-scale with nanometer spatial resolution and will allow avoiding erroneous data interpretations and measurement artifacts. Furthermore, this analysis is directly applicable to all cantilever-resonance-based scanning probe microscopy (SPM) techniques.« less

  2. Quantification of surface displacements and electromechanical phenomena via dynamic atomic force microscopy

    DOE PAGES

    Balke, Nina; Jesse, Stephen; Yu, Pu; ...

    2016-09-15

    Detection of dynamic surface displacements associated with local changes in material strain provides access to a number of phenomena and material properties. Contact resonance-enhanced methods of atomic force microscopy (AFM) have been shown capable of detecting ~1–3 pm-level surface displacements, an approach used in techniques such as piezoresponse force microscopy, atomic force acoustic microscopy, and ultrasonic force microscopy. Here, based on an analytical model of AFM cantilever vibrations, we demonstrate a guideline to quantify surface displacements with high accuracy by taking into account the cantilever shape at the first resonant contact mode, depending on the tip–sample contact stiffness. The approachmore » has been experimentally verified and further developed for piezoresponse force microscopy (PFM) using well-defined ferroelectric materials. These results open up a way to accurate and precise measurements of surface displacement as well as piezoelectric constants at the pm-scale with nanometer spatial resolution and will allow avoiding erroneous data interpretations and measurement artifacts. Furthermore, this analysis is directly applicable to all cantilever-resonance-based scanning probe microscopy (SPM) techniques.« less

  3. Influence of leaching on surface composition, microstructure, and valence band of single grain icosahedral Al-Cu-Fe quasicrystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowe, M.; McGrath, R.; Sharma, H. R.

    The use of quasicrystals as precursors to catalysts for the steam reforming of methanol is potentially one of the most important applications of these new materials. To develop application as a technology requires a detailed understanding of the microscopic behavior of the catalyst. Here, we report the effect of leaching treatments on the surface microstructure, chemical composition, and valence band of the icosahedral (i-) Al-Cu-Fe quasicrystal in an attempt to prepare a model catalyst. The high symmetry fivefold surface of a single grain i-Al-Cu-Fe quasicrystal was leached with NaOH solution for varying times, and the resulting surface was characterized bymore » x-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The leaching treatments preferentially remove Al producing a capping layer consisting of Fe and Cu oxides. The subsurface layer contains elemental Fe and Cu in addition to the oxides. The quasicrystalline bulk structure beneath remains unchanged. The subsurface gradually becomes Fe{sub 3}O{sub 4} rich with increasing leaching time. The surface after leaching exhibits micron sized dodecahedral cavities due to preferential leaching along the fivefold axis. Nanoparticles of the transition metals and their oxides are precipitated on the surface after leaching. The size of the nanoparticles is estimated by high resolution transmission microscopy to be 5-20 nm, which is in agreement with the AFM results. Selected area electron diffraction (SAED) confirms the crystalline nature of the nanoparticles. SAED further reveals the formation of an interface between the high atomic density lattice planes of nanoparticles and the quasicrystal. These results provide an important insight into the preparation of model catalysts of nanoparticles for steam reforming of methanol.« less

  4. Large-scale Scanning Transmission Electron Microscopy (Nanotomy) of Healthy and Injured Zebrafish Brain.

    PubMed

    Kuipers, Jeroen; Kalicharan, Ruby D; Wolters, Anouk H G; van Ham, Tjakko J; Giepmans, Ben N G

    2016-05-25

    Large-scale 2D electron microscopy (EM), or nanotomy, is the tissue-wide application of nanoscale resolution electron microscopy. Others and we previously applied large scale EM to human skin pancreatic islets, tissue culture and whole zebrafish larvae(1-7). Here we describe a universally applicable method for tissue-scale scanning EM for unbiased detection of sub-cellular and molecular features. Nanotomy was applied to investigate the healthy and a neurodegenerative zebrafish brain. Our method is based on standardized EM sample preparation protocols: Fixation with glutaraldehyde and osmium, followed by epoxy-resin embedding, ultrathin sectioning and mounting of ultrathin-sections on one-hole grids, followed by post staining with uranyl and lead. Large-scale 2D EM mosaic images are acquired using a scanning EM connected to an external large area scan generator using scanning transmission EM (STEM). Large scale EM images are typically ~ 5 - 50 G pixels in size, and best viewed using zoomable HTML files, which can be opened in any web browser, similar to online geographical HTML maps. This method can be applied to (human) tissue, cross sections of whole animals as well as tissue culture(1-5). Here, zebrafish brains were analyzed in a non-invasive neuronal ablation model. We visualize within a single dataset tissue, cellular and subcellular changes which can be quantified in various cell types including neurons and microglia, the brain's macrophages. In addition, nanotomy facilitates the correlation of EM with light microscopy (CLEM)(8) on the same tissue, as large surface areas previously imaged using fluorescent microscopy, can subsequently be subjected to large area EM, resulting in the nano-anatomy (nanotomy) of tissues. In all, nanotomy allows unbiased detection of features at EM level in a tissue-wide quantifiable manner.

  5. Large-scale Scanning Transmission Electron Microscopy (Nanotomy) of Healthy and Injured Zebrafish Brain

    PubMed Central

    Kuipers, Jeroen; Kalicharan, Ruby D.; Wolters, Anouk H. G.

    2016-01-01

    Large-scale 2D electron microscopy (EM), or nanotomy, is the tissue-wide application of nanoscale resolution electron microscopy. Others and we previously applied large scale EM to human skin pancreatic islets, tissue culture and whole zebrafish larvae1-7. Here we describe a universally applicable method for tissue-scale scanning EM for unbiased detection of sub-cellular and molecular features. Nanotomy was applied to investigate the healthy and a neurodegenerative zebrafish brain. Our method is based on standardized EM sample preparation protocols: Fixation with glutaraldehyde and osmium, followed by epoxy-resin embedding, ultrathin sectioning and mounting of ultrathin-sections on one-hole grids, followed by post staining with uranyl and lead. Large-scale 2D EM mosaic images are acquired using a scanning EM connected to an external large area scan generator using scanning transmission EM (STEM). Large scale EM images are typically ~ 5 - 50 G pixels in size, and best viewed using zoomable HTML files, which can be opened in any web browser, similar to online geographical HTML maps. This method can be applied to (human) tissue, cross sections of whole animals as well as tissue culture1-5. Here, zebrafish brains were analyzed in a non-invasive neuronal ablation model. We visualize within a single dataset tissue, cellular and subcellular changes which can be quantified in various cell types including neurons and microglia, the brain's macrophages. In addition, nanotomy facilitates the correlation of EM with light microscopy (CLEM)8 on the same tissue, as large surface areas previously imaged using fluorescent microscopy, can subsequently be subjected to large area EM, resulting in the nano-anatomy (nanotomy) of tissues. In all, nanotomy allows unbiased detection of features at EM level in a tissue-wide quantifiable manner. PMID:27285162

  6. Synthesis and electrochemical sodium-storage of few-layered MoS2/nitrogen, phosphorus-codoped graphene

    NASA Astrophysics Data System (ADS)

    Xu, Limei; Ma, Lin; Li, Wenyan; Yang, Xinxin; Ling, Yan

    2018-07-01

    Few-layered molybdenum disulfide/nitrogen, phosphorus co-doped graphene composites are synthesized by a quaternary phosphonium salt-assisted hydrothermal and annealing procedure. The prepared composites are analyzed by x-ray powder diffraction, x-ray photoelectron spectra, scanning electronic microscopy, transmission electronic microscopy, Raman spectra and nitrogen adsorption and desorption. Experimental results indicate that the MoS2 nanosheets are of few-layered and defective structures and are well anchored on flexible conductive nitrogen, phosphorus co-doped graphene to constitute mesoporous composites with increased surface areas. Benefiting from the structural merits as well as surface-dominated pseudocapacitive contribution, the composite electrode presents a high electrochemical sodium storage capacity that arrives at 542 mAh g‑1 at a current density of 100 mA g‑1 with an excellent cyclability. Moreover, a superior high-rate capability can also be achieved.

  7. A facile hydrothermal approach to synthesize rGO/BiVO4 photocatalysts for visible light induced degradation of RhB dye

    NASA Astrophysics Data System (ADS)

    Pal, Shreyasi; Dutta, Shibsankar; De, Sukanta

    2018-05-01

    RGO/BiVO4 composites were synthesized by a simple hydrothermal method. The samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HRTEM) and surface analysis (BET). The photocatalytic activity of the as-prepared samples was evaluated by studying the degradation of model dyes rhodamine B (RhB) under visible light. The prepared rGO/BiVO4 composites exhibited higher photocatalytic activity for the degradation of RhB with a maximum removal rate of 86% under visible light irradiation under visible-light irradiation than pure BiVO4 nanoparticles (63%). This behavior could be associated to their higher specific surface area (BET), increased light absorption intensity and the degradation of electron-hole pair recombination in BiVO4 with the introduction of the rGO.

  8. Improvement of efficiency in graphene/gallium nitride nanowire on Silicon photoelectrode for overall water splitting

    NASA Astrophysics Data System (ADS)

    Bae, Hyojung; Rho, Hokyun; Min, Jung-Wook; Lee, Yong-Tak; Lee, Sang Hyun; Fujii, Katsushi; Lee, Hyo-Jong; Ha, Jun-Seok

    2017-11-01

    Gallium nitride (GaN) nanowires are one of the most promising photoelectrode materials due to their high stability in acidic and basic electrolytes, and tunable band edge potentials. In this study, GaN nanowire arrays (GaN NWs) were prepared by molecular beam epitaxy (MBE); their large surface area enhanced the solar to hydrogen conversion efficiency. More significantly, graphene was grown by chemical vapor deposition (CVD), which enhanced the electron transfer between NWs for water splitting and protected the GaN NW surface. Structural characterizations of the prepared composite were performed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The photocurrent density of Gr/GaN NWs exhibited a two-fold increase over pristine GaN NWs and sustained water splitting up to 70 min. These improvements may accelerate possible applications for hydrogen generation with high solar to hydrogen conversion efficiency.

  9. Synthesis and electrochemical sodium-storage of few-layered MoS2/nitrogen, phosphorus-codoped graphene.

    PubMed

    Xu, Limei; Ma, Lin; Li, Wenyan; Yang, Xinxin; Ling, Yan

    2018-07-27

    Few-layered molybdenum disulfide/nitrogen, phosphorus co-doped graphene composites are synthesized by a quaternary phosphonium salt-assisted hydrothermal and annealing procedure. The prepared composites are analyzed by x-ray powder diffraction, x-ray photoelectron spectra, scanning electronic microscopy, transmission electronic microscopy, Raman spectra and nitrogen adsorption and desorption. Experimental results indicate that the MoS 2 nanosheets are of few-layered and defective structures and are well anchored on flexible conductive nitrogen, phosphorus co-doped graphene to constitute mesoporous composites with increased surface areas. Benefiting from the structural merits as well as surface-dominated pseudocapacitive contribution, the composite electrode presents a high electrochemical sodium storage capacity that arrives at 542 mAh g -1 at a current density of 100 mA g -1 with an excellent cyclability. Moreover, a superior high-rate capability can also be achieved.

  10. Engineering Non-Wetting Antimicrobial Fabrics

    NASA Astrophysics Data System (ADS)

    van den Berg, Desmond

    This research presents novel techniques and a review of commercially available fabrics for their antimicrobial potential. Based on previous research into the advantages of superhydrophobic self-cleaning surfaces against bacterial contamination, insights into what can make a superhydrophobic fabric inherently antimicrobial were analyzed. Through comparing the characterization results of scanning electron microscopy (SEM) and optical profilometry to microbiology experiments, hypotheses into the relationship between the contact area of a bacterial solution and the extent of contamination is developed. Contact scenario experiments, involving the use of fluorescence microscopy and calculating colony forming units, proved that the contamination potential of any fabric is due to the wetting state exhibited by the fabric, as well as the extent of surface texturing. Transmission experiments, utilizing a novel technique of stamping a contaminated fabric, outlined the importance of retention of solutions or bacteria during interactions within the hospital environment on the extent of contamination.

  11. Preparation of Langmuir-Blodgett thin films of calix[6]arenes and p-tert butyl group effect on their gas sensing properties

    NASA Astrophysics Data System (ADS)

    Ozmen, Mustafa; Ozbek, Zikriye; Bayrakci, Mevlut; Ertul, Seref; Ersoz, Mustafa; Capan, Rifat

    2015-12-01

    Organic vapor sensing properties of Langmuir-Blodgett (LB) thin films of p-tert-butyl calix[6]arene and calix[6]arene, and their certain characterization are reported in this work. LB films of these calixarenes have been characterized by contact angle measurement, quartz crystal microbalance (QCM), scanning electron microscopy (SEM) and atomic force microscopy (AFM). QCM system was used for the measurement of sensor response against chloroform, benzene, toluene and ethanol vapors. Forming of stable monolayers was observed at the water surface using surface pressure-area isotherm graph. The results indicate that good quality, uniform LB films can be prepared with a transfer ratio of over 0.95. Due to the adsorption of vapors into the LB film structures; they yield a response to all vapors as of large, fast, and reproducible.

  12. Influence of the adsorption geometry of PTCDA on Ag(111) on the tip-molecule forces in non-contact atomic force microscopy.

    PubMed

    Langewisch, Gernot; Falter, Jens; Schirmeisen, André; Fuchs, Harald

    2014-01-01

    Perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) adsorbed on a metal surface is a prototypical organic-anorganic interface. In the past, scanning tunneling microscopy and scanning tunneling spectroscopy studies of PTCDA adsorbed on Ag(111) have revealed differences in the electronic structure of the molecules depending on their adsorption geometry. In the work presented here, high-resolution 3D force spectroscopy measurements at cryogenic temperatures were performed on a surface area that contained a complete PTCDA unit cell with the two possible geometries. At small tip-molecule separations, deviations in the tip-sample forces were found between the two molecule orientations. These deviations can be explained by a different electron density in both cases. This result demonstrates the capability of 3D force spectroscopy to detect even small effects in the electronic properties of organic adsorbates.

  13. Development and (evidence for) destruction of biofilm with Pseudomonas aeruginosa as architect

    NASA Technical Reports Server (NTRS)

    Uzcategui, Valerie N.; Donadeo, John J.; Lombardi, Daniel R.; Costello, Michael J.; Sauer, Richard L.

    1991-01-01

    Disinfection and maintenance of an acceptable level of asepsis in spacecraft potable water delivery systems is a formidable task. The major area of research for this project has been to monitor the formation and growth of biofilm, and biofilm attached microorganisms, on stainless steel surfaces (specifically coupons), and the use of ozone for the elimination of these species in a closed loop system. A number of different techniques have been utilized during the course of a typical run. Scraping and sonication of coupon surfaces with subsequent plating as well as epifluorescence microscopy have been utilized to enumerate biofilm protected Pseudomonas aeruginosa. In addition, scanning electron microscopy is the method of choice to examine the integrity of the biofilm. For ozone determinations, the indigo decolorization spectrophotometric method seems most reliable. Both high- and low-nutrient cultured P. aeruginosa organisms were the target species for the ozone disinfection experiments.

  14. Rapid bacterial diagnostics via surface enhanced Raman microscopy.

    PubMed

    Premasiri, W R; Sauer-Budge, A F; Lee, J C; Klapperich, C M; Ziegler, L D

    2012-06-01

    There is a continuing need to develop new techniques for the rapid and specific identification of bacterial pathogens in human body fluids especially given the increasing prevalence of drug resistant strains. Efforts to develop a surface enhanced Raman spectroscopy (SERS) based approach, which encompasses sample preparation, SERS substrates, portable Raman microscopy instrumentation and novel identification software, are described. The progress made in each of these areas in our laboratory is summarized and illustrated by a spiked infectious sample for urinary tract infection (UTI) diagnostics. SERS bacterial spectra exhibit both enhanced sensitivity and specificity allowing the development of an easy to use, portable, optical platform for pathogen detection and identification. SERS of bacterial cells is shown to offer not only reproducible molecular spectroscopic signatures for analytical applications in clinical diagnostics, but also is a new tool for studying biochemical activity in real time at the outer layers of these organisms.

  15. [Influence of surface chemical properties and pore structure characteristics of activated carbon on the adsorption of nitrobenzene from aqueous solution].

    PubMed

    Liu, Shou-Xin; Chen, Xi; Zhang, Xian-Quan

    2008-05-01

    Commercial activated carbon was treated by HNO3 oxidation and then subsequently heat treated under N2 atmosphere. Effect of surface chemical properties and pore structure on the adsorption performance of nitrobenzene was investigated. N2/77K adsorption isotherm and scanning electron microscopy (SEM) were used to characterize the pore structure and surface morphology of carbon. Boehm titration, Fourier transform infrared spectroscopy (FTIR), the point of zero charge (pH(PZC)) measurement and elemental analysis were used to characterize the surface properties. The results reveal that HNO3 oxidation can modify the surface chemical properties, increase the number of acidic surface oxygen-containing groups and has trivial effect on the pore structure of carbon. Further heat treatment can cause the decomposition of surface oxygen-containing groups, and increase the external surface area and the number of mesopores. Adsorption capacity of nitrobenzene on AC(NO-T), AC(raw) and AC(NO) was 1011.31, 483.09 and 321.54 mg x g(-1), respectively. Larger external surface area and the number of meso-pores, together with the less acid surface oxygen-containing groups were the main reason for the larger adsorption capacity AC(NO-T).

  16. One-Pot synthesis of phosphorylated mesoporous carbon heterogeneous catalysts with tailored surface acidity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fulvio, Pasquale F; Mahurin, Shannon Mark; Mayes, Richard T

    2012-01-01

    Soft-templated phosphorylated mesoporous carbons with homogeneous distributions of phosphate groups were prepared by a 'one-pot' synthesis method using mixtures of phosphoric acid with hydrochloric, or nitric acids in the presence of Pluronic F127 triblock copolymer. Adjusting the various ratios of phosphoric acid used in these mixtures resulted in carbons with distinct adsorption, structural and surface acidity properties. The pore size distributions (PSDs) from nitrogen adsorption at -196 C showed that mesoporous carbons exhibit specific surface areas as high as 551 m{sup 2}/g and mesopores as large as 13 nm. Both structural ordering of the mesopores and the final phosphate contentsmore » were strongly dependent on the ratios of H{sub 3}PO{sub 4} in the synthesis gels, as shown by transmission electron microscopy (TEM), X-ray photoelectron (XPS) and energy dispersive X-ray spectroscopy (EDS). The number of surface acid sites determined from temperature programmed desorption of ammonia (NH{sub 3}-TPD) were in the range of 0.3-1.5 mmol/g while the active surface areas are estimated to comprise 5-54% of the total surface areas. Finally, the conversion temperatures for the isopropanol dehydration were lowered by as much as 100 C by transitioning from the least acidic to the most acidic catalysts surface.« less

  17. Exploring Surface Analysis Techniques for the Detection of Molecular Contaminants on Spacecraft

    NASA Technical Reports Server (NTRS)

    Rutherford, Gugu N.; Seasly, Elaine; Thornblom, Mark; Baughman, James

    2016-01-01

    Molecular contamination is a known area of concern for spacecraft. To mitigate this risk, projects involving space flight hardware set requirements in a contamination control plan that establishes an allocation budget for the exposure of non-volatile residues (NVR) onto critical surfaces. The purpose of this work will focus on non-contact surface analysis and in situ monitoring to mitigate molecular contamination on space flight hardware. By using Scanning Electron Microscopy and Energy Dispersive Spectroscopy (SEM-EDS) with Raman Spectroscopy, an unlikely contaminant was identified on space flight hardware. Using traditional and surface analysis methods provided the broader view of the contamination sources allowing for best fit solutions to prevent any future exposure.

  18. Combined frequency modulated atomic force microscopy and scanning tunneling microscopy detection for multi-tip scanning probe microscopy applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morawski, Ireneusz; Institute of Experimental Physics, University of Wrocław, pl. M. Borna 9, 50-204 Wrocław; Spiegelberg, Richard

    A method which allows scanning tunneling microscopy (STM) tip biasing independent of the sample bias during frequency modulated atomic force microscopy (AFM) operation is presented. The AFM sensor is supplied by an electronic circuit combining both a frequency shift signal and a tunneling current signal by means of an inductive coupling. This solution enables a control of the tip potential independent of the sample potential. Individual tip biasing is specifically important in order to implement multi-tip STM/AFM applications. An extensional quartz sensor (needle sensor) with a conductive tip is applied to record simultaneously topography and conductivity of the sample. Themore » high resonance frequency of the needle sensor (1 MHz) allows scanning of a large area of the surface being investigated in a reasonably short time. A recipe for the amplitude calibration which is based only on the frequency shift signal and does not require the tip being in contact is presented. Additionally, we show spectral measurements of the mechanical vibration noise of the scanning system used in the investigations.« less

  19. High surface area bio-waste based carbon as a superior electrode for vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Maharjan, Makhan; Bhattarai, Arjun; Ulaganathan, Mani; Wai, Nyunt; Oo, Moe Ohnmar; Wang, Jing-Yuan; Lim, Tuti Mariana

    2017-09-01

    Activated carbon (AC) with high surface area (1901 m2 g-1) is synthesized from low cost bio-waste orange (Citrus sinensis) peel for vanadium redox flow battery (VRB). The composition, structure and electrochemical properties of orange peel derived AC (OP-AC) are characterized by elemental analyzer, field emission-scanning electron microscopy, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, cyclic voltammetry (CV), and electrochemical impedance spectroscopy. CV results show that OP-AC coated bipolar plate demonstrates improved electro-catalytic activity in both positive and negative side redox couples than the pristine bipolar plate electrode and this is ascribed to the high surface area of OP-AC which provides effective electrode area and better contact between the porous electrode and bipolar plate. Consequently, the performance of VRB in a static cell shows higher energy efficiency for OP-AC electrode than the pristine electrode at all current densities tested. The results suggest the OP-AC to be a promising electrode for VRB applications and can be incorporated into making conducting plastics electrode to lower the VRB cell stack weight and cost.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hongfen, E-mail: wanghongfen11@163.com; Wang, Zhiqi; Chen, Shougang

    Molybdenum carbides with surfactants as carbon sources were prepared using the carbothermal reduction of the appropriate precursors (molybdenum oxides deposited on surfactant micelles) at 1023 K under hydrogen gas. The carburized products were characterized using scanning electron microscopy (SEM), X-ray diffraction and BET surface area measurements. From the SEM images, hollow microspherical and rod-like molybdenum carbides were observed. X-ray diffraction patterns showed that the annealing time of carburization had a large effect on the conversion of molybdenum oxides to molybdenum carbides. And BET surface area measurements indicated that the difference of carbon sources brought a big difference in specific surfacemore » areas of molybdenum carbides. - Graphical abstract: Molybdenum carbides having hollow microspherical and hollow rod-like morphologies that are different from the conventional monodipersed platelet-like morphologies. Highlights: Black-Right-Pointing-Pointer Molybdenum carbides were prepared using surfactants as carbon sources. Black-Right-Pointing-Pointer The kinds of surfactants affected the morphologies of molybdenum carbides. Black-Right-Pointing-Pointer The time of heat preservation at 1023 K affected the carburization process. Black-Right-Pointing-Pointer Molybdenum carbides with hollow structures had larger specific surface areas.« less

  1. Cross-Sectional Investigations on Epitaxial Silicon Solar Cells by Kelvin and Conducting Probe Atomic Force Microscopy: Effect of Illumination.

    PubMed

    Narchi, Paul; Alvarez, Jose; Chrétien, Pascal; Picardi, Gennaro; Cariou, Romain; Foldyna, Martin; Prod'homme, Patricia; Kleider, Jean-Paul; I Cabarrocas, Pere Roca

    2016-12-01

    Both surface photovoltage and photocurrent enable to assess the effect of visible light illumination on the electrical behavior of a solar cell. We report on photovoltage and photocurrent measurements with nanometer scale resolution performed on the cross section of an epitaxial crystalline silicon solar cell, using respectively Kelvin probe force microscopy and conducting probe atomic force microscopy. Even though two different setups are used, the scans were performed on locations within 100-μm distance in order to compare data from the same area and provide a consistent interpretation. In both measurements, modifications under illumination are observed in accordance with the theory of PIN junctions. Moreover, an unintentional doping during the deposition of the epitaxial silicon intrinsic layer in the solar cell is suggested from the comparison between photovoltage and photocurrent measurements.

  2. Study of shale reservoir nanometer-sized pores in Member 1 of Shahejie Formation in JX area, Liaozhong sag

    NASA Astrophysics Data System (ADS)

    Cheng, Yong; Zhang, Yu; Wen, Yiming

    2018-02-01

    The microscopic pore structure is the key of the shale reservoir study; however, traditional Scanning Electron Microscopy (SEM) methods cannot identify the irregular morphology caused by mechanical polishing. In this work, Scanning Electron Microscopy combined argon ion polishing technology was taken to study the characteristics of shale reservoir pores of Member 1 of Shahejie Formation (E3s1) located in JX1-1 area of Liaozhong Sag. The results show that pores between clay platelets, intraplatelet pores within clay aggregates and organic-matter pores are very rich in the area and with good pore connectivity, so these types of pores are of great significance for oil-gas exporation. Pores between clay platelets are formed by directional or semi-directional contact between edge and surface, edge and edge or surface and surface of laminated clay minerals, whose shapes are linear, mesh, and irregular with the size of 500 nm to 5 μm. The intraplatelet pores within clay aggregates are formed in the process of the transformation and compaction of clay minerals, whose shapes are usually linear with the width of 30 to 500 nm and the length of 2 to 50 μm. The organic-matter pores are from the process of the conversion from organic matters to the hydrocarbon under thermal evolution, whose shapes are gneissic, irregular, pitted and elliptical with the size of 100 nm to 2 μm. This study is of certain guiding significance to selecting target zones, evaluating resource potential and exploring & developing of shale gas in this region.

  3. Fabrication of meso-porous BiOI sensitized zirconia nanoparticles with enhanced photocatalytic activity under simulated solar light irradiation

    NASA Astrophysics Data System (ADS)

    Vignesh, K.; Suganthi, A.; Min, Bong-Ki; Kang, Misook

    2015-01-01

    In this present work, BiOI sensitized zirconia (BiOI-ZrO2) nanoparticles were fabricated using a precipitation-deposition method. The physicochemical characteristics of BiOI/ZrO2 were studied through X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), BET-surface area, X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (UV-vis-DRS) and photoluminescence (PL) spectroscopy techniques. The absorption maximum of ZrO2 was shifted to the visible region after sensitization with BiOI. BET-surface area results inferred that the prepared hetero-junctions were meso-porous in nature. The photocatalytic activity of BiOI-ZrO2 for the degradation of methyl violet (MV) dye under simulated solar light irradiation was investigated in detail. 3% BiOI-ZrO2 exhibited the highest photocatalytic performance (98% of MV degradation) when compared with ZrO2 and BiOI. The enhancement in the photocatalytic activity of BiOI-ZrO2 is ascribed to the sensitization effect of BiOI, suppression of electron-hole recombination and the formation of p-n hetero-junction.

  4. Comparison of Middle Ear Visualization With Endoscopy and Microscopy.

    PubMed

    Bennett, Marc L; Zhang, Dongqing; Labadie, Robert F; Noble, Jack H

    2016-04-01

    The primary goal of chronic ear surgery is the creation of a safe, clean dry ear. For cholesteatomas, complete removal of disease is dependent on visualization. Conventional microscopy is adequate for most dissection, but various subregions of the middle ear are better visualized with endoscopy. The purpose of the present study was to quantitatively assess the improved visualization that endoscopes afford as compared with operating microscopes. Microscopic and endoscopic views were simulated using a three-dimensional model developed from temporal bone scans. Surface renderings of the ear canal and middle ear subsegments were defined and the percentage of visualization of each middle ear subsegment, both with and without ossicles, was then determined for the microscope as well as for 0-, 30-, and 45-degree endoscopes. Using this information, we analyzed which mode of visualization is best suited for dissection within a particular anatomical region. Using a 0-degree scope provides significantly more visualization of every subregion, except the antrum, compared with a microscope. In addition, angled scopes permit visualizing significantly more surface area of every subregion of the middle ear than straight scopes or microscopes. Endoscopes offer advantages for cholesteatoma dissection in difficult-to-visualize areas including the sinus tympani and epitympanum.

  5. Liquefied petroleum gas sensor based on manganese (III) oxide and zinc manganese (III) oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Sharma, Shiva; Chauhan, Pratima; Husain, Shahid

    2018-01-01

    In this paper, {{{Mn}}}2{{{O}}}3 and {{{ZnMn}}}2{{{O}}}4 nanoparticles (NPs) are successfully synthesized using chemical co-precipitation method at room temperature and further annealed at 450 °C. The structure, crystallite size, morphology, specific surface area (SSA) and band gap energy have been determined by x-ray diffraction, transmission electron microscopy, Brunauer-Emmett-Teller surface area analysis, scanning electron microscopy (SEM-EDS) and UV-visible spectrophotometer. The sensor films of the {{{Mn}}}2{{{O}}}3 NPs and {{{ZnMn}}}2{{{O}}}4 NPs have been fabricated onto glass substrate using spin coater system separately. These sensor films are investigated for different concentrations (200-1200 ppm) of liquefied petroleum gas (LPG) at different operating temperatures ranging from 100 °C to 400 °C. A comparative study of gas sensing properties shows that spinel {{{ZnMn}}}2{{{O}}}4 sensor film exhibit excellent response (≈ 80 % ) towards 1000 ppm LPG at 300 °C in comparison to {{{Mn}}}2{{{O}}}3 sensor films. The enhancement in the gas sensing characteristics of {{{ZnMn}}}2{{{O}}}4 sensor film is attributed to the reduced crystallite size, greater SSA, and modification in structure as well as morphology.

  6. Fast Preparation of Porous MnO/C Microspheres as Anode Materials for Lithium-Ion Batteries

    PubMed Central

    Su, Jing; Liang, Hao; Gong, Xian-Nian; Lv, Xiao-Yan; Long, Yun-Fei; Wen, Yan-Xuan

    2017-01-01

    Porous MnO/C microspheres have been successfully fabricated by a fast co-precipitation method in a T-shaped microchannel reactor. The structures, compositions, and electrochemical performances of the obtained MnO/C microspheres are characterized by X-ray diffraction, field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (HRTEM), Brunauer–Emmett–Teller analysis, charge-discharge testing, cyclic voltammograms, and electrochemical impedance spectra. Experimental results reveal that the as-prepared MnO/C, with a specific surface area of 96.66 m2·g−1 and average pore size of 24.37 nm, exhibits excellent electrochemical performance, with a discharge capacity of 655.4 mAh·g−1 after cycling 50 times at 1 C and capacities of 808.3, 743.7, 642.6, 450.1, and 803.1 mAh·g−1 at 0.2, 0.5, 1, 2, and 0.2 C, respectively. Moreover, the controlled method of using a microchannel reactor, which can produce larger specific surface area porous MnO/C with improved cycling performance by shortening lithium-ion diffusion distances, can be easily applied in real production on a large scale. PMID:28587120

  7. Surface studies on superhydrophobic and oleophobic polydimethylsiloxane-silica nanocomposite coating system

    NASA Astrophysics Data System (ADS)

    Basu, Bharathibai J.; Dinesh Kumar, V.; Anandan, C.

    2012-11-01

    Superhydrophobic and oleophobic polydimethylsiloxane (PDMS)-silica nanocomposite double layer coating was fabricated by applying a thin layer of low surface energy fluoroalkyl silane (FAS) as topcoat. The coatings exhibited WCA of 158-160° and stable oleophobic property with oil CA of 79°. The surface morphology was characterized by field emission scanning electron microscopy (FESEM) and surface chemical composition was determined by energy dispersive X-ray spectrometery (EDX) and X-ray photoelectron spectroscopy (XPS). FESEM images of the coatings showed micro-nano binary structure. The improved oleophobicity was attributed to the combined effect of low surface energy of FAS and roughness created by the random distribution of silica aggregates. This is a facile, cost-effective method to obtain superhydrophobic and oleophobic surfaces on larger area of various substrates.

  8. Micromorphological characterization of zinc/silver particle composite coatings.

    PubMed

    Méndez, Alia; Reyes, Yolanda; Trejo, Gabriel; StĘpień, Krzysztof; Ţălu, Ştefan

    2015-12-01

    The aim of this study was to evaluate the three-dimensional (3D) surface micromorphology of zinc/silver particles (Zn/AgPs) composite coatings with antibacterial activity prepared using an electrodeposition technique. These 3D nanostructures were investigated over square areas of 5 μm × 5 μm by atomic force microscopy (AFM), fractal, and wavelet analysis. The fractal analysis of 3D surface roughness revealed that (Zn/AgPs) composite coatings have fractal geometry. Triangulation method, based on the linear interpolation type, applied for AFM data was employed in order to characterise the surfaces topographically (in amplitude, spatial distribution and pattern of surface characteristics). The surface fractal dimension Df , as well as height values distribution have been determined for the 3D nanostructure surfaces. © 2015 The Authors published by Wiley Periodicals, Inc.

  9. Capturing the Surface Texture and Shape of Pollen: A Comparison of Microscopy Techniques

    PubMed Central

    Sivaguru, Mayandi; Mander, Luke; Fried, Glenn; Punyasena, Surangi W.

    2012-01-01

    Research on the comparative morphology of pollen grains depends crucially on the application of appropriate microscopy techniques. Information on the performance of microscopy techniques can be used to inform that choice. We compared the ability of several microscopy techniques to provide information on the shape and surface texture of three pollen types with differing morphologies. These techniques are: widefield, apotome, confocal and two-photon microscopy (reflected light techniques), and brightfield and differential interference contrast microscopy (DIC) (transmitted light techniques). We also provide a first view of pollen using super-resolution microscopy. The three pollen types used to contrast the performance of each technique are: Croton hirtus (Euphorbiaceae), Mabea occidentalis (Euphorbiaceae) and Agropyron repens (Poaceae). No single microscopy technique provided an adequate picture of both the shape and surface texture of any of the three pollen types investigated here. The wavelength of incident light, photon-collection ability of the optical technique, signal-to-noise ratio, and the thickness and light absorption characteristics of the exine profoundly affect the recovery of morphological information by a given optical microscopy technique. Reflected light techniques, particularly confocal and two-photon microscopy, best capture pollen shape but provide limited information on very fine surface texture. In contrast, transmitted light techniques, particularly differential interference contrast microscopy, can resolve very fine surface texture but provide limited information on shape. Texture comprising sculptural elements that are spaced near the diffraction limit of light (∼250 nm; NDL) presents an acute challenge to optical microscopy. Super-resolution structured illumination microscopy provides data on the NDL texture of A. repens that is more comparable to textural data from scanning electron microscopy than any other optical microscopy technique investigated here. Maximizing the recovery of morphological information from pollen grains should lead to more robust classifications, and an increase in the taxonomic precision with which ancient vegetation can be reconstructed. PMID:22720050

  10. Influence of bases on hydrothermal synthesis of titanate nanostructures

    NASA Astrophysics Data System (ADS)

    Sikhwivhilu, Lucky M.; Sinha Ray, Suprakas; Coville, Neil J.

    2009-03-01

    A hydrothermal treatment of titanium dioxide (TiO2) with various bases (i.e., LiOH, NaOH, KOH, and NH4OH) was used to prepare materials with unique morphologies, relatively small crystallite sizes, and large specific surface areas. The experimental results show that the formation of TiO2 is largely dependent on the type, strength and concentration of a base. The effect of the nature of the base used and the concentration of the base on the formation of nanostructures were investigated using X-ray diffraction, Raman spectroscopy, transmission and scanning electron microscopy, as well as surface area measurements. Sodium hydroxide (NaOH) and potassium hydroxide (KOH) were both used to transform the morphology of starting TiO2 material.

  11. Browning phenomenon of medieval stained glass windows.

    PubMed

    Ferrand, Jessica; Rossano, Stéphanie; Loisel, Claudine; Trcera, Nicolas; van Hullebusch, Eric D; Bousta, Faisl; Pallot-Frossard, Isabelle

    2015-04-07

    In this work, three pieces of historical on-site glass windows dated from the 13th to 16th century and one archeological sample (8th century) showing Mn-rich brown spots at their surface or subsurface have been characterized by optical microscopy and Scanning Electron Microscopy coupled with Energy Dispersive X-ray spectroscopy. The oxidation state of Mn as well as the Mn environment in the alteration phase have been characterized by X-ray absorption spectroscopy at the Mn K-edge. Results show that the oxidation state of Mn and therefore the nature of the alteration phase varies according to the sample considered and is correlated with the extent of the brown alteration. The larger the brown areas the more oxidized the Mn. However, by contrast with literature, the samples presenting the more extended brown areas are not similar to pyrolusite and contain Mn mainly under a (+III) oxidation state.

  12. Observations on the antibody-dependent cytotoxic cell by scanning electron microscopy.

    PubMed Central

    Inglis, J R; Penhale, W J; Farmer, A; Irvine, W J; Williams, A E

    1975-01-01

    The cytotoxic effect of human peripheral blood leucocytes on antibody-coated sheep erythrocyte monolayers has been investigated using scanning electron microscopy. Only a small proportion of leucocytes were found to adhere to the monolayers. A progressive destruction was observed beginning as small plaque-like areas of erythrocyte clearing which later became confluent. Three distinct cell types were found to be associated with the areas of lysis. No destruction was observed in control monolayers incubated for a similar period in the absence of either antibody of leucocytes. Surface changes in the erthrocytes adjacent to the leucocytes suggest that mechanical factors may be involved in erythrocyte lysis in this system. It is concluded that more than one leucocyte type may damage antibody-coated erythrocytes, possibly by a mechanism involving attachment to and mechanical disruption of the red cell membrane. Images FIG. 5 FIG. 2 FIG. 3 FIG. 1 FIG. 2 FIG. 4 PMID:1191386

  13. Solvothermal preparation of phthalocyanine nanorod/rGO composites and their application to visible-light-responsive photocatalysts

    NASA Astrophysics Data System (ADS)

    Zhang, Shuai; Lu, Yongting; Zhang, Fan; Qu, Jie; Lin, Bencai; Yuan, Ningyi; Fang, Bijun; Ding, Jian-Ning

    2016-09-01

    Phthalocyanine (Pc) nanorod/reduced graphene oxide (rGO) composites were prepared by a simple solvothermal method, in which Pc nanosheet and graphene oxide (GO) suspensions were mixed in methanol. As characterized by scanning electron microscopy, transmission electron microscopy, and selected area electron diffraction, Pc nanorods with an amorphous structure and an average diameter of 250nm are partially covered by rGO sheets. In the photodegradation experiments, all the composites with different rGO content show enhanced photocatalytic activity for Rhodamine B decomposition under visible-light compared to pure Pc nanorods or rGO sheets. The enhanced photocatalytic activity shall be ascribed to the large surface area offered by rGO and the charge-transfer from Pc to rGO as indicated by the photoluminescence measurement, in which fluorescence intensity of the composites is much weaker than that of Pc nanorods.

  14. Spherical V-Fe-MCM-48: The Synthesis, Characterization and Hydrothermal Stability.

    PubMed

    Qian, Wang; Wang, Haiqing; Chen, Jin; Kong, Yan

    2015-04-14

    Spherical MCM-48 mesoporous sieve co-doped with vanadium and iron was successfully synthesized via one-step hydrothermal method. The material was characterized by X-ray diffraction (XRD), nitrogen adsorption-desorption isotherms, inductively coupled plasma (ICP), scanning electron microscopy (SEM), transmission electron microscopy (TEM), diffuse reflectance UV-vis spectra, and X-ray photoelectron spectra (XPS) techniques. Results indicated that the V-Fe-MCM-48 showed an ordered 3D cubic mesostructure with spherical morphology, narrow pore size distribution and high specific surface area. Most of vanadium and iron atoms existing as tetrahedral V 4+ and Fe 3+ species were co-doped into the silicate framework. The particle sizes of V-Fe-MCM-48 were smaller and the specific area was much higher than those of of V-MCM-48. Additionally, the synthesized V-Fe-MCM-48 exhibited improved hydrothermal stability compared with the pure MCM-48.

  15. Spherical V-Fe-MCM-48: The Synthesis, Characterization and Hydrothermal Stability

    PubMed Central

    Qian, Wang; Wang, Haiqing; Chen, Jin; Kong, Yan

    2015-01-01

    Spherical MCM-48 mesoporous sieve co-doped with vanadium and iron was successfully synthesized via one-step hydrothermal method. The material was characterized by X-ray diffraction (XRD), nitrogen adsorption-desorption isotherms, inductively coupled plasma (ICP), scanning electron microscopy (SEM), transmission electron microscopy (TEM), diffuse reflectance UV-vis spectra, and X-ray photoelectron spectra (XPS) techniques. Results indicated that the V-Fe-MCM-48 showed an ordered 3D cubic mesostructure with spherical morphology, narrow pore size distribution and high specific surface area. Most of vanadium and iron atoms existing as tetrahedral V4+ and Fe3+ species were co-doped into the silicate framework. The particle sizes of V-Fe-MCM-48 were smaller and the specific area was much higher than those of of V-MCM-48. Additionally, the synthesized V-Fe-MCM-48 exhibited improved hydrothermal stability compared with the pure MCM-48. PMID:28788030

  16. Helical image reconstruction of the outward-open human erythrocyte band 3 membrane domain in tubular crystals.

    PubMed

    Yamaguchi, Tomohiro; Fujii, Takashi; Abe, Yoshito; Hirai, Teruhisa; Kang, Dongchon; Namba, Keiichi; Hamasaki, Naotaka; Mitsuoka, Kaoru

    2010-03-01

    The C-terminal membrane domain of erythrocyte band 3 functions as an anion exchanger. Here, we report the three-dimensional (3D) structure of the membrane domain in an inhibitor-stabilized, outward-open conformation at 18A resolution. Unstained, frozen-hydrated tubular crystals containing the membrane domain of band 3 purified from human red blood cells (hB3MD) were examined using cryo-electron microscopy and iterative helical real-space reconstruction (IHRSR). The 3D image reconstruction of the tubular crystals showed the molecular packing of hB3MD dimers with dimensions of 60 x 110 A in the membrane plane and a thickness of 70A across the membrane. Immunoelectron microscopy and carboxyl-terminal digestion demonstrated that the intracellular surface of hB3MD was exposed on the outer surface of the tubular crystal. A 3D density map revealed that hB3MD consists of at least two subdomains and that the outward-open form is characterized by a large hollow area on the extracellular surface and continuous density on the intracellular surface. (c) 2009 Elsevier Inc. All rights reserved.

  17. A nanoporous titanium surface promotes the maturation of focal adhesions and formation of filopodia with distinctive nanoscale protrusions by osteogenic cells.

    PubMed

    Guadarrama Bello, Dainelys; Fouillen, Aurélien; Badia, Antonella; Nanci, Antonio

    2017-09-15

    While topography is a key determinant of the cellular response to biomaterials, the mechanisms implicated in the cell-surface interactions are complex and still not fully elucidated. In this context, we have examined the effect of nanoscale topography on the formation of filopodia, focal adhesions, and gene expression of proteins associated with cell adhesion and sensing. Commercially pure titanium discs were treated by oxidative nanopatterning with a solution of H 2 SO 4 /H 2 O 2 50:50 (v/v). Scanning electron microscopy and atomic force microscopy characterizations showed that this facile chemical treatment efficiently creates a unique nanoporous surface with a root-mean-square roughness of 11.5nm and pore diameter of 20±5nm. Osteogenic cells were cultured on polished (control) and nanotextured discs for periods of 6, 24, and 72h. Immunofluorescence analysis revealed increases in the adhesion formation per cell area, focal adhesion length, and maturity on the nanoporous surface. Gene expression for various focal adhesion markers, including paxillin and talin, and different integrins (e.g. α1, β1, and α5) was also significantly increased. Scanning electron microscopy revealed the presence of more filopodia on cells grown on the nanoporous surface. These cell extensions displayed abundant and distinctive nanoscale lateral protrusions of 10-15nm diameter that molded the nanopore walls. Together the increase in the focal adhesions and abundance of filopodia and associated protrusions could contribute to strengthening the adhesive interaction of cells with the surface, and thereby, alter the nanoscale biomechanical relationships that trigger cellular cascades that regulate cell behavior. Oxidative patterning was exploited to create a unique three-dimensional network of nanopores on titanium surfaces. Our study illustrates how a facile chemical treatment can be advantageously used to modulate cellular behavior. The nanoscale lateral protrusions on filopodia elicited by this surface are novel adhesive structures. Altogether, the increases in focal adhesion, length, maturity, and filopodia with distinctive lateral protrusions could substantially increase the contact area and adhesion strength of cells, thereby promoting the activation of cellular signaling cascades that may explain the positive osteogenic outcomes previously achieved with this surface. Such physicochemical cueing offers a simple attractive alternative to the use of bioactive agents for guiding tissue repair/regeneration around implantable metals. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. Changes in surface morphology and mineralization level of human enamel following in-office bleaching with 35% hydrogen peroxide and light irradiation.

    PubMed

    Berger, Sandrine Bittencourt; Cavalli, Vanessa; Ambrosano, Glaucia Maria Bovi; Giannini, Marcelo

    2010-01-01

    The objective of this study was to evaluate the alterations on surface morphology and mineral loss of human enamel following in-office bleaching with 35% hydrogen peroxide and light irradiation. Dental enamel samples were obtained from human third molars and randomly divided into 10 groups (n = 10). The control group remained untreated. Bleached groups were treated with one of three whitening products. Bleaching was performed in a single session, during which bleaching gel was applied to the enamel surface three times for 10 minutes each time. During treatment, the bleaching agents were either irradiated by a halogen light or an LED/diode laser or were not irradiated at all. Microhardness testing was performed with a Knoop indentor and the surface morphologic observations were carried out by scanning electron microscopy (SEM). Cross-sectional microhardness (CSMH) and polarized light microscopy (PLM) were used to measure the depth of demineralization. The results revealed a significant decrease in surface microhardness values and changes to the enamel morphology after bleaching. CSMH and PLM showed that bleached enamel presented lower volume percentage of mineral up to 40 micrometers from the enamel surface and demineralization areas located in the subsuperficial region of enamel, respectively. It was concluded that 35% hydrogen peroxide can alter the surface morphology and the mineralization level of the dental enamel surface and sub-surface regardless of what type of bleaching light is used.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, Woo-Young; Seol, Jae-Bok, E-mail: jb-seol@postech.ac.kr; Kwak, Chan-Min

    The compositional distribution of In atoms in InGaN/GaN multiple quantum wells is considered as one of the candidates for carrier localization center, which enhances the efficiency of the light-emitting diodes. However, two challenging issues exist in this research area. First, an inhomogeneous In distribution is initially formed by spinodal decomposition during device fabrication as revealed by transmission electron microscopy. Second, electron-beam irradiation during microscopy causes the compositional inhomogeneity of In to appear as a damage contrast. Here, a systematic approach was proposed in this study: Electron-beam with current density ranging from 0 to 20.9 A/cm{sup 2} was initially exposed to themore » surface regions during microscopy. Then, the electron-beam irradiated regions at the tip surface were further removed, and finally, atom probe tomography was performed to run the samples without beam-induced damage and to evaluate the existence of local inhomegenity of In atoms. We proved that after eliminating the electron-beam induced damage regions, no evidence of In clustering was observed in the blue-emitting InGaN/GaN devices. In addition, it is concluded that the electron-beam induced localization of In atoms is a surface-related phenomenon, and hence spinodal decomposition, which is typically responsible for such In clustering, is negligible for biaxially strained blue-emitting InGaN/GaN devices.« less

  20. Surface-induced polymerization of actin.

    PubMed Central

    Renault, A; Lenne, P F; Zakri, C; Aradian, A; Vénien-Bryan, C; Amblard, F

    1999-01-01

    Living cells contain a very large amount of membrane surface area, which potentially influences the direction, the kinetics, and the localization of biochemical reactions. This paper quantitatively evaluates the possibility that a lipid monolayer can adsorb actin from a nonpolymerizing solution, induce its polymerization, and form a 2D network of individual actin filaments, in conditions that forbid bulk polymerization. G- and F-actin solutions were studied beneath saturated Langmuir monolayers containing phosphatidylcholine (PC, neutral) and stearylamine (SA, a positively charged surfactant) at PC:SA = 3:1 molar ratio. Ellipsometry, tensiometry, shear elastic measurements, electron microscopy, and dark-field light microscopy were used to characterize the adsorption kinetics and the interfacial polymerization of actin. In all cases studied, actin follows a monoexponential reaction-limited adsorption with similar time constants (approximately 10(3) s). At a longer time scale the shear elasticity of the monomeric actin adsorbate increases only in the presence of lipids, to a 2D shear elastic modulus of mu approximately 30 mN/m, indicating the formation of a structure coupled to the monolayer. Electron microscopy shows the formation of a 2D network of actin filaments at the PC:SA surface, and several arguments strongly suggest that this network is indeed causing the observed elasticity. Adsorption of F-actin to PC:SA leads more quickly to a slightly more rigid interface with a modulus of mu approximately 50 mN/m. PMID:10049338

  1. Nanotechnology: toxicologic pathology.

    PubMed

    Hubbs, Ann F; Sargent, Linda M; Porter, Dale W; Sager, Tina M; Chen, Bean T; Frazer, David G; Castranova, Vincent; Sriram, Krishnan; Nurkiewicz, Timothy R; Reynolds, Steven H; Battelli, Lori A; Schwegler-Berry, Diane; McKinney, Walter; Fluharty, Kara L; Mercer, Robert R

    2013-02-01

    Nanotechnology involves technology, science, and engineering in dimensions less than 100 nm. A virtually infinite number of potential nanoscale products can be produced from many different molecules and their combinations. The exponentially increasing number of nanoscale products will solve critical needs in engineering, science, and medicine. However, the virtually infinite number of potential nanotechnology products is a challenge for toxicologic pathologists. Because of their size, nanoparticulates can have therapeutic and toxic effects distinct from micron-sized particulates of the same composition. In the nanoscale, distinct intercellular and intracellular translocation pathways may provide a different distribution than that obtained by micron-sized particulates. Nanoparticulates interact with subcellular structures including microtubules, actin filaments, centrosomes, and chromatin; interactions that may be facilitated in the nanoscale. Features that distinguish nanoparticulates from fine particulates include increased surface area per unit mass and quantum effects. In addition, some nanotechnology products, including the fullerenes, have a novel and reactive surface. Augmented microscopic procedures including enhanced dark-field imaging, immunofluorescence, field-emission scanning electron microscopy, transmission electron microscopy, and confocal microscopy are useful when evaluating nanoparticulate toxicologic pathology. Thus, the pathology assessment is facilitated by understanding the unique features at the nanoscale and the tools that can assist in evaluating nanotoxicology studies.

  2. Nanotechnology: Toxicologic Pathology

    PubMed Central

    Hubbs, Ann F.; Sargent, Linda M.; Porter, Dale W.; Sager, Tina M.; Chen, Bean T.; Frazer, David G.; Castranova, Vincent; Sriram, Krishnan; Nurkiewicz, Timothy R.; Reynolds, Steven H.; Battelli, Lori A.; Schwegler-Berry, Diane; McKinney, Walter; Fluharty, Kara L.; Mercer, Robert R.

    2015-01-01

    Nanotechnology involves technology, science, and engineering in dimensions less than 100 nm. A virtually infinite number of potential nanoscale products can be produced from many different molecules and their combinations. The exponentially increasing number of nanoscale products will solve critical needs in engineering, science, and medicine. However, the virtually infinite number of potential nanotechnology products is a challenge for toxicologic pathologists. Because of their size, nanoparticulates can have therapeutic and toxic effects distinct from micron-sized particulates of the same composition. In the nanoscale, distinct intercellular and intracellular translocation pathways may provide a different distribution than that obtained by micron-sized particulates. Nanoparticulates interact with subcellular structures including microtubules, actin filaments, centrosomes, and chromatin; interactions that may be facilitated in the nanoscale. Features that distinguish nanoparticulates from fine particulates include increased surface area per unit mass and quantum effects. In addition, some nanotechnology products, including the fullerenes, have a novel and reactive surface. Augmented microscopic procedures including enhanced dark-field imaging, immunofluorescence, field-emission scanning electron microscopy, transmission electron microscopy, and confocal microscopy are useful when evaluating nanoparticulate toxicologic pathology. Thus, the pathology assessment is facilitated by understanding the unique features at the nanoscale and the tools that can assist in evaluating nanotoxicology studies. PMID:23389777

  3. An Unroofing Method to Observe the Cytoskeleton Directly at Molecular Resolution Using Atomic Force Microscopy

    PubMed Central

    Usukura, Eiji; Narita, Akihiro; Yagi, Akira; Ito, Shuichi; Usukura, Jiro

    2016-01-01

    An improved unroofing method enabled the cantilever of an atomic force microscope (AFM) to reach directly into a cell to visualize the intracellular cytoskeletal actin filaments, microtubules, clathrin coats, and caveolae in phosphate-buffered saline (PBS) at a higher resolution than conventional electron microscopy. All of the actin filaments clearly exhibited a short periodicity of approximately 5–6 nm, which was derived from globular actins linked to each other to form filaments, as well as a long helical periodicity. The polarity of the actin filaments appeared to be determined by the shape of the periodic striations. Microtubules were identified based on their thickness. Clathrin coats and caveolae were observed on the cytoplasmic surface of cell membranes. The area containing clathrin molecules and their terminal domains was directly visualized. Characteristic ridge structures located at the surface of the caveolae were observed at high resolution, similar to those observed with electron microscopy (EM). Overall, unroofing allowed intracellular AFM imaging in a liquid environment with a level of quality equivalent or superior to that of EM. Thus, AFMs are anticipated to provide cutting-edge findings in cell biology and histology. PMID:27273367

  4. SAPO-34/AlMCM-41, as a novel hierarchical nanocomposite: preparation, characterization and investigation of synthesis factors using response surface methodology

    NASA Astrophysics Data System (ADS)

    Roohollahi, Hossein; Halladj, Rouein; Askari, Sima; Yaripour, Fereydoon

    2018-06-01

    SAPO-34/AlMCM-41, as a new hierarchical nanocomposite was successfully synthesized via hydrothermal and dry-gel conversion. In an experimental and statistical study, effect of five input parameters including synthesis period, drying temperature, NaOH/Si, water/dried-gel and SAPO% were investigated on range-order degree of mesochannels and the relative crystallinity. X-ray diffraction (XRD) patterns were recorded to characterize the ordered AlMCM-41 and crystalline SAPO-34 structures. Nitrogen adsorption-desorption technique, scanning electron microscopy (SEM), field-emission SEM (FESEM) equipped with an energy-dispersive X-ray spectroscopy (EDS-Map) and transmission electron microscopy (TEM) were used to study the textural properties, morphology and surface elemental composition. Two reduced polynomials were fitted to the responses with good precision. Further, based on analysis of variances, SAPO% and time duration of dry-gel conversion were observed as the most effective parameters on the composite structure. The hierarchical porosity, narrow pore size distribution, high external surface area and large specific pore volume were of interesting characteristics for this novel nanocomposite.

  5. Modification of structure and pattern of lipid monolayer on water and solid surfaces in presence of globular protein

    NASA Astrophysics Data System (ADS)

    Sah, Bijay Kumar; Kundu, Sarathi

    2017-05-01

    Langmuir monolayers of phospholipids at the air-water interface are well-established model systems for mimicking biological membranes and hence are useful for studying lipid-protein interactions. In the present work, phases and phase transformations occurring in the lipid (DMPA) monolayer in the presence of globular protein (BSA) at neutral subphase pH (≈7.0) are highlighted and the corresponding in-plane pattern and morphology are explored from the surface pressure (π) - specific molecular area (A) isotherm, Brewster angle microscopy (BAM) and atomic force microscopy (AFM) both at air-water and air-solid interfaces. Films of pure lipid and lipid-protein complexes are deposited on solid surfaces by Langmuir-Blodgett method. Due to the presence of BSA molecules, phases and domain pattern changes in comparison with that of the pure DMPA. Moreover, accumulations of globular proteins in between lipid domains are also visible through BAM. AFM shows that the mixed film has relatively bigger globular-like morphology in comparison with that of pure DMPA domains. Combination of electrostatic and hydrophobic interactions between protein and lipid are responsible for such modifications.

  6. Atomic force microscopy as nano-stethoscope to study living organisms, insects

    NASA Astrophysics Data System (ADS)

    Sokolov, Igor; Dokukin, Maxim; Guz, Nataliia

    2012-02-01

    Atomic force microscopy (AFM) is a known method to study various surfaces. Here we report on the use of AFM to study surface oscillations (coming from the work of internal organs) of living organisms, like insects. As an example, ladybird beetles (Hippodamia convergens) measured in different parts of the insect at picometer level. This allows us to record a much broader spectral range of possible surface vibrations (up to several kHz) than the previously studied oscillations due to breathing, heartbeat cycles, coelopulses, etc. (up to 5 -10 Hz). The used here AFM method allows collecting signal from the area as small as ˜100nm2 (0.0001μm2) with an example of noise level of (2±0.2)x10-3 nm r.m.s. at the range of frequencies >50Hz (potentially, up to a MHz). Application of this method to humans is discussed. The method, being a relatively non-invasive technique providing a new type of information, may be useful in developing of what could be called ``nanophysiology.''

  7. Wide-field microscopy using microcamera arrays

    NASA Astrophysics Data System (ADS)

    Marks, Daniel L.; Youn, Seo Ho; Son, Hui S.; Kim, Jungsang; Brady, David J.

    2013-02-01

    A microcamera is a relay lens paired with image sensors. Microcameras are grouped into arrays to relay overlapping views of a single large surface to the sensors to form a continuous synthetic image. The imaged surface may be curved or irregular as each camera may independently be dynamically focused to a different depth. Microcamera arrays are akin to microprocessors in supercomputers in that both join individual processors by an optoelectronic routing fabric to increase capacity and performance. A microcamera may image ten or more megapixels and grouped into an array of several hundred, as has already been demonstrated by the DARPA AWARE Wide-Field program with multiscale gigapixel photography. We adapt gigapixel microcamera array architectures to wide-field microscopy of irregularly shaped surfaces to greatly increase area imaging over 1000 square millimeters at resolutions of 3 microns or better in a single snapshot. The system includes a novel relay design, a sensor electronics package, and a FPGA-based networking fabric. Biomedical applications of this include screening for skin lesions, wide-field and resolution-agile microsurgical imaging, and microscopic cytometry of millions of cells performed in situ.

  8. Topological and morphological analysis of gamma rays irradiated chitosan-poly (vinyl alcohol) blends using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Bhatt, Rinkesh; Bisen, D. S.; Bajpai, R.; Bajpai, A. K.

    2017-04-01

    In the present communication, binary blends of poly (vinyl alcohol) (PVA) and chitosan (CS) were prepared by solution cast method and the roughness parameters of PVA, native CS and CS-PVA blend films were determined using atomic force microscopy (AFM). Moreover, the changes in the morphology of the samples were also investigated after irradiation of gamma rays at absorbed dose of 1 Mrad and 10 Mrad for the scanning areas of 5×5 μm2, 10×10 μm2 and 20×20 μm2. Amplitude, statistical and spatial parameters, including line, 3D and 2D image profiles of the experimental surfaces were examined and compared to un-irradiated samples. For gamma irradiated CS-PVA blends the larger waviness over the surface was found as compared to un-irradiated CS-PVA blends but the values of average roughness for both the films were found almost same. The coefficient of skewness was positive for gamma irradiated CS-PVA blends which revealed the presence of more peaks than valleys on the blend surfaces.

  9. Hierarchical NiO-SiO2 composite hollow microspheres with enhanced adsorption affinity towards Congo red in water.

    PubMed

    Lei, Chunsheng; Zhu, Xiaofeng; Zhu, Bicheng; Yu, Jiaguo; Ho, Wingkei

    2016-03-15

    Hollow microspheres and hierarchical porous nanostructured materials with desired morphologies have gained remarkable attention for their potential applications in environmental technology. In this study, NiO-SiO2 hollow microspheres were prepared by co-precipitation with SiO2 and nickel salt as precursors, followed by dipping in alkaline solution and calcination. The samples were characterized by X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, nitrogen adsorption, and X-ray photoelectron spectroscopy. The synthesized hollow spheres were composed of a SiO2 shell and hierarchical porous NiO nanosheets on the surface. Adsorption experiments suggested that NiO-SiO2 composite particles were powerful adsorbents for removal of Congo red from water, with a maximum adsorption capacity of 204.1 mg/g. The high specific surface areas, hollow structures, and hierarchical porous surfaces of the hollow composite particles are suitable for various applications, including adsorption of pollutants, chemical separation, and water purification. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Sub-wavelength ripples in fused silica after irradiation of the solid/liquid interface with ultrashort laser pulses.

    PubMed

    Böhme, R; Vass, C; Hopp, B; Zimmer, K

    2008-12-10

    Laser-induced backside wet etching (LIBWE) is performed using ultrashort 248 nm laser pulses with a pulse duration of 600 fs to obtain sub-wavelength laser-induced periodic surface structures (LIPSS) on the back surface of fused silica which is in contact with a 0.5 mol l(-1) solution of pyrene in toluene. The LIPSS are strictly one-dimensional patterns, oriented parallel to the polarization of the laser radiation, and have a constant period of about 140 nm at all applied laser fluences (0.33-0.84 J cm(-2)) and pulse numbers (50-1000 pulses). The LIPSS amplitude varies due to the inhomogeneous fluence in the laser spot. The LIPSS are examined with scanning electron microscopy (SEM) and atomic force microscopy (AFM). Their power spectral density (PSD) distribution is analysed at a measured area of 10 µm × 10 µm. The good agreement of the measured and calculated LIPSS periods strongly supports a mechanism based on the interference of surface-scattered and incident waves.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, S.M.; Brinkar, C.J.; Rao, S.M.

    We are testing an anti-weathering preservation strategy that is specific to limestone surfaces. The strategy involves the application of a mineral-specific, bifunctional, passivating/coupling agent that binds to both the limestone surface and to the consolidating inorganic polymer matrix. The sol-gel based reactions form composite materials with desirable conservation and anti-weathering properties. We present the results of our efforts, the highlights of which are: (1) scanning probe microscopy of moisture-free calcite crystals treated with the trisilanol form of silylalkylaminocarboxylate (SAAC), reveals porous agglomerates that offer no significant resistance to the mild leaching action of deionized water. When the crystals are furthermore » consolidated with a silica-based consolidant (A2**), no dissolution is seen although the positive role of the passivant molecule is not yet delineated. (2) Modulus of rupture tests on limestone cores treated with an aminoalkylsilane (AEAPS) and A2** showed a 25-35% increase in strength compared to the untreated samples. (3) Environmental scanning electron microscopy of treated limestone subjected to a concentrated acid attack showed degradation of the surface except in areas where thick layers of the consolidant were deposited.« less

  12. Morphology-dependent Electrochemical Enhancements of Porous Carbon as Sensitive Determination Platform for Ascorbic Acid, Dopamine and Uric Acid

    NASA Astrophysics Data System (ADS)

    Cheng, Qin; Ji, Liudi; Wu, Kangbing; Zhang, Weikang

    2016-02-01

    Using starch as the carbon precursor and different-sized ZnO naoparticles as the hard template, a series of porous carbon materials for electrochemical sensing were prepared. Experiments of scanning electron microscopy, transmission electron microscopy and Nitrogen adsorption-desorption isotherms reveal that the particle size of ZnO has big impacts on the porous morphology and surface area of the resulting carbon materials. Through ultrasonic dispersion of porous carbon and subsequent solvent evaporation, different sensing interfaces were constructed on the surface of glassy carbon electrode (GCE). The electrochemical behaviors of ascorbic acid (AA), dopamine (DA) and uric acid (UA) were studied. On the surface of porous carbon materials, the accumulation efficiency and electron transfer ability of AA, DA and UA are improved, and consequently their oxidation signals enhance greatly. Moreover, the interface enhancement effects of porous carbon are also controlled by the particle size of hard template. The constructed porous carbon interface displays strong signal amplification ability and holds great promise in constructing a sensitive platform for the simultaneous determination of AA, DA and UA.

  13. Replication fidelity assessment of large area sub-μm structured polymer surfaces using scatterometry

    NASA Astrophysics Data System (ADS)

    Calaon, M.; Madsen, M. H.; Weirich, J.; Hansen, H. N.; Tosello, G.; Hansen, P. E.; Garnaes, J.; Tang, P. T.

    2015-12-01

    The present study addresses one of the key challenges in the product quality control of transparent structured polymer substrates, the replication fidelity of sub-μm structures over a large area. Additionally the work contributes to the development of new techniques focused on in-line characterization of large nanostructured surfaces using scatterometry. In particular an approach to quantify the replication fidelity of high volume manufacturing processes such as polymer injection moulding is presented. Both periodic channels and semi-spherical structures were fabricated on nickel shims used for later injection moulding of Cyclic-olefin-copolymer (COC) substrate were the sub-μm features where ultimately transferred. The scatterometry system was validated using calibrated atomic force microscopy measurements and a model based on scalar diffraction theory employed to calculate the expected angular distribution of the reflected and the transmitted intensity for the nickel surfaces and structured COC and, respectively.

  14. Conformational changes of a calix[8]arene derivative at the air-water interface.

    PubMed

    de Miguel, Gustavo; Pedrosa, José M; Martín-Romero, María T; Muñoz, Eulogia; Richardson, Tim H; Camacho, Luis

    2005-03-10

    The particular behavior of a p-tert-butyl calix[8]arene derivative (C8A) has been studied at the air-water interface using surface pressure-area isotherms, surface potential-area isotherms, film relaxation measurements, Brewster angle microscopy (BAM), and infrared spectroscopy for Langmuir-Blodgett films. Thus, it is observed that the properties of the film, for example, isotherms, domain formation, and FTIR spectra, recorded during the first compression cycle differ appreciably from those during the second compression and following cycles. The results obtained are interpreted on the basis of the conformational changes of the C8A molecules by surface pressure, allowing us to inquire into the inter- and intramolecular interactions (hydrogen bonds) of those molecules. Thus, the compression induces changes in the kind of hydrogen bonds from intra- and intermolecular with other C8A molecules to hydrogen bonds with water molecules.

  15. Effect of laser irradiation on surface hardness and structural parameters of 7178 aluminium alloy

    NASA Astrophysics Data System (ADS)

    Maryam, Siddra; Bashir, Farooq

    2018-04-01

    Aluminium 7178 samples were prepared and irradiated with Nd:YAG laser. The surfaces of exposed samples were investigated using optical microscopy, which revealed that the surface morphology of the samples is changed drastically as a function of laser shots. It is revealed from the micrographs that the laser heat effected area increases with the increase in the number of the laser pulses. Furthermore morphological and mechanical properties were studied using XRD and Vickers hardness testing. XRD study shows an increasing trend in Grain size with the increasing number of laser shots. And the hardness of the samples as a function of the laser shots shows that the hardness first increases and then it decreases gradually. It was observed that the grain size has no pronouncing effect on the hardness. Hardness profile has a decreasing trend with the increase in linear distance from the boundary of the laser heat affected area.

  16. Acid leaching of natural chrysotile asbestos to mesoporous silica fibers

    NASA Astrophysics Data System (ADS)

    Maletaškić, Jelena; Stanković, Nadežda; Daneu, Nina; Babić, Biljana; Stoiljković, Milovan; Yoshida, Katsumi; Matović, Branko

    2018-04-01

    Nanofibrous silica with a high surface area was produced from chrysotile by the acid-leaching method. Natural mineral chrysotile asbestos from Stragari, Korlace in Serbia was used as the starting material. The fibers were modified by chemical treatment with 1 M HCl and the mineral dissolution was monitored by transmission electron microscopy, X-ray powder diffraction, inductively coupled plasma spectrometry and low-temperature nitrogen adsorption techniques to highlight the effects of the leaching process. The results showed that the applied concentration of acid solution and processing time of 4 h were sufficient to effectively remove the magnesium hydroxide layer and transform the crystal structure of the hazardous starting chrysotile to porous SiO2 nanofibers. With prolonged acid leaching, the specific surface area, S BET, calculated by BET equation, was increased from 147 up to 435 m2 g- 1, with micropores representing a significant part of the specific surface.

  17. Three-dimensional scanning force/tunneling spectroscopy at room temperature.

    PubMed

    Sugimoto, Yoshiaki; Ueda, Keiichi; Abe, Masayuki; Morita, Seizo

    2012-02-29

    We simultaneously measured the force and tunneling current in three-dimensional (3D) space on the Si(111)-(7 × 7) surface using scanning force/tunneling microscopy at room temperature. The observables, the frequency shift and the time-averaged tunneling current were converted to the physical quantities of interest, i.e. the interaction force and the instantaneous tunneling current. Using the same tip, the local density of states (LDOS) was mapped on the same surface area at constant height by measuring the time-averaged tunneling current as a function of the bias voltage at every lateral position. LDOS images at negative sample voltages indicate that the tip apex is covered with Si atoms, which is consistent with the Si-Si covalent bonding mechanism for AFM imaging. A measurement technique for 3D force/current mapping and LDOS imaging on the equivalent surface area using the same tip was thus demonstrated.

  18. Preparation of TiO2-SiO2 via sol-gel method: Effect of Silica precursor on Catalytic and Photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Fatimah, I.

    2017-02-01

    TiO2-SiO2have been synthesized by the sol-gel method from titanium isopropoxide and varied silica precursors: tetraethyl orthosilicate and tetra methyl ortho silicate. To study the effect of the precursor, prepared materials were characterized by X-ray diffraction, scanning electron microscopy, Diffuse Reflectance UV-vis optical absorption, and also gas sorption analysis. XRD patterns showed the formation of TiO2 anatase in the TiO2-SiO2 composite with different crystallite size from different silica precursor as well as the different surface morphology. The DRUV-vis absorption spectra exhibit similar band gap energy correspond to 3.21eV value while the surface area, pore volume and pore radius of the materials seems to be affected by the precursor. The higher specific surface area contributes to give the enhanced activity in phenol hydroxylation and methylene blue photodegradation.

  19. Effect of nitric acid treatment on activated carbon derived from oil palm shell

    NASA Astrophysics Data System (ADS)

    Allwar, Allwar; Hartati, Retno; Fatimah, Is

    2017-03-01

    The primary object of this work is to study the effect of nitric acid on the porous and morphology structure of activated carbon. Production of activated carbon from oil palm shell was prepared with pyrolysis process at temperature 900°C and by introduction of 10 M nitric acid. Determination of surface area, pore volume and pore size distribution of activated carbon was conducted by the N2 adsorption-desorption isotherm at 77 K. Morphology structure and elemental micro-analysis of activated carbon were estimated by Scanning Electron Microscopy (SEM) and energy dispersive X-ray (EDX), respectively. The result shows that activated carbon after treating with nitric acid proved an increasing porous characteristics involving surface area, pore volume and pore size distribution. It also could remove the contaminants including metals and exhibit an increasing of pores and crevices all over the surface.

  20. Development of a surface topography instrument for automotive textured steel plate

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Wang, Shenghuai; Chen, Yurong; Xie, Tiebang

    2010-08-01

    The surface topography of automotive steel plate is decisive to its stamping, painting and image clarity performances. For measuring this kind of surface topography, an instrument has been developed based on the principle of vertical scanning white light microscopy interference principle. The microscopy interference system of this instrument is designed based on the structure of Linnik interference microscopy. The 1D worktable of Z direction is designed and introduced in details. The work principle of this instrument is analyzed. In measuring process, the interference microscopy is derived as a whole and the measured surface is scanned in vertical direction. The measurement accuracy and validity is verified by templates. Surface topography of textured steel plate is also measured by this instrument.

  1. FS laser processing of bio-polymer thin films for studying cell-to-substrate specific response

    NASA Astrophysics Data System (ADS)

    Daskalova, A.; Nathala, Chandra S. R.; Kavatzikidou, P.; Ranella, A.; Szoszkiewicz, R.; Husinsky, W.; Fotakis, C.

    2016-09-01

    The use of ultra-short pulses for nanoengineering of biomaterials opens up possibilities for biological, medical and tissue engineering applications. Structuring the surface of a biomaterial into arrays with micro- and nanoscale features and architectures, defines new roadmaps to innovative engineering of materials. Thin films of novel collagen/elastin composite and gelatin were irradiated by Ti:sapphire fs laser in air at central wavelength 800 nm, with pulse durations in the range of 30 fs. The size and shape as well as morphological forms occurring in the resulted areas of interaction were analyzed as a function of irradiation fluence and number of pulses by atomic force microscopy (AFM). The fs interaction regime allows generation of well defined micro porous surface arrays. In this study we examined a novel composite consisting of collagen and elastin in order to create a biodegradable matrix to serve as a biomimetic surface for cell attachment. Confocal microscopy images of modified zones reveal formation of surface fringe patterns with orientation direction alongside the area of interaction. Outside the crater rim a wave-like topography pattern is observed. Structured, on a nanometer scale, surface array is employed for cell-culture experiments for testing cell's responses to substrate morphology. Mice fibroblasts migration was monitored after 3 days cultivation period using FESEM. We found that fibroblasts cells tend to migrate and adhere along the laser modified zones. The performed study proved that the immobilized collagen based biofilms suite as a template for successful fibroblasts cell guidance and orientation. Fs laser induced morphological modification of biomimetic materials exhibit direct control over fibroblasts behaviour due to induced change in their wettability state.

  2. Preparation, Characterization and Activity of a Peptide-Cellulosic Aerogel Protease Sensor from Cotton.

    PubMed

    Edwards, J Vincent; Fontenot, Krystal R; Prevost, Nicolette T; Pircher, Nicole; Liebner, Falk; Condon, Brian D

    2016-10-26

    Nanocellulosic aerogels (NA) provide a lightweight biocompatible material with structural properties, like interconnected high porosity and specific surface area, suitable for biosensor design. We report here the preparation, characterization and activity of peptide-nanocellulose aerogels (PepNA) made from unprocessed cotton and designed with protease detection activity. Low-density cellulosic aerogels were prepared from greige cotton by employing calcium thiocyanate octahydrate/lithium chloride as a direct cellulose dissolving medium. Subsequent casting, coagulation, solvent exchange and supercritical carbon dioxide drying afforded homogeneous cellulose II aerogels of fibrous morphology. The cotton-based aerogel had a porosity of 99% largely dominated by mesopores (2-50 nm) and an internal surface of 163 m²·g -1 . A fluorescent tripeptide-substrate (succinyl-alanine-proline-alanine-4-amino-7-methyl-coumarin) was tethered to NA by (1) esterification of cellulose C6 surface hydroxyl groups with glycidyl-fluorenylmethyloxycarbonyl (FMOC), (2) deprotection and (3) coupling of the immobilized glycine with the tripeptide. Characterization of the NA and PepNA included techniques, such as elemental analysis, mass spectral analysis, attenuated total reflectance infrared imaging, nitrogen adsorption, scanning electron microscopy and bioactivity studies. The degree of substitution of the peptide analog attached to the anhydroglucose units of PepNA was 0.015. The findings from mass spectral analysis and attenuated total reflectance infrared imaging indicated that the peptide substrate was immobilized on to the surface of the NA. Nitrogen adsorption revealed a high specific surface area and a highly porous system, which supports the open porous structure observed from scanning electron microscopy images. Bioactivity studies of PepNA revealed a detection sensitivity of 0.13 units/milliliter for human neutrophil elastase, a diagnostic biomarker for inflammatory diseases. The physical properties of the aerogel are suitable for interfacing with an intelligent protease sequestrant wound dressing.

  3. Discussion about the use of the volume specific surface area (VSSA) as a criterion to identify nanomaterials according to the EU definition. Part two: experimental approach.

    PubMed

    Lecloux, André J; Atluri, Rambabu; Kolen'ko, Yury V; Deepak, Francis Leonard

    2017-10-12

    The first part of this study was dedicated to the modelling of the influence of particle shape, porosity and particle size distribution on the volume specific surface area (VSSA) values in order to check the applicability of this concept to the identification of nanomaterials according to the European Commission Recommendation. In this second part, experimental VSSA values are obtained for various samples from nitrogen adsorption isotherms and these values were used as a screening tool to identify and classify nanomaterials. These identification results are compared to the identification based on the 50% of particles with a size below 100 nm criterion applied to the experimental particle size distributions obtained by analysis of electron microscopy images on the same materials. It is concluded that the experimental VSSA values are able to identify nanomaterials, without false negative identification, if they have a mono-modal particle size, if the adsorption data cover the relative pressure range from 0.001 to 0.65 and if a simple, qualitative image of the particles by transmission or scanning electron microscopy is available to define their shape. The experimental conditions to obtain reliable adsorption data as well as the way to analyze the adsorption isotherms are described and discussed in some detail in order to help the reader in using the experimental VSSA criterion. To obtain the experimental VSSA values, the BET surface area can be used for non-porous particles, but for porous, nanostructured or coated nanoparticles, only the external surface of the particles, obtained by a modified t-plot approach, should be considered to determine the experimental VSSA and to avoid false positive identification of nanomaterials, only the external surface area being related to the particle size. Finally, the availability of experimental VSSA values together with particle size distributions obtained by electron microscopy gave the opportunity to check the representativeness of the two models described in the first part of this study. They were also used to calculate the VSSA values and these calculated values were compared to the experimental results. For narrow particle size distributions, both models give similar VSSA values quite comparable to the experimental ones. But when the particle size distribution broadens or is of multi-bimodal shape, as theoretically predicted, one model leads to VSSA values higher than the experimental ones while the other most often leads to VSSA values lower than the experimental ones. The experimental VSSA approach then appears as a reliable, simple screening tool to identify nano and non-nano-materials. The modelling approach cannot be used as a formal identification tool but could be useful to screen for potential effects of shape, polydispersity and size, for example to compare various possible nanoforms.

  4. Direct observation for atomically flat and ordered vertical {111} side-surfaces on three-dimensionally figured Si(110) substrate using scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Yang, Haoyu; Hattori, Azusa N.; Ohata, Akinori; Takemoto, Shohei; Hattori, Ken; Daimon, Hiroshi; Tanaka, Hidekazu

    2017-11-01

    A three-dimensional Si{111} vertical side-surface structure on a Si(110) wafer was fabricated by reactive ion etching (RIE) followed by wet-etching and flash-annealing treatments. The side-surface was studied with scanning tunneling microscopy (STM) in atomic scale for the first time, in addition to atomic force microscopy (AFM), scanning electron microscopy (SEM), and low-energy electron diffraction (LEED). AFM and SEM showed flat and smooth vertical side-surfaces without scallops, and STM proved the realization of an atomically-flat 7 × 7-reconstructed structure, under optimized RIE and wet-etching conditions. STM also showed that a step-bunching occurred on the produced {111} side-surface corresponding to a reversely taped side-surface with a tilt angle of a few degrees, but did not show disordered structures. Characteristic LEED patterns from both side- and top-reconstructed surfaces were also demonstrated.

  5. Ultrastructural localization of human HL-A membrane antigens by use of hybrid antibodies

    PubMed Central

    Neauport-Sautes, Catherine; Silvestre, Daniele; Niccolai, Marie-Gabrielle; Kourilsky, F. M.; Levy, J. P.

    1972-01-01

    The localization of HL-A histocompatibility antigens at the surface of human lymphocytes in electron microscopy has been studied using hybrid antibodies to bind electron-dense particles (ferritin and plant viruses) to anti-HL-A antibody. A discontinuous distribution of the markers is observed at the cell surface, which is identical with that described for H-2 antigens on mouse lymphocytes with the same technique. Double labelling experiments suggest that the areas of the cell surface where HL-A antigens are detected contain also the heterologous lymphocyte antigens detected by an anti-thymocyte serum and that HL-A antigens are not renewed at a detectable level during the period of the labelling procedure in the areas of the cell surface which are not labelled primarily with ferritin-anti-IgG-anti-HL-A complexes. The interpretation of the discontinuous labelling of HL-A antigens with direct immunoferritin techniques is discussed. ImagesFIG. 2FIG. 3FIG. 4FIG. 5 PMID:5063188

  6. Nondestructive evaluation of structural ceramics by photoacoustic microscopy

    NASA Technical Reports Server (NTRS)

    Khandelwal, Pramod K.

    1987-01-01

    A photoacoustic microscopy (PAM) digital imaging system was developed and utilized to characterize silicon nitride material at the various stages of the ceramic fabrication process. Correlation studies revealed that photoacoustic microscopy detected failure initiating defects in substantially more specimens than microradiography and ultrasonic techniques. Photoacoustic microscopy detected 10 to 100 micron size surface and subsurface pores and inclusions, respectively, up to 80 microns below the interrogating surface in machined sintered silicon nitride. Microradiography detected 50 micron diameter fracture controlling pores and inclusions. Subsurface holes were detected up to a depth of 570 microns and 1.00 mm in sintered silicon nitride and silicon carbide, respectively. Seeded voids of 20 to 30 micron diameters at the surface and 50 microns below the interrogating surface were detected by photoacoustic microscopy and microradiography with 1 percent X-ray thickness sensitivity. Tight surface cracks of 96 micron length x 48 micron depth were detected by photoacoustic microscopy. PAM volatilized and removed material in the green state which resulted in linear shallow microcracks after sintering. This significantly limits the use of PAM as an in-process NDE technique.

  7. Analysis of leaf surfaces using scanning ion conductance microscopy.

    PubMed

    Walker, Shaun C; Allen, Stephanie; Bell, Gordon; Roberts, Clive J

    2015-05-01

    Leaf surfaces are highly complex functional systems with well defined chemistry and structure dictating the barrier and transport properties of the leaf cuticle. It is a significant imaging challenge to analyse the very thin and often complex wax-like leaf cuticle morphology in their natural state. Scanning electron microscopy (SEM) and to a lesser extent Atomic force microscopy are techniques that have been used to study the leaf surface but their remains information that is difficult to obtain via these approaches. SEM is able to produce highly detailed and high-resolution images needed to study leaf structures at the submicron level. It typically operates in a vacuum or low pressure environment and as a consequence is generally unable to deal with the in situ analysis of dynamic surface events at submicron scales. Atomic force microscopy also possess the high-resolution imaging required and can follow dynamic events in ambient and liquid environments, but can over exaggerate small features and cannot image most leaf surfaces due to their inherent roughness at the micron scale. Scanning ion conductance microscopy (SICM), which operates in a liquid environment, provides a potential complementary analytical approach able to address these issues and which is yet to be explored for studying leaf surfaces. Here we illustrate the potential of SICM on various leaf surfaces and compare the data to SEM and atomic force microscopy images on the same samples. In achieving successful imaging we also show that SICM can be used to study the wetting of hydrophobic surfaces in situ. This has potentially wider implications than the study of leaves alone as surface wetting phenomena are important in a range of fundamental and applied studies. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  8. The influence of nanoscopically thin silver films on bacterial viability and attachment.

    PubMed

    Ivanova, Elena P; Hasan, Jafar; Truong, Vi Khanh; Wang, James Y; Raveggi, Massimo; Fluke, Christopher; Crawford, Russell J

    2011-08-01

    The physicochemical and bactericidal properties of thin silver films have been analysed. Silver films of 3 and 150 nm thicknesses were fabricated using a magnetron sputtering thin-film deposition system. X-ray photoelectron and energy dispersive X-ray spectroscopy and atomic force microscopy analyses confirmed that the resulting surfaces were homogeneous, and that silver was the most abundant element present on both surfaces, being 45 and 53 at.% on the 3- and 150-nm films, respectively. Inductively coupled plasma time of flight mass spectroscopy (ICP-TOF-MS) was used to measure the concentration of silver ions released from these films. Concentrations of 0.9 and 5.2 ppb were detected for the 3- and 150-nm films, respectively. The surface wettability of the films remained nearly identical for both film thicknesses, displaying a static water contact angle of 95°, while the surface free energy of the 150-nm film was found to be slightly greater than that of the 3-nm film, being 28.8 and 23.9 mN m(-1), respectively. The two silver film thicknesses exhibited statistically significant differences in surface topographic profiles on the nanoscopic scale, with R (a), R (q) and R (max) values of 1.4, 1.8 and 15.4 nm for the 3-nm film and 0.8, 1.2 and 10.7 nm for the 150-nm film over a 5 × 5 μm scanning area. Confocal scanning laser microscopy and scanning electron microscopy revealed that the bactericidal activity of the 3-nm silver film was not significant, whereas the nanoscopically smoother 150-nm silver film exhibited appreciable bactericidal activity towards Pseudomonas aeruginosa ATCC 9027 cells and Staphylococcus aureus CIP 65.8 cells, obtaining up to 75% and 27% sterilisation effect, respectively.

  9. Nanophotonics technology watch at the European Patent Office

    NASA Astrophysics Data System (ADS)

    Verbandt, Y.; Kallinger, C.; Scheu, M.; Förster, W.

    2008-04-01

    Since its inception, the nanotechnology working group at the European Patent Office has been constantly updating the content of its different nanotechnology classification tags which it applies to patent publications worldwide. The main technologies in the nanophotonics area are photonic crystals, surface plasmon devices, semiconductor superlattices and scanning near-field microscopy. Some patent statistics are shown and a brief summary of legal issues is given.

  10. Nanostructure and burning mode of light-duty diesel particulate with conventional diesel, biodiesel, and intermediate blends

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strzelec, Andrea; Vander Wal, Randy L.; Lewis, Samuel A.

    The nanostructure of diesel particulates has been shown to impact its oxidation rate and burnout trajectory. Additionally, this nanostructure can evolve during the oxidation process, furthering its influence on the burnout process. For this paper, exhaust particulates were generated on a light-duty diesel engine with conventional diesel fuel, biodiesel, and intermediate blends of the two at a single load-speed point. Despite the singular engine platform and operating point, the different fuels created particulates with varied nanostructure, thereby greatly expanding the window for observing nanostructure evolution and oxidation. The physical and chemical properties of the particulates in the nascent state andmore » at partial oxidation states were measured in a laboratory reactor and by high-resolution transmission electron microscopy as a function of the degree of oxidation in O 2. X-ray photoacoustic spectroscopy analysis, thermal desorption, and solvent extraction of the nascent particulate samples reveal a significant organic content in the biodiesel-derived particulates, likely accounting for differences in the nanostructure. This study reports the nanoscale structural changes in the particulate with biofuel blend level and during O 2 oxidation as observed by high-resolution transmission electron microscopy and quantitated by fringe analysis and Brunnauer–Emmet–Teller total surface area measurements. It was observed that initial fuel-related differences in the lamella lengths, spacing, and curvature disappear when the particulate reaches approximately 50% burnout. Specifically, the initial ordered, fullerenic, and amorphous nanostructures converge during the oxidation process and the surface areas of these particulates appear to grow through these complex changes in internal particle structure. The specific surface area, measured at several points along the burnout trajectory, did not match the shrinking core projection and in contrast suggested that internal porosity was increasing. Thus, the appropriate burnout model for these particulates is significantly different from the standard shrinking core assumption, which does not account for any internal structure. Finally, an alternative burnout model is supported by high-resolution transmission electron microscopy image analysis.« less

  11. Nanostructure and burning mode of light-duty diesel particulate with conventional diesel, biodiesel, and intermediate blends

    DOE PAGES

    Strzelec, Andrea; Vander Wal, Randy L.; Lewis, Samuel A.; ...

    2017-01-18

    The nanostructure of diesel particulates has been shown to impact its oxidation rate and burnout trajectory. Additionally, this nanostructure can evolve during the oxidation process, furthering its influence on the burnout process. For this paper, exhaust particulates were generated on a light-duty diesel engine with conventional diesel fuel, biodiesel, and intermediate blends of the two at a single load-speed point. Despite the singular engine platform and operating point, the different fuels created particulates with varied nanostructure, thereby greatly expanding the window for observing nanostructure evolution and oxidation. The physical and chemical properties of the particulates in the nascent state andmore » at partial oxidation states were measured in a laboratory reactor and by high-resolution transmission electron microscopy as a function of the degree of oxidation in O 2. X-ray photoacoustic spectroscopy analysis, thermal desorption, and solvent extraction of the nascent particulate samples reveal a significant organic content in the biodiesel-derived particulates, likely accounting for differences in the nanostructure. This study reports the nanoscale structural changes in the particulate with biofuel blend level and during O 2 oxidation as observed by high-resolution transmission electron microscopy and quantitated by fringe analysis and Brunnauer–Emmet–Teller total surface area measurements. It was observed that initial fuel-related differences in the lamella lengths, spacing, and curvature disappear when the particulate reaches approximately 50% burnout. Specifically, the initial ordered, fullerenic, and amorphous nanostructures converge during the oxidation process and the surface areas of these particulates appear to grow through these complex changes in internal particle structure. The specific surface area, measured at several points along the burnout trajectory, did not match the shrinking core projection and in contrast suggested that internal porosity was increasing. Thus, the appropriate burnout model for these particulates is significantly different from the standard shrinking core assumption, which does not account for any internal structure. Finally, an alternative burnout model is supported by high-resolution transmission electron microscopy image analysis.« less

  12. Comparison of surface roughness and bacterial adhesion between cosmetic contact lenses and conventional contact lenses.

    PubMed

    Ji, Yong Woo; Cho, Young Joo; Lee, Chul Hee; Hong, Soon Ho; Chung, Dong Yong; Kim, Eung Kweon; Lee, Hyung Keun

    2015-01-01

    To compare physical characteristics of cosmetic contact lenses (Cos-CLs) and conventional contact lenses (Con-CLs) that might affect susceptibility to bacterial adhesion on the contact lens (CL) surface. Surface characteristics of Cos-CLs and Con-CLs made from the same material by the same manufacturer were measured by atomic force microscopy (AFM) and scanning electron microscopy. To determine the extent and rate of bacterial adhesion, Cos-CL and Con-CL were immersed in serum-free Roswell Park Memorial Institute media containing Staphylococcus aureus or Pseudomonas aeruginosa. Additionally, the rate of removal of adherent bacteria was evaluated using hand rubbing or immersion in multipurpose disinfecting solutions (MPDS). The mean surface roughness (root mean square and peak-to-valley value) measured by AFM was significantly higher for Cos-CL than for Con-CL. At each time point, significantly more S. aureus and P. aeruginosa adhered to Cos-CL than to Con-CL, which correlated with the surface roughness of CL. In Cos-CL, bacteria were mainly found on the tinted surface rather than on the noncolored or convex areas. Pseudomonas aeruginosa attached earlier than S. aureus to all types of CL. However, P. aeruginosa was more easily removed from the surface of CL than S. aureus by hand rubbing or MPDS soaking. Increased surface roughness is an important physical factor for bacterial adhesion in Cos-CL, which may explain why rates of bacterial keratitis rates are higher in Cos-CL users in CL physical characteristics.

  13. Molecular beam epitaxy of graphene on ultra-smooth nickel: growth mode and substrate interactions

    NASA Astrophysics Data System (ADS)

    Wofford, J. M.; Oliveira, M. H., Jr.; Schumann, T.; Jenichen, B.; Ramsteiner, M.; Jahn, U.; Fölsch, S.; Lopes, J. M. J.; Riechert, H.

    2014-09-01

    Graphene is grown by molecular beam epitaxy using epitaxial Ni films on MgO(111) as substrates. Raman spectroscopy and scanning tunneling microscopy reveal the graphene films to have few crystalline defects. While the layers are ultra-smooth over large areas, we find that Ni surface features lead to local non-uniformly thick graphene inclusions. The influence of the Ni surface structure on the position and morphology of these inclusions strongly suggests that multilayer graphene on Ni forms at the interface of the first complete layer and metal substrate in a growth-from-below mechanism. The interplay between Ni surface features and graphene growth behavior may facilitate the production of films with spatially resolved multilayer inclusions through engineered substrate surface morphology.

  14. Davisson-Germer Prize in Atomic or Surface Physics Talk: Soft X-Ray Studies of Surfaces, Interfaces and Thin Films: From Spectroscopy to Ultrafast Nanoscale Movies

    NASA Astrophysics Data System (ADS)

    Stöhr, Joachim

    2011-03-01

    My talk will review the development of soft x-ray spectroscopy and microscopy and its impact on our understanding of chemical bonding, magnetism and dynamics at surfaces and interfaces. I will first outline important soft x-ray spectroscopy and microscopy techniques that have been developed over the last 30 years and their key strengths such as elemental and chemical specificity, sensitivity to small atomic concentrations, separation of charge and spin properties, spatial resolution down to the nanometer scale, and temporal resolution down to the intrinsic femtosecond timescale of atomic and electronic motions. I will then present scientific breakthroughs based on soft x-ray studies in three selected areas: the nature of molecular bonding and reactivity on metal surfaces, the molecular origin of liquid crystal alignment on surfaces, and the microscopic origin of interface-mediated spin alignments in modern magnetic devices. My talk will also cover the use of soft x-rays for revealing the temporal evolution of electronic structure, addressing the key problem of ``function,'' down to the intrinsic femtosecond time scale of charge and spin configuration changes. As examples I will present the formation and breaking of chemical bonds in surface complexes and the motion of the magnetization in magnetic devices. Work supported by the Office of Basic Energy Science of the US Department of Energy.

  15. Green synthesis and characterization of size tunable silica-capped gold core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Wangoo, Nishima; Shekhawat, Gajendra; Wu, Jin-Song; Bhasin, Aman K. K.; Suri, C. R.; Bhasin, K. K.; Dravid, Vinayak

    2012-08-01

    Silica-coated gold nanoparticles (Au@SiO2) with controlled silica-shell thickness were prepared by a modified Stober's method using 10-nm gold nanoparticles (AuNPs) as seeds. The AuNPs were silica-coated with a sol-gel reaction using tetraethylorthosilicate (TEOS) as a silica source and ammonia as a catalyst. An increase in TEOS concentration resulted in an increase in shell thickness. The NPs were characterized by transmission electron microscopy, selected area electron diffraction, energy-dispersive X-ray spectroscopy, scanning near-field ultrasound holography and scanning transmission electron microscopy. The method required no surface modification and the synthesized core shell nanoparticles can be used for various types of biological applications.

  16. Design and construction of a cost-efficient Arduino-based mirror galvanometer system for scanning optical microscopy

    NASA Astrophysics Data System (ADS)

    Hsu, Jen-Feng; Dhingra, Shonali; D'Urso, Brian

    2017-01-01

    Mirror galvanometer systems (galvos) are commonly employed in research and commercial applications in areas involving laser imaging, laser machining, laser-light shows, and others. Here, we present a robust, moderate-speed, and cost-efficient home-built galvo system. The mechanical part of this design consists of one mirror, which is tilted around two axes with multiple surface transducers. We demonstrate the ability of this galvo by scanning the mirror using a computer, via a custom driver circuit. The performance of the galvo, including scan range, noise, linearity, and scan speed, is characterized. As an application, we show that this galvo system can be used in a confocal scanning microscopy system.

  17. Effects of Polyethylene Glycol and Citric Acid on Preparation and Hydrodechlorination Activity of Molybdenum Phosphide

    NASA Astrophysics Data System (ADS)

    Liu, Xiaomeng; Lu, Shaoxiang; Xu, Hanghui; Ren, Lili

    2018-07-01

    Molybdenum phosphide (MoP), modified by polyethylene glycol (PEG) and citric acid (CA), exhibited 2 to 3 times superior activity than the MoP modified by CA alone. And the optimal activity temperature was reduced from 500 to 450oC. The catalyst was fully characterized by a variety of techniques including X-ray diffraction (XRD), N2 adsorption-desorption isotherm, scanning electron microscopy (SEM), transmission electron microscopy (TEM). The results showed that the addition of PEG and CA increased the surface area of MoP and decreased the particle size of MoP. Furthermore, the reaction mechanism also has been discussed by combining the activity data and characterization results.

  18. Detailed characterisation of focused ion beam induced lateral damage on silicon carbide samples by electrical scanning probe microscopy and transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Stumpf, F.; Abu Quba, A. A.; Singer, P.; Rumler, M.; Cherkashin, N.; Schamm-Chardon, S.; Cours, R.; Rommel, M.

    2018-03-01

    The lateral damage induced by focused ion beam on silicon carbide was characterized using electrical scanning probe microscopy (SPM), namely, scanning spreading resistance microscopy and conductive atomic force microscopy (c-AFM). It is shown that the damage exceeds the purposely irradiated circles with a radius of 0.5 μm by several micrometres, up to 8 μm for the maximum applied ion dose of 1018 cm-2. Obtained SPM results are critically compared with earlier findings on silicon. For doses above the amorphization threshold, in both cases, three different areas can be distinguished. The purposely irradiated area exhibits resistances smaller than the non-affected substrate. A second region with strongly increasing resistance and a maximum saturation value surrounds it. The third region shows the transition from maximum resistance to the base resistance of the unaffected substrate. It correlates to the transition from amorphized to defect-rich to pristine crystalline substrate. Additionally, conventional transmission electron microscopy (TEM) and annular dark-field STEM were used to complement and explain the SPM results and get a further understanding of the defect spreading underneath the surface. Those measurements also show three different regions that correlate well with the regions observed from electrical SPM. TEM results further allow to explain observed differences in the electrical results for silicon and silicon carbide which are most prominent for ion doses above 3 × 1016 cm-2. Furthermore, the conventional approach to perform current-voltage measurements by c-AFM was critically reviewed and several improvements for measurement and analysis process were suggested that result in more reliable and impactful c-AFM data.

  19. Brain heating induced by near-infrared lasers during multiphoton microscopy

    PubMed Central

    Ranganathan, Gayathri

    2016-01-01

    Two-photon imaging and optogenetic stimulation rely on high illumination powers, particularly for state-of-the-art applications that target deeper structures, achieve faster measurements, or probe larger brain areas. However, little information is available on heating and resulting damage induced by high-power illumination in the brain. In the current study we used thermocouple probes and quantum dot nanothermometers to measure temperature changes induced by two-photon microscopy in the neocortex of awake and anaesthetized mice. We characterized heating as a function of wavelength, exposure time, and distance from the center of illumination. Although total power is highest near the surface of the brain, heating was most severe hundreds of micrometers below the focal plane, due to heat dissipation through the cranial window. Continuous illumination of a 1-mm2 area produced a peak temperature increase of ∼1.8°C/100 mW. Continuous illumination with powers above 250 mW induced lasting damage, detected with immunohistochemistry against Iba1, glial fibrillary acidic protein, heat shock proteins, and activated caspase-3. Higher powers were usable in experiments with limited duty ratios, suggesting an approach to mitigate damage in high-power microscopy experiments. PMID:27281749

  20. High surface area calcite

    NASA Astrophysics Data System (ADS)

    Schultz, L. N.; Andersson, M. P.; Dalby, K. N.; Müter, D.; Okhrimenko, D. V.; Fordsmand, H.; Stipp, S. L. S.

    2013-05-01

    Calcite (CaCO3) is important in many fields—in nature, because it is a component of aquifers, oil reservoirs and prospective CO2 storage sites, and in industry, where it is used in products as diverse as paper, toothpaste, paint, plastic and aspirin. It is difficult to obtain high purity calcite with a high surface area but such material is necessary for industrial applications and for fundamental calcite research. Commercial powder is nearly always contaminated with growth inhibitors such as sugars, citrate or pectin and most laboratory synthesis methods deliver large precipitates, often containing vaterite or aragonite. To address this problem, we (i) adapted the method of carbonating a Ca(OH)2 slurry with CO2 gas to develop the first simple, cheap, safe and reproducible procedure using common laboratory equipment, to obtain calcite that reproducibly had a surface area of 14-17 m2/g and (ii) conducted a thorough characterization of the product. Scanning electron microscopy (SEM) revealed nanometer scale, rhombohedral crystals. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy (IR) confirmed highly crystalline, pure calcite that more closely resembles the dimensions of the biogenic calcite produced by algae in coccoliths than other methods for synthesizing calcite. We suggest that this calcite is useful when purity and high surface area are important.

  1. Regeneration of Waste Edible Oil by the Use of Virgin and Calcined Magnesium Hydroxide as Adsorbents.

    PubMed

    Ogata, Fumihiko; Kawasaki, Naohito

    2016-01-01

    In this study, we prepared virgin (S, L) and calcined (S-380, S-1000, L-380, L-1000) magnesium hydroxide for regeneration of waste edible oil. Deterioration of soybean oil, rapeseed oil, and olive oil was achieved by heat and aeration treatment. The properties of the different adsorbents were investigated using specific surface area measurements, scanning electron microscopy, X-ray diffraction analysis, thermogravimetric-differential thermal analysis, and surface pH measurement. Moreover, the relationship between the changes in acid value (AV) and carbonyl value (CV) and the adsorbent properties were evaluated. The specific surface areas of S-380 and L-380 were greater than that of other adsorbents. In addition, the XRD results show that S-380 and L-380 contain both magnesium hydroxide and magnesium oxide structures. The decreases in AV and CV using S-380 and L-380 were greater than achieved using other adsorbents. The correlation coefficients between the decrease in AV and CV and specific surface area were 0.947 for soybean oil, 0.649 for rapeseed oil, and 0.773 for olive oil, respectively. The results obtained in this study suggest that a physical property of the adsorbent, namely specific surface area, was primarily responsible for the observed decreases in AV and CV. Overall, the results suggest that S-380 and L-380 are useful for the regeneration of waste edible oil.

  2. Tailoring surface and photocatalytic properties of ZnO and nitrogen-doped ZnO nanostructures using microwave-assisted facile hydrothermal synthesis

    NASA Astrophysics Data System (ADS)

    Rangel, R.; Cedeño, V.; Ramos-Corona, A.; Gutiérrez, R.; Alvarado-Gil, J. J.; Ares, O.; Bartolo-Pérez, P.; Quintana, P.

    2017-08-01

    Microwave hydrothermal synthesis, using an experimental 23 factorial design, was used to produce tunable ZnO nano- and microstructures, and their potential as photocatalysts was explored. Photocatalytic reactions were conducted in a microreactor batch system under UV and visible light irradiation, while monitoring methylene blue degradation, as a model system. The variables considered in the microwave reactor to produce ZnO nano- or microstructures, were time, NaOH concentration and synthesis temperature. It was found that, specific surface area and volume/surface area ratio were affected as a consequence of the synthesis conditions. In the second stage, the samples were plasma treated in a nitrogen atmosphere, with the purpose of introducing nitrogen into the ZnO crystalline structure. The central idea is to induce changes in the material structure as well as in its optical absorption, to make the plasma-treated material useful as photocatalyst in the visible region of the electromagnetic spectrum. Pristine ZnO and nitrogen-doped ZnO compounds were characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), specific surface area (BET), XPS, and UV-Vis diffuse reflectance spectroscopy. The results show that the methodology presented in this work is effective in tailoring the specific surface area of the ZnO compounds and incorporation of nitrogen into their structure, factors which in turn, affect its photocatalytic behavior.

  3. Formation and characterization of high surface area thermally stabilized titania/silica composite materials via hydrolysis of titanium(IV) tetra-isopropoxide in sols of spherical silica particles.

    PubMed

    Khalil, Kamal M S; Elsamahy, Ahmed A; Elanany, Mohamed S

    2002-05-15

    A direct synthetic route leading to titania particles dispersed on nonporous spherical silica particles has been investigated; 5, 10, and 20% (w/w) titania/silica sols mixtures were achieved via hydrolyzation of titanium tetra-isopropxide solution in the mother liquor of a freshly prepared sol of spherical silica particles (Stöber particles). Titania/silica materials were produced by subsequent drying and calcination of the xerogels so obtained for 3 h at 400 and 600 degrees C. The materials were investigated by means of thermal analyses (TGA and DSC), FT-IR, N(2) gas adsorption-desorption, powder X-ray diffraction (XRD), and transmission electron microscopy (TEM). In spite of the low surface area (13.1 m(2)/g) of the pure spherical silica particles calcined at 400 degrees C, high surface area and mesoporous texture titania/silica materials were obtained (e.g., S(BET) ca. 293 m(2)/g for the 10% titania/silica calcined at 400 degrees C). Moreover, the materials were shown to be amorphous toward XRD up to 600 degrees C, while reasonable surface areas were preserved. It has been concluded that dispersion of titania particles onto the surface of the nonporous spherical silica particles increase their roughness, therefore leading to composite materials of less firm packing and mesoporosity.

  4. Efficient protein immobilization on polyethersolfone electrospun nanofibrous membrane via covalent binding for biosensing applications.

    PubMed

    Mahmoudifard, Matin; Soudi, Sara; Soleimani, Masoud; Hosseinzadeh, Simzar; Esmaeili, Elaheh; Vossoughi, Manouchehr

    2016-01-01

    In this paper we introduce novel strategy for antibody immobilization using high surface area electrospun nanofibrous membrane based on ethyl-3-(3-dimethylaminopropyl)-carbodiimide/N-hydroxysuccinimide (EDC/NHS) coupling chemistry. To present the high performance of proposed biosensors, anti-staphylococcus enterotoxin B (anti-SEB) was used as a model to demonstrate the utility of our proposed system. Polymer solution of polyethersolfone was used to fabricate fine nanofibrous membrane. Moreover, industrial polyvinylidene fluoride membrane and conventional microtiter plate were also used to compare the efficiency of antibody immobilization. Scanning electron microscopy images were taken to study the morphology of the membranes. The surface activation of nanofibrous membrane was done with the help of O2 plasma. PES nanofibrous membrane with carboxyl functional groups for covalent attachment of antibodies were treated by EDC/NHS coupling agent. The quantity of antibody immobilization was measured by enzyme-linked immuno sorbent assay (ELISA) method. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) spectroscopy was performed to confirm the covalent immobilization of antibody on membrane. Atomic force microscopy, scanning electron microscopy and invert fluorescence microscopy were used to analyze the antibody distribution pattern on solid surfaces. Results show that oxygen plasma treatment effectively increased the amount of antibody immobilization through EDC/NHS coupling chemistry. It was found that the use of nanofibrous membrane causes the improved detection signal of ELISA based biosensors in comparison to the standard assay carried out in the 96-well microtiter plate. This method has the potential to improve the ELISA-based biosensor and we believe that this technique can be used in various biosensing methods. Copyright © 2015. Published by Elsevier B.V.

  5. Complex interaction of subsequent surface streamers via deposited charge: a high-resolution experimental study

    NASA Astrophysics Data System (ADS)

    Hoder, T.; Synek, P.; Chorvát, D.; Ráhel', J.; Brandenburg, R.; Černák, M.

    2017-07-01

    The coplanar barrier discharge in synthetic air at 30 kPa pressure was studied by time-correlated single photon counting enhanced optical emission spectroscopy, far-field microscopy enhanced intensified CCD camera and sensitive current measurements. The discharge operated in a regime where two subsequent microdischarges appeared within the same voltage half-period. The electrical analysis of the barrier discharge setup enabled us to quantify charge transfer and the effective electric field development. During the second microdischarge the positive surface streamers follow the interface (triple-line) between the area of deposited charge from the previous one and the area of uncharged dielectric surface. It is shown that additional branching and flashes of surface streamers are responsible for the increased spatial complexity of the deposited surface charges at high overvoltage. A suppressed streamer propagating over the area of deposited surface charge was tracked and the evidence of surface streamer reconnection is presented. A spatiotemporal distribution (resolution of 120 ps and 100 μm) of the reduced electric field strength was obtained for both microdischarges from the recorded luminosities of the molecular nitrogen. The reduced electric field of positive streamers in the first microdischarge reached 1200 Td. For the second one, the electric field values for the streamer at the triple-line are slightly lower than that, while for the suppressed streamers are even higher.

  6. Biofilm formation on nanostructured titanium oxide surfaces and a micro/nanofabrication-based preventive strategy using colloidal lithography.

    PubMed

    Singh, Ajay Vikram; Vyas, Varun; Salve, Tushar S; Cortelli, Daniele; Dellasega, David; Podestà, Alessandro; Milani, Paolo; Gade, W N

    2012-06-01

    The contamination of implant devices as a result of biofilm formation through bacterial infection has instigated major research in this area, particularly to understand the mechanism of bacterial cell/implant surface interactions and their preventions. In this paper, we demonstrate a controlled method of nanostructured titanium oxide surface synthesis using supersonic cluster beam depositions. The nanoscale surface characterization using atomic force microscopy and a profilometer display a regulated evolution in nanomorphology and physical properties. X-ray photoelectron spectroscopy analyses display a stoichiometric nanostructured TiO(2) film. Measurement of the water contact angle shows a nominal increase in the hydrophilic nature of ns-TiO(2) films, whereas the surface energy increases with decreasing contact angle. Bacterial species Staphylococcus aureus and Escherichia coli interaction with nanostructured surfaces shows an increase in adhesion and biofilm formation with increasing nanoscale morphological properties. Conversely, limiting ns-TiO(2) film distribution to micro/nanopatterned designed substrates integrated with bovine serum albumin functionalization leads to a reduction in biofilm formations due to a globally decreased bacterial cell-surface interaction area. The results have potential implications in inhibiting bacterial colonization and promoting mammalian cell-implant interactions.

  7. Fibrinogen adsorption onto 316L stainless steel under polarized conditions.

    PubMed

    Gettens, Robert T T; Gilbert, Jeremy L

    2008-04-01

    Adsorption of the plasma protein fibrinogen onto electrically polarized 316L stainless steel was observed and quantified using both in situ and ex situ atomic force microscopy (AFM) techniques. Significant differences in fibrinogen adsorption were observed across voltages. Ex situ studies showed significantly lower area coverage (theta) and height of adsorbed Fb on cathodically polarized surfaces when compared to anodically polarized surfaces. Conformational differences in the protein may explain the distinctions in Fb surface area coverage (theta) and height between the anodic and cathodic cases. In situ studies showed significantly slower kinetics of Fb adsorption onto surfaces below -100 mV (vs. Ag/AgCl) compared to surfaces polarized above -100 mV. Electrochemical current density data showed large charge transfer processes (approximately 1 x 10(-5) to 1 x 10(-4) A/cm(2)) taking place on the 316L SS surfaces at voltages below -100 mV (vs. Ag/AgCl). These relatively large current densities point to flux of ionic species away from the surface as a major source of the reduction in adsorption kinetics rather than just hydrophilic or electrostatic effects. Copyright 2007 Wiley Periodicals, Inc.

  8. Electrochemical determination of the onset of bacterial surface adhesion

    NASA Astrophysics Data System (ADS)

    Jones, Akhenaton-Andrew; Buie, Cullen

    2017-11-01

    Microbial biofouling causes economic loss through corrosion and drag losses on ship hulls, and in oil and food distribution. Microorganisms interacting with surfaces under these open channel flows contend with high shear rates and active transport to the surface. The metallic surfaces they interact with carry charge at various potentials that are little addressed in literature. In this study we demonstrate that the Levich curve, chronoamperometry, and cyclic voltammetry in a rotating disk electrode are ideal for studying adhesion of microbes to metallic surfaces. We study the adhesion of Escherichia coli, Bacillus subtilis, and 1 μm silica microspheres over a 0.15 - 37.33 dynes .cm-2 or shear rates of 14.73 - 3727.28 s-1 range. Our results agree with literature on red blood cells in rotating disk electrodes, deposition rates from optical systems, and show that we can quantify changes in active electrode area by bacteria adhesion and protein secretion. These methods measure changes in area instead of mass, are more accurate than fluorescence microscopy, and apply to a larger range of problems than on-chip flow devices.

  9. Evaluation of drug-carrier interactions in quaternary powder mixtures containing perindopril tert-butylamine and indapamide.

    PubMed

    Voelkel, Adam; Milczewska, Kasylda; Teżyk, Michał; Milanowski, Bartłomiej; Lulek, Janina

    2016-04-30

    Interactions occurring between components in the quaternary powder mixtures consisting of perindopril tert-butylamine, indapamide (active pharmaceutical ingredients), carrier substance and hydrophobic colloidal silica were examined. Two grades of lactose monohydrate: Spherolac(®) 100 and Granulac(®) 200 and two types of microcrystalline cellulose: M101D+ and Vivapur(®) 102 were used as carriers. We determined the size distribution (laser diffraction method), morphology (scanning electron microscopy) and a specific surface area of the powder particles (by nitrogen adsorption-desorption). For the determination of the surface energy of powder mixtures the method of inverse gas chromatography was applied. Investigated mixtures were characterized by surface parameters (dispersive component of surface energy, specific interactions parameters, specific surface area), work of adhesion and cohesion as well as Flory-Huggins parameter χ23('). Results obtained for all quaternary powder mixtures indicate existence of interactions between components. The strongest interactions occur for both blends with different types of microcrystalline cellulose (PM-1 and PM-4) while much weaker ones for powder mixtures with various types of lactose (PM-2 and PM-3). Published by Elsevier B.V.

  10. SDVSRM - a new SSRM based technique featuring dynamically adjusted, scanner synchronized sample voltages for measurement of actively operated devices.

    PubMed

    Doering, Stefan; Wachowiak, Andre; Roetz, Hagen; Eckl, Stefan; Mikolajick, Thomas

    2018-06-01

    Scanning spreading resistance microscopy (SSRM) with its high spatial resolution and high dynamic signal range is a powerful tool for two-dimensional characterization of semiconductor dopant areas. However, the application of the method is limited to devices in equilibrium condition, as the investigation of actively operated devices would imply potential differences within the device, whereas SSRM relies on a constant voltage difference between sample surface and probe tip. Furthermore, the standard preparation includes short circuiting of all device components, limiting applications to devices in equilibrium condition. In this work scanning dynamic voltage spreading resistance microscopy (SDVSRM), a new SSRM based two pass atomic force microscopy (AFM) technique is introduced, overcoming these limitations. Instead of short circuiting the samples during preparation, wire bond devices are used allowing for active control of the individual device components. SDVSRM consists of two passes. In the first pass the local sample surface voltage dependent on the dc biases applied to the components of the actively driven device is measured as in scanning voltage microscopy (SVM). The local spreading resistance is measured within the second pass, in which the afore obtained local surface voltage is used to dynamically adjust the terminal voltages of the device under test. This is done in a way that the local potential difference across the nano-electrical contact matches the software set SSRM measurement voltage, and at the same time, the internal voltage differences within the device under test are maintained. In this work the proof of the concept could be demonstrated by obtaining spreading resistance data of an actively driven photodiode test device. SDVSRM adds a higher level of flexibility in general to SSRM, as occurring differences in cross section surface voltage are taken into account. These differences are immanent for actively driven devices, but can also be present at standard, short circuited samples. Therefore, SDVSRM could improve the characterization under equilibrium conditions as well. Copyright © 2018. Published by Elsevier B.V.

  11. Exposure to nanoscale particles and fibers during machining of hybrid advanced composites containing carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Bello, Dhimiter; Wardle, Brian L.; Yamamoto, Namiko; Guzman deVilloria, Roberto; Garcia, Enrique J.; Hart, Anastasios J.; Ahn, Kwangseog; Ellenbecker, Michael J.; Hallock, Marilyn

    2009-01-01

    This study investigated airborne exposures to nanoscale particles and fibers generated during dry and wet abrasive machining of two three-phase advanced composite systems containing carbon nanotubes (CNTs), micron-diameter continuous fibers (carbon or alumina), and thermoset polymer matrices. Exposures were evaluated with a suite of complementary instruments, including real-time particle number concentration and size distribution (0.005-20 μm), electron microscopy, and integrated sampling for fibers and respirable particulate at the source and breathing zone of the operator. Wet cutting, the usual procedure for such composites, did not produce exposures significantly different than background whereas dry cutting, without any emissions controls, provided a worst-case exposure and this article focuses here. Overall particle release levels, peaks in the size distribution of the particles, and surface area of released particles (including size distribution) were not significantly different for composites with and without CNTs. The majority of released particle surface area originated from the respirable (1-10 μm) fraction, whereas the nano fraction contributed 10% of the surface area. CNTs, either individual or in bundles, were not observed in extensive electron microscopy of collected samples. The mean number concentration of peaks for dry cutting was composite dependent and varied over an order of magnitude with highest values for thicker laminates at the source being >1 × 106 particles cm-3. Concentration of respirable fibers for dry cutting at the source ranged from 2 to 4 fibers cm-3 depending on the composite type. Further investigation is required and underway to determine the effects of various exposure determinants, such as specimen and tool geometry, on particle release and effectiveness of controls.

  12. Effects of Nano-CeO₂ with Different Nanocrystal Morphologies on Cytotoxicity in HepG2 Cells.

    PubMed

    Wang, Lili; Ai, Wenchao; Zhai, Yanwu; Li, Haishan; Zhou, Kebin; Chen, Huiming

    2015-09-02

    Cerium oxide nanoparticles (nano-CeO₂) have been reported to cause damage and apoptosis in human primary hepatocytes. Here, we compared the toxicity of three types of nano-CeO₂ with different nanocrystal morphologies (cube-, octahedron-, and rod-like crystals) in human hepatocellular carcinoma cells (HepG2). The cells were treated with the nano-CeO₂ at various concentrations (6.25, 12.5, 25, 50, 100 μg/mL). The crystal structure, size and morphology of nano-CeO₂ were investigated by X-ray diffractometry and transmission electron microscopy. The specific surface area was detected using the Brunauer, Emmet and Teller method. The cellular morphological and internal structure were observed by microscopy; apoptotic alterations were measured using flow cytometry; nuclear DNA, mitochondrial membrane potential (MMP), reactive oxygen species (ROS) and glutathione (GSH) in HepG2 cells were measured using high content screening technology. The scavenging ability of hydroxyl free radicals and the redox properties of the nano-CeO₂ were measured by square-wave voltammetry and temperature-programmed-reduction methods. All three types of nano-CeO₂ entered the HepG2 cells, localized in the lysosome and cytoplasm, altered cellular shape, and caused cytotoxicity. The nano-CeO₂ with smaller specific surface areas induced more apoptosis, caused an increase in MMP, ROS and GSH, and lowered the cell's ability to scavenge hydroxyl free radicals and antioxidants. In this work, our data demonstrated that compared with cube-like and octahedron-like nano-CeO₂, the rod-like nano-CeO₂ has lowest toxicity to HepG2 cells owing to its larger specific surface areas.

  13. Laser Window Studies

    DTIC Science & Technology

    1975-08-01

    CONT’D) Nuniln 21 23 24 26 20 30 31 34 3 5 ■A 6 37 39 Title Page Nomarski Fnterference Microscopy of Surface of 61 Film Substrates Tes...Potassium Chloride Surfaces 83 Anomalous Indentation Behavior 85 Indentations in As.;S Films - Nomarski Microscopy 92 Indentations in As9S...minimum load required to remove the film. Nomarski interference microscopy was used to inspect the scratched surfaces. The method was found to be less

  14. High surface area mesoporous activated carbon-alginate beads for efficient removal of methylene blue.

    PubMed

    Nasrullah, Asma; Bhat, A H; Naeem, Abdul; Isa, Mohamed Hasnain; Danish, Mohammed

    2018-02-01

    High surface area mesoporous activated carbon-alginate (AC-alginate) beads were successfully synthesized by entrapping activated carbon powder derived from Mangosteen fruit peel into calcium-alginate beads for methylene blue (MB) removal from aqueous solution. The structure and surface characteristics of AC-alginate beads were analyzed using Fourier transform infra-red (FTIR) spectroscopy, scanning electron microscopy (SEM) and surface area analysis (S BET ), while thermal properties were tested using thermogravimetric analysis (TGA). The effect of AC-alginate dose, pH of solution, contact time, initial concentration of MB solution and temperature on MB removal was elucidated. The results showed that the maximum adsorption capacity of 230mg/g was achieved for 100mg/L of MB solution at pH 9.5 and temperature 25°C. Furthermore, the adsorption of MB on AC-alginate beads followed well pseudo-second order equation and equilibrium adsorption data were better fitted by the Freundlich isotherm model. The findings reveal the feasibility of AC-alginate beads composite to be used as a potential and low cost adsorbent for removal of cationic dyes. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Sulfur-carbon nanocomposite cathodes improved by an amphiphilic block copolymer for high-rate lithium-sulfur batteries.

    PubMed

    Fu, Yongzhu; Su, Yu-Sheng; Manthiram, Arumugam

    2012-11-01

    A sulfur-carbon nanocomposite consisting of a commercial high-surface-area carbon (i.e., Black Pearls 2000, BET surface area >1000 m² g⁻¹) and sulfur has been synthesized by an in situ deposition method. The nanocomposite is in the form of agglomerated nanoparticles, with the micropores within the carbon filled with sulfur and the mesopores on the carbon surface almost completely covered by sulfur. The BET surface area of the nanocomposite containing a sulfur content of 63.5 wt % is significantly reduced to only 40 m² g⁻¹. Cathodes containing the nanocomposite and Pluronic F-127 block copolymer, which partially replaces the polyvinylidene fluoride binder, were prepared and evaluated in lithium cells by cyclic voltammetry and galvanostatic cycling. The nanocomposite cathodes with the copolymer show improved electrochemical stability and cyclability. The Pluronic copolymer helps retain a uniform nanocomposite structure within the electrodes, improving the electrochemical contact, which was manifested by scanning electron microscopy and electrochemical impedance spectroscopy. The sulfur-Black Pearls nanocomposite with the Pluronic copolymer as an additive in the electrodes is promising for high-rate rechargeable lithium-sulfur batteries.

  16. Preparation and characterization of pitch-based nanoporous carbons for improving CO{sub 2} capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Seul-Yi; Yoo, Hye-Min; Park, Sang Wook

    2014-07-01

    Pitch is considered a promising low-cost carbon precursor. However, when pitch is pyrolyzed, it forms polycrystalline graphite, which is non-porous, and therefore, not useful for CO{sub 2} adsorption. In this work, pitch was chemically activated to obtain a large specific surface area and micropore volume. Varying weight ratios of KOH (i.e., 0, 1, 2, and 3) were used as the activating agent. The characteristics of the samples were investigated using scanning electron microscopy (SEM), N{sub 2}/77 K adsorption isotherms, and X-ray diffraction (XRD). The CO{sub 2} adsorption performance was studied by isothermal adsorption/desorption measurements. The results showed that an increasemore » in specific surface areas and total pore volumes of pitch-based nanoporous carbons, resulted in an enhancement of CO{sub 2} adsorption capacity. - Graphical abstract: This is the surface morphologies of pitch precursor and pitch-derived activated carbon (AC-2). - Highlights: • Pitch is considered a promising low-cost carbon precursor. • Specific surface area: 1442 m{sup 2}/g and micropore volume: 0.504 cm{sup 3}/g. • CO{sub 2} adsorption capacity showed 203 mg/g (@ RT/1 bar)« less

  17. Zn₂SnO₄-Reduced Graphene Oxide Nanohybrids for Visible-Light-Driven Photocatalysis.

    PubMed

    Li, Hui; Wu, Xiang-Feng; Sun, Yang; Zhao, Ze-Hua; Zhang, Chen-Xu; Jia, Fan-Fan; Zhang, Han; Yu, Mai-Tuo; Yang, Xin-Yue

    2018-02-01

    Zn2SnO4-reduced graphene oxide photocatalysts were synthesized by using SnCl4 5H2O, Zn(NO3)2 · 6H2O and graphene oxide via hydrothermal process. The structure, morphology, specific surface area and photo response of the as-prepared nanocomposites were characterized by X-ray diffraction, Transmission electron microscopy, UV-vis diffuse reflectance spectra, Brunauer-emmett-teller surface area measurement and Photoluminescence emission spectra. Experimental results showed that the Zn2SnO4 nanoparticles, with 20-30 nm a size range, were uniformly dispersed on the surfaces of reduced graphene oxide. Moreover, the as-prepared Zn2SnO4-reduced graphene oxide photocatalysts exhibited enhanced photocatalytic activities for degradation of Rhodamine B compared to those of pure Zn2SnO4. When the amount of reduced graphene oxide was 4 wt%, it showed the highest photocatalytic efficiency of 99.7% for 240 min, and the photocatalytic efficiency was still 98.5% after it was recycled 4 times. It also possessed the band gap of 2.48 eV and specific surface area of 58.1 m2 g-1.

  18. Sampling theory and automated simulations for vertical sections, applied to human brain.

    PubMed

    Cruz-Orive, L M; Gelšvartas, J; Roberts, N

    2014-02-01

    In recent years, there have been substantial developments in both magnetic resonance imaging techniques and automatic image analysis software. The purpose of this paper is to develop stereological image sampling theory (i.e. unbiased sampling rules) that can be used by image analysts for estimating geometric quantities such as surface area and volume, and to illustrate its implementation. The methods will ideally be applied automatically on segmented, properly sampled 2D images - although convenient manual application is always an option - and they are of wide applicability in many disciplines. In particular, the vertical sections design to estimate surface area is described in detail and applied to estimate the area of the pial surface and of the boundary between cortex and underlying white matter (i.e. subcortical surface area). For completeness, cortical volume and mean cortical thickness are also estimated. The aforementioned surfaces were triangulated in 3D with the aid of FreeSurfer software, which provided accurate surface area measures that served as gold standards. Furthermore, a software was developed to produce digitized trace curves of the triangulated target surfaces automatically from virtual sections. From such traces, a new method (called the 'lambda method') is presented to estimate surface area automatically. In addition, with the new software, intersections could be counted automatically between the relevant surface traces and a cycloid test grid for the classical design. This capability, together with the aforementioned gold standard, enabled us to thoroughly check the performance and the variability of the different estimators by Monte Carlo simulations for studying the human brain. In particular, new methods are offered to split the total error variance into the orientations, sectioning and cycloid components. The latter prediction was hitherto unavailable--one is proposed here and checked by way of simulations on a given set of digitized vertical sections with automatically superimposed cycloid grids of three different sizes. Concrete and detailed recommendations are given to implement the methods. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  19. Effect of nanoscale surface roughness on the bonding energy of direct-bonded silicon wafers

    NASA Astrophysics Data System (ADS)

    Miki, N.; Spearing, S. M.

    2003-11-01

    Direct wafer bonding of silicon wafers is a promising technology for manufacturing three-dimensional complex microelectromechanical systems as well as silicon-on-insulator substrates. Previous work has reported that the bond quality declines with increasing surface roughness, however, this relationship has not been quantified. This article explicitly correlates the bond quality, which is quantified by the apparent bonding energy, and the surface morphology via the bearing ratio, which describes the area of surface lying above a given depth. The apparent bonding energy is considered to be proportional to the real area of contact. The effective area of contact is defined as the area sufficiently close to contribute to the attractive force between the two bonding wafers. Experiments were conducted with silicon wafers whose surfaces were roughened by a buffered oxide etch solution (BOE, HF:NH4F=1:7) and/or a potassium hydroxide solution. The surface roughness was measured by atomic force microscopy. The wafers were direct bonded to polished "monitor" wafers following a standard RCA cleaning and the resulting bonding energy was measured by the crack-opening method. The experimental results revealed a clear correlation between the bonding energy and the bearing ratio. A bearing depth of ˜1.4 nm was found to be appropriate for the characterization of direct-bonded silicon at room temperature, which is consistent with the thickness of the water layer at the interface responsible for the hydrogen bonds that link the mating wafers.

  20. AFM AND XPS Characterization of Zinc-Aluminum Alloy Coatings with Attention to Surface Dross and Flow Lines

    NASA Astrophysics Data System (ADS)

    Harding, Felipe A.; Alarcon, Nelson A.; Toledo, Pedro G.

    Surfaces of various zinc-aluminum alloy (Zn-Al) coated steel samples are studied with attention to foreign surface dross by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS/ESCA). AFM topographic maps of zinc-aluminum alloy surfaces free of dross reveal the perfect nanoscale details of two kinds of dendrites: branched and globular. In all magnifications the dendrites appear smooth and, in general, very clean. XPS analysis of the extreme surface of a Zn-Al sample reveals Al, Zn, Si and O as the main components. The XPS results show no segregation or separation of phases other than those indicated by the ternary Al-Zn-Si diagram. For surfaces of Zn-Al plagued with impurities, high resolution AFM topographic maps reveal three situations: (1) areas with well-defined dendrites, relatively free of dross; (2) areas with small, millimeter-sized black spots known as dross; and (3) areas with large black stains, known as flow lines. Dendrite deformation and dross accumulation increase notably in the neighborhood, apparently clean to the naked eye, of dross or flow lines. XPS results of areas with dross and flow lines indicate unacceptable high concentration of Si and important Si phase separation. These results, in the light of AFM work, reveal that dross and flow lines are a consequence of a high local concentration of Si from high melting point silica and silicate impurities in the Zn-Al alloy source.

  1. Theory for measurements of penetration depth in magnetic superconductors by magnetic force microscopy and scanning SQUID microscopy

    NASA Astrophysics Data System (ADS)

    Lin, Shi-Zeng; Bulaevskii, Lev N.

    2012-07-01

    The working principle of magnetic force microscopy and scanning SQUID microscopy is introducing a magnetic source near a superconductor and measuring the magnetic field distribution near the superconductor, from which one can obtain the penetration depth. We investigate the magnetic field distribution near the surface of a magnetic superconductor when a magnetic source is placed close to the superconductor, which can be used to extract both the penetration depth λL and magnetic susceptibility χ by magnetic force microscopy or scanning SQUID microscopy. When the magnetic moments are parallel to the surface, one extracts λL/1-4πχ. When the moments are perpendicular to the surface, one obtains λL. By changing the orientation of the crystal, one thus is able to extract both χ and λL.

  2. Scanning probe recognition microscopy investigation of tissue scaffold properties

    PubMed Central

    Fan, Yuan; Chen, Qian; Ayres, Virginia M; Baczewski, Andrew D; Udpa, Lalita; Kumar, Shiva

    2007-01-01

    Scanning probe recognition microscopy is a new scanning probe microscopy technique which enables selective scanning along individual nanofibers within a tissue scaffold. Statistically significant data for multiple properties can be collected by repetitively fine-scanning an identical region of interest. The results of a scanning probe recognition microscopy investigation of the surface roughness and elasticity of a series of tissue scaffolds are presented. Deconvolution and statistical methods were developed and used for data accuracy along curved nanofiber surfaces. Nanofiber features were also independently analyzed using transmission electron microscopy, with results that supported the scanning probe recognition microscopy-based analysis. PMID:18203431

  3. Scanning probe recognition microscopy investigation of tissue scaffold properties.

    PubMed

    Fan, Yuan; Chen, Qian; Ayres, Virginia M; Baczewski, Andrew D; Udpa, Lalita; Kumar, Shiva

    2007-01-01

    Scanning probe recognition microscopy is a new scanning probe microscopy technique which enables selective scanning along individual nanofibers within a tissue scaffold. Statistically significant data for multiple properties can be collected by repetitively fine-scanning an identical region of interest. The results of a scanning probe recognition microscopy investigation of the surface roughness and elasticity of a series of tissue scaffolds are presented. Deconvolution and statistical methods were developed and used for data accuracy along curved nanofiber surfaces. Nanofiber features were also independently analyzed using transmission electron microscopy, with results that supported the scanning probe recognition microscopy-based analysis.

  4. AFM imaging of natural optical structures

    NASA Astrophysics Data System (ADS)

    Dallaeva, Dinara; Tománek, Pavel; Prokopyeva, Elena; Kaspar, Pavel; Grmela, Lubomír.; Škarvada, Pavel

    2015-01-01

    The colors of some living organisms assosiated with the surface structure. Irridesence butterfly wings is an example of such coloration. Optical effects such as interference, diffraction, polarization are responsible for physical colors appearance. Alongside with amazing beauty this structure represent interest for design of optical devices. Here we report the results of morphology investigation by atomic force microscopy. The difference in surface structure of black and blue wings areas is clearly observed. It explains the angle dependence of the wing blue color, since these micrometer and sub-micrometer quasiperiodical structures could control the light propagation, absorption and reflection.

  5. Experimental study of crack initiation and propagation in high- and gigacycle fatigue in titanium alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bannikov, Mikhail, E-mail: mbannikov@icmm.ru, E-mail: oborin@icmm.ru, E-mail: naimark@icmm.ru; Oborin, Vladimir, E-mail: mbannikov@icmm.ru, E-mail: oborin@icmm.ru, E-mail: naimark@icmm.ru; Naimark, Oleg, E-mail: mbannikov@icmm.ru, E-mail: oborin@icmm.ru, E-mail: naimark@icmm.ru

    Fatigue (high- and gigacycle) crack initiation and its propagation in titanium alloys with coarse and fine grain structure are studied by fractography analysis of fracture surface. Fractured specimens were analyzed by interferometer microscope and SEM to improve methods of monitoring of damage accumulation during fatigue test and to verify the models for fatigue crack kinetics. Fatigue strength was estimated for high cycle fatigue regime using the Luong method [1] by “in-situ” infrared scanning of the sample surface for the step-wise loading history for different grain size metals. Fine grain alloys demonstrated higher fatigue resistance for both high cycle fatigue andmore » gigacycle fatigue regimes. Fracture surface analysis for plane and cylindrical samples was carried out using optical and electronic microscopy method. High resolution profilometry (interferometer-profiler New View 5010) data of fracture surface roughness allowed us to estimate scale invariance (the Hurst exponent) and to establish the existence of two characteristic areas of damage localization (different values of the Hurst exponent). Area 1 with diameter ∼300 μm has the pronounced roughness and is associated with damage localization hotspot. Area 2 shows less amplitude roughness, occupies the rest fracture surface and considered as the trace of the fatigue crack path corresponding to the Paris kinetics.« less

  6. Excellent capacitive performance of a three-dimensional hierarchical porous graphene/carbon composite with a superhigh surface area.

    PubMed

    Li, Xue Jin; Xing, Wei; Zhou, Jin; Wang, Gui Qiang; Zhuo, Shu Ping; Yan, Zi Feng; Xue, Qing Zhong; Qiao, Shi Zhang

    2014-10-06

    Three-dimensional hierarchical porous graphene/carbon composite was successfully synthesized from a solution of graphene oxide and a phenolic resin by using a facile and efficient method. The morphology, structure, and surface property of the composite were investigated intensively by a variety of means such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption, Raman spectroscopy, and Fourier transform infrared spectroscopy (FTIR). It is found that graphene serves as a scaffold to form a hierarchical pore texture in the composite, resulting in its superhigh surface area of 2034 m(2) g(-1), thin macropore wall, and high conductivity (152 S m(-1)). As evidenced by electrochemical measurements in both EMImBF4 ionic liquid and KOH electrolyte, the composite exhibits ideal capacitive behavior, high capacitance, and excellent rate performance due to its unique structure. In EMImBF4 , the composite has a high energy density of up to 50.1 Wh kg(-1) and also possesses quite stable cycling stability at 100 °C, suggesting its promising application in high-temperature supercapacitors. In KOH electrolyte, the specific capacitance of this composite can reach up to an unprecedented value of 186.5 F g(-1), even at a very high current density of 50 A g(-1), suggesting its prosperous application in high-power applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Fabrication and textural characterization of nanoporous carbon electrodes embedded with CuO nanoparticles for supercapacitors.

    PubMed

    Prasad, Kumaresa P S; Dhawale, Dattatray S; Sivakumar, Thiripuranthagan; Aldeyab, Salem S; Zaidi, Javaid S M; Ariga, Katsuhiko; Vinu, Ajayan

    2011-08-01

    We introduce a novel strategy of fabricating nanoporous carbons loaded with different amounts of CuO nanoparticles via a hard templating approach, using copper-containing mesoporous silica as the template and sucrose as the carbon source. The nature and dispersion of the CuO nanoparticles on the surface of the nanoporous carbons were investigated by x-ray diffraction (XRD), high-resolution scanning electron microscopy (HRSEM) and high-resolution transmission electron microscopy (HRTEM). XRD results reveal that nanoporous carbons with embedded CuO nanoparticles exhibit a well-ordered mesoporous structure, whereas the nitrogen adsorption measurements indicate the presence of excellent textural characteristics such as high surface area, large pore volume and uniform pore size distribution. The amount of CuO nanoparticles in the nanochannels of the nanoporous carbon could be controlled by simply varying the Si/Cu molar ratio of the mesoporous silica template. Morphological characterization by SEM and TEM reveals that high-quality CuO nanoparticles are distributed homogeneously within the nanoporous carbon framework. The supercapacitance behavior of the CuO-loaded nanoporous carbons was investigated. The material with a small amount of CuO in the mesochannels and high surface area affords a maximum specific capacitance of 300 F g -1 at a 20 mV s -1 scan rate in an aqueous electrolyte solution. A supercapacitor containing the CuO-loaded nanoporous carbon is highly stable and exhibits a long cycle life with 91% specific capacitance retained after 1000 cycles.

  8. Fabrication and textural characterization of nanoporous carbon electrodes embedded with CuO nanoparticles for supercapacitors

    NASA Astrophysics Data System (ADS)

    Prasad, Kumaresa P. S.; Dhawale, Dattatray S.; Sivakumar, Thiripuranthagan; Aldeyab, Salem S.; Zaidi, Javaid S. M.; Ariga, Katsuhiko; Vinu, Ajayan

    2011-08-01

    We introduce a novel strategy of fabricating nanoporous carbons loaded with different amounts of CuO nanoparticles via a hard templating approach, using copper-containing mesoporous silica as the template and sucrose as the carbon source. The nature and dispersion of the CuO nanoparticles on the surface of the nanoporous carbons were investigated by x-ray diffraction (XRD), high-resolution scanning electron microscopy (HRSEM) and high-resolution transmission electron microscopy (HRTEM). XRD results reveal that nanoporous carbons with embedded CuO nanoparticles exhibit a well-ordered mesoporous structure, whereas the nitrogen adsorption measurements indicate the presence of excellent textural characteristics such as high surface area, large pore volume and uniform pore size distribution. The amount of CuO nanoparticles in the nanochannels of the nanoporous carbon could be controlled by simply varying the Si/Cu molar ratio of the mesoporous silica template. Morphological characterization by SEM and TEM reveals that high-quality CuO nanoparticles are distributed homogeneously within the nanoporous carbon framework. The supercapacitance behavior of the CuO-loaded nanoporous carbons was investigated. The material with a small amount of CuO in the mesochannels and high surface area affords a maximum specific capacitance of 300 F g-1 at a 20 mV s-1 scan rate in an aqueous electrolyte solution. A supercapacitor containing the CuO-loaded nanoporous carbon is highly stable and exhibits a long cycle life with 91% specific capacitance retained after 1000 cycles.

  9. Carbon Nanotubes and Algal Polysaccharides To Enhance the Enzymatic Properties of Urease in Lipid Langmuir-Blodgett Films.

    PubMed

    Rodrigues, Raul T; Morais, Paulo V; Nordi, Cristina S F; Schöning, Michael J; Siqueira, José R; Caseli, Luciano

    2018-03-06

    Algal polysaccharides (extracellular polysaccharides) and carbon nanotubes (CNTs) were adsorbed on dioctadecyldimethylammonium bromide Langmuir monolayers to serve as a matrix for the incorporation of urease. The physicochemical properties of the supramolecular system as a monolayer at the air-water interface were investigated by surface pressure-area isotherms, surface potential-area isotherms, interfacial shear rheology, vibrational spectroscopy, and Brewster angle microscopy. The floating monolayers were transferred to hydrophilic solid supports, quartz, mica, or capacitive electrolyte-insulator-semiconductor (EIS) devices, through the Langmuir-Blodgett (LB) technique, forming mixed films, which were investigated by quartz crystal microbalance, fluorescence spectroscopy, and field emission gun scanning electron microscopy. The enzyme activity was studied with UV-vis spectroscopy, and the feasibility of the thin film as a urea sensor was essayed in an EIS sensor device. The presence of CNT in the enzyme-lipid LB film not only tuned the catalytic activity of urease but also helped to conserve its enzyme activity. Viability as a urease sensor was demonstrated with capacitance-voltage and constant capacitance measurements, exhibiting regular and distinctive output signals over all concentrations used in this work. These results are related to the synergism between the compounds on the active layer, leading to a surface morphology that allowed fast analyte diffusion owing to an adequate molecular accommodation, which also preserved the urease activity. This work demonstrates the feasibility of employing LB films composed of lipids, CNT, algal polysaccharides, and enzymes as EIS devices for biosensing applications.

  10. Mesoporous anatase TiO{sub 2}/reduced graphene oxide nanocomposites: A simple template-free synthesis and their high photocatalytic performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Qi; Zhong, Yong-Hui; Laboratory of Nanomaterials and Environmental Detection, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei 230031

    2014-03-01

    Graphical abstract: - Highlights: • Mesoporous TiO{sub 2} nanoparticles with anatase phase were assembled on reduced graphene oxide via a template-free one-step hydrothermal method. • The TiO{sub 2}/rGO nanocomposites have better adsorption capacity and photocatalytic degradation efficiency for dyes removal. • Improved dye adsorption and photogenerated charge separation are responsible for enhanced activity. - Abstract: Mesoporous anatase phase TiO{sub 2} was assembled on reduced graphene oxide (rGO) using a template-free one-step hydrothermal process. The nanocomposites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and Brunauer–Emmett–Teller (BET) surface area.more » Morphology of TiO{sub 2} was related to the content of graphene oxide. TiO{sub 2}/rGO nanocomposites exhibited excellent photocatalytic activity for the photo-degradation of methyl orange. The degradation rate was 4.5 times greater than that of pure TiO{sub 2} nanoparticles. This difference was attributed to the thin two-dimensional graphene sheet. The graphene sheet had a large surface area, high adsorption capacity, and acted as a good electron acceptor for the transfer of photo-generated electrons from the conduction band of TiO{sub 2}. The enhanced surface adsorption characteristics and excellent charge transport separation were independent properties of the photocatalytic degradation process.« less

  11. Fabrication and textural characterization of nanoporous carbon electrodes embedded with CuO nanoparticles for supercapacitors

    PubMed Central

    Prasad, Kumaresa P S; Dhawale, Dattatray S; Sivakumar, Thiripuranthagan; Aldeyab, Salem S; Zaidi, Javaid S M; Ariga, Katsuhiko; Vinu, Ajayan

    2011-01-01

    We introduce a novel strategy of fabricating nanoporous carbons loaded with different amounts of CuO nanoparticles via a hard templating approach, using copper-containing mesoporous silica as the template and sucrose as the carbon source. The nature and dispersion of the CuO nanoparticles on the surface of the nanoporous carbons were investigated by x-ray diffraction (XRD), high-resolution scanning electron microscopy (HRSEM) and high-resolution transmission electron microscopy (HRTEM). XRD results reveal that nanoporous carbons with embedded CuO nanoparticles exhibit a well-ordered mesoporous structure, whereas the nitrogen adsorption measurements indicate the presence of excellent textural characteristics such as high surface area, large pore volume and uniform pore size distribution. The amount of CuO nanoparticles in the nanochannels of the nanoporous carbon could be controlled by simply varying the Si/Cu molar ratio of the mesoporous silica template. Morphological characterization by SEM and TEM reveals that high-quality CuO nanoparticles are distributed homogeneously within the nanoporous carbon framework. The supercapacitance behavior of the CuO-loaded nanoporous carbons was investigated. The material with a small amount of CuO in the mesochannels and high surface area affords a maximum specific capacitance of 300 F g-1 at a 20 mV s-1 scan rate in an aqueous electrolyte solution. A supercapacitor containing the CuO-loaded nanoporous carbon is highly stable and exhibits a long cycle life with 91% specific capacitance retained after 1000 cycles. PMID:27877410

  12. Superstrong encapsulated monolayer graphene by the modified anodic bonding

    NASA Astrophysics Data System (ADS)

    Jung, Wonsuk; Yoon, Taeshik; Choi, Jongho; Kim, Soohyun; Kim, Yong Hyup; Kim, Taek-Soo; Han, Chang-Soo

    2013-12-01

    We report a superstrong adhesive of monolayer graphene by modified anodic bonding. In this bonding, graphene plays the role of a superstrong and ultra-thin adhesive between SiO2 and glass substrates. As a result, monolayer graphene presented a strong adhesion energy of 1.4 J m-2 about 310% that of van der Waals bonding (0.45 J m-2) to SiO2 and glass substrates. This flexible solid state graphene adhesive can tremendously decrease the adhesive thickness from about several tens of μm to 0.34 nm for epoxy or glue at the desired bonding area. As plausible causes of this superstrong adhesion, we suggest conformal contact with the rough surface of substrates and generation of C-O chemical bonding between graphene and the substrate due to the bonding process, and characterized these properties using optical microscopy, atomic force microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy.We report a superstrong adhesive of monolayer graphene by modified anodic bonding. In this bonding, graphene plays the role of a superstrong and ultra-thin adhesive between SiO2 and glass substrates. As a result, monolayer graphene presented a strong adhesion energy of 1.4 J m-2 about 310% that of van der Waals bonding (0.45 J m-2) to SiO2 and glass substrates. This flexible solid state graphene adhesive can tremendously decrease the adhesive thickness from about several tens of μm to 0.34 nm for epoxy or glue at the desired bonding area. As plausible causes of this superstrong adhesion, we suggest conformal contact with the rough surface of substrates and generation of C-O chemical bonding between graphene and the substrate due to the bonding process, and characterized these properties using optical microscopy, atomic force microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr03822j

  13. Stabilization and Amorphization of Lovastatin Using Different Types of Silica.

    PubMed

    Khanfar, Mai; Al-Nimry, Suhair

    2017-08-01

    Lovastatin (LOV), an antihyperlipidimic agent, is characterized by low solubility/poor dissolution and, thus, low bioavailability (<5%). A beneficial effect on its bioavailability could result from improving its dissolution. One of the most common methods used to enhance dissolution is the preparation of solid dispersions. Solid dispersions of LOV and silica with different surface areas were prepared. The effects of the type of silica, ratio of drug/silica, incubation period with silica, and the effect of surface area were all studied. Characterization of the prepared formulae for possible interaction between drug and polymer was carried out using differential scanning calorimetery, Fourier transform infrared spectroscopy, powder X-ray diffraction, surface area determination, and scanning electron microscopy. The dissolution profiles of all prepared formulae were constructed and evaluated. It was found that the formula made of LOV and Sylysia 350 FCP in a ratio of 1:5 after an incubation period of 48 h resulted in the best release, and it was stable after 3 months storage at 75% RH and 40°C.

  14. Synthesis of silica aerogel monoliths with controlled specific surface areas and pore sizes

    NASA Astrophysics Data System (ADS)

    Gao, Bingying; Lu, Shaoxiang; Kalulu, Mulenga; Oderinde, Olayinka; Ren, Lili

    2017-07-01

    To replace traditional preparation methods of silica aerogels, a small-molecule 1,2-epoxypropane (PO) has been introduced into the preparation process instead of using ammonia as the cross-linking agent, thus generating a lightweight, high porosity, and large surface area silica aerogel monolithic. We put forward a simple solution route for the chemical synthesis of silica aerogels, which was characterized by scanning electron microscopy (SEM), TEM, XRD, FTIR, thermogravimetric analysis (TGA) and the Brunauer-Emmett-Teller (BET) method In this paper, the effect of the amount of PO on the microstructure of silica aerogels is discussed. The BET surface areas and pore sizes of the resulting silica aerogels can be freely adjusted by changing the amount of PO, which will be helpful in promoting the development of silica aerogels to fabricate other porous materials with similar requirements. We also adopted a new organic solvent sublimation drying (OSSD) method to replace traditional expensive and dangerous drying methods such as critical point drying and freeze drying. This simple approach is easy to operate and has good repeatability, which will further facilitate actual applications of silica aerogels.

  15. Volume 10, Issue 11-12© 2001 WILEY-VCH Verlag Berlin GmbH, Fed. Rep. of GermanySave Title to My Profile

    E-MailPrint

    Volume 10, Issue 11-12, Pages 887-984(November 2001)

    Original Paper

    Imaging of atomic orbitals with the Atomic Force Microscope - experiments and simulations

    NASA Astrophysics Data System (ADS)

    Giessibl, F. J.; Bielefeldt, H.; Hembacher, S.; Mannhart, J.

    2001-11-01

    Atomic force microscopy (AFM) is a mechanical profiling technique that allows to image surfaces with atomic resolution. Recent progress in reducing the noise of this technique has led to a resolution level where previously undetectable symmetries of the images of single atoms are observed. These symmetries are related to the nature of the interatomic forces. The Si(111)-(7 × 7) surface is studied by AFM with various tips and AFM images are simulated with chemical and electrostatic model forces. The calculation of images from the tip-sample forces is explained in detail and the implications of the imaging parameters are discussed. Because the structure of the Si(111)-(7 × 7) surface is known very well, the shape of the adatom images is used to determine the tip structure. The observability of atomic orbitals by AFM and scanning tunneling microscopy is discussed.

  16. Ultrastructure studies on the papillae and the nonciliated sensory receptors of adult Spirometra erinacei (Cestoda, Pseudophyllidea).

    PubMed

    Okino, T; Hatsushika, R

    1994-01-01

    The small numerous papillae on the ventral surface of the gravid proglottid of adult Spirometra erinacei were studied by scanning electron microscopy. The arrangement of clumps of papillae was recognized on the surface of the central portion around the genital atrium, with lateral clumps being located above a pair of longitudinal nerve cords and marginal ones, on both sides of the proglottid. By transmission electron microscopy, two types of nonciliated sensory receptors were observed within the papillae. The type I, single receptor was embedded within a papilla. This dome-like sensory receptor contained two electron-dense collars and four rootlets surrounded by numerous thin filaments. The type II receptor was found arranged in groups in the area between the papillae, and the apical end was exposed to the external environment. This simple, club-like sensory receptor contained electron-lucent vesicles and microtubules. We believe that the papillae play an important role in cross-insemination.

  17. A simple and low temperature process for super-hydrophilic rutile TiO 2 thin films growth

    NASA Astrophysics Data System (ADS)

    Mane, R. S.; Joo, Oh-Shim; Min, Sun-Ki; Lokhande, C. D.; Han, Sung-Hwan

    2006-11-01

    We investigate an environmentally friendly aqueous solution system for rutile TiO2 violet color nanocrystalline thin films growth on ITO substrate at room temperature. Film shows considerable absorption in visible region with excitonic maxima at 434 nm. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), UV-vis, water surface contact angle and energy dispersive X-ray analysis (EDX) techniques in addition to actual photo-image that shows purely rutile phase of TiO2 with violet color, super-hydrophilic and densely packed nanometer-sized spherical grains of approximate diameter 3.15 ± 0.4 nm, characterize the films. Band gap energy of 4.61 eV for direct transition was obtained for the rutile TiO2 films. Film surface shows super-hydrophilic behavior, as exhibited water contact angle was 7°. Strong visible absorption (not due to chlorine) leaves future challenge to use these films in extremely thin absorber (ETA) solar cells.

  18. Preparation and tribological behaviors of poly (ether ether ketone) nanocomposite films containing graphene oxide nanosheets

    NASA Astrophysics Data System (ADS)

    Song, Hao-Jie; Li, Na; Yang, Jin; Min, Chun-Ying; Zhang, Zhao-zhu

    2013-02-01

    The composite films of poly (ether ether ketone) (PEEK) filled with different proportions of graphene oxide (GO) nanosheets were prepared by the cast method. The tribological behaviors of the composite films under boundary lubrication (water and liquid paraffin oil lubrication) were investigated and compared with that under dry sliding on an UMT-2 friction and wear machine, by running a steel sphere against the composite films. The results were as follows: GO nanosheets as the filler greatly improve the wear resistance of PEEK under boundary lubrication, though the composites show a different dependence of wear resistance on the filler content. Scanning electron microscopy and optical microscopy performed to analyze the wear scar surfaces after friction confirmed that the outstanding lubrication performance of GO could be attributed to their small size and extremely thin laminated structure, which allow the GO to easily enter the contact area, thereby preventing the rough surfaces from coming into direct contact.

  19. Engineering and characterization of mesoporous silica-coated magnetic particles for mercury removal from industrial effluents

    NASA Astrophysics Data System (ADS)

    Dong, Jie; Xu, Zhenghe; Wang, Feng

    2008-03-01

    Mesoporous silica coatings were synthesized on dense liquid silica-coated magnetite particles using cetyl-trimethyl-ammonium chloride (CTAC) as molecular templates, followed by sol-gel process. A specific surface area of the synthesized particles as high as 150 m 2/g was obtained. After functionalization with mercapto-propyl-trimethoxy-silane (MPTS) through silanation reaction, the particles exhibited high affinity of mercury in aqueous solutions. Atomic force microscopy (AFM), zeta potential measurement, thermal gravimetric analysis (TGA), analytical transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and atomic absorption spectroscopy (AAS) were used to characterize the synthesis processes, surface functionalization, and mercury adsorption on the synthesized magnetite particles. The loading capacity of the particles for mercury was determined to be as high as 14 mg/g at pH 2. A unique feature of strong magnetism of the synthesized nanocomposite particles makes the subsequent separation of the magnetic sorbents from complex multiphase suspensions convenient and effective.

  20. Electrical Properties of the V-Defects of Epitaxial HgCdTe

    NASA Astrophysics Data System (ADS)

    Novikov, V. A.; Grigoryev, D. V.; Bezrodnyy, D. A.; Voitsekhovskii, A. V.; Dvoretsky, S. A.; Mikhailov, N. N.

    2017-07-01

    The manufacturing process of wide-band-gap matrix photodetector devices and miniaturization of their individual pixels gave rise to increased demands on the material quality and research methods. In the present paper we propose using the methods of atomic-force microscopy to study the local distribution of electrical properties of the V-defects that form in epitaxial films of HgCdTe during their growth process via molecular beam epitaxy. We demonstrate that a complex approach to studying the electrical properties of a predefined region of a V-defect allows one to obtain more detailed information on its properties. Using scanning spreading resistance microscopy, we show that, for a V-defect when the applied bias is increased, the surface area that participates in the process of charge carrier transfer also increases almost linearly. The presence of a potential barrier on the periphery of individual crystal grains that form the V-defect interferes with the flow of current and also affects the distribution of surface potential and capacitive contrast.

  1. Electrodeposition of Rhodium Nanowires Arrays and Their Morphology-Dependent Hydrogen Evolution Activity

    PubMed Central

    Zhang, Liqiu; Liu, Lichun; Wang, Hongdan; Shen, Hongxia; Cheng, Qiong; Yan, Chao; Park, Sungho

    2017-01-01

    This work reports on the electrodeposition of rhodium (Rh) nanowires with a controlled surface morphology synthesized using an anodic aluminum oxide (AAO) template. Vertically aligned Rh nanowires with a smooth and coarse morphology were successfully deposited by adjusting the electrode potential and the concentration of precursor ions and by involving a complexing reagent in the electrolyte solution. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses were used to follow the morphological evolution of Rh nanowires. As a heterogeneous electrocatalyst for hydrogen evolution reactions (HER), the coarse Rh nanowire array exhibited an enhanced catalytic performance respect to smooth ones due to the larger surface area to mass ratio and the higher density of catalytically active defects, as evidenced by voltammetric measurements and TEM. Results suggest that the morphology of metallic nanomaterials could be readily engineered by electrodeposition. The controlled electrodeposition offers great potential for the development of an effective synthesis tool for heterogeneous catalysts with a superior performance for wide applications. PMID:28467375

  2. Fine structures of embryonic discs of in vivo post-hatching porcine blastocysts at the pre-primitive streak stage.

    PubMed

    Xia, P; Liu, Z; Qin, P

    2011-04-01

    To date, reports about the ultrastructure of porcine embryonic discs have not shown details of the primitive streak. The main objective of this study was to examine the ultrastructure of interior and exterior embryonic discs in porcine in vivo blastocysts with diameters of 1, 3 and 9 mm using scanning electron microscopy and transmission electron microscopy. For the first time, we revealed the ultrastructure of the unusual group of cells in the pre-primitive streak area of embryonic discs. The cells were 1-2 μm in diameter, had high electron density and contained abundant, free ribosomes and endoplasmic reticulum. These primitive streak cells could represent original embryonic stem cells or represent a stem cell niche. The results also showed three types of cells on the exterior surface of the embryonic discs. Moreover, our results provided morphological evidence of condensed nuclei in the smooth cells on the surface of the embryonic disc. © 2010 Blackwell Verlag GmbH.

  3. Thermal treatment effects on charge storage performance of graphene-based materials for supercapacitors.

    PubMed

    Zhang, Hongxin; Bhat, Vinay V; Gallego, Nidia C; Contescu, Cristian I

    2012-06-27

    Graphene materials were synthesized by reduction of exfoliated graphite oxide and then thermally treated in nitrogen to improve the surface area and their electrochemical performance as electrical double-layer capacitor electrodes. The structural and surface properties of the prepared reduced graphite oxide (RGO) were investigated using atomic force microscopy, scanning electron microscopy, Raman spectra, X-ray diffraction pattern analysis, and nitrogen adsorption/desorption studies. RGO forms a continuous network of crumpled sheets, which consist of large amounts of few-layer and single-layer graphenes. Electrochemical studies were conducted by cyclic voltammetry, impedance spectroscopy, and galvanostatic charge-discharge measurements. The modified RGO materials showed enhanced electrochemical performance, with maximum specific capacitance of 96 F/g, energy density of 12.8 Wh/kg, and power density of 160 kW/kg. These results demonstrate that thermal treatment of RGO at selected conditions is a convenient and efficient method for improving its specific capacitance, energy, and power density.

  4. Nanoscale current imaging of the conducting channels in proton exchange membrane fuel cells.

    PubMed

    Bussian, David A; O'Dea, James R; Metiu, Horia; Buratto, Steven K

    2007-02-01

    The electrochemically active area of a proton exchange membrane fuel cell (PEMFC) is investigated using conductive probe atomic force microscopy (CP-AFM). A platinum-coated AFM tip is used as a nanoscale cathode in an operating PEMFC. We present results that show highly inhomogeneous distributions of conductive surface domains at several length scales. At length scales on the order of the aqueous domains of the membrane, approximately 50 nm, we observe single channel electrochemistry. I-V curves for single conducting channels are obtained, which yield insight into the nature of conductive regions across the PEM. In addition, we demonstrate a new characterization technique, phase current correlation microscopy, which gives a direct measure of the electrochemical activity for each aqueous domain. This shows that a large number ( approximately 60%) of the aqueous domains present at the surface of an operating Nafion membrane are inactive. We attribute this to a combination of limited aqueous domain connectivity and catalyst accessibility.

  5. Surface Modulation of Graphene Field Effect Transistors on Periodic Trench Structure.

    PubMed

    Jin, Jun Eon; Choi, Jun Hee; Yun, Hoyeol; Jang, Ho-Kyun; Lee, Byung Chul; Choi, Ajeong; Joo, Min-Kyu; Dettlaff-Weglikowska, Urszula; Roth, Siegmar; Lee, Sang Wook; Lee, Jae Woo; Kim, Gyu Tae

    2016-07-20

    In this work, graphene field effect transistors (FETs) were fabricated on a trench structure made by carbonized poly(methylmethacrylate) to modify the graphene surface. The trench-structured devices showed different characteristics depending on the channel orientation and the pitch size of the trenches as well as channel area in the FETs. Periodic corrugations and barriers of suspended graphene on the trench structure were measured by atomic force microscopy and electrostatic force microscopy. Regular barriers of 160 mV were observed for the trench structure with graphene. To confirm the transfer mechanism in the FETs depending on the channel orientation, the ratio of experimental mobility (3.6-3.74) was extracted from the current-voltage characteristics using equivalent circuit simulation. It is shown that the number of barriers increases as the pitch size decreases because the number of corrugations increases from different trench pitches. The noise for the 140 nm pitch trench is 1 order of magnitude higher than that for the 200 nm pitch trench.

  6. Effect of nitrogen doping on the microstructure and visible light photocatalysis of titanate nanotubes by a facile cohydrothermal synthesis via urea treatment

    NASA Astrophysics Data System (ADS)

    Hu, Cheng-Ching; Hsu, Tzu-Chien; Lu, Shan-Yu

    2013-09-01

    A facile one-step cohydrothermal synthesis via urea treatment has been adopted to prepare a series of nitrogen-doped titanate nanotubes with highly efficient visible light photocatalysis of rhodamine B, in an effect to identify the effect of nitrogen doping on the photodegradation efficiency. The morphology and microstructure of the thus-prepared N-doped titanates were characterized by nitrogen adsorption/desorption isotherms, transmission electron microscopy, and scanning electron microscopy. With increasing urea loadings, the N-doped titanates change from a porous multi-layer and nanotube-shaped to a dense and aggregated particle-shaped structure, accompanied with reduced specific surface area and pore volume and enhanced pore diameter. Interstitial linkage to titanate via Tisbnd Osbnd N and Tisbnd Nsbnd O is confirmed by X-ray photoelectron spectroscopy. Factors governing the photocatalytic degradation such as the specific surface area of the catalyst and the degradation pathway are analyzed, a mechanistic illustration on the photodegradation is provided, and a 3-stage degradation mechanism is identified. The synergistic contribution due to the enhanced deethylation and chromophore cleavage on rhodamine B molecules and the reduced band gap on the catalyst TiO2 by interstitial nitrogen-doping has been accounted for the high photodegradation efficiency of the N-doped titanate nanotubes.

  7. Thermo-sensitively and magnetically ordered mesoporous carbon nanospheres for targeted controlled drug release and hyperthermia application.

    PubMed

    Chen, Lin; Zhang, Huan; Zheng, Jing; Yu, Shiping; Du, Jinglei; Yang, Yongzhen; Liu, Xuguang

    2018-03-01

    A multifunctional nanoplatform based on thermo-sensitively and magnetically ordered mesoporous carbon nanospheres (TMOMCNs) is developed for effective targeted controlled release of doxorubicin hydrochloride (DOX) and hyperthermia in this work. The morphology, specific surface area, porosity, thermo-stability, thermo-sensitivity, as well as magnetism properties of TMOMCNs were verified by high resolution transmission electron microscopy, field emission scanning electron microscopy, thermo-gravimetric analysis, X-ray diffraction, Brunauer-Emmeltt-Teller surface area analysis, dynamic light scattering and vibrating sample magnetometry measurement. The results indicate that TMOMCNs have an average diameter of ~146nm with a lower critical solution temperature at around 39.5°C. They are superparamagnetic with a magnetization of 10.15emu/g at 20kOe. They generate heat when inductive magnetic field is applied to them and have a normalized specific absorption rate of 30.23W/g at 230kHz and 290Oe, showing good potential for hyperthermia. The DOX loading and release results illustrate that the loading capacity is 135.10mg/g and release performance could be regulated by changing pH and temperature. The good targeting, DOX loading and release and hyperthermia properties of TMOMCNs offer new probabilities for high effectiveness and low toxicity of cancer chemotherapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. [Comparison study on adsorption of middle molecular substances with multiwalled carbon nanotubes and activated carbon].

    PubMed

    Li, Guifeng; Wan, Jianxin; Huang, Xiangqian; Zeng, Qiao; Tang, Jing

    2011-08-01

    In recent years, multi-walled carbon nanotubes (MWCTs) are very favorable to the adsorption of middle molecular substances in the hemoperfusion because of their multiporous structure, large surface area and high reactivity, which are beneficial to the excellent absorption properties. The purpose of this study was to study the MWCTs on the adsorption capacity of the middle molecular substances. Vitamin B12 (VB12) was selected as a model of the middle molecular substances. The morphologies of MWCTs and activated carbon from commercial "carbon kidney" were observed with scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The adsorption behavior of VB12 was compared to each other with UV-visible absorption spectra. The MWCTs formed a sophistaicate gap structure, and compared to the activated carbon, MWCTs had a larger surface area. By Langmuir equation and Freundlich equation fitting analysis, VB12 adsorption on MWCTs is fit for multi-molecular layer adsorption, and the adsorption type of activated carbon is more inclined to the model corresponding to Langmuir monolayer adsorption. The adsorption rate of MWCTs is faster than that of the activated carbon and the adsorption capacity is greater, which could be expected to become the new adsorbent in the hemoperfusion.

  9. Evidence of liquid phase during laser-induced periodic surface structures formation induced by accumulative ultraviolet picosecond laser beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huynh, T. T. D.; Petit, A.; Semmar, N., E-mail: nadjib.semmar@univ-orleans.fr

    2015-11-09

    Laser-induced periodic surface structures (LIPSS) were formed on Cu/Si or Cu/glass thin films using Nd:YAG laser beam (40 ps, 10 Hz, and 30 mJ/cm{sup 2}). The study of ablation threshold is always achieved over melting when the variation of the number of pulses increases from 1 to 1000. But the incubation effect is leading to reduce the threshold of melting as increasing the number of laser pulse. Also, real time reflectivity signals exhibit typical behavior to stress the formation of a liquid phase during the laser-processing regime and helps to determine the threshold of soft ablation. Atomic Force Microscopy (AFM) analyses have shownmore » the topology of the micro-crater containing regular spikes with different height. Transmission Electron Microscopy (TEM) allows finally to show three distinguished zones in the close region of isolated protrusions. The central zone is a typical crystallized area of few nanometers surrounded by a mixed poly-crystalline and amorphous area. Finally, in the region far from the protrusion zone, Cu film shows an amorphous structure. The real time reflectivity, AFM, and HR-TEM analyses evidence the formation of a liquid phase during the LIPSS formation in the picosecond regime.« less

  10. Photocatalytic activity enhancement of anatase-graphene nanocomposite for methylene removal: Degradation and kinetics

    NASA Astrophysics Data System (ADS)

    Rezaei, Mostafa; Salem, Shiva

    2016-10-01

    In the present research, the TiO2-graphene nanocomposite was synthesized by an eco-friendly method. The blackberry juice was introduced to graphene oxide (GO) as a reducing agent to produce the graphene nano-sheets. The nanocomposite of anatase-graphene was developed as a photocatalyst for the degradation of methylene blue, owing to the larger specific surface area and synergistic effect of reduced graphene oxide (RGO). The UV spectroscopy measurements showed that the prepared nanocomposite exhibited an excellent photocatalytic activity toward the methylene blue degradation. The rate of electron transfer of redox sheets is much higher than that observed on GO, indicating the applicability of proposed method for the production of anatase-RGO nanocomposite for treatment of water contaminated by cationic dye. The prepared materials were characterized with Fourier transform infrared spectroscopy, X-ray diffraction, Brunauer-Emmett-Teller surface area measurement, scanning electron microscopy and transmission electron microscopy. A facile and rapid route was applied for the uniform deposition of anatase nanoparticles on the sheets. The resulting nanocomposite contained nanoparticles with a mean diameter of 10 nm. A mechanism for the photocatalytic activity of nanocomposite was suggested and the degradation reaction obeyed the second-order kinetics. It was concluded that the degradation kinetics is changed due to the reduction of GO in the presence of blackberry juice.

  11. Characterization of etch pits found on a large-grain bulk niobium superconducting radio-frequency resonant cavity

    DOE PAGES

    Zhao, Xin; Ciovati, G.; Bieler, T. R.

    2010-12-15

    The performance of superconducting radio-frequency (SRF) resonant cavities made of bulk niobium is limited by nonlinear localized effects. Surface analysis of regions of higher power dissipation is thus of intense interest. Such areas (referred to as “hotspots”) were identified in a large-grain single-cell cavity that had been buffered-chemical polished and dissected for examination by high resolution electron microscopy, electron backscattered diffraction microscopy (EBSD), and optical microscopy. Pits with clearly discernible crystal facets were observed in both “hotspot” and “coldspot” specimens. The pits were found in-grain, at bicrystal boundaries, and on tricrystal junctions. They are interpreted as etch pits induced bymore » crystal defects (e.g. dislocations). All coldspots examined had a qualitatively lower density of etch pits or relatively smooth tricrystal boundary junctions. EBSD mapping revealed the crystal orientation surrounding the pits. Locations with high pit density are correlated with higher mean values of the local average misorientation angle distributions, indicating a higher geometrically necessary dislocation content. In addition, a survey of the samples by energy dispersive x-ray analysis did not show any significant contamination of the samples’ surface. In conclusion, the local magnetic field enhancement produced by the sharp-edge features observed on the samples is not sufficient to explain the observed degradation of the cavity quality factor, which starts at peak surface magnetic field as low as 20 mT.« less

  12. Micro/nanostructured surface modification using femtosecond laser pulses on minimally invasive electrosurgical devices.

    PubMed

    Lin, Chia-Cheng; Lin, Hao-Jan; Lin, Yun-Ho; Sugiatno, Erwan; Ruslin, Muhammad; Su, Chen-Yao; Ou, Keng-Liang; Cheng, Han-Yi

    2017-05-01

    The purpose of the present study was to examine thermal damage and a sticking problem in the tissue after the use of a minimally invasive electrosurgical device with a nanostructured surface treatment that uses a femtosecond laser pulse (FLP) technique. To safely use an electrosurgical device in clinical surgery, it is important to decrease thermal damage to surrounding tissues. The surface characteristics and morphology of the FLP layer were evaluated using optical microscopy, scanning electron microscopy, and transmission electron microscopy; element analysis was performed using energy-dispersive X-ray spectroscopy, grazing incidence X-ray diffraction, and X-ray photoelectron spectroscopy. In the animal model, monopolar electrosurgical devices were used to create lesions in the legs of 30 adult rats. Animals were sacrificed for investigations at 0, 3, 7, 14, and 28 days postoperatively. Results indicated that the thermal damage and sticking situations were reduced significantly when a minimally invasive electrosurgical instrument with an FLP layer was used. Temperatures decreased while film thickness increased. Thermographic data revealed that surgical temperatures in an animal model were significantly lower in the FLP electrosurgical device compared with that in the untreated one. Furthermore, the FLP device created a relatively small area of thermal damage. As already mentioned, the biomedical nanostructured layer reduced thermal damage and promoted the antisticking property with the use of a minimally invasive electrosurgical device. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 865-873, 2017. © 2016 Wiley Periodicals, Inc.

  13. Morphological investigations of cells that adhered to the irregular patterned polydimethylsiloxane (PDMS) surface without reagents.

    PubMed

    Chung, Sung Hee; Min, Junhong

    2009-07-01

    Polydimethylsiloxane (PDMS) surface consisting irregular pattern was investigated to develop cell-based biochip using PDMS. PDMS surface was modified with nano- and micro-combined patterns using surface deformation technology. Hydrophobicity of nano-patterned PDMS surface was sustained. Nevertheless it has irregular patterns consisting of micro- and nano-patterns. According to atomic force microscopy (AFM), scanning electron microscopy (SEM) and confocal microscopy results by immunostaining method, human mammary epithelial cells (HMEC) adhered well on irregularly patterned surface without any reagents such as gelatin and collagen, compared to commercial culture dish. It implies PDMS material can be utilized as template for cell-based biochip without any reagents.

  14. Electron and Light Microscopy Techniques Suitable for Studying Fatigue Damage in a Crystallized Glass Ceramic

    NASA Technical Reports Server (NTRS)

    Harrell, Shelley; Zaretsky, Erwin V.

    1961-01-01

    The crystals of Pyroceram are randomly oriented and highly reflective so that standard microscopy techniques are not satisfactory for studying this material. Standard replicating procedures proved difficult to use. New microscopy techniques and procedures have therefore been developed. A method for locating, orienting, and identifying specific areas to be viewed with an electron microscope is described. This method not require any special equipment. Plastic replicas were found to be unsatisfactory because of their tendency to adhere to Pryoceram. This caused them to tear when released or resulted in artifacts. Preshadowed silicon monoxide replicas were satisfactory but required a releasing agent. A method of depositing the releasing agent is described. To polish specimens without evidence of fire-polishing, it was found necessary to use a vibratory polishing technique. Chrome oxide was used as the abrasive and either water or kerosene as the lubricant. Vibratory polishing is extremely slow, but surfaces so polished show no evidence of fire polishing, even when examined by electron microscopy. The most satisfactory etching process used for Pyroceram 9608 consisted of a primary etch of 5 milliliters of hydrochloric acid (concentrated), 5 milliliters of hydrogen fluoride (45 percent), and 45 milliliters of water, and a secondary etch with methyl alcohol replacing the water. Best results were obtained with total etching times from 25 to 30 seconds. Staining of the Pyroceram surface with a Sanford's marker was found to be an expedient way to reduce the glare of reflected light.

  15. Using Dermoscopic Criteria and Patient-Related Factors for the Management of Pigmented Melanocytic Nevi

    PubMed Central

    Zalaudek, Iris; Docimo, Giovanni; Argenziano, Giuseppe

    2010-01-01

    Objective: To review recent dermoscopy studies that provide new insights into the evolution of nevi and their patterns of pigmentation as they contribute to the diagnosis of nevi and the management of pigmented melanocytic nevi. Data Sources: Data for this article were identified by searching the English and German literature by Medline and Journals@Ovid search for the period 1950 to January 2009. Study Selection: The following relevant terms were used: dermoscopy, dermatoscopy, epiluminescence microscopy (ELM), surface microscopy, digital dermoscopy, digital dermatoscopy, digital epiluminescence microscopy, digital surface microscopy, melanocytic skin lesion, nevi, and pigmented skin lesions. There were no exclusion criteria. Data Synthesis: The dermoscopic diagnosis of nevi relies on the following 4 criteria (each of which is characterized by 4 variables): (1) color (black, brown, gray, and blue); (2) pattern (globular, reticular, starburst, and homogeneous blue pattern); (3) pigment distribution (multifocal, central, eccentric, and uniform); and (4) special sites (face, acral areas, nail, and mucosa). In addition, the following 6 factors related to the patient might influence the pattern of pigmentation of the individual nevi: age, skin type, history of melanoma, UV exposure, pregnancy, and growth dynamics. Conclusions: The 4×4×6 “rule” may help clinicians remember the basic dermoscopic criteria of nevi and the patient-related factors influencing their patterns. Dermoscopy is a useful technique for diagnosing melanocytic nevi, but the clinician should take additional factors into consideration to optimize the management of cases of pigmented lesions. PMID:19620566

  16. Size effects in MgO cube dissolution.

    PubMed

    Baumann, Stefan O; Schneider, Johannes; Sternig, Andreas; Thomele, Daniel; Stankic, Slavica; Berger, Thomas; Grönbeck, Henrik; Diwald, Oliver

    2015-03-10

    Stability parameters and dissolution behavior of engineered nanomaterials in aqueous systems are critical to assess their functionality and fate under environmental conditions. Using scanning electron microscopy, transmission electron microscopy, and X-ray diffraction, we investigated the stability of cubic MgO particles in water. MgO dissolution proceeding via water dissociation at the oxide surface, disintegration of Mg(2+)-O(2-) surface elements, and their subsequent solvation ultimately leads to precipitation of Mg(OH)2 nanosheets. At a pH ≥ 10, MgO nanocubes with a size distribution below 10 nm quantitatively dissolve within few minutes and convert into Mg(OH)2 nanosheets. This effect is different from MgO cubes originating from magnesium combustion in air. With a size distribution in the range 10 nm ≤ d ≤ 1000 nm they dissolve with a significantly smaller dissolution rate in water. On these particles water induced etching generates (110) faces which, above a certain face area, dissolve at a rate equal to that of (100) planes.1 The delayed solubility of microcrystalline MgO is attributed to surface hydroxide induced self-inhibition effects occurring at the (100) and (110) microplanes. The present work underlines the importance of morphology evolution and surface faceting of engineered nanomaterials particles during their dissolution.

  17. Synthesis of nanostructured porous silica coatings on titanium and their cell adhesive and osteogenic differentiation properties.

    PubMed

    Inzunza, Débora; Covarrubias, Cristian; Von Marttens, Alfredo; Leighton, Yerko; Carvajal, Juan Carlos; Valenzuela, Francisco; Díaz-Dosque, Mario; Méndez, Nicolás; Martínez, Constanza; Pino, Ana María; Rodríguez, Juan Pablo; Cáceres, Mónica; Smith, Patricio

    2014-01-01

    Nanostructured porous silica coatings were synthesized on titanium by the combined sol-gel and evaporation-induced self-assembly process. The silica-coating structures were characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and nitrogen sorptometry. The effect of the nanoporous surface on apatite formation in simulated body fluid, protein adsorption, osteoblast cell adhesion behavior, and osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs) is reported. Silica coatings with highly ordered sub-10 nm porosity accelerate early osteoblast adhesive response, a favorable cell response that is attributed to an indirect effect due to the high protein adsorption observed on the large-specific surface area of the nanoporous coating but is also probably due to direct mechanical stimulus from the nanostructured topography. The nanoporous silica coatings, particularly those doped with calcium and phosphate, also promote the osteogenic differentiation of hBMSCs with spontaneous mineral nodule formation in basal conditions. The bioactive surface properties exhibited by the nanostructured porous silica coatings make these materials a promising alternative to improve the osseointegration properties of titanium dental implants and could have future impact on the nanoscale design of implant surfaces. Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company.

  18. Mapping large extensions of flat dentin through digital microscopy: introduction to the method and possible applications.

    PubMed

    Reis, Claudia; De-Deus, Gustavo; Marins, Juliana; Fidel, Sandra; Fidel, Rivail; Paciornik, Sidnei

    2012-08-01

    To introduce a mapping method to characterize large dentin surfaces using digital microscopy and to discuss the advantages and possible applications of the method. Twenty unerupted third molars were sectioned transversally exposing coronal dentin surfaces. The microscopic mosaic method was used to generate a large field image with the resolution necessary to measure characteristics of dentin tubules. The AxioVision 4.7 software was used to control a motorized optical microscope and the process of acquiring approximately 400 small images to generate each dentin mosaic. An image analysis routine measured the number of tubules (NT) and the ratio between the total area of tubules and the area of the mosaic - the area fraction (AF) - of each mosaic. An automatic procedure transformed the mosaic image into a color map, providing a direct visual representation of tubule density through colors. The dentin maps were used for a comparative qualitative analysis of tubule density distribution of each sample. The results for NT (92450 to 196029 tubules/sample) and AF (4.12% to 11.10%) demonstrated a wide variation among dentin samples. The maps confirmed the microstructure variety, also revealing strong local variations in tubule density within each sample. The mapping method was able to perform dentin morphology characterization and is a valuable tool for producing a baseline for dentin adhesion studies. The method could be also useful in determining the real contribution of dentin structures to the final adhesion quality.

  19. Effect of calcination temperature on structure and photocatalytic activity under UV and visible light of nanosheets from low-cost magnetic leucoxene mineral

    NASA Astrophysics Data System (ADS)

    Charerntanom, Wissanu; Pecharapa, Wisanu; Pavasupree, Suttipan; Pavasupree, Sorapong

    2017-07-01

    This research has experimentally synthesized the nanosheets from the naturally-mineral magnetic leucoxene under the hydrothermal synthesis condition of 105 °C for 24 h. Magnetic leucoxene was utilized as the starting material due to its high TiO2 content (70-80%) and inexpensiveness. The characterization of the synthesized nanosheets was subsequently carried out: the crystalline structure, the chemical composition, the shape, the size and the specific surface area, by the X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET) specific surface area analysis. The analysis results indicated that the starting magnetic leucoxene is of rutile phase while the synthesized nanosheets are of titanate structure (H2TixO2x + 1). After calcination at the temperature range of 300 and 400 °C, the calcined samples demonstrated TiO2 (B). At 500 and 600 °C, the calcined nanosheets revealed a bi-crystalline mixture consisting of TiO2 (B) and anatase TiO2. At 700-1000 °C, the crystalline structure shows anatase and rutile phase. At 1100 °C, the prepared samples consisted of a mixture of anatase, rutile phase of TiO2, and Fe2O3 phase. The synthesized product also exhibited the flower-like morphology with 2-5 μm in diameter, and the nanosheets structure was slightly curved, with 100 nm to 2 μm in width and 1-3 nm in thickness. At 100-200 °C showed sheets-like structure. At 300-1100 °C, the calcined nanosheets became unstable and began to decompose and transform into nanoparticles. The increasing size of nanoparticle decreased the specific surface area of the nanosheets, caused by increasing calcination temperature. Furthermore, the BET specific surface area of the nanosheets was approximately 279.8 m2/g. More importantly, the synthesized nanosheets achieved the higher photocatalytic activity under UV and visible light than did the commercial TiO2 nanoparticles (JRC-01, JRC-03, ST-01 and P-25).

  20. Transmission electron microscope cells for use with liquid samples

    DOEpatents

    Khalid, Waqas; Alivisatos, Paul A.; Zettl, Alexander K.

    2016-08-09

    This disclosure provides systems, methods, and devices related to transmission electron microscopy cells for use with liquids. In one aspect a device includes a substrate, a first graphene layer, and a second graphene layer. The substrate has a first surface and a second surface. The first surface defines a first channel, a second channel, and an outlet channel. The first channel and the second channel are joined to the outlet channel. The outlet channel defines a viewport region forming a though hole in the substrate. The first graphene layer overlays the first surface of the substrate, including an interior area of the first channel, the second channel, and the outlet channel. The second graphene layer overlays the first surface of the substrate, including open regions defined by the first channel, the second channel, and the outlet channel.

  1. Corroded surface roughness of copper analyzed by Fourier transform infrared mapping microscopy and optical profilometric study.

    PubMed

    Kasperek, J; Lefez, B; Beucher, E

    2004-02-01

    This study shows the effects of roughness on infrared spectra shapes of thin corrosion products on metallic substrates. The calculated spectra show that the baseline is mainly affected by increasing roughness and that such effects do not shift the position of the absorption bands. The model obtained has been used to extract data of artificial patina on a copper surface. Surface defects of copper substrates can be distinguished on the whole surface, from the morphological and chemical points of view, using optical profilometry and infrared microspectroscopy. An homogeneous layer of cuprite covers the surface except in the linear defects. Fourier transform infrared (FT-IR) analysis indicates that a mixture of atacamite and clinoatacamite is mainly located in these scratches. The width of these particular areas is in good agreement with profilometric observations.

  2. The mechanisms of pyrite oxidation and leaching: A fundamental perspective

    NASA Astrophysics Data System (ADS)

    Chandra, A. P.; Gerson, A. R.

    2010-09-01

    Pyrite is the earth's most abundant sulfide mineral. Its frequent undesirable association with minerals of economic value such as sphalerite, chalcopyrite and galena, and precious metals such as gold necessitates costly separation processes such as leaching and flotation. Additionally pyrite oxidation is a major contributor to the environmental problem of acid rock drainage. The surface oxidation reactions of pyrite are therefore important both economically and environmentally. Significant variations in electrical properties resulting from lattice substitution of minor and trace elements into the lattice structure exist between pyrite from different geographical locations. Furthermore the presence of low coordination surface sites as a result of conchoidal fracture causes a reduction in the band gap at the surface compared to the bulk thus adding further electrochemical variability. Given the now general acceptance after decades of research that electrochemistry dominates the oxidation process, the geographical location, elemental composition and semi-conductor type (n or p) of pyrite are important considerations. Aqueous pyrite oxidation results in the production of sulfate and ferrous iron. However other products such as elemental sulfur, polysulfides, hydrogen sulfide, ferric hydroxide, iron oxide and iron(III) oxyhydroxide may also form. Intermediate species such as thiosulfate, sulfite and polythionates are also proposed to occur. Oxidation and leach rates are generally influenced by solution Eh, pH, oxidant type and concentration, hydrodynamics, grain size and surface area in relation to solution volume, temperature and pressure. Of these, solution Eh is most critical as expected for an electrochemically controlled process, and directly correlates with surface area normalised rates. Studies using mixed mineral systems further indicate the importance of electrochemical processes during the oxidation process. Spatially resolved surface characterisation of fresh and reacted pyrite surfaces is needed to identify site specific chemical processes. Scanning photoelectron microscopy (SPEM) and photoemission electron microscopy (PEEM) are two synchrotron based surface spectromicroscopic and microspectroscopic techniques that use XPS- and XANES-imaging to correlate chemistry with topography at a submicron scale. Recent data collected with these two techniques suggests that species are heterogeneously distributed on the surface and oxidation to be highly site specific.

  3. Gaussian process based intelligent sampling for measuring nano-structure surfaces

    NASA Astrophysics Data System (ADS)

    Sun, L. J.; Ren, M. J.; Yin, Y. H.

    2016-09-01

    Nanotechnology is the science and engineering that manipulate matters at nano scale, which can be used to create many new materials and devices with a vast range of applications. As the nanotech product increasingly enters the commercial marketplace, nanometrology becomes a stringent and enabling technology for the manipulation and the quality control of the nanotechnology. However, many measuring instruments, for instance scanning probe microscopy, are limited to relatively small area of hundreds of micrometers with very low efficiency. Therefore some intelligent sampling strategies should be required to improve the scanning efficiency for measuring large area. This paper presents a Gaussian process based intelligent sampling method to address this problem. The method makes use of Gaussian process based Bayesian regression as a mathematical foundation to represent the surface geometry, and the posterior estimation of Gaussian process is computed by combining the prior probability distribution with the maximum likelihood function. Then each sampling point is adaptively selected by determining the position which is the most likely outside of the required tolerance zone among the candidates and then inserted to update the model iteratively. Both simulationson the nominal surface and manufactured surface have been conducted on nano-structure surfaces to verify the validity of the proposed method. The results imply that the proposed method significantly improves the measurement efficiency in measuring large area structured surfaces.

  4. Oxidation and metal-insertion in molybdenite surfaces: evaluation of charge-transfer mechanisms and dynamics

    PubMed Central

    Ramana, CV; Becker, U; Shutthanandan, V; Julien, CM

    2008-01-01

    Molybdenum disulfide (MoS2), a layered transition-metal dichalcogenide, has been of special importance to the research community of geochemistry, materials and environmental chemistry, and geotechnical engineering. Understanding the oxidation behavior and charge-transfer mechanisms in MoS2 is important to gain better insight into the degradation of this mineral in the environment. In addition, understanding the insertion of metals into molybdenite and evaluation of charge-transfer mechanism and dynamics is important to utilize these minerals in technological applications. Furthermore, a detailed investigation of thermal oxidation behavior and metal-insertion will provide a basis to further explore and model the mechanism of adsorption of metal ions onto geomedia. The present work was performed to understand thermal oxidation and metal-insertion processes of molybdenite surfaces. The analysis was performed using atomic force microscopy (AFM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Rutherford backscattering spectrometry (RBS), and nuclear reaction analysis (NRA). Structural studies using SEM and TEM indicate the local-disordering of the structure as a result of charge-transfer process between the inserted lithium and the molybdenite layer. Selected area electron diffraction measurements indicate the large variations in the diffusivity of lithium confirming that the charge-transfer is different along and perpendicular to the layers in molybdenite. Thermal heating of molybenite surface in air at 400°C induces surface oxidation, which is slow during the first hour of heating and then increases significantly. The SEM results indicate that the crystals formed on the molybdenite surface as a result of thermal oxidation exhibit regular thin-elongated shape. The average size and density of the crystals on the surface is dependent on the time of annealing; smaller size and high density during the first one-hour and significant increase in size associated with a decrease in density with further annealing. PMID:18534025

  5. Oxidation and metal-insertion in molybdenite surfaces: evaluation of charge-transfer mechanisms and dynamics.

    PubMed

    Ramana, C V; Becker, U; Shutthanandan, V; Julien, C M

    2008-06-05

    Molybdenum disulfide (MoS2), a layered transition-metal dichalcogenide, has been of special importance to the research community of geochemistry, materials and environmental chemistry, and geotechnical engineering. Understanding the oxidation behavior and charge-transfer mechanisms in MoS2 is important to gain better insight into the degradation of this mineral in the environment. In addition, understanding the insertion of metals into molybdenite and evaluation of charge-transfer mechanism and dynamics is important to utilize these minerals in technological applications. Furthermore, a detailed investigation of thermal oxidation behavior and metal-insertion will provide a basis to further explore and model the mechanism of adsorption of metal ions onto geomedia.The present work was performed to understand thermal oxidation and metal-insertion processes of molybdenite surfaces. The analysis was performed using atomic force microscopy (AFM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Rutherford backscattering spectrometry (RBS), and nuclear reaction analysis (NRA).Structural studies using SEM and TEM indicate the local-disordering of the structure as a result of charge-transfer process between the inserted lithium and the molybdenite layer. Selected area electron diffraction measurements indicate the large variations in the diffusivity of lithium confirming that the charge-transfer is different along and perpendicular to the layers in molybdenite. Thermal heating of molybenite surface in air at 400 degrees C induces surface oxidation, which is slow during the first hour of heating and then increases significantly. The SEM results indicate that the crystals formed on the molybdenite surface as a result of thermal oxidation exhibit regular thin-elongated shape. The average size and density of the crystals on the surface is dependent on the time of annealing; smaller size and high density during the first one-hour and significant increase in size associated with a decrease in density with further annealing.

  6. Spatial imaging of carbon reactivity centers in Pd/C catalytic systems† †Electronic supplementary information (ESI) available: Detailed experimental procedures and FE-SEM images. See DOI: 10.1039/c5sc00802f

    PubMed Central

    Pentsak, E. O.; Kashin, A. S.; Polynski, M. V.; Kvashnina, K. O.; Glatzel, P.

    2015-01-01

    Gaining insight into Pd/C catalytic systems aimed at locating reactive centers on carbon surfaces, revealing their properties and estimating the number of reactive centers presents a challenging problem. In the present study state-of-the-art experimental techniques involving ultra high resolution SEM/STEM microscopy (1 Å resolution), high brilliance X-ray absorption spectroscopy and theoretical calculations on truly nanoscale systems were utilized to reveal the role of carbon centers in the formation and nature of Pd/C catalytic materials. Generation of Pd clusters in solution from the easily available Pd2dba3 precursor and the unique reactivity of the Pd clusters opened an excellent opportunity to develop an efficient procedure for the imaging of a carbon surface. Defect sites and reactivity centers of a carbon surface were mapped in three-dimensional space with high resolution and excellent contrast using a user-friendly nanoscale imaging procedure. The proposed imaging approach takes advantage of the specific interactions of reactive carbon centers with Pd clusters, which allows spatial information about chemical reactivity across the Pd/C system to be obtained using a microscopy technique. Mapping the reactivity centers with Pd markers provided unique information about the reactivity of the graphene layers and showed that >2000 reactive centers can be located per 1 μm2 of the surface area of the carbon material. A computational study at a PBE-D3-GPW level differentiated the relative affinity of the Pd2 species to the reactive centers of graphene. These findings emphasized the spatial complexity of the carbon material at the nanoscale and indicated the importance of the surface defect nature, which exhibited substantial gradients and variations across the surface area. The findings show the crucial role of the structure of the carbon support, which governs the formation of Pd/C systems and their catalytic activity. PMID:29511504

  7. Dual UV irradiation-based metal oxide nanoparticles for enhanced antimicrobial activity in Escherichia coli and M13 bacteriophage

    PubMed Central

    Jin, Su-Eon; Hwang, Woochul; Lee, Hyo Jung; Jin, Hyo-Eon

    2017-01-01

    Metal oxide (MO) nanoparticles have been studied as nano-antibiotics due to their antimicrobial activities even in antibiotic-resistant microorganisms. We hypothesized that a hybrid system of dual UV irradiation and MO nanoparticles would have enhanced antimicrobial activities compared with UV or MO nanoparticles alone. In this study, nanoparticles of ZnO, ZnTiO3, MgO, and CuO were selected as model nanoparticles. A dual UV collimated beam device of UV-A and UV-C was developed depending upon the lamp divided by coating. Physicochemical properties of MO nanoparticles were determined using powder X-ray diffractometry (PXRD), Brunauer-Emmett-Teller analysis, and field emission-scanning electron microscopy with energy-dispersive X-ray spectroscopy. Atomic force microscopy with an electrostatic force microscopy mode was used to confirm the surface topology and electrostatic characteristics after dual UV irradiation. For antimicrobial activity test, MO nanoparticles under dual UV irradiation were applied to Escherichia coli and M13 bacteriophage (phage). The UV-A and UV-C showed differential intensities in the coated and uncoated areas (UV-A, coated = uncoated; UV-C, coated ≪ uncoated). MO nanoparticles showed sharp peaks in PXRD patterns, matched to pure materials. Their primary particle sizes were less than 100 nm with irregular shapes, which had an 8.6~25.6 m2/g of specific surface area with mesopores of 22~262 nm. The electrostatic properties of MO nanoparticles were modulated after UV irradiation. ZnO, MgO, and CuO nanoparticles, except ZnTiO3 nanoparticles, showed antibacterial effects on E. coli. Antimicrobial effects on E. coli and phages were also enhanced after cyclic exposure of dual UV and MO nanoparticle treatment using the uncoated area, except ZnO nanoparticles. Our results demonstrate that dual UV-MO nanoparticle hybrid system has a potential for disinfection. We anticipate that it can be developed as a next-generation disinfection system in pharmaceutical industries and water purification systems. PMID:29138562

  8. Dual UV irradiation-based metal oxide nanoparticles for enhanced antimicrobial activity in Escherichia coli and M13 bacteriophage.

    PubMed

    Jin, Su-Eon; Hwang, Woochul; Lee, Hyo Jung; Jin, Hyo-Eon

    2017-01-01

    Metal oxide (MO) nanoparticles have been studied as nano-antibiotics due to their antimicrobial activities even in antibiotic-resistant microorganisms. We hypothesized that a hybrid system of dual UV irradiation and MO nanoparticles would have enhanced antimicrobial activities compared with UV or MO nanoparticles alone. In this study, nanoparticles of ZnO, ZnTiO 3 , MgO, and CuO were selected as model nanoparticles. A dual UV collimated beam device of UV-A and UV-C was developed depending upon the lamp divided by coating. Physicochemical properties of MO nanoparticles were determined using powder X-ray diffractometry (PXRD), Brunauer-Emmett-Teller analysis, and field emission-scanning electron microscopy with energy-dispersive X-ray spectroscopy. Atomic force microscopy with an electrostatic force microscopy mode was used to confirm the surface topology and electrostatic characteristics after dual UV irradiation. For antimicrobial activity test, MO nanoparticles under dual UV irradiation were applied to Escherichia coli and M13 bacteriophage (phage). The UV-A and UV-C showed differential intensities in the coated and uncoated areas (UV-A, coated = uncoated; UV-C, coated ≪ uncoated). MO nanoparticles showed sharp peaks in PXRD patterns, matched to pure materials. Their primary particle sizes were less than 100 nm with irregular shapes, which had an 8.6~25.6 m 2 /g of specific surface area with mesopores of 22~262 nm. The electrostatic properties of MO nanoparticles were modulated after UV irradiation. ZnO, MgO, and CuO nanoparticles, except ZnTiO 3 nanoparticles, showed antibacterial effects on E. coli . Antimicrobial effects on E. coli and phages were also enhanced after cyclic exposure of dual UV and MO nanoparticle treatment using the uncoated area, except ZnO nanoparticles. Our results demonstrate that dual UV-MO nanoparticle hybrid system has a potential for disinfection. We anticipate that it can be developed as a next-generation disinfection system in pharmaceutical industries and water purification systems.

  9. A scanning electron microscopy study of diseased root surfaces conditioned with EDTA gel plus Cetavlon after scaling and root planing.

    PubMed

    Martins Júnior, Walter; De Rossi, Andiara; Samih Georges Abi Rached, Ricardo; Rossi, Marcos Antonio

    2011-01-01

    In the present investigation, a scanning electron microscopy analysis was performed to evaluate the effects of the topical application of ethylenediaminetetraacetic acid (EDTA) gel associated with Cetavlon (EDTAC) in removing the smear layer and exposing collagen fibers following root surface instrumentation. Twenty-eight teeth from adult humans, single rooted and scheduled for extraction due to periodontal reasons, were selected. Each tooth was submitted to manual (scaling and root planing) instrumentation alone or combined with ultrasonic instruments, with or without etching using a 24% EDTAC gel. Following extraction, specimens were processed and examined under a scanning electron microscope. A comparative morphological semi-quantitative analysis was performed; the intensity of the smear layer and the decalcification of cementum and dentinal surfaces were graded in 12 sets using an arbitrary scale ranging from 1 (area covered by a smear layer) to 4 (no smear layer). Root debridement with hand instruments alone or combined with ultrasonic instruments resulted in a similar smear layer covering the root surfaces. The smear layer was successfully removed from the surfaces treated with EDTAC, which exhibited numerous exposed dentinal tubules and collagen fibers. This study supports the hypothesis that manual instrumentation alone or instrumentation combined with ultrasonic instrumentation is unable to remove the smear layer, whereas the subsequent topical application of EDTAC gel effectively removes the smear layer, uncovers dentinal openings and exposes collagen fibers.

  10. Surface spins enhanced magnetoelectric coefficient and impedance spectroscopy of BaFe{sub 0.01}Ti{sub 0.99}O{sub 3} and BaFe{sub 0.015}Ti{sub 0.985}O{sub 3} nanorods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verma, Kuldeep Chand, E-mail: kuldeep0309@yahoo.co.in; Akal School of Physics, Eternal University, Baru Sahib, Himachal Pradesh 173101; Tripathi, S.K.

    2015-08-15

    Highlights: • Multiferroic Fe-doped BaTiO{sub 3} nanorods. • Sol–gel. • Magnetoelectric coefficient. • Transmission electron microscopy. • Cole–Cole plots. - Abstract: Multiferroic BaFe{sub 0.01}Ti{sub 0.99}O{sub 3} (BFT1) and BaFe{sub 0.015}Ti{sub 0.985}O{sub 3} (BFT15) nanorods were prepared by a sol–gel synthesis and annealed at 700 °C/2 h. The tetragonal phase and nano dimensions of BFT samples are identified by X-ray diffraction and transmission electron microscopy. The enhancement in ferroelectricity depends upon low porosity, tetragonal phase, space charge field, larger surface area and oriented growth. The ferromagnetism depends upon partially filled inner shells, surface spins and oxygen vacancies. The magnetoelectric coefficient ismore » explained on the basis of surface spins, short-range interactions near surface boundary, compressive stress and twin structure contributed by nano grains which can reside stress near grain boundaries. The frequency dependent real (Z′) and imaginary (Z″) parts of impedance spectra are confirmed by the variations that observed in dielectric properties. The values of resistance of grain boundaries, R{sub gb} is higher than grains, R{sub g} indicating that the effect of grain boundaries is dominant in BFT nanorods.« less

  11. Remote microscopy and volumetric imaging on the surface of icy satellites

    NASA Astrophysics Data System (ADS)

    Soto, Alejandro; Nowicki, Keith; Howett, Carly; Feldkhun, Daniel; Retherford, Kurt D.

    2017-10-01

    With NASA PIDDP support we have applied recent advancements in Fourier-domain microscopy to develop an instrument capable of microscopic imaging from meter-scale distances for use on a planetary lander on the surface of an icy satellite or other planetary bodies. Without moving parts, our instrument projects dynamic patterns of laser light onto a distant target using a lightweight large-aperture reflector, which then collects the light scattered or fluoresced by the target on a fast photon-bucket detector. Using Fourier Transform based techniques, we reconstruct an image from the detected light. The remote microscope has been demonstrated to produce 2D images with better than 15 micron lateral resolution for targets at a distance of 5 meters and is capable of linearly proportionally higher resolution at shorter distances. The remote microscope is also capable of providing three-dimensional (3D) microscopic imaging capabilities, allowing future surface scientists to explore the morphology of microscopic features in surface ices, for example. The instrument enables microscopic in-situ imaging during day or night without the use of a robotic arm, greatly facilitating the surface operations for a lander or rover while expanding the area of investigation near a landing site for improved science targeting. We are developing this remote microscope for in-situ planetary exploration as a collaboration between the Southwest Research Institute, LambdaMetrics, and the University of Colorado.

  12. Electric-field induced surface instabilities of soft dielectrics and their effects on optical transmittance and scattering

    NASA Astrophysics Data System (ADS)

    Shian, Samuel; Kjeer, Peter; Clarke, David R.

    2018-03-01

    When a voltage is applied to a percolative, mechanically compliant mat of carbon nanotubes (CNTs) on a smooth elastomer bilayer attached to an ITO coated glass substrate, the in-line optical transmittance decreases with increasing voltage. Two regimes of behavior have been identified based on optical scattering, bright field optical microscopy, and confocal optical microscopy. In the low field regime, the electric field produces a spatially inhomogeneous surface deformation of the elastomer that causes local variations in optical refraction and modulates the light transmittance. The spatial variation is associated with the distribution of the CNTs over the surface. At higher fields, above a threshold voltage, an array of pits in the surface form by a nucleation and growth mechanism and these also scatter light. The formation of pits, and creases, in the thickness of the elastomer, is due to a previously identified electro-mechanical surface instability. When the applied voltage is decreased from its maximum, the transmittance returns to its original value although there is a transmittance hysteresis and a complicated time response. When the applied voltage exceeds the threshold voltage, there can be remnant optical contrast associated with creasing of the elastomer and the recovery time appears to be dependent on local jamming of CNTs in areas where the pits formed. A potential application of this work as an electrically tunable privacy window or camouflaging devices is demonstrated.

  13. Catalytic oxidation of 1,2-DCBz over V2O5/TiO2-CNTs: effect of CNT diameter and surface functional groups.

    PubMed

    Du, Cuicui; Wang, Qiulin; Peng, Yaqi; Lu, Shengyong; Ji, Longjie; Ni, Mingjiang

    2017-02-01

    A series of V 2 O 5 /TiO 2 -carbon nanotube (CNT) catalysts were prepared and tested to decompose gaseous 1,2-dichlorobenzene (1,2-DCBz). Several physicochemical methods, including nitrogen adsorption, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and H 2 temperature-programmed reduction (TPR) were employed to characterise their physicochemical properties. To better understand the effect of CNT properties on the reactivity of V 2 O 5 /TiO 2 -CNT catalysts, the 1,2-DCBz residue remaining in the off-gas and on the catalyst surface were both collected and analysed. The results indicate that the outer diameter and the surface functional groups (hydroxide radical and carboxyl) of CNTs significantly influence upon the catalytic activity of CNT-containing V 2 O 5 /TiO 2 catalysts: the CNT outer diameter mainly affects the aggregation of CNTs and the π-π interaction between the benzene ring and CNTs, while the introduction of -OH and -COOH groups by acid treatment can further enlarge specific surface area (SSA) and contribute to a higher average oxidation state of vanadium (V aos ) and supplemental surface chemisorbed oxygen (O ads ). In addition, the enhanced mobility of lattice oxygen (O latt) also improves the oxidation ability of the catalysts.

  14. Geometric modeling of subcellular structures, organelles, and multiprotein complexes

    PubMed Central

    Feng, Xin; Xia, Kelin; Tong, Yiying; Wei, Guo-Wei

    2013-01-01

    SUMMARY Recently, the structure, function, stability, and dynamics of subcellular structures, organelles, and multi-protein complexes have emerged as a leading interest in structural biology. Geometric modeling not only provides visualizations of shapes for large biomolecular complexes but also fills the gap between structural information and theoretical modeling, and enables the understanding of function, stability, and dynamics. This paper introduces a suite of computational tools for volumetric data processing, information extraction, surface mesh rendering, geometric measurement, and curvature estimation of biomolecular complexes. Particular emphasis is given to the modeling of cryo-electron microscopy data. Lagrangian-triangle meshes are employed for the surface presentation. On the basis of this representation, algorithms are developed for surface area and surface-enclosed volume calculation, and curvature estimation. Methods for volumetric meshing have also been presented. Because the technological development in computer science and mathematics has led to multiple choices at each stage of the geometric modeling, we discuss the rationales in the design and selection of various algorithms. Analytical models are designed to test the computational accuracy and convergence of proposed algorithms. Finally, we select a set of six cryo-electron microscopy data representing typical subcellular complexes to demonstrate the efficacy of the proposed algorithms in handling biomolecular surfaces and explore their capability of geometric characterization of binding targets. This paper offers a comprehensive protocol for the geometric modeling of subcellular structures, organelles, and multiprotein complexes. PMID:23212797

  15. Biocorrosion of 316LV steel used in oral cavity due to Desulfotomaculum nigrificans bacteria.

    PubMed

    Mystkowska, Joanna; Ferreira, Jose A; Leszczyńska, Katarzyna; Chmielewska, Sylwia; Dąbrowski, Jan Ryszard; Wieciński, Piotr; Kurzydłowski, Krzysztof Jan

    2017-01-01

    Corrosion processes of metallic biomaterials in the oral cavity pose a significant limitation to the life and reliable functioning of dental materials. In this article, the influence of environment bacteria Desulfotomaculum nigrificans sulfate reducing bacteria on the corrosion processes of 316LV steel was assessed. After 14 and 28 days of contact of the material with the bacterial environment, the surfaces of the tested biomaterial were observed by means of confocal scanning laser microscopy, and their chemical composition was studied using X-Ray Photoelectron Spectrometry and a scanning transmission electron microscopy. Corrosive changes, the presence of sulfur (with atomic concentration of 0.5%) on the surface of the biomaterial and the presence of a thin oxide layer (thickness of ∼20 nm) under the surface of the steel were observed. This corrosion layer with significant size reduction of grains was characterized by an increased amount of oxygen (18% mas., p < 0.001) in comparison to untreated 316LV steel (where oxygen concentration - 10% mas.). Image analysis conducted using APHELION software indicated that corrosion pits took up ∼2.8% of the total tested surface. The greatest number of corrosion pits had a surface area within the range of 100-200 μm 2 . © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 222-229, 2017. © 2015 Wiley Periodicals, Inc.

  16. Spatial organization of surface nanobubbles and its implications in their formation process.

    PubMed

    Lhuissier, Henri; Lohse, Detlef; Zhang, Xuehua

    2014-02-21

    We study the size and spatial distribution of surface nanobubbles formed by the solvent exchange method to gain insight into the mechanism of their formation. The analysis of Atomic Force Microscopy (AFM) images of nanobubbles formed on a hydrophobic surface reveals that the nanobubbles are not randomly located, which we attribute to the role of the history of nucleation during the formation. Moreover, the size of each nanobubble is found to be strongly correlated with the area of the bubble-depleted zone around it. The precise correlation suggests that the nanobubbles grow by diffusion of the gas from the bulk rather than by diffusion of the gas adsorbed on the surface. Lastly, the size distribution of the nanobubbles is found to be well described by a log-normal distribution.

  17. STM/STS Study of LixCoO2 Single Crystals

    NASA Astrophysics Data System (ADS)

    Iwaya, Katsuya; Minato, Taketoshi; Miyoshi, Kiyotaka; Takeuchi, Jun; Kim, Yousoo; Hitosugi, Taro

    2012-02-01

    We have performed low temperature scanning tunneling microscopy/spectroscopy (STM/STS) measurements on LixCoO2 (x=0.66) single crystal surfaces. A (1x1) hexagonal lattice was clearly observed and found to be moved by changing bias-voltage polarity, indicating that this could be associated with Li ions on the surface. Under the (1x1) hexagonal lattice, we imaged almost randomly distributed bright dots that were strongly dependent on bias-voltage, with insulating spectroscopic features. Different area on the surface showed a (2x2) hexagonal lattice that could be related to an ordering of Co^3+ and Co^4+ ions. These results suggest the electronic structure of LixCoO2 surface is inhomogeneous possibly due to segregation of Li ions.

  18. Micromorphological characterization of zinc/silver particle composite coatings

    PubMed Central

    Méndez, Alia; Reyes, Yolanda; Trejo, Gabriel; StĘpień, Krzysztof

    2015-01-01

    ABSTRACT The aim of this study was to evaluate the three‐dimensional (3D) surface micromorphology of zinc/silver particles (Zn/AgPs) composite coatings with antibacterial activity prepared using an electrodeposition technique. These 3D nanostructures were investigated over square areas of 5 μm × 5 μm by atomic force microscopy (AFM), fractal, and wavelet analysis. The fractal analysis of 3D surface roughness revealed that (Zn/AgPs) composite coatings have fractal geometry. Triangulation method, based on the linear interpolation type, applied for AFM data was employed in order to characterise the surfaces topographically (in amplitude, spatial distribution and pattern of surface characteristics). The surface fractal dimension D f, as well as height values distribution have been determined for the 3D nanostructure surfaces. Microsc. Res. Tech. 78:1082–1089, 2015. © 2015 The Authors published by Wiley Periodicals, Inc. PMID:26500164

  19. Surface characterization and chemical analysis of bamboo substrates pretreated by alkali hydrogen peroxide.

    PubMed

    Song, Xueping; Jiang, Yan; Rong, Xianjian; Wei, Wei; Wang, Shuangfei; Nie, Shuangxi

    2016-09-01

    The surface characterization and chemical analysis of bamboo substrates by alkali hydrogen peroxide pretreatment (AHPP) were investigated in this study. The results tended to manifest that AHPP prior to enzymatic and chemical treatment was potential for improving accessibility and reactivity of bamboo substrates. The inorganic components, organic solvent extractives and acid-soluble lignin were effectively removed by AHPP. X-ray photoelectron spectroscopy (XPS) analysis indicated that the surface of bamboo chips had less lignin but more carbohydrate after pre-treatment. Fiber surfaces became etched and collapsed, and more pores and debris on the substrate surface were observed with Scanning Electron Microscopy (SEM). Brenauer-Emmett-Teller (BET) results showed that both of pore volume and surface area were increased after AHPP. Although XRD analysis showed that AHPP led to relatively higher crystallinity, pre-extraction could overall enhance the accessibility of enzymes and chemicals into the bamboo structure. Copyright © 2016. Published by Elsevier Ltd.

  20. Locally measuring the adhesion of InP directly bonded on sub-100 nm patterned Si.

    PubMed

    Pantzas, K; Le Bourhis, E; Patriarche, G; Troadec, D; Beaudoin, G; Itawi, A; Sagnes, I; Talneau, A

    2016-03-18

    A nano-scale analogue to the double cantilever experiment that combines instrumented nano-indentation and atomic force microscopy is used to precisely and locally measure the adhesion of InP bonded on sub-100 nm patterned Si using oxide-free or oxide-mediated bonding. Surface-bonding energies of 0.548 and 0.628 J m(-2), respectively, are reported. These energies correspond in turn to 51% and 57% of the surface bonding energy measured in unpatterned regions on the same samples, i.e. the proportion of unetched Si surface in the patterned areas. The results show that bonding on patterned surfaces can be as robust as on unpatterned surfaces, provided care is taken with the post-patterning surface preparation process and, therefore, open the path towards innovative designs that include patterns embedded in the Si guiding layer of hybrid III-V/Si photonic integrated circuits.

  1. Preparation of porous palladium nanowire arrays and their catalytic performance for hydrogen peroxide electroreduction in acid medium

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Ye, Ke; Gao, Yinyi; Zhang, Hongyu; Cheng, Kui; Xiao, Xue; Wang, Guiling; Cao, Dianxue

    2016-01-01

    Nanoporous palladium supported on the carbon coated titanium carbide (C@TiC) nanowire arrays (Pd NP/C@TiC) are successfully prepared by a facile chemical vapor deposition of three-dimensional (3D) C@TiC substrate, followed by electrochemical codeposition of Pd-Ni and removal of Ni via dealloying. The structure and morphology of the obtained Pd NP/C@TiC electrodes are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). Cyclic voltammetry (CV), linear sweep voltammetry (LSV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) are used to examine the catalytic performances of the electrodes for H2O2 electroreduction in H2SO4 solution. The Pd NP/C@TiC electrode exhibits a largely effective specific surface area owing to its open nanoporous structure allowing the full utilization of Pd surface active sites. At the potential of 0.2 V in 2.0 mol L-1 H2O2 and 2 mol L-1 H2SO4 solutions, the reduction current density reaches 3.47 A mg-1, which is significantly higher than the catalytic activity of H2O2 electroreduction achieved previously with precious metals as catalysts.

  2. Catalytic performance of Mn 3O 4 and Co 3O 4 nanocrystals prepared by sonochemical method in epoxidation of styrene and cyclooctene

    NASA Astrophysics Data System (ADS)

    Askarinejad, Azadeh; Bagherzadeh, Mojtaba; Morsali, Ali

    2010-09-01

    A simple sonochemical method was developed to synthesis uniform sphere-like Co 3O 4 and Mn 3O 4 nanocrystals. Epoxidation of styrene and cyclooctene by anhydrous tert-butyl hydroperoxide over the prepared Co 3O 4 and Mn 3O 4 nanocatalysts was investigated. The results of conversion activity were compared with bulk Co 3O 4 and Mn 3O 4. Under optimized reaction conditions, the nanocatalysts showed a superior catalytic performance as compared to the bulk catalysts. Powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and BET surface area, were used to characterize and investigate the nanocatalysts.

  3. Specialized probes based on hydroxyapatite calcium for heart tissues research by atomic force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhukov, Mikhail, E-mail: cloudjyk@yandex.ru; Golubok, Alexander; Institute for Analytical Instrumentation, Russian Academy of Sciences

    The new specialized AFM-probes with hydroxyapatite structures for atomic force microscopy of heart tissues calcification were created and studied. A process of probe fabrication is demonstrated. The adhesive forces between specialized hydroxyapatite probe and endothelium/subendothelial layers were investigated. It was found that the adhesion forces are significantly higher for the subendothelial layers. We consider that it is connected with the formation and localization of hydroxyapatite in the area of subendothelial layers of heart tissues. In addition, the roughness analysis and structure visualization of the endothelial surface of the heart tissue were carried out. The results show high efficiency of createdmore » specialized probes at study a calcinations process of the aortic heart tissues.« less

  4. Spinel lithium manganese oxide nanoparticles: unique molten salt synthesis strategy and excellent electrochemical performances.

    PubMed

    Wang, Xiong; Zhu, Juanjuan; Liu, Yingjie

    2009-11-01

    As a promising candidate cathode material, spinel lithium manganese oxide nanoparticles were successfully synthesized through a novel molten salt synthesis route at relatively low temperature, using manganese dioxide nanowires as precursor. A variety of techniques were applied to characterize the spinel nanomaterial, including X-ray diffraction, transmission electron microscopy, field-emission scanning electron microscopy, and X-ray photoelectron spectroscopy. The average particle size of the resulting spinel nanoparticles was about 80 nm with narrow distribution. As cathode material for rechargeable lithium ion battery, the electrochemical properties were investigated. All the results show that the electrochemical performances of the homogeneous spinel nanoparticles were improved, which might be ascribed to large specific surface area, fairly narrow size distribution, and the unique synthesis strategy.

  5. Catalytic hydrogen sensing using microheated platinum nanoparticle-loaded graphene aerogel

    DOE PAGES

    Harley-Trochimczyk, Anna; Chang, Jiyoung; Zhou, Qin; ...

    2014-10-02

    We present that low power catalytic hydrogen sensors are fabricated by functionalizing low power polysilicon microheaters with platinum nanoparticle catalyst loaded in a high surface area graphene aerogel support. Fabrication and characterization of the polysilicon microheaters are described. The platinum nanoparticle-loaded graphene aerogel is characterized by transmission electron microscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy. Finally, the catalytic hydrogen sensors consume as little as 2.2 mW of power, have sensitivity of 1.6%/10,000 ppm hydrogen, a t90 response and recovery time of 0.97 s and 0.72 s, respectively, a lower detection limit of approximately 65 ppm, and negligible crossmore » sensitivity to methane, n-pentane, and diethylether.« less

  6. Fretting wear behavior of zirconium alloy in B-Li water at 300 °C

    NASA Astrophysics Data System (ADS)

    Zhang, Lefu; Lai, Ping; Liu, Qingdong; Zeng, Qifeng; Lu, Junqiang; Guo, Xianglong

    2018-02-01

    The tangential fretting wear of three kinds of zirconium alloys tube mated with 304 stainless steel (SS) plate was investigated. The tests were conducted in an autoclave containing 300 °C pressurized B-Li water for tube-on-plate contact configuration. The worn surfaces were examined with scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and 3D microscopy. The cross-section of wear scar was examined with transmission electron microscope (TEM). The results indicated that the dominant wear mechanism of zirconium alloys in this test condition was delamination and oxidation. The oxide layer on the fretted area consists of outer oxide layer composed of iron oxide and zirconium oxide and inner oxide layer composed of zirconium oxide.

  7. Determining efficacy of monitoring devices on ceramic bond to resin composite

    PubMed Central

    Osorio, Estrella; Aguilera, Fátima S.; Osorio, Raquel; García-Godoy, Franklin; Cabrerizo-Vilchez, Miguel A.; Toledano, Manuel

    2012-01-01

    Objectives: This paper aims to assess the effectiveness of 3D nanoroughness and 2D microroughness evaluations, by their correlation with contact angle measurements and shear bond strength test, in order to evaluate the effect of two different acids conditioning on the bonding efficacy of a leucite-based glass-ceramic to a composite resin. Study Design: Ceramic (IPS Empress) blocks were treated as follows: 1) no treatment, 2) 37% phosphoric acid (H3PO4), 15 s, 3) 9% hydrofluoric acid (HF), 5 min. Micro- and nano-roughness were assessed with a profilometer and by means of an atomic force microscopy (AFM). Water contact angle (CA) measurements were determined to assess wettability of the ceramic surfaces with the asixymetric drop shape analysis contact diameter technique. Shear bond strength (SBS) was tested to a resin composite (Z100) with three different adhesive systems (Scotchbond Multipurpose Plus, Clearfil New Bond, ProBOND). Scanning electron microscopy (SEM) images were performed. Results: Nanoroughness values assessed in 50x50 μm areas were higher for the HF group, these differences were not detected by profilometric analysis. HF treatment created the nano- roughest surfaces and the smallest CA (p<0.05), producing the highest SBS to the composite resin with all tested adhesive systems (p<0.05). No differences existed between the SBS produced by the adhesive systems evaluated with any of the surface treatments tested. Conclusions: Nano-roughness obtained in a 50x50 µm scan size areas was the most reliable data to evaluate the topographical changes produced by the different acid treatments on ceramic surfaces. Key words:Dental ceramic, acid etching, bonding efficacy, resin composite, adhesive systems, contact angle, roughness. PMID:22549693

  8. An improved biofunction of titanium for keratoprosthesis by hydroxyapatite-coating.

    PubMed

    Dong, Ying; Yang, Jingxin; Wang, Liqiang; Ma, Xiao; Huang, Yifei; Qiu, Zhiye; Cui, Fuzhai

    2014-03-01

    Titanium framework keratoprosthesis has been commonly used in the severe corneal blindness, but the tissue melting occurred frequently around titanium. Since hydroxyapatite has been approved to possess a good tissue integration characteristic, nanostructured hydroxyapatite was coated on the surface of titanium through the aerosol deposition method. In this study, nanostructured hydroxyapatite coating was characterized by X-ray diffraction, scanning electron microscopy, atomic force microscopy, and auger electronic spectrometer. Biological evaluations were performed with rabbit cornea fibroblast in vitro and an animal model in vivo. The outcomes showed the coating had a grain-like surface topography and a good atomic mixed area with substrate. The rabbit cornea fibroblasts appeared a good adhesion on the surface of nanostructured hydroxyapatite in vitro. In the animal model, nanostructured hydroxyapatite-titanium implants were stably retained in the rabbit cornea, and by contrast, the corneal stroma became thinner anterior to the implants in the control. Therefore, our findings proved that nanostructured hydroxyapatite-titanium could not only provide an improved bond for substrate but also enhance the tissue integration with implants in host. As a promising material, nanostructured hydroxyapatite-titanium-based keratoprosthesis prepared by the aerosol deposition method could be utilized for the corneal blindness treatment.

  9. Fabrication of graphene/titanium carbide nanorod arrays for chemical sensor application.

    PubMed

    Fu, Chong; Li, Mingji; Li, Hongji; Li, Cuiping; Qu, Changqing; Yang, Baohe

    2017-03-01

    Vertically stacked graphene nanosheet/titanium carbide nanorod array/titanium (graphene/TiC nanorod array) wires were fabricated using a direct current arc plasma jet chemical vapor deposition (DC arc plasma jet CVD) method. The graphene/TiC nanorod arrays were characterized by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction spectroscopy. The TiO 2 nanotube array was reduced to the TiC nanorod array, and using those TiC nanorods as nucleation sites, the vertical graphene layer was formed on the TiC nanorod surface. The multi-target response mechanisms of the graphene/TiC nanorod array were investigated for ascorbic acid (AA), dopamine (DA), uric acid (UA), and hydrochlorothiazide (HCTZ). The vertically stacked graphene sheets facilitated the electron transfer and reactant transport with a unique porous surface, high surface area, and high electron transport network of CVD graphene sheets. The TiC nanorod array facilitated the electron transfer and firmly held the graphene layer. Thus, the graphene/TiC nanorod arrays could simultaneously respond to trace biomarkers and antihypertensive drugs. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Loose nanofiltration membrane for dye/salt separation through interfacial polymerization with in-situ generated TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Fan, Lin; Yang, Zhen; Zhang, Runnan; Liu, Ya-nan; He, Mingrui; Su, Yanlei; Jiang, Zhongyi

    2017-07-01

    In this study, a high flux nanofiltration (NF) membrane with hybrid polymer-nanoparticle active layer was fabricated by chemical crosslinking of piperazine (PIP) and 1, 3, 5-benzene tricarbonyl trichloride (TMC). An in-situ generated method was applied to deposit titanium dioxide (TiO2) nanoparticles uniformly on the membrane surface, leading to the enhancement of the surface hydrophilicity, roughness and relative surface area of the polyamide (PA) layer. The morphology of the modified membrane was investigated by scanning electron microscopy (SEM) and Atomic force microscopy (AFM), also energy dispersive X-ray microanalysis (EDX) was used to analyze the distribution of Ti element. Chemical structure was observed by Fourier transmission infrared attenuated total reflectance (FTIR-ATR) spectroscopy. Remarkably, the optimal water flux of the loose NF membrane was 65.0 Lm-2 h-1 bar-1 nearly 5 times as much as the pure PA membrane flux. The rejections of the loose NF membranes for dyes were almost all greater than 95.0%, while the rejection for sodium sulfate (Na2SO4) was only about 17.0%, which indicated that the modified membrane had an impressive potential application for dye desalination and purification.

  11. Variation of phytoplankton assemblages along the Mozambique coast as revealed by HPLC and microscopy

    NASA Astrophysics Data System (ADS)

    Sá, C.; Leal, M. C.; Silva, A.; Nordez, S.; André, E.; Paula, J.; Brotas, V.

    2013-05-01

    This study is an integrated overview of pigment and microscopic analysis of phytoplankton communities throughout the Mozambican coast. Collected samples revealed notable patterns of phytoplankton occurrence and distribution, with community structure changing between regions and sample depth. Pigment data showed Delagoa Bight, Sofala Bank and Angoche as the most productive regions throughout the sampled area. In general, micro-sized phytoplankton, particularly diatoms, were important contributors to biomass both at surface and sub-surface maximum (SSM) samples, although were almost absent in the northern stations. In contrast, nano- and pico-sized phytoplankton revealed opposing patterns. Picophytoplankton were most abundant at surface, as opposed to nanophytoplankton, which were more abundant at the SSM. Microphytoplankton were associated with cooler southern water masses, while picophytoplankton were related to warmer northern water masses. Nanophytoplankton were found to increase their contribution to biomass with increasing SSM. Microscopy information on the genera and species level revealed the diatoms Chaetoceros spp., Proboscia alata, Pseudo-nitzschia spp., Cylindrotheca closterium and Hemiaulus haukii as the most abundant taxa of the micro-sized phytoplankton. Discosphaera tubifera and Emiliania huxleyi were the most abundant coccolithophores, nano-sized phytoplankton.

  12. Structure and magnetic properties of FeSiAl-based soft magnetic composite with AlN and Al2O3 insulating layer prepared by selective nitridation and oxidation

    NASA Astrophysics Data System (ADS)

    Zhong, Xiaoxi; Liu, Ying; Li, Jun; Wang, Yiwei

    2012-08-01

    FeSiAl is widely used in switching power supply, filter inductors and pulse transformers. But when used under higher frequencies in some particular condition, it is required to reduce its high-frequency loss. Preparing a homogeneous insulating coating with good heat resistance and high resistivity, such as AlN and Al2O3, is supposed to be an effective way to reduce eddy current loss, which is less focused on. In this project, mixed AlN and Al2O3 insulating layers were prepared on the surface of FeSiAl powders after 30 min exposure at 1100 °C in high purity nitrogen atmosphere, by means of surface nitridation and oxidation. The results revealed that the insulating layers increase the electrical resistivity, and hence decrease the loss factor, improve the frequency stability and increase the quality factor, especially in the high-frequency range. The morphologies, microstructure and compositions of the oxidized and nitrided products on the surface were characterized by Scanning Electron Microscopy/Energy Disperse Spectroscopy, X-Ray Diffraction, Transmission Electron Microscopy, Selected Area Electron Diffraction and X-ray Photoelectron Spectroscopy.

  13. Behavior of deuterium retention and surface morphology for VPS–W/F82H

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yasuhisa Oya; Masashi Shimada; Tomonori Tokunaga

    The deuterium (D) retention for Vacuum Plasma Spray (VPS)–tungsten (W)/F82H was studied using two different implantation methods, namely D plasma exposure and View the MathML source implantation. The D retention for polished VPS–W/F82H after plasma exposure was found to be reduced compared to that for polycrystalline tungsten. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations indicated that porous structures around grain boundaries and the interface between VPS–W layers would be potential D diffusion paths, leading to low D retention. In the case of View the MathML source implantation, the shape of D2 TDS spectrum was almost the samemore » as that for D plasma-exposed VPS–W/F82H; however, the D retention was quite high for unpolished VPS–W/F82H, indicating that most of D was trapped by the oxide layer, which was produced by the VPS process. The reduction of surface area due to the polishing process also reduces D retention for VPS–W/F82H. These results indicate that controlling the surface chemical states is important for the reduction of tritium retention for future fusion reactors.« less

  14. Facile method to stain the bacterial cell surface for super-resolution fluorescence microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunsolus, Ian L.; Hu, Dehong; Mihai, Cosmin

    A method to fluorescently stain the surfaces of both Gram-negative and Gram-positive bacterial cells compatible with super-resolution fluorescence microscopy is presented. This method utilizes a commercially-available fluorescent probe to label primary amines at the surface of the cell. We demonstrate efficient staining of two bacterial strains, the Gram-negative Shewanella oneidensis MR-1 and the Gram-positive Bacillus subtilis 168. Using structured illumination microscopy and stochastic optical reconstruction microscopy, which require high quantum yield or specialized dyes, we show that this staining method may be used to resolve the bacterial cell surface with sub-diffraction-limited resolution. We further use this method to identify localizationmore » patterns of nanomaterials, specifically cadmium selenide quantum dots, following interaction with bacterial cells.« less

  15. The effect of different chemical agents on human enamel: an atomic force and scanning electron microscopy study

    NASA Astrophysics Data System (ADS)

    Rominu, Roxana O.; Rominu, Mihai; Negrutiu, Meda Lavinia; Sinescu, Cosmin; Pop, Daniela; Petrescu, Emanuela

    2010-12-01

    PURPOSE: The goal of our study was to investigate the changes in enamel surface roughess induced by the application of different chemical substances by atomic force microscopy and scanning electron microscopy. METHOD: Five sound human first upper premolar teeth were chosen for the study. The buccal surface of each tooth was treated with a different chemical agent as follows: Sample 1 - 38% phosphoric acid etching (30s) , sample 2 - no surface treatment (control sample), 3 - bleaching with 37.5 % hydrogen peroxide (according to the manufacturer's instructions), 4 - conditioning with a self-etching primer (15 s), 5 - 9.6 % hydrofluoric acid etching (30s). All samples were investigated by atomic force microscopy in a non-contact mode and by scanning electron microscopy. Several images were obtained for each sample, showing evident differences regarding enamel surface morphology. The mean surface roughness and the mean square roughness were calculated and compared. RESULTS: All chemical substances led to an increased surface roughness. Phosphoric acid led to the highest roughness while the control sample showed the lowest. Hydrofluoric acid also led to an increase in surface roughness but its effects have yet to be investigated due to its potential toxicity. CONCLUSIONS: By treating the human enamel with the above mentioned chemical compounds a negative microretentive surface is obtained, with a morphology depending on the applied substance.

  16. Electrospinning Nanofiber Based Organic Solar Cell

    NASA Astrophysics Data System (ADS)

    Yang, Zhenhua; Liu, Ying; Moffa, Maria; Nam, Chang-Yong; Pisignano, Dario; Rafailovich, Miriam

    Bulk heterojunction (BHJ) polymer solar cells are an area of intense interest due to their potential to result in printable, inexpensive solar cells which can be processed onto flexible substrates. The active layer is typically spin coated from the solution of polythiophene derivatives (donor) and fullerenes (acceptor) and interconnected domains are formed because of phase separation. However, the power conversion efficiency (PCE) of BHJ solar cell is restricted by the presence of unfavorable morphological features, including dead ends or isolated domains. Here we MEH-PPV:PVP:PCBM electrospun nanofiber into BHJ solar cell for the active layer morphology optimization. Larger interfacial area between donor and acceptor is abtained with electrospinning method and the high aspect ratio of the MEH-PPV:PVP:PCBM nanofibers allow them to easily form a continuous pathway. The surface morphology is investigated with atomic force microscopy (AFM) and scanning electron microscopy (SEM). Electrospun nanofibers are discussed as a favorable structure for application in bulk-heterojunction organic solar cells. Electrospinning Nanofiber Based Bulk Heterojunction Organic Solar Cell.

  17. High-speed AFM for scanning the architecture of living cells

    NASA Astrophysics Data System (ADS)

    Li, Jing; Deng, Zhifeng; Chen, Daixie; Ao, Zhuo; Sun, Quanmei; Feng, Jiantao; Yin, Bohua; Han, Li; Han, Dong

    2013-08-01

    We address the modelling of tip-cell membrane interactions under high speed atomic force microscopy. Using a home-made device with a scanning area of 100 × 100 μm2, in situ imaging of living cells is successfully performed under loading rates from 1 to 50 Hz, intending to enable detailed descriptions of physiological processes in living samples.We address the modelling of tip-cell membrane interactions under high speed atomic force microscopy. Using a home-made device with a scanning area of 100 × 100 μm2, in situ imaging of living cells is successfully performed under loading rates from 1 to 50 Hz, intending to enable detailed descriptions of physiological processes in living samples. Electronic supplementary information (ESI) available: Movie of the real-time change of inner surface within fresh blood vessel. The movie was captured at a speed of 30 Hz in the range of 80 μm × 80 μm. See DOI: 10.1039/c3nr01464a

  18. Electrodeposition of Au/Ag bimetallic dendrites assisted by Faradaic AC-electroosmosis flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Jianlong; Li, Pengwei; Sang, Shengbo, E-mail: sbsang@tyut.edu.cn

    2014-03-15

    Au/Ag bimetallic dendrites were synthesized successfully from the corresponding aqueous solution via the AC electrodeposition method. Both of the morphologies and compositions could be tuned by the electrolyte concentration and AC frequency. The prepared bimetallic dendrites were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), transmission electron microscopy (TEM) and UV–vis spectroscopy. The underlying dendrite growth mechanism was then proposed in the context of the Directed Electrochemical Nanowires Assembly (DENA) models. Owing to the unscreened voltage dropping in the electrolyte bulk, electromigration dominates the species flux process, and cations tend to accumulate in areas with strong electricmore » field intensity, such as electrode edges. Moreover, Faradaic AC-electro-osmosis (ACEO) flow could increase the effective diffusion layer thickness in these areas during the electrochemical reaction, and leads to dendrite growth. Further Micro-Raman observations illustrated that the Au/Ag bimetallic dendrites exhibited pronounced surface-enhanced Raman scattering (SERS) activity, using 4-mercaptopyridine (4-MP) as model molecules.« less

  19. Direct observation of the leakage current in epitaxial diamond Schottky barrier devices by conductive-probe atomic force microscopy and Raman imaging

    NASA Astrophysics Data System (ADS)

    Alvarez, J.; Boutchich, M.; Kleider, J. P.; Teraji, T.; Koide, Y.

    2014-09-01

    The origin of the high leakage current measured in several vertical-type diamond Schottky devices is conjointly investigated by conducting probe atomic force microscopy and confocal micro-Raman/photoluminescence imaging analysis. Local areas characterized by a strong decrease of the local resistance (5-6 orders of magnitude drop) with respect to their close surrounding have been identified in several different regions of the sample surface. The same local areas, also referenced as electrical hot-spots, reveal a slightly constrained diamond lattice and three dominant Raman bands in the low-wavenumber region (590, 914 and 1040 cm-1). These latter bands are usually assigned to the vibrational modes involving boron impurities and its possible complexes that can electrically act as traps for charge carriers. Local current-voltage measurements performed at the hot-spots point out a trap-filled-limited current as the main conduction mechanism favouring the leakage current in the Schottky devices.

  20. The estimation of quantitative parameters of oligonucleotides immobilization on mica surface

    NASA Astrophysics Data System (ADS)

    Sharipov, T. I.; Bakhtizin, R. Z.

    2017-05-01

    Immobilization of nucleic acids on the surface of various materials is increasingly being used in research and some practical applications. Currently, the DNA chip technology is rapidly developing. The basis of the immobilization process can be both physical adsorption and chemisorption. A useful way to control the immobilization of nucleic acids on a surface is to use atomic force microscopy. It allows you to investigate the topography of the surface by its direct imaging with high resolution. Usually, to fix the DNA on the surface of mica are used cations which mediate the interaction between the mica surface and the DNA molecules. In our work we have developed a method for estimation of quantitative parameter of immobilization of oligonucleotides is their degree of aggregation depending on the fixation conditions on the surface of mica. The results on study of aggregation of oligonucleotides immobilized on mica surface will be presented. The single oligonucleotides molecules have been imaged clearly, whereas their surface areas have been calculated and calibration curve has been plotted.

  1. Characteristics of fly ashes from full-scale coal-fired power plants and their relationship to mercury adsorption

    USGS Publications Warehouse

    Lu, Y.; Rostam-Abadi, M.; Chang, R.; Richardson, C.; Paradis, J.

    2007-01-01

    Nine fly ash samples were collected from the particulate collection devices (baghouse or electrostatic precipitator) of four full-scale pulverized coal (PC) utility boilers burning eastern bituminous coals (EB-PC ashes) and three cyclone utility boilers burning either Powder River Basin (PRB) coals or PRB blends,(PRB-CYC ashes). As-received fly ash samples were mechanically sieved to obtain six size fractions. Unburned carbon (UBC) content, mercury content, and Brunauer-Emmett-Teller (BET)-N2 surface areas of as-received fly ashes and their size fractions were measured. In addition, UBC particles were examined by scanning electron microscopy, high-resolution transmission microscopy, and thermogravimetry to obtain information on their surface morphology, structure, and oxidation reactivity. It was found that the UBC particles contained amorphous carbon, ribbon-shaped graphitic carbon, and highly ordered graphite structures. The mercury contents of the UBCs (Hg/UBC, in ppm) in raw ash samples were comparable to those of the UBC-enriched samples, indicating that mercury was mainly adsorbed on the UBC in fly ash. The UBC content decreased with a decreasing particle size range for all nine ashes. There was no correlation between the mercury and UBC contents of different size fractions of as-received ashes. The mercury content of the UBCs in each size fraction, however, generally increased with a decreasing particle size for the nine ashes. The mercury contents and surface areas of the UBCs in the PRB-CYC ashes were about 8 and 3 times higher than UBCs in the EB-PC ashes, respectively. It appeared that both the particle size and surface area of UBC could contribute to mercury capture. The particle size of the UBC in PRB-CYC ash and thus the external mass transfer was found to be the major factor impacting the mercury adsorption. Both the particle size and surface reactivity of the UBC in EB-PC ash, which generally had a lower carbon oxidation reactivity than the PRB-PC ashes, appeared to be important for the mercury adsorption. ?? 2007 American Chemical Society.

  2. Characterization of a commercialized SERS-active substrate and its application to the identification of intact Bacillus endospores

    NASA Astrophysics Data System (ADS)

    Alexander, Troy A.; Le, Dianna M.

    2007-06-01

    Surface-enhanced-Raman-spectroscopy (SERS) can be made an attractive approach for the identification of Raman-active compounds and biological materials (i.e., toxins, viruses, or intact bacterial cells or spores) through development of reproducible, spatially uniform SERS-active substrates. Recently, reproducible (from substrate to substrate), spatially homogeneous (over large areas) SERS-active substrates have been commercialized and are now available in the marketplace. Scanning electron microscopy and high-resolution, tapping-mode atomic force microscopy have been used to analyze these novel plasmonic surfaces for topographical consistency. Additionally, we have assessed, by wavelength-tunable microreflectance spectrometry, the spatial distribution of the localized surface plasmon resonance (LSPR) across a single substrate surface as well as the LSPR λMAX variance from substrate to substrate. These analyses reveal that these surfaces are topologically uniform with small LSPR variance from substrate to substrate. Further, we have utilized these patterned surfaces to acquire SERS spectral signatures of four intact, genetically distinct Bacillus spore species cultivated under identical growth conditions. Salient spectral signature features make it possible to discriminate among these genetically distinct spores. Additionally, partial least squares, a multivariate calibration method, has been used to develop personal-computer-borne algorithms useful for classification of unknown spore samples based solely on SERS spectral signatures. To our knowledge, this is the first report detailing application of these commercially available SERS-active substrates to identification of intact Bacillus spores.

  3. Nanopatterned submicron pores as a shield for nonspecific binding in surface plasmon resonance-based sensing.

    PubMed

    Raz, Sabina Rebe; Marchesini, Gerardo R; Bremer, Maria G E G; Colpo, Pascal; Garcia, Cesar Pascual; Guidetti, Guido; Norde, Willem; Rossi, Francois

    2012-11-21

    We present a novel approach to tackle the most common drawback of using surface plasmon resonance for analyte screening in complex biological matrices--the nonspecific binding to the sensor chip surface. By using a perforated membrane supported by a polymeric gel structure at the evanescent wave penetration depth, we have fabricated a non-fouling sieve above the sensing region. The sieve shields the evanescent wave from nonspecific interactions which interfere with SPR sensing by minimizing the fouled area of the polymeric gel and preventing the translocation of large particles, e.g. micelles or aggregates. The nanopatterned macropores were fabricated by means of colloidal lithography and plasma enhanced chemical vapor deposition of a polyethylene oxide-like film on top of a polymeric gel matrix commonly used in surface plasmon resonance analysis. The sieve was characterized using surface plasmon resonance imaging, contact angle, atomic force microscopy and scanning electron microscopy. The performance of the sieve was studied using an immunoassay for detection of antibiotic residues in full fat milk and porcine serum. The non-fouling membrane presented pores in the 92-138 nm range organized in a hexagonal crystal lattice with a clearance of about 5% of the total surface. Functionally, the membrane with the nanopatterned macropores showed significant improvements in immunoassay robustness and sensitivity in untreated complex samples. The utilization of the sensor built-in sieve for measurements in complex matrices offers reduction in pre-analytical sample preparation steps and thus shortens the total analysis time.

  4. Surface Biology of DNA by Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Hansma, Helen G.

    2001-10-01

    The atomic force microscope operates on surfaces. Since surfaces occupy much of the space in living organisms, surface biology is a valid and valuable form of biology that has been difficult to investigate in the past owing to a lack of good technology. Atomic force microscopy (AFM) of DNA has been used to investigate DNA condensation for gene therapy, DNA mapping and sizing, and a few applications to cancer research and to nanotechnology. Some of the most exciting new applications for atomic force microscopy of DNA involve pulling on single DNA molecules to obtain measurements of single-molecule mechanics and thermodynamics.

  5. Direct observation of small cluster mobility and ripening

    NASA Technical Reports Server (NTRS)

    Heinemann, K.; Poppa, H.

    1976-01-01

    Direct evidence is reported for the simultaneous occurrence of Ostwald ripening and short-distance cluster mobility during annealing of discontinuous metal films on clean amorphous substrates. The annealing characteristics of very thin particulate deposits of silver on amorphized clean surfaces of single-crystalline thin graphite substrates have been studied by in situ transmission electron microscopy (TEM) under controlled environmental conditions in the temperature range from 25 to 450 C. It was possible to monitor all stages of the experiments by TEM observation of the same specimen area. Slow Ostwald ripening was found to occur over the entire temperature range, but the overriding surface transport mechanism was short-distance cluster mobility. This was concluded from in situ observations of individual particles during annealing and from measurements of cluster size distributions, cluster number densities, area coverages, and mean cluster diameters.

  6. Si/InGaN core/shell hierarchical nanowire arrays and their photoelectrochemical properties.

    PubMed

    Hwang, Yun Jeong; Wu, Cheng Hao; Hahn, Chris; Jeong, Hoon Eui; Yang, Peidong

    2012-03-14

    Three-dimensional hierarchical nanostructures were synthesized by the halide chemical vapor deposition of InGaN nanowires on Si wire arrays. Single phase InGaN nanowires grew vertically on the sidewalls of Si wires and acted as a high surface area photoanode for solar water splitting. Electrochemical measurements showed that the photocurrent density with hierarchical Si/InGaN nanowire arrays increased by 5 times compared to the photocurrent density with InGaN nanowire arrays grown on planar Si (1.23 V vs RHE). High-resolution transmission electron microscopy showed that InGaN nanowires are stable after 15 h of illumination. These measurements show that Si/InGaN hierarchical nanostructures are a viable high surface area electrode geometry for solar water splitting. © 2012 American Chemical Society

  7. Moisture sorption by cellulose powders of varying crystallinity.

    PubMed

    Mihranyan, Albert; Llagostera, Assumpcio Piñas; Karmhag, Richard; Strømme, Maria; Ek, Ragnar

    2004-01-28

    Moisture in microcrystalline cellulose may cause stability problems for moisture sensitive drugs. The aim of this study was to investigate the influence of crystallinity and surface area on the uptake of moisture in cellulose powders. Powders of varying crystallinity were manufactured, and the uptake of moisture was investigated at different relative humidities. The structure of the cellulose powders was characterized by X-ray diffraction, BET surface area analysis, and scanning electron microscopy. Moisture uptake was directly related to the cellulose crystallinity and pore volume: Cellulose powders with higher crystallinity showed lower moisture uptake at relative humidities below 75%, while at higher humidities the moisture uptake could be associated with filling of the large pore volume of the cellulose powder of highest crystallinity. In conclusion, the structure of cellulose should be thoroughly considered when manufacturing low moisture grades of MCC.

  8. Analysis of the Early Stages and Evolution of Dental Enamel Erosion.

    PubMed

    Derceli, Juliana Dos Reis; Faraoni, Juliana Jendiroba; Pereira-da-Silva, Marcelo Assumpção; Palma-Dibb, Regina Guenka

    2016-01-01

    The aim of this study was to evaluate by atomic force microscopy (AFM) the early phases and evolution of dental enamel erosion caused by hydrochloric acid exposure, simulating gastroesophageal reflux episodes. Polished bovine enamel slabs (4x4x2 mm) were selected and exposed to 0.1 mL of 0.01 M hydrochloric acid (pH=2) at 37 ?#61472;?#61616;C using five different exposure intervals (n=1): no acid exposure (control), 10 s, 20 s, 30 s and 40 s. The exposed area was analyzed by AFM in 3 regions to measure the roughness, surface area and morphological surface. The data were analyzed qualitatively. Roughness started as low as that of the control sample, Rrms=3.5 nm, and gradually increased at a rate of 0.3 nm/s, until reaching Rrms=12.5 nm at 30 s. After 40 s, the roughness presented increment of 0.40 nm only. Surface area (SA) increased until 20 s, and for longer exposures, the surface area was constant (at 30 s, SA=4.40 μm2 and at 40 s, SA=4.43 μm2). As regards surface morphology, the control sample presented smaller hydroxyapatite crystals (22 nm) and after 40 s the crystal size was approximately 60 nm. Short periods of exposure were sufficient to produce enamel demineralization in different patterns and the morphological structure was less affected by exposure to hydrochloric acid over 30 s.

  9. Endoscopic probe optics for spectrally encoded confocal microscopy.

    PubMed

    Kang, Dongkyun; Carruth, Robert W; Kim, Minkyu; Schlachter, Simon C; Shishkov, Milen; Woods, Kevin; Tabatabaei, Nima; Wu, Tao; Tearney, Guillermo J

    2013-01-01

    Spectrally encoded confocal microscopy (SECM) is a form of reflectance confocal microscopy that can achieve high imaging speeds using relatively simple probe optics. Previously, the feasibility of conducting large-area SECM imaging of the esophagus in bench top setups has been demonstrated. Challenges remain, however, in translating SECM into a clinically-useable device; the tissue imaging performance should be improved, and the probe size needs to be significantly reduced so that it can fit into luminal organs of interest. In this paper, we report the development of new SECM endoscopic probe optics that addresses these challenges. A custom water-immersion aspheric singlet (NA = 0.5) was developed and used as the objective lens. The water-immersion condition was used to reduce the spherical aberrations and specular reflection from the tissue surface, which enables cellular imaging of the tissue deep below the surface. A custom collimation lens and a small-size grating were used along with the custom aspheric singlet to reduce the probe size. A dual-clad fiber was used to provide both the single- and multi- mode detection modes. The SECM probe optics was made to be 5.85 mm in diameter and 30 mm in length, which is small enough for safe and comfortable endoscopic imaging of the gastrointestinal tract. The lateral resolution was 1.8 and 2.3 µm for the single- and multi- mode detection modes, respectively, and the axial resolution 11 and 17 µm. SECM images of the swine esophageal tissue demonstrated the capability of this device to enable the visualization of characteristic cellular structural features, including basal cell nuclei and papillae, down to the imaging depth of 260 µm. These results suggest that the new SECM endoscopic probe optics will be useful for imaging large areas of the esophagus at the cellular scale in vivo.

  10. Brain-Derived Neurotrophic Factor (BDNF) and Traumatic Brain Injury (Head and Spinal)

    DTIC Science & Technology

    1999-01-01

    surface area. J Microscopy 150: 117-136. Osterman-Latif C, Mader M, Felgenhauer K (1993) An efficient sandwich-ELISA for the determination of choline ...anesthesia and surgery but were not injured (sham injury). After the appropriate survival times, the rats were deeply anesthetized with an overdose of...post-injury (Hicks et al., 1997b, 1998). Tissue Processing Following deep anesthesia with an overdose of sodium pentobarbital, the animals ".vere

  11. Increase of porosity by combining semi-carbonization and KOH activation of formaldehyde resins to prepare high surface area carbons for supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Heimböckel, Ruben; Kraas, Sebastian; Hoffmann, Frank; Fröba, Michael

    2018-01-01

    A series of porous carbon samples were prepared by combining a semi-carbonization process of acidic polymerized phenol-formaldehyde resins and a following chemical activation with KOH used in different ratios to increase specific surface area, micropore content and pore sizes of the carbons which is favourable for supercapacitor applications. Samples were characterized by nitrogen physisorption, powder X-ray diffraction, Raman spectroscopy and scanning electron microscopy. The results show that the amount of KOH, combined with the semi-carbonization step had a remarkable effect on the specific surface area (up to SBET: 3595 m2 g-1 and SDFT: 2551 m2 g-1), pore volume (0.60-2.62 cm3 g-1) and pore sizes (up to 3.5 nm). The carbons were tested as electrode materials for electrochemical double layer capacitors (EDLC) in a two electrode setup with tetraethylammonium tetrafluoroborate in acetonitrile as electrolyte. The prepared carbon material with the largest surface area, pore volume and pore sizes exhibits a high specific capacitance of 145.1 F g-1 at a current density of 1 A g-1. With a high specific energy of 31 W h kg-1 at a power density of 33028 W kg-1 and a short time relaxation constant of 0.29 s, the carbon showed high power capability as an EDLC electrode material.

  12. Evolution of porous structure and texture in nanoporous SiO2/Al2O3 materials during calcination

    NASA Astrophysics Data System (ADS)

    Glazkova, Elena A.; Bakina, Olga V.

    2016-11-01

    The study focuses on the evolution of porous structure and texture of silica/alumina xerogels during calcination in the temperature range from 500 to 1200°C. The xerogel was prepared via sol-gel method using subcritical drying. The silica/alumina xerogels were examined using transmission electron microscopy-energy dispersive spectroscopy (TEM-EDS), Brunauer Emmett Teller-Barrett Joyner Halenda (BET-BJH), differential scanning calorimetry (DSC), and Fourier transform infrared (FTIR) spectroscopy. SiO2 primary particles of size about 10 nm are connected with each other to form a porous xerogel structure. Alumina is uniformly distributed over the xerogel volume. The changes of textural characteristics under heat treatment of samples are radical; the specific surface area and pore size attain their maximum at 500-700°C. The heat treatment of samples causes dehydroxylation of the xerogel surface, and at 1200°C the sample is sintered, loses mesoporosity, and its specific surface area reduces considerably down to 78 m2/g.

  13. Interaction of hydrogen chloride with alumina. [atmospheric effluent concentrations and interaction of solid rocket propellants used in space shuttle

    NASA Technical Reports Server (NTRS)

    Bailey, R. R.; Wightman, J. P.

    1978-01-01

    The influence of temperature, pressure, and outgas conditions on the absorption of hydrogen chloride and water vapor on both alpha and gamma alumina was studied. Characterization of the adsorbents was performed using X-ray powder diffraction, scanning electron microscopy (SEM), low temperature nitrogen adsorption desorption measurements, BET nitrogen surface area measurements and electron spectroscopy for chemical analysis (ESCA). Water vapor adsorption isotherms at 30, 40, and 50 C were measured on alpha and gamma alumina after outgassing at 80, 200, and 400 C. Both outgas temperature and adsorption temperature influenced the adsorption of water vapor on the aluminas. The water vapor adsorption was completely reversible. Alpha alumina absorbed more water per unit area than gamma alumina. Differences in the adsorption capacity for water vapor of the two aluminas were explained on the basis of ideal surface models of alpha and gamma alumina. Isosteric heats of adsorption for water vapor on the aluminas were determined over a limited range of surface coverage.

  14. Removal of aniline and phenol from water using raw and aluminum hydroxide-modified diatomite.

    PubMed

    Wu, C D; Zhang, J Y; Wang, L; He, M H

    2013-01-01

    The feasibility of using raw diatomite and aluminum hydroxide-modified diatomite (Al-diatomite) for removal of aniline and phenol from water was investigated. Their physicochemical characteristics such as pHsolution, point of zero charge (pHPZC), surface area, Fourier transform infrared (FT-IR) and scanning electron microscopy was determined. After the raw diatomite was modified, the surface area of Al-diatomite increases from 26.67 to 82.65 m(2) g(-1). The pHPZC and pHsolution (10%) occurred around pH 5.2 and pH 8.6, respectively. The removal rates of aniline and phenol on diatomite and Al-diatomite decreased with increasing solution pH, while surface charge density decreased. The adsorption of aniline and phenol on diatomite presented a good fit to the Langmuir and Freundlich models, but the models are not fit to forecast the adsorption of aniline and phenol on Al-diatomite. The study indicated that electrostatic interaction was a dominating mechanism of aniline and phenol sorption onto Al-diatomite.

  15. Grain-boundary-dependent CO2 electroreduction activity.

    PubMed

    Feng, Xiaofeng; Jiang, Kaili; Fan, Shoushan; Kanan, Matthew W

    2015-04-15

    Uncovering new structure-activity relationships for metal nanoparticle (NP) electrocatalysts is crucial for advancing many energy conversion technologies. Grain boundaries (GBs) could be used to stabilize unique active surfaces, but a quantitative correlation between GBs and catalytic activity has not been established. Here we use vapor deposition to prepare Au NPs on carbon nanotubes (Au/CNT). As deposited, the Au NPs have a relatively high density of GBs that are readily imaged by transmission electron microscopy (TEM); thermal annealing lowers the density in a controlled manner. We show that the surface-area-normalized activity for CO2 reduction is linearly correlated with GB surface density on Au/CNT, demonstrating that GB engineering is a powerful approach to improving the catalytic activity of metal NPs.

  16. An Improved MUSIC Model for Gibbsite Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Scott C.; Bickmore, Barry R.; Tadanier, Christopher J.

    2004-06-01

    Here we use gibbsite as a model system with which to test a recently published, bond-valence method for predicting intrinsic pKa values for surface functional groups on oxides. At issue is whether the method is adequate when valence parameters for the functional groups are derived from ab initio structure optimization of surfaces terminated by vacuum. If not, ab initio molecular dynamics (AIMD) simulations of solvated surfaces (which are much more computationally expensive) will have to be used. To do this, we had to evaluate extant gibbsite potentiometric titration data that where some estimate of edge and basal surface area wasmore » available. Applying BET and recently developed atomic force microscopy methods, we found that most of these data sets were flawed, in that their surface area estimates were probably wrong. Similarly, there may have been problems with many of the titration procedures. However, one data set was adequate on both counts, and we applied our method of surface pKa int prediction to fitting a MUSIC model to this data with considerable success—several features of the titration data were predicted well. However, the model fit was certainly not perfect, and we experienced some difficulties optimizing highly charged, vacuum-terminated surfaces. Therefore, we conclude that we probably need to do AIMD simulations of solvated surfaces to adequately predict intrinsic pKa values for surface functional groups.« less

  17. High surface area nanocrystalline hausmannite synthesized by a solvent-free route

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrera-Miranda, Daniel; Ponrouch, Alexandre; Pons, Josefina

    Highlights: ► High surface area Mn{sub 3}O{sub 4} nanoparticles obtained by a solvent-free low temperature route. ► 3,6,9-Trioxadecanoic acid allows to obtain nanocrystalline hausmannite. ► Tape casted electrodes show up to 300 mAh g{sup −1} capacity after more than 40 cycles at a C/3 rate. ► Upper cut off voltage strongly influences capacity retention upon cycling at high C rates. -- Abstract: Nanocrystalline high surface area Mn{sub 3}O{sub 4} powder was obtained at low temperature by a solvent-free route. The precursor was a mixture of manganese (II) acetate, 3,6,9-trioxadecanoic acid (TODA) and ammonium acetate that were intimately mixed by groundingmore » in an agate mortar. Nanocrystalline Mn{sub 3}O{sub 4} was obtained by thermal treatment at 120 °C. Powder X-ray diffraction, selected area electron diffraction, high resolution transmission electron microscopy, and Fourier transformed infrared characterization confirmed the formation of the hausmannite phase. The as-prepared mesoporous material has high specific surface area (120 m{sup 2} g{sup −1}). The performances of tape casted Mn{sub 3}O{sub 4} nanopowder electrodes were investigated as anode material for lithium ion batteries. High capacity values were achieved at diverse C rates. Capacity fading was found to be dependent on the upper cut off voltage, the presence of a plateau at 2.25 V vs. Li{sup +}/Li being detrimental for long term cyclability.« less

  18. Effect of Reduced Phosphoric Acid Pre-etching Times 
on Enamel Surface Characteristics and Shear Fatigue Strength Using Universal Adhesives.

    PubMed

    Tsujimoto, Akimasa; Fischer, Nicholas; Barkmeier, Wayne; Baruth, Andrew; Takamizawa, Toshiki; Latta, Mark; Miyazaki, Masashi

    2017-01-01

    To examine the effect of reduced phosphoric acid pre-etching times on enamel fatigue bond strength of universal adhesives and surface characteristics by using atomic force microscopy (AFM). Three universal adhesives were used in this study (Clearfil Universal Bond [C], G-Premio Bond [GP], Scotchbond Universal Adhesive [SU]). Four pre-etching groups were employed: enamel pre-etched with phosphoric acid and immediately rinsed with an air-water spray, and enamel pre-etched with phosphoric acid for 5, 10, or 15 s. Ground enamel was used as the control group. For the initial bond strength test, 15 specimens per etching group for each adhesive were used. For the shear fatigue test, 20 specimens per etching group for each adhesive were loaded using a sine wave at a frequency of 20 Hz for 50,000 cycles or until failure occurred. Initial shear bond strengths and fatigue shear strengths of composite adhesively bonded to ground and pre-etched enamel were determined. AFM observations of ground and pre-etched enamel were also conducted, and surface roughness as well as surface area were evaluated. The initial shear bond strengths and fatigue shear strengths of the universal adhesives in the pre-etched groups were significantly higher than those of the control group, and were not influenced by the pre-etching time. Significantly higher surface roughness and surface area of enamel surfaces in pre-etched groups were observed compared with those in the control group. While the surface area was not significantly influenced by etching time, surface roughness of the enamel surfaces in the pre-etched groups significantly increased with pre-etching time. The results of this in vitro study suggest that reduced phosphoric acid pre-etching times do not impair the fatigue bond strength of universal adhesives. Although fatigue bond strength and surface area were not influenced by phosphoric-acid etching times, surface roughness increased with increasing etching time.

  19. Pd/Cu-Oxide Nanoconjugate at Zeolite-Y Crystallite Crafting the Mesoporous Channels for Selective Oxidation of Benzyl-Alcohols.

    PubMed

    Sharma, Mukesh; Das, Biraj; Sharma, Mitu; Deka, Biplab K; Park, Young-Bin; Bhargava, Suresh K; Bania, Kusum K

    2017-10-11

    Solid-state grinding of palladium and copper salts allowed the growth of palladium/copper oxide interface at the zeolite-Y surface. The hybrid nanostructured material was used as reusable heterogeneous catalyst for selective oxidation of various benzyl alcohols. The large surface area provided by the zeolite-Y matrix highly influenced the catalytic activity, as well as the recyclability of the synthesized catalyst. Impregnation of PdO-CuO nanoparticles on zeolite crystallite leads to the generation of mesoporous channel that probably prevented the leaching of the metal-oxide nanoparticles and endorsed high mass transfer. Formation of mesoporous channel at the external surface of zeolite-Y was evident from transmission electron microscopy and surface area analysis. PdO-CuO nanoparticles were found to be within the range of 2-5 nm. The surface area of PdO-CuO-Y catalyst was found to be much lower than parent zeolite-Y. The decrease in surface area as well as the presence of hysteresis loop in the N 2 -adsoprtion isotherm further suggested successful encapsulation of PdO-CuO nanoparticles via the mesoporous channel formation. The high positive shifting in binding energy in both Pd and Cu was attributed to the influence of zeolite-Y framework on lattice contraction of metal oxides via confinement effect. PdO-CuO-Y catalyst was found to oxidize benzyl alcohol with 99% selectivity. On subjecting to microwave irradiation the same oxidation reaction was found to occur at ambient condition giving same conversion and selectivity.

  20. F 2 excimer laser (157 nm) radiation modification and surface ablation of PHEMA hydrogels and the effects on bioactivity: Surface attachment and proliferation of human corneal epithelial cells

    NASA Astrophysics Data System (ADS)

    Zainuddin; Chirila, Traian V.; Barnard, Zeke; Watson, Gregory S.; Toh, Chiong; Blakey, Idriss; Whittaker, Andrew K.; Hill, David J. T.

    2011-02-01

    Physical and chemical changes at the surface of poly(2-hydroxyethyl methacrylate) (PHEMA) hydrogels modified by ablation with an F 2 excimer laser were investigated experimentally. An important observation was that only the outer exposed surface layers of the hydrogel were affected by the exposure to 157 nm radiation. The effect of the surface changes on the tendency of cells to adhere to the PHEMA was also investigated. A 0.5 cm 2 area of the hydrogel surfaces was exposed to laser irradiation at 157 nm to fluences of 0.8 and 4 J cm -2. The changes in surface topography were analysed by light microscopy and atomic force microscopy, while the surface chemistry was characterized by attenuated total reflection infrared and X-ray photoelectron spectroscopies. Cell-interfacial interactions were examined based on the proliferation of human corneal limbal epithelial (HLE) cells cultured on the laser-modified hydrogels, and on the unexposed hydrogels and tissue culture plastic for comparison. It was observed that the surface topography of laser-exposed hydrogels showed rippled patterns with a surface roughness increasing at the higher exposure dose. The changes in surface chemistry were affected not only by an indirect effect of hydrogen and hydroxyl radicals, formed by water photolysis, on the PHEMA, but also by the direct action of laser radiation on PHEMA if the surface layers of the gel become depleted of water. The laser treatment led to a change in the surface characteristics, with a lower concentration of ester side-chains and the formation of new oxygenated species at the surface. The surface also became more hydrophobic. Most importantly, the surface chemistry and the newly created surface topographical features were able to improve the attachment, spreading and growth of HLE cells.

  1. Porous carbon materials synthesized using IRMOF-3 and furfuryl alcohol as precursor

    NASA Astrophysics Data System (ADS)

    Deka, Pemta Tia; Ediati, Ratna

    2016-03-01

    IRMOF-3 crystals have been synthesized using solvothermal method by adding zinc nitrate hexahydrate with 2-amino-1,4-benzenedicarboxylic acid in N'N-dimethylformamide (DMF) at 100°C for 24 (note as IR-24) and 72 h (note as IR-72). The obtained crystals were characterized using X-ray Diffraction (XRD), SEM (Scanning Electron Microscopy) and Scanning Electron Microscopy-Energy Dispersive X-ray (SEM-EDX), FTIR and Isothermal adsorption-desorption N2. The diffractogram solids synthesized show characteristic peak at 2θ 6.8, 9.6 and 13.7°. SEM micrograph show cubic shape of IRMOF-3 crystal. Based on FTIR characterization, IRMOF-3 appear at wavelength (1691,46; 1425,3; 1238,21; 1319,22 dan 3504,42)cm-1. The Isotherm of crystal IRMOF-3 at heating time 24 h and 72 h are type IV. The surface area of IR-24 and IR-72 are respectively 24,758 m2/g and 29,139 m2/g with its dominant mesopores. Carbonaceous materials has been successfully synthesized using IR-24, IR-72 and furfuryl alcohol (FA) as second carbon precursor with variation of carbonation temperature 550, 700 and 850°C. The XRD result from both carbonaceous materials show formation of amorphous carbon and caharacteristic peak of ZnO oxide. Micrograph SEM show that carbonaceous materials have cubic shape as IRMOF-3 and SEM-EDX result indicate Zn and nitrogen content of these materials has decrease until temperature 850°C. Porous carbon using IR-24 and FA (notes as C-24) has increased surface area with higher carbonation temperature. The highest surface area is 1495,023 m2/g. Total pore volume and pore size of C-24 from low to high temperature respectively as (0,338; 0,539 and 1,598) cc/g; (0,107; 0,152 and 0,610) cc/g. Porous carbon using IR-72 and FA (notes as C-72) has smaller surface area than C-24 but its also increased during higher carbonation heating. The highest surface area is 1029,668 m2/g.The total pore volume and pore size of these carbon materials from low to high temperature respectively as (0,390; 0,727 and 1,345) cc/g and (0,065; 0,157 and 0,381) cc/g. Carbonaceous materials with high porosity and nitrogen content will be expected increase mechanical properties and hydrogen storage from these materials.

  2. Atomic force microscopy visualization of injuries in Enterococcus faecalis surface caused by Er,Cr:YSGG and diode lasers

    PubMed Central

    López-Jiménez, Lidia; Viñas, Miguel; Vinuesa, Teresa

    2015-01-01

    Aim: To visualize by Atomic Force Microscopy the alterations induced on Enterococcus. faecalis surface after treatment with 2 types of laser: Erbium chromium:yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser and Diode laser. Material and Methods: Bacterial suspensions from overnight cultures of E. faecalis were irradiated during 30 seconds with the laser-lights at 1 W and 2 W of power, leaving one untreated sample as control. Surface alterations on treated E. faecalis were visualized by Atomic Force Microscopy (AFM) and its surface roughness determined. Results: AFM imaging showed that at high potency of laser both cell morphology and surface roughness resulted altered, and that several cell lysis signs were easily visualized. Surface roughness clearly increase after the treatment with Er,Cr:YSGG at 2W of power, while the other treatments gave similar values of surface roughness. The effect of lasers on bacterial surfaces visualized by AFM revealed drastic alterations. Conclusions: AFM is a good tool to evaluate surface injuries after laser treatment; and could constitute a measure of antimicrobial effect that can complete data obtained by determination of microbial viability. Key words:Atomic force microscopy, Er,Cr:YSGG laser, diode laser, Enterococcus faecalis, surface roughness. PMID:25475770

  3. The effect of particle size on the heat affected zone during laser cladding of Ni-Cr-Si-B alloy on C45 carbon steel

    NASA Astrophysics Data System (ADS)

    Tanigawa, Daichi; Abe, Nobuyuki; Tsukamoto, Masahiro; Hayashi, Yoshihiko; Yamazaki, Hiroyuki; Tatsumi, Yoshihiro; Yoneyama, Mikio

    2018-02-01

    Laser cladding is one of the most useful surface coating methods for improving the wear and corrosion resistance of material surfaces. Although the heat input associated with laser cladding is small, a heat affected zone (HAZ) is still generated within the substrate because this is a thermal process. In order to reduce the area of the HAZ, the heat input must therefore be reduced. In the present study, we examined the effects of the powdered raw material particle size on the heat input and the extent of the HAZ during powder bed laser cladding. Ni-Cr-Si-B alloy layers were produced on C45 carbon steel substrates in conjunction with alloy powders having average particle sizes of 30, 40 and 55 μm, while measuring the HAZ area by optical microscopy. The heat input required for layer formation was found to decrease as smaller particles were used, such that the HAZ area was also reduced.

  4. Colloidal crystal based plasma polymer patterning to control Pseudomonas aeruginosa attachment to surfaces.

    PubMed

    Pingle, Hitesh; Wang, Peng-Yuan; Thissen, Helmut; McArthur, Sally; Kingshott, Peter

    2015-12-02

    Biofilm formation on medical implants and subsequent infections are a global problem. A great deal of effort has focused on developing chemical contrasts based on micro- and nanopatterning for studying and controlling cells and bacteria at surfaces. It has been known that micro- and nanopatterns on surfaces can influence biomolecule adsorption, and subsequent cell and bacterial adhesion. However, less focus has been on precisely controlling patterns to study the initial bacterial attachment mechanisms and subsequently how the patterning influences the role played by biomolecular adsorption on biofilm formation. In this work, the authors have used colloidal self-assembly in a confined area to pattern surfaces with colloidal crystals and used them as masks during allylamine plasma polymer (AAMpp) deposition to generate highly ordered patterns from the micro- to the nanoscale. Polyethylene glycol (PEG)-aldehyde was grafted to the plasma regions via "cloud point" grafting to prevent the attachment of bacteria on the plasma patterned surface regions, thereby controlling the adhesive sites by choice of the colloidal crystal morphology. Pseudomonas aeruginosa was chosen to study the bacterial interactions with these chemically patterned surfaces. Scanning electron microscope, x-ray photoelectron spectroscopy (XPS), atomic force microscopy, and epifluorescence microscopy were used for pattern characterization, surface chemical analysis, and imaging of attached bacteria. The AAMpp influenced bacterial attachment because of the amine groups displaying a positive charge. XPS results confirm the successful grafting of PEG on the AAMpp surfaces. The results showed that PEG patterns can be used as a surface for bacterial patterning including investigating the role of biomolecular patterning on bacterial attachment. These types of patterns are easy to fabricate and could be useful in further applications in biomedical research.

  5. In Brief: NASA's Phoenix spacecraft lands on Mars

    NASA Astrophysics Data System (ADS)

    Showstack, Randy; Kumar, Mohi

    2008-06-01

    After a 9.5-month, 679-million-kilometer flight from Florida, NASA's Phoenix spacecraft made a soft landing in Vastitas Borealis in Mars's northern polar region on 25 May. The lander, whose camera already has returned some spectacular images, is on a 3-month mission to examine the area and dig into the soil of this site-chosen for its likelihood of having frozen water near the surface-and analyze samples. In addition to a robotic arm and robotic arm camera, the lander's instruments include a surface stereo imager; thermal and evolved-gas analyzer; microscopy, electrochemistry, and conductivity analyzer; and a meteorological station that is tracking daily weather and seasonal changes.

  6. New methods for image collection and analysis in scanning Auger microscopy

    NASA Technical Reports Server (NTRS)

    Browning, R.

    1985-01-01

    While scanning Auger micrographs are used extensively for illustrating the stoichiometry of complex surfaces and for indicating areas of interest for fine point Auger spectroscopy, there are many problems in the quantification and analysis of Auger images. These problems include multiple contrast mechanisms and the lack of meaningful relationships with other Auger data. Collection of multielemental Auger images allows some new approaches to image analysis and presentation. Information about the distribution and quantity of elemental combinations at a surface are retrievable, and particular combinations of elements can be imaged, such as alloy phases. Results from the precipitate hardened alloy Al-2124 illustrate multispectral Auger imaging.

  7. Phenomenological Model Describing the Formation of Peeling Defects on Hot-Rolled Duplex Stainless Steel 2205

    NASA Astrophysics Data System (ADS)

    Yong-jun, Zhang; Hui, Zhang; Jing-tao, Han

    2017-05-01

    The chemical composition, morphology, and microstructure of peeling defects formed on the surface of sheets from steel 2205 under hot rolling are studied. The microstructure of the surface is analyzed using scanning electron and light microscopy. The zones affected are shown to contain nonmetallic inclusions of types Al2O3 and CaO - SiO2 - Al2O3 - MgO in the form of streak precipitates and to have an unfavorable content of austenite, which causes decrease in the ductility of the area. The results obtained are used to derive a five-stage phenomenological model of formation of such defects.

  8. In-situ micro bend testing of SiC and the effects of Ga+ ion damage

    NASA Astrophysics Data System (ADS)

    Robertson, S.; Doak, SS; Zhou, Z.; Wu, H.

    2017-09-01

    The Young’s modulus of 6H single crystal silicon carbide (SiC) was tested with micro cantilevers that had a range of cross-sectional dimensions with surfaces cleaned under different accelerating voltages of Ga+ beam. A clear size effect is seen with Young’s modulus decreasing as the cross-sectional area reduces. One of the possible reasons for such size effect is the Ga+ induced damage on all surfaces of the cantilever. Transmission electron microscopy (TEM) was used to analyse the degree of damage, and the measurements of damage is compared to predictions by SRIM irradiation simulation.

  9. Effect of mass density on surface morphology of electrodeposited manganese oxide films

    NASA Astrophysics Data System (ADS)

    Singh, Avtar; Kumar, Davinder; Thakur, Anup; Kaur, Raminder

    2018-05-01

    This work focus on high surface area morphology of manganese oxide films which are currently required for electrochemical capacitor electrode to enhance their performance. Electrodeposition of manganese oxide films was carried out using Chronoamperometry for different deposition time ranging from 30 to 120 sec. Cronoamperomertic I-T integrated data have been used to analyze active mass of all electrodeposited films. Morphological study of the deposited films with different mass was carried out through scanning electron microscopy. Film deposited for 30 sec time show highest porous morphology than others. Manganese oxide films with high porosity are suitable for electrochemical capacitor electrode.

  10. Maskless and low-destructive nanofabrication on quartz by friction-induced selective etching

    PubMed Central

    2013-01-01

    A low-destructive friction-induced nanofabrication method is proposed to produce three-dimensional nanostructures on a quartz surface. Without any template, nanofabrication can be achieved by low-destructive scanning on a target area and post-etching in a KOH solution. Various nanostructures, such as slopes, hierarchical stages and chessboard-like patterns, can be fabricated on the quartz surface. Although the rise of etching temperature can improve fabrication efficiency, fabrication depth is dependent only upon contact pressure and scanning cycles. With the increase of contact pressure during scanning, selective etching thickness of the scanned area increases from 0 to 2.9 nm before the yield of the quartz surface and then tends to stabilise after the appearance of a wear. Refabrication on existing nanostructures can be realised to produce deeper structures on the quartz surface. Based on Arrhenius fitting of the etching rate and transmission electron microscopy characterization of the nanostructure, fabrication mechanism could be attributed to the selective etching of the friction-induced amorphous layer on the quartz surface. As a maskless and low-destructive technique, the proposed friction-induced method will open up new possibilities for further nanofabrication. PMID:23531381

  11. An Infrared Actin Probe for Deep-Cell Electroporation-Based Single-Molecule Speckle (eSiMS) Microscopy

    PubMed Central

    Yamashiro, Sawako; Watanabe, Naoki

    2017-01-01

    Single-molecule speckle (SiMS) microscopy is a powerful method to directly elucidate biochemical reactions in live cells. However, since the signal from an individual fluorophore is extremely faint, the observation area by epi-fluorescence microscopy is restricted to the thin cell periphery to reduce autofluorescence, or only molecules near the plasma membrane are visualized by total internal reflection fluorescence (TIRF) microscopy. Here, we introduce a new actin probe labeled with near infrared (NIR) emissive CF680R dye for easy-to-use, electroporation-based SiMS microscopy (eSiMS) for deep-cell observation. CF680R-labeled actin (CF680R-actin) incorporated into actin structures and showed excellent brightness and photostability suitable for single-molecule imaging. Importantly, the intensity of autofluorescence with respect to SiMS brightness was reduced to approximately 13% compared to DyLight 550-labeled actin (DL550-actin). CF680R-actin enabled the monitoring of actin SiMS in actomyosin bundles associated with adherens junctions (AJs) located at 3.5–4 µm above the basal surfaces of epithelial monolayers. These favorable properties of CF680R-actin extend the application of eSiMS to actin turnover and flow analyses in deep cellular structures. PMID:28671584

  12. KOH-activated multi-walled carbon nanotubes as platinum supports for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    He, Chaoxiong; Song, Shuqin; Liu, Jinchao; Maragou, Vasiliki; Tsiakaras, Panagiotis

    In the present investigation, multi-walled carbon nanotubes (MWCNTs) thermally treated by KOH were adopted as the platinum supporting material for the oxygen reduction reaction electrocatalysts. FTIR and Raman spectra were used to investigate the surface state of MWCNTs treated by KOH at different temperatures (700, 800, and 900 °C) and showed MWCNTs can be successfully functionalized. The structural properties of KOH-activated MWCNTs supported Pt were determined by X-ray diffraction (XRD) and transmission electron microscopy (TEM), and their electrochemical performance was evaluated by the aid of cyclic voltammetry (CV) and rotating disk electrode (RDE) voltammetry. According to the experimental findings of the present work, the surrface of MWCNTs can be successfully functionalized with oxygen-containing groups after activation by KOH, favoring the good dispersion of Pt nanoparticles with narrow size distribution. The as-prepared Pt catalysts supported on KOH treated MWCNTs at higher temperature, possess higher electrochemical surface area and exhibit desirable activity towards oxygen reduction reaction (ORR). More precisely, it has been found that the electrochemical active area of Pt/MWCNTs-900 is approximately two times higher than that of Pt/MWCNTs. It can be concluded that KOH activation is an effective way to decorate MWCNTs' surface with oxygen-containing groups and bigger surface area, which makes them more suitable as electrocatalyst support materials.

  13. Preparation of Pd-loaded La-doped TiO2 nanotubes and investigation of their photocatalytic activity under visible light

    NASA Astrophysics Data System (ADS)

    Zong, Lanlan; Li, Qiuye; Zhang, Jiwei; Wang, Xiaodong; Yang, Jianjun

    2013-11-01

    Orthorhombic titanic acid nanotubes (TAN) have large BET surface area and small-diameter one-dimensional nanotubular morphology, so they can work as a good supporter and a precursor of TiO2. However, in our former research, we found that calcination of TAN to anatase TiO2 would destroy the nanotubular structure and decrease the BET surface area sharply. In this work, we utilized the pillar effect of the foreign nanoparticles (La2O3) to keep the nanotubular morphology of TiO2, and obtained the anatase TiO2 nanotubes with large BET surface area. For improving the photocatalytic activity, Pd nanoparticles were loaded as the electron traps on the surface of La-doped TiO2 by photo-deposition method. The photocatalysts were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, diffuse reflectance spectra, and N2 adsorption-desorption isotherms measurement. Their photocatalytic activities were evaluated by the removal of propylene under visible light irradiation ( λ ≥ 420 nm). The results showed that the photocatalytic activity of Pd-loaded La-doped TiO2 nanotubes improved effectively compared with that of La-doped TiO2 and pure TiO2.

  14. Nanoporous activated carbon derived from Lapsi (Choerospondias axillaris) seed stone for the removal of arsenic from water.

    PubMed

    Rajbhandari, Rinita; Shrestha, Lok Kumar; Pradhananga, Raja Ram

    2012-09-01

    Activated carbons were prepared from Lapsi (Choerospondias axillaris) seed stone by zinc chloride (ZnCl2) activation at three different Lapsi seed powder (LSP):ZnCl2 ratios: 1:0.5 (AC-0.5), 1:1 (AC-1), and 1:2 (AC-2). The properties of these activated carbons (ACs), including effective surface areas, pore volumes, and pore size distributions were characterized from N2 adsorption-desorption isotherms. The ACs obtained were essentially nanoporous (including both micro- and mesoporous) with effective surface area ranging from 1167 to 1328 m2/g. Fourier-transform infrared (FTIR) spectroscopy showed the presence of functional groups on the surface of ACs. Scanning electron microscopy (SEM) images showed a high pore development in the ACs. X-ray diffraction (XRD) patterns showed that, in addition to the amorphous structure, ACs contains crystalline ZnO formed during the carbonization. Presence of amorphous carbon is further confirmed by Raman scattering, where we observed only D and G bands. Iron impregnated nanoporous AC has been found to be very effective for arsenic removal from ground water; amount of arsenic is decreased from ca. 200 ppb to 10 ppb. These experimental results indicate the potential use of Lapsi seed as a precursor material for the preparation of high surface area nanoporous activated carbons.

  15. Influence of femtosecond laser produced nanostructures on biofilm growth on steel

    NASA Astrophysics Data System (ADS)

    Epperlein, Nadja; Menzel, Friederike; Schwibbert, Karin; Koter, Robert; Bonse, Jörn; Sameith, Janin; Krüger, Jörg; Toepel, Jörg

    2017-10-01

    Biofilm formation poses high risks in multiple industrial and medical settings. However, the robust nature of biofilms makes them also attractive for industrial applications where cell biocatalysts are increasingly in use. Since tailoring material properties that affect bacterial growth or its inhibition is gaining attention, here we focus on the effects of femtosecond laser produced nanostructures on bacterial adhesion. Large area periodic surface structures were generated on steel surfaces using 30-fs laser pulses at 790 nm wavelength. Two types of steel exhibiting a different corrosion resistance were used, i.e., a plain structural steel (corrodible) and a stainless steel (resistant to corrosion). Homogeneous fields of laser-induced periodic surface structures (LIPSS) were realized utilizing laser fluences close to the ablation threshold while scanning the sample under the focused laser beam in a multi-pulse regime. The nanostructures were characterized with optical and scanning electron microscopy. For each type of steel, more than ten identical samples were laser-processed. Subsequently, the samples were subjected to microbial adhesion tests. Bacteria of different shape and adhesion behavior (Escherichia coli and Staphylococcus aureus) were exposed to laser structures and to polished reference surfaces. Our results indicate that E. coli preferentially avoids adhesion to the LIPSS-covered areas, whereas S. aureus favors these areas for colonization.

  16. Rubber friction on road surfaces: Experiment and theory for low sliding speeds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lorenz, B.; Persson, B. N. J.; Oh, Y. R.

    We study rubber friction for tire tread compounds on asphalt road surfaces. The road surface topographies are measured using a stylus instrument and atomic force microscopy, and the surface roughness power spectra are calculated. The rubber viscoelastic modulus mastercurves are obtained from dynamic mechanical analysis measurements and the large-strain effective modulus is obtained from strain sweep data. The rubber friction is measured at different temperatures and sliding velocities, and is compared to the calculated data obtained using the Persson contact mechanics theory. We conclude that in addition to the viscoelastic deformations of the rubber surface by the road asperities, theremore » is an important contribution to the rubber friction from shear processes in the area of contact. The analysis shows that the latter contribution may arise from rubber molecules (or patches of rubber) undergoing bonding-stretching-debonding cycles as discussed in a classic paper by Schallamach.« less

  17. Release of titanium after insertion of dental implants with different surface characteristics – an ex vivo animal study

    PubMed Central

    Pettersson, Mattias; Pettersson, Jean; Molin Thorén, Margareta; Johansson, Anders

    2017-01-01

    Abstract In the present study, amount of titanium (Ti) released into the surrounding bone during placement of implants with different surface structure was investigated. Quantification of Ti released during insertion from three different implants was performed in this ex vivo study. Jaw bone from pigs was used as model for installation of the implants and Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) was used for analysis of the released Ti. Implant surface were examined with scanning electron microscopy (SEM), before and after the placement into the bone. Ti was abraded to the surrounding bone upon insertion of a dental implant and the surface roughness of the implant increased the amount of Ti found. Diameter and total area of the implant were of less importance for the Ti released to the bone. No visible damages to the implant surfaces could be identified in SEM after placement. PMID:29242814

  18. Unprecedented covalently attached ATRP initiator onto OH-functionalized mica surfaces.

    PubMed

    Lego, Béatrice; Skene, W G; Giasson, Suzanne

    2008-01-15

    Mica substrates were activated by a plasma method leading to OH-functionalized surfaces to which an atom transfer radical polymerization (ATRP) radical initiator was covalently bound using standard siloxane protocols. The unprecedented covalently immobilized initiator underwent radical polymerization with tert-butyl acrylate, yielding for the first time end-grafted polymer brushes that are covalently linked to mica. The initiator grafting on the mica substrate was confirmed by time-of-flight secondary ion mass spectrometry (TOF-SIMS), while the change in the water contact angle of the OH-activated mica surface was used to follow the change in surface coverage of the initiator on the surface. The polymer brush and initiator film thicknesses relative to the virgin mica were confirmed by atomic force microscopy (AFM). This was done by comparing the atomic step-height difference between a protected area of freshly cleaved mica and a zone exposed to plasma activation, initiator immobilization, and then ATRP.

  19. Spectromicroscopy measurements of surface morphology and band structure of exfoliated graphene

    NASA Astrophysics Data System (ADS)

    Knox, Kevin; Locatelli, Andrea; Cvetko, Dean; Mentes, Tevfik; Nino, Miguel; Wang, Shancai; Yilmaz, Mehmet; Kim, Philip; Osgood, Richard; Morgante, Alberto

    2011-03-01

    Monolayer-thick crystals, such as graphene, are an area of intense interest in condensed matter research. ~However, crystal deformations in these 2D systems are known to adversely affect conductivity and increase local chemical reactivity. Additionally, surface roughness in graphene complicates band-mapping and limits resolution in techniques such as angle resolved photoemission spectroscopy (ARPES), the theory of which was developed for atomically flat surfaces. Thus, an understanding of the surface morphology of graphene is essential to making high quality devices and important for interpreting ARPES results. In this talk, we will describe a non-invasive approach to examining the corrugation in exfoliated graphene using a combination of low energy electron microscopy (LEEM) and micro-spot low energy electron diffraction (LEED). We will also describe how such knowledge of surface roughness can be used in the analysis of ARPES data to improve resolution and extract useful information about the band-structure.

  20. Estimation of lattice strain in nanocrystalline RuO2 by Williamson-Hall and size-strain plot methods

    NASA Astrophysics Data System (ADS)

    Sivakami, R.; Dhanuskodi, S.; Karvembu, R.

    2016-01-01

    RuO2 nanoparticles (RuO2 NPs) have been successfully synthesized by the hydrothermal method. Structure and the particle size have been determined by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and transmission electron microscopy (TEM). UV-Vis spectra reveal that the optical band gap of RuO2 nanoparticles is red shifted from 3.95 to 3.55 eV. BET measurements show a high specific surface area (SSA) of 118-133 m2/g and pore diameter (10-25 nm) has been estimated by Barret-Joyner-Halenda (BJH) method. The crystallite size and lattice strain in the samples have been investigated by Williamson-Hall (W-H) analysis assuming uniform deformation, deformation stress and deformation energy density, and the size-strain plot method. All other relevant physical parameters including stress, strain and energy density have been calculated. The average crystallite size and the lattice strain evaluated from XRD measurements are in good agreement with the results of TEM.

  1. Splitting of a vertical multiwalled carbon nanotube carpet to a graphene nanoribbon carpet and its use in supercapacitors.

    PubMed

    Zhang, Chenguang; Peng, Zhiwei; Lin, Jian; Zhu, Yu; Ruan, Gedeng; Hwang, Chih-Chau; Lu, Wei; Hauge, Robert H; Tour, James M

    2013-06-25

    Potassium vapor was used to longitudinally split vertically aligned multiwalled carbon nanotubes carpets (VA-CNTs). The resulting structures have a carpet of partially split MWCNTs and graphene nanoribbons (GNRs). The split structures were characterized by scanning electron microscopy, transmission electron microscopy, atomic force microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. When compared to the original VA-CNTs carpet, the split VA-CNTs carpet has enhanced electrochemical performance with better specific capacitance in a supercapacitor. Furthermore, the split VA-CNTs carpet has excellent cyclability as a supercapacitor electrode material. There is a measured maximum power density of 103 kW/kg at an energy density of 5.2 Wh/kg and a maximum energy density of 9.4 Wh/kg. The superior electrochemical performances of the split VA-CNTs can be attributed to the increased surface area for ion accessibility after splitting, and the lasting conductivity of the structure with their vertical conductive paths based on the preserved GNR alignment.

  2. Nanoscale observation of local bound charges of patterned protein arrays by scanning force microscopy

    NASA Astrophysics Data System (ADS)

    Oh, Y. J.; Jo, W.; Kim, S.; Park, S.; Kim, Y. S.

    2008-09-01

    A protein patterned surface using micro-contact printing methods has been investigated by scanning force microscopy. Electrostatic force microscopy (EFM) was utilized for imaging the topography and detecting the electrical properties such as the local bound charge distribution of the patterned proteins. It was found that the patterned IgG proteins are arranged down to 1 µm, and the 90° rotation of patterned anti-IgG proteins was successfully undertaken. Through the estimation of the effective areas, it was possible to determine the local bound charges of patterned proteins which have opposite electrostatic force behaviors. Moreover, we studied the binding probability between IgG and anti-IgG in a 1 µm2 MIMIC system by topographic and electrostatic signals for applicable label-free detections. We showed that the patterned proteins can be used for immunoassay of proteins on the functional substrate, and that they can also be used for bioelectronics device application, indicating distinct advantages with regard to accuracy and a label-free detection.

  3. CMC-coated Fe3O4 nanoparticles as new MRI probes for hepatocellular carcinoma

    NASA Astrophysics Data System (ADS)

    Sitthichai, Sudarat; Pilapong, Chalermchai; Thongtem, Titipun; Thongtem, Somchai

    2015-11-01

    Pure Fe3O4 nanoparticles and Fe3O4 magnetic nanoparticles (MNPs) coated with carboxymethyl cellulose (CMC) were successfully prepared by co-precipitating of FeCl2·4H2O and FeCl3·6H2O in the solutions containing ammonia at 80 °C for 3 h. Phase, morphology, particle-sized distribution, surface chemistry, and weight loss were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM) including high-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED), thermogravimetric analysis (TGA), and Fourier transform infrared (FTIR) spectroscopy. In this research, CMC-coated Fe3O4 MNPs consisting of Fe2+ and Fe3+ ions with 543.3-mM-1 s-1 high relaxivity were detected and were able to be used for magnetic resonance imaging (MRI) application with very good contrast for targeting hepatocellular carcinoma (HCC) without any further vectorization.

  4. Surface speciation and interactions between adsorbed chloride and water on cerium dioxide

    NASA Astrophysics Data System (ADS)

    Sutherland-Harper, Sophie; Taylor, Robin; Hobbs, Jeff; Pimblott, Simon; Pattrick, Richard; Sarsfield, Mark; Denecke, Melissa; Livens, Francis; Kaltsoyannis, Nikolas; Arey, Bruce; Kovarik, Libor; Engelhard, Mark; Waters, John; Pearce, Carolyn

    2018-06-01

    Ceria particles with different specific surface areas (SSA) were contaminated with chloride and water, then heat treated at 500 and 900 °C to investigate sorption behaviour of these species on metal oxides. Results from x-ray photoelectron spectroscopy and infrared spectroscopy showed chloride and water adsorption onto particles increased with surface area and that these species were mostly removed on heat treatment (from 6.3 to 0.8 at% Cl- on high SSA and from 1.4 to 0.4 at% on low SSA particles). X-ray diffraction revealed that chloride was not incorporated into the bulk ceria structure, but crystal size increased upon contamination. Ce LIII-edge x-ray absorption spectroscopy confirmed that chloride was not present in the first co-ordination sphere around Ce(IV) ions, so was not bonded to Ce as chloride in the bulk structure. Sintering of contaminated high SSA particles occurred with heat treatment at 900 °C, and they resembled low SSA particles synthesised at this temperature. Physical chloride-particle interactions were investigated using electron microscopy and energy dispersive x-ray analysis, showing that chloride was homogeneously distributed on ceria and that reduction of porosity did not trap surface-sorbed chloride inside the particles as surface area was reduced during sintering. This has implications for stabilisation of chloride-contaminated PuO2 for long term storage.

  5. Structural characteristics of biochar-graphene nanosheet composites and their adsorption performance for phthalic acid esters

    NASA Astrophysics Data System (ADS)

    Ghaffar, Abdul; Zhu, Xiaoying; Chen, Baoliang

    2017-04-01

    The nonuniform and unhomogenous structure of biochar including defects could affect the adsorption performance of biochars. Biochar and graphene nanosheet (GNS) composites (BG) were prepared by simple dip coating method following thermal route of bamboo wood biomass at three different temperatures (300, 500, 700°C), in addition to biochars. The morphology and structural composition of biochars and BG composites were examined by scanning electron microscopy, transmission electron microscopy, Brunauer-Emmet-Teller surface area with N2 and CO2, Raman spectroscopy, Fourier Transformed Infrared spectroscopy, X-ray Photoelectron spectroscopy, Thermogravimetric analysis and CHN elemental analysis. It was found that GNS ( 1µm, 0.1% mass) provided higher thermal stability, porous structure, and relatively higher surface area (N2 and CO2), to BG composites. BG composites portrayed the existence of GNS bearing cavities and evidently increased the graphitic structure. The adsorption capabilities of biochars and BG composites towards dimethyl phthalate (DMP), diethyl phthalate (DEP), and dibutyl phthalate (DBP) as model phthalic acid esters (PAEs) were examined by batch sorption technique. The BG composites exhibited the increased adsorption capacity comparatively to biochars. The aromatic sheets of biochars and GNS on biochars dominated the π-π EDA (electron donor-acceptor) interaction for ring structure of DMP molecule in addition to pore-diffusion mechanism, whereas adsorption of DBP was attributed to hydrophobicity. Our results suggest that surface composition and morphology of biochars can be regulated with GNS and may enhance their adsorption capacity, thus could be considered for effective environmental remediation of various organic contaminants.

  6. Fabrication of MCM-41 fibers with well-ordered hexagonal mesostructure controlled in acidic and alkaline media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jafarzadeh, A.; Sohrabnezhad, Sh., E-mail: sohrabnezhad@guilan.ac.ir; Zanjanchi, M.A.

    In this paper, synthesis and characterization of two type morphologies of the MCM-41mesoporous material, nano and microfibers, were investigated by electrospinning technique. The synthesis was performed in acidic and alkaline media, separately. The MCM-41 morphologies were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray powder diffraction (XRD), and nitrogen adsorption–desorption measurement. Tetraethylorthosilicate (TEOS) and cetyltrimethylammonium bromide (CTAB) were used as silica and template sources for the synthesis of MCM-41 morphologies, respectively. The SEM results showed that MCM-41 nanofibers were spun in acidic media and microfibers of MCM-41 were produced in alkaline media. The XRD study revealed amore » long range structural ordering of mesoporous materials. The TEM results indicated rough surfaces with uniform average diameter 200 nm for nanofibers and 2 µm for microfibers. The pore diameter and surface area of calcined MCM-41 nanofibers were 2.2 nm and 970 m{sup 2}/g, respectively. For the MCM-41 microfibers, pore sizes of 2.7 nm and surface areas 420 m{sup 2}/g was measured. - Graphical abstract: Electrospinning method was used for fabricating of MCM-41 microfibers from TEOS in alkaline media (top) and MCM-41 nanofibers in acidic media (bottom). - Highlights: • Synthesis of MCM-41 nanofibers and microfibers by electrospinning technique. • MCM-41 nanofibers were synthesized in acidic media. • MCM-41 manofibers spun in alkaline media. • Electrospinning was a simple method for preparing of fibers with respect to chemical method.« less

  7. Improved solar-driven photocatalytic performance of Ag{sub 2}CO{sub 3}/(BiO){sub 2}CO{sub 3} prepared in-situ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Junbo, E-mail: junbozhong@163.com; Li, Jianzhang, E-mail: lschmanuscript@163.com; Huang, Shengtian

    Highlights: • Ag{sub 2}CO{sub 3}/(BiO){sub 2}CO{sub 3} photocatalysts were prepared in-situ. • The photo-induced charge separation rate has been greatly increased. • The photocatalytic activity has been greatly promoted. - Abstract: Ag{sub 2}CO{sub 3}/(BiO){sub 2}CO{sub 3} composites have been fabricated in-situ via a facile parallel flaw co-precipitation method. The specific surface area, structure, morphology, and the separation rate of photo-induced charge pairs of the photocatalysts were characterized by Brunauer–Emmett–Teller (BET) method, X-ray diffraction (XRD), UV–vis diffuse reflectance spectroscopy(DRS), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and surface photovoltage (SPV) spectroscopy, respectively. XRD patterns and DRS demonstrated that Ag{submore » 2}CO{sub 3} has no effect on the crystal phase and bandgap of (BiO){sub 2}CO{sub 3}. The existence of Ag{sub 2}CO{sub 3} in the composites enhances the separation rate of photo-induced charge pairs of the photocatalysts. The photocatalytic performance of Ag{sub 2}CO{sub 3}/(BiO){sub 2}CO{sub 3} was evaluated by the decolorization of methyl orange (MO) aqueous solution under simulated solar irradiation. It was found that the simulated solar-induced photocatalytic activity of Ag{sub 2}CO{sub 3}/(BiO){sub 2}CO{sub 3} copmposites was significantly improved, which was mainly attributed to the enhanced surface area and the separation rate of photo-induced charge pairs.« less

  8. Performance of magnetic zirconium-iron oxide nanoparticle in the removal of phosphate from aqueous solution

    NASA Astrophysics Data System (ADS)

    Zhang, Chang; Li, Yongqiu; Wang, Fenghua; Yu, Zhigang; Wei, Jingjing; Yang, Zhongzhu; Ma, Chi; Li, Zihao; Xu, ZiYi; Zeng, Guangming

    2017-02-01

    In this study, magnetic zirconium-iron oxide nanoparticles (MZION) of different Fe/Zr molar ratios were successfully prepared using the co-precipitation method, and their performance for phosphate removal was systematically evaluated. The as-obtained adsorbents were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Zeta potential analyzer, Fourier transform infrared spectroscopy (FT-IR) and Brunauer Emmett Teller (BET) specific surface area analysis. The effects of pH, ionic strength, and co-existing ions (including Cl-, SO42-, NO3- and HCO3-) were measured to evaluate the adsorption performance in batch experiments. The results showed that decreasing the Fe/Zr molar ratios increased the specific surface area that was propitious to adsorption process, but the adsorption capacity enhanced with the decrease of Fe/Zr molar ratios. Phosphate adsorption on MZION could be well described by the Freundlich equilibrium model and pseudo-second-order kinetics. The adsorption of phosphate was highly pH dependent and decreased with increasing pH from 1.5 to 10.0. The adsorption was slightly affected by ionic strength. With the exception of HCO3-, co-existing anions showed minimum or no effect on their adsorption performance. After adsorption, phosphate on these MZION could be easily desorbed by 0.1 M NaOH solution. The phosphate adsorption mechanism of MZION followed the inner-sphere complexing mechanism, and the surface sbnd OH groups played a significant role in the phosphate adsorption. Additionally, the main advantages of MZION consisted in its separation convenience and highly adsorption capacity compared to other adsorbents.

  9. Surface Diagnostics in Tribology Technology and Advanced Coatings Development

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1999-01-01

    This paper discusses the methodologies used for surface property measurement of thin films and coatings, lubricants, and materials in the field of tribology. Surface diagnostic techniques include scanning electron microscopy, transmission electron microscopy, atomic force microscopy, stylus profilometry, x-ray diffraction, electron diffraction, Raman spectroscopy, Rutherford backscattering, elastic recoil spectroscopy, and tribology examination. Each diagnostic technique provides specific measurement results in its own unique way. In due course it should be possible to coordinate the different pieces of information provided by these diagnostic techniques into a coherent self-consistent description of the surface properties. Examples are given on the nature and character of thin diamond films.

  10. Pinhole mediated electrical transport across LaTiO3/SrTiO3 and LaAlO3/SrTiO3 oxide hetero-structures

    NASA Astrophysics Data System (ADS)

    Kumar, Pramod; Dogra, Anjana; Toutam, Vijaykumar

    2013-11-01

    Metal-insulator-metal configuration of LaTiO3/SrTiO3 and LaAlO3/SrTiO3 hetero-structures between two dimensional electron gas formed at the interface and different area top electrodes is employed for Conductive Atomic force microscopy (CAFM) imaging, Current-Voltage (I-V), and Capacitance-Voltage (C-V) spectroscopy. Electrode area dependent I-V characteristics are observed for these oxide hetero-structures. With small area electrodes, rectifying I-V characteristics are observed, compared to, both tunneling and leakage current characteristics for large area electrodes. CAFM mapping confirmed the presence of pinholes on both surfaces. Resultant I-V characteristics have a contribution from both tunneling and leakage due to pinholes.

  11. Preparation, Characterization and Activity of a Peptide-Cellulosic Aerogel Protease Sensor from Cotton

    PubMed Central

    Edwards, J. Vincent; Fontenot, Krystal R.; Prevost, Nicolette T.; Pircher, Nicole; Liebner, Falk; Condon, Brian D.

    2016-01-01

    Nanocellulosic aerogels (NA) provide a lightweight biocompatible material with structural properties, like interconnected high porosity and specific surface area, suitable for biosensor design. We report here the preparation, characterization and activity of peptide-nanocellulose aerogels (PepNA) made from unprocessed cotton and designed with protease detection activity. Low-density cellulosic aerogels were prepared from greige cotton by employing calcium thiocyanate octahydrate/lithium chloride as a direct cellulose dissolving medium. Subsequent casting, coagulation, solvent exchange and supercritical carbon dioxide drying afforded homogeneous cellulose II aerogels of fibrous morphology. The cotton-based aerogel had a porosity of 99% largely dominated by mesopores (2–50 nm) and an internal surface of 163 m2·g−1. A fluorescent tripeptide-substrate (succinyl-alanine-proline-alanine-4-amino-7-methyl-coumarin) was tethered to NA by (1) esterification of cellulose C6 surface hydroxyl groups with glycidyl-fluorenylmethyloxycarbonyl (FMOC), (2) deprotection and (3) coupling of the immobilized glycine with the tripeptide. Characterization of the NA and PepNA included techniques, such as elemental analysis, mass spectral analysis, attenuated total reflectance infrared imaging, nitrogen adsorption, scanning electron microscopy and bioactivity studies. The degree of substitution of the peptide analog attached to the anhydroglucose units of PepNA was 0.015. The findings from mass spectral analysis and attenuated total reflectance infrared imaging indicated that the peptide substrate was immobilized on to the surface of the NA. Nitrogen adsorption revealed a high specific surface area and a highly porous system, which supports the open porous structure observed from scanning electron microscopy images. Bioactivity studies of PepNA revealed a detection sensitivity of 0.13 units/milliliter for human neutrophil elastase, a diagnostic biomarker for inflammatory diseases. The physical properties of the aerogel are suitable for interfacing with an intelligent protease sequestrant wound dressing. PMID:27792201

  12. Surface topography and ordering-variant segregation in GaInP[sub 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedman, D.J.; Zhu, J.G.; Kibbler, A.E.

    1993-09-27

    Using transmission electron diffraction dark-field imaging, atomic force microscopy (AFM), and Nomarski microscopy, we demonstrate a direct connection between surface topography and cation site ordering in GaInP[sub 2]. We study epilayers grown by organometallic vapor-phase epitaxy on GaAs substrates oriented 2[degree] off (100) towards (110). Nomarski microscopy shows that, as growth proceeds, the surface of ordered material forms faceted structures aligned roughly along [011]. A comparison with the dark-field demonstrates that the [1[bar 1]1] and [11[bar 1

  13. Atomic force microscopy and scanning electron microscopy analysis of daily disposable limbal ring contact lenses.

    PubMed

    Lorenz, Kathrine Osborn; Kakkassery, Joseph; Boree, Danielle; Pinto, David

    2014-09-01

    Limbal ring (also known as 'circle') contact lenses are becoming increasingly popular, especially in Asian markets because of their eye-enhancing effects. The pigment particles that give the eye-enhancing effects of these lenses can be found on the front or back surface of the contact lens or 'enclosed' within the lens matrix. The purpose of this research was to evaluate the pigment location and surface roughness of seven types of 'circle' contact lenses. Scanning electron microscopic (SEM) analysis was performed using a variable pressure Hitachi S3400N instrument to discern the placement of lens pigments. Atomic force microscopy (Dimension Icon AFM from Bruker Nano) was used to determine the surface roughness of the pigmented regions of the contact lenses. Atomic force microscopic analysis was performed in fluid phase under contact mode using a Sharp Nitride Lever probe (SNL-10) with a spring constant of 0.06 N/m. Root mean square (RMS) roughness values were analysed using a generalised linear mixed model with a log-normal distribution. Least square means and their corresponding 95% confidence intervals were estimated for each brand, location and pigment combination. SEM cross-sectional images at 500× and 2,000× magnification showed pigment on the surface of six of the seven lens types tested. The mean depth of pigment for 1-DAY ACUVUE DEFINE (1DAD) lenses was 8.1 μm below the surface of the lens, while the remaining lens types tested had pigment particles on the front or back surface. Results of the atomic force microscopic analysis indicated that 1DAD lenses had significantly lower root mean square roughness values in the pigmented area of the lens than the other lens types tested. SEM and AFM analysis revealed pigment on the surface of the lens for all types tested with the exception of 1DAD. Further research is required to determine if the difference in pigment location influences on-eye performance. © 2014 The Authors. Clinical and Experimental Optometry © 2014 Optometrists Association Australia.

  14. Atomic force microscopy and scanning electron microscopy analysis of daily disposable limbal ring contact lenses

    PubMed Central

    Lorenz, Kathrine Osborn; Kakkassery, Joseph; Boree, Danielle; Pinto, David

    2014-01-01

    Background Limbal ring (also known as ‘circle’) contact lenses are becoming increasingly popular, especially in Asian markets because of their eye-enhancing effects. The pigment particles that give the eye-enhancing effects of these lenses can be found on the front or back surface of the contact lens or ‘enclosed’ within the lens matrix. The purpose of this research was to evaluate the pigment location and surface roughness of seven types of ‘circle’ contact lenses. Methods Scanning electron microscopic (SEM) analysis was performed using a variable pressure Hitachi S3400N instrument to discern the placement of lens pigments. Atomic force microscopy (Dimension Icon AFM from Bruker Nano) was used to determine the surface roughness of the pigmented regions of the contact lenses. Atomic force microscopic analysis was performed in fluid phase under contact mode using a Sharp Nitride Lever probe (SNL-10) with a spring constant of 0.06 N/m. Root mean square (RMS) roughness values were analysed using a generalised linear mixed model with a log-normal distribution. Least square means and their corresponding 95% confidence intervals were estimated for each brand, location and pigment combination. Results SEM cross-sectional images at 500× and 2,000× magnification showed pigment on the surface of six of the seven lens types tested. The mean depth of pigment for 1-DAY ACUVUE DEFINE (1DAD) lenses was 8.1 μm below the surface of the lens, while the remaining lens types tested had pigment particles on the front or back surface. Results of the atomic force microscopic analysis indicated that 1DAD lenses had significantly lower root mean square roughness values in the pigmented area of the lens than the other lens types tested. Conclusions SEM and AFM analysis revealed pigment on the surface of the lens for all types tested with the exception of 1DAD. Further research is required to determine if the difference in pigment location influences on-eye performance. PMID:24689948

  15. Effect of the tip state during qPlus noncontact atomic force microscopy of Si(100) at 5 K: Probing the probe

    PubMed Central

    Jarvis, Sam; Danza, Rosanna; Moriarty, Philip

    2012-01-01

    Summary Background: Noncontact atomic force microscopy (NC-AFM) now regularly produces atomic-resolution images on a wide range of surfaces, and has demonstrated the capability for atomic manipulation solely using chemical forces. Nonetheless, the role of the tip apex in both imaging and manipulation remains poorly understood and is an active area of research both experimentally and theoretically. Recent work employing specially functionalised tips has provided additional impetus to elucidating the role of the tip apex in the observed contrast. Results: We present an analysis of the influence of the tip apex during imaging of the Si(100) substrate in ultra-high vacuum (UHV) at 5 K using a qPlus sensor for noncontact atomic force microscopy (NC-AFM). Data demonstrating stable imaging with a range of tip apexes, each with a characteristic imaging signature, have been acquired. By imaging at close to zero applied bias we eliminate the influence of tunnel current on the force between tip and surface, and also the tunnel-current-induced excitation of silicon dimers, which is a key issue in scanning probe studies of Si(100). Conclusion: A wide range of novel imaging mechanisms are demonstrated on the Si(100) surface, which can only be explained by variations in the precise structural configuration at the apex of the tip. Such images provide a valuable resource for theoreticians working on the development of realistic tip structures for NC-AFM simulations. Force spectroscopy measurements show that the tip termination critically affects both the short-range force and dissipated energy. PMID:22428093

  16. Effect of glycyrrhetinic acid on lipid raft model at the air/water interface.

    PubMed

    Sakamoto, Seiichi; Uto, Takuhiro; Shoyama, Yukihiro

    2015-02-01

    To investigate an interfacial behavior of the aglycon of glycyrrhizin (GC), glycyrrhetinic acid (GA), with a lipid raft model consisting of equimolar ternary mixtures of N-palmitoyl sphingomyelin (PSM), dioleoylphosphatidylcholine (DOPC), and cholesterol (CHOL), Langmuir monolayer techniques were systematically conducted. Surface pressure (π)-molecular area (A) and surface potential (ΔV)-A isotherms showed that the adsorbed GA at the air/water interface was desorbed into the bulk upon compression of the lipid monolayer. In situ morphological analysis by Brewster angle microscopy and fluorescence microscopy revealed that the raft domains became smaller as the concentrations of GA in the subphase (CGA) increased, suggesting that GA promotes the formation of fluid networks related to various cellular processes via lipid rafts. In addition, ex situ morphological analysis by atomic force microscopy revealed that GA interacts with lipid raft by lying down at the surface. Interestingly, the distinctive striped regions were formed at CGA=5.0 μM. This phenomenon was observed to be induced by the interaction of CHOL with adsorbed GA and is involved in the membrane-disrupting activity of saponin and its aglycon. A quantitative comparison of GA with GC (Sakamoto et al., 2013) revealed that GA interacts more strongly with the raft model than GC in the monolayer state. Various biological activities of GA are known to be stronger than those of GC. This fact allows us to hypothesize that differences in the interactions of GA/GC with the model monolayer correlate to their degree of exertion for numerous activities. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Improving the Thermodynamic Stability of Aluminate Spinel Nanoparticles with Rare Earths

    DOE PAGES

    Hasan, M. M.; Dey, Sanchita; Nafsin, Nazia; ...

    2016-06-29

    Surface energy is a key parameter to understand and predict the stability of catalysts. In this work, the surface energy of MgAl 2O 4, an important base material for catalyst support, was reduced by using dopants prone to form surface excess (surface segregation): Y 3+, Gd 3+, and La 3+. The energy reduction was predicted by atomistic simulations of spinel surfaces and experimentally demonstrated by using microcalorimetry. The surface energy of undoped MgAl 2O 4 was directly measured as 1.65 ± 0.04 J/m 2 and was reduced by adding 2 mol % of the dopants to 1.55 ± 0.04 J/mmore » 2 for Y-doping, 1.45 ± 0.05 J/m 2 for Gd-doping, and 1.26 ± 0.06 J/m 2 for La-doping. Atomistic simulations are qualitatively consistent with the experiments, reinforcing the link between the role of dopants in stabilizing the surface and the energy of segregation. Surface segregation was experimentally assessed using electron energy loss spectroscopy mapping in a scanning transmission electron microscopy image. Finally, the reduced energy resulted in coarsening inhibition for the doped samples and, hence, systematically smaller particle sizes (larger surface areas), meaning increased stability for catalytic applications. Moreover, both experiment and modeling reveal preferential dopant segregation to specific surfaces, which leads to the preponderance of {111} surface planes and suggests a strategy to enhance the area of desired surfaces in nanoparticles for better catalyst support activity.« less

  18. Structure of late summer phytoplankton community in the Firth of Lorn (Scotland) using microscopy and HPLC-CHEMTAX

    NASA Astrophysics Data System (ADS)

    Brito, Ana C.; Sá, Carolina; Mendes, Carlos R.; Brand, Tim; Dias, Ana M.; Brotas, Vanda; Davidson, Keith

    2015-12-01

    The Firth of Lorn is at the mouth of one of Scotland's largest fjordic sea lochs, Loch Linnhe. This sea loch, which is fed by a number of other inner lochs, supplies a significant flow of freshwater, which frequently causes the stratification of the water column. To investigate how environmental conditions influence the spatial distribution of phytoplankton in this region water samples were collected for phytoplankton (pigments and microscopy), and other environmental variables including nutrients. Chemotaxonomy was used to estimate the contribution of different taxonomic groups to total chlorophyll a (phytoplankton biomass index). Good agreement was obtained between chemotaxonomy and microscopy data. The highest levels of chlorophyll a (˜2.6 mg m-3) were found in the vicinity of Oban Bay, where cryptophytes, the most abundant group, dinoflagellates and other flagellates thrived in the stratified water column. Centric diatoms, mainly Chaetoceros sp. and Skeletonema costatum, were associated with NH4 and SiO2 concentrations and stratification, while pennate diatoms, mainly Cylindrotheca sp. and Nitzchia sp., were found to be associated with NO3 + NO2 and high surface mixed layer depths. Four diatom groups were identified in accordance to their surface to volume ratios, as well as their affinity to environmental parameters (nutrients) and turbulence. This study used a combination of physico-chemical data, classical microscopy methods (appropriate for large cells > 20 μm) and HPLC-CHEMTAX approaches (for large and small cells) to evaluate the distribution of phytoplankton functional groups in a fjordic coastal area.

  19. Molecular Rotors

    DTIC Science & Technology

    2006-10-31

    microwave signal processing components, and micro-fluidic devices. The projected involved the preparation, surface mounting, and characterization of...Guisinger, R. Basu, and M. C. Hersam, “Atomic-level characterization and control of free radical surface chemistry using scanning tunneling microscopy...Basu, and M. C. Hersam, “Atomic level characterization and control of organosilicon surface chemistry using scanning tunneling microscopy,” presented

  20. Nanoscale electrical property studies of individual GeSi quantum rings by conductive scanning probe microscopy.

    PubMed

    Lv, Yi; Cui, Jian; Jiang, Zuimin M; Yang, Xinju

    2012-11-29

    The nanoscale electrical properties of individual self-assembled GeSi quantum rings (QRs) were studied by scanning probe microscopy-based techniques. The surface potential distributions of individual GeSi QRs are obtained by scanning Kelvin microscopy (SKM). Ring-shaped work function distributions are observed, presenting that the QRs' rim has a larger work function than the QRs' central hole. By combining the SKM results with those obtained by conductive atomic force microscopy and scanning capacitance microscopy, the correlations between the surface potential, conductance, and carrier density distributions are revealed, and a possible interpretation for the QRs' conductance distributions is suggested.

  1. N and Cr ion implantation of natural ruby surfaces and their characterization

    NASA Astrophysics Data System (ADS)

    Rao, K. Sudheendra; Sahoo, Rakesh K.; Dash, Tapan; Magudapathy, P.; Panigrahi, B. K.; Nayak, B. B.; Mishra, B. K.

    2016-04-01

    Energetic ions of N and Cr were used to implant the surfaces of natural rubies (low aesthetic quality). Surface colours of the specimens were found to change after ion implantation. The samples without and with ion implantation were characterized by diffuse reflectance spectra in ultra violet and visible region (DRS-UV-Vis), field emission scanning electron microscopy (FESEM), selected area electron diffraction (SAED) and nano-indentation. While the Cr-ion implantation produced deep red surface colour (pigeon eye red) in polished raw sample (without heat treatment), the N-ion implantation produced a mixed tone of dark blue, greenish blue and violet surface colour in the heat treated sample. In the case of heat treated sample at 3 × 1017 N-ions/cm2 fluence, formation of colour centres (F+, F2, F2+ and F22+) by ion implantation process is attributed to explain the development of the modified surface colours. Certain degree of surface amorphization was observed to be associated with the above N-ion implantation.

  2. Topography and surface energy dependent calcium phosphate formation on Sol-Gel derived TiO2 coatings.

    PubMed

    Järn, Mikael; Areva, Sami; Pore, Viljami; Peltonen, Jouko; Linden, Mika

    2006-09-12

    Heterogeneous nucleation and growth of calcium phosphate (CaP) on sol-gel derived TiO(2) coatings was investigated in terms of surface topography and surface energy. The topography of the coatings was derived from AFM measurements, while the surface energy was determined with contact angle measurements. The degree of precipitation was examined with scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The precipitation of CaP was found to be dependent on both topography and surface energy. A high roughness value when combining the RMS roughness parameter S(q) with the number of local maxima per unit area parameter S(ds) enhances CaP formation. The hydrophilicity of the coating was also found to be of importance for CaP formation. We suggest that the water contact angle, which is a direct measure of the hydrophilicity of the surface, may be used to evaluate the surface energy dependent precipitation kinetics rather than using the often applied Lewis base parameter.

  3. Study of reticulated vitreous carbon surface treated by plasma immersion ion implantation for electrodes production

    NASA Astrophysics Data System (ADS)

    Silva, L. L. G.; Conceição, D. A. S.; Oishi, S. S.; Toth, A.; Ueda, M.

    2012-03-01

    RVC samples were treated by nitrogen plasma immersion ion implantation (N-PIII) for electrodes production. High-voltage pulses with amplitudes of -3.0 kV or -10.0 kV were applied to the RVC samples while the treatment time was 10, 20 and 30 min. The samples were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and electrochemical measurements. The SEM images present an apparent enhancement of the surface roughness after the treatment probably due to the surface sputtering during the PIII process. This observation is in agreement with the specific electrochemical surface area (SESA) of RVC electrodes. An increase was observed of the SESA values for the PIII-treated samples compared to the untreated specimen. Some oxygen and nitrogen containing groups were introduced on the RVC surface after the PIII treatment. Both plasma-induced process: the surface roughening and the introduction of the polar species on the RVC surface are beneficial for the RVC electrodes application.

  4. Pulmonary Surfactant Model Systems Catch the Specific Interaction of an Amphiphilic Peptide with Anionic Phospholipid

    PubMed Central

    Nakahara, Hiromichi; Lee, Sannamu; Shibata, Osamu

    2009-01-01

    Interfacial behavior was studied in pulmonary surfactant model systems containing an amphiphilic α-helical peptide (Hel 13-5), which consists of 13 hydrophobic and five hydrophilic amino acid residues. Fully saturated phospholipids of dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylglycerol (DPPG) were utilized to understand specific interactions between anionic DPPG and cationic Hel 13-5 for pulmonary functions. Surface pressure (π)-molecular area (A) and surface potential (ΔV)-A isotherms of DPPG/Hel 13-5 and DPPC/DPPG (4:1, mol/mol)/Hel 13-5 preparations were measured to obtain basic information on the phase behavior under compression and expansion processes. The interaction leads to a variation in squeeze-out surface pressures against a mole fraction of Hel 13-5, where Hel 13-5 is eliminated from the surface on compression. The phase behavior was visualized by means of Brewster angle microscopy, fluorescence microscopy, and atomic force microscopy. At low surface pressures, the formation of differently ordered domains in size and shape is induced by electrostatic interactions. The domains independently grow upon compression to high surface pressures, especially in the DPPG/Hel 13-5 system. Under the further compression process, protrusion masses are formed in AFM images in the vicinity of squeeze-out pressures. The protrusion masses, which are attributed to the squeezed-out Hel 13-5, grow larger in lateral size with increasing DPPG content in phospholipid compositions. During subsequent expansion up to 35 mN m−1, the protrusions retain their height and lateral diameter for the DPPG/Hel 13-5 system, whereas the protrusions become smaller for the DPPC/Hel 13-5 and DPPC/DPPG/Hel 13-5 systems due to a reentrance of the ejected Hel 13-5 into the surface. In this work we detected for the first time, to our knowledge, a remarkably large hysteresis loop for cyclic ΔV-A isotherms of the binary DPPG/Hel 13-5 preparation. This exciting phenomenon suggests that the specific interaction triggers two completely independent processes for Hel 13-5 during repeated compression and expansion: 1), squeezing-out into the subsolution; and 2), and close packing as a monolayer with DPPG at the interface. These characteristic processes are also strongly supported by atomic force microscopy observations. The data presented here provide complementary information on the mechanism and importance of the specific interaction between the phosphatidylglycerol headgroup and the polarized moiety of native surfactant protein B for biophysical functions of pulmonary surfactants. PMID:19217859

  5. Investigation of wear phenomena by microscopy

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1982-01-01

    The various wear mechanisms involved in the loss of material from metallic and nonmetallic surfaces are discussed. The results presented indicate how various microscopy techniques used in conjunction with other analytical tools can assist in the elucidation of a wear mechanism. Without question, microscopy is the single most important tool for the study of the wear of surfaces, to assess and address inherent mechanisms of the material removal process.

  6. Nanoscale surface characterization using laser interference microscopy

    NASA Astrophysics Data System (ADS)

    Ignatyev, Pavel S.; Skrynnik, Andrey A.; Melnik, Yury A.

    2018-03-01

    Nanoscale surface characterization is one of the most significant parts of modern materials development and application. The modern microscopes are expensive and complicated tools, and its use for industrial tasks is limited due to laborious sample preparation, measurement procedures, and low operation speed. The laser modulation interference microscopy method (MIM) for real-time quantitative and qualitative analysis of glass, metals, ceramics, and various coatings has a spatial resolution of 0.1 nm for vertical and up to 100 nm for lateral. It is proposed as an alternative to traditional scanning electron microscopy (SEM) and atomic force microscopy (AFM) methods. It is demonstrated that in the cases of roughness metrology for super smooth (Ra >1 nm) surfaces the application of a laser interference microscopy techniques is more optimal than conventional SEM and AFM. The comparison of semiconductor test structure for lateral dimensions measurements obtained with SEM and AFM and white light interferometer also demonstrates the advantages of MIM technique.

  7. Synthesis and characterization of Co3O4 prepared from atmospheric pressure acid leach liquors of nickel laterite ores

    NASA Astrophysics Data System (ADS)

    Meng, Long; Guo, Zhan-cheng; Qu, Jing-kui; Qi, Tao; Guo, Qiang; Hou, Gui-hua; Dong, Peng-yu; Xi, Xin-guo

    2018-01-01

    A chemical precipitation-thermal decomposition method was developed to synthesize Co3O4 nanoparticles using cobalt liquor obtained from the atmospheric pressure acid leaching process of nickel laterite ores. The effects of the precursor reaction temperature, the concentration of Co2+, and the calcination temperature on the specific surface area, morphology, and the electrochemical behavior of the obtained Co3O4 particles were investigated. The precursor basic cobaltous carbonate and cobaltosic oxide products were characterized and analyzed by Fourier transform infrared spectroscopy, thermogravimetric differential thermal analysis, X-ray diffraction, field-emission scanning electron microscopy, specific surface area analysis, and electrochemical analysis. The results indicate that the specific surface area of the Co3O4 particles with a diameter of 30 nm, which were obtained under the optimum conditions of a precursor reaction temperature of 30°C, 0.25 mol/L Co2+, and a calcination temperature of 350°C, was 48.89 m2/g. Electrodes fabricated using Co3O4 nanoparticles exhibited good electrochemical properties, with a specific capacitance of 216.3 F/g at a scan rate of 100 mV/s.

  8. SnO2 Nanostructures: Effect of Processing Parameters on Their Structural and Functional Properties

    NASA Astrophysics Data System (ADS)

    Dontsova, Tetiana A.; Nagirnyak, Svitlana V.; Zhorov, Vladyslav V.; Yasiievych, Yuriy V.

    2017-05-01

    Zero- and 1D (one-dimensional) tin (IV) oxide nanostructures have been synthesized by thermal evaporation method, and a comparison of their morphology, crystal structure, sorption properties, specific surface area, as well as electrical characteristics has been performed. Synthesized SnO2 nanomaterials were studied by X-ray diffraction, scanning and transmission electron microscopy (SEM and TEM), N2 sorption/desorption technique, IR spectroscopy and, in addition, their current-voltage characteristics have also been measured. The single crystalline structures were obtained both in case of 0D (zero-dimensional) SnO2 powders and in case of 0D nanofibers, as confirmed by electron diffraction of TEM. It was found that SnO2 synthesis parameters significantly affect materials' properties by contributing to the difference in morphology, texture formation, changes in IR spectra of 1D structure as compared to 0D powders, increases in the specific surface area of nanofibers, and the alteration of current-voltage characteristics 0D and 1D SnO2 nanostructures. It was established that gas sensors utilizing of 1D nanofibers significantly outperform those based on 0D powders by providing higher specific surface area and ohmic I-V characteristics.

  9. Amorphous layer formation in Al86.0Co7.6Ce6.4 glass-forming alloy by large-area electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Li, C. L.; Murray, J. W.; Voisey, K. T.; Clare, A. T.; McCartney, D. G.

    2013-09-01

    Amorphous Al-Co-Ce alloys are of interest because of their resistance to corrosion, but high cooling rates are generally required to suppress the formation of crystalline phases. In this study, the surface of a bulk crystalline Al-Co-Ce alloy of a glass-forming composition was treated using large area electron beam (LAEB) irradiation. Scanning electron microscopy shows that, compared to the microstructure of the original crystalline material, the treated surface exhibits greatly improved microstructural and compositional uniformity. Glancing angle X-ray diffraction conducted on the surface of treated samples indicates the formation of the amorphous phase following 25 and 50 pulses at 35 kV cathode voltage. However, when the samples are treated with 100 and 150 pulses at 35 kV cathode voltage of electron beam irradiation, the treated layer comprises localised crystalline regions in an amorphous matrix. In addition, the formation of cracks in the treated layer is found to be localised around the Al8Co2Ce phase in the bulk material. Overall, crack length per unit area had no clear change with an increase in the number of pulses.

  10. Enhanced alveolar growth and remodeling in Guinea pigs raised at high altitude.

    PubMed

    Hsia, Connie C W; Carbayo, Juan J Polo; Yan, Xiao; Bellotto, Dennis J

    2005-05-12

    To examine the effects of chronic high altitude (HA) exposure on lung structure during somatic maturation, we raised male weanling guinea pigs at HA (3800m) for 1, 3, or 6 months, while their respective male littermates were simultaneously raised at low altitude (LA, 1200m). Under anaesthesia, airway pressure was measured at different lung volumes. The right lung was fixed at a constant airway pressure for morphometric analysis under light and electron microscopy. In animals raised at HA for 1 month, lung volume, alveolar surface area and alveolar-capillary blood volume (V(c)) were elevated above LA control values. Following 3-6 months of HA exposure, increases in lung volume and alveolar surface area persisted while the initial increase in V(c) normalized. Additional adaptation occurred, including a higher epithelial cell volume, septal tissue volume and capillary surface area, a lower alveolar duct volume and lower harmonic mean diffusion barrier resulting in higher membrane and lung diffusing capacities. These data demonstrate enhanced alveolar septal growth and progressive acinar remodeling during chronic HA exposure with long-term augmentation of alveolar dimensions as well as functional compensation in lung compliance and diffusive gas transport.

  11. Formation of continuous activated carbon fibers for barrier fabrics

    NASA Astrophysics Data System (ADS)

    Liang, Ying

    1997-08-01

    Commercial protective suits made of active carbon granules or nonwoven fabrics are heavy, have low moisture vapor transport rate, and are uncomfortable. Inherent problems due to construction of barrier fabrics lead to severe heat stress when worn for even short time in warm environments. One proposed method to eliminate these problems is to facilitate the construction of a fabric made of continuous activated carbon fibers (CACF). This study is directed toward investigating the possibility of developing CAFC from two precursors: aramid and fibrillated PAN fiber. It was shown in this study that Kevlar-29 fibers could be quickly carbonized and activated to CACF with high adsorptivity and relatively low weight loss. CACF with high surface area (>500 msp2/g) and reasonable tenacity (≈1g/denier) were successfully prepared from Kevlar fibers through a three-step process: pretreatment, carbonization, and activation. X-ray diffraction, Fourier Transform Infrared Spectroscopy (FTIR), and thermal analysis were conducted to understand the evolution of physical and chemical properties during pretreatment. The influence of temperature, heating rate, and pyrolysis environment on the thermal behavior was determined by DSC and TGA/DTA and used as an indicator for optimizing the pyrolysis conditions. Surface analysis by nitrogen isotherms indicated that the resultant fibers had micropores and mesopores on the surface of CACF. This was also inferred by studies on the surface morphology through Scanning Electron Microscopy (SEM) and Scanning Tunneling Microscopy (STM). An investigation of the surface chemical structure by X-ray photoelectron spectroscopy (XPS) before and after activation and elemental analysis confirmed that adsorption of Kevlar based CACF mainly arises due to the physisorption instead of chemisorption. A multistep stabilization along with carbonization and activation was used to prepare active carbon fiber from fibrillated PAN fiber. The resultant fiber retained its fibrillar structure and provided a very high surface area, up to 1400 msp2/g, but was brittle. The characterization of the thermal behavior, mechanical properties, and surface structure of the pyrolyzed fiber at each processing step was also carried out by using various techniques, such as DSC and TGA, Instron, and SEM. These studies provide directions for preparation of CACF from novel precursors.

  12. Oriented and ordered mesoporous ZrO{sub 2}/TiO{sub 2} fibers with well-organized linear and spring structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Luyi, E-mail: zhuly@sdu.edu.cn; Liu, Benxue; Qin, Weiwei, E-mail: jiuyuan.1001@163.com

    Graphical abstract: The ultra-stable order mesoporous ZrO{sub 2}/TiO{sub 2} fibers with well-organized linear and spring structure and large surface area under higher temperatures were prepared by a simple EISA process. - Highlights: • The ZrO{sub 2}/TiO{sub 2} fibers were prepared by EISA process combined with steam heat-treatment. • The mesoporous ZrO{sub 2}/TiO{sub 2} fibers have well-organized linear and spring structure. • The fibers were composed of oval rod nanocrystals of ZrTiO{sub 4}. - Abstract: The ultra-stable order mesoporous ZrO{sub 2}/TiO{sub 2} fibers with well-organized linear and spring structure and large surface areas under higher temperatures were prepared by a (simplemore » evaporation-induced assembly) EISA process. The preparation, microstructures and formation processes were characterized by Fourier transformation infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and N{sub 2} adsorption–absorption measurements. The fibers take on pinstripe configuration which is very orderly along or perpendicular to the axial direction of the fibers. The diameters of the pinstripe are in the region of 200–400 nm and arranges regularly, which are composed of oval rod nanocrystals of ZrTiO{sub 4}.« less

  13. Facile synthesis of titania nanoparticles coated carbon nanotubes for selective enrichment of phosphopeptides for mass spectrometry analysis.

    PubMed

    Yan, Yinghua; Lu, Jin; Deng, Chunhui; Zhang, Xiangmin

    2013-03-30

    In this work, titania nanoparticles coated carbon nanotubes (denoted as CNTs/TiO2 composites) were synthesized through a facile but effective solvothermal reaction using titanium isopropoxide as the titania source, isopropyl alcohol as the solvent and as the basic catalyst in the presence of hydrophilic carbon nanotubes. Characterizations using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) indicate that the CNTs/TiO2 composites consist of CNT core and a rough outer layer formed by titania nanoparticles (5-10nm). Measurements using wide angle X-ray diffraction (WAXRD), zeta potential and N2 sorption reveal that the titania shell is formed by anatase titania nanoparticles, and the composites have a high specific surface area of about 104 m(2)/g. By using their high surface area and affinity to phosphopeptides, the CNTs/TiO2 composites were applied to selectively enrich phosphopeptides for mass spectrometry analysis. The high selectivity and capacity of the CNTs/TiO2 composites have been demonstrated by effective enrichment of phosphopeptides from digests of phosphoprotein, protein mixtures of β-casein and bovine serum albumin, human serum and rat brain samples. These results foresee a promising application of the novel CNTs/TiO2 composites in the selective enrichment of phosphopeptides. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Photocatalytic activity enhancement of anatase-graphene nanocomposite for methylene removal: Degradation and kinetics.

    PubMed

    Rezaei, Mostafa; Salem, Shiva

    2016-10-05

    In the present research, the TiO2-graphene nanocomposite was synthesized by an eco-friendly method. The blackberry juice was introduced to graphene oxide (GO) as a reducing agent to produce the graphene nano-sheets. The nanocomposite of anatase-graphene was developed as a photocatalyst for the degradation of methylene blue, owing to the larger specific surface area and synergistic effect of reduced graphene oxide (RGO). The UV spectroscopy measurements showed that the prepared nanocomposite exhibited an excellent photocatalytic activity toward the methylene blue degradation. The rate of electron transfer of redox sheets is much higher than that observed on GO, indicating the applicability of proposed method for the production of anatase-RGO nanocomposite for treatment of water contaminated by cationic dye. The prepared materials were characterized with Fourier transform infrared spectroscopy, X-ray diffraction, Brunauer-Emmett-Teller surface area measurement, scanning electron microscopy and transmission electron microscopy. A facile and rapid route was applied for the uniform deposition of anatase nanoparticles on the sheets. The resulting nanocomposite contained nanoparticles with a mean diameter of 10nm. A mechanism for the photocatalytic activity of nanocomposite was suggested and the degradation reaction obeyed the second-order kinetics. It was concluded that the degradation kinetics is changed due to the reduction of GO in the presence of blackberry juice. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Synthesis of cobalt ferrite nanoparticles from thermolysis of prospective metal-nitrosonaphthol complexes and their photochemical application in removing methylene blue

    NASA Astrophysics Data System (ADS)

    Tavana, Jalal; Edrisi, Mohammad

    2016-03-01

    In this study, cobalt ferrite (CoFe2O4) nanoparticles were synthesized by two novel methods. The first method is based on the thermolysis of metal-NN complexes. In the second method, a template free sonochemical treatment of mixed cobalt and iron chelates of α-nitroso-β-naphthol (NN) was applied. Products prepared through method 1 were spherical, with high specific surface area (54.39 m2 g-1) and small average crystalline size of 13 nm. However, CoFe2O4 nanoparticles prepared by method 2 were in random shapes, a broad range of crystalline sizes and a low specific surface area of 25.46 m2 g-1 though highly pure. A Taguchi experimental design was implemented in method 1 to determine and obtain the optimum catalyst. The structural and morphological properties of products were investigated by x-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, Fourier transform infrared, Brunauer-Emmett-Teller and dynamic laser light scattering. The crystalline size calculations were performed using Williamson-Hall method on XRD spectrum. The photocatalytic activity of the optimum nanocrystalline cobalt ferrite was investigated for degradation of a representative pollutant, methylene blue (MB), and visible light as energy source. The results showed that some 92% degradation of MB could be achieved for 7 h of visible light irradiation.

  16. Non-destructive characterization of oriental porcelain glazes and blue underglaze pigments using μ-EDXRF, μ-Raman and VP-SEM

    NASA Astrophysics Data System (ADS)

    Coutinho, M. L.; Muralha, V. S. F.; Mirão, J.; Veiga, J. P.

    2014-03-01

    The study of ancient materials with recognized cultural and economic value is a challenge to scientists and conservators, since it is usually necessary an approach through non-destructive techniques. Difficulties in establishing a correct analytical strategy are often significantly increased by the lack of knowledge on manufacture technologies and raw materials employed combined with the diversity of decay processes that may have acted during the lifetime of the cultural artefacts. A non-destructive characterization was performed on the glaze and underglaze pigments from a group of Chinese porcelain shards dated from the late Ming Dynasty (1368-1644) excavated at the Monastery of Santa Clara- a- Velha in Coimbra (Portugal). Chemical analysis was performed using micro-energy dispersive X-ray fluorescence spectrometry (μ-EDXRF). Mineralogical characterization was achieved by Raman microscopy (μ-Raman) and observation of small-surface crystallization dark spots with a metallic lustre in areas with high pigment concentration was done by variable pressure scanning electron microscopy (VP-SEM). Cobalt aluminate was identified as the blue underglaze pigment and a comparison of blue and dark blue pigments was performed by the ratio of Co, Mn, and Fe oxides, indicating a compositional difference between the two blue tonalities. Manganese oxide compounds were also identified as colouring agents in dark blue areas and surface migration of manganese compounds was verified.

  17. Enhanced electrochemical capacitance and oil-absorbability of N-doped graphene aerogel by using amino-functionalized silica as template and doping agent

    NASA Astrophysics Data System (ADS)

    Du, Yongxu; Liu, Libin; Xiang, Yu; Zhang, Qiang

    2018-03-01

    The development of novel energy storage devices with high power density and energy density is highly desired. However, as a promising material, the strong π-π interaction of graphene inhibits its applications. Herein, we provide a new approach that amino-functionalized silica are used as both templates to prevent the restacking of the graphene sheets and doping agents simultaneously. The microstructures, porous properties and chemical composition of the resulted N-doped reduced graphene oxide (RGO) aerogels, characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Raman, X-ray photoelectron spectroscopy and Brunauer-Emmett-Teller measurement, indicate that the amount of SiO2-NH2 has profound effects on the surface area and carbon activity of the graphene sheets. Benefiting from the large specific surface area of 481.8 m2 g-1, low series resistances and high nitrogen doping content (4.4 atom%), the as-fabricated 3D hierarchical porous N-doped RGO aerogel electrode exhibits outstanding electrochemical performance in aqueous and organic electrolyte, such as ultrahigh specific capacitances of 350 F g-1 at a current density of 1 A g-1 and excellent reversibility with a cycling efficiency of 88% after 10000 cycles. In addition, the N-doped RGO aerogels possess high oil-absorbability with long recyclability.

  18. Degradation and Mineralization of Benzohydroxamic Acid by Synthesized Mesoporous La/TiO2

    PubMed Central

    Luo, Xianping; Wang, Junyu; Wang, Chunying; Zhu, Sipin; Li, Zhihui; Tang, Xuekun; Wu, Min

    2016-01-01

    Rare earth element La-doped TiO2 (La/TiO2) was synthesized by the sol-gel method. Benzohydroxamic acid was used as the objective pollutant to investigate the photocatalytic activity of La/TiO2. The physicochemical properties of the prepared materials were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, UV-vis diffuse reflectance spectroscopy, specific surface area and porosity, scanning electron microscopy and transmission electron microscopy. As a result, the doping of La could inhibit the crystal growth of TiO2, increase its specific surface area and expand its response to visible light, thus improving its photocatalytic activity. La/TiO2 with the doping ratio of 0.75% calcined at 500 °C, showing the highest photocatalytic activity to degrade benzohydroxamic acid under the irradiation of 300 W mercury lamp. About 94.1% of benzohydroxamic acid with the original concentration at 30 mg·L−1 was removed after 120 min in a solution of pH 4.4 with an La/TiO2 amount of 0.5 g·L−1. Furthermore, 88.5% of the total organic carbon was eliminated after 120 min irradiation. In addition, after four recycling runs, La/TiO2 still kept high photocatalytic activity on the photodegradation of benzohydroxamic acid. The interfacial charge transfer processes were also hypothesized. PMID:27735877

  19. Charge retention behavior of preferentially oriented and textured Bi3.25La0.75Ti3O12 thin films by electrostatic force microscopy

    NASA Astrophysics Data System (ADS)

    Kim, T. Y.; Lee, J. H.; Oh, Y. J.; Choi, M. R.; Jo, W.

    2007-02-01

    The authors report charge retention in preferentially (117) oriented and textured c-axis oriented ferroelectric Bi3.25La0.75Ti3O12 thin films by electrostatic force microscopy. Surface charges of the films were observed as a function of time in a selected area which consists of a single-poled region and a reverse-poled region. The highly (117) oriented film shows the extended exponential decay with characteristic scaling exponents, n =1.5-1.6. The preferentially c-axis oriented film shows a remarkable retained behavior regardless of the poling. Decay and retention mechanisms of the regions are explained by space-charge redistribution and trapping of defects in the films.

  20. Atmospheric pressure chemical vapor deposition: an alternative route to large-scale MoS2 and WS2 inorganic fullerene-like nanostructures and nanoflowers.

    PubMed

    Li, Xiao-Lin; Ge, Jian-Ping; Li, Ya-Dong

    2004-11-19

    Large-scale MoS2 and WS2 inorganic fullerene-like (IF) nanostructures (onionlike nanoparticles, nanotubes) and elegant three-dimensional nanoflowers (NF) have been selectively prepared through an atmospheric pressure chemical vapor deposition (APCVD) process with the reaction of chlorides and sulfur. The morphologies were controlled by adjusting the deposition position, the deposition temperature, and the flux of the carrier gas. All of the nanostructures have been characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). A reaction mechanism is proposed based on the experimental results. The surface area of MoS2 IF nanoparticles and the field-emission effect of as-prepared WS2 nanoflowers is reported.

  1. Glancing angle deposition of sculptured thin metal films at room temperature

    NASA Astrophysics Data System (ADS)

    Liedtke, S.; Grüner, Ch; Lotnyk, A.; Rauschenbach, B.

    2017-09-01

    Metallic thin films consisting of separated nanostructures are fabricated by evaporative glancing angle deposition at room temperature. The columnar microstructure of the Ti and Cr columns is investigated by high resolution transmission electron microscopy and selective area electron diffraction. The morphology of the sculptured metallic films is studied by scanning electron microscopy. It is found that tilted Ti and Cr columns grow with a single crystalline morphology, while upright Cr columns are polycrystalline. Further, the influence of continuous substrate rotation on the shaping of Al, Ti, Cr and Mo nanostructures is studied with view to surface diffusion and the shadowing effect. It is observed that sculptured metallic thin films deposited without substrate rotation grow faster compared to those grown with continuous substrate rotation. A theoretical model is provided to describe this effect.

  2. Applications of synchrotron x-ray diffraction topography to fractography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bilello, J.C.

    1983-01-01

    Fractographs have been taken using a variety of probes each of which produces different types of information. Methods which have been used to examine fracture surfaces include: (a) optical microscopy, particularly interference contrast methods, (b) scanning electron microscopy (SEM), (c) SEM with electron channelling, (d) SEM with selected-area electron channelling, (e) Berg-Barrett (B-B) topography, and now (f) synchrotron x-radiation fractography (SXRF). This review concentrated on the role that x-ray methods can play in such studies. In particular, the ability to nondestructively assess the subsurface microstructure associated with the fracture to depths of the order of 5 to 10 ..mu..m becomesmore » an important attribute for observations of a large class of semi-brittle metals, semiconductors and ceramics.« less

  3. Mesoporous ZnO microcube derived from a metal-organic framework as photocatalyst for the degradation of organic dyes

    NASA Astrophysics Data System (ADS)

    Ban, Jin-jin; Xu, Guan-cheng; Zhang, Li; Lin, He; Sun, Zhi-peng; Lv, Yan; Jia, Dian-zeng

    2017-12-01

    A cube-like porous ZnO architecture was synthesized by direct two-step thermolysis of a zinc-based metal-organic framework [(CH3)2NH2][Zn(HCOO)3]. The obtained ZnO microcube was characterized by powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy and nitrogen adsorption and desorption isotherms. The mesoporous ZnO microcube was comprised by many nanoparticles, and inherited the cube shape from [(CH3)2NH2][Zn(HCOO)3] precursor. With large surface area and mesoporous structure, the ZnO microcube exhibits excellent photocatalytic activities against methyl orange (MO) and rhodamine B (RhB) under UV irradiation, and the degradation rates reached 99.7% and 98.1% within 120 min, respectively.

  4. Measuring Roughnesses Of Optical Surfaces

    NASA Technical Reports Server (NTRS)

    Coulter, Daniel R.; Al-Jumaily, Gahnim A.; Raouf, Nasrat A.; Anderson, Mark S.

    1994-01-01

    Report discusses use of scanning tunneling microscopy and atomic force microscopy to measure roughnesses of optical surfaces. These techniques offer greater spatial resolution than other techniques. Report notes scanning tunneling microscopes and atomic force microscopes resolve down to 1 nm.

  5. SERS imaging of cell-surface biomolecules metabolically labeled with bioorthogonal Raman reporters.

    PubMed

    Xiao, Ming; Lin, Liang; Li, Zefan; Liu, Jie; Hong, Senlian; Li, Yaya; Zheng, Meiling; Duan, Xuanming; Chen, Xing

    2014-08-01

    Live imaging of biomolecules with high specificity and sensitivity as well as minimal perturbation is essential for studying cellular processes. Here, we report the development of a bioorthogonal surface-enhanced Raman scattering (SERS) imaging approach that exploits small Raman reporters for visualizing cell-surface biomolecules. The cells were cultured and imaged by SERS microscopy on arrays of Raman-enhancing nanoparticles coated on silicon wafers or glass slides. The Raman reporters including azides, alkynes, and carbondeuterium bonds are small in size and spectroscopically bioorthogonal (background-free). We demonstrated that various cell-surface biomolecules including proteins, glycans, and lipids were metabolically incorporated with the corresponding precursors bearing a Raman reporter and visualized by SERS microscopy. The coupling of SERS microscopy with bioorthogonal Raman reporters expands the capabilities of live-cell microscopy beyond the modalities of fluorescence and label-free imaging. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Cell adhesion on nanotextured slippery superhydrophobic substrates.

    PubMed

    Di Mundo, Rosa; Nardulli, Marina; Milella, Antonella; Favia, Pietro; d'Agostino, Riccardo; Gristina, Roberto

    2011-04-19

    In this work, the response of Saos2 cells to polymeric surfaces with different roughness/density of nanometric dots produced by a tailored plasma-etching process has been studied. Topographical features have been evaluated by atomic force microscopy, while wetting behavior, in terms of water-surface adhesion energy, has been evaluated by measurements of drop sliding angle. Saos2 cytocompatibility has been investigated by scanning electron microscopy, fluorescent microscopy, and optical microscopy. The similarity in outer chemical composition has allowed isolation of the impact of the topographical features on cellular behavior. The results indicate that Saos2 cells respond differently to surfaces with different nanoscale topographical features, clearly showing a certain inhibition in cell adhesion when the nanoscale is particularly small. This effect appears to be attenuated in surfaces with relatively bigger nanofeatures, though these express a more pronounced slippery/dry wetting character. © 2011 American Chemical Society

  7. Study of nanoscale structural biology using advanced particle beam microscopy

    NASA Astrophysics Data System (ADS)

    Boseman, Adam J.

    This work investigates developmental and structural biology at the nanoscale using current advancements in particle beam microscopy. Typically the examination of micro- and nanoscale features is performed using scanning electron microscopy (SEM), but in order to decrease surface charging, and increase resolution, an obscuring conductive layer is applied to the sample surface. As magnification increases, this layer begins to limit the ability to identify nanoscale surface structures. A new technology, Helium Ion Microscopy (HIM), is used to examine uncoated surface structures on the cuticle of wild type and mutant fruit flies. Corneal nanostructures observed with HIM are further investigated by FIB/SEM to provide detailed three dimensional information about internal events occurring during early structural development. These techniques are also used to reconstruct a mosquito germarium in order to characterize unknown events in early oogenesis. Findings from these studies, and many more like them, will soon unravel many of the mysteries surrounding the world of developmental biology.

  8. PREFACE: Nanostructured surfaces

    NASA Astrophysics Data System (ADS)

    Palmer, Richard E.

    2003-10-01

    We can define nanostructured surfaces as well-defined surfaces which contain lateral features of size 1-100 nm. This length range lies well below the micron regime but equally above the Ångstrom regime, which corresponds to the interatomic distances on single-crystal surfaces. This special issue of Journal of Physics: Condensed Matter presents a collection of twelve papers which together address the fabrication, characterization, properties and applications of such nanostructured surfaces. Taken together they represent, in effect, a status report on the rapid progress taking place in this burgeoning area. The first four papers in this special issue have been contributed by members of the European Research Training Network ‘NanoCluster’, which is concerned with the deposition, growth and characterization of nanometre-scale clusters on solid surfaces—prototypical examples of nanoscale surface features. The paper by Vandamme is concerned with the fundamentals of the cluster-surface interaction; the papers by Gonzalo and Moisala address, respectively, the optical and catalytic properties of deposited clusters; and the paper by van Tendeloo reports the application of transmission electron microscopy (TEM) to elucidate the surface structure of spherical particles in a catalyst support. The fifth paper, by Mendes, is also the fruit of a European Research Training Network (‘Micro-Nano’) and is jointly contributed by three research groups; it reviews the creation of nanostructured surface architectures from chemically-synthesized nanoparticles. The next five papers in this special issue are all concerned with the characterization of nanostructured surfaces with scanning tunnelling microscopy (STM) and atomic force microscopy (AFM). The papers by Bolotov, Hamilton and Dunstan demonstrate that the STM can be employed for local electrical measurements as well as imaging, as illustrated by the examples of deposited clusters, model semiconductor structures and real devices, respectively, while the papers by Ledieu and Guo report the structural characterization of novel surface systems—quasicrystal surfaces and supramolecular monolayers, respectively. The final two papers, by Bennett and Smith, demonstrate the positive interplay between experimental measurements and theoretical modelling in the investigation of nanostructured surfaces. The examples discussed include, respectively, the growth of metal clusters on oxide surfaces and the deposition of fullerenes and energetic clusters from the gas phase. We note finally that the last six papers in this special issue have been contributed by members of the Committee of the newly-formed Nanoscale Physics and Technology Group of the Institute of Physics. The Group shares with this special issue the aim of promoting and disseminating exciting advances in the flourishing field of nanoscale physics.

  9. Facile synthesis and unique physicochemical properties of three-dimensionally ordered macroporous magnesium oxide, gamma-alumina, and ceria-zirconia solid solutions with crystalline mesoporous walls.

    PubMed

    Li, Huining; Zhang, Lei; Dai, Hongxing; He, Hong

    2009-05-18

    Three-dimensionally (3D) ordered macroporous (3DOM) MgO, gamma-Al(2)O(3), Ce(0.6)Zr(0.4)O(2), and Ce(0.7)Zr(0.3)O(2) with polycrystalline mesoporous walls have been successfully fabricated with the triblock copolymer EO(106)PO(70)EO(106) (Pluronic F127) and regularly packed monodispersive polymethyl methacrylate (PMMA) microspheres as the template and magnesium, aluminum, cerium and zirconium nitrate(s), or aluminum isopropoxide as the metal source. The as-synthesized metal oxides were characterized by means of techniques such as X-ray diffraction (XRD), thermogravimetric analysis/differential scanning calorimetry (TGA/DSC), Fourier transform infrared (FT-IR), high-resolution scanning electron microscopy (HRSEM), high-resolution transmission electron microscopy/selected area electron diffraction (HRTEM/SAED), BET, carbon dioxide temperature-programmed desorption (CO(2)-TPD), and hydrogen temperature-programmed reduction (H(2)-TPR). It is shown that the as-fabricated MgO, gamma-Al(2)O(3), Ce(0.6)Zr(0.4)O(2), and Ce(0.7)Zr(0.3)O(2) samples possessed single-phase polycrystalline structures and displayed a 3DOM architecture; the MgO, Ce(0.6)Zr(0.4)O(2), and Ce(0.7)Zr(0.3)O(2) samples exhibited worm-hole-like mesoporous walls, whereas the gamma-Al(2)O(3) samples exhibited 3D ordered mesoporous walls. The solvent (ethanol or water) nature and concentration, metal precursor, surfactant, and drying condition have an important impact on the pore structure and surface area of the final product. The introduction of surfactant F127 to the synthesis system could significantly enhance the surface areas of the 3DOM metal oxides. With PMMA and F127 in a 40% ethanol solution, one can generate well-arrayed 3DOM MgO with a surface area of 243 m(2)/g and 3DOM Ce(0.6)Zr(0.4)O(2) with a surface area of 100 m(2)/g; with PMMA and F127 in an ethanol-HNO(3) solution, one can obtain 3DOM gamma-Al(2)O(3)with a surface area of 145 m(2)/g. The 3DOM MgO and 3DOM gamma-Al(2)O(3) samples showed excellent CO(2) adsorption behaviors, whereas the 3DOM Ce(0.6)Zr(0.4)O(2) sample exhibited exceptional low-temperature reducibility. The unique physicochemical properties associated with the copresence of 3DOM and mesoporous walls make these porous materials ideal candidates for applications in heterogeneous catalysis and CO(2) adsorption.

  10. Calcite dissolution rate spectra measured by in situ digital holographic microscopy.

    PubMed

    Brand, Alexander S; Feng, Pan; Bullard, Jeffrey W

    2017-09-01

    Digital holographic microscopy in reflection mode is used to track in situ , real-time nanoscale topography evolution of cleaved (104) calcite surfaces exposed to flowing or static deionized water. The method captures full-field holograms of the surface at frame rates of up to 12.5 s -1 . Numerical reconstruction provides 3D surface topography with vertical resolution of a few nanometers and enables measurement of time-dependent local dissolution fluxes. A statistical distribution, or spectrum, of dissolution rates is generated by sampling multiple area domains on multiple crystals. The data show, as has been demonstrated by Fischer et al. (2012), that dissolution is most fully described by a rate spectrum, although the modal dissolution rate agrees well with published mean dissolution rates ( e.g. , 0.1 µmol m -2 s -1 to 0.3 µmol m -2 s -1 ). Rhombohedral etch pits and other morphological features resulting from rapid local dissolution appear at different times and are heterogeneously distributed across the surface and through the depth. This makes the distribution in rates measured on a single crystal dependent both on the sample observation field size and on time, even at nominally constant undersaturation. Statistical analysis of the inherent noise in the DHM measurements indicates that the technique is robust and that it likely can be applied to quantify and interpret rate spectra for the dissolution or growth of other minerals.

  11. Fabrication of ultrathin multilayered superomniphobic nanocoatings by liquid flame spray, atomic layer deposition, and silanization.

    PubMed

    Sorvali, Miika; Vuori, Leena; Pudas, Marko; Haapanen, Janne; Mahlberg, Riitta; Ronkainen, Helena; Honkanen, Mari; Valden, Mika; Mäkelä, Jyrki M

    2018-05-04

    Superomniphobic, i.e. liquid-repellent, surfaces have been an interesting area of research during recent years due to their various potential applications. However, producing such surfaces, especially on hard and resilient substrates like stainless steel, still remains challenging. We present a stepwise fabrication process of a multilayered nanocoating on a stainless steel substrate, consisting of a nanoparticle layer, a nanofilm, and a layer of silane molecules. Liquid flame spray was used to deposit a TiO 2 nanoparticle layer as the bottom layer for producing a suitable surface structure. The interstitial Al 2 O 3 nanofilm, fabricated by atomic layer deposition (ALD), stabilized the nanoparticle layer, and the topmost fluorosilane layer lowered the surface energy of the coating for enhanced omniphobicity. The coating was characterized with field emission scanning electron microscopy, focused ion beam scanning electron microscopy, x-ray photoelectron spectroscopy, contact angle (CA) and sliding angle (SA) measurements, and microscratch testing. The widely recognized requirements for superrepellency, i.e. CA > 150° and SA < 10°, were achieved for deioinized water, diiodomethane, and ethylene glycol. The mechanical stability of the coating could be varied by tuning the thickness of the ALD layer at the expense of repellency. To our knowledge, this is the thinnest superomniphobic coating reported so far, with the average thickness of about 70 nm.

  12. Spectroscopic imaging scanning tunneling microscopy of a Dirac line node material ZrSiS

    NASA Astrophysics Data System (ADS)

    Zhou, Lihui; He, Qingyu; Queiroz, Raquel; Grüneis, Andreas; Schnyder, Andreas; Ast, Christian; Schoop, Leslie; Takagi, Hide; Rost, Andreas

    3D Dirac materials are an intensive area of current condensed matter research. The related Dirac line node materials have come into focus due to many shared properties such as unconventional magneto-transport and the potential to host topologically nontrivial phases. ZrSiS is one of the first discovered materials of this new family, hosting a nodal line and an unconventional surface state. Spectroscopic imaging scanning tunneling microscopy (SI-STM) detects quasiparticle interference and has been extensively used to study the scattering mechanism and the band structures of exotic materials with high energy resolution at the atomic scale. Here in this presentation, we report the investigation of ZrSiS by SI-STM at the atomic scale, in combination with DFT calculations. We succeeded in visualizing the Dirac nodal line both in real and momentum space, adding key pieces of evidences confirming the existence of a nodal line in this material and highlighting its exceptional properties. The breaking of a non-symmorphic symmetry at the surface induces an unusual surface state whose dispersion was mapped. In particular, we observed spectroscopic signatures of a type-II Dirac fermion hosted by the surface state. Our data as seen by SI-STM has impact beyond ZrSiS providing crucial insights into the properties of Dirac line node materials in particular and non-symmorphic crystals in general.

  13. Calcite dissolution rate spectra measured by in situ digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Brand, Alexander S.; Feng, Pan; Bullard, Jeffrey W.

    2017-09-01

    Digital holographic microscopy in reflection mode is used to track in situ, real-time nanoscale topography evolution of cleaved (104) calcite surfaces exposed to flowing or static deionized water. The method captures full-field holograms of the surface at frame rates of up to 12.5 s-1. Numerical reconstruction provides 3D surface topography with vertical resolution of a few nanometers and enables measurement of time-dependent local dissolution fluxes. A statistical distribution, or spectrum, of dissolution rates is generated by sampling multiple area domains on multiple crystals. The data show, as has been demonstrated by Fischer et al. (2012), that dissolution is most fully described by a rate spectrum, although the modal dissolution rate agrees well with published mean dissolution rates (e.g., 0.1 μmol m-2 s-1 to 0.3 μmol m-2 s-1). Rhombohedral etch pits and other morphological features resulting from rapid local dissolution appear at different times and are heterogeneously distributed across the surface and through the depth. This makes the distribution in rates measured on a single crystal dependent both on the sample observation field size and on time, even at nominally constant undersaturation. Statistical analysis of the inherent noise in the DHM measurements indicates that the technique is robust and that it likely can be applied to quantify and interpret rate spectra for the dissolution or growth of other minerals.

  14. Fabrication of ultrathin multilayered superomniphobic nanocoatings by liquid flame spray, atomic layer deposition, and silanization

    NASA Astrophysics Data System (ADS)

    Sorvali, Miika; Vuori, Leena; Pudas, Marko; Haapanen, Janne; Mahlberg, Riitta; Ronkainen, Helena; Honkanen, Mari; Valden, Mika; Mäkelä, Jyrki M.

    2018-05-01

    Superomniphobic, i.e. liquid-repellent, surfaces have been an interesting area of research during recent years due to their various potential applications. However, producing such surfaces, especially on hard and resilient substrates like stainless steel, still remains challenging. We present a stepwise fabrication process of a multilayered nanocoating on a stainless steel substrate, consisting of a nanoparticle layer, a nanofilm, and a layer of silane molecules. Liquid flame spray was used to deposit a TiO2 nanoparticle layer as the bottom layer for producing a suitable surface structure. The interstitial Al2O3 nanofilm, fabricated by atomic layer deposition (ALD), stabilized the nanoparticle layer, and the topmost fluorosilane layer lowered the surface energy of the coating for enhanced omniphobicity. The coating was characterized with field emission scanning electron microscopy, focused ion beam scanning electron microscopy, x-ray photoelectron spectroscopy, contact angle (CA) and sliding angle (SA) measurements, and microscratch testing. The widely recognized requirements for superrepellency, i.e. CA > 150° and SA < 10°, were achieved for deioinized water, diiodomethane, and ethylene glycol. The mechanical stability of the coating could be varied by tuning the thickness of the ALD layer at the expense of repellency. To our knowledge, this is the thinnest superomniphobic coating reported so far, with the average thickness of about 70 nm.

  15. NaCl strongly modifies the physicochemical properties of aluminum hydroxide vaccine adjuvants.

    PubMed

    Art, Jean-François; Vander Straeten, Aurélien; Dupont-Gillain, Christine C

    2017-01-30

    The immunostimulation capacity of most vaccines is enhanced through antigen adsorption on aluminum hydroxide (AH) adjuvants. Varying the adsorption conditions, i.e. pH and ionic strength (I), changes the antigen adsorbed amount and therefore the ability of the vaccine to stimulate the immune system. Vaccine formulations are thus resulting from an empirical screening of the adsorption conditions. This work aims at studying the physicochemical effects of adjusting the ionic strength of commercial AH adjuvant particles suspensions with sodium chloride (NaCl). X-ray photoelectron spectroscopy data show that AH particles surface chemical composition is neither altered by I adjustment with NaCl nor by deposition on gold surfaces. The latter result provides the opportunity to use AH-coated gold surfaces as a platform for advanced surface analysis of adjuvant particles, e.g. by atomic force microscopy (AFM). The morphology of adjuvant particles recovered from native and NaCl-treated AH suspensions, as studied by scanning electron microscopy and AFM, reveals that AH particles aggregation state is significantly altered by NaCl addition. This is further confirmed by nitrogen adsorption experiments: I adjustment to 150mM with NaCl strongly promotes AH particles aggregation leading to a strong decrease of the developed specific surface area. This work thus evidences the effect of NaCl on AH adjuvant structure, which may lead to alteration of formulated vaccines and to misinterpretation of data related to antigen adsorption on adjuvant particles. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Effect of bioactive extruded PLA/HA composite films on focal adhesion formation of preosteoblastic cells.

    PubMed

    Persson, Maria; Lorite, Gabriela S; Kokkonen, Hanna E; Cho, Sung-Woo; Lehenkari, Petri P; Skrifvars, Mikael; Tuukkanen, Juha

    2014-09-01

    The quality of the initial cell attachment to a biomaterial will influence any further cell function, including spreading, proliferation, differentiation and viability. Cell attachment is influenced by the material's ability to adsorb proteins, which is related to the surface chemistry and topography of the material. In this study, we incorporated hydroxyapatite (HA) particles into a poly(lactic acid) (PLA) composite and evaluated the surface structure and the effects of HA density on the initial cell attachment in vitro of murine calvarial preosteoblasts (MC3T3-EI). Scanning electron microscopy (SEM), atomic force microscopy (AFM) and infrared spectroscopy (FTIR) showed that the HA particles were successfully incorporated into the PLA matrix and located at the surface which is of importance in order to maintain the bioactive effect of the HA particles. SEM and AFM investigation revealed that the HA density (particles/area) as well as surface roughness increased with HA loading concentration (i.e. 5, 10, 15 and 20wt%), which promoted protein adsorption. Furthermore, the presence of HA on the surface enhanced cell spreading, increased the formation of actin stress fibers and significantly improved the expression of vinculin in MC3T3-E1 cells which is a key player in the regulation of cell adhesion. These results suggest the potential utility of PLA/HA composites as biomaterials for use as a bone substitute material and in tissue engineering applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. A simple energy filter for low energy electron microscopy/photoelectron emission microscopy instruments.

    PubMed

    Tromp, R M; Fujikawa, Y; Hannon, J B; Ellis, A W; Berghaus, A; Schaff, O

    2009-08-05

    Addition of an electron energy filter to low energy electron microscopy (LEEM) and photoelectron emission microscopy (PEEM) instruments greatly improves their analytical capabilities. However, such filters tend to be quite complex, both electron optically and mechanically. Here we describe a simple energy filter for the existing IBM LEEM/PEEM instrument, which is realized by adding a single scanning aperture slit to the objective transfer optics, without any further modifications to the microscope. This energy filter displays a very high energy resolution ΔE/E = 2 × 10(-5), and a non-isochromaticity of ∼0.5 eV/10 µm. The setup is capable of recording selected area electron energy spectra and angular distributions at 0.15 eV energy resolution, as well as energy filtered images with a 1.5 eV energy pass band at an estimated spatial resolution of ∼10 nm. We demonstrate the use of this energy filter in imaging and spectroscopy of surfaces using a laboratory-based He I (21.2 eV) light source, as well as imaging of Ag nanowires on Si(001) using the 4 eV energy loss Ag plasmon.

  18. Advanced chemical imaging and comparison of human and porcine hair follicles for drug delivery by confocal Raman microscopy.

    PubMed

    Franzen, Lutz; Mathes, Christiane; Hansen, Steffi; Windbergs, Maike

    2013-06-01

    Hair follicles have recently gained a lot of interest for dermal drug delivery. They provide facilitated penetration into the skin and a high potential to serve as a drug depot. In this area of research, excised pig ear is a widely accepted in vitro model to evaluate penetration of drug delivery into hair follicles. However, a comparison of human and porcine follicles in terms of chemical composition has not been performed so far. In this study, we applied confocal Raman microscopy as a chemically selective imaging technique to compare human and porcine follicle composition and to visualize component distribution within follicle cross-sections. Based on the evaluation of human and porcine Raman spectra optical similarity for both species was successfully confirmed. Furthermore, cyanoacrylate skin surface biopsies, which are generally used to determine the extent of follicular penetration, were imaged by a novel complementary analytical approach combining confocal Raman microscopy and optical profilometry. This all-encompassing analysis allows investigation of intactness and component distribution of the excised hair bulb in three dimensions. Confocal Raman microscopy shows a high potential as a noninvasive and chemically selective technique for the analysis of trans-follicular drug delivery.

  19. Advanced chemical imaging and comparison of human and porcine hair follicles for drug delivery by confocal Raman microscopy

    NASA Astrophysics Data System (ADS)

    Franzen, Lutz; Mathes, Christiane; Hansen, Steffi; Windbergs, Maike

    2013-06-01

    Hair follicles have recently gained a lot of interest for dermal drug delivery. They provide facilitated penetration into the skin and a high potential to serve as a drug depot. In this area of research, excised pig ear is a widely accepted in vitro model to evaluate penetration of drug delivery into hair follicles. However, a comparison of human and porcine follicles in terms of chemical composition has not been performed so far. In this study, we applied confocal Raman microscopy as a chemically selective imaging technique to compare human and porcine follicle composition and to visualize component distribution within follicle cross-sections. Based on the evaluation of human and porcine Raman spectra optical similarity for both species was successfully confirmed. Furthermore, cyanoacrylate skin surface biopsies, which are generally used to determine the extent of follicular penetration, were imaged by a novel complementary analytical approach combining confocal Raman microscopy and optical profilometry. This all-encompassing analysis allows investigation of intactness and component distribution of the excised hair bulb in three dimensions. Confocal Raman microscopy shows a high potential as a noninvasive and chemically selective technique for the analysis of trans-follicular drug delivery.

  20. The human uterotubal junction: a scanning electron microscope study during different phases of the menstrual cycle.

    PubMed

    Fadel, H E; Berns, D; Zaneveld, L J; Wilbanks, G D; Brueschke, E E

    1976-10-01

    Uterotubal junctions from surgically extirpated human uteri were examined. The specimens were obtained during different phases of the menstrual cycle. The interstitial portions of the tubes together with the cornual areas were dissected, excised, and their luminal surfaces exposed. The specimens were then processed for scanning electron microscopy. The surface epithelium of both the cornual endometrium and interstitial endosalpins. Ciliated cells were more numerous in the endosalpinx. Cyclic changes in ciliated cells were minimal, while cyclic secretory activity was demonstrated, especially in the endometrium. The transitional area between the endometrium and the endosalpinx was characterized by a marked increase in the number of ciliated cells, and a tendency of the secretory cells to assume a flattened, polygonal shape. These morphologic features suggest a possible role in the transport and/or maintenance of spermatozoa and/or ova.

Top